ext
stringclasses 9
values | sha
stringlengths 40
40
| content
stringlengths 3
1.04M
|
---|---|---|
py | 1a4455ca7e5476b646025c80ef7d584873d7cd5f | # Generated by Django 2.1 on 2019-06-09 23:14
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('main_app', '0025_auto_20190605_1841'),
]
operations = [
migrations.AddField(
model_name='devices',
name='device_type',
field=models.CharField(choices=[('R', 'Router'), ('S', 'Switch'), ('F', 'Firewall')], default=('R', 'Router'), max_length=10),
),
]
|
py | 1a4456f28f12fb4e05e16b17c683d980ab9e7be0 | from lib.solutions.CHK.checkout_solution import checkout
class TestSum():
"""
These are my tests, they were copied from the terminal: they all pass
"""
def test_all_options(self):
assert checkout('') == 0
assert checkout('A') == 50
assert checkout('B') == 30
assert checkout('C') == 20
assert checkout('D') == 15
assert checkout('a') == -1
assert checkout('-') == -1
assert checkout('ABCa') == -1
assert checkout('AxA') == -1
assert checkout('ABCD') == 115
assert checkout('A') == 50
assert checkout('AA') == 100
assert checkout('AAA') == 130
assert checkout('AAAA') == 130+50
assert checkout('AAAAAA') == 250
assert checkout('B') == 30
assert checkout('BB') == 45
assert checkout('BBB') == 75
assert checkout('BBBB') == 90
assert checkout('ABCDABCD') == 2*(50 + 20 + 15) + 45
assert checkout('BABDDCAC') == 45 + 2*15 + 2*50 + 2*20
assert checkout('AAABB') == 130+45
# assert checkout('ABCDCBAABCABBAAA') == 505
assert checkout('AAAAA') == 200 |
py | 1a44573bef836ccd8a5e3c072c19029c070025f7 | from sklearn.model_selection import StratifiedKFold
from sklearn.base import clone
def k_fold_cross_validation(sgd_clf, X_train, y_train_nb):
skfolds = StratifiedKFold(n_splits=3, random_state=42)
for train_index, test_index in skfolds.split(X_train, y_train_nb):
clone_clf = clone(sgd_clf)
X_train_folds = X_train[train_index]
y_train_folds = (y_train_nb[train_index])
X_test_folds = X_train[test_index]
y_test_folds = (y_train_nb[test_index])
clone_clf.fit(X_train_folds, y_train_folds)
y_pred = clone_clf.predict(X_test_folds)
n_correct = sum(y_pred == y_test_folds)
print(n_correct / len(y_pred))
from sklearn.base import BaseEstimator
import numpy as np
class NeverNbClassifier(BaseEstimator):
def fit(self, X, y=None):
pass
def predict(self, X):
return np.zeros((len(X), 1), dtype=bool)
|
py | 1a445754ccc015285854e52fadef25e8823d2f8a | # -*- coding: utf-8 -*-
from scout.commands import cli
from scout.server.extensions import store
def test_load_institute(mock_app, institute_obj):
"""Testing the load institute cli command"""
runner = mock_app.test_cli_runner()
assert runner
# One institute is preloaded into populated database
assert store.institute_collection.find().count() == 1
# remove it
store.institute_collection.find_one_and_delete({'_id':institute_obj['_id']})
assert store.institute_collection.find().count() == 0
# and re-load it using the CLI command:
result = runner.invoke(cli, ['load', 'institute',
'-i', institute_obj['_id'], '-d', institute_obj['display_name'],
'-s', institute_obj['sanger_recipients']])
# CLI command should be exit with no errors
assert result.exit_code == 0
# and institute should be in database
assert store.institute_collection.find().count() == 1
|
py | 1a44575c716efd82b27a856ef13e9db786d416ca | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import namedtuple
import ray.cloudpickle as cloudpickle
import copy
from datetime import datetime
import logging
import json
import uuid
import time
import tempfile
import os
from numbers import Number
# For compatibility under py2 to consider unicode as str
from six import string_types
import ray
from ray.tune import TuneError
from ray.tune.log_sync import validate_sync_function
from ray.tune.logger import pretty_print, UnifiedLogger
# NOTE(rkn): We import ray.tune.registry here instead of importing the names we
# need because there are cyclic imports that may cause specific names to not
# have been defined yet. See https://github.com/ray-project/ray/issues/1716.
import ray.tune.registry
from ray.tune.result import (DEFAULT_RESULTS_DIR, DONE, HOSTNAME, PID,
TIME_TOTAL_S, TRAINING_ITERATION, TIMESTEPS_TOTAL,
EPISODE_REWARD_MEAN, MEAN_LOSS, MEAN_ACCURACY)
from ray.utils import binary_to_hex, hex_to_binary
DEBUG_PRINT_INTERVAL = 5
MAX_LEN_IDENTIFIER = 130
logger = logging.getLogger(__name__)
def date_str():
return datetime.today().strftime("%Y-%m-%d_%H-%M-%S")
class Resources(
namedtuple("Resources", [
"cpu", "gpu", "extra_cpu", "extra_gpu", "custom_resources",
"extra_custom_resources"
])):
"""Ray resources required to schedule a trial.
Attributes:
cpu (float): Number of CPUs to allocate to the trial.
gpu (float): Number of GPUs to allocate to the trial.
extra_cpu (float): Extra CPUs to reserve in case the trial needs to
launch additional Ray actors that use CPUs.
extra_gpu (float): Extra GPUs to reserve in case the trial needs to
launch additional Ray actors that use GPUs.
custom_resources (dict): Mapping of resource to quantity to allocate
to the trial.
extra_custom_resources (dict): Extra custom resources to reserve in
case the trial needs to launch additional Ray actors that use
any of these custom resources.
"""
__slots__ = ()
def __new__(cls,
cpu,
gpu,
extra_cpu=0,
extra_gpu=0,
custom_resources=None,
extra_custom_resources=None):
custom_resources = custom_resources or {}
extra_custom_resources = extra_custom_resources or {}
leftovers = set(custom_resources) ^ set(extra_custom_resources)
for value in leftovers:
custom_resources.setdefault(value, 0)
extra_custom_resources.setdefault(value, 0)
all_values = [cpu, gpu, extra_cpu, extra_gpu]
all_values += list(custom_resources.values())
all_values += list(extra_custom_resources.values())
assert len(custom_resources) == len(extra_custom_resources)
for entry in all_values:
assert isinstance(entry, Number), "Improper resource value."
return super(Resources,
cls).__new__(cls, cpu, gpu, extra_cpu, extra_gpu,
custom_resources, extra_custom_resources)
def summary_string(self):
summary = "{} CPUs, {} GPUs".format(self.cpu + self.extra_cpu,
self.gpu + self.extra_gpu)
custom_summary = ", ".join([
"{} {}".format(self.get_res_total(res), res)
for res in self.custom_resources
])
if custom_summary:
summary += " ({})".format(custom_summary)
return summary
def cpu_total(self):
return self.cpu + self.extra_cpu
def gpu_total(self):
return self.gpu + self.extra_gpu
def get_res_total(self, key):
return self.custom_resources.get(
key, 0) + self.extra_custom_resources.get(key, 0)
def get(self, key):
return self.custom_resources.get(key, 0)
def is_nonnegative(self):
all_values = [self.cpu, self.gpu, self.extra_cpu, self.extra_gpu]
all_values += list(self.custom_resources.values())
all_values += list(self.extra_custom_resources.values())
return all(v >= 0 for v in all_values)
@classmethod
def subtract(cls, original, to_remove):
cpu = original.cpu - to_remove.cpu
gpu = original.gpu - to_remove.gpu
extra_cpu = original.extra_cpu - to_remove.extra_cpu
extra_gpu = original.extra_gpu - to_remove.extra_gpu
all_resources = set(original.custom_resources).union(
set(to_remove.custom_resources))
new_custom_res = {
k: original.custom_resources.get(k, 0) -
to_remove.custom_resources.get(k, 0)
for k in all_resources
}
extra_custom_res = {
k: original.extra_custom_resources.get(k, 0) -
to_remove.extra_custom_resources.get(k, 0)
for k in all_resources
}
return Resources(cpu, gpu, extra_cpu, extra_gpu, new_custom_res,
extra_custom_res)
def to_json(self):
return resources_to_json(self)
def json_to_resources(data):
if data is None or data == "null":
return None
if isinstance(data, string_types):
data = json.loads(data)
for k in data:
if k in ["driver_cpu_limit", "driver_gpu_limit"]:
raise TuneError(
"The field `{}` is no longer supported. Use `extra_cpu` "
"or `extra_gpu` instead.".format(k))
if k not in Resources._fields:
raise ValueError(
"Unknown resource field {}, must be one of {}".format(
k, Resources._fields))
return Resources(
data.get("cpu", 1), data.get("gpu", 0), data.get("extra_cpu", 0),
data.get("extra_gpu", 0), data.get("custom_resources"),
data.get("extra_custom_resources"))
def resources_to_json(resources):
if resources is None:
return None
return {
"cpu": resources.cpu,
"gpu": resources.gpu,
"extra_cpu": resources.extra_cpu,
"extra_gpu": resources.extra_gpu,
"custom_resources": resources.custom_resources.copy(),
"extra_custom_resources": resources.extra_custom_resources.copy()
}
def has_trainable(trainable_name):
return ray.tune.registry._global_registry.contains(
ray.tune.registry.TRAINABLE_CLASS, trainable_name)
def recursive_criteria_check(result, criteria):
for criteria, stop_value in criteria.items():
if criteria not in result:
raise TuneError(
"Stopping criteria {} not provided in result {}.".format(
criteria, result))
elif isinstance(result[criteria], dict) and isinstance(
stop_value, dict):
if recursive_criteria_check(result[criteria], stop_value):
return True
elif result[criteria] >= stop_value:
return True
return False
class Checkpoint(object):
"""Describes a checkpoint of trial state.
Checkpoint may be saved in different storage.
Attributes:
storage (str): Storage type.
value (str): If storage==MEMORY,value is a Python object.
If storage==DISK,value is a path points to the checkpoint in disk.
"""
MEMORY = "memory"
DISK = "disk"
def __init__(self, storage, value, last_result=None):
self.storage = storage
self.value = value
self.last_result = last_result or {}
@staticmethod
def from_object(value=None):
"""Creates a checkpoint from a Python object."""
return Checkpoint(Checkpoint.MEMORY, value)
class ExportFormat(object):
"""Describes the format to export the trial Trainable.
This may correspond to different file formats based on the
Trainable implementation.
"""
CHECKPOINT = "checkpoint"
MODEL = "model"
@staticmethod
def validate(export_formats):
"""Validates export_formats.
Raises:
ValueError if the format is unknown.
"""
for i in range(len(export_formats)):
export_formats[i] = export_formats[i].strip().lower()
if export_formats[i] not in [
ExportFormat.CHECKPOINT, ExportFormat.MODEL
]:
raise TuneError("Unsupported export format: " +
export_formats[i])
class Trial(object):
"""A trial object holds the state for one model training run.
Trials are themselves managed by the TrialRunner class, which implements
the event loop for submitting trial runs to a Ray cluster.
Trials start in the PENDING state, and transition to RUNNING once started.
On error it transitions to ERROR, otherwise TERMINATED on success.
"""
PENDING = "PENDING"
RUNNING = "RUNNING"
PAUSED = "PAUSED"
TERMINATED = "TERMINATED"
ERROR = "ERROR"
def __init__(self,
trainable_name,
config=None,
trial_id=None,
local_dir=DEFAULT_RESULTS_DIR,
experiment_tag="",
resources=None,
stopping_criterion=None,
checkpoint_freq=0,
checkpoint_at_end=False,
keep_checkpoints_num=None,
checkpoint_score_attr="",
export_formats=None,
restore_path=None,
upload_dir=None,
trial_name_creator=None,
loggers=None,
sync_function=None,
max_failures=0):
"""Initialize a new trial.
The args here take the same meaning as the command line flags defined
in ray.tune.config_parser.
"""
Trial._registration_check(trainable_name)
# Trial config
self.trainable_name = trainable_name
self.config = config or {}
self.local_dir = local_dir # This remains unexpanded for syncing.
self.experiment_tag = experiment_tag
trainable_cls = self._get_trainable_cls()
if trainable_cls and hasattr(trainable_cls,
"default_resource_request"):
default_resources = trainable_cls.default_resource_request(
self.config)
if default_resources:
if resources:
raise ValueError(
"Resources for {} have been automatically set to {} "
"by its `default_resource_request()` method. Please "
"clear the `resources_per_trial` option.".format(
trainable_cls, default_resources))
resources = default_resources
self.resources = resources or Resources(cpu=1, gpu=0)
self.stopping_criterion = stopping_criterion or {}
self.upload_dir = upload_dir
self.loggers = loggers
self.sync_function = sync_function
validate_sync_function(sync_function)
self.verbose = True
self.max_failures = max_failures
# Local trial state that is updated during the run
self.last_result = {}
self.last_update_time = -float("inf")
self.checkpoint_freq = checkpoint_freq
self.checkpoint_at_end = checkpoint_at_end
self.history = []
self.keep_checkpoints_num = keep_checkpoints_num
self._cmp_greater = not checkpoint_score_attr.startswith("min-")
self.best_checkpoint_attr_value = -float("inf") \
if self._cmp_greater else float("inf")
# Strip off "min-" from checkpoint attribute
self.checkpoint_score_attr = checkpoint_score_attr \
if self._cmp_greater else checkpoint_score_attr[4:]
self._checkpoint = Checkpoint(
storage=Checkpoint.DISK, value=restore_path)
self.export_formats = export_formats
self.status = Trial.PENDING
self.logdir = None
self.runner = None
self.result_logger = None
self.last_debug = 0
self.trial_id = Trial.generate_id() if trial_id is None else trial_id
self.error_file = None
self.num_failures = 0
self.custom_trial_name = None
# AutoML fields
self.results = None
self.best_result = None
self.param_config = None
self.extra_arg = None
self._nonjson_fields = [
"_checkpoint",
"loggers",
"sync_function",
"results",
"best_result",
"param_config",
"extra_arg",
]
if trial_name_creator:
self.custom_trial_name = trial_name_creator(self)
@classmethod
def _registration_check(cls, trainable_name):
if not has_trainable(trainable_name):
# Make sure rllib agents are registered
from ray import rllib # noqa: F401
if not has_trainable(trainable_name):
raise TuneError("Unknown trainable: " + trainable_name)
@classmethod
def generate_id(cls):
return str(uuid.uuid1().hex)[:8]
@classmethod
def create_logdir(cls, identifier, local_dir):
local_dir = os.path.expanduser(local_dir)
if not os.path.exists(local_dir):
os.makedirs(local_dir)
return tempfile.mkdtemp(
prefix="{}_{}".format(identifier[:MAX_LEN_IDENTIFIER], date_str()),
dir=local_dir)
def init_logger(self):
"""Init logger."""
if not self.result_logger:
if not self.logdir:
self.logdir = Trial.create_logdir(str(self), self.local_dir)
elif not os.path.exists(self.logdir):
os.makedirs(self.logdir)
self.result_logger = UnifiedLogger(
self.config,
self.logdir,
upload_uri=self.upload_dir,
loggers=self.loggers,
sync_function=self.sync_function)
def update_resources(self, cpu, gpu, **kwargs):
"""EXPERIMENTAL: Updates the resource requirements.
Should only be called when the trial is not running.
Raises:
ValueError if trial status is running.
"""
if self.status is Trial.RUNNING:
raise ValueError("Cannot update resources while Trial is running.")
self.resources = Resources(cpu, gpu, **kwargs)
def sync_logger_to_new_location(self, worker_ip):
"""Updates the logger location.
Also pushes logdir to worker_ip, allowing for cross-node recovery.
"""
if self.result_logger:
self.result_logger.sync_results_to_new_location(worker_ip)
def close_logger(self):
"""Close logger."""
if self.result_logger:
self.result_logger.close()
self.result_logger = None
def write_error_log(self, error_msg):
if error_msg and self.logdir:
self.num_failures += 1 # may be moved to outer scope?
error_file = os.path.join(self.logdir,
"error_{}.txt".format(date_str()))
with open(error_file, "w") as f:
f.write(error_msg)
self.error_file = error_file
def should_stop(self, result):
"""Whether the given result meets this trial's stopping criteria."""
if result.get(DONE):
return True
return recursive_criteria_check(result, self.stopping_criterion)
def should_checkpoint(self):
"""Whether this trial is due for checkpointing."""
result = self.last_result or {}
if result.get(DONE) and self.checkpoint_at_end:
return True
if self.checkpoint_freq:
return result.get(TRAINING_ITERATION,
0) % self.checkpoint_freq == 0
else:
return False
def progress_string(self):
"""Returns a progress message for printing out to the console."""
if not self.last_result:
return self._status_string()
def location_string(hostname, pid):
if hostname == os.uname()[1]:
return "pid={}".format(pid)
else:
return "{} pid={}".format(hostname, pid)
pieces = [
"{}".format(self._status_string()), "[{}]".format(
self.resources.summary_string()), "[{}]".format(
location_string(
self.last_result.get(HOSTNAME),
self.last_result.get(PID))), "{} s".format(
int(self.last_result.get(TIME_TOTAL_S)))
]
if self.last_result.get(TRAINING_ITERATION) is not None:
pieces.append("{} iter".format(
self.last_result[TRAINING_ITERATION]))
if self.last_result.get(TIMESTEPS_TOTAL) is not None:
pieces.append("{} ts".format(self.last_result[TIMESTEPS_TOTAL]))
if self.last_result.get(EPISODE_REWARD_MEAN) is not None:
pieces.append("{} rew".format(
format(self.last_result[EPISODE_REWARD_MEAN], ".3g")))
if self.last_result.get(MEAN_LOSS) is not None:
pieces.append("{} loss".format(
format(self.last_result[MEAN_LOSS], ".3g")))
if self.last_result.get(MEAN_ACCURACY) is not None:
pieces.append("{} acc".format(
format(self.last_result[MEAN_ACCURACY], ".3g")))
return ", ".join(pieces)
def _status_string(self):
return "{}{}".format(
self.status, ", {} failures: {}".format(self.num_failures,
self.error_file)
if self.error_file else "")
def has_checkpoint(self):
return self._checkpoint.value is not None
def clear_checkpoint(self):
self._checkpoint.value = None
def should_recover(self):
"""Returns whether the trial qualifies for restoring.
This is if a checkpoint frequency is set and has not failed more than
max_failures. This may return true even when there may not yet
be a checkpoint.
"""
return (self.checkpoint_freq > 0
and (self.num_failures < self.max_failures
or self.max_failures < 0))
def update_last_result(self, result, terminate=False):
if terminate:
result.update(done=True)
if self.verbose and (terminate or time.time() - self.last_debug >
DEBUG_PRINT_INTERVAL):
print("Result for {}:".format(self))
print(" {}".format(pretty_print(result).replace("\n", "\n ")))
self.last_debug = time.time()
self.last_result = result
self.last_update_time = time.time()
self.result_logger.on_result(self.last_result)
def compare_checkpoints(self, attr_mean):
"""Compares two checkpoints based on the attribute attr_mean param.
Greater than is used by default. If command-line parameter
checkpoint_score_attr starts with "min-" less than is used.
Arguments:
attr_mean: mean of attribute value for the current checkpoint
Returns:
True: when attr_mean is greater than previous checkpoint attr_mean
and greater than function is selected
when attr_mean is less than previous checkpoint attr_mean and
less than function is selected
False: when attr_mean is not in alignment with selected cmp fn
"""
if self._cmp_greater and attr_mean > self.best_checkpoint_attr_value:
return True
elif (not self._cmp_greater
and attr_mean < self.best_checkpoint_attr_value):
return True
return False
def _get_trainable_cls(self):
return ray.tune.registry._global_registry.get(
ray.tune.registry.TRAINABLE_CLASS, self.trainable_name)
def set_verbose(self, verbose):
self.verbose = verbose
def is_finished(self):
return self.status in [Trial.TERMINATED, Trial.ERROR]
def __repr__(self):
return str(self)
def __str__(self):
"""Combines ``env`` with ``trainable_name`` and ``experiment_tag``.
Can be overriden with a custom string creator.
"""
if self.custom_trial_name:
return self.custom_trial_name
if "env" in self.config:
env = self.config["env"]
if isinstance(env, type):
env = env.__name__
identifier = "{}_{}".format(self.trainable_name, env)
else:
identifier = self.trainable_name
if self.experiment_tag:
identifier += "_" + self.experiment_tag
return identifier.replace("/", "_")
def __getstate__(self):
"""Memento generator for Trial.
Sets RUNNING trials to PENDING, and flushes the result logger.
Note this can only occur if the trial holds a DISK checkpoint.
"""
assert self._checkpoint.storage == Checkpoint.DISK, (
"Checkpoint must not be in-memory.")
state = self.__dict__.copy()
state["resources"] = resources_to_json(self.resources)
for key in self._nonjson_fields:
state[key] = binary_to_hex(cloudpickle.dumps(state.get(key)))
state["runner"] = None
state["result_logger"] = None
if self.result_logger:
self.result_logger.flush()
state["__logger_started__"] = True
else:
state["__logger_started__"] = False
return copy.deepcopy(state)
def __setstate__(self, state):
logger_started = state.pop("__logger_started__")
state["resources"] = json_to_resources(state["resources"])
if state["status"] == Trial.RUNNING:
state["status"] = Trial.PENDING
for key in self._nonjson_fields:
state[key] = cloudpickle.loads(hex_to_binary(state[key]))
self.__dict__.update(state)
Trial._registration_check(self.trainable_name)
if logger_started:
self.init_logger()
|
py | 1a44579b3b2a438c9612ab753c7d7d362058d19b | # -*- coding: utf-8 -*-
"""
Created on Thu Aug 11 10:05:26 2016
@author: jaety
When our hypothesis is that a collection of strings has regular structure
and we want to extract it, how do we model that?
It's a restricted form of the NLP exercise.
In this case, I want to recognize:
1. Numbers
2. A conditional
3. A regular pattern given the two above
What would be the structure it reports?
${NUMBER}_${NUMBER}${CONDITIONAL("_mask")}.tif
number := [0-9]+
is_mask:= _mask
pattern:= <number>_<number><is_mask>?\.tif
How do I represent the cost of different encodings?
The grammar itself has an encoding cost
cost(number) = len(contents) // could be better, but stick with this for now
cost(conditional) = %false * cost(false_pattern) + %true * cost(true_pattern)
Grammar Induction? https://en.wikipedia.org/wiki/Grammar_induction
https://en.wikipedia.org/wiki/Sequitur_algorithm
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
http://archive.euroscipy.org/file/2041/raw/euroscipy2010_abstract-grammar-induction.pdf
"""
import os
src_dir = os.path.expanduser("~/projects/ml/kaggle-nerve/data/train")
pattern = "${user}_${slice}($is_mask)?.tif"
for item in os.listdir(src_dir):
print item |
py | 1a44579e3ea7be7a26de4c35096c5f04b191df65 | import tkinter as tk
from tkinter import ttk
import numpy as np
from itertools import product
from display_track import OIdisplay, CMdisplay, Cdisplay, ROIdisplay, MainDisplay
class ImageOriginal():
def create_window(self):
try: self.iot_Window.destroy()
except AttributeError: pass
self.iot_Window = tk.Toplevel(self)
self.iot_Window.title('Original Image')
self.iot_Window.geometry('600x400+100+100')
self.iot_Window.protocol('WM_DELETE_WINDOW',
lambda: ImageOriginal.close(self))
self.iot_Window.rowconfigure(0, weight = 1)
self.iot_Window.columnconfigure(0, weight = 1)
self.iot_frameMain = ttk.Frame(self.iot_Window)
self.iot_frameMain.rowconfigure(1, weight = 1)
self.iot_frameMain.columnconfigure(0, weight = 1)
self.iot_frameMain.grid(row = 0, column = 0,
sticky = 'nsew',
padx = 10, pady = 10)
def show(self):
if self._menucheckOI.get() == 1:
ImageOriginal.create_window(self)
OIdisplay.init_canvas(self)
OIdisplay.show_image(self)
elif self._menucheckOI.get() == 0:
try: self.iot_Window.destroy()
except AttributeError: pass
OIdisplay.hide_delete(self)
def close(self):
self.iot_Window.destroy()
self._menucheckOI.set(0)
class ImageInfo():
def create_window(self):
try: self.iit_Window.destroy()
except AttributeError: pass
self.iit_Window = tk.Toplevel(self)
self.iit_Window.title('Image Info')
#self.iit_Window.geometry('300x360-100-100')
self.iit_Window.resizable(0,0)
self.iit_Window.protocol('WM_DELETE_WINDOW',
lambda: ImageInfo.close(self))
self.iit_frame = ttk.Frame(self.iit_Window)
self.iit_frame.grid(row = 0, column = 0,
sticky = 'nsew',
padx = 2, pady = 2)
self.iit_filedirLabel = ttk.Label(self.iit_frame, text = 'Folder: ')
self.iit_filenameLabel = ttk.Label(self.iit_frame, text = 'File: ')
self.iit_typeLabel = ttk.Label(self.iit_frame, text = 'Type: ')
self.iit_sizepixxLabel = ttk.Label(self.iit_frame, text = 'Size X (pix) :')
self.iit_sizepixyLabel = ttk.Label(self.iit_frame, text = 'Size Y (pix) : ')
self.iit_sizenmxLabel = ttk.Label(self.iit_frame, text = 'Size X (nm) : ')
self.iit_sizenmyLabel = ttk.Label(self.iit_frame, text = 'Size Y (nm) : ')
self.iit_calfactorLabel = ttk.Label(self.iit_frame, text = 'Cal. Factor (nm/pix) : ')
self.iit_vminLabel = ttk.Label(self.iit_frame, text = 'I min: ')
self.iit_vmaxLabel = ttk.Label(self.iit_frame, text = 'I max: ')
self.iit_xminLabel = ttk.Label(self.iit_frame, text = 'X min: ')
self.iit_xmaxLabel = ttk.Label(self.iit_frame, text = 'X max: ')
self.iit_yminLabel = ttk.Label(self.iit_frame, text = 'Y min: ')
self.iit_ymaxLabel = ttk.Label(self.iit_frame, text = 'Y max: ')
self.iit_filedirDynLabel = ttk.Label(self.iit_frame,
textvariable = self._file_info['directory'],
wraplength = 160)
self.iit_filenameDynLabel = ttk.Label(self.iit_frame,
textvariable = self._file_info['file'],
wraplength = 160)
self.iit_typeDynLabel = ttk.Label(self.iit_frame,
textvariable = self._img_info['type'])
self.iit_sizepixxDynLabel = ttk.Label(self.iit_frame,
textvariable = self._img_info['sizepix_x'])
self.iit_sizepixyDynLabel = ttk.Label(self.iit_frame,
textvariable = self._img_info['sizepix_y'])
self.iit_sizenmxDynLabel = ttk.Label(self.iit_frame,
textvariable = self._img_info['sizenm_x'])
self.iit_sizenmyDynLabel = ttk.Label(self.iit_frame,
textvariable = self._img_info['sizenm_y'])
self.iit_calfactorDynLabel = ttk.Label(self.iit_frame,
textvariable = self._img_info['cal_factor'])
self.iit_vminDynLabel = ttk.Label(self.iit_frame,
textvariable = self._img_info['vmin'])
self.iit_vmaxDynLabel = ttk.Label(self.iit_frame,
textvariable = self._img_info['vmax'])
self.iit_xminDynLabel = ttk.Label(self.iit_frame,
textvariable = self._img_info['xmin'])
self.iit_xmaxDynLabel = ttk.Label(self.iit_frame,
textvariable = self._img_info['xmax'])
self.iit_yminDynLabel = ttk.Label(self.iit_frame,
textvariable = self._img_info['ymin'])
self.iit_ymaxDynLabel = ttk.Label(self.iit_frame,
textvariable = self._img_info['ymax'])
self.iit_filedirLabel.grid(row = 0, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_filenameLabel.grid(row = 1, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_typeLabel.grid(row = 2, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_sizepixxLabel.grid(row = 3, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_sizepixyLabel.grid(row = 4, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_sizenmxLabel.grid(row = 5, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_sizenmyLabel.grid(row = 6, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_calfactorLabel.grid(row = 7, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_vminLabel.grid(row = 8, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_vmaxLabel.grid(row = 9, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_xminLabel.grid(row = 10, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_xmaxLabel.grid(row = 11, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_yminLabel.grid(row = 12, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_ymaxLabel.grid(row = 13, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_filedirDynLabel.grid(row = 0, column = 1,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_filenameDynLabel.grid(row = 1, column = 1,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_typeDynLabel.grid(row = 2, column = 1,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_sizepixxDynLabel.grid(row = 3, column = 1,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_sizepixyDynLabel.grid(row = 4, column = 1,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_sizenmxDynLabel.grid(row = 5, column = 1,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_sizenmyDynLabel.grid(row = 6, column = 1,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_calfactorDynLabel.grid(row = 7, column = 1,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_vminDynLabel.grid(row = 8, column = 1,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_vmaxDynLabel.grid(row = 9, column = 1,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_xminDynLabel.grid(row = 10, column = 1,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_xmaxDynLabel.grid(row = 11, column = 1,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_yminDynLabel.grid(row = 12, column = 1,
sticky = 'nsew', padx = 2, pady = 2)
self.iit_ymaxDynLabel.grid(row = 13, column = 1,
sticky = 'nsew', padx = 2, pady = 2)
def show(self):
if self._menucheckII.get() == 1:
ImageInfo.create_window(self)
elif self._menucheckII.get() == 0:
try: self.iit_Window.destroy()
except AttributeError: pass
def close(self):
self.iit_Window.destroy()
self._menucheckII.set(0)
class ImageColormap():
def invert(self):
if self._menucheckCI.get() == 1:
colormap = self._colormap_options.get('Current Main')+'_r'
elif self._menucheckCI.get() == 0:
colormap = self._colormap_options.get('Current Main').replace('_r','')
self._colormap_options['Current Main'] = colormap
self._s_img.set_cmap(colormap)
self._canvas.draw()
def change(self):
colormap_option = self._menucheckCO.get()
if colormap_option == 0: colormap = 'gray'
elif colormap_option == 1: colormap = 'bone'
elif colormap_option == 2: colormap = 'hot'
elif colormap_option == 3: colormap = 'magma'
elif colormap_option == 4: colormap = 'inferno'
self._colormap_options['Current Main'] = colormap
ImageColormap.invert(self)
def other(self):
colormap = self._colormap_options.get('Current Main')
if 'gray' in colormap : colormap_option = 0
elif 'bone' in colormap: colormap_option = 1
elif 'hot' in colormap: colormap_option = 2
elif 'magma' in colormap: colormap_option = 3
elif 'inferno' in colormap: colormap_option = 4
else: colormap_option = 5
self._menucheckCO.set(colormap_option)
ImageColormap.other_create(self)
def other_create(self):
try: self.ico_Window.destroy()
except AttributeError: pass
self.ico_Window = tk.Toplevel(self)
self.ico_Window.title('Other Colormap')
#self.ico_Window.resizable(0,0)
self.ico_frame = ttk.Frame(self.ico_Window)
self.ico_frame.grid(row = 0, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.ico_buttonFrame = ttk.Frame(self.ico_Window)
CMdisplay.show_colormaps(self)
self.ico_combobox = ttk.Combobox(self.ico_frame,
values = self._colormap_options['Available'])
self.ico_combobox.set(self._colormap_options.get('Current Main').replace('_r',''))
self.ico_applyButton = ttk.Button(self.ico_buttonFrame, text = 'Apply',
command = lambda: ImageColormap.other_apply(self))
self.ico_okButton = ttk.Button(self.ico_buttonFrame, text = 'OK',
command = lambda: ImageColormap.other_ok(self))
self.ico_combobox.grid(row = 1, column = 0)
self.ico_buttonFrame.grid(row = 2, column = 0)
self.ico_applyButton.grid(row = 0, column = 0)
self.ico_okButton.grid(row = 0, column = 1)
def other_apply(self):
self._colormap_options['Current Main'] = self.ico_combobox.get()
self._menucheckCO.set(5)
ImageColormap.invert(self)
def other_ok(self):
ImageColormap.other_apply(self)
self.ico_Window.destroy()
try: self._ic_canvas.delete(ALL)
except AttributeError: pass
self._menucheckCO.set(5)
class ImageContrast():
def show(self):
if self._menucheckCC.get() == 1:
ImageContrast.create(self)
elif self._menucheckCC.get() == 0:
ImageContrast.close(self)
def create(self):
try: self.ic_Window.destroy()
except AttributeError: pass
self.ic_Window = tk.Toplevel(self)
self.ic_Window.title('Adjust Contrast')
self.ic_Window.geometry('300x300-100+200')
self.ic_Window.protocol('WM_DELETE_WINDOW',
lambda: ImageContrast.close(self))
try:
vmin = self._colormap_options['Vmin']
vmax = self._colormap_options['Vmax']
except KeyError:
vmin = np.min(self._mat_img.flatten())
vmax = np.max(self._mat_img.flatten())
self.ic_frame = ttk.Frame(self.ic_Window)
self.ic_controlFrame = ttk.Frame(self.ic_Window)
self.ic_buttonFrame = ttk.Frame(self.ic_Window)
self.ic_frame.grid(row = 0, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.ic_controlFrame.grid(row = 1, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.ic_buttonFrame.grid(row = 2, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.ic_Window.rowconfigure([0,1,2], weight = 1)
self.ic_Window.columnconfigure(0, weight = 1)
self.ic_frame.columnconfigure(0, weight = 1)
self.ic_frame.rowconfigure(0, weight = 1)
self.ic_controlFrame.columnconfigure(0, weight = 1)
self.ic_buttonFrame.columnconfigure([0,1], weight = 1)
self.ic_vminSlider = tk.Scale(self.ic_controlFrame, orient = 'horizontal',
from_ = np.min(self._mat_img.flatten()), to = np.max(self._mat_img.flatten()))
self.ic_vmaxSlider = tk.Scale(self.ic_controlFrame, orient = 'horizontal',
from_ = np.min(self._mat_img.flatten()), to = np.max(self._mat_img.flatten()))
self.ic_applyButton = ttk.Button(self.ic_buttonFrame, text = 'Apply',
command = lambda: ImageContrast.ok_close(self))
self.ic_closeButton = ttk.Button(self.ic_buttonFrame, text = 'Close',
command = lambda: ImageContrast.close(self))
self.ic_vminSlider.bind('<ButtonRelease-1>',
lambda event, arg = self: ImageContrast.change_slide(arg, event))
self.ic_vmaxSlider.bind('<ButtonRelease-1>',
lambda event, arg = self: ImageContrast.change_slide(arg, event))
self.ic_vminSlider.grid(row = 0, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.ic_vmaxSlider.grid(row = 1, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.ic_applyButton.grid(row = 0, column = 0,
sticky = 'nsew', padx = 10, pady = 2)
self.ic_closeButton.grid(row = 0, column = 1,
sticky = 'nsew', padx = 10, pady = 2)
self.ic_vminSlider.set(vmin)
self.ic_vmaxSlider.set(vmax)
Cdisplay.show_histogram(self)
Cdisplay.update_clim(self)
def change_slide(self, event):
if self.ic_vminSlider.cget('state') == 'active':
self.ic_vminSlider.after(100)
elif self.ic_vmaxSlider.cget('state') == 'active':
self.ic_vmaxSlider.after(100)
vmin = self.ic_vminSlider.get()
vmax = self.ic_vmaxSlider.get()
Cdisplay.update_clim(self)
def ok_close(self):
vmin = self.ic_vminSlider.get()
vmax = self.ic_vmaxSlider.get()
self._colormap_options['Vmin'] = vmin
self._colormap_options['Vmax'] = vmax
ImageContrast.close(self)
def close(self):
try:
vmin = self._colormap_options['Vmin']
vmax = self._colormap_options['Vmax']
except KeyError:
vmin = np.min(self._mat_img.flatten())
vmax = np.max(self._mat_img.flatten())
self._s_img.set_clim([vmin, vmax])
self._canvas.draw()
try: self.ic_Window.destroy()
except AttributeError: pass
self._menucheckCC.set(0)
class ImageOverlay():
def init_var(self):
self._overcmap = {
'Basic': ['none',
'black',
'gray',
'white',
'yellow',
'orange',
'red',
'magenta',
'blue',
'cyan',
'green',
]
}
self._overedge = {
'enable': tk.IntVar(),
'size' : tk.StringVar(),
'ecolor': tk.StringVar(),
'fcolor': tk.StringVar()
}
self._overskel = {
'enable': tk.IntVar(),
'size' : tk.StringVar(),
'ecolor': tk.StringVar(),
'fcolor': tk.StringVar()
}
self._overlabel = {
'enable': tk.IntVar(),
'size' : tk.StringVar(),
'ecolor': tk.StringVar(),
}
self._overfit = {
'enable': tk.IntVar(),
'lwidth' : tk.StringVar(),
'color': tk.StringVar()
}
self._overedge['enable'].set(0)
self._overedge['size'].set('5')
self._overedge['ecolor'].set('none')
self._overedge['fcolor'].set('orange')
self._overskel['enable'].set(0)
self._overskel['size'].set('5')
self._overskel['ecolor'].set('none')
self._overskel['fcolor'].set('cyan')
self._overlabel['enable'].set(0)
self._overlabel['size'].set('5')
self._overlabel['ecolor'].set('none')
self._overfit['enable'].set(0)
self._overfit['lwidth'].set(1)
self._overfit['color'].set('yellow')
def show(self):
if self._menucheckOO.get() == 1:
ImageOverlay.create_options(self)
ImageOverlay.setstate_init(self)
else: ImageOverlay.close(self)
def create_options(self):
try: self.ov_Window.destroy()
except AttributeError: pass
self.ov_Window = tk.Toplevel(self)
self.ov_Window.title('Display Overlay Options')
#self.ov_Window.geometry('450x300-250+80')
self.ov_Window.resizable(0,0)
self.ov_Window.protocol('WM_DELETE_WINDOW',
lambda: ImageOverlay.close(self))
self.ov_Window.rowconfigure([0,1,2,3,4,5], weight = 1)
self.ov_Window.columnconfigure(0, weight = 1)
self.oveLabelFrame = ttk.LabelFrame(self.ov_Window,
text = 'Edge Options')
self.ovsLabelFrame = ttk.LabelFrame(self.ov_Window,
text = 'Skeleton Options')
self.ovlLabelFrame = ttk.LabelFrame(self.ov_Window,
text = 'Label Options')
self.ovfLabelFrame = ttk.LabelFrame(self.ov_Window,
text = 'Fit Options')
self.ovbuttonFrame = ttk.Frame(self.ov_Window)
self.ove_enButton = ttk.Button(self.oveLabelFrame,
text = 'Enable',
style = 'SunkableButton.TButton',
command = lambda: ImageOverlay.enable_edge(self))
self.ove_szLabel = ttk.Label(self.oveLabelFrame,
text = 'Size : ')
self.ove_szSpinbox = tk.Spinbox(self.oveLabelFrame,
width = 3)
self.ove_szSpinbox.delete(0,'end')
self.ove_szSpinbox.insert(0, self._overedge['size'].get())
self.ove_ecLabel = ttk.Label(self.oveLabelFrame,
text = 'Edge color : ')
self.ove_ecCombobox = ttk.Combobox(self.oveLabelFrame,
width = 7,
values = self._overcmap['Basic'])
self.ove_ecCombobox.set(self._overedge['ecolor'].get())
self.ove_fcLabel = ttk.Label(self.oveLabelFrame,
text = 'Face color: ')
self.ove_fcCombobox = ttk.Combobox(self.oveLabelFrame,
width = 7,
values = self._overcmap['Basic'])
self.ove_fcCombobox.set(self._overedge['fcolor'].get())
self.ovs_enButton = ttk.Button(self.ovsLabelFrame,
text = 'Enable',
style = 'SunkableButton.TButton',
command = lambda: ImageOverlay.enable_skeleton(self))
self.ovs_szLabel = ttk.Label(self.ovsLabelFrame,
text = 'Size : ')
self.ovs_szSpinbox = tk.Spinbox(self.ovsLabelFrame,
width = 3)
self.ovs_szSpinbox.delete(0,'end')
self.ovs_szSpinbox.insert(0, self._overskel['size'].get())
self.ovs_ecLabel = ttk.Label(self.ovsLabelFrame,
text = 'Edge color : ')
self.ovs_ecCombobox = ttk.Combobox(self.ovsLabelFrame,
width = 7,
values = self._overcmap['Basic'])
self.ovs_ecCombobox.set(self._overskel['ecolor'].get())
self.ovs_fcLabel = ttk.Label(self.ovsLabelFrame,
text = 'Face color: ')
self.ovs_fcCombobox = ttk.Combobox(self.ovsLabelFrame,
width = 7,
values = self._overcmap['Basic'])
self.ovs_fcCombobox.set(self._overskel['fcolor'].get())
self.ovl_enButton = ttk.Button(self.ovlLabelFrame,
text = 'Enable',
style = 'SunkableButton.TButton',
command = lambda: ImageOverlay.enable_labels(self))
self.ovl_szLabel = ttk.Label(self.ovlLabelFrame,
text = 'Size : ')
self.ovl_szSpinbox = tk.Spinbox(self.ovlLabelFrame,
width = 3)
self.ovl_szSpinbox.delete(0,'end')
self.ovl_szSpinbox.insert(0, self._overlabel['size'].get())
self.ovl_ecLabel = ttk.Label(self.ovlLabelFrame,
text = 'Edge color : ')
self.ovl_ecCombobox = ttk.Combobox(self.ovlLabelFrame,
width = 7,
values = self._overcmap['Basic'])
self.ovl_ecCombobox.set(self._overlabel['ecolor'].get())
self.ovf_enButton = ttk.Button(self.ovfLabelFrame,
text = 'Enable',
style = 'SunkableButton.TButton',
command = lambda: ImageOverlay.enable_fit(self))
self.ovf_lwLabel = ttk.Label(self.ovfLabelFrame,
text = 'Line Width : ')
self.ovf_lwSpinbox = tk.Spinbox(self.ovfLabelFrame,
width = 3)
self.ovf_lwSpinbox.delete(0,'end')
self.ovf_lwSpinbox.insert(0, self._overfit['lwidth'].get())
self.ovf_lcLabel = ttk.Label(self.ovfLabelFrame,
text = 'Line Color : ')
self.ovf_lcCombobox = ttk.Combobox(self.ovfLabelFrame,
width = 7,
values = self._overcmap['Basic'])
self.ovf_lcCombobox.set(self._overfit['color'].get())
self.ovapplyButton = ttk.Button(self.ovbuttonFrame,
text = 'Apply',
command = lambda: ImageOverlay.apply(self))
self.ovcloseButton = ttk.Button(self.ovbuttonFrame,
text = 'Close',
command = lambda: ImageOverlay.close(self))
self.oveLabelFrame.rowconfigure(0, weight = 1)
self.ovsLabelFrame.rowconfigure(0, weight = 1)
self.ovlLabelFrame.rowconfigure(0, weight = 1)
self.ovfLabelFrame.rowconfigure(0, weight = 1)
self.ovbuttonFrame.columnconfigure([0,1], weight = 1)
self.oveLabelFrame.grid(row = 1, column = 0, sticky = 'nsew',
padx = 2, pady = 2)
self.ovsLabelFrame.grid(row = 2, column = 0, sticky = 'nsew',
padx = 2, pady = 2)
self.ovlLabelFrame.grid(row = 3, column = 0, sticky = 'nsew',
padx = 2, pady = 2)
self.ovfLabelFrame.grid(row = 4, column = 0, sticky = 'nsew',
padx = 2, pady = 2)
self.ovbuttonFrame.grid(row = 5, column = 0, sticky = 'nsew',
padx = 2, pady = 2)
self.ove_enButton.grid(row = 0, column = 0, sticky = 'nsew',
padx = 2, pady = 2)
self.ove_szLabel.grid(row = 0, column = 1, sticky = 'nsew',
padx = 2, pady = 2)
self.ove_szSpinbox.grid(row = 0, column = 2, sticky = 'nsew',
padx = 2, pady = 2)
self.ove_ecLabel.grid(row = 0, column = 3, sticky = 'nsew',
padx = 2, pady = 2)
self.ove_ecCombobox.grid(row = 0, column = 4, sticky = 'nsew',
padx = 2, pady = 2)
self.ove_fcLabel.grid(row = 0, column = 5, sticky = 'nsew',
padx = 2, pady = 2)
self.ove_fcCombobox.grid(row = 0, column = 6, sticky = 'nsew',
padx = 2, pady = 2)
self.ovs_enButton.grid(row = 0, column = 0, sticky = 'nsew',
padx = 2, pady = 2)
self.ovs_szLabel.grid(row = 0, column = 1, sticky = 'nsew',
padx = 2, pady = 2)
self.ovs_szSpinbox.grid(row = 0, column = 2, sticky = 'nsew',
padx = 2, pady = 2)
self.ovs_ecLabel.grid(row = 0, column = 3, sticky = 'nsew',
padx = 2, pady = 2)
self.ovs_ecCombobox.grid(row = 0, column = 4, sticky = 'nsew',
padx = 2, pady = 2)
self.ovs_fcLabel.grid(row = 0, column = 5, sticky = 'nsew',
padx = 2, pady = 2)
self.ovs_fcCombobox.grid(row = 0, column = 6, sticky = 'nsew',
padx = 2, pady = 2)
self.ovl_enButton.grid(row = 0, column = 0, sticky = 'nsew',
padx = 2, pady = 2)
self.ovl_szLabel.grid(row = 0, column = 1, sticky = 'nsew',
padx = 2, pady = 2)
self.ovl_szSpinbox.grid(row = 0, column = 2, sticky = 'nsew',
padx = 2, pady = 2)
self.ovl_ecLabel.grid(row = 0, column = 3, sticky = 'nsew',
padx = 2, pady = 2)
self.ovl_ecCombobox.grid(row = 0, column = 4, sticky = 'nsew',
padx = 2, pady = 2)
self.ovf_enButton.grid(row = 0, column = 0, sticky = 'nsew',
padx = 2, pady = 2)
self.ovf_lwLabel.grid(row = 0, column = 1, sticky = 'nsew',
padx = 2, pady = 2)
self.ovf_lwSpinbox.grid(row = 0, column = 2, sticky = 'nsew',
padx = 2, pady = 2)
self.ovf_lcLabel.grid(row = 0, column = 3, sticky = 'nsew',
padx = 2, pady = 2)
self.ovf_lcCombobox.grid(row = 0, column = 4, sticky = 'nsew',
padx = 2, pady = 2)
self.ovapplyButton.grid(row = 0, column = 0, sticky = 'snew',
padx = 50, pady = 2)
self.ovcloseButton.grid(row = 0, column = 1, sticky = 'nsew',
padx = 50, pady = 2)
def setstate_init(self):
try: self._skeleton_image
except AttributeError: self._overskel['enable'].set(0)
try: self._mask_edge
except AttributeError: self._overedge['enable'].set(0)
try: self._labelled_filaments
except: AttributeError: self._overlabel['enable'].set(0)
try: self._m
except: AttributeError: self._overfit['enable'].set(0)
if self._overedge['enable'].get() == 1:
self.ove_enButton.state(['pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.SUNKEN)
if self._overskel['enable'].get() == 1:
self.ovs_enButton.state(['pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.SUNKEN)
if self._overlabel['enable'].get() == 1:
self.ovl_enButton.state(['pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.SUNKEN)
if self._overfit['enable'].get() == 1:
self.ovf_enButton.state(['pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.SUNKEN)
def enable_edge(self):
if self._overedge['enable'].get() == 1:
self.ove_enButton.state(['!pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.RAISED)
self._overedge['enable'].set(0)
elif self._overedge['enable'].get() == 0:
self.ove_enButton.state(['pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.SUNKEN)
self._overedge['enable'].set(1)
def enable_skeleton(self):
if self._overskel['enable'].get() == 1:
self.ovs_enButton.state(['!pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.RAISED)
self._overskel['enable'].set(0)
elif self._overskel['enable'].get() == 0:
self.ovs_enButton.state(['pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.SUNKEN)
self._overskel['enable'].set(1)
def enable_labels(self):
if self._overlabel['enable'].get() == 1:
self.ovl_enButton.state(['!pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.RAISED)
self._overlabel['enable'].set(0)
elif self._overlabel['enable'].get() == 0:
self.ovl_enButton.state(['pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.SUNKEN)
self._overlabel['enable'].set(1)
def enable_fit(self):
if self._overfit['enable'].get() == 1:
self.ovf_enButton.state(['!pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.RAISED)
self._overfit['enable'].set(0)
elif self._overfit['enable'].get() == 0:
self.ovf_enButton.state(['pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.SUNKEN)
self._overfit['enable'].set(1)
def apply(self):
self._overedge['size'].set(self.ove_szSpinbox.get())
self._overedge['ecolor'].set(self.ove_ecCombobox.get())
self._overedge['fcolor'].set(self.ove_fcCombobox.get())
self._overskel['size'].set(self.ovs_szSpinbox.get())
self._overskel['ecolor'].set(self.ovs_ecCombobox.get())
self._overskel['fcolor'].set(self.ovs_fcCombobox.get())
self._overlabel['size'].set(self.ovl_szSpinbox.get())
self._overlabel['ecolor'].set(self.ovl_ecCombobox.get())
self._overfit['lwidth'].set(self.ovf_lwSpinbox.get())
self._overfit['color'].set(self.ovf_lcCombobox.get())
MainDisplay.show_overlay(self)
try: ROIdisplay.show_roi(self)
except AttributeError: pass
ImageOverlay.setstate_cpanel(self)
def setstate_cpanel(self):
if self._overedge['enable'].get() == 1:
self.eshowButton.config(text = 'Hide')
elif self._overedge['enable'].get() == 0:
self.eshowButton.config(text = 'Show')
if self._overskel['enable'].get() == 1:
self.skskeletonButton.config(text = 'Hide')
elif self._overskel['enable'].get() == 0:
self.skskeletonButton.config(text = 'Skeleton')
if self._overlabel['enable'].get() == 1:
self.tshowlabelButton.config(text = 'Hide Labels')
elif self._overlabel['enable'].get() == 0:
self.tshowlabelButton.config(text = 'Show Labels')
if self._overfit['enable'].get() == 1:
self.tshowfitButton.config(text = 'Hide Fit')
elif self._overfit['enable'].get() == 0:
self.tshowfitButton.config(text = 'Show Fit')
self.skfilterButton.config(text = 'Filter')
self.skmaskButton.config(text = 'Mask')
def close(self):
self.ov_Window.destroy()
self._menucheckOO.set(0)
class ROImanager():
def init_var(self):
self._roicircle = 0
self._roirect = 0
self._roipoly = 0
self._deledge = tk.IntVar()
self._delskel = tk.IntVar()
self._delchain = tk.IntVar()
self._deledge.set(1)
self._delskel.set(1)
self._delchain.set(1)
def create_window(self):
try: self.rt_Window.destroy()
except AttributeError: pass
self.rt_Window = tk.Toplevel(self)
self.rt_Window.title('ROI Manager Tracking')
#self.rt_Window.geometry('240x350-80+50')
self.rt_Window.resizable(0,1)
self.rt_Window.protocol('WM_DELETE_WINDOW',
lambda: ROImanager.close(self))
self.rt_Window.columnconfigure(0, weight = 1)
self.rt_Window.rowconfigure(1, weight = 1)
self.rt_drawFrame = ttk.Frame(self.rt_Window)
self.roicircleButton = ttk.Button(self.rt_drawFrame,
text = 'Circle',
style = 'SunkableButton.TButton',
command = lambda: ROImanager.draw_circle(self))
self.roirectButton = ttk.Button(self.rt_drawFrame,
text = 'Rectangle',
style = 'SunkableButton.TButton',
command = lambda: ROImanager.draw_rectangle(self))
self.roipolyButton = ttk.Button(self.rt_drawFrame,
text = 'Polygon')
self.rt_middleFrame = ttk.Frame(self.rt_Window)
self.rt_middleFrame.rowconfigure(0, weight = 1)
self.rt_middleFrame.columnconfigure([0,1], weight = 1)
self.roilistFrame = ttk.LabelFrame(self.rt_middleFrame,
text = 'ROIs')
self.roilistFrame.rowconfigure(0, weight = 1)
self.roiListbox = tk.Listbox(self.roilistFrame,
width = 15, selectmode = 'extended')
self.roiListbox.bind('<<ListboxSelect>>',
lambda event, arg = self:
ROIdisplay.draw_selec(self, event))
self.roilistScrollbar = ttk.Scrollbar(self.roilistFrame)
self.roilistScrollbar.config(command = self.roiListbox.yview)
self.roiListbox.config(yscrollcommand = self.roilistScrollbar.set)
self.rt_manageFrame = ttk.Frame(self.rt_middleFrame)
self.roiselectallButton = ttk.Button(self.rt_manageFrame,
text = 'Select All',
command = lambda: ROImanager.selectall_roiList(self))
self.roiclearallButton = ttk.Button(self.rt_manageFrame,
text = 'Clear All',
command = lambda: ROImanager.clearall_roiList(self))
self.roideleteallButton = ttk.Button(self.rt_manageFrame,
text = 'Delete All',
command = lambda: ROImanager.keepdelall_roi(self, 0))
self.roikeepallButton = ttk.Button(self.rt_manageFrame,
text = 'Keep All',
command = lambda: ROImanager.keepdelall_roi(self, 1))
self.roideleteselecButton = ttk.Button(self.rt_manageFrame,
text = 'Delete Selection',
command = lambda: ROImanager.keepdelsel_roi(self, 0))
self.roikeepselecButton = ttk.Button(self.rt_manageFrame,
text = 'Keep Selection',
command = lambda: ROImanager.keepdelsel_roi(self,1))
self.rt_bottomFrame = ttk.Frame(self.rt_Window)
self.rt_bottomFrame.columnconfigure([0,1], weight = 1)
self.roioptionsButton = ttk.Button(self.rt_bottomFrame,
text = 'Options',
command = lambda: ROImanager.create_options(self))
self.roicloseButton = ttk.Button(self.rt_bottomFrame,
text = 'Close',
command = lambda: ROImanager.close(self))
self.rt_drawFrame.grid(row = 0, column = 0,
sticky = 'nsew')
self.roicircleButton.grid(row = 0, column = 0,
sticky = 'nsew', padx = 2, pady = 10)
self.roirectButton.grid(row = 0, column = 1,
sticky = 'nsew', padx = 2, pady = 10)
self.roipolyButton.grid(row = 0, column = 2,
sticky = 'nsew', padx = 2, pady = 10)
self.rt_middleFrame.grid(row = 1, column = 0, sticky = 'nsew')
self.roilistFrame.grid(row = 0, column = 0,
sticky = 'ns')
self.roiListbox.grid(row = 0, column = 0, sticky = 'ns')
self.roilistScrollbar.grid(row = 0, column = 1, sticky = 'ns')
self.rt_manageFrame.grid(row = 0, column = 1,
sticky = 'nsew')
self.roiselectallButton.grid(row = 0, column = 0, sticky = 'nsew',
pady = 2, padx = 2)
self.roiclearallButton.grid(row = 1, column = 0, sticky = 'nsew',
pady = 2, padx = 2)
self.roideleteallButton.grid(row = 2, column = 0, sticky = 'nsew',
pady = 2, padx = 2)
self.roikeepallButton.grid(row = 3, column = 0, sticky = 'nsew',
pady = 2, padx = 2)
self.roideleteselecButton.grid(row = 4, column = 0, sticky = 'nsew',
pady = 2, padx = 2)
self.roikeepselecButton.grid(row = 5, column = 0, sticky = 'nsew',
pady = 2, padx = 2)
self.rt_bottomFrame.grid(row = 2, column = 0,
sticky = 'nsew')
self.roioptionsButton.grid(row = 0, column = 0,
sticky = 'nsew', padx = 10, pady = 10)
self.roicloseButton.grid(row = 0, column = 1,
sticky = 'nsew', padx = 10, pady = 10)
try:
self._roipath[-1]
ROImanager.setstate_roi(self)
ROIdisplay.show_roi(self)
ROImanager.update_roiList(self)
except AttributeError:
ROImanager.setstate_noroi(self)
def update_roiList(self):
self.roiListbox.delete(0,'end')
for n, item in enumerate(self._roipath):
if hasattr(item, 'get_radius'): text = 'Circle '
elif hasattr(item, 'get_width'): text = 'Rectangle '
self.roiListbox.insert('end', text + str(n+1))
def selectall_roiList(self):
self.roiListbox.selection_clear(0, 'end')
self.roiListbox.selection_set(0, 'end')
ROIdisplay.draw_selec(self, '<Button-1>')
def clearall_roiList(self):
MainDisplay.show_overlay(self)
ROIdisplay.noshow_roi(self)
del self._roipath
del self._roilabel
self.roiListbox.delete(0, 'end')
self._canvas.draw()
def create_options(self):
try: self.ro_Window.destroy()
except AttributeError: pass
self.ro_Window = tk.Toplevel(self)
self.ro_Window.title('ROI data options')
#self.ro_Window.geometry('180x150-250+100')
self.ro_Window.resizable(0,0)
self.roLabelFrame = ttk.LabelFrame(self.ro_Window,
text = 'Select variables to consider')
self.roideledgeCheckbutton = ttk.Checkbutton(self.roLabelFrame,
text = 'Edges',
variable = self._deledge)
self.roidelskelCheckbutton = ttk.Checkbutton(self.roLabelFrame,
text = 'Skeleton',
variable = self._delskel)
self.roidelchainCheckbutton = ttk.Checkbutton(self.roLabelFrame,
text = 'Labelled Chains',
variable = self._delchain)
self.roidelcloseButton = ttk.Button(self.roLabelFrame,
text = 'Close',
command = lambda: self.ro_Window.destroy())
self.ro_Window.rowconfigure(0, weight = 1)
self.ro_Window.columnconfigure(0, weight = 1)
self.roLabelFrame.columnconfigure(0, weight = 1)
self.roLabelFrame.rowconfigure([0,1,2], weight = 1)
self.roLabelFrame.grid(row = 0, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.roideledgeCheckbutton.grid(row = 0, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.roidelskelCheckbutton.grid(row = 1, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.roidelchainCheckbutton.grid(row = 2, column = 0,
sticky = 'nsew', padx = 2, pady = 2)
self.roidelcloseButton.grid(row = 3, column = 0,
sticky = 'nsew', padx = 5, pady = 2)
def keepdelall_roi(self, keep):
self.roiListbox.selection_clear(0, 'end')
self.roiListbox.selection_set(0, 'end')
if keep == 0: ROImanager.deldata_inroi(self)
elif keep == 1: ROImanager.keepdata_inroi(self)
ROIdisplay.noshow_roi(self)
del self._roipath; del self._roilabel
self.roiListbox.delete(0, 'end')
MainDisplay.show_overlay(self)
def keepdelsel_roi(self, keep):
if keep == 0:
ROImanager.deldata_inroi(self)
list_del = self.roiListbox.curselection()
elif keep == 1:
ROImanager.keepdata_inroi(self)
list_del = [item for item in np.arange(self.roiListbox.size())
if item not in self.roiListbox.curselection()]
ROIdisplay.noshow_roi(self)
for item in sorted(list_del, reverse=True):
del self._roipath[item]
del self._roilabel[item]
for n, item in enumerate(self._roilabel):
item.set_text(str(n+1))
MainDisplay.show_overlay(self)
ROIdisplay.show_roi(self)
ROImanager.update_roiList(self)
def keepdata_inroi(self):
mask_all = np.zeros(self._mat_img.shape)
for item in self.roiListbox.curselection():
mask = ROImanager.data_roi(self, self._roipath[item], 1)
mask_all = mask_all+mask
if self._deledge.get() == 1:
try:
self._mask_edge = self._mask_edge*mask_all
except AttributeError: pass
if self._delskel.get() == 1:
try:
self._skeleton_image = self._skeleton_image*mask_all
except AttributeError: pass
if self._delchain.get() == 1:
try:
self._labelled_filaments = self._labelled_filaments*mask_all
except AttributeError: pass
def deldata_inroi(self):
for item in self.roiListbox.curselection():
mask = ROImanager.data_roi(self, self._roipath[item], 0)
if self._deledge.get() == 1:
try:
self._mask_edge = self._mask_edge*mask
except AttributeError: pass
if self._delskel.get() == 1:
try:
self._skeleton_image = self._skeleton_image*mask
except AttributeError: pass
if self._delchain.get() == 1:
try:
self._labelled_filaments = self._labelled_filaments*mask
except AttributeError: pass
def data_roi(self, id_roi, keep):
if keep == 1: mask = np.zeros(self._mat_img.shape)
elif keep == 0: mask = np.ones(self._mat_img.shape)
if hasattr(id_roi, 'get_width'):
x,y = id_roi.get_xy()
width = id_roi.get_width()
height = id_roi.get_height()
mat_roi = np.array(list(product(
range(int(x),int(x+width)),
range(int(y),int(y+height)))))
for point in mat_roi:
mask[point[1], point[0]] = keep
elif hasattr(id_roi, 'get_radius'):
x,y = id_roi.center
r = id_roi.get_radius()
mat_limroi = np.array(list(product(
range(int(x-r), int(x+r)),
range(int(y-r), int(y+r)))))
for point in mat_limroi:
dist = np.sqrt((point[0]-x)**2+(point[1]-y)**2)
if dist<= r : mask[point[1], point[0]] = keep
return mask
def setstate_noroi(self):
self.roiselectallButton.state(['disabled'])
self.roiclearallButton.state(['disabled'])
self.roideleteallButton.state(['disabled'])
self.roikeepallButton.state(['disabled'])
def setstate_roi(self):
self.roiselectallButton.state(['!disabled'])
self.roiclearallButton.state(['!disabled'])
self.roideleteallButton.state(['!disabled'])
self.roikeepallButton.state(['!disabled'])
def close(self):
if self._roicircle == 1: ROImanager.draw_circle(self)
elif self._roirect == 1: ROImanager.draw_rectangle(self)
try: ROIdisplay.noshow_roi(self)
except AttributeError: pass
self.rt_Window.destroy()
self._menucheckROI.set(0)
def connect_mpl(self):
self._cid_press = self._canvas.mpl_connect('button_press_event', lambda event, arg = self: ROIdisplay.on_mousepress(arg, event))
self._cid_drag = self._canvas.mpl_connect('motion_notify_event', lambda event, arg = self: ROIdisplay.on_mousedrag(arg, event))
self._cid_up = self._canvas.mpl_connect('button_release_event', lambda event, arg = self: ROIdisplay.on_mouseup(arg, event))
def disconnect_mpl(self):
self._canvas.mpl_disconnect(self._cid_press)
self._canvas.mpl_disconnect(self._cid_drag)
self._canvas.mpl_disconnect(self._cid_up)
def draw_circle(self):
if self._roirect == 1: ROImanager.draw_rectangle(self)
self._drawmethod = 0
self._cpressed = 0
if self._roicircle == 1:
ROImanager.disconnect_mpl(self)
self.roicircleButton.state(['!pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.RAISED)
self._roicircle = 0
elif self._roicircle == 0:
ROImanager.connect_mpl(self)
self.roicircleButton.state(['pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.SUNKEN)
self._roicircle = 1
def draw_rectangle(self):
if self._roicircle == 1 : ROImanager.draw_circle(self)
self._drawmethod = 1
self._cpressed = 0
if self._roirect == 1:
ROImanager.disconnect_mpl(self)
self.roirectButton.state(['!pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.RAISED)
self._roirect = 0
elif self._roirect == 0:
ROImanager.connect_mpl(self)
self.roirectButton.state(['pressed'])
ttk.Style().configure('SunkableButton.TButton', relief = tk.SUNKEN)
self._roirect = 1
|
py | 1a4458921998e1998ee32fff9a75223013297fa5 | import unittest
from jupytervvp.variablesubstitution import VvpFormatter, NonExistentVariableException, VariableSyntaxException
class VariableSubstitutionTests(unittest.TestCase):
def test_substitute_user_variables_works(self):
input_text = """
INSERT INTO {{ namespace }}_{resultsTable}
SELECT * FROM {{ namespace }}_{tableName}
"""
user_ns = {"resultsTable": "table1", "tableName": "table2"}
formatter = VvpFormatter(input_text, user_ns)
expected_output = """
INSERT INTO {{ namespace }}_table1
SELECT * FROM {{ namespace }}_table2
"""
actual_output = formatter.substitute_user_variables()
assert actual_output == expected_output
def test_substitute_user_variables_undefined_variable_throws(self):
input_text = "{var1} sat on {var2}."
user_ns = {"var1": "The cat"}
formatter = VvpFormatter(input_text, user_ns)
with self.assertRaises(NonExistentVariableException) as exception:
formatter.substitute_user_variables()
assert exception.exception.variable_name == "var2"
def test_substitute_user_variables_ambiguous_throws(self):
input_text = "{var1} sat on {{var2}."
user_ns = {"var1": "The cat"}
formatter = VvpFormatter(input_text, user_ns)
with self.assertRaises(VariableSyntaxException) as exception:
formatter.substitute_user_variables()
assert exception.exception.bad_text == "{{var2}"
def test_prepare_escaped_variables_works_in_simple_case(self):
input_text = "{{ variable }} and {{ another }} with { ignore }"
expected = "{{{{ variable }}}} and {{{{ another }}}} with { ignore }"
assert VvpFormatter._prepare_escaped_variables(input_text) == expected
def test_prepare_escaped_variables_throws_in_ambiguous_case(self):
input_text = "{{ good }} and {also_good} and {{bad_because_no_spaces}}"
user_ns = {"also_good": "dummy_value"}
formatter = VvpFormatter(input_text, user_ns)
with self.assertRaises(VariableSyntaxException) as exception:
formatter.substitute_user_variables()
assert exception.exception.bad_text == "{{bad_because_no_spaces}"
def test_substitute_variables_works_in_simple_case(self):
input_text = "{var1} sat on {var2}."
escaped_text = input_text
user_ns = {"var1": "The cat", "var2": "the mat"}
formatter = VvpFormatter(input_text, user_ns)
formatted = formatter._substitute_variables(escaped_text)
assert formatted == "The cat sat on the mat."
def test_substitute_variables_four_braces_transformed_to_two(self):
input_text = "{var1} sat on {{ sittingObject }}."
escaped_text = "{var1} sat on {{{{ sittingObject }}}}."
user_ns = {"var1": "The cat"}
formatter = VvpFormatter(input_text, user_ns)
formatted = formatter._substitute_variables(escaped_text)
assert formatted == "The cat sat on {{ sittingObject }}."
def test_get_ambiguous_syntax_returns_nothing_if_correct(self):
input_text = "{good} and {{ good }}"
assert VvpFormatter._get_ambiguous_syntax(input_text) is None
def test_get_ambiguous_syntax_finds_missing_spaces(self):
test_data = {
"{{myvar}}": "{{myvar}", # missing space {
"{{myvar": "{{myvar", # missing space; no closing brace match
"myvar}}": "myvar}}", # missing space }
"{ { myvar}}": "{ myvar}}", # only get up to next brace back
"{{ myvar}}": "{ myvar}}", # same even if double braces
"{ {{ myvar}}": "{ myvar}}" # matches missing spaces before nesting
}
for test_input in test_data.keys():
assert VvpFormatter._get_ambiguous_syntax(test_input) == test_data[test_input]
def test_get_ambiguous_syntax_does_not_parse_inside_brackets(self):
test_data = {
"{{ myvar }}": None,
"{{ myvar myvar2 }}": None,
}
for test_input in test_data.keys():
assert VvpFormatter._get_ambiguous_syntax(test_input) == test_data[test_input]
def test_get_ambiguous_syntax_finds_multiple_braces(self):
input_text = "{{{ myvar }}}"
assert VvpFormatter._get_ambiguous_syntax(input_text) == "{{{ myvar }"
def test_get_ambiguous_syntax_finds_nesting(self):
test_data = {
"{ {myvar} }": "{ {myvar}",
"{{ {myvar } }}": "{ {myvar }" # inside double braces not parsed, but nesting detected
}
for input_data in test_data.keys():
assert VvpFormatter._get_ambiguous_syntax(input_data) == test_data[input_data]
|
py | 1a4458923036336c2ce3da0585f2abc64263986f | # Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import os
import pathlib
import typing
from multiprocessing.pool import ThreadPool
import requests
CPU_FRACTION = 0.5
WORKER_THREADS = max(int(os.cpu_count() * CPU_FRACTION), 1)
def download_item(source_target: typing.Tuple[str, pathlib.Path]):
"""ThreadPool.imap_unordered accepts tuples as arguments to the callable"""
source_url, download_path = source_target
if not os.path.exists(download_path):
r = requests.get(source_url, stream=True)
if r.status_code == 200:
with open(download_path, "wb") as f:
for chunk in r:
f.write(chunk)
def download_parallel(source_targets: typing.List[typing.Tuple[str, pathlib.Path]]):
ThreadPool(WORKER_THREADS).imap_unordered(download_item, source_targets)
def main(csv_path: pathlib.Path, source_column: str, download_prefix: str):
with open(csv_path) as csv_file:
csv_reader = csv.DictReader(csv_file, delimiter=",")
download_dir = pathlib.Path(download_prefix)
row_num = 0
source_targets = []
for row in csv_reader:
# Example:
# https://covidtracking.com/screenshots/AL/AL-20210307-230802.png
source_url = row[source_column]
state, filename = row[source_column].split("/")[-2:]
(download_dir / state).mkdir(parents=True, exist_ok=True)
source_targets.append((source_url, download_dir / state / filename))
row_num += 1
if row_num % WORKER_THREADS == 0:
download_parallel(source_targets)
source_targets = []
download_parallel(source_targets)
if __name__ == "__main__":
assert os.environ["CSV_PATH"]
assert os.environ["SOURCE_COLUMN"]
assert os.environ["DOWNLOAD_PREFIX"]
main(
csv_path=pathlib.Path(os.environ["CSV_PATH"]).expanduser(),
source_column=os.environ["SOURCE_COLUMN"],
download_prefix=os.environ["DOWNLOAD_PREFIX"],
)
|
py | 1a4458ab8eb86e254dbeb3657ce77bc1837b883e |
from django import forms
from api.models import JournalEntry, JournalEntryLine, Period, Account
class NewJournalEntryForm(forms.ModelForm):
period = forms.ModelChoiceField(
queryset=Period.objects.all(), required=True, to_field_name="slug")
class Meta:
model = JournalEntry
fields = (
'period', 'date', 'memo',
'is_adjusting_entry', 'is_closing_entry',)
class NewJournalEntryLineForm(forms.ModelForm):
account = forms.ModelChoiceField(
queryset=Account.objects.all(), required=True, to_field_name="slug")
class Meta:
model = JournalEntryLine
fields = ('account', 'type', 'amount',)
|
py | 1a44593314effff83e470db623a1ae6817f47703 | # -*- coding: utf-8 -*-
# Generated by Django 1.11.21 on 2019-11-28 15:27
from __future__ import unicode_literals
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('config', '0003_auto_20191127_2223'),
]
operations = [
migrations.AlterField(
model_name='sidebar',
name='status',
field=models.PositiveIntegerField(choices=[(1, '展示'), (0, '隐藏')], default=1, verbose_name='状态'),
),
]
|
py | 1a445a11f4aa9ec7aa8ab6477a68eef73d331c17 | import sys
from datetime import datetime
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from awsglue.context import GlueContext
from awsglue.dynamicframe import DynamicFrame
from awsglue.job import Job
from pyspark.sql.functions import *
from pyspark.context import SparkContext
from pyspark.sql import SparkSession
from pyspark.sql.types import StringType
#sc = SparkContext()
sc = SparkContext.getOrCreate()
sc.setLogLevel("INFO")
glueContext = GlueContext(sc)
job = Job(glueContext)
args = getResolvedOptions(sys.argv,
['JOB_NAME',
'database_name',
'raw_pose_data_table',
'redshift_conn',
'redshift_role'])
job.init(args['JOB_NAME'], args)
print("Database: {}".format(args['database_name']))
print("Raw Events Table: {}".format(args['raw_pose_data_table']))
# catalog: database and table names
db_name = args['database_name']
raw_pose_data_table = args['raw_pose_data_table']
# Output location
redshift_role = args['redshift_role']
redshift_conn = args['redshift_conn']
redshift_preaction_query = "CREATE TABLE IF NOT EXISTS public.pose_data (msg_id VARCHAR(36),camera_location VARCHAR(20),msg_type VARCHAR(20),identified_action VARCHAR(40),event_time TIMESTAMP,event_time_qs VARCHAR(20),person_count SMALLINT,s3uri VARCHAR(150));"
redshift_options = {
"dbtable": "pose_data",
"database": "default_db",
"aws_iam_role": redshift_role,
"preactions": redshift_preaction_query,
"extracopyoptions": "COMPUPDATE ON"
}
# Helper Function replaces the timestamp into Redshift-compliant format
def applyTransform(rec):
rec["event_time"] = datetime.utcfromtimestamp(rec["timestamp"]).strftime("%m %d, %Y %H:%M:%S")
rec["event_time_qs"] = datetime.utcfromtimestamp(rec["timestamp"]).strftime("%Y-%m-%d %H:%M:%S")
return rec
# Create dynamic frame from the source tables
raw_pose_data = glueContext.create_dynamic_frame.from_catalog(
database=db_name,
table_name=raw_pose_data_table,
# transformation_ctx = "events"
)
print("---- Raw data schema: ----")
raw_pose_data.printSchema()
# Drop the pose field
pose_dropped = raw_pose_data.drop_fields(paths=["pose", "year", "month", "day", "hour"], transformation_ctx="drop_pose")
# Rename some fields to avoid Postgres reserved column name
loc_renamed_df = pose_dropped.rename_field("location", "camera_location", transformation_ctx="rename_location")
act_renamed_df = loc_renamed_df.rename_field("action", "identified_action", transformation_ctx="rename_action")
# Maps a transformation function over each record to change timestamp from epoch to redshift-compliant format
transformed_pose_data = Map.apply(frame = act_renamed_df, f = applyTransform)
final_pose_data = transformed_pose_data.drop_fields(paths=["timestamp"], transformation_ctx="drop_timestamp")
print("---- Processed data schema: ----")
final_pose_data.printSchema()
record_count = final_pose_data.count()
print("Processed record count: {}".format(record_count))
# Avoid errors if Glue Job Bookmark detects no new data to process and records = 0.
if record_count > 0:
glueContext.write_dynamic_frame.from_jdbc_conf(
frame=final_pose_data,
catalog_connection=redshift_conn,
connection_options=redshift_options,
redshift_tmp_dir=args["TempDir"])
else:
print("Glue Job Bookmark detected no new files to process")
job.commit()
|
py | 1a445a25cc61edf6ba07663a70d4676a3e06bce6 | """
https://github.com/tomchristie/django-rest-framework/issues/944
"""
import re
first_cap_re = re.compile('(.)([A-Z][a-z]+)')
all_cap_re = re.compile('([a-z0-9])([A-Z])')
def camelcase_to_underscore(name):
s1 = first_cap_re.sub(r'\1_\2', name)
return all_cap_re.sub(r'\1_\2', s1).lower()
def underscore_to_camelcase(name, lower_first=True):
result = ''.join(char.capitalize() for char in name.split('_'))
if lower_first:
return result[0].lower() + result[1:]
else:
return result
def recursive_key_map(function, data):
if isinstance(data, dict):
new_dict = {}
for key, value in data.items():
if isinstance(key, str):
new_key = function(key)
new_dict[new_key] = recursive_key_map(function, value)
return new_dict
elif isinstance(data, (list, tuple)):
return [recursive_key_map(function, value) for value in data]
else:
return data
|
py | 1a445abf2959176e268aa3d953f8223fa7efb5d6 | """
This file offers the methods to automatically retrieve the graph Vibrio palustris.
The graph is automatically retrieved from the STRING repository.
References
---------------------
Please cite the following if you use the data:
```bib
@article{szklarczyk2019string,
title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets},
author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others},
journal={Nucleic acids research},
volume={47},
number={D1},
pages={D607--D613},
year={2019},
publisher={Oxford University Press}
}
```
"""
from typing import Dict
from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph
from ...ensmallen import Graph # pylint: disable=import-error
def VibrioPalustris(
directed: bool = False,
preprocess: bool = True,
load_nodes: bool = True,
verbose: int = 2,
cache: bool = True,
cache_path: str = "graphs/string",
version: str = "links.v11.5",
**additional_graph_kwargs: Dict
) -> Graph:
"""Return new instance of the Vibrio palustris graph.
The graph is automatically retrieved from the STRING repository.
Parameters
-------------------
directed: bool = False
Wether to load the graph as directed or undirected.
By default false.
preprocess: bool = True
Whether to preprocess the graph to be loaded in
optimal time and memory.
load_nodes: bool = True,
Whether to load the nodes vocabulary or treat the nodes
simply as a numeric range.
verbose: int = 2,
Wether to show loading bars during the retrieval and building
of the graph.
cache: bool = True
Whether to use cache, i.e. download files only once
and preprocess them only once.
cache_path: str = "graphs"
Where to store the downloaded graphs.
version: str = "links.v11.5"
The version of the graph to retrieve.
The available versions are:
- homology.v11.5
- physical.links.v11.5
- links.v11.5
additional_graph_kwargs: Dict
Additional graph kwargs.
Returns
-----------------------
Instace of Vibrio palustris graph.
References
---------------------
Please cite the following if you use the data:
```bib
@article{szklarczyk2019string,
title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets},
author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others},
journal={Nucleic acids research},
volume={47},
number={D1},
pages={D607--D613},
year={2019},
publisher={Oxford University Press}
}
```
"""
return AutomaticallyRetrievedGraph(
graph_name="VibrioPalustris",
repository="string",
version=version,
directed=directed,
preprocess=preprocess,
load_nodes=load_nodes,
verbose=verbose,
cache=cache,
cache_path=cache_path,
additional_graph_kwargs=additional_graph_kwargs
)()
|
py | 1a445ac21ac218f57cdfc900285965379732b6a7 | # (C) Copyright 2020 ECMWF.
#
# This software is licensed under the terms of the Apache Licence Version 2.0
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
# In applying this licence, ECMWF does not waive the privileges and immunities
# granted to it by virtue of its status as an intergovernmental organisation
# nor does it submit to any jurisdiction.
#
import logging
import re
import requests
from .heuristics import Part, parts_heuristics
LOG = logging.getLogger(__name__)
# S3 does not support multiple ranges
class S3Streamer:
def __init__(self, url, request, parts, headers, **kwargs):
self.url = url
self.parts = parts
self.request = request
self.headers = dict(**headers)
self.kwargs = kwargs
def __call__(self, chunk_size):
# See https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObject.html
headers = dict(**self.headers)
# TODO: add assertions
for i, part in enumerate(self.parts):
if i == 0:
request = self.request
else:
offset, length = part
headers["range"] = f"bytes={offset}-{offset+length-1}"
request = requests.get(
self.url,
stream=True,
headers=headers,
**self.kwargs,
)
try:
request.raise_for_status()
except Exception:
LOG.error("URL %s: %s", self.url, request.text)
raise
header = request.headers
bytes = header["content-range"]
LOG.debug("HEADERS %s", header)
m = re.match(r"^bytes (\d+)d?-(\d+)d?/(\d+)d?$", bytes)
assert m, header
start, end, total = int(m.group(1)), int(m.group(2)), int(m.group(3))
assert end >= start
assert start < total
assert end < total
assert start == part.offset, (bytes, part)
# (end + 1 == total) means that we overshoot the end of the file,
# this happens when we round transfer blocks
assert (end == part.offset + part.length - 1) or (end + 1 == total), (
bytes,
part,
)
yield from request.iter_content(chunk_size)
class MultiPartStreamer:
def __init__(self, url, request, parts, boundary, **kwargs):
self.request = request
self.size = int(request.headers["content-length"])
self.encoding = "utf-8"
self.parts = parts
self.boundary = boundary
def __call__(self, chunk_size):
from email.parser import HeaderParser
from requests.structures import CaseInsensitiveDict
header_parser = HeaderParser()
marker = f"--{self.boundary}\r\n".encode(self.encoding)
end_header = b"\r\n\r\n"
end_data = b"\r\n"
end_of_input = f"--{self.boundary}--\r\n".encode(self.encoding)
if chunk_size < len(end_data):
chunk_size = len(end_data)
iter_content = self.request.iter_content(chunk_size)
chunk = next(iter_content)
# Some servers start with \r\n
if chunk[:2] == end_data:
chunk = chunk[2:]
LOG.debug("MARKER %s", marker)
part = 0
while True:
while len(chunk) < max(len(marker), len(end_of_input)):
more = next(iter_content)
assert more is not None
chunk += more
if chunk.find(end_of_input) == 0:
assert part == len(self.parts)
break
pos = chunk.find(marker)
assert pos == 0, (pos, chunk)
chunk = chunk[pos + len(marker) :]
while True:
pos = chunk.find(end_header)
if pos != -1:
break
more = next(iter_content)
assert more is not None
chunk += more
assert len(chunk) < 1024 * 1024
pos += len(end_header)
header = chunk[:pos].decode(self.encoding)
header = CaseInsensitiveDict(header_parser.parsestr(header))
chunk = chunk[pos:]
# kind = header["content-type"]
bytes = header["content-range"]
LOG.debug("HEADERS %s", header)
m = re.match(r"^bytes (\d+)d?-(\d+)d?/(\d+)d?$", bytes)
assert m, header
start, end, total = int(m.group(1)), int(m.group(2)), int(m.group(3))
assert end >= start
assert start < total
assert end < total
size = end - start + 1
assert start == self.parts[part].offset
# (end + 1 == total) means that we overshoot the end of the file,
# this happens when we round transfer blocks
assert (end == self.parts[part].offset + self.parts[part].length - 1) or (
end + 1 == total
), (bytes, self.parts[part])
while size > 0:
if len(chunk) >= size:
yield chunk[:size]
chunk = chunk[size:]
size = 0
else:
yield chunk
size -= len(chunk)
chunk = next(iter_content)
assert chunk.find(end_data) == 0
chunk = chunk[len(end_data) :]
part += 1
class DecodeMultipart:
def __init__(self, url, request, parts, **kwargs):
self.request = request
assert request.status_code == 206, request.status_code
content_type = request.headers["content-type"]
if content_type.startswith("multipart/byteranges; boundary="):
_, boundary = content_type.split("=")
# print("****** MULTI-PART supported by server", url)
self.streamer = MultiPartStreamer(url, request, parts, boundary, **kwargs)
else:
# print("****** MULTI-PART *NOT* supported by server", url)
self.streamer = S3Streamer(url, request, parts, **kwargs)
def __call__(self, chunk_size):
return self.streamer(chunk_size)
class PartFilter:
def __init__(self, parts, positions=None):
self.parts = parts
if positions is None:
positions = [x.offset for x in parts]
self.positions = positions
assert len(self.parts) == len(self.positions)
def __call__(self, streamer):
def execute(chunk_size):
stream = streamer(chunk_size)
chunk = next(stream)
pos = 0
for (_, length), offset in zip(self.parts, self.positions):
offset -= pos
while offset > len(chunk):
pos += len(chunk)
offset -= len(chunk)
chunk = next(stream)
assert chunk
chunk = chunk[offset:]
pos += offset
size = length
while size > 0:
if len(chunk) >= size:
yield chunk[:size]
chunk = chunk[size:]
pos += size
size = 0
else:
yield chunk
size -= len(chunk)
pos += len(chunk)
chunk = next(stream)
# Drain stream, so we don't created error messages in the server's logs
while True:
try:
next(stream)
except StopIteration:
break
return execute
def compress_parts(parts):
last = -1
result = []
# Compress and check
for offset, length in parts:
assert offset >= 0 and length > 0
assert offset >= last, (
f"Offsets and lengths must be in order, and not overlapping:"
f" offset={offset}, end of previous part={last}"
)
if offset == last:
# Compress
offset, prev_length = result.pop()
length += prev_length
result.append((offset, length))
last = offset + length
return tuple(Part(offset, length) for offset, length in result)
def compute_byte_ranges(parts, method, url, statistics_gatherer):
if callable(method):
blocks = method(parts)
else:
blocks = parts_heuristics(method, statistics_gatherer)(parts)
blocks = compress_parts(blocks)
assert len(blocks) > 0
assert len(blocks) <= len(parts)
statistics_gatherer(
"byte-ranges",
method=str(method),
url=url,
parts=parts,
blocks=blocks,
)
i = 0
positions = []
block_offset, block_length = blocks[i]
for offset, length in parts:
while offset > block_offset + block_length:
i += 1
block_offset, block_length = blocks[i]
start = i
while offset + length > block_offset + block_length:
i += 1
block_offset, block_length = blocks[i]
end = i
# Sanity check: assert that each parts is contain in a rounded part
assert start == end
positions.append(
offset - blocks[i].offset + sum(blocks[j].length for j in range(i))
)
return blocks, positions
|
py | 1a445b0ab16526d0b8e13b0b9d8cf239ecde344e | import datetime
import gc
import numpy as np
import os
import pandas as pd
os.environ['KMP_DUPLICATE_LIB_OK']='True' # MacOS fix for libomp issues (https://github.com/dmlc/xgboost/issues/1715)
import lightgbm as lgb
import xgboost as xgb
from sklearn.metrics import log_loss, roc_auc_score
from sklearn.model_selection import KFold, RepeatedKFold, GroupKFold, StratifiedKFold
from sklearn.decomposition import PCA
from sklearn.preprocessing import LabelEncoder
from sklearn.svm import NuSVC
from tqdm import tqdm as tqdm
from kinoa import kinoa
from scipy.stats import ttest_ind, ks_2samp
def dprint(*args, **kwargs):
print("[{}] ".format(datetime.datetime.now().strftime("%Y-%m-%d %H:%M")) + \
" ".join(map(str,args)), **kwargs)
dprint('PID: {}'.format(os.getpid()))
script_id = 0
data_path = '../input/'
id_col = 'encounter_id'
target_col = 'hospital_death'
fillna_with_est = False
train_lgbm = True
train_xgb = False
# train_catboost = False
train = pd.read_csv(os.path.join(data_path, 'training_v2.csv'))
test = pd.read_csv(os.path.join(data_path, 'unlabeled.csv'))
# Drop constant columns
constant_cols = []
for c in train.columns:
if train[c].nunique(dropna=False) < 2:
constant_cols.append(c)
print(f'constant_cols in train: {constant_cols}')
train.drop(constant_cols, axis=1, inplace=True)
test.drop(constant_cols, axis=1, inplace=True)
constant_cols = []
for c in test.columns:
if c != target_col and test[c].nunique(dropna=False) < 2:
constant_cols.append(c)
print(f'constant_cols in test: {constant_cols}')
train.drop(constant_cols, axis=1, inplace=True)
test.drop(constant_cols, axis=1, inplace=True)
# Add estimated variables to the dataset
est_cols = [
{
'name': 'weight',
'fillna': False,
},
{
'name': 'height',
'fillna': False,
},
{
'name': 'apache_4a_hospital_death_prob',
'fillna': False,
},
# {
# 'name': 'apache_4a_icu_death_prob',
# 'fillna': False,
# }, # Worse
# {
# 'name': 'urineoutput_apache',
# 'fillna': False,
# }, # Worse
# {
# 'name': 'bmi',
# 'fillna': False,
# }, # Worse
# {
# 'name': 'glucose_apache',
# 'fillna': False,
# }, # Worse
]
for c in est_cols:
df = pd.read_csv(f'{c["name"]}_est.csv')
train = train.merge(df, on=id_col, how='left')
test = test.merge(df, on=id_col, how='left')
if c['fillna']:
train.loc[train[c['name']].isnull(), c['name']] = train[c['name'] + '_est']
test.loc[test[c['name']].isnull(), c['name']] = test[c['name'] + '_est']
train.drop([c['name'] + '_est'], axis=1, inplace=True)
test.drop([c['name'] + '_est'], axis=1, inplace=True)
dprint(train.shape, test.shape)
# Extract features
def extract_features(df):
df['d1_temp_minmax'] = df['d1_temp_max'] - df['d1_temp_min']
df['d1_glucose_minmax'] = df['d1_glucose_max'] - df['d1_glucose_min']
df['d1_resprate_minmax'] = df['d1_resprate_max'] - df['d1_resprate_min']
df['d1_spo2_minmax'] = df['d1_spo2_max'] - df['d1_spo2_min']
df['d1_platelets_minmax'] = df['d1_platelets_max'] - df['d1_platelets_min']
# df['d1_heartrate_minmax'] = df['d1_heartrate_max'] - df['d1_heartrate_min']
# df['h1_heartrate_minmax'] = df['h1_heartrate_max'] - df['h1_heartrate_min']
# df['h1_temp_minmax'] = df['h1_temp_max'] - df['h1_temp_min']
# df['h1_glucose_minmax'] = df['h1_glucose_max'] - df['h1_glucose_min']
# df['h1_resprate_minmax'] = df['h1_resprate_max'] - df['h1_resprate_min']
# df['h1_spo2_minmax'] = df['h1_spo2_max'] - df['h1_spo2_min']
# df['h1_platelets_minmax'] = df['h1_platelets_max'] - df['h1_platelets_min']
# df['abmi'] = df['age']*100*100*df['weight']/df['height']/df['height']
df['apache_4a_hospicu_death_prob'] = df['apache_4a_hospital_death_prob'] + df['apache_4a_icu_death_prob']
# df['apache_4a_hospicu_death_prob_m'] = df['apache_4a_hospital_death_prob'] * df['apache_4a_icu_death_prob']
df['age_group'] = df['age']//5
df['weight_group'] = df['weight']//5
# df['hr_a'] = df['d1_heartrate_max']/df['age']
# df['hr_w'] = df['d1_heartrate_max']/df['weight']
if fillna_with_est:
df['bmi'] = 100*100*df['weight']/df['height']/df['height']
else:
df['bmi_w_est'] = 100*100*df['weight_est']/df['height']/df['height']
df['bmi_h_est'] = 100*100*df['weight']/df['height_est']/df['height_est']
df['bmi_wh_est'] = 100*100*df['weight_est']/df['height_est']/df['height_est']
# df['agi'] = df['weight']/df['age']
# df['hrw'] = df['d1_heartrate_max']/df['weight']
# cols = ['temp_apache', 'd1_temp_max', 'd1_temp_min', 'h1_temp_max', 'h1_temp_min']
# for c in cols:
# df[c] = df[c]/36.6
pass
extract_features(train)
extract_features(test)
train['is_test'] = 0
test['is_test'] = 1
df_all = pd.concat([train, test], axis=0)
dprint('Label Encoder...')
cols = [f_ for f_ in df_all.columns if df_all[f_].dtype == 'object']
print(cols)
cnt = 0
for c in tqdm(cols):
if c != id_col:
# print(c)
le = LabelEncoder()
df_all[c] = le.fit_transform(df_all[c].astype(str))
cnt += 1
del le
dprint('len(cols) = {}'.format(cnt))
gfs = ['hospital_id', 'icu_id', 'age_group', 'apache_3j_diagnosis', 'gender', 'ethnicity', 'apache_3j_bodysystem'] #+ \
# ['hospital_admit_source', 'icu_admit_source', 'icu_stay_type', 'icu_type', 'apache_2_bodysystem']
ffs = ['apache_4a_hospital_death_prob', 'apache_4a_icu_death_prob', 'bmi']
# ffs = ['apache_4a_hospital_death_prob', 'apache_4a_icu_death_prob', 'bmi', 'bmi_w_est', 'bmi_h_est', 'bmi_wh_est', 'weight', 'height']
for gf in gfs:
for ff in ffs:
g = df_all.groupby(gf)[ff].agg(['mean', 'std', 'min', 'max']).reset_index()
g.rename({'mean': f'{gf}_{ff}__mean', 'std': f'{gf}_{ff}__std', 'min': f'{gf}_{ff}__min', 'max': f'{gf}_{ff}__max'}, axis=1, inplace=True)
df_all = df_all.merge(g, on=gf, how='left')
train = df_all.loc[df_all['is_test'] == 0].drop(['is_test'], axis=1)
test = df_all.loc[df_all['is_test'] == 1].drop(['is_test'], axis=1)
del df_all
gc.collect()
features = list(train.columns.values)
features.remove(id_col)
features.remove(target_col)
# Build the model
cnt = 0
p_buf = []
n_splits = 4
n_repeats = 1
kf = RepeatedKFold(
n_splits=n_splits,
n_repeats=n_repeats,
random_state=0)
err_buf = []
undersampling = 0
lgb_params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'auc',
'max_depth': 8,
'learning_rate': 0.05,
'feature_fraction': 0.85,
'bagging_fraction': 0.85,
'bagging_freq': 5,
'lambda_l1': 1.0,
'lambda_l2': 10.0,
'verbose': -1,
'num_threads': 4,
}
xgb_params = {
'max_depth': 8,
'eta': 0.05,
'objective': 'binary:logistic',
'subsample': 0.85,
'colsample_bytree': 0.85,
'alpha': 1,
'lambda': 1,
'eval_metric': 'auc',
'nthread': 4,
}
cols_to_drop = [
id_col,
target_col,
# 'patient_id',
]
# cols_to_use = features
X = train.drop(cols_to_drop, axis=1, errors='ignore')
y = train[target_col].values
X_test = test.drop(cols_to_drop, axis=1, errors='ignore')
id_test = test[id_col].values
# # Feature selection
# cols_to_drop = []
# for c in X.columns:
# # t = ttest_ind(
# # X[c].fillna(X[c].mean()),
# # X_test[c].fillna(X_test[c].mean()))
# t = ttest_ind(
# X[c].dropna(),
# X_test[c].dropna())
# # print(c, t)
# if t[1] < 0.001:
# print(c, t)
# cols_to_drop.append(c)
# print(f'Dropping after statistical tests: {cols_to_drop}')
# X = X.drop(cols_to_drop, axis=1, errors='ignore')
# X_test = X_test.drop(cols_to_drop, axis=1, errors='ignore')
n_features = X.shape[1]
dprint(f'n_features: {n_features}')
p_test = []
for fold_i, (train_index, valid_index) in enumerate(kf.split(X, y)):
x_train = X.iloc[train_index]
x_valid = X.iloc[valid_index]
y_train = y[train_index]
y_valid = y[valid_index]
x_test = X_test.copy()
# # Frequency encoding
# encoding = x_train.groupby('height').size()
# encoding = encoding/len(x_train)
# x_train['height_fenc'] = x_train['height'].map(encoding)
# x_valid['height_fenc'] = x_valid['height'].map(encoding)
# x_test['height_fenc'] = x_test['height'].map(encoding)
feature_names = list(x_train.columns)
p_valid = []
# LGBM
if train_lgbm:
params = lgb_params.copy()
# pca = PCA(n_components=144)
# x_train = pca.fit_transform(x_train)
# x_valid = pca.transform(x_valid)
# x_test_pca = pca.transform(x_test)
# feature_names = ['pca_{}'.format(i) for i in range(x_train.shape[1])]
lgb_train = lgb.Dataset(
x_train,
y_train,
feature_name=feature_names,
)
lgb_train.raw_data = None
lgb_valid = lgb.Dataset(
x_valid,
y_valid,
)
lgb_valid.raw_data = None
model = lgb.train(
params,
lgb_train,
num_boost_round=5000,
valid_sets=[lgb_valid],
early_stopping_rounds=100,
verbose_eval=100,
)
if fold_i == 0:
importance = model.feature_importance()
model_fnames = model.feature_name()
tuples = sorted(zip(model_fnames, importance), key=lambda x: x[1])[::-1]
tuples = [x for x in tuples if x[1] > 0]
print('Important features:')
for i in range(20):
if i < len(tuples):
print(tuples[i])
else:
break
del importance, model_fnames, tuples
p_lgbm = model.predict(x_valid, num_iteration=model.best_iteration)
p_valid.append(p_lgbm)
err = roc_auc_score(y_valid, p_lgbm)
# err_buf.append(err)
dprint('{} LGBM AUC: {:.4f}'.format(fold_i, err))
p_lgbm_test = model.predict(x_test[feature_names], num_iteration=model.best_iteration)
p_test.append(p_lgbm_test)
# XGB
if train_xgb:
params = xgb_params.copy()
dtrain = xgb.DMatrix(x_train, label=y_train)
dvalid = xgb.DMatrix(x_valid, label=y_valid)
dtest = xgb.DMatrix(x_test[feature_names])
evallist = [(dvalid, 'eval')]
bst = xgb.train(
params,
dtrain,
5000,
evallist,
early_stopping_rounds=100,
verbose_eval=100
)
p_xgb = bst.predict(dvalid, ntree_limit=bst.best_iteration)
p_valid.append(p_xgb)
err = roc_auc_score(y_valid, p_xgb)
# err_buf.append(err)
dprint('{} XGB AUC: {:.4f}'.format(fold_i, err))
p_xgb_test = bst.predict(dtest, ntree_limit=bst.best_iteration)
p_test.append(p_xgb_test)
# Ensemble evaluation
if len(p_valid) > 1:
p_ens = np.mean(p_valid, axis=0)
err = roc_auc_score(y[valid_index], p_ens)
dprint('{} ENS AUC: {:.4f}'.format(fold_i, err))
err_buf.append(err)
# x_train = X.iloc[train_index]
# x_valid = X.iloc[valid_index]
# model = NuSVC(
# probability=True,
# kernel='poly',
# degree=4,
# gamma='auto',
# random_state=0,
# nu=0.6,
# coef0=0.05)
# model.fit(x_train, y[train_index])
# p_nusvc = model.predict_proba(x_valid)[:, 1]
# err = roc_auc_score(y[valid_index], p_nusvc)
# print('{} {} NuSVC AUC: {}'.format(v, cnt + 1, err))
# p_nusvc_test = model.predict_proba(x_test)[:, 1]
# p_mean = 0.1*p_lgbm + 0.9*p_nusvc
# err = roc_auc_score(y[valid_index], p_mean)
# print('{} {} ENS AUC: {}'.format(v, cnt + 1, err))
# p = 0.1*p_lgbm_test + 0.9*p_nusvc_test
del model, lgb_train, lgb_valid
gc.collect
# break
err_mean = np.mean(err_buf)
err_std = np.std(err_buf)
dprint('AUC: {:.4f} +/- {:.4f}'.format(err_mean, err_std))
test_preds = np.mean(p_test, axis=0)
submission = pd.DataFrame()
submission[id_col] = id_test
submission[target_col] = test_preds
submission.to_csv('submission{}.csv'.format(script_id), index=False)
# Save backup
files = [
'model{}.py'.format(script_id),
'model{}.log'.format(script_id),
'submission{}.csv'.format(script_id),
# 'feature_importance{}.txt'.format(script_id),
# 'train_weights{}.csv'.format(script_id),
]
experiment_name = 'Exp{}'.format(script_id)
params = {}
params['n_models'] = cnt
scores = {}
scores['auc_mean'] = err_mean
scores['auc_std'] = err_std
scores['kaggle'] = np.nan
other = {}
other['n_features'] = n_features
other['n_splits'] = n_splits
comments = ''
kinoa.save(
files,
experiment_name=experiment_name,
params=params,
scores=scores,
other=other,
comments=comments,
working_dir='',
sort_log_by='experiment_datetime',
sort_log_ascending=True,
columns_order={'scores.kaggle': -1, 'scores.auc_std': -2, 'scores.auc_mean': -3}
)
dprint('Done!')
|
py | 1a445bd52d5dab35f277587c3ab52c17aa65bd27 | # Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sets the IAM policy for the repository."""
from googlecloudsdk.api_lib.source.repos import sourcerepo
from googlecloudsdk.calliope import base
from googlecloudsdk.command_lib.iam import iam_util
@base.ReleaseTracks(base.ReleaseTrack.GA, base.ReleaseTrack.ALPHA,
base.ReleaseTrack.BETA)
class SetIamPolicy(base.UpdateCommand):
"""Set the IAM policy for the named repository.
This command sets the IAM policy for the given repository from the
policy in the provided file.
## EXAMPLES
To set the IAM policy, issue the following command:
$ {command} REPOSITORY_NAME POLICY_FILE
"""
@staticmethod
def Args(parser):
parser.add_argument(
'name', metavar='REPOSITORY_NAME', help='Name of the repository.')
parser.add_argument(
'policy_file',
help=('JSON or YAML file with IAM policy. '
'See https://cloud.google.com/resource-manager/'
'reference/rest/Shared.Types/Policy'))
parser.display_info.AddFormat('default')
def Run(self, args):
"""Sets the IAM policy for the repository.
Args:
args: argparse.Namespace, the arguments this command is run with.
Returns:
(sourcerepo_v1_messsages.Policy) The IAM policy.
Raises:
ToolException: on project initialization errors.
"""
res = sourcerepo.ParseRepo(args.name)
source = sourcerepo.Source()
policy = iam_util.ParseYamlorJsonPolicyFile(args.policy_file,
source.messages.Policy)
result = source.SetIamPolicy(res, policy)
iam_util.LogSetIamPolicy(res.Name(), 'repo')
return result
|
py | 1a445c7c51b1df71fad7e08991b176f57ba3dff2 | # -*- coding: utf-8 -*-
# Copyright (c) 2015, indictrans and contributors
# For license information, please see license.txt
from __future__ import unicode_literals
import frappe
from frappe.model.document import Document
class Standard(Document):
pass
|
py | 1a445ca6f37cd4d17a568d56c7337c882a76710d | import deepdanbooru.model.layers
import deepdanbooru.model.losses
from .resnet import create_resnet_152
from .resnet import create_resnet_custom_v1
from .resnet import create_resnet_custom_v2
from .resnet import create_resnet_custom_v3
|
py | 1a445d3d15930aae9bbac97556a2aaad60e21d07 | """ Twitter credentials """
consumer_key = ""
consumer_secret = ""
access_token = ""
access_token_secret = ""
|
py | 1a445e9f3575f081a565b7009e58b2d363b2ec22 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2008-2019 Edgewall Software
# All rights reserved.
#
# This software is licensed as described in the file COPYING, which
# you should have received as part of this distribution. The terms
# are also available at http://trac.edgewall.org/wiki/TracLicense.
#
# This software consists of voluntary contributions made by many
# individuals. For the exact contribution history, see the revision
# history and logs, available at http://trac.edgewall.org/log/.
"""functional_tests
While unittests work well for testing facets of an implementation, they fail to
provide assurances that the user-visible functions work in practice. Here, we
complement the unittests with functional tests that drive the system as a user
would to verify user visible functionality. These functional tests are run as
part of the unittests.
So, we use Twill to verify Trac's functionality as served by tracd (and in the
future, other frontends).
Unlike most unittests, we setup a single fixture against which we run all the
testcases. This is for two reasons: Primarily, that provides us with a more
complex set of data to test against and thus more room for triggering bugs.
Secondarily, the cost of setting up a new Trac environment and Subversion
repository is significant, so recreating the fixture for each test would be
very costly.
There are two primary objects involved in the testing, the
FunctionalTestEnvironment and the FunctionalTester.
FunctionalTestEnvironment represents the Trac environment, the Subversion
repository, and the server. The server will be run on a random local port in
the range 8000-8999. A subdirectory named 'tracenv' will be created containing
the Trac environment, Subversion repository, and the user authentication
information. An 'admin' user is created and given TRAC_ADMIN privs early in
the testing. There are other users added as well. All accounts are setup with
a password equalling the username. The test environment is left behind after
the testing has completed to assist in debugging.
FunctionalTester provides code reuse for the testcases to allow a higher-level
description of the more complicated bugs. For example, creating a new ticket
is the first step in regression testing many things, so FunctionalTester
provides a create_ticket() method. That method is written as if it were itself
a testcase for creating a ticket, so there is a testcase that simply calls that
method, and other testcases that use it as a higher-level step don't have to
worry about basic issues such as if the ticket was successfully created.
Requirements:
- Twill (http://twill.idyll.org/)
- lxml for XHTML validation (optional)
"""
import os
import unittest
from pkg_resources import parse_version
import trac
# Handle missing twill so we can print a useful 'SKIP'
# message. We import subprocess first to allow customizing it on Windows
# to select pywin32 in favor of _subprocess for low-level calls. If Twill
# is allowed to load first, its (unmodified) copy will always be loaded.
import subprocess
from trac.tests.functional.better_twill import b, tc, twill
try:
# This is the first indicator of whether the subversion bindings are
# correctly installed.
from svn import core
has_svn = True
except ImportError:
has_svn = False
from trac.test import TestSetup, TestCaseSetup
internal_error = 'Trac detected an internal error:'
trac_source_tree = os.path.normpath(os.path.join(trac.__file__, '..', '..'))
if twill:
from trac.tests.functional.testenv import FunctionalTestEnvironment
from trac.tests.functional.svntestenv import SvnFunctionalTestEnvironment
from trac.tests.functional.tester import FunctionalTester
class FunctionalTestSuite(TestSetup):
"""TestSuite that provides a test fixture containing a
FunctionalTestEnvironment and a FunctionalTester.
"""
if has_svn:
env_class = SvnFunctionalTestEnvironment
else:
env_class = FunctionalTestEnvironment
tester_class = FunctionalTester
def __init__(self):
if parse_version(twill.__version__) != parse_version('0.9'):
raise ImportError("Twill 0.9 is required. Found version %s."
% twill.__version__)
super(FunctionalTestSuite, self).__init__()
def setUp(self, port=None):
"""If no port is specified, use a semi-random port and subdirectory
'testenv'; but if a port is specified, use that port and
subdirectory 'testenv<portnum>'.
"""
if port is None:
try:
port = int(os.getenv('TRAC_TEST_PORT'))
except (TypeError, ValueError):
pass
env_path = os.getenv('TRAC_TEST_ENV_PATH')
if not env_path:
env_name = 'testenv%s' % (port or '')
env_path = os.path.join(trac_source_tree, env_name)
else:
env_path += str(port or '')
if port is None:
port = 8000 + os.getpid() % 1000
baseurl = "http://127.0.0.1:%s" % port
self._testenv = self.env_class(env_path, port, baseurl)
# functional-testing.log gets the twill output
self.functional_test_log = \
os.path.join(env_path, 'functional-testing.log')
twill.set_output(open(self.functional_test_log, 'w'))
self._testenv.start()
self._tester = self.tester_class(baseurl)
self.fixture = (self._testenv, self._tester)
self._testenv.set_config('project', 'name', 'Functional Tests')
def tearDown(self):
self._testenv.stop()
class FunctionalTestCaseSetup(TestCaseSetup):
"""Convenience class to expand the fixture into the _testenv and
_tester attributes."""
def setUp(self):
self._testenv, self._tester = self.fixture
class FunctionalTwillTestCaseSetup(FunctionalTestCaseSetup):
failureException = twill.errors.TwillAssertionError
else:
# We're going to have to skip the functional tests
class FunctionalTestSuite(TestSetup):
def __init__(self):
raise ImportError("Twill not installed")
class FunctionalTwillTestCaseSetup(object):
pass
class FunctionalTestCaseSetup(object):
pass
# Twill's find command accepts regexes; some convenient but complex regexes
# & regex factories are provided here (only one so far):
def regex_owned_by(username):
return '(Owned by:(<[^>]*>|\\n| )*%s)' % username
def functionalSuite():
suite = FunctionalTestSuite()
return suite
def test_suite():
try:
suite = functionalSuite()
import trac.tests.functional.testcases
trac.tests.functional.testcases.functionalSuite(suite)
import trac.versioncontrol.tests
trac.versioncontrol.tests.functionalSuite(suite)
import trac.ticket.tests
trac.ticket.tests.functionalSuite(suite)
import trac.mimeview.tests
trac.mimeview.tests.functionalSuite(suite)
import trac.prefs.tests
trac.prefs.tests.functionalSuite(suite)
import trac.wiki.tests
trac.wiki.tests.functionalSuite(suite)
import trac.timeline.tests
trac.timeline.tests.functionalSuite(suite)
import trac.admin.tests
trac.admin.tests.functionalSuite(suite)
import trac.search.tests
trac.search.tests.functionalSuite(suite)
# The db tests should be last since the backup test occurs there.
import trac.db.tests
trac.db.tests.functionalSuite(suite)
except ImportError as e:
print("SKIP: functional tests (%s)" % e)
# No tests to run, provide an empty suite.
suite = unittest.TestSuite()
return suite
if __name__ == '__main__':
unittest.main(defaultTest='test_suite')
|
py | 1a445ecc8a9448d8d09b4e2ca99bbd4d3a3245b1 | # coding=utf-8
# *** WARNING: this file was generated by the Pulumi SDK Generator. ***
# *** Do not edit by hand unless you're certain you know what you are doing! ***
import warnings
import pulumi
import pulumi.runtime
from typing import Any, Mapping, Optional, Sequence, Union
from ... import _utilities, _tables
from . import outputs
from ._inputs import *
__all__ = ['MyWorkbook']
class MyWorkbook(pulumi.CustomResource):
def __init__(__self__,
resource_name: str,
opts: Optional[pulumi.ResourceOptions] = None,
category: Optional[pulumi.Input[str]] = None,
display_name: Optional[pulumi.Input[str]] = None,
id: Optional[pulumi.Input[str]] = None,
identity: Optional[pulumi.Input[pulumi.InputType['ManagedIdentityArgs']]] = None,
kind: Optional[pulumi.Input[str]] = None,
location: Optional[pulumi.Input[str]] = None,
name: Optional[pulumi.Input[str]] = None,
resource_group_name: Optional[pulumi.Input[str]] = None,
resource_name_: Optional[pulumi.Input[str]] = None,
serialized_data: Optional[pulumi.Input[str]] = None,
source_id: Optional[pulumi.Input[str]] = None,
storage_uri: Optional[pulumi.Input[str]] = None,
tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None,
type: Optional[pulumi.Input[str]] = None,
version: Optional[pulumi.Input[str]] = None,
__props__=None,
__name__=None,
__opts__=None):
"""
An Application Insights private workbook definition.
:param str resource_name: The name of the resource.
:param pulumi.ResourceOptions opts: Options for the resource.
:param pulumi.Input[str] category: Workbook category, as defined by the user at creation time.
:param pulumi.Input[str] display_name: The user-defined name of the private workbook.
:param pulumi.Input[str] id: Azure resource Id
:param pulumi.Input[pulumi.InputType['ManagedIdentityArgs']] identity: Identity used for BYOS
:param pulumi.Input[str] kind: The kind of workbook. Choices are user and shared.
:param pulumi.Input[str] location: Resource location
:param pulumi.Input[str] name: Azure resource name
:param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive.
:param pulumi.Input[str] resource_name_: The name of the Application Insights component resource.
:param pulumi.Input[str] serialized_data: Configuration of this particular private workbook. Configuration data is a string containing valid JSON
:param pulumi.Input[str] source_id: Optional resourceId for a source resource.
:param pulumi.Input[str] storage_uri: BYOS Storage Account URI
:param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags
:param pulumi.Input[str] type: Azure resource type
:param pulumi.Input[str] version: This instance's version of the data model. This can change as new features are added that can be marked private workbook.
"""
if __name__ is not None:
warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning)
resource_name = __name__
if __opts__ is not None:
warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning)
opts = __opts__
if opts is None:
opts = pulumi.ResourceOptions()
if not isinstance(opts, pulumi.ResourceOptions):
raise TypeError('Expected resource options to be a ResourceOptions instance')
if opts.version is None:
opts.version = _utilities.get_version()
if opts.id is None:
if __props__ is not None:
raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource')
__props__ = dict()
if category is None:
raise TypeError("Missing required property 'category'")
__props__['category'] = category
if display_name is None:
raise TypeError("Missing required property 'display_name'")
__props__['display_name'] = display_name
__props__['id'] = id
__props__['identity'] = identity
__props__['kind'] = kind
__props__['location'] = location
__props__['name'] = name
if resource_group_name is None:
raise TypeError("Missing required property 'resource_group_name'")
__props__['resource_group_name'] = resource_group_name
if resource_name_ is None:
raise TypeError("Missing required property 'resource_name_'")
__props__['resource_name'] = resource_name_
if serialized_data is None:
raise TypeError("Missing required property 'serialized_data'")
__props__['serialized_data'] = serialized_data
__props__['source_id'] = source_id
__props__['storage_uri'] = storage_uri
__props__['tags'] = tags
__props__['type'] = type
__props__['version'] = version
__props__['time_modified'] = None
__props__['user_id'] = None
alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:insights/latest:MyWorkbook"), pulumi.Alias(type_="azure-nextgen:insights/v20150501:MyWorkbook")])
opts = pulumi.ResourceOptions.merge(opts, alias_opts)
super(MyWorkbook, __self__).__init__(
'azure-nextgen:insights/v20201020:MyWorkbook',
resource_name,
__props__,
opts)
@staticmethod
def get(resource_name: str,
id: pulumi.Input[str],
opts: Optional[pulumi.ResourceOptions] = None) -> 'MyWorkbook':
"""
Get an existing MyWorkbook resource's state with the given name, id, and optional extra
properties used to qualify the lookup.
:param str resource_name: The unique name of the resulting resource.
:param pulumi.Input[str] id: The unique provider ID of the resource to lookup.
:param pulumi.ResourceOptions opts: Options for the resource.
"""
opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id))
__props__ = dict()
return MyWorkbook(resource_name, opts=opts, __props__=__props__)
@property
@pulumi.getter
def category(self) -> pulumi.Output[str]:
"""
Workbook category, as defined by the user at creation time.
"""
return pulumi.get(self, "category")
@property
@pulumi.getter(name="displayName")
def display_name(self) -> pulumi.Output[str]:
"""
The user-defined name of the private workbook.
"""
return pulumi.get(self, "display_name")
@property
@pulumi.getter
def identity(self) -> pulumi.Output[Optional['outputs.ManagedIdentityResponse']]:
"""
Identity used for BYOS
"""
return pulumi.get(self, "identity")
@property
@pulumi.getter
def kind(self) -> pulumi.Output[Optional[str]]:
"""
The kind of workbook. Choices are user and shared.
"""
return pulumi.get(self, "kind")
@property
@pulumi.getter
def location(self) -> pulumi.Output[Optional[str]]:
"""
Resource location
"""
return pulumi.get(self, "location")
@property
@pulumi.getter
def name(self) -> pulumi.Output[Optional[str]]:
"""
Azure resource name
"""
return pulumi.get(self, "name")
@property
@pulumi.getter(name="serializedData")
def serialized_data(self) -> pulumi.Output[str]:
"""
Configuration of this particular private workbook. Configuration data is a string containing valid JSON
"""
return pulumi.get(self, "serialized_data")
@property
@pulumi.getter(name="sourceId")
def source_id(self) -> pulumi.Output[Optional[str]]:
"""
Optional resourceId for a source resource.
"""
return pulumi.get(self, "source_id")
@property
@pulumi.getter(name="storageUri")
def storage_uri(self) -> pulumi.Output[Optional[str]]:
"""
BYOS Storage Account URI
"""
return pulumi.get(self, "storage_uri")
@property
@pulumi.getter
def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]:
"""
Resource tags
"""
return pulumi.get(self, "tags")
@property
@pulumi.getter(name="timeModified")
def time_modified(self) -> pulumi.Output[str]:
"""
Date and time in UTC of the last modification that was made to this private workbook definition.
"""
return pulumi.get(self, "time_modified")
@property
@pulumi.getter
def type(self) -> pulumi.Output[Optional[str]]:
"""
Azure resource type
"""
return pulumi.get(self, "type")
@property
@pulumi.getter(name="userId")
def user_id(self) -> pulumi.Output[str]:
"""
Unique user id of the specific user that owns this private workbook.
"""
return pulumi.get(self, "user_id")
@property
@pulumi.getter
def version(self) -> pulumi.Output[Optional[str]]:
"""
This instance's version of the data model. This can change as new features are added that can be marked private workbook.
"""
return pulumi.get(self, "version")
def translate_output_property(self, prop):
return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop
def translate_input_property(self, prop):
return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
|
py | 1a445f1f4d4b4b8a4c67b013d34b3547ddbf9418 | from .utils import *
from .QFunction import *
import torch
from torch import nn
import torch.nn.functional as F
from torch.distributions.normal import Normal
class MLP_SquashedGaussianActor(nn.Module):
def __init__(self,
observation_dim,
action_dim,
hidden_sizes,
activation,
act_limit):
super().__init__()
self.log_std_max = 2
self.log_std_min = -20
self.net = create_mlp([observation_dim] + list(hidden_sizes),
activation,
activation)
self.mu_layer = nn.Linear(hidden_sizes[-1], action_dim)
self.log_std_layer = nn.Linear(hidden_sizes[-1], action_dim)
self.act_limit = act_limit
def forward(self, observation, deterministic=False, with_log_prob=True):
net_out = self.net(observation)
# computer the \mu and \sigma of the gaussian
mu = self.mu_layer(net_out)
log_std = self.log_std_layer(net_out)
log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max)
std = torch.exp(log_std)
# Pre-squash distribution and sample
pi_distribution = Normal(mu, std)
if deterministic:
# only used for evaluating policy at test time.
pi_action = mu
else:
pi_action = pi_distribution.rsample()
if with_log_prob:
# Appendix C
log_pro_pi = pi_distribution.log_prob(pi_action).sum(dim=-1)
log_pro_pi -= (2 * (np.log(2) - pi_action - F.softplus(-2*pi_action))).sum(dim=-1)
else:
log_pro_pi = None
pi_action = torch.tanh(pi_action)
pi_action = self.act_limit * pi_action
return pi_action, log_pro_pi |
py | 1a445f33681fc3d32f2aed3f2cbdbb26bb86c824 | import fnmatch
import string
class Match:
ACCEPT = 1
REJECT = 2
UNKNOWN = 3
class PathFilter(object):
class Rule(object):
def __init__(self, pattern, match_action):
assert match_action in (Match.ACCEPT, Match.REJECT)
self.pattern = pattern
self.match_action = match_action
def match(self, path):
if fnmatch.fnmatch(path, self.pattern):
return self.match_action
return Match.UNKNOWN
def __init__(self, rules):
self._rules = rules
def match(self, path):
"""Tests the path against all rules in this filter"""
for rule in self._rules:
if rule.match(path) == Match.ACCEPT:
return True
elif rule.match(path) == Match.REJECT:
return False
return True
@staticmethod
def from_rule_list(rule_list):
"""Read from a dict. `version` is ignored"""
rules = []
for rule_string in rule_list:
rule_string = rule_string.strip()
rule_comps = rule_string.split()
match_action_string = rule_comps[0]
if match_action_string == '+':
match_action = Match.ACCEPT
elif match_action_string == '-':
match_action = Match.REJECT
else:
raise ValueError("unknown match type: %s" %
(match_action_string))
pattern = string.join(rule_comps[1:], ' ')
rules.append(PathFilter.Rule(pattern, match_action))
return PathFilter(rules)
|
py | 1a445f52a5c20d432fcd55697e328cf545221194 | # coding: utf-8
from __future__ import unicode_literals
from .common import InfoExtractor
class NRLTVIE(InfoExtractor):
_VALID_URL = r"https?://(?:www\.)?nrl\.com/tv(/[^/]+)*/(?P<id>[^/?&#]+)"
_TEST = {
"url": "https://www.nrl.com/tv/news/match-highlights-titans-v-knights-862805/",
"info_dict": {
"id": "YyNnFuaDE6kPJqlDhG4CGQ_w89mKTau4",
"ext": "mp4",
"title": "Match Highlights: Titans v Knights",
},
"params": {
# m3u8 download
"skip_download": True,
"format": "bestvideo",
},
}
def _real_extract(self, url):
display_id = self._match_id(url)
webpage = self._download_webpage(url, display_id)
q_data = self._parse_json(
self._html_search_regex(r'(?s)q-data="({.+?})"', webpage, "player data"),
display_id,
)
ooyala_id = q_data["videoId"]
return self.url_result(
"ooyala:" + ooyala_id, "Ooyala", ooyala_id, q_data.get("title")
)
|
py | 1a445f563f31407c11cf5716b652e059becea387 | #The simplest way to work with zlib requires holding all of the data to be compressed or decompressed in memory.
import zlib
import binascii
original_data = b'This is the original text.'
print('Original :', len(original_data), original_data)
compressed = zlib.compress(original_data)
print('Compressed :', len(compressed),
binascii.hexlify(compressed))
decompressed = zlib.decompress(compressed)
print('Decompressed :', len(decompressed), decompressed)
#示例演示了少量数据的压缩版本可能比未压缩版本大。
# 虽然实际结果取决于输入数据,但观察小数据集的压缩开销很有意思
"""
output:
Original : 26 b'This is the original text.'
Compressed : 32 b'789c0bc9c82c5600a2928c5485fca2ccf4ccbcc41c8592d48a123d007f2f097e'
Decompressed : 26 b'This is the original text.'
""" |
py | 1a445fb5096457cc7f5cb27b6d30b25bcf85a876 | """
WSGI config for project project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/
"""
import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "project.settings")
from django.core.wsgi import get_wsgi_application
application = get_wsgi_application()
|
py | 1a44608b719d7955615597e24f021d482f6073d6 | # !/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, unicode_literals
# -------------------------------------------#
# author: sean lee #
# email: [email protected] #
#--------------------------------------------#
"""MIT License
Copyright (c) 2018 Sean
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE."""
import sys
if sys.version_info[0] == 2:
reload(sys)
sys.setdefaultencoding('utf8')
range = xrange
import cPickle as pickle
else:
import pickle
import io
from ..module import Module
from ..utils import native_content
class Radical(Module):
__notsave__ = []
__onlysave__ = ['dictionary']
def __init__(self):
self.dictionary = {}
def train(self, fpath):
for fname in self.filelist(fpath):
with io.open(fname, 'r', encoding="utf-8") as f:
for line in f:
line = line.strip()
arr = line.split(',')
if len(arr) != 2:
continue
self.dictionary[arr[0]] = arr[1]
def radical(self, char):
if char in self.dictionary:
return self.dictionary[char]
return None |
py | 1a4462a8fce96d5ff4656ecb81f5cf2f06748b9a | #!/usr/bin/env python
import matplotlib.pyplot as plt
import theanets
from utils import load_mnist, plot_layers, plot_images
e = theanets.Experiment(
theanets.Classifier,
layers=(784, 1024, 256, 64, 10),
train_batches=100,
)
# first, run an unsupervised layerwise pretrainer.
train, valid, _ = load_mnist()
e.train(train, valid, optimize='pretrain', patience=1, min_improvement=0.1)
# second, run a supervised trainer on the classifier model.
train, valid, _ = load_mnist(labels=True)
e.train(train, valid)
plot_layers([e.network.find(i, 0) for i in (1, 2, 3)], tied_weights=True)
plt.tight_layout()
plt.show()
|
py | 1a4463f66f39b5235466f4f77ee94220e21dbcae | import logging
from astropy.table import Table
from astropy.coordinates import SkyCoord
from astropy import units as u
from astropy.io import fits
import numpy as np
import math
import matplotlib.pyplot as plt
from LCOWCSLookupProvider import getWCSForcamera, transformList
from gaiaastrometryservicetools import astrometryServiceRefineWCSFromCatalog
from SourceCatalogProvider import e91SourceCatalogProvider, SEPSourceCatalogProvider
__author__ = '[email protected]'
log = logging.getLogger(__name__)
class CatalogMatcher:
'''
Class to match two input catalogs:
sourcecatalog is a catalog of sources extracted from an image, in coordinates of pixels (x,y)
referencecatalog is a catalog of on-sky objects based on existing surveys, in coordinates of (RA, Dec)
WCS is a astropy world coordiante system.
the source catalog shall be a astropy Table with the columns 'x', 'y'
the reference catalog shall be a astropy Table with the columns 'RA', 'Dec'
'''
@staticmethod
def createMatchedCatalogForLCO(imagepath, referenceCatalogProvider, matchradius=5, minobjects=1e20,
undistort=False):
''' Automatically load source catalog from an LCO e91 processed file, fetch a reference catalog, and return
a matchedcatalog object.'''
if ('e91.fits' in imagepath):
sourceCatalogProvider = e91SourceCatalogProvider()
else:
sourceCatalogProvider = SEPSourceCatalogProvider()
sourceCatalog, image_wcs = sourceCatalogProvider.get_source_catalog(imagepath)
if (sourceCatalog is None) or (image_wcs is None):
return None
if len(sourceCatalog['x']) < minobjects:
log.info("Not enough stars found in source catalog (%d). %d are required. Skipping this one." % (
len(sourceCatalog['x']), minobjects))
return None
ra = image_wcs.wcs.crval[0]
dec = image_wcs.wcs.crval[1]
# TODO: get camera identifier, date obs, etc
exptime = None
filter = None
camera = None
dateobs = None
azimuth = None
altitude = None
hdu = fits.open(imagepath)
# TODO: We are opening and closing fits files quite a lot here, might be not most efficient.
# Go searching for meta data, in multiple extension ssince we might have a .fz compressed file :-(
for extension in [0, 1]:
if 'EXPTIME' in hdu[extension].header:
exptime = hdu[extension].header['EXPTIME']
if ('FILTER') in hdu[extension].header:
filter = hdu[extension].header['FILTER']
if 'DATE-OBS' in hdu[extension].header:
dateobs = hdu[extension].header['DATE-OBS']
if 'INSTRUME' in hdu[extension].header:
camera = hdu[extension].header['INSTRUME']
if 'AZIMUTH' in hdu[extension].header:
azimuth = hdu[extension].header['AZIMUTH']
if 'ALTITUDE' in hdu[extension].header:
altitude = hdu[extension].header['ALTITUDE']
hdu.close()
# remove the distortion from the input catalog if requested and refine the WCS.
if undistort:
sip = getWCSForcamera(camera, image_wcs.wcs.crpix[0], image_wcs.wcs.crpix[1])
if sip is not None:
log.info("undistorting image")
u, v = transformList(sourceCatalog['x'], sourceCatalog['y'], sip)
sourceCatalog['x'] = u
sourceCatalog['y'] = v
dedistortedwcs = astrometryServiceRefineWCSFromCatalog(sourceCatalog, image_wcs)
if dedistortedwcs is not None:
image_wcs = dedistortedwcs
else:
log.warning("astrometry.net did not find a solution on the undistorted image. Using original wcs")
# fetch a reference catalog:
referenceCatalog = referenceCatalogProvider.get_reference_catalog(ra, dec, 0.25)
matchedCatalog = CatalogMatcher()
matchedCatalog.matchCatalogs(sourceCatalog, referenceCatalog, image_wcs, matchradius)
matchedCatalog.exptime = exptime
matchedCatalog.filter = filter
matchedCatalog.dateobs = dateobs
matchedCatalog.camera = camera
matchedCatalog.altitude = altitude
matchedCatalog.azimuth = azimuth
matchedCatalog.azimuth = azimuth
return matchedCatalog
def matchCatalogs(self, source=None, reference=None, wcs=None, matchradius=5):
''' match input catalogs.
If no new catalogs are given, the match will be done on the chached catalogs of the class.
'''
self.matchedCatalog = None
# Cache management
if wcs is not None:
self.wcs = wcs
if source is not None:
self.source = source
if reference is not None:
self.reference = reference
# transform source catalog to RADEC
try:
sourcera, sourcedec = self.wcs.all_pix2world(self.source['x'], self.source['y'], 1)
sourceSkyCoords = SkyCoord(ra=sourcera * u.degree, dec=sourcedec * u.degree)
referenceSkyCoords = SkyCoord(ra=self.reference['RA'] * u.degree, dec=self.reference['Dec'] * u.degree)
idx, d2d, d3d = referenceSkyCoords.match_to_catalog_sky(sourceSkyCoords)
distance = referenceSkyCoords.separation(sourceSkyCoords[idx]).arcsecond
matchcondition = (distance < matchradius)
self.matchedCatalog = Table([self.source['x'][idx][matchcondition],
self.source['y'][idx][matchcondition],
self.reference['RA'][matchcondition],
self.reference['Dec'][matchcondition],
distance[matchcondition]
],
names=['x', 'y', 'RA', 'Dec', 'distarcsec']
)
except:
log.exception("Error while transforming and matching")
nummatched = len(self.matchedCatalog) if self.matchedCatalog is not None else 0
log.info("MatchCatalogs found {: 10d} pairs at search radius {: 6.3f}".format(nummatched, matchradius))
return self.matchedCatalog
def updateWCSandUpdateRMS(self, usewcs=None):
''' transform the pixel list with a new wcs and get the distance based merrit function of that sollution.
Note that when this is called, there should be already a matched catalog avaiable. '''
if usewcs is not None:
self.wcs = usewcs
# log.debug ("WCS updated for MatchedCatalog")
else:
pass
# log.info ("WCS not updated")
sourcera, sourcedec = self.wcs.all_pix2world(self.matchedCatalog['x'], self.matchedCatalog['y'], 1)
sourceSkyCoords = SkyCoord(ra=sourcera * u.degree, dec=sourcedec * u.degree)
referenceSkyCoords = SkyCoord(ra=self.matchedCatalog['RA'] * u.degree,
dec=self.matchedCatalog['Dec'] * u.degree)
self.matchedCatalog['distarcsec'] = referenceSkyCoords.separation(sourceSkyCoords).arcsecond
result = math.sqrt(np.sum(self.matchedCatalog['distarcsec'] ** 2) / len(self.matchedCatalog['distarcsec']))
# log.info ("WCS CRVAL % 12.9f % 12.9f , Source RA / Dec [0] %f %f Merrit %f" % (self.wcs.wcs.crval[0], self.wcs.wcs.crval[1], sourcera[0], sourcedec[0], result))
return result
def diagnosticPlots(self, basename):
''' Generate some helpful diagnostics for the distortion.
'''
if not self.matchedCatalog:
return
sourcera, sourcedec = self.wcs.all_pix2world(self.matchedCatalog['x'], self.matchedCatalog['y'], 1)
deccor = math.cos(self.wcs.wcs.crval[1] * math.pi / 180)
plt.subplot(projection=self.wcs)
plt.plot(sourcera, sourcedec, '.')
plt.plot(self.matchedCatalog['RA'], self.matchedCatalog['Dec'], '.')
plt.xlabel("RA")
plt.ylabel("DEC")
plt.title(basename)
plt.savefig("%s_RADEC.png" % basename)
plt.close()
plt.clf()
plt.subplot(4, 1, 1)
plt.title(basename)
plt.plot(self.matchedCatalog['x'] - self.wcs.wcs.crpix[0],
(self.matchedCatalog['RA'] - sourcera) * 3600. / deccor, '.')
plt.xlabel("X [pixels]")
plt.ylabel("residual RA [\'\']")
plt.ylim([-1.75, 1.75])
plt.subplot(4, 1, 2)
plt.plot(self.matchedCatalog['x'] - self.wcs.wcs.crpix[0], (self.matchedCatalog['Dec'] - sourcedec) * 3600.,
'.')
plt.xlabel("X [pixels]")
plt.ylabel("resiudal Dec [\'\']")
plt.ylim([-1.75, 1.75])
plt.subplot(4, 1, 3)
plt.plot(self.matchedCatalog['y'] - self.wcs.wcs.crpix[1],
(self.matchedCatalog['RA'] - sourcera) * 3600. / deccor, '.')
plt.xlabel("Y [pixels]")
plt.ylabel("residual ra [\'\']")
plt.ylim([-1.75, 1.75])
plt.subplot(4, 1, 4)
plt.plot(self.matchedCatalog['y'] - self.wcs.wcs.crpix[1], (self.matchedCatalog['Dec'] - sourcedec) * 3600.,
'.')
plt.xlabel("Y [pixels]")
plt.ylabel("residual dec [\'\']")
plt.ylim([-1.75, 1.75])
plt.savefig("%s_residuals.png" % basename, dpi=200)
plt.close()
# plt.clf()
# plt.plot(np.sqrt((self.matchedCatalog['y'] - self.wcs.wcs.crpix[1]) ** 2 + (
# self.matchedCatalog['x'] - self.wcs.wcs.crpix[0]) ** 2),
# self.matchedCatalog['distarcsec'], '.')
# plt.xlabel("radius [pixels]")
# plt.ylabel("Distance [\'\']")
# plt.savefig("%s_radialdist.png" % basename)
|
py | 1a446411f6b84d3d6ffb31e7864845cc2c343b65 | #!/usr/bin/env python3
# Copyright (c) 2017-2019 The BitPal Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test the listsinceblock RPC."""
from test_framework.test_framework import BitPalTestFramework
from test_framework.messages import BIP125_SEQUENCE_NUMBER
from test_framework.util import (
assert_array_result,
assert_equal,
assert_raises_rpc_error,
connect_nodes,
)
from decimal import Decimal
class ListSinceBlockTest(BitPalTestFramework):
def set_test_params(self):
self.num_nodes = 4
self.setup_clean_chain = True
def skip_test_if_missing_module(self):
self.skip_if_no_wallet()
def run_test(self):
# All nodes are in IBD from genesis, so they'll need the miner (node2) to be an outbound connection, or have
# only one connection. (See fPreferredDownload in net_processing)
connect_nodes(self.nodes[1], 2)
self.nodes[2].generate(101)
self.sync_all()
self.test_no_blockhash()
self.test_invalid_blockhash()
self.test_reorg()
self.test_double_spend()
self.test_double_send()
self.double_spends_filtered()
def test_no_blockhash(self):
self.log.info("Test no blockhash")
txid = self.nodes[2].sendtoaddress(self.nodes[0].getnewaddress(), 1)
blockhash, = self.nodes[2].generate(1)
blockheight = self.nodes[2].getblockheader(blockhash)['height']
self.sync_all()
txs = self.nodes[0].listtransactions()
assert_array_result(txs, {"txid": txid}, {
"category": "receive",
"amount": 1,
"blockhash": blockhash,
"blockheight": blockheight,
"confirmations": 1,
})
assert_equal(
self.nodes[0].listsinceblock(),
{"lastblock": blockhash,
"removed": [],
"transactions": txs})
assert_equal(
self.nodes[0].listsinceblock(""),
{"lastblock": blockhash,
"removed": [],
"transactions": txs})
def test_invalid_blockhash(self):
self.log.info("Test invalid blockhash")
assert_raises_rpc_error(-5, "Block not found", self.nodes[0].listsinceblock,
"42759cde25462784395a337460bde75f58e73d3f08bd31fdc3507cbac856a2c4")
assert_raises_rpc_error(-5, "Block not found", self.nodes[0].listsinceblock,
"0000000000000000000000000000000000000000000000000000000000000000")
assert_raises_rpc_error(-8, "blockhash must be of length 64 (not 11, for 'invalid-hex')", self.nodes[0].listsinceblock,
"invalid-hex")
assert_raises_rpc_error(-8, "blockhash must be hexadecimal string (not 'Z000000000000000000000000000000000000000000000000000000000000000')", self.nodes[0].listsinceblock,
"Z000000000000000000000000000000000000000000000000000000000000000")
def test_reorg(self):
'''
`listsinceblock` did not behave correctly when handed a block that was
no longer in the main chain:
ab0
/ \
aa1 [tx0] bb1
| |
aa2 bb2
| |
aa3 bb3
|
bb4
Consider a client that has only seen block `aa3` above. It asks the node
to `listsinceblock aa3`. But at some point prior the main chain switched
to the bb chain.
Previously: listsinceblock would find height=4 for block aa3 and compare
this to height=5 for the tip of the chain (bb4). It would then return
results restricted to bb3-bb4.
Now: listsinceblock finds the fork at ab0 and returns results in the
range bb1-bb4.
This test only checks that [tx0] is present.
'''
self.log.info("Test reorg")
# Split network into two
self.split_network()
# send to nodes[0] from nodes[2]
senttx = self.nodes[2].sendtoaddress(self.nodes[0].getnewaddress(), 1)
# generate on both sides
nodes1_last_blockhash = self.nodes[1].generate(6)[-1]
nodes2_first_blockhash = self.nodes[2].generate(7)[0]
self.log.debug("nodes[1] last blockhash = {}".format(nodes1_last_blockhash))
self.log.debug("nodes[2] first blockhash = {}".format(nodes2_first_blockhash))
self.sync_all(self.nodes[:2])
self.sync_all(self.nodes[2:])
self.join_network()
# listsinceblock(nodes1_last_blockhash) should now include tx as seen from nodes[0]
# and return the block height which listsinceblock now exposes since a5e7795.
transactions = self.nodes[0].listsinceblock(nodes1_last_blockhash)['transactions']
found = next(tx for tx in transactions if tx['txid'] == senttx)
assert_equal(found['blockheight'], self.nodes[0].getblockheader(nodes2_first_blockhash)['height'])
def test_double_spend(self):
'''
This tests the case where the same UTXO is spent twice on two separate
blocks as part of a reorg.
ab0
/ \
aa1 [tx1] bb1 [tx2]
| |
aa2 bb2
| |
aa3 bb3
|
bb4
Problematic case:
1. User 1 receives BCC in tx1 from utxo1 in block aa1.
2. User 2 receives BCC in tx2 from utxo1 (same) in block bb1
3. User 1 sees 2 confirmations at block aa3.
4. Reorg into bb chain.
5. User 1 asks `listsinceblock aa3` and does not see that tx1 is now
invalidated.
Currently the solution to this is to detect that a reorg'd block is
asked for in listsinceblock, and to iterate back over existing blocks up
until the fork point, and to include all transactions that relate to the
node wallet.
'''
self.log.info("Test double spend")
self.sync_all()
# Split network into two
self.split_network()
# share utxo between nodes[1] and nodes[2]
utxos = self.nodes[2].listunspent()
utxo = utxos[0]
privkey = self.nodes[2].dumpprivkey(utxo['address'])
self.nodes[1].importprivkey(privkey)
# send from nodes[1] using utxo to nodes[0]
change = '%.8f' % (float(utxo['amount']) - 1.0003)
recipient_dict = {
self.nodes[0].getnewaddress(): 1,
self.nodes[1].getnewaddress(): change,
}
utxo_dicts = [{
'txid': utxo['txid'],
'vout': utxo['vout'],
}]
txid1 = self.nodes[1].sendrawtransaction(
self.nodes[1].signrawtransactionwithwallet(
self.nodes[1].createrawtransaction(utxo_dicts, recipient_dict))['hex'])
# send from nodes[2] using utxo to nodes[3]
recipient_dict2 = {
self.nodes[3].getnewaddress(): 1,
self.nodes[2].getnewaddress(): change,
}
self.nodes[2].sendrawtransaction(
self.nodes[2].signrawtransactionwithwallet(
self.nodes[2].createrawtransaction(utxo_dicts, recipient_dict2))['hex'])
# generate on both sides
lastblockhash = self.nodes[1].generate(3)[2]
self.nodes[2].generate(4)
self.join_network()
self.sync_all()
# gettransaction should work for txid1
assert self.nodes[0].gettransaction(txid1)['txid'] == txid1, "gettransaction failed to find txid1"
# listsinceblock(lastblockhash) should now include txid1, as seen from nodes[0]
lsbres = self.nodes[0].listsinceblock(lastblockhash)
assert any(tx['txid'] == txid1 for tx in lsbres['removed'])
# but it should not include 'removed' if include_removed=false
lsbres2 = self.nodes[0].listsinceblock(blockhash=lastblockhash, include_removed=False)
assert 'removed' not in lsbres2
def test_double_send(self):
'''
This tests the case where the same transaction is submitted twice on two
separate blocks as part of a reorg. The former will vanish and the
latter will appear as the true transaction (with confirmations dropping
as a result).
ab0
/ \
aa1 [tx1] bb1
| |
aa2 bb2
| |
aa3 bb3 [tx1]
|
bb4
Asserted:
1. tx1 is listed in listsinceblock.
2. It is included in 'removed' as it was removed, even though it is now
present in a different block.
3. It is listed with a confirmation count of 2 (bb3, bb4), not
3 (aa1, aa2, aa3).
'''
self.log.info("Test double send")
self.sync_all()
# Split network into two
self.split_network()
# create and sign a transaction
utxos = self.nodes[2].listunspent()
utxo = utxos[0]
change = '%.8f' % (float(utxo['amount']) - 1.0003)
recipient_dict = {
self.nodes[0].getnewaddress(): 1,
self.nodes[2].getnewaddress(): change,
}
utxo_dicts = [{
'txid': utxo['txid'],
'vout': utxo['vout'],
}]
signedtxres = self.nodes[2].signrawtransactionwithwallet(
self.nodes[2].createrawtransaction(utxo_dicts, recipient_dict))
assert signedtxres['complete']
signedtx = signedtxres['hex']
# send from nodes[1]; this will end up in aa1
txid1 = self.nodes[1].sendrawtransaction(signedtx)
# generate bb1-bb2 on right side
self.nodes[2].generate(2)
# send from nodes[2]; this will end up in bb3
txid2 = self.nodes[2].sendrawtransaction(signedtx)
assert_equal(txid1, txid2)
# generate on both sides
lastblockhash = self.nodes[1].generate(3)[2]
self.nodes[2].generate(2)
self.join_network()
self.sync_all()
# gettransaction should work for txid1
tx1 = self.nodes[0].gettransaction(txid1)
assert_equal(tx1['blockheight'], self.nodes[0].getblockheader(tx1['blockhash'])['height'])
# listsinceblock(lastblockhash) should now include txid1 in transactions
# as well as in removed
lsbres = self.nodes[0].listsinceblock(lastblockhash)
assert any(tx['txid'] == txid1 for tx in lsbres['transactions'])
assert any(tx['txid'] == txid1 for tx in lsbres['removed'])
# find transaction and ensure confirmations is valid
for tx in lsbres['transactions']:
if tx['txid'] == txid1:
assert_equal(tx['confirmations'], 2)
# the same check for the removed array; confirmations should STILL be 2
for tx in lsbres['removed']:
if tx['txid'] == txid1:
assert_equal(tx['confirmations'], 2)
def double_spends_filtered(self):
'''
`listsinceblock` was returning conflicted transactions even if they
occurred before the specified cutoff blockhash
'''
self.log.info("Test spends filtered")
spending_node = self.nodes[2]
dest_address = spending_node.getnewaddress()
tx_input = dict(
sequence=BIP125_SEQUENCE_NUMBER, **next(u for u in spending_node.listunspent()))
rawtx = spending_node.createrawtransaction(
[tx_input], {dest_address: tx_input["amount"] - Decimal("0.00051000"),
spending_node.getrawchangeaddress(): Decimal("0.00050000")})
signedtx = spending_node.signrawtransactionwithwallet(rawtx)
orig_tx_id = spending_node.sendrawtransaction(signedtx["hex"])
original_tx = spending_node.gettransaction(orig_tx_id)
double_tx = spending_node.bumpfee(orig_tx_id)
# check that both transactions exist
block_hash = spending_node.listsinceblock(
spending_node.getblockhash(spending_node.getblockcount()))
original_found = False
double_found = False
for tx in block_hash['transactions']:
if tx['txid'] == original_tx['txid']:
original_found = True
if tx['txid'] == double_tx['txid']:
double_found = True
assert_equal(original_found, True)
assert_equal(double_found, True)
lastblockhash = spending_node.generate(1)[0]
# check that neither transaction exists
block_hash = spending_node.listsinceblock(lastblockhash)
original_found = False
double_found = False
for tx in block_hash['transactions']:
if tx['txid'] == original_tx['txid']:
original_found = True
if tx['txid'] == double_tx['txid']:
double_found = True
assert_equal(original_found, False)
assert_equal(double_found, False)
if __name__ == '__main__':
ListSinceBlockTest().main()
|
py | 1a4464387108a20c892852d21b294ba59787c60f | import vigra
import numpy
import opengm
from seglib import cgp2d
from seglib.clustering.ce_multicut import *
img = "img/37073.jpg"
img = "img/42049.jpg"
binCount=15
sigma = 1.5
img = numpy.squeeze(vigra.readImage(img))#[0:75,0:75,:]
lab = vigra.colors.transform_RGB2Lab(img)
labels ,nseg= vigra.analysis.slicSuperpixels(lab,10.0,25)
labels = vigra.analysis.labelImage(labels).astype(numpy.uint64)
cgp,tgrid = cgp2d.cgpFromLabels(labels)
imgBig = vigra.sampling.resize(lab,cgp.shape)
grad = numpy.squeeze(vigra.filters.gaussianGradientMagnitude(imgBig,4.5))+0.1
print "accumulate cell hist"
hist = cgp.accumulateCellHistogram(cellType=2,image=img,binCount=binCount,sigma=sigma)
hist = hist.reshape([cgp.numCells(2),-1]).astype(numpy.float32)
print hist.shape
#hist=vigra.taggedView(hist,"xc")
#hist=hist.transposeToVigraOrder()
hist=numpy.array(hist)
print "construkt"
hlo = cgp2d.HighLevelObjective(cgp)
print "set features"
hlo.setRegionFeatures(hist)
|
py | 1a4465ec431621cdfc061249446635b77dfbd39b | # -*- coding: utf-8 -*-
"""
spectrum
"""
# import standard libraries
import os
from colour.colorimetry.spectrum import MultiSpectralDistributions
from colour.models.rgb.datasets import srgb
# import third party libraries
import numpy as np
from colour import SpectralShape, XYZ_to_RGB, XYZ_to_xyY
from colour.models import RGB_COLOURSPACE_BT709
from sympy import Symbol, diff
from colour.utilities import tstack
# import my libraries
import plot_utility as pu
import spectrum_calculation as scl
from spectrum_calculation import VALID_WAVELENGTH_ST, VALID_WAVELENGTH_ED,\
REFRECT_100P_SD
import color_space as cs
import test_pattern_generator2 as tpg
import transfer_functions as tf
# information
__author__ = 'Toru Yoshihara'
__copyright__ = 'Copyright (C) 2021 - Toru Yoshihara'
__license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause'
__maintainer__ = 'Toru Yoshihara'
__email__ = 'toru.ver.11 at-sign gmail.com'
__all__ = []
def load_camera_spectral_sensitivity_database():
sony_ss = scl.get_sony_nex5_ss()
fig, ax1 = pu.plot_1_graph(
fontsize=18,
figsize=(10, 6),
bg_color=(0.96, 0.96, 0.96),
graph_title="SONY NEX-5N",
graph_title_size=None,
xlabel="Wavelength [nm]", ylabel="???",
axis_label_size=None,
legend_size=14,
xlim=[380, 730],
ylim=None,
xtick=None,
ytick=None,
xtick_size=None, ytick_size=None,
linewidth=2,
minor_xtick_num=None,
minor_ytick_num=None)
ax1.plot(
sony_ss.wavelengths, sony_ss.values[..., 0], label="R",
color=pu.RED, alpha=1.0)
ax1.plot(
sony_ss.wavelengths, sony_ss.values[..., 1], label="G",
color=pu.GREEN, alpha=1.0)
ax1.plot(
sony_ss.wavelengths, sony_ss.values[..., 2], label="B",
color=pu.BLUE, alpha=1.0)
pu.show_and_save(
fig=fig, legend_loc='upper right', save_fname="./img/sony_ssd.png")
# pu.show_and_save(
# fig=fig, legend_loc='upper right', save_fname=None)
def plot_camera_gamut():
sony_ss = scl.get_sony_nex5_ss()
sony_csd = scl.CameraSpectralDistribution(sony_ss)
primaries, white = sony_csd.calc_primary_xyY_and_white_xyY()
print(primaries)
print(white)
fig, ax1 = pu.plot_1_graph(
fontsize=18,
figsize=(10, 10),
bg_color=(0.96, 0.96, 0.96),
graph_title="SONY NEX-5N",
graph_title_size=None,
xlabel="x", ylabel="y",
axis_label_size=None,
legend_size=14,
xlim=None,
ylim=None,
xtick=None,
ytick=None,
xtick_size=None, ytick_size=None,
linewidth=2,
minor_xtick_num=None,
minor_ytick_num=None)
ax1.plot(primaries[..., 0], primaries[..., 1], label="Gamut")
ax1.plot(white[0], white[1], 'x', label="Gamut", ms=10, mew=3)
pu.show_and_save(
fig=fig, legend_loc='upper right', save_fname="./img/sony_gamut.png")
def debug_least_square_method():
var_str_list = [
['m11', 'm12', 'm13'],
['m21', 'm22', 'm23'],
['m31', 'm32', 'm33']]
mtx = [[Symbol(var_str_list[i][j]) for j in range(3)] for i in range(3)]
xx = Symbol('xx')
yy = Symbol('yy')
zz = Symbol('zz')
rr = Symbol('rr')
gg = Symbol('gg')
bb = Symbol('bb')
jr = (xx - (mtx[0][0] * rr + mtx[0][1] * gg + mtx[0][2] * bb)) ** 2
jg = (yy - (mtx[1][0] * rr + mtx[1][1] * gg + mtx[1][2] * bb)) ** 2
jb = (zz - (mtx[2][0] * rr + mtx[2][1] * gg + mtx[2][2] * bb)) ** 2
jj = jr + jg + jb
m11_diff = diff(jr, mtx[0][0])
m12_diff = diff(jr, mtx[0][1])
m13_diff = diff(jr, mtx[0][2])
print(m11_diff)
print(m12_diff)
print(m13_diff)
def debug_cct_matrix():
color_temp = 6504
light_sd = scl.calc_illuminant_d_spectrum(color_temp)
color_checker_sd = scl.load_color_checker_spectrum()
camera_ss = scl.get_sony_nex5_ss()
cmfs = scl.get_cie_2_1931_cmf()
cct_matrix = scl.calc_cct_matrix_from_color_checker(camera_ss=camera_ss)
camera_rgb = scl.calc_tristimulus_values_from_multi_spectrum(
src_sd=light_sd, ref_sd=color_checker_sd, ss=camera_ss)
measure_xyz = scl.calc_xyz_from_multi_spectrum(
src_sd=light_sd, ref_sd=color_checker_sd, cmfs=cmfs)
print(cct_matrix)
camera_xyz_using_mtx = scl.apply_matrix(src=camera_rgb, mtx=cct_matrix)
true_rgb = XYZ_to_RGB(
measure_xyz, cs.D65, cs.D65, RGB_COLOURSPACE_BT709.matrix_XYZ_to_RGB)
estimated_rgb = XYZ_to_RGB(
camera_xyz_using_mtx, cs.D65, cs.D65,
RGB_COLOURSPACE_BT709.matrix_XYZ_to_RGB)
true_rgb_srgb = tf.oetf(np.clip(true_rgb, 0.0, 1.0), tf.SRGB)
est_rgb_srgb = tf.oetf(np.clip(estimated_rgb, 0.0, 1.0), tf.SRGB)
img = tpg.plot_color_checker_image(
rgb=true_rgb_srgb, rgb2=est_rgb_srgb)
tpg.img_wirte_float_as_16bit_int("./img/cct_mtx.png", img)
# primaries
xmin = 0.0
xmax = 0.8
ymin = -0.4
ymax = 1.2
primary_rgb = np.array([
[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [1, 1, 1]])
primary_xyz = scl.apply_matrix(primary_rgb, cct_matrix)
primary_xyY = XYZ_to_xyY(primary_xyz)
bt709_gamut, _ = tpg.get_primaries(name=cs.BT709)
bt2020_gamut, _ = tpg.get_primaries(name=cs.BT2020)
dci_p3_gamut, _ = tpg.get_primaries(name=cs.P3_D65)
xy_image = tpg.get_chromaticity_image(
xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax)
fig, ax1 = pu.plot_1_graph(
fontsize=20,
figsize=(8, 14),
bg_color=(0.96, 0.96, 0.96),
graph_title="Chromaticity Diagram?",
graph_title_size=None,
xlabel="x", ylabel="y",
axis_label_size=None,
legend_size=17,
xlim=[xmin, xmax],
ylim=[ymin, ymax],
xtick=[0.1 * x for x in range(9)],
ytick=[0.1 * x - 0.4 for x in range(17)],
xtick_size=None, ytick_size=None,
linewidth=3,
minor_xtick_num=None,
minor_ytick_num=None)
cmf_xy = tpg._get_cmfs_xy()
ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', label=None)
ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1],
c=pu.RED, label="BT.709", lw=2, alpha=0.8)
ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1],
c=pu.YELLOW, label="BT.2020", lw=2, alpha=0.8)
ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1],
c=pu.BLUE, label="DCI-P3", lw=2, alpha=0.8)
ax1.plot(
(cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]),
'-k', label=None)
ax1.plot(
primary_xyY[:4, 0], primary_xyY[:4, 1], color='k', label="SONY NEX-5N")
ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax))
pu.show_and_save(
fig=fig, legend_loc='upper right',
save_fname="img/camera_chroma_test.png")
def calc_camera_gamut_from_ss():
color_temp = 6504
light_sd = scl.REFRECT_100P_SD
camera_ss = scl.get_sony_nex5_ss()
cmfs = scl.get_cie_2_1931_cmf()
cr = camera_ss.values[..., 0]
cg = camera_ss.values[..., 1]
cb = camera_ss.values[..., 2]
rr = cmfs.values[..., 0]
gg = cmfs.values[..., 1]
bb = cmfs.values[..., 2]
r_base = cr - cr*cg - cr*cb
g_base = cg - cg*cr - cg*cb
b_base = cb - cb*cr - cb*cg
rx = np.sum(r_base * rr)
ry = np.sum(r_base * gg)
rz = np.sum(r_base * bb)
gx = np.sum(g_base * rr)
gy = np.sum(g_base * gg)
gz = np.sum(g_base * bb)
bx = np.sum(b_base * rr)
by = np.sum(b_base * gg)
bz = np.sum(b_base * bb)
r_xyY = XYZ_to_xyY(tstack([rx, ry, rz]))
g_xyY = XYZ_to_xyY(tstack([gx, gy, gz]))
b_xyY = XYZ_to_xyY(tstack([bx, by, bz]))
print(r_xyY)
print(g_xyY)
print(b_xyY)
def plot_camera_capture_xy_value():
wavelengths = REFRECT_100P_SD.wavelengths
cmfs = scl.get_cie_2_1931_cmf()
length = len(wavelengths)
spectrum_array = np.zeros((length, length))
for idx in range(length):
spectrum_array[idx, idx] = 1
data = dict(zip(wavelengths, spectrum_array))
src_sd = MultiSpectralDistributions(data=data)
camera_ss = scl.get_sony_nex5_ss()
camera_rgb = scl.calc_tristimulus_values_from_multi_spectrum(
src_sd=REFRECT_100P_SD, ref_sd=src_sd, ss=camera_ss)
cct_matrix = scl.calc_cct_matrix_from_color_checker(camera_ss=camera_ss)
camera_xyz_using_mtx = scl.apply_matrix(src=camera_rgb, mtx=cct_matrix)
camera_xyY = XYZ_to_xyY(camera_xyz_using_mtx)
# ok_idx = camera_xyY[..., 2] != 0
ok_idx = (wavelengths >= 400) & (wavelengths <= 720)
ok_wavelength = wavelengths[ok_idx]
ok_xyY = camera_xyY[ok_idx]
linear_rgb_from_line_spectrum = scl.calc_linear_rgb_from_spectrum(
src_sd=REFRECT_100P_SD, ref_sd=src_sd, cmfs=cmfs,
color_space=RGB_COLOURSPACE_BT709)
linear_rgb_from_line_spectrum = linear_rgb_from_line_spectrum[ok_idx]
linear_rgb_from_line_spectrum =\
linear_rgb_from_line_spectrum / np.max(linear_rgb_from_line_spectrum,
-1)[0]
# primaries
xmin = 0.0
xmax = 0.8
ymin = -0.4
ymax = 1.2
primary_rgb = np.array([
[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [1, 1, 1]])
primary_xyz = scl.apply_matrix(primary_rgb, cct_matrix)
primary_xyY = XYZ_to_xyY(primary_xyz)
bt709_gamut, _ = tpg.get_primaries(name=cs.BT709)
bt2020_gamut, _ = tpg.get_primaries(name=cs.BT2020)
dci_p3_gamut, _ = tpg.get_primaries(name=cs.P3_D65)
xy_image = tpg.get_chromaticity_image(
xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax)
fig, ax1 = pu.plot_1_graph(
fontsize=20,
figsize=(8, 14),
bg_color=(0.96, 0.96, 0.96),
graph_title="Chromaticity Diagram?",
graph_title_size=None,
xlabel="x", ylabel="y",
axis_label_size=None,
legend_size=17,
xlim=[xmin, xmax],
ylim=[ymin, ymax],
xtick=[0.1 * x for x in range(9)],
ytick=[0.1 * x - 0.4 for x in range(17)],
xtick_size=None, ytick_size=None,
linewidth=3,
minor_xtick_num=None,
minor_ytick_num=None)
cmf_xy = tpg._get_cmfs_xy()
ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', label=None)
ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1],
c=pu.RED, label="BT.709", lw=2, alpha=0.8)
ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1],
c=pu.YELLOW, label="BT.2020", lw=2, alpha=0.8)
ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1],
c=pu.BLUE, label="DCI-P3", lw=2, alpha=0.8)
ax1.plot(
(cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]),
'-k', label=None)
ax1.plot(
primary_xyY[:4, 0], primary_xyY[:4, 1], color='k', label="SONY NEX-5N")
ax1.scatter(
ok_xyY[..., 0], ok_xyY[..., 1], label="monochromatic light",
edgecolors=None, c=(0.4, 0.4, 0.4)
)
ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax))
pu.show_and_save(
fig=fig, legend_loc='upper right',
save_fname="img/camera_chroma_with_line_spectrum.png")
if __name__ == '__main__':
os.chdir(os.path.dirname(os.path.abspath(__file__)))
# load_camera_spectral_sensitivity_database()
# plot_camera_gamut()
# debug_least_square_method()
# debug_cct_matrix()
# calc_camera_gamut_from_ss()
plot_camera_capture_xy_value()
|
py | 1a4468154df210e8087949d0a2adf9ab9c3d8652 | from bisect import bisect_left
from bisect import bisect_right
from contextlib import contextmanager
from copy import deepcopy
from functools import wraps
from inspect import isclass
import calendar
import collections
import datetime
import decimal
import hashlib
import itertools
import logging
import operator
import re
import socket
import struct
import sys
import threading
import time
import uuid
import warnings
try:
from collections.abc import Mapping
except ImportError:
from collections import Mapping
try:
from pysqlite3 import dbapi2 as pysq3
except ImportError:
try:
from pysqlite2 import dbapi2 as pysq3
except ImportError:
pysq3 = None
try:
import sqlite3
except ImportError:
sqlite3 = pysq3
else:
if pysq3 and pysq3.sqlite_version_info >= sqlite3.sqlite_version_info:
sqlite3 = pysq3
try:
from psycopg2cffi import compat
compat.register()
except ImportError:
pass
try:
import psycopg2
from psycopg2 import extensions as pg_extensions
try:
from psycopg2 import errors as pg_errors
except ImportError:
pg_errors = None
except ImportError:
psycopg2 = pg_errors = None
try:
from psycopg2.extras import register_uuid as pg_register_uuid
pg_register_uuid()
except Exception:
pass
mysql_passwd = False
try:
import pymysql as mysql
except ImportError:
try:
import MySQLdb as mysql
mysql_passwd = True
except ImportError:
mysql = None
__version__ = '3.14.4'
__all__ = [
'AsIs',
'AutoField',
'BareField',
'BigAutoField',
'BigBitField',
'BigIntegerField',
'BinaryUUIDField',
'BitField',
'BlobField',
'BooleanField',
'Case',
'Cast',
'CharField',
'Check',
'chunked',
'Column',
'CompositeKey',
'Context',
'Database',
'DatabaseError',
'DatabaseProxy',
'DataError',
'DateField',
'DateTimeField',
'DecimalField',
'DeferredForeignKey',
'DeferredThroughModel',
'DJANGO_MAP',
'DoesNotExist',
'DoubleField',
'DQ',
'EXCLUDED',
'Field',
'FixedCharField',
'FloatField',
'fn',
'ForeignKeyField',
'IdentityField',
'ImproperlyConfigured',
'Index',
'IntegerField',
'IntegrityError',
'InterfaceError',
'InternalError',
'IPField',
'JOIN',
'ManyToManyField',
'Model',
'ModelIndex',
'MySQLDatabase',
'NotSupportedError',
'OP',
'OperationalError',
'PostgresqlDatabase',
'PrimaryKeyField', # XXX: Deprecated, change to AutoField.
'prefetch',
'ProgrammingError',
'Proxy',
'QualifiedNames',
'SchemaManager',
'SmallIntegerField',
'Select',
'SQL',
'SqliteDatabase',
'Table',
'TextField',
'TimeField',
'TimestampField',
'Tuple',
'UUIDField',
'Value',
'ValuesList',
'Window',
]
try: # Python 2.7+
from logging import NullHandler
except ImportError:
class NullHandler(logging.Handler):
def emit(self, record):
pass
logger = logging.getLogger('peewee')
logger.addHandler(NullHandler())
if sys.version_info[0] == 2:
text_type = unicode
bytes_type = str
buffer_type = buffer
izip_longest = itertools.izip_longest
callable_ = callable
multi_types = (list, tuple, frozenset, set)
exec('def reraise(tp, value, tb=None): raise tp, value, tb')
def print_(s):
sys.stdout.write(s)
sys.stdout.write('\n')
else:
import builtins
try:
from collections.abc import Callable
except ImportError:
from collections import Callable
from functools import reduce
callable_ = lambda c: isinstance(c, Callable)
text_type = str
bytes_type = bytes
buffer_type = memoryview
basestring = str
long = int
multi_types = (list, tuple, frozenset, set, range)
print_ = getattr(builtins, 'print')
izip_longest = itertools.zip_longest
def reraise(tp, value, tb=None):
if value.__traceback__ is not tb:
raise value.with_traceback(tb)
raise value
if sqlite3:
sqlite3.register_adapter(decimal.Decimal, str)
sqlite3.register_adapter(datetime.date, str)
sqlite3.register_adapter(datetime.time, str)
__sqlite_version__ = sqlite3.sqlite_version_info
else:
__sqlite_version__ = (0, 0, 0)
__date_parts__ = set(('year', 'month', 'day', 'hour', 'minute', 'second'))
# Sqlite does not support the `date_part` SQL function, so we will define an
# implementation in python.
__sqlite_datetime_formats__ = (
'%Y-%m-%d %H:%M:%S',
'%Y-%m-%d %H:%M:%S.%f',
'%Y-%m-%d',
'%H:%M:%S',
'%H:%M:%S.%f',
'%H:%M')
__sqlite_date_trunc__ = {
'year': '%Y-01-01 00:00:00',
'month': '%Y-%m-01 00:00:00',
'day': '%Y-%m-%d 00:00:00',
'hour': '%Y-%m-%d %H:00:00',
'minute': '%Y-%m-%d %H:%M:00',
'second': '%Y-%m-%d %H:%M:%S'}
__mysql_date_trunc__ = __sqlite_date_trunc__.copy()
__mysql_date_trunc__['minute'] = '%Y-%m-%d %H:%i:00'
__mysql_date_trunc__['second'] = '%Y-%m-%d %H:%i:%S'
def _sqlite_date_part(lookup_type, datetime_string):
assert lookup_type in __date_parts__
if not datetime_string:
return
dt = format_date_time(datetime_string, __sqlite_datetime_formats__)
return getattr(dt, lookup_type)
def _sqlite_date_trunc(lookup_type, datetime_string):
assert lookup_type in __sqlite_date_trunc__
if not datetime_string:
return
dt = format_date_time(datetime_string, __sqlite_datetime_formats__)
return dt.strftime(__sqlite_date_trunc__[lookup_type])
def __deprecated__(s):
warnings.warn(s, DeprecationWarning)
class attrdict(dict):
def __getattr__(self, attr):
try:
return self[attr]
except KeyError:
raise AttributeError(attr)
def __setattr__(self, attr, value): self[attr] = value
def __iadd__(self, rhs): self.update(rhs); return self
def __add__(self, rhs): d = attrdict(self); d.update(rhs); return d
SENTINEL = object()
#: Operations for use in SQL expressions.
OP = attrdict(
AND='AND',
OR='OR',
ADD='+',
SUB='-',
MUL='*',
DIV='/',
BIN_AND='&',
BIN_OR='|',
XOR='#',
MOD='%',
EQ='=',
LT='<',
LTE='<=',
GT='>',
GTE='>=',
NE='!=',
IN='IN',
NOT_IN='NOT IN',
IS='IS',
IS_NOT='IS NOT',
LIKE='LIKE',
ILIKE='ILIKE',
BETWEEN='BETWEEN',
REGEXP='REGEXP',
IREGEXP='IREGEXP',
CONCAT='||',
BITWISE_NEGATION='~')
# To support "django-style" double-underscore filters, create a mapping between
# operation name and operation code, e.g. "__eq" == OP.EQ.
DJANGO_MAP = attrdict({
'eq': operator.eq,
'lt': operator.lt,
'lte': operator.le,
'gt': operator.gt,
'gte': operator.ge,
'ne': operator.ne,
'in': operator.lshift,
'is': lambda l, r: Expression(l, OP.IS, r),
'like': lambda l, r: Expression(l, OP.LIKE, r),
'ilike': lambda l, r: Expression(l, OP.ILIKE, r),
'regexp': lambda l, r: Expression(l, OP.REGEXP, r),
})
#: Mapping of field type to the data-type supported by the database. Databases
#: may override or add to this list.
FIELD = attrdict(
AUTO='INTEGER',
BIGAUTO='BIGINT',
BIGINT='BIGINT',
BLOB='BLOB',
BOOL='SMALLINT',
CHAR='CHAR',
DATE='DATE',
DATETIME='DATETIME',
DECIMAL='DECIMAL',
DEFAULT='',
DOUBLE='REAL',
FLOAT='REAL',
INT='INTEGER',
SMALLINT='SMALLINT',
TEXT='TEXT',
TIME='TIME',
UUID='TEXT',
UUIDB='BLOB',
VARCHAR='VARCHAR')
#: Join helpers (for convenience) -- all join types are supported, this object
#: is just to help avoid introducing errors by using strings everywhere.
JOIN = attrdict(
INNER='INNER JOIN',
LEFT_OUTER='LEFT OUTER JOIN',
RIGHT_OUTER='RIGHT OUTER JOIN',
FULL='FULL JOIN',
FULL_OUTER='FULL OUTER JOIN',
CROSS='CROSS JOIN',
NATURAL='NATURAL JOIN',
LATERAL='LATERAL',
LEFT_LATERAL='LEFT JOIN LATERAL')
# Row representations.
ROW = attrdict(
TUPLE=1,
DICT=2,
NAMED_TUPLE=3,
CONSTRUCTOR=4,
MODEL=5)
SCOPE_NORMAL = 1
SCOPE_SOURCE = 2
SCOPE_VALUES = 4
SCOPE_CTE = 8
SCOPE_COLUMN = 16
# Rules for parentheses around subqueries in compound select.
CSQ_PARENTHESES_NEVER = 0
CSQ_PARENTHESES_ALWAYS = 1
CSQ_PARENTHESES_UNNESTED = 2
# Regular expressions used to convert class names to snake-case table names.
# First regex handles acronym followed by word or initial lower-word followed
# by a capitalized word. e.g. APIResponse -> API_Response / fooBar -> foo_Bar.
# Second regex handles the normal case of two title-cased words.
SNAKE_CASE_STEP1 = re.compile('(.)_*([A-Z][a-z]+)')
SNAKE_CASE_STEP2 = re.compile('([a-z0-9])_*([A-Z])')
# Helper functions that are used in various parts of the codebase.
MODEL_BASE = '_metaclass_helper_'
def with_metaclass(meta, base=object):
return meta(MODEL_BASE, (base,), {})
def merge_dict(source, overrides):
merged = source.copy()
if overrides:
merged.update(overrides)
return merged
def quote(path, quote_chars):
if len(path) == 1:
return path[0].join(quote_chars)
return '.'.join([part.join(quote_chars) for part in path])
is_model = lambda o: isclass(o) and issubclass(o, Model)
def ensure_tuple(value):
if value is not None:
return value if isinstance(value, (list, tuple)) else (value,)
def ensure_entity(value):
if value is not None:
return value if isinstance(value, Node) else Entity(value)
def make_snake_case(s):
first = SNAKE_CASE_STEP1.sub(r'\1_\2', s)
return SNAKE_CASE_STEP2.sub(r'\1_\2', first).lower()
def chunked(it, n):
marker = object()
for group in (list(g) for g in izip_longest(*[iter(it)] * n,
fillvalue=marker)):
if group[-1] is marker:
del group[group.index(marker):]
yield group
class _callable_context_manager(object):
def __call__(self, fn):
@wraps(fn)
def inner(*args, **kwargs):
with self:
return fn(*args, **kwargs)
return inner
class Proxy(object):
"""
Create a proxy or placeholder for another object.
"""
__slots__ = ('obj', '_callbacks')
def __init__(self):
self._callbacks = []
self.initialize(None)
def initialize(self, obj):
self.obj = obj
for callback in self._callbacks:
callback(obj)
def attach_callback(self, callback):
self._callbacks.append(callback)
return callback
def passthrough(method):
def inner(self, *args, **kwargs):
if self.obj is None:
raise AttributeError('Cannot use uninitialized Proxy.')
return getattr(self.obj, method)(*args, **kwargs)
return inner
# Allow proxy to be used as a context-manager.
__enter__ = passthrough('__enter__')
__exit__ = passthrough('__exit__')
def __getattr__(self, attr):
if self.obj is None:
raise AttributeError('Cannot use uninitialized Proxy.')
return getattr(self.obj, attr)
def __setattr__(self, attr, value):
if attr not in self.__slots__:
raise AttributeError('Cannot set attribute on proxy.')
return super(Proxy, self).__setattr__(attr, value)
class DatabaseProxy(Proxy):
"""
Proxy implementation specifically for proxying `Database` objects.
"""
def connection_context(self):
return ConnectionContext(self)
def atomic(self, *args, **kwargs):
return _atomic(self, *args, **kwargs)
def manual_commit(self):
return _manual(self)
def transaction(self, *args, **kwargs):
return _transaction(self, *args, **kwargs)
def savepoint(self):
return _savepoint(self)
class ModelDescriptor(object): pass
# SQL Generation.
class AliasManager(object):
__slots__ = ('_counter', '_current_index', '_mapping')
def __init__(self):
# A list of dictionaries containing mappings at various depths.
self._counter = 0
self._current_index = 0
self._mapping = []
self.push()
@property
def mapping(self):
return self._mapping[self._current_index - 1]
def add(self, source):
if source not in self.mapping:
self._counter += 1
self[source] = 't%d' % self._counter
return self.mapping[source]
def get(self, source, any_depth=False):
if any_depth:
for idx in reversed(range(self._current_index)):
if source in self._mapping[idx]:
return self._mapping[idx][source]
return self.add(source)
def __getitem__(self, source):
return self.get(source)
def __setitem__(self, source, alias):
self.mapping[source] = alias
def push(self):
self._current_index += 1
if self._current_index > len(self._mapping):
self._mapping.append({})
def pop(self):
if self._current_index == 1:
raise ValueError('Cannot pop() from empty alias manager.')
self._current_index -= 1
class State(collections.namedtuple('_State', ('scope', 'parentheses',
'settings'))):
def __new__(cls, scope=SCOPE_NORMAL, parentheses=False, **kwargs):
return super(State, cls).__new__(cls, scope, parentheses, kwargs)
def __call__(self, scope=None, parentheses=None, **kwargs):
# Scope and settings are "inherited" (parentheses is not, however).
scope = self.scope if scope is None else scope
# Try to avoid unnecessary dict copying.
if kwargs and self.settings:
settings = self.settings.copy() # Copy original settings dict.
settings.update(kwargs) # Update copy with overrides.
elif kwargs:
settings = kwargs
else:
settings = self.settings
return State(scope, parentheses, **settings)
def __getattr__(self, attr_name):
return self.settings.get(attr_name)
def __scope_context__(scope):
@contextmanager
def inner(self, **kwargs):
with self(scope=scope, **kwargs):
yield self
return inner
class Context(object):
__slots__ = ('stack', '_sql', '_values', 'alias_manager', 'state')
def __init__(self, **settings):
self.stack = []
self._sql = []
self._values = []
self.alias_manager = AliasManager()
self.state = State(**settings)
def as_new(self):
return Context(**self.state.settings)
def column_sort_key(self, item):
return item[0].get_sort_key(self)
@property
def scope(self):
return self.state.scope
@property
def parentheses(self):
return self.state.parentheses
@property
def subquery(self):
return self.state.subquery
def __call__(self, **overrides):
if overrides and overrides.get('scope') == self.scope:
del overrides['scope']
self.stack.append(self.state)
self.state = self.state(**overrides)
return self
scope_normal = __scope_context__(SCOPE_NORMAL)
scope_source = __scope_context__(SCOPE_SOURCE)
scope_values = __scope_context__(SCOPE_VALUES)
scope_cte = __scope_context__(SCOPE_CTE)
scope_column = __scope_context__(SCOPE_COLUMN)
def __enter__(self):
if self.parentheses:
self.literal('(')
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if self.parentheses:
self.literal(')')
self.state = self.stack.pop()
@contextmanager
def push_alias(self):
self.alias_manager.push()
yield
self.alias_manager.pop()
def sql(self, obj):
if isinstance(obj, (Node, Context)):
return obj.__sql__(self)
elif is_model(obj):
return obj._meta.table.__sql__(self)
else:
return self.sql(Value(obj))
def literal(self, keyword):
self._sql.append(keyword)
return self
def value(self, value, converter=None, add_param=True):
if converter:
value = converter(value)
elif converter is None and self.state.converter:
# Explicitly check for None so that "False" can be used to signify
# that no conversion should be applied.
value = self.state.converter(value)
if isinstance(value, Node):
with self(converter=None):
return self.sql(value)
elif is_model(value):
# Under certain circumstances, we could end-up treating a model-
# class itself as a value. This check ensures that we drop the
# table alias into the query instead of trying to parameterize a
# model (for instance, passing a model as a function argument).
with self.scope_column():
return self.sql(value)
self._values.append(value)
return self.literal(self.state.param or '?') if add_param else self
def __sql__(self, ctx):
ctx._sql.extend(self._sql)
ctx._values.extend(self._values)
return ctx
def parse(self, node):
return self.sql(node).query()
def query(self):
return ''.join(self._sql), self._values
def query_to_string(query):
# NOTE: this function is not exported by default as it might be misused --
# and this misuse could lead to sql injection vulnerabilities. This
# function is intended for debugging or logging purposes ONLY.
db = getattr(query, '_database', None)
if db is not None:
ctx = db.get_sql_context()
else:
ctx = Context()
sql, params = ctx.sql(query).query()
if not params:
return sql
param = ctx.state.param or '?'
if param == '?':
sql = sql.replace('?', '%s')
return sql % tuple(map(_query_val_transform, params))
def _query_val_transform(v):
# Interpolate parameters.
if isinstance(v, (text_type, datetime.datetime, datetime.date,
datetime.time)):
v = "'%s'" % v
elif isinstance(v, bytes_type):
try:
v = v.decode('utf8')
except UnicodeDecodeError:
v = v.decode('raw_unicode_escape')
v = "'%s'" % v
elif isinstance(v, int):
v = '%s' % int(v) # Also handles booleans -> 1 or 0.
elif v is None:
v = 'NULL'
else:
v = str(v)
return v
# AST.
class Node(object):
_coerce = True
def clone(self):
obj = self.__class__.__new__(self.__class__)
obj.__dict__ = self.__dict__.copy()
return obj
def __sql__(self, ctx):
raise NotImplementedError
@staticmethod
def copy(method):
def inner(self, *args, **kwargs):
clone = self.clone()
method(clone, *args, **kwargs)
return clone
return inner
def coerce(self, _coerce=True):
if _coerce != self._coerce:
clone = self.clone()
clone._coerce = _coerce
return clone
return self
def is_alias(self):
return False
def unwrap(self):
return self
class ColumnFactory(object):
__slots__ = ('node',)
def __init__(self, node):
self.node = node
def __getattr__(self, attr):
return Column(self.node, attr)
class _DynamicColumn(object):
__slots__ = ()
def __get__(self, instance, instance_type=None):
if instance is not None:
return ColumnFactory(instance) # Implements __getattr__().
return self
class _ExplicitColumn(object):
__slots__ = ()
def __get__(self, instance, instance_type=None):
if instance is not None:
raise AttributeError(
'%s specifies columns explicitly, and does not support '
'dynamic column lookups.' % instance)
return self
class Source(Node):
c = _DynamicColumn()
def __init__(self, alias=None):
super(Source, self).__init__()
self._alias = alias
@Node.copy
def alias(self, name):
self._alias = name
def select(self, *columns):
if not columns:
columns = (SQL('*'),)
return Select((self,), columns)
def join(self, dest, join_type=JOIN.INNER, on=None):
return Join(self, dest, join_type, on)
def left_outer_join(self, dest, on=None):
return Join(self, dest, JOIN.LEFT_OUTER, on)
def cte(self, name, recursive=False, columns=None, materialized=None):
return CTE(name, self, recursive=recursive, columns=columns,
materialized=materialized)
def get_sort_key(self, ctx):
if self._alias:
return (self._alias,)
return (ctx.alias_manager[self],)
def apply_alias(self, ctx):
# If we are defining the source, include the "AS alias" declaration. An
# alias is created for the source if one is not already defined.
if ctx.scope == SCOPE_SOURCE:
if self._alias:
ctx.alias_manager[self] = self._alias
ctx.literal(' AS ').sql(Entity(ctx.alias_manager[self]))
return ctx
def apply_column(self, ctx):
if self._alias:
ctx.alias_manager[self] = self._alias
return ctx.sql(Entity(ctx.alias_manager[self]))
class _HashableSource(object):
def __init__(self, *args, **kwargs):
super(_HashableSource, self).__init__(*args, **kwargs)
self._update_hash()
@Node.copy
def alias(self, name):
self._alias = name
self._update_hash()
def _update_hash(self):
self._hash = self._get_hash()
def _get_hash(self):
return hash((self.__class__, self._path, self._alias))
def __hash__(self):
return self._hash
def __eq__(self, other):
if isinstance(other, _HashableSource):
return self._hash == other._hash
return Expression(self, OP.EQ, other)
def __ne__(self, other):
if isinstance(other, _HashableSource):
return self._hash != other._hash
return Expression(self, OP.NE, other)
def _e(op):
def inner(self, rhs):
return Expression(self, op, rhs)
return inner
__lt__ = _e(OP.LT)
__le__ = _e(OP.LTE)
__gt__ = _e(OP.GT)
__ge__ = _e(OP.GTE)
def __bind_database__(meth):
@wraps(meth)
def inner(self, *args, **kwargs):
result = meth(self, *args, **kwargs)
if self._database:
return result.bind(self._database)
return result
return inner
def __join__(join_type=JOIN.INNER, inverted=False):
def method(self, other):
if inverted:
self, other = other, self
return Join(self, other, join_type=join_type)
return method
class BaseTable(Source):
__and__ = __join__(JOIN.INNER)
__add__ = __join__(JOIN.LEFT_OUTER)
__sub__ = __join__(JOIN.RIGHT_OUTER)
__or__ = __join__(JOIN.FULL_OUTER)
__mul__ = __join__(JOIN.CROSS)
__rand__ = __join__(JOIN.INNER, inverted=True)
__radd__ = __join__(JOIN.LEFT_OUTER, inverted=True)
__rsub__ = __join__(JOIN.RIGHT_OUTER, inverted=True)
__ror__ = __join__(JOIN.FULL_OUTER, inverted=True)
__rmul__ = __join__(JOIN.CROSS, inverted=True)
class _BoundTableContext(_callable_context_manager):
def __init__(self, table, database):
self.table = table
self.database = database
def __enter__(self):
self._orig_database = self.table._database
self.table.bind(self.database)
if self.table._model is not None:
self.table._model.bind(self.database)
return self.table
def __exit__(self, exc_type, exc_val, exc_tb):
self.table.bind(self._orig_database)
if self.table._model is not None:
self.table._model.bind(self._orig_database)
class Table(_HashableSource, BaseTable):
def __init__(self, name, columns=None, primary_key=None, schema=None,
alias=None, _model=None, _database=None):
self.__name__ = name
self._columns = columns
self._primary_key = primary_key
self._schema = schema
self._path = (schema, name) if schema else (name,)
self._model = _model
self._database = _database
super(Table, self).__init__(alias=alias)
# Allow tables to restrict what columns are available.
if columns is not None:
self.c = _ExplicitColumn()
for column in columns:
setattr(self, column, Column(self, column))
if primary_key:
col_src = self if self._columns else self.c
self.primary_key = getattr(col_src, primary_key)
else:
self.primary_key = None
def clone(self):
# Ensure a deep copy of the column instances.
return Table(
self.__name__,
columns=self._columns,
primary_key=self._primary_key,
schema=self._schema,
alias=self._alias,
_model=self._model,
_database=self._database)
def bind(self, database=None):
self._database = database
return self
def bind_ctx(self, database=None):
return _BoundTableContext(self, database)
def _get_hash(self):
return hash((self.__class__, self._path, self._alias, self._model))
@__bind_database__
def select(self, *columns):
if not columns and self._columns:
columns = [Column(self, column) for column in self._columns]
return Select((self,), columns)
@__bind_database__
def insert(self, insert=None, columns=None, **kwargs):
if kwargs:
insert = {} if insert is None else insert
src = self if self._columns else self.c
for key, value in kwargs.items():
insert[getattr(src, key)] = value
return Insert(self, insert=insert, columns=columns)
@__bind_database__
def replace(self, insert=None, columns=None, **kwargs):
return (self
.insert(insert=insert, columns=columns)
.on_conflict('REPLACE'))
@__bind_database__
def update(self, update=None, **kwargs):
if kwargs:
update = {} if update is None else update
for key, value in kwargs.items():
src = self if self._columns else self.c
update[getattr(src, key)] = value
return Update(self, update=update)
@__bind_database__
def delete(self):
return Delete(self)
def __sql__(self, ctx):
if ctx.scope == SCOPE_VALUES:
# Return the quoted table name.
return ctx.sql(Entity(*self._path))
if self._alias:
ctx.alias_manager[self] = self._alias
if ctx.scope == SCOPE_SOURCE:
# Define the table and its alias.
return self.apply_alias(ctx.sql(Entity(*self._path)))
else:
# Refer to the table using the alias.
return self.apply_column(ctx)
class Join(BaseTable):
def __init__(self, lhs, rhs, join_type=JOIN.INNER, on=None, alias=None):
super(Join, self).__init__(alias=alias)
self.lhs = lhs
self.rhs = rhs
self.join_type = join_type
self._on = on
def on(self, predicate):
self._on = predicate
return self
def __sql__(self, ctx):
(ctx
.sql(self.lhs)
.literal(' %s ' % self.join_type)
.sql(self.rhs))
if self._on is not None:
ctx.literal(' ON ').sql(self._on)
return ctx
class ValuesList(_HashableSource, BaseTable):
def __init__(self, values, columns=None, alias=None):
self._values = values
self._columns = columns
super(ValuesList, self).__init__(alias=alias)
def _get_hash(self):
return hash((self.__class__, id(self._values), self._alias))
@Node.copy
def columns(self, *names):
self._columns = names
def __sql__(self, ctx):
if self._alias:
ctx.alias_manager[self] = self._alias
if ctx.scope == SCOPE_SOURCE or ctx.scope == SCOPE_NORMAL:
with ctx(parentheses=not ctx.parentheses):
ctx = (ctx
.literal('VALUES ')
.sql(CommaNodeList([
EnclosedNodeList(row) for row in self._values])))
if ctx.scope == SCOPE_SOURCE:
ctx.literal(' AS ').sql(Entity(ctx.alias_manager[self]))
if self._columns:
entities = [Entity(c) for c in self._columns]
ctx.sql(EnclosedNodeList(entities))
else:
ctx.sql(Entity(ctx.alias_manager[self]))
return ctx
class CTE(_HashableSource, Source):
def __init__(self, name, query, recursive=False, columns=None,
materialized=None):
self._alias = name
self._query = query
self._recursive = recursive
self._materialized = materialized
if columns is not None:
columns = [Entity(c) if isinstance(c, basestring) else c
for c in columns]
self._columns = columns
query._cte_list = ()
super(CTE, self).__init__(alias=name)
def select_from(self, *columns):
if not columns:
raise ValueError('select_from() must specify one or more columns '
'from the CTE to select.')
query = (Select((self,), columns)
.with_cte(self)
.bind(self._query._database))
try:
query = query.objects(self._query.model)
except AttributeError:
pass
return query
def _get_hash(self):
return hash((self.__class__, self._alias, id(self._query)))
def union_all(self, rhs):
clone = self._query.clone()
return CTE(self._alias, clone + rhs, self._recursive, self._columns)
__add__ = union_all
def union(self, rhs):
clone = self._query.clone()
return CTE(self._alias, clone | rhs, self._recursive, self._columns)
__or__ = union
def __sql__(self, ctx):
if ctx.scope != SCOPE_CTE:
return ctx.sql(Entity(self._alias))
with ctx.push_alias():
ctx.alias_manager[self] = self._alias
ctx.sql(Entity(self._alias))
if self._columns:
ctx.literal(' ').sql(EnclosedNodeList(self._columns))
ctx.literal(' AS ')
if self._materialized:
ctx.literal('MATERIALIZED ')
elif self._materialized is False:
ctx.literal('NOT MATERIALIZED ')
with ctx.scope_normal(parentheses=True):
ctx.sql(self._query)
return ctx
class ColumnBase(Node):
_converter = None
@Node.copy
def converter(self, converter=None):
self._converter = converter
def alias(self, alias):
if alias:
return Alias(self, alias)
return self
def unalias(self):
return self
def cast(self, as_type):
return Cast(self, as_type)
def asc(self, collation=None, nulls=None):
return Asc(self, collation=collation, nulls=nulls)
__pos__ = asc
def desc(self, collation=None, nulls=None):
return Desc(self, collation=collation, nulls=nulls)
__neg__ = desc
def __invert__(self):
return Negated(self)
def _e(op, inv=False):
"""
Lightweight factory which returns a method that builds an Expression
consisting of the left-hand and right-hand operands, using `op`.
"""
def inner(self, rhs):
if inv:
return Expression(rhs, op, self)
return Expression(self, op, rhs)
return inner
__and__ = _e(OP.AND)
__or__ = _e(OP.OR)
__add__ = _e(OP.ADD)
__sub__ = _e(OP.SUB)
__mul__ = _e(OP.MUL)
__div__ = __truediv__ = _e(OP.DIV)
__xor__ = _e(OP.XOR)
__radd__ = _e(OP.ADD, inv=True)
__rsub__ = _e(OP.SUB, inv=True)
__rmul__ = _e(OP.MUL, inv=True)
__rdiv__ = __rtruediv__ = _e(OP.DIV, inv=True)
__rand__ = _e(OP.AND, inv=True)
__ror__ = _e(OP.OR, inv=True)
__rxor__ = _e(OP.XOR, inv=True)
def __eq__(self, rhs):
op = OP.IS if rhs is None else OP.EQ
return Expression(self, op, rhs)
def __ne__(self, rhs):
op = OP.IS_NOT if rhs is None else OP.NE
return Expression(self, op, rhs)
__lt__ = _e(OP.LT)
__le__ = _e(OP.LTE)
__gt__ = _e(OP.GT)
__ge__ = _e(OP.GTE)
__lshift__ = _e(OP.IN)
__rshift__ = _e(OP.IS)
__mod__ = _e(OP.LIKE)
__pow__ = _e(OP.ILIKE)
like = _e(OP.LIKE)
ilike = _e(OP.ILIKE)
bin_and = _e(OP.BIN_AND)
bin_or = _e(OP.BIN_OR)
in_ = _e(OP.IN)
not_in = _e(OP.NOT_IN)
regexp = _e(OP.REGEXP)
# Special expressions.
def is_null(self, is_null=True):
op = OP.IS if is_null else OP.IS_NOT
return Expression(self, op, None)
def _escape_like_expr(self, s, template):
if s.find('_') >= 0 or s.find('%') >= 0 or s.find('\\') >= 0:
s = s.replace('\\', '\\\\').replace('_', '\\_').replace('%', '\\%')
return NodeList((template % s, SQL('ESCAPE'), '\\'))
return template % s
def contains(self, rhs):
if isinstance(rhs, Node):
rhs = Expression('%', OP.CONCAT,
Expression(rhs, OP.CONCAT, '%'))
else:
rhs = self._escape_like_expr(rhs, '%%%s%%')
return Expression(self, OP.ILIKE, rhs)
def startswith(self, rhs):
if isinstance(rhs, Node):
rhs = Expression(rhs, OP.CONCAT, '%')
else:
rhs = self._escape_like_expr(rhs, '%s%%')
return Expression(self, OP.ILIKE, rhs)
def endswith(self, rhs):
if isinstance(rhs, Node):
rhs = Expression('%', OP.CONCAT, rhs)
else:
rhs = self._escape_like_expr(rhs, '%%%s')
return Expression(self, OP.ILIKE, rhs)
def between(self, lo, hi):
return Expression(self, OP.BETWEEN, NodeList((lo, SQL('AND'), hi)))
def concat(self, rhs):
return StringExpression(self, OP.CONCAT, rhs)
def regexp(self, rhs):
return Expression(self, OP.REGEXP, rhs)
def iregexp(self, rhs):
return Expression(self, OP.IREGEXP, rhs)
def __getitem__(self, item):
if isinstance(item, slice):
if item.start is None or item.stop is None:
raise ValueError('BETWEEN range must have both a start- and '
'end-point.')
return self.between(item.start, item.stop)
return self == item
def distinct(self):
return NodeList((SQL('DISTINCT'), self))
def collate(self, collation):
return NodeList((self, SQL('COLLATE %s' % collation)))
def get_sort_key(self, ctx):
return ()
class Column(ColumnBase):
def __init__(self, source, name):
self.source = source
self.name = name
def get_sort_key(self, ctx):
if ctx.scope == SCOPE_VALUES:
return (self.name,)
else:
return self.source.get_sort_key(ctx) + (self.name,)
def __hash__(self):
return hash((self.source, self.name))
def __sql__(self, ctx):
if ctx.scope == SCOPE_VALUES:
return ctx.sql(Entity(self.name))
else:
with ctx.scope_column():
return ctx.sql(self.source).literal('.').sql(Entity(self.name))
class WrappedNode(ColumnBase):
def __init__(self, node):
self.node = node
self._coerce = getattr(node, '_coerce', True)
self._converter = getattr(node, '_converter', None)
def is_alias(self):
return self.node.is_alias()
def unwrap(self):
return self.node.unwrap()
class EntityFactory(object):
__slots__ = ('node',)
def __init__(self, node):
self.node = node
def __getattr__(self, attr):
return Entity(self.node, attr)
class _DynamicEntity(object):
__slots__ = ()
def __get__(self, instance, instance_type=None):
if instance is not None:
return EntityFactory(instance._alias) # Implements __getattr__().
return self
class Alias(WrappedNode):
c = _DynamicEntity()
def __init__(self, node, alias):
super(Alias, self).__init__(node)
self._alias = alias
def __hash__(self):
return hash(self._alias)
def alias(self, alias=None):
if alias is None:
return self.node
else:
return Alias(self.node, alias)
def unalias(self):
return self.node
def is_alias(self):
return True
def __sql__(self, ctx):
if ctx.scope == SCOPE_SOURCE:
return (ctx
.sql(self.node)
.literal(' AS ')
.sql(Entity(self._alias)))
else:
return ctx.sql(Entity(self._alias))
class Negated(WrappedNode):
def __invert__(self):
return self.node
def __sql__(self, ctx):
return ctx.literal('NOT ').sql(self.node)
class BitwiseMixin(object):
def __and__(self, other):
return self.bin_and(other)
def __or__(self, other):
return self.bin_or(other)
def __sub__(self, other):
return self.bin_and(other.bin_negated())
def __invert__(self):
return BitwiseNegated(self)
class BitwiseNegated(BitwiseMixin, WrappedNode):
def __invert__(self):
return self.node
def __sql__(self, ctx):
if ctx.state.operations:
op_sql = ctx.state.operations.get(self.op, self.op)
else:
op_sql = self.op
return ctx.literal(op_sql).sql(self.node)
class Value(ColumnBase):
def __init__(self, value, converter=None, unpack=True):
self.value = value
self.converter = converter
self.multi = unpack and isinstance(self.value, multi_types)
if self.multi:
self.values = []
for item in self.value:
if isinstance(item, Node):
self.values.append(item)
else:
self.values.append(Value(item, self.converter))
def __sql__(self, ctx):
if self.multi:
# For multi-part values (e.g. lists of IDs).
return ctx.sql(EnclosedNodeList(self.values))
return ctx.value(self.value, self.converter)
def AsIs(value):
return Value(value, unpack=False)
class Cast(WrappedNode):
def __init__(self, node, cast):
super(Cast, self).__init__(node)
self._cast = cast
self._coerce = False
def __sql__(self, ctx):
return (ctx
.literal('CAST(')
.sql(self.node)
.literal(' AS %s)' % self._cast))
class Ordering(WrappedNode):
def __init__(self, node, direction, collation=None, nulls=None):
super(Ordering, self).__init__(node)
self.direction = direction
self.collation = collation
self.nulls = nulls
if nulls and nulls.lower() not in ('first', 'last'):
raise ValueError('Ordering nulls= parameter must be "first" or '
'"last", got: %s' % nulls)
def collate(self, collation=None):
return Ordering(self.node, self.direction, collation)
def _null_ordering_case(self, nulls):
if nulls.lower() == 'last':
ifnull, notnull = 1, 0
elif nulls.lower() == 'first':
ifnull, notnull = 0, 1
else:
raise ValueError('unsupported value for nulls= ordering.')
return Case(None, ((self.node.is_null(), ifnull),), notnull)
def __sql__(self, ctx):
if self.nulls and not ctx.state.nulls_ordering:
ctx.sql(self._null_ordering_case(self.nulls)).literal(', ')
ctx.sql(self.node).literal(' %s' % self.direction)
if self.collation:
ctx.literal(' COLLATE %s' % self.collation)
if self.nulls and ctx.state.nulls_ordering:
ctx.literal(' NULLS %s' % self.nulls)
return ctx
def Asc(node, collation=None, nulls=None):
return Ordering(node, 'ASC', collation, nulls)
def Desc(node, collation=None, nulls=None):
return Ordering(node, 'DESC', collation, nulls)
class Expression(ColumnBase):
def __init__(self, lhs, op, rhs, flat=False):
self.lhs = lhs
self.op = op
self.rhs = rhs
self.flat = flat
def __sql__(self, ctx):
overrides = {'parentheses': not self.flat, 'in_expr': True}
# First attempt to unwrap the node on the left-hand-side, so that we
# can get at the underlying Field if one is present.
node = raw_node = self.lhs
if isinstance(raw_node, WrappedNode):
node = raw_node.unwrap()
# Set up the appropriate converter if we have a field on the left side.
if isinstance(node, Field) and raw_node._coerce:
overrides['converter'] = node.db_value
overrides['is_fk_expr'] = isinstance(node, ForeignKeyField)
else:
overrides['converter'] = None
if ctx.state.operations:
op_sql = ctx.state.operations.get(self.op, self.op)
else:
op_sql = self.op
with ctx(**overrides):
# Postgresql reports an error for IN/NOT IN (), so convert to
# the equivalent boolean expression.
op_in = self.op == OP.IN or self.op == OP.NOT_IN
if op_in and ctx.as_new().parse(self.rhs)[0] == '()':
return ctx.literal('0 = 1' if self.op == OP.IN else '1 = 1')
return (ctx
.sql(self.lhs)
.literal(' %s ' % op_sql)
.sql(self.rhs))
class StringExpression(Expression):
def __add__(self, rhs):
return self.concat(rhs)
def __radd__(self, lhs):
return StringExpression(lhs, OP.CONCAT, self)
class Entity(ColumnBase):
def __init__(self, *path):
self._path = [part.replace('"', '""') for part in path if part]
def __getattr__(self, attr):
return Entity(*self._path + [attr])
def get_sort_key(self, ctx):
return tuple(self._path)
def __hash__(self):
return hash((self.__class__.__name__, tuple(self._path)))
def __sql__(self, ctx):
return ctx.literal(quote(self._path, ctx.state.quote or '""'))
class SQL(ColumnBase):
def __init__(self, sql, params=None):
self.sql = sql
self.params = params
def __sql__(self, ctx):
ctx.literal(self.sql)
if self.params:
for param in self.params:
ctx.value(param, False, add_param=False)
return ctx
def Check(constraint, name=None):
check = SQL('CHECK (%s)' % constraint)
if not name:
return check
return NodeList((SQL('CONSTRAINT'), Entity(name), check))
class Function(ColumnBase):
def __init__(self, name, arguments, coerce=True, python_value=None):
self.name = name
self.arguments = arguments
self._filter = None
self._order_by = None
self._python_value = python_value
if name and name.lower() in ('sum', 'count', 'cast', 'array_agg'):
self._coerce = False
else:
self._coerce = coerce
def __getattr__(self, attr):
def decorator(*args, **kwargs):
return Function(attr, args, **kwargs)
return decorator
@Node.copy
def filter(self, where=None):
self._filter = where
@Node.copy
def order_by(self, *ordering):
self._order_by = ordering
@Node.copy
def python_value(self, func=None):
self._python_value = func
def over(self, partition_by=None, order_by=None, start=None, end=None,
frame_type=None, window=None, exclude=None):
if isinstance(partition_by, Window) and window is None:
window = partition_by
if window is not None:
node = WindowAlias(window)
else:
node = Window(partition_by=partition_by, order_by=order_by,
start=start, end=end, frame_type=frame_type,
exclude=exclude, _inline=True)
return NodeList((self, SQL('OVER'), node))
def __sql__(self, ctx):
ctx.literal(self.name)
if not len(self.arguments):
ctx.literal('()')
else:
args = self.arguments
# If this is an ordered aggregate, then we will modify the last
# argument to append the ORDER BY ... clause. We do this to avoid
# double-wrapping any expression args in parentheses, as NodeList
# has a special check (hack) in place to work around this.
if self._order_by:
args = list(args)
args[-1] = NodeList((args[-1], SQL('ORDER BY'),
CommaNodeList(self._order_by)))
with ctx(in_function=True, function_arg_count=len(self.arguments)):
ctx.sql(EnclosedNodeList([
(arg if isinstance(arg, Node) else Value(arg, False))
for arg in args]))
if self._filter:
ctx.literal(' FILTER (WHERE ').sql(self._filter).literal(')')
return ctx
fn = Function(None, None)
class Window(Node):
# Frame start/end and frame exclusion.
CURRENT_ROW = SQL('CURRENT ROW')
GROUP = SQL('GROUP')
TIES = SQL('TIES')
NO_OTHERS = SQL('NO OTHERS')
# Frame types.
GROUPS = 'GROUPS'
RANGE = 'RANGE'
ROWS = 'ROWS'
def __init__(self, partition_by=None, order_by=None, start=None, end=None,
frame_type=None, extends=None, exclude=None, alias=None,
_inline=False):
super(Window, self).__init__()
if start is not None and not isinstance(start, SQL):
start = SQL(start)
if end is not None and not isinstance(end, SQL):
end = SQL(end)
self.partition_by = ensure_tuple(partition_by)
self.order_by = ensure_tuple(order_by)
self.start = start
self.end = end
if self.start is None and self.end is not None:
raise ValueError('Cannot specify WINDOW end without start.')
self._alias = alias or 'w'
self._inline = _inline
self.frame_type = frame_type
self._extends = extends
self._exclude = exclude
def alias(self, alias=None):
self._alias = alias or 'w'
return self
@Node.copy
def as_range(self):
self.frame_type = Window.RANGE
@Node.copy
def as_rows(self):
self.frame_type = Window.ROWS
@Node.copy
def as_groups(self):
self.frame_type = Window.GROUPS
@Node.copy
def extends(self, window=None):
self._extends = window
@Node.copy
def exclude(self, frame_exclusion=None):
if isinstance(frame_exclusion, basestring):
frame_exclusion = SQL(frame_exclusion)
self._exclude = frame_exclusion
@staticmethod
def following(value=None):
if value is None:
return SQL('UNBOUNDED FOLLOWING')
return SQL('%d FOLLOWING' % value)
@staticmethod
def preceding(value=None):
if value is None:
return SQL('UNBOUNDED PRECEDING')
return SQL('%d PRECEDING' % value)
def __sql__(self, ctx):
if ctx.scope != SCOPE_SOURCE and not self._inline:
ctx.literal(self._alias)
ctx.literal(' AS ')
with ctx(parentheses=True):
parts = []
if self._extends is not None:
ext = self._extends
if isinstance(ext, Window):
ext = SQL(ext._alias)
elif isinstance(ext, basestring):
ext = SQL(ext)
parts.append(ext)
if self.partition_by:
parts.extend((
SQL('PARTITION BY'),
CommaNodeList(self.partition_by)))
if self.order_by:
parts.extend((
SQL('ORDER BY'),
CommaNodeList(self.order_by)))
if self.start is not None and self.end is not None:
frame = self.frame_type or 'ROWS'
parts.extend((
SQL('%s BETWEEN' % frame),
self.start,
SQL('AND'),
self.end))
elif self.start is not None:
parts.extend((SQL(self.frame_type or 'ROWS'), self.start))
elif self.frame_type is not None:
parts.append(SQL('%s UNBOUNDED PRECEDING' % self.frame_type))
if self._exclude is not None:
parts.extend((SQL('EXCLUDE'), self._exclude))
ctx.sql(NodeList(parts))
return ctx
class WindowAlias(Node):
def __init__(self, window):
self.window = window
def alias(self, window_alias):
self.window._alias = window_alias
return self
def __sql__(self, ctx):
return ctx.literal(self.window._alias or 'w')
class ForUpdate(Node):
def __init__(self, expr, of=None, nowait=None):
expr = 'FOR UPDATE' if expr is True else expr
if expr.lower().endswith('nowait'):
expr = expr[:-7] # Strip off the "nowait" bit.
nowait = True
self._expr = expr
if of is not None and not isinstance(of, (list, set, tuple)):
of = (of,)
self._of = of
self._nowait = nowait
def __sql__(self, ctx):
ctx.literal(self._expr)
if self._of is not None:
ctx.literal(' OF ').sql(CommaNodeList(self._of))
if self._nowait:
ctx.literal(' NOWAIT')
return ctx
def Case(predicate, expression_tuples, default=None):
clauses = [SQL('CASE')]
if predicate is not None:
clauses.append(predicate)
for expr, value in expression_tuples:
clauses.extend((SQL('WHEN'), expr, SQL('THEN'), value))
if default is not None:
clauses.extend((SQL('ELSE'), default))
clauses.append(SQL('END'))
return NodeList(clauses)
class NodeList(ColumnBase):
def __init__(self, nodes, glue=' ', parens=False):
self.nodes = nodes
self.glue = glue
self.parens = parens
if parens and len(self.nodes) == 1 and \
isinstance(self.nodes[0], Expression) and \
not self.nodes[0].flat:
# Hack to avoid double-parentheses.
self.nodes = (self.nodes[0].clone(),)
self.nodes[0].flat = True
def __sql__(self, ctx):
n_nodes = len(self.nodes)
if n_nodes == 0:
return ctx.literal('()') if self.parens else ctx
with ctx(parentheses=self.parens):
for i in range(n_nodes - 1):
ctx.sql(self.nodes[i])
ctx.literal(self.glue)
ctx.sql(self.nodes[n_nodes - 1])
return ctx
def CommaNodeList(nodes):
return NodeList(nodes, ', ')
def EnclosedNodeList(nodes):
return NodeList(nodes, ', ', True)
class _Namespace(Node):
__slots__ = ('_name',)
def __init__(self, name):
self._name = name
def __getattr__(self, attr):
return NamespaceAttribute(self, attr)
__getitem__ = __getattr__
class NamespaceAttribute(ColumnBase):
def __init__(self, namespace, attribute):
self._namespace = namespace
self._attribute = attribute
def __sql__(self, ctx):
return (ctx
.literal(self._namespace._name + '.')
.sql(Entity(self._attribute)))
EXCLUDED = _Namespace('EXCLUDED')
class DQ(ColumnBase):
def __init__(self, **query):
super(DQ, self).__init__()
self.query = query
self._negated = False
@Node.copy
def __invert__(self):
self._negated = not self._negated
def clone(self):
node = DQ(**self.query)
node._negated = self._negated
return node
#: Represent a row tuple.
Tuple = lambda *a: EnclosedNodeList(a)
class QualifiedNames(WrappedNode):
def __sql__(self, ctx):
with ctx.scope_column():
return ctx.sql(self.node)
def qualify_names(node):
# Search a node heirarchy to ensure that any column-like objects are
# referenced using fully-qualified names.
if isinstance(node, Expression):
return node.__class__(qualify_names(node.lhs), node.op,
qualify_names(node.rhs), node.flat)
elif isinstance(node, ColumnBase):
return QualifiedNames(node)
return node
class OnConflict(Node):
def __init__(self, action=None, update=None, preserve=None, where=None,
conflict_target=None, conflict_where=None,
conflict_constraint=None):
self._action = action
self._update = update
self._preserve = ensure_tuple(preserve)
self._where = where
if conflict_target is not None and conflict_constraint is not None:
raise ValueError('only one of "conflict_target" and '
'"conflict_constraint" may be specified.')
self._conflict_target = ensure_tuple(conflict_target)
self._conflict_where = conflict_where
self._conflict_constraint = conflict_constraint
def get_conflict_statement(self, ctx, query):
return ctx.state.conflict_statement(self, query)
def get_conflict_update(self, ctx, query):
return ctx.state.conflict_update(self, query)
@Node.copy
def preserve(self, *columns):
self._preserve = columns
@Node.copy
def update(self, _data=None, **kwargs):
if _data and kwargs and not isinstance(_data, dict):
raise ValueError('Cannot mix data with keyword arguments in the '
'OnConflict update method.')
_data = _data or {}
if kwargs:
_data.update(kwargs)
self._update = _data
@Node.copy
def where(self, *expressions):
if self._where is not None:
expressions = (self._where,) + expressions
self._where = reduce(operator.and_, expressions)
@Node.copy
def conflict_target(self, *constraints):
self._conflict_constraint = None
self._conflict_target = constraints
@Node.copy
def conflict_where(self, *expressions):
if self._conflict_where is not None:
expressions = (self._conflict_where,) + expressions
self._conflict_where = reduce(operator.and_, expressions)
@Node.copy
def conflict_constraint(self, constraint):
self._conflict_constraint = constraint
self._conflict_target = None
def database_required(method):
@wraps(method)
def inner(self, database=None, *args, **kwargs):
database = self._database if database is None else database
if not database:
raise InterfaceError('Query must be bound to a database in order '
'to call "%s".' % method.__name__)
return method(self, database, *args, **kwargs)
return inner
# BASE QUERY INTERFACE.
class BaseQuery(Node):
default_row_type = ROW.DICT
def __init__(self, _database=None, **kwargs):
self._database = _database
self._cursor_wrapper = None
self._row_type = None
self._constructor = None
super(BaseQuery, self).__init__(**kwargs)
def bind(self, database=None):
self._database = database
return self
def clone(self):
query = super(BaseQuery, self).clone()
query._cursor_wrapper = None
return query
@Node.copy
def dicts(self, as_dict=True):
self._row_type = ROW.DICT if as_dict else None
return self
@Node.copy
def tuples(self, as_tuple=True):
self._row_type = ROW.TUPLE if as_tuple else None
return self
@Node.copy
def namedtuples(self, as_namedtuple=True):
self._row_type = ROW.NAMED_TUPLE if as_namedtuple else None
return self
@Node.copy
def objects(self, constructor=None):
self._row_type = ROW.CONSTRUCTOR if constructor else None
self._constructor = constructor
return self
def _get_cursor_wrapper(self, cursor):
row_type = self._row_type or self.default_row_type
if row_type == ROW.DICT:
return DictCursorWrapper(cursor)
elif row_type == ROW.TUPLE:
return CursorWrapper(cursor)
elif row_type == ROW.NAMED_TUPLE:
return NamedTupleCursorWrapper(cursor)
elif row_type == ROW.CONSTRUCTOR:
return ObjectCursorWrapper(cursor, self._constructor)
else:
raise ValueError('Unrecognized row type: "%s".' % row_type)
def __sql__(self, ctx):
raise NotImplementedError
def sql(self):
if self._database:
context = self._database.get_sql_context()
else:
context = Context()
return context.parse(self)
@database_required
def execute(self, database):
return self._execute(database)
def _execute(self, database):
raise NotImplementedError
def iterator(self, database=None):
return iter(self.execute(database).iterator())
def _ensure_execution(self):
if not self._cursor_wrapper:
if not self._database:
raise ValueError('Query has not been executed.')
self.execute()
def __iter__(self):
self._ensure_execution()
return iter(self._cursor_wrapper)
def __getitem__(self, value):
self._ensure_execution()
if isinstance(value, slice):
index = value.stop
else:
index = value
if index is not None:
index = index + 1 if index >= 0 else 0
self._cursor_wrapper.fill_cache(index)
return self._cursor_wrapper.row_cache[value]
def __len__(self):
self._ensure_execution()
return len(self._cursor_wrapper)
def __str__(self):
return query_to_string(self)
class RawQuery(BaseQuery):
def __init__(self, sql=None, params=None, **kwargs):
super(RawQuery, self).__init__(**kwargs)
self._sql = sql
self._params = params
def __sql__(self, ctx):
ctx.literal(self._sql)
if self._params:
for param in self._params:
ctx.value(param, add_param=False)
return ctx
def _execute(self, database):
if self._cursor_wrapper is None:
cursor = database.execute(self)
self._cursor_wrapper = self._get_cursor_wrapper(cursor)
return self._cursor_wrapper
class Query(BaseQuery):
def __init__(self, where=None, order_by=None, limit=None, offset=None,
**kwargs):
super(Query, self).__init__(**kwargs)
self._where = where
self._order_by = order_by
self._limit = limit
self._offset = offset
self._cte_list = None
@Node.copy
def with_cte(self, *cte_list):
self._cte_list = cte_list
@Node.copy
def where(self, *expressions):
if self._where is not None:
expressions = (self._where,) + expressions
self._where = reduce(operator.and_, expressions)
@Node.copy
def orwhere(self, *expressions):
if self._where is not None:
expressions = (self._where,) + expressions
self._where = reduce(operator.or_, expressions)
@Node.copy
def order_by(self, *values):
self._order_by = values
@Node.copy
def order_by_extend(self, *values):
self._order_by = ((self._order_by or ()) + values) or None
@Node.copy
def limit(self, value=None):
self._limit = value
@Node.copy
def offset(self, value=None):
self._offset = value
@Node.copy
def paginate(self, page, paginate_by=20):
if page > 0:
page -= 1
self._limit = paginate_by
self._offset = page * paginate_by
def _apply_ordering(self, ctx):
if self._order_by:
(ctx
.literal(' ORDER BY ')
.sql(CommaNodeList(self._order_by)))
if self._limit is not None or (self._offset is not None and
ctx.state.limit_max):
limit = ctx.state.limit_max if self._limit is None else self._limit
ctx.literal(' LIMIT ').sql(limit)
if self._offset is not None:
ctx.literal(' OFFSET ').sql(self._offset)
return ctx
def __sql__(self, ctx):
if self._cte_list:
# The CTE scope is only used at the very beginning of the query,
# when we are describing the various CTEs we will be using.
recursive = any(cte._recursive for cte in self._cte_list)
# Explicitly disable the "subquery" flag here, so as to avoid
# unnecessary parentheses around subsequent selects.
with ctx.scope_cte(subquery=False):
(ctx
.literal('WITH RECURSIVE ' if recursive else 'WITH ')
.sql(CommaNodeList(self._cte_list))
.literal(' '))
return ctx
def __compound_select__(operation, inverted=False):
def method(self, other):
if inverted:
self, other = other, self
return CompoundSelectQuery(self, operation, other)
return method
class SelectQuery(Query):
union_all = __add__ = __compound_select__('UNION ALL')
union = __or__ = __compound_select__('UNION')
intersect = __and__ = __compound_select__('INTERSECT')
except_ = __sub__ = __compound_select__('EXCEPT')
__radd__ = __compound_select__('UNION ALL', inverted=True)
__ror__ = __compound_select__('UNION', inverted=True)
__rand__ = __compound_select__('INTERSECT', inverted=True)
__rsub__ = __compound_select__('EXCEPT', inverted=True)
def select_from(self, *columns):
if not columns:
raise ValueError('select_from() must specify one or more columns.')
query = (Select((self,), columns)
.bind(self._database))
if getattr(self, 'model', None) is not None:
# Bind to the sub-select's model type, if defined.
query = query.objects(self.model)
return query
class SelectBase(_HashableSource, Source, SelectQuery):
def _get_hash(self):
return hash((self.__class__, self._alias or id(self)))
def _execute(self, database):
if self._cursor_wrapper is None:
cursor = database.execute(self)
self._cursor_wrapper = self._get_cursor_wrapper(cursor)
return self._cursor_wrapper
@database_required
def peek(self, database, n=1):
rows = self.execute(database)[:n]
if rows:
return rows[0] if n == 1 else rows
@database_required
def first(self, database, n=1):
if self._limit != n:
self._limit = n
self._cursor_wrapper = None
return self.peek(database, n=n)
@database_required
def scalar(self, database, as_tuple=False):
row = self.tuples().peek(database)
return row[0] if row and not as_tuple else row
@database_required
def count(self, database, clear_limit=False):
clone = self.order_by().alias('_wrapped')
if clear_limit:
clone._limit = clone._offset = None
try:
if clone._having is None and clone._group_by is None and \
clone._windows is None and clone._distinct is None and \
clone._simple_distinct is not True:
clone = clone.select(SQL('1'))
except AttributeError:
pass
return Select([clone], [fn.COUNT(SQL('1'))]).scalar(database)
@database_required
def exists(self, database):
clone = self.columns(SQL('1'))
clone._limit = 1
clone._offset = None
return bool(clone.scalar())
@database_required
def get(self, database):
self._cursor_wrapper = None
try:
return self.execute(database)[0]
except IndexError:
pass
# QUERY IMPLEMENTATIONS.
class CompoundSelectQuery(SelectBase):
def __init__(self, lhs, op, rhs):
super(CompoundSelectQuery, self).__init__()
self.lhs = lhs
self.op = op
self.rhs = rhs
@property
def _returning(self):
return self.lhs._returning
@database_required
def exists(self, database):
query = Select((self.limit(1),), (SQL('1'),)).bind(database)
return bool(query.scalar())
def _get_query_key(self):
return (self.lhs.get_query_key(), self.rhs.get_query_key())
def _wrap_parens(self, ctx, subq):
csq_setting = ctx.state.compound_select_parentheses
if not csq_setting or csq_setting == CSQ_PARENTHESES_NEVER:
return False
elif csq_setting == CSQ_PARENTHESES_ALWAYS:
return True
elif csq_setting == CSQ_PARENTHESES_UNNESTED:
if ctx.state.in_expr or ctx.state.in_function:
# If this compound select query is being used inside an
# expression, e.g., an IN or EXISTS().
return False
# If the query on the left or right is itself a compound select
# query, then we do not apply parentheses. However, if it is a
# regular SELECT query, we will apply parentheses.
return not isinstance(subq, CompoundSelectQuery)
def __sql__(self, ctx):
if ctx.scope == SCOPE_COLUMN:
return self.apply_column(ctx)
# Call parent method to handle any CTEs.
super(CompoundSelectQuery, self).__sql__(ctx)
outer_parens = ctx.subquery or (ctx.scope == SCOPE_SOURCE)
with ctx(parentheses=outer_parens):
# Should the left-hand query be wrapped in parentheses?
lhs_parens = self._wrap_parens(ctx, self.lhs)
with ctx.scope_normal(parentheses=lhs_parens, subquery=False):
ctx.sql(self.lhs)
ctx.literal(' %s ' % self.op)
with ctx.push_alias():
# Should the right-hand query be wrapped in parentheses?
rhs_parens = self._wrap_parens(ctx, self.rhs)
with ctx.scope_normal(parentheses=rhs_parens, subquery=False):
ctx.sql(self.rhs)
# Apply ORDER BY, LIMIT, OFFSET. We use the "values" scope so that
# entity names are not fully-qualified. This is a bit of a hack, as
# we're relying on the logic in Column.__sql__() to not fully
# qualify column names.
with ctx.scope_values():
self._apply_ordering(ctx)
return self.apply_alias(ctx)
class Select(SelectBase):
def __init__(self, from_list=None, columns=None, group_by=None,
having=None, distinct=None, windows=None, for_update=None,
for_update_of=None, nowait=None, lateral=None, **kwargs):
super(Select, self).__init__(**kwargs)
self._from_list = (list(from_list) if isinstance(from_list, tuple)
else from_list) or []
self._returning = columns
self._group_by = group_by
self._having = having
self._windows = None
self._for_update = for_update # XXX: consider reorganizing.
self._for_update_of = for_update_of
self._for_update_nowait = nowait
self._lateral = lateral
self._distinct = self._simple_distinct = None
if distinct:
if isinstance(distinct, bool):
self._simple_distinct = distinct
else:
self._distinct = distinct
self._cursor_wrapper = None
def clone(self):
clone = super(Select, self).clone()
if clone._from_list:
clone._from_list = list(clone._from_list)
return clone
@Node.copy
def columns(self, *columns, **kwargs):
self._returning = columns
select = columns
@Node.copy
def select_extend(self, *columns):
self._returning = tuple(self._returning) + columns
@Node.copy
def from_(self, *sources):
self._from_list = list(sources)
@Node.copy
def join(self, dest, join_type=JOIN.INNER, on=None):
if not self._from_list:
raise ValueError('No sources to join on.')
item = self._from_list.pop()
self._from_list.append(Join(item, dest, join_type, on))
@Node.copy
def group_by(self, *columns):
grouping = []
for column in columns:
if isinstance(column, Table):
if not column._columns:
raise ValueError('Cannot pass a table to group_by() that '
'does not have columns explicitly '
'declared.')
grouping.extend([getattr(column, col_name)
for col_name in column._columns])
else:
grouping.append(column)
self._group_by = grouping
def group_by_extend(self, *values):
"""@Node.copy used from group_by() call"""
group_by = tuple(self._group_by or ()) + values
return self.group_by(*group_by)
@Node.copy
def having(self, *expressions):
if self._having is not None:
expressions = (self._having,) + expressions
self._having = reduce(operator.and_, expressions)
@Node.copy
def distinct(self, *columns):
if len(columns) == 1 and (columns[0] is True or columns[0] is False):
self._simple_distinct = columns[0]
else:
self._simple_distinct = False
self._distinct = columns
@Node.copy
def window(self, *windows):
self._windows = windows if windows else None
@Node.copy
def for_update(self, for_update=True, of=None, nowait=None):
if not for_update and (of is not None or nowait):
for_update = True
self._for_update = for_update
self._for_update_of = of
self._for_update_nowait = nowait
@Node.copy
def lateral(self, lateral=True):
self._lateral = lateral
def _get_query_key(self):
return self._alias
def __sql_selection__(self, ctx, is_subquery=False):
return ctx.sql(CommaNodeList(self._returning))
def __sql__(self, ctx):
if ctx.scope == SCOPE_COLUMN:
return self.apply_column(ctx)
if self._lateral and ctx.scope == SCOPE_SOURCE:
ctx.literal('LATERAL ')
is_subquery = ctx.subquery
state = {
'converter': None,
'in_function': False,
'parentheses': is_subquery or (ctx.scope == SCOPE_SOURCE),
'subquery': True,
}
if ctx.state.in_function and ctx.state.function_arg_count == 1:
state['parentheses'] = False
with ctx.scope_normal(**state):
# Defer calling parent SQL until here. This ensures that any CTEs
# for this query will be properly nested if this query is a
# sub-select or is used in an expression. See GH#1809 for example.
super(Select, self).__sql__(ctx)
ctx.literal('SELECT ')
if self._simple_distinct or self._distinct is not None:
ctx.literal('DISTINCT ')
if self._distinct:
(ctx
.literal('ON ')
.sql(EnclosedNodeList(self._distinct))
.literal(' '))
with ctx.scope_source():
ctx = self.__sql_selection__(ctx, is_subquery)
if self._from_list:
with ctx.scope_source(parentheses=False):
ctx.literal(' FROM ').sql(CommaNodeList(self._from_list))
if self._where is not None:
ctx.literal(' WHERE ').sql(self._where)
if self._group_by:
ctx.literal(' GROUP BY ').sql(CommaNodeList(self._group_by))
if self._having is not None:
ctx.literal(' HAVING ').sql(self._having)
if self._windows is not None:
ctx.literal(' WINDOW ')
ctx.sql(CommaNodeList(self._windows))
# Apply ORDER BY, LIMIT, OFFSET.
self._apply_ordering(ctx)
if self._for_update:
if not ctx.state.for_update:
raise ValueError('FOR UPDATE specified but not supported '
'by database.')
ctx.literal(' ')
ctx.sql(ForUpdate(self._for_update, self._for_update_of,
self._for_update_nowait))
# If the subquery is inside a function -or- we are evaluating a
# subquery on either side of an expression w/o an explicit alias, do
# not generate an alias + AS clause.
if ctx.state.in_function or (ctx.state.in_expr and
self._alias is None):
return ctx
return self.apply_alias(ctx)
class _WriteQuery(Query):
def __init__(self, table, returning=None, **kwargs):
self.table = table
self._returning = returning
self._return_cursor = True if returning else False
super(_WriteQuery, self).__init__(**kwargs)
@Node.copy
def returning(self, *returning):
self._returning = returning
self._return_cursor = True if returning else False
def apply_returning(self, ctx):
if self._returning:
with ctx.scope_source():
ctx.literal(' RETURNING ').sql(CommaNodeList(self._returning))
return ctx
def _execute(self, database):
if self._returning:
cursor = self.execute_returning(database)
else:
cursor = database.execute(self)
return self.handle_result(database, cursor)
def execute_returning(self, database):
if self._cursor_wrapper is None:
cursor = database.execute(self)
self._cursor_wrapper = self._get_cursor_wrapper(cursor)
return self._cursor_wrapper
def handle_result(self, database, cursor):
if self._return_cursor:
return cursor
return database.rows_affected(cursor)
def _set_table_alias(self, ctx):
ctx.alias_manager[self.table] = self.table.__name__
def __sql__(self, ctx):
super(_WriteQuery, self).__sql__(ctx)
# We explicitly set the table alias to the table's name, which ensures
# that if a sub-select references a column on the outer table, we won't
# assign it a new alias (e.g. t2) but will refer to it as table.column.
self._set_table_alias(ctx)
return ctx
class Update(_WriteQuery):
def __init__(self, table, update=None, **kwargs):
super(Update, self).__init__(table, **kwargs)
self._update = update
self._from = None
@Node.copy
def from_(self, *sources):
self._from = sources
def __sql__(self, ctx):
super(Update, self).__sql__(ctx)
with ctx.scope_values(subquery=True):
ctx.literal('UPDATE ')
expressions = []
for k, v in sorted(self._update.items(), key=ctx.column_sort_key):
if not isinstance(v, Node):
if isinstance(k, Field):
v = k.to_value(v)
else:
v = Value(v, unpack=False)
elif isinstance(v, Model) and isinstance(k, ForeignKeyField):
# NB: we want to ensure that when passed a model instance
# in the context of a foreign-key, we apply the fk-specific
# adaptation of the model.
v = k.to_value(v)
if not isinstance(v, Value):
v = qualify_names(v)
expressions.append(NodeList((k, SQL('='), v)))
(ctx
.sql(self.table)
.literal(' SET ')
.sql(CommaNodeList(expressions)))
if self._from:
with ctx.scope_source(parentheses=False):
ctx.literal(' FROM ').sql(CommaNodeList(self._from))
if self._where:
with ctx.scope_normal():
ctx.literal(' WHERE ').sql(self._where)
self._apply_ordering(ctx)
return self.apply_returning(ctx)
class Insert(_WriteQuery):
SIMPLE = 0
QUERY = 1
MULTI = 2
class DefaultValuesException(Exception): pass
def __init__(self, table, insert=None, columns=None, on_conflict=None,
**kwargs):
super(Insert, self).__init__(table, **kwargs)
self._insert = insert
self._columns = columns
self._on_conflict = on_conflict
self._query_type = None
def where(self, *expressions):
raise NotImplementedError('INSERT queries cannot have a WHERE clause.')
@Node.copy
def on_conflict_ignore(self, ignore=True):
self._on_conflict = OnConflict('IGNORE') if ignore else None
@Node.copy
def on_conflict_replace(self, replace=True):
self._on_conflict = OnConflict('REPLACE') if replace else None
@Node.copy
def on_conflict(self, *args, **kwargs):
self._on_conflict = (OnConflict(*args, **kwargs) if (args or kwargs)
else None)
def _simple_insert(self, ctx):
if not self._insert:
raise self.DefaultValuesException('Error: no data to insert.')
return self._generate_insert((self._insert,), ctx)
def get_default_data(self):
return {}
def get_default_columns(self):
if self.table._columns:
return [getattr(self.table, col) for col in self.table._columns
if col != self.table._primary_key]
def _generate_insert(self, insert, ctx):
rows_iter = iter(insert)
columns = self._columns
# Load and organize column defaults (if provided).
defaults = self.get_default_data()
# First figure out what columns are being inserted (if they weren't
# specified explicitly). Resulting columns are normalized and ordered.
if not columns:
try:
row = next(rows_iter)
except StopIteration:
raise self.DefaultValuesException('Error: no rows to insert.')
if not isinstance(row, Mapping):
columns = self.get_default_columns()
if columns is None:
raise ValueError('Bulk insert must specify columns.')
else:
# Infer column names from the dict of data being inserted.
accum = []
for column in row:
if isinstance(column, basestring):
column = getattr(self.table, column)
accum.append(column)
# Add any columns present in the default data that are not
# accounted for by the dictionary of row data.
column_set = set(accum)
for col in (set(defaults) - column_set):
accum.append(col)
columns = sorted(accum, key=lambda obj: obj.get_sort_key(ctx))
rows_iter = itertools.chain(iter((row,)), rows_iter)
else:
clean_columns = []
seen = set()
for column in columns:
if isinstance(column, basestring):
column_obj = getattr(self.table, column)
else:
column_obj = column
clean_columns.append(column_obj)
seen.add(column_obj)
columns = clean_columns
for col in sorted(defaults, key=lambda obj: obj.get_sort_key(ctx)):
if col not in seen:
columns.append(col)
fk_fields = set()
nullable_columns = set()
value_lookups = {}
for column in columns:
lookups = [column, column.name]
if isinstance(column, Field):
if column.name != column.column_name:
lookups.append(column.column_name)
if column.null:
nullable_columns.add(column)
if isinstance(column, ForeignKeyField):
fk_fields.add(column)
value_lookups[column] = lookups
ctx.sql(EnclosedNodeList(columns)).literal(' VALUES ')
columns_converters = [
(column, column.db_value if isinstance(column, Field) else None)
for column in columns]
all_values = []
for row in rows_iter:
values = []
is_dict = isinstance(row, Mapping)
for i, (column, converter) in enumerate(columns_converters):
try:
if is_dict:
# The logic is a bit convoluted, but in order to be
# flexible in what we accept (dict keyed by
# column/field, field name, or underlying column name),
# we try accessing the row data dict using each
# possible key. If no match is found, throw an error.
for lookup in value_lookups[column]:
try:
val = row[lookup]
except KeyError: pass
else: break
else:
raise KeyError
else:
val = row[i]
except (KeyError, IndexError):
if column in defaults:
val = defaults[column]
if callable_(val):
val = val()
elif column in nullable_columns:
val = None
else:
raise ValueError('Missing value for %s.' % column.name)
if not isinstance(val, Node) or (isinstance(val, Model) and
column in fk_fields):
val = Value(val, converter=converter, unpack=False)
values.append(val)
all_values.append(EnclosedNodeList(values))
if not all_values:
raise self.DefaultValuesException('Error: no data to insert.')
with ctx.scope_values(subquery=True):
return ctx.sql(CommaNodeList(all_values))
def _query_insert(self, ctx):
return (ctx
.sql(EnclosedNodeList(self._columns))
.literal(' ')
.sql(self._insert))
def _default_values(self, ctx):
if not self._database:
return ctx.literal('DEFAULT VALUES')
return self._database.default_values_insert(ctx)
def __sql__(self, ctx):
super(Insert, self).__sql__(ctx)
with ctx.scope_values():
stmt = None
if self._on_conflict is not None:
stmt = self._on_conflict.get_conflict_statement(ctx, self)
(ctx
.sql(stmt or SQL('INSERT'))
.literal(' INTO ')
.sql(self.table)
.literal(' '))
if isinstance(self._insert, Mapping) and not self._columns:
try:
self._simple_insert(ctx)
except self.DefaultValuesException:
self._default_values(ctx)
self._query_type = Insert.SIMPLE
elif isinstance(self._insert, (SelectQuery, SQL)):
self._query_insert(ctx)
self._query_type = Insert.QUERY
else:
self._generate_insert(self._insert, ctx)
self._query_type = Insert.MULTI
if self._on_conflict is not None:
update = self._on_conflict.get_conflict_update(ctx, self)
if update is not None:
ctx.literal(' ').sql(update)
return self.apply_returning(ctx)
def _execute(self, database):
if self._returning is None and database.returning_clause \
and self.table._primary_key:
self._returning = (self.table._primary_key,)
try:
return super(Insert, self)._execute(database)
except self.DefaultValuesException:
pass
def handle_result(self, database, cursor):
if self._return_cursor:
return cursor
if self._query_type != Insert.SIMPLE and not self._returning:
return database.rows_affected(cursor)
return database.last_insert_id(cursor, self._query_type)
class Delete(_WriteQuery):
def __sql__(self, ctx):
super(Delete, self).__sql__(ctx)
with ctx.scope_values(subquery=True):
ctx.literal('DELETE FROM ').sql(self.table)
if self._where is not None:
with ctx.scope_normal():
ctx.literal(' WHERE ').sql(self._where)
self._apply_ordering(ctx)
return self.apply_returning(ctx)
class Index(Node):
def __init__(self, name, table, expressions, unique=False, safe=False,
where=None, using=None):
self._name = name
self._table = Entity(table) if not isinstance(table, Table) else table
self._expressions = expressions
self._where = where
self._unique = unique
self._safe = safe
self._using = using
@Node.copy
def safe(self, _safe=True):
self._safe = _safe
@Node.copy
def where(self, *expressions):
if self._where is not None:
expressions = (self._where,) + expressions
self._where = reduce(operator.and_, expressions)
@Node.copy
def using(self, _using=None):
self._using = _using
def __sql__(self, ctx):
statement = 'CREATE UNIQUE INDEX ' if self._unique else 'CREATE INDEX '
with ctx.scope_values(subquery=True):
ctx.literal(statement)
if self._safe:
ctx.literal('IF NOT EXISTS ')
# Sqlite uses CREATE INDEX <schema>.<name> ON <table>, whereas most
# others use: CREATE INDEX <name> ON <schema>.<table>.
if ctx.state.index_schema_prefix and \
isinstance(self._table, Table) and self._table._schema:
index_name = Entity(self._table._schema, self._name)
table_name = Entity(self._table.__name__)
else:
index_name = Entity(self._name)
table_name = self._table
ctx.sql(index_name)
if self._using is not None and \
ctx.state.index_using_precedes_table:
ctx.literal(' USING %s' % self._using) # MySQL style.
(ctx
.literal(' ON ')
.sql(table_name)
.literal(' '))
if self._using is not None and not \
ctx.state.index_using_precedes_table:
ctx.literal('USING %s ' % self._using) # Postgres/default.
ctx.sql(EnclosedNodeList([
SQL(expr) if isinstance(expr, basestring) else expr
for expr in self._expressions]))
if self._where is not None:
ctx.literal(' WHERE ').sql(self._where)
return ctx
class ModelIndex(Index):
def __init__(self, model, fields, unique=False, safe=True, where=None,
using=None, name=None):
self._model = model
if name is None:
name = self._generate_name_from_fields(model, fields)
if using is None:
for field in fields:
if isinstance(field, Field) and hasattr(field, 'index_type'):
using = field.index_type
super(ModelIndex, self).__init__(
name=name,
table=model._meta.table,
expressions=fields,
unique=unique,
safe=safe,
where=where,
using=using)
def _generate_name_from_fields(self, model, fields):
accum = []
for field in fields:
if isinstance(field, basestring):
accum.append(field.split()[0])
else:
if isinstance(field, Node) and not isinstance(field, Field):
field = field.unwrap()
if isinstance(field, Field):
accum.append(field.column_name)
if not accum:
raise ValueError('Unable to generate a name for the index, please '
'explicitly specify a name.')
clean_field_names = re.sub(r'[^\w]+', '', '_'.join(accum))
meta = model._meta
prefix = meta.name if meta.legacy_table_names else meta.table_name
return _truncate_constraint_name('_'.join((prefix, clean_field_names)))
def _truncate_constraint_name(constraint, maxlen=64):
if len(constraint) > maxlen:
name_hash = hashlib.md5(constraint.encode('utf-8')).hexdigest()
constraint = '%s_%s' % (constraint[:(maxlen - 8)], name_hash[:7])
return constraint
# DB-API 2.0 EXCEPTIONS.
class PeeweeException(Exception):
def __init__(self, *args):
if args and isinstance(args[0], Exception):
self.orig, args = args[0], args[1:]
super(PeeweeException, self).__init__(*args)
class ImproperlyConfigured(PeeweeException): pass
class DatabaseError(PeeweeException): pass
class DataError(DatabaseError): pass
class IntegrityError(DatabaseError): pass
class InterfaceError(PeeweeException): pass
class InternalError(DatabaseError): pass
class NotSupportedError(DatabaseError): pass
class OperationalError(DatabaseError): pass
class ProgrammingError(DatabaseError): pass
class ExceptionWrapper(object):
__slots__ = ('exceptions',)
def __init__(self, exceptions):
self.exceptions = exceptions
def __enter__(self): pass
def __exit__(self, exc_type, exc_value, traceback):
if exc_type is None:
return
# psycopg2.8 shits out a million cute error types. Try to catch em all.
if pg_errors is not None and exc_type.__name__ not in self.exceptions \
and issubclass(exc_type, pg_errors.Error):
exc_type = exc_type.__bases__[0]
if exc_type.__name__ in self.exceptions:
new_type = self.exceptions[exc_type.__name__]
exc_args = exc_value.args
reraise(new_type, new_type(exc_value, *exc_args), traceback)
EXCEPTIONS = {
'ConstraintError': IntegrityError,
'DatabaseError': DatabaseError,
'DataError': DataError,
'IntegrityError': IntegrityError,
'InterfaceError': InterfaceError,
'InternalError': InternalError,
'NotSupportedError': NotSupportedError,
'OperationalError': OperationalError,
'ProgrammingError': ProgrammingError,
'TransactionRollbackError': OperationalError}
__exception_wrapper__ = ExceptionWrapper(EXCEPTIONS)
# DATABASE INTERFACE AND CONNECTION MANAGEMENT.
IndexMetadata = collections.namedtuple(
'IndexMetadata',
('name', 'sql', 'columns', 'unique', 'table'))
ColumnMetadata = collections.namedtuple(
'ColumnMetadata',
('name', 'data_type', 'null', 'primary_key', 'table', 'default'))
ForeignKeyMetadata = collections.namedtuple(
'ForeignKeyMetadata',
('column', 'dest_table', 'dest_column', 'table'))
ViewMetadata = collections.namedtuple('ViewMetadata', ('name', 'sql'))
class _ConnectionState(object):
def __init__(self, **kwargs):
super(_ConnectionState, self).__init__(**kwargs)
self.reset()
def reset(self):
self.closed = True
self.conn = None
self.ctx = []
self.transactions = []
def set_connection(self, conn):
self.conn = conn
self.closed = False
self.ctx = []
self.transactions = []
class _ConnectionLocal(_ConnectionState, threading.local): pass
class _NoopLock(object):
__slots__ = ()
def __enter__(self): return self
def __exit__(self, exc_type, exc_val, exc_tb): pass
class ConnectionContext(_callable_context_manager):
__slots__ = ('db',)
def __init__(self, db): self.db = db
def __enter__(self):
if self.db.is_closed():
self.db.connect()
def __exit__(self, exc_type, exc_val, exc_tb): self.db.close()
class Database(_callable_context_manager):
context_class = Context
field_types = {}
operations = {}
param = '?'
quote = '""'
server_version = None
# Feature toggles.
commit_select = False
compound_select_parentheses = CSQ_PARENTHESES_NEVER
for_update = False
index_schema_prefix = False
index_using_precedes_table = False
limit_max = None
nulls_ordering = False
returning_clause = False
safe_create_index = True
safe_drop_index = True
sequences = False
truncate_table = True
def __init__(self, database, thread_safe=True, autorollback=False,
field_types=None, operations=None, autocommit=None,
autoconnect=True, **kwargs):
self._field_types = merge_dict(FIELD, self.field_types)
self._operations = merge_dict(OP, self.operations)
if field_types:
self._field_types.update(field_types)
if operations:
self._operations.update(operations)
self.autoconnect = autoconnect
self.autorollback = autorollback
self.thread_safe = thread_safe
if thread_safe:
self._state = _ConnectionLocal()
self._lock = threading.RLock()
else:
self._state = _ConnectionState()
self._lock = _NoopLock()
if autocommit is not None:
__deprecated__('Peewee no longer uses the "autocommit" option, as '
'the semantics now require it to always be True. '
'Because some database-drivers also use the '
'"autocommit" parameter, you are receiving a '
'warning so you may update your code and remove '
'the parameter, as in the future, specifying '
'autocommit could impact the behavior of the '
'database driver you are using.')
self.connect_params = {}
self.init(database, **kwargs)
def init(self, database, **kwargs):
if not self.is_closed():
self.close()
self.database = database
self.connect_params.update(kwargs)
self.deferred = not bool(database)
def __enter__(self):
if self.is_closed():
self.connect()
ctx = self.atomic()
self._state.ctx.append(ctx)
ctx.__enter__()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
ctx = self._state.ctx.pop()
try:
ctx.__exit__(exc_type, exc_val, exc_tb)
finally:
if not self._state.ctx:
self.close()
def connection_context(self):
return ConnectionContext(self)
def _connect(self):
raise NotImplementedError
def connect(self, reuse_if_open=False):
with self._lock:
if self.deferred:
raise InterfaceError('Error, database must be initialized '
'before opening a connection.')
if not self._state.closed:
if reuse_if_open:
return False
raise OperationalError('Connection already opened.')
self._state.reset()
with __exception_wrapper__:
self._state.set_connection(self._connect())
if self.server_version is None:
self._set_server_version(self._state.conn)
self._initialize_connection(self._state.conn)
return True
def _initialize_connection(self, conn):
pass
def _set_server_version(self, conn):
self.server_version = 0
def close(self):
with self._lock:
if self.deferred:
raise InterfaceError('Error, database must be initialized '
'before opening a connection.')
if self.in_transaction():
raise OperationalError('Attempting to close database while '
'transaction is open.')
is_open = not self._state.closed
try:
if is_open:
with __exception_wrapper__:
self._close(self._state.conn)
finally:
self._state.reset()
return is_open
def _close(self, conn):
conn.close()
def is_closed(self):
return self._state.closed
def is_connection_usable(self):
return not self._state.closed
def connection(self):
if self.is_closed():
self.connect()
return self._state.conn
def cursor(self, commit=None):
if self.is_closed():
if self.autoconnect:
self.connect()
else:
raise InterfaceError('Error, database connection not opened.')
return self._state.conn.cursor()
def execute_sql(self, sql, params=None, commit=SENTINEL):
logger.debug((sql, params))
if commit is SENTINEL:
if self.in_transaction():
commit = False
elif self.commit_select:
commit = True
else:
commit = not sql[:6].lower().startswith('select')
with __exception_wrapper__:
cursor = self.cursor(commit)
try:
cursor.execute(sql, params or ())
except Exception:
if self.autorollback and not self.in_transaction():
self.rollback()
raise
else:
if commit and not self.in_transaction():
self.commit()
return cursor
def execute(self, query, commit=SENTINEL, **context_options):
ctx = self.get_sql_context(**context_options)
sql, params = ctx.sql(query).query()
return self.execute_sql(sql, params, commit=commit)
def get_context_options(self):
return {
'field_types': self._field_types,
'operations': self._operations,
'param': self.param,
'quote': self.quote,
'compound_select_parentheses': self.compound_select_parentheses,
'conflict_statement': self.conflict_statement,
'conflict_update': self.conflict_update,
'for_update': self.for_update,
'index_schema_prefix': self.index_schema_prefix,
'index_using_precedes_table': self.index_using_precedes_table,
'limit_max': self.limit_max,
'nulls_ordering': self.nulls_ordering,
}
def get_sql_context(self, **context_options):
context = self.get_context_options()
if context_options:
context.update(context_options)
return self.context_class(**context)
def conflict_statement(self, on_conflict, query):
raise NotImplementedError
def conflict_update(self, on_conflict, query):
raise NotImplementedError
def _build_on_conflict_update(self, on_conflict, query):
if on_conflict._conflict_target:
stmt = SQL('ON CONFLICT')
target = EnclosedNodeList([
Entity(col) if isinstance(col, basestring) else col
for col in on_conflict._conflict_target])
if on_conflict._conflict_where is not None:
target = NodeList([target, SQL('WHERE'),
on_conflict._conflict_where])
else:
stmt = SQL('ON CONFLICT ON CONSTRAINT')
target = on_conflict._conflict_constraint
if isinstance(target, basestring):
target = Entity(target)
updates = []
if on_conflict._preserve:
for column in on_conflict._preserve:
excluded = NodeList((SQL('EXCLUDED'), ensure_entity(column)),
glue='.')
expression = NodeList((ensure_entity(column), SQL('='),
excluded))
updates.append(expression)
if on_conflict._update:
for k, v in on_conflict._update.items():
if not isinstance(v, Node):
# Attempt to resolve string field-names to their respective
# field object, to apply data-type conversions.
if isinstance(k, basestring):
k = getattr(query.table, k)
if isinstance(k, Field):
v = k.to_value(v)
else:
v = Value(v, unpack=False)
else:
v = QualifiedNames(v)
updates.append(NodeList((ensure_entity(k), SQL('='), v)))
parts = [stmt, target, SQL('DO UPDATE SET'), CommaNodeList(updates)]
if on_conflict._where:
parts.extend((SQL('WHERE'), QualifiedNames(on_conflict._where)))
return NodeList(parts)
def last_insert_id(self, cursor, query_type=None):
return cursor.lastrowid
def rows_affected(self, cursor):
return cursor.rowcount
def default_values_insert(self, ctx):
return ctx.literal('DEFAULT VALUES')
def session_start(self):
with self._lock:
return self.transaction().__enter__()
def session_commit(self):
with self._lock:
try:
txn = self.pop_transaction()
except IndexError:
return False
txn.commit(begin=self.in_transaction())
return True
def session_rollback(self):
with self._lock:
try:
txn = self.pop_transaction()
except IndexError:
return False
txn.rollback(begin=self.in_transaction())
return True
def in_transaction(self):
return bool(self._state.transactions)
def push_transaction(self, transaction):
self._state.transactions.append(transaction)
def pop_transaction(self):
return self._state.transactions.pop()
def transaction_depth(self):
return len(self._state.transactions)
def top_transaction(self):
if self._state.transactions:
return self._state.transactions[-1]
def atomic(self, *args, **kwargs):
return _atomic(self, *args, **kwargs)
def manual_commit(self):
return _manual(self)
def transaction(self, *args, **kwargs):
return _transaction(self, *args, **kwargs)
def savepoint(self):
return _savepoint(self)
def begin(self):
if self.is_closed():
self.connect()
def commit(self):
with __exception_wrapper__:
return self._state.conn.commit()
def rollback(self):
with __exception_wrapper__:
return self._state.conn.rollback()
def batch_commit(self, it, n):
for group in chunked(it, n):
with self.atomic():
for obj in group:
yield obj
def table_exists(self, table_name, schema=None):
return table_name in self.get_tables(schema=schema)
def get_tables(self, schema=None):
raise NotImplementedError
def get_indexes(self, table, schema=None):
raise NotImplementedError
def get_columns(self, table, schema=None):
raise NotImplementedError
def get_primary_keys(self, table, schema=None):
raise NotImplementedError
def get_foreign_keys(self, table, schema=None):
raise NotImplementedError
def sequence_exists(self, seq):
raise NotImplementedError
def create_tables(self, models, **options):
for model in sort_models(models):
model.create_table(**options)
def drop_tables(self, models, **kwargs):
for model in reversed(sort_models(models)):
model.drop_table(**kwargs)
def extract_date(self, date_part, date_field):
raise NotImplementedError
def truncate_date(self, date_part, date_field):
raise NotImplementedError
def to_timestamp(self, date_field):
raise NotImplementedError
def from_timestamp(self, date_field):
raise NotImplementedError
def random(self):
return fn.random()
def bind(self, models, bind_refs=True, bind_backrefs=True):
for model in models:
model.bind(self, bind_refs=bind_refs, bind_backrefs=bind_backrefs)
def bind_ctx(self, models, bind_refs=True, bind_backrefs=True):
return _BoundModelsContext(models, self, bind_refs, bind_backrefs)
def get_noop_select(self, ctx):
return ctx.sql(Select().columns(SQL('0')).where(SQL('0')))
def __pragma__(name):
def __get__(self):
return self.pragma(name)
def __set__(self, value):
return self.pragma(name, value)
return property(__get__, __set__)
class SqliteDatabase(Database):
field_types = {
'BIGAUTO': FIELD.AUTO,
'BIGINT': FIELD.INT,
'BOOL': FIELD.INT,
'DOUBLE': FIELD.FLOAT,
'SMALLINT': FIELD.INT,
'UUID': FIELD.TEXT}
operations = {
'LIKE': 'GLOB',
'ILIKE': 'LIKE'}
index_schema_prefix = True
limit_max = -1
server_version = __sqlite_version__
truncate_table = False
def __init__(self, database, *args, **kwargs):
self._pragmas = kwargs.pop('pragmas', ())
super(SqliteDatabase, self).__init__(database, *args, **kwargs)
self._aggregates = {}
self._collations = {}
self._functions = {}
self._window_functions = {}
self._table_functions = []
self._extensions = set()
self._attached = {}
self.register_function(_sqlite_date_part, 'date_part', 2)
self.register_function(_sqlite_date_trunc, 'date_trunc', 2)
self.nulls_ordering = self.server_version >= (3, 30, 0)
def init(self, database, pragmas=None, timeout=5, **kwargs):
if pragmas is not None:
self._pragmas = pragmas
if isinstance(self._pragmas, dict):
self._pragmas = list(self._pragmas.items())
self._timeout = timeout
super(SqliteDatabase, self).init(database, **kwargs)
def _set_server_version(self, conn):
pass
def _connect(self):
if sqlite3 is None:
raise ImproperlyConfigured('SQLite driver not installed!')
conn = sqlite3.connect(self.database, timeout=self._timeout,
isolation_level=None, **self.connect_params)
try:
self._add_conn_hooks(conn)
except:
conn.close()
raise
return conn
def _add_conn_hooks(self, conn):
if self._attached:
self._attach_databases(conn)
if self._pragmas:
self._set_pragmas(conn)
self._load_aggregates(conn)
self._load_collations(conn)
self._load_functions(conn)
if self.server_version >= (3, 25, 0):
self._load_window_functions(conn)
if self._table_functions:
for table_function in self._table_functions:
table_function.register(conn)
if self._extensions:
self._load_extensions(conn)
def _set_pragmas(self, conn):
cursor = conn.cursor()
for pragma, value in self._pragmas:
cursor.execute('PRAGMA %s = %s;' % (pragma, value))
cursor.close()
def _attach_databases(self, conn):
cursor = conn.cursor()
for name, db in self._attached.items():
cursor.execute('ATTACH DATABASE "%s" AS "%s"' % (db, name))
cursor.close()
def pragma(self, key, value=SENTINEL, permanent=False, schema=None):
if schema is not None:
key = '"%s".%s' % (schema, key)
sql = 'PRAGMA %s' % key
if value is not SENTINEL:
sql += ' = %s' % (value or 0)
if permanent:
pragmas = dict(self._pragmas or ())
pragmas[key] = value
self._pragmas = list(pragmas.items())
elif permanent:
raise ValueError('Cannot specify a permanent pragma without value')
row = self.execute_sql(sql).fetchone()
if row:
return row[0]
cache_size = __pragma__('cache_size')
foreign_keys = __pragma__('foreign_keys')
journal_mode = __pragma__('journal_mode')
journal_size_limit = __pragma__('journal_size_limit')
mmap_size = __pragma__('mmap_size')
page_size = __pragma__('page_size')
read_uncommitted = __pragma__('read_uncommitted')
synchronous = __pragma__('synchronous')
wal_autocheckpoint = __pragma__('wal_autocheckpoint')
@property
def timeout(self):
return self._timeout
@timeout.setter
def timeout(self, seconds):
if self._timeout == seconds:
return
self._timeout = seconds
if not self.is_closed():
# PySQLite multiplies user timeout by 1000, but the unit of the
# timeout PRAGMA is actually milliseconds.
self.execute_sql('PRAGMA busy_timeout=%d;' % (seconds * 1000))
def _load_aggregates(self, conn):
for name, (klass, num_params) in self._aggregates.items():
conn.create_aggregate(name, num_params, klass)
def _load_collations(self, conn):
for name, fn in self._collations.items():
conn.create_collation(name, fn)
def _load_functions(self, conn):
for name, (fn, num_params) in self._functions.items():
conn.create_function(name, num_params, fn)
def _load_window_functions(self, conn):
for name, (klass, num_params) in self._window_functions.items():
conn.create_window_function(name, num_params, klass)
def register_aggregate(self, klass, name=None, num_params=-1):
self._aggregates[name or klass.__name__.lower()] = (klass, num_params)
if not self.is_closed():
self._load_aggregates(self.connection())
def aggregate(self, name=None, num_params=-1):
def decorator(klass):
self.register_aggregate(klass, name, num_params)
return klass
return decorator
def register_collation(self, fn, name=None):
name = name or fn.__name__
def _collation(*args):
expressions = args + (SQL('collate %s' % name),)
return NodeList(expressions)
fn.collation = _collation
self._collations[name] = fn
if not self.is_closed():
self._load_collations(self.connection())
def collation(self, name=None):
def decorator(fn):
self.register_collation(fn, name)
return fn
return decorator
def register_function(self, fn, name=None, num_params=-1):
self._functions[name or fn.__name__] = (fn, num_params)
if not self.is_closed():
self._load_functions(self.connection())
def func(self, name=None, num_params=-1):
def decorator(fn):
self.register_function(fn, name, num_params)
return fn
return decorator
def register_window_function(self, klass, name=None, num_params=-1):
name = name or klass.__name__.lower()
self._window_functions[name] = (klass, num_params)
if not self.is_closed():
self._load_window_functions(self.connection())
def window_function(self, name=None, num_params=-1):
def decorator(klass):
self.register_window_function(klass, name, num_params)
return klass
return decorator
def register_table_function(self, klass, name=None):
if name is not None:
klass.name = name
self._table_functions.append(klass)
if not self.is_closed():
klass.register(self.connection())
def table_function(self, name=None):
def decorator(klass):
self.register_table_function(klass, name)
return klass
return decorator
def unregister_aggregate(self, name):
del(self._aggregates[name])
def unregister_collation(self, name):
del(self._collations[name])
def unregister_function(self, name):
del(self._functions[name])
def unregister_window_function(self, name):
del(self._window_functions[name])
def unregister_table_function(self, name):
for idx, klass in enumerate(self._table_functions):
if klass.name == name:
break
else:
return False
self._table_functions.pop(idx)
return True
def _load_extensions(self, conn):
conn.enable_load_extension(True)
for extension in self._extensions:
conn.load_extension(extension)
def load_extension(self, extension):
self._extensions.add(extension)
if not self.is_closed():
conn = self.connection()
conn.enable_load_extension(True)
conn.load_extension(extension)
def unload_extension(self, extension):
self._extensions.remove(extension)
def attach(self, filename, name):
if name in self._attached:
if self._attached[name] == filename:
return False
raise OperationalError('schema "%s" already attached.' % name)
self._attached[name] = filename
if not self.is_closed():
self.execute_sql('ATTACH DATABASE "%s" AS "%s"' % (filename, name))
return True
def detach(self, name):
if name not in self._attached:
return False
del self._attached[name]
if not self.is_closed():
self.execute_sql('DETACH DATABASE "%s"' % name)
return True
def begin(self, lock_type=None):
statement = 'BEGIN %s' % lock_type if lock_type else 'BEGIN'
self.execute_sql(statement, commit=False)
def get_tables(self, schema=None):
schema = schema or 'main'
cursor = self.execute_sql('SELECT name FROM "%s".sqlite_master WHERE '
'type=? ORDER BY name' % schema, ('table',))
return [row for row, in cursor.fetchall()]
def get_views(self, schema=None):
sql = ('SELECT name, sql FROM "%s".sqlite_master WHERE type=? '
'ORDER BY name') % (schema or 'main')
return [ViewMetadata(*row) for row in self.execute_sql(sql, ('view',))]
def get_indexes(self, table, schema=None):
schema = schema or 'main'
query = ('SELECT name, sql FROM "%s".sqlite_master '
'WHERE tbl_name = ? AND type = ? ORDER BY name') % schema
cursor = self.execute_sql(query, (table, 'index'))
index_to_sql = dict(cursor.fetchall())
# Determine which indexes have a unique constraint.
unique_indexes = set()
cursor = self.execute_sql('PRAGMA "%s".index_list("%s")' %
(schema, table))
for row in cursor.fetchall():
name = row[1]
is_unique = int(row[2]) == 1
if is_unique:
unique_indexes.add(name)
# Retrieve the indexed columns.
index_columns = {}
for index_name in sorted(index_to_sql):
cursor = self.execute_sql('PRAGMA "%s".index_info("%s")' %
(schema, index_name))
index_columns[index_name] = [row[2] for row in cursor.fetchall()]
return [
IndexMetadata(
name,
index_to_sql[name],
index_columns[name],
name in unique_indexes,
table)
for name in sorted(index_to_sql)]
def get_columns(self, table, schema=None):
cursor = self.execute_sql('PRAGMA "%s".table_info("%s")' %
(schema or 'main', table))
return [ColumnMetadata(r[1], r[2], not r[3], bool(r[5]), table, r[4])
for r in cursor.fetchall()]
def get_primary_keys(self, table, schema=None):
cursor = self.execute_sql('PRAGMA "%s".table_info("%s")' %
(schema or 'main', table))
return [row[1] for row in filter(lambda r: r[-1], cursor.fetchall())]
def get_foreign_keys(self, table, schema=None):
cursor = self.execute_sql('PRAGMA "%s".foreign_key_list("%s")' %
(schema or 'main', table))
return [ForeignKeyMetadata(row[3], row[2], row[4], table)
for row in cursor.fetchall()]
def get_binary_type(self):
return sqlite3.Binary
def conflict_statement(self, on_conflict, query):
action = on_conflict._action.lower() if on_conflict._action else ''
if action and action not in ('nothing', 'update'):
return SQL('INSERT OR %s' % on_conflict._action.upper())
def conflict_update(self, oc, query):
# Sqlite prior to 3.24.0 does not support Postgres-style upsert.
if self.server_version < (3, 24, 0) and \
any((oc._preserve, oc._update, oc._where, oc._conflict_target,
oc._conflict_constraint)):
raise ValueError('SQLite does not support specifying which values '
'to preserve or update.')
action = oc._action.lower() if oc._action else ''
if action and action not in ('nothing', 'update', ''):
return
if action == 'nothing':
return SQL('ON CONFLICT DO NOTHING')
elif not oc._update and not oc._preserve:
raise ValueError('If you are not performing any updates (or '
'preserving any INSERTed values), then the '
'conflict resolution action should be set to '
'"NOTHING".')
elif oc._conflict_constraint:
raise ValueError('SQLite does not support specifying named '
'constraints for conflict resolution.')
elif not oc._conflict_target:
raise ValueError('SQLite requires that a conflict target be '
'specified when doing an upsert.')
return self._build_on_conflict_update(oc, query)
def extract_date(self, date_part, date_field):
return fn.date_part(date_part, date_field, python_value=int)
def truncate_date(self, date_part, date_field):
return fn.date_trunc(date_part, date_field,
python_value=simple_date_time)
def to_timestamp(self, date_field):
return fn.strftime('%s', date_field).cast('integer')
def from_timestamp(self, date_field):
return fn.datetime(date_field, 'unixepoch')
class PostgresqlDatabase(Database):
field_types = {
'AUTO': 'SERIAL',
'BIGAUTO': 'BIGSERIAL',
'BLOB': 'BYTEA',
'BOOL': 'BOOLEAN',
'DATETIME': 'TIMESTAMP',
'DECIMAL': 'NUMERIC',
'DOUBLE': 'DOUBLE PRECISION',
'UUID': 'UUID',
'UUIDB': 'BYTEA'}
operations = {'REGEXP': '~', 'IREGEXP': '~*'}
param = '%s'
commit_select = True
compound_select_parentheses = CSQ_PARENTHESES_ALWAYS
for_update = True
nulls_ordering = True
returning_clause = True
safe_create_index = False
sequences = True
def init(self, database, register_unicode=True, encoding=None,
isolation_level=None, **kwargs):
self._register_unicode = register_unicode
self._encoding = encoding
self._isolation_level = isolation_level
super(PostgresqlDatabase, self).init(database, **kwargs)
def _connect(self):
if psycopg2 is None:
raise ImproperlyConfigured('Postgres driver not installed!')
conn = psycopg2.connect(database=self.database, **self.connect_params)
if self._register_unicode:
pg_extensions.register_type(pg_extensions.UNICODE, conn)
pg_extensions.register_type(pg_extensions.UNICODEARRAY, conn)
if self._encoding:
conn.set_client_encoding(self._encoding)
if self._isolation_level:
conn.set_isolation_level(self._isolation_level)
return conn
def _set_server_version(self, conn):
self.server_version = conn.server_version
if self.server_version >= 90600:
self.safe_create_index = True
def is_connection_usable(self):
if self._state.closed:
return False
# Returns True if we are idle, running a command, or in an active
# connection. If the connection is in an error state or the connection
# is otherwise unusable, return False.
txn_status = self._state.conn.get_transaction_status()
return txn_status < pg_extensions.TRANSACTION_STATUS_INERROR
def last_insert_id(self, cursor, query_type=None):
try:
return cursor if query_type != Insert.SIMPLE else cursor[0][0]
except (IndexError, KeyError, TypeError):
pass
def get_tables(self, schema=None):
query = ('SELECT tablename FROM pg_catalog.pg_tables '
'WHERE schemaname = %s ORDER BY tablename')
cursor = self.execute_sql(query, (schema or 'public',))
return [table for table, in cursor.fetchall()]
def get_views(self, schema=None):
query = ('SELECT viewname, definition FROM pg_catalog.pg_views '
'WHERE schemaname = %s ORDER BY viewname')
cursor = self.execute_sql(query, (schema or 'public',))
return [ViewMetadata(view_name, sql.strip(' \t;'))
for (view_name, sql) in cursor.fetchall()]
def get_indexes(self, table, schema=None):
query = """
SELECT
i.relname, idxs.indexdef, idx.indisunique,
array_to_string(ARRAY(
SELECT pg_get_indexdef(idx.indexrelid, k + 1, TRUE)
FROM generate_subscripts(idx.indkey, 1) AS k
ORDER BY k), ',')
FROM pg_catalog.pg_class AS t
INNER JOIN pg_catalog.pg_index AS idx ON t.oid = idx.indrelid
INNER JOIN pg_catalog.pg_class AS i ON idx.indexrelid = i.oid
INNER JOIN pg_catalog.pg_indexes AS idxs ON
(idxs.tablename = t.relname AND idxs.indexname = i.relname)
WHERE t.relname = %s AND t.relkind = %s AND idxs.schemaname = %s
ORDER BY idx.indisunique DESC, i.relname;"""
cursor = self.execute_sql(query, (table, 'r', schema or 'public'))
return [IndexMetadata(name, sql.rstrip(' ;'), columns.split(','),
is_unique, table)
for name, sql, is_unique, columns in cursor.fetchall()]
def get_columns(self, table, schema=None):
query = """
SELECT column_name, is_nullable, data_type, column_default
FROM information_schema.columns
WHERE table_name = %s AND table_schema = %s
ORDER BY ordinal_position"""
cursor = self.execute_sql(query, (table, schema or 'public'))
pks = set(self.get_primary_keys(table, schema))
return [ColumnMetadata(name, dt, null == 'YES', name in pks, table, df)
for name, null, dt, df in cursor.fetchall()]
def get_primary_keys(self, table, schema=None):
query = """
SELECT kc.column_name
FROM information_schema.table_constraints AS tc
INNER JOIN information_schema.key_column_usage AS kc ON (
tc.table_name = kc.table_name AND
tc.table_schema = kc.table_schema AND
tc.constraint_name = kc.constraint_name)
WHERE
tc.constraint_type = %s AND
tc.table_name = %s AND
tc.table_schema = %s"""
ctype = 'PRIMARY KEY'
cursor = self.execute_sql(query, (ctype, table, schema or 'public'))
return [pk for pk, in cursor.fetchall()]
def get_foreign_keys(self, table, schema=None):
sql = """
SELECT DISTINCT
kcu.column_name, ccu.table_name, ccu.column_name
FROM information_schema.table_constraints AS tc
JOIN information_schema.key_column_usage AS kcu
ON (tc.constraint_name = kcu.constraint_name AND
tc.constraint_schema = kcu.constraint_schema AND
tc.table_name = kcu.table_name AND
tc.table_schema = kcu.table_schema)
JOIN information_schema.constraint_column_usage AS ccu
ON (ccu.constraint_name = tc.constraint_name AND
ccu.constraint_schema = tc.constraint_schema)
WHERE
tc.constraint_type = 'FOREIGN KEY' AND
tc.table_name = %s AND
tc.table_schema = %s"""
cursor = self.execute_sql(sql, (table, schema or 'public'))
return [ForeignKeyMetadata(row[0], row[1], row[2], table)
for row in cursor.fetchall()]
def sequence_exists(self, sequence):
res = self.execute_sql("""
SELECT COUNT(*) FROM pg_class, pg_namespace
WHERE relkind='S'
AND pg_class.relnamespace = pg_namespace.oid
AND relname=%s""", (sequence,))
return bool(res.fetchone()[0])
def get_binary_type(self):
return psycopg2.Binary
def conflict_statement(self, on_conflict, query):
return
def conflict_update(self, oc, query):
action = oc._action.lower() if oc._action else ''
if action in ('ignore', 'nothing'):
parts = [SQL('ON CONFLICT')]
if oc._conflict_target:
parts.append(EnclosedNodeList([
Entity(col) if isinstance(col, basestring) else col
for col in oc._conflict_target]))
parts.append(SQL('DO NOTHING'))
return NodeList(parts)
elif action and action != 'update':
raise ValueError('The only supported actions for conflict '
'resolution with Postgresql are "ignore" or '
'"update".')
elif not oc._update and not oc._preserve:
raise ValueError('If you are not performing any updates (or '
'preserving any INSERTed values), then the '
'conflict resolution action should be set to '
'"IGNORE".')
elif not (oc._conflict_target or oc._conflict_constraint):
raise ValueError('Postgres requires that a conflict target be '
'specified when doing an upsert.')
return self._build_on_conflict_update(oc, query)
def extract_date(self, date_part, date_field):
return fn.EXTRACT(NodeList((date_part, SQL('FROM'), date_field)))
def truncate_date(self, date_part, date_field):
return fn.DATE_TRUNC(date_part, date_field)
def to_timestamp(self, date_field):
return self.extract_date('EPOCH', date_field)
def from_timestamp(self, date_field):
# Ironically, here, Postgres means "to the Postgresql timestamp type".
return fn.to_timestamp(date_field)
def get_noop_select(self, ctx):
return ctx.sql(Select().columns(SQL('0')).where(SQL('false')))
def set_time_zone(self, timezone):
self.execute_sql('set time zone "%s";' % timezone)
class MySQLDatabase(Database):
field_types = {
'AUTO': 'INTEGER AUTO_INCREMENT',
'BIGAUTO': 'BIGINT AUTO_INCREMENT',
'BOOL': 'BOOL',
'DECIMAL': 'NUMERIC',
'DOUBLE': 'DOUBLE PRECISION',
'FLOAT': 'FLOAT',
'UUID': 'VARCHAR(40)',
'UUIDB': 'VARBINARY(16)'}
operations = {
'LIKE': 'LIKE BINARY',
'ILIKE': 'LIKE',
'REGEXP': 'REGEXP BINARY',
'IREGEXP': 'REGEXP',
'XOR': 'XOR'}
param = '%s'
quote = '``'
commit_select = True
compound_select_parentheses = CSQ_PARENTHESES_UNNESTED
for_update = True
index_using_precedes_table = True
limit_max = 2 ** 64 - 1
safe_create_index = False
safe_drop_index = False
sql_mode = 'PIPES_AS_CONCAT'
def init(self, database, **kwargs):
params = {
'charset': 'utf8',
'sql_mode': self.sql_mode,
'use_unicode': True}
params.update(kwargs)
if 'password' in params and mysql_passwd:
params['passwd'] = params.pop('password')
super(MySQLDatabase, self).init(database, **params)
def _connect(self):
if mysql is None:
raise ImproperlyConfigured('MySQL driver not installed!')
conn = mysql.connect(db=self.database, **self.connect_params)
return conn
def _set_server_version(self, conn):
try:
version_raw = conn.server_version
except AttributeError:
version_raw = conn.get_server_info()
self.server_version = self._extract_server_version(version_raw)
def _extract_server_version(self, version):
version = version.lower()
if 'maria' in version:
match_obj = re.search(r'(1\d\.\d+\.\d+)', version)
else:
match_obj = re.search(r'(\d\.\d+\.\d+)', version)
if match_obj is not None:
return tuple(int(num) for num in match_obj.groups()[0].split('.'))
warnings.warn('Unable to determine MySQL version: "%s"' % version)
return (0, 0, 0) # Unable to determine version!
def default_values_insert(self, ctx):
return ctx.literal('() VALUES ()')
def get_tables(self, schema=None):
query = ('SELECT table_name FROM information_schema.tables '
'WHERE table_schema = DATABASE() AND table_type != %s '
'ORDER BY table_name')
return [table for table, in self.execute_sql(query, ('VIEW',))]
def get_views(self, schema=None):
query = ('SELECT table_name, view_definition '
'FROM information_schema.views '
'WHERE table_schema = DATABASE() ORDER BY table_name')
cursor = self.execute_sql(query)
return [ViewMetadata(*row) for row in cursor.fetchall()]
def get_indexes(self, table, schema=None):
cursor = self.execute_sql('SHOW INDEX FROM `%s`' % table)
unique = set()
indexes = {}
for row in cursor.fetchall():
if not row[1]:
unique.add(row[2])
indexes.setdefault(row[2], [])
indexes[row[2]].append(row[4])
return [IndexMetadata(name, None, indexes[name], name in unique, table)
for name in indexes]
def get_columns(self, table, schema=None):
sql = """
SELECT column_name, is_nullable, data_type, column_default
FROM information_schema.columns
WHERE table_name = %s AND table_schema = DATABASE()"""
cursor = self.execute_sql(sql, (table,))
pks = set(self.get_primary_keys(table))
return [ColumnMetadata(name, dt, null == 'YES', name in pks, table, df)
for name, null, dt, df in cursor.fetchall()]
def get_primary_keys(self, table, schema=None):
cursor = self.execute_sql('SHOW INDEX FROM `%s`' % table)
return [row[4] for row in
filter(lambda row: row[2] == 'PRIMARY', cursor.fetchall())]
def get_foreign_keys(self, table, schema=None):
query = """
SELECT column_name, referenced_table_name, referenced_column_name
FROM information_schema.key_column_usage
WHERE table_name = %s
AND table_schema = DATABASE()
AND referenced_table_name IS NOT NULL
AND referenced_column_name IS NOT NULL"""
cursor = self.execute_sql(query, (table,))
return [
ForeignKeyMetadata(column, dest_table, dest_column, table)
for column, dest_table, dest_column in cursor.fetchall()]
def get_binary_type(self):
return mysql.Binary
def conflict_statement(self, on_conflict, query):
if not on_conflict._action: return
action = on_conflict._action.lower()
if action == 'replace':
return SQL('REPLACE')
elif action == 'ignore':
return SQL('INSERT IGNORE')
elif action != 'update':
raise ValueError('Un-supported action for conflict resolution. '
'MySQL supports REPLACE, IGNORE and UPDATE.')
def conflict_update(self, on_conflict, query):
if on_conflict._where or on_conflict._conflict_target or \
on_conflict._conflict_constraint:
raise ValueError('MySQL does not support the specification of '
'where clauses or conflict targets for conflict '
'resolution.')
updates = []
if on_conflict._preserve:
# Here we need to determine which function to use, which varies
# depending on the MySQL server version. MySQL and MariaDB prior to
# 10.3.3 use "VALUES", while MariaDB 10.3.3+ use "VALUE".
version = self.server_version or (0,)
if version[0] == 10 and version >= (10, 3, 3):
VALUE_FN = fn.VALUE
else:
VALUE_FN = fn.VALUES
for column in on_conflict._preserve:
entity = ensure_entity(column)
expression = NodeList((
ensure_entity(column),
SQL('='),
VALUE_FN(entity)))
updates.append(expression)
if on_conflict._update:
for k, v in on_conflict._update.items():
if not isinstance(v, Node):
# Attempt to resolve string field-names to their respective
# field object, to apply data-type conversions.
if isinstance(k, basestring):
k = getattr(query.table, k)
if isinstance(k, Field):
v = k.to_value(v)
else:
v = Value(v, unpack=False)
updates.append(NodeList((ensure_entity(k), SQL('='), v)))
if updates:
return NodeList((SQL('ON DUPLICATE KEY UPDATE'),
CommaNodeList(updates)))
def extract_date(self, date_part, date_field):
return fn.EXTRACT(NodeList((SQL(date_part), SQL('FROM'), date_field)))
def truncate_date(self, date_part, date_field):
return fn.DATE_FORMAT(date_field, __mysql_date_trunc__[date_part],
python_value=simple_date_time)
def to_timestamp(self, date_field):
return fn.UNIX_TIMESTAMP(date_field)
def from_timestamp(self, date_field):
return fn.FROM_UNIXTIME(date_field)
def random(self):
return fn.rand()
def get_noop_select(self, ctx):
return ctx.literal('DO 0')
# TRANSACTION CONTROL.
class _manual(_callable_context_manager):
def __init__(self, db):
self.db = db
def __enter__(self):
top = self.db.top_transaction()
if top is not None and not isinstance(top, _manual):
raise ValueError('Cannot enter manual commit block while a '
'transaction is active.')
self.db.push_transaction(self)
def __exit__(self, exc_type, exc_val, exc_tb):
if self.db.pop_transaction() is not self:
raise ValueError('Transaction stack corrupted while exiting '
'manual commit block.')
class _atomic(_callable_context_manager):
def __init__(self, db, *args, **kwargs):
self.db = db
self._transaction_args = (args, kwargs)
def __enter__(self):
if self.db.transaction_depth() == 0:
args, kwargs = self._transaction_args
self._helper = self.db.transaction(*args, **kwargs)
elif isinstance(self.db.top_transaction(), _manual):
raise ValueError('Cannot enter atomic commit block while in '
'manual commit mode.')
else:
self._helper = self.db.savepoint()
return self._helper.__enter__()
def __exit__(self, exc_type, exc_val, exc_tb):
return self._helper.__exit__(exc_type, exc_val, exc_tb)
class _transaction(_callable_context_manager):
def __init__(self, db, *args, **kwargs):
self.db = db
self._begin_args = (args, kwargs)
def _begin(self):
args, kwargs = self._begin_args
self.db.begin(*args, **kwargs)
def commit(self, begin=True):
self.db.commit()
if begin:
self._begin()
def rollback(self, begin=True):
self.db.rollback()
if begin:
self._begin()
def __enter__(self):
if self.db.transaction_depth() == 0:
self._begin()
self.db.push_transaction(self)
return self
def __exit__(self, exc_type, exc_val, exc_tb):
try:
if exc_type:
self.rollback(False)
elif self.db.transaction_depth() == 1:
try:
self.commit(False)
except:
self.rollback(False)
raise
finally:
self.db.pop_transaction()
class _savepoint(_callable_context_manager):
def __init__(self, db, sid=None):
self.db = db
self.sid = sid or 's' + uuid.uuid4().hex
self.quoted_sid = self.sid.join(self.db.quote)
def _begin(self):
self.db.execute_sql('SAVEPOINT %s;' % self.quoted_sid)
def commit(self, begin=True):
self.db.execute_sql('RELEASE SAVEPOINT %s;' % self.quoted_sid)
if begin: self._begin()
def rollback(self):
self.db.execute_sql('ROLLBACK TO SAVEPOINT %s;' % self.quoted_sid)
def __enter__(self):
self._begin()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if exc_type:
self.rollback()
else:
try:
self.commit(begin=False)
except:
self.rollback()
raise
# CURSOR REPRESENTATIONS.
class CursorWrapper(object):
def __init__(self, cursor):
self.cursor = cursor
self.count = 0
self.index = 0
self.initialized = False
self.populated = False
self.row_cache = []
def __iter__(self):
if self.populated:
return iter(self.row_cache)
return ResultIterator(self)
def __getitem__(self, item):
if isinstance(item, slice):
stop = item.stop
if stop is None or stop < 0:
self.fill_cache()
else:
self.fill_cache(stop)
return self.row_cache[item]
elif isinstance(item, int):
self.fill_cache(item if item > 0 else 0)
return self.row_cache[item]
else:
raise ValueError('CursorWrapper only supports integer and slice '
'indexes.')
def __len__(self):
self.fill_cache()
return self.count
def initialize(self):
pass
def iterate(self, cache=True):
row = self.cursor.fetchone()
if row is None:
self.populated = True
self.cursor.close()
raise StopIteration
elif not self.initialized:
self.initialize() # Lazy initialization.
self.initialized = True
self.count += 1
result = self.process_row(row)
if cache:
self.row_cache.append(result)
return result
def process_row(self, row):
return row
def iterator(self):
"""Efficient one-pass iteration over the result set."""
while True:
try:
yield self.iterate(False)
except StopIteration:
return
def fill_cache(self, n=0):
n = n or float('Inf')
if n < 0:
raise ValueError('Negative values are not supported.')
iterator = ResultIterator(self)
iterator.index = self.count
while not self.populated and (n > self.count):
try:
iterator.next()
except StopIteration:
break
class DictCursorWrapper(CursorWrapper):
def _initialize_columns(self):
description = self.cursor.description
self.columns = [t[0][t[0].find('.') + 1:].strip('")')
for t in description]
self.ncols = len(description)
initialize = _initialize_columns
def _row_to_dict(self, row):
result = {}
for i in range(self.ncols):
result.setdefault(self.columns[i], row[i]) # Do not overwrite.
return result
process_row = _row_to_dict
class NamedTupleCursorWrapper(CursorWrapper):
def initialize(self):
description = self.cursor.description
self.tuple_class = collections.namedtuple(
'Row',
[col[0][col[0].find('.') + 1:].strip('"') for col in description])
def process_row(self, row):
return self.tuple_class(*row)
class ObjectCursorWrapper(DictCursorWrapper):
def __init__(self, cursor, constructor):
super(ObjectCursorWrapper, self).__init__(cursor)
self.constructor = constructor
def process_row(self, row):
row_dict = self._row_to_dict(row)
return self.constructor(**row_dict)
class ResultIterator(object):
def __init__(self, cursor_wrapper):
self.cursor_wrapper = cursor_wrapper
self.index = 0
def __iter__(self):
return self
def next(self):
if self.index < self.cursor_wrapper.count:
obj = self.cursor_wrapper.row_cache[self.index]
elif not self.cursor_wrapper.populated:
self.cursor_wrapper.iterate()
obj = self.cursor_wrapper.row_cache[self.index]
else:
raise StopIteration
self.index += 1
return obj
__next__ = next
# FIELDS
class FieldAccessor(object):
def __init__(self, model, field, name):
self.model = model
self.field = field
self.name = name
def __get__(self, instance, instance_type=None):
if instance is not None:
return instance.__data__.get(self.name)
return self.field
def __set__(self, instance, value):
instance.__data__[self.name] = value
instance._dirty.add(self.name)
class ForeignKeyAccessor(FieldAccessor):
def __init__(self, model, field, name):
super(ForeignKeyAccessor, self).__init__(model, field, name)
self.rel_model = field.rel_model
def get_rel_instance(self, instance):
value = instance.__data__.get(self.name)
if value is not None or self.name in instance.__rel__:
if self.name not in instance.__rel__ and self.field.lazy_load:
obj = self.rel_model.get(self.field.rel_field == value)
instance.__rel__[self.name] = obj
return instance.__rel__.get(self.name, value)
elif not self.field.null and self.field.lazy_load:
raise self.rel_model.DoesNotExist
return value
def __get__(self, instance, instance_type=None):
if instance is not None:
return self.get_rel_instance(instance)
return self.field
def __set__(self, instance, obj):
if isinstance(obj, self.rel_model):
instance.__data__[self.name] = getattr(obj, self.field.rel_field.name)
instance.__rel__[self.name] = obj
else:
fk_value = instance.__data__.get(self.name)
instance.__data__[self.name] = obj
if (obj != fk_value or obj is None) and \
self.name in instance.__rel__:
del instance.__rel__[self.name]
instance._dirty.add(self.name)
class BackrefAccessor(object):
def __init__(self, field):
self.field = field
self.model = field.rel_model
self.rel_model = field.model
def __get__(self, instance, instance_type=None):
if instance is not None:
dest = self.field.rel_field.name
return (self.rel_model
.select()
.where(self.field == getattr(instance, dest)))
return self
class ObjectIdAccessor(object):
"""Gives direct access to the underlying id"""
def __init__(self, field):
self.field = field
def __get__(self, instance, instance_type=None):
if instance is not None:
value = instance.__data__.get(self.field.name)
# Pull the object-id from the related object if it is not set.
if value is None and self.field.name in instance.__rel__:
rel_obj = instance.__rel__[self.field.name]
value = getattr(rel_obj, self.field.rel_field.name)
return value
return self.field
def __set__(self, instance, value):
setattr(instance, self.field.name, value)
class Field(ColumnBase):
_field_counter = 0
_order = 0
accessor_class = FieldAccessor
auto_increment = False
default_index_type = None
field_type = 'DEFAULT'
unpack = True
def __init__(self, null=False, index=False, unique=False, column_name=None,
default=None, primary_key=False, constraints=None,
sequence=None, collation=None, unindexed=False, choices=None,
help_text=None, verbose_name=None, index_type=None,
db_column=None, _hidden=False):
if db_column is not None:
__deprecated__('"db_column" has been deprecated in favor of '
'"column_name" for Field objects.')
column_name = db_column
self.null = null
self.index = index
self.unique = unique
self.column_name = column_name
self.default = default
self.primary_key = primary_key
self.constraints = constraints # List of column constraints.
self.sequence = sequence # Name of sequence, e.g. foo_id_seq.
self.collation = collation
self.unindexed = unindexed
self.choices = choices
self.help_text = help_text
self.verbose_name = verbose_name
self.index_type = index_type or self.default_index_type
self._hidden = _hidden
# Used internally for recovering the order in which Fields were defined
# on the Model class.
Field._field_counter += 1
self._order = Field._field_counter
self._sort_key = (self.primary_key and 1 or 2), self._order
def __hash__(self):
return hash(self.name + '.' + self.model.__name__)
def __repr__(self):
if hasattr(self, 'model') and getattr(self, 'name', None):
return '<%s: %s.%s>' % (type(self).__name__,
self.model.__name__,
self.name)
return '<%s: (unbound)>' % type(self).__name__
def bind(self, model, name, set_attribute=True):
self.model = model
self.name = self.safe_name = name
self.column_name = self.column_name or name
if set_attribute:
setattr(model, name, self.accessor_class(model, self, name))
@property
def column(self):
return Column(self.model._meta.table, self.column_name)
def adapt(self, value):
return value
def db_value(self, value):
return value if value is None else self.adapt(value)
def python_value(self, value):
return value if value is None else self.adapt(value)
def to_value(self, value):
return Value(value, self.db_value, unpack=False)
def get_sort_key(self, ctx):
return self._sort_key
def __sql__(self, ctx):
return ctx.sql(self.column)
def get_modifiers(self):
pass
def ddl_datatype(self, ctx):
if ctx and ctx.state.field_types:
column_type = ctx.state.field_types.get(self.field_type,
self.field_type)
else:
column_type = self.field_type
modifiers = self.get_modifiers()
if column_type and modifiers:
modifier_literal = ', '.join([str(m) for m in modifiers])
return SQL('%s(%s)' % (column_type, modifier_literal))
else:
return SQL(column_type)
def ddl(self, ctx):
accum = [Entity(self.column_name)]
data_type = self.ddl_datatype(ctx)
if data_type:
accum.append(data_type)
if self.unindexed:
accum.append(SQL('UNINDEXED'))
if not self.null:
accum.append(SQL('NOT NULL'))
if self.primary_key:
accum.append(SQL('PRIMARY KEY'))
if self.sequence:
accum.append(SQL("DEFAULT NEXTVAL('%s')" % self.sequence))
if self.constraints:
accum.extend(self.constraints)
if self.collation:
accum.append(SQL('COLLATE %s' % self.collation))
return NodeList(accum)
class IntegerField(Field):
field_type = 'INT'
def adapt(self, value):
try:
return int(value)
except ValueError:
return value
class BigIntegerField(IntegerField):
field_type = 'BIGINT'
class SmallIntegerField(IntegerField):
field_type = 'SMALLINT'
class AutoField(IntegerField):
auto_increment = True
field_type = 'AUTO'
def __init__(self, *args, **kwargs):
if kwargs.get('primary_key') is False:
raise ValueError('%s must always be a primary key.' % type(self))
kwargs['primary_key'] = True
super(AutoField, self).__init__(*args, **kwargs)
class BigAutoField(AutoField):
field_type = 'BIGAUTO'
class IdentityField(AutoField):
field_type = 'INT GENERATED BY DEFAULT AS IDENTITY'
def __init__(self, generate_always=False, **kwargs):
if generate_always:
self.field_type = 'INT GENERATED ALWAYS AS IDENTITY'
super(IdentityField, self).__init__(**kwargs)
class PrimaryKeyField(AutoField):
def __init__(self, *args, **kwargs):
__deprecated__('"PrimaryKeyField" has been renamed to "AutoField". '
'Please update your code accordingly as this will be '
'completely removed in a subsequent release.')
super(PrimaryKeyField, self).__init__(*args, **kwargs)
class FloatField(Field):
field_type = 'FLOAT'
def adapt(self, value):
try:
return float(value)
except ValueError:
return value
class DoubleField(FloatField):
field_type = 'DOUBLE'
class DecimalField(Field):
field_type = 'DECIMAL'
def __init__(self, max_digits=10, decimal_places=5, auto_round=False,
rounding=None, *args, **kwargs):
self.max_digits = max_digits
self.decimal_places = decimal_places
self.auto_round = auto_round
self.rounding = rounding or decimal.DefaultContext.rounding
self._exp = decimal.Decimal(10) ** (-self.decimal_places)
super(DecimalField, self).__init__(*args, **kwargs)
def get_modifiers(self):
return [self.max_digits, self.decimal_places]
def db_value(self, value):
D = decimal.Decimal
if not value:
return value if value is None else D(0)
if self.auto_round:
decimal_value = D(text_type(value))
return decimal_value.quantize(self._exp, rounding=self.rounding)
return value
def python_value(self, value):
if value is not None:
if isinstance(value, decimal.Decimal):
return value
return decimal.Decimal(text_type(value))
class _StringField(Field):
def adapt(self, value):
if isinstance(value, text_type):
return value
elif isinstance(value, bytes_type):
return value.decode('utf-8')
return text_type(value)
def __add__(self, other): return StringExpression(self, OP.CONCAT, other)
def __radd__(self, other): return StringExpression(other, OP.CONCAT, self)
class CharField(_StringField):
field_type = 'VARCHAR'
def __init__(self, max_length=255, *args, **kwargs):
self.max_length = max_length
super(CharField, self).__init__(*args, **kwargs)
def get_modifiers(self):
return self.max_length and [self.max_length] or None
class FixedCharField(CharField):
field_type = 'CHAR'
def python_value(self, value):
value = super(FixedCharField, self).python_value(value)
if value:
value = value.strip()
return value
class TextField(_StringField):
field_type = 'TEXT'
class BlobField(Field):
field_type = 'BLOB'
def _db_hook(self, database):
if database is None:
self._constructor = bytearray
else:
self._constructor = database.get_binary_type()
def bind(self, model, name, set_attribute=True):
self._constructor = bytearray
if model._meta.database:
if isinstance(model._meta.database, Proxy):
model._meta.database.attach_callback(self._db_hook)
else:
self._db_hook(model._meta.database)
# Attach a hook to the model metadata; in the event the database is
# changed or set at run-time, we will be sure to apply our callback and
# use the proper data-type for our database driver.
model._meta._db_hooks.append(self._db_hook)
return super(BlobField, self).bind(model, name, set_attribute)
def db_value(self, value):
if isinstance(value, text_type):
value = value.encode('raw_unicode_escape')
if isinstance(value, bytes_type):
return self._constructor(value)
return value
class BitField(BitwiseMixin, BigIntegerField):
def __init__(self, *args, **kwargs):
kwargs.setdefault('default', 0)
super(BitField, self).__init__(*args, **kwargs)
self.__current_flag = 1
def flag(self, value=None):
if value is None:
value = self.__current_flag
self.__current_flag <<= 1
else:
self.__current_flag = value << 1
class FlagDescriptor(ColumnBase):
def __init__(self, field, value):
self._field = field
self._value = value
super(FlagDescriptor, self).__init__()
def clear(self):
return self._field.bin_and(~self._value)
def set(self):
return self._field.bin_or(self._value)
def __get__(self, instance, instance_type=None):
if instance is None:
return self
value = getattr(instance, self._field.name) or 0
return (value & self._value) != 0
def __set__(self, instance, is_set):
if is_set not in (True, False):
raise ValueError('Value must be either True or False')
value = getattr(instance, self._field.name) or 0
if is_set:
value |= self._value
else:
value &= ~self._value
setattr(instance, self._field.name, value)
def __sql__(self, ctx):
return ctx.sql(self._field.bin_and(self._value) != 0)
return FlagDescriptor(self, value)
class BigBitFieldData(object):
def __init__(self, instance, name):
self.instance = instance
self.name = name
value = self.instance.__data__.get(self.name)
if not value:
value = bytearray()
elif not isinstance(value, bytearray):
value = bytearray(value)
self._buffer = self.instance.__data__[self.name] = value
def _ensure_length(self, idx):
byte_num, byte_offset = divmod(idx, 8)
cur_size = len(self._buffer)
if cur_size <= byte_num:
self._buffer.extend(b'\x00' * ((byte_num + 1) - cur_size))
return byte_num, byte_offset
def set_bit(self, idx):
byte_num, byte_offset = self._ensure_length(idx)
self._buffer[byte_num] |= (1 << byte_offset)
def clear_bit(self, idx):
byte_num, byte_offset = self._ensure_length(idx)
self._buffer[byte_num] &= ~(1 << byte_offset)
def toggle_bit(self, idx):
byte_num, byte_offset = self._ensure_length(idx)
self._buffer[byte_num] ^= (1 << byte_offset)
return bool(self._buffer[byte_num] & (1 << byte_offset))
def is_set(self, idx):
byte_num, byte_offset = self._ensure_length(idx)
return bool(self._buffer[byte_num] & (1 << byte_offset))
def __repr__(self):
return repr(self._buffer)
class BigBitFieldAccessor(FieldAccessor):
def __get__(self, instance, instance_type=None):
if instance is None:
return self.field
return BigBitFieldData(instance, self.name)
def __set__(self, instance, value):
if isinstance(value, memoryview):
value = value.tobytes()
elif isinstance(value, buffer_type):
value = bytes(value)
elif isinstance(value, bytearray):
value = bytes_type(value)
elif isinstance(value, BigBitFieldData):
value = bytes_type(value._buffer)
elif isinstance(value, text_type):
value = value.encode('utf-8')
elif not isinstance(value, bytes_type):
raise ValueError('Value must be either a bytes, memoryview or '
'BigBitFieldData instance.')
super(BigBitFieldAccessor, self).__set__(instance, value)
class BigBitField(BlobField):
accessor_class = BigBitFieldAccessor
def __init__(self, *args, **kwargs):
kwargs.setdefault('default', bytes_type)
super(BigBitField, self).__init__(*args, **kwargs)
def db_value(self, value):
return bytes_type(value) if value is not None else value
class UUIDField(Field):
field_type = 'UUID'
def db_value(self, value):
if isinstance(value, basestring) and len(value) == 32:
# Hex string. No transformation is necessary.
return value
elif isinstance(value, bytes) and len(value) == 16:
# Allow raw binary representation.
value = uuid.UUID(bytes=value)
if isinstance(value, uuid.UUID):
return value.hex
try:
return uuid.UUID(value).hex
except:
return value
def python_value(self, value):
if isinstance(value, uuid.UUID):
return value
return uuid.UUID(value) if value is not None else None
class BinaryUUIDField(BlobField):
field_type = 'UUIDB'
def db_value(self, value):
if isinstance(value, bytes) and len(value) == 16:
# Raw binary value. No transformation is necessary.
return self._constructor(value)
elif isinstance(value, basestring) and len(value) == 32:
# Allow hex string representation.
value = uuid.UUID(hex=value)
if isinstance(value, uuid.UUID):
return self._constructor(value.bytes)
elif value is not None:
raise ValueError('value for binary UUID field must be UUID(), '
'a hexadecimal string, or a bytes object.')
def python_value(self, value):
if isinstance(value, uuid.UUID):
return value
elif isinstance(value, memoryview):
value = value.tobytes()
elif value and not isinstance(value, bytes):
value = bytes(value)
return uuid.UUID(bytes=value) if value is not None else None
def _date_part(date_part):
def dec(self):
return self.model._meta.database.extract_date(date_part, self)
return dec
def format_date_time(value, formats, post_process=None):
post_process = post_process or (lambda x: x)
for fmt in formats:
try:
return post_process(datetime.datetime.strptime(value, fmt))
except ValueError:
pass
return value
def simple_date_time(value):
try:
return datetime.datetime.strptime(value, '%Y-%m-%d %H:%M:%S')
except (TypeError, ValueError):
return value
class _BaseFormattedField(Field):
formats = None
def __init__(self, formats=None, *args, **kwargs):
if formats is not None:
self.formats = formats
super(_BaseFormattedField, self).__init__(*args, **kwargs)
class DateTimeField(_BaseFormattedField):
field_type = 'DATETIME'
formats = [
'%Y-%m-%d %H:%M:%S.%f',
'%Y-%m-%d %H:%M:%S',
'%Y-%m-%d',
]
def adapt(self, value):
if value and isinstance(value, basestring):
return format_date_time(value, self.formats)
return value
def to_timestamp(self):
return self.model._meta.database.to_timestamp(self)
def truncate(self, part):
return self.model._meta.database.truncate_date(part, self)
year = property(_date_part('year'))
month = property(_date_part('month'))
day = property(_date_part('day'))
hour = property(_date_part('hour'))
minute = property(_date_part('minute'))
second = property(_date_part('second'))
class DateField(_BaseFormattedField):
field_type = 'DATE'
formats = [
'%Y-%m-%d',
'%Y-%m-%d %H:%M:%S',
'%Y-%m-%d %H:%M:%S.%f',
]
def adapt(self, value):
if value and isinstance(value, basestring):
pp = lambda x: x.date()
return format_date_time(value, self.formats, pp)
elif value and isinstance(value, datetime.datetime):
return value.date()
return value
def to_timestamp(self):
return self.model._meta.database.to_timestamp(self)
def truncate(self, part):
return self.model._meta.database.truncate_date(part, self)
year = property(_date_part('year'))
month = property(_date_part('month'))
day = property(_date_part('day'))
class TimeField(_BaseFormattedField):
field_type = 'TIME'
formats = [
'%H:%M:%S.%f',
'%H:%M:%S',
'%H:%M',
'%Y-%m-%d %H:%M:%S.%f',
'%Y-%m-%d %H:%M:%S',
]
def adapt(self, value):
if value:
if isinstance(value, basestring):
pp = lambda x: x.time()
return format_date_time(value, self.formats, pp)
elif isinstance(value, datetime.datetime):
return value.time()
if value is not None and isinstance(value, datetime.timedelta):
return (datetime.datetime.min + value).time()
return value
hour = property(_date_part('hour'))
minute = property(_date_part('minute'))
second = property(_date_part('second'))
def _timestamp_date_part(date_part):
def dec(self):
db = self.model._meta.database
expr = ((self / Value(self.resolution, converter=False))
if self.resolution > 1 else self)
return db.extract_date(date_part, db.from_timestamp(expr))
return dec
class TimestampField(BigIntegerField):
# Support second -> microsecond resolution.
valid_resolutions = [10**i for i in range(7)]
def __init__(self, *args, **kwargs):
self.resolution = kwargs.pop('resolution', None)
if not self.resolution:
self.resolution = 1
elif self.resolution in range(2, 7):
self.resolution = 10 ** self.resolution
elif self.resolution not in self.valid_resolutions:
raise ValueError('TimestampField resolution must be one of: %s' %
', '.join(str(i) for i in self.valid_resolutions))
self.ticks_to_microsecond = 1000000 // self.resolution
self.utc = kwargs.pop('utc', False) or False
dflt = datetime.datetime.utcnow if self.utc else datetime.datetime.now
kwargs.setdefault('default', dflt)
super(TimestampField, self).__init__(*args, **kwargs)
def local_to_utc(self, dt):
# Convert naive local datetime into naive UTC, e.g.:
# 2019-03-01T12:00:00 (local=US/Central) -> 2019-03-01T18:00:00.
# 2019-05-01T12:00:00 (local=US/Central) -> 2019-05-01T17:00:00.
# 2019-03-01T12:00:00 (local=UTC) -> 2019-03-01T12:00:00.
return datetime.datetime(*time.gmtime(time.mktime(dt.timetuple()))[:6])
def utc_to_local(self, dt):
# Convert a naive UTC datetime into local time, e.g.:
# 2019-03-01T18:00:00 (local=US/Central) -> 2019-03-01T12:00:00.
# 2019-05-01T17:00:00 (local=US/Central) -> 2019-05-01T12:00:00.
# 2019-03-01T12:00:00 (local=UTC) -> 2019-03-01T12:00:00.
ts = calendar.timegm(dt.utctimetuple())
return datetime.datetime.fromtimestamp(ts)
def get_timestamp(self, value):
if self.utc:
# If utc-mode is on, then we assume all naive datetimes are in UTC.
return calendar.timegm(value.utctimetuple())
else:
return time.mktime(value.timetuple())
def db_value(self, value):
if value is None:
return
if isinstance(value, datetime.datetime):
pass
elif isinstance(value, datetime.date):
value = datetime.datetime(value.year, value.month, value.day)
else:
return int(round(value * self.resolution))
timestamp = self.get_timestamp(value)
if self.resolution > 1:
timestamp += (value.microsecond * .000001)
timestamp *= self.resolution
return int(round(timestamp))
def python_value(self, value):
if value is not None and isinstance(value, (int, float, long)):
if self.resolution > 1:
value, ticks = divmod(value, self.resolution)
microseconds = int(ticks * self.ticks_to_microsecond)
else:
microseconds = 0
if self.utc:
value = datetime.datetime.utcfromtimestamp(value)
else:
value = datetime.datetime.fromtimestamp(value)
if microseconds:
value = value.replace(microsecond=microseconds)
return value
def from_timestamp(self):
expr = ((self / Value(self.resolution, converter=False))
if self.resolution > 1 else self)
return self.model._meta.database.from_timestamp(expr)
year = property(_timestamp_date_part('year'))
month = property(_timestamp_date_part('month'))
day = property(_timestamp_date_part('day'))
hour = property(_timestamp_date_part('hour'))
minute = property(_timestamp_date_part('minute'))
second = property(_timestamp_date_part('second'))
class IPField(BigIntegerField):
def db_value(self, val):
if val is not None:
return struct.unpack('!I', socket.inet_aton(val))[0]
def python_value(self, val):
if val is not None:
return socket.inet_ntoa(struct.pack('!I', val))
class BooleanField(Field):
field_type = 'BOOL'
adapt = bool
class BareField(Field):
def __init__(self, adapt=None, *args, **kwargs):
super(BareField, self).__init__(*args, **kwargs)
if adapt is not None:
self.adapt = adapt
def ddl_datatype(self, ctx):
return
class ForeignKeyField(Field):
accessor_class = ForeignKeyAccessor
backref_accessor_class = BackrefAccessor
def __init__(self, model, field=None, backref=None, on_delete=None,
on_update=None, deferrable=None, _deferred=None,
rel_model=None, to_field=None, object_id_name=None,
lazy_load=True, constraint_name=None, related_name=None,
*args, **kwargs):
kwargs.setdefault('index', True)
super(ForeignKeyField, self).__init__(*args, **kwargs)
if rel_model is not None:
__deprecated__('"rel_model" has been deprecated in favor of '
'"model" for ForeignKeyField objects.')
model = rel_model
if to_field is not None:
__deprecated__('"to_field" has been deprecated in favor of '
'"field" for ForeignKeyField objects.')
field = to_field
if related_name is not None:
__deprecated__('"related_name" has been deprecated in favor of '
'"backref" for Field objects.')
backref = related_name
self._is_self_reference = model == 'self'
self.rel_model = model
self.rel_field = field
self.declared_backref = backref
self.backref = None
self.on_delete = on_delete
self.on_update = on_update
self.deferrable = deferrable
self.deferred = _deferred
self.object_id_name = object_id_name
self.lazy_load = lazy_load
self.constraint_name = constraint_name
@property
def field_type(self):
if not isinstance(self.rel_field, AutoField):
return self.rel_field.field_type
elif isinstance(self.rel_field, BigAutoField):
return BigIntegerField.field_type
return IntegerField.field_type
def get_modifiers(self):
if not isinstance(self.rel_field, AutoField):
return self.rel_field.get_modifiers()
return super(ForeignKeyField, self).get_modifiers()
def adapt(self, value):
return self.rel_field.adapt(value)
def db_value(self, value):
if isinstance(value, self.rel_model):
value = getattr(value, self.rel_field.name)
return self.rel_field.db_value(value)
def python_value(self, value):
if isinstance(value, self.rel_model):
return value
return self.rel_field.python_value(value)
def bind(self, model, name, set_attribute=True):
if not self.column_name:
self.column_name = name if name.endswith('_id') else name + '_id'
if not self.object_id_name:
self.object_id_name = self.column_name
if self.object_id_name == name:
self.object_id_name += '_id'
elif self.object_id_name == name:
raise ValueError('ForeignKeyField "%s"."%s" specifies an '
'object_id_name that conflicts with its field '
'name.' % (model._meta.name, name))
if self._is_self_reference:
self.rel_model = model
if isinstance(self.rel_field, basestring):
self.rel_field = getattr(self.rel_model, self.rel_field)
elif self.rel_field is None:
self.rel_field = self.rel_model._meta.primary_key
# Bind field before assigning backref, so field is bound when
# calling declared_backref() (if callable).
super(ForeignKeyField, self).bind(model, name, set_attribute)
self.safe_name = self.object_id_name
if callable_(self.declared_backref):
self.backref = self.declared_backref(self)
else:
self.backref, self.declared_backref = self.declared_backref, None
if not self.backref:
self.backref = '%s_set' % model._meta.name
if set_attribute:
setattr(model, self.object_id_name, ObjectIdAccessor(self))
if self.backref not in '!+':
setattr(self.rel_model, self.backref,
self.backref_accessor_class(self))
def foreign_key_constraint(self):
parts = []
if self.constraint_name:
parts.extend((SQL('CONSTRAINT'), Entity(self.constraint_name)))
parts.extend([
SQL('FOREIGN KEY'),
EnclosedNodeList((self,)),
SQL('REFERENCES'),
self.rel_model,
EnclosedNodeList((self.rel_field,))])
if self.on_delete:
parts.append(SQL('ON DELETE %s' % self.on_delete))
if self.on_update:
parts.append(SQL('ON UPDATE %s' % self.on_update))
if self.deferrable:
parts.append(SQL('DEFERRABLE %s' % self.deferrable))
return NodeList(parts)
def __getattr__(self, attr):
if attr.startswith('__'):
# Prevent recursion error when deep-copying.
raise AttributeError('Cannot look-up non-existant "__" methods.')
if attr in self.rel_model._meta.fields:
return self.rel_model._meta.fields[attr]
raise AttributeError('Foreign-key has no attribute %s, nor is it a '
'valid field on the related model.' % attr)
class DeferredForeignKey(Field):
_unresolved = set()
def __init__(self, rel_model_name, **kwargs):
self.field_kwargs = kwargs
self.rel_model_name = rel_model_name.lower()
DeferredForeignKey._unresolved.add(self)
super(DeferredForeignKey, self).__init__(
column_name=kwargs.get('column_name'),
null=kwargs.get('null'),
primary_key=kwargs.get('primary_key'))
__hash__ = object.__hash__
def __deepcopy__(self, memo=None):
return DeferredForeignKey(self.rel_model_name, **self.field_kwargs)
def set_model(self, rel_model):
field = ForeignKeyField(rel_model, _deferred=True, **self.field_kwargs)
if field.primary_key:
# NOTE: this calls add_field() under-the-hood.
self.model._meta.set_primary_key(self.name, field)
else:
self.model._meta.add_field(self.name, field)
@staticmethod
def resolve(model_cls):
unresolved = sorted(DeferredForeignKey._unresolved,
key=operator.attrgetter('_order'))
for dr in unresolved:
if dr.rel_model_name == model_cls.__name__.lower():
dr.set_model(model_cls)
DeferredForeignKey._unresolved.discard(dr)
class DeferredThroughModel(object):
def __init__(self):
self._refs = []
def set_field(self, model, field, name):
self._refs.append((model, field, name))
def set_model(self, through_model):
for src_model, m2mfield, name in self._refs:
m2mfield.through_model = through_model
src_model._meta.add_field(name, m2mfield)
class MetaField(Field):
column_name = default = model = name = None
primary_key = False
class ManyToManyFieldAccessor(FieldAccessor):
def __init__(self, model, field, name):
super(ManyToManyFieldAccessor, self).__init__(model, field, name)
self.model = field.model
self.rel_model = field.rel_model
self.through_model = field.through_model
src_fks = self.through_model._meta.model_refs[self.model]
dest_fks = self.through_model._meta.model_refs[self.rel_model]
if not src_fks:
raise ValueError('Cannot find foreign-key to "%s" on "%s" model.' %
(self.model, self.through_model))
elif not dest_fks:
raise ValueError('Cannot find foreign-key to "%s" on "%s" model.' %
(self.rel_model, self.through_model))
self.src_fk = src_fks[0]
self.dest_fk = dest_fks[0]
def __get__(self, instance, instance_type=None, force_query=False):
if instance is not None:
if not force_query and self.src_fk.backref != '+':
backref = getattr(instance, self.src_fk.backref)
if isinstance(backref, list):
return [getattr(obj, self.dest_fk.name) for obj in backref]
src_id = getattr(instance, self.src_fk.rel_field.name)
return (ManyToManyQuery(instance, self, self.rel_model)
.join(self.through_model)
.join(self.model)
.where(self.src_fk == src_id))
return self.field
def __set__(self, instance, value):
query = self.__get__(instance, force_query=True)
query.add(value, clear_existing=True)
class ManyToManyField(MetaField):
accessor_class = ManyToManyFieldAccessor
def __init__(self, model, backref=None, through_model=None, on_delete=None,
on_update=None, _is_backref=False):
if through_model is not None:
if not (isinstance(through_model, DeferredThroughModel) or
is_model(through_model)):
raise TypeError('Unexpected value for through_model. Expected '
'Model or DeferredThroughModel.')
if not _is_backref and (on_delete is not None or on_update is not None):
raise ValueError('Cannot specify on_delete or on_update when '
'through_model is specified.')
self.rel_model = model
self.backref = backref
self._through_model = through_model
self._on_delete = on_delete
self._on_update = on_update
self._is_backref = _is_backref
def _get_descriptor(self):
return ManyToManyFieldAccessor(self)
def bind(self, model, name, set_attribute=True):
if isinstance(self._through_model, DeferredThroughModel):
self._through_model.set_field(model, self, name)
return
super(ManyToManyField, self).bind(model, name, set_attribute)
if not self._is_backref:
many_to_many_field = ManyToManyField(
self.model,
backref=name,
through_model=self.through_model,
on_delete=self._on_delete,
on_update=self._on_update,
_is_backref=True)
self.backref = self.backref or model._meta.name + 's'
self.rel_model._meta.add_field(self.backref, many_to_many_field)
def get_models(self):
return [model for _, model in sorted((
(self._is_backref, self.model),
(not self._is_backref, self.rel_model)))]
@property
def through_model(self):
if self._through_model is None:
self._through_model = self._create_through_model()
return self._through_model
@through_model.setter
def through_model(self, value):
self._through_model = value
def _create_through_model(self):
lhs, rhs = self.get_models()
tables = [model._meta.table_name for model in (lhs, rhs)]
class Meta:
database = self.model._meta.database
schema = self.model._meta.schema
table_name = '%s_%s_through' % tuple(tables)
indexes = (
((lhs._meta.name, rhs._meta.name),
True),)
params = {'on_delete': self._on_delete, 'on_update': self._on_update}
attrs = {
lhs._meta.name: ForeignKeyField(lhs, **params),
rhs._meta.name: ForeignKeyField(rhs, **params),
'Meta': Meta}
klass_name = '%s%sThrough' % (lhs.__name__, rhs.__name__)
return type(klass_name, (Model,), attrs)
def get_through_model(self):
# XXX: Deprecated. Just use the "through_model" property.
return self.through_model
class VirtualField(MetaField):
field_class = None
def __init__(self, field_class=None, *args, **kwargs):
Field = field_class if field_class is not None else self.field_class
self.field_instance = Field() if Field is not None else None
super(VirtualField, self).__init__(*args, **kwargs)
def db_value(self, value):
if self.field_instance is not None:
return self.field_instance.db_value(value)
return value
def python_value(self, value):
if self.field_instance is not None:
return self.field_instance.python_value(value)
return value
def bind(self, model, name, set_attribute=True):
self.model = model
self.column_name = self.name = self.safe_name = name
setattr(model, name, self.accessor_class(model, self, name))
class CompositeKey(MetaField):
sequence = None
def __init__(self, *field_names):
self.field_names = field_names
self._safe_field_names = None
@property
def safe_field_names(self):
if self._safe_field_names is None:
if self.model is None:
return self.field_names
self._safe_field_names = [self.model._meta.fields[f].safe_name
for f in self.field_names]
return self._safe_field_names
def __get__(self, instance, instance_type=None):
if instance is not None:
return tuple([getattr(instance, f) for f in self.safe_field_names])
return self
def __set__(self, instance, value):
if not isinstance(value, (list, tuple)):
raise TypeError('A list or tuple must be used to set the value of '
'a composite primary key.')
if len(value) != len(self.field_names):
raise ValueError('The length of the value must equal the number '
'of columns of the composite primary key.')
for idx, field_value in enumerate(value):
setattr(instance, self.field_names[idx], field_value)
def __eq__(self, other):
expressions = [(self.model._meta.fields[field] == value)
for field, value in zip(self.field_names, other)]
return reduce(operator.and_, expressions)
def __ne__(self, other):
return ~(self == other)
def __hash__(self):
return hash((self.model.__name__, self.field_names))
def __sql__(self, ctx):
# If the composite PK is being selected, do not use parens. Elsewhere,
# such as in an expression, we want to use parentheses and treat it as
# a row value.
parens = ctx.scope != SCOPE_SOURCE
return ctx.sql(NodeList([self.model._meta.fields[field]
for field in self.field_names], ', ', parens))
def bind(self, model, name, set_attribute=True):
self.model = model
self.column_name = self.name = self.safe_name = name
setattr(model, self.name, self)
class _SortedFieldList(object):
__slots__ = ('_keys', '_items')
def __init__(self):
self._keys = []
self._items = []
def __getitem__(self, i):
return self._items[i]
def __iter__(self):
return iter(self._items)
def __contains__(self, item):
k = item._sort_key
i = bisect_left(self._keys, k)
j = bisect_right(self._keys, k)
return item in self._items[i:j]
def index(self, field):
return self._keys.index(field._sort_key)
def insert(self, item):
k = item._sort_key
i = bisect_left(self._keys, k)
self._keys.insert(i, k)
self._items.insert(i, item)
def remove(self, item):
idx = self.index(item)
del self._items[idx]
del self._keys[idx]
# MODELS
class SchemaManager(object):
def __init__(self, model, database=None, **context_options):
self.model = model
self._database = database
context_options.setdefault('scope', SCOPE_VALUES)
self.context_options = context_options
@property
def database(self):
db = self._database or self.model._meta.database
if db is None:
raise ImproperlyConfigured('database attribute does not appear to '
'be set on the model: %s' % self.model)
return db
@database.setter
def database(self, value):
self._database = value
def _create_context(self):
return self.database.get_sql_context(**self.context_options)
def _create_table(self, safe=True, **options):
is_temp = options.pop('temporary', False)
ctx = self._create_context()
ctx.literal('CREATE TEMPORARY TABLE ' if is_temp else 'CREATE TABLE ')
if safe:
ctx.literal('IF NOT EXISTS ')
ctx.sql(self.model).literal(' ')
columns = []
constraints = []
meta = self.model._meta
if meta.composite_key:
pk_columns = [meta.fields[field_name].column
for field_name in meta.primary_key.field_names]
constraints.append(NodeList((SQL('PRIMARY KEY'),
EnclosedNodeList(pk_columns))))
for field in meta.sorted_fields:
columns.append(field.ddl(ctx))
if isinstance(field, ForeignKeyField) and not field.deferred:
constraints.append(field.foreign_key_constraint())
if meta.constraints:
constraints.extend(meta.constraints)
constraints.extend(self._create_table_option_sql(options))
ctx.sql(EnclosedNodeList(columns + constraints))
if meta.table_settings is not None:
table_settings = ensure_tuple(meta.table_settings)
for setting in table_settings:
if not isinstance(setting, basestring):
raise ValueError('table_settings must be strings')
ctx.literal(' ').literal(setting)
if meta.without_rowid:
ctx.literal(' WITHOUT ROWID')
return ctx
def _create_table_option_sql(self, options):
accum = []
options = merge_dict(self.model._meta.options or {}, options)
if not options:
return accum
for key, value in sorted(options.items()):
if not isinstance(value, Node):
if is_model(value):
value = value._meta.table
else:
value = SQL(str(value))
accum.append(NodeList((SQL(key), value), glue='='))
return accum
def create_table(self, safe=True, **options):
self.database.execute(self._create_table(safe=safe, **options))
def _create_table_as(self, table_name, query, safe=True, **meta):
ctx = (self._create_context()
.literal('CREATE TEMPORARY TABLE '
if meta.get('temporary') else 'CREATE TABLE '))
if safe:
ctx.literal('IF NOT EXISTS ')
return (ctx
.sql(Entity(table_name))
.literal(' AS ')
.sql(query))
def create_table_as(self, table_name, query, safe=True, **meta):
ctx = self._create_table_as(table_name, query, safe=safe, **meta)
self.database.execute(ctx)
def _drop_table(self, safe=True, **options):
ctx = (self._create_context()
.literal('DROP TABLE IF EXISTS ' if safe else 'DROP TABLE ')
.sql(self.model))
if options.get('cascade'):
ctx = ctx.literal(' CASCADE')
elif options.get('restrict'):
ctx = ctx.literal(' RESTRICT')
return ctx
def drop_table(self, safe=True, **options):
self.database.execute(self._drop_table(safe=safe, **options))
def _truncate_table(self, restart_identity=False, cascade=False):
db = self.database
if not db.truncate_table:
return (self._create_context()
.literal('DELETE FROM ').sql(self.model))
ctx = self._create_context().literal('TRUNCATE TABLE ').sql(self.model)
if restart_identity:
ctx = ctx.literal(' RESTART IDENTITY')
if cascade:
ctx = ctx.literal(' CASCADE')
return ctx
def truncate_table(self, restart_identity=False, cascade=False):
self.database.execute(self._truncate_table(restart_identity, cascade))
def _create_indexes(self, safe=True):
return [self._create_index(index, safe)
for index in self.model._meta.fields_to_index()]
def _create_index(self, index, safe=True):
if isinstance(index, Index):
if not self.database.safe_create_index:
index = index.safe(False)
elif index._safe != safe:
index = index.safe(safe)
return self._create_context().sql(index)
def create_indexes(self, safe=True):
for query in self._create_indexes(safe=safe):
self.database.execute(query)
def _drop_indexes(self, safe=True):
return [self._drop_index(index, safe)
for index in self.model._meta.fields_to_index()
if isinstance(index, Index)]
def _drop_index(self, index, safe):
statement = 'DROP INDEX '
if safe and self.database.safe_drop_index:
statement += 'IF EXISTS '
if isinstance(index._table, Table) and index._table._schema:
index_name = Entity(index._table._schema, index._name)
else:
index_name = Entity(index._name)
return (self
._create_context()
.literal(statement)
.sql(index_name))
def drop_indexes(self, safe=True):
for query in self._drop_indexes(safe=safe):
self.database.execute(query)
def _check_sequences(self, field):
if not field.sequence or not self.database.sequences:
raise ValueError('Sequences are either not supported, or are not '
'defined for "%s".' % field.name)
def _sequence_for_field(self, field):
if field.model._meta.schema:
return Entity(field.model._meta.schema, field.sequence)
else:
return Entity(field.sequence)
def _create_sequence(self, field):
self._check_sequences(field)
if not self.database.sequence_exists(field.sequence):
return (self
._create_context()
.literal('CREATE SEQUENCE ')
.sql(self._sequence_for_field(field)))
def create_sequence(self, field):
seq_ctx = self._create_sequence(field)
if seq_ctx is not None:
self.database.execute(seq_ctx)
def _drop_sequence(self, field):
self._check_sequences(field)
if self.database.sequence_exists(field.sequence):
return (self
._create_context()
.literal('DROP SEQUENCE ')
.sql(self._sequence_for_field(field)))
def drop_sequence(self, field):
seq_ctx = self._drop_sequence(field)
if seq_ctx is not None:
self.database.execute(seq_ctx)
def _create_foreign_key(self, field):
name = 'fk_%s_%s_refs_%s' % (field.model._meta.table_name,
field.column_name,
field.rel_model._meta.table_name)
return (self
._create_context()
.literal('ALTER TABLE ')
.sql(field.model)
.literal(' ADD CONSTRAINT ')
.sql(Entity(_truncate_constraint_name(name)))
.literal(' ')
.sql(field.foreign_key_constraint()))
def create_foreign_key(self, field):
self.database.execute(self._create_foreign_key(field))
def create_sequences(self):
if self.database.sequences:
for field in self.model._meta.sorted_fields:
if field.sequence:
self.create_sequence(field)
def create_all(self, safe=True, **table_options):
self.create_sequences()
self.create_table(safe, **table_options)
self.create_indexes(safe=safe)
def drop_sequences(self):
if self.database.sequences:
for field in self.model._meta.sorted_fields:
if field.sequence:
self.drop_sequence(field)
def drop_all(self, safe=True, drop_sequences=True, **options):
self.drop_table(safe, **options)
if drop_sequences:
self.drop_sequences()
class Metadata(object):
def __init__(self, model, database=None, table_name=None, indexes=None,
primary_key=None, constraints=None, schema=None,
only_save_dirty=False, depends_on=None, options=None,
db_table=None, table_function=None, table_settings=None,
without_rowid=False, temporary=False, legacy_table_names=True,
**kwargs):
if db_table is not None:
__deprecated__('"db_table" has been deprecated in favor of '
'"table_name" for Models.')
table_name = db_table
self.model = model
self.database = database
self.fields = {}
self.columns = {}
self.combined = {}
self._sorted_field_list = _SortedFieldList()
self.sorted_fields = []
self.sorted_field_names = []
self.defaults = {}
self._default_by_name = {}
self._default_dict = {}
self._default_callables = {}
self._default_callable_list = []
self.name = model.__name__.lower()
self.table_function = table_function
self.legacy_table_names = legacy_table_names
if not table_name:
table_name = (self.table_function(model)
if self.table_function
else self.make_table_name())
self.table_name = table_name
self._table = None
self.indexes = list(indexes) if indexes else []
self.constraints = constraints
self._schema = schema
self.primary_key = primary_key
self.composite_key = self.auto_increment = None
self.only_save_dirty = only_save_dirty
self.depends_on = depends_on
self.table_settings = table_settings
self.without_rowid = without_rowid
self.temporary = temporary
self.refs = {}
self.backrefs = {}
self.model_refs = collections.defaultdict(list)
self.model_backrefs = collections.defaultdict(list)
self.manytomany = {}
self.options = options or {}
for key, value in kwargs.items():
setattr(self, key, value)
self._additional_keys = set(kwargs.keys())
# Allow objects to register hooks that are called if the model is bound
# to a different database. For example, BlobField uses a different
# Python data-type depending on the db driver / python version. When
# the database changes, we need to update any BlobField so they can use
# the appropriate data-type.
self._db_hooks = []
def make_table_name(self):
if self.legacy_table_names:
return re.sub(r'[^\w]+', '_', self.name)
return make_snake_case(self.model.__name__)
def model_graph(self, refs=True, backrefs=True, depth_first=True):
if not refs and not backrefs:
raise ValueError('One of `refs` or `backrefs` must be True.')
accum = [(None, self.model, None)]
seen = set()
queue = collections.deque((self,))
method = queue.pop if depth_first else queue.popleft
while queue:
curr = method()
if curr in seen: continue
seen.add(curr)
if refs:
for fk, model in curr.refs.items():
accum.append((fk, model, False))
queue.append(model._meta)
if backrefs:
for fk, model in curr.backrefs.items():
accum.append((fk, model, True))
queue.append(model._meta)
return accum
def add_ref(self, field):
rel = field.rel_model
self.refs[field] = rel
self.model_refs[rel].append(field)
rel._meta.backrefs[field] = self.model
rel._meta.model_backrefs[self.model].append(field)
def remove_ref(self, field):
rel = field.rel_model
del self.refs[field]
self.model_refs[rel].remove(field)
del rel._meta.backrefs[field]
rel._meta.model_backrefs[self.model].remove(field)
def add_manytomany(self, field):
self.manytomany[field.name] = field
def remove_manytomany(self, field):
del self.manytomany[field.name]
@property
def table(self):
if self._table is None:
self._table = Table(
self.table_name,
[field.column_name for field in self.sorted_fields],
schema=self.schema,
_model=self.model,
_database=self.database)
return self._table
@table.setter
def table(self, value):
raise AttributeError('Cannot set the "table".')
@table.deleter
def table(self):
self._table = None
@property
def schema(self):
return self._schema
@schema.setter
def schema(self, value):
self._schema = value
del self.table
@property
def entity(self):
if self._schema:
return Entity(self._schema, self.table_name)
else:
return Entity(self.table_name)
def _update_sorted_fields(self):
self.sorted_fields = list(self._sorted_field_list)
self.sorted_field_names = [f.name for f in self.sorted_fields]
def get_rel_for_model(self, model):
if isinstance(model, ModelAlias):
model = model.model
forwardrefs = self.model_refs.get(model, [])
backrefs = self.model_backrefs.get(model, [])
return (forwardrefs, backrefs)
def add_field(self, field_name, field, set_attribute=True):
if field_name in self.fields:
self.remove_field(field_name)
elif field_name in self.manytomany:
self.remove_manytomany(self.manytomany[field_name])
if not isinstance(field, MetaField):
del self.table
field.bind(self.model, field_name, set_attribute)
self.fields[field.name] = field
self.columns[field.column_name] = field
self.combined[field.name] = field
self.combined[field.column_name] = field
self._sorted_field_list.insert(field)
self._update_sorted_fields()
if field.default is not None:
# This optimization helps speed up model instance construction.
self.defaults[field] = field.default
if callable_(field.default):
self._default_callables[field] = field.default
self._default_callable_list.append((field.name,
field.default))
else:
self._default_dict[field] = field.default
self._default_by_name[field.name] = field.default
else:
field.bind(self.model, field_name, set_attribute)
if isinstance(field, ForeignKeyField):
self.add_ref(field)
elif isinstance(field, ManyToManyField) and field.name:
self.add_manytomany(field)
def remove_field(self, field_name):
if field_name not in self.fields:
return
del self.table
original = self.fields.pop(field_name)
del self.columns[original.column_name]
del self.combined[field_name]
try:
del self.combined[original.column_name]
except KeyError:
pass
self._sorted_field_list.remove(original)
self._update_sorted_fields()
if original.default is not None:
del self.defaults[original]
if self._default_callables.pop(original, None):
for i, (name, _) in enumerate(self._default_callable_list):
if name == field_name:
self._default_callable_list.pop(i)
break
else:
self._default_dict.pop(original, None)
self._default_by_name.pop(original.name, None)
if isinstance(original, ForeignKeyField):
self.remove_ref(original)
def set_primary_key(self, name, field):
self.composite_key = isinstance(field, CompositeKey)
self.add_field(name, field)
self.primary_key = field
self.auto_increment = (
field.auto_increment or
bool(field.sequence))
def get_primary_keys(self):
if self.composite_key:
return tuple([self.fields[field_name]
for field_name in self.primary_key.field_names])
else:
return (self.primary_key,) if self.primary_key is not False else ()
def get_default_dict(self):
dd = self._default_by_name.copy()
for field_name, default in self._default_callable_list:
dd[field_name] = default()
return dd
def fields_to_index(self):
indexes = []
for f in self.sorted_fields:
if f.primary_key:
continue
if f.index or f.unique:
indexes.append(ModelIndex(self.model, (f,), unique=f.unique,
using=f.index_type))
for index_obj in self.indexes:
if isinstance(index_obj, Node):
indexes.append(index_obj)
elif isinstance(index_obj, (list, tuple)):
index_parts, unique = index_obj
fields = []
for part in index_parts:
if isinstance(part, basestring):
fields.append(self.combined[part])
elif isinstance(part, Node):
fields.append(part)
else:
raise ValueError('Expected either a field name or a '
'subclass of Node. Got: %s' % part)
indexes.append(ModelIndex(self.model, fields, unique=unique))
return indexes
def set_database(self, database):
self.database = database
self.model._schema._database = database
del self.table
# Apply any hooks that have been registered.
for hook in self._db_hooks:
hook(database)
def set_table_name(self, table_name):
self.table_name = table_name
del self.table
class SubclassAwareMetadata(Metadata):
models = []
def __init__(self, model, *args, **kwargs):
super(SubclassAwareMetadata, self).__init__(model, *args, **kwargs)
self.models.append(model)
def map_models(self, fn):
for model in self.models:
fn(model)
class DoesNotExist(Exception): pass
class ModelBase(type):
inheritable = set(['constraints', 'database', 'indexes', 'primary_key',
'options', 'schema', 'table_function', 'temporary',
'only_save_dirty', 'legacy_table_names',
'table_settings'])
def __new__(cls, name, bases, attrs):
if name == MODEL_BASE or bases[0].__name__ == MODEL_BASE:
return super(ModelBase, cls).__new__(cls, name, bases, attrs)
meta_options = {}
meta = attrs.pop('Meta', None)
if meta:
for k, v in meta.__dict__.items():
if not k.startswith('_'):
meta_options[k] = v
pk = getattr(meta, 'primary_key', None)
pk_name = parent_pk = None
# Inherit any field descriptors by deep copying the underlying field
# into the attrs of the new model, additionally see if the bases define
# inheritable model options and swipe them.
for b in bases:
if not hasattr(b, '_meta'):
continue
base_meta = b._meta
if parent_pk is None:
parent_pk = deepcopy(base_meta.primary_key)
all_inheritable = cls.inheritable | base_meta._additional_keys
for k in base_meta.__dict__:
if k in all_inheritable and k not in meta_options:
meta_options[k] = base_meta.__dict__[k]
meta_options.setdefault('schema', base_meta.schema)
for (k, v) in b.__dict__.items():
if k in attrs: continue
if isinstance(v, FieldAccessor) and not v.field.primary_key:
attrs[k] = deepcopy(v.field)
sopts = meta_options.pop('schema_options', None) or {}
Meta = meta_options.get('model_metadata_class', Metadata)
Schema = meta_options.get('schema_manager_class', SchemaManager)
# Construct the new class.
cls = super(ModelBase, cls).__new__(cls, name, bases, attrs)
cls.__data__ = cls.__rel__ = None
cls._meta = Meta(cls, **meta_options)
cls._schema = Schema(cls, **sopts)
fields = []
for key, value in cls.__dict__.items():
if isinstance(value, Field):
if value.primary_key and pk:
raise ValueError('over-determined primary key %s.' % name)
elif value.primary_key:
pk, pk_name = value, key
else:
fields.append((key, value))
if pk is None:
if parent_pk is not False:
pk, pk_name = ((parent_pk, parent_pk.name)
if parent_pk is not None else
(AutoField(), 'id'))
else:
pk = False
elif isinstance(pk, CompositeKey):
pk_name = '__composite_key__'
cls._meta.composite_key = True
if pk is not False:
cls._meta.set_primary_key(pk_name, pk)
for name, field in fields:
cls._meta.add_field(name, field)
# Create a repr and error class before finalizing.
if hasattr(cls, '__str__') and '__repr__' not in attrs:
setattr(cls, '__repr__', lambda self: '<%s: %s>' % (
cls.__name__, self.__str__()))
exc_name = '%sDoesNotExist' % cls.__name__
exc_attrs = {'__module__': cls.__module__}
exception_class = type(exc_name, (DoesNotExist,), exc_attrs)
cls.DoesNotExist = exception_class
# Call validation hook, allowing additional model validation.
cls.validate_model()
DeferredForeignKey.resolve(cls)
return cls
def __repr__(self):
return '<Model: %s>' % self.__name__
def __iter__(self):
return iter(self.select())
def __getitem__(self, key):
return self.get_by_id(key)
def __setitem__(self, key, value):
self.set_by_id(key, value)
def __delitem__(self, key):
self.delete_by_id(key)
def __contains__(self, key):
try:
self.get_by_id(key)
except self.DoesNotExist:
return False
else:
return True
def __len__(self):
return self.select().count()
def __bool__(self): return True
__nonzero__ = __bool__ # Python 2.
def __sql__(self, ctx):
return ctx.sql(self._meta.table)
class _BoundModelsContext(_callable_context_manager):
def __init__(self, models, database, bind_refs, bind_backrefs):
self.models = models
self.database = database
self.bind_refs = bind_refs
self.bind_backrefs = bind_backrefs
def __enter__(self):
self._orig_database = []
for model in self.models:
self._orig_database.append(model._meta.database)
model.bind(self.database, self.bind_refs, self.bind_backrefs,
_exclude=set(self.models))
return self.models
def __exit__(self, exc_type, exc_val, exc_tb):
for model, db in zip(self.models, self._orig_database):
model.bind(db, self.bind_refs, self.bind_backrefs,
_exclude=set(self.models))
class Model(with_metaclass(ModelBase, Node)):
def __init__(self, *args, **kwargs):
if kwargs.pop('__no_default__', None):
self.__data__ = {}
else:
self.__data__ = self._meta.get_default_dict()
self._dirty = set(self.__data__)
self.__rel__ = {}
for k in kwargs:
setattr(self, k, kwargs[k])
def __str__(self):
return str(self._pk) if self._meta.primary_key is not False else 'n/a'
@classmethod
def validate_model(cls):
pass
@classmethod
def alias(cls, alias=None):
return ModelAlias(cls, alias)
@classmethod
def select(cls, *fields):
is_default = not fields
if not fields:
fields = cls._meta.sorted_fields
return ModelSelect(cls, fields, is_default=is_default)
@classmethod
def _normalize_data(cls, data, kwargs):
normalized = {}
if data:
if not isinstance(data, dict):
if kwargs:
raise ValueError('Data cannot be mixed with keyword '
'arguments: %s' % data)
return data
for key in data:
try:
field = (key if isinstance(key, Field)
else cls._meta.combined[key])
except KeyError:
if not isinstance(key, Node):
raise ValueError('Unrecognized field name: "%s" in %s.'
% (key, data))
field = key
normalized[field] = data[key]
if kwargs:
for key in kwargs:
try:
normalized[cls._meta.combined[key]] = kwargs[key]
except KeyError:
normalized[getattr(cls, key)] = kwargs[key]
return normalized
@classmethod
def update(cls, __data=None, **update):
return ModelUpdate(cls, cls._normalize_data(__data, update))
@classmethod
def insert(cls, __data=None, **insert):
return ModelInsert(cls, cls._normalize_data(__data, insert))
@classmethod
def insert_many(cls, rows, fields=None):
return ModelInsert(cls, insert=rows, columns=fields)
@classmethod
def insert_from(cls, query, fields):
columns = [getattr(cls, field) if isinstance(field, basestring)
else field for field in fields]
return ModelInsert(cls, insert=query, columns=columns)
@classmethod
def replace(cls, __data=None, **insert):
return cls.insert(__data, **insert).on_conflict('REPLACE')
@classmethod
def replace_many(cls, rows, fields=None):
return (cls
.insert_many(rows=rows, fields=fields)
.on_conflict('REPLACE'))
@classmethod
def raw(cls, sql, *params):
return ModelRaw(cls, sql, params)
@classmethod
def delete(cls):
return ModelDelete(cls)
@classmethod
def create(cls, **query):
inst = cls(**query)
inst.save(force_insert=True)
return inst
@classmethod
def bulk_create(cls, model_list, batch_size=None):
if batch_size is not None:
batches = chunked(model_list, batch_size)
else:
batches = [model_list]
field_names = list(cls._meta.sorted_field_names)
if cls._meta.auto_increment:
pk_name = cls._meta.primary_key.name
field_names.remove(pk_name)
if cls._meta.database.returning_clause and \
cls._meta.primary_key is not False:
pk_fields = cls._meta.get_primary_keys()
else:
pk_fields = None
fields = [cls._meta.fields[field_name] for field_name in field_names]
attrs = []
for field in fields:
if isinstance(field, ForeignKeyField):
attrs.append(field.object_id_name)
else:
attrs.append(field.name)
for batch in batches:
accum = ([getattr(model, f) for f in attrs]
for model in batch)
res = cls.insert_many(accum, fields=fields).execute()
if pk_fields and res is not None:
for row, model in zip(res, batch):
for (pk_field, obj_id) in zip(pk_fields, row):
setattr(model, pk_field.name, obj_id)
@classmethod
def bulk_update(cls, model_list, fields, batch_size=None):
if isinstance(cls._meta.primary_key, CompositeKey):
raise ValueError('bulk_update() is not supported for models with '
'a composite primary key.')
# First normalize list of fields so all are field instances.
fields = [cls._meta.fields[f] if isinstance(f, basestring) else f
for f in fields]
# Now collect list of attribute names to use for values.
attrs = [field.object_id_name if isinstance(field, ForeignKeyField)
else field.name for field in fields]
if batch_size is not None:
batches = chunked(model_list, batch_size)
else:
batches = [model_list]
n = 0
pk = cls._meta.primary_key
for batch in batches:
id_list = [model._pk for model in batch]
update = {}
for field, attr in zip(fields, attrs):
accum = []
for model in batch:
value = getattr(model, attr)
if not isinstance(value, Node):
value = field.to_value(value)
accum.append((pk.to_value(model._pk), value))
case = Case(pk, accum)
update[field] = case
n += (cls.update(update)
.where(cls._meta.primary_key.in_(id_list))
.execute())
return n
@classmethod
def noop(cls):
return NoopModelSelect(cls, ())
@classmethod
def get(cls, *query, **filters):
sq = cls.select()
if query:
# Handle simple lookup using just the primary key.
if len(query) == 1 and isinstance(query[0], int):
sq = sq.where(cls._meta.primary_key == query[0])
else:
sq = sq.where(*query)
if filters:
sq = sq.filter(**filters)
return sq.get()
@classmethod
def get_or_none(cls, *query, **filters):
try:
return cls.get(*query, **filters)
except DoesNotExist:
pass
@classmethod
def get_by_id(cls, pk):
return cls.get(cls._meta.primary_key == pk)
@classmethod
def set_by_id(cls, key, value):
if key is None:
return cls.insert(value).execute()
else:
return (cls.update(value)
.where(cls._meta.primary_key == key).execute())
@classmethod
def delete_by_id(cls, pk):
return cls.delete().where(cls._meta.primary_key == pk).execute()
@classmethod
def get_or_create(cls, **kwargs):
defaults = kwargs.pop('defaults', {})
query = cls.select()
for field, value in kwargs.items():
query = query.where(getattr(cls, field) == value)
try:
return query.get(), False
except cls.DoesNotExist:
try:
if defaults:
kwargs.update(defaults)
with cls._meta.database.atomic():
return cls.create(**kwargs), True
except IntegrityError as exc:
try:
return query.get(), False
except cls.DoesNotExist:
raise exc
@classmethod
def filter(cls, *dq_nodes, **filters):
return cls.select().filter(*dq_nodes, **filters)
def get_id(self):
# Using getattr(self, pk-name) could accidentally trigger a query if
# the primary-key is a foreign-key. So we use the safe_name attribute,
# which defaults to the field-name, but will be the object_id_name for
# foreign-key fields.
if self._meta.primary_key is not False:
return getattr(self, self._meta.primary_key.safe_name)
_pk = property(get_id)
@_pk.setter
def _pk(self, value):
setattr(self, self._meta.primary_key.name, value)
def _pk_expr(self):
return self._meta.primary_key == self._pk
def _prune_fields(self, field_dict, only):
new_data = {}
for field in only:
if isinstance(field, basestring):
field = self._meta.combined[field]
if field.name in field_dict:
new_data[field.name] = field_dict[field.name]
return new_data
def _populate_unsaved_relations(self, field_dict):
for foreign_key_field in self._meta.refs:
foreign_key = foreign_key_field.name
conditions = (
foreign_key in field_dict and
field_dict[foreign_key] is None and
self.__rel__.get(foreign_key) is not None)
if conditions:
setattr(self, foreign_key, getattr(self, foreign_key))
field_dict[foreign_key] = self.__data__[foreign_key]
def save(self, force_insert=False, only=None):
field_dict = self.__data__.copy()
if self._meta.primary_key is not False:
pk_field = self._meta.primary_key
pk_value = self._pk
else:
pk_field = pk_value = None
if only is not None:
field_dict = self._prune_fields(field_dict, only)
elif self._meta.only_save_dirty and not force_insert:
field_dict = self._prune_fields(field_dict, self.dirty_fields)
if not field_dict:
self._dirty.clear()
return False
self._populate_unsaved_relations(field_dict)
rows = 1
if self._meta.auto_increment and pk_value is None:
field_dict.pop(pk_field.name, None)
if pk_value is not None and not force_insert:
if self._meta.composite_key:
for pk_part_name in pk_field.field_names:
field_dict.pop(pk_part_name, None)
else:
field_dict.pop(pk_field.name, None)
if not field_dict:
raise ValueError('no data to save!')
rows = self.update(**field_dict).where(self._pk_expr()).execute()
elif pk_field is not None:
pk = self.insert(**field_dict).execute()
if pk is not None and (self._meta.auto_increment or
pk_value is None):
self._pk = pk
else:
self.insert(**field_dict).execute()
self._dirty.clear()
return rows
def is_dirty(self):
return bool(self._dirty)
@property
def dirty_fields(self):
return [f for f in self._meta.sorted_fields if f.name in self._dirty]
def dependencies(self, search_nullable=False):
model_class = type(self)
stack = [(type(self), None)]
seen = set()
while stack:
klass, query = stack.pop()
if klass in seen:
continue
seen.add(klass)
for fk, rel_model in klass._meta.backrefs.items():
if rel_model is model_class or query is None:
node = (fk == self.__data__[fk.rel_field.name])
else:
node = fk << query
subquery = (rel_model.select(rel_model._meta.primary_key)
.where(node))
if not fk.null or search_nullable:
stack.append((rel_model, subquery))
yield (node, fk)
def delete_instance(self, recursive=False, delete_nullable=False):
if recursive:
dependencies = self.dependencies(delete_nullable)
for query, fk in reversed(list(dependencies)):
model = fk.model
if fk.null and not delete_nullable:
model.update(**{fk.name: None}).where(query).execute()
else:
model.delete().where(query).execute()
return type(self).delete().where(self._pk_expr()).execute()
def __hash__(self):
return hash((self.__class__, self._pk))
def __eq__(self, other):
return (
other.__class__ == self.__class__ and
self._pk is not None and
self._pk == other._pk)
def __ne__(self, other):
return not self == other
def __sql__(self, ctx):
# NOTE: when comparing a foreign-key field whose related-field is not a
# primary-key, then doing an equality test for the foreign-key with a
# model instance will return the wrong value; since we would return
# the primary key for a given model instance.
#
# This checks to see if we have a converter in the scope, and that we
# are converting a foreign-key expression. If so, we hand the model
# instance to the converter rather than blindly grabbing the primary-
# key. In the event the provided converter fails to handle the model
# instance, then we will return the primary-key.
if ctx.state.converter is not None and ctx.state.is_fk_expr:
try:
return ctx.sql(Value(self, converter=ctx.state.converter))
except (TypeError, ValueError):
pass
return ctx.sql(Value(getattr(self, self._meta.primary_key.name),
converter=self._meta.primary_key.db_value))
@classmethod
def bind(cls, database, bind_refs=True, bind_backrefs=True, _exclude=None):
is_different = cls._meta.database is not database
cls._meta.set_database(database)
if bind_refs or bind_backrefs:
if _exclude is None:
_exclude = set()
G = cls._meta.model_graph(refs=bind_refs, backrefs=bind_backrefs)
for _, model, is_backref in G:
if model not in _exclude:
model._meta.set_database(database)
_exclude.add(model)
return is_different
@classmethod
def bind_ctx(cls, database, bind_refs=True, bind_backrefs=True):
return _BoundModelsContext((cls,), database, bind_refs, bind_backrefs)
@classmethod
def table_exists(cls):
M = cls._meta
return cls._schema.database.table_exists(M.table.__name__, M.schema)
@classmethod
def create_table(cls, safe=True, **options):
if 'fail_silently' in options:
__deprecated__('"fail_silently" has been deprecated in favor of '
'"safe" for the create_table() method.')
safe = options.pop('fail_silently')
if safe and not cls._schema.database.safe_create_index \
and cls.table_exists():
return
if cls._meta.temporary:
options.setdefault('temporary', cls._meta.temporary)
cls._schema.create_all(safe, **options)
@classmethod
def drop_table(cls, safe=True, drop_sequences=True, **options):
if safe and not cls._schema.database.safe_drop_index \
and not cls.table_exists():
return
if cls._meta.temporary:
options.setdefault('temporary', cls._meta.temporary)
cls._schema.drop_all(safe, drop_sequences, **options)
@classmethod
def truncate_table(cls, **options):
cls._schema.truncate_table(**options)
@classmethod
def index(cls, *fields, **kwargs):
return ModelIndex(cls, fields, **kwargs)
@classmethod
def add_index(cls, *fields, **kwargs):
if len(fields) == 1 and isinstance(fields[0], (SQL, Index)):
cls._meta.indexes.append(fields[0])
else:
cls._meta.indexes.append(ModelIndex(cls, fields, **kwargs))
class ModelAlias(Node):
"""Provide a separate reference to a model in a query."""
def __init__(self, model, alias=None):
self.__dict__['model'] = model
self.__dict__['alias'] = alias
def __getattr__(self, attr):
# Hack to work-around the fact that properties or other objects
# implementing the descriptor protocol (on the model being aliased),
# will not work correctly when we use getattr(). So we explicitly pass
# the model alias to the descriptor's getter.
try:
obj = self.model.__dict__[attr]
except KeyError:
pass
else:
if isinstance(obj, ModelDescriptor):
return obj.__get__(None, self)
model_attr = getattr(self.model, attr)
if isinstance(model_attr, Field):
self.__dict__[attr] = FieldAlias.create(self, model_attr)
return self.__dict__[attr]
return model_attr
def __setattr__(self, attr, value):
raise AttributeError('Cannot set attributes on model aliases.')
def get_field_aliases(self):
return [getattr(self, n) for n in self.model._meta.sorted_field_names]
def select(self, *selection):
if not selection:
selection = self.get_field_aliases()
return ModelSelect(self, selection)
def __call__(self, **kwargs):
return self.model(**kwargs)
def __sql__(self, ctx):
if ctx.scope == SCOPE_VALUES:
# Return the quoted table name.
return ctx.sql(self.model)
if self.alias:
ctx.alias_manager[self] = self.alias
if ctx.scope == SCOPE_SOURCE:
# Define the table and its alias.
return (ctx
.sql(self.model._meta.entity)
.literal(' AS ')
.sql(Entity(ctx.alias_manager[self])))
else:
# Refer to the table using the alias.
return ctx.sql(Entity(ctx.alias_manager[self]))
class FieldAlias(Field):
def __init__(self, source, field):
self.source = source
self.model = source.model
self.field = field
@classmethod
def create(cls, source, field):
class _FieldAlias(cls, type(field)):
pass
return _FieldAlias(source, field)
def clone(self):
return FieldAlias(self.source, self.field)
def adapt(self, value): return self.field.adapt(value)
def python_value(self, value): return self.field.python_value(value)
def db_value(self, value): return self.field.db_value(value)
def __getattr__(self, attr):
return self.source if attr == 'model' else getattr(self.field, attr)
def __sql__(self, ctx):
return ctx.sql(Column(self.source, self.field.column_name))
def sort_models(models):
models = set(models)
seen = set()
ordering = []
def dfs(model):
if model in models and model not in seen:
seen.add(model)
for foreign_key, rel_model in model._meta.refs.items():
# Do not depth-first search deferred foreign-keys as this can
# cause tables to be created in the incorrect order.
if not foreign_key.deferred:
dfs(rel_model)
if model._meta.depends_on:
for dependency in model._meta.depends_on:
dfs(dependency)
ordering.append(model)
names = lambda m: (m._meta.name, m._meta.table_name)
for m in sorted(models, key=names):
dfs(m)
return ordering
class _ModelQueryHelper(object):
default_row_type = ROW.MODEL
def __init__(self, *args, **kwargs):
super(_ModelQueryHelper, self).__init__(*args, **kwargs)
if not self._database:
self._database = self.model._meta.database
@Node.copy
def objects(self, constructor=None):
self._row_type = ROW.CONSTRUCTOR
self._constructor = self.model if constructor is None else constructor
def _get_cursor_wrapper(self, cursor):
row_type = self._row_type or self.default_row_type
if row_type == ROW.MODEL:
return self._get_model_cursor_wrapper(cursor)
elif row_type == ROW.DICT:
return ModelDictCursorWrapper(cursor, self.model, self._returning)
elif row_type == ROW.TUPLE:
return ModelTupleCursorWrapper(cursor, self.model, self._returning)
elif row_type == ROW.NAMED_TUPLE:
return ModelNamedTupleCursorWrapper(cursor, self.model,
self._returning)
elif row_type == ROW.CONSTRUCTOR:
return ModelObjectCursorWrapper(cursor, self.model,
self._returning, self._constructor)
else:
raise ValueError('Unrecognized row type: "%s".' % row_type)
def _get_model_cursor_wrapper(self, cursor):
return ModelObjectCursorWrapper(cursor, self.model, [], self.model)
class ModelRaw(_ModelQueryHelper, RawQuery):
def __init__(self, model, sql, params, **kwargs):
self.model = model
self._returning = ()
super(ModelRaw, self).__init__(sql=sql, params=params, **kwargs)
def get(self):
try:
return self.execute()[0]
except IndexError:
sql, params = self.sql()
raise self.model.DoesNotExist('%s instance matching query does '
'not exist:\nSQL: %s\nParams: %s' %
(self.model, sql, params))
class BaseModelSelect(_ModelQueryHelper):
def union_all(self, rhs):
return ModelCompoundSelectQuery(self.model, self, 'UNION ALL', rhs)
__add__ = union_all
def union(self, rhs):
return ModelCompoundSelectQuery(self.model, self, 'UNION', rhs)
__or__ = union
def intersect(self, rhs):
return ModelCompoundSelectQuery(self.model, self, 'INTERSECT', rhs)
__and__ = intersect
def except_(self, rhs):
return ModelCompoundSelectQuery(self.model, self, 'EXCEPT', rhs)
__sub__ = except_
def __iter__(self):
if not self._cursor_wrapper:
self.execute()
return iter(self._cursor_wrapper)
def prefetch(self, *subqueries):
return prefetch(self, *subqueries)
def get(self, database=None):
clone = self.paginate(1, 1)
clone._cursor_wrapper = None
try:
return clone.execute(database)[0]
except IndexError:
sql, params = clone.sql()
raise self.model.DoesNotExist('%s instance matching query does '
'not exist:\nSQL: %s\nParams: %s' %
(clone.model, sql, params))
def get_or_none(self, database=None):
try:
return self.get(database=database)
except self.model.DoesNotExist:
pass
@Node.copy
def group_by(self, *columns):
grouping = []
for column in columns:
if is_model(column):
grouping.extend(column._meta.sorted_fields)
elif isinstance(column, Table):
if not column._columns:
raise ValueError('Cannot pass a table to group_by() that '
'does not have columns explicitly '
'declared.')
grouping.extend([getattr(column, col_name)
for col_name in column._columns])
else:
grouping.append(column)
self._group_by = grouping
class ModelCompoundSelectQuery(BaseModelSelect, CompoundSelectQuery):
def __init__(self, model, *args, **kwargs):
self.model = model
super(ModelCompoundSelectQuery, self).__init__(*args, **kwargs)
def _get_model_cursor_wrapper(self, cursor):
return self.lhs._get_model_cursor_wrapper(cursor)
def _normalize_model_select(fields_or_models):
fields = []
for fm in fields_or_models:
if is_model(fm):
fields.extend(fm._meta.sorted_fields)
elif isinstance(fm, ModelAlias):
fields.extend(fm.get_field_aliases())
elif isinstance(fm, Table) and fm._columns:
fields.extend([getattr(fm, col) for col in fm._columns])
else:
fields.append(fm)
return fields
class ModelSelect(BaseModelSelect, Select):
def __init__(self, model, fields_or_models, is_default=False):
self.model = self._join_ctx = model
self._joins = {}
self._is_default = is_default
fields = _normalize_model_select(fields_or_models)
super(ModelSelect, self).__init__([model], fields)
def clone(self):
clone = super(ModelSelect, self).clone()
if clone._joins:
clone._joins = dict(clone._joins)
return clone
def select(self, *fields_or_models):
if fields_or_models or not self._is_default:
self._is_default = False
fields = _normalize_model_select(fields_or_models)
return super(ModelSelect, self).select(*fields)
return self
def switch(self, ctx=None):
self._join_ctx = self.model if ctx is None else ctx
return self
def _get_model(self, src):
if is_model(src):
return src, True
elif isinstance(src, Table) and src._model:
return src._model, False
elif isinstance(src, ModelAlias):
return src.model, False
elif isinstance(src, ModelSelect):
return src.model, False
return None, False
def _normalize_join(self, src, dest, on, attr):
# Allow "on" expression to have an alias that determines the
# destination attribute for the joined data.
on_alias = isinstance(on, Alias)
if on_alias:
attr = attr or on._alias
on = on.alias()
# Obtain references to the source and destination models being joined.
src_model, src_is_model = self._get_model(src)
dest_model, dest_is_model = self._get_model(dest)
if src_model and dest_model:
self._join_ctx = dest
constructor = dest_model
# In the case where the "on" clause is a Column or Field, we will
# convert that field into the appropriate predicate expression.
if not (src_is_model and dest_is_model) and isinstance(on, Column):
if on.source is src:
to_field = src_model._meta.columns[on.name]
elif on.source is dest:
to_field = dest_model._meta.columns[on.name]
else:
raise AttributeError('"on" clause Column %s does not '
'belong to %s or %s.' %
(on, src_model, dest_model))
on = None
elif isinstance(on, Field):
to_field = on
on = None
else:
to_field = None
fk_field, is_backref = self._generate_on_clause(
src_model, dest_model, to_field, on)
if on is None:
src_attr = 'name' if src_is_model else 'column_name'
dest_attr = 'name' if dest_is_model else 'column_name'
if is_backref:
lhs = getattr(dest, getattr(fk_field, dest_attr))
rhs = getattr(src, getattr(fk_field.rel_field, src_attr))
else:
lhs = getattr(src, getattr(fk_field, src_attr))
rhs = getattr(dest, getattr(fk_field.rel_field, dest_attr))
on = (lhs == rhs)
if not attr:
if fk_field is not None and not is_backref:
attr = fk_field.name
else:
attr = dest_model._meta.name
elif on_alias and fk_field is not None and \
attr == fk_field.object_id_name and not is_backref:
raise ValueError('Cannot assign join alias to "%s", as this '
'attribute is the object_id_name for the '
'foreign-key field "%s"' % (attr, fk_field))
elif isinstance(dest, Source):
constructor = dict
attr = attr or dest._alias
if not attr and isinstance(dest, Table):
attr = attr or dest.__name__
return (on, attr, constructor)
def _generate_on_clause(self, src, dest, to_field=None, on=None):
meta = src._meta
is_backref = fk_fields = False
# Get all the foreign keys between source and dest, and determine if
# the join is via a back-reference.
if dest in meta.model_refs:
fk_fields = meta.model_refs[dest]
elif dest in meta.model_backrefs:
fk_fields = meta.model_backrefs[dest]
is_backref = True
if not fk_fields:
if on is not None:
return None, False
raise ValueError('Unable to find foreign key between %s and %s. '
'Please specify an explicit join condition.' %
(src, dest))
elif to_field is not None:
# If the foreign-key field was specified explicitly, remove all
# other foreign-key fields from the list.
target = (to_field.field if isinstance(to_field, FieldAlias)
else to_field)
fk_fields = [f for f in fk_fields if (
(f is target) or
(is_backref and f.rel_field is to_field))]
if len(fk_fields) == 1:
return fk_fields[0], is_backref
if on is None:
# If multiple foreign-keys exist, try using the FK whose name
# matches that of the related model. If not, raise an error as this
# is ambiguous.
for fk in fk_fields:
if fk.name == dest._meta.name:
return fk, is_backref
raise ValueError('More than one foreign key between %s and %s.'
' Please specify which you are joining on.' %
(src, dest))
# If there are multiple foreign-keys to choose from and the join
# predicate is an expression, we'll try to figure out which
# foreign-key field we're joining on so that we can assign to the
# correct attribute when resolving the model graph.
to_field = None
if isinstance(on, Expression):
lhs, rhs = on.lhs, on.rhs
# Coerce to set() so that we force Python to compare using the
# object's hash rather than equality test, which returns a
# false-positive due to overriding __eq__.
fk_set = set(fk_fields)
if isinstance(lhs, Field):
lhs_f = lhs.field if isinstance(lhs, FieldAlias) else lhs
if lhs_f in fk_set:
to_field = lhs_f
elif isinstance(rhs, Field):
rhs_f = rhs.field if isinstance(rhs, FieldAlias) else rhs
if rhs_f in fk_set:
to_field = rhs_f
return to_field, False
@Node.copy
def join(self, dest, join_type=JOIN.INNER, on=None, src=None, attr=None):
src = self._join_ctx if src is None else src
if join_type == JOIN.LATERAL or join_type == JOIN.LEFT_LATERAL:
on = True
elif join_type != JOIN.CROSS:
on, attr, constructor = self._normalize_join(src, dest, on, attr)
if attr:
self._joins.setdefault(src, [])
self._joins[src].append((dest, attr, constructor, join_type))
elif on is not None:
raise ValueError('Cannot specify on clause with cross join.')
if not self._from_list:
raise ValueError('No sources to join on.')
item = self._from_list.pop()
self._from_list.append(Join(item, dest, join_type, on))
def join_from(self, src, dest, join_type=JOIN.INNER, on=None, attr=None):
return self.join(dest, join_type, on, src, attr)
def _get_model_cursor_wrapper(self, cursor):
if len(self._from_list) == 1 and not self._joins:
return ModelObjectCursorWrapper(cursor, self.model,
self._returning, self.model)
return ModelCursorWrapper(cursor, self.model, self._returning,
self._from_list, self._joins)
def ensure_join(self, lm, rm, on=None, **join_kwargs):
join_ctx = self._join_ctx
for dest, _, constructor, _ in self._joins.get(lm, []):
if dest == rm:
return self
return self.switch(lm).join(rm, on=on, **join_kwargs).switch(join_ctx)
def convert_dict_to_node(self, qdict):
accum = []
joins = []
fks = (ForeignKeyField, BackrefAccessor)
for key, value in sorted(qdict.items()):
curr = self.model
if '__' in key and key.rsplit('__', 1)[1] in DJANGO_MAP:
key, op = key.rsplit('__', 1)
op = DJANGO_MAP[op]
elif value is None:
op = DJANGO_MAP['is']
else:
op = DJANGO_MAP['eq']
if '__' not in key:
# Handle simplest case. This avoids joining over-eagerly when a
# direct FK lookup is all that is required.
model_attr = getattr(curr, key)
else:
for piece in key.split('__'):
for dest, attr, _, _ in self._joins.get(curr, ()):
if attr == piece or (isinstance(dest, ModelAlias) and
dest.alias == piece):
curr = dest
break
else:
model_attr = getattr(curr, piece)
if value is not None and isinstance(model_attr, fks):
curr = model_attr.rel_model
joins.append(model_attr)
accum.append(op(model_attr, value))
return accum, joins
def filter(self, *args, **kwargs):
# normalize args and kwargs into a new expression
if args and kwargs:
dq_node = (reduce(operator.and_, [a.clone() for a in args]) &
DQ(**kwargs))
elif args:
dq_node = (reduce(operator.and_, [a.clone() for a in args]) &
ColumnBase())
elif kwargs:
dq_node = DQ(**kwargs) & ColumnBase()
else:
return self.clone()
# dq_node should now be an Expression, lhs = Node(), rhs = ...
q = collections.deque([dq_node])
dq_joins = []
seen_joins = set()
while q:
curr = q.popleft()
if not isinstance(curr, Expression):
continue
for side, piece in (('lhs', curr.lhs), ('rhs', curr.rhs)):
if isinstance(piece, DQ):
query, joins = self.convert_dict_to_node(piece.query)
for join in joins:
if join not in seen_joins:
dq_joins.append(join)
seen_joins.add(join)
expression = reduce(operator.and_, query)
# Apply values from the DQ object.
if piece._negated:
expression = Negated(expression)
#expression._alias = piece._alias
setattr(curr, side, expression)
else:
q.append(piece)
if not args or not kwargs:
dq_node = dq_node.lhs
query = self.clone()
for field in dq_joins:
if isinstance(field, ForeignKeyField):
lm, rm = field.model, field.rel_model
field_obj = field
elif isinstance(field, BackrefAccessor):
lm, rm = field.model, field.rel_model
field_obj = field.field
query = query.ensure_join(lm, rm, field_obj)
return query.where(dq_node)
def create_table(self, name, safe=True, **meta):
return self.model._schema.create_table_as(name, self, safe, **meta)
def __sql_selection__(self, ctx, is_subquery=False):
if self._is_default and is_subquery and len(self._returning) > 1 and \
self.model._meta.primary_key is not False:
return ctx.sql(self.model._meta.primary_key)
return ctx.sql(CommaNodeList(self._returning))
class NoopModelSelect(ModelSelect):
def __sql__(self, ctx):
return self.model._meta.database.get_noop_select(ctx)
def _get_cursor_wrapper(self, cursor):
return CursorWrapper(cursor)
class _ModelWriteQueryHelper(_ModelQueryHelper):
def __init__(self, model, *args, **kwargs):
self.model = model
super(_ModelWriteQueryHelper, self).__init__(model, *args, **kwargs)
def returning(self, *returning):
accum = []
for item in returning:
if is_model(item):
accum.extend(item._meta.sorted_fields)
else:
accum.append(item)
return super(_ModelWriteQueryHelper, self).returning(*accum)
def _set_table_alias(self, ctx):
table = self.model._meta.table
ctx.alias_manager[table] = table.__name__
class ModelUpdate(_ModelWriteQueryHelper, Update):
pass
class ModelInsert(_ModelWriteQueryHelper, Insert):
default_row_type = ROW.TUPLE
def __init__(self, *args, **kwargs):
super(ModelInsert, self).__init__(*args, **kwargs)
if self._returning is None and self.model._meta.database is not None:
if self.model._meta.database.returning_clause:
self._returning = self.model._meta.get_primary_keys()
def returning(self, *returning):
# By default ModelInsert will yield a `tuple` containing the
# primary-key of the newly inserted row. But if we are explicitly
# specifying a returning clause and have not set a row type, we will
# default to returning model instances instead.
if returning and self._row_type is None:
self._row_type = ROW.MODEL
return super(ModelInsert, self).returning(*returning)
def get_default_data(self):
return self.model._meta.defaults
def get_default_columns(self):
fields = self.model._meta.sorted_fields
return fields[1:] if self.model._meta.auto_increment else fields
class ModelDelete(_ModelWriteQueryHelper, Delete):
pass
class ManyToManyQuery(ModelSelect):
def __init__(self, instance, accessor, rel, *args, **kwargs):
self._instance = instance
self._accessor = accessor
self._src_attr = accessor.src_fk.rel_field.name
self._dest_attr = accessor.dest_fk.rel_field.name
super(ManyToManyQuery, self).__init__(rel, (rel,), *args, **kwargs)
def _id_list(self, model_or_id_list):
if isinstance(model_or_id_list[0], Model):
return [getattr(obj, self._dest_attr) for obj in model_or_id_list]
return model_or_id_list
def add(self, value, clear_existing=False):
if clear_existing:
self.clear()
accessor = self._accessor
src_id = getattr(self._instance, self._src_attr)
if isinstance(value, SelectQuery):
query = value.columns(
Value(src_id),
accessor.dest_fk.rel_field)
accessor.through_model.insert_from(
fields=[accessor.src_fk, accessor.dest_fk],
query=query).execute()
else:
value = ensure_tuple(value)
if not value: return
inserts = [{
accessor.src_fk.name: src_id,
accessor.dest_fk.name: rel_id}
for rel_id in self._id_list(value)]
accessor.through_model.insert_many(inserts).execute()
def remove(self, value):
src_id = getattr(self._instance, self._src_attr)
if isinstance(value, SelectQuery):
column = getattr(value.model, self._dest_attr)
subquery = value.columns(column)
return (self._accessor.through_model
.delete()
.where(
(self._accessor.dest_fk << subquery) &
(self._accessor.src_fk == src_id))
.execute())
else:
value = ensure_tuple(value)
if not value:
return
return (self._accessor.through_model
.delete()
.where(
(self._accessor.dest_fk << self._id_list(value)) &
(self._accessor.src_fk == src_id))
.execute())
def clear(self):
src_id = getattr(self._instance, self._src_attr)
return (self._accessor.through_model
.delete()
.where(self._accessor.src_fk == src_id)
.execute())
def safe_python_value(conv_func):
def validate(value):
try:
return conv_func(value)
except (TypeError, ValueError):
return value
return validate
class BaseModelCursorWrapper(DictCursorWrapper):
def __init__(self, cursor, model, columns):
super(BaseModelCursorWrapper, self).__init__(cursor)
self.model = model
self.select = columns or []
def _initialize_columns(self):
combined = self.model._meta.combined
table = self.model._meta.table
description = self.cursor.description
self.ncols = len(self.cursor.description)
self.columns = []
self.converters = converters = [None] * self.ncols
self.fields = fields = [None] * self.ncols
for idx, description_item in enumerate(description):
column = description_item[0]
dot_index = column.find('.')
if dot_index != -1:
column = column[dot_index + 1:]
column = column.strip('")')
self.columns.append(column)
try:
raw_node = self.select[idx]
except IndexError:
if column in combined:
raw_node = node = combined[column]
else:
continue
else:
node = raw_node.unwrap()
# Heuristics used to attempt to get the field associated with a
# given SELECT column, so that we can accurately convert the value
# returned by the database-cursor into a Python object.
if isinstance(node, Field):
if raw_node._coerce:
converters[idx] = node.python_value
fields[idx] = node
if not raw_node.is_alias():
self.columns[idx] = node.name
elif isinstance(node, ColumnBase) and raw_node._converter:
converters[idx] = raw_node._converter
elif isinstance(node, Function) and node._coerce:
if node._python_value is not None:
converters[idx] = node._python_value
elif node.arguments and isinstance(node.arguments[0], Node):
# If the first argument is a field or references a column
# on a Model, try using that field's conversion function.
# This usually works, but we use "safe_python_value()" so
# that if a TypeError or ValueError occurs during
# conversion we can just fall-back to the raw cursor value.
first = node.arguments[0].unwrap()
if isinstance(first, Entity):
path = first._path[-1] # Try to look-up by name.
first = combined.get(path)
if isinstance(first, Field):
converters[idx] = safe_python_value(first.python_value)
elif column in combined:
if node._coerce:
converters[idx] = combined[column].python_value
if isinstance(node, Column) and node.source == table:
fields[idx] = combined[column]
initialize = _initialize_columns
def process_row(self, row):
raise NotImplementedError
class ModelDictCursorWrapper(BaseModelCursorWrapper):
def process_row(self, row):
result = {}
columns, converters = self.columns, self.converters
fields = self.fields
for i in range(self.ncols):
attr = columns[i]
if attr in result: continue # Don't overwrite if we have dupes.
if converters[i] is not None:
result[attr] = converters[i](row[i])
else:
result[attr] = row[i]
return result
class ModelTupleCursorWrapper(ModelDictCursorWrapper):
constructor = tuple
def process_row(self, row):
columns, converters = self.columns, self.converters
return self.constructor([
(converters[i](row[i]) if converters[i] is not None else row[i])
for i in range(self.ncols)])
class ModelNamedTupleCursorWrapper(ModelTupleCursorWrapper):
def initialize(self):
self._initialize_columns()
attributes = []
for i in range(self.ncols):
attributes.append(self.columns[i])
self.tuple_class = collections.namedtuple('Row', attributes)
self.constructor = lambda row: self.tuple_class(*row)
class ModelObjectCursorWrapper(ModelDictCursorWrapper):
def __init__(self, cursor, model, select, constructor):
self.constructor = constructor
self.is_model = is_model(constructor)
super(ModelObjectCursorWrapper, self).__init__(cursor, model, select)
def process_row(self, row):
data = super(ModelObjectCursorWrapper, self).process_row(row)
if self.is_model:
# Clear out any dirty fields before returning to the user.
obj = self.constructor(__no_default__=1, **data)
obj._dirty.clear()
return obj
else:
return self.constructor(**data)
class ModelCursorWrapper(BaseModelCursorWrapper):
def __init__(self, cursor, model, select, from_list, joins):
super(ModelCursorWrapper, self).__init__(cursor, model, select)
self.from_list = from_list
self.joins = joins
def initialize(self):
self._initialize_columns()
selected_src = set([field.model for field in self.fields
if field is not None])
select, columns = self.select, self.columns
self.key_to_constructor = {self.model: self.model}
self.src_is_dest = {}
self.src_to_dest = []
accum = collections.deque(self.from_list)
dests = set()
while accum:
curr = accum.popleft()
if isinstance(curr, Join):
accum.append(curr.lhs)
accum.append(curr.rhs)
continue
if curr not in self.joins:
continue
is_dict = isinstance(curr, dict)
for key, attr, constructor, join_type in self.joins[curr]:
if key not in self.key_to_constructor:
self.key_to_constructor[key] = constructor
# (src, attr, dest, is_dict, join_type).
self.src_to_dest.append((curr, attr, key, is_dict,
join_type))
dests.add(key)
accum.append(key)
# Ensure that we accommodate everything selected.
for src in selected_src:
if src not in self.key_to_constructor:
if is_model(src):
self.key_to_constructor[src] = src
elif isinstance(src, ModelAlias):
self.key_to_constructor[src] = src.model
# Indicate which sources are also dests.
for src, _, dest, _, _ in self.src_to_dest:
self.src_is_dest[src] = src in dests and (dest in selected_src
or src in selected_src)
self.column_keys = []
for idx, node in enumerate(select):
key = self.model
field = self.fields[idx]
if field is not None:
if isinstance(field, FieldAlias):
key = field.source
else:
key = field.model
else:
if isinstance(node, Node):
node = node.unwrap()
if isinstance(node, Column):
key = node.source
self.column_keys.append(key)
def process_row(self, row):
objects = {}
object_list = []
for key, constructor in self.key_to_constructor.items():
objects[key] = constructor(__no_default__=True)
object_list.append(objects[key])
default_instance = objects[self.model]
set_keys = set()
for idx, key in enumerate(self.column_keys):
# Get the instance corresponding to the selected column/value,
# falling back to the "root" model instance.
instance = objects.get(key, default_instance)
column = self.columns[idx]
value = row[idx]
if value is not None:
set_keys.add(key)
if self.converters[idx]:
value = self.converters[idx](value)
if isinstance(instance, dict):
instance[column] = value
else:
setattr(instance, column, value)
# Need to do some analysis on the joins before this.
for (src, attr, dest, is_dict, join_type) in self.src_to_dest:
instance = objects[src]
try:
joined_instance = objects[dest]
except KeyError:
continue
# If no fields were set on the destination instance then do not
# assign an "empty" instance.
if instance is None or dest is None or \
(dest not in set_keys and not self.src_is_dest.get(dest)):
continue
# If no fields were set on either the source or the destination,
# then we have nothing to do here.
if instance not in set_keys and dest not in set_keys \
and join_type.endswith('OUTER JOIN'):
continue
if is_dict:
instance[attr] = joined_instance
else:
setattr(instance, attr, joined_instance)
# When instantiating models from a cursor, we clear the dirty fields.
for instance in object_list:
if isinstance(instance, Model):
instance._dirty.clear()
return objects[self.model]
class PrefetchQuery(collections.namedtuple('_PrefetchQuery', (
'query', 'fields', 'is_backref', 'rel_models', 'field_to_name', 'model'))):
def __new__(cls, query, fields=None, is_backref=None, rel_models=None,
field_to_name=None, model=None):
if fields:
if is_backref:
if rel_models is None:
rel_models = [field.model for field in fields]
foreign_key_attrs = [field.rel_field.name for field in fields]
else:
if rel_models is None:
rel_models = [field.rel_model for field in fields]
foreign_key_attrs = [field.name for field in fields]
field_to_name = list(zip(fields, foreign_key_attrs))
model = query.model
return super(PrefetchQuery, cls).__new__(
cls, query, fields, is_backref, rel_models, field_to_name, model)
def populate_instance(self, instance, id_map):
if self.is_backref:
for field in self.fields:
identifier = instance.__data__[field.name]
key = (field, identifier)
if key in id_map:
setattr(instance, field.name, id_map[key])
else:
for field, attname in self.field_to_name:
identifier = instance.__data__[field.rel_field.name]
key = (field, identifier)
rel_instances = id_map.get(key, [])
for inst in rel_instances:
setattr(inst, attname, instance)
inst._dirty.clear()
setattr(instance, field.backref, rel_instances)
def store_instance(self, instance, id_map):
for field, attname in self.field_to_name:
identity = field.rel_field.python_value(instance.__data__[attname])
key = (field, identity)
if self.is_backref:
id_map[key] = instance
else:
id_map.setdefault(key, [])
id_map[key].append(instance)
def prefetch_add_subquery(sq, subqueries):
fixed_queries = [PrefetchQuery(sq)]
for i, subquery in enumerate(subqueries):
if isinstance(subquery, tuple):
subquery, target_model = subquery
else:
target_model = None
if not isinstance(subquery, Query) and is_model(subquery) or \
isinstance(subquery, ModelAlias):
subquery = subquery.select()
subquery_model = subquery.model
fks = backrefs = None
for j in reversed(range(i + 1)):
fixed = fixed_queries[j]
last_query = fixed.query
last_model = last_obj = fixed.model
if isinstance(last_model, ModelAlias):
last_model = last_model.model
rels = subquery_model._meta.model_refs.get(last_model, [])
if rels:
fks = [getattr(subquery_model, fk.name) for fk in rels]
pks = [getattr(last_obj, fk.rel_field.name) for fk in rels]
else:
backrefs = subquery_model._meta.model_backrefs.get(last_model)
if (fks or backrefs) and ((target_model is last_obj) or
(target_model is None)):
break
if not fks and not backrefs:
tgt_err = ' using %s' % target_model if target_model else ''
raise AttributeError('Error: unable to find foreign key for '
'query: %s%s' % (subquery, tgt_err))
dest = (target_model,) if target_model else None
if fks:
expr = reduce(operator.or_, [
(fk << last_query.select(pk))
for (fk, pk) in zip(fks, pks)])
subquery = subquery.where(expr)
fixed_queries.append(PrefetchQuery(subquery, fks, False, dest))
elif backrefs:
expressions = []
for backref in backrefs:
rel_field = getattr(subquery_model, backref.rel_field.name)
fk_field = getattr(last_obj, backref.name)
expressions.append(rel_field << last_query.select(fk_field))
subquery = subquery.where(reduce(operator.or_, expressions))
fixed_queries.append(PrefetchQuery(subquery, backrefs, True, dest))
return fixed_queries
def prefetch(sq, *subqueries):
if not subqueries:
return sq
fixed_queries = prefetch_add_subquery(sq, subqueries)
deps = {}
rel_map = {}
for pq in reversed(fixed_queries):
query_model = pq.model
if pq.fields:
for rel_model in pq.rel_models:
rel_map.setdefault(rel_model, [])
rel_map[rel_model].append(pq)
deps.setdefault(query_model, {})
id_map = deps[query_model]
has_relations = bool(rel_map.get(query_model))
for instance in pq.query:
if pq.fields:
pq.store_instance(instance, id_map)
if has_relations:
for rel in rel_map[query_model]:
rel.populate_instance(instance, deps[rel.model])
return list(pq.query)
|
py | 1a446847fab16756e5c5f1753b48dac83b85f4ab | # -*- coding: utf-8 -*-
from __future__ import unicode_literals
from frappe import _
def get_data():
return [
{
"module_name": "ERPNext Turkish",
"color": "grey",
"icon": "octicon octicon-file-directory",
"type": "module",
"label": _("ERPNext Turkish")
}
]
|
py | 1a4468add36188d8e85bf8679a0a54b5a0befcfe | import logging, sys, time
class Logger:
def __init__(self):
self.activatedLogger = False
def animation(self, string=None):
if string:
sys.stdout.write(string)
sys.stdout.flush()
sys.stdout.write(".")
sys.stdout.flush()
time.sleep(0.8)
sys.stdout.write(".")
sys.stdout.flush()
time.sleep(0.8)
sys.stdout.write(".")
sys.stdout.flush()
time.sleep(1)
print("\n")
def activateLogger(self):
self.activatedLogger = True
return self
def logprint(self, content, animated=False, clog=True):
if animated & clog:
self.animation(content)
elif clog:
print(content)
if self.activatedLogger:
logging.info(content)
try:
logging.basicConfig(format='%(message)s',filename='logs/datafarm.log', level=logging.INFO)
globalLogger=Logger().activateLogger().logprint
except FileNotFoundError:
print("No `logs` folder found. No logs will be stored...")
time.sleep(3)
globalLogger=Logger().logprint
|
py | 1a44698b81acd386a725cd194e118bb5d5f6b364 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
import logging
def create_logger(name, log_file=None):
""" use different log level for file and stream
"""
l = logging.getLogger(name)
formatter = logging.Formatter('[%(asctime)s] %(message)s')
l.setLevel(logging.DEBUG)
sh = logging.StreamHandler()
sh.setFormatter(formatter)
sh.setLevel(logging.INFO)
l.addHandler(sh)
if log_file is not None:
fh = logging.FileHandler(log_file)
fh.setFormatter(formatter)
fh.setLevel(logging.DEBUG)
l.addHandler(fh)
return l
if __name__ == '__main__':
logger = create_logger('test')
logger = create_logger('test', 'log.txt')
logger.info('output to file and stream')
logger.debug('output to file')
|
py | 1a4469aaebd763b83a66cb75a96b8687448f7a5d | from django import forms
from .models import Address
class AddressForm(forms.ModelForm):
"""
User-related CRUD form
"""
class Meta:
model = Address
fields = [
'nickname',
'name',
#'billing_profile',
'address_type',
'address_line_1',
'address_line_2',
'city',
'country',
'state',
'postal_code'
]
class AddressCheckoutForm(forms.ModelForm):
"""
User-related checkout address create form
"""
class Meta:
model = Address
fields = [
'nickname',
'name',
#'billing_profile',
#'address_type',
'address_line_1',
'address_line_2',
'city',
'country',
'state',
'postal_code'
]
|
py | 1a446a09662d5257201c795079892dce600e14c3 | from boggle import Boggle
from flask import Flask, render_template, session, jsonify, request
# from flask_debugtoolbar import DebugToolbarExtension
app = Flask(__name__)
app.config["SECRET_KEY"] = "boggleSecretKey99"
# debug = DebugToolbarExtension(app)
boggle_game = Boggle()
@app.route('/')
def landing_page():
"""Displays the homepage"""
return render_template('home.html', css='home.css')
@app.route('/game')
def game_board():
"""Handles displaying the game itself"""
board = boggle_game.make_board()
session['board'] = board
games = session.get('games', 0)
high_score = session.get('high-score', 0)
return render_template('game_board.html', css='game_board.css', games=games, high_score=high_score)
@app.route('/rules-gameplay')
def rules_gameplay_page():
"""Handles the rules and game play page"""
return render_template('rules.html', css='rules.css')
@app.route('/game/word-guess')
def check_word():
"""Checks if the word submitted exists in the words file"""
word = request.args['word']
res = {"result": boggle_game.check_valid_word(session['board'], word)}
return jsonify(res)
@app.route('/game/update', methods=["POST"])
def update_scores():
"""Handles updating the games played, and checking/updating of the high score"""
games = session.get('games', 0)
high_score = session.get('high-score', 0)
score = request.json['score']
session['games'] = games + 1
session['high-score'] = max(score, high_score)
return jsonify(new_record=score > high_score) |
py | 1a446a9b69ed95a69270091c7124c1c2c140a28e |
# -*- coding: utf-8 -*-
"""
@author: Miguel Ángel López Robles
"""
#from PyDBOD import loop
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
#from PyDBOD.ldof import LDOF
import sys
sys.path.append("..")
from ldof import LDOF
from load import load_data
########################
### test with data generated
##################
np.random.seed(42)
# Generate train data
X_inliers = 0.3 * np.random.randn(100, 2)
X_inliers = np.r_[X_inliers + 2, X_inliers - 2]
# Generate some outliers
X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))
X = np.r_[X_inliers, X_outliers]
n_outliers = len(X_outliers)
ground_truth = np.ones(len(X), dtype=int)
ground_truth[-n_outliers:] = -1
# use my class
ldof = LDOF()
coef = ldof.fit_predict(X)
#print(coef)
y = np.zeros(200,dtype=np.int)
y_outlier = np.ones(20,dtype=np.int)
y = np.append(y, y_outlier)
color = np.array(['k','b'])
plt.title("Local Distance-based Outlier Factor (LDOF)")
plt.scatter(X[:, 0], X[:, 1], color=color[y], s=3., label='Data points')
# plot circles with radius proportional to the outlier scores
radius = (coef - coef.min()) / (coef.max() - coef.min())
plt.scatter(X[:, 0], X[:, 1], s=500 * coef, edgecolors='r',
facecolors='none', label='Outlier scores')
plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
#plt.xlabel("prediction errors: %d" % (n_errors))
legend = plt.legend(loc='upper left')
legend.legendHandles[0]._sizes = [10]
legend.legendHandles[1]._sizes = [20]
plt.show()
y = np.zeros(200)
y_outlier = np.ones(20)
y = np.append(y, y_outlier)
fpr, tpr, _ = roc_curve(y,coef)
roc_auc = auc(fpr, tpr)
print(roc_auc)
plt.figure()
lw = 2
plt.plot(fpr, tpr, color='darkorange',
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('LDOF')
plt.legend(loc="lower right")
plt.show()
import os
os.chdir("..")
###############################
## load a file
#############
data = load_data("./data/shuttle-c0-vs-c4.dat") # k = 20
#data = load_data("./data/glass5.dat", sep = ', ') #k=19
#data = load_data("./data/ecoli-0-1-3-7_vs_2-6.dat") #k=25
#data = load_data("./data/yeast5.dat", sep = ', ') #65,65
ldof = LDOF(k=240)
coef = ldof.fit_predict(data[:,:-1])
coef_n = (coef - coef.min()) / (coef.max() - coef.min())
#print(coef)
#print(coef_n)
fpr, tpr, _ = roc_curve(data[:,-1],coef_n)
roc_auc = auc(fpr, tpr)
print(roc_auc)
plt.figure()
lw = 2
plt.plot(fpr, tpr, color='darkorange',
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('LDOF')
plt.legend(loc="lower right")
plt.show() |
py | 1a446aae684200860ad0332a5b14413b2a2d69cb | """
The CharacteristicsHandler will receive a file path, read out its
characteristics as needed and return a dictionary with them.
More functions can will be added in the future.
Tip for usage:
import characteristicshandler.CharacteristicsHandler as chan
chars = chan.handle_file_path("/path/to/file.hi")
"""
import os
from datetime import datetime
class CharacteristicsHandler:
"""
Class to read out file properties.
"""
@staticmethod
def handle_file_path(file_path: str): # (str) -> Dict[str, str]
"""
Function to receive a file string and return its characteristics as a
dictionary. To be treated as a class, maybe will become one in the future.
"""
chars = {
"name": '',
"extension": '',
"orig_name": '',
"entry_date": '',
"keywords": '', # e.g. "word1, word2, word3" to be used with "in"
"read_last": '',
"updated_last": ''}
file_name = file_path.split(os.sep)[-1]
chars['orig_name'] = chars['name'] = file_name
chars['read_last'] = chars['updated_last'] = chars['entry_date'] = str(
datetime.now())
split_name = file_name.split('.')
if len(split_name) > 1:
chars['extension'] = split_name[-1]
return chars
if __name__ == '__main__':
os.system('touch test test.txt test.testing.tested.txt')
chan = CharacteristicsHandler()
print(chan.handle_file_path('test'))
print(chan.handle_file_path('test.txt'))
print(chan.handle_file_path('test.testing.tested.txt'))
os.system('rm test test.txt test.testing.tested.txt')
|
py | 1a446ab30e2d44820987e86db69c60eb2bfb2bcb | from copy import deepcopy
from typing import Union, Dict, Any, List
from checkov.common.graph.graph_builder.graph_components.attribute_names import CustomAttributes
from checkov.common.graph.graph_builder.utils import calculate_hash, join_trimmed_strings
from checkov.common.graph.graph_builder.variable_rendering.breadcrumb_metadata import BreadcrumbMetadata
class Block:
def __init__(
self,
name: str,
config: Dict[str, Any],
path: str,
block_type: str,
attributes: Dict[str, Any],
id: str = "",
source: str = "",
) -> None:
"""
:param name: unique name given to the block, for example
:param config: the section in tf_definitions that belong to this block
:param path: the file location of the block
:param block_type: str
:param attributes: dictionary of the block's original attributes in the origin file
"""
self.name = name
self.config = deepcopy(config)
self.path = path
self.block_type = block_type
self.attributes = attributes
self.id = id
self.source = source
self.changed_attributes: Dict[str, List[Any]] = {}
self.breadcrumbs: Dict[str, List[Dict[str, Any]]] = {}
attributes_to_add = self._extract_inner_attributes()
self.attributes.update(attributes_to_add)
def _extract_inner_attributes(self) -> Dict[str, Any]:
attributes_to_add = {}
for attribute_key in self.attributes:
attribute_value = self.attributes[attribute_key]
if isinstance(attribute_value, dict) or (isinstance(attribute_value, list) and len(attribute_value) > 0 and isinstance(attribute_value[0], dict)):
inner_attributes = get_inner_attributes(attribute_key, attribute_value)
attributes_to_add.update(inner_attributes)
return attributes_to_add
def __str__(self) -> str:
return f"{self.block_type}: {self.name}"
def get_attribute_dict(self) -> Dict[str, Any]:
"""
:return: map of all the block's native attributes (from the source file),
combined with the attributes generated by the module builder.
If the attributes are not a primitive type, they are converted to strings.
"""
base_attributes = self.get_base_attributes()
self.get_origin_attributes(base_attributes)
if self.changed_attributes:
# add changed attributes only for calculating the hash
base_attributes["changed_attributes"] = sorted(self.changed_attributes.keys())
if self.breadcrumbs:
sorted_breadcrumbs = dict(sorted(self.breadcrumbs.items()))
base_attributes[CustomAttributes.RENDERING_BREADCRUMBS] = sorted_breadcrumbs
base_attributes[CustomAttributes.HASH] = calculate_hash(base_attributes)
if "changed_attributes" in base_attributes:
# removed changed attributes if it was added previously for calculating hash.
del base_attributes["changed_attributes"]
return base_attributes
def get_origin_attributes(self, base_attributes: Dict[str, Any]) -> None:
for attribute_key in list(self.attributes.keys()):
attribute_value = self.attributes[attribute_key]
if isinstance(attribute_value, list) and len(attribute_value) == 1:
attribute_value = attribute_value[0]
if isinstance(attribute_value, (list, dict)):
inner_attributes = get_inner_attributes(attribute_key, attribute_value)
base_attributes.update(inner_attributes)
if attribute_key == "self":
base_attributes["self_"] = attribute_value
continue
else:
base_attributes[attribute_key] = attribute_value
def get_hash(self) -> str:
attributes_dict = self.get_attribute_dict()
return attributes_dict.get(CustomAttributes.HASH, "")
def update_attribute(
self, attribute_key: str, attribute_value: Any, change_origin_id: int,
previous_breadcrumbs: List[BreadcrumbMetadata], attribute_at_dest: str
) -> None:
if not previous_breadcrumbs or previous_breadcrumbs[-1].vertex_id != change_origin_id:
previous_breadcrumbs.append(BreadcrumbMetadata(change_origin_id, attribute_at_dest))
self.update_inner_attribute(attribute_key, self.attributes, attribute_value)
attribute_key_parts = attribute_key.split(".")
if len(attribute_key_parts) == 1:
self.attributes[attribute_key] = attribute_value
self.changed_attributes[attribute_key] = previous_breadcrumbs
return
for i in range(len(attribute_key_parts)):
key = join_trimmed_strings(char_to_join=".", str_lst=attribute_key_parts, num_to_trim=i)
if key.find(".") > -1:
self.attributes[key] = attribute_value
attribute_value = {attribute_key_parts[len(attribute_key_parts) - 1 - i]: attribute_value}
self.changed_attributes[key] = previous_breadcrumbs
def update_inner_attribute(
self, attribute_key: str, nested_attributes: Union[List[Any], Dict[str, Any]], value_to_update: Any
) -> None:
split_key = attribute_key.split(".")
i = 1
curr_key = ".".join(split_key[0:i])
if isinstance(nested_attributes, list):
if curr_key.isnumeric():
curr_key_int = int(curr_key)
if curr_key_int < len(nested_attributes):
if not isinstance(nested_attributes[curr_key_int], dict):
nested_attributes[curr_key_int] = value_to_update
else:
self.update_inner_attribute(
".".join(split_key[i:]), nested_attributes[curr_key_int], value_to_update
)
else:
for inner in nested_attributes:
self.update_inner_attribute(curr_key, inner, value_to_update)
elif isinstance(nested_attributes, dict):
while curr_key not in nested_attributes and i <= len(split_key):
i += 1
curr_key = ".".join(split_key[0:i])
if attribute_key in nested_attributes.keys():
nested_attributes[attribute_key] = value_to_update
if len(split_key) == 1 and len(curr_key) > 0:
nested_attributes[curr_key] = value_to_update
elif curr_key in nested_attributes.keys():
self.update_inner_attribute(".".join(split_key[i:]), nested_attributes[curr_key], value_to_update)
def get_export_data(self) -> Dict[str, Union[bool, str]]:
return {"type": self.block_type, "name": self.name, "path": self.path}
def get_base_attributes(self) -> Dict[str, Union[str, List[str], Dict[str, Any]]]:
return {
CustomAttributes.BLOCK_NAME: self.name,
CustomAttributes.BLOCK_TYPE: self.block_type,
CustomAttributes.FILE_PATH: self.path,
CustomAttributes.CONFIG: self.config,
CustomAttributes.LABEL: str(self),
CustomAttributes.ID: self.id,
CustomAttributes.SOURCE: self.source,
}
def get_inner_attributes(attribute_key: str, attribute_value: Union[str, List[str], Dict[str, Any]]) -> Dict[str, Any]:
inner_attributes: Dict[str, Any] = {}
if isinstance(attribute_value, list) and len(attribute_value) == 1:
attribute_value = attribute_value[0]
if isinstance(attribute_value, (dict, list)):
inner_attributes[attribute_key] = [None] * len(attribute_value) if isinstance(attribute_value, list) else {}
iterator: Union[range, List[str]] = range(len(attribute_value)) if isinstance(attribute_value, list) else list(attribute_value.keys())
for key in iterator:
if key != "":
inner_key = f"{attribute_key}.{key}"
inner_value = attribute_value[key]
inner_attributes.update(get_inner_attributes(inner_key, inner_value))
inner_attributes[attribute_key][key] = inner_attributes[inner_key]
else:
del attribute_value[key]
else:
inner_attributes[attribute_key] = attribute_value
return inner_attributes
|
py | 1a446b443876ac408cf09dab75c21221289eb3d5 | # Python3
# 有限制修改區域
class Functions(object):
@staticmethod
def sign(x):
return 1 if x > 0 else (-1 if x else 0)
def sign(x):
return Functions.sign(x)
|
py | 1a446ba5f3771a1ec63a894fd726f957114a53e4 | # -*- coding: utf-8 -*-
# *****************************************************************************
# NICOS, the Networked Instrument Control System of the MLZ
# Copyright (c) 2009-2022 by the NICOS contributors (see AUTHORS)
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Module authors:
# Jens Krüger <[email protected]>
#
# *****************************************************************************
"""Some devices to simulate the PGAA hardware devices."""
from nicos.core import Attach, Override, Param, Readable
class PushReader(Readable):
"""Read back device for the sample pusher sensors.
Since one of the sensors must give the inverse of the `moveable` value this
will be achieved by setting the parameter `inverse` at the corresponding
device in configuration.
"""
hardware_access = False
attached_devices = {
'moveable': Attach('Active device', Readable),
}
parameters = {
'inverse': Param('Invert read value',
type=bool, default=False),
}
parameter_overrides = {
'unit': Override(default='', mandatory=False),
'fmtstr': Override(default='%d'),
}
mapping = {
'up': 0,
'down': 1,
}
fallback = -1
def doRead(self, maxage=0):
if self.inverse:
return not self._readRaw(maxage)
return self._readRaw(maxage)
def _readRaw(self, maxage=0):
val = self._attached_moveable.read(maxage)
return self.mapping.get(val, self.fallback)
|
py | 1a446bd3867bfb945f0e4b575d9fb743f8caf518 | # -*- coding: utf-8 -*-
"""Language Tour: Generators"""
from typing import List, Tuple, Set, Generator, Dict, Iterable, Iterator
if __name__ == "__main__":
# Ternary compare
val: int = 32
print(val if val >= 0 else -val)
# List
var_list: List[int] = [i for i in range(20) if i % 3 > 0]
# => [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121]
var_list: List[Tuple[int]] = [(i, j) for i in range(2) for j in range(3)]
# => [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]
# Set
var_set: Set[int] = {n**2 for n in range(12)}
# Dict
var_set: Dict[int, int] = {n: n**2 for n in range(6)}
# => {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
# Generator/Iterable/Iterator
G: Generator[int, None, None] = (n**2 for n in range(12))
G: Iterable[int] = (n**2 for n in range(12)) # Implique
G: Iterator[int] = (n**2 for n in range(12)) # Equivalent
list(G) # => [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121]
list(G) # => [] # Car, itérable qu'une seule fois !
# NOTE: Le type hint indique ici : [YieldType, SendType, ReturnType]
# Le choix dépend de l'usage de la fonction.
def gen() -> Iterable[int]:
"""Generates x^2 from x=0 to x=11."""
for idx in range(12):
yield idx**2 # A la place de retourner une seule valeur,
# on en retourne plusieurs
print(*gen())
# => 0 1 4 9 16 25 36 49 64 81 100 121
# Exemple de fonction
def gen_primes(max_range: int) -> Iterable[int]:
"""Generate primes up to max_range"""
primes = set()
for idx in range(2, max_range):
if all(idx % p > 0 for p in primes):
primes.add(idx)
yield idx
print(*gen_primes(100))
# => 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
for prime in gen_primes(100):
print(prime)
# 2
# 3
# 5
# 7
# 11
# 13
# 17
# 19
# 23
# 29
# 31
# 37
# 41
# 43
# 47
# 53
# 59
# 61
# 67
# 71
# 73
# 79
# 83
# 89
# 97
|
py | 1a446be5d809c60ebc928c2435a267e8786ea570 | from django import forms
from .models import Topic, Entry
class TopicForm(forms.ModelForm):
class Meta:
model = Topic
fields = ['name', 'text']
labels = {
# 'name': '主题名字',
'text': 'SUMMARY'
}
widgets = {'text': forms.Textarea(attrs={'cols': 50})}
class EntryForm(forms.ModelForm):
class Meta:
model = Entry
fields = ['text']
labels = {'text': ''}
widgets = {'text': forms.Textarea(attrs={'cols': 50})} |
py | 1a446c8c068013a7a753329855788fde30a3a651 | # This file is part of Indico.
# Copyright (C) 2002 - 2019 CERN
#
# Indico is free software; you can redistribute it and/or
# modify it under the terms of the MIT License; see the
# LICENSE file for more details.
from __future__ import unicode_literals
from indico.core.db.sqlalchemy import db
from indico.modules.events.models.persons import PersonLinkBase
from indico.util.string import format_repr, return_ascii
class SessionBlockPersonLink(PersonLinkBase):
"""Association between EventPerson and SessionBlock.
Also known as a 'session convener'
"""
__tablename__ = 'session_block_person_links'
__auto_table_args = {'schema': 'events'}
person_link_backref_name = 'session_block_links'
person_link_unique_columns = ('session_block_id',)
object_relationship_name = 'session_block'
session_block_id = db.Column(
db.Integer,
db.ForeignKey('events.session_blocks.id'),
index=True,
nullable=False
)
# relationship backrefs:
# - session_block (SessionBlock.person_links)
@return_ascii
def __repr__(self):
return format_repr(self, 'id', 'person_id', 'session_block_id', _text=self.full_name)
|
py | 1a446ce7983dde5c73c0e2af4594fa3ed58ec5b2 | # Copyright (C) 2020 University of Oxford
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
import pickle
import netCDF4
import numpy as np
import pandas as pd
from requests import get
# opening netCDF4 files via url is not reliable
# (it requires the package to be built with OPenDAP support)
# we dowload and write to disk the file before opening it
def download_MET_file(url, file_name):
try:
os.remove(file_name)
except:
pass
# dowload the file from url and save it on disk
# get request
response = get(url)
if response.status_code != 200:
return False
# open in binary mode
with open(file_name, "wb") as file:
# write to file
file.write(response.content)
file.close()
return True
def load_local_data():
# load the variables dict
with open("plugins/WEATHER/input/weather_indicators.json", "r") as read_file:
weather_indicators = json.load(read_file)
# load grid to GADM level 1 dict
with open('plugins/WEATHER/input/adm_1_info.pkl', 'rb') as handle:
adm_1_info = pickle.load(handle)
# load grid to GADM level 2 dict
with open('plugins/WEATHER/input/adm_2_info.pkl', 'rb') as handle:
adm_2_info = pickle.load(handle)
return weather_indicators, adm_1_info, adm_2_info
# dowload the weather data for a single variable for all days in daterange
# use the adm_1_info and adm_2_info to assign each point in the grid to the right
# GID at level 1 or 2. the dicts also contains the GADM informations on each GID
# returns a pandas dataframe
def create_aggr_df(indicator, day, variables, adm_1_info, adm_2_info, logger):
source = []
date = []
gid = []
country = []
countrycode = []
adm_area_1 = []
adm_area_2 = []
adm_area_3 = []
avg = []
std = []
samplesize = []
valid_percentage = []
logger.debug("downloading data for {} for {}".format(indicator, day.strftime('%Y-%m-%d')))
URL = "https://metdatasa.blob.core.windows.net/covid19-response/metoffice_global_daily/"
temp_file = os.path.join(os.path.dirname(__file__), '..', '..', 'data', 'netCDF4_file.nc')
if not download_MET_file("{}{}/{}{}.nc".format(URL, variables[indicator]['folder'], variables[indicator]['file'],
day.strftime('%Y%m%d')), file_name=temp_file):
return None
nc = netCDF4.Dataset(temp_file)
data = nc.variables[variables[indicator]['variable']][:].data.reshape(-1)
if 'cloudaltitude' in indicator:
# remove default values 9*10^36
data[data > 10e20] = np.nan
# Level 1 aggregation
for area_0 in adm_1_info:
for area_1 in adm_1_info[area_0]:
idx_list = [point[0] for point in adm_1_info[area_0][area_1]["points"]]
to_avg = [data[idx] for idx in idx_list]
samplesize.append(len(to_avg))
source.append("MET")
date.append(day.strftime('%Y-%m-%d'))
gid.append(adm_1_info[area_0][area_1]["gid"])
country.append(adm_1_info[area_0][area_1]["country"])
countrycode.append(adm_1_info[area_0][area_1]["countrycode"])
adm_area_1.append(adm_1_info[area_0][area_1]["adm_area_1"])
adm_area_2.append(adm_1_info[area_0][area_1]["adm_area_2"])
adm_area_3.append(adm_1_info[area_0][area_1]["adm_area_3"])
if 'cloudaltitude' in indicator:
avg.append(np.nanmean(to_avg))
std.append(np.nanstd(to_avg, ddof=1))
valid_percentage.append(((~np.isnan(to_avg)).sum()) / (len(to_avg)))
else:
avg.append(np.mean(to_avg))
std.append(np.std(to_avg, ddof=1))
# Level 2 aggregation
for area_0 in adm_2_info:
for area_1 in adm_2_info[area_0]:
for area_2 in adm_2_info[area_0][area_1]:
idx_list = [point[0] for point in adm_2_info[area_0][area_1][area_2]["points"]]
to_avg = [data[idx] for idx in idx_list]
samplesize.append(len(to_avg))
source.append("MET")
date.append(day.strftime('%Y-%m-%d'))
gid.append(adm_2_info[area_0][area_1][area_2]["gid"])
country.append(adm_2_info[area_0][area_1][area_2]["country"])
countrycode.append(adm_2_info[area_0][area_1][area_2]["countrycode"])
adm_area_1.append(adm_2_info[area_0][area_1][area_2]["adm_area_1"])
adm_area_2.append(adm_2_info[area_0][area_1][area_2]["adm_area_2"])
adm_area_3.append(adm_2_info[area_0][area_1][area_2]["adm_area_3"])
if 'cloudaltitude' in indicator:
avg.append(np.nanmean(to_avg))
std.append(np.nanstd(to_avg, ddof=1))
valid_percentage.append(((~np.isnan(to_avg)).sum()) / (len(to_avg)))
else:
avg.append(np.mean(to_avg))
std.append(np.std(to_avg, ddof=1))
if 'cloudaltitude' in indicator:
d = {'source': source, 'date': date, 'gid': gid,
'country': country, 'countrycode': countrycode,
'adm_area_1': adm_area_1, 'adm_area_2': adm_area_2, 'adm_area_3': adm_area_3,
'samplesize': samplesize,
indicator+'_valid': valid_percentage,
indicator+'_avg': avg,
indicator+'_std': std,
}
else:
d = {'source': source, 'date': date, 'gid': gid,
'country': country, 'countrycode': countrycode,
'adm_area_1': adm_area_1, 'adm_area_2': adm_area_2, 'adm_area_3': adm_area_3,
'samplesize': samplesize,
indicator+'_avg': avg,
indicator+'_std': std,
}
try:
os.remove(temp_file)
except:
pass
return pd.DataFrame(data=d)
|
py | 1a446d1fea88005552df605b62e0848b1b0c965c | # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Correctness tests for tf.keras using DistributionStrategy."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from absl.testing import parameterized
import numpy as np
import six
from tensorflow.python import keras
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import distribute_lib
from tensorflow.python.distribute import mirrored_strategy
from tensorflow.python.distribute import strategy_combinations
from tensorflow.python.distribute import tpu_strategy
from tensorflow.python.eager import context
from tensorflow.python.eager import test
from tensorflow.python.framework import random_seed
from tensorflow.python.keras.distribute import distributed_training_utils
from tensorflow.python.util import nest
_RANDOM_SEED = 1337
_EVAL_STEPS = 20
_GLOBAL_BATCH_SIZE = 64
# Note: Please make sure the tests in this file are also covered in
# keras_backward_compat_test for features that are supported with both APIs.
all_strategies = [
strategy_combinations.default_strategy,
strategy_combinations.one_device_strategy,
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
strategy_combinations.mirrored_strategy_with_two_gpus,
strategy_combinations.tpu_strategy, # steps_per_run=2
strategy_combinations.tpu_strategy_one_step,
]
def eager_mode_test_configuration():
return combinations.combine(
mode='eager', use_numpy=[True, False], use_validation_data=[True, False])
def graph_mode_test_configuration():
return combinations.combine(
mode='graph', use_numpy=[True, False], use_validation_data=[True, False])
def all_strategy_and_input_config_combinations():
return (combinations.times(
combinations.combine(
distribution=all_strategies, run_distributed=[True, False]),
eager_mode_test_configuration() + graph_mode_test_configuration()))
def strategy_minus_tpu_and_input_config_combinations_eager():
return (combinations.times(
combinations.combine(
distribution=strategy_combinations.strategies_minus_tpu),
eager_mode_test_configuration()))
def strategies_for_embedding_models():
"""Returns distribution strategies to test for embedding models.
Since embedding models take longer to train, we disregard DefaultStrategy
in order to prevent testing timeouts.
"""
return [
s for s in all_strategies if s.required_tpu or s.required_gpus or
s is strategy_combinations.one_device_strategy
]
def test_combinations_for_embedding_model():
# TODO(sourabhbajaj): Enable tests for eager mode
eager_mode_strategies = [
s for s in strategies_for_embedding_models() if not s.required_tpu
]
return (combinations.times(
combinations.combine(
distribution=strategies_for_embedding_models(),
run_distributed=[True, False]),
(graph_mode_test_configuration())) + combinations.times(
combinations.combine(
distribution=eager_mode_strategies, run_distributed=[False]),
(eager_mode_test_configuration())))
def test_combinations_with_tpu_strategies():
tpu_strategies = [
strategy_combinations.tpu_strategy,
strategy_combinations.tpu_strategy_one_step
]
return (combinations.times(
combinations.combine(distribution=tpu_strategies),
graph_mode_test_configuration()))
class MaybeDistributionScope(object):
"""Provides a context allowing no distribution strategy."""
def __init__(self, distribution):
self._distribution = distribution
self._scope = None
def __enter__(self):
if self._distribution:
self._scope = self._distribution.scope()
self._scope.__enter__()
def __exit__(self, exc_type, value, traceback):
if self._distribution:
self._scope.__exit__(exc_type, value, traceback)
self._scope = None
def batch_wrapper(dataset, batch_size, repeat=None):
if repeat:
dataset = dataset.repeat(repeat)
return dataset.batch(batch_size)
def get_batch_size(global_batch_size, distribution):
batch_size = global_batch_size
# TODO(b/118776054): Use global batch size for Keras/DS support.
use_per_core_batch_size = (
distribution and
not distributed_training_utils.global_batch_size_supported(distribution))
if use_per_core_batch_size:
batch_size //= distribution.num_replicas_in_sync
return batch_size
def get_data_size(data):
"""Gets the size of data in list, tuple, dict, or a numpy array."""
assert isinstance(data, (np.ndarray, list, dict, tuple))
if isinstance(data, np.ndarray):
return len(data)
if isinstance(data, (list, tuple)):
return len(data[0])
return len(six.next(six.itervalues(data)))
def get_shapes(data):
shapes = None
if all(hasattr(x, 'shape') for x in nest.flatten(data)):
shapes = nest.map_structure(lambda x: x.shape, data)
return shapes
def get_correctness_test_inputs(use_numpy, use_validation_data,
with_distribution, x_train, y_train, x_eval,
y_eval, x_predict, training_epochs):
"""Generates the inputs for correctness check when enable Keras with DS."""
global_batch_size = _GLOBAL_BATCH_SIZE
batch_size = get_batch_size(global_batch_size, with_distribution)
if use_numpy:
training_inputs = {
'batch_size': batch_size,
'x': x_train,
'y': y_train,
'epochs': training_epochs,
'shuffle': False,
}
if use_validation_data:
eval_inputs = None
training_inputs['validation_data'] = (x_eval, y_eval)
else:
eval_inputs = {
'batch_size': batch_size,
'x': x_eval,
'y': y_eval,
}
predict_inputs = {'x': x_predict}
else:
training_data_size = get_data_size(x_train)
# For dataset inputs, we do not pass batch_size to
# keras.fit/evaluate/predict. The batch size is part of the dataset.
train_dataset = dataset_ops.Dataset.from_tensor_slices((x_train, y_train))
x = batch_wrapper(train_dataset, batch_size, repeat=training_epochs)
steps_per_epoch = int(np.ceil(1.0 * training_data_size / global_batch_size))
training_inputs = {
'batch_size': None,
'x': x,
'y': None,
'epochs': training_epochs,
'shuffle': False,
'steps_per_epoch': steps_per_epoch
}
if use_validation_data:
eval_inputs = None # Remove the eval_inputs
eval_dataset = dataset_ops.Dataset.from_tensor_slices((x_eval, y_eval))
x = batch_wrapper(eval_dataset, batch_size)
training_inputs['validation_data'] = x
training_inputs['validation_steps'] = 5
else:
eval_dataset = dataset_ops.Dataset.from_tensor_slices((x_eval, y_eval))
x = batch_wrapper(eval_dataset, batch_size)
eval_steps = int(np.ceil(1.0 * get_data_size(x_eval) / global_batch_size))
eval_inputs = {
'batch_size': None,
'x': x,
'y': None,
'steps': eval_steps,
}
predict_batch_size = get_batch_size(
get_data_size(x_predict), with_distribution)
predict_dataset = dataset_ops.Dataset.from_tensor_slices(x_predict)
predict_dataset = batch_wrapper(predict_dataset, predict_batch_size)
predict_inputs = {
'steps': 1,
'x': predict_dataset,
}
return training_inputs, eval_inputs, predict_inputs
def fit_eval_and_predict(initial_weights,
input_fn,
model_fn,
run_distributed=None,
distribution=None,
is_stateful_model=False):
"""Generates results for fit/predict/evaluate for given model."""
training_inputs, eval_inputs, predict_inputs = input_fn()
model = model_fn(
run_distributed=run_distributed,
initial_weights=initial_weights,
distribution=distribution,
input_shapes=get_shapes(training_inputs['x']))
result = {}
result['training_history_1'] = model.fit(**training_inputs).history
if eval_inputs is not None:
result['eval_result_1'] = model.evaluate(**eval_inputs)
result['weights_1'] = model.get_weights()
if predict_inputs is not None:
# Check correctness of the result of predict() invoked
# multiple times -- as for stateful models, result of
# predict may differ for each batch.
predict_length = 1
if is_stateful_model:
predict_length = 3
for i in range(predict_length):
result_key = 'predict_result_{}'.format(i)
result[result_key] = model.predict(**predict_inputs)
# Train and eval again to mimic user's flow.
result['training_history_2'] = model.fit(**training_inputs).history
if eval_inputs is not None:
result['eval_result_2'] = model.evaluate(**eval_inputs)
result['weights_2'] = model.get_weights()
return result
def compare_results(results_with_ds,
results_without_ds,
distribution,
testcase,
partial_last_batch=None):
"""Compares results of model compiled with/without distribution strategy."""
if partial_last_batch == 'train_and_eval':
# We relax the tolerence a lot in the partial last batch case as
# 1. the examples in uneven batches may have different weights when
# applying the gradients in the distributed case.
# 2. TF Keras and TF Keras DS have different ways to handle the case when
# training with epochs > 1 with numpy inputs. In TF Keras, every epoch
# may have a partial batch. While in TF Keras DS, as we convert
# numpy inputs into dataset, it will do a repeat() first and calculate
# steps_per_epoch, so it will at most have one partial batch. This
# makes the 1-CPU result even different.
default_tolerance = 1e-3
relaxed_tolerance = 1e-3
else:
default_tolerance = 1e-5
relaxed_tolerance = 1e-4
def _get_compare_result_tolerance(key):
"""Returns tolerance to compare results."""
# TODO(b/119257215): For MirroredStrategy, weights are not exactly the same,
# so use larger tolerance for now. Predict should be related to weights.
if (isinstance(distribution,
(mirrored_strategy.MirroredStrategy,
distribute_lib._DefaultDistributionStrategy)) and # pylint: disable=protected-access
key.startswith(('weights_1', 'weights_2', 'predict_result'))):
return relaxed_tolerance
return default_tolerance
for key in sorted(results_with_ds.keys()):
if (key.startswith('training_history') and
isinstance(distribution,
(tpu_strategy.TPUStrategy, tpu_strategy.TPUStrategyV1)) and
distribution.extended.steps_per_run > 1):
# TODO(b/119894254): Enable this test for all cases once the
# underlying bug is fixed.
continue
tolerance = _get_compare_result_tolerance(key)
# We don't compare the loss as loss is currently not computed as metric
# in Keras, the loss value is inaccurate for last partial batch due to
# more weights for the last batch samples.
if partial_last_batch is not None:
if key.startswith('eval_result'):
results_with_ds[key] = results_with_ds[key][1:]
results_without_ds[key] = results_without_ds[key][1:]
if key.startswith('training_history'):
results_with_ds[key]['val_loss'] = 0
results_without_ds[key]['val_loss'] = 0
testcase.assertAllClose(
results_with_ds[key],
results_without_ds[key],
atol=tolerance,
rtol=tolerance,
msg='Fail to assert {}.'.format(key))
def should_skip_tpu_with_eager(distribution):
return (context.executing_eagerly() and
isinstance(distribution,
(tpu_strategy.TPUStrategy, tpu_strategy.TPUStrategyV1)))
class LearningRateBatchScheduler(keras.callbacks.Callback):
"""Scheduler that dynamically sets the learning rate of model."""
def __init__(self, update_freq=None):
self._update_freq = update_freq
def on_batch_begin(self, batch, logs=None):
if self._update_freq and batch % self._update_freq != 0:
return
# To avoid divergence, limit the value range.
lr = 0.001 * (batch % 10)
keras.backend.set_value(self.model.optimizer.lr, lr)
class TestDistributionStrategyCorrectnessBase(test.TestCase,
parameterized.TestCase):
"""Model agnostic testing infra to test correctness of Keras models."""
def set_up_test_config(self,
use_numpy=False,
use_validation_data=False,
with_batch_norm=False):
self.use_numpy = use_numpy
self.use_validation_data = use_validation_data
self.with_batch_norm = with_batch_norm
keras.backend.set_image_data_format('channels_last')
np.random.seed(_RANDOM_SEED)
random_seed.set_random_seed(_RANDOM_SEED)
def get_data(self):
num_samples = 10000
x_train = np.random.randint(0, 2, num_samples)
x_train = np.reshape(x_train, (num_samples, 1))
y_train = x_train
return (x_train.astype('float32'), y_train.astype('float32'), None)
def get_data_with_partial_last_batch(self):
raise NotImplementedError
def get_data_with_partial_last_batch_eval(self):
raise NotImplementedError
def get_input_for_correctness_test(self, **kwargs):
"""Generates inputs that are dictionaries.
We only provide a default implementation of this method here. If you need
more customized way of providing input to your model, overwrite this method.
Arguments:
**kwargs: key word arguments about how to create the input dictionaries
Returns:
Three dictionaries representing the input for fit(), evalutate() and
predict()
"""
return get_correctness_test_inputs(**kwargs)
def get_model(self,
distribution=None,
run_distributed=None,
input_shapes=None):
raise NotImplementedError
def skip_unsupported_test_configuration(self, distribution, run_distributed):
if should_skip_tpu_with_eager(distribution) and run_distributed:
self.skipTest(
'TPUStrategy does not support eager mode with run_distributed.')
return
def run_correctness_test(self,
distribution,
use_numpy,
use_validation_data,
run_distributed=None,
with_batch_norm=False,
is_stateful_model=False,
partial_last_batch=None,
training_epochs=2):
with self.cached_session():
self.set_up_test_config(use_numpy, use_validation_data, with_batch_norm)
self.skip_unsupported_test_configuration(distribution, run_distributed)
if partial_last_batch == 'eval':
x_train, y_train, x_eval, y_eval, x_predict = (
self.get_data_with_partial_last_batch_eval())
elif partial_last_batch == 'train_and_eval':
x_train, y_train, x_eval, y_eval, x_predict = (
self.get_data_with_partial_last_batch())
else:
x_train, y_train, x_predict = self.get_data()
x_eval = x_train
y_eval = y_train
# The model is built once and the initial weights are saved.
# This is used to initialize the model for both the distribution and
# non-distribution run.
model = self.get_model(
run_distributed=run_distributed, input_shapes=get_shapes(x_train))
initial_weights = model.get_weights()
ds_input_fn = functools.partial(
self.get_input_for_correctness_test,
use_numpy=use_numpy,
use_validation_data=use_validation_data,
with_distribution=distribution,
x_train=x_train,
y_train=y_train,
x_eval=x_eval,
y_eval=y_eval,
x_predict=x_predict,
training_epochs=training_epochs)
nods_input_fn = functools.partial(
self.get_input_for_correctness_test,
use_numpy=use_numpy,
use_validation_data=use_validation_data,
with_distribution=None,
x_train=x_train,
y_train=y_train,
x_eval=x_eval,
y_eval=y_eval,
x_predict=x_predict,
training_epochs=training_epochs)
results_with_ds = fit_eval_and_predict(
initial_weights,
input_fn=ds_input_fn,
model_fn=self.get_model,
run_distributed=run_distributed,
distribution=distribution,
is_stateful_model=is_stateful_model)
results_without_ds = fit_eval_and_predict(
initial_weights,
input_fn=nods_input_fn,
model_fn=self.get_model,
run_distributed=run_distributed,
distribution=None,
is_stateful_model=is_stateful_model)
# First, special case, for multi-replica distributed training, batch
# norm is not aggregated globally. So it is expected to have different
# weights.
if (self.with_batch_norm and distribution.num_replicas_in_sync > 1):
with self.assertRaises(AssertionError):
compare_results(
results_with_ds,
results_without_ds,
distribution,
testcase=self,
partial_last_batch=partial_last_batch)
else:
compare_results(
results_with_ds,
results_without_ds,
distribution,
testcase=self,
partial_last_batch=partial_last_batch)
def get_input_for_dynamic_lr_test(self, **kwargs):
"""Generates inputs that are dictionaries.
We only provide a default implementation of this method here. If you need
more customized way of providing input to your model, overwrite this method.
Arguments:
**kwargs: key word arguments about how to create the input dictionaries
Returns:
Three dictionaries representing the input for fit(), evalutate() and
predict()
"""
training_input = kwargs
return training_input, None, None
def run_dynamic_lr_test(self, distribution, run_distributed=None):
with self.cached_session():
self.set_up_test_config()
self.skip_unsupported_test_configuration(distribution, run_distributed)
x_train, y_train, _ = self.get_data()
model = self.get_model(
run_distributed=run_distributed, input_shapes=get_shapes(x_train))
initial_weights = model.get_weights()
update_freq = None
if (isinstance(distribution, tpu_strategy.TPUStrategyV1) and
distribution.extended.steps_per_run > 1):
# For TPUStrategy with steps_per_run > 1, the callback is not invoked
# every step. So, to compare the CPU/TPU, we let the CPU to behave the
# same as TPU.
update_freq = distribution.extended.steps_per_run
training_epochs = 2
global_batch_size = 64
ds_batch_size = get_batch_size(global_batch_size, distribution)
nods_batch_size = get_batch_size(global_batch_size, None)
ds_input_fn = functools.partial(
self.get_input_for_dynamic_lr_test,
x=x_train,
y=y_train,
batch_size=ds_batch_size,
shuffle=False,
epochs=training_epochs,
callbacks=[LearningRateBatchScheduler(update_freq)],
validation_data=(x_train, y_train))
nods_input_fn = functools.partial(
self.get_input_for_dynamic_lr_test,
x=x_train,
y=y_train,
batch_size=nods_batch_size,
shuffle=False,
epochs=training_epochs,
callbacks=[LearningRateBatchScheduler(update_freq)],
validation_data=(x_train, y_train))
results_with_ds = fit_eval_and_predict(
initial_weights,
input_fn=ds_input_fn,
model_fn=self.get_model,
run_distributed=run_distributed,
distribution=distribution)
results_without_ds = fit_eval_and_predict(
initial_weights,
input_fn=nods_input_fn,
model_fn=self.get_model,
run_distributed=run_distributed,
distribution=None)
compare_results(
results_with_ds, results_without_ds, distribution, testcase=self)
class TestDistributionStrategyEmbeddingModelCorrectnessBase(
TestDistributionStrategyCorrectnessBase):
"""Base class to test correctness of Keras models with embedding layers."""
def get_data(self,
count=(_GLOBAL_BATCH_SIZE * _EVAL_STEPS),
min_words=5,
max_words=10,
max_word_id=19,
num_classes=2):
distribution = []
for _ in range(num_classes):
dist = np.abs(np.random.randn(max_word_id))
dist /= np.sum(dist)
distribution.append(dist)
features = []
labels = []
for _ in range(count):
label = np.random.randint(0, num_classes, size=1)[0]
num_words = np.random.randint(min_words, max_words, size=1)[0]
word_ids = np.random.choice(
max_word_id, size=num_words, replace=True, p=distribution[label])
word_ids = word_ids
labels.append(label)
features.append(word_ids)
features = keras.preprocessing.sequence.pad_sequences(
features, maxlen=max_words)
x_train = np.asarray(features, dtype=np.float32)
y_train = np.asarray(labels, dtype=np.int32).reshape((count, 1))
x_predict = x_train[:_GLOBAL_BATCH_SIZE]
return x_train, y_train, x_predict
if __name__ == '__main__':
test.main()
|
py | 1a446e325b859dc07427753e10933547d083ca9d | from pathlib import Path
from typing import Optional
import zlib
class DeceptionEnabler(object):
"""Make sure to put `*.bf` in your .gitignore!"""
def __init__(self, binary_extension: str = "gif", bf_extension: str = "bf"):
self.binary_ext = ".%s" % binary_extension
self.bf_ext = ".%s" % bf_extension
def compress_program(self, program: bytes) -> bytes:
return zlib.compress(program, level=9)
def decompress_program(self, program: bytes) -> bytes:
return zlib.decompress(program)
def load_from_file(self, fname: str) -> bytes:
with open(fname, "rb") as f:
compressed_data = f.read()
uncompressed_data = self.decompress_program(compressed_data)
return uncompressed_data
def save_program_to_file(self, program: bytes, out_fname: bool, overwrite: bool = True) -> None:
compressed_data = self.compress_program(program)
open_flags = "wb" if overwrite_existing is True else "xb"
with open(out_fname, open_flags) as f:
f.write(compressed_data)
def decompress_from_file(self, binary_fname: str, bf_fname: Optional[str] = None) -> None:
out_fname = decompressed_fname or str(Path(compressed_fname).with_suffix(self.bf_ext))
uncompressed_data = self.load_program(compressed_fname)
with open(out_fname, "wb") as f:
f.write(uncompressed_data)
def compress_from_file(self, bf_fname: str, binary_fname: Optional[str] = None) -> None:
with open(decompressed_fname, "rb") as f:
uncompressed_data = f.read()
out_fname = compressed_fname or str(Path(decompressed_fname).with_suffix(self.binary_ext))
self.save_program_to_file(uncompressed_data, out_fname)
|
py | 1a446e661d680f646fe24d36829a159b4fee1bd7 | # signal definitions for request_profiler
from django.dispatch import Signal
# Signal sent after profile data has been captured, but before it is
# saved. This signal can be used to cancel the profiling by calling the
# instance.cancel() method, which sets an internal property telling the
# instance not to save itself when capture() is called.
request_profile_complete = Signal(providing_args=['request', 'response', 'instance'])
|
py | 1a446f4947ba0207616f85fb76df514067cf366a | #!/usr/bin/python
"""
Description: Tool for performing benchmarking of programs
Copyright (c) 2015, Lucian Radu Teodorescu
"""
import os, sys, shutil, time, glob, subprocess, resource, struct, numpy
from collections import defaultdict
import config
testsDir = 'tests'
resultsDir = 'results'
tmpDir = resultsDir + '/tmp'
tests = []
memDiv = 1024.0*1024.0 if config.dumpMemAsMB else 1024.0
memUnit = 'MB' if config.dumpMemAsMB else 'KB'
def getFileContents(filename):
with open(filename) as f:
return f.read().rstrip()
def measureCommand(command, fout):
resReadPipe, resWritePipe = os.pipe()
pid = os.fork()
if pid == 0:
isTimeout = False
try:
# Start executing the command
# print "Running: %s" % command
command = command.split()
p = subprocess.Popen(command, stderr=subprocess.STDOUT, stdout=fout)
# Wait until the command is finished, or we reach the timeout
timeout = config.testTimeout
while p.poll() is None and timeout > 0:
time.sleep(1)
timeout -= 1
if not timeout > 0:
p.terminate()
isTimeout = True
except Exception as e:
print 'RUN ERROR: %s' % str(e)
isTimeout = True
# Send back the results and quit
rusage = resource.getrusage(resource.RUSAGE_CHILDREN)
ttime = rusage.ru_utime + rusage.ru_stime
os.write(resWritePipe, struct.pack('?', isTimeout))
os.write(resWritePipe, struct.pack('f', ttime))
os.write(resWritePipe, struct.pack('L', rusage.ru_maxrss))
sys.exit(0)
# Read the results from the forked process
isTimeout = struct.unpack('?', os.read(resReadPipe, struct.calcsize('?')))[0]
ttime = struct.unpack('f', os.read(resReadPipe, struct.calcsize('f')))[0]
maxrss = struct.unpack('L', os.read(resReadPipe, struct.calcsize('L')))[0]
return (isTimeout, ttime, maxrss)
class Test:
def __init__(self, dir):
self.name = os.path.basename(dir)
self.dir = dir
self.programs = []
self.runArgs = []
self.results = defaultdict(lambda: [])
def __repr__(self):
return "Test(%s, programs=%s, args=%s)" % (self.name, self.programs, self.runArgs)
def compile(self):
print " %-20s\t" % self.name,
os.chdir(self.dir)
logFilename = '%s/comp_%s.log' % (tmpDir, self.name)
with open(logFilename, 'w') as f:
if config.cleanBeforeBuild:
res = subprocess.call(['make', 'clean'], stderr=subprocess.STDOUT, stdout=f)
if res != 0:
raise Exception("Cannot execute 'make clean' on programs; check the log file: %s" % logFilename)
res = subprocess.call(['make'], stderr=subprocess.STDOUT, stdout=f)
if res != 0:
raise Exception("Cannot compile the programs; check the log file: %s" % logFilename)
# Gather programs; results a list of (name, executable)
res = getFileContents('programs.in')
progs = res.rstrip().split('\n')
progs = filter(lambda p: not p.startswith('#'), progs)
self.programs = []
for p in progs:
# Check if the line is of the form <name>:<executable>
colon = p.find(':')
if colon >= 0:
self.programs.append( (p[0:colon].strip(), p[colon+1:].strip()) )
else:
name = p;
if p.startswith('./'):
name = p[2:]
name = name.replace('/', '_')
self.programs.append( (name, p) )
# Gather running arguments
res = getFileContents('args.in')
self.runArgs = res.rstrip().split('\n')
self.runArgs = filter(lambda p: not p.startswith('#'), self.runArgs)
if len(self.programs) > 5:
print '%d programs' % len(self.programs),
else:
print [p[0] for p in self.programs],
print " / ",
if len(self.runArgs) > 7:
print '%d args sets' % len(self.runArgs),
else:
print self.runArgs
def run(self):
# Run the programs
resLogFilename = '%s/results_%s.log' % (resultsDir, self.name)
with open(resLogFilename, 'w') as flog:
for prog in self.programs:
for args in self.runArgs:
for r in range(0, config.numRepeats):
progName = prog[0]
progExe = prog[1]
print " %s: %s %s (%d)\t\t" % (self.name, progName, args, r+1),
print >>flog, "\n%s: %s %s (%d)" % (self.name, progName, args, r+1)
print >>flog, " > %s %s" % (progExe, args)
sys.stdout.flush()
flog.flush()
logFilename = '%s/%s.%s %s.%d.run.log' % (tmpDir, self.name, progName, args, r+1)
with open(logFilename, 'w') as fout:
os.chdir(self.dir)
isTimeout, time, mem = measureCommand("%s %s" % (progExe, args), fout)
if isTimeout:
print "TIMEOUT - time: %f, mem: %f %s" % (time, mem/memDiv, memUnit)
print >>flog, "TIMEOUT - time: %f, mem: %f %s" % (time, mem/memDiv, memUnit)
time = config.testTimeout + 1
else:
print "time: %f, mem: %f %s" % (time, mem/memDiv, memUnit)
print >>flog, "time: %f, mem: %f %s" % (time, mem/memDiv, memUnit)
sys.stdout.flush()
flog.flush();
self.results[(progName, args)].append((time, mem))
# Average and print the results
csvFilename = '%s/results_%s.csv' % (resultsDir, self.name)
print ""
print "Results for '%s'" % self.name
print >>flog, ""
print >>flog, "Test results:"
with open(csvFilename, 'w') as fout:
print '# Program name, args, time (s), time deviation (s), memory (%s), memory deviation (%s)' % (memUnit, memUnit)
print >>fout, '# Program name, args, time (s), time deviation (s), memory (%s), memory deviation (%s)' % (memUnit, memUnit)
for k in sorted(self.results):
val = self.results[k]
print >>flog, "%s %s: %s" % (k[0], k[1], val),
if config.ignoreFirstRun:
val.pop(0)
times, mems = zip(*val)
timeAvg = numpy.mean(times)
timeStd = numpy.std(times)
memAvg = numpy.mean(mems) / memDiv
memStd = numpy.std(mems) / memDiv
print '%s, \t%s,\t %f, \t%f, \t%f, \t%f' % (k[0], k[1], timeAvg, timeStd, memAvg, memStd)
print >>fout, '%s, \t%s,\t %f, \t%f, \t%f, \t%f' % (k[0], k[1], timeAvg, timeStd, memAvg, memStd)
print >>flog, '\t=> (%f, %f)-(%f, %f)' % (timeAvg, timeStd, memAvg, memStd)
print ""
def ensureCleanDir(dir):
if os.path.isdir(dir):
shutil.rmtree(dir)
os.makedirs(dir)
def checkDirectories():
thisDir = os.path.dirname(os.path.realpath(__file__))
global testsDir
global resultsDir
global tmpDir
testsDir = thisDir + '/' + testsDir
resultsDir = thisDir + '/' + resultsDir
tmpDir = thisDir + '/' + tmpDir
if not os.path.isdir(testsDir):
print 'Cannot find tests directory: %s' % testsDir
sys.exit(1)
ensureCleanDir(resultsDir)
ensureCleanDir(tmpDir)
def gatherTests():
if os.path.isfile(testsDir+'/programs.in'):
# Don't consider the subdirs; all the data is in the tests folder
tests.append(Test(testsDir))
else:
for d in glob.glob(testsDir+'/*'):
if os.path.isdir(d):
if os.path.splitext(os.path.basename(d))[0].startswith('.'):
continue
tests.append(Test(d))
print ' available tests: %s' % [t.name for t in tests]
def main():
print 'bench_tool, copyright (c) 2015 Lucian Radu Teodorescu'
oldDir = os.getcwd()
try:
print 'Initializing...'
checkDirectories()
gatherTests()
print 'Compiling programs...'
for t in tests:
t.compile()
print 'Performing the benchmark...'
for t in tests:
t.run()
except KeyboardInterrupt:
print 'INTERRUPTED'
except Exception as e:
print 'ERROR: %s' % str(e)
os.chdir(oldDir)
print ''
if __name__ == "__main__":
main()
|
py | 1a446fc9489260571c1afd9a050c49c55fa54d56 | #
# This file is part of pretix (Community Edition).
#
# Copyright (C) 2014-2020 Raphael Michel and contributors
# Copyright (C) 2020-2021 rami.io GmbH and contributors
#
# This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General
# Public License as published by the Free Software Foundation in version 3 of the License.
#
# ADDITIONAL TERMS APPLY: Pursuant to Section 7 of the GNU Affero General Public License, additional terms are
# applicable granting you additional permissions and placing additional restrictions on your usage of this software.
# Please refer to the pretix LICENSE file to obtain the full terms applicable to this work. If you did not receive
# this file, see <https://pretix.eu/about/en/license>.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
# warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more
# details.
#
# You should have received a copy of the GNU Affero General Public License along with this program. If not, see
# <https://www.gnu.org/licenses/>.
#
import logging
from django import forms
from django.conf import settings
from django.utils.translation import gettext as _
from oauth2_provider.exceptions import FatalClientError, OAuthToolkitError
from oauth2_provider.forms import AllowForm
from oauth2_provider.settings import oauth2_settings
from oauth2_provider.views import (
AuthorizationView as BaseAuthorizationView,
RevokeTokenView as BaseRevokeTokenView, TokenView as BaseTokenView,
)
from pretix.api.models import OAuthApplication
from pretix.base.models import Organizer
logger = logging.getLogger(__name__)
class OAuthAllowForm(AllowForm):
organizers = forms.ModelMultipleChoiceField(
queryset=Organizer.objects.none(),
widget=forms.CheckboxSelectMultiple
)
def __init__(self, *args, **kwargs):
user = kwargs.pop('user')
scope = kwargs.pop('scope')
super().__init__(*args, **kwargs)
self.fields['organizers'].queryset = Organizer.objects.filter(
pk__in=user.teams.values_list('organizer', flat=True))
if scope == 'profile':
del self.fields['organizers']
class AuthorizationView(BaseAuthorizationView):
template_name = "pretixcontrol/auth/oauth_authorization.html"
form_class = OAuthAllowForm
def get_form_kwargs(self):
kwargs = super().get_form_kwargs()
kwargs['user'] = self.request.user
kwargs['scope'] = self.request.GET.get('scope')
return kwargs
def get_context_data(self, **kwargs):
ctx = super().get_context_data(**kwargs)
ctx['settings'] = settings
return ctx
def validate_authorization_request(self, request):
require_approval = request.GET.get("approval_prompt", oauth2_settings.REQUEST_APPROVAL_PROMPT)
if require_approval != 'force' and request.GET.get('scope') != 'profile':
raise FatalClientError('Combnination of require_approval and scope values not allowed.')
return super().validate_authorization_request(request)
def create_authorization_response(self, request, scopes, credentials, allow, organizers=None):
credentials["organizers"] = organizers or []
return super().create_authorization_response(request, scopes, credentials, allow)
def form_valid(self, form):
client_id = form.cleaned_data["client_id"]
application = OAuthApplication.objects.get(client_id=client_id)
credentials = {
"client_id": form.cleaned_data.get("client_id"),
"redirect_uri": form.cleaned_data.get("redirect_uri"),
"response_type": form.cleaned_data.get("response_type", None),
"state": form.cleaned_data.get("state", None),
}
scopes = form.cleaned_data.get("scope")
allow = form.cleaned_data.get("allow")
try:
uri, headers, body, status = self.create_authorization_response(
request=self.request, scopes=scopes, credentials=credentials, allow=allow,
organizers=form.cleaned_data.get("organizers")
)
except OAuthToolkitError as error:
return self.error_response(error, application)
self.success_url = uri
logger.debug("Success url for the request: {0}".format(self.success_url))
msgs = [
_('The application "{application_name}" has been authorized to access your account.').format(
application_name=application.name
)
]
self.request.user.send_security_notice(msgs)
self.request.user.log_action('pretix.user.oauth.authorized', user=self.request.user, data={
'application_id': application.pk,
'application_name': application.name,
})
return self.redirect(self.success_url, application)
class TokenView(BaseTokenView):
pass
class RevokeTokenView(BaseRevokeTokenView):
pass
|
py | 1a4470a4f852722d9f2504bdbcbf561a59fe7dc3 | # Adapted from Sebastian Noack's python-goto, originally licensed under the
# Unlicence and re-licenced under Apache 2.0 as part of Pomagma.
import pytest
from goto import goto, label, with_goto
CODE = '''\
i = 0
result = []
label.start
if i == 10:
goto.end
result.append(i)
i += 1
goto.start
label.end
'''
EXPECTED = list(range(10))
def test_range_as_code():
ns = {}
exec(with_goto(compile(CODE, '', 'exec')), ns)
assert ns['result'] == EXPECTED
def test_range_as_function():
ns = {}
exec('\n'.join(
['def func():'] +
['\t' + x for x in CODE.splitlines() + ['return result']]
), ns)
assert with_goto(ns['func'])() == EXPECTED
def test_jump_out_of_loop():
@with_goto
def func():
for i in range(10):
goto.end
label.end
return i
assert func() == 0
def test_jump_into_loop():
def func():
for i in range(10):
label.loop
goto.loop
pytest.raises(SyntaxError, with_goto, func)
def test_jump_out_of_nested_4_loops():
@with_goto
def func():
for i in range(2):
for j in range(2):
for k in range(2):
for m in range(2):
goto.end
label.end
return (i, j, k, m)
assert func() == (0, 0, 0, 0)
def test_jump_out_of_nested_5_loops():
def func():
for i in range(2):
for j in range(2):
for k in range(2):
for m in range(2):
for n in range(2):
goto.end
label.end
return (i, j, k, m, n)
pytest.raises(SyntaxError, with_goto, func)
def test_jump_across_loops():
def func():
for i in range(10):
goto.other_loop
for i in range(10):
label.other_loop
pytest.raises(SyntaxError, with_goto, func)
def test_jump_out_of_try_block():
@with_goto
def func():
try:
rv = None
goto.end
except:
rv = 'except'
finally:
rv = 'finally'
label.end
return rv
assert func() is None
def test_jump_into_try_block():
def func():
try:
label.block
except:
pass
goto.block
pytest.raises(SyntaxError, with_goto, func)
def test_jump_to_unkown_label():
def func():
goto.unknown
pytest.raises(SyntaxError, with_goto, func)
def test_function_is_copy():
def func():
pass
func.foo = 'bar'
newfunc = with_goto(func)
assert newfunc is not func
assert newfunc.foo == 'bar'
|
py | 1a44718a26355ab5a22c29a7e9a20cf8fdd3f390 | import numpy as np
import pandas as pd
import tensorflow as tf
import math
from sklearn.cluster import KMeans
import Loaddata
from numpy import random
import time
from datetime import date
import matplotlib.pyplot as plt
import os
from pandas import DataFrame, concat
import multiprocessing as mp
class LSTM_double:
# 定义常量
def __init__(self, data):
self.rnn_unit = 300
self.input_size = 100
self.output_size = 1
self.lr = 0.00006
self.time_step = 1
self.batch_size = 1
self.data = self.series_to_supervised(data, 100)
self.train_begin = 0
self.train_end = len(self.data)
self.test_begin = len(self.data)-1
self.weights = {
'in': tf.Variable(tf.random_normal([self.input_size, self.rnn_unit])),
'out': tf.Variable(tf.random_normal([self.rnn_unit, self.output_size]))
}
self.biases = {
'in': tf.Variable(tf.constant(0.1, shape=[self.rnn_unit, ])),
'out': tf.Variable(tf.constant(0.1, shape=[1, ]))
}
# 定义分割函数
def series_to_supervised(self, data, n_in=1, n_out=1, dropnan=True):
n_vars = 1 if type(data) is list else data.shape[1]
df = DataFrame(data)
cols, names = list(), list()
for i in range(n_in, 0, -1):
cols.append(df.shift(i))
names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]
for i in range(0, n_out):
cols.append(df.shift(-i))
if i == 0:
names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
else:
names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
agg = concat(cols, axis=1)
agg.columns = names
if dropnan:
agg.dropna(inplace=True)
return agg.values
# 获取训练集
def get_train_data(self):
batch_index = []
data_train = self.data[self.train_begin:self.train_end]
normalized_train_data = data_train/1e8
train_x, train_y = [], [] # 训练集
for i in range(len(normalized_train_data)-self.time_step):
if i % self.batch_size == 0:
batch_index.append(i)
x = normalized_train_data[i:i+self.time_step, :100]
y = normalized_train_data[i:i+self.time_step, 100:]
train_x.append(x.tolist())
train_y.append(y.tolist())
batch_index.append((len(normalized_train_data)-self.time_step))
return batch_index, train_x, train_y
# 获取测试集
def get_test_data(self):
data_test = self.data[self.test_begin:]
normalized_test_data = data_test/1e8
size = (len(normalized_test_data) +
self.time_step)//self.time_step # 有size个sample
test_x, test_y = [], []
for i in range(size-1):
x = normalized_test_data[i *
self.time_step:(i+1)*self.time_step, :100]
y = normalized_test_data[i *
self.time_step:(i+1)*self.time_step, 100]
test_x.append(x.tolist())
test_y.extend(y)
test_x.append(
(normalized_test_data[(i+1)*self.time_step:, :100]).tolist())
test_y.extend(
(normalized_test_data[(i+1)*self.time_step:, 100]).tolist())
return test_x, test_y
# ——————————————————定义神经网络变量——————————————————
def lstm(self, X):
self.batch_size = tf.shape(X)[0]
self.time_step = tf.shape(X)[1]
w_in = self.weights['in']
b_in = self.biases['in']
# 将tensor转成2维进行计算,计算后的结果作为隐藏层的输入
input = tf.reshape(X, [-1, self.input_size])
input_rnn = tf.matmul(input, w_in)+b_in
# 将tensor转成3维,作为lstm cell的输入
input_rnn = tf.reshape(input_rnn, [-1, self.time_step, self.rnn_unit])
cell = tf.nn.rnn_cell.LSTMCell(self.rnn_unit)
init_state = cell.zero_state(self.batch_size, dtype=tf.float32)
# output_rnn是记录lstm每个输出节点的结果,final_states是最后一个cell的结果
output_rnn, final_states = tf.nn.dynamic_rnn(
cell, input_rnn, initial_state=init_state, dtype=tf.float32)
output = tf.reshape(output_rnn, [-1, self.rnn_unit]) # 作为输出层的输入
w_out = self.weights['out']
b_out = self.biases['out']
pred = tf.matmul(output, w_out)+b_out
pred = tf.reshape(pred, [-1, self.output_size])
return pred, final_states
# ——————————————————训练模型——————————————————
def train_lstm(self, num_epochs=40, numb_sub=1,numb_class=1,continue_train=False,class_people='purchase'):
X = tf.placeholder(tf.float32, shape=[None, 1, 100])
Y = tf.placeholder(tf.float32, shape=[None, 1, 1])
batch_index, train_x, train_y = self.get_train_data()
with tf.variable_scope("sec_lstm"):
pred, _ = self.lstm(X)
# 损失函数
loss = tf.reduce_mean(
tf.square(tf.reshape(pred, [-1])-tf.reshape(Y, [-1])))
train_op = tf.train.AdamOptimizer(self.lr).minimize(loss)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=15)
if continue_train==True:
module_file = tf.train.latest_checkpoint('model_save_'+class_people+'_'+
str(numb_sub)+'_'+str(numb_class))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
if continue_train==True:
saver.restore(sess, module_file)
# 重复训练
for i in range(num_epochs):
for step in range(len(batch_index)-1):
_, loss_ = sess.run([train_op, loss], feed_dict={
X: train_x[batch_index[step]:batch_index[step+1]], Y: train_y[batch_index[step]:batch_index[step+1]]})
print(i+1, loss_)
if ((i+1) % num_epochs) == 0:
print("保存模型:", saver.save(sess, 'model_save_'+class_people+'_' +
str(numb_sub)+'_'+str(numb_class)+'/modle.ckpt', global_step=i))
# ————————————————预测模型————————————————————
def prediction(self, numb_sub=1,numb_class=1,class_people='purchase'):
self.time_step = 1
self.input_size = 100
self.output_size = 1
X = tf.placeholder(tf.float32, shape=[
None, self.time_step, self.input_size])
Y = tf.placeholder(tf.float32, shape=[
None, self.time_step, self.output_size])
test_x, test_y = self.get_test_data()
with tf.variable_scope("sec_lstm", reuse=tf.AUTO_REUSE):
pred, _ = self.lstm(X)
saver = tf.train.Saver(tf.global_variables())
with tf.Session() as sess:
# 参数恢复
module_file = tf.train.latest_checkpoint(
'model_save_'+class_people+'_'+str(numb_sub)+'_'+str(numb_class))
saver.restore(sess, module_file)
test_x = test_x[:1]
test_x = [a[0] for a in test_x]
test_x = np.array(test_x)
test_x[:, :99] = test_x[:, 1:]
test_x[:, 99:] = test_y[-1]
test_predict = []
for step in range(30):
prob = sess.run(pred, feed_dict={X: [test_x]})
predict = prob.reshape(-1)
test_predict.extend(prob)
test_x[:, :99] = test_x[:, 1:]
test_x[:, 99:] = prob[-1]
test_predict = np.array(test_predict)
test_predict = test_predict[:, 0]
test_predict = test_predict.flatten()
test_predict = np.array(test_predict)*1e8
print(test_predict)
return test_predict
class k_mean(object):
def __init__(self, data):
self.x_train = data
def k_mean_divide(self, cluster_num):
kmeans = KMeans(n_clusters=cluster_num,
random_state=0).fit(self.x_train)
divide_labels = kmeans.labels_
divide_class = {}
for i in range(cluster_num):
divide_answer = (divide_labels == i)
divide = []
for j in range(len(divide_labels)):
if divide_answer[j] == True:
divide.append(j)
divide_class['cluster'+str(i)] = np.array(divide)+1
return divide_class
class genetic(object):
def getEncoding(self, popSize, chromLength): # 生成种群
pop = random.randint(0, 2, size=(popSize, chromLength))
return pop
def binary2decimal(self, pop, chromLength_type, chromLength):
row = pop.shape[0]
chromLength_length = len(chromLength_type) - 1
tempfinal = np.zeros((row, chromLength_length))
position_sum = np.cumsum(chromLength_type)
for i in range(row):
for j in range(chromLength_length):
t = 0
for k in range(position_sum[j], position_sum[j+1]):
t += pop[i, k]*(math.pow(2, k - position_sum[j]))
tempfinal[i, j] = t
tempfinal[:, 0] = tempfinal[:, 0]+1
tempfinal[:, 1:] = tempfinal[:, 1:]/(math.pow(2, 8)-1)*5
return tempfinal
def multiprocess_fitness_purchase(self, j):# 并行计算
multiple_time = np.hstack((self.tempfinal[j, 1], np.tile(
self.tempfinal[j, 2], 7), np.tile(self.tempfinal[j, 3], 12))) # 拼接倍数
for k in range(4, self.tempfinal.shape[1]):
multiple_time = np.hstack((multiple_time, self.tempfinal[j, k]))
user_profile_onehot = self.user_profile_onehot * multiple_time # 将部分向量的权重扩大
model_kmean = k_mean(user_profile_onehot) # 聚类
divide_class = model_kmean.k_mean_divide(int(self.tempfinal[j, 0]))
user_balance = Loaddata.UserBalance()
purchase_predict_class = []
purchase_test_class = []
for i in range(len(divide_class)): # 将这几种分类分别带入网络识别
print('第'+str(j+1)+'个种群 第'+str(i+1)+'个类')
user_balance.CalculateDayPurchaseList(
divide_class['cluster'+str(i)])
user_balance.CalculateDayRedeemList(
divide_class['cluster'+str(i)])
purchase_train, redeem_train = user_balance.GetdataUsedInPredict()
purchase_test, redeem_test = user_balance.GetTestData()
purchase_model = LSTM_double(purchase_train.reshape((-1, 1)))
purchase_model.train_lstm(numb_sub=j+1,numb_class=i+1)
purchase_predict = purchase_model.prediction(numb_sub=j+1,numb_class=i+1)
tf.reset_default_graph()
plt.plot(purchase_predict, 'b')
plt.plot(purchase_test, 'g')
if not os.path.exists('out_lstm_double/'):
os.makedirs('out_lstm_double/')
plt.savefig('out_lstm_double/purchase_the_{}_times_the_{}_gene_the_{}_class.png'.format(
str(self.times_calc), str(j+1), str(i+1)))
plt.close()
purchase_predict_class.append(purchase_predict)
purchase_test_class.append(purchase_test)
purchase_loss_value = np.mean(abs(np.array(purchase_predict_class).sum(
axis=0) - np.array(purchase_test_class).sum(axis=0))/(np.array(purchase_test_class).sum(axis=0)))
return 1/purchase_loss_value
def fitness_purchase(self, tempfinal, user_profile_onehot, times_calc): # 适应度
self.user_profile_onehot = user_profile_onehot
self.tempfinal = tempfinal
self.times_calc = times_calc
pool = mp.Pool(processes=tempfinal.shape[0])
purchase_loss_value = pool.map(
self.multiprocess_fitness_purchase, range(tempfinal.shape[0]))
pool.close()
pool.join()
return np.squeeze(purchase_loss_value)
def fitness_predict_purchase(self,length_best, tempfinal, user_profile_onehot, user_balance):
multiple_time = np.hstack((tempfinal[0, 1], np.tile(
tempfinal[0, 2], 7), np.tile(tempfinal[0, 3], 12))) # 拼接倍数
for k in range(4, tempfinal.shape[1]):
multiple_time = np.hstack((multiple_time, tempfinal[0, k]))
user_profile_onehot = user_profile_onehot * multiple_time # 将部分向量的权重扩大
model_kmean = k_mean(user_profile_onehot) # 聚类
divide_class = model_kmean.k_mean_divide(int(tempfinal[0, 0]))
purchase_predict_class = []
for i in range(len(divide_class)): # 将这几种分类分别带入网络识别
user_balance.CalculateDayPurchaseList(
divide_class['cluster'+str(i)])
user_balance.CalculateDayRedeemList(divide_class['cluster'+str(i)])
purchase_train, redeem_train = user_balance.GetdataAll()
purchase_model = LSTM_double(purchase_train.reshape((-1, 1)))
purchase_model.train_lstm(num_epochs = 10,numb_sub = length_best,numb_class=i+1,continue_train=True)
purchase_predict = purchase_model.prediction(numb_sub=length_best,numb_class=i+1)
tf.reset_default_graph()
purchase_predict_class.append(purchase_predict)
purchase_predict_return = np.array(purchase_predict_class).sum(axis=0)
return purchase_predict_return
def multiprocess_fitness_redeem(self, j):
multiple_time = np.hstack((self.tempfinal[j, 1], np.tile(
self.tempfinal[j, 2], 7), np.tile(self.tempfinal[j, 3], 12))) # 拼接倍数
for k in range(4, self.tempfinal.shape[1]):
multiple_time = np.hstack((multiple_time, self.tempfinal[j, k]))
user_profile_onehot = self.user_profile_onehot * multiple_time # 将部分向量的权重扩大
model_kmean = k_mean(user_profile_onehot) # 聚类
divide_class = model_kmean.k_mean_divide(int(self.tempfinal[j, 0]))
user_balance = Loaddata.UserBalance()
redeem_predict_class = []
redeem_test_class = []
for i in range(len(divide_class)): # 将这几种分类分别带入网络识别
print('第'+str(j+1)+'个种群 第'+str(i+1)+'个类')
user_balance.CalculateDayPurchaseList(
divide_class['cluster'+str(i)]) # 主要时间花在这里!!!!
user_balance.CalculateDayRedeemList(
divide_class['cluster'+str(i)])
purchase_train, redeem_train = user_balance.GetdataUsedInPredict()
purchase_test, redeem_test = user_balance.GetTestData()
redeem_model = LSTM_double(redeem_train.reshape((-1, 1)))
redeem_model.lr = 0.0001
redeem_model.train_lstm(num_epochs=60, numb_sub=j+1,numb_class=i+1,class_people='redeem')
redeem_predict = redeem_model.prediction(numb_sub=j+1,numb_class=i+1,class_people='redeem')
tf.reset_default_graph()
plt.plot(redeem_predict, 'b')
plt.plot(redeem_test, 'g')
plt.savefig('out_lstm_double/redeem_the_{}_times_the_{}_gene_the_{}_class.png'.format(
str(self.times_calc), str(j+1), str(i+1)))
plt.close()
redeem_predict_class.append(redeem_predict)
redeem_test_class.append(redeem_test)
redeem_loss_value = np.mean(abs(np.array(redeem_predict_class).sum(
axis=0) - np.array(redeem_test_class).sum(axis=0))/(np.array(redeem_test_class).sum(axis=0)))
return 1/redeem_loss_value
def fitness_redeem(self, tempfinal, user_profile_onehot, times_calc): # 适应度
self.user_profile_onehot = user_profile_onehot
self.tempfinal = tempfinal
self.times_calc = times_calc
pool = mp.Pool(processes=tempfinal.shape[0])
redeem_loss_value = pool.map(
self.multiprocess_fitness_redeem, range(tempfinal.shape[0]))
pool.close()
pool.join()
return np.squeeze(redeem_loss_value)
def fitness_predict_redeem(self,length_best, tempfinal, user_profile_onehot, user_balance):
multiple_time = np.hstack((tempfinal[0, 1], np.tile(
tempfinal[0, 2], 7), np.tile(tempfinal[0, 3], 12))) # 拼接倍数
for k in range(4, tempfinal.shape[1]):
multiple_time = np.hstack((multiple_time, tempfinal[0, k]))
user_profile_onehot = user_profile_onehot * multiple_time # 将部分向量的权重扩大
model_kmean = k_mean(user_profile_onehot) # 聚类
divide_class = model_kmean.k_mean_divide(int(tempfinal[0, 0]))
redeem_predict_class = []
for i in range(len(divide_class)): # 将这几种分类分别带入网络识别
user_balance.CalculateDayPurchaseList(
divide_class['cluster'+str(i)])
user_balance.CalculateDayRedeemList(divide_class['cluster'+str(i)])
purchase_train, redeem_train = user_balance.GetdataAll()
# LSTM_double
redeem_model = LSTM_double(redeem_train.reshape((-1, 1)))
redeem_model.lr = 0.0001
redeem_model.train_lstm(num_epochs=10,numb_sub = length_best,numb_class=i+1,continue_train=True,class_people='redeem')
redeem_predict = redeem_model.prediction(numb_sub = length_best,numb_class=i+1,class_people='redeem')
tf.reset_default_graph()
redeem_predict_class.append(redeem_predict)
redeem_predict_return = np.array(redeem_predict_class).sum(axis=0)
return redeem_predict_return
def calfitValue(self, value): # 保证损失大于等于0 好像没什么必要的样子
for i in range(value.shape[0]):
if value[i] < 0:
value[i] = 0
return value
def selection(self, pop, value): # 选择
newfitvalue = np.zeros((value.shape[0], 1))
totalValue = sum(value)
accumalator = 0
j = 0
for i in value: # 轮盘赌
newValue = (i*1.0/totalValue)
accumalator += newValue
newfitvalue[j] = (accumalator)
j = j+1
newfitvalue[j-1] = 1
ms = []
for i in range(value.shape[0]):
ms.append(random.random())
ms.sort()
fitin = 0
newin = 0
newpop = pop
while newin < value.shape[0]:
if(ms[newin] < newfitvalue[fitin]):
newpop[newin] = pop[fitin]
newin = newin+1
else:
fitin = fitin+1
return newpop
def crossover(self, pop, crossrate, chromLength): # 交叉
row = pop.shape[0]-1 # 确保有两个基因能够对位交叉
pop = pop.tolist()
for i in range(0, row, 2):
if(random.random() < crossrate): # 对基因块的不同部分进行交叉部位生成
singpoint = random.randint(chromLength)
temp1 = []
temp2 = []
temp1.extend(pop[i][0:singpoint])
temp1.extend(pop[i + 1][singpoint:chromLength])
temp2.extend(pop[i + 1][0:singpoint])
temp2.extend(pop[i][singpoint:chromLength])
pop[i] = temp1 # 生成新子群
pop[i + 1] = temp2
pop = np.array(pop)
return pop
def mutation(self, pop, mutationrate, chromLength): # 变异
row = pop.shape[0]
for i in range(row):
if (random.random() < mutationrate):
mpoint = random.randint(0, chromLength) # 变异部位
if(pop[i, mpoint] == 1):
pop[i, mpoint] = 0
else:
pop[i, mpoint] = 1
return pop
def best(self, pop, value, chromLength):
bestvalue = value.max()
find_best = np.argmax(value)
temp = pop[find_best, :].reshape((-1, chromLength))
return temp, bestvalue, find_best+1
|
py | 1a44726739d497711fd061ee1e107a74c44062e5 | """python_template"""
from python_template.main import hello_world
|
py | 1a44732f608bf21c6b1caca7f94f93dd0c1f1777 | # Purpose: using radius DIMENSION
# Created: 10.11.2018
# Copyright (c) 2019-2020, Manfred Moitzi
# License: MIT License
import pathlib
import math
import ezdxf
from ezdxf.math import Vec3, UCS
import logging
# ========================================
# Setup logging
# ========================================
logging.basicConfig(level='WARNING')
# ========================================
# Setup your preferred output directory
# ========================================
OUTDIR = pathlib.Path('~/Desktop/Outbox').expanduser()
if not OUTDIR.exists():
OUTDIR = pathlib.Path()
# ========================================
# Default text attributes
# ========================================
TEXT_ATTRIBS = {
'height': .25,
'style': ezdxf.options.default_dimension_text_style,
}
DIM_TEXT_STYLE = ezdxf.options.default_dimension_text_style
# =======================================================
# Discarding dimension rendering is possible
# for BricsCAD, but is incompatible to AutoCAD -> error
# =======================================================
BRICSCAD = False
def multiple_locations(delta=10, center=(0, 0)):
cx, cy = center
return [
(cx + delta, cy),
(cx + delta, cy + delta),
(cx, cy + delta),
(cx - delta, cy + delta),
(cx - delta, cy),
(cx - delta, cy - delta),
(cx, cy - delta),
(cx + delta, cy - delta),
]
def diameter_default_outside(dxfversion='R2000', delta=10):
doc = ezdxf.new(dxfversion, setup=True)
msp = doc.modelspace()
for x, y in multiple_locations(delta=delta):
angle = Vec3(x, y).angle_deg
msp.add_circle((x, y), radius=3)
# Default DimStyle EZ_RADIUS: 1 drawing unit == 1m; scale 1: 100; length_factor=100 -> measurement in cm
# closed filled arrow, size 0.25
# DIMSTYLE settings:
# dimtmove = 1: use leader, is the best setting for text outside to preserve appearance of DIMENSION entity,
# if editing afterwards in BricsCAD (AutoCAD)
# center: specifies the center of the circle
# radius: specifies the radius of the circle
# angle: specifies the the orientation (angle) of the dimension line
dim = msp.add_diameter_dim(center=(x, y), radius=3, angle=angle, dimstyle='EZ_RADIUS')
# Necessary second step, to create the BLOCK entity with the DIMENSION geometry.
# ezdxf supports DXF R2000 attributes for DXF R12 rendering, but they have to be applied by the DIMSTYLE override
# feature, this additional attributes are not stored in the XDATA section of the DIMENSION entity, they are just
# used to render the DIMENSION entity.
# The return value `dim` is not a DIMENSION entity, instead a DimStyleOverride object is returned, the DIMENSION
# entity is stored as dim.dimension, see also ezdxf.override.DimStyleOverride class.
dim.render(discard=BRICSCAD)
doc.set_modelspace_vport(height=3 * delta)
doc.saveas(OUTDIR / f'dim_diameter_{dxfversion}_default_outside.dxf')
def diameter_default_inside(dxfversion='R2000', delta=10, dimtmove=0):
def add_dim(x, y, dimtad):
msp.add_circle((x, y), radius=3)
dim = msp.add_diameter_dim(center=(x, y), radius=3, angle=angle, dimstyle='EZ_RADIUS_INSIDE',
override={
'dimtad': dimtad,
})
dim.render(discard=BRICSCAD)
doc = ezdxf.new(dxfversion, setup=True)
style = doc.dimstyles.get('EZ_RADIUS_INSIDE')
style.dxf.dimtmove = dimtmove
# Default DimStyle EZ_RADIUS_INSIDE: 1 drawing unit == 1m; scale 1: 100; length_factor=100 -> measurement in cm
# closed filled arrow, size 0.25
# DIMSTYLE settings:
# dimtmove = 0: keep dim line with text, is the best setting for text inside to preserve appearance of
# DIMENSION entity, if editing afterwards in BricsCAD (AutoCAD)
# dimtix = 1: force text inside
# dimatfit = 0: force text inside, required by BricsCAD (AutoCAD)
# dimtad = 0: center text vertical, BricsCAD (AutoCAD) always creates vertical centered text,
# ezdxf let you choose the vertical placement (above, below, center),
# but editing the DIMENSION in BricsCAD will reset text to center placement.
msp = doc.modelspace()
for x, y in multiple_locations(delta=delta):
angle = Vec3(x, y).angle_deg
add_dim(x, y, dimtad=1) # above
add_dim(x + 3 * delta, y, dimtad=0) # center
add_dim(x + 6 * delta, y, dimtad=4) # below
doc.set_modelspace_vport(height=3 * delta)
doc.saveas(OUTDIR / f'dim_diameter_{dxfversion}_default_inside_dimtmove_{dimtmove}.dxf')
def diameter_default_outside_horizontal(dxfversion='R2000', delta=10):
def add_dim(x, y, dimtad):
msp.add_circle((x, y), radius=3)
dim = msp.add_diameter_dim(center=(x, y), radius=3, angle=angle, dimstyle='EZ_RADIUS',
override={
'dimtoh': 1, # force text outside horizontal
'dimtad': dimtad,
})
dim.render(discard=BRICSCAD)
doc = ezdxf.new(dxfversion, setup=True)
msp = doc.modelspace()
for x, y in multiple_locations(delta=delta):
angle = Vec3(x, y).angle_deg
add_dim(x, y, dimtad=1) # above
add_dim(x + 3 * delta, y, dimtad=0) # center
add_dim(x + 6 * delta, y, dimtad=4) # below
doc.set_modelspace_vport(height=3 * delta, center=(4.5 * delta, 0))
doc.saveas(OUTDIR / f'dim_diameter_{dxfversion}_default_outside_horizontal.dxf')
def diameter_default_inside_horizontal(dxfversion='R2000', delta=10, dimtmove=0):
doc = ezdxf.new(dxfversion, setup=True)
style = doc.dimstyles.get('EZ_RADIUS_INSIDE')
style.dxf.dimtmove = dimtmove
msp = doc.modelspace()
for x, y in multiple_locations(delta=delta):
angle = Vec3(x, y).angle_deg
msp.add_circle((x, y), radius=3)
dim = msp.add_diameter_dim(center=(x, y), radius=3, angle=angle, dimstyle='EZ_RADIUS_INSIDE',
override={
'dimtih': 1, # force text inside horizontal
})
dim.render(discard=BRICSCAD)
doc.set_modelspace_vport(height=3 * delta)
doc.saveas(OUTDIR / f'dim_diameter_{dxfversion}_default_inside_horizontal_dimtmove_{dimtmove}.dxf')
def diameter_user_defined_outside(dxfversion='R2000', delta=15):
def add_dim(x, y, radius, dimtad):
center = Vec3(x, y)
msp.add_circle((x, y), radius=3)
dim_location = center + Vec3.from_deg_angle(angle, radius)
dim = msp.add_diameter_dim(center=(x, y), radius=3, location=dim_location, dimstyle='EZ_RADIUS',
override={
'dimtad': dimtad,
})
dim.render(discard=BRICSCAD)
doc = ezdxf.new(dxfversion, setup=True)
msp = doc.modelspace()
for x, y in multiple_locations(delta=delta):
angle = Vec3(x, y).angle_deg
add_dim(x, y, 5, dimtad=1) # above
add_dim(x + 3 * delta, y, 5, dimtad=0) # center
add_dim(x + 6 * delta, y, 5, dimtad=4) # below
doc.set_modelspace_vport(height=3 * delta, center=(4.5 * delta, 0))
doc.saveas(OUTDIR / f'dim_diameter_{dxfversion}_user_defined_outside.dxf')
def diameter_user_defined_outside_horizontal(dxfversion='R2000', delta=15):
def add_dim(x, y, radius, dimtad):
center = Vec3(x, y)
msp.add_circle((x, y), radius=3)
dim_location = center + Vec3.from_deg_angle(angle, radius)
dim = msp.add_diameter_dim(center=(x, y), radius=3, location=dim_location, dimstyle='EZ_RADIUS',
override={
'dimtad': dimtad,
'dimtoh': 1, # force text outside horizontal
})
dim.render(discard=BRICSCAD)
doc = ezdxf.new(dxfversion, setup=True)
msp = doc.modelspace()
for x, y in multiple_locations(delta=delta):
angle = Vec3(x, y).angle_deg
add_dim(x, y, 5, dimtad=1) # above
add_dim(x + 3 * delta, y, 5, dimtad=0) # center
add_dim(x + 6 * delta, y, 5, dimtad=4) # below
doc.set_modelspace_vport(height=3 * delta, center=(4.5 * delta, 0))
doc.saveas(OUTDIR / f'dim_diameter_{dxfversion}_user_defined_outside_horizontal.dxf')
def diameter_user_defined_inside(dxfversion='R2000', delta=10, dimtmove=0):
def add_dim(x, y, radius, dimtad):
center = Vec3(x, y)
msp.add_circle((x, y), radius=3)
dim_location = center + Vec3.from_deg_angle(angle, radius)
dim = msp.add_diameter_dim(center=(x, y), radius=3, location=dim_location, dimstyle='EZ_RADIUS',
override={
'dimtad': dimtad,
})
dim.render(discard=BRICSCAD)
doc = ezdxf.new(dxfversion, setup=True)
style = doc.dimstyles.get('EZ_RADIUS')
style.dxf.dimtmove = dimtmove
msp = doc.modelspace()
for x, y in multiple_locations(delta=delta):
angle = Vec3(x, y).angle_deg
add_dim(x, y, 1, dimtad=1) # above
add_dim(x + 3 * delta, y, 1, dimtad=0) # center
add_dim(x + 6 * delta, y, 1, dimtad=4) # below
doc.set_modelspace_vport(height=3 * delta, center=(4.5 * delta, 0))
doc.saveas(OUTDIR / f'dim_diameter_{dxfversion}_user_defined_inside_dimtmove_{dimtmove}.dxf')
def diameter_user_defined_inside_horizontal(dxfversion='R2000', delta=10):
def add_dim(x, y, radius, dimtad):
center = Vec3(x, y)
msp.add_circle((x, y), radius=3)
dim_location = center + Vec3.from_deg_angle(angle, radius)
dim = msp.add_diameter_dim(center=(x, y), radius=3, location=dim_location, dimstyle='EZ_RADIUS',
override={
'dimtad': dimtad,
'dimtih': 1, # force text inside horizontal
})
dim.render(discard=BRICSCAD)
doc = ezdxf.new(dxfversion, setup=True)
msp = doc.modelspace()
for x, y in multiple_locations(delta=delta):
angle = Vec3(x, y).angle_deg
add_dim(x, y, 1, dimtad=1) # above
add_dim(x + 3 * delta, y, 1, dimtad=0) # center
add_dim(x + 6 * delta, y, 1, dimtad=4) # below
doc.set_modelspace_vport(height=3 * delta, center=(4.5 * delta, 0))
doc.saveas(OUTDIR / f'dim_diameter_{dxfversion}_user_defined_inside_horizontal.dxf')
def diameter_3d(dxfversion='R2000', delta=10):
doc = ezdxf.new(dxfversion, setup=True)
msp = doc.modelspace()
for x, y in multiple_locations(delta=delta):
ucs = UCS(origin=(x, y, 0)).rotate_local_x(math.radians(45))
angle = Vec3(x, y).angle_deg
msp.add_circle((0, 0), radius=3).transform(ucs.matrix)
dim = msp.add_diameter_dim(center=(0, 0), radius=3, angle=angle, dimstyle='EZ_RADIUS')
dim.render(discard=BRICSCAD, ucs=ucs)
doc.set_modelspace_vport(height=3 * delta)
doc.saveas(OUTDIR / f'dim_diameter_{dxfversion}_3d.dxf')
if __name__ == '__main__':
diameter_default_outside()
diameter_default_inside(dimtmove=0) # dimline from center
diameter_default_inside(dimtmove=1) # dimline from text
diameter_default_outside_horizontal()
diameter_default_inside_horizontal(dimtmove=0) # dimline from center
diameter_default_inside_horizontal(dimtmove=1) # dimline from text
diameter_user_defined_outside()
diameter_user_defined_outside_horizontal()
diameter_user_defined_inside(dimtmove=0) # dimline from text, also for 1
diameter_user_defined_inside(dimtmove=2) # dimline from center
diameter_user_defined_inside_horizontal()
diameter_3d()
|
py | 1a44736205f349383eb2b5f6af0bb8442bc6b997 | from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType
import copy as _copy
class Border(_BaseTraceHierarchyType):
# class properties
# --------------------
_parent_path_str = "pointcloud.marker"
_path_str = "pointcloud.marker.border"
_valid_props = {"arearatio", "color"}
# arearatio
# ---------
@property
def arearatio(self):
"""
Specifies what fraction of the marker area is covered with the
border.
The 'arearatio' property is a number and may be specified as:
- An int or float in the interval [0, 1]
Returns
-------
int|float
"""
return self["arearatio"]
@arearatio.setter
def arearatio(self, val):
self["arearatio"] = val
# color
# -----
@property
def color(self):
"""
Sets the stroke color. It accepts a specific color. If the
color is not fully opaque and there are hundreds of thousands
of points, it may cause slower zooming and panning.
The 'color' property is a color and may be specified as:
- A hex string (e.g. '#ff0000')
- An rgb/rgba string (e.g. 'rgb(255,0,0)')
- An hsl/hsla string (e.g. 'hsl(0,100%,50%)')
- An hsv/hsva string (e.g. 'hsv(0,100%,100%)')
- A named CSS color:
aliceblue, antiquewhite, aqua, aquamarine, azure,
beige, bisque, black, blanchedalmond, blue,
blueviolet, brown, burlywood, cadetblue,
chartreuse, chocolate, coral, cornflowerblue,
cornsilk, crimson, cyan, darkblue, darkcyan,
darkgoldenrod, darkgray, darkgrey, darkgreen,
darkkhaki, darkmagenta, darkolivegreen, darkorange,
darkorchid, darkred, darksalmon, darkseagreen,
darkslateblue, darkslategray, darkslategrey,
darkturquoise, darkviolet, deeppink, deepskyblue,
dimgray, dimgrey, dodgerblue, firebrick,
floralwhite, forestgreen, fuchsia, gainsboro,
ghostwhite, gold, goldenrod, gray, grey, green,
greenyellow, honeydew, hotpink, indianred, indigo,
ivory, khaki, lavender, lavenderblush, lawngreen,
lemonchiffon, lightblue, lightcoral, lightcyan,
lightgoldenrodyellow, lightgray, lightgrey,
lightgreen, lightpink, lightsalmon, lightseagreen,
lightskyblue, lightslategray, lightslategrey,
lightsteelblue, lightyellow, lime, limegreen,
linen, magenta, maroon, mediumaquamarine,
mediumblue, mediumorchid, mediumpurple,
mediumseagreen, mediumslateblue, mediumspringgreen,
mediumturquoise, mediumvioletred, midnightblue,
mintcream, mistyrose, moccasin, navajowhite, navy,
oldlace, olive, olivedrab, orange, orangered,
orchid, palegoldenrod, palegreen, paleturquoise,
palevioletred, papayawhip, peachpuff, peru, pink,
plum, powderblue, purple, red, rosybrown,
royalblue, rebeccapurple, saddlebrown, salmon,
sandybrown, seagreen, seashell, sienna, silver,
skyblue, slateblue, slategray, slategrey, snow,
springgreen, steelblue, tan, teal, thistle, tomato,
turquoise, violet, wheat, white, whitesmoke,
yellow, yellowgreen
Returns
-------
str
"""
return self["color"]
@color.setter
def color(self, val):
self["color"] = val
# Self properties description
# ---------------------------
@property
def _prop_descriptions(self):
return """\
arearatio
Specifies what fraction of the marker area is covered
with the border.
color
Sets the stroke color. It accepts a specific color. If
the color is not fully opaque and there are hundreds of
thousands of points, it may cause slower zooming and
panning.
"""
def __init__(self, arg=None, arearatio=None, color=None, **kwargs):
"""
Construct a new Border object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.pointcloud.marker.Border`
arearatio
Specifies what fraction of the marker area is covered
with the border.
color
Sets the stroke color. It accepts a specific color. If
the color is not fully opaque and there are hundreds of
thousands of points, it may cause slower zooming and
panning.
Returns
-------
Border
"""
super(Border, self).__init__("border")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.pointcloud.marker.Border
constructor must be a dict or
an instance of :class:`plotly.graph_objs.pointcloud.marker.Border`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("arearatio", None)
_v = arearatio if arearatio is not None else _v
if _v is not None:
self["arearatio"] = _v
_v = arg.pop("color", None)
_v = color if color is not None else _v
if _v is not None:
self["color"] = _v
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
|
py | 1a447468bf389347adac854bf1936d8d244444d4 | from array import array
from functools import partial
import traceback
import importlib
from enum import Enum
import dask
from dask.base import normalize_token
import msgpack
from . import pickle
from ..utils import has_keyword, typename, ensure_bytes
from .compression import maybe_compress, decompress
from .utils import (
unpack_frames,
pack_frames_prelude,
frame_split_size,
msgpack_opts,
)
lazy_registrations = {}
dask_serialize = dask.utils.Dispatch("dask_serialize")
dask_deserialize = dask.utils.Dispatch("dask_deserialize")
_cached_allowed_modules = {}
def dask_dumps(x, context=None):
"""Serialize object using the class-based registry"""
type_name = typename(type(x))
try:
dumps = dask_serialize.dispatch(type(x))
except TypeError:
raise NotImplementedError(type_name)
if has_keyword(dumps, "context"):
header, frames = dumps(x, context=context)
else:
header, frames = dumps(x)
header["type"] = type_name
header["type-serialized"] = pickle.dumps(type(x), protocol=4)
header["serializer"] = "dask"
return header, frames
def dask_loads(header, frames):
typ = pickle.loads(header["type-serialized"])
loads = dask_deserialize.dispatch(typ)
return loads(header, frames)
def pickle_dumps(x, context=None):
frames = [None]
buffer_callback = lambda f: frames.append(memoryview(f))
frames[0] = pickle.dumps(
x,
buffer_callback=buffer_callback,
protocol=context.get("pickle-protocol", None) if context else None,
)
header = {
"serializer": "pickle",
"writeable": tuple(not f.readonly for f in frames[1:]),
}
return header, frames
def pickle_loads(header, frames):
x, buffers = frames[0], frames[1:]
writeable = header["writeable"]
for i in range(len(buffers)):
mv = memoryview(buffers[i])
if writeable[i] == mv.readonly:
if mv.readonly:
buffers[i] = memoryview(bytearray(mv)).cast(mv.format, mv.shape)
else:
buffers[i] = memoryview(bytes(mv)).cast(mv.format, mv.shape)
return pickle.loads(x, buffers=buffers)
def import_allowed_module(name):
if name in _cached_allowed_modules:
return _cached_allowed_modules[name]
# Check for non-ASCII characters
name = name.encode("ascii").decode()
# We only compare the root module
root = name.split(".", 1)[0]
# Note, if an empty string creeps into allowed-imports it is disallowed explicitly
if root and root in dask.config.get("distributed.scheduler.allowed-imports"):
_cached_allowed_modules[name] = importlib.import_module(name)
return _cached_allowed_modules[name]
else:
raise RuntimeError(
f"Importing {repr(name)} is not allowed, please add it to the list of "
"allowed modules the scheduler can import via the "
"distributed.scheduler.allowed-imports configuration setting."
)
def msgpack_decode_default(obj):
"""
Custom packer/unpacker for msgpack
"""
if "__Enum__" in obj:
mod = import_allowed_module(obj["__module__"])
typ = getattr(mod, obj["__name__"])
return getattr(typ, obj["name"])
if "__Set__" in obj:
return set(obj["as-list"])
if "__Serialized__" in obj:
# Notice, the data here is marked a Serialized rather than deserialized. This
# is because deserialization requires Pickle which the Scheduler cannot run
# because of security reasons.
# By marking it Serialized, the data is passed through to the workers that
# eventually will deserialize it.
return Serialized(*obj["data"])
return obj
def msgpack_encode_default(obj):
"""
Custom packer/unpacker for msgpack
"""
if isinstance(obj, Serialize):
return {"__Serialized__": True, "data": serialize(obj.data)}
if isinstance(obj, Enum):
return {
"__Enum__": True,
"name": obj.name,
"__module__": obj.__module__,
"__name__": type(obj).__name__,
}
if isinstance(obj, set):
return {"__Set__": True, "as-list": list(obj)}
return obj
def msgpack_dumps(x):
try:
frame = msgpack.dumps(x, use_bin_type=True)
except Exception:
raise NotImplementedError()
else:
return {"serializer": "msgpack"}, [frame]
def msgpack_loads(header, frames):
return msgpack.loads(b"".join(frames), use_list=False, **msgpack_opts)
def serialization_error_loads(header, frames):
msg = "\n".join([ensure_bytes(frame).decode("utf8") for frame in frames])
raise TypeError(msg)
families = {}
def register_serialization_family(name, dumps, loads):
families[name] = (dumps, loads, dumps and has_keyword(dumps, "context"))
register_serialization_family("dask", dask_dumps, dask_loads)
register_serialization_family("pickle", pickle_dumps, pickle_loads)
register_serialization_family("msgpack", msgpack_dumps, msgpack_loads)
register_serialization_family("error", None, serialization_error_loads)
def check_dask_serializable(x):
if type(x) in (list, set, tuple) and len(x):
return check_dask_serializable(next(iter(x)))
elif type(x) is dict and len(x):
return check_dask_serializable(next(iter(x.items()))[1])
else:
try:
dask_serialize.dispatch(type(x))
return True
except TypeError:
pass
return False
def serialize(x, serializers=None, on_error="message", context=None):
r"""
Convert object to a header and list of bytestrings
This takes in an arbitrary Python object and returns a msgpack serializable
header and a list of bytes or memoryview objects.
The serialization protocols to use are configurable: a list of names
define the set of serializers to use, in order. These names are keys in
the ``serializer_registry`` dict (e.g., 'pickle', 'msgpack'), which maps
to the de/serialize functions. The name 'dask' is special, and will use the
per-class serialization methods. ``None`` gives the default list
``['dask', 'pickle']``.
Examples
--------
>>> serialize(1)
({}, [b'\x80\x04\x95\x03\x00\x00\x00\x00\x00\x00\x00K\x01.'])
>>> serialize(b'123') # some special types get custom treatment
({'type': 'builtins.bytes'}, [b'123'])
>>> deserialize(*serialize(1))
1
Returns
-------
header: dictionary containing any msgpack-serializable metadata
frames: list of bytes or memoryviews, commonly of length one
See Also
--------
deserialize : Convert header and frames back to object
to_serialize : Mark that data in a message should be serialized
register_serialization : Register custom serialization functions
"""
if serializers is None:
serializers = ("dask", "pickle") # TODO: get from configuration
if isinstance(x, Serialized):
return x.header, x.frames
if type(x) in (list, set, tuple, dict):
iterate_collection = False
if type(x) is list and "msgpack" in serializers:
# Note: "msgpack" will always convert lists to tuples
# (see GitHub #3716), so we should iterate
# through the list if "msgpack" comes before "pickle"
# in the list of serializers.
iterate_collection = ("pickle" not in serializers) or (
serializers.index("pickle") > serializers.index("msgpack")
)
if not iterate_collection:
# Check for "dask"-serializable data in dict/list/set
iterate_collection = check_dask_serializable(x)
# Determine whether keys are safe to be serialized with msgpack
if type(x) is dict and iterate_collection:
try:
msgpack.dumps(list(x.keys()))
except Exception:
dict_safe = False
else:
dict_safe = True
if (
type(x) in (list, set, tuple)
and iterate_collection
or type(x) is dict
and iterate_collection
and dict_safe
):
if isinstance(x, dict):
headers_frames = []
for k, v in x.items():
_header, _frames = serialize(
v, serializers=serializers, on_error=on_error, context=context
)
_header["key"] = k
headers_frames.append((_header, _frames))
else:
headers_frames = [
serialize(
obj, serializers=serializers, on_error=on_error, context=context
)
for obj in x
]
frames = []
lengths = []
compressions = []
for _header, _frames in headers_frames:
frames.extend(_frames)
length = len(_frames)
lengths.append(length)
compressions.extend(_header.get("compression") or [None] * len(_frames))
headers = [obj[0] for obj in headers_frames]
headers = {
"sub-headers": headers,
"is-collection": True,
"frame-lengths": lengths,
"type-serialized": type(x).__name__,
}
if any(compression is not None for compression in compressions):
headers["compression"] = compressions
return headers, frames
tb = ""
for name in serializers:
dumps, loads, wants_context = families[name]
try:
header, frames = dumps(x, context=context) if wants_context else dumps(x)
header["serializer"] = name
return header, frames
except NotImplementedError:
continue
except Exception as e:
tb = traceback.format_exc()
break
msg = "Could not serialize object of type %s." % type(x).__name__
if on_error == "message":
frames = [msg]
if tb:
frames.append(tb[:100000])
frames = [frame.encode() for frame in frames]
return {"serializer": "error"}, frames
elif on_error == "raise":
raise TypeError(msg, str(x)[:10000])
def deserialize(header, frames, deserializers=None):
"""
Convert serialized header and list of bytestrings back to a Python object
Parameters
----------
header : dict
frames : list of bytes
deserializers : Optional[Dict[str, Tuple[Callable, Callable, bool]]]
An optional dict mapping a name to a (de)serializer.
See `dask_serialize` and `dask_deserialize` for more.
See Also
--------
serialize
"""
if "is-collection" in header:
headers = header["sub-headers"]
lengths = header["frame-lengths"]
cls = {"tuple": tuple, "list": list, "set": set, "dict": dict}[
header["type-serialized"]
]
start = 0
if cls is dict:
d = {}
for _header, _length in zip(headers, lengths):
k = _header.pop("key")
d[k] = deserialize(
_header,
frames[start : start + _length],
deserializers=deserializers,
)
start += _length
return d
else:
lst = []
for _header, _length in zip(headers, lengths):
lst.append(
deserialize(
_header,
frames[start : start + _length],
deserializers=deserializers,
)
)
start += _length
return cls(lst)
name = header.get("serializer")
if deserializers is not None and name not in deserializers:
raise TypeError(
"Data serialized with %s but only able to deserialize "
"data with %s" % (name, str(list(deserializers)))
)
dumps, loads, wants_context = families[name]
return loads(header, frames)
def serialize_and_split(x, serializers=None, on_error="message", context=None):
"""Serialize and split compressable frames
This function is a drop-in replacement of `serialize()` that calls `serialize()`
followed by `frame_split_size()` on frames that should be compressed.
Use `merge_and_deserialize()` to merge and deserialize the frames back.
See Also
--------
serialize
merge_and_deserialize
"""
header, frames = serialize(x, serializers, on_error, context)
num_sub_frames = []
offsets = []
out_frames = []
out_compression = []
for frame, compression in zip(
frames, header.get("compression") or [None] * len(frames)
):
if compression is None: # default behavior
sub_frames = frame_split_size(frame)
num_sub_frames.append(len(sub_frames))
offsets.append(len(out_frames))
out_frames.extend(sub_frames)
out_compression.extend([None] * len(sub_frames))
else:
num_sub_frames.append(1)
offsets.append(len(out_frames))
out_frames.append(frame)
out_compression.append(compression)
assert len(out_compression) == len(out_frames)
# Notice, in order to match msgpack's implicit convertion to tuples,
# we convert to tuples here as well.
header["split-num-sub-frames"] = tuple(num_sub_frames)
header["split-offsets"] = tuple(offsets)
header["compression"] = tuple(out_compression)
return header, out_frames
def merge_and_deserialize(header, frames, deserializers=None):
"""Merge and deserialize frames
This function is a drop-in replacement of `deserialize()` that merges
frames that were split by `serialize_and_split()`
See Also
--------
deserialize
serialize_and_split
"""
merged_frames = []
if "split-num-sub-frames" not in header:
merged_frames = frames
else:
for n, offset in zip(header["split-num-sub-frames"], header["split-offsets"]):
if n == 1:
merged_frames.append(frames[offset])
else:
merged_frames.append(bytearray().join(frames[offset : offset + n]))
return deserialize(header, merged_frames, deserializers=deserializers)
class Serialize:
"""Mark an object that should be serialized
Examples
--------
>>> msg = {'op': 'update', 'data': to_serialize(123)}
>>> msg # doctest: +SKIP
{'op': 'update', 'data': <Serialize: 123>}
See also
--------
distributed.protocol.dumps
"""
def __init__(self, data):
self.data = data
def __repr__(self):
return "<Serialize: %s>" % str(self.data)
def __eq__(self, other):
return isinstance(other, Serialize) and other.data == self.data
def __ne__(self, other):
return not (self == other)
def __hash__(self):
return hash(self.data)
to_serialize = Serialize
class Serialized:
"""
An object that is already serialized into header and frames
Normal serialization operations pass these objects through. This is
typically used within the scheduler which accepts messages that contain
data without actually unpacking that data.
"""
def __init__(self, header, frames):
self.header = header
self.frames = frames
def __eq__(self, other):
return (
isinstance(other, Serialized)
and other.header == self.header
and other.frames == self.frames
)
def __ne__(self, other):
return not (self == other)
def extract_serialize(x) -> tuple:
"""Pull out Serialize objects from message
This also remove large bytestrings from the message into a second
dictionary.
Examples
--------
>>> from distributed.protocol import to_serialize
>>> msg = {'op': 'update', 'data': to_serialize(123)}
>>> extract_serialize(msg)
({'op': 'update'}, {('data',): <Serialize: 123>}, set())
"""
typ_x: type = type(x)
if typ_x is dict:
x_d: dict = x
x_items = x_d.items()
x2 = {}
elif typ_x is list:
x_l: list = x
x_items = enumerate(x_l)
x2 = len(x_l) * [None]
ser = {}
bytestrings = set()
path = ()
_extract_serialize(x_items, x2, ser, bytestrings, path)
return x2, ser, bytestrings
def _extract_serialize(x_items, x2, ser: dict, bytestrings: set, path: tuple) -> None:
for k, v in x_items:
path_k = path + (k,)
typ_v: type = type(v)
if typ_v is dict:
v_d: dict = v
v_items = v_d.items()
x2[k] = v2 = {}
_extract_serialize(v_items, v2, ser, bytestrings, path_k)
elif typ_v is list:
v_l: list = v
v_items = enumerate(v_l)
x2[k] = v2 = len(v_l) * [None]
_extract_serialize(v_items, v2, ser, bytestrings, path_k)
elif typ_v is Serialize or typ_v is Serialized:
ser[path_k] = v
elif typ_v is bytes:
v_b: bytes = v
if len(v_b) > 2 ** 16:
ser[path_k] = to_serialize(v_b)
bytestrings.add(path_k)
else:
x2[k] = v_b
elif typ_v is bytearray:
v_ba: bytearray = v
if len(v_ba) > 2 ** 16:
ser[path_k] = to_serialize(v_ba)
bytestrings.add(path_k)
else:
x2[k] = v_ba
else:
x2[k] = v
def nested_deserialize(x):
"""
Replace all Serialize and Serialized values nested in *x*
with the original values. Returns a copy of *x*.
>>> msg = {'op': 'update', 'data': to_serialize(123)}
>>> nested_deserialize(msg)
{'op': 'update', 'data': 123}
"""
def replace_inner(x):
if type(x) is dict:
x = x.copy()
for k, v in x.items():
typ = type(v)
if typ is dict or typ is list:
x[k] = replace_inner(v)
elif typ is Serialize:
x[k] = v.data
elif typ is Serialized:
x[k] = deserialize(v.header, v.frames)
elif type(x) is list:
x = list(x)
for k, v in enumerate(x):
typ = type(v)
if typ is dict or typ is list:
x[k] = replace_inner(v)
elif typ is Serialize:
x[k] = v.data
elif typ is Serialized:
x[k] = deserialize(v.header, v.frames)
return x
return replace_inner(x)
def serialize_bytelist(x, **kwargs):
header, frames = serialize_and_split(x, **kwargs)
if frames:
compression, frames = zip(*map(maybe_compress, frames))
else:
compression = []
header["compression"] = compression
header["count"] = len(frames)
header = msgpack.dumps(header, use_bin_type=True)
frames2 = [header, *frames]
frames2.insert(0, pack_frames_prelude(frames2))
return frames2
def serialize_bytes(x, **kwargs):
L = serialize_bytelist(x, **kwargs)
return b"".join(L)
def deserialize_bytes(b):
frames = unpack_frames(b)
header, frames = frames[0], frames[1:]
if header:
header = msgpack.loads(header, raw=False, use_list=False)
else:
header = {}
frames = decompress(header, frames)
return merge_and_deserialize(header, frames)
################################
# Class specific serialization #
################################
def register_serialization(cls, serialize, deserialize):
"""Register a new class for dask-custom serialization
Parameters
----------
cls : type
serialize : callable(cls) -> Tuple[Dict, List[bytes]]
deserialize : callable(header: Dict, frames: List[bytes]) -> cls
Examples
--------
>>> class Human:
... def __init__(self, name):
... self.name = name
>>> def serialize(human):
... header = {}
... frames = [human.name.encode()]
... return header, frames
>>> def deserialize(header, frames):
... return Human(frames[0].decode())
>>> register_serialization(Human, serialize, deserialize)
>>> serialize(Human('Alice'))
({}, [b'Alice'])
See Also
--------
serialize
deserialize
"""
if isinstance(cls, str):
raise TypeError(
"Strings are no longer accepted for type registration. "
"Use dask_serialize.register_lazy instead"
)
dask_serialize.register(cls)(serialize)
dask_deserialize.register(cls)(deserialize)
def register_serialization_lazy(toplevel, func):
"""Register a registration function to be called if *toplevel*
module is ever loaded.
"""
raise Exception("Serialization registration has changed. See documentation")
@partial(normalize_token.register, Serialized)
def normalize_Serialized(o):
return [o.header] + o.frames # for dask.base.tokenize
# Teach serialize how to handle bytes
@dask_serialize.register(bytes)
def _serialize_bytes(obj):
header = {} # no special metadata
frames = [obj]
return header, frames
# Teach serialize how to handle bytestrings
@dask_serialize.register(bytearray)
def _serialize_bytearray(obj):
header = {} # no special metadata
frames = [obj]
return header, frames
@dask_deserialize.register(bytes)
def _deserialize_bytes(header, frames):
if len(frames) == 1 and isinstance(frames[0], bytes):
return frames[0]
else:
return bytes().join(frames)
@dask_deserialize.register(bytearray)
def _deserialize_bytearray(header, frames):
if len(frames) == 1 and isinstance(frames[0], bytearray):
return frames[0]
else:
return bytearray().join(frames)
@dask_serialize.register(array)
def _serialize_array(obj):
header = {"typecode": obj.typecode, "writeable": (None,)}
frames = [memoryview(obj)]
return header, frames
@dask_deserialize.register(array)
def _deserialize_array(header, frames):
a = array(header["typecode"])
for f in map(memoryview, frames):
try:
f = f.cast("B")
except TypeError:
f = f.tobytes()
a.frombytes(f)
return a
@dask_serialize.register(memoryview)
def _serialize_memoryview(obj):
if obj.format == "O":
raise ValueError("Cannot serialize `memoryview` containing Python objects")
header = {"format": obj.format, "shape": obj.shape}
frames = [obj]
return header, frames
@dask_deserialize.register(memoryview)
def _deserialize_memoryview(header, frames):
if len(frames) == 1:
out = memoryview(frames[0]).cast("B")
else:
out = memoryview(b"".join(frames))
out = out.cast(header["format"], header["shape"])
return out
#########################
# Descend into __dict__ #
#########################
def _is_msgpack_serializable(v):
typ = type(v)
return (
v is None
or typ is str
or typ is bool
or typ is int
or typ is float
or isinstance(v, dict)
and all(map(_is_msgpack_serializable, v.values()))
and all(typ is str for x in v.keys())
or isinstance(v, (list, tuple))
and all(map(_is_msgpack_serializable, v))
)
class ObjectDictSerializer:
def __init__(self, serializer):
self.serializer = serializer
def serialize(self, est):
header = {
"serializer": self.serializer,
"type-serialized": pickle.dumps(type(est), protocol=4),
"simple": {},
"complex": {},
}
frames = []
if isinstance(est, dict):
d = est
else:
d = est.__dict__
for k, v in d.items():
if _is_msgpack_serializable(v):
header["simple"][k] = v
else:
if isinstance(v, dict):
h, f = self.serialize(v)
else:
h, f = serialize(v, serializers=(self.serializer, "pickle"))
header["complex"][k] = {
"header": h,
"start": len(frames),
"stop": len(frames) + len(f),
}
frames += f
return header, frames
def deserialize(self, header, frames):
cls = pickle.loads(header["type-serialized"])
if issubclass(cls, dict):
dd = obj = {}
else:
obj = object.__new__(cls)
dd = obj.__dict__
dd.update(header["simple"])
for k, d in header["complex"].items():
h = d["header"]
f = frames[d["start"] : d["stop"]]
v = deserialize(h, f)
dd[k] = v
return obj
dask_object_with_dict_serializer = ObjectDictSerializer("dask")
dask_deserialize.register(dict)(dask_object_with_dict_serializer.deserialize)
def register_generic(
cls,
serializer_name="dask",
serialize_func=dask_serialize,
deserialize_func=dask_deserialize,
):
"""Register (de)serialize to traverse through __dict__
Normally when registering new classes for Dask's custom serialization you
need to manage headers and frames, which can be tedious. If all you want
to do is traverse through your object and apply serialize to all of your
object's attributes then this function may provide an easier path.
This registers a class for the custom Dask serialization family. It
serializes it by traversing through its __dict__ of attributes and applying
``serialize`` and ``deserialize`` recursively. It collects a set of frames
and keeps small attributes in the header. Deserialization reverses this
process.
This is a good idea if the following hold:
1. Most of the bytes of your object are composed of data types that Dask's
custom serializtion already handles well, like Numpy arrays.
2. Your object doesn't require any special constructor logic, other than
object.__new__(cls)
Examples
--------
>>> import sklearn.base
>>> from distributed.protocol import register_generic
>>> register_generic(sklearn.base.BaseEstimator)
See Also
--------
dask_serialize
dask_deserialize
"""
object_with_dict_serializer = ObjectDictSerializer(serializer_name)
serialize_func.register(cls)(object_with_dict_serializer.serialize)
deserialize_func.register(cls)(object_with_dict_serializer.deserialize)
|
py | 1a447482b8dcff4dbd24a4b7a534d8910e97a9ea | #!/usr/bin/env python
"""Django's command-line utility for administrative tasks."""
import os
import sys
def main():
"""Run administrative tasks."""
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'digital_cv_project.settings')
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn't import Django. Are you sure it's installed and "
"available on your PYTHONPATH environment variable? Did you "
"forget to activate a virtual environment?"
) from exc
execute_from_command_line(sys.argv)
if __name__ == '__main__':
main()
|
py | 1a447575882474afa8a029798cccb3ac242e4a45 | list_ = input()
# list_ = "день победы 1945 года 9 мая"
list_01 = list_.split(' ')
num_ = []
for i in list_01:
if i.isdigit(): # условие должно быть [True], можно не прописывать
# print(list_01)
num_.append(int(i))
# print(num_)
num_.sort() # не нужно создавать новый массив, преобразует (сказано было в теоретической части)
print(num_)
|
py | 1a4476f1bc8ffe6dc925d5d359a65dd5e1f32c50 | from output.models.ms_data.regex.regex_test_5_xsd.regex_test_5 import Doc
__all__ = [
"Doc",
]
|
py | 1a4477ea9a3ddcd79d70f0de3327ab8d45e9ebd6 | import inspect
import os
import shutil
import subprocess
import stat
import sys
import tarfile
import time
import zipfile
def install_requirements(what):
old_path = sys.path[:]
w = os.path.join(os.getcwd(), os.path.dirname(inspect.getfile(inspect.currentframe())))
sys.path.insert(0, os.path.dirname(os.path.dirname(w)))
try:
from setup import EXTRAS_REQUIRE, read
finally:
sys.path = old_path
requirements = ['mock>=2.0.0', 'flake8', 'pytest', 'pytest-cov'] if what == 'all' else ['behave']
requirements += ['psycopg2-binary', 'coverage']
for r in read('requirements.txt').split('\n'):
r = r.strip()
if r != '':
extras = {e for e, v in EXTRAS_REQUIRE.items() if v and r.startswith(v[0])}
if not extras or what == 'all' or what in extras:
requirements.append(r)
subprocess.call([sys.executable, '-m', 'pip', 'install', '--upgrade', 'pip'])
r = subprocess.call([sys.executable, '-m', 'pip', 'install'] + requirements)
s = subprocess.call([sys.executable, '-m', 'pip', 'install', '--upgrade', 'setuptools'])
return s | r
def install_packages(what):
packages = {
'zookeeper': ['zookeeper', 'zookeeper-bin', 'zookeeperd'],
'consul': ['consul'],
}
packages['exhibitor'] = packages['zookeeper']
packages = packages.get(what, [])
ver = str({'etcd': '9.6', 'etcd3': '13', 'consul': 12, 'exhibitor': 11, 'kubernetes': 13, 'raft': 12}.get(what))
subprocess.call(['sudo', 'apt-get', 'update', '-y'])
return subprocess.call(['sudo', 'apt-get', 'install', '-y', 'postgresql-' + ver, 'expect-dev', 'wget'] + packages)
def get_file(url, name):
try:
from urllib.request import urlretrieve
except ImportError:
from urllib import urlretrieve
print('Downloading ' + url)
urlretrieve(url, name)
def untar(archive, name):
with tarfile.open(archive) as tar:
f = tar.extractfile(name)
dest = os.path.basename(name)
with open(dest, 'wb') as d:
shutil.copyfileobj(f, d)
return dest
def unzip(archive, name):
with zipfile.ZipFile(archive, 'r') as z:
name = z.extract(name)
dest = os.path.basename(name)
shutil.move(name, dest)
return dest
def unzip_all(archive):
print('Extracting ' + archive)
with zipfile.ZipFile(archive, 'r') as z:
z.extractall()
def chmod_755(name):
os.chmod(name, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR |
stat.S_IRGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IXOTH)
def unpack(archive, name):
print('Extracting {0} from {1}'.format(name, archive))
func = unzip if archive.endswith('.zip') else untar
name = func(archive, name)
chmod_755(name)
return name
def install_etcd():
version = os.environ.get('ETCDVERSION', '3.3.13')
platform = {'linux2': 'linux', 'win32': 'windows', 'cygwin': 'windows'}.get(sys.platform, sys.platform)
dirname = 'etcd-v{0}-{1}-amd64'.format(version, platform)
ext = 'tar.gz' if platform == 'linux' else 'zip'
name = '{0}.{1}'.format(dirname, ext)
url = 'https://github.com/etcd-io/etcd/releases/download/v{0}/{1}'.format(version, name)
get_file(url, name)
ext = '.exe' if platform == 'windows' else ''
return int(unpack(name, '{0}/etcd{1}'.format(dirname, ext)) is None)
def install_postgres():
version = os.environ.get('PGVERSION', '12.1-1')
platform = {'darwin': 'osx', 'win32': 'windows-x64', 'cygwin': 'windows-x64'}[sys.platform]
name = 'postgresql-{0}-{1}-binaries.zip'.format(version, platform)
get_file('http://get.enterprisedb.com/postgresql/' + name, name)
unzip_all(name)
bin_dir = os.path.join('pgsql', 'bin')
for f in os.listdir(bin_dir):
chmod_755(os.path.join(bin_dir, f))
subprocess.call(['pgsql/bin/postgres', '-V'])
return 0
def setup_kubernetes():
get_file('https://storage.googleapis.com/minikube/k8sReleases/v1.7.0/localkube-linux-amd64', 'localkube')
chmod_755('localkube')
devnull = open(os.devnull, 'w')
subprocess.Popen(['sudo', 'nohup', './localkube', '--logtostderr=true', '--enable-dns=false'],
stdout=devnull, stderr=devnull)
for _ in range(0, 120):
if subprocess.call(['wget', '-qO', '-', 'http://127.0.0.1:8080/'], stdout=devnull, stderr=devnull) == 0:
break
time.sleep(1)
else:
print('localkube did not start')
return 1
subprocess.call('sudo chmod 644 /var/lib/localkube/certs/*', shell=True)
print('Set up .kube/config')
kube = os.path.join(os.path.expanduser('~'), '.kube')
os.makedirs(kube)
with open(os.path.join(kube, 'config'), 'w') as f:
f.write("""apiVersion: v1
clusters:
- cluster:
certificate-authority: /var/lib/localkube/certs/ca.crt
server: https://127.0.0.1:8443
name: local
contexts:
- context:
cluster: local
user: myself
name: local
current-context: local
kind: Config
preferences: {}
users:
- name: myself
user:
client-certificate: /var/lib/localkube/certs/apiserver.crt
client-key: /var/lib/localkube/certs/apiserver.key
""")
return 0
def main():
what = os.environ.get('DCS', sys.argv[1] if len(sys.argv) > 1 else 'all')
if what != 'all':
if sys.platform.startswith('linux'):
r = install_packages(what)
if r == 0 and what == 'kubernetes':
r = setup_kubernetes()
else:
r = install_postgres()
if r == 0 and what.startswith('etcd'):
r = install_etcd()
if r != 0:
return r
return install_requirements(what)
if __name__ == '__main__':
sys.exit(main())
|
py | 1a4478201768cd6884edb75962764ab5b8518a2d | import tempfile
from pathlib import Path
import argparse
import shutil
import os
import glob
import cv2
import cog
from run import run_cmd
from datetime import datetime
class Predictor(cog.Predictor):
def setup(self):
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_folder", type=str, default="input/cog_temp"+ str(datetime.utcnow().timestamp()), help="Test images"
)
parser.add_argument(
"--output_folder",
type=str,
default="output"+ str(datetime.utcnow().timestamp()),
help="Restored images, please use the absolute path",
)
parser.add_argument("--GPU", type=str, default="0", help="0,1,2")
parser.add_argument(
"--checkpoint_name",
type=str,
default="Setting_9_epoch_100",
help="choose which checkpoint",
)
self.opts = parser.parse_args("")
self.basepath = os.getcwd()
self.opts.input_folder = os.path.join(self.basepath, self.opts.input_folder)
self.opts.output_folder = os.path.join(self.basepath, self.opts.output_folder)
os.makedirs(self.opts.input_folder, exist_ok=True)
os.makedirs(self.opts.output_folder, exist_ok=True)
@cog.input("image", type=Path, help="input image")
@cog.input(
"HR",
type=bool,
default=False,
help="whether the input image is high-resolution",
)
@cog.input(
"with_scratch",
type=bool,
default=False,
help="whether the input image is scratched",
)
def predict(self, image, HR=False, with_scratch=False):
try:
os.chdir(self.basepath)
input_path = os.path.join(self.opts.input_folder, os.path.basename(image))
shutil.copy(str(image), input_path)
gpu1 = self.opts.GPU
## Stage 1: Overall Quality Improve
print("Running Stage 1: Overall restoration")
os.chdir("./Global")
stage_1_input_dir = self.opts.input_folder
stage_1_output_dir = os.path.join(
self.opts.output_folder, "stage_1_restore_output"
)
os.makedirs(stage_1_output_dir, exist_ok=True)
if not with_scratch:
stage_1_command = (
"python test.py --test_mode Full --Quality_restore --test_input "
+ stage_1_input_dir
+ " --outputs_dir "
+ stage_1_output_dir
+ " --gpu_ids "
+ gpu1
)
run_cmd(stage_1_command)
else:
mask_dir = os.path.join(stage_1_output_dir, "masks")
new_input = os.path.join(mask_dir, "input")
new_mask = os.path.join(mask_dir, "mask")
stage_1_command_1 = (
"python detection.py --test_path "
+ stage_1_input_dir
+ " --output_dir "
+ mask_dir
+ " --input_size full_size"
+ " --GPU "
+ gpu1
)
if HR:
HR_suffix = " --HR"
else:
HR_suffix = ""
stage_1_command_2 = (
"python test.py --Scratch_and_Quality_restore --test_input "
+ new_input
+ " --test_mask "
+ new_mask
+ " --outputs_dir "
+ stage_1_output_dir
+ " --gpu_ids "
+ gpu1
+ HR_suffix
)
run_cmd(stage_1_command_1)
run_cmd(stage_1_command_2)
## Solve the case when there is no face in the old photo
stage_1_results = os.path.join(stage_1_output_dir, "restored_image")
stage_4_output_dir = os.path.join(self.opts.output_folder, "final_output")
os.makedirs(stage_4_output_dir, exist_ok=True)
for x in os.listdir(stage_1_results):
img_dir = os.path.join(stage_1_results, x)
shutil.copy(img_dir, stage_4_output_dir)
print("Finish Stage 1 ...")
print("\n")
## Stage 2: Face Detection
print("Running Stage 2: Face Detection")
os.chdir(".././Face_Detection")
stage_2_input_dir = os.path.join(stage_1_output_dir, "restored_image")
stage_2_output_dir = os.path.join(
self.opts.output_folder, "stage_2_detection_output"
)
os.makedirs(stage_2_output_dir, exist_ok=True)
stage_2_command = (
"python detect_all_dlib_HR.py --url "
+ stage_2_input_dir
+ " --save_url "
+ stage_2_output_dir
)
run_cmd(stage_2_command)
print("Finish Stage 2 ...")
print("\n")
## Stage 3: Face Restore
print("Running Stage 3: Face Enhancement")
os.chdir(".././Face_Enhancement")
stage_3_input_mask = "./"
stage_3_input_face = stage_2_output_dir
stage_3_output_dir = os.path.join(
self.opts.output_folder, "stage_3_face_output"
)
os.makedirs(stage_3_output_dir, exist_ok=True)
self.opts.checkpoint_name = "FaceSR_512"
stage_3_command = (
"python test_face.py --old_face_folder "
+ stage_3_input_face
+ " --old_face_label_folder "
+ stage_3_input_mask
+ " --tensorboard_log --name "
+ self.opts.checkpoint_name
+ " --gpu_ids "
+ gpu1
+ " --load_size 512 --label_nc 18 --no_instance --preprocess_mode resize --batchSize 1 --results_dir "
+ stage_3_output_dir
+ " --no_parsing_map"
)
run_cmd(stage_3_command)
print("Finish Stage 3 ...")
print("\n")
## Stage 4: Warp back
print("Running Stage 4: Blending")
os.chdir(".././Face_Detection")
stage_4_input_image_dir = os.path.join(stage_1_output_dir, "restored_image")
stage_4_input_face_dir = os.path.join(stage_3_output_dir, "each_img")
stage_4_output_dir = os.path.join(self.opts.output_folder, "final_output")
os.makedirs(stage_4_output_dir, exist_ok=True)
stage_4_command = (
"python align_warp_back_multiple_dlib_HR.py --origin_url "
+ stage_4_input_image_dir
+ " --replace_url "
+ stage_4_input_face_dir
+ " --save_url "
+ stage_4_output_dir
)
run_cmd(stage_4_command)
print("Finish Stage 4 ...")
print("\n")
print("All the processing is done. Please check the results.")
final_output = os.listdir(os.path.join(self.opts.output_folder, "final_output"))[0]
image_restore = cv2.imread(os.path.join(self.opts.output_folder, "final_output", final_output))
out_path = Path(tempfile.mkdtemp()) / "out.png"
cv2.imwrite(str(out_path), image_restore)
finally:
clean_folder(self.opts.input_folder)
clean_folder(self.opts.output_folder)
return out_path
def clean_folder(folder):
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f"Failed to delete {file_path}. Reason:{e}")
|
py | 1a4478dd62d09d6009712ed7493af71b9c01a605 | #!/usr/bin/env python3
#
# Copyright 2022 Graviti. Licensed under MIT License.
#
"""The implementation of the Sheets."""
from typing import Any, Dict, Iterator, MutableMapping
from tensorbay.dataset import Notes, RemoteData
from tensorbay.label import Catalog
from tensorbay.utility import URL
from graviti.client import get_catalog, get_notes, list_data_details, list_segments
from graviti.dataframe import DataFrame
from graviti.portex import Extractors, catalog_to_schema, get_extractors
from graviti.utility import LazyFactory, LazyList, NestedDict
LazyLists = NestedDict[str, LazyList[Any]]
class Sheets(MutableMapping[str, DataFrame]):
"""The basic structure of the Graviti sheets."""
_data: Dict[str, DataFrame]
_dataset_id: str
access_key: str
url: str
commit_id: str
def __len__(self) -> int:
return self._get_data().__len__()
def __getitem__(self, key: str) -> DataFrame:
return self._get_data().__getitem__(key)
def __setitem__(self, key: str, value: DataFrame) -> None:
self._get_data().__setitem__(key, value)
def __delitem__(self, key: str) -> None:
self._get_data().__delitem__(key)
def __iter__(self) -> Iterator[str]:
return self._get_data().__iter__()
def _get_lazy_lists(self, factory: LazyFactory, extractors: Extractors) -> LazyLists:
lazy_lists: LazyLists = {}
for key, arguments in extractors.items():
if isinstance(arguments, tuple):
lazy_lists[key] = factory.create_list(*arguments)
else:
lazy_lists[key] = self._get_lazy_lists(factory, arguments)
return lazy_lists
def _init_data(self) -> None:
self._data = {}
response = list_segments(
self.url,
self.access_key,
self._dataset_id,
commit=self.commit_id,
)
for sheet in response["segments"]:
sheet_name = sheet["name"]
data_details = list_data_details(
self.url,
self.access_key,
self._dataset_id,
sheet_name,
commit=self.commit_id,
)
def factory_getter(
offset: int, limit: int, sheet_name: str = sheet_name
) -> Dict[str, Any]:
return list_data_details(
self.url,
self.access_key,
self._dataset_id,
sheet_name,
commit=self.commit_id,
offset=offset,
limit=limit,
)
factory = LazyFactory(
data_details["totalCount"],
128,
factory_getter,
)
catalog = get_catalog(
self.url,
self.access_key,
self._dataset_id,
commit=self.commit_id,
)
first_data_details = data_details["dataDetails"][0]
remote_data = RemoteData.from_response_body(
first_data_details,
url=URL(
first_data_details["url"], updater=lambda: "update is not supported currently"
),
)
notes = get_notes(
self.url,
self.access_key,
self._dataset_id,
commit=self.commit_id,
)
schema = catalog_to_schema(
Catalog.loads(catalog["catalog"]), remote_data, Notes.loads(notes)
)
lazy_lists = self._get_lazy_lists(factory, get_extractors(schema))
self._data[sheet_name] = DataFrame.from_lazy_lists(lazy_lists)
def _get_data(self) -> Dict[str, DataFrame]:
if not hasattr(self, "_data"):
self._init_data()
return self._data
|
py | 1a447947e079c67f9380eef34bf5dee2ecb8b779 | # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=protected-access
"""Wrapper layers: layers that augment the functionality of another layer.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
from tensorflow.python.eager import context
from tensorflow.python.framework import tensor_shape
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.engine.base_layer import Layer
from tensorflow.python.keras.engine.input_spec import InputSpec
from tensorflow.python.keras.layers.recurrent import _standardize_args
from tensorflow.python.keras.utils import generic_utils
from tensorflow.python.keras.utils import layer_utils
from tensorflow.python.keras.utils import tf_utils
from tensorflow.python.ops import array_ops
from tensorflow.python.ops.ragged import ragged_tensor
from tensorflow.python.util import nest
from tensorflow.python.util import tf_inspect
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.Wrapper')
class Wrapper(Layer):
"""Abstract wrapper base class.
Wrappers take another layer and augment it in various ways.
Do not use this class as a layer, it is only an abstract base class.
Two usable wrappers are the `TimeDistributed` and `Bidirectional` wrappers.
Arguments:
layer: The layer to be wrapped.
"""
def __init__(self, layer, **kwargs):
assert isinstance(layer, Layer)
self.layer = layer
super(Wrapper, self).__init__(**kwargs)
def build(self, input_shape=None):
if not self.layer.built:
self.layer.build(input_shape)
self.layer.built = True
self.built = True
@property
def activity_regularizer(self):
if hasattr(self.layer, 'activity_regularizer'):
return self.layer.activity_regularizer
else:
return None
def get_config(self):
config = {'layer': generic_utils.serialize_keras_object(self.layer)}
base_config = super(Wrapper, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@classmethod
def from_config(cls, config, custom_objects=None):
from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top
# Avoid mutating the input dict
config = copy.deepcopy(config)
layer = deserialize_layer(
config.pop('layer'), custom_objects=custom_objects)
return cls(layer, **config)
@keras_export('keras.layers.TimeDistributed')
class TimeDistributed(Wrapper):
"""This wrapper allows to apply a layer to every temporal slice of an input.
The input should be at least 3D, and the dimension of index one
will be considered to be the temporal dimension.
Consider a batch of 32 video samples, where each sample is a 128x128 RGB image
with `channels_last` data format, across 10 timesteps.
The batch input shape is `(32, 10, 128, 128, 3)`.
You can then use `TimeDistributed` to apply a `Conv2D` layer to each of the
10 timesteps, independently:
>>> inputs = tf.keras.Input(shape=(10, 128, 128, 3))
>>> conv_2d_layer = tf.keras.layers.Conv2D(64, (3, 3))
>>> outputs = tf.keras.layers.TimeDistributed(conv_2d_layer)(inputs)
>>> outputs.shape
TensorShape([None, 10, 126, 126, 64])
Arguments:
layer: a `tf.keras.layers.Layer` instance.
Call arguments:
inputs: Input tensor.
training: Python boolean indicating whether the layer should behave in
training mode or in inference mode. This argument is passed to the
wrapped layer (only if the layer supports this argument).
mask: Binary tensor of shape `(samples, timesteps)` indicating whether
a given timestep should be masked. This argument is passed to the
wrapped layer (only if the layer supports this argument).
Raises:
ValueError: If not initialized with a `tf.keras.layers.Layer` instance.
"""
def __init__(self, layer, **kwargs):
if not isinstance(layer, Layer):
raise ValueError(
'Please initialize `TimeDistributed` layer with a '
'`tf.keras.layers.Layer` instance. You passed: {input}'.format(
input=layer))
super(TimeDistributed, self).__init__(layer, **kwargs)
self.supports_masking = True
# It is safe to use the fast, reshape-based approach with all of our
# built-in Layers.
self._always_use_reshape = (
layer_utils.is_builtin_layer(layer) and
not getattr(layer, 'stateful', False))
def _get_shape_tuple(self, init_tuple, tensor, start_idx, int_shape=None):
"""Finds non-specific dimensions in the static shapes.
The static shapes are replaced with the corresponding dynamic shapes of the
tensor.
Arguments:
init_tuple: a tuple, the first part of the output shape
tensor: the tensor from which to get the (static and dynamic) shapes
as the last part of the output shape
start_idx: int, which indicate the first dimension to take from
the static shape of the tensor
int_shape: an alternative static shape to take as the last part
of the output shape
Returns:
The new int_shape with the first part from init_tuple
and the last part from either `int_shape` (if provided)
or `tensor.shape`, where every `None` is replaced by
the corresponding dimension from `tf.shape(tensor)`.
"""
# replace all None in int_shape by K.shape
if int_shape is None:
int_shape = K.int_shape(tensor)[start_idx:]
if not any(not s for s in int_shape):
return init_tuple + tuple(int_shape)
shape = K.shape(tensor)
int_shape = list(int_shape)
for i, s in enumerate(int_shape):
if not s:
int_shape[i] = shape[start_idx + i]
return init_tuple + tuple(int_shape)
def build(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
if len(input_shape) < 3:
raise ValueError(
'`TimeDistributed` Layer should be passed an `input_shape ` '
'with at least 3 dimensions, received: ' + str(input_shape))
# Don't enforce the batch or time dimension.
self.input_spec = InputSpec(shape=[None, None] + input_shape[2:])
child_input_shape = [input_shape[0]] + input_shape[2:]
super(TimeDistributed, self).build(tuple(child_input_shape))
self.built = True
def compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
child_input_shape = tensor_shape.TensorShape([input_shape[0]] +
input_shape[2:])
child_output_shape = self.layer.compute_output_shape(child_input_shape)
if not isinstance(child_output_shape, tensor_shape.TensorShape):
child_output_shape = tensor_shape.TensorShape(child_output_shape)
child_output_shape = child_output_shape.as_list()
timesteps = input_shape[1]
return tensor_shape.TensorShape([child_output_shape[0], timesteps] +
child_output_shape[1:])
def call(self, inputs, training=None, mask=None):
kwargs = {}
if generic_utils.has_arg(self.layer.call, 'training'):
kwargs['training'] = training
input_shape = K.int_shape(inputs)
if input_shape[0] and not self._always_use_reshape:
inputs, row_lengths = K.convert_inputs_if_ragged(inputs)
is_ragged_input = row_lengths is not None
# batch size matters, use rnn-based implementation
def step(x, _):
output = self.layer(x, **kwargs)
return output, []
_, outputs, _ = K.rnn(
step,
inputs,
initial_states=[],
input_length=row_lengths[0] if is_ragged_input else input_shape[1],
mask=mask,
unroll=False)
y = K.maybe_convert_to_ragged(is_ragged_input, outputs, row_lengths)
else:
# No batch size specified, therefore the layer will be able
# to process batches of any size.
# We can go with reshape-based implementation for performance.
if isinstance(inputs, ragged_tensor.RaggedTensor):
y = self.layer(inputs.values, **kwargs)
y = ragged_tensor.RaggedTensor.from_row_lengths(
y,
inputs.nested_row_lengths()[0])
else:
input_length = input_shape[1]
if not input_length:
input_length = array_ops.shape(inputs)[1]
inner_input_shape = self._get_shape_tuple((-1,), inputs, 2)
# Shape: (num_samples * timesteps, ...). And track the
# transformation in self._input_map.
inputs = array_ops.reshape(inputs, inner_input_shape)
# (num_samples * timesteps, ...)
if generic_utils.has_arg(self.layer.call, 'mask') and mask is not None:
inner_mask_shape = self._get_shape_tuple((-1,), mask, 2)
kwargs['mask'] = K.reshape(mask, inner_mask_shape)
y = self.layer(inputs, **kwargs)
# Shape: (num_samples, timesteps, ...)
output_shape = self.compute_output_shape(input_shape).as_list()
output_shape = self._get_shape_tuple((-1, input_length), y, 1,
output_shape[2:])
y = array_ops.reshape(y, output_shape)
if not context.executing_eagerly():
# Set the static shape for the result since it might be lost during
# array_ops reshape, eg, some `None` dim in the result could be
# inferred.
y.set_shape(self.compute_output_shape(input_shape))
return y
def compute_mask(self, inputs, mask=None):
"""Computes an output mask tensor for Embedding layer.
This is based on the inputs, mask, and the inner layer.
If batch size is specified:
Simply return the input `mask`. (An rnn-based implementation with
more than one rnn inputs is required but not supported in tf.keras yet.)
Otherwise we call `compute_mask` of the inner layer at each time step.
If the output mask at each time step is not `None`:
(E.g., inner layer is Masking or RNN)
Concatenate all of them and return the concatenation.
If the output mask at each time step is `None` and the input mask is not
`None`:(E.g., inner layer is Dense)
Reduce the input_mask to 2 dimensions and return it.
Otherwise (both the output mask and the input mask are `None`):
(E.g., `mask` is not used at all)
Return `None`.
Arguments:
inputs: Tensor with shape [batch size, timesteps, ...] indicating the
input to TimeDistributed. If static shape information is available for
"batch size", `mask` is returned unmodified.
mask: Either None (indicating no masking) or a Tensor indicating the
input mask for TimeDistributed. The shape can be static or dynamic.
Returns:
Either None (no masking), or a [batch size, timesteps, ...] Tensor with
an output mask for the TimeDistributed layer with the shape beyond the
second dimension being the value of the input mask shape(if the computed
output mask is none), an output mask with the shape beyond the first
dimension being the value of the mask shape(if mask is not None) or
output mask with the shape beyond the first dimension being the
value of the computed output shape.
"""
# cases need to call the layer.compute_mask when input_mask is None:
# Masking layer and Embedding layer with mask_zero
input_shape = K.int_shape(inputs)
if input_shape[0] and not self._always_use_reshape or isinstance(
inputs, ragged_tensor.RaggedTensor):
# batch size matters, we currently do not handle mask explicitly, or if
# the layer always uses reshape approach, or the input is a ragged tensor.
return mask
inner_mask = mask
if inner_mask is not None:
inner_mask_shape = self._get_shape_tuple((-1,), mask, 2)
inner_mask = K.reshape(inner_mask, inner_mask_shape)
inner_input_shape = self._get_shape_tuple((-1,), inputs, 2)
inner_inputs = array_ops.reshape(inputs, inner_input_shape)
output_mask = self.layer.compute_mask(inner_inputs, inner_mask)
if output_mask is None:
if mask is None:
return None
# input_mask is not None, and output_mask is None:
# we should return a not-None mask
output_mask = mask
for _ in range(2, len(K.int_shape(mask))):
output_mask = K.any(output_mask, axis=-1)
else:
# output_mask is not None. We need to reshape it
input_length = input_shape[1]
if not input_length:
input_length = K.shape(inputs)[1]
output_mask_int_shape = K.int_shape(output_mask)
if output_mask_int_shape is None:
# if the output_mask does not have a static shape,
# its shape must be the same as mask's
if mask is not None:
output_mask_int_shape = K.int_shape(mask)
else:
output_mask_int_shape = K.compute_output_shape(input_shape)[:-1]
output_mask_shape = self._get_shape_tuple(
(-1, input_length), output_mask, 1, output_mask_int_shape[1:])
output_mask = K.reshape(output_mask, output_mask_shape)
return output_mask
@keras_export('keras.layers.Bidirectional')
class Bidirectional(Wrapper):
"""Bidirectional wrapper for RNNs.
Arguments:
layer: `keras.layers.RNN` instance, such as `keras.layers.LSTM` or
`keras.layers.GRU`. It could also be a `keras.layers.Layer` instance
that meets the following criteria:
1. Be a sequence-processing layer (accepts 3D+ inputs).
2. Have a `go_backwards`, `return_sequences` and `return_state`
attribute (with the same semantics as for the `RNN` class).
3. Have an `input_spec` attribute.
4. Implement serialization via `get_config()` and `from_config()`.
Note that the recommended way to create new RNN layers is to write a
custom RNN cell and use it with `keras.layers.RNN`, instead of
subclassing `keras.layers.Layer` directly.
merge_mode: Mode by which outputs of the forward and backward RNNs will be
combined. One of {'sum', 'mul', 'concat', 'ave', None}. If None, the
outputs will not be combined, they will be returned as a list. Default
value is 'concat'.
backward_layer: Optional `keras.layers.RNN`, or `keras.layers.Layer`
instance to be used to handle backwards input processing.
If `backward_layer` is not provided, the layer instance passed as the
`layer` argument will be used to generate the backward layer
automatically.
Note that the provided `backward_layer` layer should have properties
matching those of the `layer` argument, in particular it should have the
same values for `stateful`, `return_states`, `return_sequence`, etc.
In addition, `backward_layer` and `layer` should have different
`go_backwards` argument values.
A `ValueError` will be raised if these requirements are not met.
Call arguments:
The call arguments for this layer are the same as those of the wrapped RNN
layer.
Beware that when passing the `initial_state` argument during the call of
this layer, the first half in the list of elements in the `initial_state`
list will be passed to the forward RNN call and the last half in the list
of elements will be passed to the backward RNN call.
Raises:
ValueError:
1. If `layer` or `backward_layer` is not a `Layer` instance.
2. In case of invalid `merge_mode` argument.
3. If `backward_layer` has mismatched properties compared to `layer`.
Examples:
```python
model = Sequential()
model.add(Bidirectional(LSTM(10, return_sequences=True), input_shape=(5, 10)))
model.add(Bidirectional(LSTM(10)))
model.add(Dense(5))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
# With custom backward layer
model = Sequential()
forward_layer = LSTM(10, return_sequences=True)
backward_layer = LSTM(10, activation='relu', return_sequences=True,
go_backwards=True)
model.add(Bidirectional(forward_layer, backward_layer=backward_layer,
input_shape=(5, 10)))
model.add(Dense(5))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
```
"""
def __init__(self,
layer,
merge_mode='concat',
weights=None,
backward_layer=None,
**kwargs):
if not isinstance(layer, Layer):
raise ValueError(
'Please initialize `Bidirectional` layer with a '
'`Layer` instance. You passed: {input}'.format(input=layer))
if backward_layer is not None and not isinstance(backward_layer, Layer):
raise ValueError('`backward_layer` need to be a `Layer` instance. '
'You passed: {input}'.format(input=backward_layer))
if merge_mode not in ['sum', 'mul', 'ave', 'concat', None]:
raise ValueError('Invalid merge mode. '
'Merge mode should be one of '
'{"sum", "mul", "ave", "concat", None}')
# We don't want to track `layer` since we're already tracking the two copies
# of it we actually run.
self._setattr_tracking = False
super(Bidirectional, self).__init__(layer, **kwargs)
self._setattr_tracking = True
# Recreate the forward layer from the original layer config, so that it will
# not carry over any state from the layer.
self.forward_layer = self._recreate_layer_from_config(layer)
if backward_layer is None:
self.backward_layer = self._recreate_layer_from_config(
layer, go_backwards=True)
else:
self.backward_layer = backward_layer
# Keep the custom backward layer config, so that we can save it later. The
# layer's name might be updated below with prefix 'backward_', and we want
# to preserve the original config.
self._backward_layer_config = generic_utils.serialize_keras_object(
backward_layer)
self.forward_layer._name = 'forward_' + self.forward_layer.name
self.backward_layer._name = 'backward_' + self.backward_layer.name
self._verify_layer_config()
def force_zero_output_for_mask(layer):
# Force the zero_output_for_mask to be True if returning sequences.
if getattr(layer, 'zero_output_for_mask', None) is not None:
layer.zero_output_for_mask = layer.return_sequences
force_zero_output_for_mask(self.forward_layer)
force_zero_output_for_mask(self.backward_layer)
self.merge_mode = merge_mode
if weights:
nw = len(weights)
self.forward_layer.initial_weights = weights[:nw // 2]
self.backward_layer.initial_weights = weights[nw // 2:]
self.stateful = layer.stateful
self.return_sequences = layer.return_sequences
self.return_state = layer.return_state
self.supports_masking = True
self._trainable = True
self._num_constants = 0
self.input_spec = layer.input_spec
def _verify_layer_config(self):
"""Ensure the forward and backward layers have valid common property."""
if self.forward_layer.go_backwards == self.backward_layer.go_backwards:
raise ValueError('Forward layer and backward layer should have different '
'`go_backwards` value.')
common_attributes = ('stateful', 'return_sequences', 'return_state')
for a in common_attributes:
forward_value = getattr(self.forward_layer, a)
backward_value = getattr(self.backward_layer, a)
if forward_value != backward_value:
raise ValueError(
'Forward layer and backward layer are expected to have the same '
'value for attribute {attr}, got {forward} and {backward}'.format(
attr=a, forward=forward_value, backward=backward_value))
def _recreate_layer_from_config(self, layer, go_backwards=False):
# When recreating the layer from its config, it is possible that the layer
# is a RNN layer that contains custom cells. In this case we inspect the
# layer and pass the custom cell class as part of the `custom_objects`
# argument when calling `from_config`.
# See https://github.com/tensorflow/tensorflow/issues/26581 for more detail.
config = layer.get_config()
if go_backwards:
config['go_backwards'] = not config['go_backwards']
if 'custom_objects' in tf_inspect.getfullargspec(
layer.__class__.from_config).args:
custom_objects = {}
cell = getattr(layer, 'cell', None)
if cell is not None:
custom_objects[cell.__class__.__name__] = cell.__class__
# For StackedRNNCells
stacked_cells = getattr(cell, 'cells', [])
for c in stacked_cells:
custom_objects[c.__class__.__name__] = c.__class__
return layer.__class__.from_config(config, custom_objects=custom_objects)
else:
return layer.__class__.from_config(config)
@tf_utils.shape_type_conversion
def compute_output_shape(self, input_shape):
output_shape = self.forward_layer.compute_output_shape(input_shape)
if not isinstance(output_shape, tensor_shape.TensorShape):
output_shape = tensor_shape.TensorShape(output_shape)
output_shape = tuple(output_shape.as_list())
if self.return_state:
state_shape = output_shape[1:]
output_shape = output_shape[0]
if self.merge_mode == 'concat':
output_shape = list(output_shape)
output_shape[-1] *= 2
output_shape = tuple(output_shape)
elif self.merge_mode is None:
output_shape = [output_shape, copy.copy(output_shape)]
if self.return_state:
if self.merge_mode is None:
return output_shape + state_shape + copy.copy(state_shape)
return [output_shape] + state_shape + copy.copy(state_shape)
return output_shape
def __call__(self, inputs, initial_state=None, constants=None, **kwargs):
"""`Bidirectional.__call__` implements the same API as the wrapped `RNN`."""
inputs, initial_state, constants = _standardize_args(
inputs, initial_state, constants, self._num_constants)
if isinstance(inputs, list):
if len(inputs) > 1:
initial_state = inputs[1:]
inputs = inputs[0]
if initial_state is None and constants is None:
return super(Bidirectional, self).__call__(inputs, **kwargs)
# Applies the same workaround as in `RNN.__call__`
additional_inputs = []
additional_specs = []
if initial_state is not None:
# Check if `initial_state` can be splitted into half
num_states = len(initial_state)
if num_states % 2 > 0:
raise ValueError(
'When passing `initial_state` to a Bidirectional RNN, '
'the state should be a list containing the states of '
'the underlying RNNs. '
'Found: ' + str(initial_state))
kwargs['initial_state'] = initial_state
additional_inputs += initial_state
state_specs = [InputSpec(shape=K.int_shape(state))
for state in initial_state]
self.forward_layer.state_spec = state_specs[:num_states // 2]
self.backward_layer.state_spec = state_specs[num_states // 2:]
additional_specs += state_specs
if constants is not None:
kwargs['constants'] = constants
additional_inputs += constants
constants_spec = [InputSpec(shape=K.int_shape(constant))
for constant in constants]
self.forward_layer.constants_spec = constants_spec
self.backward_layer.constants_spec = constants_spec
additional_specs += constants_spec
self._num_constants = len(constants)
self.forward_layer._num_constants = self._num_constants
self.backward_layer._num_constants = self._num_constants
is_keras_tensor = K.is_keras_tensor(additional_inputs[0])
for tensor in additional_inputs:
if K.is_keras_tensor(tensor) != is_keras_tensor:
raise ValueError('The initial state of a Bidirectional'
' layer cannot be specified with a mix of'
' Keras tensors and non-Keras tensors'
' (a "Keras tensor" is a tensor that was'
' returned by a Keras layer, or by `Input`)')
if is_keras_tensor:
# Compute the full input spec, including state
full_input = [inputs] + additional_inputs
# The original input_spec is None since there could be a nested tensor
# input. Update the input_spec to match the inputs.
full_input_spec = [None for _ in range(len(nest.flatten(inputs)))
] + additional_specs
# Removing kwargs since the value are passed with input list.
kwargs['initial_state'] = None
kwargs['constants'] = None
# Perform the call with temporarily replaced input_spec
original_input_spec = self.input_spec
self.input_spec = full_input_spec
output = super(Bidirectional, self).__call__(full_input, **kwargs)
self.input_spec = original_input_spec
return output
else:
return super(Bidirectional, self).__call__(inputs, **kwargs)
def call(self,
inputs,
training=None,
mask=None,
initial_state=None,
constants=None):
"""`Bidirectional.call` implements the same API as the wrapped `RNN`."""
kwargs = {}
if generic_utils.has_arg(self.layer.call, 'training'):
kwargs['training'] = training
if generic_utils.has_arg(self.layer.call, 'mask'):
kwargs['mask'] = mask
if generic_utils.has_arg(self.layer.call, 'constants'):
kwargs['constants'] = constants
if generic_utils.has_arg(self.layer.call, 'initial_state'):
if isinstance(inputs, list) and len(inputs) > 1:
# initial_states are keras tensors, which means they are passed in
# together with inputs as list. The initial_states need to be split into
# forward and backward section, and be feed to layers accordingly.
forward_inputs = [inputs[0]]
backward_inputs = [inputs[0]]
pivot = (len(inputs) - self._num_constants) // 2 + 1
# add forward initial state
forward_inputs += inputs[1:pivot]
if not self._num_constants:
# add backward initial state
backward_inputs += inputs[pivot:]
else:
# add backward initial state
backward_inputs += inputs[pivot:-self._num_constants]
# add constants for forward and backward layers
forward_inputs += inputs[-self._num_constants:]
backward_inputs += inputs[-self._num_constants:]
forward_state, backward_state = None, None
if 'constants' in kwargs:
kwargs['constants'] = None
elif initial_state is not None:
# initial_states are not keras tensors, eg eager tensor from np array.
# They are only passed in from kwarg initial_state, and should be passed
# to forward/backward layer via kwarg initial_state as well.
forward_inputs, backward_inputs = inputs, inputs
half = len(initial_state) // 2
forward_state = initial_state[:half]
backward_state = initial_state[half:]
else:
forward_inputs, backward_inputs = inputs, inputs
forward_state, backward_state = None, None
y = self.forward_layer(forward_inputs,
initial_state=forward_state, **kwargs)
y_rev = self.backward_layer(backward_inputs,
initial_state=backward_state, **kwargs)
else:
y = self.forward_layer(inputs, **kwargs)
y_rev = self.backward_layer(inputs, **kwargs)
if self.return_state:
states = y[1:] + y_rev[1:]
y = y[0]
y_rev = y_rev[0]
if self.return_sequences:
time_dim = 0 if getattr(self.forward_layer, 'time_major', False) else 1
y_rev = K.reverse(y_rev, time_dim)
if self.merge_mode == 'concat':
output = K.concatenate([y, y_rev])
elif self.merge_mode == 'sum':
output = y + y_rev
elif self.merge_mode == 'ave':
output = (y + y_rev) / 2
elif self.merge_mode == 'mul':
output = y * y_rev
elif self.merge_mode is None:
output = [y, y_rev]
else:
raise ValueError(
'Unrecognized value for `merge_mode`: %s' % (self.merge_mode))
if self.return_state:
if self.merge_mode is None:
return output + states
return [output] + states
return output
def reset_states(self):
self.forward_layer.reset_states()
self.backward_layer.reset_states()
def build(self, input_shape):
with K.name_scope(self.forward_layer.name):
self.forward_layer.build(input_shape)
with K.name_scope(self.backward_layer.name):
self.backward_layer.build(input_shape)
self.built = True
def compute_mask(self, inputs, mask):
if isinstance(mask, list):
mask = mask[0]
if self.return_sequences:
if not self.merge_mode:
output_mask = [mask, mask]
else:
output_mask = mask
else:
output_mask = [None, None] if not self.merge_mode else None
if self.return_state:
states = self.forward_layer.states
state_mask = [None for _ in states]
if isinstance(output_mask, list):
return output_mask + state_mask * 2
return [output_mask] + state_mask * 2
return output_mask
@property
def constraints(self):
constraints = {}
if hasattr(self.forward_layer, 'constraints'):
constraints.update(self.forward_layer.constraints)
constraints.update(self.backward_layer.constraints)
return constraints
def get_config(self):
config = {'merge_mode': self.merge_mode}
if self._num_constants:
config['num_constants'] = self._num_constants
if hasattr(self, '_backward_layer_config'):
config['backward_layer'] = self._backward_layer_config
base_config = super(Bidirectional, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@classmethod
def from_config(cls, config, custom_objects=None):
# Instead of updating the input, create a copy and use that.
config = copy.deepcopy(config)
num_constants = config.pop('num_constants', 0)
# Handle forward layer instantiation (as would parent class).
from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top
config['layer'] = deserialize_layer(
config['layer'], custom_objects=custom_objects)
# Handle (optional) backward layer instantiation.
backward_layer_config = config.pop('backward_layer', None)
if backward_layer_config is not None:
backward_layer = deserialize_layer(
backward_layer_config, custom_objects=custom_objects)
config['backward_layer'] = backward_layer
# Instantiate the wrapper, adjust it and return it.
layer = cls(**config)
layer._num_constants = num_constants
return layer
|
py | 1a44796606110a518716a98c7770c98ffb07a8a2 | """Ajout vigilance meteo
Revision ID: 901a31d192ad
Revises: dcffac33e4fd
Create Date: 2021-11-26 16:35:51.243300
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = '901a31d192ad'
down_revision = 'dcffac33e4fd'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('vigilance_meteo',
sa.Column('id', sa.Integer(), nullable=False),
sa.Column('zone_id', sa.Integer(), nullable=True),
sa.Column('phenomene_id', sa.Integer(), nullable=True),
sa.Column('date_export', sa.DateTime(), nullable=True),
sa.Column('couleur_id', sa.Integer(), nullable=True),
sa.Column('validity', postgresql.TSTZRANGE(), nullable=False),
sa.Column('to_show', postgresql.DATERANGE(), nullable=False),
sa.ForeignKeyConstraint(['zone_id'], ['indice_schema.zone.id'], ),
sa.PrimaryKeyConstraint('id'),
schema='indice_schema'
)
op.create_index('vigilance_zone_phenomene_date_export_idx', 'vigilance_meteo', ['zone_id', 'phenomene_id', 'date_export'], unique=False, schema='indice_schema')
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.drop_index('vigilance_zone_phenomene_date_export_idx', table_name='vigilance_meteo', schema='indice_schema')
op.drop_table('vigilance_meteo', schema='indice_schema')
# ### end Alembic commands ###
|
py | 1a447efc183811bf00b95754bb571d4497a88073 | """
[PYTHON NAMING CONVENTION]
module_name, package_name, ClassName, method_name, ExceptionName, function_name,
GLOBAL_CONSTANT_NAME, global_var_name, instance_var_name, function_parameter_name,
local_var_name.
"""
import sys, os
import cv2
import re
import pprint
import numpy as np
import time, datetime
import pickle
from modules.utils import ( my_print, quaternion2euler, camel2snake, snake2camel,
MyVideo, str2float)
from modules.constants import Constants
try:
import mujoco_py as mjPy
except ImportError as e:
raise error.DependencyNotInstalled( "{}. (HINT: you need to install mujoco_py, \
and also perform the setup instructions here: \
https://github.com/openai/mujoco-py/.)".format( e ) )
# from mujoco_py import
class Simulation( ):
"""
Running a single Whip Simulation
[INHERITANCE]
[DESCRIPTION]
[NOTE]
All of the model files are saved in "models" directory, and we are using "relative directory"
to generate and find the .xml model file. Hence do not change of "model directory" variable within this
"""
MODEL_DIR = Constants.MODEL_DIR
SAVE_DIR = Constants.SAVE_DIR
VISUALIZE = True
current_time = 0
controller = None # Control input function
def __init__( self, model_name = None, is_visualize = True, arg_parse = None ):
"""
Default constructor of THIS class
[ARGUMENTS]
[NAME] [TYPE] [DESCRIPTION]
(1) model_name string The xml model file name for running the MuJoCo simulation.
(2) is_visualized boolean Turn ON/OFF the mjViewer (visualizer) of the simulation. This flag is useful when optimizing a simulation.
(3) arg_parse dictionary Dictionary which contains all the arguments given to the main `run.py` script.
"""
if model_name is None:
self.mjModel = None
self.mjSim = None
self.mjData = None
self.mjViewer = None
self.args = arg_parse
my_print( WARNING = "MODEL FILE NOT GIVEN, PLEASE INPUT XML MODEL FILE WITH `attach_model` MEMBER FUNCTION" )
else:
# If model_name is given, then check if there exist ".xml" at the end, if not, append
model_name = model_name + ".xml" if model_name[ -4: ] != ".xml" else model_name
self.model_name = model_name
# Based on the model_name, construct the simulation.
self.mjModel = mjPy.load_model_from_path( self.MODEL_DIR + model_name ) # Loading xml model as and save it as "model"
self.mjSim = mjPy.MjSim( self.mjModel ) # Construct the simulation environment and save it as "sim"
self.mjData = self.mjSim.data # Construct the basic MuJoCo data and save it as "mjData"
self.mjViewer = mjPy.MjViewerBasic( self.mjSim ) if is_visualize else None # Construct the basic MuJoCo viewer and save it as "myViewer"
self.args = arg_parse
# Saving the default simulation variables
self.fps = 60 # Frames per second for the mujoco render
self.dt = self.mjModel.opt.timestep # Time step of the simulation [sec]
self.sim_step = 0 # Number of steps of the simulation, in integer [-]
self.update_rate = round( 1 / self.dt / self.fps ) # 1/dt = number of steps N for 1 second simulaiton, dividing this with frames-per-second (fps) gives us the frame step to be updated.
self.g = self.mjModel.opt.gravity # Calling the gravity vector of the simulation environment
# Saving additional model parameters for multiple purposes
self.act_names = self.mjModel.actuator_names
self.geom_names = self.mjModel.geom_names
self.idx_geom_names = [ self.mjModel._geom_name2id[ name ] for name in self.geom_names ]
self.n_acts = len( self.mjModel.actuator_names )
self.n_limbs = '-'.join( self.mjModel.body_names ).lower().count( 'arm' )
self.run_time = float( self.args[ 'runTime' ] ) # Run time of the total simulation
self.start_time = float( self.args[ 'startTime' ] ) # Start time of the movements
self.VISUALIZE = is_visualize # saving the VISUALIZE Flag
def attach_model( self, model_name ):
if self.mjModel is not None:
my_print( WARNING = "MODEL FILE EXIST! OVERWRITTING THE WHOLE MUJOCO FILE" )
self.__init__( model_name )
def attach_controller( self, controller_name ):
"""
Attaching the controller object for running the simulation.
For detailed controller description, please check "controllers.py"
"""
self.controller = controller_name
def set_initial_condition( self ):
"""
Manually setting the initial condition of the system.
"""
if "_w_" in self.model_name: # If whip is attached to the model.
tmp = self.mjData.get_body_xquat( "node1" ) # Getting the quaternion angle of the whip handle
yaw, pitch, roll = quaternion2euler( tmp )
self.mjData.qpos[ self.n_acts ] = - roll # Setting the handle posture to make the whip being straight down at equilibrium.
self.mjData.qpos[ self.n_acts + 1 ] = + pitch # Setting the handle posture to make the whip being straight down at equilibrium.
self.mjSim.forward() # Running the forward kinematics, or setting the model as the given qpos WITHOUT proceeding the time step. Therefore no simulation time step is executed.
def run( self ):
"""
Running a single simulation.
[INPUT]
[VAR NAME] [TYPE] [DESCRIPTION]
(1) run_time float The whole run time of the simulation.
(2) ctrl_start_time float
"""
# Check if mjModel or mjSim is empty and raise error
if self.mjModel is None or self.mjSim is None:
raise ValueError( "mjModel and mjSim is Empty! Add it before running simulation" )
# Warn the user if input and output function is empty
if self.controller is None:
raise ValueError( "CONTROLLER NOT ATTACHED TO SIMULATION. \
PLEASE REFER TO METHOD 'attach_output_function' and 'attach_controller' " )
if self.args[ 'recordVideo' ]:
vid = MyVideo( fps = self.fps * float( self.args[ 'vidRate' ] ),
vid_dir = self.args[ 'saveDir' ] ) # If args doesn't have saveDir attribute, save vid_dir as None
if self.args[ 'saveData' ]:
file = open( self.args[ 'saveDir' ] + "data_log.txt", "w+" )
# Setting the camera position for the simulation
# [camParameters]: [ 0.17051, 0.21554, -0.82914, 2.78528,-30.68421,162.42105 ]
# [camParameters]: [ -0.10325, 0. , -2.51498, 7.278 ,-45. , 90. ]
if self.args[ 'camPos' ] is not None:
tmp = str2float( self.args[ 'camPos' ] )
self.mjViewer.cam.lookat[ 0:3 ] = tmp[ 0 : 3 ]
self.mjViewer.cam.distance = tmp[ 3 ]
self.mjViewer.cam.elevation = tmp[ 4 ]
self.mjViewer.cam.azimuth = tmp[ 5 ]
self.set_initial_condition( ) # Setting initial condition. Some specific controllers need to specify the initial condition
while self.current_time <= self.run_time:
if self.sim_step % self.update_rate == 0:
if self.mjViewer is not None:
self.mjViewer.render( ) # Render the simulation
my_print( currentTime = self.current_time,
a = self.controller.a )
if self.args[ 'verbose' ]:
my_print( camParameters = [ self.mjViewer.cam.lookat[ 0 ], self.mjViewer.cam.lookat[ 1 ], self.mjViewer.cam.lookat[ 2 ],
self.mjViewer.cam.distance, self.mjViewer.cam.elevation, self.mjViewer.cam.azimuth ] )
if self.args[ 'recordVideo' ]:
vid.write( self.mjViewer )
if self.args[ 'saveData' ]:
my_print( currentTime = self.current_time,
jointAngleActual = self.mjData.qpos[ : ],
geomXYZPositions = self.mjData.geom_xpos[ self.idx_geom_names ],
desiredTrajectory = self.controller.traj_pos[ : ],
trajectoryError = self.controller.traj_pos[ : ] - self.mjData.get_geom_xpos( "EEGEOM" ) if self.controller.type == 2 else self.controller.traj_pos[ : ] - self.mjData.qpos[ : ],
file = file )
# [input controller]
# input_ref: The data array that are aimed to be inputted (e.g., qpos, qvel, qctrl etc.)
# input_idx: The specific index of input_ref data array that should be inputted
# input: The actual input value which is inputted to input_ref
input_ref, input_idx, input = self.controller.input_calc( self.start_time, self.current_time )
input_ref[ input_idx ] = input
self.mjSim.step( ) # Single step update
if( self.is_sim_unstable() ): # Check if simulation is stable
# If not optimization, and result unstable, then save the detailed data
print( "[WARNING] UNSTABLE SIMULATION, HALTED AT {0:f} for at {1:f}".format( self.current_time, self.run_time ) )
if self.args[ 'saveData' ]:
print( "[WARNING] UNSTABLE SIMULATION, HALTED AT {0:f} for at {1:f}".format( self.current_time, self.run_time ), file = file )
file.close( )
break
self.current_time = self.mjData.time # Update the current_time variable of the simulation
if self.sim_step % self.update_rate == 0:
my_print( trajectoryError = self.controller.traj_pos[ : ] - self.mjData.get_geom_xpos( "EEGEOM" ) if self.controller.type == 2 else self.controller.traj_pos[ : ] - self.mjData.qpos[ : ],)
if self.args[ 'saveData' ]:
# Saving all the necessary datas for the simulation
my_print( inputVal = input,
file = file )
self.sim_step += 1
if self.args[ 'recordVideo' ]:
vid.release( ) # If simulation is finished, wrap-up the video file.
if self.args[ 'saveData' ]:
file.close()
def save_simulation_data( self, dir ):
"""
Save all the details of the controller parameters, inputs and output of the simulation
"""
if dir is not None and dir[ -1 ] != "/": # Quick Check of whether result_dir has backslash "/" at the end
dir += "/" # Append the backslash
# [TIP] [MOSES]
# By using the "with" function you don't need to call f.close( ), the file will automatically close the opened file.
# [REF] https://lerner.co.il/2015/01/18/dont-use-python-close-files-answer-depends/
with open( dir + "simulation_details.txt", "w+" ) as f:
pprint.pprint( self.controller.__dict__, f ) # Using pretty-print (pprint) to flush out the data in a much readable format
print( self.args , file = f ) # Flushing out all the arguments detail.
def is_sim_unstable( self ):
thres = 1 * 10 ** 6
if ( max( np.absolute( self.mjData.qpos ) ) > thres ) or \
( max( np.absolute( self.mjData.qvel ) ) > thres ) or \
( max( np.absolute( self.mjData.qacc ) ) > thres ):
return True
else:
return False
def reset( self ):
"""
Reseting the mujoco simulation
"""
self.current_time = 0
self.sim_step = 0
self.mjSim.reset( )
|
py | 1a447fe3914369392f9a2c9f12c41c4ee8bb75b4 | #!/usr/bin/env python
# coding: utf-8
# Author: Arne Neumann <[email protected]>
from tempfile import NamedTemporaryFile
from lxml import etree
from rstconverter.tree import debug_root_label, DGParentedTree, t
import rstconverter as rstc
EXPECTED_SVG_TREE = """<?xml version="1.0" encoding="utf-8" ?>
<svg baseProfile="full" height="72px" preserveAspectRatio="xMidYMid meet" style="font-family: times, serif; font-weight:normal; font-style: normal; font-size: 16px;" version="1.1" viewBox="0,0,80.0,72.0" width="80px" xmlns="http://www.w3.org/2000/svg" xmlns:ev="http://www.w3.org/2001/xml-events" xmlns:xlink="http://www.w3.org/1999/xlink"><defs /><svg width="100%" x="0" y="0em"><defs /><text text-anchor="middle" x="50%" y="1em">foo</text></svg><svg width="50%" x="0%" y="3em"><defs /><svg width="100%" x="0" y="0em"><defs /><text text-anchor="middle" x="50%" y="1em">bar</text></svg></svg><line stroke="black" x1="50%" x2="25%" y1="1.2em" y2="3em" /><svg width="50%" x="50%" y="3em"><defs /><svg width="100%" x="0" y="0em"><defs /><text text-anchor="middle" x="50%" y="1em">baz</text></svg></svg><line stroke="black" x1="50%" x2="75%" y1="1.2em" y2="3em" /></svg>"""
def test_t():
assert t("", []) == DGParentedTree("", [])
assert t("") == DGParentedTree("", [])
assert t("foo", []) == DGParentedTree("foo", [])
assert t("foo") == DGParentedTree("foo", [])
assert t("foo", ["bar"]) == DGParentedTree("foo", ["bar"])
assert t("foo", ["bar", "baz"]) == DGParentedTree("foo", ["bar", "baz"])
def test_debug_root_label():
label = 'Foo'
node_id = '21'
assert debug_root_label(label, debug=False, root_id=None) == label
assert debug_root_label(label, debug=False, root_id=node_id) == label
assert debug_root_label(label, debug=True, root_id=None) == label
assert debug_root_label(label, debug=True, root_id=node_id) == "Foo (21)"
def test_write_svgtree():
"""A ParentedTree can be converted into an SVG image using svgling."""
tree = DGParentedTree("foo", ["bar", "baz"])
# write SVG to file
temp_file = NamedTemporaryFile()
temp_file.close()
rstc.write_svgtree(tree, temp_file.name)
with open(temp_file.name, 'r') as svg_file:
assert EXPECTED_SVG_TREE == svg_file.read()
# return SVG as string
assert EXPECTED_SVG_TREE == rstc.write_svgtree(tree)
|
py | 1a448146522a5d893d07c24a1cb7b1e22c2471e6 | # coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
#
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is
# regenerated.
# --------------------------------------------------------------------------
import uuid
from msrest.pipeline import ClientRawResponse
from msrestazure.azure_exceptions import CloudError
from .. import models
class SkusOperations(object):
"""SkusOperations operations.
You should not instantiate directly this class, but create a Client instance that will create it for you and attach it as attribute.
:param client: Client for service requests.
:param config: Configuration of service client.
:param serializer: An object model serializer.
:param deserializer: An object model deserializer.
:ivar api_version: Client API version. Constant value: "2019-11-01".
"""
models = models
def __init__(self, client, config, serializer, deserializer):
self._client = client
self._serialize = serializer
self._deserialize = deserializer
self.api_version = "2019-11-01"
self.config = config
def list(
self, custom_headers=None, raw=False, **operation_config):
"""Get the list of StorageCache.Cache SKUs available to this subscription.
:param dict custom_headers: headers that will be added to the request
:param bool raw: returns the direct response alongside the
deserialized response
:param operation_config: :ref:`Operation configuration
overrides<msrest:optionsforoperations>`.
:return: An iterator like instance of ResourceSku
:rtype:
~azure.mgmt.storagecache.models.ResourceSkuPaged[~azure.mgmt.storagecache.models.ResourceSku]
:raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>`
"""
def prepare_request(next_link=None):
if not next_link:
# Construct URL
url = self.list.metadata['url']
path_format_arguments = {
'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str')
}
url = self._client.format_url(url, **path_format_arguments)
# Construct parameters
query_parameters = {}
query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str')
else:
url = next_link
query_parameters = {}
# Construct headers
header_parameters = {}
header_parameters['Accept'] = 'application/json'
if self.config.generate_client_request_id:
header_parameters['x-ms-client-request-id'] = str(uuid.uuid1())
if custom_headers:
header_parameters.update(custom_headers)
if self.config.accept_language is not None:
header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str')
# Construct and send request
request = self._client.get(url, query_parameters, header_parameters)
return request
def internal_paging(next_link=None):
request = prepare_request(next_link)
response = self._client.send(request, stream=False, **operation_config)
if response.status_code not in [200]:
exp = CloudError(response)
exp.request_id = response.headers.get('x-ms-request-id')
raise exp
return response
# Deserialize response
header_dict = None
if raw:
header_dict = {}
deserialized = models.ResourceSkuPaged(internal_paging, self._deserialize.dependencies, header_dict)
return deserialized
list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.StorageCache/skus'}
|
py | 1a448178e1dc2cc107a98ae04ba50d4e73a24a36 | from flask_wtf import FlaskForm
from wtforms import StringField,PasswordField,BooleanField,SubmitField
from wtforms.validators import Required,Email,EqualTo
from ..models import User
from wtforms import ValidationError
class LoginForm(FlaskForm):
email = StringField('Your Email Address',validators=[Required(),Email()])
password = PasswordField('Password',validators =[Required()])
remember = BooleanField('Remember me')
submit = SubmitField('Sign In')
class RegistrationForm(FlaskForm):
email = StringField('Your Email Address',validators=[Required(),Email()])
username = StringField('Enter your username',validators = [Required()])
password = PasswordField('Password',validators = [Required(), EqualTo('password_confirm',message = 'Passwords must match')])
password_confirm = PasswordField('Confirm Passwords',validators = [Required()])
submit = SubmitField('Sign Up')
def validate_email(self,data_field):
if User.query.filter_by(email =data_field.data).first():
raise ValidationError('There is an account with that email')
def validate_username(self,data_field):
if User.query.filter_by(username = data_field.data).first():
raise ValidationError('That username is taken')
|
py | 1a4481efb168930bab2059ecd05b4a272a2fe6a9 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# michael a.g. aïvázis
# orthologue
# (c) 1998-2022 all rights reserved
#
"""
Check that tuple conversions work as expected
"""
def test():
import pyre.descriptors
# create a descriptor
descriptor = pyre.descriptors.array()
# casts
# successful
assert () == descriptor.coerce(())
assert () == descriptor.coerce([])
assert () == descriptor.coerce("()")
assert () == descriptor.coerce("[]")
assert (1,) == descriptor.coerce((1,))
assert (1,) == descriptor.coerce([1])
assert (1,) == descriptor.coerce("[1]")
assert (1,) == descriptor.coerce("(1,)")
assert (1, 2) == descriptor.coerce((1, 2))
assert (1, 2) == descriptor.coerce([1, 2])
assert (1, 2) == descriptor.coerce("(1,2)")
assert (1, 2) == descriptor.coerce("[1,2]")
assert (1, 2) == descriptor.coerce("(1, 2)")
assert (1, 2) == descriptor.coerce("[1, 2]")
# failures
try:
descriptor.coerce(test)
assert False
except descriptor.CastingError as error:
pass
return
# main
if __name__ == "__main__":
# skip pyre initialization since we don't rely on the executive
pyre_noboot = True
# do...
test()
# end of file
|
py | 1a448297a1e8fa79fc62ce0138b457ca48504fa7 | # coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from typing import Any, TYPE_CHECKING
from azure.core.configuration import Configuration
from azure.core.pipeline import policies
from azure.mgmt.core.policies import ARMHttpLoggingPolicy, AsyncARMChallengeAuthenticationPolicy
from .._version import VERSION
if TYPE_CHECKING:
# pylint: disable=unused-import,ungrouped-imports
from azure.core.credentials_async import AsyncTokenCredential
class ResourceManagementClientConfiguration(Configuration):
"""Configuration for ResourceManagementClient.
Note that all parameters used to create this instance are saved as instance
attributes.
:param credential: Credential needed for the client to connect to Azure.
:type credential: ~azure.core.credentials_async.AsyncTokenCredential
:param subscription_id: The ID of the target subscription.
:type subscription_id: str
"""
def __init__(
self,
credential: "AsyncTokenCredential",
subscription_id: str,
**kwargs: Any
) -> None:
super(ResourceManagementClientConfiguration, self).__init__(**kwargs)
if credential is None:
raise ValueError("Parameter 'credential' must not be None.")
if subscription_id is None:
raise ValueError("Parameter 'subscription_id' must not be None.")
self.credential = credential
self.subscription_id = subscription_id
self.api_version = "2019-07-01"
self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default'])
kwargs.setdefault('sdk_moniker', 'mgmt-resource/{}'.format(VERSION))
self._configure(**kwargs)
def _configure(
self,
**kwargs: Any
) -> None:
self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs)
self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs)
self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs)
self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs)
self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs)
self.retry_policy = kwargs.get('retry_policy') or policies.AsyncRetryPolicy(**kwargs)
self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs)
self.redirect_policy = kwargs.get('redirect_policy') or policies.AsyncRedirectPolicy(**kwargs)
self.authentication_policy = kwargs.get('authentication_policy')
if self.credential and not self.authentication_policy:
self.authentication_policy = AsyncARMChallengeAuthenticationPolicy(self.credential, *self.credential_scopes, **kwargs)
|
py | 1a4482c10ed18b1e0d66df3434bd14ff1b65ef6b | import math
import mpmath
import numpy as np
from PIL import Image
import os
class EvenDimensionError(Exception):
# The required resolution for the image is a square with a center pixel that
# has the same number of pixels to the left, to the right, above, and
# underneath, which precludes any even number of pixels.
pass
class NumberError(Exception):
# For a test of prime numbers, to make sure the number is a non-negative
# integer.
pass
class UlamSpiral:
'''
Makes Ulam spirals of any arbitrary sequence. A True/False function is
required for each sequence.
'''
SIDE = None # The length of the square.
image_array = [] # Pixel color data.
# If the PNG directory is not made, make it.
IMAGE_DIR = os.path.dirname(os.path.realpath(__file__))
IMAGE_DIR = os.path.join(IMAGE_DIR, 'PNG')
if not os.path.exists(IMAGE_DIR):
os.makedirs(IMAGE_DIR)
COLORS = None # Color palettes.
is_prime_list = [] # A list for primes so recalculating is not necessary.
is_not_prime_list = [] # To avoid recalculation.
image_size = 1600 # For scaling the final image.
image_size = (image_size, image_size) # The final image resolution.
DIGITS_OF_PI = None # To store digits of pi.
def __init__(self,
sides=[41],
modes=['prime'],
colors=[[255, 255, 255]],
debug_tests=False):
'''
Make a basic introduction of the image essentails and specific
initializations for sequences that require it.
'''
if 'a037003' in modes or debug_tests:
self.bake_pi(max(sides)**2+1)
if 'a050704' in modes:
for x in range(max(sides)**2+1):
is_prime = self.is_prime(x)
if x%1000 == 0:
print('primes ' + str(x) + ' of ' + str(max(sides)**2))
if debug_tests:
self.debug_tests()
for i, mode in enumerate(modes):
self.COLORS = colors[i%len(colors)]
for side in sides:
if side%2 == 0:
raise EvenDimensionError
self.SIDE = side
self.CENTER = int((self.SIDE-1)/2+1)
self.CENTER = [self.CENTER, self.CENTER]
self.IMAGE_F = str(mode) + ' {:,}'.format(self.SIDE**2) + \
'.png'
self.IMAGE_PATH = os.path.join(self.IMAGE_DIR, self.IMAGE_F)
self.image_array = np.zeros((self.SIDE, self.SIDE, 3), \
dtype=np.uint8)
self.calc_pixels(mode)
self.write_image(mode)
def calc_pixels(self, mode):
'''
Follow the path requirements of an Ulam spiral. With each step, test the
pixel for the sequence.
'''
cursor = self.CENTER.copy() # The center pixel.
# For the color palettes, keep count the concentric squares. That number
# decides, for a pixel who passes the sequence test, which color from
# the palettes to choose.
num_square = 0
for x in range(1, self.SIDE**2+1):
if x%100 == 0:
print(str(mode) + ' {:,}'.format(x) + ' of ' + \
'{:,}'.format(self.SIDE**2))
if x > 1:
if cursor == [self.CENTER[0]+num_square,
self.CENTER[1]+num_square]:
cursor[1] += 1
num_square += 1
elif cursor == [self.CENTER[0]+num_square,
self.CENTER[1]-num_square]:
cursor[1] += 1
elif cursor == [self.CENTER[0]-num_square,
self.CENTER[1]-num_square]:
cursor[0] += 1
elif cursor == [self.CENTER[0]-num_square,
self.CENTER[1]+num_square]:
cursor[1] -= 1
elif cursor[1] == self.CENTER[0]+num_square:
cursor[0] -= 1
elif cursor[0] == self.CENTER[1]-num_square:
cursor[1] -= 1
elif cursor[1] == self.CENTER[0]-num_square:
cursor[0] += 1
elif cursor[0] == self.CENTER[1]+num_square:
cursor[1] += 1
self.test_pixel(cursor, num_square, x, mode)
def test_pixel(self, cursor, num_square, x, mode):
'''
The hub for tests of a pixel's presence in a sequence. t_f is True or
False depending on if it is or is not a part of the sequence. If true,
change the pixel color.
'''
t_f = None
if mode == 'prime':
t_f = self.is_prime(x)
elif mode == 'triangular':
t_f = self.is_triangular(x)
elif mode == 'square':
t_f = self.is_square(x)
elif mode == 'pentagonal':
t_f = self.is_pentagonal(x)
elif mode == 'hexagonal':
t_f = self.is_hexagonal(x)
elif mode == 'heptagonal':
t_f = self.is_heptagonal(x)
elif mode == 'octogonal':
t_f = self.is_octogonal(x)
elif mode == 'nonagonal':
t_f = self.is_nonagonal(x)
elif mode == 'decagonal':
t_f = self.is_decagonal(x)
elif mode == 'hendecagonal':
t_f = self.is_hendecagonal(x)
elif mode == 'dodecagonal':
t_f = self.is_dodecagonal(x)
elif mode == 'fibonacci':
t_f = self.is_fibonacci(x)
elif mode == 'factorial':
t_f = self.is_factorial(x)
elif mode == 'mersenne_prime':
t_f = self.is_mersenne_prime(x)
elif mode == 'a030513':
t_f = self.is_a030513(x)
elif mode == 'a050704':
t_f = self.is_a050704(x)
elif mode == 'a037003':
t_f = self.is_a037003(x)
if t_f:
color = self.COLORS[num_square % len(self.COLORS)]
self.image_array[cursor[0]-1, cursor[1]-1][0] = color[0]
self.image_array[cursor[0]-1, cursor[1]-1][1] = color[1]
self.image_array[cursor[0]-1, cursor[1]-1][2] = color[2]
def write_image(self, mode):
'''
Write the finalized pixel color values to a PNG.
'''
image = Image.fromarray(self.image_array)
image = image.resize(self.image_size, Image.NEAREST)
image.save(self.IMAGE_PATH)
def is_prime(self, x):
'''
Return True if x is prime and False otherwise.
'''
if x in self.is_prime_list:
return True
elif x in self.is_not_prime_list:
return False
if not isinstance(x, int) or x < 0:
raise NumberError
if x==0 or x == 1:
self.is_not_prime_list.append(x)
return False
if x == 2:
self.is_prime_list.append(x)
return True
for y in range(2, math.floor(math.sqrt(x))+1):
if x%y == 0:
self.is_not_prime_list.append(x)
return False
self.is_prime_list.append(x)
return True
def is_triangular(self, x):
'''
Return True if x is triangular and False otherwise.
'''
for y in range(1, x+1):
t = (y*(y+1)) / 2
if t == x:
return True
elif t > x:
return False
def is_square(self, x):
'''
Return True if x is square and False otherwise.
'''
for y in range(1, x+1):
s = y**2
if s == x:
return True
elif s > x:
return False
def is_pentagonal(self, x):
'''
Return True if x is pentagonal and False otherwise.
'''
for y in range(1, x+1):
p = (y*(3*y-1)) / 2
if p == x:
return True
elif p > x:
return False
def is_hexagonal(self, x):
'''
Return True if x is hexagonal and False otherwise.
'''
for y in range(1, x+1):
h = y*(2*y-1)
if h == x:
return True
elif h > x:
return False
def is_heptagonal(self, x):
'''
Return True if x is heptagonal and False otherwise.
'''
for y in range(1, x+1):
h = (y*(5*y-3)) / 2
if h == x:
return True
elif h > x:
return False
def is_octogonal(self, x):
'''
Return True if x is octogonal and False otherwise.
'''
for y in range(1, x+1):
o = y*(3*y-2)
if o == x:
return True
elif o > x:
return False
def is_nonagonal(self, x):
'''
Return True if x is nonagonal and False otherwise.
'''
for y in range(1, x+1):
n = (y*(7*y-5)) / 2
if n == x:
return True
elif n > x:
return False
def is_decagonal(self, x):
'''
Return True if x is decagonal and False otherwise.
'''
for y in range(1, x+1):
d = 4*y**2 - 3*y
if d == x:
return True
elif d > x:
return False
def is_hendecagonal(self, x):
'''
Return True if x is hendecagonal and False otherwise.
'''
for y in range(1, x+1):
h = (9*y**2 - 7*y) / 2
if h == x:
return True
elif h > x:
return False
def is_dodecagonal(self, x):
'''
Return True if x is dodecagonal and False otherwise.
'''
for y in range(1, x+1):
d = 5*y**2 - 4*y
if d == x:
return True
elif d > x:
return False
def is_fibonacci(self, x):
'''
Return True for numbers in the Fibonacci sequence and False otherwise.
'''
f1 = 0
f2 = 1
while True:
f = f1 + f2
if f == x:
return True
elif f > x:
return False
else:
f1 = f2
f2 = f
def is_factorial(self, x):
'''
Return True for factorials and False otherwise.
'''
for y in range(1, x+1):
f = 1
for z in reversed(range(1, y+1)):
f = f*z
if f == x:
return True
elif f > x:
return False
def is_mersenne_prime(self, x):
'''
Return True for Mersenne primes and False otherwise.
'''
for y in range(1, x+1):
m = 2**y-1
if m == x and self.is_prime(x):
return True
elif m > x:
return False
def is_a030513(self, x):
'''
Return True for numbers in A030513 and False otherwise.
https://oeis.org/A030513
Numbers with 4 divisors.
'''
divisors = []
for y in range(1, x+1):
if x%y == 0:
divisors.append(y)
if len(divisors) > 4:
return False
if len(divisors) == 4:
return True
else:
return False
def is_a050704(self, x):
'''
Return True for numbers in A050704 and False otherwise.
https://oeis.org/A050704
Composite numbers k with the property that k minus the sum of the
prime factors of k is prime.
'''
if x == 1:
return False
primes = []
prime_factors = []
if self.is_prime(x):
primes.append(x)
else:
primes = [p for p in self.is_prime_list if p <= x/2]
d = x
for prime in primes:
while True:
if d%prime == 0:
prime_factors.append(prime)
d //= prime
else:
break
sum_of_prime_factors = 0
for prime_factor in prime_factors:
sum_of_prime_factors += prime_factor
k_minus_sum_of_prime_factors = x - sum_of_prime_factors
if self.is_prime(k_minus_sum_of_prime_factors):
return True
else:
return False
def is_a037003(self, x):
'''
Return True for numbers in A037003 and False otherwise.
https://oeis.org/A037003
Positions of the digit '4' in the decimal expansion of Pi.
'''
if self.DIGITS_OF_PI[x-1] == '4':
return True
else:
return False
def bake_pi(self, num_digits):
'''
Set the value of DIGITS_OF_PI to the decimal expansion of pi for any
arbitrary length.
'''
mpmath.mp.dps = num_digits
pi = mpmath.mp.pi
self.DIGITS_OF_PI = str(pi)[2:]
def debug_tests(self):
'''
Outputs a list of numbers in the sequences for verification.
'''
list_={'prime': [],
'triangular': [],
'square': [],
'pentagonal': [],
'hexagonal': [],
'heptagonal': [],
'hexagonal': [],
'octogonal': [],
'nonagonal': [],
'decagonal': [],
'hendecagonal': [],
'dodecagonal': [],
'fibonacci': [],
'factorial': [],
'mersenne_prime': [],
'a030513': [],
'a050704': [],
'a037003': []}
for x in range(1, 100):
if self.is_prime(x):
list_['prime'].append(x)
if self.is_triangular(x):
list_['triangular'].append(x)
if self.is_square(x):
list_['square'].append(x)
if self.is_pentagonal(x):
list_['pentagonal'].append(x)
if self.is_hexagonal(x):
list_['hexagonal'].append(x)
if self.is_heptagonal(x):
list_['heptagonal'].append(x)
if self.is_octogonal(x):
list_['octogonal'].append(x)
if self.is_nonagonal(x):
list_['nonagonal'].append(x)
if self.is_decagonal(x):
list_['decagonal'].append(x)
if self.is_hendecagonal(x):
list_['hendecagonal'].append(x)
if self.is_dodecagonal(x):
list_['dodecagonal'].append(x)
if self.is_fibonacci(x):
list_['fibonacci'].append(x)
if self.is_factorial(x):
list_['factorial'].append(x)
if self.is_mersenne_prime(x):
list_['mersenne_prime'].append(x)
if self.is_a030513(x):
list_['a030513'].append(x)
if self.is_a050704(x):
list_['a050704'].append(x)
if self.is_a037003(x):
list_['a037003'].append(x)
input(list_)
if __name__ == '__main__':
pass
|
py | 1a448463f39fcc57eadbfe91f59bc8c77371cec9 | import numpy as np
def freqtag_FFT(data: np.ndarray, fsamp: float | int) -> list[np.ndarray]:
"""
Applies the Discrete Fourier Transform on a 2D array of EEG data.
Args:
data:
(m sensors, n time points) array.
Time series of each sensor.
fsamp:
Sampling rate in Hz.
Returns:
List containing 4 arrays in the following order:
(m sensors, n/2 bins) array:
Amplitude spectrum of each sensor.
(m sensors, n/2 bins) array:
Phase spectrum of each sensor.
(n/2 bins) array:
Available frequencies in the data.
(m sensors, n bins) array:
Complex Fourier spectrum of each sensor.
"""
# TODO: Raise an error if invalid input is passed.
num_points = data.shape[-1]
midpoint = round(num_points / 2)
untrimmed_freqs = np.fft.fftfreq(num_points, d=1 / fsamp)
fftcomp = np.fft.fftn(data, axes=[-1])
untrimmed_phase = np.angle(fftcomp)
# Get amplitude, taking care of doubled DC or Nyquist frequencies.
untrimmed_amp = np.abs(fftcomp)
untrimmed_amp[:, 0] = untrimmed_amp[:, 0] / 2
if num_points % 2 == 0: # TODO: Check odd num_points handled correctly.
untrimmed_amp[:, midpoint] = untrimmed_amp[:, midpoint] / 2
untrimmed_amp = untrimmed_amp / num_points
# Trim to remove opposite side of FFT operation.
phase = untrimmed_phase[:, :midpoint]
freqs = untrimmed_freqs[:midpoint]
amp = untrimmed_amp[:, :midpoint]
return [amp, phase, freqs, fftcomp]
|
py | 1a4484774933998746374b7d4f3fee765e74effd | from bddrest import response, when, status
from nanohttp import json
from sqlalchemy import Unicode, Integer
from restfulpy.controllers import JSONPatchControllerMixin, ModelRestController
from restfulpy.orm import commit, DeclarativeBase, Field, DBSession, \
FilteringMixin, PaginationMixin, OrderingMixin, ModifiedMixin
from restfulpy.testing import ApplicableTestCase
from restfulpy.exceptions import SQLError
class SQLErrorCheckingModel(
ModifiedMixin,
FilteringMixin,
PaginationMixin,
OrderingMixin,
DeclarativeBase
):
__tablename__ = 'sql_error_checking_model'
id = Field(Integer, primary_key=True)
title = Field(Unicode(50), unique=True, nullable=False)
class Root(ModelRestController):
__model__ = SQLErrorCheckingModel
@json
@commit
def post(self):
m = SQLErrorCheckingModel()
m.update_from_request()
DBSession.add(m)
return m
@json
@SQLErrorCheckingModel.expose
def get(self, title: str=None):
query = SQLErrorCheckingModel.query
if title:
return query.filter(SQLErrorCheckingModel.title == title)\
.one_or_none()
return query
class TestSqlExceptions(ApplicableTestCase):
__controller_factory__ = Root
def test_sql_errors(self):
with self.given(
'Testing SQL exceptions',
'/',
'POST',
form=dict(title='test')
):
assert response.json['title'] == 'test'
when('Posting gain to raise a unique_violation sql error')
assert status == 409
def test_invalid_sql_error(self):
assert '500 Internal server error' == SQLError.map_exception(ValueError())
|
py | 1a44859286adb515342052960c1814130c51bf21 | import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
# qkv = self.qkv(x)
flops += N * self.dim * 3 * self.dim
# attn = (q @ k.transpose(-2, -1))
flops += self.num_heads * N * (self.dim // self.num_heads) * N
# x = (attn @ v)
flops += self.num_heads * N * N * (self.dim // self.num_heads)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
class SwinTransformerBlock(nn.Module):
r""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_x = x
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
x = x.view(B, H * W, C)
# FFN
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
def flops(self):
flops = 0
H, W = self.input_resolution
# norm1
flops += self.dim * H * W
# W-MSA/SW-MSA
nW = H * W / self.window_size / self.window_size
flops += nW * self.attn.flops(self.window_size * self.window_size)
# mlp
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
# norm2
flops += self.dim * H * W
return flops
class PatchMerging(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
def extra_repr(self) -> str:
return f"input_resolution={self.input_resolution}, dim={self.dim}"
def flops(self):
H, W = self.input_resolution
flops = H * W * self.dim
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
return flops
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
num_heads=num_heads, window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop, attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
def flops(self):
flops = 0
for blk in self.blocks:
flops += blk.flops()
if self.downsample is not None:
flops += self.downsample.flops()
return flops
class PatchEmbed(nn.Module):
r""" Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
if self.norm is not None:
x = self.norm(x)
return x
def flops(self):
Ho, Wo = self.patches_resolution
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
return flops
class SwinTransformer(nn.Module):
r""" Swin Transformer
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args:
img_size (int | tuple(int)): Input image size. Default 224
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (int): Window size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, **kwargs):
super().__init__()
self.num_classes = num_classes
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
self.mlp_ratio = mlp_ratio
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
input_resolution=(patches_resolution[0] // (2 ** i_layer),
patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint)
self.layers.append(layer)
self.norm = norm_layer(self.num_features)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
def forward_features(self, x):
x = self.patch_embed(x)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x)
x = self.norm(x) # B L C
x = self.avgpool(x.transpose(1, 2)) # B C 1
x = torch.flatten(x, 1)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def flops(self):
flops = 0
flops += self.patch_embed.flops()
for i, layer in enumerate(self.layers):
flops += layer.flops()
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
flops += self.num_features * self.num_classes
return flops
def swin_transformer(**kwargs):
net = SwinTransformer(**kwargs)
return net
if __name__ == "__main__":
net = swin_transformer(img_size=224, patch_size=4, in_chans=3, num_classes=5)
from torchsummary import summary
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
net = net.cuda()
summary(net,input_size=(3,224,224),batch_size=1,device='cuda') |
py | 1a4485de215c1e60f0a2ee5e532ae8d4420b09d3 | # integration between serial and http
# contact array as events (best option)
# [
# {
# "wsnNodeId" : <BeaconID> "string"
# "eventType" : 901,
# "timestamp" : <timestamp>,
# "payload" : {
# "EndNodeID" : <nodeID> "string"
# "lastRSSI" : <int>
# "maxRSSI" : <int>
# "pktCounter" : <int>
# }
# ]
import serial
import logging
import datetime
import time
import struct
import requests
import json
import sys
# from collections import namedtuple
# from array import array
### global data and defines ###
timeStart = int(time.time())
MAX_CONTACTS_LIST = 1000 #MAX number of contacts locally buffered
# Serial
# start character = 42 (0x2A) ('*')
# start sequence = 4 times start char = 42, 42, 42, 42
START_CHAR = 0x2A
START_BUF = 0x2A2A2A #this is not really a buffer
BAUD_RATE = 1000000
# SERIAL_PORT = "/dev/ttyACM0"
SERIAL_PORT = "/dev/ttyUSB0" #serial name, something like "/dev/ttyUSB0" on linux, something like "COM0" on windows
# back-end
EVENT_BECON_CONTACT = 901 #defined on the server, do not change!
urlDev_CLIMB = 'https://climbdev.smartcommunitylab.it/v2/api/event/TEST/adca3db3-68d1-4197-b834-a45d61cf1c21/vlab' #TODO: REMOVE THIS FROM THE PUBLIC REPOSITORY
urlDev = 'https://climbdev.smartcommunitylab.it/v2/api/event/TEST/4220a8bb-3cf5-4076-b7bd-9e7a1ff7a588/vlab' #TODO: REMOVE THIS FROM THE PUBLIC REPOSITORY
urlProd = ' https://climb.smartcommunitylab.it/v2/api/event/TEST/17ee8383-4cb0-4f58-9759-1d76a77f9eff/vlab' #TODO: REMOVE THIS FROM THE PUBLIC REPOSITORY
headers = {'Authorization': 'Bearer 831a2cc0-48bd-46ab-ace1-c24f767af8af'} #TODO: REMOVE THIS FROM THE PUBLIC REPOSITORY
MIN_POST_PERIOD_S = 60 #time between buffer send. (every MIN_POST_PERIOD_S the buffer is sent to the server)
# contactArray = [
# {
# "wsnNodeId" : "Beaconid_01", #<string>
# "eventType" : EVENT_BECON_CONTACT, #<int>
# "timestamp" : timeStart, #<timestamp>
# "payload" : {
# "EndNodeID": "VelaLab_EndNode_05", #<string>
# "lastRSSI": -30, #<int>
# "maxRSSI": -20, #<int>
# "pktCounter" : 15 #<int>
# }
# }
# {
# "wsnNodeId" : "Beaconid_01",
# "eventType" : EVENT_BECON_CONTACT,
# "timestamp" : timeStart,
# "payload" : {
# "EndNodeID": "VelaLab_EndNode_05",
# "lastRSSI": -30,
# "maxRSSI": -20,
# "pktCounter" : 15
# }
# }
# ]
# {"wsnNodeId":"Beaconid_01", "eventType":EVENT_BECON_CONTACT, "timestamp":timeStart, "payload":{"EndNodeID":"VelaLab_EndNode_05", "lastRSSI":-30, "maxRSSI":-20, "pktCounter":15}}
### Init ###
# Log init
# TODO: files are never closed, with long experiments it may create huge files! Handle the problem somehow
# Application log and data log are handled in the same way, but with different endpoints (different files)
LOG_LEVEL = logging.DEBUG
timestr = time.strftime("%Y%m%d_%H%M%S")
# Data logger
nameDataLog = "dataLogger"
filenameDataLog = timestr + "_data.log"
# formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
formatterDataLog = logging.Formatter('%(message)s')
handler = logging.FileHandler(filenameDataLog)
handler.setFormatter(formatterDataLog)
dataLogger = logging.getLogger(nameDataLog)
dataLogger.setLevel(LOG_LEVEL)
dataLogger.addHandler(handler)
# logging.basicConfig(filename=filenameLog,level=LOG_LEVEL,format='%(message)s')
print("Started data log on file:", filenameDataLog)
# Application logger
nameAppLog = "appLogger"
filenameAppLog = timestr + "_app.log"
# formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
formatterAppLog = logging.Formatter("%(asctime)s %(message)s", "%Y-%m-%d %H:%M:%S")
handler = logging.FileHandler(filenameAppLog)
handler.setFormatter(formatterAppLog)
appLogger = logging.getLogger(nameAppLog)
appLogger.setLevel(LOG_LEVEL)
appLogger.addHandler(handler)
# logging.basicConfig(filename=filenameLog,level=LOG_LEVEL,format='%(message)s')
print("Started application log on file:", filenameAppLog)
# print("type appLogger:", type(appLogger), "appLogger:", appLogger)
# disable log for post requests - generated by urllib3
urllib3_log = logging.getLogger("urllib3")
urllib3_log.setLevel(logging.CRITICAL)
# Serial init
ser = serial.Serial(SERIAL_PORT, BAUD_RATE)
if ser.is_open:
print("Serial Port already open!", ser.port, "open before initialization... closing first")
appLogger.debug("Serial Port already open! %s open before initialization... closing first", ser.port)
ser.close()
time.sleep(10)
# end if ser.is_open
# init lists
tmpContactList = []
contactList = []
timePostLast = time.time()
### run loop ###
try:
while(1):
if ser.is_open:
try:
bytesWaiting = ser.in_waiting
except Exception as e:
print("Serial Port input exception:", e)
appLogger.debug("Serial Port input exception: %s", e)
bytesWaiting = 0
ser.close()
time.sleep(10)
continue
if bytesWaiting > 0:
# to print raw data in hex decomment here and comment the rest of the while(1)
# print("\nSerial Waiting:", bytesWaiting)
# bufferSerial = ser.read(bytesWaiting)
# bufferSerialNum = list(bufferSerial)
# for i in range(0,bytesWaiting):
# print("", format(bufferSerialNum[i], "02X"), end='', flush=True)
# startChar = 1;
# to start decoding packets decmment here
startChar = int.from_bytes(ser.read(1), byteorder='little', signed=False)
if startChar == START_CHAR:
startBuf = int.from_bytes(ser.read(3), byteorder='little', signed=False)
if startBuf == START_BUF:
# Received START: decode packet header
nodeID = int.from_bytes(ser.read(1), byteorder='little', signed=False)
counter = int.from_bytes(ser.read(1), byteorder='little', signed=False)
pktLast = (counter & 128)
pktCount = counter & 127
# print("Counter:", pktCount, "type:", type(pktCount))
tmpBuf = ser.read(2)
dataLen = int.from_bytes(tmpBuf, byteorder='little', signed=False)
# print("Data Length:", dataLen, "type:", type(dataLen))
if (dataLen-1) % 9 != 0: #TODO: 9 is the single node report size. Parametrize it!
# print("\n#### Corrupted packetLength #### NodeID:", nodeID, "\tcounter", pktCount, "\tdataLen", dataLen-1, "\tendChar", endChar)
appLogger.debug("PKT CorruptedLen NodeID %s counter %d dataLen %d", nodeID, pktCount, dataLen-1)
continue
#end if
# read packet payload
dataBuf = ser.read(dataLen-1) # NB: ser.read is blocking! TODO: maybe use the non blocking version with a timeout of 100ms
endChar = ser.read(1)
if endChar != b'\n': #TODO: parametrize endchar '\n'
numBuf = list(dataBuf)
payloadStr = ""
for i in range(0,dataLen-1):
payloadStr = payloadStr + ' {:02X}'.format(numBuf[i])
endBuf = list(endChar)
# payloadStr = payloadStr + " {:02X}".format(endBuf[0]) + " {:02X}".format(endBuf[1])
payloadStr = payloadStr + ' {:02X}'.format(endBuf[0])
# print("\n#### Corrupted endChar #### NodeID:", nodeID, "\tcounter", pktCount, "\tdataLen", dataLen-1, "\tendChar", endChar)
appLogger.debug("PKT CorruptedEnd NodeID %s counter %d dataLen %d payloadHex:%s", nodeID, pktCount, dataLen-1, payloadStr)
continue
#end if endChar != b'\n\x00'
# timestamp for received packet
timenow = time.time()
timestamp = int(round(timenow * 1000))
timestr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(timenow))
hourstr = time.strftime("[%H:%M:%S]", time.localtime(timenow))
# decode payload: Contact data (9Byte) = [node_id(6Byte)][last_rssi(1Byte)][max_rssi(1Byte)][rx_pkt_count(1Byte)]
# node_id saved as big_endiann
tmpContactList = []
corrupted = False
i = 0;
while i <= dataLen-10: #TODO: 10 is the single node report size - 1. Parametrize it
tmpContact = struct.unpack_from("6sbbB", dataBuf, i)
# print("type tmpContact:", type(tmpContact), "tmpContact:", tmpContact)
# print("type tmpContact[0]:", type(tmpContact[0]), "tmpContact[0]:", tmpContact[0])
beaconIDstr = ""
tmplist = list(tmpContact[0])
# next three lines are used to check if the first 5 bytes are zero, not to be used in the general case
# if (tmplist[0] != 0) or (tmplist[1] != 0) or (tmplist[2] != 0) or (tmplist[3] != 0) or (tmplist[4] != 0):
# corrupted = True
# break
for strid in tmplist:
beaconIDstr = beaconIDstr + "{:02X}".format(strid)
# print("type nodeIDstr:", type(nodeIDstr), "nodeIDstr:", nodeIDstr)
tmpContactList.append({"wsnNodeId":beaconIDstr, "eventType":EVENT_BECON_CONTACT, "timestamp":timestamp, "payload":{"EndNodeID":str(nodeID), "lastRSSI":tmpContact[1], "maxRSSI":tmpContact[2], "pktCounter":tmpContact[3]}})
i = i + 9 # TODO: ingle node report size. Parametrize it
# end while
if corrupted:
numBuf = list(dataBuf)
payloadStr = ""
for i in range(0,dataLen-1):
payloadStr = payloadStr + ' {:02X}'.format(numBuf[i])
endBuf = list(endChar)
# payloadStr = payloadStr + ' {:02X}'.format(endBuf[0]) + ' {:02X}'.format(endBuf[1])
payloadStr = payloadStr + ' {:02X}'.format(endBuf[0])
# print("\n#### Corrupted payload #### NodeID:", nodeID, "\tcounter", pktCount, "\tdataLen", dataLen-1, "\tendChar", endChar)
appLogger.debug("PKT CorruptedPayload NodeID %s counter %d dataLen %d payloadHex:%s", nodeID, pktCount, dataLen-1, payloadStr)
tmpContactList = []
continue
#end if corrupted
# print pkt header
print("")
# print(timestr, "nodeID:", nodeID, "\tlast:", pktLast, "\tcounter:", pktCount, "\tdataLen:", dataLen-1, "\tendChar:", endChar)
# demo print, remaps nodesIDs for the terminal plot
# print(hourstr, "\tNodeID:", nodeID, "\tPKT counter:", pktCount, "\t# beacons:", int((dataLen-1)/9) )
#if nodeID == 4:
# nodeIDprint = 1
#elif nodeID == 132:
# nodeIDprint = 2
#elif nodeID == 135:
# nodeIDprint = 3
#else:
# nodeIDprint = 0
nodeIDprint = nodeID
print(hourstr, "NodeID:", nodeIDprint)
# print packet payload as hex
# numBuf = list(dataBuf)
# payloadStr = "hex:"
# for i in range(0,dataLen-1):
# print(' {:02X}'.format(numBuf[i]), end='')
# payloadStr = payloadStr + ' {:02X}'.format(numBuf[i])
#
# print("")
# print contacts from contactList
for item in tmpContactList:
# print("BeaconID: ", item["wsnNodeId"], end=" ")
# # print(" Timestamp: ", item["timestamp"], end="")
# print("lastRSSI: ", item["payload"]["lastRSSI"], end=" ")
# print("maxRSSI: ", item["payload"]["maxRSSI"], end=" ")
# print("pktcounter: ", item["payload"]["pktCounter"])
# demo print
# idstr = item["wsnNodeId"]
# print("type idstr:", type(idstr), "idstr:", idstr)
# print("BeaconID:", item["wsnNodeId"][-2:], "\tmax RSSI:", item["payload"]["maxRSSI"], "\t# contacts:", item["payload"]["pktCounter"])
print("BeaconID:", item["wsnNodeId"][-2:], "\tcontacts:", item["payload"]["pktCounter"], "\tmax RSSI:", item["payload"]["maxRSSI"])
## end for
### log on local data file
# log from contactList
contactStr = ""
for item in tmpContactList:
tmps = " " + item["wsnNodeId"] + " " + str(item["payload"]["lastRSSI"]) + " " + str(item["payload"]["maxRSSI"]) + " " + str(item["payload"]["pktCounter"])
contactStr = contactStr + tmps
# end for
dataLogger.debug("%s %s NodeID %d Last %d Counter %d DataLen %d Contacts [ID-last-max-cnt]%s", timestr, timestamp, nodeID, pktLast, pktCount, dataLen-1, contactStr)
### send data to server
contactList.extend(tmpContactList) #TODO: check the number of contacts in the buffer before adding the new contacts
numContacts = len(contactList)
if numContacts > MAX_CONTACTS_LIST: #TODO: add an error print somewhere if the buffer size is exceeded
del contactList[:(numContacts-MAX_CONTACTS_LIST)]
numContacts = len(contactList)
# print("Current packet:", len(tmpContactList), "contacts. Buffer to send:", numContacts, "contacts")
timePost = time.time()
if timePost - timePostLast > MIN_POST_PERIOD_S:
print("POST request: sending", numContacts, "contacts...")
exc = 0
try:
r = requests.post(urlDev, json=contactList, headers=headers) #blocking call, may take some time to execute
except Exception as e:
print("POST request exception:", e)
appLogger.debug("POST request exception: %s", e)
exc = 1
if exc == 0:
if r.status_code == requests.codes.ok:
print("POST Response: OK")
appLogger.debug("POST request with %d contacts. Response: OK", numContacts)
contactList = []
else:
print("POST Response: ERROR code:", r.status_code, "error:", r.text)
appLogger.debug("POST request with %d contacts. Response: ERROR! code: %d error: %s", numContacts, r.status_code, r.text)
# end if r.status_code
# end if exc == 0
timePostLast = time.time()
# end if timePost - timePostLast > MIN_POST_PERIOD_S
### cleanup
dataBuf = None
# end if startBuf == START_BUF
else:
# received random char NOT packet start
# startList = list(startChar)
payloadStr = "{:02X}".format(startChar)
print(payloadStr, end=" ")
appLogger.debug("START charHex: %s", payloadStr)
# end if startChar == 42
# end if bytesWaiting > 0
else: # !ser.is_open (serial port is not open)
print('Serial Port closed! Trying to open port:', ser.port)
try:
ser.open()
except Exception as e:
print("Serial Port open exception:", e)
appLogger.debug("Serial Port exception: %s", e)
time.sleep(10)
continue
print("Serial Port open!")
appLogger.debug("Serial Port open")
ser.reset_input_buffer()
contactList = []
# end if ser.is_open
# end while(1)
except KeyboardInterrupt as key:
# print("Keyboard Interrupt! Exit")
print("Shutdown requested... exiting")
appLogger.debug("Keyboard Interrupt, Exit")
except Exception as e:
print("Running exception:", e)
appLogger.debug("Running exception: %s", e)
# close and clean before exit
if ser.is_open:
print("Closing Serial Port")
ser.close()
# end if ser.is_open
print("Closing Data Log Handler")
log = logging.getLogger(nameDataLog) #nameDataLog
# print("Log:", log)
logHandlers = log.handlers[:]
# print("Log Handlers:", logHandlers)
for handler in logHandlers:
# print("Closing Log Handler:", handler)
handler.close()
# print("Closing Log:", logHandlers)
log.removeHandler(logHandlers)
print("Closing App Log Handler")
log = logging.getLogger(nameAppLog) #nameDataLog
# print("Log:", log)
logHandlers = log.handlers[:]
# print("Log Handlers:", logHandlers)
for handler in logHandlers:
# print("Closing Log Handler:", handler)
handler.close()
# print("Closing Log:", logHandlers)
log.removeHandler(logHandlers)
sys.exit(0)
|
py | 1a448621d4b418cb598fdeecb0d893637a5db8a9 | # Plugin for gallery_get.
# Each definition can be one of the following:
# - a string
# - a regex string
# - a function that takes source as a parameter and returns an array or a string. (You may assume that re and urllib are already imported.)
# If you comment out a parameter, it will use the default defined in __init__.py
# identifier (default = name of this plugin after "plugin_") : If there's a match, we'll attempt to download images using this plugin.
# title: parses the gallery page for a title. This will be the folder name of the output gallery.
# redirect: if the links in the gallery page go to an html instead of an image, use this to parse the gallery page.
# direct_links: if redirect is non-empty, this parses each redirect page for a single image. Otherwise, this parses the gallery page for all images.
direct_links = r'meta property="og:image" content="(.+?)"'
# same_filename (default=False): if True, uses filename specified on remote link. Otherwise, creates own filename with incremental index.
|
py | 1a448766403f2f2c6bdf8ecc04ef7b214cf55af3 | # coding=utf8
import numpy as np
def rerec(bbox):
'''
Convert to square
:param bbox:
:return:
'''
h = bbox[:, 2] - bbox[:, 0] + 1
w = bbox[:, 3] - bbox[:, 1] + 1
max_l = np.maximum(h, w)
bbox[:, 0] = np.round(bbox[:, 0] + (h - max_l) * 0.5)
bbox[:, 1] = np.round(bbox[:, 1] + (w - max_l) * 0.5)
bbox[:, 2] = bbox[:, 0] + max_l - 1
bbox[:, 3] = bbox[:, 1] + max_l - 1
return bbox |
py | 1a4487aa2926bb5ffd9332a8a30a9ae081d6df31 | #hash(object)
print(hash(1))
print(hash('a'))
|
py | 1a448801aa3a4200d01cf0a2c7bf939cafdea682 | #!/usr/bin/env python
from setuptools import setup, find_packages
setup(
name='hydra-json',
version='0.1',
description='App to import and export hydra networks in JSON format',
packages=find_packages(),
include_package_data=True,
install_requires=[],
entry_points='''
[console_scripts]
hydra-json=hydra_json.cli:start_cli
''',
)
|
py | 1a448803503cf7d163587edd632e8b19ae19a797 | import os
from binascii import unhexlify
import pytest
from cose.algorithms import EdDSA
from cose.keys.curves import Ed448, Ed25519, X448, X25519
from cose.exceptions import CoseInvalidKey, CoseIllegalKeyType, CoseUnsupportedCurve, CoseException, CoseIllegalKeyOps
from cose.keys import OKPKey, CoseKey
from cose.keys.keyops import SignOp, MacVerifyOp
from cose.keys.keyparam import KpKty, OKPKpCurve, OKPKpX, OKPKpD, KpAlg, KpKeyOps
###############################################################
# OKP key checks
###############################################################
from cose.keys.keytype import KtyOKP, KtyEC2, KtySymmetric
def _is_valid_okp_key(key: OKPKey):
check1 = (KpKty in key and OKPKpCurve in key) and (OKPKpX in key or OKPKpD in key)
check2 = key[OKPKpCurve] in [X25519, X448, Ed25519, Ed448]
return check2 and check1
@pytest.mark.parametrize('kty_attr, kty_value',
[(KpKty, KtyOKP), ('KTY', 'OKP'), (1, 1),
(KpKty, 'OKP'), (KpKty, 1),
('KTY', KtyOKP), ('KTY', 1),
(1, KtyOKP), (1, 'OKP')])
@pytest.mark.parametrize('crv_attr, crv_value', [(OKPKpCurve, X25519), ('CURVE', X25519), (-1, X25519)])
@pytest.mark.parametrize('x_attr, x_value', [(OKPKpX, os.urandom(32)), ('X', os.urandom(32)), (-2, os.urandom(32))])
@pytest.mark.parametrize('d_attr, d_value', [(OKPKpD, os.urandom(32)), ('D', os.urandom(32)), (-4, os.urandom(32))])
def test_okp_keys_from_dicts(kty_attr, kty_value, crv_attr, crv_value, x_attr, x_value, d_attr, d_value):
# The public and private values used in this test do not form a valid elliptic curve key,
# but we don't care about that here
d = {kty_attr: kty_value, crv_attr: crv_value, x_attr: x_value, d_attr: d_value}
cose_key = CoseKey.from_dict(d)
assert _is_valid_okp_key(cose_key)
@pytest.mark.parametrize('kty_attr, kty_value', [(KpKty, KtyOKP), ('KTY', 'OKP'), (1, 1)])
@pytest.mark.parametrize('crv_attr, crv_value', [(OKPKpCurve, Ed25519)])
@pytest.mark.parametrize('d_attr, d_value', [(OKPKpD, os.urandom(32)), ('D', os.urandom(32)), (-4, os.urandom(32))])
def test_okp_private_key_from_dicts(kty_attr, kty_value, crv_attr, crv_value, d_attr, d_value):
# The public and private values used in this test do not form a valid elliptic curve key,
# but we don't care about that here
d = {kty_attr: kty_value, crv_attr: crv_value, d_attr: d_value}
cose_key = CoseKey.from_dict(d)
assert _is_valid_okp_key(cose_key)
@pytest.mark.parametrize('kty_attr, kty_value', [(KpKty, KtyOKP), ('KTY', 'OKP'), (1, 1)])
@pytest.mark.parametrize('crv_attr, crv_value', [(OKPKpCurve, Ed448), ('CURVE', Ed448), (-1, Ed448)])
@pytest.mark.parametrize('x_attr, x_value', [(OKPKpX, os.urandom(32)), ('X', os.urandom(32)), (-2, os.urandom(32))])
def test_okp_public_keys_from_dicts(kty_attr, kty_value, crv_attr, crv_value, x_attr, x_value):
# The public and private values used in this test do not form a valid elliptic curve key,
# but we don't care about that here
d = {kty_attr: kty_value, crv_attr: crv_value, x_attr: x_value}
cose_key = CoseKey.from_dict(d)
assert _is_valid_okp_key(cose_key)
@pytest.mark.parametrize('crv', [X25519, X448, Ed25519, Ed448, 4, 'X25519', 'X448'])
def test_okp_key_generation_encoding_decoding(crv):
trails = 256
for i in range(trails):
okp_test = OKPKey.generate_key(crv=crv)
okp_encoded = okp_test.encode()
okp_decoded = CoseKey.decode(okp_encoded)
assert _is_valid_okp_key(okp_decoded)
@pytest.mark.parametrize('crv', [X25519, X448, Ed25519, Ed448, 'X25519', 4, 5])
def test_okp_key_generation(crv):
key = OKPKey.generate_key(crv)
assert _is_valid_okp_key(key)
@pytest.mark.parametrize('crv', [X25519, X448, Ed25519, Ed448])
def test_okp_key_construction(crv):
key = OKPKey(crv=crv, x=os.urandom(32), d=os.urandom(32), optional_params={'ALG': 'EDDSA'})
assert _is_valid_okp_key(key)
serialized = key.encode()
_ = CoseKey.decode(serialized)
@pytest.mark.parametrize('crv', [X25519, X448, Ed25519, Ed448])
def test_fail_on_missing_key_values(crv):
with pytest.raises(CoseInvalidKey) as excinfo:
_ = OKPKey(crv=crv)
assert "Either the public values or the private value must be specified" in str(excinfo.value)
def test_fail_on_missing_crv_attr():
cose_key = {KpKty: KtyOKP, OKPKpX: os.urandom(32), OKPKpD: os.urandom(32)}
with pytest.raises(CoseInvalidKey) as excinfo:
_ = CoseKey.from_dict(cose_key)
assert "COSE curve cannot be None" in str(excinfo.value)
@pytest.mark.parametrize('crv', [X25519, X448, Ed25519, Ed448])
@pytest.mark.parametrize('kty', [KtyEC2, KtySymmetric, 2, 4])
def test_fail_on_illegal_kty(crv, kty):
params = {KpKty: kty}
with pytest.raises(CoseIllegalKeyType) as excinfo:
_ = OKPKey(crv=crv, x=os.urandom(32), d=os.urandom(32), optional_params=params)
assert "Illegal key type in OKP COSE Key" in str(excinfo.value)
def test_remove_empty_keyops_list():
cose_key = {KpKty: KtyOKP, OKPKpD: os.urandom(16), KpAlg: EdDSA, OKPKpCurve: Ed25519, KpKeyOps: []}
key = CoseKey.from_dict(cose_key)
assert KpKeyOps not in key
def test_existing_non_empty_keyops_list():
cose_key = {KpKty: KtyOKP, OKPKpD: os.urandom(16), KpAlg: EdDSA, OKPKpCurve: Ed448, KpKeyOps: [SignOp]}
key = CoseKey.from_dict(cose_key)
assert KpKeyOps in key
def test_key_ops_setter_getter():
key = OKPKey.generate_key('ED25519')
key.key_ops = [SignOp]
assert SignOp in key.key_ops
with pytest.raises(CoseIllegalKeyOps) as excinfo:
key.key_ops = [MacVerifyOp]
assert "Invalid COSE key operation" in str(excinfo)
def test_dict_operations_on_okp_key():
cose_key = {KpKty: KtyOKP, OKPKpD: os.urandom(16), KpAlg: EdDSA, OKPKpCurve: Ed448, KpKeyOps: [SignOp]}
key = CoseKey.from_dict(cose_key)
assert KpKty in key
assert OKPKpD in key
assert OKPKpX not in key
assert 1 in key
assert -4 in key
assert KpAlg in key
assert 'ALG' in key
def test_unknown_key_attributes():
key = 'a401012004215820a3ff263595beb377d1a0ce1d04dad2d40966ac6bcb622051b84659184d5d9a326c7375626a656374206e616d6560'
key = CoseKey.decode(unhexlify(key))
assert "subject name" in key
def test_key_set_curve():
key = 'a401012006215820898ff79a02067a16ea1eccb90fa52246f5aa4dd6ec076bba0259d904b7ec8b0c2358208f781a095372f85b6d' \
'9f6109ae422611734d7dbfa0069a2df2935bb2e053bf35'
key = CoseKey.decode(unhexlify(key))
assert key.crv == Ed25519
key.crv = X25519
assert key.crv == X25519
with pytest.raises(CoseUnsupportedCurve) as excinfo:
key.crv = 3 # P-521
assert "Invalid COSE curve" in str(excinfo.value)
key.crv = X448.identifier
assert key.crv == X448
def test_key_generation_with_optional_parameters():
key = OKPKey.generate_key(crv='ED25519', optional_params={'KpKid': 4})
|
py | 1a44889276d7b3cac6483a61278995444717afec | from ...core import (Function, I, Integer, Rational, cacheit, nan, oo, pi,
sympify, zoo)
from ...core.function import ArgumentIndexError, _coeff_isneg
from ..combinatorial.factorials import RisingFactorial, factorial
from .exponential import exp, log
from .miscellaneous import sqrt
def _rewrite_hyperbolics_as_exp(expr):
expr = sympify(expr)
return expr.xreplace({h: h.rewrite(exp)
for h in expr.atoms(HyperbolicFunction)})
###############################################################################
# ######################### HYPERBOLIC FUNCTIONS ############################ #
###############################################################################
class HyperbolicFunction(Function):
"""
Base class for hyperbolic functions.
See Also
========
diofant.functions.elementary.hyperbolic.sinh
diofant.functions.elementary.hyperbolic.cosh
diofant.functions.elementary.hyperbolic.tanh
diofant.functions.elementary.hyperbolic.coth
"""
unbranched = True
class sinh(HyperbolicFunction):
r"""
The hyperbolic sine function, `\frac{e^x - e^{-x}}{2}`.
* sinh(x) -> Returns the hyperbolic sine of x
See Also
========
diofant.functions.elementary.hyperbolic.cosh
diofant.functions.elementary.hyperbolic.tanh
diofant.functions.elementary.hyperbolic.asinh
"""
def fdiff(self, argindex=1):
"""Returns the first derivative of this function."""
if argindex == 1:
return cosh(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""Returns the inverse of this function."""
return asinh
@classmethod
def eval(cls, arg):
from .trigonometric import sin
arg = sympify(arg)
if arg.is_Number:
if arg in (oo, -oo, 0):
return arg
elif arg.is_negative:
return -cls(-arg)
else:
if arg is zoo:
return nan
i_coeff = arg.as_coefficient(I)
if i_coeff is not None:
return I * sin(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
if arg.func == asinh:
return arg.args[0]
if arg.func == acosh:
x = arg.args[0]
return sqrt(x - 1) * sqrt(x + 1)
if arg.func == atanh:
x = arg.args[0]
return x/sqrt(1 - x**2)
if arg.func == acoth:
x = arg.args[0]
return 1/(sqrt(x - 1) * sqrt(x + 1))
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""Returns the next term in the Taylor series expansion."""
if n < 0 or n % 2 == 0:
return Integer(0)
else:
x = sympify(x)
if len(previous_terms) >= 2:
p = previous_terms[-2]
return p * x**2 / (n*(n - 1))
else:
return x**n / factorial(n)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
"""Returns this function as a complex coordinate."""
from .trigonometric import cos, sin
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return self.expand(deep, **hints), Integer(0)
else:
return self, Integer(0)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return sinh(re)*cos(im), cosh(re)*sin(im)
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*I
def _eval_expand_trig(self, **hints):
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
x, y = arg.as_two_terms()
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff != 1 and coeff.is_Integer and terms != 1:
x = terms
y = (coeff - 1)*x
if x is not None:
return (sinh(x)*cosh(y) + sinh(y)*cosh(x)).expand(trig=True)
return sinh(arg)
def _eval_rewrite_as_tractable(self, arg):
return (exp(arg) - exp(-arg)) / 2
def _eval_rewrite_as_exp(self, arg):
return (exp(arg) - exp(-arg)) / 2
def _eval_rewrite_as_cosh(self, arg):
return -I*cosh(arg + pi*I/2)
def _eval_rewrite_as_tanh(self, arg):
tanh_half = tanh(arg/2)
return 2*tanh_half/(1 - tanh_half**2)
def _eval_rewrite_as_coth(self, arg):
coth_half = coth(arg/2)
return 2*coth_half/(coth_half**2 - 1)
def _eval_as_leading_term(self, x):
from ...series import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_finite(self):
if self.args[0].is_imaginary:
return True
class cosh(HyperbolicFunction):
r"""
The hyperbolic cosine function, `\frac{e^x + e^{-x}}{2}`.
* cosh(x) -> Returns the hyperbolic cosine of x
See Also
========
diofant.functions.elementary.hyperbolic.sinh
diofant.functions.elementary.hyperbolic.tanh
diofant.functions.elementary.hyperbolic.acosh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return sinh(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from .trigonometric import cos
arg = sympify(arg)
if arg.is_Number:
if arg in (oo, -oo):
return oo
elif arg == 0:
return Integer(1)
elif arg.is_negative:
return cls(-arg)
else:
if arg is zoo:
return nan
i_coeff = arg.as_coefficient(I)
if i_coeff is not None:
return cos(i_coeff)
else:
if _coeff_isneg(arg):
return cls(-arg)
if arg.func == asinh:
return sqrt(1 + arg.args[0]**2)
if arg.func == acosh:
return arg.args[0]
if arg.func == atanh:
return 1/sqrt(1 - arg.args[0]**2)
if arg.func == acoth:
x = arg.args[0]
return x/(sqrt(x - 1) * sqrt(x + 1))
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 1:
return Integer(0)
else:
x = sympify(x)
if len(previous_terms) >= 2:
p = previous_terms[-2]
return p * x**2 / (n*(n - 1))
else:
return x**n/factorial(n)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from .trigonometric import cos, sin
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return self.expand(deep, **hints), Integer(0)
else:
return self, Integer(0)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return cosh(re)*cos(im), sinh(re)*sin(im)
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*I
def _eval_expand_trig(self, deep=True, **hints):
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
x, y = arg.as_two_terms()
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff != 1 and coeff.is_Integer and terms != 1:
x = terms
y = (coeff - 1)*x
if x is not None:
return (cosh(x)*cosh(y) + sinh(x)*sinh(y)).expand(trig=True)
return cosh(arg)
def _eval_rewrite_as_tractable(self, arg):
return (exp(arg) + exp(-arg)) / 2
def _eval_rewrite_as_exp(self, arg):
return (exp(arg) + exp(-arg)) / 2
def _eval_rewrite_as_sinh(self, arg):
return -I*sinh(arg + pi*I/2)
def _eval_rewrite_as_tanh(self, arg):
tanh_half = tanh(arg/2)**2
return (1 + tanh_half)/(1 - tanh_half)
def _eval_rewrite_as_coth(self, arg):
coth_half = coth(arg/2)**2
return (coth_half + 1)/(coth_half - 1)
def _eval_as_leading_term(self, x):
from ...series import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return Integer(1)
else:
return self.func(arg)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_finite(self):
if self.args[0].is_imaginary:
return True
class tanh(HyperbolicFunction):
r"""
The hyperbolic tangent function, `\frac{\sinh(x)}{\cosh(x)}`.
* tanh(x) -> Returns the hyperbolic tangent of x
See Also
========
diofant.functions.elementary.hyperbolic.sinh
diofant.functions.elementary.hyperbolic.cosh
diofant.functions.elementary.hyperbolic.atanh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1 - tanh(self.args[0])**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""Returns the inverse of this function."""
return atanh
@classmethod
def eval(cls, arg):
from .trigonometric import tan
arg = sympify(arg)
if arg.is_Number:
if arg is oo:
return Integer(1)
elif arg == -oo:
return Integer(-1)
elif arg == 0:
return Integer(0)
elif arg.is_negative:
return -cls(-arg)
else:
if arg is zoo:
return nan
i_coeff = arg.as_coefficient(I)
if i_coeff is not None:
if _coeff_isneg(i_coeff):
return -I * tan(-i_coeff)
return I * tan(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
if arg.func == asinh:
x = arg.args[0]
return x/sqrt(1 + x**2)
if arg.func == acosh:
x = arg.args[0]
return sqrt(x - 1) * sqrt(x + 1) / x
if arg.func == atanh:
return arg.args[0]
if arg.func == acoth:
return 1/arg.args[0]
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from .. import bernoulli
if n < 0 or n % 2 == 0:
return Integer(0)
else:
x = sympify(x)
a = 2**(n + 1)
B = bernoulli(n + 1)
F = factorial(n + 1)
return a*(a - 1) * B/F * x**n
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from .trigonometric import cos, sin
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return self.expand(deep, **hints), Integer(0)
else:
return self, Integer(0)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
denom = sinh(re)**2 + cos(im)**2
return sinh(re)*cosh(re)/denom, sin(im)*cos(im)/denom
def _eval_rewrite_as_tractable(self, arg):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp - neg_exp)/(pos_exp + neg_exp)
def _eval_rewrite_as_exp(self, arg):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp - neg_exp)/(pos_exp + neg_exp)
def _eval_rewrite_as_sinh(self, arg):
return I*sinh(arg)/sinh(pi*I/2 - arg)
def _eval_rewrite_as_cosh(self, arg):
return I*cosh(pi*I/2 - arg)/cosh(arg)
def _eval_rewrite_as_coth(self, arg):
return 1/coth(arg)
def _eval_as_leading_term(self, x):
from ...series import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_finite(self):
if self.args[0].is_extended_real:
return True
class coth(HyperbolicFunction):
r"""
The hyperbolic cotangent function, `\frac{\cosh(x)}{\sinh(x)}`.
* coth(x) -> Returns the hyperbolic cotangent of x
"""
def fdiff(self, argindex=1):
if argindex == 1:
return -1/sinh(self.args[0])**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""Returns the inverse of this function."""
return acoth
@classmethod
def eval(cls, arg):
from .trigonometric import cot
arg = sympify(arg)
if arg.is_Number:
if arg is oo:
return Integer(1)
elif arg == -oo:
return Integer(-1)
elif arg == 0:
return zoo
elif arg.is_negative:
return -cls(-arg)
else:
if arg is zoo:
return nan
i_coeff = arg.as_coefficient(I)
if i_coeff is not None:
if _coeff_isneg(i_coeff):
return I * cot(-i_coeff)
return -I * cot(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
if arg.func == asinh:
x = arg.args[0]
return sqrt(1 + x**2)/x
if arg.func == acosh:
x = arg.args[0]
return x/(sqrt(x - 1) * sqrt(x + 1))
if arg.func == atanh:
return 1/arg.args[0]
if arg.func == acoth:
return arg.args[0]
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from .. import bernoulli
if n == 0:
return 1 / sympify(x)
elif n < 0 or n % 2 == 0:
return Integer(0)
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return 2**(n + 1) * B/F * x**n
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from .trigonometric import cos, sin
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return self.expand(deep, **hints), Integer(0)
else:
return self, Integer(0)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
denom = sinh(re)**2 + sin(im)**2
return sinh(re)*cosh(re)/denom, -sin(im)*cos(im)/denom
def _eval_rewrite_as_tractable(self, arg):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_exp(self, arg):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_sinh(self, arg):
return -I*sinh(pi*I/2 - arg)/sinh(arg)
def _eval_rewrite_as_cosh(self, arg):
return -I*cosh(arg)/cosh(pi*I/2 - arg)
def _eval_rewrite_as_tanh(self, arg):
return 1/tanh(arg)
def _eval_as_leading_term(self, x):
from ...series import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return 1/arg
else:
return self.func(arg)
class ReciprocalHyperbolicFunction(HyperbolicFunction):
"""Base class for reciprocal functions of hyperbolic functions."""
# To be defined in class
_reciprocal_of = None
_is_even = None
_is_odd = None
@classmethod
def eval(cls, arg):
if arg.could_extract_minus_sign():
if cls._is_even:
return cls(-arg)
elif cls._is_odd:
return -cls(-arg)
t = cls._reciprocal_of.eval(arg)
return 1/t if t is not None else t
def _call_reciprocal(self, method_name, *args, **kwargs):
# Calls method_name on _reciprocal_of
o = self._reciprocal_of(self.args[0])
return getattr(o, method_name)(*args, **kwargs)
def _rewrite_reciprocal(self, method_name, arg):
# Special handling for rewrite functions. If reciprocal rewrite returns
# unmodified expression, then return None
t = self._call_reciprocal(method_name, arg)
assert t is not None and t != self._reciprocal_of(arg)
return 1/t
def _eval_rewrite_as_exp(self, arg):
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg)
def _eval_rewrite_as_tractable(self, arg):
return self._rewrite_reciprocal("_eval_rewrite_as_tractable", arg)
def _eval_rewrite_as_tanh(self, arg):
return self._rewrite_reciprocal("_eval_rewrite_as_tanh", arg)
def _eval_rewrite_as_coth(self, arg):
return self._rewrite_reciprocal("_eval_rewrite_as_coth", arg)
def as_real_imag(self, deep=True, **hints):
return (1 / self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=True, **hints)
return re_part + I*im_part
def _eval_as_leading_term(self, x):
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x)
def _eval_is_extended_real(self):
return self._reciprocal_of(self.args[0]).is_extended_real
def _eval_is_finite(self):
return (1/self._reciprocal_of(self.args[0])).is_finite
class csch(ReciprocalHyperbolicFunction):
r"""
The hyperbolic cosecant function, `\frac{2}{e^x - e^{-x}}`
* csch(x) -> Returns the hyperbolic cosecant of x
See Also
========
diofant.functions.elementary.hyperbolic.sinh
diofant.functions.elementary.hyperbolic.cosh
diofant.functions.elementary.hyperbolic.tanh
diofant.functions.elementary.hyperbolic.sech
diofant.functions.elementary.hyperbolic.asinh
diofant.functions.elementary.hyperbolic.acosh
"""
_reciprocal_of = sinh
_is_odd = True
def fdiff(self, argindex=1):
"""Returns the first derivative of this function."""
if argindex == 1:
return -coth(self.args[0]) * csch(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""Returns the next term in the Taylor series expansion."""
from .. import bernoulli
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return Integer(0)
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return 2 * (1 - 2**n) * B/F * x**n
def _eval_rewrite_as_cosh(self, arg):
return I / cosh(arg + I * pi / 2)
class sech(ReciprocalHyperbolicFunction):
r"""
The hyperbolic secant function, `\frac{2}{e^x + e^{-x}}`
* sech(x) -> Returns the hyperbolic secant of x
See Also
========
diofant.functions.elementary.hyperbolic.sinh
diofant.functions.elementary.hyperbolic.cosh
diofant.functions.elementary.hyperbolic.tanh
diofant.functions.elementary.hyperbolic.coth
diofant.functions.elementary.hyperbolic.csch
diofant.functions.elementary.hyperbolic.asinh
diofant.functions.elementary.hyperbolic.acosh
"""
_reciprocal_of = cosh
_is_even = True
def fdiff(self, argindex=1):
if argindex == 1:
return - tanh(self.args[0])*sech(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from ..combinatorial.numbers import euler
if n < 0 or n % 2 == 1:
return Integer(0)
else:
x = sympify(x)
return euler(n) / factorial(n) * x**n
def _eval_rewrite_as_sinh(self, arg):
return I / sinh(arg + I * pi / 2)
###############################################################################
# ########################### HYPERBOLIC INVERSES ########################### #
###############################################################################
class asinh(Function):
"""
The inverse hyperbolic sine function.
* asinh(x) -> Returns the inverse hyperbolic sine of x
See Also
========
diofant.functions.elementary.hyperbolic.cosh
diofant.functions.elementary.hyperbolic.tanh
diofant.functions.elementary.hyperbolic.sinh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/sqrt(self.args[0]**2 + 1)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from .trigonometric import asin
arg = sympify(arg)
if arg.is_Number:
if arg in (oo, -oo, 0):
return arg
elif arg == 1:
return log(sqrt(2) + 1)
elif arg == -1:
return log(sqrt(2) - 1)
elif arg.is_negative:
return -cls(-arg)
else:
if arg is zoo:
return zoo
i_coeff = arg.as_coefficient(I)
if i_coeff is not None:
return I * asin(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return Integer(0)
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return -p * (n - 2)**2/(n*(n - 1)) * x**2
else:
k = (n - 1) // 2
R = RisingFactorial(Rational(1, 2), k)
F = factorial(k)
return (-1)**k * R / F * x**n / n
def _eval_as_leading_term(self, x):
from ...series import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_rewrite_as_log(self, x):
return log(x + sqrt(x**2 + 1))
def inverse(self, argindex=1):
"""Returns the inverse of this function."""
return sinh
class acosh(Function):
"""
The inverse hyperbolic cosine function.
* acosh(x) -> Returns the inverse hyperbolic cosine of x
See Also
========
diofant.functions.elementary.hyperbolic.asinh
diofant.functions.elementary.hyperbolic.atanh
diofant.functions.elementary.hyperbolic.cosh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/sqrt(self.args[0]**2 - 1)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
arg = sympify(arg)
if arg.is_Number:
if arg in (oo, -oo):
return oo
elif arg == 0:
return pi*I / 2
elif arg == 1:
return Integer(0)
elif arg == -1:
return pi*I
if arg.is_number:
cst_table = {
I: log(I*(1 + sqrt(2))),
-I: log(-I*(1 + sqrt(2))),
Rational(+1, 2): pi/3,
Rational(-1, 2): 2*pi/3,
sqrt(2)/2: pi/4,
-sqrt(2)/2: 3*pi/4,
1/sqrt(2): pi/4,
-1/sqrt(2): 3*pi/4,
sqrt(3)/2: pi/6,
-sqrt(3)/2: 5*pi/6,
(sqrt(3) - 1)/sqrt(2**3): 5*pi/12,
-(sqrt(3) - 1)/sqrt(2**3): 7*pi/12,
sqrt(2 + sqrt(2))/2: pi/8,
-sqrt(2 + sqrt(2))/2: 7*pi/8,
sqrt(2 - sqrt(2))/2: 3*pi/8,
-sqrt(2 - sqrt(2))/2: 5*pi/8,
(1 + sqrt(3))/(2*sqrt(2)): pi/12,
-(1 + sqrt(3))/(2*sqrt(2)): 11*pi/12,
(sqrt(5) + 1)/4: pi/5,
-(sqrt(5) + 1)/4: 4*pi/5
}
if arg in cst_table:
if arg.is_extended_real:
return cst_table[arg]*I
return cst_table[arg]
if arg.is_infinite:
return oo
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return pi*I / 2
elif n < 0 or n % 2 == 0:
return Integer(0)
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p * (n - 2)**2/(n*(n - 1)) * x**2
else:
k = (n - 1) // 2
R = RisingFactorial(Rational(1, 2), k)
F = factorial(k)
return -R / F * I * x**n / n
def _eval_as_leading_term(self, x):
from ...series import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return I*pi/2
else:
return self.func(arg)
def inverse(self, argindex=1):
"""Returns the inverse of this function."""
return cosh
class atanh(Function):
"""
The inverse hyperbolic tangent function.
* atanh(x) -> Returns the inverse hyperbolic tangent of x
See Also
========
diofant.functions.elementary.hyperbolic.asinh
diofant.functions.elementary.hyperbolic.acosh
diofant.functions.elementary.hyperbolic.tanh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from .trigonometric import atan
arg = sympify(arg)
if arg.is_Number:
if arg == 0:
return Integer(0)
elif arg == 1:
return oo
elif arg == -1:
return -oo
elif arg is oo:
return -I * atan(arg)
elif arg == -oo:
return I * atan(-arg)
elif arg.is_negative:
return -cls(-arg)
else:
if arg is zoo:
return nan
i_coeff = arg.as_coefficient(I)
if i_coeff is not None:
return I * atan(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return Integer(0)
else:
x = sympify(x)
return x**n / n
def _eval_as_leading_term(self, x):
from ...series import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def inverse(self, argindex=1):
"""Returns the inverse of this function."""
return tanh
class acoth(Function):
"""
The inverse hyperbolic cotangent function.
* acoth(x) -> Returns the inverse hyperbolic cotangent of x
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from .trigonometric import acot
arg = sympify(arg)
if arg.is_Number:
if arg in (oo, -oo):
return Integer(0)
elif arg == 0:
return pi*I / 2
elif arg == 1:
return oo
elif arg == -1:
return -oo
elif arg.is_negative:
return -cls(-arg)
else:
if arg is zoo:
return 0
i_coeff = arg.as_coefficient(I)
if i_coeff is not None:
return -I * acot(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return pi*I / 2
elif n < 0 or n % 2 == 0:
return Integer(0)
else:
x = sympify(x)
return x**n / n
def _eval_as_leading_term(self, x):
from ...series import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return I*pi/2
else:
return self.func(arg)
def inverse(self, argindex=1):
"""Returns the inverse of this function."""
return coth
|
py | 1a4488b8fc2f137cbf983a278efac394f395e35d | from django.contrib import admin
from django.urls import path
from django.urls.conf import include
from django.conf.urls import url
from django.conf import settings
from django.conf.urls.static import static
from .views import *
from . import views
urlpatterns = [
path('', views.user_login, name='login'),
path('logout/', views.user_logout, name='logout'),
path('signup/', views.user_signup, name= 'signup'),
path('profile', profile, name = 'profile'),
path('homepage', homepage, name = 'homepage'),
path('profile/update/<int:pk>', UpdateUserProfile.as_view(), name = 'UpdateUserProfile'),
path('business/update/<int:pk>', UpdateBusiness.as_view(), name = 'updatebusiness'),
path('search/', search_results, name = 'search_business'),
]
if settings.DEBUG:
urlpatterns += static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)
urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
|
py | 1a4489bdaac176027392636a0710ad4e86a20d86 | if __name__ == '__main__':
from setuptools import setup, Extension
_synctex_parser = Extension('pysynctex._synctex_parser',
sources=['wrapper/synctex_parser.i',
'wrapper/synctex_package/synctex_parser.c',
'wrapper/synctex_package/synctex_parser_utils.c'],
include_dirs=['wrapper/synctex_package'])
setup(name='PySyncTeX',
version='0.2.0',
author='Jan Kumor',
author_email='[email protected]',
description='Python wrapper for SyncTeX parser C library.',
long_description=open('README.rst').read(),
url='https://github.com/elohhim/PySyncTeX',
license="MIT",
platforms='ANY',
packages=['pysynctex'],
ext_modules=[_synctex_parser],
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'Programming Language :: Python :: 3',
'License :: OSI Approved :: MIT License',
'Operating System :: POSIX :: Linux',
'Natural Language :: English',
'Topic :: Software Development :: Libraries :: Python Modules',
'Topic :: Text Processing :: Markup :: LaTeX',
]
)
|
py | 1a448a6fc512c64be785b1fabc260b80cf5ccad8 | import copy
import datetime
from . import storages
class Database(object):
def __init__(self, storage=storages.MemoryStorage(), auto_commit=True):
self.storage = storage
if storage:
self._tables = storage.read()
else:
self._tables = {}
self.auto_commit = auto_commit
def commit(self):
self.storage.write(self._tables)
def table(self, kind):
if kind not in self._tables:
self._tables[kind] = {}
table = Table(kind, self._tables[kind], self)
return table
class Table(object):
def __init__(self, kind, dictionary=None, database=None):
self.kind = kind
if dictionary is None:
self.dictionary = {}
else:
# bind dictionary to the argument one
self.dictionary = dictionary
self.database = database
def _auto_commit(self):
if self.database and self.database.auto_commit:
self.database.commit()
def _set_object(self, object_id, obj):
self.dictionary[object_id] = dict(copy.deepcopy(obj))
self._auto_commit()
def _get_object(self, object_id):
return copy.deepcopy(self.dictionary.get(object_id, None))
def _delete_object(self, object_id):
try:
del self.dictionary[object_id]
self._auto_commit()
except KeyError:
pass
def _do_validate_id(self, object_id):
if object_id not in self.dictionary:
if isinstance(object_id, str):
object_id = "'%s'" % object_id
raise KeyError("invalid object_id %s" % str(object_id))
@classmethod
def _next_id(cls):
return str(int(datetime.datetime.now().timestamp() * 1000000))
def insert(self, obj):
object_id = self.__class__._next_id()
self._set_object(object_id, obj)
return object_id
def insert_multi(self, objects):
return [self.insert(obj) for obj in objects]
def get(self, object_id):
return self._get_object(object_id)
def get_multi(self, object_ids):
return [self.get(object_id) for object_id in object_ids]
def update(self, object_id, obj):
self._do_validate_id(object_id)
self._set_object(object_id, obj)
return object_id
def update_multi(self, object_ids, objects):
if len(object_ids) != len(objects):
raise ValueError("size of object_ids and objects must be the same")
for object_id in object_ids:
self._do_validate_id(object_id)
for object_id, obj in zip(object_ids, objects):
self._set_object(object_id, obj)
return object_ids
def update_or_insert(self, object_id, obj):
self._set_object(object_id, obj)
return object_id
def update_or_insert_multi(self, object_ids, objects):
if len(object_ids) != len(objects):
raise ValueError("size of object_ids and objects must be the same")
for object_id, obj in zip(object_ids, objects):
self._set_object(object_id, obj)
return object_ids
def delete(self, object_id, ignore_exception=False):
if not ignore_exception:
self._do_validate_id(object_id)
self._delete_object(object_id)
def delete_multi(self, object_ids):
for object_id in object_ids:
self._do_validate_id(object_id)
for object_id in object_ids:
self._delete_object(object_id)
def query(self, test_func=lambda obj: True):
return Query(self.dictionary, test_func)
class Query(object):
def __init__(self, dictionary, test_func=lambda obj: True):
self.dictionary = dictionary
self.test_func = test_func
def fetch(self, ids_only=False):
dictionary = copy.deepcopy(self.dictionary)
if ids_only:
return [object_id for object_id, obj in dictionary.items()
if self.test_func(obj)]
else:
return [obj for obj in dictionary.values() if self.test_func(obj)]
|
py | 1a448aa7c2c0ddd250222b4baaad8f74a00be1b0 | # Copyright 2018 United States Government as represented by the Administrator of
# the National Aeronautics and Space Administration. No copyright is claimed in
# the United States under Title 17, U.S. Code. All Other Rights Reserved.
# The Stochastic Reduced Order Models with Python (SROMPy) platform is licensed
# under the Apache License, Version 2.0 (the "License"); you may not use this
# file except in compliance with the License. You may obtain a copy of the
# License at http://www.apache.org/licenses/LICENSE-2.0.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
|
py | 1a448be60afc5a5671243cc00e917ea387b52758 | #!/usr/bin/env python
#################################################################################
# Copyright 2018 ROBOTIS CO., LTD.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#################################################################################
# Authors: Gilbert #
import rospy
import numpy as np
import math
from math import pi
import time
from geometry_msgs.msg import Twist, Point, Pose
from sensor_msgs.msg import LaserScan
from nav_msgs.msg import Odometry
from std_srvs.srv import Empty
from tf.transformations import euler_from_quaternion, quaternion_from_euler
from respawnGoal import Respawn
class Env():
def __init__(self, action_size):
self.goal_x = 0
self.goal_y = 0
self.heading = 0
self.action_size = action_size
self.initGoal = True
self.get_goalbox = False
self.position = Pose()
self.pub_cmd_vel = rospy.Publisher('cmd_vel', Twist, queue_size=2)
self.sub_odom = rospy.Subscriber('odom', Odometry, self.getOdometry)
self.reset_proxy = rospy.ServiceProxy('gazebo/reset_simulation', Empty)
self.unpause_proxy = rospy.ServiceProxy('gazebo/unpause_physics', Empty)
self.pause_proxy = rospy.ServiceProxy('gazebo/pause_physics', Empty)
self.respawn_goal = Respawn()
def getGoalDistace(self):
goal_distance = round(math.hypot(self.goal_x - self.position.x, self.goal_y - self.position.y), 2)
return goal_distance
def getOdometry(self, odom):
self.position = odom.pose.pose.position
orientation = odom.pose.pose.orientation
orientation_list = [orientation.x, orientation.y, orientation.z, orientation.w]
_, _, yaw = euler_from_quaternion(orientation_list)
goal_angle = math.atan2(self.goal_y - self.position.y, self.goal_x - self.position.x)
heading = goal_angle - yaw
if heading > pi:
heading -= 2 * pi
elif heading < -pi:
heading += 2 * pi
self.heading = round(heading, 2)
def getState(self, scan):
scan_range = []
heading = self.heading
min_range = 0.15
done = False
for i in range(len(scan.ranges)):
if scan.ranges[i] == float('Inf'):
scan_range.append(3.5)
elif np.isnan(scan.ranges[i]):
scan_range.append(0)
else:
scan_range.append(scan.ranges[i])
obstacle_min_range = round(min(scan_range), 2)
obstacle_angle = np.argmin(scan_range)
rospy.loginfo("min_range:%s angle:%s scan_range:%s", obstacle_min_range,obstacle_angle, scan_range )
if min_range > min(scan_range) > 0:
done = True
current_distance = round(math.hypot(self.goal_x - self.position.x, self.goal_y - self.position.y), 2)
if current_distance < 0.2:
self.get_goalbox = True
current_x = round(self.position.x,2)
current_y = round(self.position.y,2)
return [current_x,current_y,self.goal_x,self.goal_y,heading, current_distance, obstacle_min_range, obstacle_angle], done
def setReward(self, state, done, action):
yaw_reward = []
current_distance = state[-3]
heading = state[-4]
for i in range(5):
angle = -pi / 4 + heading + (pi / 8 * i) + pi / 2
tr = 1 - 4 * math.fabs(0.5 - math.modf(0.25 + 0.5 * angle % (2 * math.pi) / math.pi)[0])
yaw_reward.append(tr)
distance_rate = 2 ** (current_distance / self.goal_distance)
reward = ((round(yaw_reward[action] * 5, 2)) * distance_rate)
#rospy.loginfo("yaw_reward :%s", yaw_reward )
if done:
rospy.loginfo("Collision!!")
reward = -150
self.pub_cmd_vel.publish(Twist())
if self.get_goalbox:
rospy.loginfo("Goal!!")
reward = 200
self.pub_cmd_vel.publish(Twist())
self.goal_x, self.goal_y = self.respawn_goal.getPosition(True, delete=True)
self.goal_distance = self.getGoalDistace()
self.get_goalbox = False
return reward
def control(self, action):
#rospy.loginfo("action :%s", action )
act = int(action)
vel_cmd = Twist()
if act == 0 : #forward
vel_cmd.linear.x = 0.2
self.pub_cmd_vel.publish(vel_cmd)
elif act == 1 :#backward
vel_cmd.linear.x = -0.2
self.pub_cmd_vel.publish(vel_cmd)
elif act == 2 :#left
vel_cmd.angular.z = pi/3
self.pub_cmd_vel.publish(vel_cmd)
time.sleep(1)
vel_cmd.linear.x = 0.2
vel_cmd.angular.z = 0.0
self.pub_cmd_vel.publish(vel_cmd)
elif act == 3 :#right
vel_cmd.angular.z = -pi/3
self.pub_cmd_vel.publish(vel_cmd)
time.sleep(1)
vel_cmd.linear.x = 0.2
vel_cmd.angular.z = 0.0
self.pub_cmd_vel.publish(vel_cmd)
time.sleep(1)
data = None
while data is None:
try:
data = rospy.wait_for_message('scan', LaserScan, timeout=5)
except:
pass
state, done = self.getState(data)
reward = self.setReward(state, done, action)
return np.asarray(state), reward, done
def reset(self):
rospy.wait_for_service('gazebo/reset_simulation')
try:
self.reset_proxy()
except (rospy.ServiceException) as e:
print("gazebo/reset_simulation service call failed")
data = None
while data is None:
try:
data = rospy.wait_for_message('scan', LaserScan, timeout=5)
except:
pass
if self.initGoal:
self.goal_x, self.goal_y = self.respawn_goal.getPosition()
self.initGoal = False
self.goal_distance = self.getGoalDistace()
state, done = self.getState(data)
return np.asarray(state).tolist()
|
py | 1a448cb755aa154c4d1cb00784d3534f5b118245 | #!/usr/bin/env python3
import os, sys
service = "[Unit]\n"\
"Description={description}\n"\
"After=network.target\n"\
"StartLimitIntervalSec=0\n"\
"\n"\
"[Service]\n"\
"Type=simple\n"\
"Restart=always\n"\
"RestartSec=1\n"\
"User=root\n"\
"ExecStart={exec}\n"\
"\n"\
"[Install]\n"\
"WantedBy=multi-user.target"
name = False
desc = False
path = False
command = False
for arg in sys.argv:
if "--name=" in arg:
name = arg.split('=')[1] + ".service"
if "--path=" in arg:
path = arg.split('=')[1]
if "--command=" in arg:
command = arg.split('=')[1]
if "--desc=" in arg:
desc = arg.split('=')[1]
if arg == "-h" or arg == "--help":
print("Usage: python3 createservice.py [--name=NAME] [--path=PATH] [--command=COMMAND] [--desc=DESC]")
exit(0)
if not name:
name = input("Service name: ") + ".service"
if not path:
path = input("Executable binary path: ")
if not command:
command = input("Command and args: ")
if not desc:
desc = input("Description: ")
service = service.replace("{description}", desc).replace("{exec}", path + " " + command)
f = open("/lib/systemd/system/" + name, "w")
f.write(service)
f.close()
print(service)
print()
print("Wrote to /lib/systemd/system/" + name)
os.system("systemctl enable " + name)
os.system("systemctl start " + name)
print("Started and enabled service.") |
py | 1a448d808be139254e3a743bc4f3f1ea79902398 | import pytest
from dorfperfekt.tile import (
InvalidTileDefinitionError,
Terrain,
string2tile,
tile2string,
validate_terrains,
validate_tiles,
)
def test_tile():
tile = string2tile("frdwtg")
assert tile2string(tile) == "FRDWTG"
assert tile2string(tile._replace(ori=0)) == "DWTGFR"
assert tile2string(tile._replace(ori=-1)) == "WTGFRD"
assert tile.ori == 2
assert tile.terrains[0] is Terrain.DWELLING
assert tile.terrains[2] is Terrain.TRAIN
assert tile.terrains[(7 - tile.ori) % 6] is Terrain.RANCH
def test_from_letter():
tile = string2tile("w")
assert tile2string(tile) == "WWWWWW"
def test_equality():
tile1 = string2tile("gfrrrr")
tile2 = string2tile("frrrrg")
assert tile1.terrains == tile2.terrains
def test_assertions():
with pytest.raises(InvalidTileDefinitionError):
string2tile("gr")
with pytest.raises(InvalidTileDefinitionError):
string2tile("k")
def test_validate_terrains():
assert validate_terrains(Terrain.GRASS, Terrain.GRASS) == (True, True)
assert validate_terrains(Terrain.GRASS, Terrain.COAST) == (True, True)
assert validate_terrains(Terrain.GRASS, Terrain.WATER) == (False, False)
assert validate_terrains(Terrain.WATER, Terrain.WATER) == (True, True)
assert validate_terrains(Terrain.GRASS, Terrain.RANCH) == (True, False)
assert validate_terrains(Terrain.WATER, Terrain.OPEN) == (True, None)
def test_validate_tiles():
valid, perfect = validate_tiles(string2tile("dwwggr"), string2tile("cwrogd"))
assert not valid and perfect is None
valid, perfect = validate_tiles(string2tile("dwwggr"), string2tile("dcwrog"))
assert valid and perfect == (True, True, True, False, None, False)
|
py | 1a448e4645f4aa210308d414329e77b03ab0d70c | from distutils.core import setup
with open("README.md", "r") as fh:
long_description = fh.read()
setup(
name="GPGame",
version="2020.0.2",
author="Nishant Vikramaditya",
author_email="[email protected]",
description="An abstraction layer on the Kivy GPU accelerated engine.",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/Nv7-GitHub/GPGame",
packages=["GPGame"],
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires='>=3.6',
install_requires=["Kivy"]
)
|
py | 1a448e640a2ec33f7896aaa31aa8a14befef1235 | # Copyright 2012-2013 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
import logging
logger = logging.getLogger('bcdocs')
class BaseStyle(object):
def __init__(self, doc, indent_width=2):
self.doc = doc
self.indent_width = indent_width
self._indent = 0
self.keep_data = True
@property
def indentation(self):
return self._indent
@indentation.setter
def indentation(self, value):
self._indent = value
def new_paragraph(self):
return '\n%s' % self.spaces()
def indent(self):
self._indent += 1
def dedent(self):
if self._indent > 0:
self._indent -= 1
def spaces(self):
return ' ' * (self._indent * self.indent_width)
def bold(self, s):
return s
def ref(self, link, title=None):
return link
def h2(self, s):
return s
def h3(self, s):
return s
def underline(self, s):
return s
def italics(self, s):
return s
class ReSTStyle(BaseStyle):
def __init__(self, doc, indent_width=2):
BaseStyle.__init__(self, doc, indent_width)
self.do_p = True
self.a_href = None
self.list_depth = 0
def new_paragraph(self):
self.doc.write('\n\n%s' % self.spaces())
def new_line(self):
self.doc.write('\n%s' % self.spaces())
def _start_inline(self, markup):
self.doc.write(markup)
def _end_inline(self, markup):
# Sometimes the HTML markup has whitespace between the end
# of the text inside the inline markup and the closing element
# (e.g. <b>foobar </b>). This trailing space will cause
# problems in the ReST inline markup so we remove it here
# by popping the last item written off the stack, striping
# the whitespace and then pushing it back on the stack.
last_write = self.doc.pop_write()
self.doc.push_write(last_write.rstrip(' '))
self.doc.write(markup + ' ')
def start_bold(self, attrs=None):
self._start_inline('**')
def end_bold(self):
self._end_inline('**')
def start_b(self, attrs=None):
self.doc.do_translation = True
self.start_bold(attrs)
def end_b(self):
self.doc.do_translation = False
self.end_bold()
def bold(self, s):
if s:
self.start_bold()
self.doc.write(s)
self.end_bold()
def ref(self, title, link=None):
if link is None:
link = title
self.doc.write(':doc:`%s <%s>`' % (title, link))
def _heading(self, s, border_char):
border = border_char * len(s)
self.new_paragraph()
self.doc.write('%s\n%s\n%s' % (border, s, border))
self.new_paragraph()
def h1(self, s):
self._heading(s, '*')
def h2(self, s):
self._heading(s, '=')
def h3(self, s):
self._heading(s, '-')
def start_italics(self, attrs=None):
self._start_inline('*')
def end_italics(self):
self._end_inline('*')
def italics(self, s):
if s:
self.start_italics()
self.doc.write(s)
self.end_italics()
def start_p(self, attrs=None):
if self.do_p:
self.doc.write('\n\n%s' % self.spaces())
def end_p(self):
if self.do_p:
self.doc.write('\n\n%s' % self.spaces())
def start_code(self, attrs=None):
self.doc.do_translation = True
self._start_inline('``')
def end_code(self):
self.doc.do_translation = False
self._end_inline('``')
def code(self, s):
if s:
self.start_code()
self.doc.write(s)
self.end_code()
def start_note(self, attrs=None):
self.new_paragraph()
self.doc.write('.. note::')
self.indent()
self.new_paragraph()
def end_note(self):
self.dedent()
self.new_paragraph()
def start_important(self, attrs=None):
self.new_paragraph()
self.doc.write('.. warning::')
self.indent()
self.new_paragraph()
def end_important(self):
self.dedent()
self.new_paragraph()
def start_danger(self, attrs=None):
self.new_paragraph()
self.doc.write('.. danger::')
self.indent()
self.new_paragraph()
def end_danger(self):
self.dedent()
self.new_paragraph()
def start_a(self, attrs=None):
if attrs:
for attr_key, attr_value in attrs:
if attr_key == 'href':
self.a_href = attr_value
self.doc.write('`')
else:
# There are some model documentation that
# looks like this: <a>DescribeInstances</a>.
# In this case we just write out an empty
# string.
self.doc.write(' ')
self.doc.do_translation = True
def link_target_definition(self, refname, link):
self.doc.writeln('.. _%s: %s' % (refname, link))
def sphinx_reference_label(self, label, text=None):
if text is None:
text = label
if self.doc.target == 'html':
self.doc.write(':ref:`%s <%s>`' % (text, label))
else:
self.doc.write(text)
def end_a(self):
self.doc.do_translation = False
if self.a_href:
last_write = self.doc.pop_write()
last_write = last_write.rstrip(' ')
if last_write and last_write != '`':
if ':' in last_write:
last_write = last_write.replace(':', r'\:')
self.doc.push_write(last_write)
self.doc.push_write(' <%s>`__' % self.a_href)
elif last_write == '`':
# Look at start_a(). It will do a self.doc.write('`')
# which is the start of the link title. If that is the
# case then there was no link text. We should just
# use an inline link. The syntax of this is
# `<http://url>`_
self.doc.push_write('`<%s>`__' % self.a_href)
else:
self.doc.push_write(self.a_href)
self.doc.hrefs[self.a_href] = self.a_href
self.doc.write('`__')
self.a_href = None
self.doc.write(' ')
def start_i(self, attrs=None):
self.doc.do_translation = True
self.start_italics()
def end_i(self):
self.doc.do_translation = False
self.end_italics()
def start_li(self, attrs=None):
self.new_line()
self.do_p = False
self.doc.write('* ')
def end_li(self):
self.do_p = True
self.new_line()
def li(self, s):
if s:
self.start_li()
self.doc.writeln(s)
self.end_li()
def start_ul(self, attrs=None):
if self.list_depth != 0:
self.indent()
self.list_depth += 1
self.new_paragraph()
def end_ul(self):
self.list_depth -= 1
if self.list_depth != 0:
self.dedent()
self.new_paragraph()
def start_ol(self, attrs=None):
# TODO: Need to control the bullets used for LI items
if self.list_depth != 0:
self.indent()
self.list_depth += 1
self.new_paragraph()
def end_ol(self):
self.list_depth -= 1
if self.list_depth != 0:
self.dedent()
self.new_paragraph()
def start_examples(self, attrs=None):
self.doc.keep_data = False
def end_examples(self):
self.doc.keep_data = True
def start_fullname(self, attrs=None):
self.doc.keep_data = False
def end_fullname(self):
self.doc.keep_data = True
def start_codeblock(self, attrs=None):
self.doc.write('::')
self.indent()
self.new_paragraph()
def end_codeblock(self):
self.dedent()
self.new_paragraph()
def codeblock(self, code):
"""
Literal code blocks are introduced by ending a paragraph with
the special marker ::. The literal block must be indented
(and, like all paragraphs, separated from the surrounding
ones by blank lines).
"""
self.start_codeblock()
self.doc.writeln(code)
self.end_codeblock()
def toctree(self):
if self.doc.target == 'html':
self.doc.write('\n.. toctree::\n')
self.doc.write(' :maxdepth: 1\n')
self.doc.write(' :titlesonly:\n\n')
else:
self.start_ul()
def tocitem(self, item, file_name=None):
if self.doc.target == 'man':
self.li(item)
else:
if file_name:
self.doc.writeln(' %s' % file_name)
else:
self.doc.writeln(' %s' % item)
def hidden_toctree(self):
if self.doc.target == 'html':
self.doc.write('\n.. toctree::\n')
self.doc.write(' :maxdepth: 1\n')
self.doc.write(' :hidden:\n\n')
def hidden_tocitem(self, item):
if self.doc.target == 'html':
self.tocitem(item)
def table_of_contents(self, title=None, depth=None):
self.doc.write('.. contents:: ')
if title is not None:
self.doc.writeln(title)
if depth is not None:
self.doc.writeln(' :depth: %s' % depth)
def start_sphinx_py_class(self, class_name):
self.new_paragraph()
self.doc.write('.. py:class:: %s' % class_name)
self.indent()
self.new_paragraph()
def end_sphinx_py_class(self):
self.dedent()
self.new_paragraph()
def start_sphinx_py_method(self, method_name, parameters=None):
self.new_paragraph()
content = '.. py:method:: %s' % method_name
if parameters is not None:
content += '(%s)' % parameters
self.doc.write(content)
self.indent()
self.new_paragraph()
def end_sphinx_py_method(self):
self.dedent()
self.new_paragraph()
def start_sphinx_py_attr(self, attr_name):
self.new_paragraph()
self.doc.write('.. py:attribute:: %s' % attr_name)
self.indent()
self.new_paragraph()
def end_sphinx_py_attr(self):
self.dedent()
self.new_paragraph()
def write_py_doc_string(self, docstring):
docstring_lines = docstring.splitlines()
for docstring_line in docstring_lines:
self.doc.writeln(docstring_line)
def external_link(self, title, link):
if self.doc.target == 'html':
self.doc.write('`%s <%s>`_' % (title, link))
else:
self.doc.write(title)
|
py | 1a448ec802754f313a500e2ecf6595ce2aa1a345 | from django.apps import AppConfig
class NotificationsConfig(AppConfig):
name = 'toss.notifications'
|
py | 1a448f74c1fa75348c2096a2bbe0e02103c24a1b | import tempfile, time, sys
import pymailer
f = tempfile.NamedTemporaryFile('r+t', suffix='.html', delete=True)
f.write('<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">\
<html lang="fr">\
<head>\
<meta http-equiv="content-type" content="text/html;charset=utf-8" />\
</head>\
<body>\
<p>The computer has been turned on, on ')
#print(f.name + ' created')
arg = ['-s', f.name, '/home/romain/git/python-mailer/recipients.csv', 'Computer Turned On']
f.write((time.strftime("%A %d %B %Y, %H:%M:%S")))
f.write('.</p>\
</body>\
</html>')
f.seek(0) # return to beginning of file
pymailer.main(arg)
f.close() # temporary file is automatically deleted here |
py | 1a448f805c75649ab174404af989b1705d09a6b0 | from django import forms
from django.contrib.auth.forms import UserCreationForm
from users.models import User, Issue
class UserRegisterForm(UserCreationForm):
email = forms.EmailField()
class Meta:
model = User
fields = ['name', 'phone', 'dob', 'email', 'password1', 'password2', 't_c']
class UserUpdateForm(forms.ModelForm):
email = forms.EmailField()
class Meta:
model = User
fields = ['name', 'phone', 'dob', 'email', 'image']
class IssueForm(forms.ModelForm):
class Meta:
model = Issue
fields = ['issue_head', 'issue_body']
from django.contrib.auth.forms import AuthenticationForm
class AuthenticationFormWithInactiveUsersOkay(AuthenticationForm):
def confirm_login_allowed(self, user):
pass |
py | 1a44900dc5527649dfb73da64cf59e91a9b4ad28 | # Copyright (c) 2004 Divmod.
# See LICENSE for details.
import urllib.request, urllib.parse, urllib.error, warnings
from twisted.python import log, failure
from nevow import util
from nevow.stan import directive, Unset, invisible, _PrecompiledSlot
from nevow.inevow import ICanHandleException, IData, IMacroFactory, IRenderer, IRendererFactory
from nevow.flat import precompile, serialize
from nevow.accessors import convertToData
from nevow.context import WovenContext
from nevow.util import toBytes, unicode
allowSingleton = ('img', 'br', 'hr', 'base', 'meta', 'link', 'param', 'area',
'input', 'col', 'basefont', 'isindex', 'frame')
def ProtoSerializer(original, context):
return '<%s />' % original
def _datacallback(result, context):
context.remember(result, IData)
return ''
def TagSerializer(original, context, contextIsMine=False):
"""
Original is the tag.
Context is either:
- the context of someone up the chain (if contextIsMine is False)
- this tag's context (if contextIsMine is True)
"""
# print "TagSerializer:",original, "ContextIsMine",contextIsMine, "Context:",context
visible = bool(original.tagName)
if visible and context.isAttrib:
raise RuntimeError("Tried to render tag '%s' in an tag attribute context." % (original.tagName))
if context.precompile and original.macro:
toBeRenderedBy = original.macro
## Special case for directive; perhaps this could be handled some other way with an interface?
if isinstance(toBeRenderedBy, directive):
toBeRenderedBy = IMacroFactory(context).macro(context, toBeRenderedBy.name)
original.macro = Unset
newContext = WovenContext(context, original)
yield serialize(toBeRenderedBy(newContext), newContext)
return
## TODO: Do we really need to bypass precompiling for *all* specials?
## Perhaps just render?
if context.precompile and (
[x for x in list(original._specials.values())
if x is not None and x is not Unset]
or original.slotData):
## The tags inside this one get a "fresh" parent chain, because
## when the context yielded here is serialized, the parent
## chain gets reconnected to the actual parents at that
## point, since the render function here could change
## the actual parentage hierarchy.
nestedcontext = WovenContext(precompile=context.precompile, isAttrib=context.isAttrib)
# If necessary, remember the MacroFactory onto the new context chain.
macroFactory = IMacroFactory(context, None)
if macroFactory is not None:
nestedcontext.remember(macroFactory, IMacroFactory)
original = original.clone(deep=False)
if not contextIsMine:
context = WovenContext(context, original)
context.tag.children = precompile(context.tag.children, nestedcontext)
yield context
return
## Don't render patterns
if original.pattern is not Unset and original.pattern is not None:
return
if not contextIsMine:
if original.render:
### We must clone our tag before passing to a render function
original = original.clone(deep=False)
context = WovenContext(context, original)
if original.data is not Unset:
newdata = convertToData(original.data, context)
if isinstance(newdata, util.Deferred):
yield newdata.addCallback(lambda newdata: _datacallback(newdata, context))
else:
_datacallback(newdata, context)
if original.render:
## If we have a render function we want to render what it returns,
## not our tag
toBeRenderedBy = original.render
# erase special attribs so if the renderer returns the tag,
# the specials won't be on the context twice.
original._clearSpecials()
yield serialize(toBeRenderedBy, context)
return
if not visible:
for child in original.children:
yield serialize(child, context)
return
yield '<%s' % original.tagName
if original.attributes:
attribContext = WovenContext(parent=context, precompile=context.precompile, isAttrib=True)
for (k, v) in sorted(original.attributes.items()):
if v is None:
continue
yield ' %s="' % k
yield serialize(v, attribContext)
yield '"'
if not original.children:
if original.tagName in allowSingleton:
yield ' />'
else:
yield '></%s>' % original.tagName
else:
yield '>'
for child in original.children:
yield serialize(child, context)
yield '</%s>' % original.tagName
def EntitySerializer(original, context):
if original.name in ['amp', 'gt', 'lt', 'quot']:
return '&%s;' % original.name
return '&#%s;' % original.num
def _jsSingleQuoteQuote(quotable):
return quotable.replace(
"\\", "\\\\").replace(
"'", r"\'").replace(
"\n", "\\n").replace(
"\r", "\\r")
def RawSerializer(original, context):
if context.inJSSingleQuoteString:
return _jsSingleQuoteQuote(original)
return original
def StringSerializer(original, context):
# Quote the string as necessary. URLs need special quoting - only
# alphanumeric and a few punctation characters are valid.
# Otherwise we use normal XML escaping rules but also replacing "
# in an attribute because Nevow always uses "..." for values.
original=toBytes(original)
if context.inURL:
# The magic string "-_.!*'()" also appears in url.py. Thinking about
# changing this? Change that, too.
return urllib.parse.quote(original, safe="-_.!*'()")
## quote it
if context.inJS:
original = _jsSingleQuoteQuote(original)
if not context.inJSSingleQuoteString:
original = b"'%s'" % (original, )
if context.isAttrib:
return original.replace(b"&", b"&").replace(b"<", b"<").replace(b">", b">").replace(b'"', b""")
elif context.inJS:
return original
else:
return original.replace(b"&", b"&").replace(b"<", b"<").replace(b">", b">")
def NoneWarningSerializer(original, context):
if context.isAttrib:
## We don't want the big red None warning inside a html attribute. Just leave it blank.
return b''
elif context.inURL:
return b''
elif context.inJS:
return b''
return b'<span style="font-size: xx-large; font-weight: bold; color: red; border: thick solid red;">None</span>'
def StringCastSerializer(original, context):
if context.inJS:
return str(original)
return StringSerializer(str(original), context)
def BooleanSerializer(original, context):
if context.inJS:
if original:
return b'true'
return b'false'
return str(original)
def ListSerializer(original, context):
for item in original:
yield serialize(item, context)
def XmlSerializer(original, context):
return original.content
PASS_SELF = object()
def FunctionSerializer_nocontext(original):
code = getattr(original, 'func_code', None)
if code is None:
return True
argcount = code.co_argcount
if argcount == 1:
return True
if argcount == 3:
return PASS_SELF
return False
def FunctionSerializer(original, context, nocontextfun=FunctionSerializer_nocontext):
if context.precompile:
return WovenContext(tag=invisible(render=original))
else:
data = convertToData(context.locate(IData), context)
try:
nocontext = nocontextfun(original)
if nocontext is True:
if hasattr(original, '__code__') and (original.__code__.co_argcount == 3 or (
original.__code__.co_argcount == 2 and original.__code__.co_varnames[0] != 'self')):
result = original(context, data)
else:
result = original(data)
else:
if nocontext is PASS_SELF:
renderer = context.locate(IRenderer)
result = original(renderer, context, data)
else:
result = original(context, data)
except StopIteration:
raise RuntimeError("User function %r raised StopIteration." % original)
return serialize(result, context)
def MethodSerializer(original, context):
def nocontext(original):
func = getattr(original, 'im_func', None)
code = getattr(func, 'func_code', None)
return code is None or code.co_argcount == 2
return FunctionSerializer(original, context, nocontext)
def RendererSerializer(original, context):
def nocontext(original):
func = getattr(original, 'im_func', None)
code = getattr(func, 'func_code', None)
return code is None or code.co_argcount == 2
return FunctionSerializer(original.rend, context, nocontext)
def DirectiveSerializer(original, context):
if context.precompile:
return original
rendererFactory = context.locate(IRendererFactory)
renderer = rendererFactory.renderer(context, original.name)
return serialize(renderer, context)
def SlotSerializer(original, context):
"""
Serialize a slot.
If the value is already available in the given context, serialize and
return it. Otherwise, if this is a precompilation pass, return a new
kind of slot which captures the current render context, so that any
necessary quoting may be performed. Otherwise, raise an exception
indicating that the slot cannot be serialized.
"""
if context.precompile:
try:
data = context.locateSlotData(original.name)
except KeyError:
return _PrecompiledSlot(
original.name,
precompile(original.children, context),
original.default,
context.isAttrib,
context.inURL,
context.inJS,
context.inJSSingleQuoteString,
original.filename,
original.lineNumber,
original.columnNumber)
else:
return serialize(data, context)
try:
data = context.locateSlotData(original.name)
except KeyError:
if original.default is None:
raise
data = original.default
return serialize(data, context)
def PrecompiledSlotSerializer(original, context):
"""
Serialize a pre-compiled slot.
Return the serialized value of the slot or raise a KeyError if it has no
value.
"""
# Precompilation should _not_ be happening at this point, but Nevow is very
# sloppy about precompiling multiple times, so sometimes we are in a
# precompilation context. In this case, there is nothing to do, just
# return the original object. The case which seems to exercise this most
# often is the use of a pattern as the stan document given to the stan
# loader. The pattern has already been precompiled, but the stan loader
# precompiles it again. This case should be eliminated by adding a loader
# for precompiled documents.
if context.precompile:
warnings.warn(
"[v0.9.9] Support for multiple precompilation passes is deprecated.",
PendingDeprecationWarning)
return original
try:
data = context.locateSlotData(original.name)
except KeyError:
if original.default is None:
raise
data = original.default
originalContext = context.clone(deep=False)
originalContext.isAttrib = original.isAttrib
originalContext.inURL = original.inURL
originalContext.inJS = original.inJS
originalContext.inJSSingleQuoteString = original.inJSSingleQuoteString
return serialize(data, originalContext)
def ContextSerializer(original, context):
"""
Serialize the given context's tag in that context.
"""
originalContext = original.clone(deep=False)
originalContext.precompile = context and context.precompile or False
if originalContext.parent is not None:
originalContext.parent = originalContext.parent.clone(cloneTags=False)
originalContext.chain(context)
try:
return TagSerializer(originalContext.tag, originalContext, contextIsMine=True)
except:
f = failure.Failure()
handler = context.locate(ICanHandleException)
if handler:
return handler.renderInlineError(context, f)
else:
log.err(f)
return """<div style="border: 1px dashed red; color: red; clear: both">[[ERROR]]</div>"""
def CommentSerializer(original, context):
yield "<!--"
for x in original.children:
yield serialize(x, context)
yield "-->"
def DocFactorySerializer(original, ctx):
"""Serializer for document factories.
"""
return serialize(original.load(ctx), ctx)
def FailureSerializer(original, ctx):
from nevow import failure
return serialize(failure.formatFailure(original), ctx)
|
py | 1a4490d70e9466b7eaeb9cb9df35db6a487b41b1 | #!/usr/bin/env python3
#################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015, George Webster. All rights reserved.
#
# Approved for Public Release; Distribution Unlimited 14-1511
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#################################################################################
import argparse
import configparser
import csv
import logging
import requests
import sys
import time
from collections import namedtuple
from itertools import islice
def submit_crits(domain, cfg):
""" Submits domain to CRITs """
headers = {'User-agent': 'benign_domains'}
# submit domain
url = "{0}/api/v1/domains/".format(cfg['crits'].get('url'))
params = {
'api_key': cfg['crits'].get('key'),
'username': cfg['crits'].get('user'),
'source': cfg['crits'].get('source'),
'domain': domain
}
try:
response = requests.post(url, headers=headers, data=params, verify=False)
if response.status_code == requests.codes.ok:
response_json = response.json()
logging.info("\tSubmitted domain info for {0} to Crits, response was {1}".format(domain,
response_json.get('message', '')))
except:
logging.info("Exception caught from Crits when submitting domain {0}".format(domain))
def check_virustotal(domain, api_key, threshold):
""" Checks VirusTotal to see if the domain is malicious """
#resource = "{0}domain".format("http://www.", domain)
url = 'https://www.virustotal.com/vtapi/v2/url/report'
params = {'resource': domain,
'apikey': api_key,
'allinfo': 1}
try:
response = requests.get(url, params=params)
if response.status_code == requests.codes.ok:
response_json = response.json()
logging.info("\tSubmitted domain {0} to VirusTotal for verification, response was {1}".format(domain,
response_json.get('verbose_msg', '')))
if response_json['response_code'] == 0:
logging.info("\tVT: Has not seen {0} before, assuming domain is benign".format(domain))
return True
elif response_json['response_code'] == -1:
logging.debug("\tVT: Reporting that domain {0} is malformed, assuming malicious".format(domain))
return False
elif response_json['response_code'] == 1:
total = int(response_json.get('total', 0))
positive = int(response_json.get('positives', 0))
additionalinfo = response_json.get('additional_info', '')
if additionalinfo:
logging.info("\tVT: Category is: {0}".format(additionalinfo.get('categories', '')))
logging.info("\tVT: Positive scans: {0} out of {1} total scans".format(positive, total))
if positive > int(threshold):
logging.info("\tVT: Threshold exceeded, skipping domain")
return False
else:
logging.info("\tVT: Under threshold, domain is benign")
return True
except:
logging.debug("Exception caught from VirusTotal when receiving report")
return False
def setup_cli(args, cfg):
""" Configure command-line arguements """
description ="""
Benign_domains outputs a list of preceived benign domains. This is
intended to help gather data for ML training sets and generate white
lists. The core set of domains are provided by majestic million.
Options:
- Validate domains against VirusTotal's datasets (in progress)
- Submit domains to a CRITs instance
- Output to a file"""
parser = argparse.ArgumentParser(description=description, formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('-s', '--start', action='store', default=cfg['benign'].get('startDomain', fallback='0'),
dest='start', type=int, help='Define starting domain rank number. Overrides config file')
parser.add_argument('-e', '--end', action='store', default=cfg['benign'].get('endDomain', fallback='200'),
dest='end', type=int, help='Define ending domain rank number. Overrides config file')
return parser.parse_args(args)
def main():
""" Main logic for program """
print("Starting up benign_domain parsing script!!!")
# Read configuration file
cfg = configparser.ConfigParser()
cfg.read('benign.cfg')
# Set up CLI interface
args = setup_cli(sys.argv[1:], cfg)
# Set up logging functionality
logfile = cfg['logging'].get('filename', fallback='benign.log')
level = cfg['logging'].get('level', fallback='INFO').upper()
logformat = '%(asctime)s %(message)s'
logging.basicConfig(filename=logfile, level=level, format=logformat)
print("Writing to log file {0} at level {1}.".format(logfile, level))
inputFile = cfg['inputFile'].get('majestic', fallback='majestic_million.csv')
print("Opening input file {0}.".format(inputFile))
print("Starting processing at domain {0}".format(args.start))
print("Ending processing at domain {0}".format(args.end))
if cfg['benign'].getboolean('outputFile', fallback=True):
outputFile = cfg['outputFile'].get('filename', fallback='benign.domains')
print("Saving output to file {0}.".format(outputFile))
if cfg['benign'].getboolean('submitToCrits', fallback=False):
url = cfg['crits'].get('url', '')
username = cfg['crits'].get('user', '')
source = cfg['crits'].get('source', '')
print("Submitting domains to CRITs at: \n\tURL: {0}\n\tUser: {1}\n\tSource: {2}".format(url, username, source))
# Quick checks before entering the loop
if args.start == 0:
args.start = 1
if args.start > args.end:
print("Starting # must be greater then ending #.\nExiting")
sys.exit()
if int(cfg['virustotal'].get('threshold', 0)) < 1:
print("Threshold must be greater then 0, setting to 1")
cfg['virustotal']['threshold'] = 1
print("\nResults:\n--------------------------------------------------------------")
with open(inputFile) as infile:
f_csv = csv.reader(infile)
headings = next(f_csv)
Row = namedtuple('Row', headings)
for r in islice(f_csv, args.start - 1, args.end):
row = Row(*r)
print("Processing domain: {0} at position: {1}".format(row.Domain, f_csv.line_num - 1))
logging.info("Processing domain: {0} at position: {1}".format(row.Domain, f_csv.line_num - 1))
if cfg['benign'].getboolean('checkVirustotal', fallback=False):
if not check_virustotal(row.Domain, cfg['virustotal'].get('key'), cfg['virustotal'].get('threshold')):
continue
if cfg['benign'].getboolean('outputFile', fallback=True):
outputFile = cfg['outputFile'].get('filename', fallback='benign.domains')
logging.info("\tWriting domain {0} to file {1}".format(row.Domain, outputFile))
with open(outputFile, 'at') as f:
f.write(row.Domain + "\n")
#print(row.Domain, file=f)
if cfg['benign'].getboolean('submitToCrits', fallback=False):
submit_crits(row.Domain, cfg)
time.sleep(float(cfg['benign'].get('wait', fallback='1.0')))
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
sys.exit()
|
py | 1a44918212849aabba61bed919bda3e2eee183f3 | # Copyright (c) 2008, Humanized, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of Enso nor the names of its contributors may
# be used to endorse or promote products derived from this
# software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY Humanized, Inc. ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL Humanized, Inc. BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# ----------------------------------------------------------------------------
#
# enso
#
# ----------------------------------------------------------------------------
import logging
class EventResponderList(object):
"""
Behaves like a dictionary with limited functionality. When it become
non-empty, an event handler is registered for a particular event
and called whenever the event occurs. When the it's empty,
the event handler is unregistered and will not be called until
it becomes non-empty again.
"""
def __init__(self, eventManager, eventName, responderFunc):
self.__eventManager = eventManager
self.__eventName = eventName
self.__responderFunc = responderFunc
self.__isRegistered = False
self.__items = {}
def __setitem__(self, key, value):
"""
if (not isinstance(item, slice) or
not (item.start is None and item.stop is None)):
raise NotImplementedError()
"""
self.__items[key] = value
self.__onItemsChanged()
def __delitem__(self, key):
del self.__items[key]
self.__onItemsChanged()
def __iter__(self):
for key, item in self.__items.items():
yield key, item
def __onItemsChanged(self):
if self.__items and (not self.__isRegistered):
assert logging.debug(
"Registering EventResponderList for onTimer event") or True
self.__eventManager.registerResponder(
self.__responderFunc,
self.__eventName
)
self.__isRegistered = True
elif self.__isRegistered and (not self.__items):
assert logging.debug(
"Removing EventResponderList for onTimer event") or True
self.__eventManager.removeResponder(self.__responderFunc)
self.__isRegistered = False
def fromlist(self, lst):
self.__items = dict((id(item), item) for item in lst)
self.__onItemsChanged()
def clear(self):
self.__items.clear()
self.__onItemsChanged()
|
py | 1a4491a53a054b6886b82aa83a8f19d249db133b | """
WSGI config for proyectoprincipal project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/
"""
import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proyectoprincipal.settings')
application = get_wsgi_application()
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.