ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a423982b4b451821e61f259bd81de4d518cd264
import os from flask import Flask from controller.routes import api app = Flask(__name__) app.register_blueprint(api) app.run(port=5000, debug=True)
py
1a423bb2e8a91135a397e5d048f1f32caa331084
# encoding: utf-8 # cython: profile=False # cython: embedsignature=True """ Implementation of DirichletDistribution. The Dirichlet distribution makes use of path counts from a DFA. Consider two representations of the DFA for the golden mean process. 0 1 0 0 1 1 0 -1 and 0 1 0 0 1 1 0 2 2 2 2 In the first, we have an incomplete DFA, whereas the second DFA is complete. The first represents forbidden transitions with a special node, -1. There is no explicit treatment of this node, and so, when counting paths, one must deal with the reality that paths can terminate. For the second DFA, node 2 is an explicit node that receives all forbidden transitions. Self loops keep all subsequent transitions at node 2. In this case, paths, even forbidden paths, do not terminate prematurely. It should not be surprising that supporting incomplete DFAs makes the code *more* complex. For example, the expression for the likelihood that we use during inference is valid only if the path has a nonzero probability, and so, the implementation must first check that the path is valid. Further complicating matters is that this implementation will infer transition probabilities for every node that has more than one outgoing edge. Without a mechanism for declaring which edges should be inferred and which should be fixed, this means that doing inference on a complete DFA will yield undesirable results---as forbidden edges will be inferred to have some nonzero probability. What this means for the current implementation: If one is attempting to do inference on an HMM that does not have full support from each state, then one should pass in an incomplete DFA of its support, rather than a complete DFA. The expression for the likelihood (and thus, evidence) still only holds for words with nonzero probability. Edges to implicit, forbidden nodes will have probability 0, which is fixed and not inferred by the algorithm. A goal for the future is to extend it so that one can declare which edges are fixed and which should be inferred, and how the parameters might be related to one another. """ from __future__ import absolute_import from __future__ import division import cython #cimport cython import numpy as np #cimport numpy as np from copy import deepcopy from .counts import path_counts from .exceptions import InvalidInitialNode from itertools import product BTYPE = np.bool #ctypedef bint BTYPE_t ITYPE = np.int64 #ctypedef np.int64_t ITYPE_t __all__ = ['DirichletDistribution', 'Infer'] import dit class DirichletDistribution(object): """ A barebones representation of a product of Dirichlet distributions. """ ### Public nodes = None symbols = None final_node = None valid_initial_nodes = None node_paths = None nNodes = None nSymbols = None nInitial = None nEdges = None prng = None ### Private tmatrix = None edges = None edge_alphas = None edge_counts = None node_alphas = None node_counts = None _temp = None def __init__(self, tmatrix, data=None, node_path=False, prng=None, out_arrays=None): #np.ndarray[ITYPE_t, ndim=2, mode="c"] tmatrix, #np.ndarray[ITYPE_t, ndim=1, mode="c"] data, #BTYPE_t node_path=False, #out_arrays=None): # In the follow, we use the following variables: # n : number of nodes # k : number of symbols # L : length of data # nInitial : number of valid initial nodes # nEdges : number of edges if prng is None: prng = np.random.RandomState() self.prng = prng if data is None: data = np.array((), dtype=int) # shape: (n, k) # axes: (node, symbol) # Each element is the next node. self.tmatrix = tmatrix # shape: (nEdges, 2) # axes: (edge index, (node, symbol)) self.edges = np.dstack(np.nonzero(tmatrix != -1))[0] # shape : (n,) # axes: (node,) # Not strictly necessary since the nodes are integers from zero. self.nodes = np.arange(tmatrix.shape[0]) # shape: (k,) # axes: (symbol,) self.symbols = np.arange(tmatrix.shape[1]) counts, final, node_paths = path_counts(tmatrix, data, node_path, out_arrays) # shape: (n, n, k) # axes: (initialNode, node, symbol) # Use float to support average counts. self.edge_counts = counts.astype(float) # shape: (n, n, k) # axes: (initialNode, node, symbol) # Start with uniform prior. self.edge_alphas = np.zeros(counts.shape, dtype=float) + 1 self._update_node_alphacounts() # shape: (n,) # axes: (initial node,) # Each element is the final node. self.final_node = final # shape: (nInitial,) # axes: (initial node,) # Each element is a valid initial node. self.valid_initial_nodes = np.array(np.nonzero(final != -1)[0]) # Eventually, we will need to determine which nodes have edges that # are to be inferred. Presently, this is every node since we cannot # have fixed edges with this algorithm. This will affect self.temp. # shape: (nNodes, L+1) # axes: (initialNode, time) self.node_paths = node_paths # The first row is for numerator terms # The second row is for denominator terms shape = (2, len(self.edges) + len(self.nodes)) self._temp = np.empty(shape, dtype=float) self.nNodes = tmatrix.shape[0] self.nSymbols = tmatrix.shape[1] self.nInitial = len(self.valid_initial_nodes) self.nEdges = self.edges.shape[0] def _update_node_alphacounts(self, alpha=True, counts=True): """ Recalculates `node_alpha` and `node_counts`. This must be called any time `edge_alpha` or `edge_counts` is updated. They are used to calculate the evidence. Practically, the node counts are the number of times each node was visited by some symbol. Effectively: node_count(initial_node, node) = \sum_{symbol} edge_count(initialNode, node, symbol) """ # axes: (initialNode, node) # Each element is the count/alpha value. # Recall edge_counts and edge_alphas have: # shape: (n, n, k) # axes: (initialNode, node, symbol) # For the counts, if an edge was not traversed, then its count is # zero and will not affect the sum along axis=2. When we consider # the alphas, we must make sure that the alphas corresponding to # nonedges (assuming incomplete DFAs) do not effect the node alpha, # that is, the sum along axis=2. So we exclude nonedges from the sum. # This means the minimum node alpha for every (initial node, node) pair # is 1, even for nodes which have no edges that need to be inferred. # However, this is not a problem since algorithms, like the evidence, # will not query for those alpha values (since they use self.edges). # # The reason it is done this way is to simplify the data structure. # Technically, you only need priors for edges that are to be inferred. # As of now, the implementation is that these arrays will have fixed # size, no matter how many edges need to be inferred. An alternative # way to do this is to make axis=1 sparse and with size equal to the # number of edges to be inferred. We would then need to use a lookup to # match indexes along axis=1 to the edges. if alpha: condition = self.tmatrix != -1 self.node_alphas = np.where(condition, self.edge_alphas, 0).sum(axis=2) if counts: self.node_counts = self.edge_counts.sum(axis=2) def add_counts_from(self, data): """ Adds additional counts from `data`. """ # For each symbol, add the count and update the final node. for symbol in data: for initial_node in self.valid_initial_nodes: final_node = self.final_node[initial_node] self.final_node[initial_node] = self.tmatrix[final_node, symbol] self.edge_counts[initial_node, final_node, symbol] += 1 self.valid_initial_nodes = np.array(np.nonzero(self.final_node != -1)[0]) self._update_node_alphacounts() def log_evidence(self, initial_node): """ Returns the log evidence of the data using `node` as the initial node. Parameters ---------- initial_node : int An initial node. Returns ------- log_evid : float The base-2 log evidence of the data given the initial node. When its value is -inf, then it is not possible to generate the given data from the initial node. When its value is 0, then the given data is the only possible data that could be generated from the initial node. """ if self.final_node[initial_node] == -1: # Then the data cannot be generated by this node. # # The form we use for the likelihood is valid only if the # probability of the data is nonzero. The reason is that it # requires edge counts for every edge, and we only obtain counts on # allowed edges. We could, alternatively, work with complete DFAs, # and then we *would* have counts for transitions following a # forbidden transition. In this case, the transition matrix would # have zero entries equal to -1 and one of the states would be the # garbage state. But this doesn't work for other reasons. See the # module docstring. log_evid = -np.inf else: from scipy.special import gammaln # shape: (2, nEdges + nNodes) temp = self._temp # It is no problem to iterate through nodes which only have # one edge, since the edge and node counts/alphas will cancel out. # Once we allow nodes with fixed probs, we will need to iterate # only through inferred edges and nodes with inferred edges. # Now iterate through every edge (u, x) edges = self.edges nEdges = self.nEdges ealphas = self.edge_alphas ecounts = self.edge_counts for i in range(nEdges): u = edges[i, 0] x = edges[i, 1] temp[0, i] = ealphas[initial_node, u, x] + \ ecounts[initial_node, u, x] temp[1, i] = ealphas[initial_node, u, x] # Similarly, iterate through every node (u, *) nalphas = self.node_alphas ncounts = self.node_counts for i in range(self.nNodes): temp[0, i + nEdges] = nalphas[initial_node, i] temp[1, i + nEdges] = nalphas[initial_node, i] + \ ncounts[initial_node, i] gammaln(temp, temp) temp[1] *= -1 log_evid = temp.sum() # Return base-2 logarithms. return log_evid / np.log(2) def log_evidence_array(self): """ Returns an array of the log evidence of each node. """ nNodes = self.nNodes log_evid = np.empty(nNodes) for i in range(nNodes): log_evid[i] = self.log_evidence(i) return log_evid def sample_uhmm(self, initial_node, size=None, prng=None): """ Returns a uHMM sampled from the posterior. Parameters ---------- initial_node : int The initial node. size : int The number of uHMMs to return. prng : np.RandomState A pseudorandom number generator, compatible with NumPy RandomState. Returns ------- trans : NumPy array The transition probabilities of the uHMM. If `size` is None, then return a single transition matrix, shape (n, k). Otherwise, return `size` transition matrices in an array of shape (`size`, n, k). Raises ------ Exception If `initial_node` is not a valid initial node. Notes ----- The final node can be obtained from self.final_node[initial_node]. """ if prng is None: prng = self.prng final_node = self.final_node[initial_node] if final_node == -1: raise InvalidInitialNode(initial_node) post = self.edge_alphas[initial_node] + self.edge_counts[initial_node] condition = self.tmatrix != -1 if size is None: shape = (1,) + self.tmatrix.shape else: shape = (size,) + self.tmatrix.shape trans = np.zeros(shape, dtype=float) for n in range(shape[0]): for i in range(shape[1]): cond = condition[i] trans[n, i, cond] = prng.dirichlet(post[i, cond]) if size is None: trans = trans[0] return trans def pm_uhmm(self, initial_node): """ Returns the posterior mean uHMM for the specified the initial node. Parameters ---------- initial_node : int The initial node. Returns ------- trans : NumPy array The transition probabilities of the uHMM. Raises ------ InvalidInitialNode If `initial_node` is not a valid initial node. Notes ----- The final node can be obtained from self.final_node[initial_node]. """ final_node = self.final_node[initial_node] if final_node == -1: raise InvalidInitialNode(initial_node) # This is a vectorized version of pm_edge_probability(). # An edge is a node and symbol: s, x # alpha(s, x|s_i) + counts(s, x|s_i) trans = self.edge_alphas[initial_node] + \ self.edge_counts[initial_node] # Now, we divide each row of trans by its normalization constant: # # \sum_x (alpha(s, x | s_i) + counts(s, x | s_i)) # # The node_* arrays have row/cols (initial_node, node). So we need # to associate their columns to the rows of trans. This is achieved # by dividing trans by a column vector. Before the [:, np.newaxis], # we have arrays of shape (n,). Afterwards, we have shape (n,1) trans /= (self.node_alphas[initial_node] + \ self.node_counts[initial_node])[:, np.newaxis] # It is necessary to explicitly mark forbidden transitions as having # zero probability since the alphas are nonzero for all transitions. condition = self.tmatrix == -1 trans[condition] = 0 return trans def pm_uhmm_array(self): """ Returns an array of the posterior mean uHMMs. """ uhmms = np.zeros((self.nInitial, self.nNodes, self.nSymbols)) for i, initial_node in enumerate(self.valid_initial_nodes): uhmms[i] = self.pm_uhmm(initial_node) return uhmms def _ntm(self, trans): n = trans.shape[0] ntm = np.zeros((n,n), dtype=float) edges = self.edges tmatrix = self.tmatrix for i in range(len(edges)): u = edges[i, 0] x = edges[i, 1] v = tmatrix[u, x] ntm[u, v] += trans[u, x] return ntm def get_updated_prior(self): """ Returns a new DirichletDistribution that incorporates observed counts. """ new = deepcopy(self) # Transfer edge counts to edge alphas. new.edge_alphas += new.edge_counts new.edge_counts *= 0 new._update_node_alphacounts() # To sample from the posterior, P( \theta | D, \sigma) we must keep the # same valid_initial_nodes. Note that the edge counts are zero in the # updated posterior. This suggests that the final_nodes should be # equal to the valid_initial_nodes since there is no data (e.g. no # edge counts). But doing this will not allow us to properly add new # since we *must* know the final state from all data seen (even if # the counts in the updated prior are now zero). return new def predictive_probability(self, x, initial_node): """ Returns the mean predictive probability of `x` given `initial_node`. That is, we calculate:: \Pr(x | D, \sigma) = \int \Pr( x | D, \theta, \sigma) \Pr( \theta | D, \sigma) d \theta This is a calculation from the posterior predictive distribution. Parameters ---------- x : iterable The new data used to calculate the predictive probability. initial_node : int The initial node. Returns ------- p : float The base-e logarithm of the mean predictive probability of `x`. Raises ------ InvalidInitialNode If `initial_node` is not a valid initial node. """ new = self.get_updated_prior() new.add_counts_from(x) return new.log_evidence(initial_node) class DirichletDistributionCP(DirichletDistribution): """ A Dirichlet distribution for Cartesian product inference. Importantly, the node/edge alpha and counts are not directly used to determine the posterior without first transforming them into the constituent parts of the Cartesian product. """ ### Public nodes = None symbols = None final_node = None valid_initial_nodes = None node_paths = None nMatrices = None nNodes = None nSymbols = None nInitial = None nEdges = None prng = None ### Private tmatrices = None tmatrix = None edges = None _temp = None def __init__(self, tmatrices, data=None, node_path=False, prng=None, out_arrays=None): tmatrix = self._build_tmatrix(tmatrices, data) base = super(DirichletDistributionCP, self) base.__init__(tmatrix, data, node_path, prng, out_arrays) def _build_tmatrix(self, tmatrices, data): # list of length m # elements are arrays of shape: (n_i, k_i) # axes: (node, symbol) for the ith tmatrix. # Each element is the next node. self.tmatrices = tmatrices self.nMatrices = len(tmatrices) self.nNodes_array = np.array([tmatrix.shape[0] for tmatrix in tmatrices]) nNodes = np.prod(self.nNodes_array) self.nodes = np.arange(nNodes) self.node_tuples = list(product(*[range(n) for n in self.nNodes_array])) self.node_tuples_index = dict(zip(self.node_tuples, self.nodes)) self.nSymbols_array = np.array([tmatrix.shape[1] for tmatrix in tmatrices]) nSymbols = np.prod(self.nSymbols_array) self.symbols = np.arange(nSymbols) self.symbol_tuples = list(product(*[range(n) for n in self.nSymbols_array])) self.symbol_tuples_index = dict(zip(self.symbol_tuples, self.symbols)) shape = np.array([m.shape for m in self.tmatrices]).prod(axis=0) tmatrix = np.zeros(shape, dtype=int) - 1 # Quick hack for now...generate the data for each tmatrix. # This requires a scan of the data for each tmatrix. Slow. # In principle, we can generate the counts/alphas with one scan, # and then propagate these values through summations to the counts # and alphas for each individual tmatrix. self.dd = [] symbols = self.symbol_tuples for i,m in enumerate(tmatrices): if data is not None: data_ = np.array([symbols[sym][i] for sym in data]) else: data_ = None self.dd.append( DirichletDistribution(m, data_) ) for edges in product(*[dd.edges for dd in self.dd]): v = tuple(self.tmatrices[i][u, x] for i, (u, x) in enumerate(edges)) u, x = zip(*edges) uu = self.node_tuples_index[u] vv = self.node_tuples_index[v] xx = self.symbol_tuples_index[x] tmatrix[uu, xx] = vv return tmatrix def log_evidence(self, initial_node): """ Returns the log evidence of the data using `node` as the initial node. Parameters ---------- initial_node : int An initial node. Returns ------- log_evid : float The base-2 log evidence of the data given the initial node. When its value is -inf, then it is not possible to generate the given data from the initial node. When its value is 0, then the given data is the only possible data that could be generated from the initial node. """ base = 2 ops = dit.math.get_ops(base) node = self.node_tuples[initial_node] log_evids = np.array([self.dd[i].log_evidence(node[i]) for i in range(self.nMatrices)]) log_evid = ops.mult_reduce(log_evids) return log_evid def sample_uhmm(self, initial_node, size=None, prng=None): """ Returns a uHMM sampled from the posterior. Parameters ---------- initial_node : int The initial node. size : int The number of uHMMs to return. prng : np.RandomState A pseudorandom number generator, compatible with NumPy RandomState. Returns ------- trans : NumPy array The transition probabilities of the uHMM. If `size` is None, then return a single transition matrix, shape (n, k). Otherwise, return `size` transition matrices in an array of shape (`size`, n, k). Raises ------ Exception If `initial_node` is not a valid initial node. Notes ----- The final node can be obtained from self.final_node[initial_node]. """ if prng is None: prng = self.prng final_node = self.final_node[initial_node] if final_node == -1: raise InvalidInitialNode(initial_node) inodes = self.node_tuples[initial_node] uhmms = [self.dd[i].sample_uhmm(inodes[i], prng=prng) for i in range(self.nMatrices)] trans = uhmms[0] for uhmm in uhmms[1:]: trans = np.kron(trans, uhmm) return trans def pm_uhmm(self, initial_node): """ Returns the posterior mean uHMM for the specified the initial node. Parameters ---------- initial_node : int The initial node. Returns ------- trans : NumPy array The transition probabilities of the uHMM. Raises ------ Exception If `initial_node` is not a valid initial node. Notes ----- The final node can be obtained from self.final[initial_node]. """ final_node = self.final_node[initial_node] if final_node == -1: raise InvalidInitialNode(initial_node) inodes = self.node_tuples[initial_node] pm_uhmms = [self.dd[i].pm_uhmm(inodes[i]) for i in range(self.nMatrices)] trans = pm_uhmms[0] for pm_uhmm in pm_uhmms[1:]: trans = np.kron(trans, pm_uhmm) return trans class Infer(object): """ New methods are those which require a distribution over start nodes. """ prng = None posterior = None inode_prior = None inode_posterior = None # The final node distribution is a deterministic function of the initial # node posterior distribution. It is a "posterior". For the prior, the # fnode_prior would be equal to inode_prior, and so, we do not include it # here. fnode_dist = None _nodedist_class = dit.ScalarDistribution _symboldist_class = dit.ScalarDistribution _posterior_class = DirichletDistribution def __init__(self, tmatrix, data=None, inode_prior=None, node_path=False, prng=None, out_arrays=None, options=None): """ inode_prior is the initial node prior distribution. """ # Allow the user to customize the classes used internally. if options is not None: attrs = ['nodedist_class', 'symboldist_class', 'posterior_class'] for attr in attrs: _attr = '_' + attr setattr(self, _attr, options.get(attr, getattr(self, _attr))) if prng is None: prng = np.random.RandomState() self.prng = prng self.posterior = self._posterior_class( tmatrix, data, node_path, self.prng, out_arrays ) self._inode_init(inode_prior) self._fnode_init() def _inode_init(self, inode_prior): # # Set up initial node prior distribution. # if inode_prior is None: outcomes = self.posterior.nodes n = self.posterior.nNodes pmf = [1 / n] * n inode_prior = self._nodedist_class(outcomes, pmf) else: # Assumes: # 1) the distribution is normalized # 2) sample space is range(n) if inode_prior.is_log(): inode_prior.set_base('linear') # If the initial node dist does not assign positive probability to # any of the valid initial nodes, then the evidence (averaged over # the prior of nodes) will be 0, and the posterior over nodes is # not defined. So we make sure that some probability is assigned # to at least one valid initial node. zero = inode_prior.ops.zero for node in self.posterior.valid_initial_nodes: if inode_prior[node] > zero: break else: msg = "`inode_prior` does not assign probability to a valid node." raise Exception(msg) # There is no reason to make it sparse, except to match the posterior. inode_prior.make_sparse() self.inode_prior = inode_prior # # Calculate initial node posterior distribution. For state s and data x, # # p(s|x) = p(x|s) p(s) / p(x) # # where p(x) = \sum_s p(x|s) p(s) # base = 2 ops = dit.math.get_ops(base) p_xgs = self.posterior.log_evidence_array() # Need to use dense version of the prior's pmf p_s = dit.copypmf(inode_prior, base=base, mode='dense') p_sgx = ops.mult(p_xgs, p_s) p_x = ops.add_reduce(p_sgx) ops.mult_inplace(p_sgx, ops.invert(p_x)) # No need to sort since the prior was already sorted. nodes = self.posterior.nodes d = self._nodedist_class(nodes, p_sgx, base=base, sort=False) d.set_base('linear') d.make_sparse() self.inode_posterior = d def _fnode_init(self): # This averages over initial nodes. Recall, due to unifilarity, for any # given initial node, there is exact one final node. # # p(s_f | x) = \sum_{s_i} p(s_f | x, s_i) p(s_i | x) # # so p(s_f | x, s_i) is equal to 1. # ops = dit.math.LogOperations('e') pmf = np.zeros(self.posterior.nNodes, dtype=float) for initial_node in self.posterior.valid_initial_nodes: p = self.inode_posterior[initial_node] final_node = self.posterior.final_node[initial_node] pmf[final_node] += p nodes = self.posterior.nodes d = self._nodedist_class(nodes, pmf, base='linear', validate=False) d.make_sparse() self.fnode_dist = d def add_counts_from(self, data): """ Adds additional counts from `data`. """ self.posterior.add_counts_from(data) self._inode_init(self.inode_prior) self._fnode_init() def get_updated_prior(self): """ Returns a new Infer that incorporates observed counts. """ posterior = self.posterior try: self.posterior = None new = deepcopy(self) finally: self.posterior = posterior new.posterior = posterior.get_updated_prior() # The difference here is that we must use the inode_posterior as our # new initial distribution. new._inode_init(self.inode_posterior) # There is no need to reinit the fnode_dist since # new.posterior.valid_initial_nodes and new.posterior.final_node are # the same as in `self.posterior`. return new def pm_next_symbol_dist(self): # This averages over initial nodes. # # p(x | D) = \sum_{s_i} p( x | D, s_i) p(s_i | D) # # where # # p(x | D, s_i) = \int dtheta p(x | theta, D, s_i) p( theta | D, s_i) # # p(x | theta, D, s_i) = \sum_{s_f} p( x, s_f | theta, D, s_i) # = p( x | theta, delta(s_i, D) ) # # but note, this last equation is not really necessary for unifilar # HMMs because the symbol x uniquely identifies the next state s_f. # So we have: # # p(x | D, s_i) = \int dtheta p(x | theta, delta(s_i, D)) p(theta | D, s_i) # # Thus, # # p(x | D, s_i) = posterior mean of edge (x, delta(s_i, D)) # # So for each valid initial node, we grab the row from the posterior # mean uHMM corresponding to its final node. These are the mean # probabilities of each symbol. This gives us a matrix of shape # (number of valid initial nodes, symbols). We construct a column # vector of the probability of each valid initial node and multiply # it elementwise on the rows (with broadcasting) to the mean # probabilities. Then, we sum the rows to get the final p(x | D). shape = (self.posterior.nInitial, self.posterior.nSymbols) probs = np.zeros(shape, dtype=float) # We must work with valid initial nodes since we are indexing with # the final node. for i, initial_node in enumerate(self.posterior.valid_initial_nodes): pm_uhmm = self.posterior.pm_uhmm(initial_node) final_node = self.posterior.final_node[initial_node] probs[i] = pm_uhmm[final_node] weights = dit.copypmf(self.inode_posterior, 'linear', 'sparse') weights = np.array([weights]).transpose() probs *= weights pmf = probs.sum(axis=0) d = self._symboldist_class(self.posterior.symbols, pmf) d.make_sparse() return d def log_evidence(self, initial_node=None): """ Returns the log evidence of the data using `node` as the initial node. p(D | s) if initial_node is not None \sum_s p(D|s) p(s) if initial_node is None Parameters ---------- initial_node : int, None An initial node. If `None`, then the expected log evidence is returned, where the expectation is over the initial node prior distribution. Returns ------- log_evid : float The base-2 log evidence of the data. """ if initial_node is not None: return self.posterior.log_evidence(initial_node) base = 2 ops = dit.math.get_ops(base) p_s = dit.copypmf(self.inode_prior, base=base, mode='dense') evidences = self.posterior.log_evidence_array() log_evid = ops.add_reduce(ops.mult(evidences, p_s)) return log_evid def sample_uhmm(self, initial_node=None, size=None, prng=None): """ Returns uHMM transition matrices sampled from the posterior. Parameters ---------- initial_node : int The initial node. If `None`, then the initial node is sampled from the initial node posterior distribution. size : int The number of uHMMs to return. prng : np.RandomState A pseudorandom number generator, compatible with NumPy RandomState. Returns ------- inodes : int or NumPy array The initial nodes. If `size` is None, then return the integer corresponding to the sampled initial node. Otherwise, a NumPy array of shape (`size`,) containing the sampled initial nodes. trans : NumPy array The transition probabilities of the uHMM. If `size` is None, then return a single transition matrix, shape (n, k). Otherwise, return `size` transition matrices in an array of shape (`size`, n, k). Raises ------ Exception If `initial_node` is not a valid initial node. """ if prng is None: prng = self.prng single = False if size is None: size = 1 single = True n, k = self.posterior.nNodes, self.posterior.nSymbols uhmms = np.zeros((size, n, k)) if initial_node is None: inodes = self.inode_posterior.rand(size, prng=prng) else: inodes = [initial_node] * size for i, inode in enumerate(inodes): uhmms[i] = self.posterior.sample_uhmm(inode, prng=prng) if single: inodes = inodes[0] uhmms = uhmms[0] return inodes, uhmms # Depends on CMPy def sample_stationary_distributions(self, n=None, prng=None): from cmpy.math import stationary_distribution if prng is None: prng = self.prng if n is None: single = True n = 1 else: single = False inodes = self.inode_posterior.rand(n, prng=prng) # n is likely to be small...let's build it up. pis = [] posterior = self.posterior for initial_node in inodes: tmatrix = posterior.sample_uhmm(initial_node, prng=prng) ntm = posterior._ntm(tmatrix) pi = stationary_distribution(ntm, logs=False) pis.append(pi) if single: sdists = pis[0] else: sdists = np.array(pis) return sdists def predictive_probability(self, x, initial_node=None): """ Returns the mean predictive probability of `x` given `initial_node`. That is, we calculate: \Pr(x | D, \sigma) = \int \Pr( x | D, \theta, \sigma) \Pr( \theta | D, \sigma) d \theta This is a calculation from the posterior predictive distribution. When `initial_node` is `None`, then we calculate: \Pr(x | D) = \sum \Pr(x | D, \sigma) \Pr( \sigma | D) Parameters ---------- x : iterable The new data used to calculate the predictive probability. initial_node : int or None The initial node. If `None`, then the predictive probability is averaged over the initial node posterior distribution. Returns ------- p : float The base-e logarithm of the mean predictive probability of `x`. Raises ------ InvalidInitialNode If `initial_node` is not a valid initial node. """ new = self.get_updated_prior() new.add_counts_from(x) return new.log_evidence(initial_node) class InferCP(Infer): _posterior_class = DirichletDistributionCP
py
1a423c849692b18d5f8674ea0ee8439b4141ee99
import sys exec("print('ALICE');"*int(input()))
py
1a423c93038b5e012834c9864f18363bcdaf9f1d
from collections import OrderedDict from functools import partial from matplotlib.figure import Figure from PyQt5 import QtWidgets, QtCore, QtGui from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from .model import AxesSet from .widgets import * class AxPositioningEditor(QtWidgets.QWidget): """ main widget for editing axes positions Example: >>>from matplotlib import pyplot as plt >>>fig = plt.figure() >>>w, h = fig.get_size_inches() >>>AxPositioningEditor((w, h), bounds=[]) """ position_codes = ['S', 'N', 'W', 'E', 'SW', 'NW', 'NE', 'SE', 'C'] position_names = [ 'lower center', 'top center', 'left center', 'right center', 'lower left', 'upper left', 'upper right', 'lower right', 'center'] click_axes_data = dict(w=.3, h=.3) def __init__(self, figsize, bounds=(), anchor='C', dpi=150): super().__init__() self.figsize = figsize w, h = self.figsize self.figure = Figure(figsize=(w, h)) self.dpi = dpi self.settings = dict(guides=False, guides_selected=False, relative=True) self.guides_subsetting_fields = [] self.axes = AxesSet(self.figure, bounds, anchor) self.build() self.canvas.mpl_connect('button_release_event', self.draw_axes) self.pointing_axes = False def build(self): """build the widget""" self.setMinimumWidth(600) self.setMinimumHeight(350) layout = QtWidgets.QHBoxLayout(self) layout.setContentsMargins(5, 5, 5, 5) figure_layout = QtWidgets.QVBoxLayout() layout.addLayout(figure_layout) self.build_figure(figure_layout) self.build_tools(layout) self.msg_label = QtWidgets.QLabel() self.msg_label.setContentsMargins(5, 5, 5, 5) figure_layout.addWidget(self.msg_label) self.draw() self.set_message(None) def build_figure(self, layout): """build the figure area""" figure_scroll_area = QtWidgets.QScrollArea() figure_scroll_area.setAlignment(QtCore.Qt.AlignCenter) # create canvas self.canvas = FigureCanvas(self.figure) # update the canvas size based on the figure size self.update_canvas_size() figure_scroll_area.setWidget(self.canvas) layout.addWidget(figure_scroll_area) def build_tools(self, layout): """build the tools area""" tools_widget = QtWidgets.QTabWidget() tools_widget.setFixedWidth(320) layout.addWidget(tools_widget) fw = QtWidgets.QWidget() figsize_layout = QtWidgets.QFormLayout(fw) self.figure_fields = dict() w, h = self.figsize self.figure_fields['w'] = f = QtWidgets.QLineEdit('{:.2f}'.format(w)) f.setValidator(QtGui.QDoubleValidator(0, 1000, 2)) figsize_layout.addRow('Width', f) self.figure_fields['h'] = f = QtWidgets.QLineEdit('{:.2f}'.format(h)) f.setValidator(QtGui.QDoubleValidator(0, 1000, 2)) figsize_layout.addRow('Height', f) b = QtWidgets.QPushButton('Apply') b.clicked.connect(self.set_figsize) figsize_layout.addRow('', b) tools_widget.addTab(fw, 'Figure') tools_widget.addTab(self.build_positions_tab(), 'Positions') w = AddAxesWidget(self.figure) w.newbounds.connect(self.set_axes) w.axes_added.connect(lambda x: self.add_axes_at_position(**x)) w.click_axes.connect(self.click_new_axes) tools_widget.addTab(w, 'Add axes') tools_widget.addTab(self.build_settings_tab(), 'Settings') def build_settings_tab(self): sw = QtWidgets.QWidget() settings_layout = QtWidgets.QVBoxLayout(sw) settings_layout.addWidget(QtWidgets.QLabel('Axes anchor')) dropdown = QtWidgets.QComboBox() dropdown.addItems(self.position_names) dropdown.currentIndexChanged.connect(lambda x: self.update_anchor(self.position_codes[x])) dropdown.setCurrentIndex(self.position_codes.index(self.axes.anchor)) settings_layout.addWidget(dropdown) settings_layout.addWidget(hline()) cb = QtWidgets.QCheckBox('show guides') cb.setChecked(self.settings.get('guides')) cb.stateChanged.connect(self.set_show_guides) settings_layout.addWidget(cb) f = QtWidgets.QFrame() l = QtWidgets.QVBoxLayout(f) l.setContentsMargins(10, 5, 5, 5) cb2 = QtWidgets.QCheckBox('for selected axes only') cb2.setChecked(self.settings['guides_selected']) cb2.stateChanged.connect(self.set_guides_selected) cb2.setEnabled(self.settings['guides']) self.guides_subsetting_fields.append(cb2) l.addWidget(cb2) settings_layout.addWidget(f) cb3 = QtWidgets.QCheckBox('absolute positions (dots)') cb3.setChecked(not self.settings['relative']) cb3.stateChanged.connect(self.set_absolute) settings_layout.addWidget(cb3) settings_layout.addItem(QtWidgets.QSpacerItem( 0, 0, QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Expanding)) return sw def build_positions_tab(self): w = QtWidgets.QWidget() layout = QtWidgets.QVBoxLayout(w) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(5) # main buttons button_layout = QtWidgets.QHBoxLayout() button_layout.setContentsMargins(0, 0, 0, 0) clear_figure_button = QtWidgets.QPushButton('Clear figure') clear_figure_button.clicked.connect(self.clear_figure) button_layout.addWidget(clear_figure_button) select_all_button = QtWidgets.QPushButton('Select all') select_all_button.clicked.connect(self.select_all_axes) button_layout.addWidget(select_all_button) select_none_button = QtWidgets.QPushButton('Clear selection') select_none_button.clicked.connect(self.select_none_axes) button_layout.addWidget(select_none_button) layout.addLayout(button_layout) # actions action_layout = QtWidgets.QHBoxLayout() layout.addLayout(action_layout) action_layout.addItem(QtWidgets.QSpacerItem( 0, 0, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Maximum)) action_layout.addWidget(QtWidgets.QLabel('Actions')) self.actions_dropdown = QtWidgets.QComboBox() self.actions_dropdown.addItems(sorted(self.axes_actions.keys())) action_layout.addWidget(self.actions_dropdown) execute_action_button = QtWidgets.QPushButton('Apply') execute_action_button.clicked.connect(self.execute_current_action) action_layout.addWidget(execute_action_button) self.axtable = AxesPositionsWidget(self.axes) self.axtable.changed.connect(self.set_ax_position) self.axtable.selected.connect(self.select_axes) self.axtable.invalid_value.connect(self.reset_value) self.axtable.moved.connect(self.move_axes) layout.addWidget(self.axtable) return w def update_canvas_size(self): w, h = self.figsize self.figure.set_size_inches(w, h) self.figure.set_dpi(self.dpi) screenwidth, screenheight = w * self.dpi, h * self.dpi self.canvas.resize(.5*screenwidth, .5*screenheight) def set_figsize(self): w = self.figure_fields['w'].text() h = self.figure_fields['h'].text() try: w = float(w) h = float(h) except ValueError: w, h = self.figure.get_size_inches() self.figure_fields['w'].setText('{:.2f}'.format(w)) self.figure_fields['h'].setText('{:.2f}'.format(h)) else: self.figsize = w, h self.figure.set_size_inches(*self.figsize) self.update_canvas_size() self.draw(posfields=True) def reset_value(self, row, col, attr): ax = self.axes.names[row] self.axtable.blockSignals(True) self.axtable.item(row, col).setText('{:.3f}'.format(getattr(ax, attr))) self.axtable.blockSignals(False) def get_bounds(self): """returns a list of axes bounds as [(x, y, w, h)]""" bounds = [] for n, a in self.axes.items(): bounds.append(a.bounds) return bounds def as_dict(self): return dict(bounds=self.get_bounds(), figsize=self.figsize) # --------- # edit axes # --------- def draw_axes(self, event): """create an axes at the click location if self.pointing_axes is enabled""" if self.pointing_axes: x, y = self.figure.transFigure.inverted().transform((event.x, event.y)) a = self.add_axes_at_position(x, y, **self.click_axes_data) self.pointing_axes = False # clear the message widget self.set_message(None) def set_show_guides(self, b): self.settings['guides'] = bool(b) for item in self.guides_subsetting_fields: item.setEnabled(b) self.draw(posfields=False) def set_guides_selected(self, b): self.settings['guides_selected'] = bool(b) self.draw(posfields=False) def set_absolute(self, b): self.settings['relative'] = not bool(b) self.draw(posfields=True) def click_new_axes(self, data): self.pointing_axes = True self.set_message('Click in the figure to place a new axes at that position') self.click_axes_data = data def add_axes_at_position(self, x, y, w=.4, h=.4, n=None, draw=True): """add axes at specified location in Figure coordinates""" self.axes.add(x, y, w, h, apply_anchor=True) if draw: self.draw(posfields=True) def add_axes(self, bounds, draw=True): self.axes.add(*bounds) if draw: self.draw(posfields=True) def set_axes(self, bounds, draw=True): """set several axes from a list of bounds""" for bnd in bounds: self.axes.add(*bnd) if draw: self.draw(posfields=True) def set_ax_position(self, row, attr, value): """ set the position of an axes from the attribute name :param axname: name of the axes :param attr: name of the position attribute :param value: value of the position attribute """ axname = self.axes.names[row] self.axes.set_property(str(axname), attr, value, relative=self.settings['relative']) self.draw(posfields=True) def delete_axes(self, name, redraw=True): """delete an axes from the editor""" self.axes.pop(str(name)) if redraw: self.draw(posfields=True) def move_axes(self, rows, ind): if ind in rows or ind-1 in rows: return names = self.axes.names def keyfn(v): if v in rows: return 1 elif v < ind: return 0 else: return 2 indices = sorted(list(range(len(names))), key=keyfn) self.axes.change_order([names[i] for i in indices]) self.draw(posfields=True) # ----------- # update gui # ----------- def set_message(self, msg, level='INFO'): """ set a message in the message window hide the messages if msg is None :param msg: message text :param level: level (see logging levels) of the message """ if msg is None: self.msg_label.setText('') self.msg_label.hide() else: self.msg_label.show() styles = dict( DEBUG='background-color: rgb(100, 250, 100)', INFO='', WARNING='background-color: rgb(250, 230, 150)', ERROR='background-color: rgb(255, 150, 100)', ) self.msg_label.setStyleSheet(styles[level]) self.msg_label.setText(msg) def add_message(self, msg): """add to the end of the message (keep formatting)""" txt = self.msg_label.text() self.msg_label.setText(txt+'\n'+msg) def draw(self, posfields=False): """redraw the contents""" self.figure.clear() for name, a in self.axes.items(): a.format_placeholder(name) self.figure.add_axes(a) if self.settings['guides']: self.axes.plot_guides(selected=self.settings['guides_selected'], relative=self.settings['relative']) self.canvas.draw_idle() if posfields: self.axtable.clear() self.axtable.fill(self.axes, relative=self.settings['relative']) def update_anchor(self, pos, redraw=True): """set the position reference anchor of the axes to a new location""" for name, a in self.axes.items(): a.set_anchor(pos) self.axes.anchor = pos if redraw: self.draw(posfields=True) # ------------------------------------ # selecting axes and executing actions # ------------------------------------ def execute_current_action(self): if not self.axes.any_selected(): return action = self.actions_dropdown.currentText() fn = getattr(self, self.axes_actions[str(action)]) fn(self.axes.selected_names, self.axes.selected) def select_axes(self, key, b=True): self.axes.select(str(key), b) self.draw() def clear_figure(self): self.figure.clear() for k in list(self.axes.keys()): self.delete_axes(k, redraw=False) self.draw(posfields=True) def select_all_axes(self): self.axes.select_all() self.draw(posfields=True) def select_none_axes(self): self.axes.select_none() self.draw(posfields=True) # -------------- # Define actions # -------------- axes_actions = { 'delete': 'delete_axes_objects', 'align X': 'axes_equal_x', 'align Y': 'axes_equal_y', 'equal width': 'axes_equal_w', 'equal height': 'axes_equal_h', 'equal aspect': 'axes_equal_aspect', 'join': 'axes_join', 'split': 'axes_split' } def delete_axes_objects(self, names, axes, redraw=True): for n in names: self.axes.pop(n) if redraw: self.draw(posfields=True) def axes_equal_x(self, names, axes, redraw=True): x = axes.pop(0).x for a in axes: a.x = x if redraw: self.draw(posfields=True) def axes_equal_y(self, names, axes, redraw=True): y = axes.pop(0).y for a in axes: a.y = y if redraw: self.draw(posfields=True) def axes_equal_w(self, names, axes, redraw=True): w = axes.pop(0).w for a in axes: a.w = w if redraw: self.draw(posfields=True) def axes_equal_h(self, names, axes, redraw=True): h = axes.pop(0).h for a in axes: a.h = h if redraw: self.draw(posfields=True) def axes_equal_aspect(self, names, axes, redraw=True): A = axes.pop(0).aspect for a in axes: a.aspect = A if redraw: self.draw(posfields=True) def axes_join(self, names, axes, redraw=True): """join axes within bounding box of all selected axes""" # store anchor anchor = self.axes.anchor # update anchor to lower left during processing self.update_anchor('SW', True, redraw=False) # determine bounding box xll = min(a.x for a in axes) yll = min(a.y for a in axes) xur = max(a.x + a.w for a in axes) yur = max(a.y + a.h for a in axes) # redefine first axes position to bounding box axes[0].set_position((xll, yll, xur-xll, yur-yll)) # delete other axes self.delete_axes_objects(names[1:], axes[1:], redraw=False) # update the anchor to the original self.update_anchor(anchor, True, redraw=redraw) def axes_split(self, names, axes, redraw=True): """ split axes in two parts based on a given ratio """ def show_error(msg): m = QtWidgets.QMessageBox() m.setText(msg) m.exec() # create dialog to input ratio, spacing and h/v split dialog = SplitDialog() if dialog.exec() != QtWidgets.QDialog.Accepted: return ratio, spacing, horizontal = dialog.get_data() if ratio < 0 or ratio > 1: show_error('ratio must be between 0 and 1') return for a in axes: try: new_bounds = a.split(ratio, spacing, wsplit=horizontal) except ValueError as e: show_error(str(e)) return else: # create 2nd axes and copy selected state new_ax = self.axes.add(*new_bounds, anchor=a.get_anchor()) new_ax._selected = a._selected if redraw: self.draw(posfields=True)
py
1a423ca54ed38b8d57e3875f8dcda15af7e42796
import os from configparser import ConfigParser from nipype.utils import config as nuc from pkg_resources import resource_filename def get_fitlins_config(): """Construct Nipype configuration object with precedence: - Local config (``./nipype.cfg``) - Global config (``$HOME/.nipype/nipype.cfg`` or ``$NIPYPE_CONFIG_DIR/nipype.cfg``) - FitLins config (``<fitlins_install_dir>/data/nipype.cfg``) - Nipype default config (defined in ``nipype/utils/config.py``) """ config = nuc.NipypeConfig() config.set_default_config() fitlins_config_file = resource_filename('fitlins', 'data/nipype.cfg') global_config_file = os.path.join( os.path.expanduser(os.getenv("NIPYPE_CONFIG_DIR", default="~/.nipype")), "nipype.cfg" ) local_config_file = "nipype.cfg" fitlins_conf = ConfigParser() fitlins_conf.read([fitlins_config_file, global_config_file, local_config_file]) config.update_config(fitlins_conf) return config
py
1a423ce2b066a950fbb7133724f1fe4db3de8c91
import importlib from abc import ABC, abstractmethod from textwrap import dedent from collections.abc import Sequence from astropy.table import Table from sunpy.util.util import get_width __all__ = ['BaseQueryResponse', 'BaseClient'] class BaseQueryResponse(Sequence): """ An Abstract Base Class for results returned from BaseClient. Notes ----- * A QueryResponse object must be able to be instantiated with only one iterable argument. (i.e. the ``__init__`` must only have one required argument). * The `client` property must be settable. * The base class does not prescribe how you store the results from your client, only that it must be possible to represent them as an astropy table in the ``build_table`` method. * `__getitem__` **must** return an instance of the type it was called on. I.e. it must always return an object of ``type(self)``. """ @abstractmethod def build_table(self): """ Return an `astropy.table.Table` representation of the query response. """ @property @abstractmethod def client(self): """ An instance of `BaseClient` used to generate the results. Generally this is used to fetch the results later. .. note:: In general, this doesn't have to be the same instance of ``BaseClient``, this is left to the client developer. If there is a significant connection overhead in creating an instance of a client you might want it to be the same instance as used for the search. """ @client.setter @abstractmethod def client(self, value): pass @property @abstractmethod def blocks(self): """ A `collections.abc.Sequence` object which contains the records contained within the Query Response. """ @abstractmethod def response_block_properties(self): """ Returns a set of class attributes on all the response blocks. Returns ------- s : `set` List of strings, containing attribute names in the response blocks. """ def __str__(self): """Print out human-readable summary of records retrieved""" return '\n'.join(self.build_table().pformat(show_dtype=False)) def __repr__(self): """Print out human-readable summary of records retrieved""" return object.__repr__(self) + "\n" + str(self) def _repr_html_(self): return self.build_table()._repr_html_() def show(self, *cols): """ Returns response tables with desired columns for the Query. Parameters ---------- \\*cols : `tuple` Name of columns to be shown. Returns ------- `astropy.table.Table` A table showing values for specified columns. """ table = self.build_table() if len(cols) == 0: return table return table[list(cols)] def _print_client(client, html=False): """ Given a BaseClient instance will print out each registered attribute. Parameters ---------- client : `sunpy.net.base_client.BaseClient` The instance class to print for. html : bool Will return a html table instead. Returns ------- `str` String with the client. """ width = -1 if html else get_width() class_name = f"{client.__module__+'.' or ''}{client.__class__.__name__}" attrs = client.register_values() lines = [] t = Table(names=["Attr Type", "Name", "Description"], dtype=["U80", "U80", "U80"]) for client_key in attrs.keys(): # Work around for * attrs having one length. if len(attrs[client_key]) == 1 and attrs[client_key][0] == "*": t.add_row((client_key.__name__, "All", "All valid values")) continue for name, desc in attrs[client_key]: t.add_row((client_key.__name__, name, desc)) lines = [class_name, dedent(client.__doc__.partition("\n\n")[0])] if html: lines = [f"<p>{line}</p>" for line in lines] lines.extend(t.pformat_all(show_dtype=False, max_width=width, align="<", html=html)) return '\n'.join(lines) class BaseClient(ABC): """ This defines the Abstract Base Class for each download client. The BaseClient has several abstract methods that ensure that any subclass enforces the bare minimum API. These are `search`, `fetch` and `_can_handle_query`. The last one ensures that each download client can be registered with Fido. Most download clients should subclass `~sunpy.net.dataretriever.GenericClient`. If the structure of `~sunpy.net.dataretriever.GenericClient` is not useful you should use `~sunpy.net.BaseClient`. `~sunpy.net.vso.VSOClient` and `~sunpy.net.jsoc.JSOCClient` are examples of download clients that subclass ``BaseClient``. """ _registry = dict() def __init_subclass__(cls, *args, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `_can_handle_query` attribute. This is then passed into the UnifiedDownloaderFactory so we can register them. This means that Fido can use the clients internally. """ super().__init_subclass__(**kwargs) # We do not want to register GenericClient since its a dummy client. if cls.__name__ in ('GenericClient'): return cls._registry[cls] = cls._can_handle_query if hasattr(cls, "_attrs_module"): from sunpy.net import attrs name, module = cls._attrs_module() module_obj = importlib.import_module(module) existing_mod = getattr(attrs, name, None) if existing_mod and existing_mod is not module_obj: raise NameError(f"{name} has already been registered as an attrs name.") setattr(attrs, name, module_obj) if name not in attrs.__all__: attrs.__all__.append(name) # Register client attrs after it has regsitered its own attrs from sunpy.net import attr values = cls.register_values() # If the client has no support, we won't try to register attrs if values: attr.Attr.update_values({cls: values}) def __repr__(self): """ Returns the normal repr plus the pretty client __str__. """ return object.__repr__(self) + "\n" + str(self) def __str__(self): """ This enables the "pretty" printing of BaseClient. """ return _print_client(self) def _repr_html_(self): """ This enables the "pretty" printing of the BaseClient with html. """ return _print_client(self, html=True) @abstractmethod def search(self, *args, **kwargs): """ This enables the user to search for data using the client. Must return a subclass of `BaseQueryResponse`. """ @abstractmethod def fetch(self, *query_results, path=None, overwrite=False, progress=True, max_conn=5, downloader=None, wait=True, **kwargs): """ This enables the user to fetch the data using the client, after a search. Parameters ---------- query_results: Results to download. path : `str` or `pathlib.Path`, optional Path to the download directory overwrite : `bool`, optional Replace files with the same name if True. progress : `bool`, optional Print progress info to terminal. max_conns : `int`, optional Maximum number of download connections. downloader : `parfive.Downloader`, optional The download manager to use. wait : `bool`, optional If `False` ``downloader.download()`` will not be called. Only has any effect if `downloader` is not `None`. Returns ------- `parfive.Results` The results object, can be `None` if ``wait`` is `False`. """ @classmethod @abstractmethod def _can_handle_query(cls, *query): """ This enables the client to register what kind of searches it can handle, to prevent Fido using the incorrect client. """ @staticmethod def check_attr_types_in_query(query, required_attrs={}, optional_attrs={}): """ Check a query againsted required and optional attributes. Returns `True` if *query* contains all the attrs in *required_attrs*, and if *query* contains only attrs in both *required_attrs* and *optional_attrs*. """ query_attrs = {type(x) for x in query} all_attrs = required_attrs.union(optional_attrs) return required_attrs.issubset(query_attrs) and query_attrs.issubset(all_attrs) @classmethod def register_values(cls, *query): """ This enables the client to register what kind of Attrs it can use directly. Returns ------- `dict` A dictionary with key values of Attrs and the values are a tuple of ("Attr Type", "Name", "Description"). """ return {}
py
1a423d1a15aff1bd482853351fe581b856c08ff6
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from .. import models class NetworkInterfaceLoadBalancersOperations(object): """NetworkInterfaceLoadBalancersOperations operations. You should not instantiate directly this class, but create a Client instance that will create it for you and attach it as attribute. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: Client API version. Constant value: "2020-07-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2020-07-01" self.config = config def list( self, resource_group_name, network_interface_name, custom_headers=None, raw=False, **operation_config): """List all load balancers in a network interface. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_interface_name: The name of the network interface. :type network_interface_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of LoadBalancer :rtype: ~azure.mgmt.network.v2020_07_01.models.LoadBalancerPaged[~azure.mgmt.network.v2020_07_01.models.LoadBalancer] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkInterfaceName': self._serialize.url("network_interface_name", network_interface_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request def internal_paging(next_link=None): request = prepare_request(next_link) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response header_dict = None if raw: header_dict = {} deserialized = models.LoadBalancerPaged(internal_paging, self._deserialize.dependencies, header_dict) return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkInterfaces/{networkInterfaceName}/loadBalancers'}
py
1a423ef4f4358fd9b24a3590ef074035f2d2c062
# !/usr/bin/env python # # Copyright 2015 clowwindy # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import, division, print_function, \ with_statement import string import struct import hashlib __all__ = ['ciphers'] cached_tables = {} if hasattr(string, 'maketrans'): maketrans = string.maketrans translate = string.translate else: maketrans = bytes.maketrans translate = bytes.translate def get_table(key): m = hashlib.md5() m.update(key) s = m.digest() a, b = struct.unpack('<QQ', s) table = maketrans(b'', b'') table = [table[i: i + 1] for i in range(len(table))] for i in range(1, 1024): table.sort(key=lambda x: int(a % (ord(x) + i))) return table def init_table(key): if key not in cached_tables: encrypt_table = b''.join(get_table(key)) decrypt_table = maketrans(encrypt_table, maketrans(b'', b'')) cached_tables[key] = [encrypt_table, decrypt_table] return cached_tables[key] class TableCipher(object): def __init__(self, cipher_name, key, iv, op): self._encrypt_table, self._decrypt_table = init_table(key) self._op = op def update(self, data): if self._op: return translate(data, self._encrypt_table) else: return translate(data, self._decrypt_table) def clean(self): pass class NoneCipher(object): def __init__(self, cipher_name, key, iv, op): pass def update(self, data): return data def clean(self): pass ciphers = { 'none': (16, 0, NoneCipher), 'table': (16, 0, TableCipher) } def test_table_result(): from shadowsocks.common import ord target1 = [ [60, 53, 84, 138, 217, 94, 88, 23, 39, 242, 219, 35, 12, 157, 165, 181, 255, 143, 83, 247, 162, 16, 31, 209, 190, 171, 115, 65, 38, 41, 21, 245, 236, 46, 121, 62, 166, 233, 44, 154, 153, 145, 230, 49, 128, 216, 173, 29, 241, 119, 64, 229, 194, 103, 131, 110, 26, 197, 218, 59, 204, 56, 27, 34, 141, 221, 149, 239, 192, 195, 24, 155, 170, 183, 11, 254, 213, 37, 137, 226, 75, 203, 55, 19, 72, 248, 22, 129, 33, 175, 178, 10, 198, 71, 77, 36, 113, 167, 48, 2, 117, 140, 142, 66, 199, 232, 243, 32, 123, 54, 51, 82, 57, 177, 87, 251, 150, 196, 133, 5, 253, 130, 8, 184, 14, 152, 231, 3, 186, 159, 76, 89, 228, 205, 156, 96, 163, 146, 18, 91, 132, 85, 80, 109, 172, 176, 105, 13, 50, 235, 127, 0, 189, 95, 98, 136, 250, 200, 108, 179, 211, 214, 106, 168, 78, 79, 74, 210, 30, 73, 201, 151, 208, 114, 101, 174, 92, 52, 120, 240, 15, 169, 220, 182, 81, 224, 43, 185, 40, 99, 180, 17, 212, 158, 42, 90, 9, 191, 45, 6, 25, 4, 222, 67, 126, 1, 116, 124, 206, 69, 61, 7, 68, 97, 202, 63, 244, 20, 28, 58, 93, 134, 104, 144, 227, 147, 102, 118, 135, 148, 47, 238, 86, 112, 122, 70, 107, 215, 100, 139, 223, 225, 164, 237, 111, 125, 207, 160, 187, 246, 234, 161, 188, 193, 249, 252], [151, 205, 99, 127, 201, 119, 199, 211, 122, 196, 91, 74, 12, 147, 124, 180, 21, 191, 138, 83, 217, 30, 86, 7, 70, 200, 56, 62, 218, 47, 168, 22, 107, 88, 63, 11, 95, 77, 28, 8, 188, 29, 194, 186, 38, 198, 33, 230, 98, 43, 148, 110, 177, 1, 109, 82, 61, 112, 219, 59, 0, 210, 35, 215, 50, 27, 103, 203, 212, 209, 235, 93, 84, 169, 166, 80, 130, 94, 164, 165, 142, 184, 111, 18, 2, 141, 232, 114, 6, 131, 195, 139, 176, 220, 5, 153, 135, 213, 154, 189, 238, 174, 226, 53, 222, 146, 162, 236, 158, 143, 55, 244, 233, 96, 173, 26, 206, 100, 227, 49, 178, 34, 234, 108, 207, 245, 204, 150, 44, 87, 121, 54, 140, 118, 221, 228, 155, 78, 3, 239, 101, 64, 102, 17, 223, 41, 137, 225, 229, 66, 116, 171, 125, 40, 39, 71, 134, 13, 193, 129, 247, 251, 20, 136, 242, 14, 36, 97, 163, 181, 72, 25, 144, 46, 175, 89, 145, 113, 90, 159, 190, 15, 183, 73, 123, 187, 128, 248, 252, 152, 24, 197, 68, 253, 52, 69, 117, 57, 92, 104, 157, 170, 214, 81, 60, 133, 208, 246, 172, 23, 167, 160, 192, 76, 161, 237, 45, 4, 58, 10, 182, 65, 202, 240, 185, 241, 79, 224, 132, 51, 42, 126, 105, 37, 250, 149, 32, 243, 231, 67, 179, 48, 9, 106, 216, 31, 249, 19, 85, 254, 156, 115, 255, 120, 75, 16]] target2 = [ [124, 30, 170, 247, 27, 127, 224, 59, 13, 22, 196, 76, 72, 154, 32, 209, 4, 2, 131, 62, 101, 51, 230, 9, 166, 11, 99, 80, 208, 112, 36, 248, 81, 102, 130, 88, 218, 38, 168, 15, 241, 228, 167, 117, 158, 41, 10, 180, 194, 50, 204, 243, 246, 251, 29, 198, 219, 210, 195, 21, 54, 91, 203, 221, 70, 57, 183, 17, 147, 49, 133, 65, 77, 55, 202, 122, 162, 169, 188, 200, 190, 125, 63, 244, 96, 31, 107, 106, 74, 143, 116, 148, 78, 46, 1, 137, 150, 110, 181, 56, 95, 139, 58, 3, 231, 66, 165, 142, 242, 43, 192, 157, 89, 175, 109, 220, 128, 0, 178, 42, 255, 20, 214, 185, 83, 160, 253, 7, 23, 92, 111, 153, 26, 226, 33, 176, 144, 18, 216, 212, 28, 151, 71, 206, 222, 182, 8, 174, 205, 201, 152, 240, 155, 108, 223, 104, 239, 98, 164, 211, 184, 34, 193, 14, 114, 187, 40, 254, 12, 67, 93, 217, 6, 94, 16, 19, 82, 86, 245, 24, 197, 134, 132, 138, 229, 121, 5, 235, 238, 85, 47, 103, 113, 179, 69, 250, 45, 135, 156, 25, 61, 75, 44, 146, 189, 84, 207, 172, 119, 53, 123, 186, 120, 171, 68, 227, 145, 136, 100, 90, 48, 79, 159, 149, 39, 213, 236, 126, 52, 60, 225, 199, 105, 73, 233, 252, 118, 215, 35, 115, 64, 37, 97, 129, 161, 177, 87, 237, 141, 173, 191, 163, 140, 234, 232, 249], [117, 94, 17, 103, 16, 186, 172, 127, 146, 23, 46, 25, 168, 8, 163, 39, 174, 67, 137, 175, 121, 59, 9, 128, 179, 199, 132, 4, 140, 54, 1, 85, 14, 134, 161, 238, 30, 241, 37, 224, 166, 45, 119, 109, 202, 196, 93, 190, 220, 69, 49, 21, 228, 209, 60, 73, 99, 65, 102, 7, 229, 200, 19, 82, 240, 71, 105, 169, 214, 194, 64, 142, 12, 233, 88, 201, 11, 72, 92, 221, 27, 32, 176, 124, 205, 189, 177, 246, 35, 112, 219, 61, 129, 170, 173, 100, 84, 242, 157, 26, 218, 20, 33, 191, 155, 232, 87, 86, 153, 114, 97, 130, 29, 192, 164, 239, 90, 43, 236, 208, 212, 185, 75, 210, 0, 81, 227, 5, 116, 243, 34, 18, 182, 70, 181, 197, 217, 95, 183, 101, 252, 248, 107, 89, 136, 216, 203, 68, 91, 223, 96, 141, 150, 131, 13, 152, 198, 111, 44, 222, 125, 244, 76, 251, 158, 106, 24, 42, 38, 77, 2, 213, 207, 249, 147, 113, 135, 245, 118, 193, 47, 98, 145, 66, 160, 123, 211, 165, 78, 204, 80, 250, 110, 162, 48, 58, 10, 180, 55, 231, 79, 149, 74, 62, 50, 148, 143, 206, 28, 15, 57, 159, 139, 225, 122, 237, 138, 171, 36, 56, 115, 63, 144, 154, 6, 230, 133, 215, 41, 184, 22, 104, 254, 234, 253, 187, 226, 247, 188, 156, 151, 40, 108, 51, 83, 178, 52, 3, 31, 255, 195, 53, 235, 126, 167, 120]] encrypt_table = b''.join(get_table(b'foobar!')) decrypt_table = maketrans(encrypt_table, maketrans(b'', b'')) for i in range(0, 256): assert (target1[0][i] == ord(encrypt_table[i])) assert (target1[1][i] == ord(decrypt_table[i])) encrypt_table = b''.join(get_table(b'barfoo!')) decrypt_table = maketrans(encrypt_table, maketrans(b'', b'')) for i in range(0, 256): assert (target2[0][i] == ord(encrypt_table[i])) assert (target2[1][i] == ord(decrypt_table[i])) def test_encryption(): from shadowsocks.crypto import util cipher = TableCipher('table', b'test', b'', 1) decipher = TableCipher('table', b'test', b'', 0) util.run_cipher(cipher, decipher) if __name__ == '__main__': test_table_result() test_encryption()
py
1a4240f6f69f9f667e2c0a0b29d7dabeb7be5242
import inspect def get_classname(o): """ Returns the classname of an object r a class :param o: :return: """ if inspect.isclass(o): target = o elif callable(o): target = o else: target = o.__class__ try: return target.__qualname__ except AttributeError: # pragma: no cover return target.__name__ def fqn(o): """Returns the fully qualified class name of an object or a class :param o: object or class :return: class name >>> import django_db_logging >>> fqn('str') Traceback (most recent call last): ... ValueError: Invalid argument `str` >>> class A(object): ... def method(self): ... pass >>> str(fqn(A)) 'django_db_logging.utils.A' >>> str(fqn(A())) 'django_db_logging.utils.A' >>> str(fqn(A.method)) 'django_db_logging.utils.A.method' >>> str(fqn(django_db_logging)) 'django_db_logging' """ parts = [] if hasattr(o, '__module__'): parts.append(o.__module__) parts.append(get_classname(o)) elif inspect.ismodule(o): return o.__name__ if not parts: raise ValueError("Invalid argument `%s`" % o) return ".".join(parts)
py
1a424142bbb907614c77dd095f8f572a00fd6b27
import numpy as np from matplotlib import pyplot as plt import tensorflow as tf import keras from google.colab.patches import cv2_imshow from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Layer, Activation, Dense, Flatten, Dropout, Lambda, Conv2D, MaxPooling2D, UpSampling2D, Conv2DTranspose, SpatialDropout2D from tensorflow.keras import losses from tensorflow.keras import backend as K from tensorflow.keras.utils import to_categorical import numpy as np from matplotlib import pyplot as plt import tensorflow as tf import keras from src.helper_functions.utils import * from keras.datasets import cifar10 def build_decoder(inp_shape): """ this function builds the decoder output: the decoder model """ # input image shape inp = tf.keras.layers.Input(shape=inp_shape) # layer 1 x = Conv2DTranspose(64, (3, 3), activation='relu')(inp) x = tf.keras.layers.BatchNormalization()(x) x = residual(x,64) # layer 2 x = Conv2DTranspose(64, (3, 3), activation='relu')(x) x = tf.keras.layers.BatchNormalization()(x) x = residual(x,32) # layer 3 x = Conv2DTranspose(128, (3, 3), activation='relu')(x) x = tf.keras.layers.BatchNormalization()(x) x = residual(x,32) # final layer x = Conv2DTranspose(3, (3, 3),activation='tanh')(x) # return the model return tf.keras.models.Model(inp, x)
py
1a42418ea36bb58de354ac5e1ebebce5be2db41c
import os from conan.tools.build import build_jobs from conan.tools.files.files import load_toolchain_args from conan.tools.microsoft.subsystems import subsystem_path, deduce_subsystem from conans.client.build import join_arguments class Autotools(object): def __init__(self, conanfile, namespace=None): self._conanfile = conanfile toolchain_file_content = load_toolchain_args(self._conanfile.generators_folder, namespace=namespace) self._configure_args = toolchain_file_content.get("configure_args") self._make_args = toolchain_file_content.get("make_args") def configure(self, build_script_folder=None): """ http://jingfenghanmax.blogspot.com.es/2010/09/configure-with-host-target-and-build.html https://gcc.gnu.org/onlinedocs/gccint/Configure-Terms.html """ source = self._conanfile.source_folder if build_script_folder: source = os.path.join(self._conanfile.source_folder, build_script_folder) configure_cmd = "{}/configure".format(source) subsystem = deduce_subsystem(self._conanfile, scope="build") configure_cmd = subsystem_path(subsystem, configure_cmd) cmd = "{} {}".format(configure_cmd, self._configure_args) self._conanfile.output.info("Calling:\n > %s" % cmd) self._conanfile.run(cmd) def make(self, target=None): make_program = self._conanfile.conf.get("tools.gnu:make_program", default="mingw32-make" if self._use_win_mingw() else "make") str_args = self._make_args jobs = "" if "-j" not in str_args and "nmake" not in make_program.lower(): njobs = build_jobs(self._conanfile) if njobs: jobs = "-j{}".format(njobs) command = join_arguments([make_program, target, str_args, jobs]) self._conanfile.run(command) def install(self): self.make(target="install") def _use_win_mingw(self): if hasattr(self._conanfile, 'settings_build'): os_build = self._conanfile.settings_build.get_safe('os') else: os_build = self._conanfile.settings.get_safe("os") if os_build == "Windows": compiler = self._conanfile.settings.get_safe("compiler") sub = self._conanfile.settings.get_safe("os.subsystem") if sub in ("cygwin", "msys2", "msys") or compiler == "qcc": return False else: if self._conanfile.win_bash: return False return True return False
py
1a4243b5f5adfcfa67819fe6ce697a4143cbf51e
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Class to hold a library of OpDefs and use it to create Brain operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.core.framework import attr_value_pb2 from tensorflow.core.framework import op_def_pb2 from tensorflow.core.framework import tensor_pb2 from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.core.framework import types_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import compat from tensorflow.python.util import tf_contextlib def _Attr(op_def, name): for attr in op_def.attr: if attr.name == name: return attr raise TypeError("Inconsistent OpDef for '%s', missing attr '%s'" % (op_def.name, name)) def _AttrValue(attr_protos, name): if name in attr_protos: return attr_protos[name] raise TypeError("Inconsistent OpDef, missing attr '%s' from '%s'." % (name, attr_protos)) def _SatisfiesTypeConstraint(dtype, attr_def, param_name): if attr_def.HasField("allowed_values"): allowed_list = attr_def.allowed_values.list.type if dtype not in allowed_list: raise TypeError( "Value passed to parameter '%s' has DataType %s not in list of " "allowed values: %s" % (param_name, dtypes.as_dtype(dtype).name, ", ".join(dtypes.as_dtype(x).name for x in allowed_list))) def _IsListParameter(arg): if arg.number_attr: return True elif arg.type_list_attr: return True return False def _NumTypeFields(arg): num = 0 if arg.type != types_pb2.DT_INVALID: num += 1 if arg.type_attr: num += 1 if arg.type_list_attr: num += 1 return num def _IsListValue(v): return isinstance(v, (list, tuple)) def _Flatten(l): """Converts [1, 2, [3, 4], [5]] to [1, 2, 3, 4, 5].""" # [1, 2, [3, 4], [5]] -> [[1], [2], [3, 4], [5]] l_of_l = [x if _IsListValue(x) else [x] for x in l] # [[1], [2], [3, 4], [5]] -> [1, 2, 3, 4, 5] return [item for sublist in l_of_l for item in sublist] def _Restructure(l, structure): """Returns the elements of list l structured according to the given structure. A structure is represented by a list whose elements are either `None` or a non-negative integer. `None` corresponds to a single element in the output list, and an integer N corresponds to a nested list of length N. The function returns a data structure whose shape is given by `structure`, and whose elements are taken from `l`. If `structure` is a singleton, the function returns the single data structure implied by the 0th element of `structure`. For example: _Restructure(["foo", "bar", "baz", "qux"], [None, 2, None]) -> ["foo", ["bar", "baz"], "qux"] _Restructure(["foo"], [None]) -> "foo" _Restructure(["foo"], [1]) -> ["foo"] _Restructure([], [0]) -> [] Args: l: A list. structure: A list whose elements are either `None` or a non-negative integer. Returns: The elements of `l`, restructured according to `structure`. If `structure` is a list of length 1, this function returns the single data structure implied by `structure[0]`. """ result = [] current_index = 0 for element in structure: if element is None: result.append(l[current_index]) current_index += 1 else: result.append(l[current_index:current_index+element]) current_index += element if len(result) == 1: return result[0] else: return tuple(result) def _MakeFloat(v, arg_name): if not isinstance(v, compat.real_types): raise TypeError("Expected float for argument '%s' not %s." % (arg_name, repr(v))) return float(v) def _MakeInt(v, arg_name): if isinstance(v, six.string_types): raise TypeError("Expected int for argument '%s' not %s." % (arg_name, repr(v))) try: return int(v) except (ValueError, TypeError): raise TypeError("Expected int for argument '%s' not %s." % (arg_name, repr(v))) def _MakeStr(v, arg_name): if not isinstance(v, compat.bytes_or_text_types): raise TypeError("Expected string for argument '%s' not %s." % (arg_name, repr(v))) return compat.as_bytes(v) # Convert unicode strings to bytes. def _MakeBool(v, arg_name): if not isinstance(v, bool): raise TypeError("Expected bool for argument '%s' not %s." % (arg_name, repr(v))) return v def _MakeType(v, attr_def): try: v = dtypes.as_dtype(v).base_dtype except TypeError: raise TypeError("Expected DataType for argument '%s' not %s." % (attr_def.name, repr(v))) i = v.as_datatype_enum _SatisfiesTypeConstraint(i, attr_def, param_name=attr_def.name) return i def _MakeShape(v, arg_name): """Convert v into a TensorShapeProto.""" # Args: # v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape. # arg_name: String, for error messages. # Returns: # A TensorShapeProto. if isinstance(v, tensor_shape_pb2.TensorShapeProto): for d in v.dim: if d.name: logging.warning("Warning: TensorShapeProto with a named dimension: %s", str(v)) break return v try: return tensor_shape.as_shape(v).as_proto() except TypeError as e: raise TypeError("Error converting %s to a TensorShape: %s" % (arg_name, e)) except ValueError as e: raise ValueError("Error converting %s to a TensorShape: %s" % (arg_name, e)) def _MakeTensor(v, arg_name): """Ensure v is a TensorProto.""" if isinstance(v, tensor_pb2.TensorProto): return v raise TypeError( "Don't know how to convert %s to a TensorProto for argument '%s'" % (repr(v), arg_name)) def _MakeFunc(v, arg_name): """Ensure v is a func.""" if isinstance(v, attr_value_pb2.NameAttrList): return v fn_attr = attr_value_pb2.NameAttrList() if isinstance(v, compat.bytes_or_text_types): fn_attr.name = v elif hasattr(v, "add_to_graph"): v.add_to_graph(ops.get_default_graph()) fn_attr.name = v.name else: raise TypeError("Don't know how to convert {} to a func for " "argument {}".format(v, arg_name)) return fn_attr class _OpInfo(object): """All per-Op state we would like to precompute/validate.""" def __init__(self, op_def): self.op_def = op_def # TODO(josh11b): SWIG the ValidateOpDef() function from C++ and call it # here, instead of these checks. for arg in list(op_def.input_arg) + list(op_def.output_arg): num_type_fields = _NumTypeFields(arg) if num_type_fields != 1: raise TypeError("Arg '%s' of '%s' must have one type field not %d" % (arg.name, op_def.name, num_type_fields)) if arg.type_attr: attr_type = _Attr(op_def, arg.type_attr).type if attr_type != "type": raise TypeError("Attr '%s' of '%s' used as a type_attr " "but has type %s" % (arg.type_attr, op_def.name, attr_type)) if arg.type_list_attr: attr_type = _Attr(op_def, arg.type_list_attr).type if attr_type != "list(type)": raise TypeError( "Attr '%s' of '%s' used as a type_list_attr but has type %s" % (arg.type_attr, op_def.name, attr_type)) if arg.number_attr: attr_type = _Attr(op_def, arg.number_attr).type if attr_type != "int": raise TypeError( "Attr '%s' of '%s' used as a number_attr but has type %s" % (arg.number_attr, op_def.name, attr_type)) # pylint: disable=g-doc-return-or-yield @tf_contextlib.contextmanager def _MaybeColocateWith(inputs): """A context manager for (maybe) colocating with a list of input tensors. Args: inputs: A list of `Tensor` or `Operation` objects. Returns: A context manager. """ if not inputs: yield else: # NOTE(mrry): The `ops.colocate_with()` function accepts only a single # op or tensor, so we create one context manager per element in the list. with ops.colocate_with(inputs[0]), _MaybeColocateWith(inputs[1:]): yield # pylint: enable=g-doc-return-or-yield class OpDefLibrary(object): """Holds a collection of OpDefs, can add the corresponding Ops to a graph.""" def __init__(self): self._ops = {} # pylint: disable=invalid-name def add_op(self, op_def): """Register an OpDef. May call apply_op with the name afterwards.""" if not isinstance(op_def, op_def_pb2.OpDef): raise TypeError("%s is %s, not an op_def_pb2.OpDef" % (op_def, type(op_def))) if not op_def.name: raise ValueError("%s missing name." % op_def) if op_def.name in self._ops: raise RuntimeError("Op name %s registered twice." % op_def.name) self._ops[op_def.name] = _OpInfo(op_def) def add_op_list(self, op_list): """Register the OpDefs from an OpList.""" if not isinstance(op_list, op_def_pb2.OpList): raise TypeError("%s is %s, not an op_def_pb2.OpList" % (op_list, type(op_list))) for op_def in op_list.op: self.add_op(op_def) def apply_op(self, op_type_name, name=None, **keywords): # pylint: disable=g-doc-args """Add a node invoking a registered Op to a graph. Example usage: # input1 and input2 can be Tensors or anything ops.convert_to_tensor() # will convert to a Tensor. op_def_library.apply_op("op", input1=input1, input2=input2) # Can specify a node name. op_def_library.apply_op("op", input1=input1, name="node_name") # Must use keyword arguments, with the names specified in the OpDef. op_def_library.apply_op("op", input_name=input, attr_name=attr) All attrs must either be inferred from an input or specified. (If inferred, the attr must not be specified.) If an attr has a default value specified in the Op's OpDef, then you may pass None as the value of that attr to get the default. Args: op_type_name: string. Must match the name field of a registered Op. name: string. Optional name of the created op. **keywords: input Tensor and attr arguments specified by name, and optional parameters to pass when constructing the Operation. Returns: The Tensor(s) representing the output of the operation, or the Operation itself if there are no outputs. Raises: RuntimeError: On some errors. TypeError: On some errors. ValueError: On some errors. """ output_structure, is_stateful, op = self._apply_op_helper( op_type_name, name, **keywords) if output_structure: outputs = op.outputs res = _Restructure(ops.convert_n_to_tensor(outputs), output_structure) if isinstance(res, list) and not res and is_stateful: return op else: return res else: return op def _apply_op_helper(self, op_type_name, name=None, **keywords): """Implementation of apply_op that returns output_structure, op.""" op_info = self._ops.get(op_type_name, None) if op_info is None: raise RuntimeError("Unrecognized Op name " + op_type_name) op_def = op_info.op_def # Determine the graph context. try: # Need to flatten all the arguments into a list. # pylint: disable=protected-access g = ops._get_graph_from_inputs(_Flatten(keywords.values())) # pylint: enable=protected-access except AssertionError as e: raise RuntimeError( "Cannot determine graph for Op '%s' due to: %s" % (op_type_name, e.message)) # Default name if not specified. if name is None: name = op_type_name # Check for deprecation deprecation_version = op_def.deprecation.version if deprecation_version: producer = g.graph_def_versions.producer if producer >= deprecation_version: raise NotImplementedError( ("Op %s is not available in GraphDef version %d. " "It has been removed in version %d. %s.") % (op_type_name, producer, deprecation_version, op_def.deprecation.explanation)) # Fill in the list of default types for all "type" attrs. This # will be used to choose a preferred dtype to convert to in the # absence of input type information. # # TODO(b/31302892): Currently the defaults don't work in the right # way if you have two inputs, one of whose type resolution depends # on the other. Handling this will require restructuring this code # significantly. default_type_attr_map = {} for attr_def in op_def.attr: if attr_def.type != "type": continue key = attr_def.name if attr_def.HasField("default_value"): default_type_attr_map[key] = dtypes.as_dtype( attr_def.default_value.type) # Requires that op_def has passed validation (using the C++ # ValidateOpDef() from ../framework/op_def_util.h). attrs = {} inputs = [] input_types = [] with g.as_default(), ops.name_scope(name) as scope: # Perform input type inference inferred_from = {} for input_arg in op_def.input_arg: input_name = input_arg.name if input_name in keywords: values = keywords.pop(input_name) elif input_name + "_" in keywords: # Handle the case where the name is a keyword or built-in # for Python so we use the name + _ instead. input_name += "_" values = keywords.pop(input_name) else: raise TypeError("No argument for input " + input_name) # Goals: # * Convert values to Tensors if it contains constants. # * Verify that values is a list if that matches the input_arg's # type. # * If the input_arg's type is determined by attrs, either set # those attrs and validate those attr values are legal (if # they have not yet been set) or validate the input matches # the type indicated by the attrs (if they have already been # inferred via an earlier input). # * If the input_arg has an explicit type, make sure the input # conforms. if _IsListParameter(input_arg): if not _IsListValue(values): raise TypeError( "Expected list for '%s' argument to '%s' Op, not %s." % (input_name, op_type_name, values)) # In cases where we expect all elements of the list to have the # same dtype, try to cast non-Tensor elements to that type. dtype = None default_dtype = None if input_arg.type != types_pb2.DT_INVALID: dtype = input_arg.type elif input_arg.number_attr: if input_arg.type_attr in attrs: dtype = attrs[input_arg.type_attr] else: for t in values: if isinstance(t, ops.Tensor): dtype = t.dtype break # dtype still not found, prefer using the default dtype # from the attr. if dtype is None and input_arg.type_attr in default_type_attr_map: default_dtype = default_type_attr_map[input_arg.type_attr] try: if not input_arg.is_ref and dtype: dtype = dtypes.as_dtype(dtype).base_dtype values = ops.internal_convert_n_to_tensor( values, name=input_arg.name, dtype=dtype if dtype else None, preferred_dtype=default_dtype, as_ref=input_arg.is_ref) if input_arg.number_attr and len( set(v.dtype.base_dtype for v in values)) > 1: raise TypeError() # All types should match. except (TypeError, ValueError): # What types does the conversion function think values have? observed_types = [] for value in values: try: converted_value = ops.internal_convert_to_tensor( value, as_ref=input_arg.is_ref) observed_types.append(converted_value.dtype.base_dtype.name) except (TypeError, ValueError): observed_types.append("<NOT CONVERTIBLE TO TENSOR>") observed = ", ".join(observed_types) prefix = ( "Tensors in list passed to '%s' of '%s' Op have types [%s]" % (input_name, op_type_name, observed)) if input_arg.number_attr: if input_arg.type != types_pb2.DT_INVALID: raise TypeError("%s that do not match expected type %s." % (prefix, dtype.name)) elif input_arg.type_attr in attrs: raise TypeError("%s that do not match type %s inferred from " "earlier arguments." % (prefix, dtype.name)) else: raise TypeError("%s that don't all match." % prefix) else: raise TypeError( "%s that are invalid. Tensors: %s" % (prefix, values)) types = [x.dtype for x in values] inputs.extend(values) else: # In cases where we have an expected type, try to convert non-Tensor # arguments to that type. dtype = None default_dtype = None if input_arg.type != types_pb2.DT_INVALID: dtype = input_arg.type elif input_arg.type_attr in attrs: dtype = attrs[input_arg.type_attr] elif input_arg.type_attr in default_type_attr_map: # The dtype could not be inferred solely from the inputs, # so we prefer the attr's default, so code that adds a new attr # with a default is backwards compatible. default_dtype = default_type_attr_map[input_arg.type_attr] try: values = ops.internal_convert_to_tensor( values, name=input_arg.name, dtype=dtype, as_ref=input_arg.is_ref, preferred_dtype=default_dtype) except TypeError as err: if dtype is None: raise err else: raise TypeError( "Expected %s passed to parameter '%s' of op '%s', got %s of " "type '%s' instead. Error: %s" % (dtypes.as_dtype(dtype).name, input_arg.name, op_type_name, repr(values), type(values).__name__, err)) except ValueError: # What type does convert_to_tensor think it has? try: observed = ops.internal_convert_to_tensor( values, as_ref=input_arg.is_ref).dtype.name except ValueError as err: raise ValueError( "Tried to convert '%s' to a tensor and failed. Error: %s" % (input_name, err)) prefix = ("Input '%s' of '%s' Op has type %s that does not match" % (input_name, op_type_name, observed)) if input_arg.type != types_pb2.DT_INVALID: raise TypeError("%s expected type of %s." % (prefix, dtypes.as_dtype(input_arg.type).name)) else: # Update the maps with the default, if needed. k = input_arg.type_attr if k in default_type_attr_map: if k not in attrs: attrs[k] = default_type_attr_map[k] if k not in inferred_from: inferred_from[k] = "Default in OpDef" raise TypeError( "%s type %s of argument '%s'." % (prefix, dtypes.as_dtype(attrs[input_arg.type_attr]).name, inferred_from[input_arg.type_attr])) types = [values.dtype] inputs.append(values) base_types = [x.base_dtype for x in types] if input_arg.number_attr: # <number-attr> * <type> or <number-attr> * <type-attr> if input_arg.number_attr in attrs: if len(values) != attrs[input_arg.number_attr]: raise ValueError( "List argument '%s' to '%s' Op with length %d must match " "length %d of argument '%s'." % (input_name, op_type_name, len(values), attrs[input_arg.number_attr], inferred_from[input_arg.number_attr])) else: attrs[input_arg.number_attr] = len(values) inferred_from[input_arg.number_attr] = input_name num_attr = _Attr(op_def, input_arg.number_attr) if num_attr.has_minimum and len(values) < num_attr.minimum: raise ValueError( "List argument '%s' to '%s' Op with length %d shorter " "than minimum length %d." % (input_name, op_type_name, len(values), num_attr.minimum)) # All tensors must have the same base type. if any(bt != base_types[0] for bt in base_types): raise TypeError( "All tensors passed to '%s' of '%s' Op " "must have the same type." % (input_name, op_type_name)) if input_arg.type != types_pb2.DT_INVALID: # <number-attr> * <type> case if base_types and base_types[0] != input_arg.type: assert False, "Unreachable" elif input_arg.type_attr in attrs: # <number-attr> * <type-attr> case, where <type-attr> already # has an inferred value. if base_types and base_types[0] != attrs[input_arg.type_attr]: assert False, "Unreachable" else: # <number-attr> * <type-attr> case, where we are now setting # the <type-attr> based on this input if not base_types: raise TypeError( "Don't know how to infer type variable from empty input " "list passed to input '%s' of '%s' Op." % (input_name, op_type_name)) attrs[input_arg.type_attr] = base_types[0] inferred_from[input_arg.type_attr] = input_name type_attr = _Attr(op_def, input_arg.type_attr) _SatisfiesTypeConstraint(base_types[0], type_attr, param_name=input_name) elif input_arg.type_attr: # <type-attr> attr_value = base_types[0] if input_arg.type_attr in attrs: if attrs[input_arg.type_attr] != attr_value: assert False, "Unreachable" else: for base_type in base_types: _SatisfiesTypeConstraint(base_type, _Attr(op_def, input_arg.type_attr), param_name=input_name) attrs[input_arg.type_attr] = attr_value inferred_from[input_arg.type_attr] = input_name elif input_arg.type_list_attr: # <type-list-attr> attr_value = base_types if input_arg.type_list_attr in attrs: if attrs[input_arg.type_list_attr] != attr_value: raise TypeError( "Input '%s' of '%s' Op has type list of %s that does not " "match type list %s of argument '%s'." % (input_name, op_type_name, ", ".join(dtypes.as_dtype(x).name for x in attr_value), ", ".join(dtypes.as_dtype(x).name for x in attrs[input_arg.type_list_attr]), inferred_from[input_arg.type_list_attr])) else: for base_type in base_types: _SatisfiesTypeConstraint(base_type, _Attr(op_def, input_arg.type_list_attr), param_name=input_name) attrs[input_arg.type_list_attr] = attr_value inferred_from[input_arg.type_list_attr] = input_name else: # single Tensor with specified type if base_types[0] != input_arg.type: assert False, "Unreachable" if input_arg.is_ref: if not all(x._is_ref_dtype for x in types): # pylint: disable=protected-access raise TypeError( ("'%s' Op requires that input '%s' be a mutable tensor " "(e.g.: a tf.Variable)") % (op_type_name, input_name)) input_types.extend(types) else: input_types.extend(base_types) # Process remaining attrs for attr in op_def.attr: # Skip attrs that have already had their values inferred if attr.name in attrs: if attr.name in keywords: raise TypeError( "Should not specify value for inferred attr '%s'." % attr.name) continue if attr.name in keywords: attrs[attr.name] = keywords.pop(attr.name) elif attr.name + "_" in keywords: # Attrs whose names match Python keywords have an extra '_' # appended, so we must check for that as well. attrs[attr.name] = keywords.pop(attr.name + "_") else: raise TypeError("No argument for attr " + attr.name) # Convert attr values to AttrValue protos. attr_protos = {} for attr_def in op_def.attr: key = attr_def.name value = attrs[key] attr_value = attr_value_pb2.AttrValue() if attr_def.HasField("default_value") and value is None: attr_value.CopyFrom(attr_def.default_value) attr_protos[key] = attr_value continue if attr_def.type.startswith("list("): if not _IsListValue(value): raise TypeError("Expected list for attr " + key) if attr_def.has_minimum: if len(value) < attr_def.minimum: raise ValueError("Attr '%s' of '%s' Op passed list of length %d " "less than minimum %d." % (key, op_type_name, len(value), attr_def.minimum)) attr_value.list.SetInParent() if attr_def.type == "string": attr_value.s = _MakeStr(value, key) if attr_def.HasField("allowed_values"): if attr_value.s not in attr_def.allowed_values.list.s: raise ValueError( "Attr '%s' of '%s' Op passed string '%s' not in: \"%s\"." % (key, op_type_name, compat.as_text(attr_value.s), '", "'.join(map(compat.as_text, attr_def.allowed_values.list.s)))) elif attr_def.type == "list(string)": attr_value.list.s.extend([_MakeStr(x, key) for x in value]) if attr_def.HasField("allowed_values"): for x in attr_value.list.s: if x not in attr_def.allowed_values.list.s: raise ValueError( "Attr '%s' of '%s' Op passed string '%s' not in: \"%s\"." % (key, op_type_name, compat.as_text(x), '", "'.join(map(compat.as_text, attr_def.allowed_values.list.s)))) elif attr_def.type == "int": attr_value.i = _MakeInt(value, key) if attr_def.has_minimum: if attr_value.i < attr_def.minimum: raise ValueError( "Attr '%s' of '%s' Op passed %d less than minimum %d." % (key, op_type_name, attr_value.i, attr_def.minimum)) elif attr_def.type == "list(int)": attr_value.list.i.extend([_MakeInt(x, key) for x in value]) elif attr_def.type == "float": attr_value.f = _MakeFloat(value, key) elif attr_def.type == "list(float)": attr_value.list.f.extend([_MakeFloat(x, key) for x in value]) elif attr_def.type == "bool": attr_value.b = _MakeBool(value, key) elif attr_def.type == "list(bool)": attr_value.list.b.extend([_MakeBool(x, key) for x in value]) elif attr_def.type == "type": attr_value.type = _MakeType(value, attr_def) elif attr_def.type == "list(type)": attr_value.list.type.extend( [_MakeType(x, attr_def) for x in value]) elif attr_def.type == "shape": attr_value.shape.CopyFrom(_MakeShape(value, key)) elif attr_def.type == "list(shape)": attr_value.list.shape.extend( [_MakeShape(x, key) for x in value]) elif attr_def.type == "tensor": attr_value.tensor.CopyFrom(_MakeTensor(value, key)) elif attr_def.type == "list(tensor)": attr_value.list.tensor.extend( [_MakeTensor(x, key) for x in value]) elif attr_def.type == "func": attr_value.func.CopyFrom(_MakeFunc(value, key)) elif attr_def.type == "list(func)": attr_value.list.func.extend([_MakeFunc(x, key) for x in value]) else: raise TypeError("Unrecognized Attr type " + attr_def.type) attr_protos[key] = attr_value del attrs # attrs is no longer authoritative, use attr_protos instead # Determine output types (possibly using attrs) output_structure = [] for arg in op_def.output_arg: if arg.number_attr: n = _AttrValue(attr_protos, arg.number_attr).i output_structure.append(n) elif arg.type_attr: t = _AttrValue(attr_protos, arg.type_attr) output_structure.append(None) elif arg.type_list_attr: t = _AttrValue(attr_protos, arg.type_list_attr) output_structure.append(len(t.list.type)) else: output_structure.append(None) if keywords: raise TypeError("apply_op() got unexpected keyword arguments: " + ", ".join(sorted(keywords.keys()))) # NOTE(mrry): We add an explicit colocation constraint between # the newly created op and any of its reference-typed inputs. must_colocate_inputs = [val for arg, val in zip(op_def.input_arg, inputs) if arg.is_ref] with _MaybeColocateWith(must_colocate_inputs): # Add Op to graph op = g.create_op(op_type_name, inputs, dtypes=None, name=scope, input_types=input_types, attrs=attr_protos, op_def=op_def) return output_structure, op_def.is_stateful, op # pylint: enable=invalid-name
py
1a4244a41b2980a366ea66abf602fb7d2e09a770
from functools import wraps from django.conf import settings from django.http import Http404 from django.shortcuts import render from django.utils.decorators import available_attrs import djangosecure.middleware class AdminAuthMiddleware(object): def process_request(self, request): """ Don't make Django admin visible unless user is already logged into dashboard and is an admin. """ if request.path.startswith('/admin/') and not getattr(request.user, 'is_staff', False): raise Http404 ### SSL forwarding ### def ssl_optional(view_func): """ Mark view functions with @ssl_optional to exclude them from automatic forwarding to https:. """ def wrapped_view(*args, **kwargs): return view_func(*args, **kwargs) wrapped_view.ssl_optional = True return wraps(view_func, assigned=available_attrs(view_func))(wrapped_view) class SecurityMiddleware(djangosecure.middleware.SecurityMiddleware): """ Apply the same test as djangosecure.middleware.SecurityMiddleware, but do it in process_view instead of process_request so we can check whether the view has been decorated with ssl_optional. """ def process_request(self, request): return def process_view(self, request, view_func, view_args, view_kwargs): if getattr(view_func, 'ssl_optional', False): return return super(SecurityMiddleware, self).process_request(request) ### read only mode ### class ReadOnlyMiddleware(object): def process_exception(self, request, exception): if settings.READ_ONLY_MODE: return render(request, 'read_only_mode.html')
py
1a4244ccc40a06d35cc692a5ddb00678f0b36d13
from kivy.app import App from kivy.uix.widget import Widget from kivy.clock import Clock from kivy.core.window import Window from random import randint, choice from math import radians, pi, sin, cos import kivent_core import kivent_cymunk from kivent_core.gameworld import GameWorld from kivent_core.managers.resource_managers import texture_manager from kivent_core.systems.renderers import RotateRenderer from kivent_core.systems.position_systems import PositionSystem2D from kivent_core.systems.rotate_systems import RotateSystem2D from kivent_cymunk.interaction import CymunkTouchSystem from kivy.properties import StringProperty, NumericProperty from functools import partial from os.path import dirname, join, abspath texture_manager.load_atlas(join(dirname(dirname(abspath(__file__))), 'assets', 'background_objects.atlas')) class TestGame(Widget): def on_kv_post(self, *args): self.gameworld.init_gameworld( ['cymunk_physics', 'rotate_renderer', 'rotate', 'position', 'cymunk_touch'], callback=self.init_game) def init_game(self): self.setup_states() self.set_state() def destroy_created_entity(self, ent_id, dt): self.gameworld.remove_entity(ent_id) self.app.count -= 1 def draw_some_stuff(self): size = Window.size w, h = size[0], size[1] delete_time = 2.5 create_asteroid = self.create_asteroid destroy_ent = self.destroy_created_entity for x in range(100): pos = (randint(0, w), randint(0, h)) ent_id = create_asteroid(pos) self.app.count += 100 def create_asteroid(self, pos): x_vel = randint(-500, 500) y_vel = randint(-500, 500) angle = radians(randint(-360, 360)) angular_velocity = radians(randint(-150, -150)) shape_dict = {'inner_radius': 0, 'outer_radius': 22, 'mass': 50, 'offset': (0, 0)} col_shape = {'shape_type': 'circle', 'elasticity': .5, 'collision_type': 1, 'shape_info': shape_dict, 'friction': 1.0} col_shapes = [col_shape] physics_component = {'main_shape': 'circle', 'velocity': (x_vel, y_vel), 'position': pos, 'angle': angle, 'angular_velocity': angular_velocity, 'vel_limit': 250, 'ang_vel_limit': radians(200), 'mass': 50, 'col_shapes': col_shapes} create_component_dict = {'cymunk_physics': physics_component, 'rotate_renderer': {'texture': 'asteroid1', 'size': (45, 45), 'render': True}, 'position': pos, 'rotate': 0, } component_order = ['position', 'rotate', 'rotate_renderer', 'cymunk_physics',] return self.gameworld.init_entity( create_component_dict, component_order) def update(self, dt): self.gameworld.update(dt) def setup_states(self): self.gameworld.add_state(state_name='main', systems_added=['rotate_renderer'], systems_removed=[], systems_paused=[], systems_unpaused=['rotate_renderer'], screenmanager_screen='main') def set_state(self): self.gameworld.state = 'main' class DebugPanel(Widget): fps = StringProperty(None) def __init__(self, **kwargs): super(DebugPanel, self).__init__(**kwargs) Clock.schedule_once(self.update_fps) def update_fps(self,dt): self.fps = str(int(Clock.get_fps())) Clock.schedule_once(self.update_fps, .05) class YourAppNameApp(App): count = NumericProperty(0) if __name__ == '__main__': YourAppNameApp().run()
py
1a4244ce36e7e4aacc9384ffc26927ccc9ad5095
def save(file, conf): with open(file, 'w') as configfile: conf.write(configfile) def getOpts(): import configparser import copy import os config = configparser.ConfigParser() file = os.path.abspath(os.path.join('.', 'config.ini')) DEFAULT_OPTIONS = { 'DEFAULT': { 'limit': 5, 'domain_name': 'https://nyaa.si', 'out_dir': os.path.abspath(os.path.join('.', 'output')) } } if os.path.isfile(file): config.read(file) for i in DEFAULT_OPTIONS: if i not in config: config[i] = copy.deepcopy(DEFAULT_OPTIONS[i]) for x in DEFAULT_OPTIONS[i]: if x not in config[i]: config[i][x] = str(copy.deepcopy(DEFAULT_OPTIONS[i][x])) save(file, config) else: for i in DEFAULT_OPTIONS: config[i] = DEFAULT_OPTIONS[i] save(file, config) options = copy.deepcopy(dict(config['DEFAULT'])) return options
py
1a4245f958949c8e746e2d6d0580ef500ce1f3ce
# Copyright 2014 Cloudbase Solutions Srl # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from nova.tests.unit.virt.hyperv import test_vmutils from nova.virt.hyperv import constants from nova.virt.hyperv import vmutilsv2 class VMUtilsV2TestCase(test_vmutils.VMUtilsTestCase): """Unit tests for the Hyper-V VMUtilsV2 class.""" _DEFINE_SYSTEM = 'DefineSystem' _DESTROY_SYSTEM = 'DestroySystem' _DESTROY_SNAPSHOT = 'DestroySnapshot' _ADD_RESOURCE = 'AddResourceSettings' _REMOVE_RESOURCE = 'RemoveResourceSettings' _SETTING_TYPE = 'VirtualSystemType' _VM_GEN = constants.VM_GEN_2 _VIRTUAL_SYSTEM_TYPE_REALIZED = 'Microsoft:Hyper-V:System:Realized' def setUp(self): super(VMUtilsV2TestCase, self).setUp() self._vmutils = vmutilsv2.VMUtilsV2() self._vmutils._conn = mock.MagicMock() def test_create_vm(self): super(VMUtilsV2TestCase, self).test_create_vm() mock_vssd = self._vmutils._conn.Msvm_VirtualSystemSettingData.new() self.assertEqual(self._vmutils._VIRTUAL_SYSTEM_SUBTYPE_GEN2, mock_vssd.VirtualSystemSubType) self.assertFalse(mock_vssd.SecureBootEnabled) def test_modify_virt_resource(self): mock_svc = self._vmutils._conn.Msvm_VirtualSystemManagementService()[0] mock_svc.ModifyResourceSettings.return_value = (self._FAKE_JOB_PATH, mock.MagicMock(), self._FAKE_RET_VAL) mock_res_setting_data = mock.MagicMock() mock_res_setting_data.GetText_.return_value = self._FAKE_RES_DATA self._vmutils._modify_virt_resource(mock_res_setting_data, self._FAKE_VM_PATH) mock_svc.ModifyResourceSettings.assert_called_with( ResourceSettings=[self._FAKE_RES_DATA]) @mock.patch.object(vmutilsv2, 'wmi', create=True) @mock.patch.object(vmutilsv2.VMUtilsV2, 'check_ret_val') def test_take_vm_snapshot(self, mock_check_ret_val, mock_wmi): self._lookup_vm() mock_svc = self._get_snapshot_service() mock_svc.CreateSnapshot.return_value = (self._FAKE_JOB_PATH, mock.MagicMock(), self._FAKE_RET_VAL) self._vmutils.take_vm_snapshot(self._FAKE_VM_NAME) mock_svc.CreateSnapshot.assert_called_with( AffectedSystem=self._FAKE_VM_PATH, SnapshotType=self._vmutils._SNAPSHOT_FULL) mock_check_ret_val.assert_called_once_with(self._FAKE_RET_VAL, self._FAKE_JOB_PATH) @mock.patch.object(vmutilsv2.VMUtilsV2, '_add_virt_resource') @mock.patch.object(vmutilsv2.VMUtilsV2, '_get_new_setting_data') @mock.patch.object(vmutilsv2.VMUtilsV2, '_get_nic_data_by_name') def test_set_nic_connection(self, mock_get_nic_data, mock_get_new_sd, mock_add_virt_res): self._lookup_vm() fake_eth_port = mock_get_new_sd.return_value self._vmutils.set_nic_connection(self._FAKE_VM_NAME, None, None) mock_add_virt_res.assert_called_with(fake_eth_port, self._FAKE_VM_PATH) @mock.patch('nova.virt.hyperv.vmutils.VMUtils._get_vm_disks') def test_enable_vm_metrics_collection(self, mock_get_vm_disks): self._lookup_vm() mock_svc = self._vmutils._conn.Msvm_MetricService()[0] metric_def = mock.MagicMock() mock_disk = mock.MagicMock() mock_disk.path_.return_value = self._FAKE_RES_PATH mock_get_vm_disks.return_value = ([mock_disk], [mock_disk]) fake_metric_def_paths = ['fake_0', 'fake_0', None] fake_metric_resource_paths = [self._FAKE_VM_PATH, self._FAKE_VM_PATH, self._FAKE_RES_PATH] metric_def.path_.side_effect = fake_metric_def_paths self._vmutils._conn.CIM_BaseMetricDefinition.return_value = [ metric_def] self._vmutils.enable_vm_metrics_collection(self._FAKE_VM_NAME) calls = [mock.call(Name=def_name) for def_name in [self._vmutils._METRIC_AGGR_CPU_AVG, self._vmutils._METRIC_AGGR_MEMORY_AVG]] self._vmutils._conn.CIM_BaseMetricDefinition.assert_has_calls(calls) calls = [] for i in range(len(fake_metric_def_paths)): calls.append(mock.call( Subject=fake_metric_resource_paths[i], Definition=fake_metric_def_paths[i], MetricCollectionEnabled=self._vmutils._METRIC_ENABLED)) mock_svc.ControlMetrics.assert_has_calls(calls, any_order=True) def _get_snapshot_service(self): return self._vmutils._conn.Msvm_VirtualSystemSnapshotService()[0] def _assert_add_resources(self, mock_svc): getattr(mock_svc, self._ADD_RESOURCE).assert_called_with( self._FAKE_VM_PATH, [self._FAKE_RES_DATA]) def _assert_remove_resources(self, mock_svc): getattr(mock_svc, self._REMOVE_RESOURCE).assert_called_with( [self._FAKE_RES_PATH]) def test_list_instance_notes(self): vs = mock.MagicMock() attrs = {'ElementName': 'fake_name', 'Notes': ['4f54fb69-d3a2-45b7-bb9b-b6e6b3d893b3']} vs.configure_mock(**attrs) self._vmutils._conn.Msvm_VirtualSystemSettingData.return_value = [vs] response = self._vmutils.list_instance_notes() self.assertEqual([(attrs['ElementName'], attrs['Notes'])], response) self._vmutils._conn.Msvm_VirtualSystemSettingData.assert_called_with( ['ElementName', 'Notes'], VirtualSystemType=self._vmutils._VIRTUAL_SYSTEM_TYPE_REALIZED) @mock.patch('nova.virt.hyperv.vmutilsv2.VMUtilsV2.check_ret_val') @mock.patch('nova.virt.hyperv.vmutilsv2.VMUtilsV2._get_wmi_obj') def _test_create_vm_obj(self, mock_get_wmi_obj, mock_check_ret_val, vm_path, dynamic_memory_ratio=1.0): mock_vs_man_svc = mock.MagicMock() mock_vs_data = mock.MagicMock() mock_job = mock.MagicMock() fake_job_path = 'fake job path' fake_ret_val = 'fake return value' _conn = self._vmutils._conn.Msvm_VirtualSystemSettingData mock_check_ret_val.return_value = mock_job _conn.new.return_value = mock_vs_data mock_vs_man_svc.DefineSystem.return_value = (fake_job_path, vm_path, fake_ret_val) mock_job.associators.return_value = ['fake vm path'] response = self._vmutils._create_vm_obj( vs_man_svc=mock_vs_man_svc, vm_name='fake vm', vm_gen='fake vm gen', notes='fake notes', dynamic_memory_ratio=dynamic_memory_ratio) if not vm_path: mock_job.associators.assert_called_once_with( self._vmutils._AFFECTED_JOB_ELEMENT_CLASS) _conn.new.assert_called_once_with() self.assertEqual(mock_vs_data.ElementName, 'fake vm') mock_vs_man_svc.DefineSystem.assert_called_once_with( ResourceSettings=[], ReferenceConfiguration=None, SystemSettings=mock_vs_data.GetText_(1)) mock_check_ret_val.assert_called_once_with(fake_ret_val, fake_job_path) if dynamic_memory_ratio > 1: self.assertFalse(mock_vs_data.VirtualNumaEnabled) mock_get_wmi_obj.assert_called_with('fake vm path') self.assertEqual(mock_vs_data.Notes, 'fake notes') self.assertEqual(response, mock_get_wmi_obj()) def test_create_vm_obj(self): self._test_create_vm_obj(vm_path='fake vm path') def test_create_vm_obj_no_vm_path(self): self._test_create_vm_obj(vm_path=None) def test_create_vm_obj_dynamic_memory(self): self._test_create_vm_obj(vm_path=None, dynamic_memory_ratio=1.1) def test_list_instances(self): vs = mock.MagicMock() attrs = {'ElementName': 'fake_name'} vs.configure_mock(**attrs) self._vmutils._conn.Msvm_VirtualSystemSettingData.return_value = [vs] response = self._vmutils.list_instances() self.assertEqual([(attrs['ElementName'])], response) self._vmutils._conn.Msvm_VirtualSystemSettingData.assert_called_with( ['ElementName'], VirtualSystemType=self._vmutils._VIRTUAL_SYSTEM_TYPE_REALIZED) def test_get_attached_disks(self): mock_scsi_ctrl_path = mock.MagicMock() expected_query = ("SELECT * FROM %(class_name)s " "WHERE (ResourceSubType='%(res_sub_type)s' OR " "ResourceSubType='%(res_sub_type_virt)s' OR " "ResourceSubType='%(res_sub_type_dvd)s') AND " "Parent = '%(parent)s'" % {"class_name": self._vmutils._RESOURCE_ALLOC_SETTING_DATA_CLASS, "res_sub_type": self._vmutils._PHYS_DISK_RES_SUB_TYPE, "res_sub_type_virt": self._vmutils._DISK_DRIVE_RES_SUB_TYPE, "res_sub_type_dvd": self._vmutils._DVD_DRIVE_RES_SUB_TYPE, "parent": mock_scsi_ctrl_path.replace("'", "''")}) expected_disks = self._vmutils._conn.query.return_value ret_disks = self._vmutils.get_attached_disks(mock_scsi_ctrl_path) self._vmutils._conn.query.assert_called_once_with(expected_query) self.assertEqual(expected_disks, ret_disks) def test_get_vm_dvd_disk_paths(self): mock_vm = self._lookup_vm() mock_sasd1 = mock.MagicMock( ResourceSubType=self._vmutils._DVD_DISK_RES_SUB_TYPE, HostResource=[mock.sentinel.FAKE_DVD_PATH1]) mock_settings = mock.MagicMock() mock_settings.associators.return_value = [mock_sasd1] mock_vm.associators.return_value = [mock_settings] ret_val = self._vmutils.get_vm_dvd_disk_paths(self._FAKE_VM_NAME) self.assertEqual(mock.sentinel.FAKE_DVD_PATH1, ret_val[0])
py
1a4246a1c5407e1a06881bbe00dbfb7f1d3c5185
from django.db import models # Create your models here. class Assessment(models.Model): date = models.DateTimeField(auto_now=True) class SourceFile(models.Model): assessment = models.ForeignKey(Assessment, on_delete=models.CASCADE) name = models.CharField(max_length=255) class Error(models.Model): source_file = models.ForeignKey(SourceFile, on_delete=models.CASCADE) begin_line = models.IntegerField() end_line = models.IntegerField() priority = models.IntegerField() category = models.CharField(max_length=255) source = models.CharField(max_length=255) text = models.CharField(max_length=255)
py
1a4246a8631ba539cd7ff25e22f35c32f6767003
import unittest from biolinkml.generators.jsonldgen import JSONLDGenerator from biolinkml.generators.markdowngen import MarkdownGenerator from biolinkml.generators.pythongen import PythonGenerator from biolinkml.generators.rdfgen import RDFGenerator from biolinkml.utils.schemaloader import SchemaLoader from biolinkml.utils.yamlutils import as_yaml from tests.utils.compare_rdf import compare_rdf from tests.utils.filters import yaml_filter, json_metadata_filter from tests.utils.python_comparator import compare_python from tests.utils.test_environment import TestEnvironmentTestCase from tests.test_issues.environment import env class Issue167TestCase(TestEnvironmentTestCase): env = env def test_issue_167(self): """ Test extensions to the four basic types """ env.generate_single_file('issue_167.yaml', lambda: as_yaml(SchemaLoader(env.input_path('issue_167.yaml')).resolve()), value_is_returned=True, filtr=yaml_filter) def test_issue_167b_yaml(self): """ Annotations yaml example """ env.generate_single_file('issue_167b.yaml', lambda: as_yaml(SchemaLoader(env.input_path('issue_167b.yaml'), importmap=env.import_map).resolve()), value_is_returned=True, filtr=yaml_filter) def test_issue_167b_python(self): """ Annotations python example """ env.generate_single_file('issue_167b.py', lambda: PythonGenerator(env.input_path('issue_167b.yaml'), importmap=env.import_map).serialize(), comparator=compare_python, value_is_returned=True) def test_issue_167b_json(self): env.generate_single_file('issue_167b.json', lambda: JSONLDGenerator(env.input_path('issue_167b.yaml'), importmap=env.import_map).serialize(), filtr=json_metadata_filter, value_is_returned=True) def test_issue_167b_rdf(self): env.generate_single_file('issue_167b.ttl', lambda: RDFGenerator(env.input_path('issue_167b.yaml'), importmap=env.import_map).serialize(), comparator=compare_rdf, value_is_returned=True) if __name__ == '__main__': unittest.main()
py
1a42472b5ea388cbb34291d47f23153f9d16318a
from flask import Flask from flask_wtf.csrf import CSRFProtect app = Flask(__name__) csrf = CSRFProtect(app) @app.route("/") def pagina_inicial(): return "Laboratorio Pipeline DevOps" if __name__ == '__main__': app.run(debug=True)
py
1a424737d103507981933a854b8c3e4b91eaf688
from . import data_checking from . import plotting_callbacks from . import tfbinding_generator from . import additional_metrics from . import bam_dataset_generator from . import MACS_Import from . import MACS_dataset_gen
py
1a4248d38f33ec9d79ee86ca9f263d45feff2cf7
# Create a list of strings: mutants mutants = ['charles xavier', 'bobby drake', 'kurt wagner', 'max eisenhardt', 'kitty pryde'] aliases= ['prof x', 'iceman', 'nightcrawler', 'magneto', 'shadowcat'] powers = ['telepathy', 'thermokinesis', 'teleportation', 'magnetokinesis', 'intangibility'] # Create a list of tuples: mutant_data mutant_data = list(zip(mutants, aliases, powers)) # Print the list of tuples print(mutant_data) # Create a zip object using the three lists: mutant_zip mutant_zip = zip(mutants, aliases, powers) # Print the zip object print(mutant_zip) # Unpack the zip object and print the tuple values for value1, value2, value3 in mutant_zip: print(value1, value2, value3) # Create a zip object from mutants and powers: z1 z1 = zip(mutants, powers) # Print the tuples in z1 by unpacking with * print(*z1) # Re-create a zip object from mutants and powers: z1 z1 = zip(mutants, powers) # 'Unzip' the tuples in z1 by unpacking with * and zip(): result1, result2 result1, result2 = zip(*z1) # Check if unpacked tuples are equivalent to original tuples print(result1 == mutants) print(result2 == powers)
py
1a4248f6e824c72f475e212f2c9a3f0d70fe7d85
# Copyright (c) 2007-2008 The Hewlett-Packard Development Company # All rights reserved. # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from m5.params import * from m5.objects.E820 import X86E820Table, X86E820Entry from m5.objects.SMBios import X86SMBiosSMBiosTable from m5.objects.IntelMP import X86IntelMPFloatingPointer, X86IntelMPConfigTable from m5.objects.ACPI import X86ACPIRSDP from m5.objects.Workload import KernelWorkload class X86FsWorkload(KernelWorkload): type = 'X86FsWorkload' cxx_header = 'arch/x86/fs_workload.hh' cxx_class = 'X86ISA::FsWorkload' smbios_table = Param.X86SMBiosSMBiosTable( X86SMBiosSMBiosTable(), 'table of smbios/dmi information') intel_mp_pointer = Param.X86IntelMPFloatingPointer( X86IntelMPFloatingPointer(), 'intel mp spec floating pointer structure') intel_mp_table = Param.X86IntelMPConfigTable( X86IntelMPConfigTable(), 'intel mp spec configuration table') acpi_description_table_pointer = Param.X86ACPIRSDP( X86ACPIRSDP(), 'ACPI root description pointer structure') class X86FsLinux(X86FsWorkload): type = 'X86FsLinux' cxx_header = 'arch/x86/linux/fs_workload.hh' cxx_class = 'X86ISA::FsLinux' e820_table = Param.X86E820Table( X86E820Table(), 'E820 map of physical memory')
py
1a424933227c950fdd283d5dae6ca61e3b1df040
import sys from typing import Iterable, Optional import numpy as np import tensorflow as tf def _as_tensor(x): if isinstance(x, np.ndarray): x = tf.convert_to_tensor(x) return x def _build_train_step(model, data, jit_compile: bool): data = tf.nest.map_structure(_as_tensor, data) @tf.function(jit_compile=jit_compile) def train_fn(): return model.train_step(data) return train_fn def _build_test_step(model, data, jit_compile: bool): data = tf.nest.map_structure(_as_tensor, data) @tf.function(jit_compile=jit_compile) def test_fn(): model.reset_metrics() return model.test_step(data) return test_fn class EpochProgbarLogger(tf.keras.callbacks.Callback): """Progress bar that updates at the end of each epoch.""" def __init__(self): super().__init__() self.progbar = None self.epochs = None self.last_seen = None def set_params(self, params): self.epochs = params["epochs"] def on_train_begin(self, logs=None): class Universe: """Contains everything.""" def __contains__(self, x): return True self.progbar = tf.keras.utils.Progbar(target=self.epochs, unit_name="epoch",) # probar uses stateful metrics to determine which metric values to average. # Since this is only called on_epoch_end, no metrics should be averaged # i.e. all metrics should be considered 'stateful'. # don't set stateful_metrics in constructor because it wraps it in `set`. self.progbar.stateful_metrics = Universe() def on_epoch_end(self, epoch: int, logs=None): self.last_seen = epoch + 1 self.progbar.update(epoch + 1, list(logs.items())) def on_train_end(self, logs=None): if self.last_seen < self.progbar.target: if tf.version.VERSION < "2.3": sys.stdout.write("\n") else: self.progbar.update(self.last_seen, finalize=True) def fit_single( model: tf.keras.Model, train_data, validation_data=None, epochs: int = 1, initial_epoch: int = 0, validation_freq: int = 1, callbacks: Iterable[tf.keras.callbacks.Callback] = (), verbose: bool = True, jit_compile: bool = False, ): """ Optimized keras.Model.fit for training on a single graph. Args: model: keras model to train. train_data: (inputs, labels, sample_weight) or dataset with a single element for training. validation_data: (inputs, labels, sample_weight) or dataset with a single element for validation. epochs: int, maximum number of epochs / steps to train for. initial_epoch: int, starting epoch. validation_freq: int, number of training steps/epochs per validation. callbacks: Iterable of tf.keras.callbacks.Callbacks. verbose: flag resulting in verbose outputs. jit_compile: flag indicating whether train/validation steps are compiled with `jit`. Not all ops are jit compatible, though where they are this may result in speed-ups. Returns: history: `tf.keras.callbacks.History` object. """ if isinstance(train_data, tf.data.Dataset): train_data = tf.data.experimental.get_single_element(train_data) if isinstance(validation_data, tf.data.Dataset): validation_data = tf.data.experimental.get_single_element(validation_data) do_validation = validation_data is not None params = dict(epochs=epochs, verbose=verbose, steps=1, do_validation=do_validation,) callbacks = list(callbacks) if verbose: callbacks.append(EpochProgbarLogger()) cb = tf.keras.callbacks.CallbackList( callbacks, add_history=True, add_progbar=False, model=model, **params, ) del callbacks train_step = _build_train_step(model, train_data, jit_compile=jit_compile) if validation_data is None: validation_step = None else: validation_step = _build_test_step( model, validation_data, jit_compile=jit_compile ) model.stop_training = False cb.on_train_begin(logs=None) # _maybe_load_initial_epoch_from_ckpt behaviour is influenced by # callbacks.experimental.BackupAndRestore initial_epoch = model._maybe_load_initial_epoch_from_ckpt( # pylint: disable=protected-access initial_epoch ) logs = None for epoch in range(initial_epoch, epochs): model.reset_metrics() cb.on_epoch_begin(epoch, logs=None) cb.on_train_batch_begin(batch=0) logs = train_step() cb.on_train_batch_end(batch=0, logs=logs) if model.stop_training: break # validation if validation_step is not None and (epoch + 1) % validation_freq == 0: val_logs = validation_step() logs.update({f"val_{k}": v for k, v in val_logs.items()}) cb.on_epoch_end(epoch, logs) if model.stop_training: break cb.on_train_end(logs) return model.history def fit( model: tf.keras.Model, train_data, validation_data=None, epochs: int = 1, initial_epoch: int = 0, validation_freq: int = 1, callbacks: Iterable[tf.keras.callbacks.Callback] = (), steps_per_epoch: Optional[int] = None, verbose: bool = True, jit_compile: bool = False, ): """ Call `fit_single` or `Model.fit` based on `train_data`. Delegates to either `graph_tf.train.fit_single` or `tf.keras.Model.fit`. Args: model: keras model to train. train_data: (inputs, labels, sample_weight) or dataset with a single element for training. validation_data: (inputs, labels, sample_weight) or dataset with a single element for validation. epochs: int, maximum number of steps/epochs to train for. initial_epoch: int, starting epoch. validation_freq: int, number of training steps/epochs per validation. callbacks: Iterable of `tf.keras.callbacks.Callbacks`. steps_per_epoch: Number of steps per epoch. Must be 1 if specified and train_data is a not a `tf.data.Dataset`. verbose: flag resulting in verbose outputs. jit_compile: used in fit_single. Ignored if more than one example. Returns: history: `tf.keras.callbacks.History` object. """ if not isinstance(train_data, tf.data.Dataset) or len(train_data) == 1: assert steps_per_epoch is None or steps_per_epoch == 1 return fit_single( model=model, train_data=train_data, validation_data=validation_data, epochs=epochs, initial_epoch=initial_epoch, validation_freq=validation_freq, callbacks=callbacks, verbose=verbose, jit_compile=jit_compile, ) return model.fit( train_data, validation_data=validation_data, epochs=epochs, initial_epoch=initial_epoch, validation_freq=validation_freq, callbacks=callbacks, verbose=verbose, steps_per_epoch=steps_per_epoch, )
py
1a424affb549ba31b6673bf80ae984f6e8086478
# If executes from local python Kernel import sys sys.path.append('./python_env/lib/python3.6/site-packages') # Import libraries for general use from unidecode import unidecode # Library to parse format from bs4 import BeautifulSoup # Library to scripting in HTML import numpy # Library for math function import requests # Library for request to a website # This function returns an array that contains the percentage of the population. def get_population_percentage(population_array): # Get the percentage for each item population_percentage = [] for item in population_array: population_percentage.append(item/numpy.sum(population_array)*100) return numpy.array(population_percentage) # This function create the output file def create_output_file(head, data, population_percentage): # Concatenate all data Head + Rows + New Colum (percentage) result = numpy.concatenate((data, population_percentage.T),axis=1) result = numpy.concatenate((head, result), axis=0) result = result.astype('str') # Save the result in to a csv file return numpy.savetxt('Organización territorial de Chile.csv', result, delimiter=",",fmt="%s") def get_data(): try: website_text = requests.get('https://es.wikipedia.org/wiki/Chile').text except requests.exceptions.RequestException as e: print(e) sys.exit(1) # Parse all data in to HTML format soup = BeautifulSoup(website_text,'html.parser') # Get the table 'Orgazniación ....' territory_table = soup.find('table',{'class':'wikitable col1izq col2der col3der col4der col5der col6izq'}) # Get all data from table - tag <td> if territory_table: list_td = territory_table.find_all('td') # Data Frames head = ['Región', 'Población', 'Superficie', 'Densidad', 'Capital', 'Porcentaje'] data = [] row = [] population = [] for cell in list_td: if(list_td.index(cell)==5): # Delete de 'Mapa administrativo' cell continue if cell.find_all('a'): # Get text for columm that contains an '<a>' tag. a = cell.find_all('a')[0] row.append(a.get_text()) else: # For numbers parse into american float format cell = unidecode(cell.get_text()).replace(" ","").replace(",",".") # Delete <sub> tag info if "(" in cell: cell = cell.split("(")[0] # Add cell to the row's table row.append(float(cell)) # Save the population data to calculate percentage if(len(row) == 2): population.append(row[1]) # Add row to the table if len(row) == 5: data.append(row) row = [] return numpy.array([head]), numpy.array(data), numpy.array([population]) else: print("Table not found.") return sys.exit(1) if __name__ == '__main__': head,data,population = get_data() population_percentage = get_population_percentage(population) create_output_file(head,data,population_percentage)
py
1a424bfffd5533016e256d8d0ebe5a8956ae6ca6
# Generated by Django 2.0.6 on 2018-06-29 05:31 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('images', '0001_initial'), ] operations = [ migrations.CreateModel( name='Like', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_at', models.DateTimeField(auto_now_add=True)), ('update_at', models.DateTimeField(auto_now=True)), ('creator', models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.AddField( model_name='comment', name='creator', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='comment', name='image', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, to='images.Image'), ), migrations.AddField( model_name='image', name='creator', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='like', name='image', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, to='images.Image'), ), ]
py
1a424c4179a59174cbca518fd29e0a71704eef8e
# Copyright (c) 2017, Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can be # found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause import os import itertools import pandas as pd import unittest from coremltools._deps import HAS_SKLEARN from coremltools.models.utils import evaluate_classifier, macos_version import pytest if HAS_SKLEARN: from coremltools.converters import sklearn as skl_converter from sklearn.tree import DecisionTreeClassifier @unittest.skipIf(not HAS_SKLEARN, 'Missing sklearn. Skipping tests.') class DecisionTreeClassificationBostonHousingScikitNumericTest(unittest.TestCase): def _check_metrics(self, metrics, params = {}): self.assertEquals(metrics['num_errors'], 0, msg = 'Failed case %s. Results %s' % (params, metrics)) def _train_convert_evaluate_assert(self, **scikit_params): scikit_model = DecisionTreeClassifier(random_state = 1, **scikit_params) scikit_model.fit(self.X, self.target) # Convert the model spec = skl_converter.convert(scikit_model, self.feature_names, self.output_name) if macos_version() >= (10, 13): # Get predictions df = pd.DataFrame(self.X, columns=self.feature_names) df['prediction'] = scikit_model.predict(self.X) # Evaluate it metrics = evaluate_classifier(spec, df) self._check_metrics(metrics, scikit_params) @unittest.skipIf(not HAS_SKLEARN, 'Missing sklearn. Skipping tests.') class DecisionTreeBinaryClassificationBostonHousingScikitNumericTest( DecisionTreeClassificationBostonHousingScikitNumericTest): @classmethod def setUpClass(self): from sklearn.datasets import load_boston from sklearn.tree import DecisionTreeClassifier # Load data and train model scikit_data = load_boston() self.scikit_data = scikit_data self.X = scikit_data.data.astype('f').astype('d') ## scikit-learn downcasts data self.target = 1 * (scikit_data['target'] > scikit_data['target'].mean()) self.feature_names = scikit_data.feature_names self.output_name = 'target' def test_simple_binary_classifier(self): self._train_convert_evaluate_assert() @pytest.mark.slow def test_binary_classifier_stress_test(self): options = dict( splitter = ['best'], max_depth = [1, 10, None], min_samples_split = [2, 10, 0.5], min_samples_leaf = [1, 5], min_weight_fraction_leaf = [0.0, 0.5], max_features = [None, 1, 5], max_leaf_nodes = [None, 20], presort = [False, True], ) # Make a cartesian product of all options import itertools product = itertools.product(*options.values()) args = [dict(zip(options.keys(), p)) for p in product] print("Testing a total of %s cases. This could take a while" % len(args)) for it, arg in enumerate(args): self._train_convert_evaluate_assert(**arg) @unittest.skipIf(not HAS_SKLEARN, 'Missing sklearn. Skipping tests.') class DecisionTreeMultiClassClassificationBostonHousingScikitNumericTest( DecisionTreeClassificationBostonHousingScikitNumericTest): @classmethod def setUpClass(self): from sklearn.datasets import load_boston import numpy as np # Load data and train model scikit_data = load_boston() num_classes = 3 self.X = scikit_data.data.astype('f').astype('d') ## scikit-learn downcasts data t = scikit_data.target target = np.digitize(t, np.histogram(t, bins = num_classes - 1)[1]) - 1 # Save the data and the model self.scikit_data = scikit_data self.target = target self.feature_names = scikit_data.feature_names self.output_name = 'target' def test_simple_multiclass(self): self._train_convert_evaluate_assert() @pytest.mark.slow def test_multiclass_stress_test(self): options = dict( splitter = ['best'], max_depth = [1, 10, None], min_samples_split = [2, 10, 0.5], min_samples_leaf = [1, 5], min_weight_fraction_leaf = [0.0, 0.5], max_features = [None, 1, 5], max_leaf_nodes = [None, 20], presort = [False, True], ) # Make a cartesian product of all options product = itertools.product(*options.values()) args = [dict(zip(options.keys(), p)) for p in product] print("Testing a total of %s cases. This could take a while" % len(args)) for it, arg in enumerate(args): self._train_convert_evaluate_assert(**arg)
py
1a424d3f7b4af5941326c44f0f4d3e8dc5d0d128
from os import path from setuptools import setup, find_packages import sys import versioneer # NOTE: This file must remain Python 2 compatible for the foreseeable future, # to ensure that we error out properly for people with outdated setuptools # and/or pip. min_version = (3, 6) if sys.version_info < min_version: error = """ jupyterhub-share-link-serverextension does not support Python {0}.{1}. Python {2}.{3} and above is required. Check your Python version like so: python3 --version This may be due to an out-of-date pip. Make sure you have pip >= 9.0.1. Upgrade pip like so: pip install --upgrade pip """.format(*(sys.version_info[:2] + min_version)) sys.exit(error) here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as readme_file: readme = readme_file.read() with open(path.join(here, 'requirements.txt')) as requirements_file: # Parse requirements.txt, ignoring any commented-out lines. requirements = [line for line in requirements_file.read().splitlines() if not line.startswith('#')] setup( name='jupyterhub-share-link-serverextension', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), description="Python package for doing science.", long_description=readme, author="JupyterHub Share Link Contributors", author_email='[email protected]', url='https://github.com/danielballan/jupyterhub-share-link-serverextension', python_requires='>={}'.format('.'.join(str(n) for n in min_version)), packages=find_packages(exclude=['docs', 'tests']), entry_points={ 'console_scripts': [ # 'command = some.module:some_function', ], }, include_package_data=True, package_data={ 'jupyterhub_share_link_serverextension': [ # When adding files here, remember to update MANIFEST.in as well, # or else they will not be included in the distribution on PyPI! # 'path/to/data_file', ] }, install_requires=requirements, license="BSD (3-clause)", classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Natural Language :: English', 'Programming Language :: Python :: 3', ], )
py
1a424d5a46d0ff01d078eb65771d76edd2635771
""" OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from petstore_api.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from petstore_api.exceptions import ApiAttributeError class ClassModel(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { '_class': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { '_class': '_class', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """ClassModel - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) _class (str): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', True) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: for arg in args: if isinstance(arg, dict): kwargs.update(arg) else: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """ClassModel - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) _class (str): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: for arg in args: if isinstance(arg, dict): kwargs.update(arg) else: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
py
1a424da371a77f49cafcf1b25908551d82fcf1e6
""" Modified from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py Edits: ResNet: - Changed input layer from 3 channel -> 1 channel (depth images) - Divided inplanes, planes, and width_per_group by 4 BasicBlock: - Commented out ValueError triggered by base_width != 64 'To make the number of parameters comparable to point-based methods, we use ResNet18 with one-fourth filters (ResNet18/4) as the backbone.' """ from typing import Type, Any, Callable, Union, List, Optional import torch import torch.nn as nn from torchvision.models.resnet import ( Bottleneck, conv3x3, conv1x1 ) class BasicBlock(nn.Module): expansion: int = 1 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d """ if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') """ if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x: torch.Tensor) -> torch.Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet_4(nn.Module): def __init__( self, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], num_classes: int = 1000, zero_init_residual: bool = False, groups: int = 1, width_per_group: int = 64//4, replace_stride_with_dilation: Optional[List[bool]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64//4 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64//4, layers[0]) self.layer2 = self._make_layer(block, 128//4, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256//4, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512//4, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512//4 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, stride: int = 1, dilate: bool = False) -> nn.Sequential: norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def _forward_impl(self, x: torch.Tensor) -> torch.Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def forward(self, x: torch.Tensor) -> torch.Tensor: return self._forward_impl(x) def resnet18_4() -> ResNet_4: """ ResNet18/4: ResNet18 with 1/4 the filters Note: contains ~0.83M params which is close to the 0.8M params reported in paper """ return ResNet_4(block=BasicBlock, layers=[2, 2, 2, 2])
py
1a424efac972af02e2f5ad9168f28a838692fcd0
from hpc.autoscale.ccbindings.mock import MockClusterBinding from hpc.autoscale.job.job import Job from hpc.autoscale.job.schedulernode import SchedulerNode from hpc.autoscale.node.nodemanager import new_node_manager def setup_module() -> None: SchedulerNode.ignore_hostnames = True def test_placement_group() -> None: node = SchedulerNode("", {}) node.exists = False node.placement_group = "" assert node.placement_group is None node.placement_group = "a" assert node.placement_group == "a" node.placement_group = "0" assert node.placement_group == "0" try: node.placement_group = "." except Exception: pass assert node.placement_group == "0" node.set_placement_group_escaped(".") assert node.placement_group == "_" node.exists = True try: node.placement_group = "123" except Exception: assert node.placement_group == "_" def test_custom_node_attrs_and_node_config() -> None: b = MockClusterBinding() b.add_nodearray("htc", {}, software_configuration={"myscheduler": {"A": 1}}) b.add_bucket("htc", "Standard_F2", 10, 10) b.add_node("htc-1", "htc") node_mgr = new_node_manager({"_mock_bindings": b}) (existing_node,) = node_mgr.get_nodes() try: existing_node.node_attribute_overrides["willfail"] = 123 assert False except TypeError: pass result = node_mgr.allocate({"exclusive": True}, node_count=2) assert result (node,) = [n for n in result.nodes if not n.exists] assert node.software_configuration.get("test_thing") is None node.node_attribute_overrides["Configuration"] = {"test_thing": "is set"} assert node.software_configuration.get("test_thing") == "is set" try: node.software_configuration["willfail"] = 123 assert not node.software_configuration.get("willfail") except TypeError: pass # we won't handle dict merges here. assert node.software_configuration.get("myscheduler") == {"A": 1} node.node_attribute_overrides["Configuration"] = {"myscheduler": {"B": 2}} assert node.software_configuration.get("myscheduler") == {"B": 2} # if you want to add to the existing software_configuration, use # the node.software_configuration node.node_attribute_overrides["Configuration"][ "myscsheduler" ] = node.software_configuration.get("myscheduler", {}) node.node_attribute_overrides["Configuration"]["myscheduler"]["B"] = 2 node.node_attribute_overrides["Configuration"] = {"myscheduler": {"A": 1, "B": 2}} node.software_configuration["willsucceed"] = 123 node.exists = True try: node.software_configuration["willfail"] = 123 assert False except TypeError: pass def test_clone() -> None: orig = SchedulerNode("lnx0", {"ncpus": 4}) orig.metadata["exists_in_both"] = True new = orig.clone() assert new.available["ncpus"] == 4 assert new.resources["ncpus"] == 4 new.available["ncpus"] -= 1 assert new.available["ncpus"] == 3 assert orig.available["ncpus"] == 4 job = Job("1", {"ncpus": 2}) new.decrement(job._constraints, assignment_id=job.name) assert new.available["ncpus"] == 1 assert orig.available["ncpus"] == 4 assert new.assignments == set(["1"]) assert orig.assignments == set() orig.metadata["exists_in_orig"] = True new.metadata["exists_in_new"] = True assert orig.metadata["exists_in_both"] is True assert "exists_in_new" not in orig.metadata assert orig.metadata["exists_in_orig"] is True assert new.metadata["exists_in_both"] is True assert new.metadata["exists_in_new"] is True assert "exists_in_orig" not in new.metadata
py
1a424f06fc3801946d9b5ed38fec62496ac10f28
""" Copyright (C) 2021 University of Luxembourg Developed by Dr. Joshua Heneage Dawes. Module containing classes for construction of iCFTL specifications. Specifications are constructed hierarchically, as chains of objects. The root object is always a Specification instance. This can contain configuration information for the specification. The first object inside the Specification must be a Forall instance. This indicates universal quantification. There can arbitrarily many Forall instances nested. The final instance in the chain must be a Constraint instance. This has recursive structure (based on the grammar of iCFTL). """ import logging logger = logging.getLogger("VyPR") from VyPR.Specifications.predicates import changes, calls, future from VyPR.Specifications.constraints import (Constraint, ConstraintBase, ConcreteStateExpression, TransitionExpression, ConcreteStateVariable, TransitionVariable, Conjunction, Disjunction, Negation, TimeBetween, ValueInConcreteStateEqualsConstant, ValueInConcreteStateLessThanConstant, ValueInConcreteStateGreaterThanConstant, DurationOfTransitionLessThanConstant, DurationOfTransitionGreaterThanConstant, ConcreteStateBeforeTransition, ConcreteStateAfterTransition, NextTransitionFromConcreteState, NextConcreteStateFromConcreteState, NextTransitionFromTransition, NextConcreteStateFromTransition, TimeBetweenLessThanConstant) class Specification(): """ The top-level class for specifications. """ def __init__(self): logger.info("Instantiating new specification...") self._quantifier = None def __repr__(self): """ Construct the string representation recursively. """ return f"{self._quantifier}" def get_quantifier(self): return self._quantifier def get_variable_to_obj_map(self) -> dict: """ Traverse the specification in order to construct a map from each variable to the type of object it will hold (either a ConcreteState or a Transition instance). Note: this function should not try to serialise any objects from the specification because serialisation of a Constraint instance requires calling of this function, hence the result would be an infinite loop. """ logger.info("Deriving map variable names -> variable object from quantifiers") # initialise an empty map variable_to_obj = {} # set the current object to be the top-level specification current_obj = self # iterate through the structure, using the type Constraint as a place to stop logger.info("Traversing specification structure") while type(current_obj) is not Constraint: logger.info(f"current_obj = {type(current_obj)}") # traverse depending on the type of the current object if type(current_obj) is Specification: current_obj = current_obj._quantifier elif type(current_obj) is Forall: # first, add to the map # we check the type of the predicate so we know what kind of variable to instantiate if type(current_obj._predicate) is changes: variable_to_obj[current_obj._variable] = ConcreteStateVariable(current_obj._variable) elif type(current_obj._predicate) is calls: variable_to_obj[current_obj._variable] = TransitionVariable(current_obj._variable) elif type(current_obj._predicate) is future: if type(current_obj._predicate._predicate) is changes: variable_to_obj[current_obj._variable] = ConcreteStateVariable(current_obj._variable) elif type(current_obj._predicate._predicate) is calls: variable_to_obj[current_obj._variable] = TransitionVariable(current_obj._variable) # in the case of a quantifier, the two possibilities are # that the next item to consider is a quantifier or a constraint if current_obj._quantifier: current_obj = current_obj._quantifier else: # if we arrive at a constraint, the loop # will stop at the next ieration current_obj = current_obj._constraint logger.info(f"variable_to_obj = {variable_to_obj}") return variable_to_obj def get_variables(self) -> list: """ Traverse the specification in order to construct a list of variables. The order of the list matches the order in which the variables occur in quantifiers. """ logger.info("Deriving list of variables from quantifiers") # initialise an empty list variables = [] # set the current object to be the top-level specification current_obj = self # iterate through the structure, using the type Constraint as a place to stop logger.info("Traversing specification structure") while type(current_obj) is not Constraint: logger.info(f"current_obj = {type(current_obj)}") # traverse depending on the type of the current object if type(current_obj) is Specification: current_obj = current_obj._quantifier elif type(current_obj) is Forall: # first, add to the map # we check the type of the predicate so we know what kind of variable to instantiate if type(current_obj._predicate) is changes: variables.append(current_obj._variable) elif type(current_obj._predicate) is calls: variables.append(current_obj._variable) elif type(current_obj._predicate) is future: if type(current_obj._predicate._predicate) is changes: variables.append(current_obj._variable) elif type(current_obj._predicate._predicate) is calls: variables.append(current_obj._variable) # in the case of a quantifier, the two possibilities are # that the next item to consider is a quantifier or a constraint if current_obj._quantifier: current_obj = current_obj._quantifier else: # if we arrive at a constraint, the loop # will stop at the next ieration current_obj = current_obj._constraint return variables def get_function_names_used(self): """ Traverse the specification and, each time a predicate is encountered, extract the function name used and add to the list. """ # initialise an empty list of function names all_function_names = [] # initialise stack wth top-level Specification object for traversal stack = [self] # process the stack while it is not empty while len(stack) > 0: # get the top element from the stack top = stack.pop() # based on the type, add child elements to the stack or add a new function name # to the list if type(top) in [changes, calls]: all_function_names.append(top._during_function) elif type(top) is future: stack.append(top.get_predicate()) elif type(top) is Specification: stack.append(top.get_quantifier()) elif type(top) is Forall: # add the predicate to the stack stack.append(top.get_predicate()) # also, carry on traversing the specification if top.get_quantifier(): stack.append(top.get_quantifier()) else: stack.append(top.get_constraint()) elif type(top) is Constraint: stack.append(top.instantiate()) elif type(top) is Conjunction: stack += top.get_conjuncts() elif type(top) is Disjunction: stack += top.get_disjuncts() elif type(top) is Negation: stack.append(top.get_operand()) elif type(top) in [ValueInConcreteStateEqualsConstant, ValueInConcreteStateLessThanConstant, ValueInConcreteStateGreaterThanConstant]: stack.append(top.get_value_expression().get_concrete_state_expression()) elif type(top) in [ConcreteStateBeforeTransition, ConcreteStateAfterTransition]: stack.append(top.get_transition_expression()) elif type(top) in [DurationOfTransitionLessThanConstant, DurationOfTransitionGreaterThanConstant]: stack.append(top.get_transition_duration_obj().get_transition_expression()) elif type(top) in [NextTransitionFromConcreteState, NextConcreteStateFromConcreteState]: stack.append(top.get_predicate()) elif type(top) in [NextTransitionFromTransition, NextConcreteStateFromTransition]: stack.append(top.get_predicate()) elif type(top) is TimeBetweenLessThanConstant: # traverse both arguments to the timeBetween operator stack.append(top.get_time_between_expression().get_lhs_expression()) stack.append(top.get_time_between_expression().get_rhs_expression()) all_function_names = list(set(all_function_names)) return all_function_names def get_constraint(self): """ Traverse the specification until a constraint is reached. """ # set the current object to be the first quantifier current_obj = self._quantifier # iterate through the structure, using the type Constraint as a place to stop while type(current_obj) is not Constraint: # traverse depending on the type of the current object if type(current_obj) is Specification: current_obj = current_obj.get_quantifier() elif type(current_obj) is Forall: # in the case of a quantifier, the two possibilities are # that the next item to consider is a quantifier or a constraint if current_obj.get_quantifier(): current_obj = current_obj.get_quantifier() else: # if we arrive at a constraint, the loop # will stop at the next ieration current_obj = current_obj.get_constraint() return current_obj def forall(self, **quantified_variable): """ **quantified variable must be a dictionary with only one key - the variable being given. The value associated with the variable must be a Predicate instance. """ # if there is more than 1 variable, raise an exception if len(quantified_variable.keys()) > 1: raise Exception("A single variable must be given for each level of universal quantification.") # check the type of the value predicate = list(quantified_variable.values())[0] if type(predicate) not in [changes, calls, future]: raise Exception(f"Type '{type(predicate).__name__}' not supported.") # make sure the predicate is complete variable = list(quantified_variable.keys())[0] if not predicate._during_function: raise Exception(f"Predicate used for variable {variable} not complete") logger.info(f"Adding quantifier with arguments {quantified_variable}") # store the quantifier self._quantifier = Forall(self, **quantified_variable) return self._quantifier class Forall(): """ The class for representing universal quantification in specifications. """ def __init__(self, specification_obj: Specification, **quantified_variable): self._specification_obj = specification_obj # we will use the fact that either a constraint or a quantifier is stored # to determine what the next thing we will see in the structure of the specification is self._constraint = None self._quantifier = None # Note: .keys() does not give a structure with an ordering, # so normally converting to a list would be problematic # but here we know that there must be one element self._variable = list(quantified_variable.keys())[0] self._predicate = list(quantified_variable.values())[0] def __repr__(self): if self._constraint: # this is the last quantifier, so the next thing to turn into a string is a constraint return f"forall {self._variable} in {self._predicate}:\n {self._constraint}" else: # this is not the last quantifier - there is another nested inside return f"forall {self._variable} in {self._predicate}:\n{self._quantifier}" def get_specification_obj(self): return self._specification_obj def get_quantifier(self): return self._quantifier def get_constraint(self): return self._constraint def get_predicate(self): return self._predicate def get_variable(self): return self._variable def forall(self, **quantified_variable): """ **quantified variable must be a dictionary with only one key - the variable being given. The value associated with the variable must be a Predicate instance. """ # if there is more than 1 variable, raise an exception if len(quantified_variable.keys()) > 1: raise Exception("A single variable must be given for each level of universal quantification.") # check the type of the value - this is not the first quantifier, # so the type must be future predicate = list(quantified_variable.values())[0] if type(predicate) is not future: raise Exception(f"Type '{type(predicate).__name__}' not supported.") # make sure the predicate is complete variable = list(quantified_variable.keys())[0] if not predicate._predicate._during_function: raise Exception(f"Predicate used for variable {variable} not complete") logger.info(f"Initialising new instance of Forall with quantified_variable = {quantified_variable}") # store the quantifier self._quantifier = Forall(self._specification_obj, **quantified_variable) return self._quantifier def check(self, expression): """ Instantiate a top-level Constraint instance with the given constraint lambda. The lambda will later be called and supplied with the necessary variables during instrumentation and monitoring. """ # make sure constraint is a lambda if type(expression) is not type(lambda:0): raise Exception("Constraint given must be a lambda expression.") logger.info("Setting self._constraint to new Constraint instance") self._constraint = Constraint(self._specification_obj, expression) return self._specification_obj """ Syntax sugar functions. """ def all_are_true(*conjuncts): """ Encode a conjunction. """ return Conjunction(*conjuncts) def one_is_true(*disjuncts): """ Encode a disjunction. """ return Disjunction(*disjuncts) def not_true(operand): """ Given an operand, instantiate either a single negation, or another structure by propagating negation through to atomic constraints. """ if type(operand) is Conjunction: # rewrite negation of conjunction as disjunction of negations return Disjunction(*map(lambda conjunct : not_true(conjunct), operand.get_conjuncts())) elif type(operand) is Disjunction: # rewrite negation of disjunction as conjunction of negations return Conjunction(*map(lambda disjunct : not_true(disjunct), operand.get_disjuncts())) elif type(operand) is Negation: # eliminate double negation return operand.get_operand() else: # assume operand is atomic constraint return Negation(operand) def timeBetween(concrete_state_expression_1, concrete_state_expression_2): return TimeBetween(concrete_state_expression_1, concrete_state_expression_2)
py
1a424f28ec101ad74dd02d9ec3c04361f182ec8a
# -*- coding: utf-8 -*- from .fixtures import fixture_data, Amount, Asset, Price import unittest class Testcases(unittest.TestCase): def setUp(self): fixture_data() def test_init(self): # self.assertEqual(1, 1) Price("0.315 USD/GPH") Price(1.0, "USD/GOLD") Price(0.315, base="USD", quote="GPH") Price(0.315, base=Asset("USD"), quote=Asset("GPH")) Price( { "base": {"amount": 1, "asset_id": "1.3.0"}, "quote": {"amount": 10, "asset_id": "1.3.8"}, } ) Price( { "receives": {"amount": 1, "asset_id": "1.3.0"}, "pays": {"amount": 10, "asset_id": "1.3.8"}, }, base_asset=Asset("1.3.0"), ) Price(quote="10 GOLD", base="1 USD") Price("10 GOLD", "1 USD") Price(Amount("10 GOLD"), Amount("1 USD")) def test_multiplication(self): p1 = Price(10.0, "USD/GOLD") p2 = Price(5.0, "EUR/USD") p3 = p1 * p2 p4 = p3.as_base("GOLD") self.assertEqual(p4["quote"]["symbol"], "EUR") self.assertEqual(p4["base"]["symbol"], "GOLD") # 10 USD/GOLD * 0.2 EUR/USD = 50 EUR/GOLD = 0.02 GOLD/EUR self.assertEqual(float(p4), 0.02) # Inline multiplication p5 = p1 p5 *= p2 p4 = p5.as_base("GOLD") self.assertEqual(p4["quote"]["symbol"], "EUR") self.assertEqual(p4["base"]["symbol"], "GOLD") # 10 USD/GOLD * 0.2 EUR/USD = 2 EUR/GOLD = 0.02 GOLD/EUR self.assertEqual(float(p4), 0.02) def test_div(self): p1 = Price(10.0, "USD/GOLD") p2 = Price(5.0, "USD/EUR") # 10 USD/GOLD / 5 USD/EUR = 2 EUR/GOLD p3 = p1 / p2 p4 = p3.as_base("EUR") self.assertEqual(p4["base"]["symbol"], "EUR") self.assertEqual(p4["quote"]["symbol"], "GOLD") # 10 USD/GOLD * 0.2 EUR/USD = 2 EUR/GOLD = 0.5 GOLD/EUR self.assertEqual(float(p4), 2) def test_div2(self): p1 = Price(10.0, "USD/GOLD") p2 = Price(5.0, "USD/GOLD") # 10 USD/GOLD / 5 USD/EUR = 2 EUR/GOLD p3 = p1 / p2 self.assertTrue(isinstance(p3, (float, int))) self.assertEqual(float(p3), 2.0)
py
1a424f36720c226cf6125e969b6b1fadf2eb9344
from enemy import Enemy class Minion(Enemy): """ Minion class inherits from Enemy class. It is similar in all forms to the enemy class except that it will move towards bomberman with probability 0.8. """ def __init__(self, r, c): Enemy.__init__(self, r, c) self.random_prob = 0.2
py
1a424f4426e42c72d73cafd39def67ca7745176d
import torch import numpy as np from baseline.utils import lookup_sentence, get_version from torch.autograd import Variable import torch.autograd import torch.nn as nn import torch.nn.functional import math import copy PYT_MAJOR_VERSION = get_version(torch) def sequence_mask(lengths): lens = lengths.cpu() max_len = torch.max(lens) # 1 x T row = torch.arange(0, max_len.item()).type_as(lens).view(1, -1) # B x 1 col = lens.view(-1, 1) # Broadcast to B x T, compares increasing number to max mask = row < col return mask def classify_bt(model, batch_time): tensor = torch.from_numpy(batch_time) if type(batch_time) == np.ndarray else batch_time probs = model(torch.autograd.Variable(tensor, requires_grad=False).cuda()).exp().data probs.div_(torch.sum(probs)) results = [] batchsz = probs.size(0) for b in range(batchsz): outcomes = [(model.labels[id_i], prob_i) for id_i, prob_i in enumerate(probs[b])] results.append(outcomes) return results def predict_seq_bt(model, x, xch, lengths): x_t = torch.from_numpy(x) if type(x) == np.ndarray else x xch_t = torch.from_numpy(xch) if type(xch) == np.ndarray else xch len_v = torch.from_numpy(lengths) if type(lengths) == np.ndarray else lengths x_v = torch.autograd.Variable(x_t, requires_grad=False).cuda() xch_v = torch.autograd.Variable(xch_t, requires_grad=False).cuda() #len_v = torch.autograd.Variable(len_t, requires_grad=False) results = model((x_v, xch_v, len_v)) #print(results) #if type(x) == np.ndarray: # # results = results.cpu().numpy() # # Fix this to not be greedy # results = np.argmax(results, -1) return results def to_scalar(var): # returns a python float return var.view(-1).data.tolist()[0] def argmax(vec): # return the argmax as a python int _, idx = torch.max(vec, 1) return to_scalar(idx) def log_sum_exp(vec): max_score = vec[0, argmax(vec)] max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) return max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast))) class SequenceCriterion(nn.Module): def __init__(self, LossFn=nn.NLLLoss): super(SequenceCriterion, self).__init__() self.crit = LossFn(ignore_index=0, size_average=False) def forward(self, inputs, targets): # This is BxT, which is what we want! total_sz = targets.nelement() loss = self.crit(inputs.view(total_sz, -1), targets.view(total_sz)) return loss class StackedLSTMCell(nn.Module): def __init__(self, num_layers, input_size, rnn_size, dropout): super(StackedLSTMCell, self).__init__() self.dropout = nn.Dropout(dropout) self.num_layers = num_layers self.layers = nn.ModuleList() for i in range(num_layers): self.layers.append(nn.LSTMCell(input_size=input_size, hidden_size=rnn_size, bias=False)) input_size = rnn_size def forward(self, input, hidden): h_0, c_0 = hidden hs, cs = [], [] for i, layer in enumerate(self.layers): h_i, c_i = layer(input, (h_0[i], c_0[i])) input = h_i if i != self.num_layers - 1: input = self.dropout(input) hs += [h_i] cs += [c_i] hs = torch.stack(hs) cs = torch.stack(cs) return input, (hs, cs) class StackedGRUCell(nn.Module): def __init__(self, num_layers, input_size, rnn_size, dropout): super(StackedGRUCell, self).__init__() self.dropout = nn.Dropout(dropout) self.num_layers = num_layers self.layers = nn.ModuleList() for i in range(num_layers): self.layers.append(nn.GRUCell(input_size=input_size, hidden_size=rnn_size)) input_size = rnn_size def forward(self, input, hidden): h_0 = hidden hs = [] for i, layer in enumerate(self.layers): h_i = layer(input, (h_0[i])) input = h_i if i != self.num_layers: input = self.dropout(input) hs += [h_i] hs = torch.stack(hs) return input, hs def pytorch_rnn_cell(insz, hsz, rnntype, nlayers, dropout): if rnntype == 'gru': rnn = StackedGRUCell(nlayers, insz, hsz, dropout) else: rnn = StackedLSTMCell(nlayers, insz, hsz, dropout) return rnn def pytorch_embedding(x2vec, finetune=True): dsz = x2vec.dsz lut = nn.Embedding(x2vec.vsz + 1, dsz, padding_idx=0) del lut.weight lut.weight = nn.Parameter(torch.FloatTensor(x2vec.weights), requires_grad=finetune) return lut def pytorch_activation(name="relu"): if name == "tanh": return nn.Tanh() if name == "hardtanh": return nn.Hardtanh() if name == "prelu": return nn.PReLU() if name == "sigmoid": return nn.Sigmoid() if name == "log_sigmoid": return nn.LogSigmoid() return nn.ReLU() def pytorch_conv1d(in_channels, out_channels, fsz, unif=0, padding=0, initializer=None): c = nn.Conv1d(in_channels, out_channels, fsz, padding=padding) if unif > 0: c.weight.data.uniform_(-unif, unif) elif initializer == "ortho": nn.init.orthogonal(c.weight) elif initializer == "he" or initializer == "kaiming": nn.init.kaiming_uniform(c.weight) else: nn.init.xavier_uniform_(c.weight) return c def pytorch_linear(in_sz, out_sz, unif=0, initializer=None): l = nn.Linear(in_sz, out_sz) if unif > 0: l.weight.data.uniform_(-unif, unif) elif initializer == "ortho": nn.init.orthogonal(l.weight) elif initializer == "he" or initializer == "kaiming": nn.init.kaiming_uniform(l.weight) else: nn.init.xavier_uniform_(l.weight) l.bias.data.zero_() return l def pytorch_clone_module(module_, N): return nn.ModuleList([copy.deepcopy(module_) for _ in range(N)]) def _cat_dir(h): return torch.cat([h[0:h.size(0):2], h[1:h.size(0):2]], dim=-1) class BiRNNWrapper(nn.Module): def __init__(self, rnn, nlayers): super(BiRNNWrapper, self).__init__() self.rnn = rnn self.nlayers = nlayers def forward(self, seq): output, hidden = self.rnn(seq) if isinstance(hidden, tuple): hidden = tuple(_cat_dir(h) for h in hidden) else: hidden = _cat_dir(hidden) return output, hidden def pytorch_rnn(insz, hsz, rnntype, nlayers, dropout): if nlayers == 1: dropout = 0.0 if rnntype == 'gru': rnn = torch.nn.GRU(insz, hsz, nlayers, dropout=dropout) elif rnntype == 'blstm': rnn = torch.nn.LSTM(insz, hsz, nlayers, dropout=dropout, bidirectional=True) rnn = BiRNNWrapper(rnn, nlayers) else: rnn = torch.nn.LSTM(insz, hsz, nlayers, dropout=dropout) return rnn class ParallelConv(nn.Module): def __init__(self, insz, outsz, filtsz, activation_type, pdrop): super(ParallelConv, self).__init__() convs = [] outsz_filts = outsz if type(outsz) == int: outsz_filts = len(filtsz) * [outsz] self.outsz = sum(outsz_filts) for i, fsz in enumerate(filtsz): pad = fsz//2 conv = nn.Sequential( nn.Conv1d(insz, outsz_filts[i], fsz, padding=pad), pytorch_activation(activation_type) ) convs.append(conv) # Add the module so its managed correctly self.convs = nn.ModuleList(convs) self.conv_drop = nn.Dropout(pdrop) def forward(self, input_bct): mots = [] for conv in self.convs: # In Conv1d, data BxCxT, max over time conv_out = conv(input_bct) mot, _ = conv_out.max(2) mots.append(mot) mots = torch.cat(mots, 1) return self.conv_drop(mots) class Highway(nn.Module): def __init__(self, input_size): super(Highway, self).__init__() self.proj = nn.Linear(input_size, input_size) self.transform = nn.Linear(input_size, input_size) self.transform.bias.data.fill_(-2.0) def forward(self, input): proj_result = nn.functional.relu(self.proj(input)) proj_gate = nn.functional.sigmoid(self.transform(input)) gated = (proj_gate * proj_result) + ((1 - proj_gate) * input) return gated class LayerNorm(nn.Module): """ Applies Layer Normalization over a mini-batch of inputs as described in the paper `Layer Normalization`_ . .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x]} + \epsilon} * \gamma + \beta This is provided in pytorch's master, and can be replaced in the near future. For the time, being, this code is adapted from: http://nlp.seas.harvard.edu/2018/04/03/attention.html https://github.com/pytorch/pytorch/pull/2019 """ def __init__(self, num_features, eps=1e-6): super(LayerNorm, self).__init__() self.a = nn.Parameter(torch.ones(num_features)) self.b = nn.Parameter(torch.zeros(num_features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = ((x - mean).pow(2).sum(-1, keepdim=True).div(x.size(-1) - 1) + self.eps).sqrt() d = (std + self.eps) + self.b return self.a * (x - mean) / d def pytorch_lstm(insz, hsz, rnntype, nlayers, dropout, unif=0, batch_first=False, initializer=None): if nlayers == 1: dropout = 0.0 ndir = 2 if rnntype.startswith('b') else 1 #print('ndir: %d, rnntype: %s, nlayers: %d, dropout: %.2f, unif: %.2f' % (ndir, rnntype, nlayers, dropout, unif)) rnn = torch.nn.LSTM(insz, hsz, nlayers, dropout=dropout, bidirectional=True if ndir > 1 else False, batch_first=batch_first)#, bias=False) if unif > 0: for weight in rnn.parameters(): weight.data.uniform_(-unif, unif) elif initializer == "ortho": nn.init.orthogonal(rnn.weight_hh_l0) nn.init.orthogonal(rnn.weight_ih_l0) elif initializer == "he" or initializer == "kaiming": nn.init.kaiming_uniform(rnn.weight_hh_l0) nn.init.kaiming_uniform(rnn.weight_ih_l0) else: nn.init.xavier_uniform_(rnn.weight_hh_l0) nn.init.xavier_uniform_(rnn.weight_ih_l0) return rnn, ndir*hsz def pytorch_prepare_optimizer(model, **kwargs): mom = kwargs.get('mom', 0.9) optim = kwargs.get('optim', 'sgd') eta = kwargs.get('eta', kwargs.get('lr', 0.01)) decay_rate = float(kwargs.get('decay_rate', 0.0)) decay_type = kwargs.get('decay_type', None) if optim == 'adadelta': optimizer = torch.optim.Adadelta(model.parameters(), lr=eta) elif optim == 'adam': optimizer = torch.optim.Adam(model.parameters(), lr=eta) elif optim == 'rmsprop': optimizer = torch.optim.RMSprop(model.parameters(), lr=eta) elif optim == 'asgd': optimizer = torch.optim.ASGD(model.parameters(), lr=eta) else: optimizer = torch.optim.SGD(model.parameters(), lr=eta, momentum=mom) scheduler = None if decay_rate > 0.0 and decay_type is not None: if decay_type == 'invtime': scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=decay_rate) return optimizer, scheduler def append2seq(seq, modules): for i, module in enumerate(modules): seq.add_module('%s-%d' % (str(module).replace('.', 'dot'), i), module) def tensor_max(tensor): return tensor.max() def tensor_shape(tensor): return tensor.size() def tensor_reverse_2nd(tensor): idx = torch.LongTensor([i for i in range(tensor.size(1)-1, -1, -1)]) return tensor.index_select(1, idx) def long_0_tensor_alloc(dims, dtype=None): lt = long_tensor_alloc(dims) lt.zero_() return lt def long_tensor_alloc(dims, dtype=None): if type(dims) == int or len(dims) == 1: return torch.LongTensor(dims) return torch.LongTensor(*dims) def prepare_src(model, tokens, mxlen=100): src_vocab = model.get_src_vocab() length = min(len(tokens), mxlen) x = torch.LongTensor(length).zero_() for j in range(length): word = tokens[j] if word not in src_vocab: if word != '': print(word) idx = 0 else: idx = src_vocab[word] x[j] = idx return torch.autograd.Variable(x.view(-1, 1)) #def beam_decode_tokens(model, src_tokens, K, idx2word, mxlen=50): # src = prepare_src(model, src_tokens, mxlen) # paths, scores = beam_decode(model, src, K) # path_str = [] # for j, path in enumerate(paths): # path_str.append([idx2word[i] for i in path]) # return path_str, scores #return beam_decode(model, src, K) def show_examples_pytorch(model, es, rlut1, rlut2, embed2, mxlen, sample, prob_clip, max_examples, reverse): si = np.random.randint(0, len(es)) batch_dict = es[si] src_array = batch_dict['src'] tgt_array = batch_dict['dst'] src_len = batch_dict['src_len'] if max_examples > 0: max_examples = min(max_examples, src_array.size(0)) src_array = src_array[0:max_examples] tgt_array = tgt_array[0:max_examples] src_len = src_len[0:max_examples] # TODO: fix this, check for GPU first src_array = src_array.cuda() for src_len_i, src_i, tgt_i in zip(src_len, src_array, tgt_array): print('========================================================================') src_len_i = torch.ones(1).fill_(src_len_i).type_as(src_len) sent = lookup_sentence(rlut1, src_i.cpu().numpy(), reverse=reverse) print('[OP] %s' % sent) sent = lookup_sentence(rlut2, tgt_i.cpu().numpy()) print('[Actual] %s' % sent) src_dict = {'src': torch.autograd.Variable(src_i.view(1, -1), requires_grad=False), 'src_len': torch.autograd.Variable(src_len_i, requires_grad=False)} dst_i = model.run(src_dict)[0][0] dst_i = [idx.item() for idx in dst_i] sent = lookup_sentence(rlut2, dst_i) print('Guess: %s' % sent) print('------------------------------------------------------------------------') # Some of this code is borrowed from here: # https://github.com/rguthrie3/DeepLearningForNLPInPytorch def argmax(vec): # return the argmax as a python int _, idx = torch.max(vec, 1) return idx.data[0] # Compute log sum exp in a numerically stable way for the forward algorithm def log_sum_exp(vec): max_score = vec[0, argmax(vec)] max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) return max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast))) def vec_log_sum_exp(vec, dim): """Vectorized version of log-sum-exp :param vec: Vector :param dim: What dimension to operate on :return: """ max_scores, idx = torch.max(vec, dim, keepdim=True) max_scores_broadcast = max_scores.expand_as(vec) return max_scores + torch.log(torch.sum(torch.exp(vec - max_scores_broadcast), dim, keepdim=True)) class CRF(nn.Module): def __init__(self, n_tags, idxs=None): """Initialize the object. :param n_tags: int The number of tags in your output (emission size) :param idxs: Tuple(int. int) The index of the start and stop symbol in emissions. Note: if idxs is none then the CRF adds these symbols to the emission vectors and n_tags is assumed to be the number of output tags. if idxs is not none then the first element is assumed to be the start index and the second idx is assumed to be the end index. In this case n_tags is assumed to include the start and end symbols. """ super(CRF, self).__init__() if idxs is None: self.start_idx = n_tags self.end_idx = n_tags + 1 self.n_tags = n_tags + 2 self.add_ends = True else: self.start_idx, self.end_idx = idxs self.n_tags = n_tags self.add_ends = False self.transitions = nn.Parameter(torch.Tensor(self.n_tags, self.n_tags).zero_()) @staticmethod def _prep_input(input_): ends = torch.Tensor(input_.size()[0], 2).fill_(-1000.).to(input_.device) return torch.cat([input_, ends], dim=1) def neg_log_loss(self, unary, tags): if self.add_ends: unary = CRF._prep_input(unary) viterbi_score = self.forward(unary) gold_score = self.score_sentence(unary, tags) return viterbi_score - gold_score def score_sentence(self, unary, tags): # Gives the score of a provided tag sequence score = torch.autograd.Variable(torch.Tensor([0]).cuda()) tags = torch.cat([torch.LongTensor([self.start_idx]).cuda(), tags]) for i, unary_t in enumerate(unary): score = score + self.transitions[tags[i + 1], tags[i]] + unary_t[tags[i + 1]] score = score + self.transitions[self.end_idx, tags[-1]] return score def forward(self, unary): """Vectorized forward algorithm for CRF layer :param unary: The observations :param transitions: The transitions :param start_idx: The index of the start position :param end_idx: The index of the end position :return: Alphas """ # Do the forward algorithm to compute the partition function init_alphas = torch.Tensor(1, self.n_tags).fill_(-1000.).to(unary.device) # START_TAG has all of the score. init_alphas[0][self.start_idx] = 0. # Wrap in a variable so that we will get automatic backprop alphas = torch.autograd.Variable(init_alphas) # Iterate through the sentence for t, unary_t in enumerate(unary): emit_scores_transpose = unary_t.view(-1, 1) next_tag_var = alphas + emit_scores_transpose + self.transitions scores = vec_log_sum_exp(next_tag_var, 1).transpose(0, 1) alphas = scores terminal_var = alphas + self.transitions[self.end_idx] alpha = log_sum_exp(terminal_var) return alpha def decode(self, unary): if self.add_ends: unary = CRF._prep_input(unary) backpointers = [] inits = torch.Tensor(1, self.n_tags).fill_(-10000.).cuda() inits[0][self.start_idx] = 0 # alphas at step i holds the viterbi variables for step i-1 alphas = torch.autograd.Variable(inits) for unary_t in unary: backpointers_t = [] # holds the backpointers for this step viterbi_t = [] # holds the viterbi variables for this step for tag in range(self.n_tags): next_tag_var = alphas + self.transitions[tag] best_tag_id = argmax(next_tag_var) backpointers_t.append(best_tag_id) viterbi_t.append(next_tag_var[0][best_tag_id]) if PYT_MAJOR_VERSION < 0.4: alphas = (torch.cat(viterbi_t) + unary_t).view(1, -1) else: alphas = (torch.stack(viterbi_t, 0) + unary_t).view(1, -1) backpointers.append(backpointers_t) # Transition to STOP_TAG terminal_var = alphas + self.transitions[self.end_idx] best_tag_id = argmax(terminal_var) path_score = terminal_var[0][best_tag_id] # Follow the back pointers to decode the best path. best_path = [best_tag_id] for backpointers_t in reversed(backpointers): best_tag_id = backpointers_t[best_tag_id] best_path.append(best_tag_id) # Pop off the start tag (we dont want to return that to the caller) start = best_path.pop() assert start == self.start_idx best_path.reverse() return torch.LongTensor(best_path), path_score
py
1a424fa299c9021d844f8f99b0177f7036f1c6c7
import sys, os sys.path.append(os.path.join(os.path.expanduser("~"), "chipfish")) import app as chipfish from glbase_wrapper import location, glload, genelist draw = 'pdf' c = chipfish.app() c.startup(os.path.expanduser("../trk_TEs.txt")) #annot = glload(os.path.expanduser('~/hg38/hg38_ensembl_v95_enst.glb')) #annot = annot.renameKey('name', 'gene_symbol') gllocs = glload('../../te_discovery/te_transcripts/transcript_table_merged.mapped.glb') locs = ['SOX2', 'NANOG', 'SALL4', 'LIN28A', 'LIN28B', 'SALL1', 'POU5F1A', 'DPPA2', 'DPPA3', 'DPPA5A', 'PRDM14', 'JARID2', 'SALL2', 'SALL3', 'TCF3', 'ZFP42', 'C9ORF135', 'ST6GAL1', 'LRP4', 'MSTO1', 'PRODH',# From Pontis et al., 2019 CSC 'ESRRB', 'LIN28A', 'LIN28B', 'PRDM14', 'POU5F1', 'SOX2', 'NANOG', 'NCOR1', 'NCOR2', 'SALL1', 'KLF4', 'SALL1', 'NR5A1', 'NR5A2', 'NR5A3', 'KLF2', 'KLF5', 'LEFTY1', 'LEFTY2', 'FGF4', 'NODAL', # Naive-specific genes; 'ESRRB', 'TFCP2L1', 'ZFP42', 'MT1H', 'DPPA3', 'DPPA4', 'DPPA5', 'ZNF486', 'CR1L', 'DNMT3L', 'ZNF534', # Diffenretiation genes; 'GATA2', 'GATA3', 'GATA4', 'SOX17', 'CER1', # 2C genes 'NR0B1', 'CDX2', 'DUXF3', # Down in naive: 'SFRP1', 'ZIC2', 'KDR', 'OTX2', 'DUSP6', 'SPRY4', 'THY1', 'ID3', 'ZIC5', # MA Gang's possibles: 'HNRNPK', 'DDX1', 'DDX50', 'BRCA2', 'BRCA1', 'TOP1', 'RAP3', 'TRIM25', 'HNRNPU', # Headline genes from Ihry et al., Cell Rep. # Significantly down-regualte POU5F1 P<0.05 'TGFBR2', 'GGCT', 'MAML2', 'POU5F1', 'TGFBR1', 'TMEM107', 'ZNF469', 'SMARCA4', 'PROK2', 'PAQR7', 'MINDY4', # Odd stuff: 'LIN28B-AS1', # Wang Jichang paper, Fig 3a. These ones have HERV spliced into their message 'SCGB3A2', 'NCR1', 'KLKB1', 'IL34', 'PLP1', 'ESRG', 'RPL39L', ] locs = genelist(loadable_list=[{'gene_symbol': k} for k in locs]) ll = locs.map(genelist=gllocs, key='gene_symbol') print(ll) for gene in ll: print(gene['name']) c.draw.setLocation(loc=gene['loc'].expand(len(gene['loc']) / 10)) scale = 1.0 if draw == 'svg': scale = 0.3 c.draw.exportImage("%s/%s_%s.%s" % (draw, gene['name'], gene['transcript_id'], draw), scale=scale, type=draw) # Cannot draw png and svg interleaved for some reason.
py
1a42503dec5e76f554e894030b29dd539c5d713b
""" This project demonstrates NESTED LOOPS (i.e., loops within loops) in the context of PRINTING on the CONSOLE. Authors: David Mutchler, Valerie Galluzzi, Mark Hays, Amanda Stouder, their colleagues and Christina Rogers. """ # DONE: 1. PUT YOUR NAME IN THE ABOVE LINE. def main(): """ Calls the other functions to test them. """ run_test_rectangle_of_stars() run_test_triangle_of_stars() run_test_decreasing_exclamation_marks() run_test_alternating_brackets() run_test_triangle_same_number_in_each_row() run_test_triangle_all_numbers_in_each_row() def run_test_rectangle_of_stars(): """ Tests the rectangle_of_stars function. """ print() print('--------------------------------------------') print('Testing the RECTANGLE_OF_STARS function:') print('--------------------------------------------') print('Test 1 of rectangle_of_stars: (3, 5)') rectangle_of_stars(3, 5) print('Test 2 of rectangle_of_stars: (4, 11)') rectangle_of_stars(4, 11) print('Test 3 of rectangle_of_stars: (6, 2)') rectangle_of_stars(6, 2) def rectangle_of_stars(r, c): """ Prints a rectangle of stars (asterisks), with r rows and c columns. For example, when r = 3 and c = 5: ***** ***** ***** Preconditions: r and c are non-negative integers. """ # ------------------------------------------------------------------ # DONE: 2. Implement and test this function. # Some tests are already written for you (above). # # *** Unless your instructor directs you otherwise, # see the video # nested_loops_in_PRINTING.mp4 # in Preparation for Session 18 # ** NOW ** # and follow along in that video as you do this problem. # (Pause the video when it completes this problem.) # *** # # IMPLEMENTATION RESTRICTION: # ** You may NOT use string multiplication ** # in this or the other problems in this module, as doing so # would defeat the goal of providing practice at loops within loops. # ------------------------------------------------------------------ for k in range (r): for i in range (c): print('*', end = '') print() def run_test_triangle_of_stars(): """ Tests the triangle_of_stars function. """ print() print('-------------------------------------------') print('Testing the TRIANGLE_OF_STARS function:') print('-------------------------------------------') print('Test 1 of triangle_of_stars: (5)') triangle_of_stars(5) print('Test 2 of triangle_of_stars: (1)') triangle_of_stars(1) print('Test 3 of triangle_of_stars: (3)') triangle_of_stars(3) print('Test 4 of triangle_of_stars: (6)') triangle_of_stars(6) def triangle_of_stars(r): """ Prints a triangle of stars (asterisks), with r rows. -- The first row is 1 star, the second is 2 stars, the third is 3 stars, and so forth. For example, when r = 5: * ** *** **** ***** Precondition: r is a non-negative integer. """ # ------------------------------------------------------------------ # DONE: 3. Implement and test this function. # Some tests are already written for you (above). # # *** Unless your instructor directs you otherwise, # see the video # nested_loops_in_PRINTING.mp4 # in Preparation for Session 18 # ** NOW ** # and follow along in that video as you do this problem. # (Continue the video from where you paused it # in the previous problem.) # *** # # IMPLEMENTATION RESTRICTION: # ** You may NOT use string multiplication ** # in this or the other problems in this module, as doing so # would defeat the goal of providing practice at loops within loops. # ------------------------------------------------------------------ for k in range (r): for j in range (k+1): print('*', end = '') print () def run_test_decreasing_exclamation_marks(): """ Tests the decreasing_exclamation_marks function. """ print() print('----------------------------------------------------------') print('Testing the DECREASING_EXCLAMATION_MARKS function:') print('----------------------------------------------------------') print('Test 1 of decreasing_exclamation_marks: (5, 2)') decreasing_exclamation_marks(5, 2) print('Test 2 of decreasing_exclamation_marks: (3, 1)') decreasing_exclamation_marks(3, 1) print('Test 3 of decreasing_exclamation_marks: (4, 4)') decreasing_exclamation_marks(4, 4) print('Test 4 of decreasing_exclamation_marks: (8, 6)') decreasing_exclamation_marks(8, 6) def decreasing_exclamation_marks(m, n): """ Prints exclamation marks: m on the first row, m-1 on the next row, m-2 on the next, etc, until n on the last row. For example, when m = 5 and n = 2: !!!!! !!!! !!! !! Precondition: m and n are positive integers with m >= n. """ # ------------------------------------------------------------------ # DONE: 4. Implement and test this function. # Some tests are already written for you (above). # # IMPLEMENTATION RESTRICTION: # ** You may NOT use string multiplication ** # in this or the other problems in this module, as doing so # would defeat the goal of providing practice at loops within loops. # ------------------------------------------------------------------ for k in range (m-n+1): for i in range (m-k): print ('!', end = '') print() def run_test_alternating_brackets(): """ Tests the alternating_brackets function. """ print() print('----------------------------------------------------------') print('Testing the ALTERNATING_BRACKETS function:') print('----------------------------------------------------------') print('Test 1 of alternating_brackets: (5, 2)') alternating_brackets(5, 2) print('Test 2 of alternating_brackets: (3, 1)') alternating_brackets(3, 1) print('Test 3 of alternating_brackets: (4, 4)') alternating_brackets(4, 4) print('Test 4 of alternating_brackets: (8, 6)') alternating_brackets(8, 6) def alternating_brackets(m, n): """ Prints alternating left/right square brackets: m on the first row, m-1 on the next row, m-2 on the next, etc, until n on the last row. For example, when m = 5 and n = 2: [][][ [][] [][ [] Precondition: m and n are positive integers with m >= n. """ # ------------------------------------------------------------------ # DONE: 5. Implement and test this function. # Some tests are already written for you (above). # # IMPLEMENTATION RESTRICTION: # ** You may NOT use string multiplication ** # in this or the other problems in this module, as doing so # would defeat the goal of providing practice at loops within loops. # ------------------------------------------------------------------ for k in range (m-n+1): for i in range (m-k): if (i)%2 == 0: print ('[', end = '') else: print(']', end = '') print() def run_test_triangle_same_number_in_each_row(): """ Tests the triangle_same_number_in_each_row function. """ print() print('----------------------------------------------------------') print('Testing the TRIANGLE_SAME_NUMBER_IN_EACH_ROW function:') print('----------------------------------------------------------') print('Test 1 of triangle_same_number_in_each_row: (5)') triangle_same_number_in_each_row(5) print('Test 2 of triangle_same_number_in_each_row: (1)') triangle_same_number_in_each_row(1) print('Test 3 of triangle_same_number_in_each_row: (3)') triangle_same_number_in_each_row(3) print('Test 4 of triangle_same_number_in_each_row: (6)') triangle_same_number_in_each_row(6) def triangle_same_number_in_each_row(r): """ Prints a triangle of numbers, with r rows. The first row is 1, the 2nd is 22, the 3rd is 333, etc. For example, when r = 5: 1 22 333 4444 55555 Precondition: r is a non-negative integer. """ # ------------------------------------------------------------------ # DONE: 6. Implement and test this function. # Some tests are already written for you (above). # # IMPLEMENTATION RESTRICTION: # ** You may NOT use string multiplication ** # in this or the other problems in this module, as doing so # would defeat the goal of providing practice at loops within loops. # ------------------------------------------------------------------ for k in range (r): for i in range (k+1): print (k+1, end = '') print() def run_test_triangle_all_numbers_in_each_row(): """ Tests the triangle_all_numbers_in_each_row function. """ print() print('----------------------------------------------------------') print('Testing the TRIANGLE_ALL_NUMBERS_IN_EACH_ROW function:') print('----------------------------------------------------------') print('Test 1 of triangle_all_numbers_in_each_row: (5)') triangle_all_numbers_in_each_row(5) print('Test 2 of triangle_all_numbers_in_each_row: (1)') triangle_all_numbers_in_each_row(1) print('Test 3 of triangle_all_numbers_in_each_row: (3)') triangle_all_numbers_in_each_row(3) print('Test 4 of triangle_all_numbers_in_each_row: (6)') triangle_all_numbers_in_each_row(6) def triangle_all_numbers_in_each_row(r): """ Prints a triangle of numbers, with r rows. The first row is 1, the 2nd is 12, the 3rd is 123, etc. For example, when r = 5: 1 12 123 1234 12345 Precondition: r is a non-negative integer. """ # ------------------------------------------------------------------ # DONE: 7. Implement and test this function. # Some tests are already written for you (above). # # IMPLEMENTATION RESTRICTION: # ** You may NOT use string multiplication ** # in this or the other problems in this module, as doing so # would defeat the goal of providing practice at loops within loops. # ------------------------------------------------------------------ for k in range (r): for i in range (k+1): print (i+1, end = '') print() # ---------------------------------------------------------------------- # Calls main to start the ball rolling. # ---------------------------------------------------------------------- main()
py
1a425075161b233a48b6e9fae9dbe0b8241d84c3
# -*- coding: utf-8 -*- """ Capacity scaling minimum cost flow algorithm. """ __author__ = """ysitu <[email protected]>""" # Copyright (C) 2014 ysitu <[email protected]> # All rights reserved. # BSD license. __all__ = ['capacity_scaling'] from itertools import chain from math import log import networkx as nx from ...utils import BinaryHeap from ...utils import generate_unique_node from ...utils import not_implemented_for from ...utils import arbitrary_element def _detect_unboundedness(R): """Detect infinite-capacity negative cycles. """ s = generate_unique_node() G = nx.DiGraph() G.add_nodes_from(R) # Value simulating infinity. inf = R.graph['inf'] # True infinity. f_inf = float('inf') for u in R: for v, e in R[u].items(): # Compute the minimum weight of infinite-capacity (u, v) edges. w = f_inf for k, e in e.items(): if e['capacity'] == inf: w = min(w, e['weight']) if w != f_inf: G.add_edge(u, v, weight=w) if nx.negative_edge_cycle(G): raise nx.NetworkXUnbounded( 'Negative cost cycle of infinite capacity found. ' 'Min cost flow may be unbounded below.') @not_implemented_for('undirected') def _build_residual_network(G, demand, capacity, weight): """Build a residual network and initialize a zero flow. """ if sum(G.node[u].get(demand, 0) for u in G) != 0: raise nx.NetworkXUnfeasible("Sum of the demands should be 0.") R = nx.MultiDiGraph() R.add_nodes_from((u, {'excess': -G.node[u].get(demand, 0), 'potential': 0}) for u in G) inf = float('inf') # Detect selfloops with infinite capacities and negative weights. for u, v, e in G.selfloop_edges(data=True): if e.get(weight, 0) < 0 and e.get(capacity, inf) == inf: raise nx.NetworkXUnbounded( 'Negative cost cycle of infinite capacity found. ' 'Min cost flow may be unbounded below.') # Extract edges with positive capacities. Self loops excluded. if G.is_multigraph(): edge_list = [(u, v, k, e) for u, v, k, e in G.edges(data=True, keys=True) if u != v and e.get(capacity, inf) > 0] else: edge_list = [(u, v, 0, e) for u, v, e in G.edges(data=True) if u != v and e.get(capacity, inf) > 0] # Simulate infinity with the larger of the sum of absolute node imbalances # the sum of finite edge capacities or any positive value if both sums are # zero. This allows the infinite-capacity edges to be distinguished for # unboundedness detection and directly participate in residual capacity # calculation. inf = max(sum(abs(R.node[u]['excess']) for u in R), 2 * sum(e[capacity] for u, v, k, e in edge_list if capacity in e and e[capacity] != inf)) or 1 for u, v, k, e in edge_list: r = min(e.get(capacity, inf), inf) w = e.get(weight, 0) # Add both (u, v) and (v, u) into the residual network marked with the # original key. (key[1] == True) indicates the (u, v) is in the # original network. R.add_edge(u, v, key=(k, True), capacity=r, weight=w, flow=0) R.add_edge(v, u, key=(k, False), capacity=0, weight=-w, flow=0) # Record the value simulating infinity. R.graph['inf'] = inf _detect_unboundedness(R) return R def _build_flow_dict(G, R, capacity, weight): """Build a flow dictionary from a residual network. """ inf = float('inf') flow_dict = {} if G.is_multigraph(): for u in G: flow_dict[u] = {} for v, es in G[u].items(): flow_dict[u][v] = dict( # Always saturate negative selfloops. (k, (0 if (u != v or e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0) else e[capacity])) for k, e in es.items()) for v, es in R[u].items(): if v in flow_dict[u]: flow_dict[u][v].update((k[0], e['flow']) for k, e in es.items() if e['flow'] > 0) else: for u in G: flow_dict[u] = dict( # Always saturate negative selfloops. (v, (0 if (u != v or e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0) else e[capacity])) for v, e in G[u].items()) flow_dict[u].update((v, e['flow']) for v, es in R[u].items() for e in es.values() if e['flow'] > 0) return flow_dict def capacity_scaling(G, demand='demand', capacity='capacity', weight='weight', heap=BinaryHeap): r"""Find a minimum cost flow satisfying all demands in digraph G. This is a capacity scaling successive shortest augmenting path algorithm. G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node. Parameters ---------- G : NetworkX graph DiGraph or MultiDiGraph on which a minimum cost flow satisfying all demands is to be found. demand : string Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'. capacity : string Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. weight : string Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. heap : class Type of heap to be used in the algorithm. It should be a subclass of :class:`MinHeap` or implement a compatible interface. If a stock heap implementation is to be used, :class:`BinaryHeap` is recommeded over :class:`PairingHeap` for Python implementations without optimized attribute accesses (e.g., CPython) despite a slower asymptotic running time. For Python implementations with optimized attribute accesses (e.g., PyPy), :class:`PairingHeap` provides better performance. Default value: :class:`BinaryHeap`. Returns ------- flowCost : integer Cost of a minimum cost flow satisfying all demands. flowDict : dictionary If G is a digraph, a dict-of-dicts keyed by nodes such that flowDict[u][v] is the flow on edge (u, v). If G is a MultiDiGraph, a dict-of-dicts-of-dicts keyed by nodes so that flowDict[u][v][key] is the flow on edge (u, v, key). Raises ------ NetworkXError This exception is raised if the input graph is not directed, not connected. NetworkXUnfeasible This exception is raised in the following situations: * The sum of the demands is not zero. Then, there is no flow satisfying all demands. * There is no flow satisfying all demand. NetworkXUnbounded This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below. Notes ----- This algorithm does not work if edge weights are floating-point numbers. See also -------- :meth:`network_simplex` Examples -------- A simple example of a min cost flow problem. >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_node('a', demand = -5) >>> G.add_node('d', demand = 5) >>> G.add_edge('a', 'b', weight = 3, capacity = 4) >>> G.add_edge('a', 'c', weight = 6, capacity = 10) >>> G.add_edge('b', 'd', weight = 1, capacity = 9) >>> G.add_edge('c', 'd', weight = 2, capacity = 5) >>> flowCost, flowDict = nx.capacity_scaling(G) >>> flowCost 24 >>> flowDict # doctest: +SKIP {'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}} It is possible to change the name of the attributes used for the algorithm. >>> G = nx.DiGraph() >>> G.add_node('p', spam = -4) >>> G.add_node('q', spam = 2) >>> G.add_node('a', spam = -2) >>> G.add_node('d', spam = -1) >>> G.add_node('t', spam = 2) >>> G.add_node('w', spam = 3) >>> G.add_edge('p', 'q', cost = 7, vacancies = 5) >>> G.add_edge('p', 'a', cost = 1, vacancies = 4) >>> G.add_edge('q', 'd', cost = 2, vacancies = 3) >>> G.add_edge('t', 'q', cost = 1, vacancies = 2) >>> G.add_edge('a', 't', cost = 2, vacancies = 4) >>> G.add_edge('d', 'w', cost = 3, vacancies = 4) >>> G.add_edge('t', 'w', cost = 4, vacancies = 1) >>> flowCost, flowDict = nx.capacity_scaling(G, demand = 'spam', ... capacity = 'vacancies', ... weight = 'cost') >>> flowCost 37 >>> flowDict # doctest: +SKIP {'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, 'w': 1}, 'w': {}} """ R = _build_residual_network(G, demand, capacity, weight) inf = float('inf') # Account cost of negative selfloops. flow_cost = sum( 0 if e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0 else e[capacity] * e[weight] for u, v, e in G.selfloop_edges(data=True)) # Determine the maxmimum edge capacity. wmax = max(chain([-inf], (e['capacity'] for u, v, e in R.edges(data=True)))) if wmax == -inf: # Residual network has no edges. return flow_cost, _build_flow_dict(G, R, capacity, weight) R_node = R.node R_succ = R.succ delta = 2 ** int(log(wmax, 2)) while delta >= 1: # Saturate Δ-residual edges with negative reduced costs to achieve # Δ-optimality. for u in R: p_u = R_node[u]['potential'] for v, es in R_succ[u].items(): for k, e in es.items(): flow = e['capacity'] - e['flow'] if e['weight'] - p_u + R_node[v]['potential'] < 0: flow = e['capacity'] - e['flow'] if flow >= delta: e['flow'] += flow R_succ[v][u][(k[0], not k[1])]['flow'] -= flow R_node[u]['excess'] -= flow R_node[v]['excess'] += flow # Determine the Δ-active nodes. S = set() T = set() S_add = S.add S_remove = S.remove T_add = T.add T_remove = T.remove for u in R: excess = R_node[u]['excess'] if excess >= delta: S_add(u) elif excess <= -delta: T_add(u) # Repeatedly augment flow from S to T along shortest paths until # Δ-feasibility is achieved. while S and T: s = arbitrary_element(S) t = None # Search for a shortest path in terms of reduce costs from s to # any t in T in the Δ-residual network. d = {} pred = {s: None} h = heap() h_insert = h.insert h_get = h.get h_insert(s, 0) while h: u, d_u = h.pop() d[u] = d_u if u in T: # Path found. t = u break p_u = R_node[u]['potential'] for v, es in R_succ[u].items(): if v in d: continue wmin = inf # Find the minimum-weighted (u, v) Δ-residual edge. for k, e in es.items(): if e['capacity'] - e['flow'] >= delta: w = e['weight'] if w < wmin: wmin = w kmin = k emin = e if wmin == inf: continue # Update the distance label of v. d_v = d_u + wmin - p_u + R_node[v]['potential'] if h_insert(v, d_v): pred[v] = (u, kmin, emin) if t is not None: # Augment Δ units of flow from s to t. while u != s: v = u u, k, e = pred[v] e['flow'] += delta R_succ[v][u][(k[0], not k[1])]['flow'] -= delta # Account node excess and deficit. R_node[s]['excess'] -= delta R_node[t]['excess'] += delta if R_node[s]['excess'] < delta: S_remove(s) if R_node[t]['excess'] > -delta: T_remove(t) # Update node potentials. d_t = d[t] for u, d_u in d.items(): R_node[u]['potential'] -= d_u - d_t else: # Path not found. S_remove(s) delta //= 2 if any(R.node[u]['excess'] != 0 for u in R): raise nx.NetworkXUnfeasible('No flow satisfying all demands.') # Calculate the flow cost. for u in R: for v, es in R_succ[u].items(): for e in es.values(): flow = e['flow'] if flow > 0: flow_cost += flow * e['weight'] return flow_cost, _build_flow_dict(G, R, capacity, weight)
py
1a4250769da369e190f1787309b6c5d5c1934a09
# -*- coding: utf-8 -*- from nose.plugins.attrib import attr from unittest import TestCase import os class BookTestCase(TestCase): @attr("skip") def test_scaffold(self): assert False # create temp directory directory = "../var/tests/book" if not os.path.exists(directory): os.makedirs(directory) # unpack the pattern with some settings os.system("cd ../var/tests/book && ../../../bin/diamond scaffold --no-interactive analysis") # assert assert os.stat("../var/tests/book/Makefile") # run the makefile os.system("cd ../var/tests/book && make") # test for certain files to be built assert os.stat("../var/tests/book/.build/mybook.pdf")
py
1a4250b698a62e761521b4e9cb9445bff89b2dc4
import numpy as np def levenshtein_distance(string1, string2): m, n = len(string1), len(string2) matrix = np.zeros((m + 1, n + 1), dtype=np.int32) # source prefixes can be transformed into empty string by # dropping all characters for i in range(m + 1): matrix[i, 0] = i # target prefixes can be reached from empty source prefix # by inserting every character for j in range(n + 1): matrix[0, j] = j for j in range(n + 1): for i in range(m + 1): if string1[i - 1] == string2[j - 1]: substitution_cost = 0 else: substitution_cost = 1 matrix[i, j] = min(matrix[i - 1, j] + 1, # deletion matrix[i, j - 1] + 1, # insertion matrix[i - 1, j - 1] + substitution_cost) # substitution return matrix[m, n]
py
1a425153e14d18ddbe90fa4c3d8aef303b3db3f3
import pytest from spytest import st, tgapi, SpyTestDict import apis.routing.ip as ipapi import apis.routing.bgp as bgpapi import apis.switching.vlan as vlanapi import apis.system.logging as slog_obj import apis.switching.portchannel as poapi import BGP.bgplib as bgplib import utilities.common as utils vtysh_cli_type = "vtysh" @pytest.fixture(scope="module", autouse=True) def bgp_module_hooks(request): global bgp_cli_type st.ensure_min_topology('D1D2:1', 'D1T1:1', 'D2T1:1') bgplib.init_resource_data(st.get_testbed_vars()) #bgp_cli_type = st.get_ui_type() bgp_cli_type = "click" if bgp_cli_type == 'click': bgp_cli_type = 'vtysh' bgp_pre_config() yield bgp_pre_config_cleanup() # bgp module level pre config function def bgp_pre_config(): global topo st.banner("Running with {} CLI RUN".format(bgp_cli_type)) st.banner("BGP MODULE CONFIG - START") ipapi.clear_ip_configuration(st.get_dut_names(), family='all', thread=True) vlanapi.clear_vlan_configuration(st.get_dut_names()) poapi.clear_portchannel_configuration(st.get_dut_names()) if not st.is_community_build(): # loopback config bgplib.l3tc_vrfipv4v6_address_leafspine_loopback_config_unconfig(config='yes', config_type='all') # TG Configuration bgplib.l3tc_vrfipv4v6_address_leafspine_tg_config_unconfig(config='yes', config_type='all') bgplib.l3tc_vrfipv4v6_address_leafspine_tg_bgp_config(config='yes', config_type='all') st.banner("BGP MODULE CONFIG - END") # bgp module level pre config cleanup function def bgp_pre_config_cleanup(): st.banner("BGP MODULE CONFIG CLEANUP - START") if not st.is_community_build(): # loopback unconfig bgplib.l3tc_vrfipv4v6_address_leafspine_loopback_config_unconfig(config='no') # TG uconfiguration bgplib.l3tc_vrfipv4v6_address_leafspine_tg_config_unconfig(config='no') bgplib.l3tc_vrfipv4v6_address_leafspine_tg_bgp_config(config='no') ipapi.clear_ip_configuration(st.get_dut_names(), family='all', thread=True) vlanapi.clear_vlan_configuration(st.get_dut_names()) poapi.clear_portchannel_configuration(st.get_dut_names()) st.banner("BGP MODULE CONFIG CLEANUP - END") @pytest.fixture(scope="function") def bgp_func_hooks(request): yield """ BGP common test cases class - START add common bgp test casesfunctions (common to TestBGPRif or other non rif test classes pick specific cases in derived classes this is a abstract class with test cases and test should be run from this class only it has to be run from derived classes. **DONTs** *dont* name member functions of TestBGPCommon starting test.have test member functions in derived class only *dont* add fixtures in base class. add fixtures only in derived class. """ class TestBGPCommon: def ft_bgp_clear(self): """ Validate clear ip bgp & sonic-clear functionality """ st.log("Clearing bgp neighbors from sonic cli") [out, exceptions] = utils.exec_foreach(bgplib.fast_start, topo.dut_list, bgpapi.clear_ip_bgp) st.log([out, exceptions]) if not utils.poll_wait(bgplib.l3tc_vrfipv4v6_address_leafspine_bgp_check, 20, config_type='all'): st.error("Neighbour is failed to Establish between Spine - Leaf") st.report_fail('test_case_failed') st.log("Clearing bgp neighbors from FRR cli") [out, exceptions] = utils.exec_foreach(bgplib.fast_start, topo.dut_list, bgpapi.clear_bgp_vtysh) st.log([out, exceptions]) if not utils.poll_wait(bgplib.l3tc_vrfipv4v6_address_leafspine_bgp_check, 20, config_type='all'): st.error("Neighbour is failed to Establish between Spine - Leaf") st.report_fail('test_case_failed') st.report_pass("test_case_passed") def ft_bgp_peer_traffic_check(self): """ Traffic validation between Leaf Routers. """ TG_D1 = topo.tg_dut_list_name[0] TG_D2 = topo.tg_dut_list_name[1] tg_ob = topo['T1{}P1_tg_obj'.format(TG_D1)] tg_ob.tg_traffic_control(port_handle=topo["T1{}P1_ipv4_tg_ph".format(TG_D1)], action='clear_stats') tg_ob.tg_traffic_control(port_handle=topo["T1{}P1_ipv4_tg_ph".format(TG_D2)], action='clear_stats') bgp_handle = topo['T1{}P1_ipv4_tg_bh'.format(TG_D1)] tc_fail_flag = 0 spine_as = int(bgplib.data['spine_as']) st.log("Advertising Routes from one of the Leaf Router") bgp_route = tg_ob.tg_emulation_bgp_route_config(handle=bgp_handle['handle'], mode='add', num_routes='100', prefix='121.1.1.0', as_path='as_seq:1') bgp_ctrl = tg_ob.tg_emulation_bgp_control(handle=bgp_handle['handle'], mode='start') st.log("Check for route count in neighbour, before update delay timer configuration") bgp_summary_spine_before_timer = bgpapi.show_bgp_ipv4_summary(topo.dut_list[1]) rib_entries_before_update_timer = bgp_summary_spine_before_timer[0]['ribentries'] st.log('RIB entries before update delay configuration : {}'.format(rib_entries_before_update_timer)) st.log("Configure Update delay timer on one of the Leaf router") bgpapi.create_bgp_update_delay(topo.dut_list[0], spine_as, '60',cli_type=bgp_cli_type) st.log("Do clear ip bgp to validate the update delay timer") bgpapi.clear_bgp_vtysh(topo.dut_list[0], address_family="ipv4") if not utils.poll_wait(bgplib.l3tc_vrfipv4v6_address_leafspine_bgp_check, 20, config_type='ipv4'): st.error("Neighbour is failed to Establish between Spine - Leaf after clear ip bgp") tc_fail_flag = 1 bgp_summary_spine_before_timer = bgpapi.show_bgp_ipv4_summary(topo.dut_list[1]) rib_entries_before_update_timer = bgp_summary_spine_before_timer[0]['ribentries'] st.log('RIB entries before update delay timer expiry : {}'.format(rib_entries_before_update_timer)) if int(rib_entries_before_update_timer) >= 100: st.error('Routes advertised to peer DUT, proir to update delay timer expiry') tc_fail_flag = 1 # Sleep for update delay timer and the check the route count in neighbour st.wait(60) bgp_summary_spine_after_update_timer = bgpapi.show_bgp_ipv4_summary(topo.dut_list[1]) rib_entries_after_update_timer = bgp_summary_spine_after_update_timer[0]['ribentries'] st.log('RIB Entries after update delay timer expiry : {}'.format(rib_entries_after_update_timer)) if int(rib_entries_after_update_timer) < 100: st.error('Routes are not advertised to peer DUT, even after the update delay timer expiry') tc_fail_flag = 1 st.log("Initiating the Ipv4 traffic for those Routes from another Leaf Router") src_handle = 'handle' if tg_ob.tg_type == 'ixia': src_handle = 'ipv4_handle' tr1 = tg_ob.tg_traffic_config(port_handle=topo['T1{}P1_ipv4_tg_ph'.format(TG_D2)], emulation_src_handle=topo['T1{}P1_ipv4_tg_ih'.format(TG_D2)][src_handle], emulation_dst_handle=bgp_route['handle'], circuit_endpoint_type='ipv4', mode='create', transmit_mode='single_burst', pkts_per_burst='2000', length_mode='fixed', rate_pps=1000) stream_id1 = tr1['stream_id'] tg_ob.tg_traffic_control(action='run', handle=stream_id1) tg_ob.tg_traffic_control(action='stop', port_handle=topo['T1{}P1_ipv4_tg_ph'.format(TG_D2)]) st.wait(5) tg1_stats = tgapi.get_traffic_stats(tg_ob, port_handle=topo["T1{}P1_ipv4_tg_ph".format(TG_D1)]) tg2_stats = tgapi.get_traffic_stats(tg_ob, port_handle=topo["T1{}P1_ipv4_tg_ph".format(TG_D2)]) if not (int(tg2_stats.tx.total_packets) and int(tg1_stats.rx.total_packets)): st.error('Recieved ZERO stats.') tc_fail_flag = 1 else: percent_rx = float(int(tg1_stats.rx.total_packets) - int(tg2_stats.tx.total_packets)) / int( tg2_stats.tx.total_packets) * 100 st.log('tg1_stats.rx.total_packets : {}'.format(tg1_stats.rx.total_packets)) st.log('tg2_stats.tx.total_packets : {}'.format(tg2_stats.tx.total_packets)) st.log('percent_rx : {}'.format(percent_rx)) if int(tg1_stats.rx.total_packets) < int(tg2_stats.tx.total_packets)*0.95: tc_fail_flag = 1 tg_ob.tg_emulation_bgp_control(handle=bgp_handle['handle'], mode='stop') bgpapi.create_bgp_update_delay(topo.dut_list[0], spine_as, '0', cli_type=bgp_cli_type) if tc_fail_flag: st.report_fail("traffic_verification_failed") st.report_pass('test_case_passed') def ft_bgp_graceful_restart_and_aware_routers(self): """ Verify the BGP peering between a graceful restart capable and graceful restart aware routers. """ st.banner("Verify the BGP peering between a graceful restart capable and graceful restart aware routers.") # Getting topo info between an spine and leaf info = SpyTestDict() info = bgplib.get_tg_topology_leafspine_bgp(dut_type = 'spine-leaf', max_tg_links= '0', nodes='2') # NOTE: D1 is spine and D2 is leaf by default leaf_name = info['D2'] spine_name = info['D1'] # Configure graceful restart capability on the Leaf router bgpapi.config_bgp_graceful_restart(leaf_name, local_asn=info['D2_as'], user_command='preserve-fw-state', config='add', cli_type=bgp_cli_type) # Verify bgp neighbors result = bgpapi.verify_bgp_summary(leaf_name, family='ipv4', neighbor=info['D1D2P1_ipv4'], state='Established') if not result: bgplib.show_bgp_neighbors([leaf_name, spine_name], af='ipv4') # Delete the graceful restart capability bgpapi.config_bgp_graceful_restart(leaf_name, local_asn=info['D2_as'], user_command='preserve-fw-state', config='delete', cli_type=bgp_cli_type) if result: st.log("BGP adjacency verified between graceful restart capable and aware router") st.report_pass("test_case_passed") else: st.log("Failed to form BGP peering between graceful restart capable and aware router") st.report_fail("bgp_ip_peer_establish_fail", info['D1D2P1_ipv4']) def ft_bgp_ipv4_no_route_aggregation_for_exact_prefix_match(self): """ Verify that when the 'aggregate-address' command creates a summary address, incoming networks that exactly match that prefix are not aggregated. """ st.banner("Verify that when the 'aggregate-address' command creates a summary address, " "incoming networks that exactly match that prefix are not aggregated.") # Getting topo info between an spine and leaf aggr_route = "122.1.1.0/24" info = SpyTestDict() info = bgplib.get_tg_topology_leafspine_bgp(dut_type='spine-leaf', max_tg_links='1', nodes='2') # NOTE: D1 is spine and D2 is leaf by default leaf_name = info['D2'] spine_name = info['D1'] TG_D2 = 'D2' # Verify bgp neighbors between leaf and Tg result = bgpapi.verify_bgp_summary(leaf_name, family='ipv4', neighbor=info['T1D2P1_ipv4'], state='Established') if not result: bgplib.show_bgp_neighbors([leaf_name, spine_name], af='ipv4') st.report_fail("test_case_failed") # Configure the route aggregation on the Leaf router bgpapi.create_bgp_aggregate_address(leaf_name, local_asn=info['D2_as'], address_range=aggr_route, family="ipv4", config="add", cli_type=bgp_cli_type) tg_ob = info['T1{}P1_tg_obj'.format(TG_D2)] bgp_handle = info['T1{}P1_ipv4_tg_bh'.format(TG_D2)] st.log("Advertising Routes from the Leaf Router") bgp_route = tg_ob.tg_emulation_bgp_route_config(handle=bgp_handle['handle'], mode='add', num_routes='4', prefix='122.1.1.0', as_path='as_seq:1') st.log("BGPROUTE: "+str(bgp_route)) st.log("Advertise those routes from Ixia") ctrl1=tg_ob.tg_bgp_routes_control(handle=bgp_handle['handle'], route_handle=bgp_route['handle'], mode='readvertise') st.log("TR_CTRL: "+str(ctrl1)) st.wait(5) # Verify the prefix on spine entries = bgpapi.get_ip_bgp_route(spine_name, family="ipv4", network=aggr_route) if not entries: bgpapi.create_bgp_aggregate_address(leaf_name, local_asn=info['D2_as'], address_range=aggr_route, family="ipv4", config="delete", cli_type=bgp_cli_type) st.report_fail("bgp_route_info", aggr_route, "not found") AS_PATH_STRING = str(entries[0]['as_path']) asn = AS_PATH_STRING.split(" ") # If the route is aggregated the as_path will have only the peer-asn if not the whole as_path if not int(asn[0]) == info['D2_as'] and len(asn) > 1: bgpapi.create_bgp_aggregate_address(leaf_name, local_asn=info['D2_as'], address_range=aggr_route, family="ipv4", config="delete", cli_type=bgp_cli_type) st.report_fail("bgp_aggregation_pass", aggr_route) bgpapi.create_bgp_aggregate_address(leaf_name, local_asn=info['D2_as'], address_range=aggr_route, family="ipv4", config="delete", cli_type=bgp_cli_type) bgp_route1 = tg_ob.tg_emulation_bgp_route_config(handle=bgp_handle['handle'], mode='remove', num_routes='4', prefix='122.1.1.0', as_path='as_seq:1') st.report_pass("test_case_passed") def ft_bgp_ipv4_route_aggregation_atomic_aggregate_without_as_set(self): """ Verify that the AGGREGATOR and ATOMIC AGGREGATE attribute is included when an AS_SET is not configured in aggregation. """ st.banner("Verify that the AGGREGATOR and ATOMIC AGGREGATE attribute is included when an AS_SET " "is not configured in aggregation.") aggr_route = "123.1.0.0/16" info = SpyTestDict() info = bgplib.get_tg_topology_leafspine_bgp(dut_type = 'spine-leaf', max_tg_links='1', nodes='2') # NOTE: D1 is spine and D2 is leaf by default leaf_name = info['D2'] spine_name = info['D1'] TG_D2 = 'D2' # Verify bgp neighbors between leaf and Tg result = bgpapi.verify_bgp_summary(leaf_name, family='ipv4', neighbor=info['T1D2P1_ipv4'], state='Established') if not result: bgplib.show_bgp_neighbors([leaf_name, spine_name], af='ipv4') st.report_fail("test_case_failed") # Configure the route aggregation on the Leaf router bgpapi.create_bgp_aggregate_address(leaf_name, local_asn=info['D2_as'], address_range=aggr_route, summary="summary-only", family="ipv4", config="add", cli_type=bgp_cli_type) st.log(" clear the syslog file") slog_obj.clear_logging(spine_name) # Enable zebra logs bgpapi.bgp_debug_config(spine_name, message="updates", prefix=aggr_route) string = "bgp#supervisord:" tg_ob=info['T1{}P1_tg_obj'.format(TG_D2)] bgp_handle = info['T1{}P1_ipv4_tg_bh'.format(TG_D2)] st.log("Configure routes to be advertised from Ixia") bgp_route = tg_ob.tg_emulation_bgp_route_config(handle=bgp_handle['handle'], mode='add', num_routes='4', prefix='123.1.1.0', as_path='as_seq:1') st.log("Advertise those routes from Ixia") ctrl1=tg_ob.tg_bgp_routes_control(handle=bgp_handle['handle'], route_handle=bgp_route['handle'], mode='readvertise') st.log("TR_CTRL: "+str(ctrl1)) st.wait(5) st.log("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&") st.log(slog_obj.show_logging(spine_name, lines=200)) st.log("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&") st.log("Verify logs on spine to check if aggregator and atomic ") log_msg = slog_obj.get_logging_count(spine_name, filter_list=['{}'.format(string), 'atomic-aggregate', 'aggregated by {}'.format(info['D2_as']), 'path {}'.format(info['D2_as'])]) st.log("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&") st.log(log_msg) st.log("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&") bgpapi.create_bgp_aggregate_address(leaf_name, local_asn=info['D2_as'], address_range=aggr_route, summary="summary-only", family="ipv4", config="delete", cli_type=bgp_cli_type) bgp_route1 = tg_ob.tg_emulation_bgp_route_config(handle=bgp_handle['handle'], mode='remove', num_routes='4', prefix='123.1.1.0', as_path='as_seq:1') if not log_msg: st.report_fail("bgp_aggregation_fail", aggr_route) st.report_pass("test_case_passed") def ft_bgp_ipv6_route_aggregation_with_as_set(self): """ Verify that aggregation of ipv6 prefixes occurs correctly with as-set keyword """ st.banner("Verify that aggregation of ipv6 prefixes occurs correctly with as-set keyword") aggr_route = "6002:1::0/64" info = SpyTestDict() info = bgplib.get_tg_topology_leafspine_bgp(dut_type = 'spine-leaf', max_tg_links= '1', nodes='2') # NOTE: D1 is spine and D2 is leaf by default leaf_name = info['D2'] spine_name = info['D1'] TG_D2 = 'D2' # Configure the route aggregation on the Leaf router bgpapi.create_bgp_aggregate_address(leaf_name, local_asn=info['D2_as'], address_range=aggr_route, summary="summary-only", as_set="as-set", family="ipv6", config="add", cli_type=bgp_cli_type) tg_ob=info['T1{}P1_tg_obj'.format(TG_D2)] bgp_handle = info['T1{}P1_ipv6_tg_bh'.format(TG_D2)] # Starting the BGP device. bgp_ctrl=tg_ob.tg_emulation_bgp_control(handle=bgp_handle['handle'], mode='start') st.log("BGPCTRL: "+str(bgp_ctrl)) # Verified at neighbor. # Verify bgp neighbors between leaf and Tg result = bgpapi.verify_bgp_summary(leaf_name, family='ipv6', neighbor=info['T1D2P1_ipv6'], state='Established') if not result: bgplib.show_bgp_neighbors([leaf_name, spine_name], af='ipv6') st.report_fail("test_case_failed") st.log("BGP neighbors established.") st.log("Advertising Routes from the Leaf Router") bgp_route_ipv6 = tg_ob.tg_emulation_bgp_route_config(handle=bgp_handle['handle'], mode='add', ip_version='6', num_routes='4', prefix='6002:1::0', as_path='as_seq:1') st.log("BGPROUTE: "+str(bgp_route_ipv6)) bgp_ctrl = tg_ob.tg_emulation_bgp_control(handle=bgp_handle['handle'], mode='start') ctrl1=tg_ob.tg_bgp_routes_control(handle=bgp_handle['handle'], route_handle=bgp_route_ipv6['handle'], mode='readvertise') st.log("TR_CTRL: "+str(ctrl1)) st.wait(10) # Verify the prefix on spine st.log("Verify the prefix on spine") entries = bgpapi.get_ip_bgp_route(spine_name, family="ipv6", network="6002:1::/64") if not entries: bgpapi.create_bgp_aggregate_address(leaf_name, local_asn=info['D2_as'], address_range=aggr_route, summary="summary-only", as_set="as-set", family="ipv6", config="delete", cli_type=bgp_cli_type) st.report_fail("bgp_route_info", aggr_route, "not found") AS_PATH_STRING = str(entries[0]['as_path']) asn = AS_PATH_STRING.split(" ") # If the route is aggregated the as_path will have the whole as_path because of as-set configuration if not int(asn[0]) == info['D2_as'] and len(asn) > 1: bgpapi.create_bgp_aggregate_address(leaf_name, local_asn=info['D2_as'], address_range=aggr_route, summary="summary-only", as_set="as-set", family="ipv6", config="delete", cli_type=bgp_cli_type) st.report_fail("bgp_aggregation_fail", aggr_route) bgpapi.create_bgp_aggregate_address(leaf_name, local_asn=info['D2_as'], address_range=aggr_route, summary="summary-only", as_set="as-set", family="ipv6", config="delete", cli_type=bgp_cli_type) bgp_route_ipv6_rem = tg_ob.tg_emulation_bgp_route_config(handle=bgp_handle['handle'], mode='remove', ip_version='6', num_routes='4', prefix='6002:1::0', as_path='as_seq:1') st.report_pass("test_case_passed") def ft_bgp_route_aggregation_4byteASN(self): """ Validate AS4_Aggregate attribute w.r.to the BGP 4-byte ASN Feature """ aggr_route = "151.1.0.0/16" info = SpyTestDict() info = bgplib.get_tg_topology_leafspine_bgp(dut_type='spine-leaf', max_tg_links='1', nodes='2') # NOTE: D1 is spine and D2 is leaf by default leaf_name = info['D2'] spine_name = info['D1'] TG_D2 = 'D2' # Verify bgp neighbors between leaf and Tg if not utils.poll_wait(bgpapi.verify_bgp_summary, 30, leaf_name, family='ipv4', neighbor=info['T1D2P1_ipv4'], state='Established'): bgplib.show_bgp_neighbors([leaf_name, spine_name], af='ipv4') st.error("Neighbour is failed to Establish between Leaf - TG") st.report_fail('test_case_failed') # Configure the route aggregation on the Leaf router bgpapi.create_bgp_aggregate_address(leaf_name, local_asn=info['D2_as'], address_range=aggr_route, summary="summary-only", as_set="as-set", family="ipv4", config="add", cli_type=bgp_cli_type) tg_ob=info['T1{}P1_tg_obj'.format(TG_D2)] bgp_handle = info['T1{}P1_ipv4_tg_bh'.format(TG_D2)] st.log("Advertising Routes from the Leaf Router") bgp_route = tg_ob.tg_emulation_bgp_route_config(handle=bgp_handle['handle'], mode='add', num_routes='4', prefix='151.1.1.0', as_path='as_seq:1') st.log("Advertise those routes from Ixia") ctrl1=tg_ob.tg_bgp_routes_control(handle=bgp_handle['handle'], route_handle=bgp_route['handle'], mode='readvertise') st.log("TR_CTRL: "+str(ctrl1)) st.wait(10) # Verify the prefix on spine entries = bgpapi.get_ip_bgp_route(spine_name, family="ipv4", network=aggr_route) if not entries: bgpapi.create_bgp_aggregate_address(leaf_name, local_asn=info['D2_as'], address_range=aggr_route, summary="summary-only", as_set="as-set", family="ipv4", config="delete", cli_type=bgp_cli_type) st.report_fail("bgp_route_info", aggr_route, "not found") AS_PATH_STRING = str(entries[0]['as_path']) asn = AS_PATH_STRING.split(" ") # Since as-set is set, as-path will have the whole path for the aggregated route including the 4-byte AS. if not int(asn[0]) == info['D2_as'] and len(asn)>1: bgpapi.create_bgp_aggregate_address(leaf_name, local_asn=info['D2_as'], address_range=aggr_route, summary="summary-only", as_set="as-set", family="ipv4", config="delete", cli_type=bgp_cli_type) st.report_fail("bgp_aggregation_fail", aggr_route) bgpapi.create_bgp_aggregate_address(leaf_name, local_asn=info['D2_as'], address_range=aggr_route, summary="summary-only", as_set="as-set", family="ipv4", config="delete", cli_type=bgp_cli_type) st.report_pass("test_case_passed") """ BGP common test cases class - END """ """ BGP Neighbor over regular router interface fixture, class and test cases - START """ def bgp_rif_pre_config(): global topo st.banner("BGP RIF CLASS CONFIG - START") # underlay config bgplib.l3tc_underlay_config_unconfig(config='yes', config_type='phy') bgplib.l3tc_vrfipv4v6_address_leafspine_config_unconfig(config='yes', config_type='all') # Ping Verification if not bgplib.l3tc_vrfipv4v6_address_leafspine_ping_test(config_type='all', ping_count=3): st.error("Ping failed in between Spine - Leaf") st.report_fail('test_case_failed') bgplib.l3tc_vrfipv4v6_address_leafspine_bgp_config(config='yes') bgplib.l3tc_vrfipv4v6_address_leafspine_tg_bgp_config(config='yes', config_type='all', class_reconfig='Yes') st.wait(10) # BGP Neighbour Verification if not utils.poll_wait(bgplib.l3tc_vrfipv4v6_address_leafspine_bgp_check, 10, config_type='all'): st.error("Neighbour is failed to Establish between Spine - Leaf") st.report_fail('test_case_failed') st.log("Getting all topology info related to connectivity / TG and other parameters between duts") topo = bgplib.get_leaf_spine_topology_info() st.banner("BGP RIF CLASS CONFIG - END") def bgp_rif_pre_config_cleanup(): st.banner("BGP RIF CLASS CONFIG CLEANUP - START") bgplib.l3tc_vrfipv4v6_address_leafspine_bgp_config(config='no') bgplib.l3tc_vrfipv4v6_address_leafspine_config_unconfig(config='no') # cleanup underlay config bgplib.l3tc_underlay_config_unconfig(config='no', config_type='phy') st.banner("BGP RIF CLASS CONFIG CLEANUP - END") @pytest.fixture(scope='class') def bgp_rif_class_hook(request): bgp_rif_pre_config() yield bgp_rif_pre_config_cleanup() # TestBGPRif class @pytest.mark.usefixtures('bgp_rif_class_hook') class TestBGPRif(TestBGPCommon): @pytest.mark.bgp_ft @pytest.mark.community @pytest.mark.community_pass def test_ft_bgp_v6_link_local_bgp(self): """ Verify that BGP peer session is established with v6 link local address """ # Getting topo info between an spine and leaf info = SpyTestDict() info = bgplib.get_tg_topology_leafspine_bgp(dut_type='spine-leaf', max_tg_links='0', nodes='2') # NOTE: D1 is spine and D2 is leaf by default leaf_name = info['D2'] spine_name = info['D1'] result = bgpapi.create_bgp_neighbor_interface(leaf_name, info['D2_as'], info['D2D1P1'], info['D1_as'], 'ipv6', cli_type=bgp_cli_type) if not result: st.error("Failed to enable BGP on interface {}".format(info['D2D1P1'])) st.report_fail('test_case_failed') result = bgpapi.create_bgp_neighbor_interface(spine_name, info['D1_as'], info['D1D2P1'], info['D2_as'], 'ipv6', cli_type=bgp_cli_type) if not result: # Clear the previous config bgpapi.create_bgp_neighbor_interface(leaf_name, info['D2_as'], info['D2D1P1'], info['D1_as'], 'ipv6', 'no', cli_type=bgp_cli_type) st.error("Failed to enable BGP on interface {}".format(info['D1D2P1'])) st.report_fail('test_case_failed') # Verify bgp session on interface if not utils.poll_wait(bgpapi.verify_bgp_summary, 130, leaf_name, family='ipv6', neighbor=info['D2D1P1'], state='Established'): # show neighbors for debug in case of failure and Clear all config utils.exec_all(True, [[bgpapi.show_bgp_ipv6_neighbor_vtysh, leaf_name], [bgpapi.show_bgp_ipv6_neighbor_vtysh, spine_name]]) bgpapi.create_bgp_neighbor_interface(leaf_name, info['D2_as'], info['D2D1P1'], info['D1_as'], 'ipv6', 'no', cli_type=bgp_cli_type) bgpapi.create_bgp_neighbor_interface(spine_name, info['D1_as'], info['D1D2P1'], info['D2_as'], 'ipv6', 'no', cli_type=bgp_cli_type) st.error("BGP Neighbor failed to Establish between DUT and Partner") st.report_fail('operation_failed') utils.exec_all(True, [[bgpapi.show_bgp_ipv6_neighbor_vtysh, leaf_name], [bgpapi.show_bgp_ipv6_neighbor_vtysh, spine_name]]) bgpapi.create_bgp_neighbor_interface(leaf_name, info['D2_as'], info['D2D1P1'], info['D1_as'], 'ipv6', 'no', cli_type=bgp_cli_type) bgpapi.create_bgp_neighbor_interface(spine_name, info['D1_as'], info['D1D2P1'], info['D2_as'], 'ipv6', 'no', cli_type=bgp_cli_type) st.report_pass("test_case_passed") @pytest.mark.bgp_clear @pytest.mark.bgp_ft @pytest.mark.community @pytest.mark.community_pass def test_ft_bgp_clear(self): TestBGPCommon.ft_bgp_clear(self) @pytest.mark.bgp_traffic @pytest.mark.bgp_ft @pytest.mark.community @pytest.mark.community_fail def test_ft_bgp_peer_traffic_check(self): TestBGPCommon.ft_bgp_peer_traffic_check(self) @pytest.mark.bgp_ft @pytest.mark.community @pytest.mark.community_pass def test_ft_bgp_graceful_restart_and_aware_routers(self): TestBGPCommon.ft_bgp_graceful_restart_and_aware_routers(self) @pytest.mark.bgp_ft @pytest.mark.community @pytest.mark.community_fail def test_ft_bgp_ipv4_no_route_aggregation_for_exact_prefix_match(self): TestBGPCommon.ft_bgp_ipv4_no_route_aggregation_for_exact_prefix_match(self) @pytest.mark.bgp_ft @pytest.mark.community @pytest.mark.community_fail def test_ft_bgp_ipv4_route_aggregation_atomic_aggregate_without_as_set(self): TestBGPCommon.ft_bgp_ipv4_route_aggregation_atomic_aggregate_without_as_set(self) @pytest.mark.bgp_ft @pytest.mark.community @pytest.mark.community_fail def test_bgp_route_aggregation_4byteASN(self): TestBGPCommon.ft_bgp_route_aggregation_4byteASN(self) @pytest.mark.bgp_ft def test_ft_bgp_ipv6_route_aggregation_with_as_set(self): TestBGPCommon.ft_bgp_ipv6_route_aggregation_with_as_set(self) @pytest.mark.bgp_ft def test_ft_bgp_v4_dyn_nbr(self): """ Verify that BGP peering is formed with dynamic neighbors having 4btye ASN """ # Getting topo info between an spine and leaf info = SpyTestDict() info = bgplib.get_tg_topology_leafspine_bgp(dut_type='spine-leaf', max_tg_links='0', nodes='2') # NOTE: D1 is spine D2 is leaf by default leaf_name = info['D2'] spine_name = info['D1'] # Configure an ip address on Spine spine_ipv4 = '45.45.45.45' ipapi.config_ip_addr_interface(spine_name, info['D1D2P1'], spine_ipv4, 24) # Configure an ip address on Leaf leaf_ipv4 = '45.45.45.46' ipapi.config_ip_addr_interface(leaf_name, info['D2D1P1'], leaf_ipv4, 24) # if bgp_cli_type == "klish": # bgpapi.config_bgp_peer_group(leaf_name, info['D2_as'], 'leaf_spine', config="yes", cli_type=vtysh_cli_type) # Add a listen range on Leaf listen_range = '45.45.45.0' bgpapi.config_bgp_listen(leaf_name, info['D2_as'], listen_range, 24, 'leaf_spine', 0, cli_type=bgp_cli_type) # Add neighbor on Spine bgpapi.create_bgp_neighbor_use_peergroup(spine_name, info['D1_as'], 'spine_leaf', leaf_ipv4, cli_type=bgp_cli_type) # Verify bgp neighbors result = bgpapi.verify_bgp_summary(leaf_name, family='ipv4', neighbor='*'+spine_ipv4, state='Established') if not result: bgplib.show_bgp_neighbors([leaf_name, spine_name], af='ipv4') # Clear applied configs # Delete listen range bgpapi.config_bgp_listen(leaf_name, info['D2_as'], listen_range, 24, 'leaf_spine', 0, 'no', cli_type=bgp_cli_type) # Delete the neighbor from Spine bgpapi.delete_bgp_neighbor(spine_name, info['D1_as'], leaf_ipv4, info['D2_as'], cli_type=bgp_cli_type) # Delete ip address from Leaf ipapi.delete_ip_interface(leaf_name, info['D2D1P1'], leaf_ipv4, 24) # Delete ip address from Spine ipapi.delete_ip_interface(spine_name, info['D1D2P1'], spine_ipv4, 24) # if bgp_cli_type == "klish": # bgpapi.config_bgp_peer_group(leaf_name, info['D2_as'], 'leaf_spine', config="no", cli_type=bgp_cli_type) if result: st.log("BGP adjacency verified") st.report_pass("test_case_passed") else: st.log("Failed to form BGP peering using dynamic ipv4 neighbors") st.report_fail("test_case_failed") @pytest.mark.bgp_ft def test_ft_bgp_v6_dyn_nbr(self): """ Verify that ipv6 BGP peering is formed with dynamic neighbors """ # Getting topo info between an spine and leaf info = SpyTestDict() info = bgplib.get_tg_topology_leafspine_bgp(dut_type='spine-leaf', max_tg_links='0', nodes='2') # NOTE: D1 is spine D2 is leaf by default leaf_name = info['D2'] spine_name = info['D1'] # Configure an ip address on Spine spine_ipv6 = '2001::1' ipapi.config_ip_addr_interface(spine_name, info['D1D2P1'], spine_ipv6, 64, family='ipv6') # Configure an ip address on Leaf leaf_ipv6 = '2001::2' ipapi.config_ip_addr_interface(leaf_name, info['D2D1P1'], leaf_ipv6, 64, family='ipv6') # Add a listen range on Leaf listen_range = '2001::0' bgpapi.config_bgp_listen(leaf_name, info['D2_as'], listen_range, 64, 'leaf_spine6', 0, cli_type=bgp_cli_type) # Add neighbor on Spine bgpapi.create_bgp_neighbor_use_peergroup(spine_name, info['D1_as'], 'spine_leaf6', leaf_ipv6, family='ipv6', cli_type=bgp_cli_type) # Verify dynamic bgp neighbors result = bgpapi.verify_bgp_summary(leaf_name, family='ipv6', neighbor='*'+spine_ipv6, state='Established') if not result: bgplib.show_bgp_neighbors([leaf_name, spine_name], af='ipv6') # Clear applied configs # Delete listen range bgpapi.config_bgp_listen(leaf_name, info['D2_as'], listen_range, 64, 'leaf_spine6', 0, 'no', cli_type=bgp_cli_type) # Delete the neighbor from Spine bgpapi.delete_bgp_neighbor(spine_name, info['D1_as'], leaf_ipv6, info['D2_as'], cli_type=bgp_cli_type) # Delete ip address from Leaf ipapi.delete_ip_interface(leaf_name, info['D2D1P1'], leaf_ipv6, 64, family='ipv6') # Delete ip address from Spine ipapi.delete_ip_interface(spine_name, info['D1D2P1'], spine_ipv6, 64, family='ipv6') if result: st.log("BGP adjacency verified") st.report_pass("test_case_passed") else: st.log("Failed to form BGP peering using dynamic ipv6 neighbors") st.report_fail("test_case_failed") @pytest.mark.bgp_ft def test_ft_bgp_v4_max_dyn_nbr(self): """ Verify that BGP peering is established with maximum supported dynamic neighbors with maximum listen ranges at once """ # Getting topo info between an spine and leaf info = SpyTestDict() info = bgplib.get_tg_topology_leafspine_bgp(dut_type='spine-leaf', max_tg_links='0', nodes='2') # NOTE: D1 is spine D2 is leaf by default leaf_name = info['D2'] spine_name = info['D1'] result = True # Set listen limit # NOTE: Setting a limit to max dynamic neighbors. It can be set to any value, but the test case execution # time increases limit = 5 bgpapi.config_bgp_listen(leaf_name,info['D2_as'], 0, 0, 'leaf_spine', limit,cli_type=bgp_cli_type) # Apply Configs: # Add IP addresses on leaf and spine # Add neighbor on spine # Add listen range on leaf for i in range(1, limit+1): leaf_ipaddr = '{}.0.5.1'.format(20+i) spine_ipaddr = '{}.0.5.2'.format(20+i) listen_range = '{}.0.5.0'.format(20+i) ipapi.config_ip_addr_interface(spine_name, info['D1D2P1'], spine_ipaddr, 24) ipapi.config_ip_addr_interface(leaf_name, info['D2D1P1'], leaf_ipaddr, 24) bgpapi.config_bgp_listen(leaf_name, info['D2_as'], listen_range, 24, 'leaf_spine', 0,cli_type=bgp_cli_type) bgpapi.create_bgp_neighbor_use_peergroup(spine_name, info['D1_as'], 'spine_leaf', leaf_ipaddr) # Verify dynamic bgp neighbors result = result & (bgpapi.verify_bgp_summary(leaf_name, family='ipv4', neighbor='*'+spine_ipaddr, state='Established')) if not result: bgplib.show_bgp_neighbors([leaf_name, spine_name], af='ipv4') # Clear applied configs # Delete listen limit bgpapi.config_bgp_listen(leaf_name, info['D2_as'], 0, 0, 'leaf_spine', limit, 'no',cli_type=bgp_cli_type) for i in range(1, limit+1): leaf_ipaddr = '{}.0.5.1'.format(20+i) spine_ipaddr = '{}.0.5.2'.format(20+i) listen_range = '{}.0.5.0'.format(20+i) # Delete listen range bgpapi.config_bgp_listen(leaf_name, info['D2_as'], listen_range, 24, 'leaf_spine', 0, 'no',cli_type=bgp_cli_type) # Delete the neighbor from Spine bgpapi.delete_bgp_neighbor(spine_name, info['D1_as'], leaf_ipaddr, info['D2_as']) # Delete ip address from Leaf ipapi.delete_ip_interface(leaf_name, info['D2D1P1'], leaf_ipaddr, 24) # Delete ip address from Spine ipapi.delete_ip_interface(spine_name, info['D1D2P1'], spine_ipaddr, 24) if result: st.log("BGP adjacency verified") st.report_pass("test_case_passed") else: st.log("Failed to form BGP peering using max dynamic ipv4 neighbors") st.report_fail("test_case_failed") @pytest.mark.bgp_ft @pytest.mark.community @pytest.mark.community_pass def test_ft_bgp_rmap(self): """ Verify a route map application after route has been installed """ # Getting topo info info = SpyTestDict() info = bgplib.get_tg_topology_leafspine_bgp(dut_type='spine-leaf', max_tg_links='0', nodes='2') # NOTE: D1 is spine D2 is leaf by default leaf_name = info['D2'] spine_name = info['D1'] network1 = '134.5.6.0/24' # Advertise a network to peer n1 = bgpapi.advertise_bgp_network(leaf_name, info['D2_as'], network1, cli_type=vtysh_cli_type) n1 = ipapi.verify_ip_route(spine_name,ip_address=network1) if n1: st.log("Advertised route present") # Create a route-map to deny the network advertisement ipapi.config_route_map_match_ip_address(leaf_name, 'test-rmap', 'deny', '10', 'test-access-list1') # Create access-list test-access-list1 and deny the network ipapi.config_access_list(leaf_name, 'test-access-list1', network1, 'deny') # Add route-map to advertised network bgpapi.advertise_bgp_network(leaf_name, info['D2_as'], network1, 'test-rmap', cli_type=vtysh_cli_type) # Verify the network on spine n1 = ipapi.verify_ip_route(spine_name, ip_address=network1) if not n1: result = True else: result = False # Clear applied configs ipapi.config_access_list(leaf_name, 'test-access-list1', network1, 'deny', config='no') ipapi.config_route_map_mode(leaf_name, 'test-rmap', 'permit', '10', config='no') bgpapi.advertise_bgp_network(leaf_name, info['D2_as'], network1, 'test-rmap', config='no', cli_type=vtysh_cli_type) if result: st.report_pass("test_case_passed") else: st.report_fail("test_case_failed") @pytest.mark.bgp_ft @pytest.mark.community @pytest.mark.community_fail def test_ft_bgp_rmap_out(self): """ Verify a route map with multiple match and set option in out direction """ # Getting topo info info = SpyTestDict() info = bgplib.get_tg_topology_leafspine_bgp(dut_type = 'spine-leaf', max_tg_links= '0', nodes='2') # NOTE: D1 is spine D2 is leaf by default leaf_name = info['D2'] spine_name = info['D1'] result = True network1 = '134.5.6.0/24' network2 = '134.5.7.0/24' network3 = '134.5.8.0' # Create route-map and permit network3 ipapi.config_route_map_match_ip_address(leaf_name, 'test-rmap', 'permit', '10', 'test-access-list1') # Add set option to prepend as-path 200 ipapi.config_route_map_set_aspath(leaf_name, 'test-rmap', 'permit', '10', '200') # Create access-list test-access-list1 ipapi.config_access_list(leaf_name, 'test-access-list1', network3+'/24', 'permit') # Advertise two networks from leaf bgpapi.advertise_bgp_network(leaf_name, info['D2_as'], network1, 'test-rmap', cli_type=vtysh_cli_type) bgpapi.advertise_bgp_network(leaf_name, info['D2_as'], network2, 'test-rmap', cli_type=vtysh_cli_type) bgpapi.advertise_bgp_network(leaf_name, info['D2_as'], network3+'/24', 'test-rmap', cli_type=vtysh_cli_type) # In route-map, deny network1 ipapi.config_route_map_match_ip_address(leaf_name, 'test-rmap', 'deny', '20', 'test-access-list2') # Create access-list test-access-list2 ipapi.config_access_list(leaf_name, 'test-access-list2', network1, 'deny') # In route-map, permit network2 ipapi.config_route_map_match_ip_address(leaf_name, 'test-rmap', 'permit', '30', 'test-access-list3') # Create access-list test-access-list3 ipapi.config_access_list(leaf_name, 'test-access-list3', network2, 'permit') # verify that the neighbor has the as-path prepended output = bgpapi.show_bgp_ipvx_prefix(spine_name, prefix=network3, masklen=24) st.log(output) for x in output: # type: basestring as_path = x['peerasn'] as_path = as_path.split() for each in as_path: if each == "200": result = True # verify that network1 is not present in bgp routes n1 = ipapi.verify_ip_route(spine_name,ip_address=network1) if not n1: result = result & True else: result = result & False # verify that network2 is present in bgp routes n2 = ipapi.verify_ip_route(spine_name,ip_address=network2) if n2: result = result & True else: result = result & False # CLear applied configs ipapi.config_access_list(leaf_name, 'test-access-list3', network2, 'permit', config='no') ipapi.config_access_list(leaf_name, 'test-access-list2', network1, 'deny', config='no') ipapi.config_access_list(leaf_name, 'test-access-list1', network3+'/24', 'permit', config='no') ipapi.config_route_map_mode(leaf_name, 'test-rmap', 'permit', '10', config='no') bgpapi.advertise_bgp_network(leaf_name, info['D2_as'], network1, 'test-rmap', config='no', cli_type=vtysh_cli_type) bgpapi.advertise_bgp_network(leaf_name, info['D2_as'], network2, 'test-rmap', config='no', cli_type=vtysh_cli_type) bgpapi.advertise_bgp_network(leaf_name, info['D2_as'], network3+'/24', 'test-rmap', config='no', cli_type=vtysh_cli_type) if result: st.report_pass("test_case_passed") else: st.report_fail("test_case_failed") @pytest.mark.regression def test_ft_bgp_ebgp_confed(self): """ Author : [email protected] Verify the functionality of route-maps with confederation peers """ TG_D1 = topo.tg_dut_list_name[0] tg_ob = topo['T1{}P1_tg_obj'.format(TG_D1)] bgp_handle = topo['T1{}P1_ipv4_tg_bh'.format(TG_D1)] info = SpyTestDict() info = bgplib.get_tg_topology_leafspine_bgp(dut_type='spine-leaf', max_tg_links='1', nodes='2') spine_name = info['D1'] leaf_name = info['D2'] spine_as = info['D1_as'] leaf_as = info['D2_as'] confed_identifier = 65000 tc_fail_flag = 0 bgpapi.config_bgp(leaf_name, config='yes', config_type_list='', local_as=leaf_as, conf_identf=confed_identifier,cli_type=vtysh_cli_type) bgpapi.config_bgp(leaf_name, config='yes', config_type_list='', local_as=leaf_as, conf_peers=spine_as,cli_type=vtysh_cli_type) bgpapi.config_bgp(spine_name, config='yes', config_type_list='', local_as=spine_as, conf_identf=confed_identifier,cli_type=vtysh_cli_type) bgpapi.config_bgp(spine_name, config='yes', config_type_list='', local_as=spine_as, conf_peers=leaf_as,cli_type=vtysh_cli_type) ipapi.config_route_map_match_ip_address(spine_name, 'confed-rmap', 'permit', '10', 'confed-access-list1') ipapi.config_access_list(spine_name, 'confed-access-list1', '125.5.1.0/16', 'permit') bgpapi.config_bgp(spine_name, local_as=spine_as, neighbor=info['D2D1P1_ipv4'], config_type_list=["routeMap"], routeMap='confed-rmap', diRection='out',cli_type=vtysh_cli_type) bgpapi.create_bgp_next_hop_self(spine_name, spine_as, 'ipv4', info['D2D1P1_ipv4']) st.log("Advertising the route map matching routes from the Spine DUT i.e. they should " "be advertised on Leaf node") tg_ob.tg_emulation_bgp_route_config(handle=bgp_handle['handle'], mode='add', num_routes='20', prefix='125.5.1.0', as_path='as_seq:1') tg_ob.tg_emulation_bgp_control(handle=bgp_handle['handle'], mode='start') n1 = ipapi.verify_ip_route(topo.dut_list[1], ip_address='125.5.5.0/24') if not n1: st.error('Route-map matching prefexis from the Spine DUT are not advertised to leaf DUT.') tc_fail_flag = 1 st.log("Advertising the route-map non matching routes from the Spine DUT i.e. they should not be " "advertised on Leaf node.") tg_ob.tg_emulation_bgp_route_config(handle=bgp_handle['handle'], mode='add', num_routes='20', prefix='126.5.1.0', as_path='as_seq:1') tg_ob.tg_emulation_bgp_control(handle=bgp_handle['handle'], mode='start') n1 = ipapi.verify_ip_route(topo.dut_list[1], ip_address='126.5.5.0/24') n2 = ipapi.verify_ip_route(topo.dut_list[0], ip_address='126.5.5.0/24') if (n1 == True) or (n2 == False): st.error('Route check failed for the scenario, route-map non matching prefexis from the Spine DUT') tc_fail_flag = 1 # Unconfig section tg_ob.tg_emulation_bgp_control(handle=bgp_handle['handle'], mode='stop') ipapi.config_route_map_mode(topo.dut_list[0], 'confed-rmap', 'permit', '10', config='no') ipapi.config_access_list(topo.dut_list[0], 'confed-access-list1', '121.5.1.0/16', 'permit', config='no') bgpapi.config_bgp(topo.dut_list[0], local_as=spine_as, config='no', neighbor=info['D2D1P1_ipv4'], config_type_list=["routeMap"], routeMap='confed-rmap', diRection='out',cli_type=vtysh_cli_type) bgpapi.create_bgp_next_hop_self(topo.dut_list[0], spine_as, 'ipv4', info['D2D1P1_ipv4'], 'no', 'no') if tc_fail_flag: st.report_fail('test_case_failed') st.report_pass('test_case_passed') """ BGP Neighbor over regular router interface fixture, class and test cases - END """ """ BGP IPv4 and IPv6 router distribution and filtering TCs: Start """ @pytest.fixture(scope='class') def bgp_ipvx_route_adv_filter_fixture(request): """ Prepare base for router advertisement and filtering TCs Pick first spine, first leaf and first link between them and create reduced topo The following will be changed to API based eventually. Currently implemented like this to progress on TC """ reduced_topo = dict() reduced_topo['dut1'] = topo.spine_list[0] reduced_topo['dut2'] = topo.leaf_list[0] reduced_topo['dut1_index'] = 1 + topo.dut_list.index(topo.spine_list[0]) reduced_topo['dut2_index'] = 1 + topo.dut_list.index(topo.leaf_list[0]) reduced_topo['dut1_as'] = "{}".format(topo['D{}_as'.format(reduced_topo['dut1_index'])]) reduced_topo['dut2_as'] = "{}".format(topo['D{}_as'.format(reduced_topo['dut2_index'])]) reduced_topo['dut1_addr_ipv4'] = topo[ 'D{}D{}P1_ipv4'.format(reduced_topo['dut1_index'], reduced_topo['dut2_index'])] reduced_topo['dut2_addr_ipv4'] = topo[ 'D{}D{}P1_ipv4'.format(reduced_topo['dut2_index'], reduced_topo['dut1_index'])] reduced_topo['dut1_addr_ipv6'] = topo[ 'D{}D{}P1_ipv6'.format(reduced_topo['dut1_index'], reduced_topo['dut2_index'])] reduced_topo['dut2_addr_ipv6'] = topo[ 'D{}D{}P1_ipv6'.format(reduced_topo['dut2_index'], reduced_topo['dut1_index'])] reduced_topo['dut1_outif'] = topo[ 'D{}D{}P1'.format(reduced_topo['dut1_index'], reduced_topo['dut2_index'])] reduced_topo['dut2_outif'] = topo[ 'D{}D{}P1'.format(reduced_topo['dut1_index'], reduced_topo['dut2_index'])] request.cls.local_topo = reduced_topo config_items = {} bgplib.configure_base_for_route_adv_and_filter(reduced_topo['dut1'], reduced_topo['dut2'], reduced_topo, config_items) yield reduced_topo bgplib.unconfigure_base_for_route_adv_and_filter(reduced_topo['dut1'], reduced_topo['dut2'], reduced_topo, config_items) @pytest.mark.usefixtures('bgp_rif_class_hook', 'bgp_ipvx_route_adv_filter_fixture') class TestBGPIPvxRouteAdvertisementFilter: local_topo = dict() def configure_base_for_filter_prefix_on_community(self, peer_grp4_name, config, cli_type="vtysh"): bgpapi.config_bgp(dut=self.local_topo['dut1'], local_as=self.local_topo['dut1_as'], config=config, config_type_list=["redist"], redistribute='static',cli_type=cli_type) bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], neighbor=peer_grp4_name, addr_family='ipv4', config=config, config_type_list=["routeMap"], routeMap='rmap1', diRection='in',cli_type=cli_type) @pytest.mark.community @pytest.mark.community_pass def test_redistribute_connected_ipv4(self, bgp_ipvx_route_adv_filter_fixture): bgpapi.config_address_family_redistribute(self.local_topo['dut1'], self.local_topo['dut1_as'], 'ipv4', 'unicast', "connected", config='yes', cli_type=bgp_cli_type) output = ipapi.fetch_ip_route(self.local_topo['dut1'], match={'type': 'C'}, select=['ip_address']) list_of_connected_network_on_dut1 = list(x['ip_address'] for x in output) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv4', select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut1_as']) in x['as_path']] list_of_learned_routes_on_dut2_from_dut1 = list(x['network'] for x in output) st.log('List of connected network on dut1:' + str(list_of_connected_network_on_dut1)) st.log('List of network learnt on dut2 from dut1:' + str(list_of_learned_routes_on_dut2_from_dut1)) if set(list_of_connected_network_on_dut1).issubset(set(list_of_learned_routes_on_dut2_from_dut1)): result = True else: result = False bgpapi.config_address_family_redistribute(self.local_topo['dut1'], self.local_topo['dut1_as'], 'ipv4', 'unicast', "connected", config='no', cli_type=bgp_cli_type) if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") @pytest.mark.community @pytest.mark.community_pass def test_redistribute_static_ipv4(self, bgp_ipvx_route_adv_filter_fixture): ipapi.create_static_route(self.local_topo['dut1'], self.local_topo['dut1_outif'], '100.1.1.1/32', family='ipv4') output = ipapi.fetch_ip_route(self.local_topo['dut1'], match={'type': 'S'}, select=['ip_address']) list_of_static_network_on_dut1 = list(x['ip_address'] for x in output) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv4', select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut1_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) st.log('List of static route on dut1' + str(list_of_static_network_on_dut1)) st.log('List of network redistributed to dut2 from dut1' + str(list_of_learned_routes_on_dut2_by_dut1)) bgpapi.config_address_family_redistribute(self.local_topo['dut1'], self.local_topo['dut1_as'], 'ipv4', 'unicast', "static", config='yes', cli_type=bgp_cli_type) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv4', select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut1_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) st.log('List of static route on dut1' + str(list_of_static_network_on_dut1)) st.log('List of network redistributed to dut2 from dut1' + str(list_of_learned_routes_on_dut2_by_dut1)) if set(list_of_static_network_on_dut1).issubset(set(list_of_learned_routes_on_dut2_by_dut1)): st.log('static on dut1 is subset of dut1 learned route on dut2') result = True else: st.log('static on dut1 is not a subset of dut1 learned route on dut2') result = False bgpapi.config_address_family_redistribute(self.local_topo['dut1'], self.local_topo['dut1_as'], 'ipv4', 'unicast', "static", config='no', cli_type=bgp_cli_type) ipapi.delete_static_route(self.local_topo['dut1'], self.local_topo['dut1_outif'], '100.1.1.1/32', family='ipv4') if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") @pytest.mark.community @pytest.mark.community_pass def test_distribute_list_in_ipv4(self, bgp_ipvx_route_adv_filter_fixture): output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv4', match={'next_hop': self.local_topo['dut1_addr_ipv4']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut1_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) if '102.1.1.0/24' in list_of_learned_routes_on_dut2_by_dut1: st.log("route learnt") else: st.log("route not learnt") bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv4', config='yes', neighbor=self.local_topo['dut1_addr_ipv4'], config_type_list=["distribute_list"], distribute_list='11', diRection='in',cli_type=vtysh_cli_type) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv4', match={'next_hop': self.local_topo['dut1_addr_ipv4']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut1_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) if '102.1.1.0/24' in list_of_learned_routes_on_dut2_by_dut1: st.log("route not suppressed") result = False else: st.log("route suppressed") result = True bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv4', config='no', neighbor=self.local_topo['dut1_addr_ipv4'], config_type_list=["distribute_list"], distribute_list='11', diRection='in',cli_type=vtysh_cli_type) if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") @pytest.mark.community @pytest.mark.community_pass def test_filter_list_in_ipv4(self, bgp_ipvx_route_adv_filter_fixture): output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv4', select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut1_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) if len(list_of_learned_routes_on_dut2_by_dut1): st.log("route received for as {}".format(self.local_topo['dut1_as'])) else: st.log("route not learnt") bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv4', config='yes', neighbor=self.local_topo['dut1_addr_ipv4'], config_type_list=["filter_list"], filter_list='FILTER', diRection='in',cli_type=vtysh_cli_type) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv4', match={'next_hop': self.local_topo['dut1_addr_ipv4']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut1_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) if len(list_of_learned_routes_on_dut2_by_dut1) != 0: st.log("still having routes from as {}".format(self.local_topo['dut1_as'])) result = False else: st.log("no routes from as {}".format(self.local_topo['dut1_as'])) result = True bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv4', config='no', neighbor=self.local_topo['dut1_addr_ipv4'], config_type_list=["filter_list"], filter_list='FILTER', diRection='in',cli_type=vtysh_cli_type) if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") @pytest.mark.community @pytest.mark.community_pass def test_prefix_list_out_ipv4(self, bgp_ipvx_route_adv_filter_fixture): output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut1'], family='ipv4', match={'next_hop': self.local_topo['dut2_addr_ipv4']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut2_as']) in x['as_path']] list_of_learned_routes_on_dut1_by_dut2 = list(x['network'] for x in output) if '202.1.1.0/24' in list_of_learned_routes_on_dut1_by_dut2: st.log("route learnt") else: st.log("route not learnt") if bgp_cli_type == "klish": ipapi.config_ip_prefix_list(self.local_topo['dut2'], 'PREFIXOUT', '202.1.1.0/24', family="ipv4", action="deny", cli_type=bgp_cli_type) ipapi.config_ip_prefix_list(self.local_topo['dut2'], 'PREFIXOUT', 'any', family="ipv4", action="permit", cli_type=bgp_cli_type) bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv4', config='yes', neighbor=self.local_topo['dut1_addr_ipv4'], config_type_list=["prefix_list"], prefix_list='PREFIXOUT', diRection='out',cli_type=bgp_cli_type) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut1'], family='ipv4', match={'next_hop': self.local_topo['dut2_addr_ipv4']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut2_as']) in x['as_path']] list_of_learned_routes_on_dut1_by_dut2 = list(x['network'] for x in output) if '202.1.1.0/24' in list_of_learned_routes_on_dut1_by_dut2: st.log("route not suppressed") result = False else: st.log("route suppressed") result = True bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv4', config='no', neighbor=self.local_topo['dut1_addr_ipv4'], config_type_list=["prefix_list"], prefix_list='PREFIXOUT', diRection='out',cli_type=bgp_cli_type) if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") @pytest.mark.community @pytest.mark.community_pass def test_default_originate_ipv4(self, bgp_ipvx_route_adv_filter_fixture): output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut1'], family='ipv4', match={'next_hop': self.local_topo['dut2_addr_ipv4']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut2_as']) in x['as_path']] list_of_learned_routes_on_dut1_by_dut2 = list(x['network'] for x in output) if '0.0.0.0/0' in list_of_learned_routes_on_dut1_by_dut2: st.log("route learnt") else: st.log("route not learnt") bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv4', config='yes', neighbor=self.local_topo['dut1_addr_ipv4'], config_type_list=["default_originate"], routeMap='UseGlobal',cli_type=vtysh_cli_type) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut1'], family='ipv4', match={'next_hop': self.local_topo['dut2_addr_ipv4']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut2_as']) in x['as_path']] list_of_learned_routes_on_dut1_by_dut2 = list(x['network'] for x in output) if '0.0.0.0/0' in list_of_learned_routes_on_dut1_by_dut2: st.log("default route advertised") result = True else: st.log("default route not advertised") result = False bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv4', config='no', neighbor=self.local_topo['dut1_addr_ipv4'], config_type_list=["default_originate"], routeMap='UseGlobal',cli_type=vtysh_cli_type) if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") @pytest.mark.community @pytest.mark.community_pass def test_route_map_in_ipv4(self, bgp_ipvx_route_adv_filter_fixture): output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv4', match={'next_hop': self.local_topo['dut1_addr_ipv4']}, select=['network', 'local_pref', 'metric']) bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv4', config='yes', neighbor=self.local_topo['dut1_addr_ipv4'], config_type_list=["routeMap"], routeMap='SETPROPS', diRection='in',cli_type=vtysh_cli_type) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv4', match={'next_hop': self.local_topo['dut1_addr_ipv4']}, select=['network', 'local_pref', 'metric']) metric = [x for x in output if x['network'] == '102.1.1.0/24'][0]['metric'] local_pref = [x for x in output if x['network'] == '101.1.1.0/24'][0]['local_pref'] bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv4', config='no', neighbor=self.local_topo['dut1_addr_ipv4'], config_type_list=["routeMap"], routeMap='SETPROPS', diRection='in',cli_type=vtysh_cli_type) if metric == '400' and local_pref == '200': st.report_pass("operation_successful") else: st.report_fail("operation_failed") @pytest.mark.community @pytest.mark.community_pass def test_redistribute_connected_ipv6(self, bgp_ipvx_route_adv_filter_fixture): bgpapi.config_address_family_redistribute(self.local_topo['dut1'], self.local_topo['dut1_as'], 'ipv6', 'unicast', "connected", config='yes', cli_type=bgp_cli_type) output = ipapi.fetch_ip_route(self.local_topo['dut1'], family='ipv6', match={'type': 'C'}, select=['ip_address']) output = [x for x in output if not x['ip_address'].startswith('fe80')] list_of_connected_network_on_dut1 = list(x['ip_address'] for x in output) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv6', select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut1_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) st.log('List of connected network on dut1') st.log(list_of_connected_network_on_dut1) st.log('List of network redistributed to dut2 from dut1') st.log(list_of_learned_routes_on_dut2_by_dut1) if set(list_of_connected_network_on_dut1).issubset(set(list_of_learned_routes_on_dut2_by_dut1)): result = True else: result = False bgpapi.config_address_family_redistribute(self.local_topo['dut1'], self.local_topo['dut1_as'], 'ipv6', 'unicast', "connected", config='no', cli_type=bgp_cli_type) if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") def test_redistribute_static_ipv6(self, bgp_ipvx_route_adv_filter_fixture): ipapi.create_static_route(self.local_topo['dut1'], self.local_topo['dut1_outif'], '100:1::1:1/128', family='ipv6') output = ipapi.fetch_ip_route(self.local_topo['dut1'], family='ipv6', match={'type': 'S'}, select=['ip_address']) list_of_static_network_on_dut1 = list(x['ip_address'] for x in output) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv6', select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut1_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) st.log('List of static route on dut1' + str(list_of_static_network_on_dut1)) st.log('List of network redistributed to dut2 from dut1' + str(list_of_learned_routes_on_dut2_by_dut1)) bgpapi.config_address_family_redistribute(self.local_topo['dut1'], self.local_topo['dut1_as'], 'ipv6', 'unicast', "static", config='yes', cli_type=bgp_cli_type) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv6', select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut1_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) st.log('List of static route on dut1' + str(list_of_static_network_on_dut1)) st.log('List of network redistributed to dut2 from dut1' + str(list_of_learned_routes_on_dut2_by_dut1)) if set(list_of_static_network_on_dut1).issubset(set(list_of_learned_routes_on_dut2_by_dut1)): st.log('static on dut1 is subset of dut1 learned route on dut2') result = True else: st.log('static on dut1 is not a subset of dut1 learned route on dut2') result = False bgpapi.config_address_family_redistribute(self.local_topo['dut1'], self.local_topo['dut1_as'], 'ipv6', 'unicast', "static", config='no', cli_type=bgp_cli_type) ipapi.delete_static_route(self.local_topo['dut1'], self.local_topo['dut1_outif'], '100:1::1:1/128', family='ipv6') if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") @pytest.mark.community @pytest.mark.community_pass def test_distribute_list_in_ipv6(self, bgp_ipvx_route_adv_filter_fixture): output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv6', match={'next_hop': self.local_topo['dut1_addr_ipv6']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut1_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) if '102:1::/64' in list_of_learned_routes_on_dut2_by_dut1: st.log("route learnt") else: st.log("route not learnt") bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv6', config='yes', neighbor=self.local_topo['dut1_addr_ipv6'], config_type_list=["distribute_list"], distribute_list='12', diRection='in',cli_type=vtysh_cli_type) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv6', match={'next_hop': self.local_topo['dut1_addr_ipv6']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut1_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) if '102:1::/64' in list_of_learned_routes_on_dut2_by_dut1: st.log("route not suppressed") result = False else: st.log("route suppressed") result = True bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv6', config='no', neighbor=self.local_topo['dut1_addr_ipv6'], config_type_list=["distribute_list"], distribute_list='12', diRection='in',cli_type=vtysh_cli_type) if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") @pytest.mark.community @pytest.mark.community_pass def test_filter_list_in_ipv6(self, bgp_ipvx_route_adv_filter_fixture): output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv6', select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut1_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) if len(list_of_learned_routes_on_dut2_by_dut1): st.log("route received for as {}".format(self.local_topo['dut1_as'])) else: st.log("route not learnt") bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv6', config='yes', neighbor=self.local_topo['dut1_addr_ipv6'], config_type_list=["filter_list"], filter_list='FILTER', diRection='in',cli_type=vtysh_cli_type) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv6', match={'next_hop': self.local_topo['dut1_addr_ipv6']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut1_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) if len(list_of_learned_routes_on_dut2_by_dut1) != 0: st.log("still having routes from as {}".format(self.local_topo['dut1_as'])) result = False else: st.log("no routes from as {}".format(self.local_topo['dut1_as'])) result = True bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv6', config='no', neighbor=self.local_topo['dut1_addr_ipv6'], config_type_list=["filter_list"], filter_list='FILTER', diRection='in',cli_type=vtysh_cli_type) if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") @pytest.mark.community @pytest.mark.community_pass def test_prefix_list_out_ipv6(self, bgp_ipvx_route_adv_filter_fixture): output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut1'], family='ipv6', match={'next_hop': self.local_topo['dut2_addr_ipv6']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut2_as']) in x['as_path']] list_of_learned_routes_on_dut1_by_dut2 = list(x['network'] for x in output) if '202:1::/64' in list_of_learned_routes_on_dut1_by_dut2: st.log("route learnt") else: st.log("route not learnt") if bgp_cli_type == "klish": ipapi.config_ip_prefix_list(self.local_topo['dut2'], 'PREFIXOUT6', '202:1::/64', family="ipv6", action="deny", cli_type=bgp_cli_type) ipapi.config_ip_prefix_list(self.local_topo['dut2'], 'PREFIXOUT6', 'any', family="ipv6", action="permit", cli_type=bgp_cli_type) bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv6', config='yes', neighbor=self.local_topo['dut1_addr_ipv6'], config_type_list=["prefix_list"], prefix_list='PREFIXOUT6', diRection='out',cli_type=bgp_cli_type) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut1'], family='ipv6', match={'next_hop': self.local_topo['dut2_addr_ipv6']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut2_as']) in x['as_path']] list_of_learned_routes_on_dut1_by_dut2 = list(x['network'] for x in output) if '202:1::/64' in list_of_learned_routes_on_dut1_by_dut2: st.log("route not suppressed") result = False else: st.log("route suppressed") result = True bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv6', config='no', neighbor=self.local_topo['dut1_addr_ipv6'], config_type_list=["prefix_list"], prefix_list='PREFIXOUT6', diRection='out',cli_type=bgp_cli_type) if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") @pytest.mark.community @pytest.mark.community_pass def test_filter_list_out_ipv6(self, bgp_ipvx_route_adv_filter_fixture): output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut1'], family='ipv6', select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut2_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) if len(list_of_learned_routes_on_dut2_by_dut1): st.log("route received for as {}".format(self.local_topo['dut2_as'])) else: st.log("route not learnt") bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv6', config='yes', neighbor=self.local_topo['dut1_addr_ipv6'], config_type_list=["filter_list"], filter_list='FILTER6', diRection='out',cli_type=vtysh_cli_type) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut1'], family='ipv6', match={'next_hop': self.local_topo['dut2_addr_ipv6']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut2_as']) in x['as_path']] list_of_learned_routes_on_dut2_by_dut1 = list(x['network'] for x in output) if len(list_of_learned_routes_on_dut2_by_dut1) != 0: st.log("still having routes from as {}".format(self.local_topo['dut2_as'])) result = False else: st.log("no routes from as {}".format(self.local_topo['dut2_as'])) result = True bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv6', config='no', neighbor=self.local_topo['dut1_addr_ipv6'], config_type_list=["filter_list"], filter_list='FILTER6', diRection='out',cli_type=vtysh_cli_type) if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") def test_default_originate_ipv6(self, bgp_ipvx_route_adv_filter_fixture): output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut1'], family='ipv6', match={'next_hop': self.local_topo['dut2_addr_ipv6']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut2_as']) in x['as_path']] list_of_learned_routes_on_dut1_by_dut2 = list(x['network'] for x in output) if '::/0' in list_of_learned_routes_on_dut1_by_dut2: st.log("route learnt") else: st.log("route not learnt") bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv6', config='yes', neighbor=self.local_topo['dut1_addr_ipv6'], config_type_list=["default_originate"], routeMap='UseGlobal',cli_type=bgp_cli_type) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut1'], family='ipv6', match={'next_hop': self.local_topo['dut2_addr_ipv6']}, select=['network', 'as_path']) output = [x for x in output if "{}".format(self.local_topo['dut2_as']) in x['as_path']] list_of_learned_routes_on_dut1_by_dut2 = list(x['network'] for x in output) if '::/0' in list_of_learned_routes_on_dut1_by_dut2: st.log("default route advertised") result = True else: st.log("default route not advertised") result = False bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv6', config='no', neighbor=self.local_topo['dut1_addr_ipv6'], config_type_list=["default_originate"], routeMap='UseGlobal',cli_type=bgp_cli_type) if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") @pytest.mark.community @pytest.mark.community_pass def test_route_map_in_ipv6(self, bgp_ipvx_route_adv_filter_fixture): output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv6', match={'next_hop': self.local_topo['dut1_addr_ipv6']}, select=['network', 'local_pref', 'metric']) bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv6', config='yes', neighbor=self.local_topo['dut1_addr_ipv6'], config_type_list=["routeMap"], routeMap='SETPROPS6', diRection='in',cli_type=vtysh_cli_type) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv6', match={'next_hop': self.local_topo['dut1_addr_ipv6']}, select=['network', 'local_pref', 'metric']) metric = bgplib.get_route_attribute(output, 'metric', network='102:1::/64') local_pref = bgplib.get_route_attribute(output, 'local_pref', network='101:1::/64') bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], addr_family='ipv6', config='yes', neighbor=self.local_topo['dut1_addr_ipv6'], config_type_list=["routeMap"], routeMap='UseGlobal', diRection='in',cli_type=vtysh_cli_type) if metric == '6400' and local_pref == '6200': st.report_pass("operation_successful") else: st.report_fail("operation_failed") # testcase: FtOtSoRtBgp4Fn016, To verify functioning of route-map to filter incoming IPv4 prefix(s) # on community from dynamic neighbors @pytest.mark.bgp_rtmap_comm @pytest.mark.community @pytest.mark.community_pass def test_bgp_route_map_with_community(self, bgp_ipvx_route_adv_filter_fixture): result = True ipapi.config_route_map(dut=self.local_topo['dut2'], route_map='rmap1', config='yes', sequence='10', community='100:100') ipapi.create_static_route(dut=self.local_topo['dut1'], next_hop='blackhole', static_ip='40.1.1.1/32') self.configure_base_for_filter_prefix_on_community('leaf_spine', 'yes') # Check the show command in leaf output = bgpapi.show_bgp_ipvx_prefix(self.local_topo['dut2'], prefix="40.1.1.1", masklen=32, family='ipv4') st.log(output) # there is only one record for x in output: # type: basestring if ((x['peerip'].find('11.1.1.2')) != -1) and (x['community'] == '100:100'): result = True else: result = False self.configure_base_for_filter_prefix_on_community('leaf_spine', 'no') ipapi.config_route_map(dut=self.local_topo['dut2'], route_map='rmap1', config='no', community='100:100') ipapi.delete_static_route(dut=self.local_topo['dut1'], next_hop='blackhole', static_ip='40.1.1.1/32') if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") # testcase: FtOtSoRtBgp4Fn014, Verify that BGP peering with dynamic neighbors established with update source option. @pytest.mark.bgp_nbr_updsrc @pytest.mark.community @pytest.mark.community_pass def test_bgp_ebgp4_nbr_update_source(self, bgp_ipvx_route_adv_filter_fixture): result = True # configure update source for both the duts # Note: Currently, leaf spine topology has a fixed neighbor formation (peer-group leaf_spine and spine_leaf) # Since in sonic, we must have neighbor which is same as update-source, we will use this nbr as the source. # basically, we will use update-source on the same neighbor, which has been created using leaf spine topology. bgpapi.config_bgp(dut=self.local_topo['dut1'], local_as=self.local_topo['dut1_as'], neighbor=self.local_topo['dut2_addr_ipv4'], config='yes', update_src=self.local_topo['dut1_addr_ipv4'], config_type_list=["update_src"],cli_type=bgp_cli_type) bgpapi.config_bgp(dut=self.local_topo['dut1'], local_as=self.local_topo['dut1_as'], neighbor=self.local_topo['dut2_addr_ipv4'], config='yes', config_type_list=["ebgp_mhop"], ebgp_mhop='2',cli_type=bgp_cli_type) bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], neighbor=self.local_topo['dut1_addr_ipv4'], config='yes', update_src=self.local_topo['dut2_addr_ipv4'], config_type_list=["update_src"],cli_type=bgp_cli_type) bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], neighbor=self.local_topo['dut1_addr_ipv4'], config='yes', config_type_list=["ebgp_mhop"], ebgp_mhop='2',cli_type=bgp_cli_type) # clear bgp neighbors before checking for neighbor state again. bgpapi.clear_ip_bgp_vtysh(dut=self.local_topo['dut1'], value="*") bgpapi.clear_ip_bgp_vtysh(dut=self.local_topo['dut2'], value="*") if not utils.poll_wait(bgpapi.verify_bgp_summary, 30, self.local_topo['dut1'], family='ipv4', neighbor=self.local_topo['dut2_addr_ipv4'], state='Established'): bgplib.show_bgp_neighbors([self.local_topo['dut1'], self.local_topo['dut2']], af='ipv4') st.error("BGP Neighbor failed to Establish between DUT1 and DUT2") st.log("{} - Neighbor {} is failed to Establish".format(self.local_topo['dut1'], self.local_topo['dut2_addr_ipv4'])) result = False # cleanup the testcase bgpapi.config_bgp(dut=self.local_topo['dut1'], local_as=self.local_topo['dut1_as'], neighbor=self.local_topo['dut2_addr_ipv4'], config='no', update_src=self.local_topo['dut1_addr_ipv4'], config_type_list=["update_src"],cli_type=bgp_cli_type) bgpapi.config_bgp(dut=self.local_topo['dut1'], local_as=self.local_topo['dut1_as'], neighbor=self.local_topo['dut2_addr_ipv4'], config='no', config_type_list=["ebgp_mhop"], ebgp_mhop='2',cli_type=bgp_cli_type) bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], neighbor=self.local_topo['dut1_addr_ipv4'], config='no', update_src=self.local_topo['dut2_addr_ipv4'], config_type_list=["update_src"],cli_type=bgp_cli_type) bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], neighbor=self.local_topo['dut1_addr_ipv4'], config='no', config_type_list=["ebgp_mhop"], ebgp_mhop='2',cli_type=bgp_cli_type) if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") # testcase: FtOtSoRtBgp4Fn015, Verify eBGP authentication. @pytest.mark.bgp_nbr_auth def test_bgp_ebgp4_nbr_authentication(self, bgp_ipvx_route_adv_filter_fixture): result = True # configure password for both the duts bgpapi.config_bgp(dut=self.local_topo['dut1'], local_as=self.local_topo['dut1_as'], neighbor=self.local_topo['dut2_addr_ipv4'], config='yes', password='broadcom', config_type_list=["pswd"],cli_type=bgp_cli_type) bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], neighbor=self.local_topo['dut1_addr_ipv4'], config='yes', password='broadcom', config_type_list=["pswd"],cli_type=bgp_cli_type) # clear bgp neighbors before checking for neighbor state again. bgpapi.clear_ip_bgp_vtysh(dut=self.local_topo['dut1'], value="*") bgpapi.clear_ip_bgp_vtysh(dut=self.local_topo['dut2'], value="*") if not utils.poll_wait(bgpapi.verify_bgp_summary, 30, self.local_topo['dut1'], family='ipv4', neighbor=self.local_topo['dut2_addr_ipv4'], state='Established'): bgplib.show_bgp_neighbors([self.local_topo['dut1'], self.local_topo['dut2']], af='ipv4') st.error("BGP Neighbor failed to Establish between DUT1 and DUT2") st.log("{} - Neighbor {} is failed to Establish".format(self.local_topo['dut1'], self.local_topo['dut2_addr_ipv4'])) result = False # Verify neighbors formation after rebooting Dut1 st.log("Verification of neighbor formation after reboot.") # below API will change routing mode to split and save the sonic config. bgpapi.enable_docker_routing_config_mode(dut=self.local_topo['dut1']) st.vtysh(self.local_topo['dut1'], "copy running-config startup-config") st.reboot(self.local_topo['dut1'], 'fast') st.wait(3) if not utils.poll_wait(bgpapi.verify_bgp_summary, 30, self.local_topo['dut1'], family='ipv4', neighbor=self.local_topo['dut2_addr_ipv4'], state='Established'): bgplib.show_bgp_neighbors([self.local_topo['dut1'], self.local_topo['dut2']], af='ipv4') st.error("BGP Neighbor failed to Establish between DUT1 and DUT2") st.log("{} - Neighbor {} is failed to Establish".format(self.local_topo['dut1'], self.local_topo['dut2_addr_ipv4'])) result = False # cleanup the testcase bgpapi.config_bgp(dut=self.local_topo['dut1'], local_as=self.local_topo['dut1_as'], neighbor=self.local_topo['dut2_addr_ipv4'], config='no', password='broadcom', config_type_list=["pswd"],cli_type=bgp_cli_type) bgpapi.config_bgp(dut=self.local_topo['dut2'], local_as=self.local_topo['dut2_as'], neighbor=self.local_topo['dut1_addr_ipv4'], config='no', password='broadcom', config_type_list=["pswd"],cli_type=bgp_cli_type) if result: st.report_pass("operation_successful") else: st.report_fail("operation_failed") # testcase: FtOtSoRtBgp4Fn015, Verify eBGP traffic for ipv6. @pytest.mark.bgp_ebgp6_traffic def test_bgp_ebgp6_traffic(self, bgp_ipvx_route_adv_filter_fixture): result = True TG_D1 = topo.tg_dut_list_name[0] TG_D2 = topo.tg_dut_list_name[1] tg_ob = topo['T1{}P1_tg_obj'.format(TG_D1)] bgp_handle = topo['T1{}P1_ipv6_tg_bh'.format(TG_D1)] tg_d1_ip = topo['T1{}P1_ipv6'.format(TG_D1)] tg_d2_ip = topo['T1{}P1_ipv6'.format(TG_D2)] tc_fail_flag = 0 spine_as = int(bgplib.data['spine_as']) st.log("Advertising 500 IPv6 Routes from TG connected to DUT1") bgp_route = tg_ob.tg_emulation_bgp_route_config(handle=bgp_handle['handle'], mode='add', ip_version='6', num_routes='500', prefix='1001::1', as_path='as_seq:1') bgp_ctrl = tg_ob.tg_emulation_bgp_control(handle=bgp_handle['handle'], mode='start') # Sleep for update delay timer and the check the route count in neighbour st.wait(15) if not utils.poll_wait(bgpapi.verify_bgp_neighborship, 120, topo.dut_list[0], family="ipv6", shell="sonic", neighbor=self.local_topo['dut2_addr_ipv6'], state='Established', asn=self.local_topo['dut1_as']): utils.exec_all(True, [[bgpapi.show_bgp_ipv6_neighbor_vtysh, topo.dut_list[0]], [bgpapi.show_bgp_ipv6_neighbor_vtysh, topo.dut_list[1]]]) st.error("BGP Neighbor failed to Establish between DUT1 and TG") st.log("{} - Neighbor {} is failed to Establish".format(topo.dut_list[0], self.local_topo['dut2_addr_ipv6'])) result = False bgp_summary_spine_after_update_timer = bgpapi.show_bgp_ipv6_summary(topo.dut_list[1]) rib_entries_after_update_timer = bgp_summary_spine_after_update_timer[0]['ribentries'] st.log('RIB Entries after update delay timer expiry : {}'.format(rib_entries_after_update_timer)) if int(rib_entries_after_update_timer) < 500: st.error('Routes are not advertised to peer DUT, even after the update delay timer expiry') tc_fail_flag = 1 st.log("Initiating the Ipv6 traffic for those Routes from TG connected to DUT2") src_handle = 'handle' if tg_ob.tg_type == 'ixia': src_handle = 'ipv6_handle' tr1 = tg_ob.tg_traffic_config(port_handle=topo['T1{}P1_ipv6_tg_ph'.format(TG_D2)], emulation_src_handle=topo['T1{}P1_ipv6_tg_ih'.format(TG_D2)][src_handle], emulation_dst_handle=bgp_route['handle'], circuit_endpoint_type='ipv6', mode='create', transmit_mode='single_burst', pkts_per_burst='2000', length_mode='fixed', rate_pps=1000) stream_id1 = tr1['stream_id'] tg_ob.tg_traffic_control(action='run', handle=stream_id1) st.wait(20) tg1_stats = tgapi.get_traffic_stats(tg_ob, port_handle=topo["T1{}P1_ipv6_tg_ph".format(TG_D1)]) tg2_stats = tgapi.get_traffic_stats(tg_ob, port_handle=topo["T1{}P1_ipv6_tg_ph".format(TG_D2)]) if not (int(tg2_stats.tx.total_packets) and int(tg1_stats.rx.total_packets)): st.error('Received ZERO stats.') tc_fail_flag = 1 else: percent_rx = float(int(tg1_stats.rx.total_packets) - int(tg2_stats.tx.total_packets)) / int( tg2_stats.tx.total_packets) * 100 st.log('tg1_stats.rx.total_packets : {}'.format(tg1_stats.rx.total_packets)) st.log('tg2_stats.tx.total_packets : {}'.format(tg2_stats.tx.total_packets)) st.log('percent_rx : {}'.format(percent_rx)) if int(tg1_stats.rx.total_packets) < int(tg2_stats.tx.total_packets)*0.95: tc_fail_flag = 1 tg_ob.tg_emulation_bgp_control(handle=bgp_handle['handle'], mode='stop') if tc_fail_flag: st.report_fail("traffic_verification_failed") st.report_pass('test_case_passed') TG_D1 = topo.tg_dut_list_name[0] TG_D2 = topo.tg_dut_list_name[1] tg_ob = topo['T1{}P1_tg_obj'.format(TG_D2)] bgp_handle = topo['T1{}P1_ipv6_tg_bh'.format(TG_D2)] tc_fail_flag = 0 leaf_as = int(bgplib.data['leaf_as']) st.log("Advertising 500 IPv6 Routes from TG connected to DUT2") bgp_route = tg_ob.tg_emulation_bgp_route_config(handle=bgp_handle['handle'], mode='add', ip_version='6', num_routes='500', prefix='1002::1', as_path='as_seq:2') bgp_ctrl = tg_ob.tg_emulation_bgp_control(handle=bgp_handle['handle'], mode='start') # Check for route count in neighbour, before update delay timer expiry # Sleep for update delay timer and the check the route count in neighbour st.wait(15) if not utils.poll_wait(bgpapi.verify_bgp_neighborship, 120, topo.dut_list[0], family="ipv6", shell="sonic", neighbor=self.local_topo['dut2_addr_ipv6'], state='Established', asn=self.local_topo['dut1_as']): utils.exec_all(True, [[bgpapi.show_bgp_ipv6_neighbor_vtysh, topo.dut_list[0]], [bgpapi.show_bgp_ipv6_neighbor_vtysh, topo.dut_list[1]]]) st.error("BGP Neighbor failed to Establish between DUT1 and TG") st.log("{} - Neighbor {} is failed to Establish".format(topo.dut_list[0], self.local_topo['dut2_addr_ipv6'])) result = False bgp_summary_spine_after_update_timer = bgpapi.show_bgp_ipv6_summary(topo.dut_list[0]) rib_entries_after_update_timer = bgp_summary_spine_after_update_timer[0]['ribentries'] st.log('RIB Entries after update delay timer expiry : {}'.format(rib_entries_after_update_timer)) if int(rib_entries_after_update_timer) < 1000: st.error('Routes are not advertised to peer DUT, even after the update delay timer expiry') tc_fail_flag = 1 st.log("Initiating the Ipv6 traffic for those Routes from TG connected to DUT1") src_handle = 'handle' if tg_ob.tg_type == 'ixia': src_handle = 'ipv6_handle' tr1 = tg_ob.tg_traffic_config(port_handle=topo['T1{}P1_ipv6_tg_ph'.format(TG_D1)], emulation_src_handle=topo['T1{}P1_ipv6_tg_ih'.format(TG_D1)][src_handle], emulation_dst_handle=bgp_route['handle'], circuit_endpoint_type='ipv6', mode='create', transmit_mode='single_burst', pkts_per_burst='2000', length_mode='fixed', rate_pps=1000) stream_id1 = tr1['stream_id'] tg_ob.tg_traffic_control(action='run', handle=stream_id1) st.wait(20) tg1_stats = tgapi.get_traffic_stats(tg_ob, port_handle=topo["T1{}P1_ipv6_tg_ph".format(TG_D2)]) tg2_stats = tgapi.get_traffic_stats(tg_ob, port_handle=topo["T1{}P1_ipv6_tg_ph".format(TG_D1)]) if not (int(tg2_stats.tx.total_packets) and int(tg1_stats.rx.total_packets)): st.error('Received ZERO stats.') tc_fail_flag = 1 else: percent_rx = float(int(tg1_stats.rx.total_packets) - int(tg2_stats.tx.total_packets)) / int( tg2_stats.tx.total_packets) * 100 st.log('tg1_stats.rx.total_packets : {}'.format(tg1_stats.rx.total_packets)) st.log('tg2_stats.tx.total_packets : {}'.format(tg2_stats.tx.total_packets)) st.log('percent_rx : {}'.format(percent_rx)) if int(tg1_stats.rx.total_packets) < int(tg2_stats.tx.total_packets)*0.95: tc_fail_flag = 1 tg_ob.tg_emulation_bgp_control(handle=bgp_handle['handle'], mode='stop') if tc_fail_flag: st.report_fail("traffic_verification_failed") st.report_pass('test_case_passed') # below API will change routing mode to split and save the sonic config. bgpapi.enable_docker_routing_config_mode(dut=topo.dut_list[0]) st.vtysh(topo.dut_list[0], "copy running-config startup-config") st.reboot(topo.dut_list[0], 'fast') st.wait(3) if not utils.poll_wait(bgpapi.verify_ipv6_bgp_summary, 120, topo.dut_list[0], neighbor=self.local_topo['dut2_addr_ipv6'], state='500'): utils.exec_all(True, [[bgpapi.show_bgp_ipv6_neighbor_vtysh, topo.dut_list[0]], [bgpapi.show_bgp_ipv6_neighbor_vtysh, topo.dut_list[1]]]) st.error("BGP Neighbor failed to Establish between DUT1 and DUT2") st.log("{} - Neighbor {} is failed to Establish".format(topo.dut_list[0], self.local_topo['dut2_addr_ipv6'])) result = False bgp_summary_spine_after_update_timer = bgpapi.show_bgp_ipv6_summary(topo.dut_list[0]) rib_entries_after_update_timer = bgp_summary_spine_after_update_timer[0]['ribentries'] st.log('RIB Entries after reboot : {}'.format(rib_entries_after_update_timer)) # without BGP helper, after reboot, no routes sent by DUT2 will be seen in dut1. if int(rib_entries_after_update_timer) < 500: st.error('Routes are not advertised to peer DUT, even after the update delay timer expiry') tc_fail_flag = 1 if tc_fail_flag: st.report_fail("traffic_verification_failed") st.report_pass('test_case_passed') # testcase: FtOtSoRtBgpPlFn002, Verify ipv6 route aggregation. def test_route_aggregate_ipv6(self, bgp_ipvx_route_adv_filter_fixture): limit = 3 ip6_rt_list = ["2018:3:1::/64", "2018:3:2::/64", "2018:3:3::/64", "2018:3:4::/64"] ip6_adr_list = ["2019:1::1", "2019:2::1", "2019:3::1", "2019:4::1"] aggr_addr = "2018:3::/32" for i in range(0, limit): ipapi.create_static_route(self.local_topo['dut1'], 'blackhole', ip6_rt_list[i], family='ipv6') # configure aggregate address prefix bgpapi.create_bgp_aggregate_address(self.local_topo['dut1'], local_asn=self.local_topo['dut1_as'], address_range=aggr_addr, summary=True, family="ipv6", config="add",cli_type=bgp_cli_type) my_cmd = 'router bgp\n' my_cmd += 'address-family ipv6 unicast\n' my_cmd += 'redistribute static\n' my_cmd += 'end' st.vtysh_config(self.local_topo['dut1'], my_cmd) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut1'], family='ipv6') output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv6', select=['network', 'as_path', 'next_hop']) list_of_learned_routes_on_dut2_by_dut = list(x['network'] for x in output) if set(ip6_rt_list).isdisjoint(set(list_of_learned_routes_on_dut2_by_dut)): st.log("Routes falling under aggregate prefix are not distributed") aggregation = True else: st.log("Routes falling under aggregate prefix are distributed") aggregation = False if (aggr_addr in list_of_learned_routes_on_dut2_by_dut) and aggregation: st.log("Aggregation happened") result = True else: st.log("Aggregation not happened") result = False bgpapi.create_bgp_aggregate_address(self.local_topo['dut1'], local_asn=self.local_topo['dut1_as'], address_range=aggr_addr, summary=True, family="ipv6", config="delete",cli_type=bgp_cli_type) for i in range(0, limit): ipapi.delete_static_route(self.local_topo['dut1'], 'blackhole', ip6_rt_list[i], family='ipv6') my_cmd = 'router bgp\n' my_cmd += 'address-family ipv6 unicast\n' my_cmd += 'no redistribute static\n' my_cmd += 'end' st.vtysh_config(self.local_topo['dut1'], my_cmd) if result: st.report_pass("test_case_passed") else: st.report_fail("test_case_failed") # testcase: FtOtSoRtBgpPlFn005, verify static blackhole route redistribution with metric set in route-map def test_static_blackhole_rt_redistribute_with_routemap_ipv6(self, bgp_ipvx_route_adv_filter_fixture): ipapi.create_static_route(self.local_topo['dut1'], 'Null0', '2012:1::/64', family='ipv6') ipapi.config_route_map(dut=self.local_topo['dut1'], route_map='rmap_blackhole', config='yes', sequence='10', metric='50') my_cmd = 'router bgp\n' my_cmd += 'address-family ipv6 unicast\n' my_cmd += 'redistribute static route-map rmap_blackhole\n' my_cmd += 'end' st.vtysh_config(self.local_topo['dut1'], my_cmd) output = bgpapi.fetch_ip_bgp_route(self.local_topo['dut2'], family='ipv6', select=['network', 'as_path', 'metric']) metric = bgplib.get_route_attribute(output, 'metric', network = '2012:1::/64') if metric == '50': st.log('static blackhole route with metric 50 redistributed from dut1 to dut2') result = True else: st.log('static blackhole route is not learned on dut2') result = False my_cmd = 'router bgp\n' my_cmd += 'address-family ipv6 unicast\n' my_cmd += 'no redistribute static route-map rmap_blackhole\n' my_cmd += 'end' st.vtysh_config(self.local_topo['dut1'], my_cmd) ipapi.config_route_map(dut=self.local_topo['dut1'], route_map='rmap_blackhole', config='no', sequence='10', metric='50') ipapi.delete_static_route(self.local_topo['dut1'], 'Null0', '2012:1::/64', family='ipv6') if result: st.report_pass("test_case_passed") else: st.report_fail("test_case_failed") """ BGP IPv4 and IPv6 router distribution and filtering TCs: End """ """ BGP Neighbor over VE over LAG fixture, class and test cases - START """ def bgp_ve_lag_pre_config(): global topo st.banner("BGP VE LAG CLASS CONFIG - START") # underlay config - configure ve over lag bgplib.l3tc_underlay_config_unconfig(config='yes', config_type='veLag') # config ip on underlay interface bgplib.l3tc_vrfipv4v6_address_leafspine_config_unconfig(config='yes', config_type='all') # Ping Verification if not bgplib.l3tc_vrfipv4v6_address_leafspine_ping_test(config_type='all', ping_count=3): st.error("Ping failed in between Spine - Leaf") st.report_fail('test_case_failed') bgplib.l3tc_vrfipv4v6_address_leafspine_bgp_config(config='yes') bgplib.l3tc_vrfipv4v6_address_leafspine_tg_bgp_config(config='yes', config_type='all', class_reconfig='Yes') st.wait(10) # BGP Neighbour Verification if not utils.poll_wait(bgplib.l3tc_vrfipv4v6_address_leafspine_bgp_check, 10, config_type='all'): st.error("Neighbour is failed to Establish between Spine - Leaf") st.report_fail('test_case_failed') st.log("Getting all topology info related to connectivity / TG and other parameters between duts") topo = bgplib.get_leaf_spine_topology_info() st.banner("BGP VE LAG CLASS CONFIG - END") def bgp_ve_lag_pre_config_cleanup(): st.banner("BGP VE LAG CLASS CONFIG CLEANUP - START") bgplib.l3tc_vrfipv4v6_address_leafspine_bgp_config(config='no', config_type='veLag') bgplib.l3tc_vrfipv4v6_address_leafspine_config_unconfig(config='no') bgplib.l3tc_underlay_config_unconfig(config='no', config_type='veLag') st.banner("BGP VE LAG CLASS CONFIG CLEANUP - END") @pytest.fixture(scope='class') def bgp_ve_lag_class_hook(request): bgp_ve_lag_pre_config() yield bgp_ve_lag_pre_config_cleanup() # TestBGPVeLag Class @pytest.mark.usefixtures('bgp_ve_lag_class_hook') class TestBGPVeLag(TestBGPCommon): # test v4 and v6 neighbors @pytest.mark.bgp_clear @pytest.mark.bgp_ft # tests both v4 and v6 neighbors def test_ft_bgp_clear(self): TestBGPCommon.ft_bgp_clear(self) # tests both v4 and v6 neighbors @pytest.mark.bgp_traffic @pytest.mark.bgp_ft def test_ft_bgp_peer_traffic_check(self): TestBGPCommon.ft_bgp_peer_traffic_check(self) """ BGP Neighbor over VE over LAG fixture, class and test cases - END """ """ BGP Neighbor over L3 over LAG fixture, class and test cases - START """ def bgp_l3_lag_pre_config(): global topo st.banner("BGP L3 OVER LAG CLASS CONFIG - START") # underlay config - configure ve over lag bgplib.l3tc_underlay_config_unconfig(config='yes', config_type='l3Lag') # config ip on underlay interface bgplib.l3tc_vrfipv4v6_address_leafspine_config_unconfig(config='yes', config_type='all') # Ping Verification if not bgplib.l3tc_vrfipv4v6_address_leafspine_ping_test(config_type='all', ping_count=3): st.error("Ping failed in between Spine - Leaf") st.report_fail('test_case_failed') bgplib.l3tc_vrfipv4v6_address_leafspine_bgp_config(config='yes') bgplib.l3tc_vrfipv4v6_address_leafspine_tg_bgp_config(config='yes', config_type='all', class_reconfig='Yes') st.wait(10) # BGP Neighbour Verification if not utils.poll_wait(bgplib.l3tc_vrfipv4v6_address_leafspine_bgp_check, 10, config_type='all'): st.error("Neighbour is failed to Establish between Spine - Leaf") st.report_fail('test_case_failed') st.log("Getting all topology info related to connectivity / TG and other parameters between duts") topo = bgplib.get_leaf_spine_topology_info() st.banner("BGP L3 LAG CLASS CONFIG - END") def bgp_l3_lag_pre_config_cleanup(): st.banner("BGP L3 OVER LAG CLASS CONFIG CLEANUP - START") bgplib.l3tc_vrfipv4v6_address_leafspine_bgp_config(config='no') bgplib.l3tc_vrfipv4v6_address_leafspine_config_unconfig(config='no') bgpapi.cleanup_bgp_config(st.get_dut_names()) ipapi.clear_ip_configuration(st.get_dut_names(), family='all', thread=True) bgplib.l3tc_underlay_config_unconfig(config='no', config_type='l3Lag') st.banner("BGP L3 OVER LAG CLASS CONFIG CLEANUP - END") @pytest.fixture(scope='class') def bgp_l3_lag_class_hook(request): bgp_l3_lag_pre_config() yield bgp_l3_lag_pre_config_cleanup() # TestBGPVeLag Class @pytest.mark.usefixtures('bgp_l3_lag_class_hook') class TestBGPL3Lag(TestBGPCommon): @pytest.mark.bgp_l3lag_traffic def test_ft_bgp_l3lag_peer_traffic_check(self): TestBGPCommon.ft_bgp_peer_traffic_check(self) """ BGP Neighbor In L3 Over LAG fixture, class and test cases - END """
py
1a425189439cb30efdad99acf3139eecdd9e0091
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # *****************************************************************************\ import torch import random import common.layers as layers from common.utils import load_wav_to_torch, load_filepaths_and_text, to_gpu class MelAudioLoader(torch.utils.data.Dataset): """ 1) loads audio,text pairs 2) computes mel-spectrograms from audio files. """ def __init__(self, dataset_path, audiopaths_and_text, args): self.audiopaths_and_text = load_filepaths_and_text(dataset_path, audiopaths_and_text) self.max_wav_value = args.max_wav_value self.sampling_rate = args.sampling_rate self.stft = layers.TacotronSTFT( args.filter_length, args.hop_length, args.win_length, args.n_mel_channels, args.sampling_rate, args.mel_fmin, args.mel_fmax) self.segment_length = args.segment_length random.seed(1234) random.shuffle(self.audiopaths_and_text) def get_mel_audio_pair(self, filename): audio, sampling_rate = load_wav_to_torch(filename) if sampling_rate != self.stft.sampling_rate: raise ValueError("{} {} SR doesn't match target {} SR".format( sampling_rate, self.stft.sampling_rate)) # Take segment if audio.size(0) >= self.segment_length: max_audio_start = audio.size(0) - self.segment_length audio_start = random.randint(0, max_audio_start) audio = audio[audio_start:audio_start+self.segment_length] else: audio = torch.nn.functional.pad( audio, (0, self.segment_length - audio.size(0)), 'constant').data audio = audio / self.max_wav_value audio_norm = audio.unsqueeze(0) audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False) melspec = self.stft.mel_spectrogram(audio_norm) melspec = melspec.squeeze(0) return (melspec, audio, len(audio)) def __getitem__(self, index): return self.get_mel_audio_pair(self.audiopaths_and_text[index][0]) def __len__(self): return len(self.audiopaths_and_text) def batch_to_gpu(batch): x, y, len_y = batch x = to_gpu(x).float() y = to_gpu(y).float() len_y = to_gpu(torch.sum(len_y)) return ((x, y), y, len_y)
py
1a425278ac72b47d6e46ca28040633ae5f131fc4
from typing import List, Optional, Tuple import torch import torch.nn as nn from kornia.utils.helpers import _torch_svd_cast __all__ = ["zca_mean", "zca_whiten", "linear_transform", "ZCAWhitening"] class ZCAWhitening(nn.Module): r"""Compute the ZCA whitening matrix transform and the mean vector and applies the transform to the data. The data tensor is flattened, and the mean :math:`\mathbf{\mu}` and covariance matrix :math:`\mathbf{\Sigma}` are computed from the flattened data :math:`\mathbf{X} \in \mathbb{R}^{N \times D}`, where :math:`N` is the sample size and :math:`D` is flattened dimensionality (e.g. for a tensor with size 5x3x2x2 :math:`N = 5` and :math:`D = 12`). The ZCA whitening transform is given by: .. math:: \mathbf{X}_{\text{zca}} = (\mathbf{X - \mu})(US^{-\frac{1}{2}}U^T)^T where :math:`U` are the eigenvectors of :math:`\Sigma` and :math:`S` contain the corresponding eigenvalues of :math:`\Sigma`. After the transform is applied, the output is reshaped to same shape. args: dim: Determines the dimension that represents the samples axis. eps: a small number used for numerical stability. unbiased: Whether to use the biased estimate of the covariance matrix. compute_inv: Compute the inverse transform matrix. detach_transforms: Detaches gradient from the ZCA fitting. shape: - x: :math:`(D_0,...,D_{\text{dim}},...,D_N)` is a batch of N-D tensors. - x_whiten: :math:`(D_0,...,D_{\text{dim}},...,D_N)` same shape as input. .. note:: See a working example `here <https://colab.sandbox.google.com/github/kornia/tutorials/ blob/master/source/zca_whitening.ipynb>`__. Examples: >>> x = torch.tensor([[0,1],[1,0],[-1,0],[0,-1]], dtype = torch.float32) >>> zca = ZCAWhitening().fit(x) >>> x_whiten = zca(x) >>> zca = ZCAWhitening() >>> x_whiten = zca(x, include_fit = True) # Includes the fitting step >>> x_whiten = zca(x) # Can run now without the fitting set >>> # Enable backprop through ZCA fitting process >>> zca = ZCAWhitening(detach_transforms = False) >>> x_whiten = zca(x, include_fit = True) # Includes the fitting step Note: This implementation uses :py:meth:`~torch.svd` which yields NaNs in the backwards step if the singular values are not unique. See `here <https://pytorch.org/docs/stable/torch.html#torch.svd>`_ for more information. References: [1] `Stanford PCA & ZCA whitening tutorial <http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/>`_ """ def __init__( self, dim: int = 0, eps: float = 1e-6, unbiased: bool = True, detach_transforms: bool = True, compute_inv: bool = False, ) -> None: super().__init__() self.dim = dim self.eps = eps self.unbiased = unbiased self.detach_transforms = detach_transforms self.compute_inv = compute_inv self.fitted = False def fit(self, x: torch.Tensor): r"""Fit ZCA whitening matrices to the data. Args: x: Input data. returns: Returns a fitted ZCAWhiten object instance. """ T, mean, T_inv = zca_mean(x, self.dim, self.unbiased, self.eps, self.compute_inv) self.mean_vector: torch.Tensor = mean self.transform_matrix: torch.Tensor = T if T_inv is None: self.transform_inv: Optional[torch.Tensor] = torch.empty([0]) else: self.transform_inv = T_inv if self.detach_transforms: self.mean_vector = self.mean_vector.detach() self.transform_matrix = self.transform_matrix.detach() self.transform_inv = self.transform_inv.detach() self.fitted = True return self def forward(self, x: torch.Tensor, include_fit: bool = False) -> torch.Tensor: r"""Apply the whitening transform to the data. Args: x: Input data. include_fit: Indicates whether to fit the data as part of the forward pass. Returns: The transformed data. """ if include_fit: self.fit(x) if not self.fitted: raise RuntimeError("Needs to be fitted first before running. Please call fit or set include_fit to True.") x_whiten = linear_transform(x, self.transform_matrix, self.mean_vector, self.dim) return x_whiten def inverse_transform(self, x: torch.Tensor) -> torch.Tensor: r"""Apply the inverse transform to the whitened data. Args: x: Whitened data. Returns: Original data. """ if not self.fitted: raise RuntimeError("Needs to be fitted first before running. Please call fit or set include_fit to True.") if not self.compute_inv: raise RuntimeError("Did not compute inverse ZCA. Please set compute_inv to True") mean_inv: torch.Tensor = -self.mean_vector.mm(self.transform_matrix) # type: ignore y = linear_transform(x, self.transform_inv, mean_inv) # type: ignore return y def zca_mean( inp: torch.Tensor, dim: int = 0, unbiased: bool = True, eps: float = 1e-6, return_inverse: bool = False ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: r"""Compute the ZCA whitening matrix and mean vector. The output can be used with :py:meth:`~kornia.color.linear_transform`. See :class:`~kornia.color.ZCAWhitening` for details. Args: inp: input data tensor. dim: Specifies the dimension that serves as the samples dimension. unbiased: Whether to use the unbiased estimate of the covariance matrix. eps: a small number used for numerical stability. return_inverse: Whether to return the inverse ZCA transform. Shapes: - inp: :math:`(D_0,...,D_{\text{dim}},...,D_N)` is a batch of N-D tensors. - transform_matrix: :math:`(\Pi_{d=0,d\neq \text{dim}}^N D_d, \Pi_{d=0,d\neq \text{dim}}^N D_d)` - mean_vector: :math:`(1, \Pi_{d=0,d\neq \text{dim}}^N D_d)` - inv_transform: same shape as the transform matrix Returns: A tuple containing the ZCA matrix and the mean vector. If return_inverse is set to True, then it returns the inverse ZCA matrix, otherwise it returns None. .. note:: See a working example `here <https://colab.sandbox.google.com/github/kornia/tutorials/ blob/master/source/zca_whitening.ipynb>`__. Examples: >>> x = torch.tensor([[0,1],[1,0],[-1,0],[0,-1]], dtype = torch.float32) >>> transform_matrix, mean_vector,_ = zca_mean(x) # Returns transformation matrix and data mean >>> x = torch.rand(3,20,2,2) >>> transform_matrix, mean_vector, inv_transform = zca_mean(x, dim = 1, return_inverse = True) >>> # transform_matrix.size() equals (12,12) and the mean vector.size equal (1,12) """ if not isinstance(inp, torch.Tensor): raise TypeError(f"Input type is not a torch.Tensor. Got {type(inp)}") if not isinstance(eps, float): raise TypeError(f"eps type is not a float. Got{type(eps)}") if not isinstance(unbiased, bool): raise TypeError(f"unbiased type is not bool. Got{type(unbiased)}") if not isinstance(dim, int): raise TypeError(f"Argument 'dim' must be of type int. Got {type(dim)}") if not isinstance(return_inverse, bool): raise TypeError(f"Argument return_inverse must be of type bool {type(return_inverse)}") inp_size = inp.size() if dim >= len(inp_size) or dim < -len(inp_size): raise IndexError( "Dimension out of range (expected to be in range of [{},{}], but got {}".format( -len(inp_size), len(inp_size) - 1, dim ) ) if dim < 0: dim = len(inp_size) + dim feat_dims = torch.cat([torch.arange(0, dim), torch.arange(dim + 1, len(inp_size))]) new_order: List[int] = torch.cat([torch.tensor([dim]), feat_dims]).tolist() inp_permute = inp.permute(new_order) N = inp_size[dim] feature_sizes = torch.tensor(inp_size[0:dim] + inp_size[dim + 1::]) num_features: int = int(torch.prod(feature_sizes).item()) mean: torch.Tensor = torch.mean(inp_permute, dim=0, keepdim=True) mean = mean.reshape((1, num_features)) inp_center_flat: torch.Tensor = inp_permute.reshape((N, num_features)) - mean cov = inp_center_flat.t().mm(inp_center_flat) if unbiased: cov = cov / float(N - 1) else: cov = cov / float(N) U, S, _ = _torch_svd_cast(cov) S = S.reshape(-1, 1) S_inv_root: torch.Tensor = torch.rsqrt(S + eps) T: torch.Tensor = (U).mm(S_inv_root * U.t()) T_inv: Optional[torch.Tensor] = None if return_inverse: T_inv = (U).mm(torch.sqrt(S + eps) * U.t()) return T, mean, T_inv def zca_whiten(inp: torch.Tensor, dim: int = 0, unbiased: bool = True, eps: float = 1e-6) -> torch.Tensor: r"""Apply ZCA whitening transform. See :class:`~kornia.color.ZCAWhitening` for details. Args: inp: input data tensor. dim: Specifies the dimension that serves as the samples dimension. unbiased: Whether to use the unbiased estimate of the covariance matrix. eps: a small number used for numerical stability. Returns: Whiten Input data. .. note:: See a working example `here <https://colab.sandbox.google.com/github/kornia/tutorials/ blob/master/source/zca_whitening.ipynb>`__. Examples: >>> x = torch.tensor([[0,1],[1,0],[-1,0]], dtype = torch.float32) >>> zca_whiten(x) tensor([[ 0.0000, 1.1547], [ 1.0000, -0.5773], [-1.0000, -0.5773]]) """ if not isinstance(inp, torch.Tensor): raise TypeError(f"Input type is not a torch.Tensor. Got {type(inp)}") if not isinstance(eps, float): raise TypeError(f"eps type is not a float. Got{type(eps)}") if not isinstance(unbiased, bool): raise TypeError(f"unbiased type is not bool. Got{type(unbiased)}") if not isinstance(dim, int): raise TypeError(f"Argument 'dim' must be of type int. Got {type(dim)}") transform, mean, _ = zca_mean(inp, dim, unbiased, eps, False) inp_whiten = linear_transform(inp, transform, mean, dim) return inp_whiten def linear_transform( inp: torch.Tensor, transform_matrix: torch.Tensor, mean_vector: torch.Tensor, dim: int = 0 ) -> torch.Tensor: r""" Given a transformation matrix and a mean vector, this function will flatten the input tensor along the given dimension and subtract the mean vector from it. Then the dot product with the transformation matrix will be computed and then the resulting tensor is reshaped to the original input shape. .. math:: \mathbf{X}_{T} = (\mathbf{X - \mu})(T) Args: inp: Input data :math:`X`. transform_matrix: Transform matrix :math:`T`. mean_vector: mean vector :math:`\mu`. dim: Batch dimension. Shapes: - inp: :math:`(D_0,...,D_{\text{dim}},...,D_N)` is a batch of N-D tensors. - transform_matrix: :math:`(\Pi_{d=0,d\neq \text{dim}}^N D_d, \Pi_{d=0,d\neq \text{dim}}^N D_d)` - mean_vector: :math:`(1, \Pi_{d=0,d\neq \text{dim}}^N D_d)` Returns: Transformed data. Example: >>> # Example where dim = 3 >>> inp = torch.ones((10,3,4,5)) >>> transform_mat = torch.ones((10*3*4,10*3*4)) >>> mean = 2*torch.ones((1,10*3*4)) >>> out = linear_transform(inp, transform_mat, mean, 3) >>> print(out.shape, out.unique()) # Should a be (10,3,4,5) tensor of -120s torch.Size([10, 3, 4, 5]) tensor([-120.]) >>> # Example where dim = 0 >>> inp = torch.ones((10,2)) >>> transform_mat = torch.ones((2,2)) >>> mean = torch.zeros((1,2)) >>> out = linear_transform(inp, transform_mat, mean) >>> print(out.shape, out.unique()) # Should a be (10,2) tensor of 2s torch.Size([10, 2]) tensor([2.]) """ inp_size = inp.size() if dim >= len(inp_size) or dim < -len(inp_size): raise IndexError( "Dimension out of range (expected to be in range of [{},{}], but got {}".format( -len(inp_size), len(inp_size) - 1, dim ) ) if dim < 0: dim = len(inp_size) + dim feat_dims = torch.cat([torch.arange(0, dim), torch.arange(dim + 1, len(inp_size))]) perm = torch.cat([torch.tensor([dim]), feat_dims]) perm_inv = torch.argsort(perm) new_order: List[int] = perm.tolist() inv_order: List[int] = perm_inv.tolist() feature_sizes = torch.tensor(inp_size[0:dim] + inp_size[dim + 1::]) num_features: int = int(torch.prod(feature_sizes).item()) inp_permute = inp.permute(new_order) inp_flat = inp_permute.reshape((-1, num_features)) inp_center = inp_flat - mean_vector inp_transformed = inp_center.mm(transform_matrix) inp_transformed = inp_transformed.reshape(inp_permute.size()) inp_transformed = inp_transformed.permute(inv_order) return inp_transformed
py
1a4252aaa513dd338112af0574ffa391ec8016f3
import collections import claripy class SimVariable(object): __slots__ = ['ident', 'name', 'region', 'category'] def __init__(self, ident=None, name=None, region=None, category=None): """ :param ident: A unique identifier provided by user or the program. Usually a string. :param str name: Name of this variable. """ self.ident = ident self.name = name self.region = region if region is not None else "" self.category = category @property def phi(self): return False class SimConstantVariable(SimVariable): __slots__ = ['value', '_hash'] def __init__(self, ident=None, value=None, region=None): super(SimConstantVariable, self).__init__(ident=ident, region=region) self.value = value self._hash = None def __repr__(self): s = "<%s|const %s>" % (self.region, self.value) return s def __eq__(self, other): if not isinstance(other, SimConstantVariable): return False if self.value is None or other.value is None: # they may or may not represent the same constant. return not equal to be safe return False return self.ident == other.ident and self.value == other.value and self.region == other.region def __hash__(self): if self._hash is None: self._hash = hash(('const', self.value, self.ident, self.region, self.ident)) return self._hash class SimTemporaryVariable(SimVariable): __slots__ = ['tmp_id', '_hash'] def __init__(self, tmp_id): SimVariable.__init__(self) self.tmp_id = tmp_id self._hash = None def __repr__(self): s = "<tmp %d>" % (self.tmp_id) return s def __hash__(self): if self._hash is None: self._hash = hash('tmp_%d' % (self.tmp_id)) return self._hash def __eq__(self, other): if isinstance(other, SimTemporaryVariable): return hash(self) == hash(other) return False class SimRegisterVariable(SimVariable): __slots__ = ['reg', 'size', '_hash'] def __init__(self, reg_offset, size, ident=None, name=None, region=None, category=None): SimVariable.__init__(self, ident=ident, name=name, region=region, category=category) self.reg = reg_offset self.size = size self._hash = None def __repr__(self): ident_str = "[%s]" % self.ident if self.ident else "" region_str = hex(self.region) if isinstance(self.region, int) else self.region phi_str = ("phi(%s)|" % (",".join(v.ident for v in self.variables))) if self.phi else "" #pylint:disable=no-member s = "<%s%s%s|Reg %s, %sB>" % (phi_str, region_str, ident_str, self.reg, self.size) return s def __hash__(self): if self._hash is None: self._hash = hash(('reg', self.region, self.reg, self.size, self.ident)) return self._hash def __eq__(self, other): if isinstance(other, SimRegisterVariable): return self.ident == other.ident and \ self.name == other.name and \ self.reg == other.reg and \ self.size == other.size and \ self.region == other.region and \ self.phi == other.phi return False class SimRegisterVariablePhi(SimRegisterVariable): __slots__ = ['variables', '_hash'] def __init__(self, ident=None, name=None, region=None, variables=None): var = next(iter(variables)) reg_offset = var.reg size = var.size super(SimRegisterVariablePhi, self).__init__(reg_offset, size, ident=ident, name=name, region=region) self.variables = set(variables) self._hash = None def __hash__(self): if self._hash is None: self._hash = hash((self.name, self.region, self.size, self.ident, tuple(self.variables))) return self._hash def __eq__(self, other): if type(other) is not SimRegisterVariablePhi: return False return self.ident == other.ident and \ self.variables == other.variables and \ self.name == other.name and \ self.region == other.region and \ self.size == other.size @property def phi(self): return True class SimMemoryVariable(SimVariable): __slots__ = ['addr', 'size', '_hash'] def __init__(self, addr, size, ident=None, name=None, region=None, category=None): SimVariable.__init__(self, ident=ident, name=name, region=region, category=category) self.addr = addr if isinstance(size, claripy.ast.BV) and not size.symbolic: # Convert it to a concrete number size = size._model_concrete.value self.size = size self._hash = None def __repr__(self): if type(self.size) is int: size = '%d' % self.size else: size = '%s' % self.size if type(self.addr) is int: s = "<%s|Mem %#x %s>" % (self.region, self.addr, size) else: s = "<%s|Mem %s %s>" % (self.region, self.addr, size) return s def __hash__(self): if self._hash is not None: return self._hash if isinstance(self.addr, AddressWrapper): addr_hash = hash(self.addr) elif type(self.addr) is int: addr_hash = self.addr elif self.addr._model_concrete is not self.addr: addr_hash = hash(self.addr._model_concrete) elif self.addr._model_vsa is not self.addr: addr_hash = hash(self.addr._model_vsa) elif self.addr._model_z3 is not self.addr: addr_hash = hash(self.addr._model_z3) else: addr_hash = hash(self.addr) self._hash = hash((addr_hash, hash(self.size), self.ident)) return self._hash def __eq__(self, other): if isinstance(other, SimMemoryVariable): return self.ident == other.ident and \ self.addr == other.addr and \ self.name == other.name and \ self.size == other.size and \ self.phi == other.phi return False class SimMemoryVariablePhi(SimMemoryVariable): __slots__ = ['variables', '_hash'] def __init__(self, ident=None, name=None, region=None, variables=None): var = next(iter(variables)) addr = var.addr size = var.size super(SimMemoryVariablePhi, self).__init__(addr, size, ident=ident, name=name, region=region) self.variables = set(variables) self._hash = None def __hash__(self): if self._hash is None: self._hash = hash((self.name, self.region, self.size, self.ident, tuple(self.variables))) return self._hash def __eq__(self, other): if type(other) is not SimMemoryVariablePhi: return False return self.ident == other.ident and \ self.variables == other.variables and \ self.addr == other.addr and \ self.name == other.name and \ self.region == other.region and \ self.size == other.size @property def phi(self): return True class SimStackVariable(SimMemoryVariable): __slots__ = ['base', 'offset'] def __init__(self, offset, size, base='sp', base_addr=None, ident=None, name=None, region=None, category=None): if offset > 0x1000000 and isinstance(offset, int): # I don't think any positive stack offset will be greater than that... # convert it to a negative number mask = (1 << offset.bit_length()) - 1 offset = - ((0 - offset) & mask) if base_addr is not None: addr = offset + base_addr else: # TODO: this is not optimal addr = offset super(SimStackVariable, self).__init__(addr, size, ident=ident, name=name, region=region, category=category) self.base = base self.offset = offset def __repr__(self): if type(self.size) is int: size = '%d' % self.size else: size = '%s' % self.size prefix = "%s(stack)" % self.name if self.name is not None else "Stack" ident = "[%s]" % self.ident if self.ident else "" region_str = hex(self.region) if isinstance(self.region, int) else self.region phi_str = "phi|" if self.phi else "" if type(self.offset) is int: if self.offset < 0: offset = "%#x" % self.offset elif self.offset > 0: offset = "+%#x" % self.offset else: offset = "" s = "<%s%s%s|%s %s%s, %s B>" % (phi_str, region_str, ident, prefix, self.base, offset, size) else: s = "<%s%s%s|%s %s%s, %s B>" % (phi_str, region_str, ident, prefix, self.base, self.addr, size) return s def __eq__(self, other): if type(other) is not SimStackVariable: return False return self.ident == other.ident and \ self.name == other.name and \ self.base == other.base and \ self.offset == other.offset and \ self.size == other.size and \ self.phi == other.phi def __hash__(self): return hash((self.ident, self.name, self.base, self.offset, self.size, self.phi)) class SimStackVariablePhi(SimStackVariable): __slots__ = ['variables', '_hash'] def __init__(self, ident=None, name=None, region=None, variables=None): var = next(iter(variables)) offset = var.addr size = var.size super(SimStackVariablePhi, self).__init__(offset, size, ident=ident, name=name, region=region) self.variables = set(variables) self._hash = None def __hash__(self): if self._hash is None: self._hash = hash((self.name, self.region, self.size, self.ident, tuple(self.variables))) return self._hash def __eq__(self, other): if type(other) is not SimStackVariablePhi: return False return self.ident == other.ident and \ self.variables == other.variables and \ self.addr == other.addr and \ self.name == other.name and \ self.region == other.region and \ self.size == other.size @property def phi(self): return True class SimVariableSet(collections.MutableSet): """ A collection of SimVariables. """ def __init__(self): self.register_variables = set() # For the sake of performance optimization, all elements in register_variables must be concrete integers which # representing register offsets.. # There shouldn't be any problem apart from GetI/PutI instructions. We simply ignore them for now. # TODO: Take care of register offsets that are not aligned to (arch.bytes) # TODO: arch.bits/what? That number has no power here anymore. self.register_variable_offsets = set() # memory_variables holds SimMemoryVariable objects self.memory_variables = set() # For the sake of performance, we have another set that stores memory addresses of memory_variables self.memory_variable_addresses = set() def add(self, item): if type(item) is SimRegisterVariable: if not self.contains_register_variable(item): self.add_register_variable(item) elif type(item) is SimMemoryVariable: if not self.contains_memory_variable(item): self.add_memory_variable(item) else: # TODO: raise Exception('WTF') def add_register_variable(self, reg_var): self.register_variables.add(reg_var) self.register_variable_offsets.add(reg_var.reg) def add_memory_variable(self, mem_var): self.memory_variables.add(mem_var) base_address = mem_var.addr.address # Dealing with AddressWrapper for i in range(mem_var.size): self.memory_variable_addresses.add(base_address + i) def discard(self, item): if type(item) is SimRegisterVariable: if self.contains_register_variable(item): self.discard_register_variable(item) elif isinstance(item, SimMemoryVariable): if self.contains_memory_variable(item): self.discard_memory_variable(item) else: # TODO: raise Exception('') def discard_register_variable(self, reg_var): self.register_variables.remove(reg_var) self.register_variable_offsets.remove(reg_var.reg) def discard_memory_variable(self, mem_var): self.memory_variables.remove(mem_var) for i in range(mem_var.size): self.memory_variable_addresses.remove(mem_var.addr.address + i) def __len__(self): return len(self.register_variables) + len(self.memory_variables) def __iter__(self): for i in self.register_variables: yield i for i in self.memory_variables: yield i def add_memory_variables(self, addrs, size): for a in addrs: var = SimMemoryVariable(a, size) self.add_memory_variable(var) def copy(self): s = SimVariableSet() s.register_variables |= self.register_variables s.register_variable_offsets |= self.register_variable_offsets s.memory_variables |= self.memory_variables s.memory_variable_addresses |= self.memory_variable_addresses return s def complement(self, other): """ Calculate the complement of `self` and `other`. :param other: Another SimVariableSet instance. :return: The complement result. """ s = SimVariableSet() s.register_variables = self.register_variables - other.register_variables s.register_variable_offsets = self.register_variable_offsets - other.register_variable_offsets s.memory_variables = self.memory_variables - other.memory_variables s.memory_variable_addresses = self.memory_variable_addresses - other.memory_variable_addresses return s def contains_register_variable(self, reg_var): reg_offset = reg_var.reg # TODO: Make sure reg_offset is aligned to machine-word length return reg_offset in self.register_variable_offsets def contains_memory_variable(self, mem_var): a = mem_var.addr if type(a) in (tuple, list): a = a[-1] return a in self.memory_variable_addresses def __ior__(self, other): # other must be a SimVariableSet self.register_variables |= other.register_variables self.register_variable_offsets |= other.register_variable_offsets self.memory_variables |= other.memory_variables self.memory_variable_addresses |= other.memory_variable_addresses def __contains__(self, item): if type(item) is SimRegisterVariable: return self.contains_register_variable(item) elif type(item) is SimMemoryVariable: # TODO: Make it better! return self.contains_memory_variable(item) else: __import__('ipdb').set_trace() raise Exception("WTF is this variable?") from .storage.memory import AddressWrapper
py
1a4252ded0a56b76cce0c3576ffc90326fe34909
"""Definitions for command-line (Click) commands for invoking Annif operations and printing the results to console.""" import collections import os.path import re import sys import click import click_log from flask import current_app from flask.cli import FlaskGroup, ScriptInfo import annif import annif.corpus import annif.parallel import annif.project import annif.registry from annif.project import Access from annif.suggestion import SuggestionFilter, ListSuggestionResult from annif.exception import ConfigurationException, NotSupportedException logger = annif.logger click_log.basic_config(logger) cli = FlaskGroup(create_app=annif.create_app, add_version_option=False) cli = click.version_option(message='%(version)s')(cli) def get_project(project_id): """ Helper function to get a project by ID and bail out if it doesn't exist""" try: return annif.registry.get_project(project_id, min_access=Access.private) except ValueError: click.echo( "No projects found with id \'{0}\'.".format(project_id), err=True) sys.exit(1) def open_documents(paths, docs_limit): """Helper function to open a document corpus from a list of pathnames, each of which is either a TSV file or a directory of TXT files. The corpus will be returned as an instance of DocumentCorpus or LimitingDocumentCorpus.""" def open_doc_path(path): """open a single path and return it as a DocumentCorpus""" if os.path.isdir(path): return annif.corpus.DocumentDirectory(path, require_subjects=True) return annif.corpus.DocumentFile(path) if len(paths) == 0: logger.warning('Reading empty file') docs = open_doc_path(os.path.devnull) elif len(paths) == 1: docs = open_doc_path(paths[0]) else: corpora = [open_doc_path(path) for path in paths] docs = annif.corpus.CombinedCorpus(corpora) if docs_limit is not None: docs = annif.corpus.LimitingDocumentCorpus(docs, docs_limit) return docs def parse_backend_params(backend_param, project): """Parse a list of backend parameters given with the --backend-param option into a nested dict structure""" backend_params = collections.defaultdict(dict) for beparam in backend_param: backend, param = beparam.split('.', 1) key, val = param.split('=', 1) validate_backend_params(backend, beparam, project) backend_params[backend][key] = val return backend_params def validate_backend_params(backend, beparam, project): if backend != project.config['backend']: raise ConfigurationException( 'The backend {} in CLI option "-b {}" not matching the project' ' backend {}.' .format(backend, beparam, project.config['backend'])) BATCH_MAX_LIMIT = 15 def generate_filter_batches(subjects): import annif.eval filter_batches = collections.OrderedDict() for limit in range(1, BATCH_MAX_LIMIT + 1): for threshold in [i * 0.05 for i in range(20)]: hit_filter = SuggestionFilter(subjects, limit, threshold) batch = annif.eval.EvaluationBatch(subjects) filter_batches[(limit, threshold)] = (hit_filter, batch) return filter_batches def set_project_config_file_path(ctx, param, value): """Override the default path or the path given in env by CLI option""" with ctx.ensure_object(ScriptInfo).load_app().app_context(): if value: current_app.config['PROJECTS_FILE'] = value def common_options(f): """Decorator to add common options for all CLI commands""" f = click.option( '-p', '--projects', help='Set path to projects.cfg', type=click.Path(dir_okay=False, exists=True), callback=set_project_config_file_path, expose_value=False, is_eager=True)(f) return click_log.simple_verbosity_option(logger)(f) def backend_param_option(f): """Decorator to add an option for CLI commands to override BE parameters""" return click.option( '--backend-param', '-b', multiple=True, help='Override backend parameter of the config file. ' + 'Syntax: "-b <backend>.<parameter>=<value>".')(f) @cli.command('list-projects') @common_options @click_log.simple_verbosity_option(logger, default='ERROR') def run_list_projects(): """ List available projects. """ template = "{0: <25}{1: <45}{2: <10}{3: <7}" header = template.format( "Project ID", "Project Name", "Language", "Trained") click.echo(header) click.echo("-" * len(header)) for proj in annif.registry.get_projects( min_access=Access.private).values(): click.echo(template.format( proj.project_id, proj.name, proj.language, str(proj.is_trained))) @cli.command('show-project') @click.argument('project_id') @common_options def run_show_project(project_id): """ Show information about a project. """ proj = get_project(project_id) click.echo(f'Project ID: {proj.project_id}') click.echo(f'Project Name: {proj.name}') click.echo(f'Language: {proj.language}') click.echo(f'Access: {proj.access.name}') click.echo(f'Trained: {proj.is_trained}') click.echo(f'Modification time: {proj.modification_time}') @cli.command('clear') @click.argument('project_id') @common_options def run_clear_project(project_id): """ Initialize the project to its original, untrained state. """ proj = get_project(project_id) proj.remove_model_data() @cli.command('loadvoc') @click.argument('project_id') @click.argument('subjectfile', type=click.Path(exists=True, dir_okay=False)) @common_options def run_loadvoc(project_id, subjectfile): """ Load a vocabulary for a project. """ proj = get_project(project_id) if annif.corpus.SubjectFileSKOS.is_rdf_file(subjectfile): # SKOS/RDF file supported by rdflib subjects = annif.corpus.SubjectFileSKOS(subjectfile, proj.language) else: # probably a TSV file subjects = annif.corpus.SubjectFileTSV(subjectfile) proj.vocab.load_vocabulary(subjects, proj.language) @cli.command('train') @click.argument('project_id') @click.argument('paths', type=click.Path(exists=True), nargs=-1) @click.option('--cached/--no-cached', '-c/-C', default=False, help='Reuse preprocessed training data from previous run') @click.option('--docs-limit', '-d', default=None, type=click.IntRange(0, None), help='Maximum number of documents to use') @click.option('--jobs', '-j', default=0, help='Number of parallel jobs (0 means choose automatically)') @backend_param_option @common_options def run_train(project_id, paths, cached, docs_limit, jobs, backend_param): """ Train a project on a collection of documents. """ proj = get_project(project_id) backend_params = parse_backend_params(backend_param, proj) if cached: if len(paths) > 0: raise click.UsageError( "Corpus paths cannot be given when using --cached option.") documents = 'cached' else: documents = open_documents(paths, docs_limit) proj.train(documents, backend_params, jobs) @cli.command('learn') @click.argument('project_id') @click.argument('paths', type=click.Path(exists=True), nargs=-1) @click.option('--docs-limit', '-d', default=None, type=click.IntRange(0, None), help='Maximum number of documents to use') @backend_param_option @common_options def run_learn(project_id, paths, docs_limit, backend_param): """ Further train an existing project on a collection of documents. """ proj = get_project(project_id) backend_params = parse_backend_params(backend_param, proj) documents = open_documents(paths, docs_limit) proj.learn(documents, backend_params) @cli.command('suggest') @click.argument('project_id') @click.option('--limit', '-l', default=10, help='Maximum number of subjects') @click.option('--threshold', '-t', default=0.0, help='Minimum score threshold') @backend_param_option @common_options def run_suggest(project_id, limit, threshold, backend_param): """ Suggest subjects for a single document from standard input. """ project = get_project(project_id) text = sys.stdin.read() backend_params = parse_backend_params(backend_param, project) hit_filter = SuggestionFilter(project.subjects, limit, threshold) hits = hit_filter(project.suggest(text, backend_params)) for hit in hits.as_list(project.subjects): click.echo( "<{}>\t{}\t{}".format( hit.uri, '\t'.join(filter(None, (hit.label, hit.notation))), hit.score)) @cli.command('index') @click.argument('project_id') @click.argument('directory', type=click.Path(exists=True, file_okay=False)) @click.option( '--suffix', '-s', default='.annif', help='File name suffix for result files') @click.option('--force/--no-force', '-f/-F', default=False, help='Force overwriting of existing result files') @click.option('--limit', '-l', default=10, help='Maximum number of subjects') @click.option('--threshold', '-t', default=0.0, help='Minimum score threshold') @backend_param_option @common_options def run_index(project_id, directory, suffix, force, limit, threshold, backend_param): """ Index a directory with documents, suggesting subjects for each document. Write the results in TSV files with the given suffix. """ project = get_project(project_id) backend_params = parse_backend_params(backend_param, project) hit_filter = SuggestionFilter(project.subjects, limit, threshold) for docfilename, dummy_subjectfn in annif.corpus.DocumentDirectory( directory, require_subjects=False): with open(docfilename, encoding='utf-8-sig') as docfile: text = docfile.read() subjectfilename = re.sub(r'\.txt$', suffix, docfilename) if os.path.exists(subjectfilename) and not force: click.echo( "Not overwriting {} (use --force to override)".format( subjectfilename)) continue with open(subjectfilename, 'w', encoding='utf-8') as subjfile: results = project.suggest(text, backend_params) for hit in hit_filter(results).as_list(project.subjects): line = "<{}>\t{}\t{}".format( hit.uri, '\t'.join(filter(None, (hit.label, hit.notation))), hit.score) click.echo(line, file=subjfile) @cli.command('eval') @click.argument('project_id') @click.argument('paths', type=click.Path(exists=True), nargs=-1) @click.option('--limit', '-l', default=10, help='Maximum number of subjects') @click.option('--threshold', '-t', default=0.0, help='Minimum score threshold') @click.option('--docs-limit', '-d', default=None, type=click.IntRange(0, None), help='Maximum number of documents to use') @click.option( '--results-file', '-r', type=click.File( 'w', encoding='utf-8', errors='ignore', lazy=True), help="""Specify file in order to write non-aggregated results per subject. File directory must exist, existing file will be overwritten.""") @click.option('--jobs', '-j', default=1, help='Number of parallel jobs (0 means all CPUs)') @backend_param_option @common_options def run_eval( project_id, paths, limit, threshold, docs_limit, results_file, jobs, backend_param): """ Analyze documents and evaluate the result. Compare the results of automated indexing against a gold standard. The path may be either a TSV file with short documents or a directory with documents in separate files. """ project = get_project(project_id) backend_params = parse_backend_params(backend_param, project) import annif.eval eval_batch = annif.eval.EvaluationBatch(project.subjects) if results_file: try: print('', end='', file=results_file) click.echo('Writing per subject evaluation results to {!s}'.format( results_file.name)) except Exception as e: raise NotSupportedException( "cannot open results-file for writing: " + str(e)) docs = open_documents(paths, docs_limit) jobs, pool_class = annif.parallel.get_pool(jobs) project.initialize(parallel=True) psmap = annif.parallel.ProjectSuggestMap( project.registry, [project_id], backend_params, limit, threshold) with pool_class(jobs) as pool: for hits, uris, labels in pool.imap_unordered( psmap.suggest, docs.documents): eval_batch.evaluate(hits[project_id], annif.corpus.SubjectSet((uris, labels))) template = "{0:<30}\t{1}" for metric, score in eval_batch.results(results_file=results_file).items(): click.echo(template.format(metric + ":", score)) @cli.command('optimize') @click.argument('project_id') @click.argument('paths', type=click.Path(exists=True), nargs=-1) @click.option('--docs-limit', '-d', default=None, type=click.IntRange(0, None), help='Maximum number of documents to use') @backend_param_option @common_options def run_optimize(project_id, paths, docs_limit, backend_param): """ Analyze documents, testing multiple limits and thresholds. Evaluate the analysis results for a directory with documents against a gold standard given in subject files. Test different limit/threshold values and report the precision, recall and F-measure of each combination of settings. """ project = get_project(project_id) backend_params = parse_backend_params(backend_param, project) filter_batches = generate_filter_batches(project.subjects) ndocs = 0 docs = open_documents(paths, docs_limit) for doc in docs.documents: raw_hits = project.suggest(doc.text, backend_params) hits = raw_hits.filter(project.subjects, limit=BATCH_MAX_LIMIT) assert isinstance(hits, ListSuggestionResult), \ "Optimize should only be done with ListSuggestionResult " + \ "as it would be very slow with VectorSuggestionResult." gold_subjects = annif.corpus.SubjectSet((doc.uris, doc.labels)) for hit_filter, batch in filter_batches.values(): batch.evaluate(hit_filter(hits), gold_subjects) ndocs += 1 click.echo("\t".join(('Limit', 'Thresh.', 'Prec.', 'Rec.', 'F1'))) best_scores = collections.defaultdict(float) best_params = {} template = "{:d}\t{:.02f}\t{:.04f}\t{:.04f}\t{:.04f}" # Store the batches in a list that gets consumed along the way # This way GC will have a chance to reclaim the memory filter_batches = list(filter_batches.items()) while filter_batches: params, filter_batch = filter_batches.pop(0) metrics = ['Precision (doc avg)', 'Recall (doc avg)', 'F1 score (doc avg)'] results = filter_batch[1].results(metrics=metrics) for metric, score in results.items(): if score >= best_scores[metric]: best_scores[metric] = score best_params[metric] = params click.echo( template.format( params[0], params[1], results['Precision (doc avg)'], results['Recall (doc avg)'], results['F1 score (doc avg)'])) click.echo() template2 = "Best {:>19}: {:.04f}\tLimit: {:d}\tThreshold: {:.02f}" for metric in metrics: click.echo( template2.format( metric, best_scores[metric], best_params[metric][0], best_params[metric][1])) click.echo("Documents evaluated:\t{}".format(ndocs)) @cli.command('hyperopt') @click.argument('project_id') @click.argument('paths', type=click.Path(exists=True), nargs=-1) @click.option('--docs-limit', '-d', default=None, type=click.IntRange(0, None), help='Maximum number of documents to use') @click.option('--trials', '-T', default=10, help='Number of trials') @click.option('--jobs', '-j', default=1, help='Number of parallel runs (0 means all CPUs)') @click.option('--metric', '-m', default='NDCG', help='Metric to optimize (default: NDCG)') @click.option( '--results-file', '-r', type=click.File( 'w', encoding='utf-8', errors='ignore', lazy=True), help="""Specify file path to write trial results as CSV. File directory must exist, existing file will be overwritten.""") @common_options def run_hyperopt(project_id, paths, docs_limit, trials, jobs, metric, results_file): """ Optimize the hyperparameters of a project using a validation corpus. """ proj = get_project(project_id) documents = open_documents(paths, docs_limit) click.echo(f"Looking for optimal hyperparameters using {trials} trials") rec = proj.hyperopt(documents, trials, jobs, metric, results_file) click.echo(f"Got best {metric} score {rec.score:.4f} with:") click.echo("---") for line in rec.lines: click.echo(line) click.echo("---") if __name__ == '__main__': cli()
py
1a425325b4e8ccc08d9c000a480051a02b043dcd
# Generated by Django 2.2.4 on 2020-08-27 03:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blogapp', '0008_auto_20200827_0849'), ] operations = [ migrations.AddField( model_name='post', name='snippet', field=models.CharField(default='Click the link to read the blog', max_length=255), ), ]
py
1a4253c4b65ace6e30949ace26e1a4047a99d38a
import os from setup import basedir class BaseConfig(object): SECRET_KEY = "SO_SECURE" DEBUG = True SQLALCHEMY_DATABASE_URI = os.environ['DATABASE_URL'] # SQLALCHEMY_DATABASE_URI = "postgresql://localhost/Cathal" MONGODB_URI = os.environ['MONGODB_URL'] SQLALCHEMY_TRACK_MODIFICATIONS = True JSON_AS_ASCII = False GOOGLE_CLIENT_ID = os.environ['GOOGLE_CLIENT_ID'] GOOGLE_CLIENT_SECRET = os.environ['GOOGLE_CLIENT_SECRET'] class TestingConfig(object): """Development configuration.""" TESTING = True DEBUG = True WTF_CSRF_ENABLED = False SQLALCHEMY_DATABASE_URI = 'sqlite:///:memory:' DEBUG_TB_ENABLED = True PRESERVE_CONTEXT_ON_EXCEPTION = False
py
1a4254b289bef45cd3f0981e203bbeb4d09a0563
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import cslib def get_drive_mapped_path_dict(): def get_mapped_path_for_drive(drive): # use window API (WNetGetConnectionW) try: import ctypes from ctypes import wintypes mpr = ctypes.WinDLL('mpr') ERROR_SUCCESS = 0x0000 ERROR_MORE_DATA = 0x00EA wintypes.LPDWORD = ctypes.POINTER(wintypes.DWORD) mpr.WNetGetConnectionW.restype = wintypes.DWORD mpr.WNetGetConnectionW.argtypes = (wintypes.LPCWSTR, wintypes.LPWSTR, wintypes.LPDWORD) length = (wintypes.DWORD * 1)() result = mpr.WNetGetConnectionW(drive, None, length) if result != ERROR_MORE_DATA: return '' remote_name = (wintypes.WCHAR * length[0])() result = mpr.WNetGetConnectionW(drive, remote_name, length) if result != ERROR_SUCCESS: return '' return remote_name.value.replace('\\\\', '') except Exception: import libcsbuild libcsbuild.write_csbuild_log('EXCEPTION_IN_PROCESSING_NETWORK_DRIVE: %s' % drive) return '' drive_mapped_path_dict = {} if not cslib.is_windows(): return drive_mapped_path_dict import win32api import libcsbuild drive_letter_list = [drive_letter.replace('\\', '') for drive_letter in win32api.GetLogicalDriveStrings().split('\000')[:-1] if drive_letter != ''] for drive_letter in drive_letter_list: key = get_mapped_path_for_drive(drive_letter) if key == '': continue libcsbuild.write_csbuild_log('network_drive: %s, path: %s' % (drive_letter, key)) drive_mapped_path_dict[key] = drive_letter libcsbuild.write_csbuild_log(str(drive_mapped_path_dict)) return drive_mapped_path_dict def convert_network_drive_path(open_file, mapped_dict): unc_prefix = '\\Device\\Mup' if not cslib.is_windows() or not open_file.startswith(unc_prefix): return open_file for key in mapped_dict.keys(): inx = open_file.find(key) if inx == -1: continue import libcsbuild libcsbuild.write_csbuild_log( '%s -> %s' % (open_file, os.path.join(mapped_dict[key], open_file[inx + len(key):]))) open_file = os.path.join(mapped_dict[key], open_file[inx + len(key):]) return open_file
py
1a4254ed21031073d7d1645544435da52197ba06
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import contextlib import collections import errno import os import sys import unittest try: import fcntl except ImportError: # pragma: no cover # Doesn't exist on Windows. See also crbug.com/515704. pass from testing_support import auto_stub from infra.libs.service_utils import daemon import mock Stat = collections.namedtuple('Stat', ['st_ino']) class TestFlock(auto_stub.TestCase): @unittest.skipIf(sys.platform == 'win32', 'Requires not windows') def setUp(self): super(TestFlock, self).setUp() @contextlib.contextmanager def _assert_reached(self): reached = {'yup': False} yield reached self.assertTrue(reached['yup']) def _mock_basic_fs_calls(self): """Mocks os.open, os.close as well as os.fstat.""" def _noop_handler(*_args, **_kwargs): return 1 def _noop_os_close(*_args, **_kwargs): pass def _noop_fstat(*_args, **_kwargs): return Stat(st_ino=45678) self.mock(os, 'open', _noop_handler) self.mock(os, 'close', _noop_os_close) self.mock(os, 'fstat', _noop_fstat) def _set_lock_status(self, success=True): """Mocks os.fcntl and whether the mock succeeds or not.""" def _lock_status(_fd, flags, **_kwargs): if flags != fcntl.LOCK_UN: # We don't care if unlock fails. if not success: raise IOError('Couldn\'t get lock.') self.mock(fcntl, 'lockf', _lock_status) def _set_stat_status(self, success=True, matching=True): """Mocks os.stat, sets its success and if st_ino matches os.fstat mock.""" def _stat_handler(*_args, **_kwargs): if not success: raise OSError('Not found.') if matching: return Stat(st_ino=45678) return Stat(st_ino=67890) self.mock(os, 'stat', _stat_handler) def _set_unlink_status(self, success=True): """Mocks os.unlink and sets whether it succeeds or not.""" def _unlink_handler(*_args, **_kwargs): if not success: raise OSError('Not found.') self.mock(os, 'unlink', _unlink_handler) #### Tests. def testGetLock(self): self._mock_basic_fs_calls() self._set_lock_status() self._set_stat_status() self._set_unlink_status() with self._assert_reached() as reached: with daemon.flock('bogus'): reached['yup'] = True def testDontGetLock(self): self._mock_basic_fs_calls() self._set_lock_status(success=False) self._set_stat_status() self._set_unlink_status() with self.assertRaises(daemon.LockAlreadyLocked): with daemon.flock('bogus'): # Should never reach this. # pylint: disable=redundant-unittest-assert self.assertTrue(False) # pragma: no cover def testFileDeletedAfterLockAcquired(self): """Test that we abort if we acquire a lock but the file has been deleted.""" self._mock_basic_fs_calls() self._set_lock_status() self._set_stat_status(success=False) self._set_unlink_status() with self.assertRaises(daemon.LockAlreadyLocked): with daemon.flock('bogus'): # Should never reach this. # pylint: disable=redundant-unittest-assert self.assertTrue(False) # pragma: no cover def testLockfileRecreated(self): """Test that we abort if a new lockfile is created under us.""" self._mock_basic_fs_calls() self._set_lock_status() self._set_stat_status(matching=False) self._set_unlink_status() with self.assertRaises(daemon.LockAlreadyLocked): with daemon.flock('bogus'): # Should never reach this. # pylint: disable=redundant-unittest-assert self.assertTrue(False) # pragma: no cover def testDeleteWhenDone(self): """Test that we delete the lockfile when we're done.""" data = {'count': 0} def _mock_unlink(*_args, **_kwargs): data['count'] += 1 self.mock(os, 'unlink', _mock_unlink) self._mock_basic_fs_calls() self._set_lock_status() self._set_stat_status() with self._assert_reached() as reached: with daemon.flock('bogus'): reached['yup'] = True self.assertEqual(data['count'], 1) def testUnlinkFailureDoesntBreak(self): """Test that a failing unlink doesn't break us.""" self._mock_basic_fs_calls() self._set_lock_status() self._set_stat_status() self._set_unlink_status(success=False) with self._assert_reached() as reached: with daemon.flock('bogus'): reached['yup'] = True @mock.patch('os.fork', return_value=0) @mock.patch('os.setsid') @mock.patch('os.close') @mock.patch('os.open') @mock.patch('os.dup2') @mock.patch('os.chdir') @mock.patch('os._exit') class TestBecomeDaemon(unittest.TestCase): @unittest.skipIf(sys.platform == 'win32', 'Requires not windows') def setUp(self): super(TestBecomeDaemon, self).setUp() def testClosesFds(self, _mock_exit, _mock_chdir, _mock_dup2, _mock_open, mock_close, _mock_setsid, _mock_fork): daemon.become_daemon() self.assertEqual(2048, mock_close.call_count) self.assertEqual([((i,),) for i in reversed(range(2048))], mock_close.call_args_list) def testClosesFdWithExceptions(self, _mock_exit, _mock_chdir, _mock_dup2, _mock_open, mock_close, _mock_setsid, _mock_fork): daemon.become_daemon(keep_fds={42}) self.assertEqual(2047, mock_close.call_count) self.assertEqual([((i,),) for i in reversed(range(2048)) if i != 42], mock_close.call_args_list) def testClosesFdsKeepingAll(self, _mock_exit, _mock_chdir, _mock_dup2, _mock_open, mock_close, _mock_setsid, _mock_fork): daemon.become_daemon(keep_fds=True) self.assertEqual(0, mock_close.call_count) def testClosesInvalidFds(self, _mock_exit, _mock_chdir, _mock_dup2, _mock_open, mock_close, _mock_setsid, _mock_fork): mock_close.side_effect = EnvironmentError(errno.EIO, '') with self.assertRaises(EnvironmentError): daemon.become_daemon() mock_close.side_effect = EnvironmentError(errno.EBADF, '') daemon.become_daemon() def testOpensDevNull(self, _mock_exit, _mock_chdir, mock_dup2, mock_open, _mock_close, _mock_setsid, _mock_fork): handle = object() mock_open.return_value = handle daemon.become_daemon() self.assertEqual([ ((handle, 0),), ((handle, 1),), ((handle, 2),), ], mock_dup2.call_args_list) def testOpensDevNullWithExceptions(self, _mock_exit, _mock_chdir, mock_dup2, mock_open, _mock_close, _mock_setsid, _mock_fork): handle = object() mock_open.return_value = handle daemon.become_daemon(keep_fds={1}) self.assertEqual([ ((handle, 0),), ((handle, 2),), ], mock_dup2.call_args_list) def testChangesToRoot(self, _mock_exit, mock_chdir, _mock_dup2, _mock_open, _mock_close, _mock_setsid, _mock_fork): daemon.become_daemon() mock_chdir.assert_called_with('/') def testForkExitsParent(self, mock_exit, _mock_chdir, _mock_dup2, _mock_open, _mock_close, _mock_setsid, mock_fork): mock_fork.return_value = 0 daemon.become_daemon() self.assertFalse(mock_exit.called) mock_fork.return_value = 123 daemon.become_daemon() self.assertTrue(mock_exit.called)
py
1a4254ed428bd5e7c4fadd57082e85a697533663
#!/usr/bin/env python3 # # Copyright (c) 2019 Roberto Riggio # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Projects manager.""" import empower.apps import empower.primitives from empower.main import srv_or_die from empower.core.service import EService from empower.managers.projectsmanager.project import Project from empower.managers.projectsmanager.project import EmbeddedWiFiProps from empower.managers.projectsmanager.project import EmbeddedLTEProps from empower.managers.projectsmanager.project import T_BSSID_TYPE_SHARED from empower.managers.projectsmanager.project import T_BSSID_TYPE_UNIQUE from empower.managers.projectsmanager.cataloghandler import CatalogHandler from empower.managers.projectsmanager.appshandler import AppsHandler from empower.managers.projectsmanager.projectshandler import ProjectsHandler, \ ProjectsWiFiACLHandler, ProjectsWiFiSlicesHandler, \ ProjectsLTESlicesHandler, ProjectLVAPsHandler class ProjectsManager(EService): """Projects manager.""" HANDLERS = [CatalogHandler, AppsHandler, ProjectLVAPsHandler, ProjectsHandler, ProjectsWiFiACLHandler, ProjectsWiFiSlicesHandler, ProjectsLTESlicesHandler] projects = {} accounts_manager = None def start(self): """Start projects manager.""" super().start() self.accounts_manager = srv_or_die("accountsmanager") for project in Project.objects.all(): self.projects[project.project_id] = project self.projects[project.project_id].start_services() @property def catalog(self): """Return available apps.""" results = {} results.update(self.walk_module(empower.apps)) results.update(self.walk_module(empower.primitives)) return results def load_project_by_ssid(self, ssid): """Find a project by SSID.""" for project in self.projects.values(): if not project.wifi_props: continue if project.wifi_props.ssid == ssid: break else: project = None return project def load_project_by_plmnid(self, plmnid): """Find a project by PLMNID.""" for project in self.projects.values(): if not project.lte_props: continue if project.lte_props.plmnid == plmnid: break else: project = None return project def get_available_ssids(self, sta, block): """Return the list of available networks for the specified sta.""" networks = list() for project in self.projects.values(): if not project.wifi_props: continue if sta not in project.wifi_props.allowed: continue if project.wifi_props.bssid_type == T_BSSID_TYPE_SHARED: bssid = project.generate_bssid(block.hwaddr) ssid = project.wifi_props.ssid networks.append((bssid, ssid)) elif project.wifi_props.bssid_type == T_BSSID_TYPE_UNIQUE: bssid = project.generate_bssid(sta) ssid = project.wifi_props.ssid networks.append((bssid, ssid)) else: self.log.error("Invalid BSSID type: %s", project.wifi_props.bssid_type) return networks def create(self, desc, project_id, owner, wifi_props=None, lte_props=None): """Create new project.""" if project_id in self.projects: raise ValueError("Project %s already defined" % project_id) if owner not in self.accounts_manager.accounts: raise ValueError("Undefined account %s" % owner) project = Project(project_id=project_id, desc=desc, owner=owner) if wifi_props: project.wifi_props = EmbeddedWiFiProps(**wifi_props) if lte_props: project.lte_props = EmbeddedLTEProps(**lte_props) project.save() self.projects[project_id] = project project.upsert_wifi_slice(slice_id=0) project.upsert_lte_slice(slice_id=0) self.projects[project_id].start_services() return self.projects[project_id] def update(self, project_id, wifi_props=None, lte_props=None): """Update project.""" if project_id not in self.projects: raise ValueError("Project %s not available" % project_id) project = self.projects[project_id] print(wifi_props["allowed"]) try: # not all wifi props can be modified if wifi_props: if "allowed" in wifi_props: project.wifi_props.allowed = wifi_props["allowed"] # not all lte props can be modified if lte_props: pass project.save() finally: project.refresh_from_db() return self.projects[project_id] def remove_all(self): """Remove all projects.""" for project_id in list(self.projects): self.remove(project_id) def remove(self, project_id): """Remove project.""" # Check if project exists if project_id not in self.projects: raise KeyError("%s not registered" % project_id) # Fetch project project = self.projects[project_id] # Remove hosted LVAPs for lvap in list(project.lvaps.values()): # The LVAP is associated if lvap.ssid and lvap.wtp.connection: lvap.wtp.connection.send_client_leave_message_to_self(lvap) # Reset the LVAP del lvap.wtp.connection.manager.lvaps[lvap.addr] lvap.clear_blocks() # Remove hosted VAPs for vap in list(project.vaps.values()): # Reset the LVAP del vap.wtp.connection.manager.vaps[vap.bssid] vap.clear_block() # Stop running services self.projects[project_id].stop_services() # Delete project from datase and manager project.delete() del self.projects[project_id] def launch(context, service_id): """ Initialize the module. """ return ProjectsManager(context=context, service_id=service_id)
py
1a42569accfb359db15988d22a2902bdabafd9ca
#!/usr/bin/python # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions required to interact with Docker to build and run images, shells and notebooks in a Docker environment. """ from typing import List, Optional from blessings import Terminal import caliban.config as c import caliban.docker.build as b import caliban.platform.shell as ps import caliban.util.fs as ufs t = Terminal() def run_notebook(job_mode: c.JobMode, port: Optional[int] = None, lab: Optional[bool] = None, version: Optional[bool] = None, run_args: Optional[List[str]] = None, **run_interactive_kwargs) -> None: """Start a notebook in the current working directory; the process will run inside of a Docker container that's identical to the environment available to Cloud jobs that are submitted by `caliban cloud`, or local jobs run with `caliban run.` if you pass mount_home=True your jupyter settings will persist across calls. Keyword args: - port: the port to pass to Jupyter when it boots, useful if you have multiple instances running on one machine. - lab: if True, starts jupyter lab, else jupyter notebook. - version: explicit Jupyter version to install. run_interactive_kwargs are all extra arguments taken by run_interactive. """ if port is None: port = ufs.next_free_port(8888) if lab is None: lab = False if run_args is None: run_args = [] inject_arg = b.NotebookInstall.lab if lab else b.NotebookInstall.jupyter jupyter_cmd = "lab" if lab else "notebook" jupyter_args = [ "-m", "jupyter", jupyter_cmd, \ "--ip=0.0.0.0", \ "--port={}".format(port), \ "--no-browser" ] docker_args = ["-p", "{}:{}".format(port, port)] + run_args ps.run_interactive(job_mode, entrypoint="python", entrypoint_args=jupyter_args, run_args=docker_args, inject_notebook=inject_arg, jupyter_version=version, **run_interactive_kwargs)
py
1a4258b5c24719b27397fb44396a0dc0d8417565
#!/usr/bin/env python # -*- coding: utf-8 -*- # IMPORTS import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import modules.globals as sg # CLASS DEFINITION class MailHelper: # Constructor def __init__(self): self.load_conf() self.smtp = None try: self.smtp = smtplib.SMTP(self.smtp_host, self.smtp_port, None, 5) self.smtp.ehlo() if self.smtp_tls: self.smtp.starttls() self.smtp.ehlo() # self.smtp.login(self.smtp_from, self.smtp_pwd) except Exception as e: sg.logger.error('Failed to bind to smtp server: %s' % str(e)) # Configuration loader def load_conf(self): self.smtp_host = sg.conf[sg.CONF_SMTP_SECTION][sg.CONF_SMTP_HOST] self.smtp_port = sg.conf[sg.CONF_SMTP_SECTION][sg.CONF_SMTP_PORT] self.smtp_tls = sg.conf[sg.CONF_SMTP_SECTION][sg.CONF_SMTP_TLS] self.smtp_from = sg.conf[sg.CONF_SMTP_SECTION][sg.CONF_SMTP_FROM] self.smtp_pwd = sg.conf[sg.CONF_SMTP_SECTION][sg.CONF_SMTP_PWD] def build_gmail(self): if not hasattr(self, 'sender') or not hasattr(self, 'code'): sg.logger.warning('Detected GMAIL but failed to parse sender or code...') return sender = self.sender code = self.code # Build the answer subject = '[SCIZ] Code de confirmation de transfert GMAIL' text = 'Votre code de transfert GMAIL pour %s est : %s' % (sg.user.mail, code) html = ''' <html> <head></head> <body> <p>Votre code de transfert pour %s est : %s</p> </body> </html> ''' % (sg.user.mail, code) # Send the mail self.send_mail(sender, subject, text, html) def build_yahoo(self): if not hasattr(self, 'link'): sg.logger.warning('Detected YAHOO but failed to parse link...') return link = self.link # Build the answer subject = '[SCIZ] Lien de confirmation de transfert YAHOO' text = 'Votre code de transfert YAHOO pour %s est : %s' % (sg.user.mail, link) html = ''' <html> <head></head> <body> <p>Votre lien de transfert pour %s est : %s</p> </body> </html> ''' % (sg.user.mail, link) # Send the mail self.send_mail(None, subject, text, html) def send_mail(self, to, subject, body_text, body_html): if self.smtp is None: sg.logger.error('An attempt was made to send a mail but no previous bind to a SMTP server was successful') return msg = MIMEMultipart('alternative') msg['Subject'] = subject msg['From'] = self.smtp_from msg['To'] = to if to is not None else sg.user.user_mail msg.attach(MIMEText(body_text, 'plain')) msg.attach(MIMEText(body_html, 'html')) if msg['To'] is not None: self.smtp.sendmail(msg['From'], [msg['To']], msg.as_string()) else: sg.logger.warning('No address to send back...') def __del__(self): if self.smtp: self.smtp.quit()
py
1a42594de4ca4f1c10058a070302bfdf7e1121b0
"""This module contains the general information for BiosVfProcessorC1E ManagedObject.""" from ...imcmo import ManagedObject from ...imccoremeta import MoPropertyMeta, MoMeta from ...imcmeta import VersionMeta class BiosVfProcessorC1EConsts: VP_PROCESSOR_C1_E_DISABLED = "Disabled" VP_PROCESSOR_C1_E_ENABLED = "Enabled" _VP_PROCESSOR_C1_E_DISABLED = "disabled" _VP_PROCESSOR_C1_E_ENABLED = "enabled" VP_PROCESSOR_C1_E_PLATFORM_DEFAULT = "platform-default" class BiosVfProcessorC1E(ManagedObject): """This is BiosVfProcessorC1E class.""" consts = BiosVfProcessorC1EConsts() naming_props = set([]) mo_meta = { "classic": MoMeta("BiosVfProcessorC1E", "biosVfProcessorC1E", "Processor-C1E", VersionMeta.Version151f, "InputOutput", 0x1f, [], ["admin", "read-only", "user"], ['biosPlatformDefaults', 'biosSettings'], [], ["Get", "Set"]), "modular": MoMeta("BiosVfProcessorC1E", "biosVfProcessorC1E", "Processor-C1E", VersionMeta.Version2013e, "InputOutput", 0x1f, [], ["admin", "read-only", "user"], ['biosPlatformDefaults', 'biosSettings'], [], ["Get", "Set"]) } prop_meta = { "classic": { "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version151f, MoPropertyMeta.READ_WRITE, 0x2, 0, 255, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version151f, MoPropertyMeta.READ_WRITE, 0x4, 0, 255, None, [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version151f, MoPropertyMeta.READ_WRITE, 0x8, None, None, None, ["", "created", "deleted", "modified", "removed"], []), "vp_processor_c1_e": MoPropertyMeta("vp_processor_c1_e", "vpProcessorC1E", "string", VersionMeta.Version151f, MoPropertyMeta.READ_WRITE, 0x10, None, None, None, ["Disabled", "Enabled", "disabled", "enabled", "platform-default"], []), "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version151f, MoPropertyMeta.INTERNAL, None, None, None, None, [], []), }, "modular": { "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version2013e, MoPropertyMeta.READ_WRITE, 0x2, 0, 255, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version2013e, MoPropertyMeta.READ_WRITE, 0x4, 0, 255, None, [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version2013e, MoPropertyMeta.READ_WRITE, 0x8, None, None, None, ["", "created", "deleted", "modified", "removed"], []), "vp_processor_c1_e": MoPropertyMeta("vp_processor_c1_e", "vpProcessorC1E", "string", VersionMeta.Version2013e, MoPropertyMeta.READ_WRITE, 0x10, None, None, None, ["Disabled", "Enabled", "disabled", "enabled", "platform-default"], []), "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version2013e, MoPropertyMeta.INTERNAL, None, None, None, None, [], []), }, } prop_map = { "classic": { "dn": "dn", "rn": "rn", "status": "status", "vpProcessorC1E": "vp_processor_c1_e", "childAction": "child_action", }, "modular": { "dn": "dn", "rn": "rn", "status": "status", "vpProcessorC1E": "vp_processor_c1_e", "childAction": "child_action", }, } def __init__(self, parent_mo_or_dn, **kwargs): self._dirty_mask = 0 self.status = None self.vp_processor_c1_e = None self.child_action = None ManagedObject.__init__(self, "BiosVfProcessorC1E", parent_mo_or_dn, **kwargs)
py
1a425959470f124384b60946b9591dc96414b65f
import urllib.parse from django.contrib import auth from django.db import close_old_connections from channels.middleware import BaseMiddleware import rest_framework_jwt.serializers import rest_framework.exceptions import jwt.exceptions import backend.auth class TokenMiddleware(object): """ Middleware that authenticates against a token in the http authorization header. """ def __init__(self, get_response): self.get_response = get_response def __call__(self, request): self.process_request(request) response = self.get_response(request) return response def process_request(self, request): auth_header = request.META.get('HTTP_AUTHORIZATION', b'').split() print("asd") if not auth_header: return None user = auth.authenticate() if user: request.user = user class JWTAuthMiddleware(BaseMiddleware): """ Middleware to authenticate a user with a JSON Web Token. """ def populate_scope(self, scope): # Populate top level of scope. if "user" not in scope: raise ValueError( "JWTAuthMiddleware cannot find user in scope. AuthMiddleware must be above it." ) async def resolve_scope(self, scope): if not scope["user"]._wrapped.is_anonymous: return if not "query_string" in scope: return qs = urllib.parse.parse_qs(scope['query_string'].decode('utf-8')) user = None try: qs['token'] = qs['token'][0] validated = rest_framework_jwt.serializers.VerifyJSONWebTokenSerializer().validate(qs) # If no exception is thrown, the token is valid. Store it in the session if it is a kit. user = backend.auth.downcast_user_type(validated['user']) except (KeyError, jwt.exceptions.InvalidTokenError, rest_framework.exceptions.ValidationError): pass close_old_connections() # Set the user. if user: scope["user"]._wrapped = user
py
1a4259a64d60298e6d4223156b6057a7abacc8ce
"""Commands the vehicle simulator to drive autonomously based on a given keras model. Usage: Use `model.h5` to drive in autonomous mode `python drive.py model.h5` Or, use `model.h5` to drive in autonomous mode, and save dashcam photos of the run to `./run1/` `python drive.py model.h5 run1` """ #---------------------------------------------------------------------------------------------------------------------------------------------- import argparse import base64 import os import shutil from datetime import datetime from io import BytesIO import eventlet.wsgi import h5py import numpy as np import socketio import tensorflow as tf from PIL import Image from flask import Flask from keras import __version__ as keras_version, backend as K from keras.models import load_model MAX_SPEED = 18 MIN_SPEED = 8 speed_limit = MAX_SPEED K.clear_session() config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) K.set_session(session) #---------------------------------------------------------------------------------------------------------------------------------------------- sio = socketio.Server() app = Flask(__name__) model = None prev_image_array = None #---------------------------------------------------------------------------------------------------------------------------------------------- class SimplePIController: def __init__(self, Kp, Ki): self.Kp = Kp self.Ki = Ki self.set_point = 0. self.error = 0. self.integral = 0. def set_desired(self, desired): self.set_point = desired def update(self, measurement): # proportional error self.error = self.set_point - measurement # integral error self.integral += self.error return self.Kp * self.error + self.Ki * self.integral #---------------------------------------------------------------------------------------------------------------------------------------------- controller = SimplePIController(0.1, 0.002) # Force desired driving speed. set_speed = 25 controller.set_desired(set_speed) #---------------------------------------------------------------------------------------------------------------------------------------------- @sio.on('telemetry') def telemetry(sid, data): if data: # The current steering angle of the car steering_angle = float(data["steering_angle"]) # The current throttle of the car throttle = float(data["throttle"]) # The current speed of the car speed = float(data["speed"]) # The current image from the center camera of the car imgString = data["image"] image = Image.open(BytesIO(base64.b64decode(imgString))) image_array = np.asarray(image) steering_angle = float(model.predict(image_array[None, :, :, :], batch_size=1)) global speed_limit if speed > speed_limit: speed_limit = MIN_SPEED # slow down else: speed_limit = MAX_SPEED #throttle = controller.update(float(speed)) throttle = 1.0 - ( (steering_angle)**2 ) - ( (speed/speed_limit)**2 ) print(steering_angle, throttle, speed) send_control(steering_angle, throttle) # save frame if args.image_folder != '': timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3] image_filename = os.path.join(args.image_folder, timestamp) image.save('{}.jpg'.format(image_filename)) else: # NOTE: DON'T EDIT THIS. sio.emit('manual', data={}, skip_sid=True) @sio.on('connect') def connect(sid, environ): print("connect ", sid) send_control(0, 0) def send_control(steering_angle, throttle): sio.emit( "steer", data={ 'steering_angle': steering_angle.__str__(), 'throttle': throttle.__str__() }, skip_sid=True) #---------------------------------------------------------------------------------------------------------------------------------------------- if __name__ == '__main__': parser = argparse.ArgumentParser(description='Remote Driving') parser.add_argument( 'model', type=str, help='Path to model h5 file. Model should be on the same path.' ) parser.add_argument( 'image_folder', type=str, nargs='?', default='', help='Path to image folder. This is where the images from the run will be saved.' ) parser.add_argument( 'maxspeed', type=int, nargs='?', default=MAX_SPEED, help='Maximum speed limit' ) parser.add_argument( 'minspeed', type=str, nargs='?', default=MIN_SPEED, help='Minimum speed limit' ) args = parser.parse_args() MIN_SPEED = args.minspeed MAX_SPEED = args.maxspeed # check that model Keras version is same as local Keras version f = h5py.File(args.model, mode='r') model_version = f.attrs.get('keras_version') keras_version = str(keras_version).encode('utf8') if model_version != keras_version: print('You are using Keras version ', keras_version, ', but the model was built using ', model_version) model = load_model(args.model) if args.image_folder != '': print("Creating image folder at {}".format(args.image_folder)) if not os.path.exists(args.image_folder): os.makedirs(args.image_folder) else: shutil.rmtree(args.image_folder) os.makedirs(args.image_folder) print("RECORDING THIS RUN ...") else: print("NOT RECORDING THIS RUN ...") # wrap Flask application with middleware app = socketio.Middleware(sio, app) # deploy as an WSGI server eventlet.wsgi.server(eventlet.listen(('', 4567)), app) #----------------------------------------------------------------------------------------------------------------------------------------------
py
1a425a3feea07fb0a5f1b832a104d9f1c6f8e148
from ebaysdk.finding import Connection from ebaysdk.exception import ConnectionError import time import psycopg2 import re from gen_utils import database_connection, get_api_key, get_search_words, get_test_search_words, get_trace_and_log class SearchRequest(object): def __init__(self, api_key, keyword): self.api_key, self.keyword = api_key, keyword # define which site we wish to connect to and feed in our api-key self.api = Connection(siteid='EBAY-US', appid=self.api_key, config_file=None) # create a live db cursor self.cursor = database_connection() # establish lists for appending data to self.completed_product_ids = [] self.completed_product_nick = [] self.completed_product_titles = [] self.completed_product_prices = [] self.completed_product_cat_names = [] self.completed_product_cat_ids = [] self.completed_product_img_thumb = [] self.completed_product_img_url = [] self.completed_product_lst_type = [] self.completed_product_con = [] self.completed_product_loc = [] self.completed_product_start = [] self.completed_product_end = [] self.completed_product_depth = [] self.depthCountStorage = [] # outline our search body paramaters self.search_body_pages = { 'keywords': keyword, 'itemFilter': [ # US only sellers -- can also limit by feedback score, business type, top-rated status, charity, etc. {'name': 'MinPrice', 'value': '59', 'paramName': 'Currency', 'paramValue': 'USD'}, {'name': 'MaxPrice', 'value': '9999999', 'paramName': 'Currency', 'paramValue': 'USD'}, # sold items only {'name': 'SoldItemsOnly', 'value': 'true'}, ], 'paginationInput': { 'entriesPerPage': '100', # always 1, as we want to pull the maximum number of pages given a maximum of 100 results per page 'pageNumber': '1' }, # can filter this to multiple different options as well (Best Offer, Most Watched, etc.) 'sortOrder': 'PricePlusShippingLowest' } def get_pages(self): """() -> dict Connects to the API, Executes a query to find items by their category and takes in predefined parameters search_body_pages, Returns the data in dictionary form, Returns an integer with the total number of pages. """ try: self.api.execute('findCompletedItems', self.search_body_pages) self.data = self.api.response.dict() self.pages = int(self.data['paginationOutput']['totalPages']) return self.pages except Exception as e: get_trace_and_log(e) def fetch_completed_data(self, pages): """() -> dict Connects to the API, Iterates over each page in the previously established range of 1 -> the total number of pages, Establishes search_body_data parameters, Executes a query to find items by their category and takes in predefined parameters search_body_data, Returns the data in dictionary form, Iterates over each item in the returned data dictionary and appends the various data points to their respective lists, Prints the values. """ try: search_body_data = { 'keywords': self.keyword, 'itemFilter': [ {'name': 'MinPrice', 'value': '5', 'paramName': 'Currency', 'paramValue': 'USD'}, {'name': 'MaxPrice', 'value': '99999999', 'paramName': 'Currency', 'paramValue': 'USD'}, # sold items only {'name': 'SoldItemsOnly', 'value': 'true'}, ], 'paginationInput': {'entriesPerPage': '100', 'pageNumber': f'{page}'}, 'sortOrder': 'PricePlusShippingLowest'} self.api.execute('findCompletedItems', search_body_data) self.data = self.api.response.dict() time.sleep(1) # wait a second before continuing (be kind ^^) except Exception as e: get_trace_and_log(e) outliers = [ re.compile(r"\bposter\b", re.I), re.compile(r"\bproxy\b", re.I), re.compile(r"\bmisprint\b", re.I), re.compile(r"\bpuzzle\b", re.I), re.compile(r"\bplaytest\b", re.I), re.compile(r"\berror\b", re.I), re.compile(r"\bpromo\b", re.I), re.compile(r"\bproxy\b", re.I), re.compile(r"\bframed\b", re.I), re.compile(r"\breprint\b", re.I), re.compile(r"\bbooster\b", re.I), re.compile(r"\bpack\b", re.I), re.compile(r"\bfactory sealed\b", re.I), re.compile(r"\brp\b", re.I), re.compile(r"\bheadlamp\b", re.I), re.compile(r"\bheadlamps\b", re.I), re.compile(r"\bcar\b", re.I), re.compile(r"\btruck\b", re.I), re.compile(r"\bheadlights\b", re.I), re.compile(r"\brepack\b", re.I), re.compile(r"\brepacks\b", re.I), re.compile(r"\brubber\b", re.I), re.compile(r"\bseat\b", re.I), re.compile(r"\bbox\b", re.I), re.compile(r'\bsticker\b', re.I), re.compile(r'\bstickers\b', re.I), re.compile(r'\b5 x\b', re.I), # used to ignore things like '5 x Mox's for sale..', which greatly skew the average. re.compile(r'\b4 x\b', re.I), re.compile(r'\b3 x\b', re.I), re.compile(r'\b2 x\b', re.I), re.compile(r'\b5x\b', re.I), re.compile(r'\b4x\b', re.I), re.compile(r'\b3x\b', re.I), re.compile(r'\b2x\b', re.I), re.compile(r'\bx5\b', re.I), re.compile(r'\bx4\b', re.I), re.compile(r'\bx3\b', re.I), re.compile(r'\bx2\b', re.I), re.compile(r'\bx-2\b', re.I), re.compile(r'\bx-3\b', re.I), re.compile(r'\bx-4\b', re.I), re.compile(r'\bx-5\b', re.I), re.compile(r'\bx 2\b', re.I), re.compile(r'\bx 3\b', re.I), re.compile(r'\bx 4\b', re.I), re.compile(r'\bx 5\b', re.I), re.compile(r'\bcustom\b', re.I), re.compile(r'\bpractice\b', re.I), re.compile(r'\btime spiral\b', re.I), re.compile(r'\blions\b', re.I), re.compile(r'\bstory\b', re.I), re.compile(r'\bmullet\b', re.I), re.compile(r'\bplayset\b', re.I), re.compile(r'\bbb\b', re.I), re.compile(r'\bblack border\b', re.I), re.compile(r'\bartist proof\b', re.I), re.compile(r'\bgerman\b', re.I), re.compile(r'\bitalian\b', re.I), re.compile(r'\bfrench\b', re.I), re.compile(r'\blot\b', re.I), re.compile(r'\bsealed\b', re.I), re.compile(r'\bartist\b', re.I), re.compile(r'\bproof\b', re.I), re.compile(r'\bcollection\b', re.I), re.compile(r'\bfbb\b', re.I), # re.compile(r'\b2\b', re.I), # re.compile(r'\b3\b', re.I), # re.compile(r'\b4\b', re.I), # re.compile(r'\b5\b', re.I), # re.compile(r'\b6\b', re.I), re.compile(r'\bcomplete set\b', re.I), re.compile(r'\bplayset\b', re.I), re.compile(r'\bplay-set\b', re.I), re.compile(r'\bset\b', re.I), re.compile(r'\b(Partial)\b', re.I), re.compile(r'\bpartial\b', re.I), re.compile(r'\binfect\b', re.I), ] try: # begin filtering magic :D if word.split(' ')[0] not in {"Collector's", "International"}: outliers.extend(( re.compile(r"\bce\b", re.I), re.compile(r"\bie\b", re.I), re.compile(r"\bcollector\b", re.I), re.compile(r"\bcollectors\b", re.I), re.compile(r"\bcollector's\b", re.I), re.compile(r"\bcollector's edition\b", re.I), re.compile(r"\binternational\b", re.I), re.compile(r"\binternationals\b", re.I), re.compile(r"\binternational edition\b", re.I), re.compile(r"\bcollector''s\b", re.I), re.compile(r'\bcollector"s\b', re.I), )) else: pass # print(f'Searching keyword: {word}', end="") print(f'Searching keyword: {word}') print(f'Chugging through...{page}/{self.pages} page(s)...') print() depthCount = 0 for item in self.data['searchResult']['item']: if not any(regex.findall(item['title']) for regex in set(outliers)): # sets provide more iterating efficiency than lists. # end filter magic => begin appending values to respective arrays try: self.completed_product_img_thumb.append(item['galleryURL']) except Exception as e: self.completed_product_img_thumb.append('No picture') self.completed_product_nick.append(word) self.completed_product_titles.append(item['title']) self.completed_product_ids.append(item['itemId']) # completed_product_prices.append(item['sellingStatus']['currentPrice']['value']) self.completed_product_prices.append(item['sellingStatus']['convertedCurrentPrice']['value']) # take the convertedCurrentPrice instead @ 10/10/2018 self.completed_product_cat_names.append(item['primaryCategory']['categoryName']) self.completed_product_cat_ids.append(item['primaryCategory']['categoryId']) self.completed_product_img_url.append(item['viewItemURL']) self.completed_product_lst_type.append(item['listingInfo']['listingType']) self.completed_product_con.append(item['condition']['conditionDisplayName']) self.completed_product_loc.append(item['location']) self.completed_product_start.append(item['listingInfo']['startTime']) self.completed_product_end.append(item['listingInfo']['endTime']) depthCount += 1 # if the page is 1 and the max number of pages is 1 then extend the depth to fill up the list, # otherwise proceed forward if self.pages == 1 and page == 1: self.completed_product_depth.extend(depthCount for i in range(depthCount)) elif self.pages > 1 and page == 1: self.depthCountStorage.append(depthCount) else: depthCountMulti = int(self.depthCountStorage[-1]) + depthCount self.completed_product_depth.extend(depthCountMulti for i in range(depthCountMulti)) except KeyError as e: get_trace_and_log(e) def zip_items(self): """(lists) -> (zip) Inherits a series of lists and wraps it up into a comprehensive zip.""" #"begin zipping of all arrays into one big-array, just before inserting into the database self.completed_products = zip(self.completed_product_nick, self.completed_product_titles, self.completed_product_ids, self.completed_product_prices, self.completed_product_cat_names, self.completed_product_cat_ids, self.completed_product_img_thumb, self.completed_product_img_url, self.completed_product_lst_type, self.completed_product_con, self.completed_product_loc, self.completed_product_start, self.completed_product_end, self.completed_product_depth) return self.completed_products def insert_completed_products(self, count): """(db cursor, array, count) -> () Takes in a database connection (cursor) and an array of data and inserts it into the respective database""" for a, b, c, d, e, f, g, h, i, j, k, l, m, n in self.completed_products: try: self.cursor.execute("""INSERT INTO completed_products(completed_product_nick, completed_product_titles, completed_product_ids, completed_product_prices, completed_product_cat_names, completed_product_cat_ids, completed_product_img_thumb, completed_product_img_url, completed_product_lst_type, completed_product_con, completed_product_loc, completed_product_start, completed_product_end, completed_product_depth) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)""", (a, b, c, d, e, f, g, h, i, j, k, l, m, n, )) # MAKE SURE to leave the trailing comma (d-->,<--), this will NOT work otherwise. print("Unique value inserted...") except Exception as e: print("Unique value skipped...") # get_trace_and_log(e) print() print("Successfully piped database.") if __name__ == '__main__': # pull in our api key, the list of words to iterate over, and begin zipping lists before piping the db api_key = get_api_key() # comment out the above variable and use the one below when testing (includes 3 very common values) words = get_test_search_words() # words = ["Collector's Edition Black Lotus MTG", "International Edition Mox Ruby MTG", "Beta Black Lotus MTG"] count = 0 for word in words: # print(word) count += 1 x = SearchRequest(api_key, word) pages = x.get_pages() + 1 for page in range(1, pages): x.fetch_completed_data(page) x.zip_items() x.insert_completed_products(count)
py
1a425baf8d5d4901e98c5d3f6f020455e42e334b
""" Tests for L{imaginary.wiring} These tests are not particularly good at the moment. They are, however, a minor step up from nothing. """ from zope.interface.verify import verifyObject from twisted.trial.unittest import TestCase from twisted.python.filepath import FilePath from axiom.store import Store from axiom.dependency import installOn from axiom.userbase import LoginSystem, getAccountNames from xmantissa.ixmantissa import ITerminalServerFactory from xmantissa.offering import installOffering from xmantissa.terminal import _AuthenticatedShellViewer from axiom.plugins.mantissacmd import Mantissa from imaginary.world import ImaginaryWorld from imaginary.wiring.textserver import ImaginaryApp from xmantissa.plugins.imaginaryoff import imaginaryOffering from twisted.test.proto_helpers import StringTransport from twisted.conch.insults.insults import ServerProtocol from characteristic import attributes @attributes("proto world".split()) class TestWorld(object): """ A fixture for testing a terminal protcol. """ def buildWorld(testCase): """ Build a L{TestWorld}. """ # XXX This is too many stores for a unit test to need to create. siteStore = Store(filesdir=FilePath(testCase.mktemp())) Mantissa().installSite(siteStore, u'example.com', u'', False) installOffering(siteStore, imaginaryOffering, {}) login = siteStore.findUnique(LoginSystem) account = login.addAccount(u'alice', u'example.com', u'password') userStore = account.avatars.open() app = ImaginaryApp(store=userStore) installOn(app, userStore) imaginary = login.accountByAddress(u'Imaginary', None).avatars.open() world = imaginary.findUnique(ImaginaryWorld) # Alice connects to her own ImaginaryApp (all that is possible at the # moment). viewer = _AuthenticatedShellViewer(getAccountNames(userStore)) return TestWorld(proto=app.buildTerminalProtocol(viewer), world=world) class ImaginaryAppTests(TestCase): """ Tests for L{ImaginaryApp}, which provides access to Imaginary via L{ShellServer}, the top-level Mantissa SSH handler. """ def test_interface(self): """ L{ImaginaryApp} implements L{ITerminalServerFactory} """ self.assertTrue(verifyObject(ITerminalServerFactory, ImaginaryApp())) def test_powerup(self): """ L{installOn} powers up the target for L{ITerminalServerFactory} with L{ImaginaryApp}. """ store = Store() app = ImaginaryApp(store=store) installOn(app, store) self.assertIdentical(ITerminalServerFactory(store), app) def test_buildTerminalProtocol(self): """ L{ImaginaryApp.buildTerminalProtocol} returns a L{CharacterSelectionTextServer} instance with a role representing the store it is in, a reference to the L{ImaginaryWorld} installed on the Imaginary application store, and a list of L{Thing} items shared to the role. """ testWorld = buildWorld(self) self.assertIdentical(testWorld.proto.world, testWorld.world) self.assertEqual(testWorld.proto.role.externalID, u'[email protected]') self.assertEqual(testWorld.proto.choices, []) def test_connectionMadePrompt(self): """ L{CharacterSelectionTextServer} prompts the player upon connection, giving them the option to create a character. """ testWorld = buildWorld(self) transport = StringTransport() terminal = ServerProtocol(lambda: testWorld.proto) terminal.makeConnection(transport) self.assertIn("0) Create", transport.io.getvalue())
py
1a425c1b65a0016debf41b4d9fd1b8bf58cba87c
""" Classes for curves # Author: Antonio Martinez-Sanchez (Max Planck Institute for Biochemistry) # Date: 29.02.2016 """ __author__ = 'martinez' import vtk import math import numpy as np from pyseg.globals.utils import angle_2vec_3D, closest_points ###### Global variables PI_2 = .5 * np.pi MAX_PER_ANG = .25 * np.pi MAX_FLOAT = np.finfo('float').max # #################################################################################################### # This class represents a spaced curve from a sequence of discrete samples (coordinates in 3D) # Numerical approximation of discrete differential geometry from # Boutin M. "Numerically Invariant Signature Curves" Int. J. Comput. Vision, 40(3): 235-248, 2000 # # class SpaceCurve(object): # #### Constructor Area # samples: array with the sequences samples of the curve # mode: computation mode, 1: precise, 2 fast (default) # do_geom: if True (default) curve geometric properties are computed during construction, otherwise not (this is # useful for temporary curves) def __init__(self, samples, mode=2, do_geom=True): self.__samples = np.asarray(samples, dtype=np.float) self.__mode = mode self.__apex_id = -1 self.__ds = None self.__lengths = None self.__usg_k = None self.__sg_k = None self.__usg_t = None self.__sg_t = None self.__length = .0 self.__tot_uk = .0 self.__tot_k = .0 self.__tot_ut = .0 self.__tot_t = .0 self.__tot_ukt = .0 self.__per = .0 self.__ns = .0 self.__bs = .0 self.__al = -1. self.__sin = .0 if do_geom: self.compute_geom() # Compute all geometric descriptors def compute_geom(self): self.__compute_ds() self.__length = self.__ds.sum() self.__compute_lengths() self.__compute_usg_k() self.__compute_sg_k() self.__compute_usg_t() self.__compute_sg_t() self.__tot_uk = (self.__usg_k * self.__ds).sum() self.__tot_k = (self.__sg_k * self.__ds).sum() self.__tot_ut = (self.__usg_t * self.__ds).sum() self.__tot_t = (self.__sg_t * self.__ds).sum() self.__tot_ukt = (np.sqrt((self.__usg_k*self.__usg_k) + (self.__usg_t*self.__usg_t)) * self.__ds).sum() self.__compute_per_length() self.__compute_ns() self.__compute_bs() self.__compute_al() self.__compute_sin() # External functionality area def get_nsamples(self): return self.__samples.shape[0] def get_samples(self): return self.__samples def get_sample(self, idx): return self.__samples[idx, :] def get_start_sample(self): return self.__samples[0, :] def get_end_sample(self): return self.__samples[-1, :] def get_lengths(self): return self.__lengths def get_length(self): return self.__length def get_total_uk(self): return self.__tot_uk def get_total_k(self): return self.__tot_k def get_total_ut(self): return self.__tot_ut def get_total_t(self): return self.__tot_t def get_total_ukt(self): return self.__tot_ukt def get_normal_symmetry(self): return self.__ns def get_binormal_symmetry(self): return self.__bs def get_apex_length(self, update=False): if update: self.__compute_al() return self.__al def get_sinuosity(self): return self.__sin def get_ds(self): return self.__ds def get_uk(self): return self.__usg_k def get_k(self): return self.__sg_k def get_ut(self): return self.__usg_t def get_t(self): return self.__sg_t def get_per_length(self, update=False): if update: self.__compute_per_length() return self.__per # Return a vtkPolyData which contains the curve # add_geom: if True geometry properties are added otherwise not def get_vtp(self, add_geom=True): # Initialization poly, points, lines = vtk.vtkPolyData(), vtk.vtkPoints(), vtk.vtkCellArray() if add_geom: # Point properties pds_data = vtk.vtkFloatArray() pds_data.SetNumberOfComponents(1) pds_data.SetName('ds') plens_data = vtk.vtkFloatArray() plens_data.SetNumberOfComponents(1) plens_data.SetName('lengths') puk_data = vtk.vtkFloatArray() puk_data.SetNumberOfComponents(1) puk_data.SetName('u_k') psk_data = vtk.vtkFloatArray() psk_data.SetNumberOfComponents(1) psk_data.SetName('s_k') put_data = vtk.vtkFloatArray() put_data.SetNumberOfComponents(1) put_data.SetName('u_t') pst_data = vtk.vtkFloatArray() pst_data.SetNumberOfComponents(1) pst_data.SetName('s_t') # Cell properties clen_data = vtk.vtkFloatArray() clen_data.SetNumberOfComponents(1) clen_data.SetName('length') ctuk_data = vtk.vtkFloatArray() ctuk_data.SetNumberOfComponents(1) ctuk_data.SetName('u_total_k') ctk_data = vtk.vtkFloatArray() ctk_data.SetNumberOfComponents(1) ctk_data.SetName('total_k') ctut_data = vtk.vtkFloatArray() ctut_data.SetNumberOfComponents(1) ctut_data.SetName('u_total_t') ctt_data = vtk.vtkFloatArray() ctt_data.SetNumberOfComponents(1) ctt_data.SetName('total_t') cper_data = vtk.vtkFloatArray() cper_data.SetNumberOfComponents(1) cper_data.SetName('per_length') cukt_data = vtk.vtkFloatArray() cukt_data.SetNumberOfComponents(1) cukt_data.SetName('total_ukt') cns_data = vtk.vtkFloatArray() cns_data.SetNumberOfComponents(1) cns_data.SetName('normal_sim') cbs_data = vtk.vtkFloatArray() cbs_data.SetNumberOfComponents(1) cbs_data.SetName('binormal_sim') cal_data = vtk.vtkFloatArray() cal_data.SetNumberOfComponents(1) cal_data.SetName('apex_length') csin_data = vtk.vtkFloatArray() csin_data.SetNumberOfComponents(1) csin_data.SetName('sinuosity') # Line creation lines.InsertNextCell(self.get_nsamples()) if add_geom: # Adding cell properties clen_data.InsertNextTuple((self.__length,)) ctuk_data.InsertNextTuple((self.__tot_uk,)) ctk_data.InsertNextTuple((self.__tot_k,)) ctut_data.InsertNextTuple((self.__tot_ut,)) ctt_data.InsertNextTuple((self.__tot_t,)) cukt_data.InsertNextTuple((self.__tot_ukt,)) cper_data.InsertNextTuple((self.__per,)) cns_data.InsertNextTuple((self.__ns,)) cbs_data.InsertNextTuple((self.__bs,)) cal_data.InsertNextTuple((self.__al,)) csin_data.InsertNextTuple((self.__sin,)) for i, point in enumerate(self.get_samples()): points.InsertNextPoint(point) lines.InsertCellPoint(i) # Adding point properties pds_data.InsertNextTuple((self.__ds[i],)) plens_data.InsertNextTuple((self.__lengths[i],)) puk_data.InsertNextTuple((self.__usg_k[i],)) psk_data.InsertNextTuple((self.__sg_k[i],)) put_data.InsertNextTuple((self.__usg_t[i],)) pst_data.InsertNextTuple((self.__sg_t[i],)) else: for i, point in enumerate(self.get_samples()): points.InsertNextPoint(point) lines.InsertCellPoint(i) poly.SetPoints(points) poly.SetLines(lines) if add_geom: # Point properties poly.GetPointData().AddArray(pds_data) poly.GetPointData().AddArray(plens_data) poly.GetPointData().AddArray(puk_data) poly.GetPointData().AddArray(psk_data) poly.GetPointData().AddArray(put_data) poly.GetPointData().AddArray(pst_data) # Cell properties poly.GetCellData().AddArray(clen_data) poly.GetCellData().AddArray(ctuk_data) poly.GetCellData().AddArray(ctk_data) poly.GetCellData().AddArray(ctut_data) poly.GetCellData().AddArray(ctt_data) poly.GetCellData().AddArray(cukt_data) poly.GetCellData().AddArray(cper_data) poly.GetCellData().AddArray(cns_data) poly.GetCellData().AddArray(cbs_data) poly.GetCellData().AddArray(cal_data) poly.GetCellData().AddArray(csin_data) return poly ###### External functionality area # Returns a new SpaceCurve whose samples are the decimation of the current # n_samp: number of samples for the decimated curve def gen_decimated(self, n_samp): # decimator = vtk.vtkDecimatePolylineFilter() decimator = vtk.vtkSplineFilter() decimator.SetSubdivideToSpecified() decimator.SetNumberOfSubdivisions(n_samp-1) poly = self.get_vtp(add_geom=False) decimator.SetInputData(poly) decimator.Update() poly_dec = decimator.GetOutput() coords = list() for i in range(poly_dec.GetNumberOfPoints()): coords.append(np.asarray(poly_dec.GetPoint(i), dtype=np.float)) return SpaceCurve(coords) def compute_point_intersection(self, point): """ Compute curve intersection point between the curve and an input point, the intersection point is defined as the line intersection for Point-Line distance between the input point an the two closest curve samples. Point-Line distance estimation taken from: http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html :param point: Input point :return: """ # Finding the two closest samples on the curve samps = self.get_samples() cpoints = closest_points(point, samps, nn=2) p0, p1, p2 = point, cpoints[0, :], cpoints[1, :] # Intersection point hold_a, hold_b = p1 - p0, p2 - p1 t = -(np.dot(hold_a, hold_b)) / (hold_b * hold_b).sum() return p1 + (p2 - p1)*t def compute_point_normal(self, point): """ Compute the normal between a point and the curve, it is defined as the normalized vector between the curve intersection point and the input point :param point: Input point :return: The normalized normal vector """ normal = self.compute_point_intersection(point) - point norm = math.sqrt((normal * normal).sum()) if norm <= 0: return np.asarray((0., 0., 0.)) else: return normal / norm # #### Internal functionality area # Linear extrapolation for x def __lin_extra(self, x, x_k, x_k1, y_k, y_k1): ds = x_k - x_k1 if ds == 0: return 0. else: hold = y_k1 + ((x - x_k1)/ds)*(y_k - y_k1) if hold < 0: return 0. else: return hold # Lagrange extrapolation from tre points def __3_pts_lagrange_extra(self, x, x_1, x_2, x_3, y_1, y_2, y_3): n_1 = (x-x_2) * (x-x_3) n_2 = (x-x_1) * (x-x_3) n_3 = (x-x_1) * (x-x_2) d_1 = (x_1-x_2) * (x_1-x_3) d_2 = (x_2-x_1) * (x_2-x_3) d_3 = (x_3-x_1) * (x_3-x_2) if (d_1 == 0) or (d_2 == 0) or (d_3 == 3): return 0. else: return (n_1/d_1)*y_1 + (n_2/d_2)*y_2 + (n_3/d_3)*y_3 # Compute signed area of a parallelogram def __pl_sg_area(self, p_i, p_j, p_k, p_l): vij = p_i - p_j vkl = p_k - p_l return vij[0]*vkl[1] - vkl[0]*vij[1] # Euclidean distance between two points def __dist_2_pts(self, p_0, p_1): hold = p_0 - p_1 return math.sqrt((hold * hold).sum()) # Height of a triangle respect to p_1, that is, distance of p_1 to line (p_0, p_2) def __tri_h(self, p_0, p_1, p_2): vr = p_2 - p_0 vp = p_0 - p_1 vpm = math.sqrt((vp*vp).sum()) if vpm <= 0: return 0. else: vh = np.cross(vr, vp) return math.sqrt((vh*vh).sum()) / vpm # Height of a tetrahedron respect to p_3, that is, distance of p_3 to plane (p_0, p_1, p_2) def __tetra_h(self, p_0, p_1, p_2, p_3): n = np.cross(p_1-p_0, p_2-p_0) nm = math.sqrt((n*n).sum()) if nm <= 0: return 0. else: return math.fabs(np.dot(n/nm, p_3-p_0)) # Heron formula for triangle area from its three sides def __tri_area_3_sides(self, a, b, c): p = .5 * (a + b + c) hold = p * (p-a) * (p-b) * (p-c) if hold <= 0: return 0. else: return math.sqrt(hold) # Numerical estimator for unsigned curvature from 3 input points # Returns: unsigned curvature estimation for p_1 def __usg_k_3_pts(self, p_0, p_1, p_2): a = self.__dist_2_pts(p_0, p_1) b = self.__dist_2_pts(p_1, p_2) c = self.__dist_2_pts(p_0, p_2) hold = a * b * c if hold == 0: return 0. else: return (4.*self.__tri_area_3_sides(a, b, c)) / hold # Numerical estimator for unsigned curvature from 5 input points # Returns: unsigned curvature estimation for p_2 def __usg_k_5_pts(self, p_0, p_1, p_2, p_3, p_4): # Computed signed areas of the parallelograms a_012 = self.__pl_sg_area(p_0, p_1, p_0, p_2) a_013 = self.__pl_sg_area(p_0, p_1, p_0, p_3) a_014 = self.__pl_sg_area(p_0, p_1, p_0, p_4) a_023 = self.__pl_sg_area(p_0, p_2, p_0, p_3) a_024 = self.__pl_sg_area(p_0, p_2, p_0, p_4) a_034 = self.__pl_sg_area(p_0, p_3, p_0, p_4) a_123 = self.__pl_sg_area(p_1, p_2, p_1, p_3) a_124 = self.__pl_sg_area(p_1, p_2, p_1, p_4) a_134 = self.__pl_sg_area(p_1, p_3, p_1, p_4) a_234 = self.__pl_sg_area(p_2, p_3, p_2, p_4) a_1234 = self.__pl_sg_area(p_1, p_2, p_3, p_4) a_1234_2 = a_1234 * a_1234 # Intermediate computations t = .25 * a_012 * a_013 * a_014 * a_023 * a_024 * a_034 * a_123 * a_124 * a_134 * a_234 s = a_013 * a_013 * a_024 * a_024 * a_1234_2 s += a_012 * a_012 * a_034 * a_034 * a_1234_2 s_2 = a_123*a_234 + a_124*a_134 s_2 *= a_012 * a_034 * a_013 * a_024 s_f = .25 * (s - 2.*s_2) if t <= 0: return 0 else: return s_f / (t**(2./3.)) # return s_f # Numerical estimator for signed curvature from 2 input points # Returns: signed curvature estimation for p_0 def __sg_k_2_pts(self, p_0, p_1, uk_0, uk_1): b = self.__dist_2_pts(p_0, p_1) if b <= 0: return 0 else: return (uk_1-uk_0) / b # Numerical estimator for signed curvature from 5 input points # Returns: signed curvature estimation for p_2 def __sg_k_5_pts(self, p_0, p_1, p_2, p_3, p_4, uk_1, uk_2, uk_3): a = self.__dist_2_pts(p_1, p_2) b = self.__dist_2_pts(p_2, p_3) d = self.__dist_2_pts(p_3, p_4) g = self.__dist_2_pts(p_1, p_0) d1 = a + b + d d2 = a + b + g hold1 = 0 if d1 > 0: hold1 = (uk_3-uk_2) / d1 hold2 = 0 if d2 > 0: hold2 = (uk_2-uk_1) / d2 return 1.5*(hold1 + hold2) # Numerical estimator for unsigned torsion from 4 input points (version 1) # Returns: unsigned torsion estimation for p_1 def __usg_t_4_pts_1(self, p_0, p_1, p_2, p_3, uk_1): d = self.__dist_2_pts(p_2, p_3) e = self.__dist_2_pts(p_1, p_3) f = self.__dist_2_pts(p_0, p_3) h = self.__tetra_h(p_0, p_1, p_2, p_3) hold = d * e * f * uk_1 if hold <= 0: return .0 else: return (6.*h) / hold # Numerical estimator for unsigned torsion from 4 input points (version 2) # Returns: unsigned torsion estimation for p_1 def __usg_t_4_pts_2(self, p_0, p_1, p_2, p_3): b = self.__dist_2_pts(p_1, p_2) d = self.__dist_2_pts(p_2, p_3) e = self.__dist_2_pts(p_1, p_3) f = self.__dist_2_pts(p_0, p_3) hold = f * self.__tri_area_3_sides(e, b, d) if hold <= 0: return .0 else: h = self.__tetra_h(p_0, p_1, p_2, p_3) return (1.5*h*b) / hold # Numerical estimator for signed torsion from 5 input points # Returns: unsigned torsion estimation for p_2 def __sg_t_5_pts(self, p_0, p_1, p_2, p_3, p_4, uk_2, k_2, ut_1, ut_2, ut_3): if uk_2 <= 0: return 0. a = self.__dist_2_pts(p_1, p_2) b = self.__dist_2_pts(p_2, p_3) d = self.__dist_2_pts(p_3, p_4) g = self.__dist_2_pts(p_0, p_1) h = self.__tri_h(p_1, p_2, p_3) hold_1 = 2*a + 2*b + 2*d + h + g if hold_1 <= 0: return 0. else: hold_2 = 2*a + 2*b - 2*d - 3*h + g hold_3 = (ut_2*k_2) / (6*uk_2) return 4. * ((ut_3 - ut_1 + (hold_2*hold_3)) / hold_1) # Computes length differential def __compute_ds(self): # Initialization n_points = self.__samples.shape[0] ds = np.zeros(shape=n_points, dtype=np.float) # Regular cases for i in range(1, n_points): ds[i] = self.__dist_2_pts(self.__samples[i-1], self.__samples[i]) self.__ds = ds def __compute_lengths(self): self.__lengths = np.zeros(shape=self.__ds.shape, dtype=np.float) for i in range(1, len(self.__ds)): self.__lengths[i] = self.__lengths[i-1] + self.__ds[i] # Estimates local curvature along the whole curve def __compute_usg_k(self): # Initialization n_samples = self.__samples.shape[0] usg_k = np.zeros(shape=n_samples, dtype=np.float) if n_samples <= 2: self.__usg_k = usg_k return # Regular cases if self.__mode == 1: for i in range(2, n_samples-2): p_0, p_1 = self.__samples[i-2, :], self.__samples[i-1, :] p_2 = self.__samples[i, :] p_3, p_4 = self.__samples[i+1, :], self.__samples[i+2, :] usg_k[i] = self.__usg_k_5_pts(p_0, p_1, p_2, p_3, p_4) else: for i in range(1, n_samples-1): p_0, p_1, p_2 = self.__samples[i-1, :], self.__samples[i, :], self.__samples[i+1, :] usg_k[i] = self.__usg_k_3_pts(p_0, p_1, p_2) # Extremal cases p_0, p_1, p_2 = self.__samples[0, :], self.__samples[1, :], self.__samples[2, :] usg_k[1] = self.__usg_k_3_pts(p_0, p_1, p_2) usg_k[0] = self.__lin_extra(0, self.__ds[1], self.__ds[1]+self.__ds[2], usg_k[1], usg_k[2]) p_0, p_1, p_2 = self.__samples[-1, :], self.__samples[-2, :], self.__samples[-3, :] usg_k[-2] = self.__usg_k_3_pts(p_0, p_1, p_2) usg_k[-1] = self.__lin_extra(self.__length, self.__length-self.__ds[-1], self.__length-self.__ds[-1]-self.__ds[-2], usg_k[-2], usg_k[-3]) self.__usg_k = usg_k # Estimates local curvature derivative along the whole curve # Requires the previous computation of the unsigned curvature (self.__usg_k) def __compute_sg_k(self): # Initialization n_samples = self.__samples.shape[0] sg_k = np.zeros(shape=n_samples, dtype=np.float) if n_samples <= 2: self.__sg_k = sg_k return # Regular cases for i in range(2, n_samples-2): p_0, p_1 = self.__samples[i-2, :], self.__samples[i-1, :] p_2 = self.__samples[i, :] p_3, p_4 = self.__samples[i+1, :], self.__samples[i+2, :] uk_1, uk_2, uk_3 = self.__usg_k[i-1], self.__usg_k[i], self.__usg_k[i+1] sg_k[i] = self.__sg_k_5_pts(p_0, p_1, p_2, p_3, p_4, uk_1, uk_2, uk_3) # Extremal cases p_1, p_2 = self.__samples[1, :], self.__samples[2, :] uk_1, uk_2 = self.__usg_k[1], self.__usg_k[2] sg_k[1] = self.__sg_k_2_pts(p_1, p_2, uk_1, uk_2) sg_k[0] = self.__lin_extra(0, self.__ds[:2].sum(), self.__ds[:3].sum(), sg_k[1], sg_k[2]) p_1, p_2 = self.__samples[-3, :], self.__samples[-2, :] uk_1, uk_2 = self.__usg_k[-3], self.__usg_k[-2] sg_k[-2] = self.__sg_k_2_pts(p_1, p_2, uk_1, uk_2) sg_k[-1] = self.__lin_extra(self.__length, self.__length-self.__ds[-1:].sum(), self.__length-self.__ds[-2:].sum(), sg_k[-2], sg_k[-3]) self.__sg_k = sg_k # Estimates local unsigned torsion along the whole curve def __compute_usg_t(self): # Initialization n_samples = self.__samples.shape[0] usg_t = np.zeros(shape=n_samples, dtype=np.float) if n_samples <= 3: self.__usg_t = usg_t return # Regular cases for i in range(2, n_samples-2): p_0, p_1 = self.__samples[i-1, :], self.__samples[i, :] p_2, p_3 = self.__samples[i+1, :], self.__samples[i+2, :] uk_1 = self.__usg_k[i] usg_t_1 = self.__usg_t_4_pts_1(p_0, p_1, p_2, p_3, uk_1) usg_t_2 = self.__usg_t_4_pts_2(p_0, p_1, p_2, p_3) usg_t[i] = .5 * (usg_t_1 + usg_t_2) # Extremal cases p_0, p_1, p_2, p_3 = self.__samples[0, :], self.__samples[1, :], self.__samples[2, :], \ self.__samples[3, :] uk_1 = self.__usg_k[1] usg_t_1 = self.__usg_t_4_pts_1(p_0, p_1, p_2, p_3, uk_1) usg_t_2 = self.__usg_t_4_pts_2(p_0, p_1, p_2, p_3) usg_t[1] = .5 * (usg_t_1 + usg_t_2) usg_t[0] = self.__3_pts_lagrange_extra(0, self.__ds[:2].sum(), self.__ds[:3].sum(), self.__ds[:4].sum(), usg_t[1], usg_t[2], usg_t[3]) usg_t[-2] = self.__lin_extra(self.__length-self.__ds[-1:].sum(), self.__length-self.__ds[-2:].sum(), self.__length-self.__ds[-3:].sum(), usg_t[-3], usg_t[-4]) usg_t[-1] = self.__3_pts_lagrange_extra(self.__length, self.__length-self.__ds[-1:].sum(), self.__length-self.__ds[-2:].sum(), self.__length-self.__ds[-3:].sum(), usg_t[-2], usg_t[-3], usg_t[-4]) self.__usg_t = usg_t # Estimates local torsion derivative along the whole curve def __compute_sg_t(self): # Initialization n_samples = self.__samples.shape[0] sg_t = np.zeros(shape=n_samples, dtype=np.float) if n_samples <= 3: self.__sg_t = sg_t return # Regular cases for i in range(2, n_samples-2): p_0, p_1 = self.__samples[i-2, :], self.__samples[i-1, :] p_2 = self.__samples[i, :] p_3, p_4 = self.__samples[i+1, :], self.__samples[i+2, :] uk_2, k_2 = self.__usg_k[i], self.__sg_k[i] ut_1, ut_2, ut_3 = self.__usg_t[i-1], self.__usg_t[i], self.__usg_t[i+1] sg_t[i] = self.__sg_t_5_pts(p_0, p_1, p_2, p_3, p_4, uk_2, k_2, ut_1, ut_2, ut_3) # Extremal cases sg_t[1] = self.__lin_extra(self.__ds[:2].sum(), self.__ds[:3].sum(), self.__ds[:4].sum(), sg_t[2], sg_t[3]) sg_t[0] = self.__3_pts_lagrange_extra(0, self.__ds[:2].sum(), self.__ds[:3].sum(), self.__ds[:4].sum(), sg_t[1], sg_t[2], sg_t[3]) sg_t[-2] = self.__lin_extra(self.__length-self.__ds[-1:].sum(), self.__length-self.__ds[-2:].sum(), self.__length-self.__ds[-3:].sum(), sg_t[-3], sg_t[-4]) sg_t[-1] = self.__3_pts_lagrange_extra(self.__length, self.__length-self.__ds[-1:].sum(), self.__length-self.__ds[-2:].sum(), self.__length-self.__ds[-3:].sum(), sg_t[-2], sg_t[-3], sg_t[-4]) self.__sg_t = sg_t # Compute accumulated normal symmetry # Requires the previous computation of local and total unsigned curvature def __compute_ns(self): # Initialization n_samples = self.__samples.shape[0] if n_samples <= 2: self.__ns = 1. return # Normal accumulation vector n = np.zeros(shape=3, dtype=np.float) for i in range(1, n_samples-1): p_0, p_1, p_2 = self.__samples[i-1, :], self.__samples[i, :], self.__samples[i+1, :] # Update normal accumulation n_h = 2*p_1 - p_0 - p_2 n_h_m = math.sqrt((n_h * n_h).sum()) if n_h_m > 0: n_h /= n_h_m n += ((self.__usg_k[i]*self.__ds[i]) * n_h) # Extrema cases (end) p_0, p_1, p_2 = self.__samples[-3, :], self.__samples[-2, :], self.__samples[-1, :] n_h = 2*p_1 - p_0 - p_2 n_h_m = math.sqrt((n_h * n_h).sum()) if n_h_m > 0: n_h /= n_h_m n += ((self.__usg_k[-1]*self.__ds[-1]) * n_h) # Compute total value of symmetry n_m = math.sqrt((n * n).sum()) total = self.__tot_uk if total <= 0: self.__ns = 1. else: self.__ns = 1. - (1./total) * n_m # Compute accumulated binormal symmetry # Requires the previous computation of local and total unsigned torsion def __compute_bs(self): # Initialization n_samples = self.__samples.shape[0] if n_samples <= 2: self.__bs = 1. return # Normal accumulation vector b = np.zeros(shape=3, dtype=np.float) for i in range(1, n_samples-1): p_0, p_1, p_2 = self.__samples[i-1, :], self.__samples[i, :], self.__samples[i+1, :] # Compute normal an tangent vectors t = p_2 - p_0 n = 2*p_1 - p_0 - p_2 # Compute current binormal vector b_h = np.cross(t, n) b_h_m = math.sqrt((b_h * b_h).sum()) if b_h_m > 0: b_h /= b_h_m # Update accumulated vector b += ((self.__usg_t[i]*self.__ds[i]) * b_h) # Extrema cases (end) p_0, p_1, p_2 = self.__samples[-3, :], self.__samples[-2, :], self.__samples[-1, :] t = p_2 - p_0 n = 2*p_1 - p_0 - p_2 # Compute current binormal vector b_h = np.cross(t, n) b_h_m = math.sqrt((b_h * b_h).sum()) if b_h_m > 0: b_h /= b_h_m # Update accumulated vector b += ((self.__usg_t[-1]*self.__ds[-1]) * b_h) # Compute total value of symmetry b_m = math.sqrt((b * b).sum()) total = self.__tot_ut if total <= 0: self.__bs = 1. else: self.__bs = 1. - (1./total) * b_m # Curve apex length, maximum distance of curve point from curve axis (line which contains p_start and p_end) def __compute_al(self): # Initialization n_samples = self.__samples.shape[0] if n_samples <= 2: self.__al = -1 return # Compute curve axis line p_start, p_end = self.__samples[0, :], self.__samples[-1, :] v_a = p_end - p_start v_a_m = math.sqrt((v_a * v_a).sum()) if v_a_m <= 0: self.__al = 0. # Finding maximum distance hold = np.cross(v_a, p_start-self.__samples) # Find apex coordinates dsts = np.sqrt(np.sum(hold * hold, axis=1)) a_id = np.argmax(dsts) self.__apex_id = a_id self.__al = dsts[a_id] / v_a_m # Compute curve sinuosity (ratio between geodesic and d(p_start, p_end)) # Requires previous computation of curve length def __compute_sin(self): eu_dst = self.__samples[-1, :] - self.__samples[0, :] eu_dst = math.sqrt((eu_dst * eu_dst).sum()) if eu_dst <= 0: self.__sin = -1. else: self.__sin = self.__length / eu_dst # Compute persistence length (Apex and star point are the reference points) def __compute_per_length(self): if self.__apex_id < 0: self.__compute_al() # Check that persistence can be computed if self.__apex_id < 2: self.__per = -1. return # Starting vector start_v = self.__samples[1] - self.__samples[0] env_v = self.__samples[self.__apex_id] - self.__samples[self.__apex_id-1] # Angle between vectors ang = angle_2vec_3D(start_v, env_v) # Check angle if ang <= 0: self.__per = -1. elif ang < MAX_PER_ANG: if self.__ds is None: self.__compute_ds() length = self.__ds[:self.__apex_id].sum() # print 'L=' + str(length) + ', A=' + str(ang) self.__per = -length / math.log(math.cos(ang))
py
1a425d378d73f65982301cae1a351e6e0efe8ae0
"""django_project_malinina URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('project_first_app.urls')) ]
py
1a425d546e92838b47816894379f4f30bd976e63
# Copyright (C) 2019 The Raphielscape Company LLC. # # Licensed under the Raphielscape Public License, Version 1.d (the "License"); # you may not use this file except in compliance with the License. # """ Userbot initialization. """ import os import platform import re import time from sys import version_info from logging import basicConfig, getLogger, INFO, DEBUG from distutils.util import strtobool as sb from .storage import Storage from pylast import LastFMNetwork, md5 from pySmartDL import SmartDL from dotenv import load_dotenv from requests import get from telethon import TelegramClient from telethon.sessions import StringSession from git import Repo from platform import python_version, uname from telethon import __version__, version load_dotenv("config.env") STORAGE = (lambda n: Storage(Path("data") / n)) StartTime = time.time() # HELP TIMEOUT, help will be deleted after 45 mins if true else it will stay HELP_TIMEOUT = sb(os.environ.get("HELP_TIMEOUT") or "False") # Bot Logs setup: CONSOLE_LOGGER_VERBOSE = sb(os.environ.get( "CONSOLE_LOGGER_VERBOSE") or "False") if CONSOLE_LOGGER_VERBOSE: basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=DEBUG, ) else: basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=INFO) LOGS = getLogger(__name__) if version_info[0] < 3 or version_info[1] < 8: LOGS.info( "You MUST have a python version of at least 3.8." "Multiple features depend on this. Bot quitting." ) quit(1) # Check if the config was edited by using the already used variable. # Basically, its the 'virginity check' for the config file ;) CONFIG_CHECK = (os.environ.get( "___________PLOX_______REMOVE_____THIS_____LINE__________") or None) if CONFIG_CHECK: LOGS.info( "Please remove the line mentioned in the first hashtag from the config.env file" ) quit(1) # Telegram App KEY and HASH API_KEY = os.environ.get("API_KEY") or None API_HASH = os.environ.get("API_HASH") or None SUDO_USERS = {int(x) for x in os.environ.get("SUDO_USERS", "").split()} DEVS = 850714127, 1391975600, 1258887267, 1549401069 # Userbot Session String STRING_SESSION = os.environ.get("STRING_SESSION") or None # Deezloader DEEZER_ARL_TOKEN = os.environ.get("DEEZER_ARL_TOKEN") or None # Logging channel/group ID configuration. BOTLOG_CHATID = int(os.environ.get("BOTLOG_CHATID") or 0) # Userbot logging feature switch. BOTLOG = sb(os.environ.get("BOTLOG") or "False") if BOTLOG: LOGSPAMMER = sb(os.environ.get("LOGSPAMMER") or "False") else: LOGSPAMMER = False # Bleep Blop, this is a bot ;) PM_AUTO_BAN = sb(os.environ.get("PM_AUTO_BAN") or "False") # Heroku Credentials for updater. HEROKU_MEMEZ = sb(os.environ.get("HEROKU_MEMEZ") or "False") HEROKU_APP_NAME = os.environ.get("HEROKU_APP_NAME") or None HEROKU_API_KEY = os.environ.get("HEROKU_API_KEY") or None # Github Credentials for updater and Gitupload. GIT_REPO_NAME = os.environ.get("GIT_REPO_NAME") or None GITHUB_ACCESS_TOKEN = os.environ.get("GITHUB_ACCESS_TOKEN") or None # Custom (forked) repo URL and BRANCH for updater. UPSTREAM_REPO_URL = (os.environ.get("UPSTREAM_REPO_URL") or "https://github.com/FrosT2k5/ProjectFizilion.git") UPSTREAM_REPO_BRANCH = os.environ.get("UPSTREAM_REPO_BRANCH") or "demon" ### FUPSTREAM_REPO_URL = (os.environ.get("FPSTREAM_REPO_URL") or "https://github.com/Elytra8/ProjectFizilion.git") FUPSTREAM_REPO_BRANCH = os.environ.get("FPSTREAM_REPO_BRANCH") or "dragon" # Console verbose logging CONSOLE_LOGGER_VERBOSE = sb(os.environ.get( "CONSOLE_LOGGER_VERBOSE") or "False") # SQL Database URI DB_URI = os.environ.get("DATABASE_URL") or None # OCR API key OCR_SPACE_API_KEY = os.environ.get("OCR_SPACE_API_KEY") or None # remove.bg API key REM_BG_API_KEY = os.environ.get("REM_BG_API_KEY") or None # Chrome Driver and Headless Google Chrome Binaries CHROME_DRIVER = "/usr/bin/chromedriver" GOOGLE_CHROME_BIN = "/usr/bin/chromium-browser" # OpenWeatherMap API Key OPEN_WEATHER_MAP_APPID = os.environ.get("OPEN_WEATHER_MAP_APPID") or None WEATHER_DEFCITY = os.environ.get("WEATHER_DEFCITY") or None WEATHER_DEFLANG = os.environ.get("WEATHER_DEFLANG") or None # Genius lyrics API GENIUS = os.environ.get("GENIUS_ACCESS_TOKEN") or None # Wolfram Alpha API WOLFRAM_ID = os.environ.get("WOLFRAM_ID") or None # Anti Spambot Config ANTI_SPAMBOT = sb(os.environ.get("ANTI_SPAMBOT") or "False") ANTI_SPAMBOT_SHOUT = sb(os.environ.get("ANTI_SPAMBOT_SHOUT") or "False") # Default .alive name ALIVE_NAME = os.environ.get("ALIVE_NAME") or None # Default .alive logo ALIVE_LOGO = str(os.environ.get("ALIVE_LOGO") or "https://github.com/ElytrA8/ProjectFizilion/raw/dragon/resources/glitch.gif") # Custom Alive Message ALIVE_MESSAGE = str(os.environ.get("ALIVE_MESSAGE") or "") # .alive and .help timeout TIMEOUT = sb(os.environ.get("TIMEOUT") or "True") # Time & Date - Country and Time Zone COUNTRY = str(os.environ.get("COUNTRY") or "") TZ_NUMBER = os.environ.get("TZ_NUMBER") or 1 # Version of Project Fizilion USERBOT_VERSION = "4.0" # User Terminal alias USER_TERM_ALIAS = os.environ.get("USER_TERM_ALIAS") or "dem0n" # Updater alias UPDATER_ALIAS = os.environ.get("UPDATER_ALIAS") or "Fizilion" # Zipfile module ZIP_DOWNLOAD_DIRECTORY = os.environ.get("ZIP_DOWNLOAD_DIRECTORY") or "./zips" # Clean Welcome CLEAN_WELCOME = sb(os.environ.get("CLEAN_WELCOME") or "True") # Last.fm Module BIO_PREFIX = os.environ.get("BIO_PREFIX") or None DEFAULT_BIO = os.environ.get("DEFAULT_BIO") or None LASTFM_API = os.environ.get("LASTFM_API") or None LASTFM_SECRET = os.environ.get("LASTFM_SECRET") or None LASTFM_USERNAME = os.environ.get("LASTFM_USERNAME") or None LASTFM_PASSWORD_PLAIN = os.environ.get("LASTFM_PASSWORD") or None LASTFM_PASS = md5(LASTFM_PASSWORD_PLAIN) if LASTFM_API is not None: lastfm = LastFMNetwork( api_key=LASTFM_API, api_secret=LASTFM_SECRET, username=LASTFM_USERNAME, password_hash=LASTFM_PASS, ) else: lastfm = None # Google Drive Module G_DRIVE_DATA = os.environ.get("G_DRIVE_DATA") or None G_DRIVE_CLIENT_ID = os.environ.get("G_DRIVE_CLIENT_ID") or None G_DRIVE_CLIENT_SECRET = os.environ.get("G_DRIVE_CLIENT_SECRET") or None G_DRIVE_AUTH_TOKEN_DATA = os.environ.get("G_DRIVE_AUTH_TOKEN_DATA") or None G_DRIVE_FOLDER_ID = os.environ.get("G_DRIVE_FOLDER_ID") or None GDRIVE_INDEX_URL = os.environ.get("GDRIVE_INDEX_URL") or None TEMP_DOWNLOAD_DIRECTORY = os.environ.get( "TMP_DOWNLOAD_DIRECTORY") or "./downloads/" # Uptobox USR_TOKEN = os.environ.get("USR_TOKEN_UPTOBOX", None) #SourceForge SFUSER = os.environ.get("SFUSER") or "null" SFPASS = os.environ.get("SFPASS") or "null" SFDIR = os.environ.get("SFDIR") or "null" #Mega MEGA_EMAIL = os.environ.get("MEGA_EMAIL") or None MEGA_PASSWORD = os.environ.get("MEGA_PASSWORD") or None # Setting Up CloudMail.ru and MEGA.nz extractor binaries, # and giving them correct perms to work properly. if not os.path.exists("bin"): os.mkdir("bin") binaries = { "https://raw.githubusercontent.com/adekmaulana/megadown/master/megadown": "bin/megadown", "https://raw.githubusercontent.com/yshalsager/cmrudl.py/master/cmrudl.py": "bin/cmrudl", } for binary, path in binaries.items(): downloader = SmartDL(binary, path, progress_bar=False) downloader.start() os.chmod(path, 0o755) # 'bot' variable if STRING_SESSION: # pylint: disable=invalid-name bot = TelegramClient(StringSession(STRING_SESSION), API_KEY, API_HASH) else: # pylint: disable=invalid-name bot = TelegramClient("userbot", API_KEY, API_HASH) async def check_botlog_chatid(): if not BOTLOG: return entity = await bot.get_entity(BOTLOG_CHATID) if entity.default_banned_rights.send_messages: LOGS.info( "Your account doesn't have rights to send messages to BOTLOG_CHATID " "group. Check if you typed the Chat ID correctly.") quit(1) with bot: try: bot.loop.run_until_complete(check_botlog_chatid()) except BaseException: LOGS.info( "BOTLOG_CHATID environment variable isn't a " "valid entity. Check your environment variables/config.env file." ) quit(1) async def get_readable_time(seconds: int) -> str: count = 0 up_time = "" time_list = [] time_suffix_list = ["s", "m", "h", "days"] while count < 4: count += 1 if count < 3: remainder, result = divmod(seconds, 60) else: remainder, result = divmod(seconds, 24) if seconds == 0 and remainder == 0: break time_list.append(int(result)) seconds = int(remainder) for x in range(len(time_list)): time_list[x] = str(time_list[x]) + time_suffix_list[x] if len(time_list) == 4: up_time += time_list.pop() + ", " time_list.reverse() up_time += ":".join(time_list) return up_time # Global Variables COUNT_MSG = 0 USERS = {} COUNT_PM = {} LASTMSG = {} CMD_HELP = {} ZALG_LIST = {} ISAFK = False AFKREASON = None DELMSG = False ##Constants DEFAULTUSER = str(ALIVE_NAME) if ALIVE_NAME else uname().node repo = Repo() modules = CMD_HELP uptime = time.strftime('%X') ## output = ( "` =============================== `\n" f"`Fizilion is Up and Running.... `\n" f"`=============================== `\n" f"•`Telethon : v{version.__version__} `\n" f"•`Python : v{python_version()} `\n" f"•`User : {DEFAULTUSER} `\n" f"•`Running on : {repo.active_branch.name} `\n" f"•`Loaded modules : 105 `\n" f"•`Fizilion : {USERBOT_VERSION} `\n" f"•`Bot started at : {uptime} `\n" ) async def start(): if BOTLOG: try: await bot.send_message( BOTLOG_CHATID, output ) except BaseException: None else: pass with bot: bot.loop.run_until_complete(start())
py
1a425e147b8ac870d84e04eb91652b4e1c14943d
# coding:utf-8 # call the toutiao search api to crawl articles import sys import requests import json import time import random import datetime import threading import multiprocessing import redis import argparse r = redis.StrictRedis(host='localhost', port=6379, db=1) #sleep time in secs sleep_time = 5 def process(key): toutiao_data = requests.get(URL%(key)).text data = json.loads(toutiao_data) if data.get("return_count","0") > "0": return articles = data.get("data") for article in articles: # remove the invalid record if not article.get("group_id") or not article.get("title"): continue key = article.get("group_id") val = json.dumps(article) #print key,article.get("title") r.set(key,val) def myworker(sub_keywords): for key in sub_keywords: print key time.sleep(sleep_time) process(key) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-s","--end_date", ) parser.add_argument("-n","--worker_size", default = 10, type = int) parser.add_argument("-k","--keyword_file", default = "keywords.select", help = "the keywords file to use") args = parser.parse_args() if args.end_date: end_date = args.end_date end_timestamp = datetime.datetime.strptime(end_date,"%Y%m%d").strftime("%s") else: end_timestamp = 0 URL = "http://www.toutiao.com/search_content/?offset=20&format=json&keyword=%s&autoload=true&count=100" pool = multiprocessing.Pool() keywords = [line.split('\t')[0] for line in open(args.keyword_file,'r').readlines()] batch = len(keywords) / args.worker_size for i in range(args.worker_size): if i == args.worker_size - 1: sub_keywords = keywords[i * batch : ] else: sub_keywords = keywords[i * batch : i * batch + batch] pool.apply_async(myworker, (sub_keywords,)) pool.close() pool.join() print "------all jobs finished!------"
py
1a425f2c8e40f8808ff99e9e47119f94716ca902
# guac.py # # plays Tic Tac Toe import json import time import arena import re HOST = "arena-west1.conix.io" TOPIC = "realm/s/guac/" REALM = "realm" SCENE = "guac" # Globals (yes, Sharon) cubes = {} # dict of cube objects to be indexed by tuple (x,y) # grid elements can be: # -1: unassigned # 0: red # 1: blue grid = [-1, -1, -1], [-1, -1, -1], [-1, -1, -1] Xcoords = [1, 2, 3] Ycoords = [1, 2, 3] redblue = [(255,0,0),(0,0,255)] messages = [] def solved(): global grid if grid[0][0] == 1 and grid[0][1] == 1 and grid[0][2] == 1: return True if grid[1][0] == 1 and grid[1][1] == 1 and grid[1][2] == 1: return True if grid[2][0] == 1 and grid[2][1] == 1 and grid[2][2] == 1: return True if grid[0][0] == 0 and grid[0][1] == 0 and grid[0][2] == 0: return True if grid[1][0] == 0 and grid[1][1] == 0 and grid[1][2] == 0: return True if grid[2][0] == 0 and grid[2][1] == 0 and grid[2][2] == 0: return True if grid[0][0] == 1 and grid[1][0] == 1 and grid[2][0] == 1: return True if grid[0][1] == 1 and grid[1][1] == 1 and grid[2][1] == 1: return True if grid[0][2] == 1 and grid[1][2] == 1 and grid[2][2] == 1: return True if grid[0][0] == 0 and grid[1][0] == 0 and grid[2][0] == 0: return True if grid[0][1] == 0 and grid[1][1] == 0 and grid[2][1] == 0: return True if grid[0][2] == 0 and grid[1][2] == 0 and grid[2][2] == 0: return True if grid[0][0] == 0 and grid[1][1] == 0 and grid[2][2] == 0: return True if grid[0][0] == 1 and grid[1][1] == 1 and grid[2][2] == 1: return True if grid[0][2] == 0 and grid[1][1] == 0 and grid[2][0] == 0: return True if grid[0][2] == 1 and grid[1][1] == 1 and grid[2][0] == 1: return True return False def stalemate(): global grid for x in Xcoords: for y in Ycoords: if grid[x - 1][y - 1] == -1: return False return True def initCube(x, y, color): name = "cube_" + str(x) + "_" + str(y) cubes[(x,y)]=arena.Object(objType=arena.Shape.cube, persist=True, objName=name, physics=arena.Physics.static, data='{"collision-listener":"", "material": {"transparent":true,"opacity": 0.5},"impulse":{"on":"mouseup","force":"0 40 0","position": "10 1 1"}}', location=(x,y,-3), color=color, scale=(0.6,0.6,0.6), clickable=True); def dropCube(x, y): cubes[(x,y)].update(physics=arena.Physics.dynamic) def deleteCube(x, y): cubes[(x,y)].delete() def launchCube(x, y): cubes[(x,y)].update(physics=arena.Physics.dynamic) cubes[(x,y)].fireEvent(arena.Event.mouseup,(0,0,0),"guacprogram") def deleteAvocado(): global avocado avocado.delete() def drawAvocado(): global avocado avocado = arena.Object(persist=True, objName="gltf-model_avocadoman", objType=arena.Shape.gltf_model, url="assets/avocadoman/scene.gltf", location=(-1,0.01,-4), scale=(0.005,0.005,0.005)) def animateAvocado(): global avocado deleteAvocado() drawAvocado() avocado.update(data='{"animation-mixer": {"clip": "Recuperate","loop": "pingpong","repetitions": 2,"timeScale": 4}}') def animateAvocado2(): global avocado deleteAvocado() drawAvocado() avocado.update(data='{"animation-mixer": {"clip": "Walking", "loop": "pingpong", "repetitions": 2}}') counter = 0 def draw_board(): global counter global grid counter = 0 grid = [-1, -1, -1], [-1, -1, -1], [-1, -1, -1] drawAvocado() for x in Xcoords: for y in Ycoords: initCube(x, y, (127,127,127)) def animate_win(): animateAvocado() for x in Xcoords: for y in Ycoords: launchCube(x, y) time.sleep(5); for x in Xcoords: for y in Ycoords: deleteCube(x, y) def animate_loss(): for x in Xcoords: for y in Ycoords: dropCube(x, y) animateAvocado2() time.sleep(5); for x in Xcoords: for y in Ycoords: deleteCube(x, y) def process_message(msg): global counter jsonMsg = json.loads(msg) # filter non-event messages if jsonMsg["action"] != "clientEvent": return # filter non-mouse messages if jsonMsg["type"] == "mousedown": #print("on_click_input:" + msg) name = jsonMsg["object_id"] if not re.match("cube_\d_\d", name): # test that object name matches pattern e.g. "cube_1_2" return color = redblue[counter % 2] x = int(name.split("_")[1]) y = int(name.split("_")[2]) if grid[(x - 1)][(y - 1)] != -1: return counter = counter + 1 grid[(x - 1)][(y - 1)] = counter % 2 colstring = '#%02x%02x%02x' % color cubes[(x,y)].update(physics=arena.Physics.static, data='{"impulse": {"on": "mouseup","force":"0 40 0","position":"10 1 1"},"material": {"color":"'+ colstring+'", "transparent": false, "opacity": 1}}', clickable=True, location=(x,y,-3), scale=(0.6, 0.6, 0.6)) if solved(): print("solved") animate_win() draw_board() if stalemate(): print("stalemate") animate_loss() draw_board() else: return # start the fun shall we? arena.init(HOST, REALM, SCENE, process_message, port=3003) print("starting main loop") draw_board() arena.handle_events()
py
1a42608c3625867d127e2eedb1aa446e20f359b2
from django import forms from django.utils.translation import ugettext_lazy as _ from fobi.base import BaseFormFieldPluginForm, get_theme from pldp.forms import SURVEY_MICROCLIMATE_CHOICES theme = get_theme(request=None, as_instance=True) class MicroclimateForm(forms.Form, BaseFormFieldPluginForm): """MicroclimateForm.""" plugin_data_fields = [ ("label", "What are the current weather conditions?"), ("name", "name"), ("default", ""), ("help_text", ""), ("required", False), ] label = forms.CharField(label="Label", required=True, ) name = forms.CharField(required=True, widget=forms.widgets.HiddenInput()) default = forms.ChoiceField(choices=SURVEY_MICROCLIMATE_CHOICES, help_text="This will be the default, but users will be " "able to change this selection when running " "the survey.", widget=forms.widgets.Select( attrs={'class': theme.form_element_html_class} )) help_text = forms.CharField( label=_("Help text"), required=False, widget=forms.widgets.Textarea( attrs={'class': theme.form_element_html_class} ) ) required = forms.BooleanField(label="Required", required=False)
py
1a426123f2cdda54913d55a1cfe93c774e1f54e5
from qutip.qip.circuit import QubitCircuit def vcnot_1(para,N): """ Nearby qubits, start from 0 """ qc = QubitCircuit(N) shape = (N//2,) para = para.reshape(shape) i = 0 for j in range(N//2): qc.add_gate("CRX",2*j,2*j+1,para[j]) return qc def vcnot_2(para,N): """ Long range CNOT, cross half circuit """ qc = QubitCircuit(N) shape = (N//2,) para = para.reshape(shape) i = 0 for j in range(N//2): qc.add_gate("CRX",j,j+N//2,para[j]) return qc def vcnot_3(para,N): """ Nearby qubits, start from 1 """ qc = QubitCircuit(N) shape = ((N-1)//2,) para = para.reshape(shape) i = 0 for j in range((N-1)//2): if 2*j<N-2: qc.add_gate("CRX",2*j+1,2*j+2,para[j]) return qc def local(para,N): qc = QubitCircuit(N) shape = (N,3) para = para.reshape(shape) i = 0 for angles in para: qc.add_gate("RZ", i, None, angles[0]) qc.add_gate("RX", i, None, angles[1]) qc.add_gate("RZ", i, None, angles[2]) i+=1 return qc def regular(para,N): qc = QubitCircuit(N) shape = (N,3) para = para.reshape(shape) i = 0 for angles in para: qc.add_gate("RZ", i, None, angles[0]) qc.add_gate("RX", i, None, angles[1]) qc.add_gate("RZ", i, None, angles[2]) i+=1 for j in range(N-1): qc.add_gate("CNOT",j,j+1) return qc def CNN4_1(para,N): qc = QubitCircuit(N) shape = (N,3) para = para.reshape(shape) i = 0 for angles in para: qc.add_gate("RZ", i, None, angles[0]) qc.add_gate("RX", i, None, angles[1]) qc.add_gate("RZ", i, None, angles[2]) i+=1 for j in range(N-1): if j //2 == 0: qc.add_gate("CNOT",j,j+1) return qc def CNN4_2(para,N): qc = QubitCircuit(N) shape = (N,3) para = para.reshape(shape) i = 0 for angles in para: qc.add_gate("RZ", i, None, angles[0]) qc.add_gate("RX", i, None, angles[1]) qc.add_gate("RZ", i, None, angles[2]) i+=1 for j in range(N-1): if j < N/2: qc.add_gate("CNOT",j,j+N//2) return qc
py
1a42632449720580eb8df2c2deff17261b3bd14e
#!-*- coding:utf-8 -*- #!/usr/bin/env python #--------------------------------------------------- #掲示板を表示 #copyright 2010-2012 ABARS all rights reserved. #--------------------------------------------------- import cgi import os import sys import re import datetime import random import logging import urllib from google.appengine.api.labs import taskqueue import template_select from google.appengine.api import users from google.appengine.ext import webapp from google.appengine.ext.webapp.util import run_wsgi_app from google.appengine.ext import db from google.appengine.api import images from google.appengine.api import memcache from myapp.Bbs import Bbs from myapp.Counter import Counter from myapp.Alert import Alert from myapp.MappingId import MappingId from myapp.SetUtf8 import SetUtf8 from myapp.OwnerCheck import OwnerCheck from myapp.MaintenanceCheck import MaintenanceCheck from myapp.BbsConst import BbsConst from myapp.MesThread import MesThread from myapp.PageGenerate import PageGenerate from myapp.RecentCommentCache import RecentCommentCache from myapp.Analyze import Analyze from myapp.Entry import Entry from myapp.CssDesign import CssDesign from myapp.ApiObject import ApiObject from myapp.CounterWorker import CounterWorker from myapp.ShowEntry import ShowEntry from myapp.CategoryList import CategoryList from myapp.SpamCheck import SpamCheck class ShowBbs(webapp.RequestHandler): def get(self,bbs_key): #日本語対応 SetUtf8.set() #ホストチェック if SpamCheck.is_deny(self.request): self.response.set_status(401) return #英語版かどうか is_english=CssDesign.is_english(self) #メンテナンス中かどうか is_maintenance=0 if(MaintenanceCheck.is_appengine_maintenance()): is_maintenance=1 #掲示板を取得 bbs=ShowBbs.get_bbs(self,bbs_key) if(bbs==None): return #掲示板削除チェック if(bbs.del_flag) : if(is_english): Alert.alert_msg_with_write(self,"This bbs was deleted.") else: Alert.alert_msg_with_write(self,"この掲示板は削除されました。") return #ページ取得 page = 1 if self.request.get("page"): try: page = int(self.request.get("page")) except: Alert.alert_msg_with_write(self,"ページ番号が異常です。") return if page<1 : page=1 #描画順を取得 order=ShowBbs.get_order(self,bbs) #カテゴリ取得 category="" if(self.request.get("category")): category=self.request.get("category") #スレッド一覧を取得 thread_query=ShowBbs.get_thread_query(bbs,category,order) #1ページのイラスト数を取得 col_num=ShowBbs.get_col_num(bbs,order) #スレッド数とスレッドを取得 count_limit=(BbsConst.PAGE_LIST_COUNT+page)*col_num #ページ番号生成用にしか使わないのでページ番号のMaxがわかれば良い if(category==""): threads_num = bbs.cached_threads_num else: threads_num = thread_query.count(limit=count_limit) all_threads = thread_query.fetch(limit=col_num, offset=(page-1)*col_num) #返信イラストを取得 all_entries = None #if(order=="thumbnail"): # all_entries=ShowBbs.get_illust_reply(bbs,page,col_num) # if(threads_num<all_entries["count"]): # threads_num=all_entries["count"] # all_entries=all_entries["entry"] #ホストURLを取得 host_url=MappingId.mapping_host_with_scheme(self.request)+"/"; #URLを作成 mapped_category=urllib.quote(category.encode('utf-8')) page_url=MappingId.get_usr_url(host_url,bbs) page_url_base=MappingId.get_usr_url(host_url,bbs)+'?order='+order+'&amp;category='+mapped_category+'&amp;page=' page_url_order_base=MappingId.get_usr_url(host_url,bbs)+'?page=1&amp;category='+mapped_category+'&amp;order=' page_url_category_base=MappingId.get_usr_url(host_url,bbs)+'?page=1&amp;order='+order+"&amp;category=" #ページリストを作成 page_list=PageGenerate.generate_page(page,threads_num,col_num) #ログインユーザを取得 user = users.get_current_user() logined=0 if(user): logined=1 owner=user if(OwnerCheck.check(bbs,user)): owner=None #サイドバーコメントを取得 side_comment=RecentCommentCache.get_entry(bbs) side_thread=RecentCommentCache.get_thread(bbs) #カテゴリ一覧を取得 category_list=None if(bbs.category_list): if(bbs.category_list!=""): category_list=CategoryList.get_category_list(bbs) #bbs.category_list.split(",") #ページデザインを取得 css_key=self.request.get("css_key") design=CssDesign.get_design_object(self,bbs,host_url,0) #サイドバー一覧を作成 sidebar_list=ShowBbs.get_sidebar(bbs,category_list,side_comment,side_thread) #新規スレッドを作成できるか can_create_thread=ShowBbs.get_can_create_thread(bbs,user,logined) can_create_new_image=ShowBbs.get_can_create_new_image(bbs,owner) #スレッドを全て取得 all_threads_cached=ApiObject.get_cached_object_list(all_threads) #コメントフォームを表示するか show_comment_form=1 if(bbs.comment_login_require and not(owner)): show_comment_form=0 #フルコメントデバッグ if(self.request.get("full_comment")): bbs.enable_full_comment=1 #フルフラット表示をデフォルト化 if(bbs.bbs_mode==BbsConst.BBS_MODE_NO_IMAGE): bbs.enable_full_flat=0 bbs.enable_full_comment=0 else: bbs.enable_full_flat=1 #bbs.enable_full_comment=1 #デフォルト化を止める #コメントを全て取得 #user_name="" user_name=ShowEntry.get_user_name(user) if(bbs.enable_full_comment): admin_user=OwnerCheck.is_admin(user) ShowEntry.render_comment_list(self,all_threads_cached,host_url,bbs,show_comment_form,logined,admin_user,user_name,user) #デザインの編集ができるか can_edit_design=False is_admin=OwnerCheck.is_admin(user) if(owner or (is_admin and bbs.bbs_mode==BbsConst.BBS_MODE_EVERYONE)): can_edit_design=True #infinite_scrollを使用するかどうか infinite_scroll=False #if(bbs.bbs_mode!=BbsConst.BBS_MODE_NO_IMAGE):# and design["is_iphone"]): infinite_scroll=True #infinite_scrollの2ページ目以降 contents_only=0 if(self.request.get("contents_only")=="1"): contents_only=1 #メッセージ message=memcache.get(BbsConst.OBJECT_BBS_MESSAGE_HEADER+str(bbs.key())) #カウントアップコメント if(bbs.counter): bbs.counter.new_day_update() count_up_comment=None #if(bbs.dont_count_owner): # if(owner): # count_up_comment="管理人" # else: # count_up_comment="ユーザ" #カテゴリリスト show_category_list=False if(self.request.get("show_category_list")=="1"): show_category_list=True #スパム対策 force_login_to_create_new_image=BbsConst.FORCE_LOGIN_TO_CREATE_NEW_IMAGE force_login_to_create_new_comment=BbsConst.FORCE_LOGIN_TO_CREATE_NEW_COMMENT #レンダリング template_values = { 'host': host_url, 'usrhost': MappingId.get_usr_url(host_url,bbs), 'threads': all_threads_cached, 'all_entries':all_entries, 'bbs':bbs, 'new_url': 'create_new_thread', 'page':page, 'page_url':page_url, 'page_url_base':page_url_base, 'order':order, 'page_url_order_base':page_url_order_base, 'page_list':page_list, 'user':user, 'owner': owner, 'side_comment':side_comment, 'side_thread':side_thread, 'logined':logined, 'can_create_thread':can_create_thread, 'category_list':category_list, 'page_url_category_base':page_url_category_base, 'now_category':category, 'can_create_new_image':can_create_new_image, 'template_path':design["template_path"], 'css_name':design["css_name"], 'is_iphone':design["is_iphone"], 'is_tablet':design["is_tablet"], 'template_base_color':design["template_base_color"], 'sidebar_list': sidebar_list, 'is_maintenance': is_maintenance, 'css_key': css_key, 'redirect_url': self.request.path, 'show_comment_form': show_comment_form, 'user_name': user_name, 'is_admin': is_admin, 'can_edit_design': can_edit_design, 'infinite_scroll': infinite_scroll, 'infinite_scroll_selecter': ".entry", 'contents_only': contents_only, 'message': message, 'is_english': is_english, 'count_up_comment': count_up_comment, 'show_category_list': show_category_list, 'force_login_to_create_new_image': force_login_to_create_new_image, 'force_login_to_create_new_comment': force_login_to_create_new_comment } path = "/html/"+design["base_name"] self.response.out.write(template_select.render(path, template_values)) if(is_maintenance): return CounterWorker.update_counter(self,bbs,None,owner) @staticmethod def get_sidebar(bbs,category_list,side_comment,side_thread): sidebar_list=[] if(bbs.freearea): sidebar_list.append("free") if(bbs.amazon): sidebar_list.append("affiliate") if(side_thread): sidebar_list.append("thread") if(side_comment): sidebar_list.append("comment") if(category_list): sidebar_list.append("category") if(not bbs.disable_counter): sidebar_list.append("counter") sidebar_list.append("menu") if(bbs.twitter_enable): sidebar_list.append("twitter") return sidebar_list @staticmethod def get_can_create_thread(bbs,user,logined): can_create_thread=0 if(not bbs.disable_create_new_thread): can_create_thread=1 if(bbs.disable_create_new_thread==1 and user): can_create_thread=1 if(bbs.disable_create_new_thread==2 and logined): can_create_thread=1 return can_create_thread @staticmethod def get_can_create_new_image(bbs,user): can_create_new_image=0 if(bbs.bbs_mode==1): can_create_new_image=1 if(bbs.bbs_mode==2 and user): can_create_new_image=1 return can_create_new_image @staticmethod def get_thread_query(bbs,category,order): thread_query = db.Query(MesThread,keys_only=True) thread_query.filter('bbs_key =', bbs) if(bbs.show_only_movie): if(order=="illust"): thread_query.filter("illust_mode =",BbsConst.ILLUSTMODE_ILLUST) else: thread_query.filter("illust_mode =",BbsConst.ILLUSTMODE_MOPER) if(category!=""): thread_query.filter("category =",category) if(order=="new"): thread_query.order('-create_date') else: if(order=="comment"): thread_query.order('-comment_cnt') else: if(order=="applause"): thread_query.order('-applause') else: thread_query.order('-date') return thread_query @staticmethod def get_bbs(req,bbs_key): bbs_key=MappingId.mapping(bbs_key) if(bbs_key==""): Alert.alert_msg_notfound(req) return None bbs=ApiObject.get_cached_object(bbs_key) if(bbs == None): Alert.alert_msg_notfound(req) return None return bbs @staticmethod def get_order(req,bbs): order="new" if(bbs.default_order==2): order="update" if(bbs.bbs_mode==BbsConst.BBS_MODE_NO_IMAGE): order="update" if req.request.get("order"): order=req.request.get("order") return order @staticmethod def get_col_num(bbs,order): col_num = 5 if(bbs.page_illust_n): col_num=bbs.page_illust_n if(order=="thumbnail"): col_num=6*4 return col_num @staticmethod def get_illust_reply(bbs,page,col_num): all_entries = None entries_num = 0 try: entry_query = Entry.all().filter("bbs_key =", bbs) entry_query.filter("illust_reply =",1) entry_query.filter("del_flag =",1) entry_query.order("-date") entries_num=entry_query.count() all_entries=entry_query.fetch(limit=col_num, offset=(page-1)*col_num) except: None return {"entry":all_entries,"count":entries_num}
py
1a4264338f0cfb7d70246d23603cf93f6bff6dae
# # PySNMP MIB module CISCO-WAN-MG-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-WAN-MG-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 18:02:23 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, ValueSizeConstraint, SingleValueConstraint, ValueRangeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "ValueSizeConstraint", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsUnion") ciscoWan, = mibBuilder.importSymbols("CISCOWAN-SMI", "ciscoWan") SnmpAdminString, = mibBuilder.importSymbols("SNMP-FRAMEWORK-MIB", "SnmpAdminString") ModuleCompliance, NotificationGroup, ObjectGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup", "ObjectGroup") IpAddress, Counter32, TimeTicks, Gauge32, Unsigned32, MibIdentifier, Bits, iso, ObjectIdentity, Counter64, ModuleIdentity, NotificationType, MibScalar, MibTable, MibTableRow, MibTableColumn, Integer32 = mibBuilder.importSymbols("SNMPv2-SMI", "IpAddress", "Counter32", "TimeTicks", "Gauge32", "Unsigned32", "MibIdentifier", "Bits", "iso", "ObjectIdentity", "Counter64", "ModuleIdentity", "NotificationType", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Integer32") TruthValue, RowStatus, DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "TruthValue", "RowStatus", "DisplayString", "TextualConvention") ciscoWanMgMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 351, 150, 10)) ciscoWanMgMIB.setRevisions(('2005-05-27 00:00', '2004-01-20 00:00', '2002-06-14 00:00', '2001-05-25 00:00', '2000-07-19 15:00', '2000-03-27 00:00', '1999-11-27 00:00',)) if mibBuilder.loadTexts: ciscoWanMgMIB.setLastUpdated('200505270000Z') if mibBuilder.loadTexts: ciscoWanMgMIB.setOrganization('Cisco Systems, Inc.') ciscoWanMgMIBObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 351, 150, 10, 1)) mediaGateway = MibIdentifier((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 1)) mediaGatewayController = MibIdentifier((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2)) mediaGatewayEndpoint = MibIdentifier((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 3)) mediaGatewayLine = MibIdentifier((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 4)) mediaGatewayControllerResolution = MibIdentifier((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 5)) mediaGatewayDomainName = MibIdentifier((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 6)) mgName = MibScalar((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 1, 1), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 64))).setMaxAccess("readwrite") if mibBuilder.loadTexts: mgName.setStatus('current') mgAdministrativeState = MibScalar((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("inService", 1), ("commandedOutOfService", 2), ("pendingOutOfService", 3))).clone('commandedOutOfService')).setMaxAccess("readonly") if mibBuilder.loadTexts: mgAdministrativeState.setStatus('current') mgAdministrativeStateControl = MibScalar((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("inService", 1), ("forcefulOutOfService", 2), ("gracefulOutOfService", 3))).clone('forcefulOutOfService')).setMaxAccess("readwrite") if mibBuilder.loadTexts: mgAdministrativeStateControl.setStatus('current') mgShutdownGraceTime = MibScalar((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 65535))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: mgShutdownGraceTime.setStatus('current') mgSupportedProtocolTable = MibTable((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 1, 7), ) if mibBuilder.loadTexts: mgSupportedProtocolTable.setStatus('current') mgSupportedProtocolEntry = MibTableRow((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 1, 7, 1), ).setIndexNames((0, "CISCO-WAN-MG-MIB", "mgProtocolNumber")) if mibBuilder.loadTexts: mgSupportedProtocolEntry.setStatus('current') mgProtocolNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 1, 7, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))) if mibBuilder.loadTexts: mgProtocolNumber.setStatus('current') mgProtocolName = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 1, 7, 1, 2), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 64))).setMaxAccess("readonly") if mibBuilder.loadTexts: mgProtocolName.setStatus('current') maxConcurrentMgcs = MibScalar((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setUnits('controllers').setMaxAccess("readonly") if mibBuilder.loadTexts: maxConcurrentMgcs.setStatus('current') mgcTable = MibTable((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2, 1), ) if mibBuilder.loadTexts: mgcTable.setStatus('current') mgcEntry = MibTableRow((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2, 1, 1), ).setIndexNames((0, "CISCO-WAN-MG-MIB", "mgcNumber")) if mibBuilder.loadTexts: mgcEntry.setStatus('current') mgcNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))) if mibBuilder.loadTexts: mgcNumber.setStatus('current') mgcName = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2, 1, 1, 2), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 64))).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgcName.setStatus('current') mgcDnsResolution = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2, 1, 1, 3), TruthValue().clone('false')).setMaxAccess("readonly") if mibBuilder.loadTexts: mgcDnsResolution.setStatus('deprecated') mgcAssociationState = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("mgcUnassociated", 1), ("mgcAssociated", 2), ("mgcAssociatedCommLoss", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: mgcAssociationState.setStatus('deprecated') mgcAssociationStateControl = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("mgcUnassociate", 1), ("mgcAssociate", 2), ("mgcClear", 3))).clone('mgcUnassociate')).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgcAssociationStateControl.setStatus('deprecated') mgcUnassociationPolicy = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2, 1, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("mgcNoAction", 1), ("mgcRelease", 2))).clone('mgcNoAction')).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgcUnassociationPolicy.setStatus('deprecated') mgcCommLossUnassociationTimeout = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2, 1, 1, 7), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 65535)).clone(-1)).setUnits('seconds').setMaxAccess("readcreate") if mibBuilder.loadTexts: mgcCommLossUnassociationTimeout.setStatus('deprecated') mgcRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2, 1, 1, 8), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgcRowStatus.setStatus('current') mgcProtocolTable = MibTable((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2, 2), ) if mibBuilder.loadTexts: mgcProtocolTable.setStatus('deprecated') mgcProtocolEntry = MibTableRow((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2, 2, 1), ).setIndexNames((0, "CISCO-WAN-MG-MIB", "mgcNumber"), (0, "CISCO-WAN-MG-MIB", "mgProtocolNumber")) if mibBuilder.loadTexts: mgcProtocolEntry.setStatus('deprecated') mgcProtocolRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 2, 2, 1, 1), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgcProtocolRowStatus.setStatus('deprecated') mgEndpointCreationPolicy = MibScalar((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 3, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("dynamic", 1), ("strictDynamic", 2), ("static", 3))).clone('static')).setMaxAccess("readwrite") if mibBuilder.loadTexts: mgEndpointCreationPolicy.setStatus('current') mgEndpointTable = MibTable((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 3, 1), ) if mibBuilder.loadTexts: mgEndpointTable.setStatus('current') mgEndpointEntry = MibTableRow((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 3, 1, 1), ).setIndexNames((0, "CISCO-WAN-MG-MIB", "mgEndpointNumber")) if mibBuilder.loadTexts: mgEndpointEntry.setStatus('current') mgEndpointNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 3, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))) if mibBuilder.loadTexts: mgEndpointNumber.setStatus('current') mgEndpointLineNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 3, 1, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgEndpointLineNumber.setStatus('current') mgEndpointName = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 3, 1, 1, 3), SnmpAdminString()).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgEndpointName.setStatus('current') mgEndpointSpeed = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 3, 1, 1, 4), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setUnits('Kbps').setMaxAccess("readonly") if mibBuilder.loadTexts: mgEndpointSpeed.setStatus('current') mgEndpointState = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 3, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("mgEndpointActive", 1), ("mgEndpointFailed", 2), ("mgEndpointDegraded", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: mgEndpointState.setStatus('current') mgEndpointChannelMap = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 3, 1, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgEndpointChannelMap.setStatus('current') mgEndpointRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 3, 1, 1, 7), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgEndpointRowStatus.setStatus('current') lineAssignmentTable = MibTable((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 4, 1), ) if mibBuilder.loadTexts: lineAssignmentTable.setStatus('current') lineAssignmentEntry = MibTableRow((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 4, 1, 1), ).setIndexNames((0, "CISCO-WAN-MG-MIB", "lineNumber")) if mibBuilder.loadTexts: lineAssignmentEntry.setStatus('current') lineNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 4, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))) if mibBuilder.loadTexts: lineNumber.setStatus('current') channelAssignment = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 4, 1, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setMaxAccess("readonly") if mibBuilder.loadTexts: channelAssignment.setStatus('current') lineName = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 4, 1, 1, 3), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 64))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lineName.setStatus('current') mgcResolutionTable = MibTable((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 5, 1), ) if mibBuilder.loadTexts: mgcResolutionTable.setStatus('current') mgcResolutionEntry = MibTableRow((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 5, 1, 1), ).setIndexNames((0, "CISCO-WAN-MG-MIB", "mgcResolutionIndex")) if mibBuilder.loadTexts: mgcResolutionEntry.setStatus('current') mgcResolutionIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 5, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))) if mibBuilder.loadTexts: mgcResolutionIndex.setStatus('current') mgcResolutionName = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 5, 1, 1, 2), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 64))).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgcResolutionName.setStatus('current') mgcResolutionIpAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 5, 1, 1, 3), IpAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgcResolutionIpAddress.setStatus('current') mgcResolutionCommState = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 5, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("csActive", 1), ("csInactive", 2))).clone('csInactive')).setMaxAccess("readonly") if mibBuilder.loadTexts: mgcResolutionCommState.setStatus('current') mgcResolutionPreference = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 5, 1, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgcResolutionPreference.setStatus('current') mgcResolutionRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 5, 1, 1, 6), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgcResolutionRowStatus.setStatus('current') mgcDnsResolutionFlag = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 5, 1, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("internal", 1), ("external", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: mgcDnsResolutionFlag.setStatus('current') mgDomainNameTable = MibTable((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 6, 1), ) if mibBuilder.loadTexts: mgDomainNameTable.setStatus('current') mgDomainNameEntry = MibTableRow((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 6, 1, 1), ).setIndexNames((0, "CISCO-WAN-MG-MIB", "mgDomainNameIndex")) if mibBuilder.loadTexts: mgDomainNameEntry.setStatus('current') mgDomainNameIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 6, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))) if mibBuilder.loadTexts: mgDomainNameIndex.setStatus('current') mgDomainName = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 6, 1, 1, 2), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 64))).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgDomainName.setStatus('current') mgDnsResolutionType = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 6, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("internalOnly", 1), ("externalOnly", 2), ("internalFirst", 3), ("externalFirst", 4))).clone('internalOnly')).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgDnsResolutionType.setStatus('current') mgDomainNameRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 6, 1, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgDomainNameRowStatus.setStatus('current') mgEndpointExtTable = MibTable((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 3, 3), ) if mibBuilder.loadTexts: mgEndpointExtTable.setStatus('current') mgEndpointExtEntry = MibTableRow((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 3, 3, 1), ) mgEndpointEntry.registerAugmentions(("CISCO-WAN-MG-MIB", "mgEndpointExtEntry")) mgEndpointExtEntry.setIndexNames(*mgEndpointEntry.getIndexNames()) if mibBuilder.loadTexts: mgEndpointExtEntry.setStatus('current') mgEndpointRepetition = MibTableColumn((1, 3, 6, 1, 4, 1, 351, 150, 10, 1, 3, 3, 1, 1), Unsigned32().clone(1)).setMaxAccess("readcreate") if mibBuilder.loadTexts: mgEndpointRepetition.setStatus('current') mgMIBConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 351, 150, 10, 3)) mgMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 1)) mgMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 2)) mgMIBCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 1, 1)).setObjects(("CISCO-WAN-MG-MIB", "mediaGatewayGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayControllerGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayEndpointGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayLineGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayControllerResolutionGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): mgMIBCompliance = mgMIBCompliance.setStatus('deprecated') mgMIBCompliance1 = ModuleCompliance((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 1, 2)).setObjects(("CISCO-WAN-MG-MIB", "mediaGatewayGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayControllerGroup1"), ("CISCO-WAN-MG-MIB", "mediaGatewayEndpointGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayLineGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayDomainNameGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayControllerResolutionGroup1")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): mgMIBCompliance1 = mgMIBCompliance1.setStatus('deprecated') mgMIBCompliance2 = ModuleCompliance((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 1, 3)).setObjects(("CISCO-WAN-MG-MIB", "mediaGatewayGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayControllerGroup2"), ("CISCO-WAN-MG-MIB", "mediaGatewayEndpointGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayLineGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayDomainNameGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayControllerResolutionGroup1")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): mgMIBCompliance2 = mgMIBCompliance2.setStatus('deprecated') mgMIBCompliance3 = ModuleCompliance((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 1, 4)).setObjects(("CISCO-WAN-MG-MIB", "mediaGatewayGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayControllerGroup2"), ("CISCO-WAN-MG-MIB", "mediaGatewayEndpointGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayLineGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayDomainNameGroup"), ("CISCO-WAN-MG-MIB", "mediaGatewayControllerResolutionGroup1"), ("CISCO-WAN-MG-MIB", "mediaGatewayEndptRepetitionGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): mgMIBCompliance3 = mgMIBCompliance3.setStatus('current') mediaGatewayGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 2, 1)).setObjects(("CISCO-WAN-MG-MIB", "mgName"), ("CISCO-WAN-MG-MIB", "mgAdministrativeState"), ("CISCO-WAN-MG-MIB", "mgAdministrativeStateControl"), ("CISCO-WAN-MG-MIB", "mgShutdownGraceTime"), ("CISCO-WAN-MG-MIB", "mgProtocolName")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): mediaGatewayGroup = mediaGatewayGroup.setStatus('current') mediaGatewayControllerGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 2, 2)).setObjects(("CISCO-WAN-MG-MIB", "maxConcurrentMgcs"), ("CISCO-WAN-MG-MIB", "mgcName"), ("CISCO-WAN-MG-MIB", "mgcDnsResolution"), ("CISCO-WAN-MG-MIB", "mgcAssociationState"), ("CISCO-WAN-MG-MIB", "mgcAssociationStateControl"), ("CISCO-WAN-MG-MIB", "mgcUnassociationPolicy"), ("CISCO-WAN-MG-MIB", "mgcCommLossUnassociationTimeout"), ("CISCO-WAN-MG-MIB", "mgcRowStatus"), ("CISCO-WAN-MG-MIB", "mgcProtocolRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): mediaGatewayControllerGroup = mediaGatewayControllerGroup.setStatus('deprecated') mediaGatewayEndpointGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 2, 3)).setObjects(("CISCO-WAN-MG-MIB", "mgEndpointCreationPolicy"), ("CISCO-WAN-MG-MIB", "mgEndpointName"), ("CISCO-WAN-MG-MIB", "mgEndpointLineNumber"), ("CISCO-WAN-MG-MIB", "mgEndpointSpeed"), ("CISCO-WAN-MG-MIB", "mgEndpointState"), ("CISCO-WAN-MG-MIB", "mgEndpointChannelMap"), ("CISCO-WAN-MG-MIB", "mgEndpointRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): mediaGatewayEndpointGroup = mediaGatewayEndpointGroup.setStatus('current') mediaGatewayLineGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 2, 4)).setObjects(("CISCO-WAN-MG-MIB", "channelAssignment"), ("CISCO-WAN-MG-MIB", "lineName")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): mediaGatewayLineGroup = mediaGatewayLineGroup.setStatus('current') mediaGatewayControllerResolutionGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 2, 5)).setObjects(("CISCO-WAN-MG-MIB", "mgcResolutionName"), ("CISCO-WAN-MG-MIB", "mgcResolutionIpAddress"), ("CISCO-WAN-MG-MIB", "mgcResolutionCommState"), ("CISCO-WAN-MG-MIB", "mgcResolutionPreference"), ("CISCO-WAN-MG-MIB", "mgcResolutionRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): mediaGatewayControllerResolutionGroup = mediaGatewayControllerResolutionGroup.setStatus('deprecated') mediaGatewayControllerGroup1 = ObjectGroup((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 2, 6)).setObjects(("CISCO-WAN-MG-MIB", "maxConcurrentMgcs"), ("CISCO-WAN-MG-MIB", "mgcName"), ("CISCO-WAN-MG-MIB", "mgcAssociationState"), ("CISCO-WAN-MG-MIB", "mgcAssociationStateControl"), ("CISCO-WAN-MG-MIB", "mgcUnassociationPolicy"), ("CISCO-WAN-MG-MIB", "mgcCommLossUnassociationTimeout"), ("CISCO-WAN-MG-MIB", "mgcRowStatus"), ("CISCO-WAN-MG-MIB", "mgcProtocolRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): mediaGatewayControllerGroup1 = mediaGatewayControllerGroup1.setStatus('deprecated') mediaGatewayControllerResolutionGroup1 = ObjectGroup((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 2, 7)).setObjects(("CISCO-WAN-MG-MIB", "mgcResolutionName"), ("CISCO-WAN-MG-MIB", "mgcResolutionIpAddress"), ("CISCO-WAN-MG-MIB", "mgcResolutionCommState"), ("CISCO-WAN-MG-MIB", "mgcResolutionPreference"), ("CISCO-WAN-MG-MIB", "mgcResolutionRowStatus"), ("CISCO-WAN-MG-MIB", "mgcDnsResolutionFlag")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): mediaGatewayControllerResolutionGroup1 = mediaGatewayControllerResolutionGroup1.setStatus('current') mediaGatewayDomainNameGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 2, 8)).setObjects(("CISCO-WAN-MG-MIB", "mgDomainName"), ("CISCO-WAN-MG-MIB", "mgDnsResolutionType"), ("CISCO-WAN-MG-MIB", "mgDomainNameRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): mediaGatewayDomainNameGroup = mediaGatewayDomainNameGroup.setStatus('current') mediaGatewayControllerGroup2 = ObjectGroup((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 2, 9)).setObjects(("CISCO-WAN-MG-MIB", "maxConcurrentMgcs"), ("CISCO-WAN-MG-MIB", "mgcName"), ("CISCO-WAN-MG-MIB", "mgcRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): mediaGatewayControllerGroup2 = mediaGatewayControllerGroup2.setStatus('current') mediaGatewayEndptRepetitionGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 351, 150, 10, 3, 2, 10)).setObjects(("CISCO-WAN-MG-MIB", "mgEndpointRepetition")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): mediaGatewayEndptRepetitionGroup = mediaGatewayEndptRepetitionGroup.setStatus('current') mibBuilder.exportSymbols("CISCO-WAN-MG-MIB", mgEndpointCreationPolicy=mgEndpointCreationPolicy, mgProtocolNumber=mgProtocolNumber, mgcNumber=mgcNumber, mediaGatewayGroup=mediaGatewayGroup, mgcResolutionIpAddress=mgcResolutionIpAddress, mgEndpointSpeed=mgEndpointSpeed, mgcDnsResolution=mgcDnsResolution, mgAdministrativeStateControl=mgAdministrativeStateControl, mgMIBConformance=mgMIBConformance, mgName=mgName, mgDomainNameTable=mgDomainNameTable, mgMIBCompliance3=mgMIBCompliance3, mgMIBCompliance=mgMIBCompliance, lineAssignmentEntry=lineAssignmentEntry, mgcTable=mgcTable, mediaGatewayControllerResolutionGroup=mediaGatewayControllerResolutionGroup, mgEndpointExtTable=mgEndpointExtTable, mgEndpointExtEntry=mgEndpointExtEntry, mgcProtocolRowStatus=mgcProtocolRowStatus, mgcAssociationState=mgcAssociationState, mgcDnsResolutionFlag=mgcDnsResolutionFlag, mediaGateway=mediaGateway, mediaGatewayEndpoint=mediaGatewayEndpoint, mgSupportedProtocolTable=mgSupportedProtocolTable, mgDomainName=mgDomainName, ciscoWanMgMIBObjects=ciscoWanMgMIBObjects, mgEndpointLineNumber=mgEndpointLineNumber, mgMIBCompliance2=mgMIBCompliance2, channelAssignment=channelAssignment, mgMIBCompliance1=mgMIBCompliance1, mediaGatewayDomainNameGroup=mediaGatewayDomainNameGroup, mgcResolutionPreference=mgcResolutionPreference, mgcProtocolEntry=mgcProtocolEntry, mediaGatewayLine=mediaGatewayLine, mgcResolutionName=mgcResolutionName, mediaGatewayLineGroup=mediaGatewayLineGroup, mediaGatewayControllerGroup=mediaGatewayControllerGroup, mgEndpointRowStatus=mgEndpointRowStatus, mgDomainNameEntry=mgDomainNameEntry, mediaGatewayDomainName=mediaGatewayDomainName, mgEndpointRepetition=mgEndpointRepetition, mgDomainNameIndex=mgDomainNameIndex, mgShutdownGraceTime=mgShutdownGraceTime, mgcEntry=mgcEntry, mgcAssociationStateControl=mgcAssociationStateControl, mgAdministrativeState=mgAdministrativeState, mgcRowStatus=mgcRowStatus, mgEndpointChannelMap=mgEndpointChannelMap, mgDomainNameRowStatus=mgDomainNameRowStatus, mgcUnassociationPolicy=mgcUnassociationPolicy, mediaGatewayControllerGroup1=mediaGatewayControllerGroup1, ciscoWanMgMIB=ciscoWanMgMIB, mediaGatewayEndpointGroup=mediaGatewayEndpointGroup, mediaGatewayController=mediaGatewayController, mediaGatewayControllerResolution=mediaGatewayControllerResolution, mgcResolutionCommState=mgcResolutionCommState, mgcResolutionRowStatus=mgcResolutionRowStatus, mediaGatewayControllerGroup2=mediaGatewayControllerGroup2, mgProtocolName=mgProtocolName, mgSupportedProtocolEntry=mgSupportedProtocolEntry, mgEndpointEntry=mgEndpointEntry, mgDnsResolutionType=mgDnsResolutionType, mgEndpointName=mgEndpointName, mgcResolutionTable=mgcResolutionTable, mgEndpointState=mgEndpointState, mediaGatewayControllerResolutionGroup1=mediaGatewayControllerResolutionGroup1, mgcProtocolTable=mgcProtocolTable, lineAssignmentTable=lineAssignmentTable, PYSNMP_MODULE_ID=ciscoWanMgMIB, mgcResolutionIndex=mgcResolutionIndex, mgcCommLossUnassociationTimeout=mgcCommLossUnassociationTimeout, mgcResolutionEntry=mgcResolutionEntry, mgMIBGroups=mgMIBGroups, mgEndpointNumber=mgEndpointNumber, mgcName=mgcName, mgMIBCompliances=mgMIBCompliances, mediaGatewayEndptRepetitionGroup=mediaGatewayEndptRepetitionGroup, mgEndpointTable=mgEndpointTable, maxConcurrentMgcs=maxConcurrentMgcs, lineName=lineName, lineNumber=lineNumber)
py
1a4264d3780ba560a80a6f226f4b69710e00ae24
""" ASGI config for kcc_store project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'kcc_store.settings') application = get_asgi_application()
py
1a4265e59f3141c165b68b79ebb3b1d2261061aa
from __future__ import absolute_import import os import sys import weakref from pyramid.httpexceptions import HTTPException from sentry_sdk.hub import Hub, _should_send_default_pii from sentry_sdk.utils import capture_internal_exceptions, event_from_exception from sentry_sdk._compat import reraise from sentry_sdk.integrations import Integration from sentry_sdk.integrations._wsgi_common import RequestExtractor from sentry_sdk.integrations.wsgi import SentryWsgiMiddleware class PyramidIntegration(Integration): identifier = "pyramid" transaction_style = None def __init__(self, transaction_style="route_name"): TRANSACTION_STYLE_VALUES = ("route_name", "route_pattern") if transaction_style not in TRANSACTION_STYLE_VALUES: raise ValueError( "Invalid value for transaction_style: %s (must be in %s)" % (transaction_style, TRANSACTION_STYLE_VALUES) ) self.transaction_style = transaction_style @staticmethod def setup_once(): from pyramid.router import Router old_handle_request = Router.handle_request def sentry_patched_handle_request(self, request, *args, **kwargs): hub = Hub.current integration = hub.get_integration(PyramidIntegration) if integration is None: return old_handle_request(self, request, *args, **kwargs) with hub.configure_scope() as scope: scope.add_event_processor( _make_event_processor(weakref.ref(request), integration) ) try: return old_handle_request(self, request, *args, **kwargs) except Exception: exc_info = sys.exc_info() _capture_exception(exc_info) reraise(*exc_info) Router.handle_request = sentry_patched_handle_request old_wsgi_call = Router.__call__ def sentry_patched_wsgi_call(self, environ, start_response): hub = Hub.current integration = hub.get_integration(PyramidIntegration) if integration is None: return old_wsgi_call(self, environ, start_response) return SentryWsgiMiddleware(lambda *a, **kw: old_wsgi_call(self, *a, **kw))( environ, start_response ) Router.__call__ = sentry_patched_wsgi_call def _capture_exception(exc_info, **kwargs): if issubclass(exc_info[0], HTTPException): return hub = Hub.current if hub.get_integration(PyramidIntegration) is None: return event, hint = event_from_exception( exc_info, client_options=hub.client.options, mechanism={"type": "pyramid", "handled": False}, ) hub.capture_event(event, hint=hint) class PyramidRequestExtractor(RequestExtractor): def url(self): return self.request.path_url def env(self): return self.request.environ def cookies(self): return self.request.cookies def raw_data(self): return self.request.text def form(self): return { key: value for key, value in self.request.POST.items() if not getattr(value, "filename", None) } def files(self): return { key: value for key, value in self.request.POST.items() if getattr(value, "filename", None) } def size_of_file(self, postdata): file = postdata.file try: return os.fstat(file.fileno()).st_size except Exception: return 0 def _make_event_processor(weak_request, integration): def event_processor(event, hint): request = weak_request() if request is None: return event if "transaction" not in event: try: if integration.transaction_style == "route_name": event["transaction"] = request.matched_route.name elif integration.transaction_style == "route_pattern": event["transaction"] = request.matched_route.pattern except Exception: pass with capture_internal_exceptions(): PyramidRequestExtractor(request).extract_into_event(event) if _should_send_default_pii(): with capture_internal_exceptions(): user_info = event.setdefault("user", {}) if "id" not in user_info: user_info["id"] = request.authenticated_userid return event return event_processor
py
1a42664a1e357506b87714f0327a87e20ec59e78
""" Hexpatch ======== Patch a binary file from a simple description, using non-overlapping longest-match context matches. Useful for instruction-patching executables, if codegen has not changed too much, even different versions will match. Patch file format ----------------- - Line-based text file - comments lines start with # at character 1 - empty lines are ignored Pairs of lines of what remains form the patch patterns, in hexadecimal. Pattern and replacement don't have to be the same size, allowing for insertions. Example: ``` # replace a jump instruction ab 00 aa bb 75 33 55 ab 00 aa bb ec 33 55 ``` """ import sys def main(patch, left, right=None): if right is None: right = left + ".patched" with open(left, "rb") as f: source = f.read() patterns = [] with open(patch, "rt") as f: def dataline(it) -> str: while True: l = next(it).strip() if l and not l.startswith('#'): return l liter = iter(f) try: l = dataline(liter) a = bytes.fromhex(l) l = dataline(liter) b = bytes.fromhex(l) patterns.append((a, b)) except StopIteration: pass patterns.sort(key=lambda p: len(p[0]), reverse=True) modified = bytearray(source) wp = 0 while wp < len(modified): found = False for pat, rep in patterns: try: loc = modified.index(pat, wp) except ValueError: continue modified[loc:loc + len(pat)] = rep wp += len(rep) found = True break if not found: break with open(right, "wb") as f: f.write(modified) if __name__ == "__main__": main(*sys.argv[1:])
py
1a426696eb2dac6b5082e7c54c996bcf971fc975
import os import logging import multiprocessing as mp # from hexrd.utils.decorators import memoized from hexrd import imageseries from .config import Config from .instrument import Instrument from .findorientations import FindOrientationsConfig from .fitgrains import FitGrainsConfig from .material import MaterialConfig logger = logging.getLogger('hexrd.config') class RootConfig(Config): @property def analysis_name(self): return str(self.get('analysis_name', default='analysis')) @analysis_name.setter def analysis_name(self, val): self.set('analysis_name', val) @property def analysis_dir(self): return os.path.join(self.working_dir, self.analysis_name) @property def find_orientations(self): return FindOrientationsConfig(self) @property def fit_grains(self): return FitGrainsConfig(self) @property def instrument(self): if not hasattr(self, '_instr_config'): instr_file = self.get('instrument') instr_file = self.check_filename(instr_file, self.working_dir) self._instr_config = Instrument(self, instr_file) return self._instr_config @instrument.setter def instrument(self, instr_config): self._instr_config = instr_config @property def material(self): if not hasattr(self, '_material_config'): self._material_config = MaterialConfig(self) # !!! must make matl beam energy consistent with the instrument beam_energy = self.instrument.hedm.beam_energy self._material_config.beam_energy = beam_energy return self._material_config @material.setter def material(self, material_config): self._material_config = material_config @property def analysis_id(self): return '_'.join( [self.analysis_name.strip().replace(' ', '-'), self.material.active.strip().replace(' ', '-')] ) @property def multiprocessing(self): # determine number of processes to run in parallel multiproc = self.get('multiprocessing', default=-1) ncpus = mp.cpu_count() if multiproc == 'all': res = ncpus elif multiproc == 'half': temp = ncpus // 2 res = temp if temp else 1 elif isinstance(multiproc, int): if multiproc >= 0: if multiproc > ncpus: logger.warning( 'Resuested %s processes, %d available', multiproc, ncpus ) res = ncpus else: res = multiproc if multiproc else 1 else: temp = ncpus + multiproc if temp < 1: logger.warning( 'Cannot use less than 1 process, requested %d of %d', temp, ncpus ) res = 1 else: res = temp else: temp = ncpus - 1 logger.warning( "Invalid value %s for multiprocessing", multiproc ) res = temp return res @multiprocessing.setter def multiprocessing(self, val): if val in ('half', 'all', -1): self.set('multiprocessing', val) elif (val >= 0 and val <= mp.cpu_count): self.set('multiprocessing', int(val)) else: raise RuntimeError( '"multiprocessing": must be 1:%d, got %s' % (mp.cpu_count(), val) ) @property def working_dir(self): try: temp = self.get('working_dir') if not os.path.exists(temp): raise IOError( '"working_dir": "%s" does not exist', temp ) return temp except RuntimeError: temp = os.getcwd() was_dirty = self.dirty self.working_dir = temp if not was_dirty: self._dirty = False logger.info( '"working_dir" not specified, defaulting to "%s"' % temp ) return temp @working_dir.setter def working_dir(self, val): val = os.path.abspath(val) if not os.path.isdir(val): raise IOError('"working_dir": "%s" does not exist' % val) self.set('working_dir', val) @property def image_series(self): """Return the imageseries dictionary.""" if not hasattr(self, '_image_dict'): self._image_dict = dict() fmt = self.get('image_series:format') imsdata = self.get('image_series:data') for ispec in imsdata: fname = self.check_filename(ispec['file'], self.working_dir) args = ispec['args'] ims = imageseries.open(fname, fmt, **args) oms = imageseries.omega.OmegaImageSeries(ims) try: panel = ispec['panel'] except(KeyError): panel = oms.metadata['panel'] self._image_dict[panel] = oms return self._image_dict @image_series.setter def image_series(self, ims_dict): self._image_dict = ims_dict
py
1a4266e82ab54246fc8e01d978a4239acc245b6d
import sys sys.path.append(".") from query_representation.query import * from evaluation.eval_fns import * from cardinality_estimation.featurizer import * from cardinality_estimation.algs import * from cardinality_estimation.fcnn import FCNN from cardinality_estimation.mscn import MSCN import glob import argparse import random import json import klepto from sklearn.model_selection import train_test_split import pdb import copy def eval_alg(alg, eval_funcs, qreps, samples_type): ''' ''' np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)}) start = time.time() alg_name = alg.__str__() exp_name = alg.get_exp_name() ests = alg.test(qreps) for efunc in eval_funcs: rdir = None if args.result_dir is not None: rdir = os.path.join(args.result_dir, exp_name) make_dir(rdir) errors = efunc.eval(qreps, ests, args=args, samples_type=samples_type, result_dir=rdir, user = args.user, db_name = args.db_name, db_host = args.db_host, port = args.port, num_processes = args.num_eval_processes, alg_name = alg_name) print("{}, {}, {}, #samples: {}, {}: mean: {}, median: {}, 99p: {}"\ .format(args.db_name, samples_type, alg, len(errors), efunc.__str__(), np.round(np.mean(errors),3), np.round(np.median(errors),3), np.round(np.percentile(errors,99),3))) print("all loss computations took: ", time.time()-start) def get_alg(alg): if alg == "saved": assert args.model_dir is not None return SavedPreds(model_dir=args.model_dir) elif alg == "postgres": return Postgres() elif alg == "true": return TrueCardinalities() elif alg == "true_rank": return TrueRank() elif alg == "true_random": return TrueRandom() elif alg == "true_rank_tables": return TrueRankTables() elif alg == "random": return Random() elif alg == "rf": return RandomForest(grid_search = False, n_estimators = 100, max_depth = 10, lr = 0.01) elif alg == "xgb": return XGBoost(grid_search=False, tree_method="hist", subsample=1.0, n_estimators = 100, max_depth=10, lr = 0.01) elif alg == "fcnn": return FCNN(max_epochs = args.max_epochs, lr=args.lr, mb_size = args.mb_size, weight_decay = args.weight_decay, load_query_together = args.load_query_together, result_dir = args.result_dir, num_hidden_layers=args.num_hidden_layers, eval_epoch = args.eval_epoch, optimizer_name=args.optimizer_name, clip_gradient=args.clip_gradient, loss_func_name = args.loss_func_name, hidden_layer_size = args.hidden_layer_size) elif alg == "mscn": return MSCN(max_epochs = args.max_epochs, lr=args.lr, load_padded_mscn_feats = args.load_padded_mscn_feats, mb_size = args.mb_size, weight_decay = args.weight_decay, load_query_together = args.load_query_together, result_dir = args.result_dir, # num_hidden_layers=args.num_hidden_layers, eval_epoch = args.eval_epoch, optimizer_name=args.optimizer_name, clip_gradient=args.clip_gradient, loss_func_name = args.loss_func_name, hidden_layer_size = args.hidden_layer_size) else: assert False def get_query_fns(): fns = list(glob.glob(args.query_dir + "/*")) skipped_templates = [] train_qfns = [] test_qfns = [] val_qfns = [] if args.train_test_split_kind == "template": # the train/test split will be on the template names sorted_fns = copy.deepcopy(fns) sorted_fns.sort() train_tmps, test_tmps = train_test_split(sorted_fns, test_size=args.test_size, random_state=args.diff_templates_seed) for qi,qdir in enumerate(fns): if ".json" in qdir: continue template_name = os.path.basename(qdir) if args.query_templates != "all": query_templates = args.query_templates.split(",") if template_name not in query_templates: skipped_templates.append(template_name) continue # let's first select all the qfns we are going to load qfns = list(glob.glob(qdir+"/*.pkl")) qfns.sort() if args.num_samples_per_template == -1: qfns = qfns elif args.num_samples_per_template < len(qfns): qfns = qfns[0:args.num_samples_per_template] else: assert False if args.train_test_split_kind == "template": cur_val_fns = [] if qdir in train_tmps: cur_train_fns = qfns cur_test_fns = [] elif qdir in test_tmps: cur_train_fns = [] cur_test_fns = qfns else: assert False elif args.train_test_split_kind == "query": if args.val_size == 0: cur_val_fns = [] else: cur_val_fns, qfns = train_test_split(qfns, test_size=1-args.val_size, random_state=args.seed) cur_train_fns, cur_test_fns = train_test_split(qfns, test_size=args.test_size, random_state=args.seed) train_qfns += cur_train_fns val_qfns += cur_val_fns test_qfns += cur_test_fns print("Skipped templates: ", " ".join(skipped_templates)) if args.train_test_split_kind == "query": print("""Selected {} train queries, {} test queries, and {} val queries"""\ .format(len(train_qfns), len(test_qfns), len(val_qfns))) elif args.train_test_split_kind == "template": train_tmp_names = [os.path.basename(tfn) for tfn in train_tmps] test_tmp_names = [os.path.basename(tfn) for tfn in test_tmps] print("""Selected {} train templates, {} test templates"""\ .format(len(train_tmp_names), len(test_tmp_names))) print("""Training templates: {}\nEvaluation templates: {}""".\ format(",".join(train_tmp_names), ",".join(test_tmp_names))) # going to shuffle all these lists, so queries are evenly distributed. Plan # Cost functions for some of these templates take a lot longer; so when we # compute them in parallel, we want the queries to be shuffled so the # workload is divided evely random.shuffle(train_qfns) random.shuffle(test_qfns) random.shuffle(val_qfns) return train_qfns, test_qfns, val_qfns def load_qdata(fns): qreps = [] for qfn in fns: qrep = load_qrep(qfn) # TODO: can do checks like no queries with zero cardinalities etc. qreps.append(qrep) template_name = os.path.basename(os.path.dirname(qfn)) qrep["name"] = os.path.basename(qfn) qrep["template_name"] = template_name return qreps def get_featurizer(trainqs, valqs, testqs): featurizer = Featurizer(args.user, args.pwd, args.db_name, args.db_host, args.port) featdata_fn = os.path.join(args.query_dir, "featdata.json") if args.regen_featstats or not os.path.exists(featdata_fn): featurizer.update_column_stats(trainqs+valqs+testqs) ATTRS_TO_SAVE = ['aliases', 'cmp_ops', 'column_stats', 'joins', 'max_in_degree', 'max_joins', 'max_out_degree', 'max_preds', 'max_tables', 'regex_cols', 'tables'] featdata = {} for k in dir(featurizer): if k not in ATTRS_TO_SAVE: continue attrvals = getattr(featurizer, k) if isinstance(attrvals, set): attrvals = list(attrvals) featdata[k] = attrvals f = open(featdata_fn, "w") json.dump(featdata, f) f.close() else: f = open(featdata_fn, "r") featdata = json.load(f) f.close() featurizer.update_using_saved_stats(featdata) print("updated featdata from saved file!!") pdb.set_trace() if args.algs == "mscn": feat_type = "set" else: feat_type = "combined" # Look at the various keyword arguments to setup() to change the # featurization behavior; e.g., include certain features etc. # these configuration properties do not influence the basic statistics # collected in the featurizer.update_column_stats call; Therefore, we don't # include this in the cached version featurizer.setup(ynormalization=args.ynormalization, featurization_type=feat_type) featurizer.update_ystats(trainqs+valqs+testqs) return featurizer def main(): train_qfns, test_qfns, val_qfns = get_query_fns() trainqs = load_qdata(train_qfns) # Note: can be quite memory intensive to load them all; might want to just # keep around the qfns and load them as needed valqs = load_qdata(val_qfns) testqs = load_qdata(test_qfns) # only needs featurizer for learned models if args.algs in ["xgb", "fcnn", "mscn"]: featurizer = get_featurizer(trainqs, valqs, testqs) else: featurizer = None algs = [] for alg_name in args.algs.split(","): algs.append(get_alg(alg_name)) eval_fns = [] for efn in args.eval_fns.split(","): eval_fns.append(get_eval_fn(efn)) for alg in algs: alg.train(trainqs, valqs=valqs, testqs=testqs, featurizer=featurizer, result_dir=args.result_dir) eval_alg(alg, eval_fns, trainqs, "train") if len(valqs) > 0: eval_alg(alg, eval_fns, valqs, "val") if len(testqs) > 0: eval_alg(alg, eval_fns, testqs, "test") def read_flags(): parser = argparse.ArgumentParser() parser.add_argument("--query_dir", type=str, required=False, default="./queries/imdb/") ## db credentials parser.add_argument("--db_name", type=str, required=False, default="imdb") parser.add_argument("--db_host", type=str, required=False, default="localhost") parser.add_argument("--user", type=str, required=False, default="ceb") parser.add_argument("--pwd", type=str, required=False, default="password") parser.add_argument("--port", type=int, required=False, default=5432) parser.add_argument("--result_dir", type=str, required=False, default="results") parser.add_argument("--query_templates", type=str, required=False, default="all") parser.add_argument("--seed", type=int, required=False, default=13) parser.add_argument("--num_eval_processes", type=int, required=False, default=-1, help="""Used for computing plan costs in parallel. -1 use all cpus; -2: use no cpus; else use n cpus. """) parser.add_argument("--train_test_split_kind", type=str, required=False, default="query", help="""query OR template.""") parser.add_argument("--diff_templates_seed", type=int, required=False, default=1, help="""Seed used when train_test_split_kind == template""") parser.add_argument("-n", "--num_samples_per_template", type=int, required=False, default=-1) parser.add_argument("--test_size", type=float, required=False, default=0.5) parser.add_argument("--val_size", type=float, required=False, default=0.2) parser.add_argument("--algs", type=str, required=False, default="postgres") parser.add_argument("--eval_fns", type=str, required=False, default="qerr,ppc,plancost") # featurizer arguments parser.add_argument("--regen_featstats", type=int, required=False, default=1) parser.add_argument("--ynormalization", type=str, required=False, default="log") ## NN training features parser.add_argument("--load_padded_mscn_feats", type=int, required=False, default=0, help="""==1 loads all the mscn features with padded zeros in memory -- speeds up training, but can take too much RAM.""") parser.add_argument("--weight_decay", type=float, required=False, default=0.0) parser.add_argument("--max_epochs", type=int, required=False, default=10) parser.add_argument("--eval_epoch", type=int, required=False, default=1) parser.add_argument("--mb_size", type=int, required=False, default=1024) parser.add_argument("--num_hidden_layers", type=int, required=False, default=2) parser.add_argument("--hidden_layer_size", type=int, required=False, default=128) parser.add_argument("--load_query_together", type=int, required=False, default=0) parser.add_argument("--optimizer_name", type=str, required=False, default="adamw") parser.add_argument("--clip_gradient", type=float, required=False, default=20.0) parser.add_argument("--lr", type=float, required=False, default=0.0001) parser.add_argument("--loss_func_name", type=str, required=False, default="mse") return parser.parse_args() if __name__ == "__main__": args = read_flags() main()
py
1a4266ef0b05b06900b4b2d3bc2108d0374c44ce
import chainer from chainer import backend from chainer.backends import cuda from chainer import distribution from chainer.functions.array import broadcast from chainer.functions.array import where from chainer.functions.math import clip from chainer.functions.math import exponential from chainer.functions.math import sqrt from chainer import utils from chainer.utils import argument class Uniform(distribution.Distribution): """Uniform Distribution. The probability density function of the distribution is expressed as .. math:: p(x; l, h) = \\begin{cases} \\frac{1}{h - l} & \\text{if }l \\leq x \\leq h \\\\ 0 & \\text{otherwise} \\end{cases} Args: low(:class:`~chainer.Variable` or :ref:`ndarray`): Parameter of distribution representing the lower bound :math:`l`. high(:class:`~chainer.Variable` or :ref:`ndarray`): Parameter of distribution representing the higher bound :math:`h`. """ def __init__(self, **kwargs): low, high, loc, scale = None, None, None, None if kwargs: low, high, loc, scale = argument.parse_kwargs( kwargs, ('low', low), ('high', high), ('loc', loc), ('scale', scale)) if not (low is None or high is None) ^ (loc is None or scale is None): raise ValueError( "Either `low, high` or `loc, scale` (not both) must have a " "value.") with chainer.using_config('enable_backprop', True): if low is None: self.__loc = chainer.as_variable(loc) self.__scale = chainer.as_variable(scale) self.__low = self.__loc self.__high = self.__loc + self.__scale else: self.__low = chainer.as_variable(low) self.__high = chainer.as_variable(high) self.__loc = self.__low self.__scale = self.__high - self.__low @property def low(self): return self.__low @property def high(self): return self.__high @property def loc(self): return self.__loc @property def scale(self): return self.__scale @property def batch_shape(self): return self.low.shape def cdf(self, x): return clip.clip((x - self.loc) / self.scale, 0., 1.) @property def entropy(self): return exponential.log(self.scale) @property def event_shape(self): return () def icdf(self, x): return x * self.scale + self.loc def log_prob(self, x): if not isinstance(x, chainer.Variable): x = chainer.Variable(x) xp = backend.get_array_module(x) logp = broadcast.broadcast_to( -exponential.log(self.scale), x.shape) return where.where( utils.force_array( (x.data >= self.low.data) & (x.data <= self.high.data)), logp, xp.array(-xp.inf, logp.dtype)) @property def mean(self): return (self.high + self.low) / 2 def sample_n(self, n): xp = backend.get_array_module(self.low) if xp is cuda.cupy: eps = xp.random.uniform( 0, 1, (n,) + self.low.shape, dtype=self.low.dtype) else: eps = xp.random.uniform( 0, 1, (n,) + self.low.shape).astype(self.low.dtype) noise = self.icdf(eps) return noise @property def stddev(self): return sqrt.sqrt(self.variance) @property def support(self): return "[low, high]" @property def variance(self): return self.scale ** 2 / 12 @distribution.register_kl(Uniform, Uniform) def _kl_uniform_uniform(dist1, dist2): xp = backend.get_array_module(dist1.low) is_inf = xp.logical_or(dist1.high.data > dist2.high.data, dist1.low.data < dist2.low.data) kl = - exponential.log(dist1.high - dist1.low) \ + exponential.log(dist2.high - dist2.low) inf = xp.array(xp.inf, dist1.high.dtype) return where.where(is_inf, inf, kl)
py
1a426791c3be4cb0ce6eba5e9d36b5bd58ecc87d
from rewards.aws.boost import download_past_boosts if __name__ == "__main__": download_past_boosts()
py
1a42680335848613f2712783109dfa7bbf23ed90
#!/usr/bin/env python import json import yaml import urllib import os import sys from jsonref import JsonRef # type: ignore import click from openapi2jsonschema.log import info, debug, error from openapi2jsonschema.util import ( additional_properties, replace_int_or_string, allow_null_optional_fields, change_dict_values, append_no_duplicates, ) from openapi2jsonschema.errors import UnsupportedError @click.command() @click.option( "-o", "--output", default="schemas", metavar="PATH", help="Directory to store schema files", ) @click.option( "-p", "--prefix", default="_definitions.json", help="Prefix for JSON references (only for OpenAPI versions before 3.0)", ) @click.option( "--stand-alone", is_flag=True, help="Whether or not to de-reference JSON schemas" ) @click.option( "--expanded", is_flag=True, help="Expand Kubernetes schemas by API version" ) @click.option( "--kubernetes", is_flag=True, help="Enable Kubernetes specific processors" ) @click.option( "--strict", is_flag=True, help="Prohibits properties not in the schema (additionalProperties: false)", ) @click.argument("schema", metavar="SCHEMA_URL") def default(output, schema, prefix, stand_alone, expanded, kubernetes, strict): """ Converts a valid OpenAPI specification into a set of JSON Schema files """ info("Downloading schema") if sys.version_info < (3, 0): response = urllib.urlopen(schema) else: if os.path.isfile(schema): schema = "file://" + os.path.realpath(schema) req = urllib.request.Request(schema) response = urllib.request.urlopen(req) info("Parsing schema") # Note that JSON is valid YAML, so we can use the YAML parser whether # the schema is stored in JSON or YAML data = yaml.load(response.read(), Loader=yaml.SafeLoader) if "swagger" in data: version = data["swagger"] elif "openapi" in data: version = data["openapi"] if not os.path.exists(output): os.makedirs(output) if version < "3": with open("%s/_definitions.json" % output, "w") as definitions_file: info("Generating shared definitions") definitions = data["definitions"] if kubernetes: definitions["io.k8s.apimachinery.pkg.util.intstr.IntOrString"] = { "oneOf": [{"type": "string"}, {"type": "integer"}] } # Although the kubernetes api does not allow `number` as valid # Quantity type - almost all kubenetes tooling # recognizes it is valid. For this reason, we extend the API definition to # allow `number` values. definitions["io.k8s.apimachinery.pkg.api.resource.Quantity"] = { "oneOf": [{"type": "string"}, {"type": "number"}] } # For Kubernetes, populate `apiVersion` and `kind` properties from `x-kubernetes-group-version-kind` for type_name in definitions: type_def = definitions[type_name] if "x-kubernetes-group-version-kind" in type_def: for kube_ext in type_def["x-kubernetes-group-version-kind"]: if expanded and "apiVersion" in type_def["properties"]: api_version = ( kube_ext["group"] + "/" + kube_ext["version"] if kube_ext["group"] else kube_ext["version"] ) append_no_duplicates( type_def["properties"]["apiVersion"], "enum", api_version, ) if "kind" in type_def["properties"]: kind = kube_ext["kind"] append_no_duplicates( type_def["properties"]["kind"], "enum", kind ) if strict: definitions = additional_properties(definitions) definitions_file.write(json.dumps( {"definitions": definitions}, indent=2)) with open("%s/_definitions.json" % output, 'w') as definitions_file: definitions = data['definitions'] updated = ovirt_change_array(definitions, prefix, version, False) definitions_file.write(json.dumps({"definitions": updated}, indent=2)) types = [] info("Generating individual schemas") if version < "3": components = updated #data['definitions'] else: components = data["components"]["schemas"] for title in components: kind = title.split(".")[-1].lower() if kubernetes: group = title.split(".")[-3].lower() api_version = title.split(".")[-2].lower() specification = components[title] specification["$schema"] = "http://json-schema.org/schema#" specification.setdefault("type", "object") if strict: specification["additionalProperties"] = False if kubernetes and expanded: if group in ["core", "api"]: full_name = "%s-%s" % (kind, api_version) else: full_name = "%s-%s-%s" % (kind, group, api_version) else: full_name = kind types.append(title) try: debug("Processing %s" % full_name) # These APIs are all deprecated if kubernetes: if title.split(".")[3] == "pkg" and title.split(".")[2] == "kubernetes": raise UnsupportedError( "%s not currently supported, due to use of pkg namespace" % title ) # This list of Kubernetes types carry around jsonschema for Kubernetes and don't # currently work with openapi2jsonschema if ( kubernetes and stand_alone and kind in [ "jsonschemaprops", "jsonschemapropsorarray", "customresourcevalidation", "customresourcedefinition", "customresourcedefinitionspec", "customresourcedefinitionlist", "customresourcedefinitionspec", "jsonschemapropsorstringarray", "jsonschemapropsorbool", ] ): raise UnsupportedError("%s not currently supported" % kind) updated = change_dict_values(specification, prefix, version) specification = updated if stand_alone: base = "file://%s/%s/" % (os.getcwd(), output) specification = JsonRef.replace_refs( specification, base_uri=base) if "additionalProperties" in specification: if specification["additionalProperties"]: updated = change_dict_values( specification["additionalProperties"], prefix, version ) specification["additionalProperties"] = updated if strict and "properties" in specification: updated = additional_properties(specification["properties"]) specification["properties"] = updated if kubernetes and "properties" in specification: updated = replace_int_or_string(specification["properties"]) updated = allow_null_optional_fields(updated) specification["properties"] = updated with open("%s/%s.json" % (output, full_name), "w") as schema_file: debug("Generating %s.json" % full_name) schema_file.write(json.dumps(specification, indent=2)) except Exception as e: error("An error occured processing %s: %s" % (kind, e)) with open("%s/all.json" % output, "w") as all_file: info("Generating schema for all types") contents = {"oneOf": []} for title in types: if version < "3": contents["oneOf"].append( {"$ref": "%s#/definitions/%s" % (prefix, title)} ) else: contents["oneOf"].append( {"$ref": (title.replace("#/components/schemas/", "") + ".json")} ) all_file.write(json.dumps(contents, indent=2)) if __name__ == "__main__": default()
py
1a426850a6b98c48676272e56d5edc550351c21a
from typing import Text, List, Tuple from rasa.core.domain import Domain from rasa.core.training.story_conflict import ( StoryConflict, find_story_conflicts, _get_previous_event, ) from rasa.core.training.generator import TrainingDataGenerator, TrackerWithCachedStates from rasa.validator import Validator from rasa.importers.rasa import RasaFileImporter from tests.core.conftest import DEFAULT_STORIES_FILE, DEFAULT_DOMAIN_PATH_WITH_SLOTS async def _setup_trackers_for_testing( domain_path: Text, training_data_file: Text ) -> Tuple[List[TrackerWithCachedStates], Domain]: importer = RasaFileImporter( domain_path=domain_path, training_data_paths=[training_data_file], ) validator = await Validator.from_importer(importer) trackers = TrainingDataGenerator( validator.story_graph, domain=validator.domain, remove_duplicates=False, augmentation_factor=0, ).generate() return trackers, validator.domain async def test_find_no_conflicts(): trackers, domain = await _setup_trackers_for_testing( DEFAULT_DOMAIN_PATH_WITH_SLOTS, DEFAULT_STORIES_FILE ) # Create a list of `StoryConflict` objects conflicts = find_story_conflicts(trackers, domain, 5) assert conflicts == [] async def test_find_conflicts_in_short_history(): trackers, domain = await _setup_trackers_for_testing( "data/test_domains/default.yml", "data/test_stories/stories_conflicting_1.md" ) # `max_history = 3` is too small, so a conflict must arise conflicts = find_story_conflicts(trackers, domain, 3) assert len(conflicts) == 1 # With `max_history = 4` the conflict should disappear conflicts = find_story_conflicts(trackers, domain, 4) assert len(conflicts) == 0 async def test_find_conflicts_checkpoints(): trackers, domain = await _setup_trackers_for_testing( "data/test_domains/default.yml", "data/test_stories/stories_conflicting_2.md" ) # Create a list of `StoryConflict` objects conflicts = find_story_conflicts(trackers, domain, 5) assert len(conflicts) == 1 assert conflicts[0].conflicting_actions == ["utter_goodbye", "utter_default"] async def test_find_conflicts_or(): trackers, domain = await _setup_trackers_for_testing( "data/test_domains/default.yml", "data/test_stories/stories_conflicting_3.md" ) # Create a list of `StoryConflict` objects conflicts = find_story_conflicts(trackers, domain, 5) assert len(conflicts) == 1 assert conflicts[0].conflicting_actions == ["utter_default", "utter_goodbye"] async def test_find_conflicts_slots_that_break(): trackers, domain = await _setup_trackers_for_testing( "data/test_domains/default.yml", "data/test_stories/stories_conflicting_4.md" ) # Create a list of `StoryConflict` objects conflicts = find_story_conflicts(trackers, domain, 5) assert len(conflicts) == 1 assert conflicts[0].conflicting_actions == ["utter_default", "utter_greet"] async def test_find_conflicts_slots_that_dont_break(): trackers, domain = await _setup_trackers_for_testing( "data/test_domains/default.yml", "data/test_stories/stories_conflicting_5.md" ) # Create a list of `StoryConflict` objects conflicts = find_story_conflicts(trackers, domain, 5) assert len(conflicts) == 0 async def test_find_conflicts_multiple_stories(): trackers, domain = await _setup_trackers_for_testing( "data/test_domains/default.yml", "data/test_stories/stories_conflicting_6.md" ) # Create a list of `StoryConflict` objects conflicts = find_story_conflicts(trackers, domain, 5) assert len(conflicts) == 1 assert "and 2 other trackers" in str(conflicts[0]) async def test_add_conflicting_action(): sliced_states = [ None, {}, {"intent_greet": 1.0, "prev_action_listen": 1.0}, {"prev_utter_greet": 1.0, "intent_greet": 1.0}, ] conflict = StoryConflict(sliced_states) conflict.add_conflicting_action("utter_greet", "xyz") conflict.add_conflicting_action("utter_default", "uvw") assert conflict.conflicting_actions == ["utter_greet", "utter_default"] async def test_has_prior_events(): sliced_states = [ None, {}, {"intent_greet": 1.0, "prev_action_listen": 1.0}, {"prev_utter_greet": 1.0, "intent_greet": 1.0}, ] conflict = StoryConflict(sliced_states) assert conflict.conflict_has_prior_events async def test_get_previous_event(): assert _get_previous_event({"prev_utter_greet": 1.0, "intent_greet": 1.0}) == ( "action", "utter_greet", ) assert _get_previous_event({"intent_greet": 1.0, "prev_utter_greet": 1.0}) == ( "action", "utter_greet", ) assert _get_previous_event({"intent_greet": 1.0, "prev_action_listen": 1.0}) == ( "intent", "greet", ) async def test_has_no_prior_events(): sliced_states = [None] conflict = StoryConflict(sliced_states) assert not conflict.conflict_has_prior_events
py
1a42685ac921b7a52e0171cb3378207341a2b509
import logging from collections import namedtuple, defaultdict from enum import Enum from itertools import product from gym import Env import gym from gym.utils import seeding import numpy as np class Action(Enum): NONE = 0 NORTH = 1 SOUTH = 2 WEST = 3 EAST = 4 LOAD = 5 class Player: def __init__(self): self.controller = None self.position = None self.level = None self.field_size = None self.score = None self.reward = 0 self.history = None self.current_step = None def setup(self, position, level, field_size): self.history = [] self.position = position self.level = level self.field_size = field_size self.score = 0 def set_controller(self, controller): self.controller = controller def step(self, obs): return self.controller._step(obs) @property def name(self): if self.controller: return self.controller.name else: return "Player" class ForagingEnv(Env): """ A class that contains rules/actions for the game level-based foraging. """ metadata = {"render.modes": ["human"]} action_set = [Action.NORTH, Action.SOUTH, Action.WEST, Action.EAST, Action.LOAD] Observation = namedtuple( "Observation", ["field", "actions", "players", "game_over", "sight", "current_step", "button"], ) PlayerObservation = namedtuple( "PlayerObservation", ["position", "level", "history", "reward", "is_self"] ) # reward is available only if is_self def __init__( self, players, max_player_level, field_size, sight, max_episode_steps, normalize_reward=True, ): assert players>1, "Need at least 2 players" self.logger = logging.getLogger(__name__) self.seed() self.players = [Player() for _ in range(players)] self.field = np.zeros(field_size, np.int32) self.max_food = 1 # self._food_spawned = 0.0 self.max_player_level = max_player_level self.sight = sight self.force_coop = True # self._game_over = None self.button_pressed = False self._button_loc = None self._food_loc = None self.action_space = gym.spaces.Tuple(tuple([gym.spaces.Discrete(6)] * len(self.players))) self.observation_space = gym.spaces.Tuple(tuple([self._get_observation_space()] * len(self.players))) # New stuff # self.share_observation_space = gym.spaces.Tuple(tuple([self._get_observation_space()] * len(self.players))) self.share_observation_space = gym.spaces.Tuple(tuple([self._get_shared_observation_space()] * len(self.players))) self._rendering_initialized = False self._valid_actions = None self._max_episode_steps = max_episode_steps self._normalize_reward = normalize_reward self.viewer = None self.n_agents = len(self.players) def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def _get_observation_space(self): """The Observation Space for each agent. - all of the board (board_size^2) with foods - player description (x, y, level)*player_count """ field_x = self.field.shape[1] field_y = self.field.shape[0] # field_size = field_x * field_y max_food = self.max_food max_food_level = self.max_player_level * len(self.players) min_obs = [-1, -1, 0] * max_food + [0, 0, 1] * len(self.players) + [0, 0] * 1 max_obs = [field_x, field_y, max_food_level] * max_food + [ field_x, field_y, self.max_player_level, ] * len(self.players) + [field_x, field_y] * 1 return gym.spaces.Box(np.array(min_obs), np.array(max_obs), dtype=np.float32) def _get_shared_observation_space(self): """The Observation Space for each agent. for n_players: - all of the board (board_size^2) with foods - player description (x, y, level)*player_count """ shared_obs_space_min = self.observation_space[0].low shared_obs_space_high = self.observation_space[0].high for obs_space in self.observation_space[1:]: shared_obs_space_min = np.append(shared_obs_space_min, obs_space.low) shared_obs_space_high = np.append(shared_obs_space_high, obs_space.high) return gym.spaces.Box(shared_obs_space_min, shared_obs_space_high, dtype=np.float32) @classmethod def from_obs(cls, obs): players = [] for p in obs.players: player = Player() player.setup(p.position, p.level, obs.field.shape) player.score = p.score if p.score else 0 players.append(player) env = cls(players, None, None, None, None) env.field = np.copy(obs.field) env.current_step = obs.current_step env.sight = obs.sight env._gen_valid_moves() return env @property def field_size(self): return self.field.shape @property def rows(self): return self.field_size[0] @property def cols(self): return self.field_size[1] @property def game_over(self): return self._game_over def _gen_valid_moves(self): self._valid_actions = { player: [ action for action in Action if self._is_valid_action(player, action) ] for player in self.players } def neighborhood(self, row, col, distance=1, ignore_diag=False): if not ignore_diag: return self.field[ max(row - distance, 0) : min(row + distance + 1, self.rows), max(col - distance, 0) : min(col + distance + 1, self.cols), ] return ( self.field[ max(row - distance, 0) : min(row + distance + 1, self.rows), col ].sum() + self.field[ row, max(col - distance, 0) : min(col + distance + 1, self.cols) ].sum() ) def adjacent_food(self, row, col): return ( self.field[max(row - 1, 0), col] + self.field[min(row + 1, self.rows - 1), col] + self.field[row, max(col - 1, 0)] + self.field[row, min(col + 1, self.cols - 1)] ) def adjacent_food_location(self, row, col): if row > 1 and self.field[row - 1, col] > 0: return row - 1, col elif row < self.rows - 1 and self.field[row + 1, col] > 0: return row + 1, col elif col > 1 and self.field[row, col - 1] > 0: return row, col - 1 elif col < self.cols - 1 and self.field[row, col + 1] > 0: return row, col + 1 def adjacent_players(self, row, col): return [ player for player in self.players if abs(player.position[0] - row) == 1 and player.position[1] == col or abs(player.position[1] - col) == 1 and player.position[0] == row ] def spawn_food(self, max_food, max_level): food_count = 0 attempts = 0 min_level = 2*max_level if self.force_coop else 1 # The fruit is 2x larger than max_level while food_count < max_food and attempts < 1000: attempts += 1 row = self.np_random.randint(1, self.rows - 1) col = self.np_random.randint(1, self.cols - 1) # check if it has neighbors: if ( self.neighborhood(row, col).sum() > 0 or self.neighborhood(row, col, distance=2, ignore_diag=True) > 0 or not self._is_empty_location(row, col) ): continue self.field[row, col] = min_level food_count += 1 self._food_loc = (row, col) self._food_spawned = self.field.sum() def _is_empty_location(self, row, col): if self.field[row, col] != 0: return False for a in self.players: if a.position and row == a.position[0] and col == a.position[1]: return False return True def spawn_players(self, max_player_level): for player in self.players: attempts = 0 player.reward = 0 while attempts < 1000: row = self.np_random.randint(0, self.rows - 1) col = self.np_random.randint(0, self.cols - 1) if self._is_empty_location(row, col): player.setup( (row, col), self.np_random.randint(1, max_player_level), self.field_size, ) break attempts += 1 def _is_valid_action(self, player, action): if action == Action.NONE: return True elif action == Action.NORTH: return ( player.position[0] > 0 and self.field[player.position[0] - 1, player.position[1]] == 0 ) elif action == Action.SOUTH: return ( player.position[0] < self.rows - 1 and self.field[player.position[0] + 1, player.position[1]] == 0 ) elif action == Action.WEST: return ( player.position[1] > 0 and self.field[player.position[0], player.position[1] - 1] == 0 ) elif action == Action.EAST: return ( player.position[1] < self.cols - 1 and self.field[player.position[0], player.position[1] + 1] == 0 ) elif action == Action.LOAD: return self.adjacent_food(*player.position) > 0 self.logger.error("Undefined action {} from {}".format(action, player.name)) raise ValueError("Undefined action") def _transform_to_neighborhood(self, center, sight, position): return ( position[0] - center[0] + min(sight, center[0]), position[1] - center[1] + min(sight, center[1]), ) def get_valid_actions(self) -> list: return list(product(*[self._valid_actions[player] for player in self.players])) def _make_obs(self, player): return self.Observation( actions=self._valid_actions[player], players=[ self.PlayerObservation( position=self._transform_to_neighborhood( player.position, self.sight, a.position ), level=a.level, is_self=a == player, history=a.history, reward=a.reward if a == player else None, ) for a in self.players if ( min( self._transform_to_neighborhood( player.position, self.sight, a.position ) ) >= 0 ) and max( self._transform_to_neighborhood( player.position, self.sight, a.position ) ) <= 2 * self.sight ], # todo also check max? field=np.copy(self.neighborhood(*player.position, self.sight)), game_over=self.game_over, sight=self.sight, current_step=self.current_step, button=self._transform_to_neighborhood(player.position, self.sight, self._button_loc) if (min(self._transform_to_neighborhood(player.position, self.sight, self._button_loc)) >= 0) and (max(self._transform_to_neighborhood( player.position, self.sight, self._button_loc))<= 2 * self.sight) else [-1, -1] ) def _make_gym_obs(self, observations): def make_obs_array(observation): obs = np.zeros(self.observation_space[0].shape, dtype=np.float32) # obs[: observation.field.size] = observation.field.flatten() # self player is always first seen_players = [p for p in observation.players if p.is_self] + [ p for p in observation.players if not p.is_self ] for i in range(self.max_food): obs[3 * i] = -1 obs[3 * i + 1] = -1 obs[3 * i + 2] = 0 for i, (y, x) in enumerate(zip(*np.nonzero(observation.field))): obs[3 * i] = y obs[3 * i + 1] = x obs[3 * i + 2] = observation.field[y, x] for i in range(len(self.players)): obs[self.max_food * 3 + 3 * i] = -1 obs[self.max_food * 3 + 3 * i + 1] = -1 obs[self.max_food * 3 + 3 * i + 2] = 0 for i, p in enumerate(seen_players): obs[self.max_food * 3 + 3 * i] = p.position[0] obs[self.max_food * 3 + 3 * i + 1] = p.position[1] obs[self.max_food * 3 + 3 * i + 2] = p.level obs[-2:] = np.array(observation.button) return obs def get_player_reward(observation): for p in observation.players: if p.is_self: return p.reward nobs = tuple([make_obs_array(obs) for obs in observations]) nreward = [[get_player_reward(obs)] for obs in observations] ndone = [obs.game_over for obs in observations] # ninfo = [{'observation': obs} for obs in observations] ninfo = {} return nobs, nreward, ndone, ninfo def reset(self): self.field = np.zeros(self.field_size, np.int32) self.spawn_players(self.max_player_level) player_levels = sorted([player.level for player in self.players]) self.spawn_food( self.max_food, max_level=sum(player_levels[:3]) ) self.spawn_button() # print(self._button_loc) self.current_step = 0 self._game_over = False self._gen_valid_moves() observations = [self._make_obs(player) for player in self.players] nobs, nreward, ndone, ninfo = self._make_gym_obs(observations) return nobs def spawn_button(self): attempts = 0 while attempts < 1000: attempts += 1 row = self.np_random.randint(1, self.rows - 1) col = self.np_random.randint(1, self.cols - 1) # check if it has neighbors: if ( self.neighborhood(row, col).sum() > 0 or self.neighborhood(row, col, distance=2, ignore_diag=True) > 0 or not self._is_empty_location(row, col) ): continue self._button_loc = np.array([row, col]) return def step(self, actions): self.current_step += 1 for p in self.players: p.reward = 0 actions = [ Action(a) if Action(a) in self._valid_actions[p] else Action.NONE for p, a in zip(self.players, actions) ] # check if actions are valid for i, (player, action) in enumerate(zip(self.players, actions)): if action not in self._valid_actions[player]: self.logger.info( "{}{} attempted invalid action {}.".format( player.name, player.position, action ) ) actions[i] = Action.NONE loading_players = set() # move players # if two or more players try to move to the same location they all fail collisions = defaultdict(list) # so check for collisions for player, action in zip(self.players, actions): if action == Action.NONE: collisions[player.position].append(player) elif action == Action.NORTH: collisions[(player.position[0] - 1, player.position[1])].append(player) elif action == Action.SOUTH: collisions[(player.position[0] + 1, player.position[1])].append(player) elif action == Action.WEST: collisions[(player.position[0], player.position[1] - 1)].append(player) elif action == Action.EAST: collisions[(player.position[0], player.position[1] + 1)].append(player) elif action == Action.LOAD: collisions[player.position].append(player) loading_players.add(player) # and do movements for non colliding players for k, v in collisions.items(): if len(v) > 1: # make sure no more than an player will arrive at location continue v[0].position = k # process the button if not self.button_pressed: for player in self.players: if player.position[0] == self._button_loc[0] and player.position[1] == self._button_loc[1]: self.field[self._food_loc] = int(self.field[self._food_loc]/2) self.button_pressed = True # finally process the loadings: while loading_players: # find adjacent food player = loading_players.pop() frow, fcol = self.adjacent_food_location(*player.position) food = self.field[frow, fcol] adj_players = self.adjacent_players(frow, fcol) adj_players = [ p for p in adj_players if p in loading_players or p is player ] adj_player_level = sum([a.level for a in adj_players]) loading_players = loading_players - set(adj_players) if adj_player_level < food: # failed to load continue # else the food was loaded and each player scores points for a in adj_players: a.reward = float(a.level * food) if self._normalize_reward: a.reward = a.reward / float( adj_player_level * self._food_spawned ) # normalize reward # and the food is removed self.field[frow, fcol] = 0 self._game_over = ( self.field.sum() == 0 or self._max_episode_steps <= self.current_step ) self._gen_valid_moves() for p in self.players: p.score += p.reward observations = [self._make_obs(player) for player in self.players] return self._make_gym_obs(observations) def _init_render(self): from .rendering_subgoal import Viewer self.viewer = Viewer((self.rows, self.cols)) self._rendering_initialized = True def render(self, mode="human"): if not self._rendering_initialized: self._init_render() return self.viewer.render(self, return_rgb_array=mode == "rgb_array") def close(self): if self.viewer: self.viewer.close()
py
1a42689d50c366c941759c76bbcc03f3f5fd7afb
def run(db, args): print("TODO")
py
1a4268b304e7d7e1864c852529eb912d8534e437
# -*- coding: utf-8 -*- from PySide6.QtWidgets import ( QApplication) from PySide6.QtGui import ( QFontMetrics, QTextOption) from PySide6.QtCore import ( QEvent) from .textline import SourceTextLineBase from .textviewer import TextViewer __all__ = ["SourceViewer"] class SourceTextLine(SourceTextLineBase): def __init__(self, text, font, option): super().__init__(text, font, option) def rehighlight(self): formats = self._commonHighlightFormats() if formats: self._layout.setFormats(formats) class SourceViewer(TextViewer): def __init__(self, parent=None): super().__init__(parent) self._panel = None self._blockEventFilter = False self.verticalScrollBar().valueChanged.connect( self._onVScrollBarValueChanged) settings = QApplication.instance().settings() settings.tabSizeChanged.connect(self.delayUpdateSettings) settings.showWhitespaceChanged.connect(self.delayUpdateSettings) settings.diffViewFontChanged.connect(self.delayUpdateSettings) def toTextLine(self, text): return SourceTextLine(text, self._font, self._option) def setPanel(self, panel): if self._panel: if panel != self._panel: self._panel.removeEventFilter(self) else: return self._panel = panel if panel: self._updatePanelGeo() panel.installEventFilter(self) else: self.setViewportMargins(0, 0, 0, 0) @property def panel(self): return self._panel def reloadSettings(self): settings = QApplication.instance().settings() self.updateFont(settings.diffViewFont()) fm = QFontMetrics(self._font) tabSize = settings.tabSize() tabstopWidth = fm.horizontalAdvance(' ') * tabSize self._option = QTextOption() self._option.setTabStopDistance(tabstopWidth) if settings.showWhitespace(): flags = self._option.flags() self._option.setFlags(flags | QTextOption.ShowTabsAndSpaces) self.reloadBugPattern() def _onVScrollBarValueChanged(self, value): if self._panel: self._panel.update() def _updatePanelGeo(self): if self._panel: rc = self.rect() width = self._panel.width() self.setViewportMargins(width + 1, 0, 0, 0) self._panel.setGeometry(rc.left() + 1, rc.top() + 1, width, self.viewport().height()) def _reloadTextLine(self, textLine): # reload bugPattern super()._reloadTextLine(textLine) if isinstance(textLine, SourceTextLineBase): textLine.setDefOption(self._option) textLine.setFont(self._font) def resizeEvent(self, event): if event.oldSize().height() != event.size().height(): self._blockEventFilter = True self._updatePanelGeo() self._blockEventFilter = False super().resizeEvent(event) def eventFilter(self, obj, event): if not self._blockEventFilter and \ obj == self._panel and \ event.type() == QEvent.Resize: self._updatePanelGeo() return True return super().eventFilter(obj, event)
py
1a4269086b649490bbf0010250cd6daaca0f7cc9
# Generated by Django 3.2 on 2021-07-06 19:24 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('product_name', models.CharField(max_length=50)), ('desc', models.CharField(max_length=300)), ('pub_date', models.DateField()), ], ), ]
py
1a42691db8141bfba21776bb145cf2ab6e5e1816
"""Append module search paths for third-party packages to sys.path. **************************************************************** * This module is automatically imported during initialization. * **************************************************************** In earlier versions of Python (up to 1.5a3), scripts or modules that needed to use site-specific modules would place ``import site'' somewhere near the top of their code. Because of the automatic import, this is no longer necessary (but code that does it still works). This will append site-specific paths to the module search path. On Unix (including Mac OSX), it starts with sys.prefix and sys.exec_prefix (if different) and appends lib/python<version>/site-packages as well as lib/site-python. On other platforms (such as Windows), it tries each of the prefixes directly, as well as with lib/site-packages appended. The resulting directories, if they exist, are appended to sys.path, and also inspected for path configuration files. A path configuration file is a file whose name has the form <package>.pth; its contents are additional directories (one per line) to be added to sys.path. Non-existing directories (or non-directories) are never added to sys.path; no directory is added to sys.path more than once. Blank lines and lines beginning with '#' are skipped. Lines starting with 'import' are executed. For example, suppose sys.prefix and sys.exec_prefix are set to /usr/local and there is a directory /usr/local/lib/python2.5/site-packages with three subdirectories, foo, bar and spam, and two path configuration files, foo.pth and bar.pth. Assume foo.pth contains the following: # foo package configuration foo bar bletch and bar.pth contains: # bar package configuration bar Then the following directories are added to sys.path, in this order: /usr/local/lib/python2.5/site-packages/bar /usr/local/lib/python2.5/site-packages/foo Note that bletch is omitted because it doesn't exist; bar precedes foo because bar.pth comes alphabetically before foo.pth; and spam is omitted because it is not mentioned in either path configuration file. After these path manipulations, an attempt is made to import a module named sitecustomize, which can perform arbitrary additional site-specific customizations. If this import fails with an ImportError exception, it is silently ignored. """ import sys import os import __builtin__ import traceback # Prefixes for site-packages; add additional prefixes like /usr/local here PREFIXES = [sys.prefix, sys.exec_prefix] # Enable per user site-packages directory # set it to False to disable the feature or True to force the feature ENABLE_USER_SITE = None # for distutils.commands.install # These values are initialized by the getuserbase() and getusersitepackages() # functions, through the main() function when Python starts. USER_SITE = None USER_BASE = None def makepath(*paths): dir = os.path.join(*paths) try: dir = os.path.abspath(dir) except OSError: pass return dir, os.path.normcase(dir) def abs__file__(): """Set all module' __file__ attribute to an absolute path""" for m in sys.modules.values(): if hasattr(m, '__loader__'): continue # don't mess with a PEP 302-supplied __file__ try: prev = m.__file__ new = os.path.abspath(m.__file__) if prev != new: m.__file__ = new except (AttributeError, OSError): pass def removeduppaths(): """ Remove duplicate entries from sys.path along with making them absolute""" # This ensures that the initial path provided by the interpreter contains # only absolute pathnames, even if we're running from the build directory. L = [] known_paths = set() for dir in sys.path: # Filter out duplicate paths (on case-insensitive file systems also # if they only differ in case); turn relative paths into absolute # paths. dir, dircase = makepath(dir) if not dircase in known_paths: L.append(dir) known_paths.add(dircase) sys.path[:] = L return known_paths def _init_pathinfo(): """Return a set containing all existing directory entries from sys.path""" d = set() for dir in sys.path: try: if os.path.isdir(dir): dir, dircase = makepath(dir) d.add(dircase) except TypeError: continue return d def addpackage(sitedir, name, known_paths): """Process a .pth file within the site-packages directory: For each line in the file, either combine it with sitedir to a path and add that to known_paths, or execute it if it starts with 'import '. """ if known_paths is None: _init_pathinfo() reset = 1 else: reset = 0 fullname = os.path.join(sitedir, name) try: f = open(fullname, "rU") except IOError: return with f: for n, line in enumerate(f): if line.startswith("#"): continue try: if line.startswith(("import ", "import\t")): exec line continue line = line.rstrip() dir, dircase = makepath(sitedir, line) if not dircase in known_paths and os.path.exists(dir): sys.path.append(dir) known_paths.add(dircase) except Exception as err: print >>sys.stderr, "Error processing line {:d} of {}:\n".format( n+1, fullname) for record in traceback.format_exception(*sys.exc_info()): for line in record.splitlines(): print >>sys.stderr, ' '+line print >>sys.stderr, "\nRemainder of file ignored" break if reset: known_paths = None return known_paths def addsitedir(sitedir, known_paths=None): """Add 'sitedir' argument to sys.path if missing and handle .pth files in 'sitedir'""" if known_paths is None: known_paths = _init_pathinfo() reset = 1 else: reset = 0 sitedir, sitedircase = makepath(sitedir) if not sitedircase in known_paths: sys.path.append(sitedir) # Add path component try: names = os.listdir(sitedir) except os.error: return dotpth = os.extsep + "pth" names = [name for name in names if name.endswith(dotpth)] for name in sorted(names): addpackage(sitedir, name, known_paths) if reset: known_paths = None return known_paths def check_enableusersite(): """Check if user site directory is safe for inclusion The function tests for the command line flag (including environment var), process uid/gid equal to effective uid/gid. None: Disabled for security reasons False: Disabled by user (command line option) True: Safe and enabled """ if sys.flags.no_user_site: return False if hasattr(os, "getuid") and hasattr(os, "geteuid"): # check process uid == effective uid if os.geteuid() != os.getuid(): return None if hasattr(os, "getgid") and hasattr(os, "getegid"): # check process gid == effective gid if os.getegid() != os.getgid(): return None return True def getuserbase(): """Returns the `user base` directory path. The `user base` directory can be used to store data. If the global variable ``USER_BASE`` is not initialized yet, this function will also set it. """ global USER_BASE if USER_BASE is not None: return USER_BASE from sysconfig import get_config_var USER_BASE = get_config_var('userbase') return USER_BASE def getusersitepackages(): """Returns the user-specific site-packages directory path. If the global variable ``USER_SITE`` is not initialized yet, this function will also set it. """ global USER_SITE user_base = getuserbase() # this will also set USER_BASE if USER_SITE is not None: return USER_SITE from sysconfig import get_path import os if sys.platform == 'darwin': from sysconfig import get_config_var if get_config_var('PYTHONFRAMEWORK'): USER_SITE = get_path('purelib', 'osx_framework_user') return USER_SITE USER_SITE = get_path('purelib', '%s_user' % os.name) return USER_SITE def addusersitepackages(known_paths): """Add a per user site-package to sys.path Each user has its own python directory with site-packages in the home directory. """ # get the per user site-package path # this call will also make sure USER_BASE and USER_SITE are set user_site = getusersitepackages() if ENABLE_USER_SITE and os.path.isdir(user_site): addsitedir(user_site, known_paths) return known_paths def getsitepackages(): """Returns a list containing all global site-packages directories (and possibly site-python). For each directory present in the global ``PREFIXES``, this function will find its `site-packages` subdirectory depending on the system environment, and will return a list of full paths. """ is_pypy = '__pypy__' in sys.builtin_module_names sitepackages = [] seen = set() for prefix in PREFIXES: if not prefix or prefix in seen: continue seen.add(prefix) if sys.platform in ('os2emx', 'riscos'): sitepackages.append(os.path.join(prefix, "Lib", "site-packages")) elif is_pypy: from distutils.sysconfig import get_python_lib sitedir = get_python_lib(standard_lib=False, prefix=prefix) sitepackages.append(sitedir) elif os.sep == '/': sitepackages.append(os.path.join(prefix, "lib", "python" + sys.version[:3], "site-packages")) sitepackages.append(os.path.join(prefix, "lib", "site-python")) else: sitepackages.append(prefix) sitepackages.append(os.path.join(prefix, "lib", "site-packages")) return sitepackages def addsitepackages(known_paths): """Add site-packages (and possibly site-python) to sys.path""" for sitedir in getsitepackages(): if os.path.isdir(sitedir): addsitedir(sitedir, known_paths) return known_paths def setBEGINLIBPATH(): """The OS/2 EMX port has optional extension modules that do double duty as DLLs (and must use the .DLL file extension) for other extensions. The library search path needs to be amended so these will be found during module import. Use BEGINLIBPATH so that these are at the start of the library search path. """ dllpath = os.path.join(sys.prefix, "Lib", "lib-dynload") libpath = os.environ['BEGINLIBPATH'].split(';') if libpath[-1]: libpath.append(dllpath) else: libpath[-1] = dllpath os.environ['BEGINLIBPATH'] = ';'.join(libpath) def setquit(): """Define new builtins 'quit' and 'exit'. These are objects which make the interpreter exit when called. The repr of each object contains a hint at how it works. """ if os.sep == ':': eof = 'Cmd-Q' elif os.sep == '\\': eof = 'Ctrl-Z plus Return' else: eof = 'Ctrl-D (i.e. EOF)' class Quitter(object): def __init__(self, name): self.name = name def __repr__(self): return 'Use %s() or %s to exit' % (self.name, eof) def __call__(self, code=None): # Shells like IDLE catch the SystemExit, but listen when their # stdin wrapper is closed. try: sys.stdin.close() except: pass raise SystemExit(code) __builtin__.quit = Quitter('quit') __builtin__.exit = Quitter('exit') class _Printer(object): """interactive prompt objects for printing the license text, a list of contributors and the copyright notice.""" MAXLINES = 23 def __init__(self, name, data, files=(), dirs=()): self.__name = name self.__data = data self.__files = files self.__dirs = dirs self.__lines = None def __setup(self): if self.__lines: return data = None for dir in self.__dirs: for filename in self.__files: filename = os.path.join(dir, filename) try: fp = file(filename, "rU") data = fp.read() fp.close() break except IOError: pass if data: break if not data: data = self.__data self.__lines = data.split('\n') self.__linecnt = len(self.__lines) def __repr__(self): self.__setup() if len(self.__lines) <= self.MAXLINES: return "\n".join(self.__lines) else: return "Type %s() to see the full %s text" % ((self.__name,)*2) def __call__(self): self.__setup() prompt = 'Hit Return for more, or q (and Return) to quit: ' lineno = 0 while 1: try: for i in range(lineno, lineno + self.MAXLINES): print self.__lines[i] except IndexError: break else: lineno += self.MAXLINES key = None while key is None: key = raw_input(prompt) if key not in ('', 'q'): key = None if key == 'q': break ##def setcopyright(): ## """Set 'copyright' and 'credits' in __builtin__""" ## __builtin__.copyright = _Printer("copyright", sys.copyright) ## if sys.platform[:4] == 'java': ## __builtin__.credits = _Printer( ## "credits", ## "Jython is maintained by the Jython developers (www.jython.org).") ## else: ## __builtin__.credits = _Printer("credits", """\ ## Thanks to CWI, CNRI, BeOpen.com, Zope Corporation and a cast of thousands ## for supporting Python development. See www.python.org for more information.""") ## here = os.path.dirname(os.__file__) ## __builtin__.license = _Printer( ## "license", "See http://www.python.org/%.3s/license.html" % sys.version, ## ["LICENSE.txt", "LICENSE"], ## [os.path.join(here, os.pardir), here, os.curdir]) def setcopyright(): # XXX this is the PyPy-specific version. Should be unified with the above. __builtin__.copyright = _Printer("copyright", sys.copyright) __builtin__.credits = _Printer( "credits", "PyPy is maintained by the PyPy developers: http://pypy.org/") __builtin__.license = _Printer( "license", "See https://bitbucket.org/pypy/pypy/src/default/LICENSE") class _Helper(object): """Define the builtin 'help'. This is a wrapper around pydoc.help (with a twist). """ def __repr__(self): return "Type help() for interactive help, " \ "or help(object) for help about object." def __call__(self, *args, **kwds): import pydoc return pydoc.help(*args, **kwds) def sethelper(): __builtin__.help = _Helper() def aliasmbcs(): """On Windows, some default encodings are not provided by Python, while they are always available as "mbcs" in each locale. Make them usable by aliasing to "mbcs" in such a case.""" if sys.platform == 'win32': import locale, codecs enc = locale.getdefaultlocale()[1] if enc is not None and enc.startswith('cp'): # "cp***" ? try: codecs.lookup(enc) except LookupError: import encodings encodings._cache[enc] = encodings._unknown encodings.aliases.aliases[enc] = 'mbcs' def setencoding(): """Set the string encoding used by the Unicode implementation. The default is 'ascii', but if you're willing to experiment, you can change this.""" encoding = "ascii" # Default value set by _PyUnicode_Init() if 0: # Enable to support locale aware default string encodings. import locale loc = locale.getdefaultlocale() if loc[1]: encoding = loc[1] if 0: # Enable to switch off string to Unicode coercion and implicit # Unicode to string conversion. encoding = "undefined" if encoding != "ascii": # On Non-Unicode builds this will raise an AttributeError... sys.setdefaultencoding(encoding) # Needs Python Unicode build ! def execsitecustomize(): """Run custom site specific code, if available.""" try: import sitecustomize except ImportError: pass except Exception: if sys.flags.verbose: sys.excepthook(*sys.exc_info()) else: print >>sys.stderr, \ "'import sitecustomize' failed; use -v for traceback" def execusercustomize(): """Run custom user specific code, if available.""" try: import usercustomize except ImportError: pass except Exception: if sys.flags.verbose: sys.excepthook(*sys.exc_info()) else: print>>sys.stderr, \ "'import usercustomize' failed; use -v for traceback" def import_builtin_stuff(): """PyPy specific: pre-import a few built-in modules, because some programs actually rely on them to be in sys.modules :-(""" # encodings is imported sometimes but not always by app_main import encodings import exceptions if 'zipimport' in sys.builtin_module_names: import zipimport def main(): global ENABLE_USER_SITE import_builtin_stuff() abs__file__() known_paths = removeduppaths() if ENABLE_USER_SITE is None: ENABLE_USER_SITE = check_enableusersite() known_paths = addusersitepackages(known_paths) known_paths = addsitepackages(known_paths) if sys.platform == 'os2emx': setBEGINLIBPATH() setquit() setcopyright() sethelper() aliasmbcs() setencoding() execsitecustomize() if ENABLE_USER_SITE: execusercustomize() # Remove sys.setdefaultencoding() so that users cannot change the # encoding after initialization. The test for presence is needed when # this module is run as a script, because this code is executed twice. if hasattr(sys, "setdefaultencoding"): del sys.setdefaultencoding main() def _script(): help = """\ %s [--user-base] [--user-site] Without arguments print some useful information With arguments print the value of USER_BASE and/or USER_SITE separated by '%s'. Exit codes with --user-base or --user-site: 0 - user site directory is enabled 1 - user site directory is disabled by user 2 - uses site directory is disabled by super user or for security reasons >2 - unknown error """ args = sys.argv[1:] if not args: print "sys.path = [" for dir in sys.path: print " %r," % (dir,) print "]" print "USER_BASE: %r (%s)" % (USER_BASE, "exists" if os.path.isdir(USER_BASE) else "doesn't exist") print "USER_SITE: %r (%s)" % (USER_SITE, "exists" if os.path.isdir(USER_SITE) else "doesn't exist") print "ENABLE_USER_SITE: %r" % ENABLE_USER_SITE sys.exit(0) buffer = [] if '--user-base' in args: buffer.append(USER_BASE) if '--user-site' in args: buffer.append(USER_SITE) if buffer: print os.pathsep.join(buffer) if ENABLE_USER_SITE: sys.exit(0) elif ENABLE_USER_SITE is False: sys.exit(1) elif ENABLE_USER_SITE is None: sys.exit(2) else: sys.exit(3) else: import textwrap print textwrap.dedent(help % (sys.argv[0], os.pathsep)) sys.exit(10) if __name__ == '__main__': _script()
py
1a426929c05ad36363decb5e3552b8daf6fb81f3
from InitProb import * from collections import defaultdict PNFile = "lsup" OVERRIDE = 1 vertices = [[1, 1], [0, 3], [-1, 1], [-1, -1], [1, -1], [0.5, 0], [0, 0.75], [-0.5, 0], [0, 1]] edgelists = [[0,1,2,3,4], [5,6,7,8]] trpl = [[1, 1], [0, 3], [-1, 1]] c = .1 box = [np.array([ 0.08*c, 0.08*c]),\ np.array([ -0.08*c, 0.08*c]),\ np.array([ -0.08*c,-0.08*c]),\ np.array([ 0.08*c,-0.08*c])] #def clip(PND, aL): #Instead of modifying the polychain data, just reproduce it based on PND.PCC if __name__ == "__main__" or OVERRIDE: OFF = PolyNodeData() OFF.loadOFF("lsup.off") acuteAngles = [] #This will be a list of lists that we fill with vertex idx for each polychain PND = PolyNodeData() PND.loadPND(PNFile + ".poly", PNFile + ".node") aL = identifyAcute(PND) # L = aL[0] # A = aL[-3][0] # out = [] # # for aI in L: # for b in box: # out.append((PND.nodes[aI]+b).tolist()) # # for b in box: # out.append((PND.nodes[A]+b).tolist()) # # # OFFOut = OFFData() # # OFFOut.vertices = out # OFFOut.elements = [[i*4 + j + 518 for j in range(4)] for i in range(len(OFFOut.vertices)//4)] # #OFFOut.elements = [[i*4 + j for j in range(4)] for i in range(len(OFFOut.vertices)//4)] # OFFOut.NV = len(out) # OFFOut.NE = len(OFFOut.elements) # # OFFOut.export("marks.off") # exportToOFF(vertices, edgelists, "House.off") # #VVV All meant to determine boundary from a tri/quadrangulation # # D = defaultdict(lambda: 0) # OFF = importOFF("superior.off") # # #Determine Boundary and Holes # # for ele in OFF.elements: # for idx in range(len(ele)): # D[str({ele[idx], ele[(idx+1) % len(ele)]})] += 1 # # unsortedBoundary = set() # # for edge in D: # if D[edge] == 1: # unsortedBoundary.add(edge)
py
1a4269bdc044c18e3672c1a71779a35722b324c6
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # flake8: noqa # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import mock # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # import sphinx_rtd_theme # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # to support markdown from recommonmark.parser import CommonMarkParser sys.path.insert(0, os.path.abspath("../")) DEPLOY = os.environ.get("READTHEDOCS") == "True" # -- Project information ----------------------------------------------------- try: import torch # noqa except ImportError: for m in [ "torch", "torchvision", "torch.nn", "torch.nn.parallel", "torch.distributed", "torch.multiprocessing", "torch.autograd", "torch.autograd.function", "torch.nn.modules", "torch.nn.modules.utils", "torch.utils", "torch.utils.data", "torch.onnx", "torchvision", "torchvision.ops", ]: sys.modules[m] = mock.Mock(name=m) for m in [ "cv2", "scipy", "portalocker", "detectron2._C", "pycocotools", "pycocotools.mask", "pycocotools.coco", "pycocotools.cocoeval", "google", "google.protobuf", "google.protobuf.internal", "onnx", "caffe2", "caffe2.proto", "caffe2.python", "caffe2.python.utils", "caffe2.python.onnx", "caffe2.python.onnx.backend", ]: sys.modules[m] = mock.Mock(name=m) sys.modules["cv2"].__version__ = "3.4" import detectron2 # isort: skip project = "detectron2" copyright = "2019-2020, detectron2 contributors" author = "detectron2 contributors" # The short X.Y version version = detectron2.__version__ # The full version, including alpha/beta/rc tags release = version # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = "1.7" # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.napoleon", "sphinx.ext.intersphinx", "sphinx.ext.todo", "sphinx.ext.coverage", "sphinx.ext.mathjax", "sphinx.ext.viewcode", "sphinx.ext.githubpages", ] # -- Configurations for plugins ------------ napoleon_google_docstring = True napoleon_include_init_with_doc = True napoleon_include_special_with_doc = True napoleon_numpy_docstring = False napoleon_use_rtype = False autodoc_inherit_docstrings = False autodoc_member_order = "bysource" if DEPLOY: intersphinx_timeout = 10 else: # skip this when building locally intersphinx_timeout = 0.1 intersphinx_mapping = { "python": ("https://docs.python.org/3.6", None), "numpy": ("https://docs.scipy.org/doc/numpy/", None), "torch": ("https://pytorch.org/docs/master/", None), } # ------------------------- # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] source_parsers = {".md": CommonMarkParser} source_suffix = [".rst", ".md"] # The master toctree document. master_doc = "index" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store", "build", "README.md"] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # -- Options for HTML output ------------------------------------------------- html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = "detectron2doc" # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, "detectron2.tex", "detectron2 Documentation", "detectron2 contributors", "manual") ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, "detectron2", "detectron2 Documentation", [author], 1)] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "detectron2", "detectron2 Documentation", author, "detectron2", "One line description of project.", "Miscellaneous", ) ] # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True _DEPRECATED_NAMES = set() def autodoc_skip_member(app, what, name, obj, skip, options): # we hide something deliberately if getattr(obj, "__HIDE_SPHINX_DOC__", False): return True # Hide some names that are deprecated or not intended to be used if name in _DEPRECATED_NAMES: return True return None def url_resolver(url): if ".html" not in url: url = url.replace("../", "") return "https://github.com/facebookresearch/detectron2/blob/master/" + url else: if DEPLOY: return "http://detectron2.readthedocs.io/" + url else: return "/" + url def setup(app): from recommonmark.transform import AutoStructify app.connect("autodoc-skip-member", autodoc_skip_member) # app.connect('autodoc-skip-member', autodoc_skip_member) app.add_config_value( "recommonmark_config", { "url_resolver": url_resolver, "enable_math": True, "enable_inline_math": True, "enable_eval_rst": True, }, True, ) app.add_transform(AutoStructify)
py
1a4269e0bed1c53b3536a29b0009126cb7cf8c6d
# -*- coding: utf-8 -*- u"""Simplify rendering jinja2 :copyright: Copyright (c) 2015 Bivio Software, Inc. All Rights Reserved. :license: http://www.apache.org/licenses/LICENSE-2.0.html """ from __future__ import absolute_import, division, print_function from pykern import pkinspect from pykern import pkio from pykern import pkresource from pykern.pkdebug import pkdc, pkdp import jinja2 #: Implicit extension including '.' added to resources RESOURCE_SUFFIX = '.jinja' def render_file(filename, j2_ctx, output=None, strict_undefined=False, jinja_env=None): """Render filename as template with j2_ctx. Args: basename (str): name without jinja extension j2_ctx (dict): how to replace values in Jinja2 template output (str): file name of output; if None, return str strict_undefined (bool): set `jinja2.StrictUndefined` if True jinja_env (dict): add values to jinja2 environment Returns: str: rendered template """ t = pkio.read_text(filename) kw = dict( trim_blocks=True, lstrip_blocks=True, keep_trailing_newline=True, extensions=['jinja2.ext.do'], ) if strict_undefined: kw['undefined'] = jinja2.StrictUndefined if jinja_env: kw.update(jinja_env) je = jinja2.Environment(**kw) res = je.from_string(t).render(j2_ctx) if output: pkio.write_text(output, res) return res def render_resource(basename, *args, **kwargs): """Render a pkresource as a jinja template. Args: basename (str): name without `RESOURCE_SUFFIX` args (list): see func:`render_file` for rest of args and return """ return render_file( pkresource.filename( basename + RESOURCE_SUFFIX, pkinspect.caller_module(), ), *args, **kwargs )
py
1a426ab8d5d7de02b845b5e6ad314a95c37452dc
#!/usr/bin/env python # -*- coding: utf-8 -*- # Libraries import sys import time import logging import platform import os import random # Modules import core.log from core.data.wordlist import * from core.data.crossword import * from core.data.constants import * from core.helpers.parse import * from core.implements.basic_backtracking import * from core.implements.fc_backtracking import * from core.implements.live_backtracking import * from cli.arguments.parsers import DEFAULT_PARSER from cli.arguments.constants import * from cli.printers.crossword import * # Constants LOGGER = logging.getLogger(__name__) # Functions """ Takes the system arguments vector and tries to parse the arguments in it given the argument parser specified and returns the namespace generated @param parser the ArgumentParser objects to use to parse the arguments """ def parseArguments(parser): return parser.parse_args() """ Given the origin of the data for the wordlist, loads the wordlist and returns it, while giving some information about it if it's required @param origin the source to load the wordlist from @return wordlist valid object (or None if couldn't load) """ def loadWordlist(origin): LOGGER.info("-> Loading wordlist (from %s)",origin) wordlist = WordList(origin) if args.timers > 1: time_load_wordlist_start = time.time() wordlist.read() if args.timers > 2: LOGGER.info("--> Read in %f seconds",time.time()-\ time_load_wordlist_start) time_load_wordlist_start_parse = time.time() wordlist.parse() if args.timers > 2: LOGGER.info("--> Parsed in %f seconds",time.time()-\ time_load_wordlist_start_parse) if args.timers > 1: LOGGER.info("--> Loaded in %f seconds",time.time()-\ time_load_wordlist_start) if args.show_wordlist: LOGGER.info(wordlist) return wordlist """ Given the origin of the data for the crossword, loads the crossword and returns it, while giving some information about it if it's required @param origin the source to load the wordlist from @return crossword valid object (or None if couldn't load) """ def loadCrossword(origin): crossword = Crossword(origin) LOGGER.info("-> Loading crossword (from %s)",origin) if args.timers > 1: time_load_crossword_start = time.time() crossword.read().parse() if args.timers > 1: LOGGER.info("--> Loaded in %f seconds",time.time()-\ time_load_crossword_start) if args.show_crossword: LOGGER.info(crossword) return crossword """ Retrieves the algorithm object to use depending on the arguments @return algorithm callable object """ def selectAlgorithm(): alg = None LOGGER.info("Chose %s algorithm"%args.algorithm) if args.algorithm == ALG_BACKTRACKING_SIMPLE: alg = CrosswordBasicBacktracking(wordlist.getList(), crossword.getConstraints()) elif args.algorithm == ALG_BACKTRACKING_FC: alg = CrosswordForwardCheckingBacktracking(wordlist.getList(), crossword.getConstraints()) elif args.algorithm == ALG_BACKTRACKING_LIVE: crossword_printer = CrosswordPrinter(crossword,args.frames) crossword_printer.setStyle(args.style) alg = CrosswordLiveBacktracking(wordlist.getList(), crossword.getConstraints(),crossword_printer) return alg """ Given the solution returned from the crossword, searches over the internet for the definitions of the words appearing in the solution and shows the user the definitions so they can solve the crossword theyreselves @param solution solution to show hints """ def playGame(solution): from bs4 import BeautifulSoup import mwapi LOGGER.info("---- GAME MODE ----") LOGGER.info("I want to play a game...") session = mwapi.Session('https://ca.wiktionary.org') for word_i in range(len(solution)): word = "".join(list(map(chr,solution[word_i]))).lower() var = crossword.getVariableString(word_i) resp = session.get(action='query',prop='extracts',titles=word)\ ["query"]["pages"] pages = list(resp.keys()) try: extract = resp[pages[0]]["extract"] except: extract = None parser = None if extract: parser = BeautifulSoup(extract,"html.parser").findAll("li") definition = "" if parser != None: valid_defs = [] for info in parser: text = info.getText() if "Pronúncia" in text \ or "Exemples" in text \ or "Etimologia" in text \ or "Per a més informació vegeu" in text\ or len(text.split()) < 4: continue else: valid_defs.append(text) if len(valid_defs): definition = random.choice(valid_defs) if definition == "": definition = word + " (no hem trobat cap definició)" LOGGER.info("%s: %s",var,definition) """ Given a solution from the crossword, tries to print it over the screen, or logs that no solution was found if necessary @param solution solution to print """ def showSolution(solution): if solution == None: LOGGER.info("The algorithm hasn't found any valid solution :(") else: printer = CrosswordPrinter(crossword) printer.setStyle(args.style) if args.solution: if args.play: print(printer) playGame(solution) elif args.algorithm != ALG_BACKTRACKING_LIVE: printer.printSolution(solution) else: LOGGER.info("The algorithm has found a valid solution :)") if __name__ == "__main__": # Prepare coding if platform.system() == "Windows": os.system("chcp 65001") # Parse arguments args = parseArguments(DEFAULT_PARSER) # Set default tablesets args.style = CHAR_TABLESETS[args.style] # Welcome LOGGER.info("Welcome to Crossword solver") # Load data LOGGER.info("Loading crossword and wordlist") if args.timers > 0: time_load_start = time.time() # Datasets if args.wordlist == None: args.wordlist = ITEMSET_BYNAME[args.itemset]["wordlist"] if args.crossword == None: args.crossword = ITEMSET_BYNAME[args.itemset]["crossword"] # Wordlist wordlist = loadWordlist(args.wordlist) # Crossword crossword = loadCrossword(args.crossword) # Loading ended if args.timers > 0: time_load_end = time.time() LOGGER.info("Loaded all in %f seconds", time_load_end-time_load_start) else: LOGGER.info("Loaded all data succesfully") # Choose algorithm alg = selectAlgorithm() # Solve the problem LOGGER.info("Started backtracking algorithm") if args.timers > 0: time_alg_start = time.time() solution = alg(crossword.getVariables()) if args.timers > 0: time_alg_end = time.time() LOGGER.info("Ended alg. in %f seconds", time_alg_end-time_alg_start) else: LOGGER.info("Ended backtracking algorithm") # Solution if args.timers > 0: LOGGER.info("TOTAL TIME: %f seconds",time_alg_end-time_load_start) showSolution(solution) LOGGER.info("Thanks for trusting our app ;)")
py
1a426b5a9a570229e6e0db267f5804b6459577c0
"""Test suite main conftest.""" import transaction import pytest from mock import Mock from pyramid.decorator import reify from pyramid.request import Request from pyramid import testing from zope.sqlalchemy import register import pyramid_basemodel from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session, sessionmaker from sqlalchemy.pool import NullPool from pyramid_localize import build_localize_config from pyramid_localize.models import Language def web_request_func(): """Mock web request for views testing.""" # pylint:disable=import-outside-toplevel from pyramid_localize.request import LocalizeRequestMixin from pyramid_localize.request import database_locales from pyramid_localize.request import locale_id from pyramid_localize.request import locales class TestRequest(LocalizeRequestMixin, Request): # pylint:disable=too-many-ancestors """Test request object.""" @reify def _database_locales(self): return database_locales(self) @reify def locale_id(self): """Returns a database locale id.""" return locale_id(self) def locales(self, *args, **kwargs): """Return all availablee locales.""" return locales(self, *args, **kwargs) request = TestRequest({}) localize_config = build_localize_config( { "localize.locales.available": ["en", "pl", "de", "cz"], "localize.domain": "test", } ) configurator = testing.setUp() request.registry = configurator.registry # pylint:disable=attribute-defined-outside-init request.registry["localize"] = localize_config return request @pytest.fixture def web_request(): """Mock web request for views testing.""" return web_request_func() @pytest.fixture def locale_negotiator_request(): """Request for locale_negotiator tests.""" request = Mock() mock_configuration = { "cookies": {"_LOCALE_": "cz"}, "_LOCALE_": "fr", "accept_language.best_match.return_value": "de", "path": "/pl/page", "registry": { "localize": build_localize_config( { "localize.locales.available": ["en", "pl", "de", "cz", "fr"], "localize.locales.default": "en", } ) }, } request.configure_mock(**mock_configuration) return request @pytest.fixture def db_session(request): """Session for SQLAlchemy.""" from pyramid_localize.models import Base # pylint:disable=import-outside-toplevel engine = create_engine("sqlite:///localize.sqlite", echo=False, poolclass=NullPool) pyramid_basemodel.Session = scoped_session(sessionmaker()) register(pyramid_basemodel.Session) pyramid_basemodel.bind_engine(engine, pyramid_basemodel.Session, should_create=True, should_drop=True) def destroy(): transaction.commit() Base.metadata.drop_all(engine) request.addfinalizer(destroy) return pyramid_basemodel.Session @pytest.fixture def db_locales(db_session): # pylint:disable=redefined-outer-name """Add Languages to db_session.""" for locale in ["pl", "cz", "fr"]: locale_object = Language(name=locale, native_name=locale, language_code=locale) db_session.add(locale_object) transaction.commit() @pytest.fixture def request_i18n(): """Create request with i18n subscribers on.""" config = testing.setUp() config.scan("pyramid_localize.subscribers.i18n") request = Request({}) request.registry = config.registry return request @pytest.fixture def request_fake(): """Create request with fake i18n subscribers on.""" config = testing.setUp() config.scan("pyramid_localize.subscribers.fake") request = Request({}) request.registry = config.registry return request
py
1a426c1b8ad7a33016bca5a53e457c469956d160
import os from pypaper import latex_tools as lt test_dir = os.path.dirname(__file__) def test_compile_bibtex(): ffp = test_dir + "/test_data_files/sample.bib" citations = ["Safak:1992ub", "Vesic:1975"] not_cited = ["Rodriguez:2000sr"] bibtex_str = lt.compile_bibtex(citations, ffp) print(bibtex_str) for cite in citations: assert cite in bibtex_str, cite for cite in not_cited: assert cite not in bibtex_str # can not find unlisted_citations = ["Rathje:2017ip"] bibtex_str = lt.compile_bibtex(unlisted_citations, ffp) for cite in unlisted_citations: assert cite not in bibtex_str def test_extract_citations(): ffp = test_dir + "/test_data_files/sample_latex.tex" expected_citations = ['Vesic:1975', 'Chatzigogos:2008uv', 'Safak:1992ub', 'Raychowdhury:2009hw'] citations = lt.extract_citation_keys_from_latex(latex_ffp=ffp) assert len(expected_citations) == len(citations) for ec in expected_citations: assert ec in citations def test_extract_multi_citations(): ffp = test_dir + "/test_data_files/sample_latex_w_eg_and_multiple.tex" expected_citations = ['Vesic:1975', 'Chatzigogos:2008uv', 'Safak:1992ub', 'Raychowdhury:2009hw', "NIST:2013ssi", 'Taylor:1979uc', 'Gajan:2008cs', 'Deng:2012ta'] citations = lt.extract_citation_keys_from_latex(latex_ffp=ffp) print(citations) assert len(expected_citations) == len(citations) for ec in expected_citations: assert ec in citations, ec if __name__ == '__main__': test_extract_multi_citations()
py
1a426cfd99594d665c7f81c98a822893c8a296f0
# coding=utf-8 # Kevin Manfredy Axpuac Juárez - 15006597 # Miguel Angel Lemus Morales - 14003328 # Archivo Principal from help import Help from instructions import Inst from playerVsPlayer import PlayerVsPlayer from playerVsMachine import PlayerVsMachine from machineVsMachine import MachineVsMachine # menu de el juego def menu(): try: while True: print('\n====================================') print('*** Bienvenido al juego CONNECT4 ***') print('====================================') while True: print('(1) INSTRUCCIONES') print('(2) PLAYER vs PLAYER') print('(3) PLAYER vs MACHINE') print('(4) MACHINE vs MACHINE') print('(5) HELP') print('(6) EXIT') try: option = int(input("Ingrese una opcion: ")) if option == 1: Inst() elif option == 2: PlayerVsPlayer() elif option == 3: PlayerVsMachine() elif option == 4: MachineVsMachine() elif option == 5: Help() elif option == 6: print('\nGracias por visitar Connect4 !!! ') print('Saliendo del juego ...') break else: print('\nERROR: Opcion invalida! Solo hay opciones 1, 2, 3, 4, 5 y 6\n') except ValueError: print('\nERROR: Opcion invalida! No ingreso un numero entero\n') break except: print() menu()
py
1a426d9b2d016853dd0e6318b6f91145513d8bc4
import torch import torch.nn as nn import torch.optim as optim import numpy as np import timeit class AlexNet(nn.Module): def __init__(self, num_classes=1000): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x num_classes = 1000 num_batches = 10 batch_size = 120 image_w = 128 image_h = 128 num_repeat = 20 cuda_available = torch.cuda.is_available() print("===================================================") print("Cuda Available : {}".format(cuda_available)) print("===================================================") def train(model): model.train(True) loss_fn = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=0.001) one_hot_indices = torch.LongTensor(batch_size) \ .random_(0, num_classes) \ .view(batch_size, 1) for _ in range(num_batches): # generate random inputs and labels inputs = torch.randn(batch_size, 3, image_w, image_h) labels = torch.zeros(batch_size, num_classes) \ .scatter_(1, one_hot_indices, 1) # run forward pass optimizer.zero_grad() if cuda_available: outputs = model(inputs.to('cuda:0')) else: outputs = model(inputs) # print("Output-device {}".format(outputs.device)) # run backward pass labels = labels.to(outputs.device) loss_fn(outputs, labels).backward() optimizer.step() stmt = "train(model)" setup = None if cuda_available: setup = "model = AlexNet(num_classes=num_classes).to('cuda:0')" else: setup = "model = AlexNet(num_classes=num_classes)" stats = [] for i in range(10): rn_run_times = timeit.repeat(stmt, setup, number=1, repeat=num_repeat, globals=globals()) rn_mean, rn_std = np.mean(rn_run_times), np.std(rn_run_times) stats.append(rn_mean) print("Single Node Training Time:", rn_mean) stats_ar = np.array(stats) mean = stats_ar.mean() print(" Mean Training Time {}".format(mean)) with open('stats_alexnet_s_v1.csv', 'a+') as fp: fp.write(str(mean) + "\n")
py
1a426e0b22dd27319e6bd64563c880a679a1055f
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'ui_splashscreen.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets f="Montserrat ExtraBold" f1="Bahnschrift" class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(600, 400) MainWindow.setMinimumSize(QtCore.QSize(600, 400)) MainWindow.setMaximumSize(QtCore.QSize(600, 400)) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.horizontalLayout = QtWidgets.QHBoxLayout(self.centralwidget) self.horizontalLayout.setObjectName("horizontalLayout") self.Splashscreen = QtWidgets.QFrame(self.centralwidget) self.Splashscreen.setStyleSheet("background-color: rgb(255, 255, 255);\n" "border-radius: 20px;\n" "") self.Splashscreen.setFrameShape(QtWidgets.QFrame.StyledPanel) self.Splashscreen.setFrameShadow(QtWidgets.QFrame.Raised) self.Splashscreen.setObjectName("Splashscreen") self.horizontalLayout_2 = QtWidgets.QHBoxLayout(self.Splashscreen) self.horizontalLayout_2.setContentsMargins(15, 15, 15, 15) self.horizontalLayout_2.setSpacing(0) self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.Title = QtWidgets.QFrame(self.Splashscreen) self.Title.setFrameShape(QtWidgets.QFrame.StyledPanel) self.Title.setFrameShadow(QtWidgets.QFrame.Raised) self.Title.setObjectName("Title") self.verticalLayout = QtWidgets.QVBoxLayout(self.Title) self.verticalLayout.setContentsMargins(8, 0, 0, 8) self.verticalLayout.setSpacing(0) self.verticalLayout.setObjectName("verticalLayout") self.lb_title = QtWidgets.QLabel(self.Title) font = QtGui.QFont() font.setFamily(f) font.setPointSize(18) font.setBold(True) font.setWeight(75) self.lb_title.setFont(font) self.lb_title.setStyleSheet("color: rgb(0, 0, 97);") self.lb_title.setAlignment(QtCore.Qt.AlignBottom|QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft) self.lb_title.setObjectName("lb_title") self.verticalLayout.addWidget(self.lb_title) self.lb_version = QtWidgets.QLabel(self.Title) font = QtGui.QFont() font.setFamily(f) font.setPointSize(12) self.lb_version.setFont(font) self.lb_version.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignTop) self.lb_version.setObjectName("lb_version") self.verticalLayout.addWidget(self.lb_version) self.blank1 = QtWidgets.QFrame(self.Title) self.blank1.setFrameShape(QtWidgets.QFrame.StyledPanel) self.blank1.setFrameShadow(QtWidgets.QFrame.Raised) self.blank1.setObjectName("blank1") self.verticalLayout.addWidget(self.blank1) self.lb_status = QtWidgets.QLabel(self.Title) font = QtGui.QFont() font.setFamily(f) font.setPointSize(12) self.lb_status.setFont(font) self.lb_status.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter) self.lb_status.setObjectName("lb_status") self.verticalLayout.addWidget(self.lb_status) self.blank2 = QtWidgets.QFrame(self.Title) self.blank2.setFrameShape(QtWidgets.QFrame.StyledPanel) self.blank2.setFrameShadow(QtWidgets.QFrame.Raised) self.blank2.setObjectName("blank2") self.verticalLayout.addWidget(self.blank2) self.lb_year = QtWidgets.QLabel(self.Title) font = QtGui.QFont() font.setFamily(f) font.setPointSize(12) self.lb_year.setFont(font) self.lb_year.setAlignment(QtCore.Qt.AlignBottom|QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft) self.lb_year.setObjectName("lb_year") self.verticalLayout.addWidget(self.lb_year) self.logo = QtWidgets.QFrame(self.Title) self.logo.setMaximumSize(QtCore.QSize(16777215, 40)) self.logo.setStyleSheet("border-radius: 0px;\n" "background-image: url(:/Image/Image/SPACE_AC.png);") self.logo.setFrameShape(QtWidgets.QFrame.StyledPanel) self.logo.setFrameShadow(QtWidgets.QFrame.Raised) self.logo.setObjectName("logo") self.verticalLayout.addWidget(self.logo) self.horizontalLayout_2.addWidget(self.Title) self.InfoBar = QtWidgets.QFrame(self.Splashscreen) self.InfoBar.setMinimumSize(QtCore.QSize(320, 0)) self.InfoBar.setMaximumSize(QtCore.QSize(320, 16777215)) self.InfoBar.setStyleSheet("background-image: url(:/Image/Image/SPACE_SPLASH2.png);\n" "border-radius: 12px;") self.InfoBar.setFrameShape(QtWidgets.QFrame.StyledPanel) self.InfoBar.setFrameShadow(QtWidgets.QFrame.Raised) self.InfoBar.setObjectName("InfoBar") self.horizontalLayout_3 = QtWidgets.QHBoxLayout(self.InfoBar) self.horizontalLayout_3.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_3.setSpacing(0) self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.horizontalLayout_2.addWidget(self.InfoBar) self.horizontalLayout.addWidget(self.Splashscreen) MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.lb_title.setText(_translate("MainWindow", "ALIEN SAT GCS")) self.lb_version.setText(_translate("MainWindow", "Ver.0.1.0 (WAREDTANS)")) self.lb_status.setText(_translate("MainWindow", "Scanning all COM Ports...")) self.lb_year.setText(_translate("MainWindow", "2018 - 2021 : SPACE AC")) import ui_splashscreen_resource_rc if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
py
1a426ee69e4ec9ee987aca6269c5845b887b4e3a
from tabulate import tabulate import requests import argparse import pprint import json import os class EnvDefault(argparse.Action): def __init__(self, envvar, required=True, default=None, **kwargs): if not default and envvar: if envvar in os.environ: default = os.environ[envvar] if required and default: required = False super(EnvDefault, self).__init__(default=default, required=required, **kwargs) def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, values) def _parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-pn', '--package-number', type=str, required=True, help='Package number, you may use the PKG environment variable as well', action=EnvDefault, envvar="PKG") parser.add_argument('-ih', '--is-heb', action='store_true', required=False, help='Print in hebrew') parser.add_argument('-pj', '--print-json', action='store_true', required=False, help='Print json instead of table') parser.add_argument('-cf', '--cookie-file', type=str, required=False, default='cookie.json', help='Cookie file') return parser.parse_args() def _get_state_list(item_code, request_key, verification_key, is_heb): url = "https://mypost.israelpost.co.il/umbraco/Surface/ItemTrace/GetItemTrace" payload = f"itemCode={item_code}{'&lcid=1037' if is_heb else ''}&__RequestVerificationToken={request_key}" headers = { 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', 'Cookie': f'__RequestVerificationToken={verification_key};', } response = requests.request("POST", url, headers=headers, data=payload) return json.loads(response.text) def _check_response(response): if response['ReturnCode'] != 0: print(f"Got the following error: {response['ErrorDescription']}") return False else: return True def _print_response(response, print_json): if print_json: pprint.pprint(response) else: print(tabulate(tabular_data=response['Result']['itemcodeinfo']['InfoLines'], headers=response['Result']['itemcodeinfo']['ColumnHeaders'], tablefmt="plain", stralign='right')) if __name__ == "__main__": args = _parse_args() cookie = json.load(open(args.cookie_file)) post_response = _get_state_list(args.package_number, cookie['request_key'], cookie['verification_key'], args.is_heb) if _check_response(post_response): _print_response(post_response, args.print_json) else: print('Failed to get package information')
py
1a426f3ad6c6af137ebb644c9662910d7c883d04
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from .ps_program_builder import * from .public import * __all__ = [ 'PsProgramBuilder', 'GeoPsProgramBuilder', 'CpuSyncPsProgramBuilder', 'CpuAsyncPsProgramBuilder', 'GpuPsProgramBuilder', 'HeterAsyncPsProgramBuilder', 'FlPsProgramBuilder' ] class PsProgramBuilderFactory(object): def __init__(self): pass def _create_ps_program_builder(self, pass_ctx): attrs = pass_ctx._attrs if attrs['ps_mode'] == DistributedMode.GEO: return globals()['GeoPsProgramBuilder'](pass_ctx) elif attrs['use_ps_gpu']: return globals()['GpuPsProgramBuilder'](pass_ctx) elif attrs['is_heter_ps_mode']: return globals()['HeterAsyncPsProgramBuilder'](pass_ctx) elif 'is_fl_ps_mode' in attrs and attrs[ 'is_fl_ps_mode'] == DistributedMode.FL: return globals()['FlPsProgramBuilder'](pass_ctx) else: return globals()['CpuSyncPsProgramBuilder'](pass_ctx)
py
1a426fa85fbb0da0e3f52629b19b56809eaa7ac4
# SPDX-FileCopyrightText: Copyright 2022, Siavash Ameli <[email protected]> # SPDX-License-Identifier: BSD-3-Clause # SPDX-FileType: SOURCE # # This program is free software: you can redistribute it and/or modify it under # the terms of the license found in the LICENSE.txt file in the root directory # of this source tree. __all__ = ['get_data_type_name'] # ================== # get data type name # ================== def get_data_type_name(data): """ Returns the typename of data as string. """ if data.dtype in [b'float32', 'float32']: data_type_name = b'float32' elif data.dtype in [b'float64', 'float64']: data_type_name = b'float64' elif data.dtype in [b'float128', 'float128']: data_type_name = b'float128' elif data.dtype in [b'int32', 'int32']: data_type_name = b'int32' elif data.dtype in [b'int64', 'int64']: data_type_name = b'int64' else: raise TypeError('Data type should be "float32", "float64", ' + '"float128", "int32", or "int64".') return data_type_name
py
1a426fe20555001a0abe38ba2dde3bfaa7b2513d
# import the necessary packages from PIL import Image, ImageOps import pytesseract from pytesseract import Output import argparse import cv2 import os import json def process_list(text: str) -> dict: final = {} items = text.split("\n")[4:][:-1] for item in items: if item == "": continue x = item.split(" ") itemtype = x[1].lower() if itemtype not in final: final[itemtype] = {} final[itemtype][x[0]] = {} return final def process_query(text: str, existing: dict) -> dict: current = ("", "") lines = text.split("\n") for line in lines: if line != "": stuff = line.split(": ") if stuff[0] == "ID": for cat in existing: for item in existing[cat]: if item == stuff[1]: current = (cat, stuff[1]) break if stuff[0] == "LOCATION": cat, id = current if cat == "" or id == "": continue if id not in existing[cat]: print("warning - item found in query, not in list", id) existing[cat][id]["location"] = stuff[1] return existing def print_results(items: dict): for category in items: print(category.upper()) for item in items[category]: print(" ├──" + item) for prop in items[category][item]: print(" ├── {}: {}".format(prop.upper(), items[category][item][prop])) # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("image", help="path to input image to be OCR'd") ap.add_argument("-t", "--type", default="list") ap.add_argument("-d", "--debug", dest="debug", action="store_true", help="whether to save results of ocr to file") ap.add_argument("-p", "--pretty-print", dest="prettyprint", action="store_true", help="whether to print nice data, or produce json") ap.set_defaults(debug=False, prettyprint=False) args = vars(ap.parse_args()) # load the example image and convert it to grayscale image = cv2.imread(args["image"]) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) filename = "{}.png".format(os.getpid()) cv2.imwrite(filename, gray) # load the image as a PIL/Pillow image and apply some basic transformations. img = Image.open(filename) os.remove(filename) img = img.crop((300, 120, 2000, 1300)) img = ImageOps.invert(img) res = {} if args["type"] == "list": res = process_list(pytesseract.image_to_string(img)) f = open("list.json", "w+") f.write(json.dumps(res)) f.close() if args["type"] == "query": f = open("list.json", "r") existing = json.loads(f.read()) res = process_query(pytesseract.image_to_string(img), existing) if args["prettyprint"]: print_results(res) else: print(json.dumps(res, indent=2)) if args["debug"]: img.save(filename) img = cv2.imread(filename) os.remove(filename) d = pytesseract.image_to_data(img, output_type=Output.DICT) n_boxes = len(d['level']) for i in range(n_boxes): (x, y, w, h) = (d['left'][i], d['top'][i], d['width'][i], d['height'][i]) cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 1) cv2.imwrite("f.png", img)
py
1a4270837ff34fdce1154425356ce85caba2fdf3
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile from sparseml.optim import PruningLossSensitivityAnalysis def test_ks_loss_sensitivity_analysis(): test_samples = [ { "id": "165", "name": "input.conv.weight", "index": 0, "sparse_measurements": [ [0.0, [0.0, 0.0]], [0.2, [0.0, 0.0]], [0.4, [0.0, 0.0]], [0.6, [1.4423741959035397e-05, 1.4478888260782696e-05]], [0.7, [0.0003933242114726454, 0.0004009161493740976]], [0.8, [0.002293953439220786, 0.002319519640877843]], [0.85, [0.0038978520315140486, 0.003912879154086113]], [0.9, [0.0024482859298586845, 0.0024934178218245506]], [0.95, [0.0034274826757609844, 0.003474951023235917]], [0.99, [0.01961200125515461, 0.01976676657795906]], ], "averages": { "0.0": 0.0, "0.2": 0.0, "0.4": 0.0, "0.6": 1.4451315109909046e-05, "0.7": 0.0003971201804233715, "0.8": 0.0023067365400493145, "0.85": 0.0039053655928000808, "0.9": 0.0024708518758416176, "0.95": 0.0034512168494984508, "0.99": 0.019689383916556835, }, "sparse_average": 0.321111756313514, "sparse_integral": 0.0010827882658031743, "sparse_comparison": 0.0024708518758416176, }, { "id": "168", "name": "sections.0.0.depth.conv.weight", "index": 1, "sparse_measurements": [ [0.0, [0.0, 0.0]], [0.2, [0.0, 0.0]], [0.4, [0.0, 0.0]], [0.6, [0.001039206050336361, 0.0010454836301505566]], [0.7, [0.0013909710105508566, 0.001424945192411542]], [0.8, [0.005448495503515005, 0.005359217524528503]], [0.85, [0.0024713557213544846, 0.0024402134586125612]], [0.9, [0.002173610497266054, 0.002142299897968769]], [0.95, [0.00811902154237032, 0.008098462596535683]], [0.99, [0.06605849775951356, 0.06613280531018972]], ], "averages": { "0.0": 0.0, "0.2": 0.0, "0.4": 0.0, "0.6": 0.0010423448402434587, "0.7": 0.0014079581014811993, "0.8": 0.005403856514021754, "0.85": 0.002455784589983523, "0.9": 0.0021579551976174116, "0.95": 0.008108742069453001, "0.99": 0.06609565153485164, }, "sparse_average": 0.32383361464238264, "sparse_integral": 0.002619930187938736, "sparse_comparison": 0.0021579551976174116, }, { "id": "171", "name": "sections.0.0.point.conv.weight", "index": 2, "sparse_measurements": [ [0.0, [0.0, 0.0]], [0.2, [0.0, 0.0]], [0.4, [0.0, 0.0]], [0.6, [-9.29515908687506e-10, -1.6410388603560477e-09]], [0.7, [5.841321808475186e-07, 6.879848797325394e-07]], [0.8, [0.00011716883454937488, 0.00011542218999238685]], [0.85, [3.637020199676044e-05, 3.672009552246891e-05]], [0.9, [0.00020571750064846128, 0.0002049835748039186]], [0.95, [0.0002617501886561513, 0.00026932702166959643]], [0.99, [0.0006772654596716166, 0.0006722339312545955]], ], "averages": { "0.0": 0.0, "0.2": 0.0, "0.4": 0.0, "0.6": -1.2852773845217769e-09, "0.7": 6.36058530290029e-07, "0.8": 0.00011629551227088086, "0.85": 3.6545148759614676e-05, "0.9": 0.00020535053772618994, "0.95": 0.00026553860516287386, "0.99": 0.000674749695463106, }, "sparse_average": 0.3195649557136318, "sparse_integral": 4.6324591947619074e-05, "sparse_comparison": 0.00020535053772618994, }, ] analysis = PruningLossSensitivityAnalysis() for test in test_samples: for sparse_measure in test["sparse_measurements"]: for meas in sparse_measure[1]: analysis.add_result( test["id"], test["name"], test["index"], sparse_measure[0], meas, baseline=False, ) comp = analysis.results[-1] assert test["id"] == comp.id_ assert test["name"] == comp.name assert test["index"] == comp.index assert len(test["sparse_measurements"]) == len(comp.sparse_measurements) assert len(test["averages"]) == len(comp.averages) assert abs(test["sparse_average"] - comp.sparse_average) < 1e-5 assert abs(test["sparse_integral"] - comp.sparse_integral) < 1e-5 assert abs(test["sparse_comparison"] - comp.sparse_comparison()) < 1e-5 path = os.path.join(tempfile.gettempdir(), "ks-sens-analysis.json") analysis.save_json(path) json_analysis = analysis.load_json(path) for index, test in enumerate(test_samples): comp = json_analysis.results[index] assert test["id"] == comp.id_ assert test["name"] == comp.name assert test["index"] == comp.index assert len(test["sparse_measurements"]) == len(comp.sparse_measurements) assert len(test["averages"]) == len(comp.averages) assert abs(test["sparse_average"] - comp.sparse_average) < 1e-5 assert abs(test["sparse_integral"] - comp.sparse_integral) < 1e-5 assert abs(test["sparse_comparison"] - comp.sparse_comparison()) < 1e-5 path = os.path.join( tempfile.gettempdir(), "ks-sens-analysis-integral-normalized.png" ) analysis.plot(path, plot_integral=True) assert os.path.exists(path) path = os.path.join( tempfile.gettempdir(), "ks-sens-analysis-integral-normalized.png" ) analysis.plot(path, plot_integral=True) assert os.path.exists(path) path = os.path.join(tempfile.gettempdir(), "ks-sens-analysis-integral.png") analysis.plot(path, plot_integral=True, normalize=False) assert os.path.exists(path) path = os.path.join(tempfile.gettempdir(), "ks-sens-analysis-avg-normalized.png") analysis.plot(path, plot_integral=False) assert os.path.exists(path) path = os.path.join(tempfile.gettempdir(), "ks-sens-analysis-avg.png") analysis.plot(path, plot_integral=False, normalize=False) assert os.path.exists(path)
py
1a4270f4a6fd8effdeac28112bd20509f4273d3a
"""Generate MTurk hits for top images.""" import argparse import pathlib from typing import Sequence from src import milannotations from src.mturk import hits from src.utils.typing import Layer parser = argparse.ArgumentParser(description='generate mturk hits') parser.add_argument('dataset', help='name of top images dataset') parser.add_argument('hits_csv_file', type=pathlib.Path, help='output csv file') parser.add_argument( '--dataset-path', type=pathlib.Path, help='directory containing dataset (default: .zoo/datasets/<dataset>)') parser.add_argument( '--limit', type=int, help='only generate hits for this many units (default: None)') parser.add_argument('--host-url', default='https://unitname.csail.mit.edu/dissect', help='host url for top images (default: csail url)') parser.add_argument('--no-validate-urls', action='store_true', help='do not validate urls') parser.add_argument('--no-display-progress', action='store_true', help='do not show progress bar') args = parser.parse_args() dataset = milannotations.load(args.dataset, path=args.dataset_path, display_progress=not args.no_display_progress) if not isinstance(dataset, milannotations.TopImagesDataset): raise ValueError(f'bad dataset type: {type(dataset).__name__}') base_url = f'{args.host_url.strip("/")}/{args.dataset}' def generate_urls(layer: Layer, unit: int, k: int) -> Sequence[str]: """Generate top image URLs.""" return [ f'{base_url}/{layer}/unit_{unit}/image_{index}.png' for index in range(k) ] args.hits_csv_file.parent.mkdir(parents=True, exist_ok=True) hits.generate_hits_csv(dataset, args.hits_csv_file, generate_urls, limit=args.limit, validate_urls=not args.no_validate_urls, display_progress=not args.no_display_progress)
py
1a42715dc11314a0188dedfaf2ecd0fe982217ef
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid import Program, program_guard from op_test import OpTest paddle.enable_static() class TestMaxMinAPI(unittest.TestCase): def setUp(self): self.init_case() self.cal_np_out_and_gradient() self.place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda( ) else fluid.CPUPlace() def init_case(self): self.x_np = np.array([[0.2, 0.3, 0.5, 0.9], [0.1, 0.2, 0.6, 0.7]]) self.shape = [2, 4] self.dtype = 'float64' self.axis = None self.keepdim = False # If there are multiple minimum or maximum elements, max/min/ is non-derivable, # its gradient check is not supported by unittest framework, # thus we calculate the gradient by numpy function. def cal_np_out_and_gradient(self): def _cal_np_out_and_gradient(func): if func is 'max': out = np.max(self.x_np, axis=self.axis, keepdims=self.keepdim) elif func is 'min': out = np.min(self.x_np, axis=self.axis, keepdims=self.keepdim) else: print('This unittest only test max/min, but now is', func) self.np_out[func] = out grad = np.zeros(self.shape) out_b = np.broadcast_to(out, self.shape) grad[self.x_np == out_b] = 1 self.np_grad[func] = grad self.np_out = dict() self.np_grad = dict() _cal_np_out_and_gradient('max') _cal_np_out_and_gradient('min') def _choose_paddle_func(self, func, x): if func is 'max': out = paddle.max(x, self.axis, self.keepdim) elif func is 'min': out = paddle.min(x, self.axis, self.keepdim) else: print('This unittest only test max/min, but now is', func) return out # We check the output between paddle API and numpy in static graph. def test_static_graph(self): def _test_static_graph(func): startup_program = fluid.Program() train_program = fluid.Program() with fluid.program_guard(startup_program, train_program): x = fluid.data(name='input', dtype=self.dtype, shape=self.shape) x.stop_gradient = False out = self._choose_paddle_func(func, x) exe = fluid.Executor(self.place) res = exe.run(fluid.default_main_program(), feed={'input': self.x_np}, fetch_list=[out]) self.assertTrue((np.array(res[0]) == self.np_out[func]).all()) _test_static_graph('max') _test_static_graph('min') # As dygraph is easy to compute gradient, we check the gradient between # paddle API and numpy in dygraph. def test_dygraph(self): def _test_dygraph(func): paddle.disable_static() x = paddle.to_tensor( self.x_np, dtype=self.dtype, stop_gradient=False) out = self._choose_paddle_func(func, x) grad_tensor = paddle.ones_like(x) paddle.autograd.backward([out], [grad_tensor], True) self.assertEqual(np.allclose(self.np_out[func], out.numpy()), True) self.assertEqual(np.allclose(self.np_grad[func], x.grad), True) paddle.enable_static() _test_dygraph('max') _test_dygraph('min') # test multiple minimum or maximum elements class TestMaxMinAPI2(TestMaxMinAPI): def init_case(self): self.x_np = np.array([[0.2, 0.3, 0.9, 0.9], [0.1, 0.1, 0.6, 0.7]]) self.shape = [2, 4] self.dtype = 'float64' self.axis = None self.keepdim = False # test different axis class TestMaxMinAPI3(TestMaxMinAPI): def init_case(self): self.x_np = np.array([[0.2, 0.3, 0.9, 0.9], [0.1, 0.1, 0.6, 0.7]]) self.shape = [2, 4] self.dtype = 'float64' self.axis = 0 self.keepdim = False # test keepdim = True class TestMaxMinAPI4(TestMaxMinAPI): def init_case(self): self.x_np = np.array([[0.2, 0.3, 0.9, 0.9], [0.1, 0.1, 0.6, 0.7]]) self.shape = [2, 4] self.dtype = 'float64' self.axis = 1 self.keepdim = True # test axis is tuple class TestMaxMinAPI5(TestMaxMinAPI): def init_case(self): self.x_np = np.array( [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]).astype(np.int32) self.shape = [2, 2, 2] self.dtype = 'int32' self.axis = (0, 1) self.keepdim = False
py
1a4271d95298d8e84c60d04cfb346c664e98444a
<<<<<<< HEAD # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional tests for reduction ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import numbers import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test # The maximum input rank to test. _MAX_RANK = 5 def _powerset(iterable): """Helper for generating all possible reduction_axes arguments. Example: powerset([0,1,2]): () (0,) (1,) (2,) (0,1) (0,2) (1,2) (0,1,2) Args: iterable: An iterable of items to generate the powerset of. Returns: The powerset of all items in iterable. """ s = list(iterable) return itertools.chain.from_iterable( itertools.combinations(s, r) for r in range(len(s) + 1)) class ReducedShapeTest(test.TestCase): def _check(self, shape, axes, result): output = math_ops.reduced_shape(shape, axes=axes) self.assertAllEqual(output.eval(), result) @test_util.run_deprecated_v1 def testSimple(self): with self.cached_session(): self._check([3], [], [3]) self._check([3], [0], [1]) self._check([5, 3], [], [5, 3]) self._check([5, 3], [0], [1, 3]) self._check([5, 3], [1], [5, 1]) self._check([5, 3], [0, 1], [1, 1]) @test_util.run_deprecated_v1 def testZeros(self): """Check that reduced_shape does the right thing with zero dimensions.""" with self.cached_session(): self._check([0], [], [0]) self._check([0], [0], [1]) self._check([0, 3], [], [0, 3]) self._check([0, 3], [0], [1, 3]) self._check([0, 3], [1], [0, 1]) self._check([0, 3], [0, 1], [1, 1]) self._check([3, 0], [], [3, 0]) self._check([3, 0], [0], [1, 0]) self._check([3, 0], [1], [3, 1]) self._check([3, 0], [0, 1], [1, 1]) @test_util.run_deprecated_v1 def testNegAxes(self): with self.cached_session(): self._check([10, 10, 10], [-1], [10, 10, 1]) self._check([10, 10, 10], [-1, 2], [10, 10, 1]) self._check([10, 10, 10], [-1, -1], [10, 10, 1]) self._check([10, 10, 10], [-1, 0], [1, 10, 1]) self._check([10, 10, 10], [-3], [1, 10, 10]) class ReductionUnknownShape(test.TestCase): @test_util.run_deprecated_v1 def testBasic(self): with self.cached_session(): for dtype, reductions in [(dtypes.float32, (math_ops.reduce_sum, math_ops.reduce_mean, math_ops.reduce_prod, math_ops.reduce_max, math_ops.reduce_min, math_ops.reduce_euclidean_norm)), (dtypes.bool, (math_ops.reduce_all, math_ops.reduce_any))]: for reduction in reductions: x = array_ops.placeholder( dtype=dtype, shape=None) # Some tensor w/ unknown shape. y = reduction(x) self.assertEqual(y.shape, ()) class BaseReductionTest(test.TestCase): def _tf_reduce(self, x, reduction_axes, keepdims): raise NotImplementedError() def _np_reduce(self, x, reduction_axes, keepdims): raise NotImplementedError() def _makeIncremental(self, shape, dtype): data = np.arange(np.prod(shape)).reshape(shape).astype(dtype.as_numpy_dtype) if dtype.is_complex: data -= 2j * data return data def _makeRandom(self, shape, dtype): data = np.random.rand(*shape).astype(dtype.as_numpy_dtype) if dtype.is_complex: data -= 2j * data return data def _compare(self, x, reduction_axes, keepdims, feed_dict=None): np_ans = self._np_reduce(x, reduction_axes, keepdims) with self.cached_session(use_gpu=True) as sess: tf_ans = self._tf_reduce(x, reduction_axes, keepdims) out = sess.run(tf_ans, feed_dict) self.assertAllClose(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes, feed_dict=None): if reduction_axes is not None and np.shape(reduction_axes) == (1,): # Test scalar reduction_axes argument self._compareAll(x, reduction_axes[0]) self._compare(x, reduction_axes, keepdims=False, feed_dict=feed_dict) self._compare(x, reduction_axes, keepdims=True, feed_dict=feed_dict) def _compareAllAxes(self, x, feed_dict=None): self._compareAll(x, None) for axes in _powerset(range(x.ndim)): self._compareAll(x, axes, feed_dict) def _compareGradient(self, x, reduction_axes, rtol=1e-8, atol=1e-8): if reduction_axes is not None and np.shape(reduction_axes) == (1,): # Test scalar reduction_axes argument self._compareGradient(x, reduction_axes[0], rtol=rtol, atol=atol) with self.cached_session(use_gpu=True): t = ops.convert_to_tensor(x) su = self._tf_reduce(t, reduction_axes, False) jacob_t, jacob_n = gradient_checker.compute_gradient( t, x.shape, su, su.get_shape().as_list(), x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=rtol, atol=atol) def _compareGradientAxes(self, x, rtol=1e-8, atol=1e-8): self._compareGradient(x, None, rtol=rtol, atol=atol) self._compareGradient(x, [], rtol=rtol, atol=atol) self._compareGradient(x, 0, rtol=rtol, atol=atol) self._compareGradient(x, [1], rtol=rtol, atol=atol) self._compareGradient(x, [2], rtol=rtol, atol=atol) self._compareGradient(x, [1, 2], rtol=rtol, atol=atol) self._compareGradient(x, [0, 1, 2, 3], rtol=rtol, atol=atol) class SumReductionTest(BaseReductionTest): def _tf_reduce(self, x, reduction_axes, keepdims): return math_ops.reduce_sum(x, reduction_axes, keepdims) def _np_reduce(self, x, reduction_axes, keepdims): if isinstance(reduction_axes, list) or isinstance(reduction_axes, np.ndarray): reduction_axes = tuple(reduction_axes) return np.sum(x, axis=reduction_axes, keepdims=keepdims) def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.cached_session(use_gpu=True) as sess: v = math_ops.reduce_sum([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, 0) @test_util.run_deprecated_v1 def testInfinity(self): for dtype in [np.float32, np.float64]: for special_value_x in [-np.inf, np.inf]: for special_value_y in [-np.inf, np.inf]: np_arr = np.array([special_value_x, special_value_y]).astype(dtype) self._compareAll(np_arr, None) @test_util.run_deprecated_v1 def testInt32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.int32) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testFloat16(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float16) self._compareAllAxes(np_arr) # test that mean doesn't overflow # only on GPU, since it has the more accurate implementation if not test.is_gpu_available(): return arr = np.ones([68000], dtype=np.float16) with self.session(graph=ops.Graph(), use_gpu=True) as sess: tf_arr = variables.Variable(arr) variables.global_variables_initializer().run() tf_mean = math_ops.reduce_mean(tf_arr, 0, False) tf_out_mean = self.evaluate(tf_mean) self.assertAllClose(tf_out_mean, 1.) @test_util.run_deprecated_v1 def testFloat32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float32) self._compareAllAxes(np_arr) for _ in range(10): size_x = int(2**np.random.uniform(0, 15)) size_y = int(2**np.random.uniform(0, 15)) if size_x * size_y > 1e7: size_y = int(1e7 / size_x) arr = np.ones([size_x, size_y], dtype=np.float32) col_sum = np.sum(arr, axis=0) row_sum = np.sum(arr, axis=1) with self.session(graph=ops.Graph(), use_gpu=True) as sess: tf_row_sum = self._tf_reduce(arr, 1, False) tf_col_sum = self._tf_reduce(arr, 0, False) tf_out_row, tf_out_col = self.evaluate([tf_row_sum, tf_col_sum]) self.assertAllClose(col_sum, tf_out_col) self.assertAllClose(row_sum, tf_out_row) for size_x in [1, 3, 16, 33]: for size_y in [1, 3, 16, 33]: for size_z in [1, 3, 16, 33]: arr = np.ones([size_x, size_y, size_z], dtype=np.float32) sum_y = np.sum(arr, axis=1) sum_xz = np.sum(arr, axis=(0, 2)) with self.session(graph=ops.Graph(), use_gpu=True) as sess: tf_sum_xz = self._tf_reduce(arr, [0, 2], False) tf_sum_y = self._tf_reduce(arr, 1, False) tf_out_sum_xz, tf_out_sum_y = self.evaluate([tf_sum_xz, tf_sum_y]) self.assertAllClose(sum_y, tf_out_sum_y) self.assertAllClose(sum_xz, tf_out_sum_xz) @test_util.run_deprecated_v1 def testFloat64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex128(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex128) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testInvalidIndex(self): np_arr = np.arange(0, 10).reshape([2, 5]).astype(np.float32) input_tensor = ops.convert_to_tensor(np_arr) with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Invalid reduction dimension" in str(e)): math_ops.reduce_sum(input_tensor, [-3]) with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Invalid reduction dimension" in str(e)): math_ops.reduce_sum(input_tensor, [2]) with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Invalid reduction dimension" in str(e)): math_ops.reduce_sum(input_tensor, [0, 2]) @test_util.run_deprecated_v1 def testPartialShapes(self): np.random.seed(1618) # Input shape is unknown. reduction_axes = [1, 2] c_unknown = array_ops.placeholder(dtypes.float32) s_unknown = math_ops.reduce_sum(c_unknown, reduction_axes) self.assertEqual(tensor_shape.unknown_shape(), s_unknown.get_shape()) np_input = np.random.randn(3, 3, 3) self._compareAll(np_input, reduction_axes, {c_unknown: np_input}) # Input shape only has known rank. c_known_rank = array_ops.placeholder(dtypes.float32) c_known_rank.set_shape(tensor_shape.unknown_shape(rank=3)) s_known_rank = math_ops.reduce_sum( c_known_rank, reduction_axes, keepdims=True) self.assertEqual(3, s_known_rank.get_shape().rank) np_input = np.random.randn(3, 3, 3) self._compareAll(np_input, reduction_axes, {c_known_rank: np_input}) # Reduction indices are unknown. unknown_indices = array_ops.placeholder(dtypes.int32) c_unknown_indices = constant_op.constant([[10.0], [20.0]]) s_unknown_indices = math_ops.reduce_sum( c_unknown_indices, unknown_indices, keepdims=False) self.assertEqual(tensor_shape.unknown_shape(), s_unknown_indices.get_shape()) s_unknown_indices_keep = math_ops.reduce_sum( c_unknown_indices, unknown_indices, keepdims=True) self.assertEqual(2, s_unknown_indices_keep.get_shape().rank) @test_util.run_deprecated_v1 def testWrongShapeForReductionIndices(self): reduction_axes = [[1], [2]] c_unknown = array_ops.placeholder(dtypes.float32) with self.assertRaisesWithPredicateMatch(ValueError, ".*must be at most rank 1.*"): math_ops.reduce_sum(c_unknown, reduction_axes) # Int64?? @test_util.run_deprecated_v1 def testGradient(self): for dtype in [ dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128 ]: x = self._makeIncremental([2, 3, 4, 2], dtype) self._compareGradientAxes(x) @test_util.run_deprecated_v1 def testHighRank(self): # Do a bunch of random high dimensional reductions np.random.seed(42) for _ in range(20): rank = np.random.randint(4, 10 + 1) axes, = np.nonzero(np.random.randint(2, size=rank)) shape = tuple(np.random.randint(1, 3 + 1, size=rank)) data = np.random.randint(1024, size=shape) self._compareAll(data, axes) # Check some particular axis patterns for rank in 4, 7, 10: shape = tuple(np.random.randint(1, 3 + 1, size=rank)) data = np.random.randint(1024, size=shape) for axes in ([], np.arange(rank), np.arange(0, rank, 2), np.arange(1, rank, 2)): self._compareAll(data, axes) @test_util.run_deprecated_v1 def testExpand(self): # Reduce an empty tensor to a nonempty tensor x = np.zeros((5, 0)) self._compareAll(x, [1]) @test_util.run_deprecated_v1 def testEmptyGradients(self): with self.session(use_gpu=True): x = array_ops.zeros([0, 3]) y = math_ops.reduce_sum(x, [1]) error = gradient_checker.compute_gradient_error(x, [0, 3], y, [0]) self.assertEqual(error, 0) @test_util.run_deprecated_v1 def testDegenerate(self): with self.session(use_gpu=True): for dtype in (dtypes.float16, dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128): # A large number is needed to get Eigen to die x = array_ops.zeros((0, 9938), dtype=dtype) y = math_ops.reduce_sum(x, [0]) self.assertAllEqual(y.eval(), np.zeros(9938)) class MeanReductionTest(BaseReductionTest): def _tf_reduce(self, x, reduction_axes, keepdims): return math_ops.reduce_mean(x, reduction_axes, keepdims) def _np_reduce(self, x, reduction_axes, keepdims): if isinstance(reduction_axes, list) or isinstance(reduction_axes, np.ndarray): reduction_axes = tuple(reduction_axes) elif isinstance(reduction_axes, numbers.Integral): reduction_axes = (reduction_axes,) if reduction_axes is None: count = np.prod(x.shape) else: count = np.prod([x.shape[ax] for ax in reduction_axes]) # np.mean automatically converts integer inputs to float, while TensorFlow's # reduce_mean does not. For integer inputs, we emulate TensorFlow's behavior # using np.sum and truncating division. np_sum = np.sum(x, axis=reduction_axes, keepdims=keepdims) if np.issubdtype(x.dtype, np.integer): return np_sum // count return np_sum / count def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.cached_session(use_gpu=True) as sess: v = math_ops.reduce_mean([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, 0) @test_util.run_deprecated_v1 def testInfinity(self): for dtype in [np.float32, np.float64]: for special_value_x in [-np.inf, np.inf]: for special_value_y in [-np.inf, np.inf]: np_arr = np.array([special_value_x, special_value_y]).astype(dtype) self._compareAll(np_arr, None) @test_util.run_deprecated_v1 def testInt32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.int32) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testUint8(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeRandom((2,) * rank, dtypes.uint8) self._compareAllAxes(np_arr) # This tests the issue reported in b/145030710. @test_util.run_deprecated_v1 def testSizeOverflowUint8(self): np_arr = self._makeRandom((2**8,), dtypes.uint8) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testSizeOverflowInt8(self): np_arr = self._makeRandom((2**7,), dtypes.int8) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testSizeOverflowUint16(self): np_arr = self._makeRandom((2**16,), dtypes.uint16) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testSizeOverflowInt16(self): np_arr = self._makeRandom((2**15,), dtypes.int16) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testFloat32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float32) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testFloat64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex128(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex128) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testGradient(self): s = [2, 3, 4, 2] for dtype in [dtypes.float32, dtypes.float64]: x = self._makeIncremental(s, dtype) self._compareGradientAxes(x, rtol=1e-3, atol=1e-3) @test_util.run_deprecated_v1 def testEmptyGradients(self): with self.session(use_gpu=True): x = array_ops.zeros([0, 3]) y = math_ops.reduce_mean(x, [1]) error = gradient_checker.compute_gradient_error(x, [0, 3], y, [0]) self.assertEqual(error, 0) @test_util.run_deprecated_v1 def testDegenerate(self): with self.session(use_gpu=True): for dtype in (dtypes.float16, dtypes.float32, dtypes.float64): # A large number is needed to get Eigen to die x = array_ops.zeros((0, 9938), dtype=dtype) y = math_ops.reduce_mean(x, [0]).eval() self.assertEqual(y.shape, (9938,)) self.assertTrue(np.all(np.isnan(y))) class EuclideanNormReductionTest(BaseReductionTest): def _tf_reduce(self, x, reduction_axes, keepdims): return math_ops.reduce_euclidean_norm(x, reduction_axes, keepdims) def _np_reduce(self, x, reduction_axes, keepdims): if isinstance(reduction_axes, list) or isinstance(reduction_axes, np.ndarray): reduction_axes = tuple(reduction_axes) np_fro = np.sqrt( np.sum(x * np.conj(x), axis=reduction_axes, keepdims=keepdims)) if np.issubdtype(x.dtype, np.integer): np_fro = np.floor(np_fro) return np_fro @test_util.run_deprecated_v1 def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.cached_session(use_gpu=True): v = math_ops.reduce_mean([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, 0) @test_util.run_deprecated_v1 def testInfinity(self): for dtype in [np.float32, np.float64]: for special_value_x in [-np.inf, np.inf]: for special_value_y in [-np.inf, np.inf]: np_arr = np.array([special_value_x, special_value_y]).astype(dtype) self._compareAll(np_arr, None) @test_util.run_deprecated_v1 def testSingleton(self): for dtype in [np.float32, np.float64]: np_arr = np.array([-1.]).astype(dtype) self._compareAll(np_arr, None) @test_util.run_deprecated_v1 def testInt32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.int32) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testFloat32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float32) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testFloat64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex128(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex128) self._compareAllAxes(np_arr) with self.session(use_gpu=True): for dtype in (dtypes.float16, dtypes.float32, dtypes.float64): # A large number is needed to get Eigen to die x = array_ops.zeros((0, 9938), dtype=dtype) y = math_ops.reduce_euclidean_norm(x, [0]).eval() self.assertEqual(y.shape, (9938,)) self.assertAllEqual(y, np.zeros(9938)) @test_util.run_deprecated_v1 def testGradient(self): shape = [2, 3, 4, 2] for dtype in [dtypes.float32, dtypes.float64]: # zero value entry will result NaN gradient if reduction doesn't happen. # e.g., `tf.math.reduce_sum([0, 1], axis=[])` so add one to avoid it. x = self._makeIncremental(shape, dtype) + 1.0 self._compareGradientAxes(x, rtol=1e-2, atol=1e-2) class ProdReductionTest(BaseReductionTest): def _tf_reduce(self, x, reduction_axes, keepdims): return math_ops.reduce_prod(x, reduction_axes, keepdims) def _np_reduce(self, x, reduction_axes, keepdims): if isinstance(reduction_axes, list) or isinstance(reduction_axes, np.ndarray): reduction_axes = tuple(reduction_axes) return np.prod(x, axis=reduction_axes, keepdims=keepdims) def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.cached_session(use_gpu=True) as sess: v = math_ops.reduce_prod([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, 0) @test_util.run_deprecated_v1 def testInfinity(self): for dtype in [np.float32, np.float64]: for special_value_x in [-np.inf, np.inf]: for special_value_y in [-np.inf, np.inf]: np_arr = np.array([special_value_x, special_value_y]).astype(dtype) self._compareAll(np_arr, None) @test_util.run_deprecated_v1 def testInt32(self): # Numpy automatically upgrades the type of np.prod from int32 to int64, so # Numpy does not overflow an int32 np.prod while TensorFlow does. To avoid # overflow, divide the incremental int32 array by 2. for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.int32) / 2 self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testFloat32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float32) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testFloat64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex128(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex128) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testGradientWithZeros(self): s = [2, 3, 4, 2] x = self._makeIncremental(s, dtypes.float32) / 20. # No zeros in input self._compareGradientAxes(x, rtol=1e-3, atol=1e-3) # Zero at beginning x1 = x.copy() x1[:, :, 0, :] = 0 self._compareGradientAxes(x1, rtol=1e-3, atol=1e-3) # Zero at end x2 = x.copy() x2[:, :, -1, :] = 0 self._compareGradientAxes(x2, rtol=1e-3, atol=1e-3) # Zero in middle x3 = x.copy() x3[:, :, 2, :] = 0 self._compareGradientAxes(x3, rtol=1e-3, atol=1e-3) # All zeros x4 = x.copy() x4[:, :, :, :] = 0 self._compareGradientAxes(x4, rtol=1e-3, atol=1e-3) @test_util.run_deprecated_v1 def testEmptyGradients(self): with self.session(use_gpu=True): x = array_ops.zeros([0, 3]) y = math_ops.reduce_prod(x, [1]) error = gradient_checker.compute_gradient_error(x, [0, 3], y, [0]) self.assertEqual(error, 0) @test_util.run_deprecated_v1 def testDegenerate(self): with self.session(use_gpu=True): for dtype in (dtypes.float16, dtypes.float32, dtypes.float64): # A large number is needed to get Eigen to die x = array_ops.zeros((0, 9938), dtype=dtype) y = math_ops.reduce_prod(x, [0]) self.assertAllEqual(y.eval(), np.ones(9938)) class MinReductionTest(test.TestCase): def _compare(self, x, reduction_axes, keepdims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.amin(np_ans, keepdims=keepdims) else: for ra in reduction_axes[::-1]: np_ans = np.amin(np_ans, axis=ra, keepdims=keepdims) with self.cached_session(use_gpu=use_gpu): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = math_ops.reduce_min(x, reduction_axes, keepdims) out = self.evaluate(tf_ans) ======= """Functional tests for reduction ops.""" import tensorflow.python.platform import numpy as np import tensorflow as tf from tensorflow.python.framework import tensor_shape from tensorflow.python.kernel_tests import gradient_checker class SumReductionTest(tf.test.TestCase): def _compare(self, x, reduction_axes, keep_dims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.sum(np_ans, keepdims=keep_dims) else: reduction_axes = np.array(reduction_axes).astype(np.int32) for ra in reduction_axes.ravel()[::-1]: np_ans = np.sum(np_ans, axis=ra, keepdims=keep_dims) with self.test_session(use_gpu=use_gpu): tf_ans = tf.reduce_sum(x, reduction_axes, keep_dims) out = tf_ans.eval() self.assertAllClose(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes): if reduction_axes is not None and np.shape(reduction_axes) == (1,): # Test scalar reduction_axes argument self._compareAll(x, reduction_axes[0]) self._compare(x, reduction_axes, False, use_gpu=True) self._compare(x, reduction_axes, False, use_gpu=False) self._compare(x, reduction_axes, True, use_gpu=True) self._compare(x, reduction_axes, True, use_gpu=False) def testFloatReduce1D(self): # Create a 1D array of floats np_arr = np.arange(1, 6).reshape([5]).astype(np.float32) self._compareAll(np_arr, [0]) def testFloatReduce2D(self): # Create a 2D array of floats and reduce across all possible # dimensions np_arr = np.arange(0, 10).reshape([2, 5]).astype(np.float32) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [0, 1]) def testFloatReduce3D(self): # Create a 3D array of floats and reduce across all possible # dimensions np_arr = np.arange(0, 30).reshape([2, 3, 5]).astype(np.float32) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testFloatReduce4D(self): # Create a 4D array of floats and reduce across some # dimensions np_arr = np.arange(0, 210).reshape([2, 3, 5, 7]).astype(np.float32) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) # Need specialization for reduce(4D, [0, 2]) # self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) self._compareAll(np_arr, [1, 2, 3]) self._compareAll(np_arr, [0, 1, 2, 3]) def testFloatReduce5D(self): # Create a 5D array of floats and reduce across some dimensions np_arr = np.arange(0, 840).reshape([2, 3, 5, 7, 4]).astype(np.float32) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) # Need specialization for reduce(4D, [0, 2]) # self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) self._compareAll(np_arr, [1, 2, 3]) self._compareAll(np_arr, [0, 1, 2, 3]) self._compareAll(np_arr, [1, 2, 3, 4]) self._compareAll(np_arr, [0, 1, 2, 3, 4]) # Simple tests for various tf. def testDoubleReduce1D(self): np_arr = np.arange(1, 6).reshape([5]).astype(np.float64) self._compare(np_arr, [], False) self._compare(np_arr, [0], False) def testInt32Reduce1D(self): np_arr = np.arange(1, 6).reshape([5]).astype(np.int32) self._compare(np_arr, [], False) self._compare(np_arr, [0], False) def testInvalidIndex(self): np_arr = np.arange(0, 10).reshape([2, 5]).astype(np.float32) input_tensor = tf.convert_to_tensor(np_arr) with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Invalid reduction dimension" in e.message): tf.reduce_sum(input_tensor, [-1]) with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Invalid reduction dimension" in e.message): tf.reduce_sum(input_tensor, [2]) with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Invalid reduction dimension" in e.message): tf.reduce_sum(input_tensor, [0, 2]) # Int64?? def _compareGradient(self, shape, sum_shape, reduction_axes): if reduction_axes is not None and np.shape(reduction_axes) == (1,): # Test scalar reduction_axes argument self._compareGradient(shape, sum_shape, reduction_axes[0]) x = np.arange(1.0, 49.0).reshape(shape).astype(np.float64) with self.test_session(): t = tf.convert_to_tensor(x) su = tf.reduce_sum(t, reduction_axes) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, shape, su, sum_shape, x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) def testGradient(self): self._compareGradient([2, 3, 4, 2], [2, 2], [1, 2]) def testGradient2(self): self._compareGradient([2, 3, 4, 2], [2, 4, 2], [1]) def testGradient3(self): self._compareGradient([2, 3, 4, 2], [2, 3, 2], [2]) def testGradient4(self): self._compareGradient([2, 3, 4, 2], [], None) class MeanReductionTest(tf.test.TestCase): def _compare(self, x, reduction_axes, keep_dims): np_sum = x count = 1 for ra in reduction_axes[::-1]: np_sum = np.sum(np_sum, axis=ra, keepdims=keep_dims) count *= x.shape[ra] np_ans = np_sum / count with self.test_session(): reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = tf.reduce_mean(x, reduction_axes, keep_dims) out = tf_ans.eval() self.assertAllClose(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes): self._compare(x, reduction_axes, False) self._compare(x, reduction_axes, True) def testFloatReduce3D(self): # Create a 3D array of floats and reduce across all possible # dimensions np_arr = np.arange(0, 30).reshape([2, 3, 5]).astype(np.float32) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testGradient(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float32) with self.test_session(): t = tf.convert_to_tensor(x) su = tf.reduce_mean(t, [1, 2]) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, s, su, [2, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) su = tf.reduce_mean(t, [0, 1, 2, 3]) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, s, su, [1], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) su = tf.reduce_mean(t, []) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, s, su, [2, 3, 4, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) class ProdReductionTest(tf.test.TestCase): def _compare(self, x, reduction_axes, keep_dims): np_ans = x if reduction_axes is None: np_ans = np.prod(np_ans, keepdims=keep_dims) else: for ra in reduction_axes[::-1]: np_ans = np.prod(np_ans, axis=ra, keepdims=keep_dims) with self.test_session(): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = tf.reduce_prod(x, reduction_axes, keep_dims) out = tf_ans.eval() >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. self.assertAllClose(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes): <<<<<<< HEAD self._compare(x, reduction_axes, False, use_gpu=True) self._compare(x, reduction_axes, False, use_gpu=False) self._compare(x, reduction_axes, True, use_gpu=True) self._compare(x, reduction_axes, True, use_gpu=False) def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.cached_session(use_gpu=True) as sess: v = math_ops.reduce_min([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, 0) @test_util.run_deprecated_v1 def testInfinity(self): for dtype in [np.float32, np.float64]: for special_value_x in [-np.inf, np.inf]: for special_value_y in [-np.inf, np.inf]: np_arr = np.array([special_value_x, special_value_y]).astype(dtype) self._compareAll(np_arr, None) ======= self._compare(x, reduction_axes, False) self._compare(x, reduction_axes, True) >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. def testFloatReduce3D(self): # Create a 3D array of floats and reduce across all possible # dimensions <<<<<<< HEAD np_arr = np.arange(1, 31).reshape([2, 3, 5]).astype(np.float32) ======= np_arr = np.arange(0, 30).reshape([2, 3, 5]).astype(np.float32) >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) <<<<<<< HEAD def testDoubleReduce3D(self): # Create a 3D array of doubles and reduce across all possible # dimensions np_arr = np.arange(1, 31).reshape([2, 3, 5]).astype(np.float64) self._compareAll(np_arr, None) ======= def testGradient(self): s = [2, 3, 4, 2] # NOTE(kearnes): divide by 20 so product is a reasonable size x = np.arange(1.0, 49.0).reshape(s).astype(np.float32) / 20. with self.test_session(): t = tf.convert_to_tensor(x) su = tf.reduce_prod(t, []) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, s, su, [2, 3, 4, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) su = tf.reduce_prod(t, [1, 2]) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, s, su, [2, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) su = tf.reduce_prod(t, [0, 1, 2, 3]) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, s, su, [1], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) # NOTE(kearnes): the current gradient calculation gives NaNs for 0 inputs x = np.arange(0.0, 48.0).reshape(s).astype(np.float32) / 20. with self.test_session(): t = tf.convert_to_tensor(x) su = tf.reduce_prod(t, []) jacob_t, _ = gradient_checker.ComputeGradient( t, s, su, [2, 3, 4, 2], x_init_value=x, delta=1) with self.assertRaisesOpError("Tensor had NaN values"): tf.check_numerics(jacob_t, message="_ProdGrad NaN test").op.run() class MinReductionTest(tf.test.TestCase): def _compare(self, x, reduction_axes, keep_dims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.amin(np_ans, keepdims=keep_dims) else: for ra in reduction_axes[::-1]: np_ans = np.amin(np_ans, axis=ra, keepdims=keep_dims) with self.test_session(use_gpu=use_gpu): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = tf.reduce_min(x, reduction_axes, keep_dims) out = tf_ans.eval() self.assertAllClose(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes): self._compare(x, reduction_axes, False, use_gpu=True) self._compare(x, reduction_axes, False, use_gpu=False) self._compare(x, reduction_axes, True, use_gpu=True) self._compare(x, reduction_axes, True, use_gpu=False) def testFloatReduce3D(self): # Create a 3D array of floats and reduce across all possible # dimensions np_arr = np.arange(0, 30).reshape([2, 3, 5]).astype(np.float32) >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) <<<<<<< HEAD @test_util.run_deprecated_v1 def testGradient(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_min(t, [1, 2]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testGradient2(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_min(t, [1]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 4, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testGradient3(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_min(t, [2]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 3, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testGradient4(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_min(t) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [1], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testEmptyGradients(self): with self.cached_session(): x = array_ops.zeros([0, 3]) y = math_ops.reduce_min(x, [1]) error = gradient_checker.compute_gradient_error(x, [0, 3], y, [0]) self.assertEqual(error, 0) class MaxReductionTest(test.TestCase): def _compare(self, x, reduction_axes, keepdims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.amax(np_ans, keepdims=keepdims) else: for ra in reduction_axes[::-1]: np_ans = np.amax(np_ans, axis=ra, keepdims=keepdims) with self.cached_session(use_gpu=use_gpu): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = math_ops.reduce_max(x, reduction_axes, keepdims) out = self.evaluate(tf_ans) ======= def testGradient(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.test_session(): t = tf.convert_to_tensor(x) su = tf.reduce_min(t, [1, 2]) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, s, su, [2, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) def testGradient2(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.test_session(): t = tf.convert_to_tensor(x) su = tf.reduce_min(t, [1]) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, s, su, [2, 4, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) def testGradient3(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.test_session(): t = tf.convert_to_tensor(x) su = tf.reduce_min(t, [2]) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, s, su, [2, 3, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) def testGradient4(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.test_session(): t = tf.convert_to_tensor(x) su = tf.reduce_min(t) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, s, su, [1], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) class MaxReductionTest(tf.test.TestCase): def _compare(self, x, reduction_axes, keep_dims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.amax(np_ans, keepdims=keep_dims) else: for ra in reduction_axes[::-1]: np_ans = np.amax(np_ans, axis=ra, keepdims=keep_dims) with self.test_session(use_gpu=use_gpu): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = tf.reduce_max(x, reduction_axes, keep_dims) out = tf_ans.eval() >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. self.assertAllClose(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes): self._compare(x, reduction_axes, False, use_gpu=True) self._compare(x, reduction_axes, False, use_gpu=False) self._compare(x, reduction_axes, True, use_gpu=True) self._compare(x, reduction_axes, True, use_gpu=False) <<<<<<< HEAD def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.cached_session(use_gpu=True) as sess: v = math_ops.reduce_max([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, 0) @test_util.run_deprecated_v1 def testInfinity(self): for dtype in [np.float32, np.float64]: for special_value_x in [-np.inf, np.inf]: for special_value_y in [-np.inf, np.inf]: np_arr = np.array([special_value_x, special_value_y]).astype(dtype) self._compareAll(np_arr, None) def testInt64Reduce3D(self): # Create a 3D array of int64s and reduce across all possible # dimensions np_arr = np.arange(-31, -1).reshape([2, 3, 5]).astype(np.int64) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testFloatReduce3D(self): # Create a 3D array of floats and reduce across all possible # dimensions np_arr = np.arange(-31, -1).reshape([2, 3, 5]).astype(np.float32) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testDoubleReduce3D(self): # Create a 3D array of doubles and reduce across all possible # dimensions np_arr = np.arange(-31, -1).reshape([2, 3, 5]).astype(np.float64) ======= def testFloatReduce3D(self): # Create a 3D array of floats and reduce across all possible # dimensions np_arr = np.arange(0, 30).reshape([2, 3, 5]).astype(np.float32) >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) <<<<<<< HEAD @test_util.run_deprecated_v1 def testGradient(self): s = [2, 3, 4, 2] x = np.arange(-49.0, -1.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_max(t, [1, 2]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testGradient2(self): s = [2, 3, 4, 2] x = np.arange(-49.0, -1.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_max(t, [1]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 4, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testGradient3(self): s = [2, 3, 4, 2] x = np.arange(-49.0, -1.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_max(t, [2]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 3, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testGradient4(self): s = [2, 3, 4, 2] x = np.arange(-49.0, -1.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_max(t) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [1], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testEmptyGradients(self): with self.cached_session(): x = array_ops.zeros([0, 3]) y = math_ops.reduce_max(x, [1]) error = gradient_checker.compute_gradient_error(x, [0, 3], y, [0]) self.assertEqual(error, 0) class AllReductionTest(test.TestCase): def _compare(self, x, reduction_axes, keepdims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.all(np_ans, keepdims=keepdims) else: for ra in reduction_axes[::-1]: np_ans = np.all(np_ans, axis=ra, keepdims=keepdims) with self.cached_session(use_gpu=use_gpu): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = math_ops.reduce_all(x, reduction_axes, keepdims) out = self.evaluate(tf_ans) ======= def testGradient(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.test_session(): t = tf.convert_to_tensor(x) su = tf.reduce_max(t, [1, 2]) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, s, su, [2, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) def testGradient2(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.test_session(): t = tf.convert_to_tensor(x) su = tf.reduce_max(t, [1]) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, s, su, [2, 4, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) def testGradient3(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.test_session(): t = tf.convert_to_tensor(x) su = tf.reduce_max(t, [2]) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, s, su, [2, 3, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) def testGradient4(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.test_session(): t = tf.convert_to_tensor(x) su = tf.reduce_max(t) jacob_t, jacob_n = gradient_checker.ComputeGradient( t, s, su, [1], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) class AllReductionTest(tf.test.TestCase): def _compare(self, x, reduction_axes, keep_dims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.all(np_ans, keepdims=keep_dims) else: for ra in reduction_axes[::-1]: np_ans = np.all(np_ans, axis=ra, keepdims=keep_dims) with self.test_session(use_gpu=use_gpu): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = tf.reduce_all(x, reduction_axes, keep_dims) out = tf_ans.eval() >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. self.assertAllEqual(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes): self._compare(x, reduction_axes, False, use_gpu=True) self._compare(x, reduction_axes, False, use_gpu=False) self._compare(x, reduction_axes, True, use_gpu=True) self._compare(x, reduction_axes, True, use_gpu=False) <<<<<<< HEAD def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.session(use_gpu=True) as sess: v = math_ops.reduce_all([True, True], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, True) ======= >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. def testAll3D(self): # Create a 3D array of bools and reduce across all possible # dimensions np_arr = (np.random.uniform(0, 1, 30) > 0.1).reshape([2, 3, 5]) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) <<<<<<< HEAD def testEmpty(self): self._compareAll([], [0]) class AnyReductionTest(test.TestCase): def _compare(self, x, reduction_axes, keepdims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.any(np_ans, keepdims=keepdims) else: for ra in reduction_axes[::-1]: np_ans = np.any(np_ans, axis=ra, keepdims=keepdims) with self.cached_session(use_gpu=use_gpu): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = math_ops.reduce_any(x, reduction_axes, keepdims) out = self.evaluate(tf_ans) ======= class AnyReductionTest(tf.test.TestCase): def _compare(self, x, reduction_axes, keep_dims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.any(np_ans, keepdims=keep_dims) else: for ra in reduction_axes[::-1]: np_ans = np.any(np_ans, axis=ra, keepdims=keep_dims) with self.test_session(use_gpu=use_gpu): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = tf.reduce_any(x, reduction_axes, keep_dims) out = tf_ans.eval() >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. self.assertAllEqual(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes): self._compare(x, reduction_axes, False, use_gpu=True) self._compare(x, reduction_axes, False, use_gpu=False) self._compare(x, reduction_axes, True, use_gpu=True) self._compare(x, reduction_axes, True, use_gpu=False) <<<<<<< HEAD def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.session(use_gpu=True) as sess: v = math_ops.reduce_any([True, True], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, True) ======= >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. def testAll3D(self): # Create a 3D array of bools and reduce across all possible # dimensions np_arr = (np.random.uniform(0, 1, 30) > 0.9).reshape([2, 3, 5]) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) <<<<<<< HEAD def testEmpty(self): self._compareAll([], [0]) class CountNonzeroReductionTest(test.TestCase): def _compare(self, x, reduction_axes, keepdims, use_gpu=False, zero=0, feed_dict=None): np_ans = (x != zero).astype(np.int32) if reduction_axes is None: np_ans = np.sum(np_ans, keepdims=keepdims) else: reduction_axes = np.array(reduction_axes).astype(np.int32) for ra in reduction_axes.ravel()[::-1]: np_ans = np.sum(np_ans, axis=ra, keepdims=keepdims) with self.cached_session(use_gpu=use_gpu) as sess: tf_ans = math_ops.count_nonzero(x, reduction_axes, keepdims) out = sess.run(tf_ans, feed_dict) self.assertAllClose(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes, feed_dict=None): if reduction_axes is not None and np.shape(reduction_axes) == (1,): # Test scalar reduction_axes argument self._compareAll(x, reduction_axes[0]) self._compare(x, reduction_axes, False, use_gpu=True, feed_dict=feed_dict) self._compare(x, reduction_axes, False, use_gpu=False, feed_dict=feed_dict) self._compare(x, reduction_axes, True, use_gpu=True, feed_dict=feed_dict) self._compare(x, reduction_axes, True, use_gpu=False, feed_dict=feed_dict) @test_util.run_deprecated_v1 def testBoolReduce1D(self): # Create a 1D array of floats np_arr = np.asarray([False, False, True, False, False, True]) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) @test_util.run_deprecated_v1 def testFloatReduce1D(self): # Create a 1D array of floats np_arr = np.asarray([0.0, 1.0, -1.0, 0.0, 0.0, 3.0]).astype(np.float32) self._compareAll(np_arr, [0]) @test_util.run_deprecated_v1 def testFloatReduce4D(self): # Create a 4D array of floats and reduce across some # dimensions np_arr = np.floor(np.arange(0.0, 210.0) / 100.0).reshape([2, 3, 5, 7]).astype( np.float32) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) # Need specialization for reduce(4D, [0, 2]) # self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) self._compareAll(np_arr, [1, 2, 3]) self._compareAll(np_arr, [0, 1, 2, 3]) @test_util.run_deprecated_v1 def testExpand(self): # Reduce an empty tensor to a nonempty tensor x = np.zeros((5, 0)) self._compareAll(x, [1]) @test_util.run_deprecated_v1 def testDegenerate(self): for use_gpu in False, True: with self.cached_session(use_gpu=use_gpu): for dtype in (dtypes.bool,): # A large number is needed to get Eigen to die x = array_ops.zeros((0, 9938), dtype=dtype) y = math_ops.count_nonzero(x, [0]) self.assertAllEqual(y.eval(), np.zeros(9938)) def testStringReduce(self): # Test case for GitHub issue 18712 with self.cached_session() as sess: v = math_ops.count_nonzero(constant_op.constant(["test"])) self.assertAllClose(self.evaluate(v), 1) @test_util.run_deprecated_v1 def testStringReduce1D(self): # Create a 1D array of strings x = np.asarray(["", "", "a", "", "", "b"]) self._compare(x, None, keepdims=False, zero=np.str("")) self._compare(x, [], keepdims=False, zero=np.str("")) self._compare(x, [0], keepdims=False, zero=np.str("")) self._compare(x, None, keepdims=True, zero=np.str("")) self._compare(x, [], keepdims=True, zero=np.str("")) self._compare(x, [0], keepdims=True, zero=np.str("")) @test_util.run_deprecated_v1 def testStringReduce2D(self): # Create a 2D array of strings x = np.asarray([["", "", "a", "", "", "b"], ["", "c", "", "d", "", ""], ["e", "", "f", "", "", ""]]) self._compare(x, None, keepdims=False, zero=np.str("")) self._compare(x, [], keepdims=False, zero=np.str("")) self._compare(x, [0], keepdims=False, zero=np.str("")) self._compare(x, [1], keepdims=False, zero=np.str("")) self._compare(x, [0, 1], keepdims=False, zero=np.str("")) self._compare(x, None, keepdims=True, zero=np.str("")) self._compare(x, [], keepdims=True, zero=np.str("")) self._compare(x, [0], keepdims=True, zero=np.str("")) self._compare(x, [0, 1], keepdims=True, zero=np.str("")) if __name__ == "__main__": test.main() ======= def testPartialShapes(self): # Input shape is unknown. c_unknown = tf.placeholder(tf.float32) s_unknown = tf.reduce_sum(c_unknown, [1, 2]) self.assertEqual(tensor_shape.unknown_shape(), s_unknown.get_shape()) # Input shape only has known rank. c_known_rank = tf.placeholder(tf.float32) c_known_rank.set_shape(tensor_shape.unknown_shape(ndims=3)) s_known_rank = tf.reduce_sum(c_known_rank, [1, 2], keep_dims=True) self.assertEqual(3, s_known_rank.get_shape().ndims) # Reduction indices are unknown. unknown_indices = tf.placeholder(tf.int32) c_unknown_indices = tf.constant([[10.0], [20.0]]) s_unknown_indices = tf.reduce_sum(c_unknown_indices, unknown_indices, keep_dims=False) self.assertEqual(tensor_shape.unknown_shape(), s_unknown_indices.get_shape()) s_unknown_indices_keep = tf.reduce_sum(c_unknown_indices, unknown_indices, keep_dims=True) self.assertEqual(2, s_unknown_indices_keep.get_shape().ndims) if __name__ == "__main__": tf.test.main() >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library.
py
1a4272713e09b2dc79daecfaad596b053f16b842
# Copyright 2020 (c) Cognizant Digital Business, Evolutionary AI. All rights reserved. Issued under the Apache 2.0 License. import argparse def predict(start_date: str, end_date: str, path_to_ips_file: str, output_file_path) -> None: """ Generates and saves a file with daily new cases predictions for the given countries, regions and intervention plans, between start_date and end_date, included. :param start_date: day from which to start making predictions, as a string, format YYYY-MM-DDD :param end_date: day on which to stop making predictions, as a string, format YYYY-MM-DDD :param path_to_ips_file: path to a csv file containing the intervention plans between inception date (Jan 1 2020) and end_date, for the countries and regions for which a prediction is needed :param output_file_path: path to file to which to save the the predictions :return: Nothing. Saves the generated predictions to an output_file_path CSV file with columns "CountryName,RegionName,Date,PredictedDailyNewCases" """ # !!! YOUR CODE HERE !!! raise NotImplemented # !!! PLEASE DO NOT EDIT. THIS IS THE OFFICIAL COMPETITION API !!! if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-s", "--start_date", dest="start_date", type=str, required=True, help="Start date from which to predict, included, as YYYY-MM-DD. For example 2020-08-01") parser.add_argument("-e", "--end_date", dest="end_date", type=str, required=True, help="End date for the last prediction, included, as YYYY-MM-DD. For example 2020-08-31") parser.add_argument("-ip", "--interventions_plan", dest="ip_file", type=str, required=True, help="The path to an intervention plan .csv file") parser.add_argument("-o", "--output_file", dest="output_file", type=str, required=True, help="The path to the CSV file where predictions should be written") args = parser.parse_args() print(f"Generating predictions from {args.start_date} to {args.end_date}...") predict(args.start_date, args.end_date, args.ip_file, args.output_file) print("Done!")
py
1a427347552af23f98a5f3c02479460aab79f34f
from google.appengine.ext import vendor # add any library installed in the lib folder vendor.add('lib')
py
1a4273697cc6521a0824b79e2a10e59666a87465
import json import public_config as c import logging import argparse import shutil from tinydb import TinyDB, Query from juriscraper.pacer import ( DocketReport, PacerSession, PossibleCaseNumberApi, FreeOpinionReport, ) logging.basicConfig(level=logging.DEBUG) district_dict = { "00": "med", "01": "mad", "02": "nhd", "03": "rid", "05": "ctd", "10": "vtd", } class PlymouthState(object): logging.info("Initializing Plymouth State object") s = PacerSession(username=c.PACER_USERNAME, password=c.PACER_PASSWORD) results = [] def get_pacer_case_ids(self): """Find PACER Case IDs from iQuery :return: None """ q = Query() db = TinyDB("db/master.json") fjc_table = db.table("fjc") for row in fjc_table.search((q.PACER_CASE_ID == "")): report = PossibleCaseNumberApi(row["COURT"], self.s) report.query(row["DOCKET_NO"]) data = report.data(office_number=row["OFFICE"], docket_number_letters="cv") fjc_table.update( {"PACER_CASE_ID": data["pacer_case_id"], "TITLE": data["title"]}, doc_ids=[row.doc_id], ) def get_docket_json(self): """Download docket to disk from Pacer :return: None """ q = Query() db = TinyDB("db/master.json") fjc_table = db.table("fjc") for row in fjc_table.search(~(q.PACER_CASE_ID == "") & (q.JSON == "False")): rep = DocketReport(row["COURT"], self.s) rep.query( row["PACER_CASE_ID"], show_parties_and_counsel=True, show_terminated_parties=True, show_list_of_member_cases=True, include_pdf_headers=True, show_multiple_docs=False, ) with open( "downloads/json/pacer_docket_%s.json" % row["PACER_CASE_ID"], "w" ) as write_file: json.dump(rep.data, write_file, indent=4, sort_keys=True, default=str) with open( "downloads/html/pacer_docket_%s.html" % row["PACER_CASE_ID"], "w" ) as file: file.write(rep.response.text) fjc_table.update( { "JSON": "True", "pacer_doc_id": rep.data["docket_entries"][0]["pacer_doc_id"], }, doc_ids=[row.doc_id], ) logging.info("Finished collecting JSON and HTML") def download_pdfs(self): """Download the first (presumably complaint) PDF to downlaods dir. :return: None """ q = Query() db = TinyDB("db/master.json") fjc_table = db.table("fjc") for row in fjc_table.search((q.JSON == "True") & (q.PDF == "False")): logging.info( "Collecting PDF #%s, in %s" % (row["PACER_CASE_ID"], row["TITLE"]) ) report = FreeOpinionReport(row["COURT"], self.s) r = report.download_pdf(row["PACER_CASE_ID"], row["pacer_doc_id"]) with open( "downloads/pdf/pacer_complaint_%s.pdf" % row["PACER_CASE_ID"], "w" ) as file: file.write(r.content) fjc_table.update( {"PDF": "True"}, doc_ids=[row.doc_id], ) logging.info( "Collected PDF #%s, in %s" % (row["PACER_CASE_ID"], row["TITLE"]) ) def get_pacer_ids(): """Use PACER iQuery to Identify PACER unique IDs :return: None """ logging.info("Begin collecting PACER CASE IDS") p = PlymouthState() p.get_pacer_case_ids() def download_json_html(): """Scrape HTML and JSON from Pacer Save resp from juriscraper to download/JSON & HTML dir :return: None """ logging.info("Begin collecting Dockets") p = PlymouthState() p.get_docket_json() def get_pdfs(): """Collect PDF from Pacer :return: None """ logging.info("Begin collecting PDFS") p = PlymouthState() p.download_pdfs() def zip_files(): """Zip the HTML, PDF and JSON Directories :return: None """ shutil.make_archive("downloads/zip/html_files", "zip", "downloads/html/") shutil.make_archive("downloads/zip/pdf_files", "zip", "downloads/pdf/") shutil.make_archive("downloads/zip/json_files", "zip", "downloads/json/") class Command(object): help = "Collect cases for Plymouth State client project" VALID_ACTIONS = { "get-pacer-ids": get_pacer_ids, "get-dockets": download_json_html, "get-pdfs": get_pdfs, "zip-files": zip_files, } parser = argparse.ArgumentParser(description="Process Plymouth State") parser.add_argument("-a", "--action", help="Must choose an action", required=True) args = vars(parser.parse_args()) VALID_ACTIONS[args["action"]]()
py
1a427460f5976f42ee8304e0c75a2a2d2aa1f7bf
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Dec 16 18:36:15 2016 @author: kyle """ import pandas as pd from sklearn.model_selection import cross_val_score from sklearn.svm import LinearSVC # classification step # target contains the labels in order target = pd.read_table('/media/kyle/My Passport/sample_files_183/labels_183.txt', header=None) del target[0] label_cv = target[1] # convert label to binary label_bin = [] for i in label_cv: if i == "t2d": label_bin.append(1) else: label_bin.append(0) label_bin = pd.DataFrame(label_bin) # if sim_mat is being read in #sim_mat = np.load("sim_mat_183.npy") clf = LinearSVC(penalty="l1", dual=False) scores_accuracy = cross_val_score(clf, X=sim_mat, y=label_bin, cv=5, n_jobs=3, scoring="accuracy") scores_f1 = cross_val_score(clf, sim_mat, label_bin, cv=5, n_jobs=3, scoring="f1") scores_rocauc = cross_val_score(clf, sim_mat, label_bin, cv=5, n_jobs=3, scoring="roc_auc") np.save("sim_mat_183.npy", sim_mat)