ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a473361264af9af33964ef70a91f14022f67f6e
"""Demonstrates how to upload and download files to a remote server. """ from ixnetwork_restpy import SessionAssistant, Files session_assistant = SessionAssistant(IpAddress='127.0.0.1', UserName='admin', Password='admin', LogLevel=SessionAssistant.LOGLEVEL_INFO, ClearConfig=True) ixnetwork = session_assistant.Ixnetwork # add 4 vport objects ixnetwork.Vport.add().add().add().add() # save the configuration on the server ixnetwork.SaveConfig(Files('sample.ixncfg')) # get a list of remote files print(session_assistant.Session.GetFileList()) # download the remote saved configuration as some other local file session_assistant.Session.DownloadFile('sample.ixncfg', 'local.ixncfg') # upload the local file print(session_assistant.Session.UploadFile('local.ixncfg')) # load the remote local configuration print(ixnetwork.LoadConfig(Files('local.ixncfg'))) # verify that the vport objects exist assert(len(ixnetwork.Vport.find()) == 4)
py
1a4733eb3958f35e8d3f71dd1eb89afe9a4d4b26
# -*- coding: utf-8 -*- from __future__ import unicode_literals import sys import re import os from bomlib.columns import ColumnList # Check python version to determine which version of ConfirParser to import if sys.version_info.major >= 3: import configparser as ConfigParser else: import ConfigParser class BomPref: SECTION_IGNORE = "IGNORE_COLUMNS" SECTION_COLUMN_ORDER = "COLUMN_ORDER" SECTION_GENERAL = "BOM_OPTIONS" SECTION_ALIASES = "COMPONENT_ALIASES" SECTION_GROUPING_FIELDS = "GROUP_FIELDS" SECTION_REGEXCLUDES = "REGEX_EXCLUDE" SECTION_REGINCLUDES = "REGEX_INCLUDE" OPT_PCB_CONFIG = "pcb_configuration" OPT_NUMBER_ROWS = "number_rows" OPT_GROUP_CONN = "group_connectors" OPT_USE_REGEX = "test_regex" OPT_USE_ALT = "use_alt" OPT_ALT_WRAP = "alt_wrap" OPT_MERGE_BLANK = "merge_blank_fields" OPT_IGNORE_DNF = "ignore_dnf" OPT_BACKUP = "make_backup" OPT_OUTPUT_FILE_NAME = "output_file_name" OPT_VARIANT_FILE_NAME_FORMAT = "variant_file_name_format" OPT_DEFAULT_BOARDS = "number_boards" OPT_DEFAULT_PCBCONFIG = "board_variant" OPT_CONFIG_FIELD = "fit_field" OPT_HIDE_HEADERS = "hide_headers" OPT_HIDE_PCB_INFO = "hide_pcb_info" def __init__(self): # List of headings to ignore in BoM generation self.ignore = [ ColumnList.COL_PART_LIB, ColumnList.COL_FP_LIB, ] self.corder = ColumnList._COLUMNS_DEFAULT self.useAlt = False # Use alternate reference representation self.altWrap = None # Wrap to n items when using alt representation self.ignoreDNF = True # Ignore rows for do-not-fit parts self.numberRows = True # Add row-numbers to BoM output self.groupConnectors = True # Group connectors and ignore component value self.useRegex = True # Test various columns with regex self.boards = 1 # Quantity of boards to be made self.mergeBlankFields = True # Blanks fields will be merged when possible self.hideHeaders = False self.hidePcbInfo = False self.verbose = False # By default, is not verbose self.configField = "Config" # Default field used for part fitting config self.pcbConfig = ["default"] self.backup = "%O.tmp" self.separatorCSV = None self.outputFileName = "%O_bom_%v%V" self.variantFileNameFormat = "_(%V)" self.xlsxwriter_available = False self.xlsxwriter2_available = False # Default fields used to group components self.groups = [ ColumnList.COL_PART, ColumnList.COL_PART_LIB, ColumnList.COL_VALUE, ColumnList.COL_FP, ColumnList.COL_FP_LIB, # User can add custom grouping columns in bom.ini ] self.regIncludes = [] # None by default self.regExcludes = [ [ColumnList.COL_REFERENCE, '^TP[0-9]*'], [ColumnList.COL_REFERENCE, '^FID'], [ColumnList.COL_PART, 'mount.*hole'], [ColumnList.COL_PART, 'solder.*bridge'], [ColumnList.COL_PART, 'test.*point'], [ColumnList.COL_FP, 'test.*point'], [ColumnList.COL_FP, 'mount.*hole'], [ColumnList.COL_FP, 'fiducial'], ] # Default component groupings self.aliases = [ ["c", "c_small", "cap", "capacitor"], ["r", "r_small", "res", "resistor"], ["sw", "switch"], ["l", "l_small", "inductor"], ["zener", "zenersmall"], ["d", "diode", "d_small"] ] # Check an option within the SECTION_GENERAL group def checkOption(self, parser, opt, default=False): if parser.has_option(self.SECTION_GENERAL, opt): return parser.get(self.SECTION_GENERAL, opt).lower() in ["1", "true", "yes"] else: return default def checkInt(self, parser, opt, default=False): if parser.has_option(self.SECTION_GENERAL, opt): return int(parser.get(self.SECTION_GENERAL, opt).lower()) else: return default # Read KiBOM preferences from file def Read(self, file, verbose=False): file = os.path.abspath(file) if not os.path.exists(file) or not os.path.isfile(file): print("{f} is not a valid file!".format(f=file)) return cf = ConfigParser.RawConfigParser(allow_no_value=True) cf.optionxform = str cf.read(file) # Read general options if self.SECTION_GENERAL in cf.sections(): self.ignoreDNF = self.checkOption(cf, self.OPT_IGNORE_DNF, default=True) self.useAlt = self.checkOption(cf, self.OPT_USE_ALT, default=False) self.altWrap = self.checkInt(cf, self.OPT_ALT_WRAP, default=None) self.numberRows = self.checkOption(cf, self.OPT_NUMBER_ROWS, default=True) self.groupConnectors = self.checkOption(cf, self.OPT_GROUP_CONN, default=True) self.useRegex = self.checkOption(cf, self.OPT_USE_REGEX, default=True) self.mergeBlankFields = self.checkOption(cf, self.OPT_MERGE_BLANK, default=True) self.outputFileName = cf.get(self.SECTION_GENERAL, self.OPT_OUTPUT_FILE_NAME) self.variantFileNameFormat = cf.get(self.SECTION_GENERAL, self.OPT_VARIANT_FILE_NAME_FORMAT) if cf.has_option(self.SECTION_GENERAL, self.OPT_CONFIG_FIELD): self.configField = cf.get(self.SECTION_GENERAL, self.OPT_CONFIG_FIELD) if cf.has_option(self.SECTION_GENERAL, self.OPT_DEFAULT_BOARDS): self.boards = self.checkInt(cf, self.OPT_DEFAULT_BOARDS, default=None) if cf.has_option(self.SECTION_GENERAL, self.OPT_DEFAULT_PCBCONFIG): self.pcbConfig = cf.get(self.SECTION_GENERAL, self.OPT_DEFAULT_PCBCONFIG).strip().split(",") if cf.has_option(self.SECTION_GENERAL, self.OPT_BACKUP): self.backup = cf.get(self.SECTION_GENERAL, self.OPT_BACKUP) else: self.backup = False if cf.has_option(self.SECTION_GENERAL, self.OPT_HIDE_HEADERS): self.hideHeaders = cf.get(self.SECTION_GENERAL, self.OPT_HIDE_HEADERS) == '1' if cf.has_option(self.SECTION_GENERAL, self.OPT_HIDE_PCB_INFO): self.hidePcbInfo = cf.get(self.SECTION_GENERAL, self.OPT_HIDE_PCB_INFO) == '1' # Read out grouping colums if self.SECTION_GROUPING_FIELDS in cf.sections(): self.groups = [i for i in cf.options(self.SECTION_GROUPING_FIELDS)] # Read out ignored-rows if self.SECTION_IGNORE in cf.sections(): self.ignore = [i for i in cf.options(self.SECTION_IGNORE)] # Read out column order if self.SECTION_COLUMN_ORDER in cf.sections(): self.corder = [i for i in cf.options(self.SECTION_COLUMN_ORDER)] # Read out component aliases if self.SECTION_ALIASES in cf.sections(): self.aliases = [re.split('[ \t]+', a) for a in cf.options(self.SECTION_ALIASES)] if self.SECTION_REGEXCLUDES in cf.sections(): self.regExcludes = [] for pair in cf.options(self.SECTION_REGEXCLUDES): if len(re.split('[ \t]+', pair)) == 2: self.regExcludes.append(re.split('[ \t]+', pair)) if self.SECTION_REGINCLUDES in cf.sections(): self.regIncludes = [] for pair in cf.options(self.SECTION_REGINCLUDES): if len(re.split('[ \t]+', pair)) == 2: self.regIncludes.append(re.split('[ \t]+', pair)) # Add an option to the SECTION_GENRAL group def addOption(self, parser, opt, value, comment=None): if comment: if not comment.startswith(";"): comment = "; " + comment parser.set(self.SECTION_GENERAL, comment) parser.set(self.SECTION_GENERAL, opt, "1" if value else "0") # Write KiBOM preferences to file def Write(self, file): file = os.path.abspath(file) cf = ConfigParser.RawConfigParser(allow_no_value=True) cf.optionxform = str cf.add_section(self.SECTION_GENERAL) cf.set(self.SECTION_GENERAL, "; General BoM options here") self.addOption(cf, self.OPT_IGNORE_DNF, self.ignoreDNF, comment="If '{opt}' option is set to 1, rows that are not to be fitted on the PCB will not be written to the BoM file".format(opt=self.OPT_IGNORE_DNF)) self.addOption(cf, self.OPT_USE_ALT, self.useAlt, comment="If '{opt}' option is set to 1, grouped references will be printed in the alternate compressed style eg: R1-R7,R18".format(opt=self.OPT_USE_ALT)) self.addOption(cf, self.OPT_ALT_WRAP, self.altWrap, comment="If '{opt}' option is set to and integer N, the references field will wrap after N entries are printed".format(opt=self.OPT_ALT_WRAP)) self.addOption(cf, self.OPT_NUMBER_ROWS, self.numberRows, comment="If '{opt}' option is set to 1, each row in the BoM will be prepended with an incrementing row number".format(opt=self.OPT_NUMBER_ROWS)) self.addOption(cf, self.OPT_GROUP_CONN, self.groupConnectors, comment="If '{opt}' option is set to 1, connectors with the same footprints will be grouped together, independent of the name of the connector".format(opt=self.OPT_GROUP_CONN)) self.addOption(cf, self.OPT_USE_REGEX, self.useRegex, comment="If '{opt}' option is set to 1, each component group will be tested against a number of regular-expressions (specified, per column, below). If any matches are found, the row is ignored in the output file".format(opt=self.OPT_USE_REGEX)) self.addOption(cf, self.OPT_MERGE_BLANK, self.mergeBlankFields, comment="If '{opt}' option is set to 1, component groups with blank fields will be merged into the most compatible group, where possible".format(opt=self.OPT_MERGE_BLANK)) cf.set(self.SECTION_GENERAL, "; Specify output file name format, %O is the defined output name, %v is the version, %V is the variant name which will be ammended according to 'variant_file_name_format'.") cf.set(self.SECTION_GENERAL, self.OPT_OUTPUT_FILE_NAME, self.outputFileName) cf.set(self.SECTION_GENERAL, "; Specify the variant file name format, this is a unique field as the variant is not always used/specified. When it is unused you will want to strip all of this.") cf.set(self.SECTION_GENERAL, self.OPT_VARIANT_FILE_NAME_FORMAT, self.variantFileNameFormat) cf.set(self.SECTION_GENERAL, '; Field name used to determine if a particular part is to be fitted') cf.set(self.SECTION_GENERAL, self.OPT_CONFIG_FIELD, self.configField) cf.set(self.SECTION_GENERAL, '; Make a backup of the bom before generating the new one, using the following template') cf.set(self.SECTION_GENERAL, self.OPT_BACKUP, self.backup) cf.set(self.SECTION_GENERAL, '; Default number of boards to produce if none given on CLI with -n') cf.set(self.SECTION_GENERAL, self.OPT_DEFAULT_BOARDS, self.boards) cf.set(self.SECTION_GENERAL, '; Default PCB variant if none given on CLI with -r') cf.set(self.SECTION_GENERAL, self.OPT_DEFAULT_PCBCONFIG, self.pcbConfig) cf.set(self.SECTION_GENERAL, '; Whether to hide headers from output file') cf.set(self.SECTION_GENERAL, self.OPT_HIDE_HEADERS, self.hideHeaders) cf.set(self.SECTION_GENERAL, '; Whether to hide PCB info from output file') cf.set(self.SECTION_GENERAL, self.OPT_HIDE_PCB_INFO, self.hidePcbInfo) cf.add_section(self.SECTION_IGNORE) cf.set(self.SECTION_IGNORE, "; Any column heading that appears here will be excluded from the Generated BoM") cf.set(self.SECTION_IGNORE, "; Titles are case-insensitive") for i in self.ignore: cf.set(self.SECTION_IGNORE, i) cf.add_section(self.SECTION_COLUMN_ORDER) cf.set(self.SECTION_COLUMN_ORDER, "; Columns will apear in the order they are listed here") cf.set(self.SECTION_COLUMN_ORDER, "; Titles are case-insensitive") for i in self.corder: cf.set(self.SECTION_COLUMN_ORDER, i) # Write the component grouping fields cf.add_section(self.SECTION_GROUPING_FIELDS) cf.set(self.SECTION_GROUPING_FIELDS, '; List of fields used for sorting individual components into groups') cf.set(self.SECTION_GROUPING_FIELDS, '; Components which match (comparing *all* fields) will be grouped together') cf.set(self.SECTION_GROUPING_FIELDS, '; Field names are case-insensitive') for i in self.groups: cf.set(self.SECTION_GROUPING_FIELDS, i) cf.add_section(self.SECTION_ALIASES) cf.set(self.SECTION_ALIASES, "; A series of values which are considered to be equivalent for the part name") cf.set(self.SECTION_ALIASES, "; Each line represents a list of equivalent component name values separated by white space") cf.set(self.SECTION_ALIASES, "; e.g. 'c c_small cap' will ensure the equivalent capacitor symbols can be grouped together") cf.set(self.SECTION_ALIASES, '; Aliases are case-insensitive') for a in self.aliases: cf.set(self.SECTION_ALIASES, "\t".join(a)) cf.add_section(self.SECTION_REGINCLUDES) cf.set(self.SECTION_REGINCLUDES, '; A series of regular expressions used to include parts in the BoM') cf.set(self.SECTION_REGINCLUDES, '; If there are any regex defined here, only components that match against ANY of them will be included in the BOM') cf.set(self.SECTION_REGINCLUDES, '; Column names are case-insensitive') cf.set(self.SECTION_REGINCLUDES, '; Format is: "[ColumName] [Regex]" (white-space separated)') for i in self.regIncludes: if not len(i) == 2: continue cf.set(self.SECTION_REGINCLUDES, i[0] + "\t" + i[1]) cf.add_section(self.SECTION_REGEXCLUDES) cf.set(self.SECTION_REGEXCLUDES, '; A series of regular expressions used to exclude parts from the BoM') cf.set(self.SECTION_REGEXCLUDES, '; If a component matches ANY of these, it will be excluded from the BoM') cf.set(self.SECTION_REGEXCLUDES, '; Column names are case-insensitive') cf.set(self.SECTION_REGEXCLUDES, '; Format is: "[ColumName] [Regex]" (white-space separated)') for i in self.regExcludes: if not len(i) == 2: continue cf.set(self.SECTION_REGEXCLUDES, i[0] + "\t" + i[1]) with open(file, 'wb') as configfile: cf.write(configfile)
py
1a473434ea6dd616318ce76c3d7c80235544abbb
import numpy as np from collections import OrderedDict from matplotlib import pyplot as plt class GesturesVisualizer(): def __init__(self, gestures, deviceWidth=360, deviceHeight=640): self.gestures = gestures self.width = deviceWidth self.height = deviceHeight def plot_gestures(self): fig = plt.figure(figsize=(3.75, 2.5 * (self.height / self.width))) ax = fig.add_axes([0.15, 0.05, 0.55, 0.85]) labels = OrderedDict() for i, _ind in enumerate(self.gestures.index): labels["gesture_" + str(i)] = np.random.rand(1, 3) x_data = [] y_data = [] if(len(self.gestures.iloc[i]["data"]) == 0): continue x_data.append(self.gestures.iloc[i]["data"][0]["x0"]) y_data.append(self.gestures.iloc[i]["data"][0]["y0"]) if(self.gestures.iloc[i]["type"] == "swipe"): for d in self.gestures.iloc[i]["data"]: x_data.append(d["moveX"]) y_data.append(d["moveY"]) keys = list(labels.keys()) if(self.gestures.iloc[i]["type"] == "tap"): plt.scatter(x_data, y_data, label=keys[i], color = labels[keys[i]][0]) else: plt.plot(x_data, y_data, label=keys[i], color = labels[keys[i]][0]) handles, labels = plt.gca().get_legend_handles_labels() by_label = OrderedDict(zip(labels, handles)) plt.xlim(0, self.width) plt.ylim(0, self.height) plt.xlabel('X - Dimension') plt.ylabel('Y - Dimension') plt.gca().invert_yaxis() plt.legend(by_label.values(), by_label.keys(), bbox_to_anchor=(1.01, 0.5), loc="center left") ax.xaxis.tick_top() ax.xaxis.set_label_position('top') plt.show()
py
1a4734a2353edf5059be0588d032c74d23742d7e
'''Autogenerated by xml_generate script, do not edit!''' from OpenGL import platform as _p, arrays # Code generation uses this from OpenGL.raw.GLES2 import _types as _cs # End users want this... from OpenGL.raw.GLES2._types import * from OpenGL.raw.GLES2 import _errors from OpenGL.constant import Constant as _C import ctypes _EXTENSION_NAME = 'GLES2_QCOM_texture_foveated_subsampled_layout' def _f( function ): return _p.createFunction( function,_p.PLATFORM.GLES2,'GLES2_QCOM_texture_foveated_subsampled_layout',error_checker=_errors._error_checker) GL_FOVEATION_SUBSAMPLED_LAYOUT_METHOD_BIT_QCOM=_C('GL_FOVEATION_SUBSAMPLED_LAYOUT_METHOD_BIT_QCOM',0x00000004) GL_MAX_SHADER_SUBSAMPLED_IMAGE_UNITS_QCOM=_C('GL_MAX_SHADER_SUBSAMPLED_IMAGE_UNITS_QCOM',0x8FA1)
py
1a47356f2116661592af87303463334fc83a403e
# Copyright 2021 The SODA Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from delfin import db from delfin.api import api_utils from delfin.api.common import wsgi from delfin.api.views import storage_host_initiators as \ storage_host_initiator_view class StorageHostInitiatorController(wsgi.Controller): def __init__(self): super(StorageHostInitiatorController, self).__init__() self.search_options = ['name', 'status', 'wwn', 'id', 'storage_id', 'native_storage_host_id', 'native_storage_host_initiator_id'] def _get_storage_host_initiator_search_options(self): """Return storage host initiator search options allowed .""" return self.search_options def show(self, req, id): ctxt = req.environ['delfin.context'] query_params = {"storage_id": id} query_params.update(req.GET) # Update options other than filters sort_keys, sort_dirs = api_utils.get_sort_params(query_params) marker, limit, offset = api_utils.get_pagination_params(query_params) # Strip out options except supported search options api_utils.remove_invalid_options( ctxt, query_params, self._get_storage_host_initiator_search_options()) storage_host_initiators = db.storage_host_initiators_get_all( ctxt, marker, limit, sort_keys, sort_dirs, query_params, offset) return storage_host_initiator_view.build_storage_host_initiators( storage_host_initiators) def create_resource(): return wsgi.Resource(StorageHostInitiatorController())
py
1a4735afad465e31e383e7b23521f6b17a250989
import soundfile as sf import math from uuid import uuid4 from typing import List from .exceptions import ShellError from pathlib import Path def fftsanitise(fftsettings) -> List[int]: return [ int(fftsettings[0]), int(fftsettings[1]), int(fftsettings[2]) ] def get_buffer(audio_file_path: str, output: str = "list"): """Returns an audio files fp32 values as a numpy array""" data, _ = sf.read(audio_file_path) data = data.transpose() if output == "list": return data.tolist() if output == "numpy": return data def odd_snap(number: int) -> int: """snaps a number to the next odd number""" if (number % 2) == 0: return number + 1 else: return number def fftformat(fftsettings: List[int]) -> int: """Handles the FFT size so you can pass maxfftsize""" fftsize = fftsettings[2] if fftsize == -1: fftsize = fftsettings[0] return math.floor(2 ** math.ceil(math.log(fftsize)/math.log(2))) def handle_ret(retval: int): """Handle return value and raise exceptions if necessary""" if retval != 0: raise ShellError(retval) def make_temp() -> str: """Create temporary files in local hidden directory""" tempfiles = Path.home() / ".python-flucoma" if not tempfiles.exists(): tempfiles.mkdir() uuid = str(uuid4().hex) full_path = tempfiles / f"{uuid}.wav" return str(full_path) def cleanup(): tempfiles = Path.home() / ".python-flucoma" if tempfiles.exists(): for x in tempfiles.iterdir(): x.unlink()
py
1a47362d2e2bff1150677debe4e10ee19a5e2f3f
from typing import Optional, List, Literal, Union, Any from enum import Enum class Scalars: ID = Union[str] String = Union[str] Boolean = Union[bool] Int = Union[int] Float = Union[float] class User: __typename: Optional[Literal["User"]] id: Scalars.Int name: Scalars.String email: Scalars.String __GQL_CODEGEN_User__ = User class Query: __typename: Optional[Literal["Query"]] allUsers: List[Optional["__GQL_CODEGEN_User__"]] userById: Optional["__GQL_CODEGEN_User__"] """ Generates a new answer for th guessing game """ answer: List[Scalars.Int] testArr1: Optional[List[Optional[Scalars.String]]] testArr2: List[Optional[Scalars.String]] testArr3: List[Scalars.String] __GQL_CODEGEN_Query__ = Query class QueryUserByIdArgs: id: Scalars.Int __GQL_CODEGEN_QueryUserByIdArgs__ = QueryUserByIdArgs
py
1a4737ea4b3871714ad67f91ab5c7e2781de9ccd
# coding=utf-8 from requests import HTTPError from ..base import BitbucketCloudBase class DefaultReviewers(BitbucketCloudBase): def __init__(self, url, *args, **kwargs): super(DefaultReviewers, self).__init__(url, *args, **kwargs) def _get_object(self, data): if "errors" in data: return return DefaultReviewer(data, **self._new_session_args) def add(self, user): """ Adds the specified user to the repository"s list of default reviewers. This method is idempotent. Adding a user a second time has no effect. :param user: string: The user to add :return: The added DefaultReviewer object """ # the mention_id parameter is undocumented but if missed, leads to 400 statuses return self._get_object(self.put(user, data={"mention_id": user})) def each(self, q=None, sort=None): """ Returns the repository"s default reviewers. These are the users that are automatically added as reviewers on every new pull request that is created. :param q: string: Query string to narrow down the response. See https://developer.atlassian.com/bitbucket/api/2/reference/meta/filtering for details. :param sort: string: Name of a response property to sort results. See https://developer.atlassian.com/bitbucket/api/2/reference/meta/filtering for details. :return: A generator for the DefaultReviewer objects """ params = {} if sort is not None: params["sort"] = sort if q is not None: params["q"] = q for default_reviewer in self._get_paged(None, params=params): yield self._get_object(default_reviewer) return def get(self, user): """ Returns the default reviewer in this repository. :param user: string: The requested user name :return: The requested DefaultReviewer object, None if not a default reviewer """ default_reviewer = None try: default_reviewer = self._get_object(super(DefaultReviewers, self).get(user)) except HTTPError as e: # A 404 indicates that that specified user is not a default reviewer. if not e.response.status_code == 404: # Rethrow the exception raise return default_reviewer class DefaultReviewer(BitbucketCloudBase): def __init__(self, data, *args, **kwargs): super(DefaultReviewer, self).__init__(None, *args, data=data, expected_type="user", **kwargs) @property def display_name(self): return str(self.get_data("display_name")) @property def nickname(self): return self.get_data("nickname") @property def account_id(self): return self.get_data("account_id") @property def uuid(self): return self.get_data("uuid") def delete(self): """ Deletes the default reviewer """ return super(DefaultReviewer, self).delete(self.url, absolute=True)
py
1a4738fc766047d3b18c131d0961f81c6212a3ae
import logging import os.path as osp import pathlib from typing import Optional, Sequence, Type, Union import gym import torch as th from sacred.observers import FileStorageObserver from stable_baselines3.common import vec_env from torch.utils import data as th_data from imitation.algorithms import bc from imitation.data import rollout, types from imitation.scripts.config.train_bc import train_bc_ex from imitation.util import logger from imitation.util import sacred as sacred_util @train_bc_ex.main def train_bc( _run, expert_data_src: Union[types.AnyPath, Sequence[types.Trajectory]], expert_data_src_format: str, n_expert_demos: Optional[int], observation_space: gym.Space, action_space: gym.Space, batch_size: int, # TODO(shwang): Doesn't currently accept Iterable[Mapping] or # types.TransitionsMinimal, unlike BC.__init__ or BC.set_expert_data_loader(). n_epochs: Optional[int], n_batches: Optional[int], l2_weight: float, optimizer_cls: Type[th.optim.Optimizer], optimizer_kwargs: dict, log_dir: types.AnyPath, venv: Optional[vec_env.VecEnv], log_interval: int, log_rollouts_n_episodes: int, n_episodes_eval: int, ) -> dict: """Sacred interface to Behavioral Cloning. Args: expert_data_src: Either a path to pickled `Sequence[Trajectory]` or `Sequence[Trajectory]`. expert_data_src_format: Either "path" if `expert_data_src` is a path, or "trajectory" if `expert_data_src` if `Sequence[Trajectory]`. n_expert_demos: If not None, then a positive number used to truncate the number expert demonstrations used from `expert_data_src`. If this number is larger than the total number of demonstrations available, then a ValueError is raised. observation_space: The observation space corresponding to the expert data. action_space: The action space corresponding to the expert data. batch_size: Number of observation-action samples used in each BC update. n_epochs: The total number of training epochs. Set exactly one of n_epochs and n_batches. n_batches: The total number of training batches. Set exactly one of n_epochs and n_batches. l2_weight: L2 regularization weight. optimizer_cls: The Torch optimizer class used for BC updates. optimizer_kwargs: keyword arguments, excluding learning rate and weight decay, for optimiser construction. log_dir: Log output directory. Final policy is also saved in this directory as "{log_dir}/final.pkl" venv: If not None, then this VecEnv is used to generate rollout episodes for evaluating policy performance during and after training. log_interval: The number of updates in between logging various training statistics to stdout and Tensorboard. log_rollouts_n_episodes: The number of rollout episodes generated for training statistics every `log_interval` updates. If `venv` is None or this argument is nonpositive, then no rollouts are generated. n_episodes_eval: The number of final evaluation rollout episodes, if `venv` is provided. These rollouts are used to generate final statistics saved into Sacred results, which can be compiled into a table by `imitation.scripts.analyze.analyze_imitation`. """ if action_space is None: raise ValueError("action_space cannot be None") if observation_space is None: raise ValueError("observation_space cannot be None") log_dir = pathlib.Path(log_dir) log_dir.mkdir(parents=True, exist_ok=True) logging.info("Logging to %s", log_dir) custom_logger = logger.configure(log_dir, ["tensorboard", "stdout"]) sacred_util.build_sacred_symlink(log_dir, _run) if expert_data_src_format == "path": expert_trajs = types.load(expert_data_src) elif expert_data_src_format == "trajectory": # Convenience option for launching experiment from Python script with # in-memory trajectories. expert_trajs = expert_data_src else: raise ValueError(f"Invalid expert_data_src_format={expert_data_src_format}") # TODO(shwang): Copied from scripts/train_adversarial -- refactor with "auto", # or combine all train_*.py into a single script? if n_expert_demos is not None: if not len(expert_trajs) >= n_expert_demos: raise ValueError( f"Want to use n_expert_demos={n_expert_demos} trajectories, but only " f"{len(expert_trajs)} are available." ) expert_trajs = expert_trajs[:n_expert_demos] expert_data_trans = rollout.flatten_trajectories(expert_trajs) expert_data = th_data.DataLoader( expert_data_trans, batch_size=batch_size, shuffle=True, collate_fn=types.transitions_collate_fn, ) model = bc.BC( observation_space, action_space, expert_data=expert_data, l2_weight=l2_weight, optimizer_cls=optimizer_cls, optimizer_kwargs=optimizer_kwargs, custom_logger=custom_logger, ) model.train( n_epochs=n_epochs, n_batches=n_batches, log_interval=log_interval, log_rollouts_venv=venv, log_rollouts_n_episodes=log_rollouts_n_episodes, ) model.save_policy(policy_path=pathlib.Path(log_dir, "final.th")) print(f"Visualize results with: tensorboard --logdir '{log_dir}'") # TODO(shwang): Use auto env, auto stats thing with shared `env` and stats # ingredient, or something like that. sample_until = rollout.make_sample_until( min_timesteps=None, min_episodes=n_episodes_eval ) trajs = rollout.generate_trajectories( model.policy, venv, sample_until=sample_until, ) results = {} results["expert_stats"] = rollout.rollout_stats(expert_trajs) results["imit_stats"] = rollout.rollout_stats(trajs) return results def main_console(): observer = FileStorageObserver(osp.join("output", "sacred", "train_bc")) train_bc_ex.observers.append(observer) train_bc_ex.run_commandline() if __name__ == "__main__": main_console()
py
1a4739154a420371c6546e7aa1c769581d6da058
import pytest from sklearn.utils.estimator_checks import check_estimator from skltemplate import TemplateEstimator from skltemplate import TemplateClassifier from skltemplate import TemplateTransformer @pytest.mark.parametrize( "Estimator", [TemplateEstimator, TemplateTransformer, TemplateClassifier] ) def test_all_estimators(Estimator): return check_estimator(Estimator)
py
1a473997540ea1ef9f05ac51b8004d0b03c8d094
"""Named tuples and enumerated types. Defines enums and other schemas for `vectorbt.portfolio`.""" import numpy as np from vectorbt import _typing as tp from vectorbt.utils.docs import to_doc __all__ = [ 'RejectedOrderError', 'InitCashMode', 'CallSeqType', 'ConflictMode', 'SizeType', 'Direction', 'OrderStatus', 'OrderSide', 'StatusInfo', 'TradeDirection', 'TradeStatus', 'TradeType', 'ProcessOrderState', 'ExecuteOrderState', 'SimulationContext', 'GroupContext', 'RowContext', 'SegmentContext', 'OrderContext', 'PostOrderContext', 'Order', 'NoOrder', 'OrderResult', 'order_dt', 'trade_dt', 'position_dt', 'log_dt' ] __pdoc__ = {} # ############# Errors ############# # class RejectedOrderError(Exception): """Rejected order error.""" pass # ############# Enums ############# # class InitCashModeT(tp.NamedTuple): Auto: int AutoAlign: int InitCashMode = InitCashModeT(*range(2)) """_""" __pdoc__['InitCashMode'] = f"""Initial cash mode. ```json {to_doc(InitCashMode)} ``` Attributes: Auto: Initial cash is infinite within simulation, and then set to the total cash spent. AutoAlign: Initial cash is set to the total cash spent across all columns. """ class CallSeqTypeT(tp.NamedTuple): Default: int Reversed: int Random: int Auto: int CallSeqType = CallSeqTypeT(*range(4)) """_""" __pdoc__['CallSeqType'] = f"""Call sequence type. ```json {to_doc(CallSeqType)} ``` Attributes: Default: Place calls from left to right. Reversed: Place calls from right to left. Random: Place calls randomly. Auto: Place calls dynamically based on order value. """ class ConflictModeT(tp.NamedTuple): Ignore: int Entry: int Exit: int Opposite: int ConflictMode = ConflictModeT(*range(4)) """_""" __pdoc__['ConflictMode'] = f"""Conflict mode. ```json {to_doc(ConflictMode)} ``` What should happen if both entry and exit signals occur simultaneously? Attributes: Ignore: Ignore both signals. Entry: Execute entry signal. Exit: Execute exit signal. Opposite: Execute opposite signal. Takes effect only when in position. """ class SizeTypeT(tp.NamedTuple): Amount: int Value: int Percent: int TargetAmount: int TargetValue: int TargetPercent: int SizeType = SizeTypeT(*range(6)) """_""" __pdoc__['SizeType'] = f"""Size type. ```json {to_doc(SizeType)} ``` Attributes: Amount: Amount of assets to trade. Value: Asset value to trade. Gets converted into `SizeType.Amount` using `OrderContext.val_price_now`. Percent: Percentage of available resources to use in either direction (not to be confused with the percentage of position value!) * When buying, it's the percentage of `OrderContext.cash_now`. * When selling, it's the percentage of `OrderContext.position_now`. * When short selling, it's the percentage of `OrderContext.free_cash_now`. * When selling and short selling (i.e. reversing position), it's the percentage of `OrderContext.position_now` and `OrderContext.free_cash_now`. !!! note Takes into account fees and slippage to find the limit. In reality, slippage and fees are not known beforehand. TargetAmount: Target amount of assets to hold (= target position). Uses `OrderContext.position_now` to get the current position. Gets converted into `SizeType.Amount`. TargetValue: Target asset value. Uses `OrderContext.val_price_now` to get the current asset value. Gets converted into `SizeType.TargetAmount`. TargetPercent: Target percentage of total value. Uses `OrderContext.value_now` to get the current total value. Gets converted into `SizeType.TargetValue`. """ class DirectionT(tp.NamedTuple): LongOnly: int ShortOnly: int All: int Direction = DirectionT(*range(3)) """_""" __pdoc__['Direction'] = f"""Position direction. ```json {to_doc(Direction)} ``` Attributes: LongOnly: Only long positions. ShortOnly: Only short positions. All: Both long and short positions. """ class OrderStatusT(tp.NamedTuple): Filled: int Ignored: int Rejected: int OrderStatus = OrderStatusT(*range(3)) """_""" __pdoc__['OrderStatus'] = f"""Order status. ```json {to_doc(OrderStatus)} ``` Attributes: Filled: Order has been filled. Ignored: Order has been ignored. Rejected: Order has been rejected. """ class OrderSideT(tp.NamedTuple): Buy: int Sell: int OrderSide = OrderSideT(*range(2)) """_""" __pdoc__['OrderSide'] = f"""Order side. ```json {to_doc(OrderSide)} ``` """ class StatusInfoT(tp.NamedTuple): SizeNaN: int PriceNaN: int ValPriceNaN: int ValueNaN: int ValueZeroNeg: int SizeZero: int NoCashShort: int NoCashLong: int NoOpenPosition: int MaxSizeExceeded: int RandomEvent: int CantCoverFees: int MinSizeNotReached: int PartialFill: int StatusInfo = StatusInfoT(*range(14)) """_""" __pdoc__['StatusInfo'] = f"""Order status information. ```json {to_doc(StatusInfo)} ``` """ status_info_desc = [ "Size is NaN", "Price is NaN", "Asset valuation price is NaN", "Asset/group value is NaN", "Asset/group value is zero or negative", "Size is zero", "Not enough cash to short", "Not enough cash to long", "No open position to reduce/close", "Size is greater than maximum allowed", "Random event happened", "Not enough cash to cover fees", "Final size is less than minimum allowed", "Final size is less than requested" ] """_""" __pdoc__['status_info_desc'] = f"""Order status description. ```json {to_doc(status_info_desc)} ``` """ class TradeDirectionT(tp.NamedTuple): Long: int Short: int TradeDirection = TradeDirectionT(*range(2)) """_""" __pdoc__['TradeDirection'] = f"""Event direction. ```json {to_doc(TradeDirection)} ``` """ class TradeStatusT(tp.NamedTuple): Open: int Closed: int TradeStatus = TradeStatusT(*range(2)) """_""" __pdoc__['TradeStatus'] = f"""Event status. ```json {to_doc(TradeStatus)} ``` """ class TradeTypeT(tp.NamedTuple): Trade: int Position: int TradeType = TradeTypeT(*range(2)) """_""" __pdoc__['TradeType'] = f"""Trade type. ```json {to_doc(TradeType)} ``` """ # ############# Named tuples ############# # class ProcessOrderState(tp.NamedTuple): cash: float position: float debt: float free_cash: float val_price: float value: float oidx: int lidx: int __pdoc__['ProcessOrderState'] = "State before or after order processing." __pdoc__['ProcessOrderState.cash'] = "Cash in the current column or group with cash sharing." __pdoc__['ProcessOrderState.position'] = "Position in the current column." __pdoc__['ProcessOrderState.debt'] = "Debt from shorting in the current column." __pdoc__['ProcessOrderState.free_cash'] = "Free cash in the current column or group with cash sharing." __pdoc__['ProcessOrderState.val_price'] = "Valuation price in the current column." __pdoc__['ProcessOrderState.value'] = "Value in the current column or group with cash sharing." __pdoc__['ProcessOrderState.oidx'] = "Index of order record." __pdoc__['ProcessOrderState.lidx'] = "Index of log record." class ExecuteOrderState(tp.NamedTuple): cash: float position: float debt: float free_cash: float __pdoc__['ExecuteOrderState'] = "State after order execution." __pdoc__['ExecuteOrderState.cash'] = "See `ProcessOrderState.cash`." __pdoc__['ExecuteOrderState.position'] = "See `ProcessOrderState.position`." __pdoc__['ExecuteOrderState.debt'] = "See `ProcessOrderState.debt`." __pdoc__['ExecuteOrderState.free_cash'] = "See `ProcessOrderState.free_cash`." class SimulationContext(tp.NamedTuple): target_shape: tp.Shape close: tp.Array2d group_lens: tp.Array1d init_cash: tp.Array1d cash_sharing: bool call_seq: tp.Array2d segment_mask: tp.Array2d ffill_val_price: bool update_value: bool order_records: tp.RecordArray log_records: tp.RecordArray last_cash: tp.Array1d last_position: tp.Array1d last_debt: tp.Array1d last_free_cash: tp.Array1d last_val_price: tp.Array1d last_value: tp.Array1d second_last_value: tp.Array1d last_return: tp.Array1d last_oidx: tp.Array1d last_lidx: tp.Array1d last_pos_record: tp.RecordArray __pdoc__['SimulationContext'] = """A named tuple representing the context of a simulation. Contains general information available to all other contexts. Passed to `pre_sim_func_nb` and `post_sim_func_nb`.""" __pdoc__['SimulationContext.target_shape'] = """Target shape of the simulation. A tuple with exactly two elements: the number of rows and columns. ## Example One day of minute data for three assets would yield a `target_shape` of `(1440, 3)`, where the first axis are rows (minutes) and the second axis are columns (assets). """ __pdoc__['SimulationContext.close'] = """Last asset price at each time step. Has shape `SimulationContext.target_shape`. """ __pdoc__['SimulationContext.group_lens'] = """Number of columns per each group. Even if columns are not grouped, `group_lens` contains ones - one column per group. ## Example In pairs trading, `group_lens` would be `np.array([2])`, while three independent columns would require `group_lens` of `np.array([1, 1, 1])`. """ __pdoc__['SimulationContext.init_cash'] = """Initial capital per column or group with cash sharing. If `SimulationContext.cash_sharing`, has shape `(group_lens.shape[0],)`, otherwise has shape `(target_shape[1],)`. ## Example Consider three columns, each having $100 of starting capital. If we built one group of two columns with cash sharing and one (imaginary) group with the last column, the `init_cash` would be `np.array([200, 100])`. Without cash sharing, the `init_cash` would be `np.array([100, 100, 100])`. """ __pdoc__['SimulationContext.cash_sharing'] = "Whether cash sharing is enabled." __pdoc__['SimulationContext.call_seq'] = """Default sequence of calls per segment. Controls the sequence in which `order_func_nb` is executed within each segment. Has shape `SimulationContext.target_shape` and each value must exist in the range `[0, group_len)`. !!! note To change the call sequence dynamically, better change `SegmentContext.call_seq_now` in-place. ## Example The default call sequence for three data points and two groups with three columns each: ```python np.array([ [0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2] ]) ``` """ __pdoc__['SimulationContext.segment_mask'] = """Mask of whether order functions of a particular segment should be executed. A segment is simply a sequence of `order_func_nb` calls under the same group and row. The segment pre- and postprocessing functions are executed regardless of the mask. You can change this mask in-place to dynamically disable future segments. Has shape `(target_shape[0], group_lens.shape[0])`. ## Example Consider two groups with two columns each and the following activity mask: ```python np.array([[ True, False], [False, True]]) ``` Only the first group is executed in the first row and only the second group is executed in the second row. """ __pdoc__['SimulationContext.ffill_val_price'] = """Whether to track valuation price only if it's known. Otherwise, unknown `SimulationContext.close` will lead to NaN in valuation price at the next timestamp.""" __pdoc__['SimulationContext.update_value'] = "Whether to update group value after each filled order." __pdoc__['SimulationContext.order_records'] = """Order records. It's a 1-dimensional array with records of type `order_dt`. The array is initialized with empty records first (they contain random data), and then gradually filled with order data. The number of initialized records depends upon `max_orders`, but usually it's `target_shape[0] * target_shape[1]`, meaning there is maximal one order record per element. `max_orders` can be chosen lower if not every `order_func_nb` leads to a filled order, to save memory. You can use `SimulationContext.last_oidx` to get the index of the last filled order of each column. ## Example Before filling, each order record looks like this: ```python np.array([(-8070450532247928832, -8070450532247928832, 4, 0., 0., 0., 5764616306889786413)] ``` After filling, it becomes like this: ```python np.array([(0, 0, 1, 50., 1., 0., 1)] ``` """ __pdoc__['SimulationContext.log_records'] = """Log records. Similar to `SimulationContext.order_records` but of type `log_dt` and index `SimulationContext.last_lidx`.""" __pdoc__['SimulationContext.last_cash'] = """Last cash per column or group with cash sharing. Has the same shape as `SimulationContext.init_cash`. Gets updated right after `order_func_nb`. """ __pdoc__['SimulationContext.last_position'] = """Last position per column. Has shape `(target_shape[1],)`. Gets updated right after `order_func_nb`. """ __pdoc__['SimulationContext.last_debt'] = """Last debt from shorting per column. Debt is the total value from shorting that hasn't been covered yet. Used to update `OrderContext.free_cash_now`. Has shape `(target_shape[1],)`. Gets updated right after `order_func_nb`. """ __pdoc__['SimulationContext.last_free_cash'] = """Last free cash per column or group with cash sharing. Free cash never goes above the initial level, because an operation always costs money. Has shape `(target_shape[1],)`. Gets updated right after `order_func_nb`. """ __pdoc__['SimulationContext.last_val_price'] = """Last valuation price per column. Has shape `(target_shape[1],)`. Enables `SizeType.Value`, `SizeType.TargetValue`, and `SizeType.TargetPercent`. Gets multiplied by the current position to get the value of the column (see `SimulationContext.last_value`). Defaults to the `SimulationContext.close` before `post_segment_func_nb`. If `SimulationContext.ffill_val_price`, gets updated only if `SimulationContext.close` is not NaN. For example, close of `[1, 2, np.nan, np.nan, 5]` yields valuation price of `[1, 2, 2, 2, 5]`. Also gets updated right after `pre_segment_func_nb` - you can use `pre_segment_func_nb` to override `last_val_price` in-place, such that `order_func_nb` can use the new group value. You are not allowed to use `-np.inf` or `np.inf` - only finite values. If `SimulationContext.update_value`, gets also updated right after `order_func_nb` using filled order price as the latest known price. !!! note Since the previous `SimulationContext.close` is NaN in the first row, the first `last_val_price` is also NaN. Overriding `last_val_price` with NaN won't apply `SimulationContext.ffill_val_price`, so your entire group will become NaN. ## Example Consider 10 units in column 1 and 20 units in column 2. The previous close of them is $40 and $50 respectively, which is also the default valuation price in the current row, available as `last_val_price` in `pre_segment_func_nb`. If both columns are in the same group with cash sharing, the group is valued at $1400 before any `order_func_nb` is called, and can be later accessed via `OrderContext.value_now`. """ __pdoc__['SimulationContext.last_value'] = """Last value per column or group with cash sharing. Has the same shape as `SimulationContext.init_cash`. Calculated by multiplying valuation price by the current position. The value of each column in a group with cash sharing is summed to get the value of the entire group. Gets updated using `SimulationContext.last_val_price` after `pre_segment_func_nb` and before `post_segment_func_nb`. If `SimulationContext.update_value`, gets also updated right after `order_func_nb` using filled order price as the latest known price (the difference will be minimal, only affected by costs). """ __pdoc__['SimulationContext.second_last_value'] = """Second-last value per column or group with cash sharing. Has the same shape as `SimulationContext.last_value`. Contains the latest known value two rows before (`i - 2`) to be compared either with the latest known value one row before (`i - 1`) or now (`i`). Gets updated at the end of each segment/row. """ __pdoc__['SimulationContext.last_return'] = """Last return per column or group with cash sharing. Has the same shape as `SimulationContext.last_value`. Calculated by comparing `SimulationContext.last_value` to `SimulationContext.second_last_value`. Gets updated each time `SimulationContext.last_value` is updated. """ __pdoc__['SimulationContext.last_oidx'] = """Index of the last order record of each column. Points to `SimulationContext.order_records` and has shape `(target_shape[1],)`. ## Example `last_oidx` of `np.array([1, 100, -1])` means the last filled order is `order_records[1]` for the first column, `order_records[100]` for the second column, and no orders have been filled yet for the third column. """ __pdoc__['SimulationContext.last_lidx'] = """Index of the last log record of each column. Similar to `SimulationContext.last_oidx` but for log records. """ __pdoc__['SimulationContext.last_pos_record'] = """Last position record of each column. It's a 1-dimensional array with records of type `position_dt`. Has shape `(target_shape[1],)`. The array is initialized with empty records first (they contain random data) and the field `id` is set to -1. Once the first position is entered in a column, the `id` becomes 0 and the record materializes. Once the position is closed, the record fixes its identifier and other data until the next position is entered. The fields `entry_price` and `exit_price` are average entry and exit price respectively. The fields `pnl` and `return` contain statistics as if the position has been closed and are re-calculated using `SimulationContext.last_val_price` after `pre_segment_func_nb` (in case `SimulationContext.last_val_price` has been overridden) and before `post_segment_func_nb`. !!! note In an open position record, the field `exit_price` doesn't reflect the latest valuation price, but keeps the average price at which the position has been reduced. The position record is updated after successfully filling an order (after `order_func_nb` and before `post_order_func_nb`). ## Example Consider a simulation that orders `order_size` for `order_price` and $1 fixed fees. Here's order info from `order_func_nb` and the updated position info from `post_order_func_nb`: ```plaintext order_size order_price id col size entry_idx entry_price \\ 0 NaN 1 -1 0 1.0 13 14.000000 1 0.5 2 0 0 0.5 1 2.000000 2 1.0 3 0 0 1.5 1 2.666667 3 NaN 4 0 0 1.5 1 2.666667 4 -1.0 5 0 0 1.5 1 2.666667 5 -0.5 6 0 0 1.5 1 2.666667 6 NaN 7 0 0 1.5 1 2.666667 7 -0.5 8 1 0 0.5 7 8.000000 8 -1.0 9 1 0 1.5 7 8.666667 9 1.0 10 1 0 1.5 7 8.666667 10 0.5 11 1 0 1.5 7 8.666667 11 1.0 12 2 0 1.0 11 12.000000 12 -2.0 13 3 0 1.0 12 13.000000 13 2.0 14 4 0 1.0 13 14.000000 entry_fees exit_idx exit_price exit_fees pnl return direction status 0 0.5 -1 NaN 0.0 -0.50 -0.035714 0 0 1 1.0 -1 NaN 0.0 -1.00 -1.000000 0 0 2 2.0 -1 NaN 0.0 -1.50 -0.375000 0 0 3 2.0 -1 NaN 0.0 -0.75 -0.187500 0 0 4 2.0 -1 5.000000 1.0 0.50 0.125000 0 0 5 2.0 5 5.333333 2.0 0.00 0.000000 0 1 6 2.0 5 5.333333 2.0 0.00 0.000000 0 1 7 1.0 -1 NaN 0.0 -1.00 -0.250000 1 0 8 2.0 -1 NaN 0.0 -2.50 -0.192308 1 0 9 2.0 -1 10.000000 1.0 -5.00 -0.384615 1 0 10 2.0 10 10.333333 2.0 -6.50 -0.500000 1 1 11 1.0 -1 NaN 0.0 -1.00 -0.083333 0 0 12 0.5 -1 NaN 0.0 -0.50 -0.038462 1 0 13 0.5 -1 NaN 0.0 -0.50 -0.035714 0 0 ``` """ class GroupContext(tp.NamedTuple): target_shape: tp.Shape close: tp.Array2d group_lens: tp.Array1d init_cash: tp.Array1d cash_sharing: bool call_seq: tp.Array2d segment_mask: tp.Array2d ffill_val_price: bool update_value: bool order_records: tp.RecordArray log_records: tp.RecordArray last_cash: tp.Array1d last_position: tp.Array1d last_debt: tp.Array1d last_free_cash: tp.Array1d last_val_price: tp.Array1d last_value: tp.Array1d second_last_value: tp.Array1d last_return: tp.Array1d last_oidx: tp.Array1d last_lidx: tp.Array1d last_pos_record: tp.RecordArray group: int group_len: int from_col: int to_col: int __pdoc__['GroupContext'] = """A named tuple representing the context of a group. A group is a set of nearby columns that are somehow related (for example, by sharing the same capital). In each row, the columns under the same group are bound to the same segment. Contains all fields from `SimulationContext` plus fields describing the current group. Passed to `pre_group_func_nb` and `post_group_func_nb`. ## Example Consider a group of three columns, a group of two columns, and one more column: | group | group_len | from_col | to_col | | ----- | --------- | -------- | ------ | | 0 | 3 | 0 | 3 | | 1 | 2 | 3 | 5 | | 2 | 1 | 5 | 6 | """ for field in GroupContext._fields: if field in SimulationContext._fields: __pdoc__['GroupContext.' + field] = f"See `SimulationContext.{field}`." __pdoc__['GroupContext.group'] = """Index of the current group. Has range `[0, group_lens.shape[0])`. """ __pdoc__['GroupContext.group_len'] = """Number of columns in the current group. Scalar value. Same as `group_lens[group]`. """ __pdoc__['GroupContext.from_col'] = """Index of the first column in the current group. Has range `[0, target_shape[1])`. """ __pdoc__['GroupContext.to_col'] = """Index of the last column in the current group plus one. Has range `[1, target_shape[1] + 1)`. If columns are not grouped, equals to `from_col + 1`. !!! warning In the last group, `to_col` points at a column that doesn't exist. """ class RowContext(tp.NamedTuple): target_shape: tp.Shape close: tp.Array2d group_lens: tp.Array1d init_cash: tp.Array1d cash_sharing: bool call_seq: tp.Array2d segment_mask: tp.Array2d ffill_val_price: bool update_value: bool order_records: tp.RecordArray log_records: tp.RecordArray last_cash: tp.Array1d last_position: tp.Array1d last_debt: tp.Array1d last_free_cash: tp.Array1d last_val_price: tp.Array1d last_value: tp.Array1d second_last_value: tp.Array1d last_return: tp.Array1d last_oidx: tp.Array1d last_lidx: tp.Array1d last_pos_record: tp.RecordArray i: int __pdoc__['RowContext'] = """A named tuple representing the context of a row. A row is a time step in which segments are executed. Contains all fields from `SimulationContext` plus fields describing the current row. Passed to `pre_row_func_nb` and `post_row_func_nb`. """ for field in RowContext._fields: if field in SimulationContext._fields: __pdoc__['RowContext.' + field] = f"See `SimulationContext.{field}`." __pdoc__['RowContext.i'] = """Index of the current row. Has range `[0, target_shape[0])`. """ class SegmentContext(tp.NamedTuple): target_shape: tp.Shape close: tp.Array2d group_lens: tp.Array1d init_cash: tp.Array1d cash_sharing: bool call_seq: tp.Array2d segment_mask: tp.Array2d ffill_val_price: bool update_value: bool order_records: tp.RecordArray log_records: tp.RecordArray last_cash: tp.Array1d last_position: tp.Array1d last_debt: tp.Array1d last_free_cash: tp.Array1d last_val_price: tp.Array1d last_value: tp.Array1d second_last_value: tp.Array1d last_return: tp.Array1d last_oidx: tp.Array1d last_lidx: tp.Array1d last_pos_record: tp.RecordArray group: int group_len: int from_col: int to_col: int i: int call_seq_now: tp.Array1d __pdoc__['SegmentContext'] = """A named tuple representing the context of a segment. A segment is an intersection between groups and rows. It's an entity that defines how and in which order elements within the same group and row are processed. Contains all fields from `SimulationContext`, `GroupContext`, and `RowContext`, plus fields describing the current segment. Passed to `pre_segment_func_nb` and `post_segment_func_nb`. """ for field in SegmentContext._fields: if field in SimulationContext._fields: __pdoc__['SegmentContext.' + field] = f"See `SimulationContext.{field}`." elif field in GroupContext._fields: __pdoc__['SegmentContext.' + field] = f"See `GroupContext.{field}`." elif field in RowContext._fields: __pdoc__['SegmentContext.' + field] = f"See `RowContext.{field}`." __pdoc__['SegmentContext.call_seq_now'] = """Sequence of calls within the current segment. Has shape `(group_len,)`. Each value in this sequence should indicate the position of column in the group to call next. Processing goes always from left to right. You can use `pre_segment_func_nb` to override `call_seq_now`. ## Example `[2, 0, 1]` would first call column 2, then 0, and finally 1. """ class OrderContext(tp.NamedTuple): target_shape: tp.Shape close: tp.Array2d group_lens: tp.Array1d init_cash: tp.Array1d cash_sharing: bool call_seq: tp.Array2d segment_mask: tp.Array2d ffill_val_price: bool update_value: bool order_records: tp.RecordArray log_records: tp.RecordArray last_cash: tp.Array1d last_position: tp.Array1d last_debt: tp.Array1d last_free_cash: tp.Array1d last_val_price: tp.Array1d last_value: tp.Array1d second_last_value: tp.Array1d last_return: tp.Array1d last_oidx: tp.Array1d last_lidx: tp.Array1d last_pos_record: tp.RecordArray group: int group_len: int from_col: int to_col: int i: int call_seq_now: tp.Array1d col: int call_idx: int cash_now: float position_now: float debt_now: float free_cash_now: float val_price_now: float value_now: float return_now: float pos_record_now: tp.Record __pdoc__['OrderContext'] = """A named tuple representing the context of an order. Contains all fields from `SegmentContext` plus fields describing the current state. Passed to `order_func_nb`. """ for field in OrderContext._fields: if field in SimulationContext._fields: __pdoc__['OrderContext.' + field] = f"See `SimulationContext.{field}`." elif field in GroupContext._fields: __pdoc__['OrderContext.' + field] = f"See `GroupContext.{field}`." elif field in RowContext._fields: __pdoc__['OrderContext.' + field] = f"See `RowContext.{field}`." elif field in SegmentContext._fields: __pdoc__['OrderContext.' + field] = f"See `SegmentContext.{field}`." __pdoc__['OrderContext.col'] = """Current column. Has range `[0, target_shape[1])` and is always within `[from_col, to_col)`. """ __pdoc__['OrderContext.call_idx'] = """Index of the current call in `SegmentContext.call_seq_now`. Has range `[0, group_len)`. """ __pdoc__['OrderContext.cash_now'] = "`SimulationContext.last_cash` for the current column/group." __pdoc__['OrderContext.position_now'] = "`SimulationContext.last_position` for the current column." __pdoc__['OrderContext.debt_now'] = "`SimulationContext.last_debt` for the current column." __pdoc__['OrderContext.free_cash_now'] = "`SimulationContext.last_free_cash` for the current column/group." __pdoc__['OrderContext.val_price_now'] = "`SimulationContext.last_val_price` for the current column." __pdoc__['OrderContext.value_now'] = "`SimulationContext.last_value` for the current column/group." __pdoc__['OrderContext.return_now'] = "`SimulationContext.last_return` for the current column/group." __pdoc__['OrderContext.pos_record_now'] = "`SimulationContext.last_pos_record` for the current column." class PostOrderContext(tp.NamedTuple): target_shape: tp.Shape close: tp.Array2d group_lens: tp.Array1d init_cash: tp.Array1d cash_sharing: bool call_seq: tp.Array2d segment_mask: tp.Array2d ffill_val_price: bool update_value: bool order_records: tp.RecordArray log_records: tp.RecordArray last_cash: tp.Array1d last_position: tp.Array1d last_debt: tp.Array1d last_free_cash: tp.Array1d last_val_price: tp.Array1d last_value: tp.Array1d second_last_value: tp.Array1d last_return: tp.Array1d last_oidx: tp.Array1d last_lidx: tp.Array1d last_pos_record: tp.RecordArray group: int group_len: int from_col: int to_col: int i: int call_seq_now: tp.Array1d col: int call_idx: int cash_before: float position_before: float debt_before: float free_cash_before: float val_price_before: float value_before: float order_result: "OrderResult" cash_now: float position_now: float debt_now: float free_cash_now: float val_price_now: float value_now: float return_now: float pos_record_now: tp.Record __pdoc__['PostOrderContext'] = """A named tuple representing the context after an order has been processed. Contains all fields from `OrderContext` plus fields describing the order result and the previous state. Passed to `post_order_func_nb`. """ for field in PostOrderContext._fields: if field in SimulationContext._fields: __pdoc__['PostOrderContext.' + field] = f"See `SimulationContext.{field}`." elif field in GroupContext._fields: __pdoc__['PostOrderContext.' + field] = f"See `GroupContext.{field}`." elif field in RowContext._fields: __pdoc__['PostOrderContext.' + field] = f"See `RowContext.{field}`." elif field in SegmentContext._fields: __pdoc__['PostOrderContext.' + field] = f"See `SegmentContext.{field}`." elif field in OrderContext._fields: __pdoc__['PostOrderContext.' + field] = f"See `OrderContext.{field}`." __pdoc__['PostOrderContext.cash_before'] = "`OrderContext.cash_now` before execution." __pdoc__['PostOrderContext.position_before'] = "`OrderContext.position_now` before execution." __pdoc__['PostOrderContext.debt_before'] = "`OrderContext.debt_now` before execution." __pdoc__['PostOrderContext.free_cash_before'] = "`OrderContext.free_cash_now` before execution." __pdoc__['PostOrderContext.val_price_before'] = "`OrderContext.val_price_now` before execution." __pdoc__['PostOrderContext.value_before'] = "`OrderContext.value_now` before execution." __pdoc__['PostOrderContext.order_result'] = """Order result of type `OrderResult`. Can be used to check whether the order has been filled, ignored, or rejected. """ __pdoc__['PostOrderContext.cash_now'] = "`OrderContext.cash_now` after execution." __pdoc__['PostOrderContext.position_now'] = "`OrderContext.position_now` after execution." __pdoc__['PostOrderContext.debt_now'] = "`OrderContext.debt_now` after execution." __pdoc__['PostOrderContext.free_cash_now'] = "`OrderContext.free_cash_now` after execution." __pdoc__['PostOrderContext.val_price_now'] = """`OrderContext.val_price_now` after execution. If `SimulationContext.update_value`, gets replaced with the fill price, as it becomes the most recently known price. Otherwise, stays the same. """ __pdoc__['PostOrderContext.value_now'] = """`OrderContext.value_now` after execution. If `SimulationContext.update_value`, gets updated with the new cash and value of the column. Otherwise, stays the same. """ __pdoc__['PostOrderContext.return_now'] = "`OrderContext.return_now` after execution." __pdoc__['PostOrderContext.pos_record_now'] = "`OrderContext.pos_record_now` after execution." class Order(tp.NamedTuple): size: float = np.inf price: float = np.inf size_type: int = SizeType.Amount direction: int = Direction.All fees: float = 0.0 fixed_fees: float = 0.0 slippage: float = 0.0 min_size: float = 0.0 max_size: float = np.inf reject_prob: float = 0.0 lock_cash: bool = False allow_partial: bool = True raise_reject: bool = False log: bool = False __pdoc__['Order'] = """A named tuple representing an order. !!! note Currently, Numba has issues with using defaults when filling named tuples. Use `vectorbt.portfolio.nb.order_nb` to create an order.""" __pdoc__['Order.size'] = """Size in units. Behavior depends upon `Order.size_type` and `Order.direction`. For any fixed size: * Set to any number to buy/sell some fixed amount or value. Longs are limited by the current cash balance, while shorts are only limited if `Order.lock_cash`. * Set to `np.inf` to buy for all cash, or `-np.inf` to sell for all free cash. If `Order.direction` is not `Direction.All`, `-np.inf` will close the position. * Set to `np.nan` or 0 to skip. For any target size: * Set to any number to buy/sell an amount relative to the current position or value. * Set to 0 to close the current position. * Set to `np.nan` to skip. """ __pdoc__['Order.price'] = """Price per unit. Final price will depend upon slippage. * If `-np.inf`, replaced by the previous close (~ the current open). * If `np.inf`, replaced by the current close. !!! note Make sure to use timestamps that come between (and ideally not including) the current open and close.""" __pdoc__['Order.size_type'] = "See `SizeType`." __pdoc__['Order.direction'] = "See `Direction`." __pdoc__['Order.fees'] = """Fees in percentage of the order value. Note that 0.01 = 1%.""" __pdoc__['Order.fixed_fees'] = "Fixed amount of fees to pay for this order." __pdoc__['Order.slippage'] = """Slippage in percentage of `Order.price`. Note that 0.01 = 1%.""" __pdoc__['Order.min_size'] = """Minimum size in both directions. Lower than that will be rejected.""" __pdoc__['Order.max_size'] = """Maximum size in both directions. Higher than that will be partly filled.""" __pdoc__['Order.reject_prob'] = """Probability of rejecting this order to simulate a random rejection event. Not everything goes smoothly in real life. Use random rejections to test your order management for robustness.""" __pdoc__['Order.lock_cash'] = """Whether to lock cash when shorting. Keeps free cash from turning negative.""" __pdoc__['Order.allow_partial'] = """Whether to allow partial fill. Otherwise, the order gets rejected. Does not apply when `Order.size` is `np.inf`.""" __pdoc__['Order.raise_reject'] = """Whether to raise exception if order has been rejected. Terminates the simulation.""" __pdoc__['Order.log'] = """Whether to log this order by filling a log record. Remember to increase `max_logs`.""" NoOrder = Order( np.nan, np.nan, -1, -1, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, False, False, False, False ) """_""" __pdoc__['NoOrder'] = "Order that should not be processed." class OrderResult(tp.NamedTuple): size: float price: float fees: float side: int status: int status_info: int __pdoc__['OrderResult'] = "A named tuple representing an order result." __pdoc__['OrderResult.size'] = "Filled size." __pdoc__['OrderResult.price'] = "Filled price per unit, adjusted with slippage." __pdoc__['OrderResult.fees'] = "Total fees paid for this order." __pdoc__['OrderResult.side'] = "See `OrderSide`." __pdoc__['OrderResult.status'] = "See `OrderStatus`." __pdoc__['OrderResult.status_info'] = "See `StatusInfo`." # ############# Records ############# # order_dt = np.dtype([ ('id', np.int_), ('idx', np.int_), ('col', np.int_), ('size', np.float_), ('price', np.float_), ('fees', np.float_), ('side', np.int_), ], align=True) """_""" __pdoc__['order_dt'] = f"""`np.dtype` of order records. ```json {to_doc(order_dt)} ``` """ _trade_fields = [ ('id', np.int_), ('col', np.int_), ('size', np.float_), ('entry_idx', np.int_), ('entry_price', np.float_), ('entry_fees', np.float_), ('exit_idx', np.int_), ('exit_price', np.float_), ('exit_fees', np.float_), ('pnl', np.float_), ('return', np.float_), ('direction', np.int_), ('status', np.int_), ('position_id', np.int_) ] trade_dt = np.dtype(_trade_fields, align=True) """_""" __pdoc__['trade_dt'] = f"""`np.dtype` of trade records. ```json {to_doc(trade_dt)} ``` """ _position_fields = _trade_fields[:-1] position_dt = np.dtype(_position_fields, align=True) """_""" __pdoc__['position_dt'] = f"""`np.dtype` of position records. ```json {to_doc(position_dt)} ``` """ _log_fields = [ ('id', np.int_), ('idx', np.int_), ('col', np.int_), ('group', np.int_), ('cash', np.float_), ('position', np.float_), ('debt', np.float_), ('free_cash', np.float_), ('val_price', np.float_), ('value', np.float_), ('size', np.float_), ('price', np.float_), ('size_type', np.int_), ('direction', np.int_), ('fees', np.float_), ('fixed_fees', np.float_), ('slippage', np.float_), ('min_size', np.float_), ('max_size', np.float_), ('reject_prob', np.float_), ('lock_cash', np.bool_), ('allow_partial', np.bool_), ('raise_reject', np.bool_), ('log', np.bool_), ('new_cash', np.float_), ('new_position', np.float_), ('new_debt', np.float_), ('new_free_cash', np.float_), ('new_val_price', np.float_), ('new_value', np.float_), ('res_size', np.float_), ('res_price', np.float_), ('res_fees', np.float_), ('res_side', np.int_), ('res_status', np.int_), ('res_status_info', np.int_), ('order_id', np.int_) ] log_dt = np.dtype(_log_fields, align=True) """_""" __pdoc__['log_dt'] = f"""`np.dtype` of log records. ```json {to_doc(log_dt)} ``` """
py
1a4739a32073dddf44fbaac97ba5f3b729878c65
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT from __future__ import unicode_literals from ..utils import ImageStats def test_ImageStats_inputs(): input_map = dict(args=dict(argstr='%s', ), environ=dict(nohash=True, usedefault=True, ), ignore_exception=dict(nohash=True, usedefault=True, ), in_file=dict(argstr='%s', mandatory=True, position=2, ), mask_file=dict(argstr='', ), op_string=dict(argstr='%s', mandatory=True, position=3, ), output_type=dict(), split_4d=dict(argstr='-t', position=1, ), terminal_output=dict(nohash=True, ), ) inputs = ImageStats.input_spec() for key, metadata in list(input_map.items()): for metakey, value in list(metadata.items()): assert getattr(inputs.traits()[key], metakey) == value def test_ImageStats_outputs(): output_map = dict(out_stat=dict(), ) outputs = ImageStats.output_spec() for key, metadata in list(output_map.items()): for metakey, value in list(metadata.items()): assert getattr(outputs.traits()[key], metakey) == value
py
1a473a0ed0f7c970440ce310e4f062e75bc9e1a0
import tensorflow as tf from tensorflow.keras import backend from tensorflow.keras import layers from tensorflow.keras import models from models.backbone.resnet import ResNet18, ResNet34, ResNet50, ResNet101, ResNet152 from models.backbone.resnext import ResNeXt50, ResNeXt101 from models.backbone.efficientnet import EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4 from models.backbone.efficientnet import EfficientNetB5, EfficientNetB6, EfficientNetB7, EfficientNetL2 from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2 from tensorflow.keras.applications.inception_v3 import InceptionV3 from tensorflow.keras.applications import DenseNet121, DenseNet169, DenseNet201 from tensorflow.keras.applications import VGG16 from tensorflow.keras.applications import VGG19 from models.backbone.senet import SENet154, SEResNet50, SEResNet101, SEResNet152, SEResNeXt50, SEResNeXt101 DEFAULT_SKIP_CONNECTIONS = { 'vgg16': ('block5_conv3', 'block4_conv3', 'block3_conv3', 'block2_conv2'), 'vgg19': ('block5_conv4', 'block4_conv4', 'block3_conv4', 'block2_conv2'), 'resnet18': ('stage4_unit1_relu1', 'stage3_unit1_relu1', 'stage2_unit1_relu1', 'relu0'), 'resnet34': ('stage4_unit1_relu1', 'stage3_unit1_relu1', 'stage2_unit1_relu1', 'relu0'), 'resnet50': ('stage4_unit1_relu1', 'stage3_unit1_relu1', 'stage2_unit1_relu1', 'relu0'), 'resnet101': ('stage4_unit1_relu1', 'stage3_unit1_relu1', 'stage2_unit1_relu1', 'relu0'), 'resnet152': ('stage4_unit1_relu1', 'stage3_unit1_relu1', 'stage2_unit1_relu1', 'relu0'), 'resnext50': ('stage4_unit1_relu1', 'stage3_unit1_relu1', 'stage2_unit1_relu1', 'relu0'), 'resnext101': ('stage4_unit1_relu1', 'stage3_unit1_relu1', 'stage2_unit1_relu1', 'relu0'), 'inceptionv3': (228, 86, 16, 9), 'inceptionresnetv2': (594, 260, 16, 9), 'densenet121': (311, 139, 51, 4), 'densenet169': (367, 139, 51, 4), 'densenet201': (479, 139, 51, 4), 'efficientnetb0': ('block6a_expand_activation', 'block4a_expand_activation', 'block3a_expand_activation', 'block2a_expand_activation'), 'efficientnetb1': ('block6a_expand_activation', 'block4a_expand_activation', 'block3a_expand_activation', 'block2a_expand_activation'), 'efficientnetb2': ('block6a_expand_activation', 'block4a_expand_activation', 'block3a_expand_activation', 'block2a_expand_activation'), 'efficientnetb3': ('block6a_expand_activation', 'block4a_expand_activation', 'block3a_expand_activation', 'block2a_expand_activation'), 'efficientnetb4': ('block6a_expand_activation', 'block4a_expand_activation', 'block3a_expand_activation', 'block2a_expand_activation'), 'efficientnetb5': ('block6a_expand_activation', 'block4a_expand_activation', 'block3a_expand_activation', 'block2a_expand_activation'), 'efficientnetb6': ('block6a_expand_activation', 'block4a_expand_activation', 'block3a_expand_activation', 'block2a_expand_activation'), 'efficientnetb7': ('block6a_expand_activation', 'block4a_expand_activation', 'block3a_expand_activation', 'block2a_expand_activation'), 'efficientnetl2': ('block6a_expand_activation', 'block4a_expand_activation', 'block3a_expand_activation', 'block2a_expand_activation'), 'seresnext50': ('activation_65', 'activation_35', 'activation_15', 'activation'), 'seresnext101': ('activation_150', 'activation_35', 'activation_15', 'activation'), 'seresnet50': ('activation_65', 'activation_35', 'activation_15', 'activation'), 'seresnet101': ('activation_150', 'activation_35', 'activation_15', 'activation'), 'seresnet152': ('activation_235', 'activation_55', 'activation_15', 'activation'), 'senet154': ('activation_237', 'activation_55', 'activation_17', 'activation_2'), } # --------------------------------------------------------------------- # PSP Model # --------------------------------------------------------------------- def PSPNet( backbone_name='vgg16', input_shape=(384, 384, 3), classes=21, activation='softmax', weights=None, encoder_weights='imagenet', encoder_freeze=False, downsample_factor=8, psp_conv_filters=512, psp_pooling_type='avg', psp_use_batchnorm=True, psp_dropout=None, **kwargs ): """PSPNet_ is a fully convolution neural network for image semantic segmentation Args: backbone_name: name of classification model used as feature extractor to build segmentation model. input_shape: shape of input data/image ``(H, W, C)``. ``H`` and ``W`` should be divisible by ``6 * downsample_factor`` and **NOT** ``None``! classes: a number of classes for output (output shape - ``(h, w, classes)``). activation: name of one of ``keras.activations`` for last model layer (e.g. ``sigmoid``, ``softmax``, ``linear``). weights: optional, path to model weights. encoder_weights: one of ``None`` (random initialization), ``imagenet`` (pre-training on ImageNet). encoder_freeze: if ``True`` set all layers of encoder (backbone model) as non-trainable. downsample_factor: one of 4, 8 and 16. Downsampling rate or in other words backbone depth to construct PSP module on it. psp_conv_filters: number of filters in ``Conv2D`` layer in each PSP block. psp_pooling_type: one of 'avg', 'max'. PSP block pooling type (maximum or average). psp_use_batchnorm: if ``True``, ``BatchNormalisation`` layer between ``Conv2D`` and ``Activation`` layers is used. psp_dropout: dropout rate between 0 and 1. Returns: ``keras.models.Model``: **PSPNet** .. _PSPNet: https://arxiv.org/pdf/1612.01105.pdf """ # control image input shape check_input_shape(input_shape, downsample_factor) backbone = get_backbone(backbone_name, input_shape=input_shape, weights=encoder_weights, include_top=False) feature_layers = DEFAULT_SKIP_CONNECTIONS[backbone_name] if downsample_factor == 16: psp_layer_idx = feature_layers[0] elif downsample_factor == 8: psp_layer_idx = feature_layers[1] elif downsample_factor == 4: psp_layer_idx = feature_layers[2] else: raise ValueError('Unsupported factor - `{}`, Use 4, 8 or 16.'.format(downsample_factor)) model = build_psp( backbone, psp_layer_idx, pooling_type=psp_pooling_type, conv_filters=psp_conv_filters, use_batchnorm=psp_use_batchnorm, final_upsampling_factor=downsample_factor, classes=classes, activation=activation, dropout=psp_dropout, ) # lock encoder weights for fine-tuning if encoder_freeze: freeze_model(backbone, **kwargs) # loading model weights if weights is not None: model.load_weights(weights) return model # --------------------------------------------------------------------- # PSP Decoder # --------------------------------------------------------------------- def build_psp( backbone, psp_layer_idx, pooling_type='avg', conv_filters=512, use_batchnorm=True, final_upsampling_factor=8, classes=21, activation='softmax', dropout=None, ): input_ = backbone.input x = (backbone.get_layer(name=psp_layer_idx).output if isinstance(psp_layer_idx, str) else backbone.get_layer(index=psp_layer_idx).output) # x = (get_layer_number(backbone, psp_layer_idx) if isinstance(psp_layer_idx, str) else psp_layer_idx) # build spatial pyramid x1 = SpatialContextBlock(1, conv_filters, pooling_type, use_batchnorm)(x) x2 = SpatialContextBlock(2, conv_filters, pooling_type, use_batchnorm)(x) x3 = SpatialContextBlock(3, conv_filters, pooling_type, use_batchnorm)(x) x6 = SpatialContextBlock(6, conv_filters, pooling_type, use_batchnorm)(x) # aggregate spatial pyramid concat_axis = 3 if backend.image_data_format() == 'channels_last' else 1 x = layers.Concatenate(axis=concat_axis, name='psp_concat')([x, x1, x2, x3, x6]) x = Conv1x1BnReLU(conv_filters, use_batchnorm, name='aggregation')(x) # model regularization if dropout is not None: x = layers.SpatialDropout2D(dropout, name='spatial_dropout')(x) # model head x = layers.Conv2D( filters=classes, kernel_size=(3, 3), padding='same', kernel_initializer='glorot_uniform', name='final_conv', )(x) x = layers.UpSampling2D(final_upsampling_factor, name='final_upsampling', interpolation='bilinear')(x) if activation in {'softmax', 'sigmoid'}: x = layers.Activation(activation, name=activation)(x) model = models.Model(input_, x) return model # --------------------------------------------------------------------- # Utility functions # --------------------------------------------------------------------- def Conv2dBn( filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, use_batchnorm=False, **kwargs ): """Extension of Conv2D layer with batchnorm""" conv_name, act_name, bn_name = None, None, None block_name = kwargs.pop('name', None) if block_name is not None: conv_name = block_name + '_conv' if block_name is not None and activation is not None: act_str = activation.__name__ if callable(activation) else str(activation) act_name = block_name + '_' + act_str if block_name is not None and use_batchnorm: bn_name = block_name + '_bn' bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1 def wrapper(input_tensor): x = layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=None, use_bias=not use_batchnorm, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, name=conv_name, )(input_tensor) if use_batchnorm: x = layers.BatchNormalization(axis=bn_axis, name=bn_name)(x) if activation: x = layers.Activation(activation, name=act_name)(x) return x return wrapper def check_input_shape(input_shape, factor): if input_shape is None: raise ValueError("Input shape should be a tuple of 3 integers, not None!") h, w = input_shape[:2] if backend.image_data_format() == 'channels_last' else input_shape[1:] min_size = factor * 6 is_wrong_shape = ( h % min_size != 0 or w % min_size != 0 or h < min_size or w < min_size ) if is_wrong_shape: raise ValueError('Wrong shape {}, input H and W should '.format(input_shape) + 'be divisible by `{}`'.format(min_size)) # --------------------------------------------------------------------- # Blocks # --------------------------------------------------------------------- def Conv1x1BnReLU(filters, use_batchnorm, name=None): def wrapper(input_tensor): return Conv2dBn( filters, kernel_size=1, activation='relu', kernel_initializer='he_uniform', padding='same', use_batchnorm=use_batchnorm, name=name )(input_tensor) return wrapper def SpatialContextBlock( level, conv_filters=512, pooling_type='avg', use_batchnorm=True, ): if pooling_type not in ('max', 'avg'): raise ValueError('Unsupported pooling type - `{}`.'.format(pooling_type) + 'Use `avg` or `max`.') Pooling2D = layers.MaxPool2D if pooling_type == 'max' else layers.AveragePooling2D pooling_name = 'psp_level{}_pooling'.format(level) conv_block_name = 'psp_level{}'.format(level) upsampling_name = 'psp_level{}_upsampling'.format(level) def wrapper(input_tensor): # extract input feature maps size (h, and w dimensions) input_shape = backend.int_shape(input_tensor) spatial_size = input_shape[1:3] if backend.image_data_format() == 'channels_last' else input_shape[2:] # Compute the kernel and stride sizes according to how large the final feature map will be # When the kernel factor and strides are equal, then we can compute the final feature map factor # by simply dividing the current factor by the kernel or stride factor # The final feature map sizes are 1x1, 2x2, 3x3, and 6x6. pool_size = up_size = [spatial_size[0] // level, spatial_size[1] // level] x = Pooling2D(pool_size, strides=pool_size, padding='same', name=pooling_name)(input_tensor) x = Conv1x1BnReLU(conv_filters, use_batchnorm, name=conv_block_name)(x) x = layers.UpSampling2D(up_size, interpolation='bilinear', name=upsampling_name)(x) return x return wrapper def freeze_model(model, **kwargs): """Set all layers non trainable, excluding BatchNormalization layers""" for layer in model.layers: if not isinstance(layer, layers.BatchNormalization): layer.trainable = False return def filter_keras_submodules(kwargs): """Selects only arguments that define keras_application submodules. """ submodule_keys = kwargs.keys() & {'backend', 'layers', 'models', 'utils'} return {key: kwargs[key] for key in submodule_keys} def get_layer_number(model, layer_name): """ Help find layer in Keras model by name Args: model: Keras `Model` layer_name: str, name of layer Returns: index of layer Raises: ValueError: if model does not contains layer with such name """ for i, l in enumerate(model.layers): if l.name == layer_name: return i raise ValueError('No layer with name {} in model {}.'.format(layer_name, model.name)) backbones = { "vgg16": VGG16, "vgg19": VGG19, "resnet18": ResNet18, "resnet34": ResNet34, "resnet50": ResNet50, "resnet101": ResNet101, "resnet152": ResNet152, "resnext50": ResNeXt50, "resnext101": ResNeXt101, "inceptionresnetv2": InceptionResNetV2, "inceptionv3": InceptionV3, "densenet121": DenseNet121, "densenet169": DenseNet169, "densenet201": DenseNet201, "efficientnetb0": EfficientNetB0, "efficientnetb1": EfficientNetB1, "efficientnetb2": EfficientNetB2, "efficientnetb3": EfficientNetB3, "efficientnetb4": EfficientNetB4, "efficientnetb5": EfficientNetB5, "efficientnetb6": EfficientNetB6, "efficientnetb7": EfficientNetB7, "efficientnetl2": EfficientNetL2, "seresnext50": SEResNeXt50, "seresnext101": SEResNeXt101, "seresnet50": SEResNet50, "seresnet101": SEResNet101, "seresnet152": SEResNet152, 'senet154': SENet154 } def get_backbone(name, *args, **kwargs): return backbones[name](*args, **kwargs) if __name__ == "__main__": model1 = PSPNet('efficientnetb4', (1200, 1200, 3), encoder_weights='imagenet') model1.summary()
py
1a473b729e9008be2be6b0fdac26a483a381bf06
from django.conf.urls import url from django.contrib import admin from django.conf import settings from django.conf.urls.static import static from . import views urlpatterns =[ url(r'^profile_edit/',views.profile_edit,name='edit_profile'), url(r'^signup/$', views.signup, name='signup'), url(r'^profile/', views.profile, name='profile'), url(r'^home/', views.home, name='home'), url(r'^follow/(?P<operation>,+)/(?P<pk>\d+)/$', views.follower, name='follow'), url(r'^comment/(?P<image_id>\d+)', views.add_comment, name='comment'), ] if settings.DEBUG: urlpatterns+= static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)
py
1a473bdbc01d3ec4cafdd5584afbad16a9d0fc71
# --Requires--: # game.get_moves() # game.execute_move() # game.undo_move() # game.is_final() # game.get_score() # game.get_states() # get_board() # get_turn() # TODO: update find moves import numpy as np import time class TicTacToe: def __init__(self): self.board = np.array([[[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]]]) self.history = [] def get_moves(self): return [x for x in range(9) if self.board[x // 3, x % 3, 0] == self.board[x // 3, x % 3, 1] == 0] def get_legal_NN_output(self): return [1 if self.board[x // 3, x % 3, 0] == self.board[x // 3, x % 3, 1] == 0 else 0 for x in range(9)] # moves = [] # for x in range(9): # if self.board[x // 3, x % 3, 0] == self.board[x // 3, x % 3, 1] == 0: # moves.append(x) # return moves def execute_move(self, move): self.board[move // 3, move % 3, len(self.history) % 2] = 1 self.history.append(move) # poss_moves = self.get_moves() # if move in poss_moves: # self.board[move // 3, move % 3, len(self.history) % 2] = 1 # self.history.append(move) # else: # print('illegal move') def undo_move(self): if len(self.history) > 0: move = self.history[-1] self.board[move // 3, move % 3, (len(self.history) - 1) % 2] = 0 self.history.pop() else: print('could not undo move') def _won(self): player = 1 * (len(self.history) % 2 == 0) for x in range(3): # Horizontal if self.board[x, 0, player] == self.board[x, 1, player] == self.board[x, 2, player] != 0: return True # Vertical if self.board[0, x, player] == self.board[1, x, player] == self.board[2, x, player] != 0: return True # Diagonal if self.board[0, 0, player] == self.board[1, 1, player] == self.board[2, 2, player] != 0: return True if self.board[0, 2, player] == self.board[1, 1, player] == self.board[2, 0, player] != 0: return True def is_final(self): if self._won(): return True if len(self.history) == 9: return True return False def get_score(self): if self.is_final(): if self._won(): return 2 else: return 1 else: print('not final') def get_outcome(self): if self.is_final(): if self._won(): return [1, -1] if len(self.history) % 2 == 1 else [-1, 1] else: return [0, 0] else: print("not finished") def get_state(self): # return [str(self.get_board())] return str(self.history) def get_turn(self): return len(self.history) % 2 if not self.is_final() else None def get_board(self): return self.board if len(self.history) % 2 == 0 else np.flip(self.board, -1) def print_board(self): for x in range(3): string = '|' for y in range(3): string += 'X' * int(self.board[x, y, 0] == 1) string += 'O' * int(self.board[x, y, 1] == 1) string += ' ' * int(self.board[x, y, 0] == self.board[x, y, 1] == 0) string += '|' print(string) # game = TicTacToe() # game.print_board() # while True: # inp = int(input("Number:")) # game.execute_move(inp) # game.print_board() # game.undo_move()
py
1a473c2cf10d3dd1891fd8f02f4767baf1d2da5a
di = float(input('Dinheiro: R$')) o = di * 3.27 print('Com R${:.3f} você pode comprar {:.3f} dolarés!'.format(di,o))
py
1a473c6068b845a10394096d6a32ea83d404692c
from __future__ import print_function from __future__ import division import torch import torch.nn as nn from torch.optim.lr_scheduler import ExponentialLR, StepLR import torch.nn.functional as F from sklearn import metrics from sklearn.model_selection import KFold, StratifiedKFold from torch.autograd import Variable import os import warnings import math import numpy as np from tqdm import tqdm, trange import time import random import csv from sklearn.ensemble import RandomForestRegressor as RFR import rdkit from rdkit import Chem, DataStructs from rdkit.Chem import QED from joblib import dump, load import threading from inference_schema.schema_decorators import input_schema, output_schema from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType from sklearn.externals import joblib import pickle def normalize_desc(desc_array, desc_mean=None): desc_array = np.array(desc_array).reshape(len(desc_array), -1) ind = np.zeros(desc_array.shape) for i in range(desc_array.shape[0]): for j in range(desc_array.shape[1]): try: if np.isfinite(desc_array[i, j]): ind[i, j] = 1 except: pass for i in range(desc_array.shape[0]): for j in range(desc_array.shape[1]): if ind[i, j] == 0: desc_array[i, j] = 0 if desc_mean is None: desc_mean = np.mean(desc_array, axis=0) for i in range(desc_array.shape[0]): for j in range(desc_array.shape[1]): if ind[i, j] == 0: desc_array[i, j] = desc_mean[j] return desc_array, desc_mean class Iterator(object): """Abstract base class for data iterators. # Arguments n: Integer, total number of samples in the dataset to loop over. batch_size: Integer, size of a batch. shuffle: Boolean, whether to shuffle the data between epochs. seed: Random seeding for data shuffling. """ def __init__(self, n, batch_size, shuffle, seed): self.n = n self.batch_size = batch_size self.shuffle = shuffle self.batch_index = 0 self.total_batches_seen = 0 self.lock = threading.Lock() self.index_generator = self._flow_index(n, batch_size, shuffle, seed) if n < batch_size: raise ValueError('Input data length is shorter than batch_size\nAdjust batch_size') def reset(self): self.batch_index = 0 def _flow_index(self, n, batch_size=32, shuffle=False, seed=None): # Ensure self.batch_index is 0. self.reset() while 1: if seed is not None: np.random.seed(seed + self.total_batches_seen) if self.batch_index == 0: index_array = np.arange(n) if shuffle: index_array = np.random.permutation(n) current_index = (self.batch_index * batch_size) % n if n > current_index + batch_size: current_batch_size = batch_size self.batch_index += 1 else: current_batch_size = n - current_index self.batch_index = 0 self.total_batches_seen += 1 yield (index_array[current_index: current_index + current_batch_size], current_index, current_batch_size) def __iter__(self): # Needed if we want to do something like: # for x, y in data_gen.flow(...): return self def __next__(self, *args, **kwargs): return self.next(*args, **kwargs) class SmilesIterator(Iterator): """Iterator yielding data from a SMILES array. # Arguments x: Numpy array of SMILES input data. y: Numpy array of targets data. smiles_data_generator: Instance of `SmilesEnumerator` to use for random SMILES generation. batch_size: Integer, size of a batch. shuffle: Boolean, whether to shuffle the data between epochs. seed: Random seed for data shuffling. dtype: dtype to use for returned batch. Set to keras.backend.floatx if using Keras """ def __init__(self, x, y, smiles_data_generator, batch_size=32, shuffle=False, seed=None, dtype=np.float32 ): if y is not None and len(x) != len(y): raise ValueError('X (images tensor) and y (labels) ' 'should have the same length. ' 'Found: X.shape = %s, y.shape = %s' % (np.asarray(x).shape, np.asarray(y).shape)) self.x = np.asarray(x) if y is not None: self.y = np.asarray(y) else: self.y = None self.smiles_data_generator = smiles_data_generator self.dtype = dtype super(SmilesIterator, self).__init__(x.shape[0], batch_size, shuffle, seed) def next(self): """For python 2.x. # Returns The next batch. """ # Keeps under lock only the mechanism which advances # the indexing of each batch. with self.lock: index_array, current_index, current_batch_size = next(self.index_generator) # The transformation of images is not under thread lock # so it can be done in parallel batch_x = np.zeros( tuple([current_batch_size] + [self.smiles_data_generator.pad, self.smiles_data_generator._charlen]), dtype=self.dtype) for i, j in enumerate(index_array): smiles = self.x[j:j + 1] x = self.smiles_data_generator.transform(smiles) batch_x[i] = x if self.y is None: return batch_x batch_y = self.y[index_array] return batch_x, batch_y def get_desc(smiles, calc): desc = [] processed_indices = [] invalid_indices = [] for i in range(len(smiles)): sm = smiles[i] try: mol = Chem.MolFromSmiles(sm) tmp = np.array(calc(mol)) desc.append(tmp) processed_indices.append(i) except: invalid_indices.append(i) desc_array = np.array(desc) return desc_array, processed_indices, invalid_indices def sanitize_smiles(smiles, canonical=True, throw_warning=False): """ Takes list of SMILES strings and returns list of their sanitized versions. For definition of sanitized SMILES check http://www.rdkit.org/docs/api/rdkit.Chem.rdmolops-module.html#SanitizeMol Parameters ---------- smiles: list list of SMILES strings canonical: bool (default True) parameter specifying whether SMILES will be converted to canonical format throw_warning: bool (default False) parameter specifying whether warnings will be thrown if a SMILES is invalid Returns ------- new_smiles: list list of SMILES and NaNs if SMILES string is invalid or unsanitized. If canonical is True, returns list of canonical SMILES. When canonical is True this function is analogous to: canonical_smiles(smiles, sanitize=True). """ new_smiles = [] for sm in smiles: try: if canonical: new_smiles.append(Chem.MolToSmiles(Chem.MolFromSmiles(sm, sanitize=True))) else: new_smiles.append(sm) except: if throw_warning: warnings.warn('Unsanitized SMILES string: ' + sm, UserWarning) new_smiles.append('') return new_smiles def canonical_smiles(smiles, sanitize=True, throw_warning=False): """ Takes list of SMILES strings and returns list of their canonical SMILES. Parameters ---------- smiles: list list of SMILES strings to convert into canonical format sanitize: bool (default True) parameter specifying whether to sanitize SMILES or not. For definition of sanitized SMILES check http://www.rdkit.org/docs/api/rdkit.Chem.rdmolops-module.html#SanitizeMol throw_warning: bool (default False) parameter specifying whether warnings will be thrown if a SMILES is invalid Returns ------- new_smiles: list list of canonical SMILES and NaNs if SMILES string is invalid or unsanitized (when sanitize is True) When sanitize is True the function is analogous to: sanitize_smiles(smiles, canonical=True). """ new_smiles = [] for sm in smiles: try: mol = Chem.MolFromSmiles(sm, sanitize=sanitize) new_smiles.append(Chem.MolToSmiles(mol)) except: if throw_warning: warnings.warn(sm + ' can not be canonized: invalid ' 'SMILES string!', UserWarning) new_smiles.append('') return new_smiles def save_smi_to_file(filename, smiles, unique=True): """ Takes path to file and list of SMILES strings and writes SMILES to the specified file. Args: filename (str): path to the file smiles (list): list of SMILES strings unique (bool): parameter specifying whether to write only unique copies or not. Output: success (bool): defines whether operation was successfully completed or not. """ if unique: smiles = list(set(smiles)) else: smiles = list(smiles) f = open(filename, 'w') for mol in smiles: f.writelines([mol, '\n']) f.close() return f.closed def read_smi_file(filename, unique=True, add_start_end_tokens=False): """ Reads SMILES from file. File must contain one SMILES string per line with \n token in the end of the line. Args: filename (str): path to the file unique (bool): return only unique SMILES Returns: smiles (list): list of SMILES strings from specified file. success (bool): defines whether operation was successfully completed or not. If 'unique=True' this list contains only unique copies. """ f = open(filename, 'r') molecules = [] for line in f: if add_start_end_tokens: molecules.append('<' + line[:-1] + '>') else: molecules.append(line[:-1]) if unique: molecules = list(set(molecules)) else: molecules = list(molecules) f.close() return molecules, f.closed def tokenize(smiles, tokens=None): """ Returns list of unique tokens, token-2-index dictionary and number of unique tokens from the list of SMILES Parameters ---------- smiles: list list of SMILES strings to tokenize. tokens: list, str (default None) list of unique tokens Returns ------- tokens: list list of unique tokens/SMILES alphabet. token2idx: dict dictionary mapping token to its index. num_tokens: int number of unique tokens. """ if tokens is None: tokens = list(set(''.join(smiles))) tokens = list(np.sort(tokens)) tokens = ''.join(tokens) token2idx = dict((token, i) for i, token in enumerate(tokens)) num_tokens = len(tokens) return tokens, token2idx, num_tokens def time_since(since): s = time.time() - since m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) class VanillaQSAR(object): def __init__(self, model_instance=None, model_params=None, model_type='classifier', ensemble_size=5, normalization=False): super(VanillaQSAR, self).__init__() self.model_instance = model_instance self.model_params = model_params self.ensemble_size = ensemble_size self.model = [] self.normalization = normalization if model_type not in ['classifier', 'regressor']: raise InvalidArgumentError("model type must be either" "classifier or regressor") self.model_type = model_type if isinstance(self.model_instance, list): assert(len(self.model_instance) == self.ensemble_size) assert(isinstance(self.model_params, list)) assert(len(self.model_params) == self.ensemble_size) for i in range(self.ensemble_size): self.model.append(self.model_instance[i](**model_params[i])) else: for _ in range(self.ensemble_size): self.model.append(self.model_instance(**model_params)) if self.normalization: self.desc_mean = [0]*self.ensemble_size self.metrics_type = None def fit_model(self, data, cv_split='stratified'): eval_metrics = [] x = data.x if self.model_type == 'classifier' and data.binary_y is not None: y = data.binary_y else: y = data.y cross_val_data, cross_val_labels = cross_validation_split(x=x, y=y, split=cv_split, n_folds=self.ensemble_size) for i in range(self.ensemble_size): train_x = np.concatenate(cross_val_data[:i] + cross_val_data[(i + 1):]) test_x = cross_val_data[i] train_y = np.concatenate(cross_val_labels[:i] + cross_val_labels[(i + 1):]) test_y = cross_val_labels[i] if self.normalization: train_x, desc_mean = normalize_desc(train_x) self.desc_mean[i] = desc_mean test_x, _ = normalize_desc(test_x, desc_mean) self.model[i].fit(train_x, train_y.ravel()) predicted = self.model[i].predict(test_x) if self.model_type == 'classifier': eval_metrics.append(metrics.f1_score(test_y, predicted)) self.metrics_type = 'F1 score' elif self.model_type == 'regressor': r2 = metrics.r2_score(test_y, predicted) eval_metrics.append(r2) self.metrics_type = 'R^2 score' else: raise RuntimeError() return eval_metrics, self.metrics_type def load_model(self, path): # TODO: add iterable path object instead of static path self.model = joblib.load(path) if self.normalization: arr = np.load(path + 'desc_mean.npy') self.desc_mean = arr def save_model(self, path): joblib.dump(self.model, path + '.joblib') if self.normalization: np.save(path + 'desc_mean.npy', self.desc_mean) def predict(self, objects=None, average=True, get_features=None, **kwargs): objects = np.array(objects) invalid_objects = [] processed_objects = [] if get_features is not None: x, processed_indices, invalid_indices = get_features(objects, **kwargs) processed_objects = objects[processed_indices] invalid_objects = objects[invalid_indices] else: x = objects if len(x) == 0: processed_objects = [] prediction = [] invalid_objects = objects else: prediction = [] for i in range(self.ensemble_size): m = self.model[i] if self.normalization: x, _ = normalize_desc(x, self.desc_mean[i]) prediction.append(m.predict(x)) prediction = np.array(prediction) if average: prediction = prediction.mean(axis=0) return processed_objects, prediction, invalid_objects class StackAugmentedRNN(nn.Module): def __init__(self, input_size, hidden_size, output_size, layer_type='GRU', n_layers=1, is_bidirectional=False, has_stack=False, stack_width=None, stack_depth=None, use_cuda=None, optimizer_instance=torch.optim.Adadelta, lr=0.01): """ Constructor for the StackAugmentedRNN object. Parameters ---------- input_size: int number of characters in the alphabet hidden_size: int size of the RNN layer(s) output_size: int again number of characters in the alphabet layer_type: str (default 'GRU') type of the RNN layer to be used. Could be either 'LSTM' or 'GRU'. n_layers: int (default 1) number of RNN layers is_bidirectional: bool (default False) parameter specifying if RNN is bidirectional has_stack: bool (default False) parameter specifying if augmented memory stack is used stack_width: int (default None) if has_stack is True then this parameter defines width of the augmented stack memory stack_depth: int (default None) if has_stack is True then this parameter define depth of the augmented stack memory. Hint: no need fo stack depth to be larger than the length of the longest sequence you plan to generate use_cuda: bool (default None) parameter specifying if GPU is used for computations. If left unspecified, GPU will be used if available optimizer_instance: torch.optim object (default torch.optim.Adadelta) optimizer to be used for training lr: float (default 0.01) learning rate for the optimizer """ super(StackAugmentedRNN, self).__init__() if layer_type not in ['GRU', 'LSTM']: raise InvalidArgumentError('Layer type must be GRU or LSTM') self.layer_type = layer_type self.is_bidirectional = is_bidirectional if self.is_bidirectional: self.num_dir = 2 else: self.num_dir = 1 if layer_type == 'LSTM': self.has_cell = True else: self.has_cell = False self.has_stack = has_stack self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size if self.has_stack: self.stack_width = stack_width self.stack_depth = stack_depth self.use_cuda = use_cuda if self.use_cuda is None: self.use_cuda = torch.cuda.is_available() self.n_layers = n_layers if self.has_stack: self.stack_controls_layer = nn.Linear(in_features=self.hidden_size * self.num_dir, out_features=3) self.stack_input_layer = nn.Linear(in_features=self.hidden_size * self.num_dir, out_features=self.stack_width) self.encoder = nn.Embedding(input_size, hidden_size) if self.has_stack: rnn_input_size = hidden_size + stack_width else: rnn_input_size = hidden_size if self.layer_type == 'LSTM': self.rnn = nn.LSTM(rnn_input_size, hidden_size, n_layers, bidirectional=self.is_bidirectional) self.decoder = nn.Linear(hidden_size * self.num_dir, output_size) elif self.layer_type == 'GRU': self.rnn = nn.GRU(rnn_input_size, hidden_size, n_layers, bidirectional=self.is_bidirectional) self.decoder = nn.Linear(hidden_size * self.num_dir, output_size) self.log_softmax = torch.nn.LogSoftmax(dim=1) if self.use_cuda: self = self.cuda() self.criterion = nn.CrossEntropyLoss() self.lr = lr self.optimizer_instance = optimizer_instance self.optimizer = self.optimizer_instance(self.parameters(), lr=lr, weight_decay=0.00001) def load_model(self, path): """ Loads pretrained parameters from the checkpoint into the model. Parameters ---------- path: str path to the checkpoint file model will be loaded from. """ weights = torch.load(path, map_location=lambda storage, loc: storage) self.load_state_dict(weights) def save_model(self, path): """ Saves model parameters into the checkpoint file. Parameters ---------- path: str path to the checkpoint file model will be saved to. """ torch.save(self.state_dict(), path) def change_lr(self, new_lr): """ Updates learning rate of the optimizer. Parameters ---------- new_lr: float new learning rate value """ self.optimizer = self.optimizer_instance(self.parameters(), lr=new_lr) self.lr = new_lr def forward(self, inp, hidden, stack): """ Forward step of the model. Generates probability of the next character given the prefix. Parameters ---------- inp: torch.tensor input tensor that contains prefix string indices hidden: torch.tensor or tuple(torch.tensor, torch.tensor) previous hidden state of the model. If layer_type is 'LSTM', then hidden is a tuple of hidden state and cell state, otherwise hidden is torch.tensor stack: torch.tensor previous state of the augmented memory stack Returns ------- output: torch.tensor tensor with non-normalized probabilities of the next character next_hidden: torch.tensor or tuple(torch.tensor, torch.tensor) next hidden state of the model. If layer_type is 'LSTM', then next_hidden is a tuple of hidden state and cell state, otherwise next_hidden is torch.tensor next_stack: torch.tensor next state of the augmented memory stack """ inp = self.encoder(inp.view(1, -1)) if self.has_stack: if self.has_cell: hidden_ = hidden[0] else: hidden_ = hidden if self.is_bidirectional: hidden_2_stack = torch.cat((hidden_[0], hidden_[1]), dim=1) else: hidden_2_stack = hidden_.squeeze(0) stack_controls = self.stack_controls_layer(hidden_2_stack) stack_controls = F.softmax(stack_controls, dim=1) stack_input = self.stack_input_layer(hidden_2_stack.unsqueeze(0)) stack_input = torch.tanh(stack_input) stack = self.stack_augmentation(stack_input.permute(1, 0, 2), stack, stack_controls) stack_top = stack[:, 0, :].unsqueeze(0) inp = torch.cat((inp, stack_top), dim=2) output, next_hidden = self.rnn(inp.view(1, 1, -1), hidden) output = self.decoder(output.view(1, -1)) return output, next_hidden, stack def stack_augmentation(self, input_val, prev_stack, controls): """ Augmentation of the tensor into the stack. For more details see https://arxiv.org/abs/1503.01007 Parameters ---------- input_val: torch.tensor tensor to be added to stack prev_stack: torch.tensor previous stack state controls: torch.tensor predicted probabilities for each operation in the stack, i.e PUSH, POP and NO_OP. Again, see https://arxiv.org/abs/1503.01007 Returns ------- new_stack: torch.tensor new stack state """ batch_size = prev_stack.size(0) controls = controls.view(-1, 3, 1, 1) zeros_at_the_bottom = torch.zeros(batch_size, 1, self.stack_width) if self.use_cuda: zeros_at_the_bottom = Variable(zeros_at_the_bottom.cuda()) else: zeros_at_the_bottom = Variable(zeros_at_the_bottom) a_push, a_pop, a_no_op = controls[:, 0], controls[:, 1], controls[:, 2] stack_down = torch.cat((prev_stack[:, 1:], zeros_at_the_bottom), dim=1) stack_up = torch.cat((input_val, prev_stack[:, :-1]), dim=1) new_stack = a_no_op * prev_stack + a_push * stack_up + a_pop * stack_down return new_stack def init_hidden(self): """ Initialization of the hidden state of RNN. Returns ------- hidden: torch.tensor tensor filled with zeros of an appropriate size (taking into account number of RNN layers and directions) """ if self.use_cuda: return Variable(torch.zeros(self.n_layers * self.num_dir, 1, self.hidden_size).cuda()) else: return Variable(torch.zeros(self.n_layers * self.num_dir, 1, self.hidden_size)) def init_cell(self): """ Initialization of the cell state of LSTM. Only used when layers_type is 'LSTM' Returns ------- cell: torch.tensor tensor filled with zeros of an appropriate size (taking into account number of RNN layers and directions) """ if self.use_cuda: return Variable(torch.zeros(self.n_layers * self.num_dir, 1, self.hidden_size).cuda()) else: return Variable(torch.zeros(self.n_layers * self.num_dir, 1, self.hidden_size)) def init_stack(self): """ Initialization of the stack state. Only used when has_stack is True Returns ------- stack: torch.tensor tensor filled with zeros """ result = torch.zeros(1, self.stack_depth, self.stack_width) if self.use_cuda: return Variable(result.cuda()) else: return Variable(result) def train_step(self, inp, target): """ One train step, i.e. forward-backward and parameters update, for a single training example. Parameters ---------- inp: torch.tensor tokenized training string from position 0 to position (seq_len - 1) target: tokenized training string from position 1 to position seq_len Returns ------- loss: float mean value of the loss function (averaged through the sequence length) """ hidden = self.init_hidden() if self.has_cell: cell = self.init_cell() hidden = (hidden, cell) if self.has_stack: stack = self.init_stack() else: stack = None self.optimizer.zero_grad() loss = 0 for c in range(len(inp)): output, hidden, stack = self(inp[c], hidden, stack) loss += self.criterion(output, target[c].unsqueeze(0)) loss.backward() self.optimizer.step() return loss.item() / len(inp) def evaluate(self, data, prime_str='<', end_token='>', predict_len=100): """ Generates new string from the model distribution. Parameters ---------- data: object of type GeneratorData stores information about the generator data format such alphabet, etc prime_str: str (default '<') prime string that will be used as prefix. Deafult value is just the START_TOKEN end_token: str (default '>') when end_token is sampled from the model distribution, the generation of a new example is finished predict_len: int (default 100) maximum length of the string to be generated. If the end_token is not sampled, the generation will be aborted when the length of the generated sequence is equal to predict_len Returns ------- new_sample: str Newly generated sample from the model distribution. """ hidden = self.init_hidden() if self.has_cell: cell = self.init_cell() hidden = (hidden, cell) if self.has_stack: stack = self.init_stack() else: stack = None prime_input = data.char_tensor(prime_str) new_sample = prime_str # Use priming string to "build up" hidden state for p in range(len(prime_str)-1): _, hidden, stack = self.forward(prime_input[p], hidden, stack) inp = prime_input[-1] for p in range(predict_len): output, hidden, stack = self.forward(inp, hidden, stack) # Sample from the network as a multinomial distribution probs = torch.softmax(output, dim=1) top_i = torch.multinomial(probs.view(-1), 1)[0].cpu().numpy() # Add predicted character to string and use as next input predicted_char = data.all_characters[top_i] new_sample += predicted_char inp = data.char_tensor(predicted_char) if predicted_char == end_token: break return new_sample def fit(self, data, n_iterations, all_losses=[], print_every=100, plot_every=10, augment=False): """ This methods fits the parameters of the model. Training is performed to minimize the cross-entropy loss when predicting the next character given the prefix. Parameters ---------- data: object of type GeneratorData stores information about the generator data format such alphabet, etc n_iterations: int how many iterations of training will be performed all_losses: list (default []) list to store the values of the loss function print_every: int (default 100) feedback will be printed to std_out once every print_every iterations of training plot_every: int (default 10) value of the loss function will be appended to all_losses once every plot_every iterations of training augment: bool (default False) parameter specifying if SMILES enumeration will be used. For mode details on SMILES enumeration see https://arxiv.org/abs/1703.07076 Returns ------- all_losses: list list that stores the values of the loss function (learning curve) """ start = time.time() loss_avg = 0 if augment: smiles_augmentation = SmilesEnumerator() else: smiles_augmentation = None for epoch in trange(1, n_iterations + 1, desc='Training in progress...'): inp, target = data.random_training_set(smiles_augmentation) loss = self.train_step(inp, target) loss_avg += loss if epoch % print_every == 0: print('[%s (%d %d%%) %.4f]' % (time_since(start), epoch, epoch / n_iterations * 100, loss) ) print(self.evaluate(data=data, prime_str = '<', predict_len=100), '\n') if epoch % plot_every == 0: all_losses.append(loss_avg / plot_every) loss_avg = 0 return all_losses class SmilesEnumerator(object): """SMILES Enumerator, vectorizer and devectorizer #Arguments charset: string containing the characters for the vectorization can also be generated via the .fit() method pad: Length of the vectorization leftpad: Add spaces to the left of the SMILES isomericSmiles: Generate SMILES containing information about stereogenic centers enum: Enumerate the SMILES during transform canonical: use canonical SMILES during transform (overrides enum) """ def __init__(self, charset='@C)(=cOn1S2/H[N]\\', pad=120, leftpad=True, isomericSmiles=True, enum=True, canonical=False): self._charset = None self.charset = charset self.pad = pad self.leftpad = leftpad self.isomericSmiles = isomericSmiles self.enumerate = enum self.canonical = canonical @property def charset(self): return self._charset @charset.setter def charset(self, charset): self._charset = charset self._charlen = len(charset) self._char_to_int = dict((c, i) for i, c in enumerate(charset)) self._int_to_char = dict((i, c) for i, c in enumerate(charset)) def fit(self, smiles, extra_chars=[], extra_pad=5): """Performs extraction of the charset and length of a SMILES datasets and sets self.pad and self.charset #Arguments smiles: Numpy array or Pandas series containing smiles as strings extra_chars: List of extra chars to add to the charset (e.g. "\\\\" when "/" is present) extra_pad: Extra padding to add before or after the SMILES vectorization """ charset = set("".join(list(smiles))) self.charset = "".join(charset.union(set(extra_chars))) self.pad = max([len(smile) for smile in smiles]) + extra_pad def randomize_smiles(self, smiles): """Perform a randomization of a SMILES string must be RDKit sanitizable""" m = Chem.MolFromSmiles(smiles) ans = list(range(m.GetNumAtoms())) np.random.shuffle(ans) nm = Chem.RenumberAtoms(m, ans) return Chem.MolToSmiles(nm, canonical=self.canonical, isomericSmiles=self.isomericSmiles) def transform(self, smiles): """Perform an enumeration (randomization) and vectorization of a Numpy array of smiles strings #Arguments smiles: Numpy array or Pandas series containing smiles as strings """ one_hot = np.zeros((smiles.shape[0], self.pad, self._charlen), dtype=np.int8) for i, ss in enumerate(smiles): if self.enumerate: ss = self.randomize_smiles(ss) for j, c in enumerate(ss): one_hot[i, j, self._char_to_int[c]] = 1 return one_hot def reverse_transform(self, vect): """ Performs a conversion of a vectorized SMILES to a smiles strings charset must be the same as used for vectorization. #Arguments vect: Numpy array of vectorized SMILES. """ smiles = [] for v in vect: # mask v v = v[v.sum(axis=1) == 1] # Find one hot encoded index with argmax, translate to char and join to string smile = "".join(self._int_to_char[i] for i in v.argmax(axis=1)) smiles.append(smile) return np.array(smiles) def cross_validation_split(x, y, n_folds=5, split='random', folds=None): assert(len(x) == len(y)) x = np.array(x) y = np.array(y) if split not in ['random', 'stratified', 'fixed']: raise ValueError('Invalid value for argument \'split\': ' 'must be either \'random\', \'stratified\' ' 'or \'fixed\'') if split == 'random': cv_split = KFold(n_splits=n_folds, shuffle=True) folds = list(cv_split.split(x, y)) elif split == 'stratified': cv_split = StratifiedKFold(n_splits=n_folds, shuffle=True) folds = list(cv_split.split(x, y)) elif split == 'fixed' and folds is None: raise TypeError( 'Invalid type for argument \'folds\': found None, but must be list') cross_val_data = [] cross_val_labels = [] if len(folds) == n_folds: for fold in folds: cross_val_data.append(x[fold[1]]) cross_val_labels.append(y[fold[1]]) elif len(folds) == len(x) and np.max(folds) == n_folds: for f in range(n_folds): left = np.where(folds == f)[0].min() right = np.where(folds == f)[0].max() cross_val_data.append(x[left:right + 1]) cross_val_labels.append(y[left:right + 1]) return cross_val_data, cross_val_labels class PredictorData(object): def __init__(self, path, delimiter=',', cols=[0, 1], get_features=None, has_label=True, labels_start=1, **kwargs): super(PredictorData, self).__init__() data = read_object_property_file(path, delimiter, cols_to_read=cols) if has_label: self.objects = np.array(data[:labels_start]).reshape(-1) self.y = np.array(data[labels_start:], dtype='float32') self.y = self.y.reshape(-1, len(cols) - labels_start) if self.y.shape[1] == 1: self.y = self.y.reshape(-1) else: self.objects = np.array(data[:labels_start]).reshape(-1) self.y = [None]*len(self.objects) assert len(self.objects) == len(self.y) if get_features is not None: self.x, processed_indices, invalid_indices = \ get_features(self.objects, **kwargs) self.invalid_objects = self.objects[invalid_indices] self.objects = self.objects[processed_indices] self.invalid_y = self.y[invalid_indices] self.y = self.y[processed_indices] else: self.x = self.objects self.invalid_objects = None self.invalid_y = None self.binary_y = None def binarize(self, threshold): self.binary_y = np.array(self.y >= threshold, dtype='int32') class GeneratorData(object): def __init__(self, training_data_path, tokens=None, start_token='<', end_token='>', max_len=120, use_cuda=None, **kwargs): super(GeneratorData, self).__init__() if 'cols_to_read' not in kwargs: kwargs['cols_to_read'] = [] data = read_object_property_file(training_data_path, **kwargs) self.start_token = start_token self.end_token = end_token self.file = [] for i in range(len(data)): if len(data[i]) <= max_len: self.file.append(self.start_token + data[i] + self.end_token) self.file_len = len(self.file) self.all_characters, self.char2idx, \ self.n_characters = tokenize(self.file, tokens) self.use_cuda = use_cuda if self.use_cuda is None: self.use_cuda = torch.cuda.is_available() def load_dictionary(self, tokens, char2idx): self.all_characters = tokens self.char2idx = char2idx self.n_characters = len(tokens) def random_chunk(self): index = random.randint(0, self.file_len-1) return self.file[index] def char_tensor(self, string): tensor = torch.zeros(len(string)).long() for c in range(len(string)): tensor[c] = self.all_characters.index(string[c]) if self.use_cuda: return torch.tensor(tensor).cuda() else: return torch.tensor(tensor) def random_training_set(self, smiles_augmentation): chunk = self.random_chunk() if smiles_augmentation is not None: chunk = '<' + smiles_augmentation.randomize_smiles(chunk[1:-1]) + '>' inp = self.char_tensor(chunk[:-1]) target = self.char_tensor(chunk[1:]) return inp, target def read_sdf_file(self, path, fields_to_read): raise NotImplementedError def update_data(self, path): self.file, success = read_smi_file(path, unique=True) self.file_len = len(self.file) assert success def read_object_property_file(path, delimiter=',', cols_to_read=[0, 1], keep_header=False): f = open(path, 'r') reader = csv.reader(f, delimiter=delimiter) data_full = np.array(list(reader)) if keep_header: start_position = 0 else: start_position = 1 assert len(data_full) > start_position data = [[] for _ in range(len(cols_to_read))] for i in range(len(cols_to_read)): col = cols_to_read[i] data[i] = data_full[start_position:, col] f.close() if len(cols_to_read) == 1: data = data[0] return data def estimate_and_update(generator, predictor, n_to_generate, **kwargs): generated = [] pbar = tqdm(range(n_to_generate)) for i in pbar: pbar.set_description("Generating molecules...") generated.append(generator.evaluate(gen_data, predict_len=120)[1:-1]) sanitized = canonical_smiles(generated, sanitize=False, throw_warning=False)[:-1] unique_smiles = list(np.unique(sanitized))[1:] smiles, prediction, nan_smiles = predictor.predict(unique_smiles, get_features=get_fp) return smiles, prediction def get_fp(smiles): fp = [] processed_indices = [] invalid_indices = [] for i in range(len(smiles)): mol = smiles[i] tmp = np.array(mol2image(mol, n=2048)) if np.isnan(tmp[0]): invalid_indices.append(i) else: fp.append(tmp) processed_indices.append(i) return np.array(fp), processed_indices, invalid_indices def mol2image(x, n=2048): try: m = Chem.MolFromSmiles(x) fp = Chem.RDKFingerprint(m, maxPath=4, fpSize=n) res = np.zeros(len(fp)) DataStructs.ConvertToNumpyArray(fp, res) return res except: return [np.nan] def init(): global use_cuda global my_generator global gen_data global my_predictor hidden_size = 1500 stack_width = 1500 stack_depth = 200 layer_type = 'GRU' n_characters = 45 lr = 0.001 optimizer_instance = torch.optim.Adadelta # model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), './deploy_files') use_cuda = False # gen_data_path = model_path +'/6000smiles.csv' gen_data_path = './deploy_files/6000smiles.csv' tokens = ['<', '>', '#', '%', ')', '(', '+', '-', '/', '.', '1', '0', '3', '2', '5', '4', '7', '6', '9', '8', '=', 'A', '@', 'C', 'B', 'F', 'I', 'H', 'O', 'N', 'P', 'S', '[', ']', '\\', 'c', 'e', 'i', 'l', 'o', 'n', 'p', 's', 'r', '\n'] gen_data = GeneratorData(training_data_path=gen_data_path, delimiter='\t', cols_to_read=[0], keep_header=True, tokens=tokens) my_generator = StackAugmentedRNN(input_size=gen_data.n_characters, hidden_size=hidden_size, output_size=gen_data.n_characters, layer_type=layer_type, n_layers=1, is_bidirectional=False, has_stack=True, stack_width=stack_width, stack_depth=stack_depth, use_cuda=use_cuda, optimizer_instance=optimizer_instance, lr=lr) # gen_model_path = model_path +'/generative_model_max.pth' gen_model_path = "./deploy_files/generative_model_max.pth" my_generator.load_model(gen_model_path) pred_data = PredictorData(path='./deploy_files/jak2_data.csv', get_features=get_fp) #my_predict = predictor model model_instance = RFR model_params = {'n_estimators': 175, 'n_jobs': 10} my_predictor = VanillaQSAR(model_instance=model_instance, model_params=model_params, model_type='regressor') my_predictor.fit_model(pred_data, cv_split='random') my_predictor.save_model('./deploy_files/vanillaqsar') my_predictor.load_model('./deploy_files/vanillaqsar.joblib') # @input_schema('n_to_generate', NumpyParameterType(input_sample)) # @output_schema(NumpyParameterType(output_sample)) def run(n_to_generate): try: smiles, pic50 = estimate_and_update(my_generator,my_predictor,n_to_generate=n_to_generate) molecules = [Chem.MolFromSmiles(x) for x in smiles] qed_list = [] for x in molecules: try: qed_list.append(QED.qed(x)) except Exception as e: print("early error") print(e) # pass # return smiles_biased_max.tolist() return smiles.tolist(), pic50.tolist(), qed_list except Exception as e: print("oof error time") error = str(e) return error if __name__ == "__main__": init() print(run(5))
py
1a473d459cced168a905250dc9e2f5981f3c8d40
# Generated by Django 4.0.3 on 2022-03-23 17:04 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('product_name', models.CharField(max_length=50)), ('description', models.CharField(max_length=250)), ('quantity', models.IntegerField()), ('price', models.IntegerField()), ('info', models.CharField(blank=True, max_length=500, null=True)), ('pimage', models.ImageField(blank=True, null=True, upload_to='images')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'db_table': 'Product', }, ), ]
py
1a473d7a5c933b64ee5342b471f3f0bc2d1005ec
# Generated by Django 2.2.6 on 2020-12-13 22:45 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('posts', '0019_auto_20201211_1903'), ] operations = [ migrations.AlterField( model_name='comment', name='created', field=models.DateTimeField(auto_now_add=True, help_text='Дата публикации', verbose_name='Дата публикации'), ), migrations.AlterField( model_name='comment', name='post', field=models.ForeignKey(help_text='Пост', null=True, on_delete=django.db.models.deletion.CASCADE, related_name='comments', to='posts.Post', verbose_name='Пост'), ), migrations.AlterField( model_name='follow', name='author', field=models.ForeignKey(help_text='Подписаться на автора', on_delete=django.db.models.deletion.CASCADE, related_name='following', to=settings.AUTH_USER_MODEL, verbose_name='Автор'), ), ]
py
1a473df1170045e015390f2394c516f27d3d40b5
import json d = json.load(open('EVAL_OUTPUT')) print('easy', d['total_scores']['easy']['exact']) print('medium', d['total_scores']['medium']['exact']) print('hard', d['total_scores']['hard']['exact']) print('extra', d['total_scores']['extra']['exact']) print('all', d['total_scores']['all']['exact']) # should be ~0.42 print() # print(d['total_scores']['all'].keys()) # print(d['total_scores']['easy'])
py
1a473e8abbd46b5d63525e206ef0af6a2685197b
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from blueapps.account import models from data_migration.account.mixins import UserCompatibleMixin, UserManagerMixin def patch(): models.User.__bases__ = ( models.AbstractBaseUser, models.PermissionsMixin, UserCompatibleMixin ) models.UserManager.__bases__ = ( UserManagerMixin, models.BaseUserManager, )
py
1a473fde18ad7a28aa5ce9744336b2666b90cd5d
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) __version__ = "3.0.0"
py
1a474010817f06696dabcd835ab8ada14e599955
from app.announces.models import Announce from tests.equipments.fakes import equipment1, equipment2, equipment3, get_equipment from tests.shops.fakes import shop1, shop2, shop3, get_shop shop1_equipment1_announce1 = Announce(1, shop1.id, shop1.name, equipment1.id, equipment1.name, 'New', 199.99) shop1_equipment2_announce1 = Announce(2, shop1.id, shop1.name, equipment2.id, equipment2.name, 'Used', 149.99) shop2_equipment2_announce1 = Announce(3, shop2.id, shop2.name, equipment2.id, equipment2.name, 'New', 400.00) shop2_equipment2_announce2 = Announce(4, shop2.id, shop2.name, equipment2.id, equipment2.name, 'Needs repair', 300.00) shop3_equipment1_announce1 = Announce(5, shop3.id, shop3.name, equipment1.id, equipment1.name, 'Used', 49.99) shop3_equipment3_announce1 = Announce(6, shop3.id, shop3.name, equipment3.id, equipment3.name, 'Used', 99.99) shop1.announces = [shop1_equipment1_announce1, shop1_equipment2_announce1] shop2.announces = [shop2_equipment2_announce1, shop2_equipment2_announce2] shop3.announces = [shop3_equipment1_announce1, shop3_equipment3_announce1] equipment1.announces = [shop1_equipment1_announce1, shop3_equipment1_announce1] equipment2.announces = [shop1_equipment2_announce1, shop2_equipment2_announce1, shop2_equipment2_announce2] equipment3.announces = [shop3_equipment3_announce1] def get_announces_for_shop(shop_id): return get_shop(shop_id).announces def get_announces_for_equipment(equipment_id): return get_equipment(equipment_id).announces
py
1a47403bc60c7fc255b1b7da02c649975a9d49c3
#!/usr/bin/env python from time import sleep, ctime def loop0(): print('start loop 0 at:', ctime()) sleep(4) print('loop 0 done at:', ctime()) def loop1(): print('start loop 1 at:', ctime()) sleep(2) print('loop 1 done at:', ctime()) def main(): print('starting at:', ctime()) loop0() loop1() print('all DONE at:', ctime()) if __name__ == '__main__': main()
py
1a4740ec95c49ee04c754a38eb05424af26e1c53
import os import secrets from PIL import Image from flask import render_template, url_for, flash, redirect, request, abort from flaskblog import app, db, bcrypt from flaskblog.forms import RegistrationForm, LoginForm, UpdateAccountForm, PostForm, CommentForm from flaskblog.models import User, Post, Comment from flask_login import login_user, current_user, logout_user, login_required from flaskblog import request @app.route("/") @app.route("/home") def home(): #page = request.args.get('page', 1, type=int) quote = request.get_quote() posts = Post.query.order_by(Post.date_posted.desc()).paginate( per_page=5) return render_template('home.html', posts=posts, quote=quote) @app.route("/register", methods=['GET', 'POST']) def register(): if current_user.is_authenticated: return redirect(url_for('home')) form = RegistrationForm() if form.validate_on_submit(): hashed_password = bcrypt.generate_password_hash(form.password.data).decode('utf-8') user = User(username=form.username.data, email=form.email.data, password=hashed_password) db.session.add(user) db.session.commit() flash('Your account has been created! You are now able to log in', 'success') return redirect(url_for('login')) return render_template('register.html', title='Register', form=form) @app.route("/login", methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('home')) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user and bcrypt.check_password_hash(user.password, form.password.data): login_user(user, remember=form.remember.data) # next_page = request.args.get('next') return redirect(url_for('home')) else: flash('Login Unsuccessful. Please check email and password', 'danger') return render_template('login.html', title='Login', form=form) @app.route("/logout") def logout(): logout_user() return redirect(url_for('home')) def save_picture(form_picture): random_hex = secrets.token_hex(8) _, f_ext = os.path.splitext(form_picture.filename) picture_fn = random_hex + f_ext picture_path = os.path.join(app.root_path, 'static/dp', picture_fn) output_size = (125, 125) i = Image.open(form_picture) i.thumbnail(output_size) i.save(picture_path) return picture_fn @app.route("/account", methods=['GET', 'POST']) @login_required def account(): form = UpdateAccountForm() if form.validate_on_submit(): if form.picture.data: picture_file = save_picture(form.picture.data) current_user.image_file = picture_file current_user.username = form.username.data current_user.email = form.email.data db.session.commit() flash('Your account has been updated!', 'success') return redirect(url_for('account')) elif request.method == 'GET': form.username.data = current_user.username form.email.data = current_user.email image_file = url_for('static', filename='dp/' + current_user.image_file) return render_template('account.html', title='Account', image_file=image_file, form=form) @app.route("/post/new", methods=['GET', 'POST']) @login_required def new_post(): form = PostForm() if form.validate_on_submit(): post = Post(title=form.title.data, content=form.content.data, author=current_user) db.session.add(post) db.session.commit() flash('Your post has been created!', 'success') return redirect(url_for('home')) return render_template('create_post.html', title='New Post', form=form, legend='New Post') @app.route("/post/<int:post_id>", methods=['GET', 'POST']) def post(post_id): post = Post.query.get_or_404(post_id) comments = Comment.query.all() form = CommentForm() if form.validate_on_submit(): comment = Comment(content=form.content.data, author=current_user) db.session.add(comment) db.session.commit() flash('Your comment has been created!', 'success') return redirect(url_for('home')) return render_template('post.html', post=post, form=form, comments=comments) @app.route("/post/<int:post_id>/update", methods=['GET', 'POST']) @login_required def update_post(post_id): post = Post.query.get_or_404(post_id) if post.author != current_user: abort(403) form = PostForm() if form.validate_on_submit(): post.title = form.title.data post.content = form.content.data db.session.commit() flash('Your post has been updated!', 'success') return redirect(url_for('post', post_id=post.id)) elif request.method == 'GET': form.title.data = post.title form.content.data = post.content return render_template('create_post.html', title='Update Post', form=form, legend='Update Post') @app.route("/post/<int:post_id>/delete", methods=['POST']) @login_required def delete_post(post_id): post = Post.query.get_or_404(post_id) if post.author != current_user: abort(403) db.session.delete(post) db.session.commit() flash('Your post has been deleted!', 'success') return redirect(url_for('home')) @app.route("/user/<string:username>") def user_posts(username): page = request.args.get('page', 1, type=int) user = User.query.filter_by(username=username).first_or_404() posts = Post.query.filter_by(author=user)\ .order_by(Post.date_posted.desc())\ .paginate(page=page, per_page=5) return render_template('user_posts.html', posts=posts, user=user)
py
1a4740f1cbda4d30dbebc31c7767045899fffffd
import discord # Imports permissions from discord.commands from discord.commands import permissions bot = discord.Bot() # Note: If you want you can use commands.Bot instead of discord.Bot # Use discord.Bot if you don't want prefixed message commands # With discord.Bot you can use @bot.command as an alias # of @bot.slash_command but this is overridden by commands.Bot # by default, default_permission is set to True, you can use # default_permission=False to disable the command for everyone. # You can add up to 10 permissions per Command for a guild. # You can either use the following decorators: # -------------------------------------------- # @permissions.permission(role_id/user_id, permission) # @permissions.has_role("ROLE_NAME") <-- can use either a name or id # @permissions.has_any_role("ROLE_NAME", "ROLE_NAME_2") <-- can use either a name or id # @permissions.is_user(USER_ID) <-- id only # @permissions.is_owner() # Note: you can supply "guild_id" to limit it to 1 guild. # Ex: @permissions.has_role("Admin", guild_id=GUILD_ID) # -------------------------------------------- # or supply permissions directly in @bot.slash_command # @bot.slash_command(default_permission=False, # permissions=[permissions.Permission(id=ID, type=TYPE, permission=True, guild_id=GUILD_ID)]) # Note: Please replace token, GUILD_ID, USER_ID and ROLE_NAME. # Guild Slash Command Example with User Permissions @bot.slash_command(guild_ids=[GUILD_ID], default_permission=False) @permissions.is_user(USER_ID) async def user(ctx): """Say hello to the author""" # the command description can be supplied as the docstring await ctx.respond(f"Hello {ctx.author}!") # Guild Slash Command Example with Owner Permissions @bot.slash_command(guild_ids=[GUILD_ID], default_permission=False) @permissions.is_owner() async def owner(ctx): """Say hello to the author""" # the command description can be supplied as the docstring await ctx.respond(f"Hello {ctx.author}!") # Guild Slash Command Example with Role Permissions @bot.slash_command(guild_ids=[GUILD_ID], default_permission=False) @permissions.has_role("ROLE_NAME") async def role(ctx): """Say hello to the author""" # the command description can be supplied as the docstring await ctx.respond(f"Hello {ctx.author}!") # Guild Slash Command Example with Any Specified Role Permissions @bot.slash_command(guild_ids=[GUILD_ID], default_permission=False) @permissions.has_any_role("ROLE_NAME", "ROLE_NAME2") async def multirole(ctx): """Say hello to the author""" # the command description can be supplied as the docstring await ctx.respond(f"Hello {ctx.author}!") # Guild Slash Command Example with Permission Decorator @bot.slash_command(guild_ids=[GUILD_ID], default_permission=False) @permissions.permission(user_id=USER_ID, permission=True) async def permission_decorator(ctx): """Say hello to the author""" # the command description can be supplied as the docstring await ctx.respond(f"Hello {ctx.author}!") # Guild Slash Command Example with Permissions Kwarg @bot.slash_command( guild_ids=[GUILD_ID], default_permission=False, permissions=[permissions.Permission(id=USER_ID, type=2, permission=True)], ) async def permission_kwarg(ctx): """Say hello to the author""" # the command description can be supplied as the docstring await ctx.respond(f"Hello {ctx.author}!") # To learn how to add descriptions, choices to options check slash_options.py bot.run("token")
py
1a47412058e858bbe90d5320549799a3718c2d8d
# Copyright 2019 kubeflow.org. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import os import pytest from kubernetes import client from kfserving import KFServingClient from kfserving import constants from kfserving import V1alpha2EndpointSpec from kfserving import V1alpha2PredictorSpec from kfserving import V1alpha2PyTorchSpec from kfserving import V1alpha2InferenceServiceSpec from kfserving import V1alpha2InferenceService from kubernetes.client import V1ResourceRequirements from ..common.utils import predict from ..common.utils import KFSERVING_TEST_NAMESPACE api_version = constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION KFServing = KFServingClient(config_file=os.environ.get("KUBECONFIG", "~/.kube/config")) def test_pytorch(): service_name = 'isvc-pytorch' default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=1, parallelism=1, pytorch=V1alpha2PyTorchSpec( storage_uri='gs://kfserving-samples/models/pytorch/cifar10', model_class_name="Net", resources=V1ResourceRequirements( requests={'cpu': '100m', 'memory': '2Gi'}, limits={'cpu': '100m', 'memory': '2Gi'})))) isvc = V1alpha2InferenceService(api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta( name=service_name, namespace=KFSERVING_TEST_NAMESPACE), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing.create(isvc) try: KFServing.wait_isvc_ready(service_name, namespace=KFSERVING_TEST_NAMESPACE) except RuntimeError as e: print(KFServing.api_instance.get_namespaced_custom_object("serving.knative.dev", "v1", KFSERVING_TEST_NAMESPACE, "services", service_name + "-predictor-default")) pods = KFServing.core_api.list_namespaced_pod(KFSERVING_TEST_NAMESPACE, label_selector='serving.kubeflow.org/inferenceservice={}'. format(service_name)) for pod in pods.items: print(pod) raise e res = predict(service_name, './data/cifar_input.json') assert(np.argmax(res["predictions"]) == 3) KFServing.delete(service_name, KFSERVING_TEST_NAMESPACE)
py
1a4741480d4540e6341ae68df8a26bec1fc20da3
__title__ = "PyMatting" __version__ = "1.0.6" __author__ = "The PyMatting Developers" __email__ = "[email protected]" __license__ = "MIT" __uri__ = "https://pymatting.github.io" __summary__ = "Python package for alpha matting."
py
1a4741aeaa182b55c6468561b2c9f7356a4a74e7
from django.forms.widgets import CheckboxSelectMultiple class BootstrapedCheckboxSelectMultiple(CheckboxSelectMultiple): template_name = 'imoveis/forms/widgets/multiple_input.html' option_template_name = 'imoveis/forms/widgets/input_option.html'
py
1a4741c458d0892a4ec242cd07c5f0445af1a48a
#!/usr/bin/env python3 ''' Check: -Individual files are valid -No overlap between any tile TODO: Can we use prjxray? Relies on 074, which is too far into the process ''' from prjxray import util from prjxray import db as prjxraydb import os import parsedb #from prjxray import db as prjxraydb import glob def gen_tile_bits(tile_segbits, tile_bits): ''' For given tile and corresponding db_file structure yield (absolute address, absolute FDRI bit offset, tag) For each tag bit in the corresponding block_type entry, calculate absolute address and bit offsets ''' for block_type in tile_segbits: assert block_type in tile_bits, "block type %s is not present in current tile" % block_type block = tile_bits[block_type] baseaddr = block.base_address bitbase = 32 * block.offset frames = block.frames for tag in tile_segbits[block_type]: for bit in tile_segbits[block_type][tag]: # 31_06 word_column = bit.word_column word_bit = bit.word_bit assert word_column <= frames, "ERROR: bit out of bound --> tag: %s; word_column = %s; frames = %s" % ( tag, word_column, frames) yield word_column + baseaddr, word_bit + bitbase, tag def make_tile_mask(tile_segbits, tile_name, tile_bits): ''' Return dict key: (address, bit index) val: sample description of where it came from (there may be multiple, only one) ''' # FIXME: fix mask files https://github.com/SymbiFlow/prjxray/issues/301 # in the meantime build them on the fly # We may want this to build them anyway ret = dict() for absaddr, bitaddr, tag in gen_tile_bits(tile_segbits, tile_bits): name = "%s.%s" % (tile_name, tag) ret.setdefault((absaddr, bitaddr), name) return ret def parsedb_all(db_root, verbose=False): '''Verify .db files are individually valid''' files = 0 for bit_fn in glob.glob('%s/segbits_*.db' % db_root): verbose and print("Checking %s" % bit_fn) parsedb.run(bit_fn, fnout=None, strict=True, verbose=verbose) files += 1 print("segbits_*.db: %d okay" % files) files = 0 for bit_fn in glob.glob('%s/mask_*.db' % db_root): verbose and print("Checking %s" % bit_fn) parsedb.run(bit_fn, fnout=None, strict=True, verbose=verbose) files += 1 print("mask_*.db: %d okay" % files) def check_tile_overlap(db, verbose=False): ''' Verifies that no two tiles use the same bit Assume .db files are individually valid Create a mask for all the bits the tile type uses For each tile, create bitmasks over the entire bitstream for current part Throw an exception if two tiles share an address ''' mall = dict() tiles_type_done = dict() tile_segbits = dict() grid = db.grid() tiles_checked = 0 for tile_name in grid.tiles(): tile_info = grid.gridinfo_at_tilename(tile_name) tile_type = tile_info.tile_type tile_bits = tile_info.bits if tile_type not in tiles_type_done: segbits = db.get_tile_segbits(tile_type).segbits tile_segbits[tile_type] = segbits # If segbits has zero length the tile_type is marked True in order to be skipped if len(segbits) == 0: tiles_type_done[tile_type] = True else: tiles_type_done[tile_type] = False if tiles_type_done[tile_type]: continue mtile = make_tile_mask(tile_segbits[tile_type], tile_name, tile_bits) verbose and print( "Checking %s, type %s, bits: %s" % (tile_name, tile_type, len(mtile))) if len(mtile) == 0: continue collisions = set() for bits in mtile.keys(): if bits in mall.keys(): collisions.add(bits) if collisions: print("ERROR: %s collisions" % len(collisions)) for ck in sorted(collisions): addr, bitaddr = ck word, bit = util.addr_bit2word(bitaddr) print( " %s: had %s, got %s" % (util.addr2str(addr, word, bit), mall[ck], mtile[ck])) raise ValueError("%s collisions" % len(collisions)) mall.update(mtile) tiles_checked += 1 print("Checked %s tiles, %s bits" % (tiles_checked, len(mall))) def run(db_root, verbose=False): # Start by running a basic check on db files print("Checking individual .db...") parsedb_all(db_root, verbose=verbose) # Now load and verify tile consistency db = prjxraydb.Database(db_root) db._read_tilegrid() ''' these don't load properly without .json files See: https://github.com/SymbiFlow/prjxray/issues/303 db._read_tile_types() print(db.tile_types.keys()) ''' verbose and print("") print("Checking aggregate dir...") check_tile_overlap(db, verbose=verbose) def main(): import argparse parser = argparse.ArgumentParser( description="Parse a db repository, checking for consistency") util.db_root_arg(parser) parser.add_argument('--verbose', action='store_true', help='') args = parser.parse_args() run(args.db_root, verbose=args.verbose) if __name__ == '__main__': main()
py
1a474256206e0575720efe421fa3ec2d3a891ec3
import tensorflow as tf import tensorflow_datasets as tfds import matplotlib.pyplot as plt import numpy as np from model.unet import UNet # download the dataset and get info dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True) # see the possible keys we can access in the dataset dict. # this contains the test and train splits. print(dataset.keys()) # see information about the dataset print(info) # Preprocessing Utilities def random_flip(input_image, input_mask): """does a random flip of the image and mask""" if tf.random.uniform(()) > 0.5: input_image = tf.image.flip_left_right(input_image) input_mask = tf.image.flip_left_right(input_mask) return input_image, input_mask def normalize(input_image, input_mask): """ normalizes the input image pixel values to be from [0,1]. subtracts 1 from the mask labels to have a range from [0,2] """ input_image = tf.cast(input_image, tf.float32) / 255.0 input_mask -= 1 return input_image, input_mask @tf.function def load_image_train(datapoint): """resizes, normalizes, and flips the training data""" input_image = tf.image.resize(datapoint["image"], (128, 128), method="nearest") input_mask = tf.image.resize( datapoint["segmentation_mask"], (128, 128), method="nearest" ) input_image, input_mask = random_flip(input_image, input_mask) input_image, input_mask = normalize(input_image, input_mask) return input_image, input_mask def load_image_test(datapoint): """resizes and normalizes the test data""" input_image = tf.image.resize(datapoint["image"], (128, 128), method="nearest") input_mask = tf.image.resize( datapoint["segmentation_mask"], (128, 128), method="nearest" ) input_image, input_mask = normalize(input_image, input_mask) return input_image, input_mask # preprocess the train and test sets train = dataset["train"].map( load_image_train, num_parallel_calls=tf.data.experimental.AUTOTUNE ) test = dataset["test"].map(load_image_test) BATCH_SIZE = 64 BUFFER_SIZE = 1000 # shuffle and group the train set into batches train_dataset = train.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat() # do a prefetch to optimize processing train_dataset = train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) # group the test set into batches test_dataset = test.batch(BATCH_SIZE) # class list of the mask pixels class_names = ["pet", "background", "outline"] def display_with_metrics(display_list, iou_list, dice_score_list): """displays a list of images/masks and overlays a list of IOU and Dice Scores""" metrics_by_id = [ (idx, iou, dice_score) for idx, (iou, dice_score) in enumerate(zip(iou_list, dice_score_list)) if iou > 0.0 ] metrics_by_id.sort(key=lambda tup: tup[1], reverse=True) # sorts in place display_string_list = [ "{}: IOU: {} Dice Score: {}".format(class_names[idx], iou, dice_score) for idx, iou, dice_score in metrics_by_id ] display_string = "\n\n".join(display_string_list) display( display_list, ["Image", "Predicted Mask", "True Mask"], display_string=display_string, ) def display(display_list, titles=[], display_string=None): """displays a list of images/masks""" plt.figure(figsize=(15, 15)) for i in range(len(display_list)): plt.subplot(1, len(display_list), i + 1) plt.title(titles[i]) plt.xticks([]) plt.yticks([]) if display_string and i == 1: plt.xlabel(display_string, fontsize=12) img_arr = tf.keras.preprocessing.image.array_to_img(display_list[i]) plt.imshow(img_arr) plt.show() def show_image_from_dataset(dataset): """displays the first image and its mask from a dataset""" for image, mask in dataset.take(1): sample_image, sample_mask = image, mask display([sample_image, sample_mask], titles=["Image", "True Mask"]) def plot_metrics(metric_name, title, ylim=5): """plots a given metric from the model history""" plt.title(title) plt.ylim(0, ylim) plt.plot(model_history.history[metric_name], color="blue", label=metric_name) plt.plot( model_history.history["val_" + metric_name], color="green", label="val_" + metric_name, ) input_shape = (128, 128, 3, None) model = UNet() model.build(input_shape) model.summary() breakpoint() # configure the optimizer, loss and metrics for training model.compile( optimizer=tf.keras.optimizers.Adam(), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) # configure the training parameters and train the model TRAIN_LENGTH = info.splits["train"].num_examples EPOCHS = 10 VAL_SUBSPLITS = 5 STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE VALIDATION_STEPS = info.splits["test"].num_examples // BATCH_SIZE // VAL_SUBSPLITS # this will take around 20 minutes to run model_history = model.fit( train_dataset, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH, validation_steps=VALIDATION_STEPS, validation_data=test_dataset, ) # Prediction Utilities def get_test_image_and_annotation_arrays(): """ Unpacks the test dataset and returns the input images and segmentation masks """ ds = test_dataset.unbatch() ds = ds.batch(info.splits["test"].num_examples) images = [] y_true_segments = [] for image, annotation in ds.take(1): y_true_segments = annotation.numpy() images = image.numpy() y_true_segments = y_true_segments[ : ( info.splits["test"].num_examples - (info.splits["test"].num_examples % BATCH_SIZE) ) ] return ( images[ : ( info.splits["test"].num_examples - (info.splits["test"].num_examples % BATCH_SIZE) ) ], y_true_segments, ) def create_mask(pred_mask): """ Creates the segmentation mask by getting the channel with the highest probability. Remember that we have 3 channels in the output of the UNet. For each pixel, the predicition will be the channel with the highest probability. """ pred_mask = tf.argmax(pred_mask, axis=-1) pred_mask = pred_mask[..., tf.newaxis] return pred_mask[0].numpy() def make_predictions(image, mask, num=1): """ Feeds an image to a model and returns the predicted mask. """ image = np.reshape(image, (1, image.shape[0], image.shape[1], image.shape[2])) pred_mask = model.predict(image) pred_mask = create_mask(pred_mask) return pred_mask def class_wise_metrics(y_true, y_pred): class_wise_iou = [] class_wise_dice_score = [] smoothening_factor = 0.00001 for i in range(3): intersection = np.sum((y_pred == i) * (y_true == i)) y_true_area = np.sum((y_true == i)) y_pred_area = np.sum((y_pred == i)) combined_area = y_true_area + y_pred_area iou = (intersection + smoothening_factor) / ( combined_area - intersection + smoothening_factor ) class_wise_iou.append(iou) dice_score = 2 * ( (intersection + smoothening_factor) / (combined_area + smoothening_factor) ) class_wise_dice_score.append(dice_score) return class_wise_iou, class_wise_dice_score # Setup the ground truth and predictions. # get the ground truth from the test set y_true_images, y_true_segments = get_test_image_and_annotation_arrays() # feed the test set to th emodel to get the predicted masks results = model.predict( test_dataset, steps=info.splits["test"].num_examples // BATCH_SIZE ) results = np.argmax(results, axis=3) results = results[..., tf.newaxis] # compute the class wise metrics cls_wise_iou, cls_wise_dice_score = class_wise_metrics(y_true_segments, results) # show the IOU for each class for idx, iou in enumerate(cls_wise_iou): spaces = " " * (10 - len(class_names[idx]) + 2) print("{}{}{} ".format(class_names[idx], spaces, iou)) # show the Dice Score for each class for idx, dice_score in enumerate(cls_wise_dice_score): spaces = " " * (10 - len(class_names[idx]) + 2) print("{}{}{} ".format(class_names[idx], spaces, dice_score))
py
1a4744d411dbaa1480fd26e4e990bb2887b8a8a9
""" This problem was asked by LinkedIn. Given a list of points, a central point, and an integer k, find the nearest k points from the central point. For example, given the list of points [(0, 0), (5, 4), (3, 1)], the central point (1, 2), and k = 2, return [(0, 0), (3, 1)]. """ def k_nearest(points, central, k): squared_l2_norm = lambda p1, p2 : (p1[0]-p2[0])**2 + (p1[1]-p2[1])**2 distances = {p: squared_l2_norm(p, central) for p in points} # return the k nearest points after sorting based on distances of points return [p for p,_ in sorted(distances.items(), key=lambda item: item[1])][:k] if __name__ == '__main__': print(k_nearest([(0, 0), (5, 4), (3, 1)], (1, 2), 2))
py
1a474526d667610da2500e99aaffad28bc8c2aae
# This is a polyfill for dataclasses # https://docs.python.org/3/library/dataclasses.html # Original PEP proposal: PEP 557 # https://www.python.org/dev/peps/pep-0557/ import re import sys import copy import types import inspect import keyword __all__ = [ "dataclass", "field", "Field", "FrozenInstanceError", "InitVar", "MISSING", # Helper functions. "fields", "asdict", "astuple", "make_dataclass", "replace", "is_dataclass", ] # Conditions for adding methods. The boxes indicate what action the # dataclass decorator takes. For all of these tables, when I talk # about init=, repr=, eq=, order=, unsafe_hash=, or frozen=, I'm # referring to the arguments to the @dataclass decorator. When # checking if a dunder method already exists, I mean check for an # entry in the class's __dict__. I never check to see if an attribute # is defined in a base class. # Key: # +=========+=========================================+ # + Value | Meaning | # +=========+=========================================+ # | <blank> | No action: no method is added. | # +---------+-----------------------------------------+ # | add | Generated method is added. | # +---------+-----------------------------------------+ # | raise | TypeError is raised. | # +---------+-----------------------------------------+ # | None | Attribute is set to None. | # +=========+=========================================+ # __init__ # # +--- init= parameter # | # v | | | # | no | yes | <--- class has __init__ in __dict__? # +=======+=======+=======+ # | False | | | # +-------+-------+-------+ # | True | add | | <- the default # +=======+=======+=======+ # __repr__ # # +--- repr= parameter # | # v | | | # | no | yes | <--- class has __repr__ in __dict__? # +=======+=======+=======+ # | False | | | # +-------+-------+-------+ # | True | add | | <- the default # +=======+=======+=======+ # __setattr__ # __delattr__ # # +--- frozen= parameter # | # v | | | # | no | yes | <--- class has __setattr__ or __delattr__ in __dict__? # +=======+=======+=======+ # | False | | | <- the default # +-------+-------+-------+ # | True | add | raise | # +=======+=======+=======+ # Raise because not adding these methods would break the "frozen-ness" # of the class. # __eq__ # # +--- eq= parameter # | # v | | | # | no | yes | <--- class has __eq__ in __dict__? # +=======+=======+=======+ # | False | | | # +-------+-------+-------+ # | True | add | | <- the default # +=======+=======+=======+ # __lt__ # __le__ # __gt__ # __ge__ # # +--- order= parameter # | # v | | | # | no | yes | <--- class has any comparison method in __dict__? # +=======+=======+=======+ # | False | | | <- the default # +-------+-------+-------+ # | True | add | raise | # +=======+=======+=======+ # Raise because to allow this case would interfere with using # functools.total_ordering. # __hash__ # +------------------- unsafe_hash= parameter # | +----------- eq= parameter # | | +--- frozen= parameter # | | | # v v v | | | # | no | yes | <--- class has explicitly defined __hash__ # +=======+=======+=======+========+========+ # | False | False | False | | | No __eq__, use the base class __hash__ # +-------+-------+-------+--------+--------+ # | False | False | True | | | No __eq__, use the base class __hash__ # +-------+-------+-------+--------+--------+ # | False | True | False | None | | <-- the default, not hashable # +-------+-------+-------+--------+--------+ # | False | True | True | add | | Frozen, so hashable, allows override # +-------+-------+-------+--------+--------+ # | True | False | False | add | raise | Has no __eq__, but hashable # +-------+-------+-------+--------+--------+ # | True | False | True | add | raise | Has no __eq__, but hashable # +-------+-------+-------+--------+--------+ # | True | True | False | add | raise | Not frozen, but hashable # +-------+-------+-------+--------+--------+ # | True | True | True | add | raise | Frozen, so hashable # +=======+=======+=======+========+========+ # For boxes that are blank, __hash__ is untouched and therefore # inherited from the base class. If the base is object, then # id-based hashing is used. # # Note that a class may already have __hash__=None if it specified an # __eq__ method in the class body (not one that was created by # @dataclass). # # See _hash_action (below) for a coded version of this table. # Raised when an attempt is made to modify a frozen class. class FrozenInstanceError(AttributeError): pass # A sentinel object for default values to signal that a default # factory will be used. This is given a nice repr() which will appear # in the function signature of dataclasses' constructors. class _HAS_DEFAULT_FACTORY_CLASS: def __repr__(self): return "<factory>" _HAS_DEFAULT_FACTORY = _HAS_DEFAULT_FACTORY_CLASS() # A sentinel object to detect if a parameter is supplied or not. Use # a class to give it a better repr. class _MISSING_TYPE: pass MISSING = _MISSING_TYPE() # Since most per-field metadata will be unused, create an empty # read-only proxy that can be shared among all fields. _EMPTY_METADATA = types.MappingProxyType({}) # Markers for the various kinds of fields and pseudo-fields. class _FIELD_BASE: def __init__(self, name): self.name = name def __repr__(self): return self.name _FIELD = _FIELD_BASE("_FIELD") _FIELD_CLASSVAR = _FIELD_BASE("_FIELD_CLASSVAR") _FIELD_INITVAR = _FIELD_BASE("_FIELD_INITVAR") # The name of an attribute on the class where we store the Field # objects. Also used to check if a class is a Data Class. _FIELDS = "__dataclass_fields__" # The name of an attribute on the class that stores the parameters to # @dataclass. _PARAMS = "__dataclass_params__" # The name of the function, that if it exists, is called at the end of # __init__. _POST_INIT_NAME = "__post_init__" # String regex that string annotations for ClassVar or InitVar must match. # Allows "identifier.identifier[" or "identifier[". # https://bugs.python.org/issue33453 for details. _MODULE_IDENTIFIER_RE = re.compile(r"^(?:\s*(\w+)\s*\.)?\s*(\w+)") class _InitVarMeta(type): def __getitem__(self, params): return self class InitVar(metaclass=_InitVarMeta): pass # Instances of Field are only ever created from within this module, # and only from the field() function, although Field instances are # exposed externally as (conceptually) read-only objects. # # name and type are filled in after the fact, not in __init__. # They're not known at the time this class is instantiated, but it's # convenient if they're available later. # # When cls._FIELDS is filled in with a list of Field objects, the name # and type fields will have been populated. class Field: __slots__ = ( "name", "type", "default", "default_factory", "repr", "hash", "init", "compare", "metadata", "_field_type", # Private: not to be used by user code. ) def __init__(self, default, default_factory, init, repr, hash, compare, metadata): self.name = None self.type = None self.default = default self.default_factory = default_factory self.init = init self.repr = repr self.hash = hash self.compare = compare self.metadata = ( _EMPTY_METADATA if metadata is None or len(metadata) == 0 else types.MappingProxyType(metadata) ) self._field_type = None def __repr__(self): return ( "Field(" f"name={self.name!r}," f"type={self.type!r}," f"default={self.default!r}," f"default_factory={self.default_factory!r}," f"init={self.init!r}," f"repr={self.repr!r}," f"hash={self.hash!r}," f"compare={self.compare!r}," f"metadata={self.metadata!r}," f"_field_type={self._field_type}" ")" ) # This is used to support the PEP 487 __set_name__ protocol in the # case where we're using a field that contains a descriptor as a # defaul value. For details on __set_name__, see # https://www.python.org/dev/peps/pep-0487/#implementation-details. # # Note that in _process_class, this Field object is overwritten # with the default value, so the end result is a descriptor that # had __set_name__ called on it at the right time. def __set_name__(self, owner, name): func = getattr(type(self.default), "__set_name__", None) if func: # There is a __set_name__ method on the descriptor, call # it. func(self.default, owner, name) class _DataclassParams: __slots__ = ("init", "repr", "eq", "order", "unsafe_hash", "frozen") def __init__(self, init, repr, eq, order, unsafe_hash, frozen): self.init = init self.repr = repr self.eq = eq self.order = order self.unsafe_hash = unsafe_hash self.frozen = frozen def __repr__(self): return ( "_DataclassParams(" f"init={self.init!r}," f"repr={self.repr!r}," f"eq={self.eq!r}," f"order={self.order!r}," f"unsafe_hash={self.unsafe_hash!r}," f"frozen={self.frozen!r}" ")" ) # This function is used instead of exposing Field creation directly, # so that a type checker can be told (via overloads) that this is a # function whose type depends on its parameters. def field( *, default=MISSING, default_factory=MISSING, init=True, repr=True, hash=None, compare=True, metadata=None, ): """Return an object to identify dataclass fields. default is the default value of the field. default_factory is a 0-argument function called to initialize a field's value. If init is True, the field will be a parameter to the class's __init__() function. If repr is True, the field will be included in the object's repr(). If hash is True, the field will be included in the object's hash(). If compare is True, the field will be used in comparison functions. metadata, if specified, must be a mapping which is stored but not otherwise examined by dataclass. It is an error to specify both default and default_factory. """ if default is not MISSING and default_factory is not MISSING: raise ValueError("cannot specify both default and default_factory") return Field(default, default_factory, init, repr, hash, compare, metadata) def _tuple_str(obj_name, fields): # Return a string representing each field of obj_name as a tuple # member. So, if fields is ['x', 'y'] and obj_name is "self", # return "(self.x,self.y)". # Special case for the 0-tuple. if not fields: return "()" # Note the trailing comma, needed if this turns out to be a 1-tuple. return f'({",".join([f"{obj_name}.{f.name}" for f in fields])},)' def _create_fn(name, args, body, *, globals=None, locals=None, return_type=MISSING): # Note that we mutate locals when exec() is called. Caller # beware! The only callers are internal to this module, so no # worries about external callers. if locals is None: locals = {} return_annotation = "" if return_type is not MISSING: locals["_return_type"] = return_type return_annotation = "->_return_type" args = ",".join(args) body = "\n".join(f" {b}" for b in body) # Compute the text of the entire function. txt = f"def {name}({args}){return_annotation}:\n{body}" exec(txt, globals, locals) return locals[name] def _field_assign(frozen, name, value, self_name): # If we're a frozen class, then assign to our fields in __init__ # via object.__setattr__. Otherwise, just use a simple # assignment. # # self_name is what "self" is called in this function: don't # hard-code "self", since that might be a field name. if frozen: return f"object.__setattr__({self_name},{name!r},{value})" return f"{self_name}.{name}={value}" def _field_init(f, frozen, globals, self_name): # Return the text of the line in the body of __init__ that will # initialize this field. default_name = f"_dflt_{f.name}" if f.default_factory is not MISSING: if f.init: # This field has a default factory. If a parameter is # given, use it. If not, call the factory. globals[default_name] = f.default_factory value = ( f"{default_name}() " f"if {f.name} is _HAS_DEFAULT_FACTORY " f"else {f.name}" ) else: # This is a field that's not in the __init__ params, but # has a default factory function. It needs to be # initialized here by calling the factory function, # because there's no other way to initialize it. # For a field initialized with a default=defaultvalue, the # class dict just has the default value # (cls.fieldname=defaultvalue). But that won't work for a # default factory, the factory must be called in __init__ # and we must assign that to self.fieldname. We can't # fall back to the class dict's value, both because it's # not set, and because it might be different per-class # (which, after all, is why we have a factory function!). globals[default_name] = f.default_factory value = f"{default_name}()" else: # No default factory. if f.init: if f.default is MISSING: # There's no default, just do an assignment. value = f.name elif f.default is not MISSING: globals[default_name] = f.default value = f.name else: # This field does not need initialization. Signify that # to the caller by returning None. return None # Only test this now, so that we can create variables for the # default. However, return None to signify that we're not going # to actually do the assignment statement for InitVars. if f._field_type == _FIELD_INITVAR: return None # Now, actually generate the field assignment. return _field_assign(frozen, f.name, value, self_name) def _init_param(f): # Return the __init__ parameter string for this field. For # example, the equivalent of 'x:int=3' (except instead of 'int', # reference a variable set to int, and instead of '3', reference a # variable set to 3). if f.default is MISSING and f.default_factory is MISSING: # There's no default, and no default_factory, just output the # variable name and type. default = "" elif f.default is not MISSING: # There's a default, this will be the name that's used to look # it up. default = f"=_dflt_{f.name}" elif f.default_factory is not MISSING: # There's a factory function. Set a marker. default = "=_HAS_DEFAULT_FACTORY" return f"{f.name}:_type_{f.name}{default}" def _init_fn(fields, frozen, has_post_init, self_name): # fields contains both real fields and InitVar pseudo-fields. # Make sure we don't have fields without defaults following fields # with defaults. This actually would be caught when exec-ing the # function source code, but catching it here gives a better error # message, and future-proofs us in case we build up the function # using ast. seen_default = False for f in fields: # Only consider fields in the __init__ call. if f.init: if not (f.default is MISSING and f.default_factory is MISSING): seen_default = True elif seen_default: raise TypeError( f"non-default argument {f.name!r} " "follows default argument" ) globals = {"MISSING": MISSING, "_HAS_DEFAULT_FACTORY": _HAS_DEFAULT_FACTORY} body_lines = [] for f in fields: line = _field_init(f, frozen, globals, self_name) # line is None means that this field doesn't require # initialization (it's a pseudo-field). Just skip it. if line: body_lines.append(line) # Does this class have a post-init function? if has_post_init: params_str = ",".join(f.name for f in fields if f._field_type is _FIELD_INITVAR) body_lines.append(f"{self_name}.{_POST_INIT_NAME}({params_str})") # If no body lines, use 'pass'. if not body_lines: body_lines = ["pass"] locals = {f"_type_{f.name}": f.type for f in fields} return _create_fn( "__init__", [self_name] + [_init_param(f) for f in fields if f.init], body_lines, locals=locals, globals=globals, return_type=None, ) def _repr_fn(fields): return _create_fn( "__repr__", ("self",), [ 'return self.__class__.__qualname__ + f"(' + ", ".join([f"{f.name}={{self.{f.name}!r}}" for f in fields]) + ')"' ], ) def _frozen_get_del_attr(cls, fields): # XXX: globals is modified on the first call to _create_fn, then # the modified version is used in the second call. Is this okay? globals = {"cls": cls, "FrozenInstanceError": FrozenInstanceError} if fields: fields_str = "(" + ",".join(repr(f.name) for f in fields) + ",)" else: # Special case for the zero-length tuple. fields_str = "()" return ( _create_fn( "__setattr__", ("self", "name", "value"), ( f"if type(self) is cls or name in {fields_str}:", ' raise FrozenInstanceError(f"cannot assign to field {name!r}")', f"super(cls, self).__setattr__(name, value)", ), globals=globals, ), _create_fn( "__delattr__", ("self", "name"), ( f"if type(self) is cls or name in {fields_str}:", ' raise FrozenInstanceError(f"cannot delete field {name!r}")', f"super(cls, self).__delattr__(name)", ), globals=globals, ), ) def _cmp_fn(name, op, self_tuple, other_tuple): # Create a comparison function. If the fields in the object are # named 'x' and 'y', then self_tuple is the string # '(self.x,self.y)' and other_tuple is the string # '(other.x,other.y)'. return _create_fn( name, ("self", "other"), [ "if other.__class__ is self.__class__:", f" return {self_tuple}{op}{other_tuple}", "return NotImplemented", ], ) def _hash_fn(fields): self_tuple = _tuple_str("self", fields) return _create_fn("__hash__", ("self",), [f"return hash({self_tuple})"]) def _is_classvar(a_type, typing): # This test uses a typing internal class, but it's the best way to # test if this is a ClassVar. return type(a_type) is typing._ClassVar def _is_initvar(a_type, dataclasses): # The module we're checking against is the module we're # currently in (dataclasses.py). return a_type is dataclasses.InitVar def _is_type(annotation, cls, a_module, a_type, is_type_predicate): # Given a type annotation string, does it refer to a_type in # a_module? For example, when checking that annotation denotes a # ClassVar, then a_module is typing, and a_type is # typing.ClassVar. # It's possible to look up a_module given a_type, but it involves # looking in sys.modules (again!), and seems like a waste since # the caller already knows a_module. # - annotation is a string type annotation # - cls is the class that this annotation was found in # - a_module is the module we want to match # - a_type is the type in that module we want to match # - is_type_predicate is a function called with (obj, a_module) # that determines if obj is of the desired type. # Since this test does not do a local namespace lookup (and # instead only a module (global) lookup), there are some things it # gets wrong. # With string annotations, cv0 will be detected as a ClassVar: # CV = ClassVar # @dataclass # class C0: # cv0: CV # But in this example cv1 will not be detected as a ClassVar: # @dataclass # class C1: # CV = ClassVar # cv1: CV # In C1, the code in this function (_is_type) will look up "CV" in # the module and not find it, so it will not consider cv1 as a # ClassVar. This is a fairly obscure corner case, and the best # way to fix it would be to eval() the string "CV" with the # correct global and local namespaces. However that would involve # a eval() penalty for every single field of every dataclass # that's defined. It was judged not worth it. match = _MODULE_IDENTIFIER_RE.match(annotation) if match: ns = None module_name = match.group(1) if not module_name: # No module name, assume the class's module did # "from dataclasses import InitVar". ns = sys.modules.get(cls.__module__).__dict__ else: # Look up module_name in the class's module. module = sys.modules.get(cls.__module__) if module and module.__dict__.get(module_name) is a_module: ns = sys.modules.get(a_type.__module__).__dict__ if ns and is_type_predicate(ns.get(match.group(2)), a_module): return True return False def _get_field(cls, a_name, a_type): # Return a Field object for this field name and type. ClassVars # and InitVars are also returned, but marked as such (see # f._field_type). # If the default value isn't derived from Field, then it's only a # normal default value. Convert it to a Field(). default = getattr(cls, a_name, MISSING) if isinstance(default, Field): f = default else: if isinstance(default, types.MemberDescriptorType): # This is a field in __slots__, so it has no default value. default = MISSING f = field(default=default) # Only at this point do we know the name and the type. Set them. f.name = a_name f.type = a_type # Assume it's a normal field until proven otherwise. We're next # going to decide if it's a ClassVar or InitVar, everything else # is just a normal field. f._field_type = _FIELD # In addition to checking for actual types here, also check for # string annotations. get_type_hints() won't always work for us # (see https://github.com/python/typing/issues/508 for example), # plus it's expensive and would require an eval for every stirng # annotation. So, make a best effort to see if this is a ClassVar # or InitVar using regex's and checking that the thing referenced # is actually of the correct type. # For the complete discussion, see https://bugs.python.org/issue33453 # If typing has not been imported, then it's impossible for any # annotation to be a ClassVar. So, only look for ClassVar if # typing has been imported by any module (not necessarily cls's # module). typing = sys.modules.get("typing") if typing: if _is_classvar(a_type, typing) or ( isinstance(f.type, str) and _is_type(f.type, cls, typing, typing.ClassVar, _is_classvar) ): f._field_type = _FIELD_CLASSVAR # If the type is InitVar, or if it's a matching string annotation, # then it's an InitVar. if f._field_type is _FIELD: # The module we're checking against is the module we're # currently in (dataclasses.py). dataclasses = sys.modules[__name__] if _is_initvar(a_type, dataclasses) or ( isinstance(f.type, str) and _is_type(f.type, cls, dataclasses, dataclasses.InitVar, _is_initvar) ): f._field_type = _FIELD_INITVAR # Validations for individual fields. This is delayed until now, # instead of in the Field() constructor, since only here do we # know the field name, which allows for better error reporting. # Special restrictions for ClassVar and InitVar. if f._field_type in (_FIELD_CLASSVAR, _FIELD_INITVAR): if f.default_factory is not MISSING: raise TypeError(f"field {f.name} cannot have a " "default factory") # Should I check for other field settings? default_factory # seems the most serious to check for. Maybe add others. For # example, how about init=False (or really, # init=<not-the-default-init-value>)? It makes no sense for # ClassVar and InitVar to specify init=<anything>. # For real fields, disallow mutable defaults for known types. if f._field_type is _FIELD and isinstance(f.default, (list, dict, set)): raise ValueError( f"mutable default {type(f.default)} for field " f"{f.name} is not allowed: use default_factory" ) return f def _set_new_attribute(cls, name, value): # Never overwrites an existing attribute. Returns True if the # attribute already exists. if name in cls.__dict__: return True setattr(cls, name, value) return False # Decide if/how we're going to create a hash function. Key is # (unsafe_hash, eq, frozen, does-hash-exist). Value is the action to # take. The common case is to do nothing, so instead of providing a # function that is a no-op, use None to signify that. def _hash_set_none(cls, fields): return None def _hash_add(cls, fields): flds = [f for f in fields if (f.compare if f.hash is None else f.hash)] return _hash_fn(flds) def _hash_exception(cls, fields): # Raise an exception. raise TypeError(f"Cannot overwrite attribute __hash__ " f"in class {cls.__name__}") # # +-------------------------------------- unsafe_hash? # | +------------------------------- eq? # | | +------------------------ frozen? # | | | +---------------- has-explicit-hash? # | | | | # | | | | +------- action # | | | | | # v v v v v _hash_action = { (False, False, False, False): None, (False, False, False, True): None, (False, False, True, False): None, (False, False, True, True): None, (False, True, False, False): _hash_set_none, (False, True, False, True): None, (False, True, True, False): _hash_add, (False, True, True, True): None, (True, False, False, False): _hash_add, (True, False, False, True): _hash_exception, (True, False, True, False): _hash_add, (True, False, True, True): _hash_exception, (True, True, False, False): _hash_add, (True, True, False, True): _hash_exception, (True, True, True, False): _hash_add, (True, True, True, True): _hash_exception, } # See https://bugs.python.org/issue32929#msg312829 for an if-statement # version of this table. def _process_class(cls, init, repr, eq, order, unsafe_hash, frozen): # Now that dicts retain insertion order, there's no reason to use # an ordered dict. I am leveraging that ordering here, because # derived class fields overwrite base class fields, but the order # is defined by the base class, which is found first. fields = {} setattr(cls, _PARAMS, _DataclassParams(init, repr, eq, order, unsafe_hash, frozen)) # Find our base classes in reverse MRO order, and exclude # ourselves. In reversed order so that more derived classes # override earlier field definitions in base classes. As long as # we're iterating over them, see if any are frozen. any_frozen_base = False has_dataclass_bases = False for b in cls.__mro__[-1:0:-1]: # Only process classes that have been processed by our # decorator. That is, they have a _FIELDS attribute. base_fields = getattr(b, _FIELDS, None) if base_fields: has_dataclass_bases = True for f in base_fields.values(): fields[f.name] = f if getattr(b, _PARAMS).frozen: any_frozen_base = True # Annotations that are defined in this class (not in base # classes). If __annotations__ isn't present, then this class # adds no new annotations. We use this to compute fields that are # added by this class. # # Fields are found from cls_annotations, which is guaranteed to be # ordered. Default values are from class attributes, if a field # has a default. If the default value is a Field(), then it # contains additional info beyond (and possibly including) the # actual default value. Pseudo-fields ClassVars and InitVars are # included, despite the fact that they're not real fields. That's # dealt with later. cls_annotations = cls.__dict__.get("__annotations__", {}) # Now find fields in our class. While doing so, validate some # things, and set the default values (as class attributes) where # we can. cls_fields = [ _get_field(cls, name, type_) for name, type_ in cls_annotations.items() ] for f in cls_fields: fields[f.name] = f # If the class attribute (which is the default value for this # field) exists and is of type 'Field', replace it with the # real default. This is so that normal class introspection # sees a real default value, not a Field. if isinstance(getattr(cls, f.name, None), Field): if f.default is MISSING: # If there's no default, delete the class attribute. # This happens if we specify field(repr=False), for # example (that is, we specified a field object, but # no default value). Also if we're using a default # factory. The class attribute should not be set at # all in the post-processed class. delattr(cls, f.name) else: setattr(cls, f.name, f.default) # Do we have any Field members that don't also have annotations? for name, value in cls.__dict__.items(): if isinstance(value, Field) and not name in cls_annotations: raise TypeError(f"{name!r} is a field but has no type annotation") # Check rules that apply if we are derived from any dataclasses. if has_dataclass_bases: # Raise an exception if any of our bases are frozen, but we're not. if any_frozen_base and not frozen: raise TypeError("cannot inherit non-frozen dataclass from a " "frozen one") # Raise an exception if we're frozen, but none of our bases are. if not any_frozen_base and frozen: raise TypeError("cannot inherit frozen dataclass from a " "non-frozen one") # Remember all of the fields on our class (including bases). This # also marks this class as being a dataclass. setattr(cls, _FIELDS, fields) # Was this class defined with an explicit __hash__? Note that if # __eq__ is defined in this class, then python will automatically # set __hash__ to None. This is a heuristic, as it's possible # that such a __hash__ == None was not auto-generated, but it # close enough. class_hash = cls.__dict__.get("__hash__", MISSING) has_explicit_hash = not ( class_hash is MISSING or (class_hash is None and "__eq__" in cls.__dict__) ) # If we're generating ordering methods, we must be generating the # eq methods. if order and not eq: raise ValueError("eq must be true if order is true") if init: # Does this class have a post-init function? has_post_init = hasattr(cls, _POST_INIT_NAME) # Include InitVars and regular fields (so, not ClassVars). flds = [f for f in fields.values() if f._field_type in (_FIELD, _FIELD_INITVAR)] _set_new_attribute( cls, "__init__", _init_fn( flds, frozen, has_post_init, # The name to use for the "self" # param in __init__. Use "self" # if possible. "__dataclass_self__" if "self" in fields else "self", ), ) # Get the fields as a list, and include only real fields. This is # used in all of the following methods. field_list = [f for f in fields.values() if f._field_type is _FIELD] if repr: flds = [f for f in field_list if f.repr] _set_new_attribute(cls, "__repr__", _repr_fn(flds)) if eq: # Create _eq__ method. There's no need for a __ne__ method, # since python will call __eq__ and negate it. flds = [f for f in field_list if f.compare] self_tuple = _tuple_str("self", flds) other_tuple = _tuple_str("other", flds) _set_new_attribute( cls, "__eq__", _cmp_fn("__eq__", "==", self_tuple, other_tuple) ) if order: # Create and set the ordering methods. flds = [f for f in field_list if f.compare] self_tuple = _tuple_str("self", flds) other_tuple = _tuple_str("other", flds) for name, op in [ ("__lt__", "<"), ("__le__", "<="), ("__gt__", ">"), ("__ge__", ">="), ]: if _set_new_attribute( cls, name, _cmp_fn(name, op, self_tuple, other_tuple) ): raise TypeError( f"Cannot overwrite attribute {name} " f"in class {cls.__name__}. Consider using " "functools.total_ordering" ) if frozen: for fn in _frozen_get_del_attr(cls, field_list): if _set_new_attribute(cls, fn.__name__, fn): raise TypeError( f"Cannot overwrite attribute {fn.__name__} " f"in class {cls.__name__}" ) # Decide if/how we're going to create a hash function. hash_action = _hash_action[ bool(unsafe_hash), bool(eq), bool(frozen), has_explicit_hash ] if hash_action: # No need to call _set_new_attribute here, since by the time # we're here the overwriting is unconditional. cls.__hash__ = hash_action(cls, field_list) if not getattr(cls, "__doc__"): # Create a class doc-string. cls.__doc__ = cls.__name__ + str(inspect.signature(cls)).replace(" -> None", "") return cls # _cls should never be specified by keyword, so start it with an # underscore. The presence of _cls is used to detect if this # decorator is being called with parameters or not. def dataclass( _cls=None, *, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, ): """Returns the same class as was passed in, with dunder methods added based on the fields defined in the class. Examines PEP 526 __annotations__ to determine fields. If init is true, an __init__() method is added to the class. If repr is true, a __repr__() method is added. If order is true, rich comparison dunder methods are added. If unsafe_hash is true, a __hash__() method function is added. If frozen is true, fields may not be assigned to after instance creation. """ def wrap(cls): return _process_class(cls, init, repr, eq, order, unsafe_hash, frozen) # See if we're being called as @dataclass or @dataclass(). if _cls is None: # We're called with parens. return wrap # We're called as @dataclass without parens. return wrap(_cls) def fields(class_or_instance): """Return a tuple describing the fields of this dataclass. Accepts a dataclass or an instance of one. Tuple elements are of type Field. """ # Might it be worth caching this, per class? try: fields = getattr(class_or_instance, _FIELDS) except AttributeError: raise TypeError("must be called with a dataclass type or instance") # Exclude pseudo-fields. Note that fields is sorted by insertion # order, so the order of the tuple is as the fields were defined. return tuple(f for f in fields.values() if f._field_type is _FIELD) def _is_dataclass_instance(obj): """Returns True if obj is an instance of a dataclass.""" return not isinstance(obj, type) and hasattr(obj, _FIELDS) def is_dataclass(obj): """Returns True if obj is a dataclass or an instance of a dataclass.""" return hasattr(obj, _FIELDS) def asdict(obj, *, dict_factory=dict): """Return the fields of a dataclass instance as a new dictionary mapping field names to field values. Example usage: @dataclass class C: x: int y: int c = C(1, 2) assert asdict(c) == {'x': 1, 'y': 2} If given, 'dict_factory' will be used instead of built-in dict. The function applies recursively to field values that are dataclass instances. This will also look into built-in containers: tuples, lists, and dicts. """ if not _is_dataclass_instance(obj): raise TypeError("asdict() should be called on dataclass instances") return _asdict_inner(obj, dict_factory) def _asdict_inner(obj, dict_factory): if _is_dataclass_instance(obj): result = [] for f in fields(obj): value = _asdict_inner(getattr(obj, f.name), dict_factory) result.append((f.name, value)) return dict_factory(result) elif isinstance(obj, (list, tuple)): return type(obj)(_asdict_inner(v, dict_factory) for v in obj) elif isinstance(obj, dict): return type(obj)( (_asdict_inner(k, dict_factory), _asdict_inner(v, dict_factory)) for k, v in obj.items() ) else: return copy.deepcopy(obj) def astuple(obj, *, tuple_factory=tuple): """Return the fields of a dataclass instance as a new tuple of field values. Example usage:: @dataclass class C: x: int y: int c = C(1, 2) assert astuple(c) == (1, 2) If given, 'tuple_factory' will be used instead of built-in tuple. The function applies recursively to field values that are dataclass instances. This will also look into built-in containers: tuples, lists, and dicts. """ if not _is_dataclass_instance(obj): raise TypeError("astuple() should be called on dataclass instances") return _astuple_inner(obj, tuple_factory) def _astuple_inner(obj, tuple_factory): if _is_dataclass_instance(obj): result = [] for f in fields(obj): value = _astuple_inner(getattr(obj, f.name), tuple_factory) result.append(value) return tuple_factory(result) elif isinstance(obj, (list, tuple)): return type(obj)(_astuple_inner(v, tuple_factory) for v in obj) elif isinstance(obj, dict): return type(obj)( (_astuple_inner(k, tuple_factory), _astuple_inner(v, tuple_factory)) for k, v in obj.items() ) else: return copy.deepcopy(obj) def make_dataclass( cls_name, fields, *, bases=(), namespace=None, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, ): """Return a new dynamically created dataclass. The dataclass name will be 'cls_name'. 'fields' is an iterable of either (name), (name, type) or (name, type, Field) objects. If type is omitted, use the string 'typing.Any'. Field objects are created by the equivalent of calling 'field(name, type [, Field-info])'. C = make_dataclass('C', ['x', ('y', int), ('z', int, field(init=False))], bases=(Base,)) is equivalent to: @dataclass class C(Base): x: 'typing.Any' y: int z: int = field(init=False) For the bases and namespace parameters, see the builtin type() function. The parameters init, repr, eq, order, unsafe_hash, and frozen are passed to dataclass(). """ if namespace is None: namespace = {} else: # Copy namespace since we're going to mutate it. namespace = namespace.copy() # While we're looking through the field names, validate that they # are identifiers, are not keywords, and not duplicates. seen = set() anns = {} for item in fields: if isinstance(item, str): name = item tp = "typing.Any" elif len(item) == 2: (name, tp) = item elif len(item) == 3: name, tp, spec = item namespace[name] = spec else: raise TypeError(f"Invalid field: {item!r}") if not isinstance(name, str) or not name.isidentifier(): raise TypeError(f"Field names must be valid identifers: {name!r}") if keyword.iskeyword(name): raise TypeError(f"Field names must not be keywords: {name!r}") if name in seen: raise TypeError(f"Field name duplicated: {name!r}") seen.add(name) anns[name] = tp namespace["__annotations__"] = anns # We use `types.new_class()` instead of simply `type()` to allow dynamic creation # of generic dataclassses. cls = types.new_class(cls_name, bases, {}, lambda ns: ns.update(namespace)) return dataclass( cls, init=init, repr=repr, eq=eq, order=order, unsafe_hash=unsafe_hash, frozen=frozen, ) def replace(obj, **changes): """Return a new object replacing specified fields with new values. This is especially useful for frozen classes. Example usage: @dataclass(frozen=True) class C: x: int y: int c = C(1, 2) c1 = replace(c, x=3) assert c1.x == 3 and c1.y == 2 """ # We're going to mutate 'changes', but that's okay because it's a # new dict, even if called with 'replace(obj, **my_changes)'. if not _is_dataclass_instance(obj): raise TypeError("replace() should be called on dataclass instances") # It's an error to have init=False fields in 'changes'. # If a field is not in 'changes', read its value from the provided obj. for f in getattr(obj, _FIELDS).values(): if not f.init: # Error if this field is specified in changes. if f.name in changes: raise ValueError( f"field {f.name} is declared with " "init=False, it cannot be specified with " "replace()" ) continue if f.name not in changes: changes[f.name] = getattr(obj, f.name) # Create the new object, which calls __init__() and # __post_init__() (if defined), using all of the init fields we've # added and/or left in 'changes'. If there are values supplied in # changes that aren't fields, this will correctly raise a # TypeError. return obj.__class__(**changes)
py
1a47458723ec908664a388421536a8ff27bf4cec
import numpy as np import matplotlibex as plx import ml.gptheano.kernels as krn import ml.gptheano.gplvmfullfit as gplvm if __name__ == "__main__": t = np.linspace(0.0, 3*2*np.pi, num=300) y = np.vstack((3*np.sin(1*t+0.0), 3*np.sin(2*t+1.5), 1*np.sin(1*t+0.4), 1*np.sin(3*t+1.8), 1*np.sin(1*t+0.8), 1*np.sin(4*t+2.0), 1*np.sin(1*t+1.0), 1*np.sin(5*t+2.2))).T y = y + 0.1*np.reshape(np.random.normal(size=y.size), y.shape) XVar = krn.MatrixVariable("X", np.identity(3)) krbfnoise = krn.SumKernel([krn.RBFKernel(XVar, XVar), krn.NoiseKernel(XVar, XVar)]) gp = gplvm.GPLVM(y, 2, krbfnoise) print("##") plx.plot_sequence_variance_2d(gp.XVar.val, gp.predict)
py
1a4745faee1c4499db1916db7ad59cb1fca521b5
import scipy.sparse as sps from . import register_class from ..container import Container from ..utils import docval, getargs, call_docval_func, to_uint_array, get_data_shape @register_class('CSRMatrix') class CSRMatrix(Container): @docval({'name': 'data', 'type': (sps.csr_matrix, 'array_data'), 'doc': 'the data to use for this CSRMatrix or CSR data array.' 'If passing CSR data array, *indices*, *indptr*, and *shape* must also be provided'}, {'name': 'indices', 'type': 'array_data', 'doc': 'CSR index array', 'default': None}, {'name': 'indptr', 'type': 'array_data', 'doc': 'CSR index pointer array', 'default': None}, {'name': 'shape', 'type': 'array_data', 'doc': 'the shape of the matrix', 'default': None}, {'name': 'name', 'type': str, 'doc': 'the name to use for this when storing', 'default': 'csr_matrix'}) def __init__(self, **kwargs): call_docval_func(super().__init__, kwargs) data = getargs('data', kwargs) if not isinstance(data, sps.csr_matrix): temp_shape = get_data_shape(data) temp_ndim = len(temp_shape) if temp_ndim == 2: data = sps.csr_matrix(data) elif temp_ndim == 1: indptr, indices, shape = getargs('indptr', 'indices', 'shape', kwargs) if any(_ is None for _ in (indptr, indices, shape)): raise ValueError("Must specify 'indptr', 'indices', and 'shape' arguments when passing data array.") indptr = self.__check_arr(indptr, 'indptr') indices = self.__check_arr(indices, 'indices') shape = self.__check_arr(shape, 'shape') if len(shape) != 2: raise ValueError("'shape' argument must specify two and only two dimensions.") data = sps.csr_matrix((data, indices, indptr), shape=shape) else: raise ValueError("'data' argument cannot be ndarray of dimensionality > 2.") self.__data = data @staticmethod def __check_arr(ar, arg): try: ar = to_uint_array(ar) except ValueError as ve: raise ValueError("Cannot convert '%s' to an array of unsigned integers." % arg) from ve if ar.ndim != 1: raise ValueError("'%s' must be a 1D array of unsigned integers." % arg) return ar def __getattr__(self, val): # NOTE: this provides access to self.data, self.indices, self.indptr, self.shape attr = getattr(self.__data, val) if val in ('indices', 'indptr', 'shape'): # needed because sps.csr_matrix may contain int arrays for these attr = to_uint_array(attr) return attr def to_spmat(self): return self.__data
py
1a474649a1fcc8a57650007570a95c87ee75b161
# Author: Simon Blanke # Email: [email protected] # License: MIT License from hyperactive_insight.streamlit_setup import ( create_streamlit_setup, ) def open_insight(search_data): create_streamlit_setup(search_data, plots=[])
py
1a47466f02d40c0b616e7a8c2bd2f1bea2b42bc6
from typing import List from td.session import TdAmeritradeSession class Quotes(): """ ## Overview ---- Allows the user to query real-time quotes from the TD API if they have an authorization token otherwise it will be delayed by 5 minutes. """ def __init__(self, session: TdAmeritradeSession) -> None: """Initializes the `Quotes` services. ### Parameters ---- session : TdAmeritradeSession An authenticated `TDAmeritradeSession object. """ self.session = session def get_quote(self, instrument=str) -> dict: """Grabs real-time quotes for an instrument. ### Overview ---- Serves as the mechanism to make a request to the Get Quote and Get Quotes Endpoint. If one item is provided a Get Quote request will be made and if more than one item is provided then a Get Quotes request will be made. ### Documentation ---- https://developer.tdameritrade.com/quotes/apis ### Parameters ---- instruments: str A list of different financial instruments. ### Usage ---- >>> quote_service = td_client.quotes() >>> quote_service.get_quote(instrument='AAPL') """ params = { 'symbol': instrument } content = self.session.make_request( method='get', endpoint='marketdata/quotes', params=params ) return content def get_quotes(self, instruments=List[str]) -> dict: """Grabs real-time quotes for multiple instruments. ### Overview ---- Serves as the mechanism to make a request to the Get Quote and Get Quotes Endpoint. If one item is provided a Get Quote request will be made and if more than one item is provided then a Get Quotes request will be made. Only 500 symbols can be sent at a single time. ### Documentation ---- https://developer.tdameritrade.com/quotes/apis ### Parameters ---- instruments: str A list of different financial instruments. ### Usage ---- >>> quote_service = td_client.quotes() >>> quote_service.get_quotes(instruments=['AAPL','SQ']) """ params = { 'symbol': ','.join(instruments) } content = self.session.make_request( method='get', endpoint='marketdata/quotes', params=params ) return content
py
1a474684a5d39b553f26ce19f16970ffc822d854
# -*- coding: utf-8 -*- """ py_vollib.black_scholes_merton.implied_volatility ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Copyright © 2017 Gammon Capital LLC A library for option pricing, implied volatility, and greek calculation. py_vollib is based on lets_be_rational, a Python wrapper for LetsBeRational by Peter Jaeckel as described below. :copyright: © 2017 Gammon Capital LLC :license: MIT, see LICENSE for more details. About LetsBeRational: ~~~~~~~~~~~~~~~~~~~~~ The source code of LetsBeRational resides at www.jaeckel.org/LetsBeRational.7z . :: ======================================================================================== Copyright © 2013-2014 Peter Jäckel. Permission to use, copy, modify, and distribute this software is freely granted, provided that this notice is preserved. WARRANTY DISCLAIMER The Software is provided "as is" without warranty of any kind, either express or implied, including without limitation any implied warranties of condition, uninterrupted use, merchantability, fitness for a particular purpose, or non-infringement. ======================================================================================== """ # ----------------------------------------------------------------------------- # IMPORTS # Standard library imports from __future__ import division # Related third party imports from py_lets_be_rational import implied_volatility_from_a_transformed_rational_guess as iv import numpy # Local application/library specific imports from py_vollib.black_scholes_merton import black_scholes_merton from py_vollib.helpers import binary_flag from py_vollib.helpers.exceptions import PriceIsAboveMaximum, PriceIsBelowIntrinsic from py_vollib.helpers.constants import MINUS_FLOAT_MAX, FLOAT_MAX # ----------------------------------------------------------------------------- # FUNCTIONS def implied_volatility(price, S, K, t, r, q, flag): """Calculate the Black-Scholes-Merton implied volatility. :param S: underlying asset price :type S: float :param K: strike price :type K: float :param sigma: annualized standard deviation, or volatility :type sigma: float :param t: time to expiration in years :type t: float :param r: risk-free interest rate :type r: float :param q: annualized continuous dividend rate :type q: float :param flag: 'c' or 'p' for call or put. :type flag: str >>> S = 100 >>> K = 100 >>> sigma = .2 >>> r = .01 >>> flag = 'c' >>> t = .5 >>> q = 0 >>> price = black_scholes_merton(flag, S, K, t, r, sigma, q) >>> iv = implied_volatility(price, S, K, t, r, q, flag) >>> expected_price = 5.87602423383 >>> expected_iv = 0.2 >>> abs(expected_price - price) < 0.00001 True >>> abs(expected_iv - iv) < 0.00001 True """ deflater = numpy.exp(-r * t) undiscounted_option_price = price / deflater F = S * numpy.exp((r-q)*t) sigma_calc = iv(undiscounted_option_price, F, K, t, binary_flag[flag]) if sigma_calc == FLOAT_MAX: raise PriceIsAboveMaximum() elif sigma_calc == MINUS_FLOAT_MAX: raise PriceIsBelowIntrinsic() return sigma_calc if __name__ == "__main__": from py_vollib.helpers.doctest_helper import run_doctest run_doctest()
py
1a4747176bd8e12f3f013fa8875d1e85e78e65bd
from django.contrib import admin from .models import Todo # Register your models here. @admin.register(Todo) class TodoAdmin(admin.ModelAdmin): list_display = ['title','start_time'] search_fields = ['title'] list_filter = ['title','start_time']
py
1a47474657790c2853ee1b95b7f468f988e33a52
import copy from nose.tools import assert_equal, assert_raises from ckan.lib.create_test_data import CreateTestData import ckan.lib.search as search from ckan.lib.search.common import SolrSettings from ckan.tests.functional.api.base import BaseModelApiTestCase from ckan.tests.functional.api.base import Api1TestCase as Version1TestCase from ckan.tests.functional.api.base import Api2TestCase as Version2TestCase import ckan.tests as tests # Todo: Remove this ckan.model stuff. import ckan.model as model class PackagesTestCase(BaseModelApiTestCase): @classmethod def setup_class(cls): CreateTestData.create() cls.user_name = u'annafan' # created in CreateTestData cls.init_extra_environ(cls.user_name) @classmethod def teardown_class(cls): model.repo.rebuild_db() def teardown(self): self.purge_package_by_name(self.package_fixture_data['name']) def get_groups_identifiers(self, test_groups, users=[]): groups = [] for grp in test_groups: group = model.Group.get(grp) if self.get_expected_api_version() == 1: groups.append(group.name) else: groups.append(group.id) if users: model.setup_default_user_roles(group, users) return groups def test_register_get_ok(self): offset = self.package_offset() res = self.app.get(offset, status=self.STATUS_200_OK) assert self.ref_package(self.anna) in res, res assert self.ref_package(self.war) in res, res def test_register_post_ok(self): assert not self.get_package_by_name(self.package_fixture_data['name']) offset = self.package_offset() postparams = '%s=1' % self.dumps(self.package_fixture_data) res = self.app.post(offset, params=postparams, status=self.STATUS_201_CREATED, extra_environ=self.admin_extra_environ) # Check the returned package is as expected pkg = self.loads(res.body) assert_equal(pkg['name'], self.package_fixture_data['name']) assert_equal(pkg['title'], self.package_fixture_data['title']) assert_equal(set(pkg['tags']), set(self.package_fixture_data['tags'])) assert_equal(len(pkg['resources']), len(self.package_fixture_data['resources'])) assert_equal(pkg['extras'], self.package_fixture_data['extras']) # Check the value of the Location header. location = res.header('Location') assert offset in location res = self.app.get(location, status=self.STATUS_200_OK) # Check the database record. model.Session.remove() package = self.get_package_by_name(self.package_fixture_data['name']) assert package self.assert_equal(package.title, self.package_fixture_data['title']) self.assert_equal(package.url, self.package_fixture_data['url']) self.assert_equal(package.license_id, self.testpackage_license_id) self.assert_equal(len(package.get_tags()), 2) self.assert_equal(len(package.extras), 2) for key, value in self.package_fixture_data['extras'].items(): self.assert_equal(package.extras[key], value) self.assert_equal(len(package.resources), len(self.package_fixture_data['resources'])) for (i, expected_resource) in enumerate(self.package_fixture_data['resources']): package_resource = package.resources[i] for key in expected_resource.keys(): if key == 'extras': package_resource_extras = getattr(package_resource, key) expected_resource_extras = expected_resource[key].items() for expected_extras_key, expected_extras_value in expected_resource_extras: package_resource_value = package_resource_extras[expected_extras_key],\ 'Package:%r Extras:%r Expected_extras:%r' % \ (self.package_fixture_data['name'], package_resource_extras, expected_resource) else: package_resource_value = getattr(package_resource, key, None) if not package_resource_value: package_resource_value = package_resource.extras[key] expected_resource_value = expected_resource[key] self.assert_equal(package_resource_value, expected_resource_value) # Test Package Entity Get 200. offset = self.package_offset(self.package_fixture_data['name']) res = self.app.get(offset, status=self.STATUS_200_OK) # Todo: Instead loads() the data and then check actual values. assert self.package_fixture_data['name'] in res, res assert '"license_id": "%s"' % self.package_fixture_data['license_id'] in res, res assert self.package_fixture_data['tags'][0] in res, res assert self.package_fixture_data['tags'][1] in res, res assert '"extras": {' in res, res for key, value in self.package_fixture_data['extras'].items(): assert '"%s": "%s"' % (key, value) in res, res model.Session.remove() # Test Packages Register Post 409 (conflict - create duplicate package). offset = self.package_offset() postparams = '%s=1' % self.dumps(self.package_fixture_data) res = self.app.post(offset, params=postparams, status=self.STATUS_409_CONFLICT, extra_environ=self.admin_extra_environ) model.Session.remove() def test_register_post_with_group(self): assert not self.get_package_by_name(self.package_fixture_data['name']) offset = self.package_offset() test_groups = [u'david'] user = model.User.by_name(u'testsysadmin') groups = self.get_groups_identifiers(test_groups,[user]) package_fixture_data = self.package_fixture_data package_fixture_data['groups'] = groups data = self.dumps(package_fixture_data) res = self.post_json(offset, data, status=self.STATUS_201_CREATED, extra_environ={'Authorization':str(user.apikey)}) # Check the database record. model.Session.remove() package = self.get_package_by_name(self.package_fixture_data['name']) assert package pkg_groups = model.Session.query(model.Group).\ join(model.Member, model.Member.group_id == model.Group.id).\ filter(model.Member.table_id == package.id).all() if self.get_expected_api_version() == 1: self.assert_equal([g.name for g in pkg_groups], groups) else: self.assert_equal([g.id for g in pkg_groups], groups) del package_fixture_data['groups'] def test_register_post_with_group_not_authorized(self): assert not self.get_package_by_name(self.package_fixture_data['name']) offset = self.package_offset() test_groups = [u'david'] groups = self.get_groups_identifiers(test_groups) package_fixture_data = self.package_fixture_data package_fixture_data['groups'] = groups data = self.dumps(package_fixture_data) res = self.post_json(offset, data, status=self.STATUS_403_ACCESS_DENIED, extra_environ=self.extra_environ) del package_fixture_data['groups'] def test_register_post_with_group_not_found(self): assert not self.get_package_by_name(self.package_fixture_data['name']) offset = self.package_offset() test_groups = [u'this-group-does-not-exist'] groups = test_groups package_fixture_data = self.package_fixture_data package_fixture_data['groups'] = groups data = self.dumps(package_fixture_data) res = self.post_json(offset, data, status=self.STATUS_404_NOT_FOUND, extra_environ=self.extra_environ) del package_fixture_data['groups'] def test_register_post_with_group_sysadmin(self): assert not self.get_package_by_name(self.package_fixture_data['name']) offset = self.package_offset() user = model.User.by_name(u'testsysadmin') test_groups = [u'david'] groups = self.get_groups_identifiers(test_groups) package_fixture_data = self.package_fixture_data package_fixture_data['groups'] = groups data = self.dumps(package_fixture_data) res = self.post_json(offset, data, status=self.STATUS_201_CREATED, extra_environ={'Authorization':str(user.apikey)}) # Check the database record. model.Session.remove() package = self.get_package_by_name(self.package_fixture_data['name']) assert package pkg_groups = model.Session.query(model.Group).\ join(model.Member, model.Member.group_id == model.Group.id).\ filter(model.Member.table_id == package.id).all() if self.get_expected_api_version() == 1: self.assert_equal([g.name for g in pkg_groups], groups) else: self.assert_equal([g.id for g in pkg_groups], groups) del package_fixture_data['groups'] def test_register_post_json(self): assert not self.get_package_by_name(self.package_fixture_data['name']) offset = self.package_offset() data = self.dumps(self.package_fixture_data) res = self.post_json(offset, data, status=self.STATUS_201_CREATED, extra_environ=self.admin_extra_environ) # Check the database record. model.Session.remove() package = self.get_package_by_name(self.package_fixture_data['name']) assert package self.assert_equal(package.title, self.package_fixture_data['title']) def test_register_post_bad_content_type(self): assert not self.get_package_by_name(self.package_fixture_data['name']) offset = self.package_offset() data = self.dumps(self.package_fixture_data) res = self.http_request(offset, data, content_type='something/unheard_of', status=[self.STATUS_400_BAD_REQUEST, self.STATUS_201_CREATED], extra_environ=self.admin_extra_environ) model.Session.remove() # Some versions of webob work, some don't. No matter, we record this # behaviour. package = self.get_package_by_name(self.package_fixture_data['name']) if res.status == self.STATUS_400_BAD_REQUEST: # Check there is no database record. assert not package else: assert package def test_register_post_bad_request(self): test_params = { 'name':u'testpackage06_400', 'resources':[u'should_be_a_dict'], } offset = self.offset('/rest/dataset') postparams = '%s=1' % self.dumps(test_params) res = self.app.post(offset, params=postparams, status=self.STATUS_400_BAD_REQUEST, extra_environ=self.admin_extra_environ) def test_register_post_denied(self): offset = self.offset('/rest/dataset') postparams = '%s=1' % self.dumps(self.package_fixture_data) res = self.app.post(offset, params=postparams, status=self.STATUS_403_ACCESS_DENIED) def test_register_post_indexerror(self): """ Test that we can't add a package if Solr is down. """ bad_solr_url = 'http://127.0.0.1/badsolrurl' original_settings = SolrSettings.get()[0] try: SolrSettings.init(bad_solr_url) assert not self.get_package_by_name(self.package_fixture_data['name']) offset = self.package_offset() data = self.dumps(self.package_fixture_data) self.post_json(offset, data, status=500, extra_environ=self.admin_extra_environ) model.Session.remove() finally: SolrSettings.init(original_settings) def test_register_post_tag_too_long(self): pkg = {'name': 'test_tag_too_long', 'tags': ['tagok', 't'*101]} assert not self.get_package_by_name(pkg['name']) offset = self.package_offset() data = self.dumps(pkg) res = self.post_json(offset, data, status=self.STATUS_409_CONFLICT, extra_environ=self.admin_extra_environ) assert 'length is more than maximum 100' in res.body, res.body assert 'tagok' not in res.body def test_entity_get_ok(self): package_refs = [self.anna.name, self.anna.id] for ref in package_refs: offset = self.offset('/rest/dataset/%s' % ref) res = self.app.get(offset, status=self.STATUS_200_OK) self.assert_msg_represents_anna(msg=res.body) def test_entity_get_ok_jsonp(self): offset = self.anna_offset(postfix='?callback=jsoncallback') res = self.app.get(offset, status=self.STATUS_200_OK) import re assert re.match('jsoncallback\(.*\);', res.body), res # Unwrap JSONP callback (we want to look at the data). msg = res.body[len('jsoncallback')+1:-2] self.assert_msg_represents_anna(msg=msg) def test_entity_get_not_found(self): offset = self.offset('/rest/dataset/22222') res = self.app.get(offset, status=self.STATUS_404_NOT_FOUND) model.Session.remove() def test_entity_get_then_post(self): # (ticket 662) Ensure an entity you 'get' from a register can be # returned by posting it back offset = self.package_offset(self.war.name) res = self.app.get(offset, status=self.STATUS_200_OK) data = self.loads(res.body) postparams = '%s=1' % self.dumps(data) res = self.app.post(offset, params=postparams, status=self.STATUS_200_OK, extra_environ=self.admin_extra_environ) data_returned = self.loads(res.body) assert_equal(data['name'], data_returned['name']) assert_equal(data['license_id'], data_returned['license_id']) def test_entity_get_then_post_new(self): offset = self.package_offset(self.war.name) res = self.app.get(offset, status=self.STATUS_200_OK) data = self.loads(res.body) # change name and create a new package data['name'] = u'newpkg' data['id'] = None # ensure this doesn't clash or you get 409 error postparams = '%s=1' % self.dumps(data) # use russianfan now because he has rights to add this package to # the 'david' group. extra_environ = {'REMOTE_USER': 'testsysadmin'} res = self.app.post(self.package_offset(), params=postparams, status=self.STATUS_201_CREATED, extra_environ=extra_environ) try: data_returned = self.loads(res.body) assert_equal(data['name'], data_returned['name']) assert_equal(data['license_id'], data_returned['license_id']) finally: self.purge_package_by_name(data['name']) def test_entity_post_changed_readonly(self): # (ticket 662) Edit a readonly field gives error offset = self.package_offset(self.war.name) res = self.app.get(offset, status=self.STATUS_200_OK) data = self.loads(res.body) data['id'] = 'illegally changed value' postparams = '%s=1' % self.dumps(data) res = self.app.post(offset, params=postparams, status=self.STATUS_409_CONFLICT, extra_environ=self.admin_extra_environ) assert "Cannot change value of key from" in res.body, res.body assert "to illegally changed value. This key is read-only" in res.body, res.body def test_entity_update_denied(self): offset = self.anna_offset() postparams = '%s=1' % self.dumps(self.package_fixture_data) res = self.app.post(offset, params=postparams, status=self.STATUS_403_ACCESS_DENIED) def test_entity_delete_denied(self): offset = self.anna_offset() res = self.app.delete(offset, status=self.STATUS_403_ACCESS_DENIED) def test_09_update_package_entity_not_found(self): offset = self.offset('/rest/dataset/22222') postparams = '%s=1' % self.dumps(self.package_fixture_data) res = self.app.post(offset, params=postparams, status=self.STATUS_404_NOT_FOUND, extra_environ=self.admin_extra_environ) def create_package_with_admin_user(self, package_data): '''Creates a package with self.user as admin and provided package_data. ''' self.create_package(admins=[self.user], data=package_data) def assert_package_update_ok(self, package_ref_attribute, method_str): old_fixture_data = { 'name': self.package_fixture_data['name'], 'url': self.package_fixture_data['url'], 'tags': [u'tag 1.1', u'tag2', u'tag3'], 'extras': { u'key1': u'val1', u'key2': u'val2' }, } new_fixture_data = { 'name':u'somethingnew', 'title':u'newtesttitle', 'resources': [{ u'url':u'http://blah.com/file2.xml', u'format':u'XML', u'description':u'Appendix 1', u'hash':u'def123', u'alt_url':u'alt123', u'size_extra':u'400', },{ u'url':u'http://blah.com/file3.xml', u'format':u'XML', u'description':u'Appenddic 2', u'hash':u'ghi123', u'alt_url':u'alt123', u'size_extra':u'400', }], 'extras': { u'key3': u'val3', u'key4': u'', u'key2': None, u'key7': '["a","b"]', }, 'tags': [u'tag 1.1', u'tag2', u'tag 4', u'tag5.'], } self.create_package_with_admin_user(old_fixture_data) pkg = self.get_package_by_name(old_fixture_data['name']) # This is the one occasion where we reference package explicitly # by name or ID, rather than use the value from self.ref_package_by # because you should be able to specify the package both ways round # for both versions of the API. package_ref = getattr(pkg, package_ref_attribute) offset = self.offset('/rest/dataset/%s' % package_ref) params = '%s=1' % self.dumps(new_fixture_data) method_func = getattr(self.app, method_str) res = method_func(offset, params=params, status=self.STATUS_200_OK, extra_environ=self.admin_extra_environ) try: # Check the returned package is as expected pkg = self.loads(res.body) assert_equal(pkg['name'], new_fixture_data['name']) assert_equal(pkg['title'], new_fixture_data['title']) assert_equal(set(pkg['tags']), set(new_fixture_data['tags'])) assert_equal(len(pkg['resources']), len(new_fixture_data['resources'])) expected_extras = copy.deepcopy(new_fixture_data['extras']) del expected_extras['key2'] expected_extras['key1'] = old_fixture_data['extras']['key1'] assert_equal(pkg['extras'], expected_extras) # Check submitted field have changed. model.Session.remove() package = self.get_package_by_name(new_fixture_data['name']) # - title self.assert_equal(package.title, new_fixture_data['title']) # - tags package_tagnames = [tag.name for tag in package.get_tags()] for tagname in new_fixture_data['tags']: assert tagname in package_tagnames, 'tag %r not in %r' % (tagname, package_tagnames) # - resources assert len(package.resources), "Package has no resources: %s" % package self.assert_equal(len(package.resources), 2) resource = package.resources[0] self.assert_equal(resource.url, u'http://blah.com/file2.xml') self.assert_equal(resource.format, u'XML') self.assert_equal(resource.description, u'Appendix 1') self.assert_equal(resource.hash, u'def123') self.assert_equal(resource.alt_url, u'alt123') self.assert_equal(resource.extras['size_extra'], u'400') resource = package.resources[1] self.assert_equal(resource.url, 'http://blah.com/file3.xml') self.assert_equal(resource.format, u'XML') self.assert_equal(resource.description, u'Appenddic 2') self.assert_equal(resource.hash, u'ghi123') self.assert_equal(resource.alt_url, u'alt123') self.assert_equal(resource.extras['size_extra'], u'400') # Check unsubmitted fields have not changed. # - url self.assert_equal(package.url, self.package_fixture_data['url']) # - extras self.assert_equal(len(package.extras), 4) for key, value in {u'key1':u'val1', u'key3':u'val3', u'key7':'["a","b"]', u'key4':u''}.items(): self.assert_equal(package.extras[key], value) # NB: key4 set to '' creates it # but: key2 set to None will delete it assert not package.extras.has_key('key2') finally: self.purge_package_by_name(new_fixture_data['name']) def test_package_update_ok_by_id(self): self.assert_package_update_ok('id', 'post') def test_entity_update_ok_by_name(self): self.assert_package_update_ok('name', 'post') def test_package_update_ok_by_id_by_put(self): self.assert_package_update_ok('id', 'put') def test_entity_update_ok_by_name_by_put(self): self.assert_package_update_ok('name', 'put') def test_package_update_invalid(self): old_fixture_data = { 'name': self.package_fixture_data['name'], } new_fixture_data = { 'name':u'somethingnew', 'resources': [{ u'url':u'http://blah.com/file1.xml', u'size':u'abc', # INVALID },{ u'url':u'http://blah.com/file2.xml', u'size':u'400', u'last_modified':u'123', # INVALID }], } self.create_package_with_admin_user(old_fixture_data) pkg = self.get_package_by_name(old_fixture_data['name']) offset = self.offset('/rest/dataset/%s' % pkg.name) params = '%s=1' % self.dumps(new_fixture_data) res = self.app.post(offset, params=params, status=self.STATUS_409_CONFLICT, extra_environ=self.admin_extra_environ) res_dict = self.loads(res.body) assert len(res_dict['resources']) == 2, res_dict['resources'] assert_equal(res_dict['resources'][0], {u'size': [u'Invalid integer']}) assert_equal(res_dict['resources'][1], {u'last_modified': [u'Date format incorrect']}) def test_package_update_delete_last_extra(self): old_fixture_data = { 'name': self.package_fixture_data['name'], 'extras': { u'key1': u'val1', }, } new_fixture_data = { 'name':u'somethingnew', 'extras': { u'key1': None, }, } self.create_package_with_admin_user(old_fixture_data) offset = self.package_offset(old_fixture_data['name']) params = '%s=1' % self.dumps(new_fixture_data) res = self.app.post(offset, params=params, status=self.STATUS_200_OK, extra_environ=self.admin_extra_environ) try: # Check the returned package is as expected pkg = self.loads(res.body) assert_equal(pkg['name'], new_fixture_data['name']) expected_extras = copy.deepcopy(new_fixture_data['extras']) del expected_extras['key1'] assert_equal(pkg['extras'], expected_extras) # Check extra was deleted model.Session.remove() package = self.get_package_by_name(new_fixture_data['name']) # - title self.assert_equal(package.extras, {}) finally: self.purge_package_by_name(new_fixture_data['name']) def test_package_update_do_not_delete_last_extra(self): old_fixture_data = { 'name': self.package_fixture_data['name'], 'extras': { u'key1': u'val1', }, } new_fixture_data = { 'name':u'somethingnew', 'extras': {}, # no extras specified, but existing # ones should be left alone } self.create_package_with_admin_user(old_fixture_data) offset = self.package_offset(old_fixture_data['name']) params = '%s=1' % self.dumps(new_fixture_data) res = self.app.post(offset, params=params, status=self.STATUS_200_OK, extra_environ=self.admin_extra_environ) try: # Check the returned package is as expected pkg = self.loads(res.body) assert_equal(pkg['name'], new_fixture_data['name']) expected_extras = {u'key1': u'val1'} # should not be deleted assert_equal(pkg['extras'], expected_extras) # Check extra was not deleted model.Session.remove() package = self.get_package_by_name(new_fixture_data['name']) # - title assert len(package.extras) == 1, package.extras finally: self.purge_package_by_name(new_fixture_data['name']) def test_entity_update_readd_tag(self): name = self.package_fixture_data['name'] old_fixture_data = { 'name': name, 'tags': ['tag 1.', 'tag2'] } new_fixture_data = { 'name': name, 'tags': ['tag 1.'] } self.create_package_with_admin_user(old_fixture_data) offset = self.package_offset(name) params = '%s=1' % self.dumps(new_fixture_data) res = self.app.post(offset, params=params, status=self.STATUS_200_OK, extra_environ=self.admin_extra_environ) # Check the returned package is as expected pkg = self.loads(res.body) assert_equal(pkg['name'], new_fixture_data['name']) assert_equal(pkg['tags'], ['tag 1.']) package = self.get_package_by_name(new_fixture_data['name']) assert len(package.get_tags()) == 1, package.get_tags() # now reinstate the tag params = '%s=1' % self.dumps(old_fixture_data) res = self.app.post(offset, params=params, status=self.STATUS_200_OK, extra_environ=self.admin_extra_environ) pkg = self.loads(res.body) assert_equal(pkg['tags'], ['tag 1.', 'tag2']) def test_entity_update_conflict(self): package1_name = self.package_fixture_data['name'] package1_data = {'name': package1_name} package1 = self.create_package_with_admin_user(package1_data) package2_name = u'somethingnew' package2_data = {'name': package2_name} package2 = self.create_package_with_admin_user(package2_data) try: package1_offset = self.package_offset(package1_name) # trying to rename package 1 to package 2's name print package1_offset, package2_data self.post(package1_offset, package2_data, self.STATUS_409_CONFLICT, extra_environ=self.admin_extra_environ) finally: self.purge_package_by_name(package2_name) def test_entity_update_empty(self): package1_name = self.package_fixture_data['name'] package1_data = {'name': package1_name} package1 = self.create_package_with_admin_user(package1_data) package2_data = '' # this is the error package1_offset = self.package_offset(package1_name) self.app.put(package1_offset, package2_data, status=self.STATUS_400_BAD_REQUEST) def test_entity_update_indexerror(self): """ Test that we can't update a package if Solr is down. """ bad_solr_url = 'http://127.0.0.1/badsolrurl' original_settings = SolrSettings.get()[0] try: SolrSettings.init(bad_solr_url) assert_raises( search.SearchIndexError, self.assert_package_update_ok, 'name', 'post' ) finally: SolrSettings.init(original_settings) def test_package_update_delete_resource(self): old_fixture_data = { 'name': self.package_fixture_data['name'], 'resources': [{ u'url':u'http://blah.com/file2.xml', u'format':u'XML', u'description':u'Appendix 1', u'hash':u'def123', u'alt_url':u'alt123', },{ u'url':u'http://blah.com/file3.xml', u'format':u'XML', u'description':u'Appenddic 2', u'hash':u'ghi123', u'alt_url':u'alt123', }], } new_fixture_data = { 'name':u'somethingnew', 'resources': [], } self.create_package_with_admin_user(old_fixture_data) offset = self.package_offset(old_fixture_data['name']) params = '%s=1' % self.dumps(new_fixture_data) res = self.app.post(offset, params=params, status=self.STATUS_200_OK, extra_environ=self.admin_extra_environ) try: # Check the returned package is as expected pkg = self.loads(res.body) assert_equal(pkg['name'], new_fixture_data['name']) assert_equal(pkg['resources'], []) # Check resources were deleted model.Session.remove() package = self.get_package_by_name(new_fixture_data['name']) self.assert_equal(len(package.resources), 0) finally: self.purge_package_by_name(new_fixture_data['name']) def test_entity_delete_ok(self): # create a package with package_fixture_data if not self.get_package_by_name(self.package_fixture_data['name']): self.create_package(admins=[self.user], name=self.package_fixture_data['name']) assert self.get_package_by_name(self.package_fixture_data['name']) # delete it offset = self.package_offset(self.package_fixture_data['name']) res = self.app.delete(offset, status=self.STATUS_200_OK, extra_environ=self.admin_extra_environ) package = self.get_package_by_name(self.package_fixture_data['name']) self.assert_equal(package.state, 'deleted') model.Session.remove() def test_entity_delete_ok_without_request_headers(self): # create a package with package_fixture_data if not self.get_package_by_name(self.package_fixture_data['name']): self.create_package(admins=[self.user], name=self.package_fixture_data['name']) assert self.get_package_by_name(self.package_fixture_data['name']) # delete it offset = self.package_offset(self.package_fixture_data['name']) res = self.delete_request(offset, status=self.STATUS_200_OK, extra_environ=self.admin_extra_environ) package = self.get_package_by_name(self.package_fixture_data['name']) self.assert_equal(package.state, 'deleted') model.Session.remove() def test_entity_delete_not_found(self): package_name = u'random_one' assert not model.Session.query(model.Package).filter_by(name=package_name).count() offset = self.offset('/rest/dataset/%s' % package_name) res = self.app.delete(offset, status=self.STATUS_404_NOT_FOUND, extra_environ=self.admin_extra_environ) def test_package_revisions(self): # check original revision res = self.app.get(self.offset('/rest/dataset/%s/revisions' % 'annakarenina')) revisions = res.json assert len(revisions) == 1, len(revisions) expected_keys = set(('id', 'message', 'author', 'timestamp', 'approved_timestamp')) keys = set(revisions[0].keys()) assert_equal(keys, expected_keys) # edit anna pkg = model.Package.by_name('annakarenina') model.repo.new_revision() pkg.title = 'Tolstoy' model.repo.commit_and_remove() # check new revision is there res = self.app.get(self.offset('/rest/dataset/%s/revisions' % 'annakarenina')) revisions = res.json assert len(revisions) == 2, len(revisions) # check ordering assert revisions[0]["timestamp"] > revisions[1]["timestamp"] # edit related extra pkg = model.Package.by_name('annakarenina') model.repo.new_revision() pkg.extras['genre'] = 'literary' model.repo.commit_and_remove() # check new revision is there res = self.app.get(self.offset('/rest/dataset/%s/revisions' % 'annakarenina')) revisions = res.json assert len(revisions) == 3, len(revisions) def test_create_private_package_with_no_organization(self): '''Test that private packages with no organization cannot be created. ''' testsysadmin = model.User.by_name('testsysadmin') result = tests.call_action_api(self.app, 'package_create', name='test', private=True, apikey=testsysadmin.apikey, status=409) assert result == {'__type': 'Validation Error', 'private': ["Datasets with no organization can't be private."]} def test_create_public_package_with_no_organization(self): '''Test that public packages with no organization can be created.''' testsysadmin = model.User.by_name('testsysadmin') tests.call_action_api(self.app, 'package_create', name='test', private=False, apikey=testsysadmin.apikey) def test_make_package_with_no_organization_private(self): '''Test that private packages with no organization cannot be created by package_update. ''' testsysadmin = model.User.by_name('testsysadmin') package = tests.call_action_api(self.app, 'package_create', name='test_2', private=False, apikey=testsysadmin.apikey) package['private'] = True result = tests.call_action_api(self.app, 'package_update', apikey=testsysadmin.apikey, status=409, **package) assert result == {'__type': 'Validation Error', 'private': ["Datasets with no organization can't be private."]} class TestPackagesVersion1(Version1TestCase, PackagesTestCase): def test_06_create_pkg_using_download_url(self): test_params = { 'name':u'testpkg06', 'download_url':u'ftp://ftp.monash.edu.au/pub/nihongo/JMdict.gz', } offset = self.package_offset() postparams = '%s=1' % self.dumps(test_params) res = self.app.post(offset, params=postparams, extra_environ=self.admin_extra_environ) model.Session.remove() pkg = self.get_package_by_name(test_params['name']) assert pkg assert pkg.name == test_params['name'], pkg assert len(pkg.resources) == 1, pkg.resources assert pkg.resources[0].url == test_params['download_url'], pkg.resources[0] def test_10_edit_pkg_with_download_url(self): test_params = { 'name':u'testpkg10', 'download_url':u'testurl', } rev = model.repo.new_revision() pkg = model.Package() model.Session.add(pkg) pkg.name = test_params['name'] pkg.download_url = test_params['download_url'] model.Session.commit() pkg = self.get_package_by_name(test_params['name']) model.setup_default_user_roles(pkg, [self.user]) rev = model.repo.new_revision() model.repo.commit_and_remove() assert self.get_package_by_name(test_params['name']) # edit it pkg_vals = {'download_url':u'newurl'} offset = self.package_offset(test_params['name']) postparams = '%s=1' % self.dumps(pkg_vals) res = self.app.post(offset, params=postparams, status=[200], extra_environ=self.admin_extra_environ) model.Session.remove() pkg = model.Session.query(model.Package).filter_by(name=test_params['name']).one() assert len(pkg.resources) == 1, pkg.resources assert pkg.resources[0].url == pkg_vals['download_url'] class TestPackagesVersion2(Version2TestCase, PackagesTestCase): pass
py
1a4747df7c2ff140a24d4ad390f7c7aed2a0ed14
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'The StudiMY Project' copyright = '2019, MARIMORE ENGINEERING SDN. BHD. (925539-H)' author = 'Chee Yim, Goh and Iqbal Abdullah' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '1.0' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = '101Readmedoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, '101Readme.tex', 'Introduction to the StudiMY Project', 'Chee Yim, Goh \\and Iqbal Abdullah', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, '101readme', 'Introduction to the StudiMY Project', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, '101Readme', 'Introduction to the StudiMY Project', author, '101Readme', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html']
py
1a4747f94488e884079ee35ce7486c2a4f82b9a4
import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), '../')) from synchrophasor.frame import * from synchrophasor.pmu import Pmu from synchrophasor.pmuGen import * from time import sleep import threading SLEEP_TIME = 1.0/100 def test_client_single_pmu(): pmu = create_pmu(9006) pmu.ieee_data_sample.set_freq(1) cnt = 0 while True: sleep(SLEEP_TIME) if pmu.clients: pmu.send(pmu.ieee_data_sample) pmu.join() def test_client_2_pmus(): pmus = [create_pmu(port) for port in [9007, 9008]] for i, pmu in enumerate(pmus): pmu.ieee_data_sample.set_freq(i+1) cnt = 0 while True: sleep(SLEEP_TIME) for pmu in pmus: pmu.send(pmu.ieee_data_sample) for pmu in pmus: pmu.join() def test_client_10_pmus(): nSources = 4 pmus = [create_pmu(port, log_level='DEBUG') for port in range(9009, 9009+nSources)] # pmus = [create_pmu(port) for port in range(9009, 9009+nSources)] for i, pmu in enumerate(pmus): pmu.ieee_data_sample.set_freq(i+1) cnt = 0 while True: # sleep(SLEEP_TIME) for pmu in pmus: pmu.send(pmu.ieee_data_sample) for pmu in pmus: pmu.join() if __name__ == "__main__": test_list = [ # test_client_single_pmu, # test_client_2_pmus, test_client_10_pmus ] threads = list() for test in test_list: x = threading.Thread(target=test) threads.append(x) x.start() for index, thread in enumerate(threads): thread.join()
py
1a4748a6b1c53bddac1207b02925942b8b8bc880
import argparse import itertools from xml.etree import ElementTree import pandas as pd class BiocToDataFrame: def __init__(self): self.namespaces = {} def __call__(self, xmlbuffer_or_path): if isinstance(xmlbuffer_or_path, str): with open(xmlbuffer_or_path, "r") as xmlhandle: return self.parse(xmlhandle) return self.parse(xmlbuffer_or_path) def parse(self, xmlbuffer_or_path): result_json = [] for document in self._iter_elements_by_name(xmlbuffer_or_path, "document", self.namespaces): doc_id = document.find("id").text passage_ele = document.find("passage") passage = passage_ele.find("text").text # Get all proteins proteins = [p for p in self._find_protein_annotations(passage_ele)] # make them unique proteins = set(proteins) rel_protein_pairs = set() for p1, p2 in self._find_protein_relations(passage_ele): rel_protein_pairs.add(frozenset([p1, p2])) for protein_combination in itertools.combinations(proteins, 2): # sort names so it is easier to test protein_combination = sorted(protein_combination) participant1 = protein_combination[0] participant2 = protein_combination[1] protein_combination = frozenset(protein_combination) is_valid = protein_combination in rel_protein_pairs result_json.append({"docid": doc_id , "passage": passage , "participant1": participant1 , "participant2": participant2 , "isValid": is_valid }) return pd.DataFrame(result_json) @staticmethod def _find_protein_annotations(passage_ele): for annotation_ele in passage_ele.findall("annotation"): is_protein = False for infon_ele in annotation_ele.findall("infon"): if infon_ele.attrib["key"] == 'type' and infon_ele.text == 'protein': is_protein = True break if is_protein: yield annotation_ele.find("text").text @staticmethod def _find_protein_relations(passage_ele): for annotation_ele in passage_ele.findall("relation"): is_relation = False for infon_ele in annotation_ele.findall("infon"): if infon_ele.attrib["key"] == 'type' and infon_ele.text == 'Relation': is_relation = True break if is_relation: participant1_id = annotation_ele.find("node[@role='Arg1']").attrib["refid"] participant1 = passage_ele.find("annotation[@id='{}']/text".format(participant1_id)).text participant2_id = annotation_ele.find("node[@role='Arg2']").attrib["refid"] participant2 = passage_ele.find("annotation[@id='{}']/text".format(participant2_id)).text yield participant1, participant2 @staticmethod def _iter_elements_by_name(handle, name, namespace): events = ElementTree.iterparse(handle, events=("start", "end")) _, root = next(events) # Grab the root element. expanded_name = name # If name has the namespace, expand it if ":" in name: local_name = name[name.index(":") + 1:] namespace_short_name = name[:name.index(":")] expanded_name = "{{{}}}{}".format(namespace[namespace_short_name], local_name) for event, elem in events: if event == "end" and elem.tag == expanded_name: yield elem elem.clear() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("input", help="The bioc xml formatted json") parser.add_argument("output", help="The output_file") args = parser.parse_args() # Run result = BiocToDataFrame().parse(args.input) result.to_json(args.output)
py
1a4748a8737b8cfbef85c3204cc2eddb96c80f20
################################################################################ # Example : perform live fire detection in video using FireNet CNN # Copyright (c) 2017/18 - Andrew Dunnings / Toby Breckon, Durham University, UK # License : https://github.com/tobybreckon/fire-detection-cnn/blob/master/LICENSE ################################################################################ import cv2 import os import sys import math import requests ################################################################################ import tflearn from tflearn.layers.core import * from tflearn.layers.conv import * from tflearn.layers.normalization import * from tflearn.layers.estimator import regression ################################################################################ def construct_firenet (x,y): # Build network as per architecture in [Dunnings/Breckon, 2018] network = tflearn.input_data(shape=[None, y, x, 3], dtype=tf.float32) network = conv_2d(network, 64, 5, strides=4, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 128, 4, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 256, 1, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 2, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=0.001) model = tflearn.DNN(network, checkpoint_path='firenet', max_checkpoints=1, tensorboard_verbose=2) return model ################################################################################ # construct and display model model = construct_firenet (224, 224) print("Constructed FireNet ...") model.load(os.path.join("models/FireNet", "firenet"),weights_only=True) print("Loaded CNN network weights ...") ################################################################################ # network input sizes rows = 224 cols = 224 # display and loop settings windowName = "Live Fire Detection - FireNet CNN"; keepProcessing = True; ################################################################################ if len(sys.argv) == 2: # load video file from first command line argument video = cv2.VideoCapture(sys.argv[1]) print("Loaded video ...") # create window cv2.namedWindow(windowName, cv2.WINDOW_NORMAL); # get video properties width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)); height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = video.get(cv2.CAP_PROP_FPS) frame_time = round(100000/fps); while (keepProcessing): # start a timer (to see how long processing and display takes) start_t = cv2.getTickCount(); # get video frame from file, handle end of file ret, frame = video.read() if not ret: print("... end of video file reached"); break; # re-size image to network input size and perform prediction small_frame = cv2.resize(frame, (rows, cols), cv2.INTER_AREA) output = model.predict([small_frame]) # label image based on prediction myFile = open('append.txt', 'a') if round(output[0][0]) == 1: print("FIRE") myFile.write('fire') r = requests.post('http://linksmartsensing.us-east-2.elasticbeanstalk.com/data/fire', params = {'id':"1",'fire':"true"}) print(r.text) cv2.rectangle(frame, (0,0), (width,height), (0,0,255), 50) cv2.putText(frame,'FIRE',(int(width/16),int(height/4)), cv2.FONT_HERSHEY_SIMPLEX, 4,(255,255,255),10,cv2.LINE_AA); else: print("CLEAR") myFile.write('clear') r = requests.post('http://linksmartsensing.us-east-2.elasticbeanstalk.com/data/fire', params = {'id':"1",'fire':"false"}) print(r.text) cv2.rectangle(frame, (0,0), (width,height), (0,255,0), 50) cv2.putText(frame,'CLEAR',(int(width/16),int(height/4)), cv2.FONT_HERSHEY_SIMPLEX, 4,(255,255,255),10,cv2.LINE_AA); # stop the timer and convert to ms. (to see how long processing and display takes) stop_t = ((cv2.getTickCount() - start_t)/cv2.getTickFrequency()) * 1000; # image display and key handling cv2.imshow(windowName, frame); # wait fps time or less depending on processing time taken (e.g. 1000ms / 25 fps = 40 ms) key = cv2.waitKey(max(2, frame_time - int(math.ceil(stop_t)))) & 0xFF; if (key == ord('x')): keepProcessing = False; elif (key == ord('f')): cv2.setWindowProperty(windowName, cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN); else: print("usage: python firenet.py videofile.ext"); ################################################################################
py
1a4748b0b76a9426c978a1f4b80e20ac2ed68cf4
""" Remove the docs in training set that overlap with test sets or are duplicate As it loads all data into memory, it requires a large memory machine to run If you are processing MAG, run pykp.data.mag.post_clearn.py to remove noisy items (abstract contains "Full textFull text is available as a scanned copy of the original print version.") (around 132561 out of 3114539) and remove duplicates by title """ import argparse import json import os import string import nltk import tqdm from joblib import Parallel, delayed from multiprocessing import Pool import time from pykp.data.remove_duplicates import init_args, example_iterator_from_json, text2tokens, set_similarity_match stopwords = nltk.corpus.stopwords.words('english') stopwords.extend(string.punctuation) stopwords.extend(string.digits) stopwords.append('') def detect_duplicate_job(train_example): global testsets_dict, title_pool train_id = train_example['id'] title_tokens = text2tokens(train_example['title']) text_tokens = text2tokens(train_example['abstract']) # check if title is duplicate in train data (have been processed before) title_str = ' '.join(title_tokens) if title_str in title_pool: return ('train_log', '%s|%s|%s\n' % (train_id, title_pool[title_str], title_str)) else: title_pool[title_str] = train_id # check if title/content is duplicate in valid/test data title_set = set(title_tokens) content_set = title_set | set(text_tokens) for test_dataset_subname, testset in testsets_dict.items(): for test_id, test_example in testset.items(): title_flag, title_sim = set_similarity_match(title_set, test_example['title_set'], 0.7) content_flag, content_sim = set_similarity_match(content_set, test_example['content_set'], 0.7) if title_flag or content_flag: return (test_dataset_subname, '%s|%s|%s|%s|%f|%f\n' % (test_example['id'], train_example['id'], test_example['title'], train_example['title'], title_sim, content_sim)) # write non-duplicates to disk return ('train_output', json.dumps(train_example) + '\n') def run_normal_parallel(n_jobs, examples_iter): start_time = time.time() pool = Pool(processes=n_jobs) # results = pool.map(detect_duplicate_job, examples_iter) results = [] for r in tqdm.tqdm(pool.imap(detect_duplicate_job, examples_iter), total=len(examples_iter)): results.append(r) # result = list(itertools.chain(*result)) print("Job finished, taking time %.2f s" % (time.time()-start_time)) return results def main(): opt = init_args() # specify for which dataset (for valid/test) we need to remove duplicate data samples from training data if opt.datatype == 'paper': total_num = 20000 #530631 train_dataset_name = 'kp20k_training' test_dataset_names = ['kp20k', 'inspec', 'nus', 'semeval', 'krapivin'] id_field = None title_field = 'title' text_field ='abstract' keyword_field = 'keywords' trg_delimiter = ';' elif opt.datatype == 'qa': total_num = 298965 train_dataset_name = 'stackexchange_training' test_dataset_names = ['stackexchange'] id_field = None title_field = 'title' text_field ='question' keyword_field = 'tags' trg_delimiter = ';' elif opt.datatype == 'mag': total_num = 5108427 train_dataset_name = 'mag' test_dataset_names = ['kp20k', 'inspec', 'nus', 'semeval', 'krapivin'] id_field = 'id' title_field = 'title' text_field ='abstract' keyword_field = 'keywords' trg_delimiter = None print("Loading training data...") train_examples_iter = example_iterator_from_json(path=opt.train_file, dataset_name=train_dataset_name, id_field=id_field, title_field=title_field, text_field=text_field, keyword_field=keyword_field, trg_delimiter=trg_delimiter) train_examples_iter = list(train_examples_iter) global pbar, output_cache, testsets_dict, title_pool testsets_dict = {} output_dir = opt.test_dataset_dir + '/%s_output/' % opt.datatype if not os.path.exists(output_dir): os.makedirs(output_dir) print("Loading validation/test data...") for test_dataset_name in test_dataset_names: for type in ['validation', 'testing']: test_dataset_subname = '%s_%s' % (test_dataset_name, type) source_test_file = os.path.join(opt.test_dataset_dir, test_dataset_name, test_dataset_subname+'.json') test_examples = list(example_iterator_from_json(path=source_test_file, dataset_name=test_dataset_subname, id_field=id_field, title_field=title_field, text_field=text_field, keyword_field=keyword_field, trg_delimiter = ';')) testset = {} for test_num, test_example in enumerate(test_examples): test_id = test_example['id'] title_tokens = text2tokens(test_example['title']) text_tokens = text2tokens(test_example['abstract']) # concatenate title and put it into hashtable title_set = set(title_tokens) text_set = set(text_tokens) content_set = title_set | text_set test_example['title_set'] = title_set test_example['content_set'] = content_set test_example['dup_train_ids'] = [] test_example['dup_train_titles'] = [] testset[test_id] = test_example testsets_dict[test_dataset_subname] = testset print("\tsize(%s) = %d" % (test_dataset_subname, len(testset))) """ 1. clean text, remove stopwords/punctuations 2. Treat as overlaps if title & text match>=70% 3. Build a title hashset to remove training duplicates """ print("Cleaning duplicate data...") global file_writers file_writers = {} for test_dataset_name in test_dataset_names: for type in ['validation', 'testing']: test_dataset_subname = '%s_%s' % (test_dataset_name, type) file_writers[test_dataset_subname] = open('%s/%s__dup__%s.log' % (output_dir, test_dataset_subname, train_dataset_name), 'w') print("Initializing file writer for %s: %s" % (test_dataset_subname, os.path.abspath('%s/%s__dup__%s.log' % (output_dir, test_dataset_subname, train_dataset_name)))) output_cache = [] file_writers['train_output'] = open('%s/%s_nodup.json' % (output_dir, train_dataset_name), 'w') file_writers['train_log'] = open('%s/%s__dup.log' % (output_dir, train_dataset_name), 'w') title_pool = {} print("Total number of examples = %d" % len(train_examples_iter)) print("Total number of jobs = %d" % opt.n_jobs) # dataset_line_tuples = Parallel(n_jobs=opt.n_jobs, verbose=len(train_examples_iter))(delayed(detect_duplicate_job)(ex) for ex in train_examples_iter) dataset_line_tuples = run_normal_parallel(opt.n_jobs, train_examples_iter) print("Process ends. Got %d data examples" % len(dataset_line_tuples)) for dataset_subname, line in dataset_line_tuples: writer = file_writers[dataset_subname] writer.write(line) for d_name, d_writer in file_writers.items(): print("Closing %s" % d_name) d_writer.close() if __name__ == "__main__": main()
py
1a474c4dad87cafcd0289a472260ce5526bbbf51
# -*- coding: utf-8 -*- import io import pandas as pd import scrapy from scrapy import Request from scrapy import signals from fooltrader.api.quote import get_security_list from fooltrader.contract.files_contract import get_finance_path from fooltrader.utils.utils import index_df_with_time class AmericaStockFinanceSpider(scrapy.Spider): name = "america_stock_finance" custom_settings = { # 'DOWNLOAD_DELAY': 2, # 'CONCURRENT_REQUESTS_PER_DOMAIN': 8, 'SPIDER_MIDDLEWARES': { 'fooltrader.middlewares.FoolErrorMiddleware': 1000, } } def start_requests(self): security_item = self.settings.get("security_item") if security_item is not None: item = security_item data_url = self.get_finance_url(item['code']) data_path = get_finance_path(item) yield Request(url=data_url, meta={'path': data_path, 'item': item}, callback=self.download_finance_csv) else: for _, item in get_security_list(exchanges=['nasdaq']).iterrows(): data_url = self.get_finance_url(item['code']) data_path = get_finance_path(item) yield Request(url=data_url, meta={'path': data_path, 'item': item}, callback=self.download_finance_csv) def download_finance_csv(self, response): content_type_header = response.headers.get('content-type', None) if content_type_header.decode("utf-8") == content_type_header.decode("utf-8") == 'text/csv': path = response.meta['path'] security_item = response.meta['item'] df = pd.read_csv(io.BytesIO(response.body), na_values='None') df.columns = [ "reportDate", "shares", "sharesAdjusted", "factor", "totalAssets", "totalCurrentAssets", "totalLiabilities", "totalCurrentLiabilities", "bookValue", "minorityBookValue", "preferredEquity", "goodwill", "longTermBorrowing", "operatingRevenue", "netProfit", "netProfitAttributedToParentCompanyOwner", "EPS", "dilutedEPS", "DPS", "netCashFlowsFromOperatingActivities", "netCashFlowsFromInvesting", "netCashFlowsFromFinancingActivities", "cashChange", "cashAtTheEndOfPeriod", "capitalExpenditures", "price", "priceHigh", "priceLow", "ROE", "ROA", "BVPS", "PB", "PE", "cumulativeDividendsPerShare", "dividendPayoutRatio", "longTermDebtToEquityRatio", "equityToAssetsRatio", "netMargin", "assetTurnover", "freeCashFlowPerShare", "currentRatio"] df['code'] = security_item['code'] df['securityId'] = security_item['id'] df['id'] = df[['securityId', 'reportDate']].apply(lambda x: '_'.join(x.astype(str)), axis=1) df = index_df_with_time(df, index='reportDate') df.fillna(0, inplace=True) df.to_csv(path, index=False) else: self.logger.exception( "get finance csv error:url={} content type={} body={}".format(response.url, content_type_header, response.body)) @classmethod def from_crawler(cls, crawler, *args, **kwargs): spider = super(AmericaStockFinanceSpider, cls).from_crawler(crawler, *args, **kwargs) crawler.signals.connect(spider.spider_closed, signal=signals.spider_closed) return spider def spider_closed(self, spider, reason): spider.logger.info('Spider closed: %s,%s\n', spider.name, reason) def get_finance_url(self, code): return 'http://www.stockpup.com/data/{}_quarterly_financial_data.csv'.format(code)
py
1a474ca149c4379814f0e4698f2c91f32248e6d3
# # Copyright (C) 2006-2017 greg Landrum and Rational Discovery LLC # # @@ All Rights Reserved @@ # This file is part of the RDKit. # The contents are covered by the terms of the BSD license # which is included in the file license.txt, found at the root # of the RDKit source tree. # """ Import all RDKit chemistry modules """ import sys import warnings from collections import namedtuple import numpy from rdkit import DataStructs from rdkit import ForceField from rdkit import RDConfig from rdkit import rdBase from rdkit.Chem import * from rdkit.Chem.ChemicalFeatures import * from rdkit.Chem.rdChemReactions import * from rdkit.Chem.rdDepictor import * from rdkit.Chem.rdDistGeom import * from rdkit.Chem.rdForceFieldHelpers import * from rdkit.Chem.rdMolAlign import * from rdkit.Chem.rdMolDescriptors import * from rdkit.Chem.rdMolTransforms import * from rdkit.Chem.rdPartialCharges import * from rdkit.Chem.rdReducedGraphs import * from rdkit.Chem.rdShapeHelpers import * from rdkit.Chem.rdqueries import * from rdkit.Chem.rdMolEnumerator import * from rdkit.Geometry import rdGeometry from rdkit.RDLogger import logger from rdkit.Chem.EnumerateStereoisomers import StereoEnumerationOptions, EnumerateStereoisomers try: from rdkit.Chem.rdSLNParse import * except ImportError: pass Mol.Compute2DCoords = Compute2DCoords Mol.ComputeGasteigerCharges = ComputeGasteigerCharges logger = logger() def TransformMol(mol, tform, confId=-1, keepConfs=False): """ Applies the transformation (usually a 4x4 double matrix) to a molecule if keepConfs is False then all but that conformer are removed """ refConf = mol.GetConformer(confId) TransformConformer(refConf, tform) if not keepConfs: if confId == -1: confId = 0 allConfIds = [c.GetId() for c in mol.GetConformers()] for cid in allConfIds: if not cid == confId: mol.RemoveConformer(cid) # reset the conf Id to zero since there is only one conformer left mol.GetConformer(confId).SetId(0) def ComputeMolShape(mol, confId=-1, boxDim=(20, 20, 20), spacing=0.5, **kwargs): """ returns a grid representation of the molecule's shape """ res = rdGeometry.UniformGrid3D(boxDim[0], boxDim[1], boxDim[2], spacing=spacing) EncodeShape(mol, res, confId, **kwargs) return res def ComputeMolVolume(mol, confId=-1, gridSpacing=0.2, boxMargin=2.0): """ Calculates the volume of a particular conformer of a molecule based on a grid-encoding of the molecular shape. A bit of demo as well as a test of github #1883: >>> from rdkit import Chem >>> from rdkit.Chem import AllChem >>> mol = Chem.AddHs(Chem.MolFromSmiles('C')) >>> AllChem.EmbedMolecule(mol) 0 >>> ComputeMolVolume(mol) 28... >>> mol = Chem.AddHs(Chem.MolFromSmiles('O')) >>> AllChem.EmbedMolecule(mol) 0 >>> ComputeMolVolume(mol) 20... """ mol = rdchem.Mol(mol) conf = mol.GetConformer(confId) CanonicalizeConformer(conf, ignoreHs=False) box = ComputeConfBox(conf) sideLen = (box[1].x - box[0].x + 2 * boxMargin, box[1].y - box[0].y + 2 * boxMargin, box[1].z - box[0].z + 2 * boxMargin) shape = rdGeometry.UniformGrid3D(sideLen[0], sideLen[1], sideLen[2], spacing=gridSpacing) EncodeShape(mol, shape, confId, ignoreHs=False, vdwScale=1.0) voxelVol = gridSpacing**3 occVect = shape.GetOccupancyVect() voxels = [1 for x in occVect if x == 3] vol = voxelVol * len(voxels) return vol def GetConformerRMS(mol, confId1, confId2, atomIds=None, prealigned=False): """ Returns the RMS between two conformations. By default, the conformers will be aligned to the first conformer before the RMS calculation and, as a side-effect, the second will be left in the aligned state. Arguments: - mol: the molecule - confId1: the id of the first conformer - confId2: the id of the second conformer - atomIds: (optional) list of atom ids to use a points for alingment - defaults to all atoms - prealigned: (optional) by default the conformers are assumed be unaligned and the second conformer be aligned to the first """ # align the conformers if necessary # Note: the reference conformer is always the first one if not prealigned: if atomIds: AlignMolConformers(mol, confIds=[confId1, confId2], atomIds=atomIds) else: AlignMolConformers(mol, confIds=[confId1, confId2]) # calculate the RMS between the two conformations conf1 = mol.GetConformer(id=confId1) conf2 = mol.GetConformer(id=confId2) ssr = 0 for i in range(mol.GetNumAtoms()): d = conf1.GetAtomPosition(i).Distance(conf2.GetAtomPosition(i)) ssr += d * d ssr /= mol.GetNumAtoms() return numpy.sqrt(ssr) def GetConformerRMSMatrix(mol, atomIds=None, prealigned=False): """ Returns the RMS matrix of the conformers of a molecule. As a side-effect, the conformers will be aligned to the first conformer (i.e. the reference) and will left in the aligned state. Arguments: - mol: the molecule - atomIds: (optional) list of atom ids to use a points for alingment - defaults to all atoms - prealigned: (optional) by default the conformers are assumed be unaligned and will therefore be aligned to the first conformer Note that the returned RMS matrix is symmetrical, i.e. it is the lower half of the matrix, e.g. for 5 conformers:: rmsmatrix = [ a, b, c, d, e, f, g, h, i, j] where a is the RMS between conformers 0 and 1, b is the RMS between conformers 0 and 2, etc. This way it can be directly used as distance matrix in e.g. Butina clustering. """ # if necessary, align the conformers # Note: the reference conformer is always the first one rmsvals = [] confIds = [conf.GetId() for conf in mol.GetConformers()] if not prealigned: if atomIds: AlignMolConformers(mol, atomIds=atomIds, RMSlist=rmsvals) else: AlignMolConformers(mol, RMSlist=rmsvals) else: # already prealigned for i in range(1, len(confIds)): rmsvals.append( GetConformerRMS(mol, confIds[0], confIds[i], atomIds=atomIds, prealigned=prealigned)) # loop over the conformations (except the reference one) cmat = [] for i in range(1, len(confIds)): cmat.append(rmsvals[i - 1]) for j in range(1, i): cmat.append(GetConformerRMS(mol, confIds[i], confIds[j], atomIds=atomIds, prealigned=True)) return cmat def EnumerateLibraryFromReaction(reaction, sidechainSets, returnReactants=False): """ Returns a generator for the virtual library defined by a reaction and a sequence of sidechain sets >>> from rdkit import Chem >>> from rdkit.Chem import AllChem >>> s1=[Chem.MolFromSmiles(x) for x in ('NC','NCC')] >>> s2=[Chem.MolFromSmiles(x) for x in ('OC=O','OC(=O)C')] >>> rxn = AllChem.ReactionFromSmarts('[O:2]=[C:1][OH].[N:3]>>[O:2]=[C:1][N:3]') >>> r = AllChem.EnumerateLibraryFromReaction(rxn,[s2,s1]) >>> [Chem.MolToSmiles(x[0]) for x in list(r)] ['CNC=O', 'CCNC=O', 'CNC(C)=O', 'CCNC(C)=O'] Note that this is all done in a lazy manner, so "infinitely" large libraries can be done without worrying about running out of memory. Your patience will run out first: Define a set of 10000 amines: >>> amines = (Chem.MolFromSmiles('N'+'C'*x) for x in range(10000)) ... a set of 10000 acids >>> acids = (Chem.MolFromSmiles('OC(=O)'+'C'*x) for x in range(10000)) ... now the virtual library (1e8 compounds in principle): >>> r = AllChem.EnumerateLibraryFromReaction(rxn,[acids,amines]) ... look at the first 4 compounds: >>> [Chem.MolToSmiles(next(r)[0]) for x in range(4)] ['NC=O', 'CNC=O', 'CCNC=O', 'CCCNC=O'] """ if len(sidechainSets) != reaction.GetNumReactantTemplates(): raise ValueError('%d sidechains provided, %d required' % (len(sidechainSets), reaction.GetNumReactantTemplates())) def _combiEnumerator(items, depth=0): for item in items[depth]: if depth + 1 < len(items): v = _combiEnumerator(items, depth + 1) for entry in v: l = [item] l.extend(entry) yield l else: yield [item] ProductReactants = namedtuple('ProductReactants', 'products,reactants') for chains in _combiEnumerator(sidechainSets): prodSets = reaction.RunReactants(chains) for prods in prodSets: if returnReactants: yield ProductReactants(prods, chains) else: yield prods def ConstrainedEmbed(mol, core, useTethers=True, coreConfId=-1, randomseed=2342, getForceField=UFFGetMoleculeForceField, **kwargs): """ generates an embedding of a molecule where part of the molecule is constrained to have particular coordinates Arguments - mol: the molecule to embed - core: the molecule to use as a source of constraints - useTethers: (optional) if True, the final conformation will be optimized subject to a series of extra forces that pull the matching atoms to the positions of the core atoms. Otherwise simple distance constraints based on the core atoms will be used in the optimization. - coreConfId: (optional) id of the core conformation to use - randomSeed: (optional) seed for the random number generator An example, start by generating a template with a 3D structure: >>> from rdkit.Chem import AllChem >>> template = AllChem.MolFromSmiles("c1nn(Cc2ccccc2)cc1") >>> AllChem.EmbedMolecule(template) 0 >>> AllChem.UFFOptimizeMolecule(template) 0 Here's a molecule: >>> mol = AllChem.MolFromSmiles("c1nn(Cc2ccccc2)cc1-c3ccccc3") Now do the constrained embedding >>> mol = AllChem.ConstrainedEmbed(mol, template) Demonstrate that the positions are nearly the same with template: >>> import math >>> molp = mol.GetConformer().GetAtomPosition(0) >>> templatep = template.GetConformer().GetAtomPosition(0) >>> all(math.isclose(v, 0.0, abs_tol=0.01) for v in molp-templatep) True >>> molp = mol.GetConformer().GetAtomPosition(1) >>> templatep = template.GetConformer().GetAtomPosition(1) >>> all(math.isclose(v, 0.0, abs_tol=0.01) for v in molp-templatep) True """ match = mol.GetSubstructMatch(core) if not match: raise ValueError("molecule doesn't match the core") coordMap = {} coreConf = core.GetConformer(coreConfId) for i, idxI in enumerate(match): corePtI = coreConf.GetAtomPosition(i) coordMap[idxI] = corePtI ci = EmbedMolecule(mol, coordMap=coordMap, randomSeed=randomseed, **kwargs) if ci < 0: raise ValueError('Could not embed molecule.') algMap = [(j, i) for i, j in enumerate(match)] if not useTethers: # clean up the conformation ff = getForceField(mol, confId=0) for i, idxI in enumerate(match): for j in range(i + 1, len(match)): idxJ = match[j] d = coordMap[idxI].Distance(coordMap[idxJ]) ff.AddDistanceConstraint(idxI, idxJ, d, d, 100.) ff.Initialize() n = 4 more = ff.Minimize() while more and n: more = ff.Minimize() n -= 1 # rotate the embedded conformation onto the core: rms = AlignMol(mol, core, atomMap=algMap) else: # rotate the embedded conformation onto the core: rms = AlignMol(mol, core, atomMap=algMap) ff = getForceField(mol, confId=0) conf = core.GetConformer() for i in range(core.GetNumAtoms()): p = conf.GetAtomPosition(i) pIdx = ff.AddExtraPoint(p.x, p.y, p.z, fixed=True) - 1 ff.AddDistanceConstraint(pIdx, match[i], 0, 0, 100.) ff.Initialize() n = 4 more = ff.Minimize(energyTol=1e-4, forceTol=1e-3) while more and n: more = ff.Minimize(energyTol=1e-4, forceTol=1e-3) n -= 1 # realign rms = AlignMol(mol, core, atomMap=algMap) mol.SetProp('EmbedRMS', str(rms)) return mol def AssignBondOrdersFromTemplate(refmol, mol): """ assigns bond orders to a molecule based on the bond orders in a template molecule Arguments - refmol: the template molecule - mol: the molecule to assign bond orders to An example, start by generating a template from a SMILES and read in the PDB structure of the molecule >>> import os >>> from rdkit.Chem import AllChem >>> template = AllChem.MolFromSmiles("CN1C(=NC(C1=O)(c2ccccc2)c3ccccc3)N") >>> mol = AllChem.MolFromPDBFile(os.path.join(RDConfig.RDCodeDir, 'Chem', 'test_data', '4DJU_lig.pdb')) >>> len([1 for b in template.GetBonds() if b.GetBondTypeAsDouble() == 1.0]) 8 >>> len([1 for b in mol.GetBonds() if b.GetBondTypeAsDouble() == 1.0]) 22 Now assign the bond orders based on the template molecule >>> newMol = AllChem.AssignBondOrdersFromTemplate(template, mol) >>> len([1 for b in newMol.GetBonds() if b.GetBondTypeAsDouble() == 1.0]) 8 Note that the template molecule should have no explicit hydrogens else the algorithm will fail. It also works if there are different formal charges (this was github issue 235): >>> template=AllChem.MolFromSmiles('CN(C)C(=O)Cc1ccc2c(c1)NC(=O)c3ccc(cc3N2)c4ccc(c(c4)OC)[N+](=O)[O-]') >>> mol = AllChem.MolFromMolFile(os.path.join(RDConfig.RDCodeDir, 'Chem', 'test_data', '4FTR_lig.mol')) >>> AllChem.MolToSmiles(mol) 'COC1CC(C2CCC3C(O)NC4CC(CC(O)N(C)C)CCC4NC3C2)CCC1N(O)O' >>> newMol = AllChem.AssignBondOrdersFromTemplate(template, mol) >>> AllChem.MolToSmiles(newMol) 'COc1cc(-c2ccc3c(c2)Nc2ccc(CC(=O)N(C)C)cc2NC3=O)ccc1[N+](=O)[O-]' """ refmol2 = rdchem.Mol(refmol) mol2 = rdchem.Mol(mol) # do the molecules match already? matching = mol2.GetSubstructMatch(refmol2) if not matching: # no, they don't match # check if bonds of mol are SINGLE for b in mol2.GetBonds(): if b.GetBondType() != BondType.SINGLE: b.SetBondType(BondType.SINGLE) b.SetIsAromatic(False) # set the bonds of mol to SINGLE for b in refmol2.GetBonds(): b.SetBondType(BondType.SINGLE) b.SetIsAromatic(False) # set atom charges to zero; for a in refmol2.GetAtoms(): a.SetFormalCharge(0) for a in mol2.GetAtoms(): a.SetFormalCharge(0) matching = mol2.GetSubstructMatches(refmol2, uniquify=False) # do the molecules match now? if matching: if len(matching) > 1: logger.warning("More than one matching pattern found - picking one") matching = matching[0] # apply matching: set bond properties for b in refmol.GetBonds(): atom1 = matching[b.GetBeginAtomIdx()] atom2 = matching[b.GetEndAtomIdx()] b2 = mol2.GetBondBetweenAtoms(atom1, atom2) b2.SetBondType(b.GetBondType()) b2.SetIsAromatic(b.GetIsAromatic()) # apply matching: set atom properties for a in refmol.GetAtoms(): a2 = mol2.GetAtomWithIdx(matching[a.GetIdx()]) a2.SetHybridization(a.GetHybridization()) a2.SetIsAromatic(a.GetIsAromatic()) a2.SetNumExplicitHs(a.GetNumExplicitHs()) a2.SetFormalCharge(a.GetFormalCharge()) SanitizeMol(mol2) if hasattr(mol2, '__sssAtoms'): mol2.__sssAtoms = None # we don't want all bonds highlighted else: raise ValueError("No matching found") return mol2 # ------------------------------------ # # doctest boilerplate # def _runDoctests(verbose=None): # pragma: nocover import sys import doctest failed, _ = doctest.testmod(optionflags=doctest.ELLIPSIS, verbose=verbose) sys.exit(failed) if __name__ == '__main__': # pragma: nocover _runDoctests()
py
1a474cc70784dde081af63deeeaac07bb3834a10
""" Create plots corresponding to each sample setplot function. Search for all files of the form setplot_*.py and loop over them. Also create .rst files for each example. The doc string for each setplot file should start with at title underlined with ===, followed by a brief description. These are used in the rst file, which also includes the setplot function itself and a pointer to the plots directory. """ def makeplots(filenames=[]): import os, glob, re from pyclaw.plotters.plotclaw import plotclaw thisdir = os.path.split(os.getcwd())[1] #os.system('make .plots') # ensure output files and sample plots exist os.system('make .htmls') # ensure html files exist if filenames==[]: filenames = glob.glob('setplot_*.py') spnames = [] for setplotfile in filenames: print '=== Making plots using ',setplotfile regexp = re.compile(r'setplot_(?P<spname>.*).py') result = regexp.search(setplotfile) spname = result.group('spname') spnames.append(spname) plotdir = 'plots_%s' % spname plotclaw(outdir="_output", plotdir=plotdir, setplot=setplotfile) for spname in spnames: setplotfile = 'setplot_%s.py' % spname rstfile_name = 'plotexample-acou-2d-%s' % spname print '=== Making rst file %s.rst' % rstfile_name rstfile = open('../%s.rst' % rstfile_name, 'w') setplot_lines = open(setplotfile,'r').read() regexp = re.compile(r'"""(?P<descr>.*?)""" (?P<rest>.*)', \ re.DOTALL) result = regexp.search(setplot_lines) setplot_descr = result.group('descr') setplot_rest = result.group('rest') setplot_rest = setplot_rest.replace('\n','\n ',1000) rstfile.write(""".. _%s: \n%s \n\n""" % (rstfile_name, setplot_descr)) rstfile.write("Example generating data: `<claw/doc/sphinx/%s/README.html>`_\n\n" \ % thisdir) rstfile.write("Resulting plots: `<claw/doc/sphinx/%s/plots_%s/_PlotIndex.html>`_\n\n::\n" \ % (thisdir, spname)) rstfile.write(setplot_rest) rstfile.close() if __name__=='__main__': import sys makeplots(sys.argv[1:])
py
1a474ed53b0e2787437b6df24388ed181ffcec95
""" Classes and functions use across different Semi-Supervised algorithms """
py
1a474f9199f2d6487a0d380474c6c6aebbeb9c35
from glumpy import app, gloo, gl from contextlib import contextmanager import numpy as np try: import pycuda.driver from pycuda.gl import graphics_map_flags, BufferObject _PYCUDA = True except ImportError as err: print('pycuda import error:', err) _PYCUDA = False import torch class OffscreenRender: def __init__(self, viewport_size, out_buffer_location='opengl', clear_color=None): self._init_buffers(viewport_size, out_buffer_location) self.clear_color = clear_color if clear_color is not None else (0., 0., 0., 1.) def _init_buffers(self, viewport_size, out_buffer_location): assert out_buffer_location in ['torch', 'opengl', 'numpy'] if out_buffer_location == 'torch': assert _PYCUDA, 'pycuda is not available' try: import pycuda.gl.autoinit # this may fails in headless mode except: raise RuntimeError('PyCUDA init failed, cannot use torch buffer') _ = torch.cuda.FloatTensor(1, 3, 512,512) # needs init here, otherwise does not work color_np = np.zeros((viewport_size[1], viewport_size[0], 4), np.float32) self.color_buf, self.color_buf_cuda = create_shared_texture(color_np) self.out_buf = torch.zeros((viewport_size[1], viewport_size[0], 4), dtype=torch.float32).cuda() elif out_buffer_location == 'opengl': self.color_buf = np.zeros((viewport_size[1], viewport_size[0], 4), dtype=np.float32).view(gloo.TextureFloat2D) self.out_buf = self.color_buf elif out_buffer_location == 'numpy': self.color_buf = np.zeros((viewport_size[1], viewport_size[0], 4), dtype=np.float32).view(gloo.TextureFloat2D) self.out_buf = np.zeros((viewport_size[1], viewport_size[0], 3), dtype=np.float32) self.viewport_size = viewport_size self.out_buffer_location = out_buffer_location self.depth_buf = gloo.DepthBuffer(viewport_size[0], viewport_size[1], gl.GL_DEPTH_COMPONENT32) self.fbo = gloo.FrameBuffer(color=self.color_buf, depth=self.depth_buf) def render(self, scene, cull_face=True): self.fbo.activate() gl.glEnable(gl.GL_PROGRAM_POINT_SIZE) gl.glEnable(gl.GL_DEPTH_TEST) gl.glShadeModel(gl.GL_FLAT) if cull_face: gl.glEnable(gl.GL_CULL_FACE) gl.glCullFace(gl.GL_BACK) else: gl.glDisable(gl.GL_CULL_FACE) gl.glClearColor(*self.clear_color) gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT) gl.glViewport(0, 0, self.viewport_size[0], self.viewport_size[1]) if scene.draw_points: scene.program.draw(gl.GL_POINTS) else: assert scene.index_buffer is not None scene.program.draw(gl.GL_TRIANGLES, scene.index_buffer) if self.out_buffer_location == 'torch': frame = cpy_texture_to_tensor(self.color_buf_cuda, self.out_buf).clone() elif self.out_buffer_location == 'opengl': frame = self.out_buf else: gl.glReadPixels(0, 0, self.viewport_size[0], self.viewport_size[1], gl.GL_RGB, gl.GL_FLOAT, self.out_buf) frame = self.out_buf.copy() self.fbo.deactivate() return frame @contextmanager def cuda_activate_array(img): """Context manager simplifying use of pycuda.gl.RegisteredImage""" mapping = img.map() yield mapping.array(0,0) mapping.unmap() @contextmanager def cuda_activate_buffer(buf): mapping = buf.map() yield mapping.device_ptr() mapping.unmap() def create_shared_texture(arr, map_flags=None): """Create and return a Texture2D with gloo and pycuda views.""" if map_flags is None: map_flags = graphics_map_flags.WRITE_DISCARD gl_view = arr.view(gloo.TextureFloat2D) gl_view.activate() # force gloo to create on GPU gl_view.deactivate() cuda_view = pycuda.gl.RegisteredImage( int(gl_view.handle), gl_view.target, map_flags) return gl_view, cuda_view def create_shared_buffer(arr): """Create and return a BufferObject with gloo and pycuda views.""" gl_view = arr.view(gloo.VertexBuffer) gl_view.activate() # force gloo to create on GPU gl_view.deactivate() cuda_view = BufferObject(np.long(gl_view.handle)) return gl_view, cuda_view def cpy_texture_to_tensor(texture, tensor): """Copy GL texture (cuda view) to pytorch tensor""" with cuda_activate_array(texture) as src: cpy = pycuda.driver.Memcpy2D() cpy.set_src_array(src) cpy.set_dst_device(tensor.data_ptr()) cpy.width_in_bytes = cpy.src_pitch = cpy.dst_pitch = tensor.shape[1] * 4 * 4 cpy.height = tensor.shape[0] cpy(aligned=False) torch.cuda.synchronize() return tensor def cpy_tensor_to_texture(tensor, texture): """Copy pytorch tensor to GL texture (cuda view)""" with cuda_activate_array(texture) as ary: cpy = pycuda.driver.Memcpy2D() cpy.set_src_device(tensor.data_ptr()) cpy.set_dst_array(ary) cpy.width_in_bytes = cpy.src_pitch = cpy.dst_pitch = tensor.shape[1] * 4 * 4 cpy.height = tensor.shape[0] cpy(aligned=False) torch.cuda.synchronize() return tensor def cpy_buffer_to_tensor(buffer, tensor): """Copy GL buffer (cuda view) to pytorch tensor""" n = tensor.numel()*tensor.element_size() with cuda_activate_buffer(buffer) as buf_ptr: pycuda.driver.memcpy_dtod(tensor.data_ptr(), buf_ptr, n) def cpy_tensor_to_buffer(tensor, buffer): """Copy pytorch tensor to GL buffer (cuda view)""" n = tensor.numel()*tensor.element_size() with cuda_activate_buffer(buffer) as buf_ptr: pycuda.driver.memcpy_dtod(buf_ptr, tensor.data_ptr(), n)
py
1a47513e7adba0a178778681c16ce069052d1dac
"""Provides functionality to interact with image processing services.""" import asyncio from datetime import timedelta import logging from typing import final import voluptuous as vol from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_NAME, CONF_ENTITY_ID, CONF_NAME, CONF_SOURCE, ) from homeassistant.core import callback from homeassistant.exceptions import HomeAssistantError import homeassistant.helpers.config_validation as cv from homeassistant.helpers.config_validation import make_entity_service_schema from homeassistant.helpers.entity import Entity from homeassistant.helpers.entity_component import EntityComponent from homeassistant.util.async_ import run_callback_threadsafe # mypy: allow-untyped-defs, no-check-untyped-defs _LOGGER = logging.getLogger(__name__) DOMAIN = "image_processing" SCAN_INTERVAL = timedelta(seconds=10) DEVICE_CLASSES = [ "alpr", # Automatic license plate recognition "face", # Face "ocr", # OCR ] SERVICE_SCAN = "scan" SERVICE_ENABLE = "enable_detection" SERVICE_DISABLE = "disable_detection" EVENT_DETECT_FACE = "image_processing.detect_face" ATTR_AGE = "age" ATTR_CONFIDENCE = "confidence" ATTR_FACES = "faces" ATTR_GENDER = "gender" ATTR_GLASSES = "glasses" ATTR_MOTION = "motion" ATTR_TOTAL_FACES = "total_faces" CONF_CONFIDENCE = "confidence" DEFAULT_TIMEOUT = 10 DEFAULT_CONFIDENCE = 80 SOURCE_SCHEMA = vol.Schema( { vol.Required(CONF_ENTITY_ID): cv.entity_domain("camera"), vol.Optional(CONF_NAME): cv.string, } ) PLATFORM_SCHEMA = cv.PLATFORM_SCHEMA.extend( { vol.Optional(CONF_SOURCE): vol.All(cv.ensure_list, [SOURCE_SCHEMA]), vol.Optional(CONF_CONFIDENCE, default=DEFAULT_CONFIDENCE): vol.All( vol.Coerce(float), vol.Range(min=0, max=100) ), } ) PLATFORM_SCHEMA_BASE = cv.PLATFORM_SCHEMA_BASE.extend(PLATFORM_SCHEMA.schema) async def async_setup(hass, config): """Set up the image processing.""" component = EntityComponent(_LOGGER, DOMAIN, hass, SCAN_INTERVAL) await component.async_setup(config) async def async_scan_service(service): """Service handler for scan.""" image_entities = await component.async_extract_from_service(service) update_tasks = [] for entity in image_entities: entity.async_set_context(service.context) update_tasks.append(asyncio.create_task(entity.async_update_ha_state(True))) if update_tasks: await asyncio.wait(update_tasks) hass.services.async_register( DOMAIN, SERVICE_SCAN, async_scan_service, schema=make_entity_service_schema({}) ) component.async_register_entity_service( SERVICE_ENABLE, schema=make_entity_service_schema({}), func="async_enable_detection", ) component.async_register_entity_service( SERVICE_DISABLE, schema=make_entity_service_schema({}), func="async_disable_detection", ) return True class ImageProcessingEntity(Entity): """Base entity class for image processing.""" timeout = DEFAULT_TIMEOUT det = "on" def enable_detection(self): """Enable motion detection in the camera.""" self.det = "on" raise NotImplementedError() async def async_enable_detection(self): """Call the job and enable motion detection.""" await self.hass.async_add_executor_job(self.enable_detection) def disable_detection(self): """Disable motion detection in camera.""" self.det = "off" raise NotImplementedError() async def async_disable_detection(self): """Call the job and disable motion detection.""" await self.hass.async_add_executor_job(self.disable_detection) @property def camera_entity(self): """Return camera entity id from process pictures.""" return None @property def confidence(self): """Return minimum confidence for do some things.""" return None @property def state_attributes(self): """Return device specific state attributes.""" return {ATTR_MOTION: self.det} def process_image(self, image): """Process image.""" raise NotImplementedError() async def async_process_image(self, image): """Process image.""" return await self.hass.async_add_executor_job(self.process_image, image) async def async_update(self): """Update image and process it. This method is a coroutine. """ camera = self.hass.components.camera image = None try: image = await camera.async_get_raw_image( self.camera_entity, timeout=self.timeout ) except AttributeError: try: image = await camera.async_get_image( self.camera_entity, timeout=self.timeout ) except HomeAssistantError as err: _LOGGER.error("Error on receive image from entity: %s", err) return # process image data await self.async_process_image(image.content) class ImageProcessingFaceEntity(ImageProcessingEntity): """Base entity class for face image processing.""" def __init__(self): """Initialize base face identify/verify entity.""" self.faces = [] self.total_faces = 0 self.det = "off" def enable_detection(self): """Enable motion detection in the camera.""" self.det = "on" raise NotImplementedError() async def async_enable_detection(self): """Call the job and enable motion detection.""" await self.hass.async_add_executor_job(self.enable_detection) def disable_detection(self): """Disable motion detection in camera.""" self.det = "off" raise NotImplementedError() async def async_disable_detection(self): """Call the job and disable motion detection.""" await self.hass.async_add_executor_job(self.disable_detection) @property def state(self): """Return the state of the entity.""" confidence = 0 state = None # No confidence support if not self.confidence: return self.total_faces # Search high confidence for face in self.faces: if ATTR_CONFIDENCE not in face: continue f_co = face[ATTR_CONFIDENCE] if f_co > confidence: confidence = f_co for attr in [ATTR_NAME, ATTR_MOTION]: if attr in face: state = face[attr] break return state @property def device_class(self): """Return the class of this device, from component DEVICE_CLASSES.""" return "face" @final @property def state_attributes(self): """Return device specific state attributes.""" return { ATTR_FACES: self.faces, ATTR_TOTAL_FACES: self.total_faces, ATTR_MOTION: self.det, } def process_faces(self, faces, total): """Send event with detected faces and store data.""" run_callback_threadsafe( self.hass.loop, self.async_process_faces, faces, total ).result() @callback def async_process_faces(self, faces, total): """Send event with detected faces and store data. known are a dict in follow format: [ { ATTR_CONFIDENCE: 80, ATTR_NAME: 'Name', ATTR_AGE: 12.0, ATTR_GENDER: 'man', ATTR_MOTION: 'smile', ATTR_GLASSES: 'sunglasses' }, ] This method must be run in the event loop. """ # Send events for face in faces: if ( ATTR_CONFIDENCE in face and self.confidence and face[ATTR_CONFIDENCE] < self.confidence ): continue face.update({ATTR_ENTITY_ID: self.entity_id}) self.hass.async_add_job(self.hass.bus.async_fire, EVENT_DETECT_FACE, face) # Update entity store self.faces = faces self.total_faces = total
py
1a47513f5fa9923540f824ac6a9b8bf03450d193
# coding: utf-8 # # Copyright 2020 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for core.domain.base_model_validators.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import datetime from core import jobs_registry from core.domain import base_model_validators from core.domain import prod_validation_jobs_one_off from core.platform import models from core.tests import test_utils import feconf import utils (base_models, user_models) = models.Registry.import_models( [models.NAMES.base_model, models.NAMES.user]) class MockModel(base_models.BaseModel): pass class MockSnapshotModel(base_models.BaseModel): commit_type = 'edit' commit_cmds = [] class MockBaseModelValidator(base_model_validators.BaseModelValidator): pass class MockModelValidatorWithInvalidValidationType( base_model_validators.BaseModelValidator): @classmethod def _get_external_id_relationships(cls, item): return [] @classmethod def _get_model_domain_object_instance(cls, unused_item): return MockModel() @classmethod def _get_domain_object_validation_type(cls, unused_item): return 'Invalid' class MockSummaryModelValidator( base_model_validators.BaseSummaryModelValidator): @classmethod def _get_external_id_relationships(cls, item): return [] class MockSnapshotContentModelValidator( base_model_validators.BaseSnapshotContentModelValidator): @classmethod def _get_external_id_relationships(cls, item): return [] class MockSnapshotMetadataModelValidator( base_model_validators.BaseSnapshotMetadataModelValidator): EXTERNAL_MODEL_NAME = 'external model' @classmethod def _get_external_id_relationships(cls, item): return [ base_model_validators.ExternalModelFetcherDetails( 'external_model_ids', MockModel, [])] class MockBaseUserModelValidator( base_model_validators.BaseUserModelValidator): @classmethod def _get_external_id_relationships(cls, item): return [] @classmethod def _get_custom_validation_functions(cls): return [cls._validate_common_properties_do_not_match] @classmethod def _get_external_instance_custom_validation_functions(cls): return [ cls._validate_explorations_are_public, cls._validate_collections_are_public ] class MockCommitLogEntryModel(base_models.BaseCommitLogEntryModel): pass class MockCommitLogEntryModelValidator( base_model_validators.BaseCommitLogEntryModelValidator): EXTERNAL_MODEL_NAME = 'mockmodel' @classmethod def _get_change_domain_class(cls, item): if item.id.startswith('mock'): return MockCommitLogEntryModel else: cls._add_error( 'model %s' % base_model_validators.ERROR_CATEGORY_ID_CHECK, 'Entity id %s: Entity id does not match regex pattern' % ( item.id)) return None @classmethod def _get_external_id_relationships(cls, item): return [ base_model_validators.UserSettingsModelFetcherDetails( 'user_id', [item.user_id], may_contain_system_ids=False, may_contain_pseudonymous_ids=False )] class BaseValidatorTests(test_utils.AuditJobsTestBase): def setUp(self): super(BaseValidatorTests, self).setUp() self.invalid_model = MockModel(id='mockmodel') self.invalid_model.update_timestamps() self.invalid_model.put() def test_error_is_raised_if_fetch_external_properties_is_undefined(self): with self.assertRaisesRegexp( NotImplementedError, r'The _get_external_id_relationships\(\) method is missing from the' ' derived class. It should be implemented in the derived class.'): MockBaseModelValidator().validate(self.invalid_model) def test_error_is_get_external_model_properties_is_undefined(self): with self.assertRaisesRegexp( NotImplementedError, r'The _get_external_model_properties\(\) method is missing from the' ' derived class. It should be implemented in the derived class.'): MockSummaryModelValidator().validate(self.invalid_model) def test_error_is_raised_if_external_model_name_is_undefined(self): with self.assertRaisesRegexp( Exception, 'External model name should be specified'): MockSnapshotContentModelValidator().validate(self.invalid_model) def test_error_is_raised_if_get_change_domain_class_is_undefined(self): with self.assertRaisesRegexp( NotImplementedError, r'The _get_change_domain_class\(\) method is missing from the ' 'derived class. It should be implemented in the derived class.'): snapshot_model = MockSnapshotModel(id='mockmodel') snapshot_model.update_timestamps() snapshot_model.put() MockSnapshotMetadataModelValidator().validate(snapshot_model) def test_error_is_raised_if_entity_classes_to_map_over_is_undefined(self): job_class = ( prod_validation_jobs_one_off.ProdValidationAuditOneOffJob) with self.assertRaisesRegexp( NotImplementedError, r'The entity_classes_to_map_over\(\) method is missing from the ' 'derived class. It should be implemented in the derived class.'): with self.swap(jobs_registry, 'ONE_OFF_JOB_MANAGERS', [job_class]): job_id = job_class.create_new() job_class.enqueue(job_id) def test_error_is_raised_with_invalid_validation_type_for_domain_objects( self): MockModelValidatorWithInvalidValidationType.validate(self.invalid_model) expected_errors = { 'domain object check': [ 'Entity id mockmodel: Entity fails domain validation with ' 'the error Invalid validation type for domain object: Invalid']} self.assertEqual( MockModelValidatorWithInvalidValidationType.errors, expected_errors) def test_no_error_is_raised_for_base_user_model(self): user = MockModel(id='12345') user.update_timestamps() user.put() MockBaseUserModelValidator().validate(user) def test_validate_deleted_reports_error_for_old_deleted_model(self): year_ago = datetime.datetime.utcnow() - datetime.timedelta(weeks=52) model = MockModel( id='123', deleted=True, last_updated=year_ago ) model.update_timestamps(update_last_updated_time=False) model.put() validator = MockBaseUserModelValidator() validator.validate_deleted(model) self.assertEqual( validator.errors, { 'entity stale check': [ 'Entity id 123: model marked as ' 'deleted is older than 8 weeks' ] } ) def test_external_model_fetcher_with_user_settings_raise_error(self): with self.assertRaisesRegexp( Exception, 'When fetching instances of UserSettingsModel, please use ' + 'UserSettingsModelFetcherDetails instead of ' + 'ExternalModelFetcherDetails'): base_model_validators.ExternalModelFetcherDetails( 'committer_ids', user_models.UserSettingsModel, [ feconf.MIGRATION_BOT_USER_ID, 'User-1', self.PSEUDONYMOUS_ID ] ) def test_may_contain_system_users_filters_system_ids(self): user_settings_model = ( base_model_validators.UserSettingsModelFetcherDetails( 'committer_ids', [feconf.MIGRATION_BOT_USER_ID, 'User-1'], may_contain_system_ids=True, may_contain_pseudonymous_ids=False )) self.assertItemsEqual( user_settings_model.model_ids, ['User-1']) def test_error_raised_if_model_ids_contain_system_ids(self): with self.assertRaisesRegexp( utils.ValidationError, 'The field \'committer_ids\' should not contain system IDs'): base_model_validators.UserSettingsModelFetcherDetails( 'committer_ids', [feconf.MIGRATION_BOT_USER_ID, 'User-1'], may_contain_system_ids=False, may_contain_pseudonymous_ids=False ) def test_may_contain_pseudonymous_users_filters_pseudonymous_users(self): user_settings_model = ( base_model_validators.UserSettingsModelFetcherDetails( 'committer_ids', ['User-1', self.PSEUDONYMOUS_ID], may_contain_system_ids=False, may_contain_pseudonymous_ids=True )) self.assertItemsEqual( user_settings_model.model_ids, ['User-1']) def test_error_raised_if_model_ids_contain_pseudonymous_ids(self): with self.assertRaisesRegexp( utils.ValidationError, 'The field \'committer_ids\' should not contain pseudonymous IDs'): base_model_validators.UserSettingsModelFetcherDetails( 'committer_ids', [self.PSEUDONYMOUS_ID, 'User-1'], may_contain_system_ids=False, may_contain_pseudonymous_ids=False ) def test_error_raised_when_fetching_external_model_with_system_ids(self): model = MockCommitLogEntryModel( id='mock-12345', user_id=feconf.MIGRATION_BOT_USER_ID, commit_cmds=[]) model.update_timestamps() mock_validator = MockCommitLogEntryModelValidator() mock_validator.errors.clear() mock_validator.validate(model) self.assertDictContainsSubset( { 'invalid user setting ids': [ 'Entity id mock-12345: ' 'The field \'user_id\' should not contain system IDs' ] }, mock_validator.errors ) def test_error_raised_when_fetching_external_model_with_pseudo_ids(self): model = MockCommitLogEntryModel( id='mock-12345', user_id=self.PSEUDONYMOUS_ID, commit_cmds=[]) model.update_timestamps() mock_validator = MockCommitLogEntryModelValidator() mock_validator.errors.clear() mock_validator.validate(model) self.assertDictContainsSubset( { 'invalid user setting ids': [ 'Entity id mock-12345: ' 'The field \'user_id\' should not contain pseudonymous IDs' ] }, mock_validator.errors )
py
1a47532aa504b78b2b9aae380ba517bf3c922991
## ## # # Adapter for com.vividsolutions.jts.geom.Coordinate # # # SOFTWARE HISTORY # # Date Ticket# Engineer Description # ------------ ---------- ----------- -------------------------- # 01/20/11 dgilling Initial Creation. # # # from dynamicserialize.dstypes.com.vividsolutions.jts.geom import Coordinate ClassAdapter = 'com.vividsolutions.jts.geom.Coordinate' def serialize(context, coordinate): context.writeDouble(coordinate.getX()) context.writeDouble(coordinate.getY()) def deserialize(context): x = context.readDouble() y = context.readDouble() coord = Coordinate() coord.setX(x) coord.setY(y) return coord
py
1a47535916e39a889d945959036dd968d1a82bb0
# urls.py from __future__ import absolute_import from django.conf.urls import patterns, include, url import twitterapp.views # required to set an app name to resolve 'url' in templates with namespacing app_name = "twitter" urlpatterns = [ url(r'^site-setup/$', twitterapp.views.site_setup), ]
py
1a47555a1d0fad5c442f2aa381a171cb57adc96c
# Generated by Django 3.0.3 on 2020-03-23 02:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('scrape', '0001_initial'), ] operations = [ migrations.CreateModel( name='ScrapyModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('unique_id', models.CharField(max_length=100, null=True)), ('comments', models.TextField()), ('hotel_name', models.CharField(max_length=100)), ], ), migrations.DeleteModel( name='ScrapeResult', ), ]
bzl
1a47557b162963cbb03329d36426f1d6badc102c
load("@bazel_tools//tools/cpp:lib_cc_configure.bzl", "get_cpu_value") def execute_or_fail_loudly( repository_ctx, arguments, environment = {}, working_directory = ""): """Execute the given command Fails if the command does not exit with exit-code 0. Args: arguments: List, the command line to execute. Returns: exec_result: The output of the command. """ exec_result = repository_ctx.execute( arguments, environment = environment, quiet = True, working_directory = working_directory, ) if exec_result.return_code != 0: arguments = [_as_string(x) for x in arguments] fail("\n".join(["Command failed: " + " ".join(arguments), exec_result.stderr])) return exec_result def _as_string(v): if type(v) == "string": return v else: return repr(v) def find_python(repository_ctx): python = repository_ctx.which("python3") if not python: python = repository_ctx.which("python") if not python: fail("There is no Python in PATH. Please install Python >= 3.3.") result = repository_ctx.execute([python, "--version"]) if not result.stdout.startswith("Python 3"): fail("rules_haskell requires Python >= 3.3.") return python def resolve_labels(repository_ctx, labels): """ Avoid rule restart by resolving these labels early. See https://github.com/bazelbuild/bazel/blob/master/tools/cpp/lib_cc_configure.bzl#L17. Args: repository_ctx: The context with which to resolve the labels. labels: Labels to be resolved expressed as a list of strings. Returns: A dictionary with the labels as keys and their paths as values. """ return dict([(label, repository_ctx.path(Label(label))) for label in labels]) def define_rule(rule_type, name, **kwargs): """Generate a string representing a rule definition. Take care to escape string values using repr(). ### Examples ```bzl define_rule("myrule", name = "foo", myattr1 = repr("bar"), myattr2 = ["baz"], ) ``` """ attrs = ["{} = {},".format(k, v) for k, v in kwargs.items() if v != None] skeleton = """\ {rule_type}( name = {name}, {attrs} ) """ return skeleton.format( rule_type = rule_type, name = repr(name), attrs = "\n ".join(attrs), )
py
1a4755c9da354effd782c6a87f1c8f660b2f357e
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetAvailabilitySetResult: """ A collection of values returned by getAvailabilitySet. """ def __init__(__self__, id=None, location=None, managed=None, name=None, platform_fault_domain_count=None, platform_update_domain_count=None, resource_group_name=None, tags=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ The provider-assigned unique ID for this managed resource. """ if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") __self__.location = location """ The supported Azure location where the Availability Set exists. """ if managed and not isinstance(managed, bool): raise TypeError("Expected argument 'managed' to be a bool") __self__.managed = managed """ Whether the availability set is managed or not. """ if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") __self__.name = name if platform_fault_domain_count and not isinstance(platform_fault_domain_count, str): raise TypeError("Expected argument 'platform_fault_domain_count' to be a str") __self__.platform_fault_domain_count = platform_fault_domain_count """ The number of fault domains that are used. """ if platform_update_domain_count and not isinstance(platform_update_domain_count, str): raise TypeError("Expected argument 'platform_update_domain_count' to be a str") __self__.platform_update_domain_count = platform_update_domain_count """ The number of update domains that are used. """ if resource_group_name and not isinstance(resource_group_name, str): raise TypeError("Expected argument 'resource_group_name' to be a str") __self__.resource_group_name = resource_group_name if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") __self__.tags = tags """ A mapping of tags assigned to the resource. """ class AwaitableGetAvailabilitySetResult(GetAvailabilitySetResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetAvailabilitySetResult( id=self.id, location=self.location, managed=self.managed, name=self.name, platform_fault_domain_count=self.platform_fault_domain_count, platform_update_domain_count=self.platform_update_domain_count, resource_group_name=self.resource_group_name, tags=self.tags) def get_availability_set(name=None,resource_group_name=None,opts=None): """ Use this data source to access information about an existing Availability Set. :param str name: The name of the Availability Set. :param str resource_group_name: The name of the resource group in which the Availability Set exists. """ __args__ = dict() __args__['name'] = name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('azure:compute/getAvailabilitySet:getAvailabilitySet', __args__, opts=opts).value return AwaitableGetAvailabilitySetResult( id=__ret__.get('id'), location=__ret__.get('location'), managed=__ret__.get('managed'), name=__ret__.get('name'), platform_fault_domain_count=__ret__.get('platformFaultDomainCount'), platform_update_domain_count=__ret__.get('platformUpdateDomainCount'), resource_group_name=__ret__.get('resourceGroupName'), tags=__ret__.get('tags'))
py
1a47563ba71372302acf5feb804706c4570881fe
from . import bp as order from flask import render_template, url_for, render_template, flash, redirect from app.forms import OrderForm @order.route('/order_form') def order_form(): form = OrderForm() context = { 'form':form } return render_template('order_form.html', **context )
py
1a4757a3854c455c9eb038a02f548b9f246ea3e0
import torch.nn as nn class SoftmaxAdapter(nn.Module): def __init__(self, dim_in, n_class): super(SoftmaxAdapter, self).__init__() self.fc = nn.Linear(dim_in, n_class) def forward(self, input): h = self.fc(input) return nn.functional.softmax(h) class SigmoidAdapter(nn.Module): def __init__(self, dim_in, n_class): super(SigmoidAdapter, self).__init__() self.fc = nn.Linear(dim_in, n_class) def forward(self, input): h = self.fc(input) return nn.functional.sigmoid(h)
py
1a4758143fe5ddb714eaefad5b857cf455012818
import jpype jpype.addClassPath('./lib/*') if not(jpype.isJVMStarted()): jpype.startJVM(convertStrings =True) neqsim = jpype.JPackage('neqsim')
py
1a475887add0f7610649cb0301f950f4fba515a4
# Specter BlockChain Implementation # Nick Frichette 12/9/2017 import json import hashlib import requests import base64 from threading import Thread from database_orm import * from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes from cryptography.exceptions import InvalidSignature # ANSI escape sequences FAIL = '\033[91m' END = '\033[0m' OK = '\033[92m' class Blockchain: NODE_ADDRESS_LIST = ['http://localhost:5000'] blocks = [] index = 0 db = None transaction_pool = [] def __init__(self, is_node=False): # Instantiate DB self.db = Database() if is_node: print OK + 'Thank you for standing up a node!' + END # If the DB is empty, generate the Genesis if self.db.is_empty(): print FAIL + 'No blocks in chain' + END print OK + 'Creating Genesis Block' + END genesis = self.make_genesis_block() self.add_block(genesis) else: # For each row in the DB, create a block blocks = self.db.get_all_blocks() for item in blocks: block = Block( item.coin_index, json.loads(item.transaction_info), item.previous_hash, item.current_hash, item.timestamp, item.nonce ) self.add_block(block) # Unverified transactions are added to the transaction pool # A separate thread will put them onto the block chain. # This should be more preformat at scale. #trans_thread = Thread(target=self.transaction_thread) #trans_thread.daemon = true #trans_thread.start() else: # This is an implementation meant for normal users try: blockchain_json = self.download_blockchain() self.unjsonify(blockchain_json) except requests.exceptions.ConnectionError: print FAIL + "Failed to connect to nodes. Terminating" + END exit() def download_blockchain(self): # Query the nodes for the blockchain # In the future validation will need to occur blockchain_json = [] for address in self.NODE_ADDRESS_LIST: request = requests.get(address + '/getblockchain') blockchain_json = request.json() return blockchain_json def update_blockchain(self): try: blockchain_json = self.download_blockchain() self.blocks = [] self.unjsonify(blockchain_json) except requests.exceptions.ConnectionError: print "Failed to update blockchain" def jsonify(self): data_json = {} i = 0 for block in self.blocks: data = { "index": block.coin_index, "transaction": block.transaction_info, "previous_hash": block.previous_hash, "current_hash": block.current_hash, "timestamp": block.timestamp, "nonce": block.nonce } data_json[i] = data i += 1 return data_json def unjsonify(self, json_data): for block in json_data: js = json_data[block] block = Block( js['index'], js['transaction'], js['previous_hash'], js['current_hash'], js['timestamp'], js['nonce'] ) self.blocks.append(block) # If not in the DB, insert it #if not self.db.in_db(block): # self.db.insert_block(block) return None def print_chain(self): print self.blocks return self.blocks def add_block(self, block): if not self.db.in_db(block): self.db.insert_block(block) self.blocks.append(block) def make_block(self, transaction): self.index += 1 # Error handling to fix serialization issues transaction['amount'] = int(transaction['amount']) block_hash = self.calc_block_hash(self.index, transaction['hash'], transaction['timestamp'], transaction, 0) block = Block(self.index, transaction, transaction['hash'], block_hash, transaction['timestamp'], 0) self.add_block(block) def make_genesis_block(self): print OK + 'Genesis Block Created' + END transaction = { "from": "-1", "to": "MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAupSwIG17vricebp6EN88"+ "7wzHj0OsaxYl24z2VT6U9+ByEoGGWOPC/Nv9jwebzCLT49Bv5nZL0c7WCQMvvb5o"+ "3BNk2wPZR6XEQBZxgwXJdt5h2Ye+Nyc8wYvZodp1ouUv2jCNvcnH4VCz6y56yPzc"+ "861ZeYGGO9xbTu7RLkBqGODIqNqLzRhIdpYDukz2TVgHrEXalu+SFkrHo+oc5OBg"+ "YYLQeOSlzRKxgfvFG9ViNlqHP0tQDQsGnakBFuBWW5DuwrEKjqkmM+dxo9ALNaag"+ "ELpB60zXK2ZxwdvOmko8KZNsHVQMzZql2hcJiyfc99OvOBgp/xTscK94NNqQ6m2M"+ "pFr8V07XFnRB8r1EQhY9oFuraUi9xSZbKc3DVG3FEfSyo2Q/+jT+9dkSt7GegIya"+ "wM3saOY2VeN1f8XsfQ+a96SL+ltas99NlDJGMuOJOjrKherpfEBcuEK5EvljceGy"+ "b7O4NyUcQ/k0q/ngQM+Lz5/3RUShqCbtkmjH5FAxiNHzluy83hJyxGxrYHTEMF88"+ "Z6YHyaOBUpMp3mvPMVqM/jeI2aslJDTEDmeaRhs6yI90RDyohzb1FUctUKVPiL8a"+ "FI9/gKmSCpgB8BEpI23K0az4kbItnWLe3xzABSFL0nSQWkXQqWmepKcDwp6TcJtG"+ "/U5BSE284qlQFOd50rW0xRUCAwEAAQ==", "amount": 100, "signature": "-1", "timestamp": -1, "hash": -1 } current_hash = self.calc_block_hash(0, -1, -1, transaction, 0) genesis_block = Block(0, transaction, -1, current_hash, 0, 0) self.index += 1 return genesis_block def calc_block_hash(self, index, prev_hash, timestamp, transaction, nonce=0): data = { "index": index, "previous_hash": prev_hash, "timestamp": timestamp, "transaction": transaction, "nonce": nonce } data_json = json.dumps(data, sort_keys=True) hashed = hashlib.sha256(data_json) return hashed.hexdigest() def lookup_address(self, address): # Begin searching for transactions from that address balance = 0 for block in self.blocks: if block.transaction_info['from'] == address: balance -= block.transaction_info['amount'] if block.transaction_info['to'] == address: balance += block.transaction_info['amount'] return balance def validate_transaction(self, transaction): # We need to ensure that a transaction is valid on the blockchain # First lets get the amount the user wants to move amount = int(transaction['amount']) # Now let's check their balance with their public key balance = self.lookup_address(transaction['from']) # Now compare the two if amount < balance: return True else: return False @staticmethod def create_signable_transaction(from_address, to_address, amount, timestamp): return ':'.join((from_address, to_address, amount, str(timestamp))) def authenticate_transaction(self, transaction): is_verified = self.verify_remote_transaction(transaction['from'], transaction['signature'], transaction) return is_verified def verify_remote_transaction(self, public_key, signature, transaction): # transaction.pop('hash') transaction = self.create_signable_transaction( transaction['from'], transaction['to'], transaction['amount'], transaction['timestamp'] ) key = "-----BEGIN PUBLIC KEY-----\n" i = 0 while i < len(public_key): key += public_key[i:i+64]+'\n' i += 64 key += "-----END PUBLIC KEY-----\n" public_key = serialization.load_pem_public_key( str(key), backend=default_backend() ) try: public_key.verify( bytes(base64.decodestring(signature)), bytes(transaction), padding.PSS( mgf=padding.MGF1(hashes.SHA256()), salt_length=padding.PSS.MAX_LENGTH ), hashes.SHA256() ) return True except InvalidSignature: return False #def transaction_thread(self): # while true: # while len(self.transaction_pool) > 0: # transaction = self.transaction_pool[-1] # if self.authenticate_transaction(transaction): # if self.validate_transaction(transaction): # print str(len(self.blocks)) # print OK + "Confirmed Transaction" + END # self.make_block(self.transaction_pool.pop()) # print str(len(self.blocks)) def add_transaction_to_pool(self, transaction): #self.transaction_pool.append(transaction) if self.authenticate_transaction(transaction): if self.validate_transaction(transaction): self.make_block(transaction) if __name__ == '__main__': blockchain = Blockchain()
py
1a47590ded909e1599935677d8570acd9c1bf552
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests fuzzers.mutator_plugin.""" from pyfakefs import fake_filesystem_unittest import os import shutil import unittest from bot.fuzzers import mutator_plugin from tests.test_libs import helpers from tests.test_libs import test_utils class FindMutatorPluginTest(fake_filesystem_unittest.TestCase): """Tests find_mutator_plugin.""" def setUp(self): helpers.patch_environ(self) test_utils.set_up_pyfakefs(self) self.plugins_root_dir = '/plugins' os.environ['MUTATOR_PLUGINS_DIR'] = self.plugins_root_dir def test_find_mutator_plugin_with_usable(self): """Tests that the right path is returned by find_mutator_plugin when there is a usable mutator plugin available.""" usable_plugin_path = os.path.join( self.plugins_root_dir, 'plugins', mutator_plugin.MUTATOR_SHARED_OBJECT_FILENAME) self.fs.create_file(usable_plugin_path) self.assertEqual(usable_plugin_path, mutator_plugin.find_mutator_plugin()) def test_set_mutator_plugin_without_usable(self): """Tests that None is returned by find_mutator_plugin when there isn't a usable mutator plugin available.""" self.assertIsNone(mutator_plugin.find_mutator_plugin()) # pylint: disable=protected-access class GetDirectoryFunctionsTest(unittest.TestCase): """Tests functions for get plugin directories.""" def setUp(self): helpers.patch_environ(self) self.plugins_root_dir = '/plugins' os.environ['MUTATOR_PLUGINS_DIR'] = self.plugins_root_dir def test_get_mutator_plugins_subdir(self): """Tests that _get_mutator_plugins_subdir returns the path to the correct subdirectory.""" subdir = 'x' self.assertEqual( os.path.join(self.plugins_root_dir, subdir), mutator_plugin._get_mutator_plugins_subdir(subdir)) def test_get_mutator_plugins_archives_dir(self): """Tests that _get_mutator_plugins_archives_dir returns the path to the mutator plugin archives directory.""" self.assertEqual( os.path.join(self.plugins_root_dir, mutator_plugin.ARCHIVES_SUBDIR_NAME), mutator_plugin._get_mutator_plugins_archives_dir()) def test_get_mutator_plugins_unpacked_dir(self): """Tests that _get_mutator_plugins_unpacked_dir returns the path to the unpacked mutator plugin directory.""" self.assertEqual( os.path.join(self.plugins_root_dir, mutator_plugin.PLUGINS_SUBDIR_NAME), mutator_plugin._get_mutator_plugins_unpacked_dir()) # pylint: disable=protected-access class PluginGetterTest(fake_filesystem_unittest.TestCase): """Tests PluginGetter.""" def setUp(self): """Setup for plugin getter test.""" helpers.patch_environ(self) test_utils.set_up_pyfakefs(self) os.environ['JOB_NAME'] = 'libfuzzer_asan_test' self.fuzzer_binary_name = 'test_fuzzer' self.name = 'myplugin' self.plugins_root_dir = '/plugins' os.environ['MUTATOR_PLUGINS_DIR'] = self.plugins_root_dir self.fs.create_dir(self.plugins_root_dir) self.plugin_getter = mutator_plugin.PluginGetter(self.fuzzer_binary_name) self.plugins_archives_dir = os.path.join(self.plugins_root_dir, 'archives') self.plugin_archive_filename = '%s-%s-%s.zip' % ( self.name, os.environ['JOB_NAME'], self.fuzzer_binary_name) self.plugin_archive_path = os.path.join(self.plugins_archives_dir, self.plugin_archive_filename) self.plugins_dir = os.path.join(self.plugins_root_dir, 'plugins') helpers.patch(self, [ 'google_cloud_utils.storage.copy_file_from', 'bot.fuzzers.mutator_plugin._get_mutator_plugins_from_bucket', ]) def mocked_copy_file_from(gcs_url, file_path): expected_url = '%s/%s' % (mutator_plugin._get_mutator_plugins_bucket_url( ), self.plugin_archive_filename) self.assertEqual(expected_url, gcs_url) self.assertEqual(file_path, self.plugin_archive_path) return file_path self.mock.copy_file_from.side_effect = mocked_copy_file_from def test_create_directories(self): """Tests that create_directories creates the right directories.""" shutil.rmtree(self.plugins_root_dir) self.fs.create_dir(self.plugins_root_dir) self.plugin_getter.create_directories() directories = [ os.path.join(self.plugins_root_dir, 'plugins'), os.path.join(self.plugins_root_dir, 'archives') ] self.assertTrue(all(os.path.isdir(directory) for directory in directories)) def test_recognizes_usable(self): """Tests that _is_plugin_usable recognizes a usable plugin archive.""" self.assertTrue( self.plugin_getter._is_plugin_usable(self.plugin_archive_filename)) def test_recognizes_unusable(self): """Tests that _is_plugin_usable recognizes an unusable plugin archive.""" unusable_plugin_archive_filename = self.plugin_archive_filename.replace( self.fuzzer_binary_name, 'other_binary') self.assertFalse( self.plugin_getter._is_plugin_usable(unusable_plugin_archive_filename)) def test_download_mutator_plugin_archive(self): """Tests that _download_mutator_plugin_archive downloads an archive to the correct location.""" self.assertEqual( self.plugin_archive_path, mutator_plugin._download_mutator_plugin_archive( self.plugin_archive_filename)) class ExtractNameFromArchiveTest(unittest.TestCase): """Tests for _extract_name_from_archive.""" def test_extract_name_from_archive(self): """Tests that _extract_name_from_archive extracts the name from the archive.""" name = 'myplugin' fuzzer_binary_name = 'test_fuzzer' job_name = 'libfuzzer_asan_test' plugin_archive_filename = '%s-%s-%s.zip' % (name, job_name, fuzzer_binary_name) extracted_name, job_and_fuzz_target = ( mutator_plugin._extract_name_from_archive(plugin_archive_filename)) self.assertEqual(name, extracted_name) expected_job_and_fuzz_target = '%s-%s' % (job_name, fuzzer_binary_name) self.assertEqual(expected_job_and_fuzz_target, job_and_fuzz_target)
py
1a475958bd94be1c0b90fa413546c6de9970608e
# -*- coding: utf-8 -*- # Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import os from six import iteritems import logging from werkzeug.wrappers import Request from werkzeug.local import LocalManager from werkzeug.exceptions import HTTPException, NotFound from werkzeug.middleware.profiler import ProfilerMiddleware from werkzeug.middleware.shared_data import SharedDataMiddleware import frappe import frappe.handler import frappe.auth import frappe.api import frappe.utils.response import frappe.website.render from frappe.utils import get_site_name, sanitize_html from frappe.middlewares import StaticDataMiddleware from frappe.utils.error import make_error_snapshot from frappe.core.doctype.comment.comment import update_comments_in_parent_after_request from frappe import _ import frappe.recorder import frappe.monitor import frappe.rate_limiter local_manager = LocalManager([frappe.local]) _site = None _sites_path = os.environ.get("SITES_PATH", ".") class RequestContext(object): def __init__(self, environ): self.request = Request(environ) def __enter__(self): init_request(self.request) def __exit__(self, type, value, traceback): frappe.destroy() @Request.application def application(request): response = None try: rollback = True init_request(request) frappe.recorder.record() frappe.monitor.start() frappe.rate_limiter.apply() if frappe.local.form_dict.cmd: response = frappe.handler.handle() elif frappe.request.path.startswith("/api/"): response = frappe.api.handle() elif frappe.request.path.startswith('/backups'): response = frappe.utils.response.download_backup(request.path) elif frappe.request.path.startswith('/private/files/'): response = frappe.utils.response.download_private_file(request.path) elif frappe.local.request.method in ('GET', 'HEAD', 'POST'): response = frappe.website.render.render() else: raise NotFound except HTTPException as e: return e except frappe.SessionStopped as e: response = frappe.utils.response.handle_session_stopped() except Exception as e: response = handle_exception(e) else: rollback = after_request(rollback) finally: if frappe.local.request.method in ("POST", "PUT") and frappe.db and rollback: frappe.db.rollback() # set cookies if response and hasattr(frappe.local, 'cookie_manager'): frappe.local.cookie_manager.flush_cookies(response=response) frappe.rate_limiter.update() frappe.monitor.stop(response) frappe.recorder.dump() if response and hasattr(frappe.local, 'rate_limiter'): response.headers.extend(frappe.local.rate_limiter.headers()) frappe.destroy() return response def init_request(request): frappe.local.request = request frappe.local.is_ajax = frappe.get_request_header("X-Requested-With")=="XMLHttpRequest" site = _site or request.headers.get('X-Frappe-Site-Name') or get_site_name(request.host) frappe.init(site=site, sites_path=_sites_path) if not (frappe.local.conf and frappe.local.conf.db_name): # site does not exist raise NotFound if frappe.local.conf.get('maintenance_mode'): frappe.connect() raise frappe.SessionStopped('Session Stopped') make_form_dict(request) frappe.local.http_request = frappe.auth.HTTPRequest() def make_form_dict(request): import json request_data = request.get_data(as_text=True) if 'application/json' in (request.content_type or '') and request_data: args = json.loads(request_data) else: args = request.form or request.args try: frappe.local.form_dict = frappe._dict({ k:v[0] if isinstance(v, (list, tuple)) else v \ for k, v in iteritems(args) }) except IndexError: frappe.local.form_dict = frappe._dict(args) if "_" in frappe.local.form_dict: # _ is passed by $.ajax so that the request is not cached by the browser. So, remove _ from form_dict frappe.local.form_dict.pop("_") def handle_exception(e): response = None http_status_code = getattr(e, "http_status_code", 500) return_as_message = False if frappe.get_request_header('Accept') and (frappe.local.is_ajax or 'application/json' in frappe.get_request_header('Accept')): # handle ajax responses first # if the request is ajax, send back the trace or error message response = frappe.utils.response.report_error(http_status_code) elif (http_status_code==500 and (frappe.db and isinstance(e, frappe.db.InternalError)) and (frappe.db and (frappe.db.is_deadlocked(e) or frappe.db.is_timedout(e)))): http_status_code = 508 elif http_status_code==401: frappe.respond_as_web_page(_("Session Expired"), _("Your session has expired, please login again to continue."), http_status_code=http_status_code, indicator_color='red') return_as_message = True elif http_status_code==403: frappe.respond_as_web_page(_("Not Permitted"), _("You do not have enough permissions to complete the action"), http_status_code=http_status_code, indicator_color='red') return_as_message = True elif http_status_code==404: frappe.respond_as_web_page(_("Not Found"), _("The resource you are looking for is not available"), http_status_code=http_status_code, indicator_color='red') return_as_message = True elif http_status_code == 429: response = frappe.rate_limiter.respond() else: traceback = "<pre>" + sanitize_html(frappe.get_traceback()) + "</pre>" if frappe.local.flags.disable_traceback: traceback = "" frappe.respond_as_web_page("Server Error", traceback, http_status_code=http_status_code, indicator_color='red', width=640) return_as_message = True if e.__class__ == frappe.AuthenticationError: if hasattr(frappe.local, "login_manager"): frappe.local.login_manager.clear_cookies() if http_status_code >= 500: frappe.logger().error('Request Error', exc_info=True) make_error_snapshot(e) if return_as_message: response = frappe.website.render.render("message", http_status_code=http_status_code) return response def after_request(rollback): if (frappe.local.request.method in ("POST", "PUT") or frappe.local.flags.commit) and frappe.db: if frappe.db.transaction_writes: frappe.db.commit() rollback = False # update session if getattr(frappe.local, "session_obj", None): updated_in_db = frappe.local.session_obj.update() if updated_in_db: frappe.db.commit() rollback = False update_comments_in_parent_after_request() return rollback application = local_manager.make_middleware(application) def serve(port=8000, profile=False, no_reload=False, no_threading=False, site=None, sites_path='.'): global application, _site, _sites_path _site = site _sites_path = sites_path from werkzeug.serving import run_simple patch_werkzeug_reloader() if profile: application = ProfilerMiddleware(application, sort_by=('cumtime', 'calls')) if not os.environ.get('NO_STATICS'): application = SharedDataMiddleware(application, { str('/assets'): str(os.path.join(sites_path, 'assets')) }) application = StaticDataMiddleware(application, { str('/files'): str(os.path.abspath(sites_path)) }) application.debug = True application.config = { 'SERVER_NAME': 'localhost:8000' } in_test_env = os.environ.get('CI') if in_test_env: log = logging.getLogger('werkzeug') log.setLevel(logging.ERROR) run_simple('0.0.0.0', int(port), application, use_reloader=False if in_test_env else not no_reload, use_debugger=not in_test_env, use_evalex=not in_test_env, threaded=not no_threading) def patch_werkzeug_reloader(): """ This function monkey patches Werkzeug reloader to ignore reloading files in the __pycache__ directory. To be deprecated when upgrading to Werkzeug 2. """ from werkzeug._reloader import WatchdogReloaderLoop trigger_reload = WatchdogReloaderLoop.trigger_reload def custom_trigger_reload(self, filename): if os.path.basename(os.path.dirname(filename)) == "__pycache__": return return trigger_reload(self, filename) WatchdogReloaderLoop.trigger_reload = custom_trigger_reload
py
1a47596fea28d6530f0bca714aefe511c8fb33ee
# coding: utf-8 """ Wavefront REST API <p>The Wavefront REST API enables you to interact with Wavefront servers using standard REST API tools. You can use the REST API to automate commonly executed operations such as automatically tagging sources.</p><p>When you make REST API calls outside the Wavefront REST API documentation you must add the header \"Authorization: Bearer &lt;&lt;API-TOKEN&gt;&gt;\" to your HTTP requests.</p> # noqa: E501 OpenAPI spec version: v2 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import wavefront_api_client from wavefront_api_client.models.integration_alert import IntegrationAlert # noqa: E501 from wavefront_api_client.rest import ApiException class TestIntegrationAlert(unittest.TestCase): """IntegrationAlert unit test stubs""" def setUp(self): pass def tearDown(self): pass def testIntegrationAlert(self): """Test IntegrationAlert""" # FIXME: construct object with mandatory attributes with example values # model = wavefront_api_client.models.integration_alert.IntegrationAlert() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
1a475a1e052fcecc0dfda39228f202f9d3916fdc
import argparse import json import os import numpy as np import tensorflow.compat.v1 as tf import time class AccumulatingOptimizer(object): def __init__(self, opt, var_list): self.opt = opt self.var_list = var_list self.accum_vars = {tv : tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in var_list} self.total_loss = tf.Variable(tf.zeros(shape=[], dtype=tf.float32)) self.count_loss = tf.Variable(tf.zeros(shape=[], dtype=tf.float32)) def reset(self): updates = [tv.assign(tf.zeros_like(tv)) for tv in self.accum_vars.values()] updates.append(self.total_loss.assign(tf.zeros(shape=[], dtype=tf.float32))) updates.append(self.count_loss.assign(tf.zeros(shape=[], dtype=tf.float32))) with tf.control_dependencies(updates): return tf.no_op() def compute_gradients(self, loss): grads = self.opt.compute_gradients(loss, self.var_list) updates = [self.accum_vars[v].assign_add(g) for (g,v) in grads] updates.append(self.total_loss.assign_add(loss)) updates.append(self.count_loss.assign_add(1.0)) with tf.control_dependencies(updates): return tf.no_op() def apply_gradients(self): grads = [(g,v) for (v,g) in self.accum_vars.items()] with tf.control_dependencies([self.opt.apply_gradients(grads)]): return self.total_loss / self.count_loss
py
1a475a6a9b421f3c53f286103f23ef97d923f83a
import os import time from gym_idsgame.config.runner_mode import RunnerMode from gym_idsgame.simulation.dao.simulation_config import SimulationConfig from gym_idsgame.agents.dao.agent_type import AgentType from gym_idsgame.config.client_config import ClientConfig from gym_idsgame.runnner import Runner from gym_idsgame.agents.training_agents.q_learning.q_agent_config import QAgentConfig from gym_idsgame.experiments.util import plotting_util, util import argparse def default_output_dir() -> str: """ :return: the default output dir """ script_dir = os.path.dirname(__file__) return script_dir def define_args(): parser = argparse.ArgumentParser() parser.add_argument('--attacker_path', type=str,default='') parser.add_argument('--defender_path', type=str,default='') parser.add_argument('--num_episodes', type=int, default = 100) parser.add_argument('--attacker_bot', action='store_true') parser.add_argument('--defender_bot', action='store_true') args = parser.parse_args() return args def default_config(args) -> ClientConfig: """ :return: Default configuration for the experiment """ simulation_config = SimulationConfig(render=True, sleep=0.8, video=False, log_frequency=1, video_fps=5, video_dir=default_output_dir() + "/videos", num_episodes=args.num_episodes, gifs=False, gif_dir=default_output_dir() + "/gifs", video_frequency = 1) q_agent_config = QAgentConfig(attacker_load_path=args.attacker_path,defender_load_path=args.defender_path) env_name = "idsgame-cyber-v0" attacker_type = AgentType.TABULAR_Q_AGENT.value defender_type = AgentType.TABULAR_Q_AGENT.value if(args.attacker_bot): attacker_type = AgentType.ATTACK_MAXIMAL_VALUE.value if(args.defender_bot): defender_type = AgentType.DEFEND_MINIMAL_VALUE.value client_config = ClientConfig(env_name=env_name, attacker_type=attacker_type, defender_type=defender_type, mode=RunnerMode.SIMULATE.value, simulation_config=simulation_config, output_dir=default_output_dir(), title="Simulation", q_agent_config=q_agent_config) return client_config # Program entrypoint if __name__ == '__main__': args = define_args() config = default_config(args) result = Runner.run(config) print(f'Number of attack victory in {args.num_episodes} episodes: {result.attacker_wins[-1]}')
py
1a475c7d58dbb5097ea623af8f64348988b46d83
def read_verilog(args): assert(len(args) == 1) filename = args[0] with open(filename, 'r') as verilogfile: content = [line for line in verilogfile if 'assign' in line][:-1] boolDict = dict() for line in content: left, right = line.split('=') name = left.split()[1] for k, v in boolDict.items(): right = right.replace(k, '({})'.format(v)) boolDict[name] = right.replace(';', '').replace('\n', '') #print(boolDict['valid']) return boolDict['valid']
py
1a475db64427a91a747965472836187d34481151
from quanser_robots import GentlyTerminating import threading import gym import torch import numpy as np from abstract_rl.src.data_structures.temporal_difference_data.trajectory_builder import TrajectoryBuilder from abstract_rl.src.data_structures.temporal_difference_data.trajectory_collection import TrajectoryCollection from abstract_rl.src.misc.cli_printer import CliPrinter from abstract_rl.src.misc.running_centered_filter import RunningCenteredFilter class MCMCEnvWrapper: """ Environment wrapper for gym environments. Adds support for executing a whole trajectory based on a policy, instead of only giving a step based interface to the outside. """ def namespace(self): return self._name_sp def __init__(self, mc): """ Initialize a new environment. :param mc: The model configuration with everything important. """ conf = mc['conf'] self.mc = mc self.num_threads = conf['num_threads'] self.render = conf['render'] self._name_sp = conf.get_namespace() # save config self.conf = conf self.num_epochs = conf.get_root('num_epochs') self.env_name = conf['name'] self.env = GentlyTerminating(gym.make(self.env_name)) self._normalize = conf['normalize'] self._discount = conf['discount'] self.epoch = 0 # set best measured reward to lowest possible reward self.best_reward = np.finfo(np.float64).min self.last_reward = None self.max_traj_len = 0 self.min_reward = None self.cli = CliPrinter().instance self.created_trajectories = 0 self.obs_sp = self.env.observation_space self.act_sp = self.env.action_space self.thread_lock = threading.Lock() self.state_filter = RunningCenteredFilter('states', self.observation_dim) self.reward_filter = RunningCenteredFilter('rewards', 1) def last_ucb_reward(self): assert self.last_reward is not None return self.last_reward def discount(self): """ Discount factor of the environment. :return: The discount factor used. """ return self._discount def reset(self): """ Resets the environment. :return: The state after the reset. """ cs = self.env.reset() return cs def execute_policy(self, policy, max_steps, batch_size, exploration=True, render=False, rew_field_name=None): """ Executes a policy for a maximum number of steps multiple times. This work can be split onto multiple threads as well. :param policy: The policy to evaluate. :param max_steps: The maximum number of steps. :return: A list of trajectories. """ with self.conf.ns('policy'): t = 0 k = 0 trajectories = [] while t < batch_size: tr = self.execute_policy_once(np.minimum(batch_size - t, max_steps), policy, render and k == 0, opt=not exploration) trajectories.append(tr) t += len(tr) k += 1 if rew_field_name is not None: disc_rewards = [traj.discounted_reward(self.discount()) for traj in trajectories] self.mc['log'].log({rew_field_name: [np.mean(disc_rewards), np.std(disc_rewards)]}) self.epoch += 1 tj = TrajectoryCollection(self, sum([len(tra) for tra in trajectories])) tj.extend(trajectories) tj.print() return tj def execute_policy_once(self, max_steps, policy, render=False, opt=False): """ Execute a policy once for the maximum number of steps or the environment sends done. :param max_steps: The maximum number of steps, if done not set. :param policy: The policy to use. :param render: Render the environment. :param seed: Set a seed if wanted. :return: The finalized and built trajectory. """ # reset environment and create empty trajectory env = GentlyTerminating(gym.make(self.env_name)) if not self.render else self.env cs = env.reset() if self._normalize: cs /= env.observation_space.high self.state_filter.register(cs) # create new trajectory builder with self.thread_lock: new_id = self.created_trajectories self.created_trajectories += 1 traj_builder = TrajectoryBuilder(new_id, self, cs) t = 0 # repeat for the number of steps while max_steps is None or t < max_steps: # sample distribution based on state tcs = torch.Tensor(cs) tcs = tcs.view([1, -1]) # sample action and calc log likelihood suff_stats = policy.forward(tcs) a = policy.mode(suff_stats=suff_stats) \ if opt else policy.sample_actions(suff_stats=suff_stats) ll = policy.log_prob(a, suff_stats=suff_stats) # prepare for usage ll = ll.detach().numpy()[0] a = a.detach().numpy()[0] cs, r, done, info = env.step(a) self.state_filter.register(cs) self.reward_filter.register(cs) # bug fix for quanser cs /= env.observation_space.high t += 1 # only punish if episode aborted traj_builder.observe(a, r, cs, ll, int(done)) # render if needed if render: env.render() # break if necessary if done: break # compile using the discount factor traj = traj_builder.finalize() self.max_traj_len = max(self.max_traj_len, t) env.close() return traj @property def observation_space(self): """ Bounds for the observation space. :return: Bound of the observation space. """ return self.obs_sp @property def action_space(self): """ Bounds for the action space. :return: Bound of the action space. """ return self.act_sp @property def observation_dim(self): """ Dimension of observation space. :return: Dimension of the observation space. """ return int(np.prod(self.observation_space.high.shape)) @property def action_dim(self): """ Dimension of action space. :return: Dimension of the action space. """ return int(np.prod(self.action_space.high.shape))
py
1a475dddaa2a330d43e105b0e9660d31e95666e3
# Download the Python helper library from twilio.com/docs/python/install from twilio.rest import TwilioTaskRouterClient # Your Account Sid and Auth Token from twilio.com/user/account account_sid = "ACXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" auth_token = "your_auth_token" workspace_sid = "WSXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" workflow_sid = "WWXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" client = TwilioTaskRouterClient(account_sid, auth_token) workflow = client.workflows(workspace_sid).update( workflow_sid, task_reservation_timout='20' ) print(workflow.task_reservation_timeout) # alternatively workflow = client.workflows(workspace_sid).get(workflow_sid) workflow = workflow.update(task_reservation_timeout='20') print(workflow.task_reservation_timeout)
py
1a475f193edcf5120871b4c120fb7d2c5eff0f47
import torch from torch import nn import numpy as np import os from .utils.detect_face import detect_face, extract_face class PNet(nn.Module): """MTCNN PNet. Keyword Arguments: pretrained {bool} -- Whether or not to load saved pretrained weights (default: {True}) """ def __init__(self, pretrained=True): super().__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=3) self.prelu1 = nn.PReLU(10) self.pool1 = nn.MaxPool2d(2, 2, ceil_mode=True) self.conv2 = nn.Conv2d(10, 16, kernel_size=3) self.prelu2 = nn.PReLU(16) self.conv3 = nn.Conv2d(16, 32, kernel_size=3) self.prelu3 = nn.PReLU(32) self.conv4_1 = nn.Conv2d(32, 2, kernel_size=1) self.softmax4_1 = nn.Softmax(dim=1) self.conv4_2 = nn.Conv2d(32, 4, kernel_size=1) self.training = False if pretrained: state_dict_path = os.path.join(os.path.dirname(__file__), '../data/pnet.pt') state_dict = torch.load(state_dict_path) self.load_state_dict(state_dict) def forward(self, x): x = self.conv1(x) x = self.prelu1(x) x = self.pool1(x) x = self.conv2(x) x = self.prelu2(x) x = self.conv3(x) x = self.prelu3(x) a = self.conv4_1(x) a = self.softmax4_1(a) b = self.conv4_2(x) return b, a class RNet(nn.Module): """MTCNN RNet. Keyword Arguments: pretrained {bool} -- Whether or not to load saved pretrained weights (default: {True}) """ def __init__(self, pretrained=True): super().__init__() self.conv1 = nn.Conv2d(3, 28, kernel_size=3) self.prelu1 = nn.PReLU(28) self.pool1 = nn.MaxPool2d(3, 2, ceil_mode=True) self.conv2 = nn.Conv2d(28, 48, kernel_size=3) self.prelu2 = nn.PReLU(48) self.pool2 = nn.MaxPool2d(3, 2, ceil_mode=True) self.conv3 = nn.Conv2d(48, 64, kernel_size=2) self.prelu3 = nn.PReLU(64) self.dense4 = nn.Linear(576, 128) self.prelu4 = nn.PReLU(128) self.dense5_1 = nn.Linear(128, 2) self.softmax5_1 = nn.Softmax(dim=1) self.dense5_2 = nn.Linear(128, 4) self.training = False if pretrained: state_dict_path = os.path.join(os.path.dirname(__file__), '../data/rnet.pt') state_dict = torch.load(state_dict_path) self.load_state_dict(state_dict) def forward(self, x): x = self.conv1(x) x = self.prelu1(x) x = self.pool1(x) x = self.conv2(x) x = self.prelu2(x) x = self.pool2(x) x = self.conv3(x) x = self.prelu3(x) x = x.permute(0, 3, 2, 1).contiguous() x = self.dense4(x.view(x.shape[0], -1)) x = self.prelu4(x) a = self.dense5_1(x) a = self.softmax5_1(a) b = self.dense5_2(x) return b, a class ONet(nn.Module): """MTCNN ONet. Keyword Arguments: pretrained {bool} -- Whether or not to load saved pretrained weights (default: {True}) """ def __init__(self, pretrained=True): super().__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3) self.prelu1 = nn.PReLU(32) self.pool1 = nn.MaxPool2d(3, 2, ceil_mode=True) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.prelu2 = nn.PReLU(64) self.pool2 = nn.MaxPool2d(3, 2, ceil_mode=True) self.conv3 = nn.Conv2d(64, 64, kernel_size=3) self.prelu3 = nn.PReLU(64) self.pool3 = nn.MaxPool2d(2, 2, ceil_mode=True) self.conv4 = nn.Conv2d(64, 128, kernel_size=2) self.prelu4 = nn.PReLU(128) self.dense5 = nn.Linear(1152, 256) self.prelu5 = nn.PReLU(256) self.dense6_1 = nn.Linear(256, 2) self.softmax6_1 = nn.Softmax(dim=1) self.dense6_2 = nn.Linear(256, 4) self.dense6_3 = nn.Linear(256, 10) self.training = False if pretrained: state_dict_path = os.path.join(os.path.dirname(__file__), '../data/onet.pt') state_dict = torch.load(state_dict_path) self.load_state_dict(state_dict) def forward(self, x): x = self.conv1(x) x = self.prelu1(x) x = self.pool1(x) x = self.conv2(x) x = self.prelu2(x) x = self.pool2(x) x = self.conv3(x) x = self.prelu3(x) x = self.pool3(x) x = self.conv4(x) x = self.prelu4(x) x = x.permute(0, 3, 2, 1).contiguous() x = self.dense5(x.view(x.shape[0], -1)) x = self.prelu5(x) a = self.dense6_1(x) a = self.softmax6_1(a) b = self.dense6_2(x) c = self.dense6_3(x) return b, c, a class MTCNN(nn.Module): """MTCNN face detection module. This class loads pretrained P-, R-, and O-nets and returns images cropped to include the face only, given raw input images of one of the following types: - PIL image or list of PIL images - numpy.ndarray (uint8) representing either a single image (3D) or a batch of images (4D). Cropped faces can optionally be saved to file also. Keyword Arguments: image_size {int} -- Output image size in pixels. The image will be square. (default: {160}) margin {int} -- Margin to add to bounding box, in terms of pixels in the final image. Note that the application of the margin differs slightly from the davidsandberg/facenet repo, which applies the margin to the original image before resizing, making the margin dependent on the original image size (this is a bug in davidsandberg/facenet). (default: {0}) min_face_size {int} -- Minimum face size to search for. (default: {20}) thresholds {list} -- MTCNN face detection thresholds (default: {[0.6, 0.7, 0.7]}) factor {float} -- Factor used to create a scaling pyramid of face sizes. (default: {0.709}) post_process {bool} -- Whether or not to post process images tensors before returning. (default: {True}) select_largest {bool} -- If True, if multiple faces are detected, the largest is returned. If False, the face with the highest detection probability is returned. (default: {True}) selection_method {string} -- Which heuristic to use for selection. Default None. If specified, will override select_largest: "probability": highest probability selected "largest": largest box selected "largest_over_threshold": largest box over a certain probability selected "center_weighted_size": box size minus weighted squared offset from image center (default: {None}) keep_all {bool} -- If True, all detected faces are returned, in the order dictated by the select_largest parameter. If a save_path is specified, the first face is saved to that path and the remaining faces are saved to <save_path>1, <save_path>2 etc. (default: {False}) device {torch.device} -- The device on which to run neural net passes. Image tensors and models are copied to this device before running forward passes. (default: {None}) """ def __init__( self, image_size=160, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, select_largest=True, selection_method=None, keep_all=False, device=None ): super().__init__() self.image_size = image_size self.margin = margin self.min_face_size = min_face_size self.thresholds = thresholds self.factor = factor self.post_process = post_process self.select_largest = select_largest self.keep_all = keep_all self.selection_method = selection_method self.pnet = PNet() self.rnet = RNet() self.onet = ONet() self.device = torch.device('cpu') if device is not None: self.device = device self.to(device) if not self.selection_method: self.selection_method = 'largest' if self.select_largest else 'probability' def forward(self, img, save_path=None, return_prob=False): """Run MTCNN face detection on a PIL image or numpy array. This method performs both detection and extraction of faces, returning tensors representing detected faces rather than the bounding boxes. To access bounding boxes, see the MTCNN.detect() method below. Arguments: img {PIL.Image, np.ndarray, or list} -- A PIL image, np.ndarray, torch.Tensor, or list. Keyword Arguments: save_path {str} -- An optional save path for the cropped image. Note that when self.post_process=True, although the returned tensor is post processed, the saved face image is not, so it is a true representation of the face in the input image. If `img` is a list of images, `save_path` should be a list of equal length. (default: {None}) return_prob {bool} -- Whether or not to return the detection probability. (default: {False}) Returns: Union[torch.Tensor, tuple(torch.tensor, float)] -- If detected, cropped image of a face with dimensions 3 x image_size x image_size. Optionally, the probability that a face was detected. If self.keep_all is True, n detected faces are returned in an n x 3 x image_size x image_size tensor with an optional list of detection probabilities. If `img` is a list of images, the item(s) returned have an extra dimension (batch) as the first dimension. Example: >>> from facenet_pytorch import MTCNN >>> mtcnn = MTCNN() >>> face_tensor, prob = mtcnn(img, save_path='face.png', return_prob=True) """ # Detect faces batch_boxes, batch_probs, batch_points = self.detect(img, landmarks=True) # Select faces if not self.keep_all: batch_boxes, batch_probs, batch_points = self.select_boxes( batch_boxes, batch_probs, batch_points, img, method=self.selection_method ) # Extract faces faces = self.extract(img, batch_boxes, save_path) if return_prob: return faces, batch_boxes, batch_probs else: return faces, batch_boxes def detect(self, img, landmarks=False): """Detect all faces in PIL image and return bounding boxes and optional facial landmarks. This method is used by the forward method and is also useful for face detection tasks that require lower-level handling of bounding boxes and facial landmarks (e.g., face tracking). The functionality of the forward function can be emulated by using this method followed by the extract_face() function. Arguments: img {PIL.Image, np.ndarray, or list} -- A PIL image, np.ndarray, torch.Tensor, or list. Keyword Arguments: landmarks {bool} -- Whether to return facial landmarks in addition to bounding boxes. (default: {False}) Returns: tuple(numpy.ndarray, list) -- For N detected faces, a tuple containing an Nx4 array of bounding boxes and a length N list of detection probabilities. Returned boxes will be sorted in descending order by detection probability if self.select_largest=False, otherwise the largest face will be returned first. If `img` is a list of images, the items returned have an extra dimension (batch) as the first dimension. Optionally, a third item, the facial landmarks, are returned if `landmarks=True`. Example: >>> from PIL import Image, ImageDraw >>> from facenet_pytorch import MTCNN, extract_face >>> mtcnn = MTCNN(keep_all=True) >>> boxes, probs, points = mtcnn.detect(img, landmarks=True) >>> # Draw boxes and save faces >>> img_draw = img.copy() >>> draw = ImageDraw.Draw(img_draw) >>> for i, (box, point) in enumerate(zip(boxes, points)): ... draw.rectangle(box.tolist(), width=5) ... for p in point: ... draw.rectangle((p - 10).tolist() + (p + 10).tolist(), width=10) ... extract_face(img, box, save_path='detected_face_{}.png'.format(i)) >>> img_draw.save('annotated_faces.png') """ with torch.no_grad(): batch_boxes, batch_points = detect_face( img, self.min_face_size, self.pnet, self.rnet, self.onet, self.thresholds, self.factor, self.device ) boxes, probs, points = [], [], [] for box, point in zip(batch_boxes, batch_points): box = np.array(box) point = np.array(point) if len(box) == 0: boxes.append(None) probs.append([None]) points.append(None) elif self.select_largest: box_order = np.argsort((box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1]))[::-1] box = box[box_order] point = point[box_order] boxes.append(box[:, :4]) probs.append(box[:, 4]) points.append(point) else: boxes.append(box[:, :4]) probs.append(box[:, 4]) points.append(point) boxes = np.array(boxes) probs = np.array(probs) points = np.array(points) if ( not isinstance(img, (list, tuple)) and not (isinstance(img, np.ndarray) and len(img.shape) == 4) and not (isinstance(img, torch.Tensor) and len(img.shape) == 4) ): boxes = boxes[0] probs = probs[0] points = points[0] if landmarks: return boxes, probs, points return boxes, probs def select_boxes( self, all_boxes, all_probs, all_points, imgs, method='probability', threshold=0.9, center_weight=2.0 ): """Selects a single box from multiple for a given image using one of multiple heuristics. Arguments: all_boxes {np.ndarray} -- Ix0 ndarray where each element is a Nx4 ndarry of bounding boxes for N detected faces in I images (output from self.detect). all_probs {np.ndarray} -- Ix0 ndarray where each element is a Nx0 ndarry of probabilities for N detected faces in I images (output from self.detect). all_points {np.ndarray} -- Ix0 ndarray where each element is a Nx5x2 array of points for N detected faces. (output from self.detect). imgs {PIL.Image, np.ndarray, or list} -- A PIL image, np.ndarray, torch.Tensor, or list. Keyword Arguments: method {str} -- Which heuristic to use for selection: "probability": highest probability selected "largest": largest box selected "largest_over_theshold": largest box over a certain probability selected "center_weighted_size": box size minus weighted squared offset from image center (default: {'probability'}) threshold {float} -- theshold for "largest_over_threshold" method. (default: {0.9}) center_weight {float} -- weight for squared offset in center weighted size method. (default: {2.0}) Returns: tuple(numpy.ndarray, numpy.ndarray, numpy.ndarray) -- nx4 ndarray of bounding boxes for n images. Ix0 array of probabilities for each box, array of landmark points. """ #copying batch detection from extract, but would be easier to ensure detect creates consistent output. batch_mode = True if ( not isinstance(imgs, (list, tuple)) and not (isinstance(imgs, np.ndarray) and len(imgs.shape) == 4) and not (isinstance(imgs, torch.Tensor) and len(imgs.shape) == 4) ): imgs = [imgs] all_boxes = [all_boxes] all_probs = [all_probs] all_points = [all_points] batch_mode = False selected_boxes, selected_probs, selected_points = [], [], [] for boxes, points, probs, img in zip(all_boxes, all_points, all_probs, imgs): if boxes is None: selected_boxes.append(None) selected_probs.append([None]) selected_points.append(None) continue # If at least 1 box found boxes = np.array(boxes) probs = np.array(probs) points = np.array(points) if method == 'largest': box_order = np.argsort((boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]))[::-1] elif method == 'probability': box_order = np.argsort(probs)[::-1] elif method == 'center_weighted_size': box_sizes = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) img_center = (img.width / 2, img.height/2) box_centers = np.array(list(zip((boxes[:, 0] + boxes[:, 2]) / 2, (boxes[:, 1] + boxes[:, 3]) / 2))) offsets = box_centers - img_center offset_dist_squared = np.sum(np.power(offsets, 2.0), 1) box_order = np.argsort(box_sizes - offset_dist_squared * center_weight)[::-1] elif method == 'largest_over_threshold': box_mask = probs > threshold boxes = boxes[box_mask] box_order = np.argsort((boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]))[::-1] if sum(box_mask) == 0: selected_boxes.append(None) selected_probs.append([None]) selected_points.append(None) continue box = boxes[box_order][[0]] prob = probs[box_order][[0]] point = points[box_order][[0]] selected_boxes.append(box) selected_probs.append(prob) selected_points.append(point) if batch_mode: selected_boxes = np.array(selected_boxes) selected_probs = np.array(selected_probs) selected_points = np.array(selected_points) else: selected_boxes = selected_boxes[0] selected_probs = selected_probs[0][0] selected_points = selected_points[0] return selected_boxes, selected_probs, selected_points def extract(self, img, batch_boxes, save_path): # Determine if a batch or single image was passed batch_mode = True if ( not isinstance(img, (list, tuple)) and not (isinstance(img, np.ndarray) and len(img.shape) == 4) and not (isinstance(img, torch.Tensor) and len(img.shape) == 4) ): img = [img] batch_boxes = [batch_boxes] batch_mode = False # Parse save path(s) if save_path is not None: if isinstance(save_path, str): save_path = [save_path] else: save_path = [None for _ in range(len(img))] # Process all bounding boxes faces = [] for im, box_im, path_im in zip(img, batch_boxes, save_path): if box_im is None: faces.append(None) continue if not self.keep_all: box_im = box_im[[0]] faces_im = [] for i, box in enumerate(box_im): face_path = path_im if path_im is not None and i > 0: save_name, ext = os.path.splitext(path_im) face_path = save_name + '_' + str(i + 1) + ext face = extract_face(im, box, self.image_size, self.margin, face_path) if self.post_process: face = fixed_image_standardization(face) faces_im.append(face) if self.keep_all: faces_im = torch.stack(faces_im) else: faces_im = faces_im[0] faces.append(faces_im) if not batch_mode: faces = faces[0] return faces def fixed_image_standardization(image_tensor): processed_tensor = (image_tensor - 127.5) / 128.0 return processed_tensor def prewhiten(x): mean = x.mean() std = x.std() std_adj = std.clamp(min=1.0/(float(x.numel())**0.5)) y = (x - mean) / std_adj return y
py
1a475f67f584bba7f7ff061f79c543d5b5fe1b3e
# coding=utf-8 # Copyright (c) 2017,2018, F5 Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import os import pytest import requests from f5_openstack_agent.lbaasv2.drivers.bigip.resource_helper import \ ResourceType from ..testlib.resource_validator import ResourceValidator from ..testlib.service_reader import LoadbalancerReader requests.packages.urllib3.disable_warnings() LOG = logging.getLogger(__name__) @pytest.fixture(scope="module") def services(): neutron_services_filename = ( os.path.join( os.path.dirname(os.path.abspath(__file__)), '../../testdata/service_requests/pool_multiple_members.json') ) return (json.load(open(neutron_services_filename))) def test_pool_lb_change_ratio(track_bigip_cfg, bigip, services, icd_config, icontrol_driver): env_prefix = icd_config['environment_prefix'] service_iter = iter(services) validator = ResourceValidator(bigip, env_prefix) # create lb service = service_iter.next() lb_reader = LoadbalancerReader(service) folder = '{0}_{1}'.format(env_prefix, lb_reader.tenant_id()) icontrol_driver._common_service_handler(service) assert bigip.folder_exists(folder) # create listener service = service_iter.next() icontrol_driver._common_service_handler(service) # create pool with round-robin, no members service = service_iter.next() icontrol_driver._common_service_handler(service) pool_srvc = service['pools'][0] pool_name = '{0}_{1}'.format(env_prefix, pool_srvc['id']) validator.assert_pool_valid(pool_srvc, folder) pool = bigip.get_resource(ResourceType.pool, pool_name, partition=folder) assert pool.loadBalancingMode == 'round-robin' # create member with weight = 1 service = service_iter.next() member = service['members'][0] icontrol_driver._common_service_handler(service) validator.assert_member_valid(pool_srvc, member, folder) pool.refresh() assert pool.loadBalancingMode == 'round-robin' # create member with weight > 1 service = service_iter.next() member = service['members'][1] icontrol_driver._common_service_handler(service) validator.assert_member_valid(pool_srvc, member, folder) pool.refresh() assert pool.loadBalancingMode == 'ratio-member' # create member with weight = 1 service = service_iter.next() member = service['members'][2] icontrol_driver._common_service_handler(service) validator.assert_member_valid(pool_srvc, member, folder) pool.refresh() assert pool.loadBalancingMode == 'ratio-member' # delete pool member with weight > 1 service = service_iter.next() icontrol_driver._common_service_handler(service) validator.assert_pool_valid(pool_srvc, folder) pool.refresh() assert pool.loadBalancingMode == 'round-robin' # update pool to have lb method least connections service = service_iter.next() icontrol_driver._common_service_handler(service) validator.assert_pool_valid(pool_srvc, folder) pool.refresh() assert pool.loadBalancingMode == 'least-connections-member' # create member with weight > 1 service = service_iter.next() member = service['members'][2] icontrol_driver._common_service_handler(service) validator.assert_pool_valid(pool_srvc, folder) validator.assert_member_valid(pool_srvc, member, folder) pool.refresh() assert pool.loadBalancingMode == 'ratio-least-connections-member' # delete member with weight > 1 service = service_iter.next() icontrol_driver._common_service_handler(service) validator.assert_pool_valid(pool_srvc, folder) pool.refresh() assert pool.loadBalancingMode == 'least-connections-member' # delete second member service = service_iter.next() icontrol_driver._common_service_handler(service) validator.assert_pool_valid(pool_srvc, folder) pool.refresh() assert pool.loadBalancingMode == 'least-connections-member' # set lb method to SOURCE_IP for pool service = service_iter.next() icontrol_driver._common_service_handler(service) validator.assert_pool_valid(pool_srvc, folder) pool.refresh() assert pool.loadBalancingMode == 'least-connections-node' # update member to have weight > 1 service = service_iter.next() member = service['members'][0] icontrol_driver._common_service_handler(service) validator.assert_pool_valid(pool_srvc, folder) validator.assert_member_valid(pool_srvc, member, folder) pool.refresh() assert pool.loadBalancingMode == 'least-connections-node' # delete remaining member service = service_iter.next() icontrol_driver._common_service_handler(service) validator.assert_pool_valid(pool_srvc, folder) pool.refresh() assert pool.loadBalancingMode == 'least-connections-node' # delete pool service = service_iter.next() icontrol_driver._common_service_handler(service) assert not bigip.resource_exists( ResourceType.pool, pool_name, partition=folder) # delete listener service = service_iter.next() icontrol_driver._common_service_handler(service) # delete lb service = service_iter.next() icontrol_driver._common_service_handler(service)
py
1a47612fff963c47003528f78b019a54b61518e9
import os SCRAPYU_PATH = os.path.realpath(os.path.dirname(__file__)) TEMPLATES_DIR = os.path.join(SCRAPYU_PATH, 'templates')
py
1a476242e018619e6a776335f307097ecd250f87
import gym from gym import error, spaces, utils from gym.utils import seeding from math import gcd import pygame import numpy as np class MARLEnv(gym.Env): WINDOW_HEIGHT = 360 WINDOW_WIDTH = 640 CELL_LENGTH = gcd(WINDOW_HEIGHT, WINDOW_WIDTH) WHITE = (255, 255, 255) BLACK = (0, 0, 0) YELLOW = (247, 240, 48) RED = (201, 16, 41) BLUE = (0, 0, 255) PADDING = 5 MAX_NUMBER_OF_AGENTS = 5 MIN_BALLS_COUNT = 10 MAX_BALLS_COUNT = 20 MIN_PITS_COUNT = 3 MAX_PITS_COUNT = 10 ROBOT_PLAYER = "../assets/robot-pack/PNG/Top view/robot_yellow.png" ROBOT_LOADED = "../assets/robot-pack/PNG/Top view/robot_green.png" ROBOT_UN_LOADED = "../assets/robot-pack/PNG/Top view/robot_red.png" TARGET_FLAG = "../assets/kenney_sportspack/PNG/Equipment/flag_checkered.png" BALL = "../assets/kenney_sportspack/PNG/Equipment/ball_soccer1.png" def __init__(self): pygame.init() self.game_window = pygame.display.set_mode((MARLEnv.WINDOW_WIDTH, MARLEnv.WINDOW_HEIGHT), 0, 32) self.grid = None self.agents = None self.source_balls = None self.target_balls = None self.pits_pos = None # Initialize the agents number. self.reset() def render(self, mode='human', close=False): # Fill window. self.game_window.fill(MARLEnv.WHITE) ############################ # Draw the grid. ############################ h, w = self.grid.shape for i in range(0, w, MARLEnv.CELL_LENGTH): pygame.draw.line(self.game_window, MARLEnv.BLACK, (i, 0), (i, MARLEnv.WINDOW_HEIGHT - 1)) for j in range(0, h, MARLEnv.CELL_LENGTH): pygame.draw.line(self.game_window, MARLEnv.BLACK, (0, j), (MARLEnv.WINDOW_WIDTH - 1, j)) ############################ # Draw the pits. ############################ for pit_pos in self.pits_pos: pygame.draw.rect(self.game_window, MARLEnv.RED, (pit_pos[0] * MARLEnv.CELL_LENGTH, pit_pos[1] * MARLEnv.CELL_LENGTH, MARLEnv.CELL_LENGTH, MARLEnv.CELL_LENGTH)) ############################ # Draw the source and the dest boxes. ############################ pygame.draw.rect(self.game_window, MARLEnv.BLUE, (0, 0, MARLEnv.CELL_LENGTH, MARLEnv.CELL_LENGTH)) i, j = ( MARLEnv.WINDOW_HEIGHT - MARLEnv.CELL_LENGTH + 1, MARLEnv.WINDOW_WIDTH - MARLEnv.CELL_LENGTH + 1 ) pygame.draw.rect(self.game_window, MARLEnv.YELLOW, (j, i, i + MARLEnv.CELL_LENGTH, j + MARLEnv.CELL_LENGTH)) ############################ # Draw the agents. ############################ i = 0 for agent in self.agents: if i == 0: robot_img = pygame.image.load(MARLEnv.ROBOT_PLAYER).convert_alpha() elif agent['loaded']: robot_img = pygame.image.load(MARLEnv.ROBOT_LOADED).convert_alpha() else: robot_img = pygame.image.load(MARLEnv.ROBOT_UN_LOADED).convert_alpha() robot_img = pygame.transform.scale(robot_img, (MARLEnv.CELL_LENGTH - 2 * MARLEnv.PADDING, MARLEnv.CELL_LENGTH - 2 * MARLEnv.PADDING)) robot_img_rect = ( agent['pos'][0] * MARLEnv.CELL_LENGTH + MARLEnv.PADDING, agent['pos'][1] * MARLEnv.CELL_LENGTH + MARLEnv.PADDING) self.game_window.blit(robot_img, robot_img_rect) i += 1 ############################ # Draw the target flag. ############################ flag = pygame.image.load(MARLEnv.TARGET_FLAG).convert_alpha() flag = pygame.transform.scale(flag, (30, 30)) flag_rect = ( MARLEnv.WINDOW_WIDTH - MARLEnv.CELL_LENGTH, MARLEnv.WINDOW_HEIGHT - MARLEnv.CELL_LENGTH - MARLEnv.PADDING ) self.game_window.blit(flag, flag_rect) ############################ # Draw the items (balls). ############################ for ball in self.source_balls: ball_img = pygame.image.load(MARLEnv.BALL).convert_alpha() ball_rect = (ball['pos'][0] - MARLEnv.PADDING, ball['pos'][1] - MARLEnv.PADDING) self.game_window.blit(ball_img, ball_rect) for ball in self.target_balls: ball_img = pygame.image.load(MARLEnv.BALL).convert_alpha() ball_rect = (ball['pos'][0] + MARLEnv.PADDING, ball['pos'][1] + MARLEnv.PADDING) self.game_window.blit(ball_img, ball_rect) ############################ # Update pygame display(required). ############################ pygame.display.update() return def step(self, action): """ Parameters ---------- action : Returns ------- ob, reward, episode_over, info : tuple ob (object) : an environment-specific object representing your observation of the environment. reward (float) : amount of reward achieved by the previous action. The scale varies between environments, but the goal is always to increase your total reward. episode_over (bool) : whether it's time to reset the environment again. Most (but not all) tasks are divided up into well-defined episodes, and done being True indicates the episode has terminated. (For example, perhaps the pole tipped too far, or you lost your last life.) info (dict) : diagnostic information useful for debugging. It can sometimes be useful for learning (for example, it might contain the raw probabilities behind the environment's last state change). However, official evaluations of your agent are not allowed to use this for learning. """ x, y = self.agents[0]['pos'] pickup = False drop = False false_pickup = False false_drop = False collision = False reward = 0 episode_over = False print(action) if action == 0: # 'LEFT': x -= 1 elif action == 1: # 'RIGHT': x += 1 elif action == 2: # 'UP': y -= 1 elif action == 3: # 'DOWN': y += 1 elif action == 4: # 'PICK_UP': # check if he picked up correctly in the right place and there exists at least one ball in the source. if not ((y, x) in [(0, 1), (1, 0), (1, 1)] and len(self.source_balls) > 0 and ( not self.agents[0]['loaded'])): false_pickup = True else: pickup = True self.agents[0]['loaded'] = True ball = self.source_balls.pop(len(self.source_balls) - 1) self.agents[0]['balls'].append(ball) self.agents[0]['steps'] = -1 elif action == 5: drop = True last_rack_idx_x = MARLEnv.WINDOW_WIDTH // MARLEnv.CELL_LENGTH - 1 last_rack_idx_y = MARLEnv.WINDOW_HEIGHT // MARLEnv.CELL_LENGTH - 1 if (self.agents[0]['loaded'] and (y, x) in [(last_rack_idx_y, last_rack_idx_x - 1), (last_rack_idx_y - 1, last_rack_idx_x), (last_rack_idx_y - 1, last_rack_idx_x - 1)] and len(self.source_balls) > 0): ball = self.agents[0]['balls'].pop() ball['pos'] = ( np.random.randint(MARLEnv.WINDOW_WIDTH - MARLEnv.CELL_LENGTH, MARLEnv.WINDOW_WIDTH - MARLEnv.PADDING), np.random.randint(MARLEnv.WINDOW_HEIGHT - MARLEnv.CELL_LENGTH, MARLEnv.WINDOW_HEIGHT - MARLEnv.PADDING) ) self.target_balls.append(ball) self.agents[0]['loaded'] = len(self.agents[0]['balls']) > 0 self.agents[0]['steps'] = -1 elif (self.agents[0]['loaded'] and (y, x) in [(last_rack_idx_y, last_rack_idx_x - 1), (last_rack_idx_y - 1, last_rack_idx_x), (last_rack_idx_y - 1, last_rack_idx_x - 1)]): false_drop = True episode_over = True else: false_drop = True if (x, y) in self.pits_pos or (x, y) in [self.agents[i]['pos'] for i in range(1, len(self.agents))]: collision = True episode_over = True self.agents[0]['steps'] += 1 self.agents[0]['pos'] = (x, y) # TODO add missed pcikups reward = -collision * 100 - \ false_drop * 80 - \ false_pickup * 70 - \ self.agents[0]['steps'] + \ 90 * drop * (not false_drop) + \ 90 * pickup * (not false_pickup) observation = self.get_observation() print(reward, x, y) return reward, episode_over, observation def reset(self): # Add pits. self.pits_pos = [] for i in range(np.random.randint(MARLEnv.MIN_PITS_COUNT, MARLEnv.MAX_PITS_COUNT)): self.pits_pos.append( ( np.random.randint(3, MARLEnv.WINDOW_WIDTH // MARLEnv.CELL_LENGTH - 2), np.random.randint(3, MARLEnv.WINDOW_HEIGHT // MARLEnv.CELL_LENGTH - 2) ) ) # Initialize the agents number. self.agents = [] for i in range(np.random.randint(2, MARLEnv.MAX_NUMBER_OF_AGENTS)): x, y = (np.random.randint(0, MARLEnv.WINDOW_WIDTH // MARLEnv.CELL_LENGTH), np.random.randint(0, MARLEnv.WINDOW_HEIGHT // MARLEnv.CELL_LENGTH)) while (x, y) in self.pits_pos: x, y = (np.random.randint(0, MARLEnv.WINDOW_WIDTH // MARLEnv.CELL_LENGTH), np.random.randint(0, MARLEnv.WINDOW_HEIGHT // MARLEnv.CELL_LENGTH)) self.agents.append( { 'pos': (x, y), 'steps': 0, 'loaded': False, 'balls': [] } ) # Initialize the grid. self.grid = np.zeros((MARLEnv.WINDOW_HEIGHT, MARLEnv.WINDOW_WIDTH)) # Initialize the items(balls) parameters. self.source_balls = [] for i in range(np.random.randint(MARLEnv.MIN_BALLS_COUNT, MARLEnv.MAX_BALLS_COUNT)): self.source_balls.append( { 'pos': (np.random.randint(0, MARLEnv.CELL_LENGTH // 1.5), np.random.randint(0, MARLEnv.CELL_LENGTH) // 1.5) } ) self.target_balls = [] def get_observation(self): ob = charar = np.chararray( (MARLEnv.WINDOW_HEIGHT // MARLEnv.CELL_LENGTH, MARLEnv.WINDOW_WIDTH // MARLEnv.CELL_LENGTH)) ob[:] = '.' # set the source balls. if len(self.source_balls) > 0: ob[0][0] = 'X' else: ob[0][0] = 'E' # set the player. x, y = self.agents[0]['pos'] ob[y][x] = 'P' # set other agents for i in range(1, len(self.agents)): agent = self.agents[i] x, y = agent['pos'] ob[y][x] = '*' # TODO @Samir, try to make it different. # set pits for pit_pos in self.pits_pos: x, y = pit_pos ob[y][x] = '*' # set target balls/ if len(self.target_balls) > 0: ob[-1][-1] = 'X' else: ob[-1][-1] = 'E' return ob
py
1a4763865eebba11df4bc055fabe83e83b11719d
from typing import List, NamedTuple import libkol from ..Error import ( InvalidLocationError, NotEnoughMeatError, UnknownError, WrongKindOfItemError, ) from ..util import parsing from .request import Request from ..Store import Store class Response(NamedTuple): items: List["libkol.types.ItemQuantity"] meat_gained: int class npc_buy(Request): """ Purchases items from an NPC store. :param session: Active session :param store: NPC store to buy from :param item: Item to buy :param quantity: Quantity of said item to buy """ def __init__( self, session: "libkol.Session", store: Store, item: "libkol.Item", quantity: int = 1, ) -> None: if item.store_id != store.id: raise WrongKindOfItemError("This item cannot be purchased in that store") # Gift shop is handled differently if store.slug == "town_giftshop.php": params = {"action": "buy", "howmany": quantity, "whichitem": item.id} self.request = session.request("town_giftshop.php", pwd=True, params=params) return params = {"whichshop": store.slug, "action": "buyitem", "quantity": quantity} if item.store_row: params["whichrow"] = item.store_row else: params["whichitem"] = item.id self.request = session.request("shop.php", pwd=True, params=params) @staticmethod async def parser(content: str, **kwargs) -> Response: if len(content) == 0: raise InvalidLocationError("You cannot visit that store yet.") if "You've been sent back here by some kind of bug" in content: raise InvalidLocationError("The store you tried to visit doesn't exist.") if ( "This store doesn't sell that item" in content or "Invalid item selected" in content or "<td>That isn't a thing that's sold here.</td>" in content ): raise WrongKindOfItemError("This store doesn't carry that item.") if "You can't afford " in content: raise NotEnoughMeatError( "You do not have enough meat to purchase the item(s)." ) items = await parsing.item(content) if len(items) == 0: raise UnknownError("Unknown error. No items received.") meat = parsing.meat(content) return Response(items, meat)
py
1a4763c6bd5409d1bbcd05a89feb8f3280fbbeda
#!/usr/bin/python import sys, os import json import requests import re import collections import operator import time from xml.dom import minidom from datetime import datetime, timedelta sys.path.append(os.path.join(os.path.dirname(__file__), '..')) PUTIO_FOLDER_RSS = '' #example https://put.io/rss/video/12345678 PUTIO_USERNAME = '' #example username1 PUTIO_PASSWORD = '' #example password1 FROM_DATE_DAY_OFFSET = 3 SHOULD_VALIDATE_DATE = True TIME_FORMAT = '%b %d' ITEM_LIMIT = 10 data = {}; has_more_items = False item_count = 0 def fetch_xml(url, username, password): r = requests.get(url, auth=(username, password)) r.raise_for_status() return minidom.parseString(r.text) def get_el_val(el, name): return el.getElementsByTagName(name)[0].childNodes[0].data def get_show_name(orig_title): title = orig_title digit_search = re.search("\d", title) if digit_search: digit_index = digit_search.start() title = title[:digit_index] if (title[digit_index - 1] == 'S'): title = title[:digit_index - 1] return title.replace('.', ' ').title() def get_season_episode(orig_title): title = orig_title digit_search = re.search("\d", title) if not digit_search: return title digit_index = digit_search.start() if title[digit_index - 1] == 'S': digit_index -= 1 title = title[digit_index:] dot_search = re.search("[.]", title) if dot_search: dot_index = dot_search.start() title = title[:dot_index] return title def get_episode(season_episode_string): # SxxEyy format if len(season_episode_string) == 6: return season_episode_string[4:6] # xxyy format if len(season_episode_string) == 4: return season_episode_string[2:4] # xyy format if len(season_episode_string) == 3: return season_episode_string[1:3] return '-' def get_season(season_episode_string): # SxxEyy format if len(season_episode_string) == 6: return season_episode_string[1:3] # xxyy format if len(season_episode_string) == 4: return season_episode_string[:2] # xyy format if len(season_episode_string) == 3: return season_episode_string[0] return '-' def parse_date(date_str): # stripping away the ' -0000' timezone info date_str = date_str[:(len(date_str) - 6)] return datetime.strptime(date_str, "%a, %d %b %Y %H:%M:%S") def validate_date(date_str): if not SHOULD_VALIDATE_DATE: return True parsed_date = parse_date(date_str) return get_from_date() <= parsed_date <= get_to_date() def get_from_date(): return datetime.now() - timedelta(days=FROM_DATE_DAY_OFFSET) def get_to_date(): return datetime.now() def get_display_date(date): return date.strftime(TIME_FORMAT) try: xml = fetch_xml(PUTIO_FOLDER_RSS, username=PUTIO_USERNAME, password=PUTIO_PASSWORD) items = xml.getElementsByTagName("item") for item in items: date = get_el_val(item, "pubDate") if not validate_date(date): continue item_count += 1 orig_title = get_el_val(item, "title") title = get_show_name(orig_title) season_episode = get_season_episode(orig_title) season = get_season(season_episode) episode = get_episode(season_episode) key = title + " " + season_episode data[key] = { 'name': title, 'season': season, 'episode': episode, 'link': get_el_val(item, "guid") } if item_count == ITEM_LIMIT: has_more_items = True break if item_count == 0: data['message'] = 'No new shows :-(' else: data = collections.OrderedDict(sorted(data.items())) if has_more_items: data['message'] = '... and more!' data['to_date'] = get_display_date(get_to_date()) data['from_date'] = get_display_date(get_from_date()) except requests.ConnectionError as ce: data['error'] = 'Error' print json.dumps(data) if isinstance(data, (dict, list, tuple, set)) else data.encode('utf-8') sys.exit()
py
1a4763e4662536f0d94af421c255b69d433b5eac
# Adapted from: https://github.com/hardmaru/estool/blob/master/es.py import numpy as np # A Vanilla Gradient Ascent class GradientAscentOpt: def __init__(self, theta0, stepsize, epsilon=1e-8): self.epsilon = epsilon self.dim = len(theta0) self.stepsize = stepsize self.reset(np.copy(theta0)) def reset(self, theta0): self.theta = theta0 def _compute_step(self, grad): return self.stepsize * grad def step(self, grad): step = self._compute_step(grad) self.theta += step # Adam Gradient Ascent class AdamOpt: def __init__(self, theta0, stepsize, betas=(0.9, 0.999), epsilon=1e-8): self.epsilon = epsilon self.t = 0 self.dim = len(theta0) self.stepsize = stepsize self.beta1 = betas[0] self.beta2 = betas[1] self.reset(np.copy(theta0)) def reset(self, theta0): self.theta = theta0 self.m = np.zeros(self.dim, dtype=np.float32) self.v = np.zeros(self.dim, dtype=np.float32) def _compute_step(self, grad): a = self.stepsize * np.sqrt(1 - self.beta2 ** self.t) / (1 - self.beta1 ** self.t) self.m = self.beta1 * self.m + (1 - self.beta1) * grad self.v = self.beta2 * self.v + (1 - self.beta2) * (grad * grad) step = a * self.m / (np.sqrt(self.v) + self.epsilon) return step def step(self, grad): self.t += 1 step = self._compute_step(grad) self.theta += step
py
1a4764254ff1e32d09657f7b2a26f7091a911aba
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains functions for the anime faces dataset where each image has a list labels.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import os from six.moves import urllib import tensorflow as tf from datasets import dataset_utils import util_misc import tensorflow.contrib.slim as slim _FILE_PATTERN = '%s-*' _ITEMS_TO_DESCRIPTIONS = { 'source': 'A color image of varying height and width.', 'label_text': 'The text of the label.', 'conditional_labels': 'one hot encoded labels extracted from `label_text`', 'filename': 'Name of the image file.', } FLAGS = tf.flags.FLAGS DEFAULT_NUM_CLASSES = 51 TAG_TEXT_DELIMITER = ', ' _DEFAULT_TRAIN_SIZE = 27247 _DEFAULT_VALIDATION_SIZE = 641 _PRELOGITS_SIZE = 2048 def get_split(split_name, dataset_dir, file_pattern=None, reader=None): """Gets a dataset tuple with instructions for reading ImageNet. Args: split_name: A train/test split name. dataset_dir: The base directory of the dataset sources. file_pattern: The file pattern to use when matching the dataset sources. It is assumed that the pattern contains a '%s' string so that the split name can be inserted. reader: The TensorFlow reader type. Returns: A `Dataset` namedtuple. Raises: ValueError: if `split_name` is not a valid train/test split. """ assert FLAGS.num_classes == 0 or FLAGS.num_classes == DEFAULT_NUM_CLASSES num_classes = FLAGS.num_classes or DEFAULT_NUM_CLASSES _SPLITS_TO_SIZES = { 'train': FLAGS.train_size or _DEFAULT_TRAIN_SIZE, 'validation': FLAGS.validation_size or _DEFAULT_VALIDATION_SIZE, } if split_name not in _SPLITS_TO_SIZES: raise ValueError('split name %s was not recognized.' % split_name) if not file_pattern: file_pattern = _FILE_PATTERN file_pattern = os.path.join(dataset_dir, file_pattern % split_name) # Allowing None in the signature so that dataset_factory can use the default. if reader is None: reader = tf.TFRecordReader keys_to_features = { 'image/encoded': tf.FixedLenFeature( (), tf.string, default_value=''), 'image/format': tf.FixedLenFeature( (), tf.string, default_value='jpeg'), 'image/class/label': tf.VarLenFeature( dtype=tf.int64), 'image/class/text': tf.FixedLenFeature( [], dtype=tf.string, default_value=''), 'image/filename': tf.FixedLenFeature( [], dtype=tf.string, default_value=''), } output_name = 'target' if FLAGS.dataset_use_target else 'source' items_to_handlers = { output_name: slim.tfexample_decoder.Image('image/encoded', 'image/format'), 'conditional_labels': dataset_utils.OneHotLabelTensor('image/class/text', tags_id_lookup_file=FLAGS.tags_id_lookup_file, num_classes=num_classes, tags_key_column_index=FLAGS.tags_key_column_index, tags_value_column_index=FLAGS.tags_value_column_index), 'label_text': slim.tfexample_decoder.Tensor('image/class/text'), 'filename': slim.tfexample_decoder.Tensor('image/filename'), } items_used = [output_name, 'conditional_labels', 'filename', 'label_text'] items_need_preprocessing = [output_name, 'conditional_labels',] decoder = slim.tfexample_decoder.TFExampleDecoder( keys_to_features, items_to_handlers) return slim.dataset.Dataset( data_sources=file_pattern, reader=reader, decoder=decoder, num_samples=_SPLITS_TO_SIZES[split_name], items_to_descriptions=_ITEMS_TO_DESCRIPTIONS, items_used=items_used, items_need_preprocessing=items_need_preprocessing, num_classes=num_classes, has_source=True)
py
1a4765e6d0217e8671ea29a962fe5c8051845adb
"""Simple script to generate audio files for testing. This script can generate example audio files used for testing. Some metadata fields, like artist or title, can be insert into the file. Various parameters can also be changed, like number of channels or sample rate. It only outputs wav file, which is good enough since we rely on a 3rd party library for loading files and metadata. Number of frames to be written is specified with --frame-count (-n) and the same pattern is always used. Assuming two channels and two bytes sample width, the first frame will contain 00000000, second frame 01010101, third 02020202 and so on. When reaching FFFFFFFF, the value will wrap back to 00000000 again. """ from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser from os import path from typing import cast import wave from mutagen import File from mutagen.id3 import TALB, TIT2, TPE1 METADATA_FIELDS = { "title": TIT2, "artist": TPE1, "album": TALB, } FRAMES_PER_PACKET = 352 def write_new_wave_file(filename: str, args) -> None: """Generate and write a new sample WAV file.""" if path.exists(filename) and not args.overwrite: raise Exception("file already exists") with wave.open(filename, "wb") as handle: wfile: wave.Wave_write = cast(wave.Wave_write, handle) # See: https://github.com/PyCQA/pylint/issues/4534 # pylint: disable=no-member wfile.setnchannels(args.channels) wfile.setsampwidth(args.sample_width) wfile.setframerate(args.sample_rate) for frame_number in range(args.frame_count): if args.static: frame = args.channels * args.sample_width * b"\x00" else: frame = args.channels * args.sample_width * bytes([frame_number & 0xFF]) wfile.writeframes(frame) # pylint: enable=no-member def add_metadata(filename: str, args): """Add metadata to an existing file.""" f = File(filename) f.add_tags() for title, tag in METADATA_FIELDS.items(): f.tags.add(tag(encoding=3, text=[getattr(args, title)])) f.save() def main(): """Script starts here.""" parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument("filename", help="output filename") parser.add_argument( "-c", "--channels", type=int, default=2, help="number of channels" ) parser.add_argument( "-w", "--sample-width", type=int, default=2, help="sample width in bytes" ) parser.add_argument( "-r", "--sample-rate", type=int, default=44100, help="sample rate" ) parser.add_argument( "-s", "--static", default=False, action="store_true", help="use just zeroes as content", ) parser.add_argument( "-o", "--overwrite", default=False, action="store_true", help="overwrite audio file if it exists", ) parser.add_argument( "-n", "--frame-count", type=int, default=FRAMES_PER_PACKET * 2, help="frames to generate", ) metadata = parser.add_argument_group("metadata") for item in METADATA_FIELDS: metadata.add_argument(f"--{item}", default=None, help=item) args = parser.parse_args() write_new_wave_file(args.filename, args) add_metadata(args.filename, args) if __name__ == "__main__": main()
py
1a4767e67ce56bf33ce9ec4c248f6b8e3091837c
# GENERATED BY KOMAND SDK - DO NOT EDIT import komand import json class Component: DESCRIPTION = "List IPS rules" class Input: ID = "id" SCOPE = "scope" class Output: COVERED_CVES = "covered_cves" RESPONSE_JSON = "response_json" RULES_ASSIGNED = "rules_assigned" class ListRulesInput(komand.Input): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "id": { "type": "integer", "title": "ID", "description": "ID of the computer or policy", "order": 2 }, "scope": { "type": "string", "title": "Scope", "description": "Set the scope", "enum": [ "computer", "policy" ], "order": 1 } }, "required": [ "id", "scope" ] } """) def __init__(self): super(self.__class__, self).__init__(self.schema) class ListRulesOutput(komand.Output): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "covered_cves": { "type": "array", "title": "CVEs", "description": "CVEs covered by the assigned rules", "items": { "type": "string" }, "order": 2 }, "response_json": { "type": "object", "title": "Response JSON", "description": "Full response in JSON format", "order": 3 }, "rules_assigned": { "type": "array", "title": "Rules Assigned", "description": "All IPS rules currently assigned", "items": { "type": "integer" }, "order": 1 } } } """) def __init__(self): super(self.__class__, self).__init__(self.schema)
py
1a4767f47d796becb0ed8ed66309b24423040bfe
test = 2 print(test,type(test)) test = 2.5 print(test,type(test)) test = 'Winner' print(test,type(test)) test = [2,4,'Winner'] print(test,type(test))
py
1a476843bac1101ed430ff8669a123df26ead3c8
import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.path import Path from matplotlib.patches import PathPatch import seaborn as sns from ipywidgets import * from IPython.display import display, HTML def prodmix_graph(zoom): # create the plot object fig, ax = plt.subplots(figsize=(8, 8)) s = np.linspace(0, 3000) plt.plot(s, 10000/6 - 5*s/6, lw=3, label='$5x_1 + 6x_2 \leq 10000$') plt.fill_between(s, 0, 10000/6 - 5*s/6, alpha=0.1) plt.plot(s, 1500 - s/2, lw=3, label='$x_1 + 2x_2 \leq 3000$') plt.fill_between(s, 0, 1500 - s/2, alpha=0.1) plt.plot(600 * np.ones_like(s), s, lw=3, label='$x_1 \leq 600$') plt.fill_betweenx(s, 0, 600, alpha=0.1) plt.plot(s, 1200 * np.ones_like(s), lw=3, label='$x_2 \leq 1200$') plt.fill_betweenx(0, s, 1200, alpha=0.1) # add non-negativity constraints plt.plot(s, np.zeros_like(s), lw=3, label='$x_1$ non-negative') plt.plot(np.zeros_like(s), s, lw=3, label='$x_2$ non-negative') # highlight the feasible region path = Path([ (0., 0.), (0., 1200.), (560, 1200.), (600., 7000/6), (600., 0.), (0., 0.), ]) patch = PathPatch(path, label='feasible region', alpha=0.5) ax.add_patch(patch) # labels and stuff plt.xlabel('$x_1$ (Basic)', fontsize=16) plt.ylabel('$x_2$ (XP)', fontsize=16) if zoom: plt.xlim(400, 800) plt.ylim(1000, 1400) else: plt.xlim(-0.5, 1500) plt.ylim(-0.5, 1500) plt.legend(fontsize=11) ax.legend(loc='upper right', bbox_to_anchor=(1.4, 1)) plt.show() def prodmix_obj(zoom, margin1, margin2): fig, ax = plt.subplots(figsize=(9, 8)) s = np.linspace(0, 1500) plt.plot(s, 10000/6 - 5*s/6, lw=3, label='$5x_1 + 6x_2 \leq 10000$') plt.plot(s, 1500 - s/2, lw=3, label='$x_1 + 2x_2 \leq 3000$') plt.plot(600 * np.ones_like(s), s, lw=3, label='$x_1 \leq 600$') plt.plot(s, 1200 * np.ones_like(s), lw=3, label='$x_2 \leq 1200$') plt.plot(s, np.zeros_like(s), lw=3, label='$x_1$ non-negative') plt.plot(np.zeros_like(s), s, lw=3, label='$x_2$ non-negative') # plot the possible (x1, x2) pairs pairs = [(x1, x2) for x1 in np.arange(start=0, stop=600, step=25) for x2 in np.arange(start=0, stop=1200, step=30) if (5*x1 + 6*x2) <= 10000 and (x1 + 2*x2) <= 3000 and x1<=600 and x2<=1200] # split these into our variables x1, x2 = np.hsplit(np.array(pairs), 2) # caculate the objective function at each pair z = margin1*x1 + margin2*x2 # the objective function # plot the results plt.scatter(x1, x2, c=z, cmap='jet', label='Profit={} $x_1$ + {} $x_2$'.format(margin1, margin2), zorder=3) # labels and stuff cb = plt.colorbar() cb.set_label('profit', fontsize=14) plt.xlabel('$x_1$ (Basic)', fontsize=16) plt.ylabel('$x_2$ (XP)', fontsize=16) if zoom: plt.xlim(400, 800) plt.ylim(1000, 1400) else: plt.xlim(-0.5, 1500) plt.ylim(-0.5, 1500) plt.legend(fontsize=18) ax.legend(loc='upper right', bbox_to_anchor=(1.8, 1)) plt.show() def show_integer_feasregion(): fig, ax = plt.subplots(figsize=(9, 8)) s = np.linspace(0, 50) plt.plot(s, 45 - 5*s/7, lw=3, label='$7x_1 + 5x_2 \leq 45$') plt.plot(s, -25 + 1.9*s, lw=3, label='$1.9x_1 - x_2 \geq 25$') plt.plot(s, 15.5 + 5*s/9, lw=3, label='$-5x_1 + 9x_2 \leq 15.5$') plt.plot(16 * np.ones_like(s), s, lw=3, label='$x_1 \geq 16$') plt.plot(s, 18 * np.ones_like(s), lw=3, label='$x_2 \geq 18$') # plot the possible (x1, x2) pairs pairs = [(x1, x2) for x1 in np.arange(start=15, stop=31, step=1) for x2 in np.arange(start=15, stop=31, step=1) if (5*x1 + 6*x2) <= 10000 and (x1 + 2*x2) <= 3000 and x1<=600 and x2<=1200] # split these into our variables x1, x2 = np.hsplit(np.array(pairs), 2) # plot the results plt.scatter(x1, x2, c=0*x1 + 0*x2, cmap='jet', zorder=3) plt.xlim(15-0.5, 30) plt.ylim(15-0.5, 30) plt.xlabel('$x_1$', fontsize=16) plt.ylabel('$x_2$', fontsize=16) lppath = Path([ (16., 18.), (16., 24.4), (23.3, 28.4), (26.8, 25.8), (22.6, 18.), (16., 18.), ]) lppatch = PathPatch(lppath, label='LP feasible region', alpha=0.3) ax.add_patch(lppatch) mippath = Path([ (16., 18.), (16., 24), (19, 26), (23, 28), (25, 27), (26, 26), (26, 25), (23, 19), (22, 18.), (16., 18.), ]) mippatch = PathPatch(mippath, label='Integer feasible region', alpha=0.5) ax.add_patch(mippatch) plt.legend(fontsize=18) ax.legend(loc='upper right', bbox_to_anchor=(1.4, 1)) plt.show() def draw_local_global_opt(): function = lambda x: (x-1)*(x-2)*(x-3)*(x-4)*(x-5)*(x-6)*(x-7) x = np.linspace(1,7,500) plt.figure(figsize=(12,7)) plt.plot(x, function(x), label='$f(x)$') globalx = 1.32 localx = 3.45 plt.scatter(globalx, function(globalx), s=30, c='r', label='global opt') plt.scatter(localx, function(localx), s=30, c='orange', label='local opt') plt.axhline(linewidth=2, color='black') plt.legend() plt.show() def showconvex(values): plt.subplots(2, 2, figsize=(17,10)) function = lambda x: (x-3)**2 x = np.linspace(0.8,4.2,500) plt.subplot(2,2,1) plt.plot(x, function(x), label='$f(x)$') line = np.array(values) plt.plot(line, function(line), 'o-') plt.title('Convex: Line joining any two poits is above the curve') function = lambda x: np.log(x) - (x-2)**2 x = np.linspace(0.8,4.2,500) plt.subplot(2,2,2) plt.plot(x, function(x), label='$f(x)$') line = np.array(values) plt.plot(line, function(line), 'o-') plt.title('Concave: Line joining any two poits is below the curve') function = lambda x: np.log(x) - 2*x*(x-4)**2 x = np.linspace(0.8,4.2,500) plt.subplot(2,2,3) plt.plot(x, function(x), label='$f(x)$') line = np.array(values) plt.plot(line, function(line), 'o-') plt.title('Neither convex or concave') function = lambda x: np.cos(x*2)*x x = np.linspace(0.8,4.2,500) plt.subplot(2,2,4) plt.plot(x, function(x), label='$f(x)$') line = np.array(values) plt.plot(line, function(line), 'o-') plt.title('Neither convex or concave') plt.legend() plt.show() def deriv(x): x_deriv = (x-2)*(x-3)*(x-4)*(x-5)+(x-1)*(x-3)*(x-4)*(x-5)+(x-1)*(x-2)*(x-4)*(x-5)+(x-1)*(x-2)*(x-3)*(x-5)\ +(x-1)*(x-2)*(x-3)*(x-4) return x_deriv def step(x_new, x_prev, precision, l_r): function = lambda x: (x-1)*(x-2)*(x-3)*(x-4)*(x-5) x = np.linspace(1,5,500) x_list, y_list = [x_new], [function(x_new)] while abs(x_new - x_prev) > precision: x_prev = x_new d_x = - deriv(x_prev) x_new = x_prev + (l_r * d_x) x_list.append(x_new) y_list.append(function(x_new)) print("Local minimum occurs at: "+ str(x_new)) print("Number of steps: " + str(len(x_list))) plt.subplots(1, 2, figsize=(17,7)) plt.subplot(1,2,1) plt.scatter(x_list,y_list,c="g") plt.plot(x_list,y_list,c="g") plt.plot(x,function(x), c="r") plt.title("Gradient descent") plt.subplot(1,2,2) plt.scatter(x_list,y_list,c="g") plt.plot(x_list,y_list,c="g") plt.plot(x,function(x), c="r") plt.xlim([x_list[0]-.2,x_list[-1]+.2]) plt.title("Zoomed in Gradient descent to Key Area") plt.show() def montyhall(sample_size): np.random.seed(1234) prizes = [np.append(np.random.permutation(prizes),[1,1])\ for prizes in np.tile(['goat', 'goat', 'car'], (sample_size,1))] prizes = [np.append(r,np.where(r=='car')[0]+1) for r in prizes] prizes = [np.append(r,np.random.choice(list(set(np.where(r=='goat')[0]+1)-{1}))) for r in prizes] prizes = [np.append(r,list({'2','3'}-{r[-1]})[0]) for r in prizes] df = pd.DataFrame(prizes, columns=['door1','door2','door3','select', 'keep', 'prize', 'open','switch']) df['win'] = 'NA' df.win[df.prize==df.keep] = 'keep' df.win[df.prize==df.switch] = 'switch' fig, axes = plt.subplots(1, 1, figsize = (12,6)) ax = sns.countplot(x='win', data=df, order=df['win'].value_counts().sort_values().index, ax=axes) total = len(df.win) nbars = len(ax.patches) for p in ax.patches: percentage = '{:.1f}%'.format(100 * p.get_height()/total) x = p.get_x() + p.get_width()/2 -.05 y = p.get_y() + p.get_height() + total/100 ax.annotate(percentage, (x, y)) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.show() display(df.head(10)) def successful_rate(num_candidates, num_reject, num_sim = 5000, printtable = False): np.random.seed(1234) candidates = [np.random.choice(range(100), num_candidates, replace=False) for i in range(num_sim)] df = pd.DataFrame(candidates, columns=['person'+str(i+1) for i in range(num_candidates)]) df['best_score'] = df[df.columns[:num_candidates]].max(axis=1) df['best'] = df[df.columns[:num_candidates]].idxmax(axis=1) rate = dict.fromkeys(num_reject) for r in num_reject: df['best_at_stop'] = df[df.columns[:r]].max(axis=1) df_rest = df[df.columns[r:num_candidates]] df['hired_score'] = np.where(df_rest.gt(df['best_at_stop'], axis=0).any(axis=1), df_rest[df_rest.gt(df['best_at_stop'], axis=0)].stack(dropna=False).groupby(level=0).first(), df[df.columns[num_candidates-1]]).astype('int64') df['hired'] = np.where(df_rest.gt(df['best_at_stop'], axis=0).any(axis=1), df_rest.gt(df['best_at_stop'], axis=0).idxmax(axis=1), 'person'+str(num_candidates)) rate[r] = np.sum(df.best==df.hired)/num_sim*100 if printtable == True: print('The best candidate is hired {} times in {} trials with {} rejection'.format(np.sum(df.best==df.hired), num_sim, r)) display(df.head(10)) return rate def secretary(n): rate = successful_rate(n, range(1,n)) lists = sorted(rate.items()) x, y = zip(*lists) plt.plot(x, y) plt.show() print('optimal rejection is {} with {}% chance to hire the best candidate'.\ format(max(rate, key=rate.get), round(max(rate.values())),2))
py
1a476851f95836b8a66e60e1b5eaf28fdec3465a
input = """ rule(r1). head(b,r1). pbl(a,r1). nbl(neg_b,r1). rule(r2). head(neg_a,r2). nbl(a,r2). rule(r3). head(a,r3). nbl(neg_a,r3). opp(a,neg_a). opp(b,neg_b). pr(r1,r2). pr(r2,r3). """ output = """ rule(r1). head(b,r1). pbl(a,r1). nbl(neg_b,r1). rule(r2). head(neg_a,r2). nbl(a,r2). rule(r3). head(a,r3). nbl(neg_a,r3). opp(a,neg_a). opp(b,neg_b). pr(r1,r2). pr(r2,r3). """
py
1a47685b05e5820c61f86a7b7edf722ebdb83fbc
import gym import numpy as np import tensorflow as tf from gym.wrappers import TimeLimit def ortho_init(scale=1.0): """ Orthogonal initialization for the policy weights :param scale: (float) Scaling factor for the weights. :return: (function) an initialization function for the weights """ # _ortho_init(shape, dtype, partition_info=None) def _ortho_init(shape, *_, **_kwargs): """Intialize weights as Orthogonal matrix. Orthogonal matrix initialization [1]_. For n-dimensional shapes where n > 2, the n-1 trailing axes are flattened. For convolutional layers, this corresponds to the fan-in, so this makes the initialization usable for both dense and convolutional layers. References ---------- .. [1] Saxe, Andrew M., James L. McClelland, and Surya Ganguli. "Exact solutions to the nonlinear dynamics of learning in deep linear """ # lasagne ortho init for tf shape = tuple(shape) if len(shape) == 2: flat_shape = shape elif len(shape) == 4: # assumes NHWC flat_shape = (np.prod(shape[:-1]), shape[-1]) else: raise NotImplementedError gaussian_noise = np.random.normal(0.0, 1.0, flat_shape) u, _, v = np.linalg.svd(gaussian_noise, full_matrices=False) weights = u if u.shape == flat_shape else v # pick the one with the correct shape weights = weights.reshape(shape) return (scale * weights[:shape[0], :shape[1]]).astype(np.float32) return _ortho_init def conv(input_tensor, scope, *, n_filters, filter_size, stride, pad='VALID', init_scale=1.0, data_format='NHWC', one_dim_bias=False): """ Creates a 2d convolutional layer for TensorFlow :param input_tensor: (TensorFlow Tensor) The input tensor for the convolution :param scope: (str) The TensorFlow variable scope :param n_filters: (int) The number of filters :param filter_size: (Union[int, [int], tuple<int, int>]) The filter size for the squared kernel matrix, or the height and width of kernel filter if the input is a list or tuple :param stride: (int) The stride of the convolution :param pad: (str) The padding type ('VALID' or 'SAME') :param init_scale: (int) The initialization scale :param data_format: (str) The data format for the convolution weights :param one_dim_bias: (bool) If the bias should be one dimentional or not :return: (TensorFlow Tensor) 2d convolutional layer """ if isinstance(filter_size, list) or isinstance(filter_size, tuple): assert len(filter_size) == 2, \ "Filter size must have 2 elements (height, width), {} were given".format(len(filter_size)) filter_height = filter_size[0] filter_width = filter_size[1] else: filter_height = filter_size filter_width = filter_size if data_format == 'NHWC': channel_ax = 3 strides = [1, stride, stride, 1] bshape = [1, 1, 1, n_filters] elif data_format == 'NCHW': channel_ax = 1 strides = [1, 1, stride, stride] bshape = [1, n_filters, 1, 1] else: raise NotImplementedError bias_var_shape = [n_filters] if one_dim_bias else [1, n_filters, 1, 1] n_input = input_tensor.get_shape()[channel_ax].value wshape = [filter_height, filter_width, n_input, n_filters] with tf.compat.v1.variable_scope(scope): weight = tf.get_variable("w", wshape, initializer=ortho_init(init_scale)) bias = tf.get_variable("b", bias_var_shape, initializer=tf.constant_initializer(0.0)) if not one_dim_bias and data_format == 'NHWC': bias = tf.reshape(bias, bshape) return bias + tf.nn.conv2d(input_tensor, weight, strides=strides, padding=pad, data_format=data_format) def linear(input_tensor, scope, n_hidden, *, init_scale=1.0, init_bias=0.0): """ Creates a fully connected layer for TensorFlow :param input_tensor: (TensorFlow Tensor) The input tensor for the fully connected layer :param scope: (str) The TensorFlow variable scope :param n_hidden: (int) The number of hidden neurons :param init_scale: (int) The initialization scale :param init_bias: (int) The initialization offset bias :return: (TensorFlow Tensor) fully connected layer """ with tf.compat.v1.variable_scope(scope): n_input = input_tensor.get_shape()[1] weight = tf.compat.v1.get_variable("w", [n_input, n_hidden], initializer=ortho_init(init_scale)) bias = tf.compat.v1.get_variable("b", [n_hidden], initializer=tf.constant_initializer(init_bias)) return tf.matmul(input_tensor, weight) + bias def batch_to_seq(tensor_batch, n_batch, n_steps, flat=False): """ Transform a batch of Tensors, into a sequence of Tensors for recurrent policies :param tensor_batch: (TensorFlow Tensor) The input tensor to unroll :param n_batch: (int) The number of batch to run (n_envs * n_steps) :param n_steps: (int) The number of steps to run for each environment :param flat: (bool) If the input Tensor is flat :return: (TensorFlow Tensor) sequence of Tensors for recurrent policies """ if flat: tensor_batch = tf.reshape(tensor_batch, [n_batch, n_steps]) else: tensor_batch = tf.reshape(tensor_batch, [n_batch, n_steps, -1]) return [tf.squeeze(v, [1]) for v in tf.split(axis=1, num_or_size_splits=n_steps, value=tensor_batch)] def seq_to_batch(tensor_sequence, flat=False): """ Transform a sequence of Tensors, into a batch of Tensors for recurrent policies :param tensor_sequence: (TensorFlow Tensor) The input tensor to batch :param flat: (bool) If the input Tensor is flat :return: (TensorFlow Tensor) batch of Tensors for recurrent policies """ shape = tensor_sequence[0].get_shape().as_list() if not flat: assert len(shape) > 1 n_hidden = tensor_sequence[0].get_shape()[-1].value return tf.reshape(tf.concat(axis=1, values=tensor_sequence), [-1, n_hidden]) else: return tf.reshape(tf.stack(values=tensor_sequence, axis=1), [-1]) def lstm(input_tensor, mask_tensor, cell_state_hidden, scope, n_hidden, init_scale=1.0, layer_norm=False): """ Creates an Long Short Term Memory (LSTM) cell for TensorFlow :param input_tensor: (TensorFlow Tensor) The input tensor for the LSTM cell :param mask_tensor: (TensorFlow Tensor) The mask tensor for the LSTM cell :param cell_state_hidden: (TensorFlow Tensor) The state tensor for the LSTM cell :param scope: (str) The TensorFlow variable scope :param n_hidden: (int) The number of hidden neurons :param init_scale: (int) The initialization scale :param layer_norm: (bool) Whether to apply Layer Normalization or not :return: (TensorFlow Tensor) LSTM cell """ _, n_input = [v.value for v in input_tensor[0].get_shape()] with tf.variable_scope(scope): weight_x = tf.get_variable("wx", [n_input, n_hidden * 4], initializer=ortho_init(init_scale)) weight_h = tf.get_variable("wh", [n_hidden, n_hidden * 4], initializer=ortho_init(init_scale)) bias = tf.get_variable("b", [n_hidden * 4], initializer=tf.constant_initializer(0.0)) if layer_norm: # Gain and bias of layer norm gain_x = tf.get_variable("gx", [n_hidden * 4], initializer=tf.constant_initializer(1.0)) bias_x = tf.get_variable("bx", [n_hidden * 4], initializer=tf.constant_initializer(0.0)) gain_h = tf.get_variable("gh", [n_hidden * 4], initializer=tf.constant_initializer(1.0)) bias_h = tf.get_variable("bh", [n_hidden * 4], initializer=tf.constant_initializer(0.0)) gain_c = tf.get_variable("gc", [n_hidden], initializer=tf.constant_initializer(1.0)) bias_c = tf.get_variable("bc", [n_hidden], initializer=tf.constant_initializer(0.0)) cell_state, hidden = tf.split(axis=1, num_or_size_splits=2, value=cell_state_hidden) for idx, (_input, mask) in enumerate(zip(input_tensor, mask_tensor)): cell_state = cell_state * (1 - mask) hidden = hidden * (1 - mask) if layer_norm: gates = _ln(tf.matmul(_input, weight_x), gain_x, bias_x) \ + _ln(tf.matmul(hidden, weight_h), gain_h, bias_h) + bias else: gates = tf.matmul(_input, weight_x) + tf.matmul(hidden, weight_h) + bias in_gate, forget_gate, out_gate, cell_candidate = tf.split(axis=1, num_or_size_splits=4, value=gates) in_gate = tf.nn.sigmoid(in_gate) forget_gate = tf.nn.sigmoid(forget_gate) out_gate = tf.nn.sigmoid(out_gate) cell_candidate = tf.tanh(cell_candidate) cell_state = forget_gate * cell_state + in_gate * cell_candidate if layer_norm: hidden = out_gate * tf.tanh(_ln(cell_state, gain_c, bias_c)) else: hidden = out_gate * tf.tanh(cell_state) input_tensor[idx] = hidden cell_state_hidden = tf.concat(axis=1, values=[cell_state, hidden]) return input_tensor, cell_state_hidden def _ln(input_tensor, gain, bias, epsilon=1e-5, axes=None): """ Apply layer normalisation. :param input_tensor: (TensorFlow Tensor) The input tensor for the Layer normalization :param gain: (TensorFlow Tensor) The scale tensor for the Layer normalization :param bias: (TensorFlow Tensor) The bias tensor for the Layer normalization :param epsilon: (float) The epsilon value for floating point calculations :param axes: (tuple, list or int) The axes to apply the mean and variance calculation :return: (TensorFlow Tensor) a normalizing layer """ if axes is None: axes = [1] mean, variance = tf.nn.moments(input_tensor, axes=axes, keep_dims=True) input_tensor = (input_tensor - mean) / tf.sqrt(variance + epsilon) input_tensor = input_tensor * gain + bias return input_tensor def conv_to_fc(input_tensor): """ Reshapes a Tensor from a convolutional network to a Tensor for a fully connected network :param input_tensor: (TensorFlow Tensor) The convolutional input tensor :return: (TensorFlow Tensor) The fully connected output tensor """ n_hidden = np.prod([v.value for v in input_tensor.get_shape()[1:]]) input_tensor = tf.reshape(input_tensor, [-1, n_hidden]) return input_tensor class DoneOnSuccessWrapper(gym.Wrapper): """ Reset on success and offsets the reward. Useful for GoalEnv. """ def __init__(self, env, reward_offset=1.0): super(DoneOnSuccessWrapper, self).__init__(env) self.reward_offset = reward_offset def step(self, action): obs, reward, done, info = self.env.step(action) done = done or info.get('is_success', False) reward += self.reward_offset return obs, reward, done, info def compute_reward(self, achieved_goal, desired_goal, info): reward = self.env.compute_reward(achieved_goal, desired_goal, info) return reward + self.reward_offset class TimeFeatureWrapper(gym.Wrapper): """ Add remaining time to observation space for fixed length episodes. See https://arxiv.org/abs/1712.00378 and https://github.com/aravindr93/mjrl/issues/13. :param env: (gym.Env) :param max_steps: (int) Max number of steps of an episode if it is not wrapped in a TimeLimit object. :param test_mode: (bool) In test mode, the time feature is constant, equal to zero. This allow to check that the agent did not overfit this feature, learning a deterministic pre-defined sequence of actions. """ def __init__(self, env, max_steps=1000, test_mode=False): assert isinstance(env.observation_space, gym.spaces.Box) # Add a time feature to the observation low, high = env.observation_space.low, env.observation_space.high low, high= np.concatenate((low, [0])), np.concatenate((high, [1.])) env.observation_space = gym.spaces.Box(low=low, high=high, dtype=np.float32) super(TimeFeatureWrapper, self).__init__(env) if isinstance(env, TimeLimit): self._max_steps = env._max_episode_steps else: self._max_steps = max_steps self._current_step = 0 self._test_mode = test_mode def reset(self): self._current_step = 0 return self._get_obs(self.env.reset()) def step(self, action): self._current_step += 1 obs, reward, done, info = self.env.step(action) return self._get_obs(obs), reward, done, info def _get_obs(self, obs): """ Concatenate the time feature to the current observation. :param obs: (np.ndarray) :return: (np.ndarray) """ # Remaining time is more general time_feature = 1 - (self._current_step / self._max_steps) if self._test_mode: time_feature = 1.0 # Optionnaly: concatenate [time_feature, time_feature ** 2] return np.concatenate((obs, [time_feature])) def total_episode_reward_logger(rew_acc, rewards, masks, writer, steps): """ calculates the cumulated episode reward, and prints to tensorflow log the output :param rew_acc: (np.array float) the total running reward :param rewards: (np.array float) the rewards :param masks: (np.array bool) the end of episodes :param writer: (TensorFlow Session.writer) the writer to log to :param steps: (int) the current timestep :return: (np.array float) the updated total running reward :return: (np.array float) the updated total running reward """ with tf.compat.v1.variable_scope("environment_info", reuse=True): for env_idx in range(rewards.shape[0]): dones_idx = np.sort(np.argwhere(masks[env_idx])) if len(dones_idx) == 0: rew_acc[env_idx] += sum(rewards[env_idx]) else: rew_acc[env_idx] += sum(rewards[env_idx, :dones_idx[0, 0]]) summary = tf.compat.v1.Summary(value=[tf.compat.v1.Summary.Value(tag="episode_reward", simple_value=rew_acc[env_idx])]) writer.add_summary(summary, steps + dones_idx[0, 0]) for k in range(1, len(dones_idx[:, 0])): rew_acc[env_idx] = sum(rewards[env_idx, dones_idx[k-1, 0]:dones_idx[k, 0]]) summary = tf.compat.v1.Summary(value=[tf.compat.v1.Summary.Value(tag="episode_reward", simple_value=rew_acc[env_idx])]) writer.add_summary(summary, steps + dones_idx[k, 0]) rew_acc[env_idx] = sum(rewards[env_idx, dones_idx[-1, 0]:]) return rew_acc
py
1a47694f3b30902d724091297842e225e2e44f8e
# Loads a target data then defines tables for it spark.read \ .option("header", True) \ .csv("./testdata/adult.csv") \ .write \ .saveAsTable("adult") delphi.misc \ .options({"db_name": "default", "table_name": "adult", "row_id": "tid"}) \ .flatten() \ .write \ .saveAsTable("adult_flatten") spark.table("adult").show(1) spark.table("adult_flatten").show(1) # Loads a ground truth data then defines tables for it spark.read \ .option("header", True) \ .csv("./testdata/adult_clean.csv") \ .write \ .saveAsTable("adult_clean") spark.table("adult_flatten") \ .join(spark.table("adult_clean"), ["tid", "attribute"], "inner") \ .where("not(value <=> correct_val)") \ .write \ .saveAsTable("error_cells_ground_truth") spark.table("adult_clean").show(1) spark.table("error_cells_ground_truth").show(1) # Detects error cells then repairs them from repair.errors import NullErrorDetector, ConstraintErrorDetector error_detectors = [ ConstraintErrorDetector(constraint_path="./testdata/adult_constraints.txt"), NullErrorDetector() ] repaired_df = delphi.repair \ .setDbName("default") \ .setTableName("adult") \ .setRowId("tid") \ .setErrorDetectors(error_detectors) \ .run() # Computes performance numbers (precision & recall) # - Precision: the fraction of correct repairs, i.e., repairs that match # the ground truth, over the total number of repairs performed # - Recall: correct repairs over the total number of errors pdf = repaired_df.join(spark.table("adult_clean"), ["tid", "attribute"], "inner") rdf = repaired_df.join(spark.table("error_cells_ground_truth"), ["tid", "attribute"], "right_outer") # Compares predicted values with the correct ones pdf.orderBy("attribute").show() precision = pdf.where("repaired <=> correct_val").count() / pdf.count() recall = rdf.where("repaired <=> correct_val").count() / rdf.count() f1 = (2.0 * precision * recall) / (precision + recall) print(f"Precision={precision} Recall={recall} F1={f1}")
py
1a4769ce22ddf16648b5c7027a4c3910ac79a234
# Copyright 2019 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for PSD kernel linop.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from absl.testing import parameterized import numpy as np import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability.python.internal import test_util as tfp_test_util from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import tfpk = tfp.math.psd_kernels def skip_if_no_xla(skip_test_fn): try: tf.function(lambda: tf.constant(0), experimental_compile=True)() except tf.errors.UnimplementedError as e: if 'Could not find compiler' in str(e): skip_test_fn('XLA not available') @test_util.run_all_in_graph_and_eager_modes class LinearOperatorPSDKernelTest(tfp_test_util.TestCase): """Tests for tfp.experimental.linalg.LinearOperatorPSDKernel.""" def test_shape(self): kernel = tfpk.ExponentiatedQuadratic( amplitude=tf.random.uniform([17, 1, 1]), feature_ndims=2) x1 = tf.random.normal([1, 11, 5, 2, 13]) x2 = tf.random.normal([7, 1, 3, 2, 13]) linop = tfp.experimental.linalg.LinearOperatorPSDKernel(kernel, x1, x2) self.assertAllEqual((17, 7, 11, 5, 3), linop.shape) self.assertAllEqual((17, 7, 11), linop.batch_shape) def test_diag_part(self): kernel = tfpk.ExponentiatedQuadratic() x1 = tf.random.normal([7, 3, 5, 2]) # square matrix 5x5 linop = tfp.experimental.linalg.LinearOperatorPSDKernel(kernel, x1) expected, actual = self.evaluate([ tf.linalg.diag_part(kernel.matrix(x1, x1)), linop.diag_part() ]) self.assertAllClose(expected, actual) x2 = tf.random.normal([3, 11, 2]) # wide matrix 5x11 linop = tfp.experimental.linalg.LinearOperatorPSDKernel(kernel, x1, x2) expected, actual = self.evaluate([ tf.linalg.diag_part(kernel.matrix(x1, x2)), linop.diag_part() ]) self.assertAllClose(expected, actual) x2 = tf.random.normal([2, 2]) # tall matrix 5x2 linop = tfp.experimental.linalg.LinearOperatorPSDKernel(kernel, x1, x2) expected, actual = self.evaluate([ tf.linalg.diag_part(kernel.matrix(x1, x2)), linop.diag_part() ]) self.assertAllClose(expected, actual) def test_diag_part_xla(self): skip_if_no_xla(self.skipTest) if not tf.executing_eagerly(): return # experimental_compile is eager-only. kernel = tfpk.ExponentiatedQuadratic() x1 = tf.random.normal([7, 3, 5, 2]) # square matrix 5x5 linop = tfp.experimental.linalg.LinearOperatorPSDKernel(kernel, x1) expected, actual = self.evaluate([ tf.linalg.diag_part(kernel.matrix(x1, x1)), tf.function(linop.diag_part, experimental_compile=True)() ]) self.assertAllClose(expected, actual) x2 = tf.random.normal([3, 11, 2]) # wide matrix 5x11 linop = tfp.experimental.linalg.LinearOperatorPSDKernel(kernel, x1, x2) expected, actual = self.evaluate([ tf.linalg.diag_part(kernel.matrix(x1, x2)), tf.function(linop.diag_part, experimental_compile=True)() ]) self.assertAllClose(expected, actual) x2 = tf.random.normal([2, 2]) # tall matrix 5x2 linop = tfp.experimental.linalg.LinearOperatorPSDKernel(kernel, x1, x2) expected, actual = self.evaluate([ tf.linalg.diag_part(kernel.matrix(x1, x2)), tf.function(linop.diag_part, experimental_compile=True)() ]) self.assertAllClose(expected, actual) def test_row_scalar(self): kernel = tfpk.ExponentiatedQuadratic() x1 = tf.random.normal([5, 2]) x2 = tf.random.normal([7, 3, 5, 2]) linop = tfp.experimental.linalg.LinearOperatorPSDKernel(kernel, x1, x2) i = np.random.randint(0, 5) expected, actual = self.evaluate( [kernel.matrix(x1, x2)[..., i, :], linop.row(i)]) self.assertAllClose(expected, actual) def test_row_batch(self): kernel = tfpk.ExponentiatedQuadratic() x1 = tf.random.normal([7, 1, 5, 2]) x2 = tf.random.normal([1, 3, 4, 2]) linop = tfp.experimental.linalg.LinearOperatorPSDKernel(kernel, x1, x2) i = np.random.randint(0, 5, size=(7, 3)) cov = kernel.matrix(x1, x2) expected, actual = self.evaluate([ tf.gather(cov, i[..., tf.newaxis], batch_dims=2)[..., 0, :], linop.row(i) ]) self.assertAllClose(expected, actual) def test_col_scalar(self): kernel = tfpk.ExponentiatedQuadratic() x1 = tf.random.normal([5, 2]) x2 = tf.random.normal([7, 3, 5, 2]) linop = tfp.experimental.linalg.LinearOperatorPSDKernel(kernel, x1, x2) j = np.random.randint(0, 5) expected, actual = self.evaluate( [kernel.matrix(x1, x2)[..., j], linop.col(j)]) self.assertAllClose(expected, actual) def test_col_batch(self): kernel = tfpk.ExponentiatedQuadratic() x1 = tf.random.normal([3, 5, 2]) x2 = tf.random.normal([7, 1, 4, 2]) linop = tfp.experimental.linalg.LinearOperatorPSDKernel(kernel, x1, x2) j = np.random.randint(0, 4, size=(7, 3)) cov = kernel.matrix(x1, x2) transpose = tf.linalg.matrix_transpose # Gather with batch_dims wants all the batch dims adjacent and leading, so # transpose-gather-transpose is easier to write than injecting a # range(nrows) column into the gather indices. expected, actual = self.evaluate([ transpose(tf.gather(transpose(cov), j[..., tf.newaxis], batch_dims=2) )[..., 0], linop.col(j) ]) self.assertAllClose(expected, actual) def test_matmul(self): kernel = tfpk.ExponentiatedQuadratic() x1 = tf.random.normal([3, 2, 11]) x2 = tf.random.normal([5, 1, 4, 11]) linop = tfp.experimental.linalg.LinearOperatorPSDKernel(kernel, x1, x2) cov = kernel.matrix(x1, x2) x = tf.random.normal([4, 3]) expected, actual = self.evaluate([tf.matmul(cov, x), linop.matmul(x)]) self.assertAllClose(expected, actual) def test_matmul_chunked(self): kernel = tfpk.ExponentiatedQuadratic() x1 = tf.random.normal([3, 2, 11]) x2 = tf.random.normal([5, 1, 14, 11]) linop = tfp.experimental.linalg.LinearOperatorPSDKernel(kernel, x1, x2, num_matmul_parts=7) cov = kernel.matrix(x1, x2) x = tf.random.normal([14, 3]) expected, actual = self.evaluate([tf.matmul(cov, x), linop.matmul(x)]) self.assertAllClose(expected, actual) @parameterized.named_parameters( (dict(testcase_name='_{}chunk'.format(n), nchunks=n) for n in (2, 5))) def test_matmul_chunked_with_remainder(self, nchunks): kernel = tfpk.ExponentiatedQuadratic() x1 = tf.random.normal([3, 2, 11]) x2 = tf.random.normal([5, 1, 17, 11]) linop = tfp.experimental.linalg.LinearOperatorPSDKernel( kernel, x1, x2, num_matmul_parts=nchunks) cov = kernel.matrix(x1, x2) x = tf.random.normal([17, 3]) expected, actual = self.evaluate([tf.matmul(cov, x), linop.matmul(x)]) self.assertAllClose(expected, actual) def test_matmul_chunked_grad(self): kernel = tfpk.ExponentiatedQuadratic() x1 = tf.random.normal([5, 3]) x2 = tf.random.normal([7, 3]) linop = tfp.experimental.linalg.LinearOperatorPSDKernel(kernel, x1, x2, num_matmul_parts=3) x = tf.random.normal([7, 2]) with tf.GradientTape() as tape: tape.watch((x1, x2, x)) y = linop.matmul(x) out_grad = tf.random.normal(tf.shape(y)) actuals = tape.gradient(y, (x1, x2, x), output_gradients=out_grad) with tf.GradientTape() as tape: tape.watch((x1, x2, x)) y = tf.matmul(kernel.matrix(x1, x2), x) expecteds = tape.gradient(y, (x1, x2, x), output_gradients=out_grad) expecteds, actuals = self.evaluate([expecteds, actuals]) self.assertEqual(len(expecteds), len(actuals)) for expected, actual in zip(expecteds, actuals): self.assertAllClose(expected, actual) def test_matmul_xla(self): skip_if_no_xla(self.skipTest) if not tf.executing_eagerly(): return # experimental_compile is eager-only. kernel = tfpk.ExponentiatedQuadratic() x1 = tf.random.normal([5, 3]) x2 = tf.random.normal([7, 3]) linop = tfp.experimental.linalg.LinearOperatorPSDKernel( kernel, x1, x2, num_matmul_parts=3) x = tf.random.normal([7, 2]) @tf.function(experimental_compile=True) def f(): return linop.matmul(x) actual = f() expected = tf.matmul(kernel.matrix(x1, x2), x) expected, actual = self.evaluate([expected, actual]) self.assertAllClose(expected, actual) def test_matmul_grad_xla(self): skip_if_no_xla(self.skipTest) if not tf.executing_eagerly(): return # experimental_compile is eager-only. kernel = tfpk.ExponentiatedQuadratic() x1 = tf.random.normal([5, 3]) x2 = tf.random.normal([7, 3]) linop = tfp.experimental.linalg.LinearOperatorPSDKernel( kernel, x1, x2, num_matmul_parts=3) x = tf.random.normal([7, 2]) @tf.function(experimental_compile=True) def f(): with tf.GradientTape() as tape: tape.watch((x1, x2, x)) y = linop.matmul(x) out_grad = tf.random.normal(tf.shape(y)) actuals = tape.gradient(y, (x1, x2, x), output_gradients=out_grad) return y, actuals, out_grad y, actuals, out_grad = f() with tf.GradientTape() as tape: tape.watch((x1, x2, x)) y = tf.matmul(kernel.matrix(x1, x2), x) expecteds = tape.gradient(y, (x1, x2, x), output_gradients=out_grad) expecteds, actuals = self.evaluate([expecteds, actuals]) self.assertEqual(len(expecteds), len(actuals)) for expected, actual in zip(expecteds, actuals): self.assertAllClose(expected, actual) def test_matmul_grad_xla_kernelparams(self): skip_if_no_xla(self.skipTest) if not tf.executing_eagerly(): return # experimental_compile is eager-only. feature_dim = 3 def kernel_fn(eq_params, poly_params): return (tfpk.ExponentiatedQuadratic(**eq_params) * tfpk.Polynomial(**poly_params)) kernel_args = ( dict(length_scale=tf.random.uniform([], .5, 1.5, dtype=tf.float64), amplitude=tf.random.uniform([], 1.5, 2.5, dtype=tf.float64)), dict(bias_variance=tf.random.uniform([feature_dim], .5, 1.5, dtype=tf.float64), shift=tf.random.normal([feature_dim], dtype=tf.float64))) x1 = tf.random.normal([5, feature_dim], dtype=tf.float64) x2 = tf.random.normal([7, feature_dim], dtype=tf.float64) linop = tfp.experimental.linalg.LinearOperatorPSDKernel( kernel_fn, x1, x2, kernel_args=kernel_args, num_matmul_parts=3) x = tf.random.normal([7, 2], dtype=tf.float64) @tf.function(experimental_compile=True) def f(): with tf.GradientTape() as tape: tape.watch((x1, x2, x, kernel_args)) y = linop.matmul(x) out_grad = tf.random.normal(tf.shape(y), dtype=tf.float64) actuals = tape.gradient(y, (x1, x2, x, kernel_args), output_gradients=out_grad) return y, actuals, out_grad y, actuals, out_grad = f() with tf.GradientTape() as tape: tape.watch((x1, x2, x, kernel_args)) y = tf.matmul(kernel_fn(*kernel_args).matrix(x1, x2), x) expecteds = tape.gradient(y, (x1, x2, x, kernel_args), output_gradients=out_grad) expecteds, actuals = self.evaluate([expecteds, actuals]) tf.nest.assert_same_structure(expecteds, actuals) for expected, actual in zip(tf.nest.flatten(expecteds), tf.nest.flatten(actuals)): self.assertAllClose(expected, actual) if __name__ == '__main__': tf.enable_v2_behavior() tf.test.main()
py
1a476a0c6a6b55972bc23cb608fcb01f9191c85f
import os from .Backend import Backend class TextFile(Backend): def __init__(self, filename): self.filename = filename i = 1 while os.path.exists(self.filename): i += 1 self.filename = "%s_%d" % (filename, i) self.f = open(filename, 'w') self.last_route = "" def write(self, route, attribute, value): if route != self.last_route: self.f.write(str(route) + "\n") self.last_route = route try: self.f.write("\t%s : %s\n" % (str(attribute), str(value.__dict__))) except Exception: self.f.write("\t%s : %s\n" % (str(attribute), str(value))) def __del__(self): self.f.close()
py
1a476a44af7a9ae6178e5773e0909268c56c7085
# Software License Agreement (BSD License) # # Copyright (c) 2012, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import print_function import copy import io import multiprocessing import os import re import stat import subprocess import sys try: from catkin_pkg.cmake import configure_file, get_metapackage_cmake_template_path from catkin_pkg.packages import find_packages from catkin_pkg.topological_order import topological_order_packages except ImportError as e: sys.exit( 'ImportError: "from catkin_pkg.topological_order import ' 'topological_order" failed: %s\nMake sure that you have installed ' '"catkin_pkg", it is up to date and on the PYTHONPATH.' % e ) from catkin.cmake import get_cmake_path from catkin.terminal_color import ansi, disable_ANSI_colors, fmt, sanitize def split_arguments(args, splitter_name, default=None): if splitter_name not in args: return args, default index = args.index(splitter_name) return args[0:index], args[index + 1:] def extract_cmake_and_make_arguments(args): args, cmake_args, make_args, _ = _extract_cmake_and_make_arguments(args, extract_catkin_make=False) return args, cmake_args, make_args def extract_cmake_and_make_and_catkin_make_arguments(args): return _extract_cmake_and_make_arguments(args, extract_catkin_make=True) def _extract_cmake_and_make_arguments(args, extract_catkin_make): cmake_args = [] make_args = [] catkin_make_args = [] arg_types = { '--cmake-args': cmake_args, '--make-args': make_args } if extract_catkin_make: arg_types['--catkin-make-args'] = catkin_make_args arg_indexes = {} for k in arg_types.keys(): if k in args: arg_indexes[args.index(k)] = k for index in reversed(sorted(arg_indexes.keys())): arg_type = arg_indexes[index] args, specific_args = split_arguments(args, arg_type) arg_types[arg_type].extend(specific_args) # classify -D* and -G* arguments as cmake specific arguments implicit_cmake_args = [a for a in args if a.startswith('-D') or a.startswith('-G')] args = [a for a in args if a not in implicit_cmake_args] return args, implicit_cmake_args + cmake_args, make_args, catkin_make_args def cprint(msg, end=None): print(fmt(msg), end=end) def colorize_line(line): cline = sanitize(line) cline = cline.replace( '-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~', '-- @{pf}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@|' ) if line.startswith('-- ~~'): # -- ~~ - cline = cline.replace('~~ ', '@{pf}~~ @|') cline = cline.replace(' - ', ' - @!@{bf}') cline = cline.replace('(', '@|(') cline = cline.replace('(plain cmake)', '@|(@{rf}plain cmake@|)') cline = cline.replace('(unknown)', '@|(@{yf}unknown@|)') if line.startswith('-- +++'): # -- +++ add_subdirectory(package) cline = cline.replace('+++', '@!@{gf}+++@|') cline = cline.replace('kin package: \'', 'kin package: \'@!@{bf}') cline = cline.replace(')', '@|)') cline = cline.replace('\'\n', '@|\'\n') cline = cline.replace('cmake package: \'', 'cmake package: \'@!@{bf}') cline = cline.replace('\'\n', '@|\'\n') if line.startswith('-- ==>'): cline = cline.replace('-- ==>', '-- @!@{bf}==>@|') if line.lower().startswith('warning'): # WARNING cline = ansi('yf') + cline if line.startswith('CMake Warning'): # CMake Warning... cline = cline.replace('CMake Warning', '@{yf}@!CMake Warning@|') if line.startswith('ERROR:'): # ERROR: cline = cline.replace('ERROR:', '@!@{rf}ERROR:@|') if line.startswith('CMake Error'): # CMake Error... cline = cline.replace('CMake Error', '@{rf}@!CMake Error@|') if line.startswith('Call Stack (most recent call first):'): # CMake Call Stack cline = cline.replace('Call Stack (most recent call first):', '@{cf}@_Call Stack (most recent call first):@|') return fmt(cline) def print_command_banner(cmd, cwd, color): if color: # Prepare for printing cmd_str = sanitize(' '.join(cmd)) cwd_str = sanitize(cwd) # Print command notice cprint('@{bf}####') cprint('@{bf}#### Running command: @!"%s"@|@{bf} in @!"%s"' % (cmd_str, cwd_str)) cprint('@{bf}####') else: print('####') print('#### Running command: "%s" in "%s"' % (' '.join(cmd), cwd)) print('####') def run_command_colorized(cmd, cwd, quiet=False): run_command(cmd, cwd, quiet=quiet, colorize=True) def run_command(cmd, cwd, quiet=False, colorize=False): capture = (quiet or colorize) stdout_pipe = subprocess.PIPE if capture else None stderr_pipe = subprocess.STDOUT if capture else None try: proc = subprocess.Popen( cmd, cwd=cwd, shell=False, stdout=stdout_pipe, stderr=stderr_pipe ) except OSError as e: raise OSError("Failed command '%s': %s" % (cmd, e)) out = io.StringIO() if quiet else sys.stdout if capture: while True: line = unicode(proc.stdout.readline()) if proc.returncode is not None or not line: break try: line = colorize_line(line) if colorize else line except Exception as e: import traceback traceback.print_exc() print('<caktin_make> color formatting problem: ' + str(e), file=sys.stderr) out.write(line) proc.wait() if proc.returncode: if quiet: print(out.getvalue()) raise subprocess.CalledProcessError(proc.returncode, ' '.join(cmd)) return out.getvalue() if quiet else '' blue_arrow = '@!@{bf}==>@|@!' def _check_build_dir(name, workspace, buildspace): package_build_dir = os.path.join(buildspace, name) if not os.path.exists(package_build_dir): cprint( blue_arrow + ' Creating build directory: \'' + os.path.relpath(package_build_dir, workspace) + '\'@|' ) os.mkdir(package_build_dir) return package_build_dir def isolation_print_command(cmd, path=None): cprint( blue_arrow + " " + sanitize(cmd) + "@|" + (" @!@{kf}in@| '@!" + sanitize(path) + "@|'" if path else '') ) def get_python_install_dir(): # this function returns the same value as the CMake variable PYTHON_INSTALL_DIR from catkin/cmake/python.cmake python_install_dir = 'lib' if os.name != 'nt': python_version_xdoty = str(sys.version_info[0]) + '.' + str(sys.version_info[1]) python_install_dir = os.path.join(python_install_dir, 'python' + python_version_xdoty) python_use_debian_layout = os.path.exists('/etc/debian_version') python_packages_dir = 'dist-packages' if python_use_debian_layout else 'site-packages' python_install_dir = os.path.join(python_install_dir, python_packages_dir) return python_install_dir def handle_make_arguments(input_make_args, force_single_threaded_when_running_tests=False): make_args = list(input_make_args) if force_single_threaded_when_running_tests: # force single threaded execution when running test since rostest does not support multiple parallel runs run_tests = [a for a in make_args if a.startswith('run_tests')] if run_tests: print('Forcing "-j1" for running unit tests.') make_args.append('-j1') # If no -j/--jobs/-l/--load-average flags are in make_args if not extract_jobs_flags(' '.join(make_args)): # If -j/--jobs/-l/--load-average are in MAKEFLAGS if 'MAKEFLAGS' in os.environ and extract_jobs_flags(os.environ['MAKEFLAGS']): # Do not extend make arguments, let MAKEFLAGS set things pass else: # Else extend the make_arguments to include some jobs flags # If ROS_PARALLEL_JOBS is set use those flags if 'ROS_PARALLEL_JOBS' in os.environ: # ROS_PARALLEL_JOBS is a set of make variables, not just a number ros_parallel_jobs = os.environ['ROS_PARALLEL_JOBS'] make_args.extend(ros_parallel_jobs.split()) else: # Else Use the number of CPU cores try: jobs = multiprocessing.cpu_count() make_args.append('-j{0}'.format(jobs)) make_args.append('-l{0}'.format(jobs)) except NotImplementedError: # If the number of cores cannot be determined, do not extend args pass return make_args def extract_jobs_flags(mflags): regex = r'(?:^|\s)(-?(?:j|l)(?:\s*[0-9]+|\s|$))' + \ r'|' + \ r'(?:^|\s)((?:--)?(?:jobs|load-average)(?:(?:=|\s+)[0-9]+|(?:\s|$)))' matches = re.findall(regex, mflags) or [] matches = [m[0] or m[1] for m in matches] return ' '.join([m.strip() for m in matches]) if matches else None def build_catkin_package( path, package, workspace, buildspace, develspace, installspace, install, force_cmake, quiet, last_env, cmake_args, make_args ): cprint( "Processing @{cf}catkin@| package: '@!@{bf}" + package.name + "@|'" ) # Make the build dir build_dir = _check_build_dir(package.name, workspace, buildspace) # Check last_env if last_env is not None: cprint( blue_arrow + " Building with env: " + "'{0}'".format(last_env) ) # Check for Makefile and maybe call cmake makefile = os.path.join(build_dir, 'Makefile') if not os.path.exists(makefile) or force_cmake: package_dir = os.path.dirname(package.filename) if not os.path.exists(os.path.join(package_dir, 'CMakeLists.txt')): export_tags = [e.tagname for e in package.exports] if 'metapackage' not in export_tags: print(colorize_line('Error: Package "%s" does not have a CMakeLists.txt file' % package.name)) sys.exit('Can not build catkin package without CMakeLists.txt file') # generate CMakeLists.txt for metpackages without one print(colorize_line('Warning: metapackage "%s" should have a CMakeLists.txt file' % package.name)) cmake_code = configure_file( get_metapackage_cmake_template_path(), {'name': package.name, 'metapackage_arguments': 'DIRECTORY "%s"' % package_dir}) cmakelists_txt = os.path.join(build_dir, 'CMakeLists.txt') with open(cmakelists_txt, 'w') as f: f.write(cmake_code) package_dir = build_dir # Run cmake cmake_cmd = [ 'cmake', package_dir, '-DCATKIN_DEVEL_PREFIX=' + develspace, '-DCMAKE_INSTALL_PREFIX=' + installspace ] cmake_cmd.extend(cmake_args) isolation_print_command(' '.join(cmake_cmd)) if last_env is not None: cmake_cmd = [last_env] + cmake_cmd try: run_command_colorized(cmake_cmd, build_dir, quiet) except subprocess.CalledProcessError as e: if os.path.exists(makefile): # remove Makefile to force CMake invocation next time os.remove(makefile) raise else: print('Makefile exists, skipping explicit cmake invocation...') # Check to see if cmake needs to be run via make make_check_cmake_cmd = ['make', 'cmake_check_build_system'] isolation_print_command(' '.join(make_check_cmake_cmd), build_dir) if last_env is not None: make_check_cmake_cmd = [last_env] + make_check_cmake_cmd run_command_colorized( make_check_cmake_cmd, build_dir, quiet ) # Run make make_cmd = ['make'] make_cmd.extend(handle_make_arguments(make_args, force_single_threaded_when_running_tests=True)) isolation_print_command(' '.join(make_cmd), build_dir) if last_env is not None: make_cmd = [last_env] + make_cmd run_command(make_cmd, build_dir, quiet) # Make install if install: make_install_cmd = ['make', 'install'] isolation_print_command(' '.join(make_install_cmd), build_dir) if last_env is not None: make_install_cmd = [last_env] + make_install_cmd run_command(make_install_cmd, build_dir, quiet) def build_cmake_package( path, package, workspace, buildspace, develspace, installspace, install, force_cmake, quiet, last_env, cmake_args, make_args ): # Notify the user that we are processing a plain cmake package cprint( "Processing @{cf}plain cmake@| package: '@!@{bf}" + package.name + "@|'" ) # Make the build dir build_dir = _check_build_dir(package.name, workspace, buildspace) # Check last_env if last_env is not None: cprint(blue_arrow + " Building with env: " + "'{0}'".format(last_env)) # Check for Makefile and maybe call cmake makefile = os.path.join(build_dir, 'Makefile') install_target = installspace if install else develspace if not os.path.exists(makefile) or force_cmake: # Call cmake cmake_cmd = [ 'cmake', os.path.dirname(package.filename), '-DCMAKE_INSTALL_PREFIX=' + install_target ] cmake_cmd.extend(cmake_args) isolation_print_command(' '.join(cmake_cmd)) if last_env is not None: cmake_cmd = [last_env] + cmake_cmd run_command_colorized(cmake_cmd, build_dir, quiet) else: print('Makefile exists, skipping explicit cmake invocation...') # Check to see if cmake needs to be run via make make_check_cmake_cmd = ['make', 'cmake_check_build_system'] isolation_print_command(' '.join(make_check_cmake_cmd), build_dir) if last_env is not None: make_check_cmake_cmd = [last_env] + make_check_cmake_cmd run_command_colorized( make_check_cmake_cmd, build_dir, quiet ) # Run make make_cmd = ['make'] make_cmd.extend(handle_make_arguments(make_args)) isolation_print_command(' '.join(make_cmd), build_dir) if last_env is not None: make_cmd = [last_env] + make_cmd run_command(make_cmd, build_dir, quiet) # Make install make_install_cmd = ['make', 'install'] isolation_print_command(' '.join(make_install_cmd), build_dir) if last_env is not None: make_install_cmd = [last_env] + make_install_cmd run_command(make_install_cmd, build_dir, quiet) # If we are installing, and a env.sh exists, don't overwrite it if install and os.path.exists(os.path.join(installspace, 'env.sh')): return cprint(blue_arrow + " Generating an env.sh") # Generate env.sh for chaining to catkin packages new_env_path = os.path.join(install_target, 'env.sh') variables = { 'SETUP_DIR': install_target, 'SETUP_FILENAME': 'setup' } with open(os.path.join(new_env_path), 'w') as f: f.write(configure_file(os.path.join(get_cmake_path(), 'templates', 'env.sh.in'), variables)) os.chmod(new_env_path, stat.S_IXUSR | stat.S_IWUSR | stat.S_IRUSR) # Generate setup.sh for chaining to catkin packages new_setup_path = os.path.join(install_target, 'setup.sh') subs = {} subs['cmake_prefix_path'] = install_target + ":" subs['ld_path'] = os.path.join(install_target, 'lib') + ":" pythonpath = os.path.join(install_target, get_python_install_dir()) subs['pythonpath'] = pythonpath + ':' subs['pkgcfg_path'] = os.path.join(install_target, 'lib', 'pkgconfig') subs['pkgcfg_path'] += ":" subs['path'] = os.path.join(install_target, 'bin') + ":" if not os.path.exists(install_target): os.mkdir(install_target) with open(new_setup_path, 'w+') as file_handle: file_handle.write("""\ #!/usr/bin/env sh # generated from catkin.builder module """) if last_env is not None: last_setup_env = os.path.join(os.path.dirname(last_env), 'setup.sh') file_handle.write('. %s\n\n' % last_setup_env) file_handle.write("""\ # detect if running on Darwin platform UNAME=`which uname` UNAME=`$UNAME` IS_DARWIN=0 if [ "$UNAME" = "Darwin" ]; then IS_DARWIN=1 fi # Prepend to the environment export CMAKE_PREFIX_PATH="{cmake_prefix_path}$CMAKE_PREFIX_PATH" if [ $IS_DARWIN -eq 0 ]; then export LD_LIBRARY_PATH="{ld_path}$LD_LIBRARY_PATH" else export DYLD_LIBRARY_PATH="{ld_path}$DYLD_LIBRARY_PATH" fi export PATH="{path}$PATH" export PKG_CONFIG_PATH="{pkgcfg_path}$PKG_CONFIG_PATH" export PYTHONPATH="{pythonpath}$PYTHONPATH" """.format(**subs)) def build_package( path, package, workspace, buildspace, develspace, installspace, install, force_cmake, quiet, last_env, cmake_args, make_args, catkin_make_args, number=None, of=None ): cprint('@!@{gf}==>@| ', end='') new_last_env = get_new_env(package, develspace, installspace, install, last_env) build_type = _get_build_type(package) if build_type == 'catkin': build_catkin_package( path, package, workspace, buildspace, develspace, installspace, install, force_cmake, quiet, last_env, cmake_args, make_args + catkin_make_args ) if not os.path.exists(new_last_env): raise RuntimeError( "No env.sh file generated at: '" + new_last_env + "'\n This sometimes occurs when a non-catkin package is " "interpreted as a catkin package.\n This can also occur " "when the cmake cache is stale, try --force-cmake." ) elif build_type == 'cmake': build_cmake_package( path, package, workspace, buildspace, develspace, installspace, install, force_cmake, quiet, last_env, cmake_args, make_args ) else: sys.exit('Can not build package with unknown build_type') if number is not None and of is not None: msg = ' [@{gf}@!' + str(number) + '@| of @!@{gf}' + str(of) + '@|]' else: msg = '' cprint('@{gf}<==@| Finished processing package' + msg + ': \'@{bf}@!' + package.name + '@|\'') return new_last_env def get_new_env(package, develspace, installspace, install, last_env): new_env = None build_type = _get_build_type(package) if build_type in ['catkin', 'cmake']: new_env = os.path.join( installspace if install else develspace, 'env.sh' ) return new_env def _get_build_type(package): build_type = 'catkin' if 'build_type' in [e.tagname for e in package.exports]: build_type = [e.content for e in package.exports if e.tagname == 'build_type'][0] return build_type def build_workspace_isolated( workspace='.', sourcespace=None, buildspace=None, develspace=None, installspace=None, merge=False, install=False, force_cmake=False, colorize=True, build_packages=None, quiet=False, cmake_args=None, make_args=None, catkin_make_args=None ): ''' Runs ``cmake``, ``make`` and optionally ``make install`` for all catkin packages in sourcespace_dir. It creates several folders in the current working directory. For non-catkin packages it runs ``cmake``, ``make`` and ``make install`` for each, installing it to the devel space or install space if the ``install`` option is specified. :param workspace: path to the current workspace, ``str`` :param sourcespace: workspace folder containing catkin packages, ``str`` :param buildspace: path to build space location, ``str`` :param develspace: path to devel space location, ``str`` :param installspace: path to install space (CMAKE_INSTALL_PREFIX), ``str`` :param merge: if True, build each catkin package into the same devel space. does not work with non-catkin packages, ``bool`` :param install: if True, install all packages to the install space, ``bool`` :param force_cmake: (optional), if True calls cmake explicitly for each package, ``bool`` :param colorize: if True, colorize cmake output and other messages, ``bool`` :param build_packages: specific packages to build (all parent packages in the topological order must have been built before), ``str`` :param quiet: if True, hides some build output, ``bool`` :param cmake_args: additional arguments for cmake, ``[str]`` :param make_args: additional arguments for make, ``[str]`` :param catkin_make_args: additional arguments for make but only for catkin packages, ``[str]`` ''' if not colorize: disable_ANSI_colors() # Check workspace existance if not os.path.exists(workspace): sys.exit("Workspace path '{0}' does not exist.".format(workspace)) workspace = os.path.abspath(workspace) # Check source space existance if sourcespace is None: ws_sourcespace = os.path.join(workspace, 'src') if not os.path.exists(ws_sourcespace): sys.exit("Could not find source space: {0}".format(sourcespace)) sourcespace = ws_sourcespace sourcespace = os.path.abspath(sourcespace) print('Base path: ' + str(workspace)) print('Source space: ' + str(sourcespace)) # Check build space if buildspace is None: buildspace = os.path.join(workspace, 'build_isolated') buildspace = os.path.abspath(buildspace) if not os.path.exists(buildspace): os.mkdir(buildspace) print('Build space: ' + str(buildspace)) # Check devel space if develspace is None: develspace = os.path.join(workspace, 'devel_isolated') develspace = os.path.abspath(develspace) print('Devel space: ' + str(develspace)) # Check install space if installspace is None: installspace = os.path.join(workspace, 'install_isolated') installspace = os.path.abspath(installspace) print('Install space: ' + str(installspace)) if cmake_args: print("Additional CMake Arguments: " + " ".join(cmake_args)) else: cmake_args = [] if make_args: print("Additional make Arguments: " + " ".join(make_args)) else: make_args = [] if catkin_make_args: print("Additional make Arguments for catkin packages: " + " ".join(catkin_make_args)) else: catkin_make_args = [] # Find packages packages = find_packages(sourcespace, exclude_subspaces=True) if not packages: print(fmt("@{yf}No packages found in source space: %s@|" % sourcespace)) # verify that specified package exists in workspace if build_packages: packages_by_name = {p.name: path for path, p in packages.iteritems()} unknown_packages = [p for p in build_packages if p not in packages_by_name] if unknown_packages: sys.exit('Packages not found in the workspace: %s' % ', '.join(unknown_packages)) # Report topological ordering ordered_packages = topological_order_packages(packages) unknown_build_types = [] msg = [] msg.append('@{pf}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' + ('~' * len(str(len(ordered_packages))))) msg.append('@{pf}~~@| traversing %d packages in topological order:' % len(ordered_packages)) for path, package in ordered_packages: export_tags = [e.tagname for e in package.exports] if 'build_type' in export_tags: build_type_tag = [e.content for e in package.exports if e.tagname == 'build_type'][0] else: build_type_tag = 'catkin' if build_type_tag == 'catkin': msg.append('@{pf}~~@| - @!@{bf}' + package.name + '@|') elif build_type_tag == 'cmake': msg.append( '@{pf}~~@| - @!@{bf}' + package.name + '@|' + ' (@!@{cf}plain cmake@|)' ) else: msg.append( '@{pf}~~@| - @!@{bf}' + package.name + '@|' + ' (@{rf}unknown@|)' ) unknown_build_types.append(package) msg.append('@{pf}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' + ('~' * len(str(len(ordered_packages))))) for index in range(len(msg)): msg[index] = fmt(msg[index]) print('\n'.join(msg)) # Error if there are packages with unknown build_types if unknown_build_types: print(colorize_line('Error: Packages with unknown build types exist')) sys.exit('Can not build workspace with packages of unknown build_type') # Check to see if the workspace has changed if not force_cmake: force_cmake, install_toggled = cmake_input_changed( packages, buildspace, install=install, cmake_args=cmake_args, filename='catkin_make_isolated' ) if force_cmake: print('The packages or cmake arguments have changed, forcing cmake invocation') elif install_toggled: print('The install argument has been toggled, forcing cmake invocation on plain cmake package') # Build packages pkg_develspace = None last_env = None for index, path_package in enumerate(ordered_packages): path, package = path_package if merge: pkg_develspace = develspace else: pkg_develspace = os.path.join(develspace, package.name) if not build_packages or package.name in build_packages: try: export_tags = [e.tagname for e in package.exports] is_cmake_package = 'cmake' in [e.content for e in package.exports if e.tagname == 'build_type'] last_env = build_package( path, package, workspace, buildspace, pkg_develspace, installspace, install, force_cmake or (install_toggled and is_cmake_package), quiet, last_env, cmake_args, make_args, catkin_make_args, number=index + 1, of=len(ordered_packages) ) except Exception as e: import traceback traceback.print_exc() cprint( '@{rf}@!<==@| ' + 'Failed to process package \'@!@{bf}' + package.name + '@|\': \n ' + ('KeyboardInterrupt' if isinstance(e, KeyboardInterrupt) else str(e)) ) if isinstance(e, subprocess.CalledProcessError): cmd = ' '.join(e.cmd) if isinstance(e.cmd, list) else e.cmd print(fmt("\n@{rf}Reproduce this error by running:")) print(fmt("@{gf}@!==> @|") + cmd + "\n") sys.exit('Command failed, exiting.') else: cprint("Skipping package: '@!@{bf}" + package.name + "@|'") last_env = get_new_env(package, pkg_develspace, installspace, install, last_env) # Provide a top level devel space environment setup script if not os.path.exists(develspace): os.makedirs(develspace) if not build_packages: generated_env_sh = os.path.join(develspace, 'env.sh') generated_setup_sh = os.path.join(develspace, 'setup.sh') generated_setup_util_py = os.path.join(develspace, '_setup_util.py') if not merge and pkg_develspace: # generate env.sh and setup.sh which relay to last devel space with open(generated_env_sh, 'w') as f: f.write("""\ #!/usr/bin/env sh # generated from catkin.builder module {0} "$@" """.format(os.path.join(pkg_develspace, 'env.sh'))) os.chmod(generated_env_sh, stat.S_IXUSR | stat.S_IWUSR | stat.S_IRUSR) with open(generated_setup_sh, 'w') as f: f.write("""\ #!/usr/bin/env sh # generated from catkin.builder module . "{0}/setup.sh" """.format(pkg_develspace)) elif not pkg_develspace: # generate env.sh and setup.sh for an empty devel space if 'CMAKE_PREFIX_PATH' in os.environ.keys(): variables = { 'CATKIN_GLOBAL_BIN_DESTINATION': 'bin', 'CATKIN_GLOBAL_LIB_DESTINATION': 'lib', 'CMAKE_PREFIX_PATH_AS_IS': ';'.join(os.environ['CMAKE_PREFIX_PATH'].split(os.pathsep)), 'PYTHON_INSTALL_DIR': get_python_install_dir(), 'SETUP_DIR': '', } with open(generated_setup_util_py, 'w') as f: f.write(configure_file(os.path.join(get_cmake_path(), 'templates', '_setup_util.py.in'), variables)) os.chmod(generated_setup_util_py, stat.S_IXUSR | stat.S_IWUSR | stat.S_IRUSR) else: sys.exit("Unable to process CMAKE_PREFIX_PATH from environment. Cannot generate environment files.") variables = { 'SETUP_DIR': develspace, 'SETUP_FILENAME': 'setup' } with open(generated_env_sh, 'w') as f: f.write(configure_file(os.path.join(get_cmake_path(), 'templates', 'env.sh.in'), variables)) os.chmod(generated_env_sh, stat.S_IXUSR | stat.S_IWUSR | stat.S_IRUSR) variables = {'SETUP_DIR': develspace} with open(generated_setup_sh, 'w') as f: f.write(configure_file(os.path.join(get_cmake_path(), 'templates', 'setup.sh.in'), variables)) if not merge and pkg_develspace: # remove _setup_util.py file which might have been generated for an empty if os.path.exists(generated_setup_util_py): os.remove(generated_setup_util_py) if not merge or not pkg_develspace: # generate setup.bash and setup.zsh for convenience variables = {'SETUP_DIR': develspace} with open(os.path.join(develspace, 'setup.bash'), 'w') as f: f.write(configure_file(os.path.join(get_cmake_path(), 'templates', 'setup.bash.in'), variables)) with open(os.path.join(develspace, 'setup.zsh'), 'w') as f: f.write(configure_file(os.path.join(get_cmake_path(), 'templates', 'setup.zsh.in'), variables)) def cmake_input_changed(packages, build_path, install=None, cmake_args=None, filename='catkin_make'): # get current input package_paths = os.pathsep.join(sorted(packages.keys())) cmake_args = ' '.join(cmake_args) if cmake_args else '' # file to store current input changed = False install_toggled = False input_filename = os.path.join(build_path, '%s.cache' % filename) if not os.path.exists(input_filename): changed = True else: # compare with previously stored input with open(input_filename, 'r') as f: previous_package_paths = f.readline().rstrip() previous_cmake_args = f.readline().rstrip() previous_install = f.readline().rstrip() == str(True) if package_paths != previous_package_paths: changed = True if cmake_args != previous_cmake_args: changed = True if install is not None and install != previous_install: install_toggled = True # store current input for next invocation with open(input_filename, 'w') as f: f.write('%s\n%s\n%s' % (package_paths, cmake_args, install)) return changed, install_toggled
py
1a476a6215b71c7c78dd49148d2890f190c78842
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Unit tests for gluon.contenttype """ import unittest from .fix_path import fix_sys_path fix_sys_path(__file__) from gluon.contenttype import contenttype from gluon._compat import iteritems class TestContentType(unittest.TestCase): def testTypeRecognition(self): rtn = contenttype('.png') self.assertEqual(rtn, 'image/png') rtn = contenttype('.gif') self.assertEqual(rtn, 'image/gif') rtn = contenttype('.tar.bz2') self.assertEqual(rtn, 'application/x-bzip-compressed-tar') # test overrides and additions mapping = { '.load': 'text/html; charset=utf-8', '.json': 'application/json', '.jsonp': 'application/jsonp', '.pickle': 'application/python-pickle', '.w2p': 'application/w2p', '.md': 'text/x-markdown; charset=utf-8' } for k, v in iteritems(mapping): self.assertEqual(contenttype(k), v) # test without dot extension rtn = contenttype('png') self.assertEqual(rtn, 'text/plain; charset=utf-8') if __name__ == '__main__': unittest.main()
py
1a476bb37b3af4f400d6f38c70dbdc156ed690b6
# %% from numpy import array, matrix, zeros, empty, delete, insert, matmul, divide, add, subtract from numpy import nanmax, seterr, shape from numpy.linalg import solve from scipy.sparse.linalg import spsolve from scipy.sparse import csc_matrix from math import isclose from PyNite.Node3D import Node3D from PyNite.Spring3D import Spring3D from PyNite.Member3D import Member3D from PyNite.Quad3D import Quad3D from PyNite.Plate3D import Plate3D from PyNite.LoadCombo import LoadCombo # %% class FEModel3D(): ''' A class representing a 3D finite element model. ''' #%% def __init__(self): ''' Initializes a new 3D finite element model. ''' self.Nodes = [] # A list of the structure's nodes self.auxNodes = [] # A list of the structure's auxiliary nodes self.Springs = [] # A list of the structure's springs self.Members = [] # A list of the structure's members self.Quads = [] # A list of the structura's quadiralterals self.Plates = [] # A list of the structure's rectangular plates self.__D = {} # A dictionary of the structure's nodal displacements by load combination self.LoadCombos = {} # A dictionary of the structure's load combinations #%% def AddNode(self, Name, X, Y, Z): ''' Adds a new node to the model. Parameters ---------- Name : string A unique user-defined name for the node. X : number The global X-coordinate of the node. Y : number The global Y-coordinate of the node. Z : number The global Z-coordinate of the node. ''' # Create a new node newNode = Node3D(Name, X, Y, Z) # Add the new node to the list self.Nodes.append(newNode) #%% def AddAuxNode(self, Name, X, Y, Z): ''' Adds a new auxiliary node to the model. Parameters ---------- Name : string A unique user-defined name for the node. X : number The global X-coordinate of the node. Y : number The global Y-coordinate of the node. Z : number The global Z-coordinate of the node. ''' # Create a new node newNode = Node3D(Name, X, Y, Z) # Add the new node to the list self.auxNodes.append(newNode) #%% def AddSpring(self, Name, iNode, jNode, ks, tension_only=False, comp_only=False): ''' Adds a new spring to the model. Parameters ---------- Name : string A unique user-defined name for the member. iNode : string The name of the i-node (start node). jNode : string The name of the j-node (end node). ks : number The spring constant (force/displacement). tension_only : bool, optional Indicates if the member is tension-only. Default is False. comp_only : bool, optional Indicates if the member is compression-only. Default is False. ''' # Create a new spring newSpring = Spring3D(Name, self.GetNode(iNode), self.GetNode(jNode), ks, self.LoadCombos, tension_only=tension_only, comp_only=comp_only) # Add the new member to the list self.Springs.append(newSpring) #%% def AddMember(self, Name, iNode, jNode, E, G, Iy, Iz, J, A, auxNode=None, tension_only=False, comp_only=False): ''' Adds a new member to the model. Parameters ---------- Name : string A unique user-defined name for the member. iNode : string The name of the i-node (start node). jNode : string The name of the j-node (end node). E : number The modulus of elasticity of the member. G : number The shear modulus of the member. Iy : number The moment of inertia of the member about its local y-axis. Iz : number The moment of inertia of the member about its local z-axis. J : number The polar moment of inertia of the member. A : number The cross-sectional area of the member. auxNode : string, optional The name of the auxialary node used to define the local z-axis. The default is for the program to define the axis instead of using an auxiliary node. tension_only : bool, optional Indicates if the member is tension-only. Default is False. comp_only : bool, optional Indicates if the member is compression-only. Default is False. ''' # Create a new member if auxNode == None: newMember = Member3D(Name, self.GetNode(iNode), self.GetNode(jNode), E, G, Iy, Iz, J, A, LoadCombos=self.LoadCombos, tension_only=tension_only, comp_only=comp_only) else: newMember = Member3D(Name, self.GetNode(iNode), self.GetNode(jNode), E, G, Iy, Iz, J, A, self.GetAuxNode(auxNode), self.LoadCombos, tension_only=tension_only, comp_only=comp_only) # Add the new member to the list self.Members.append(newMember) #%% def AddPlate(self, Name, iNode, jNode, mNode, nNode, t, E, nu): ''' Adds a new plate to the model. Plates will be dapricated in a future version. Quadrilaterals are more verstile and will replace them. Parameters ---------- Name : string A unique user-defined name for the plate. iNode : string The name of the i-node (1st node definded in clockwise order). jNode : string The name of the j-node (2nd node defined in clockwise order). mNode : string The name of the m-node (3rd node defined in clockwise order). nNode : string The name of the n-node (4th node defined in clockwise order). t : number The thickness of the plate. E : number The modulus of elasticity of the plate. mew : number Posson's ratio for the plate. ''' # Create a new member newPlate = Plate3D(Name, self.GetNode(iNode), self.GetNode(jNode), self.GetNode(mNode), self.GetNode(nNode), t, E, nu) # Add the new member to the list self.Plates.append(newPlate) #%% def AddQuad(self, Name, iNode, jNode, mNode, nNode, t, E, nu): ''' Adds a new quadrilateral to the model. Quadrilaterals are similar to plates, except they do not have to be rectangular. Plates will be dapricated in a future version. Note that quadrilateral nodes are defined in counter-clockwise order instead of the clockwise order that plates have used up to this point. Parameters ---------- Name : string A unique user-defined name for the quadrilateral. iNode : string The name of the i-node (1st node definded in counter-clockwise order). jNode : string The name of the j-node (2nd node defined in counter-clockwise order). mNode : string The name of the m-node (3rd node defined in counter-clockwise order). nNode : string The name of the n-node (4th node defined in counter-clockwise order). t : number The thickness of the quadrilateral. E : number The modulus of elasticity of the quadrilateral. mew : number Posson's ratio for the quadrilateral. ''' # Create a new member newQuad = Quad3D(Name, self.GetNode(iNode), self.GetNode(jNode), self.GetNode(mNode), self.GetNode(nNode), t, E, nu) # Add the new member to the list self.Quads.append(newQuad) #%% def RemoveNode(self, Node): ''' Removes a node from the model. All nodal loads associated with the node and members attached to the node will also be removed. Parameters ---------- Node : string The name of the node to be removed. ''' # Remove the node. Nodal loads are stored within the node, so they # will be deleted automatically when the node is deleted. self.Nodes.remove(self.GetNode(Node)) # Find any members attached to the node and remove them self.Members = [member for member in self.Members if member.iNode.Name != Node and member.jNode.Name != Node] #%% def RemoveSpring(self, Spring): ''' Removes a spring from the model. Parameters ---------- Spring : string The name of the spring to be removed. ''' # Remove the spring. self.Springs.remove(self.GetSpring(Spring)) #%% def RemoveMember(self, Member): ''' Removes a member from the model. All member loads associated with the member will also be removed. Parameters ---------- Member : string The name of the member to be removed. ''' # Remove the member. Member loads are stored within the member, so they # will be deleted automatically when the member is deleted. self.Members.remove(self.GetMember(Member)) #%% def DefineSupport(self, Node, SupportDX=False, SupportDY=False, SupportDZ=False, SupportRX=False, SupportRY=False, SupportRZ=False): ''' Defines the support conditions at a node. Nodes will default to fully unsupported unless specified otherwise. Parameters ---------- Node : string The name of the node where the support is being defined SupportDX : number Indicates whether the node is supported against translation in the global X-direction. SupportDY : number Indicates whether the node is supported against translation in the global Y-direction. SupportDZ : number Indicates whether the node is supported against translation in the global Z-direction. SupportRX : number Indicates whether the node is supported against rotation about the global X-axis. SupportRY : number Indicates whether the node is supported against rotation about the global Y-axis. SupportRZ : number Indicates whether the node is supported against rotation about the global Z-axis. ''' # Get the node to be supported node = self.GetNode(Node) # Set the node's support conditions node.SupportDX = SupportDX node.SupportDY = SupportDY node.SupportDZ = SupportDZ node.SupportRX = SupportRX node.SupportRY = SupportRY node.SupportRZ = SupportRZ #%% def AddNodeDisplacement (self, Node, Direction, Magnitude): ''' Defines a nodal displacement at a node. Node : string The name of the node where the nodal displacement is being applied. Direction : {'DX', 'DY', 'DZ', 'RX', 'RY', 'RZ'} The global direction the nodal displacement is being applied in. Displacements are 'DX', 'DY', and 'DZ'. Rotations are 'RX', 'RY', and 'RZ'. Sign convention follows the model's global coordinate system. Magnitude : number The magnitude of the displacement. ''' # Validate the value of Direction if Direction not in ('DX', 'DY', 'DZ', 'RX', 'RY', 'RZ'): raise ValueError(f"Direction must be 'DX', 'DY', 'DZ', 'RX', 'RY', or 'RZ'. {Direction} was given.") # Get the node node = self.GetNode(Node) if Direction == 'DX': node.EnforcedDX = Magnitude if Direction == 'DY': node.EnforcedDY = Magnitude if Direction == 'DZ': node.EnforcedDZ = Magnitude if Direction == 'RX': node.EnforcedRX = Magnitude if Direction == 'RY': node.EnforcedRY = Magnitude if Direction == 'RZ': node.EnforcedRZ = Magnitude #%% def DefineReleases(self, Member, Dxi=False, Dyi=False, Dzi=False, Rxi=False, Ryi=False, Rzi=False, Dxj=False, Dyj=False, Dzj=False, Rxj=False, Ryj=False, Rzj=False): ''' Defines member end releases. All member end releases will default to unreleased unless specified otherwise. Parameters ---------- Member : string The name of the member to have its releases modified. Dxi : boolean Indicates whether the member is released axially at its start. Dyi : boolean Indicates whether the member is released for shear in the local y-axis at its start. Dzi : boolean Indicates whether the member is released for shear in the local z-axis at its start. Rxi : boolean Indicates whether the member is released for torsion at its start. Ryi : boolean Indicates whether the member is released for moment about the local y-axis at its start. Rzi : boolean Indicates whether the member is released for moment about the local z-axis at its start. Dxj : boolean Indicates whether the member is released axially at its end. Dyj : boolean Indicates whether the member is released for shear in the local y-axis at its end. Dzj : boolean Indicates whether the member is released for shear in the local z-axis. Rxj : boolean Indicates whether the member is released for torsion at its end. Ryj : boolean Indicates whether the member is released for moment about the local y-axis at its end. Rzj : boolean Indicates whether the member is released for moment about the local z-axis at its end. ''' # Apply the end releases to the member self.GetMember(Member).Releases = [Dxi, Dyi, Dzi, Rxi, Ryi, Rzi, Dxj, Dyj, Dzj, Rxj, Ryj, Rzj] #%% def AddLoadCombo(self, name, factors, combo_type='strength'): ''' Adds a load combination to the model Parameters ---------- name : string A unique name for the load combination (e.g. '1.2D+1.6L+0.5S' or 'Gravity Combo'). factors : dictionary A dictionary containing load cases and their corresponding factors (e.g. {'D':1.2, 'L':1.6, 'S':0.5}). combo_type : string A description of the type of load combination (e.g. 'strength', 'service'). Currently this does nothing in the program, and is a placeholder for future features. ''' # Create a new load combination object new_combo = LoadCombo(name, combo_type, factors) # Add the load combination to the dictionary of load combinations self.LoadCombos[name] = new_combo #%% def AddNodeLoad(self, Node, Direction, P, case='Case 1'): ''' Adds a nodal load to the model. Parameters ---------- Node : string The name of the node where the load is being applied. Direction : {'FX', 'FY', 'FZ', 'MX', 'MY', 'MZ'} The global direction the load is being applied in. Forces are 'FX', 'FY', and 'FZ'. Moments are 'MX', 'MY', and 'MZ'. P : number The numeric value (magnitude) of the load. case : string The name of the load case the load belongs to. ''' # Validate the value of Direction if Direction not in ('FX', 'FY', 'FZ', 'MX', 'MY', 'MZ'): raise ValueError(f"Direction must be 'FX', 'FY', 'FZ', 'MX', 'MY', or 'MZ'. {Direction} was given.") # Add the node load to the model self.GetNode(Node).NodeLoads.append((Direction, P, case)) #%% def AddMemberPtLoad(self, Member, Direction, P, x, case='Case 1'): ''' Adds a member point load to the model. Parameters ---------- Member : string The name of the member the load is being applied to. Direction : {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'} The direction in which the force is to be applied. Note that typical beam sign convention is used. Transverse forces acting toward the beam are positive. Moments are positive if they act counter-clockwise relative to the beam's local coordinate system. Torsional point loads follow the right hand rule for sign convention. P : number The numeric value (magnitude) of the load. x : number The load's location along the member's local x-axis. ''' # Validate the value of Direction if Direction not in ('Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'): raise ValueError(f"Direction must be 'Fx', 'Fy', 'Fz', 'Mx', 'My', or 'Mz'. {Direction} was given.") # Add the point load to the member self.GetMember(Member).PtLoads.append((Direction, P, x, case)) #%% def AddMemberDistLoad(self, Member, Direction, w1, w2, x1=None, x2=None, case='Case 1'): ''' Adds a member distributed load to the model. Parameters ---------- Member : string The name of the member the load is being appied to Direction : {'Fx', 'Fy', 'Fz'} The direction in which the load is to be applied. Note that typical beam sign convention is used. Forces acting toward the beam are positive. w1 : number The starting value (magnitude) of the load. w2 : number The ending value (magnitude) of the load. x1 : number The load's start location along the member's local x-axis. If this argument is not specified, the start of the member will be used. x2 : number The load's end location along the member's local x-axis. If this argument is not specified, the end of the member will be used. ''' # Validate the value of Direction if Direction not in ('Fx', 'Fy', 'Fz'): raise ValueError(f"Direction must be 'Fx', 'Fy', 'Fz'. {Direction} was given.") # Determine if a starting and ending points for the load have been specified. # If not, use the member start and end as defaults if x1 == None: start = 0 else: start = x1 if x2 == None: end = self.GetMember(Member).L() else: end = x2 # Add the distributed load to the member self.GetMember(Member).DistLoads.append((Direction, w1, w2, start, end, case)) #%% def AddPlateSurfacePressure(self, plate_ID, pressure, case='Case 1'): ''' Adds a surface pressure to the rectangular plate element. ''' # Add the surface pressure to the rectangle self.GetPlate(plate_ID).pressures.append([pressure, case]) #%% def AddQuadSurfacePressure(self, quad_ID, pressure, case='Case 1'): ''' Adds a surface pressure to the quadrilateral element. ''' # Add the surface pressure to the quadrilateral self.GetQuad(quad_ID).pressures.append([pressure, case]) #%% def ClearLoads(self): ''' Clears all loads from the model along with any results based on the loads. ''' # Clear out the member loads and the calculated internal forces for member in self.Members: member.DistLoads = [] member.PtLoads = [] member.SegmentsZ = [] member.SegmentsY = [] member.SegmentsX = [] # Clear out the nodal loads, calculated displacements, and calculated reactions for node in self.Nodes: node.NodeLoads = [] node.DX = {} node.DY = {} node.DZ = {} node.RX = {} node.RY = {} node.RZ = {} node.RxnFX = {} node.RxnFY = {} node.RxnFZ = {} node.RxnMX = {} node.RxnMY = {} node.RxnMZ = {} #%% def GetNode(self, Name): ''' Returns the node with the given name. Parameters ---------- Name : string The name of the node to be returned. ''' # Step through each node in the 'Nodes' list for node in self.Nodes: # Check the name of the node if node.Name == Name: # Return the node of interest return node # if the node name is not found and loop finishes raise ValueError(f"Node '{Name}' was not found in the model") def GetAuxNode(self, Name): ''' Returns the auxiliary node with the given name. Parameters ---------- Name : string The name of the auxiliary node to be returned. ''' # Step through each node in the 'Nodes' list for node in self.auxNodes: # Check the name of the node if node.Name == Name: # Return the node of interest return node # If the node name is not found and loop finishes raise ValueError(f"AuxNode '{Name}' was not found in the model") #%% def GetSpring(self, Name): ''' Returns the spring with the given name. Parameters ---------- Name : string The name of the spring to be returned. ''' # Step through each spring in the 'Springs' list for spring in self.Springs: # Check the name of the member if spring.Name == Name: # Return the spring of interest return spring # If the spring name is not found and loop finishes raise ValueError(f"Spring '{Name}' was not found in the model") #%% def GetMember(self, Name): ''' Returns the member with the given name. Parameters ---------- Name : string The name of the member to be returned. ''' # Step through each member in the 'Members' list for member in self.Members: # Check the name of the member if member.Name == Name: # Return the member of interest return member # If the member name is not found and loop finishes raise ValueError(f"Member '{Name}' was not found in the model") #%% def GetPlate(self, Name): ''' Returns the plate with the given name. Parameters ---------- Name : string The name of the plate to be returned. ''' # Step through each plate in the 'Plates' list for plate in self.Plates: # Check the name of the plate if plate.Name == Name: # Return the plate of interest return plate # Raise an exception if the plate name is not found and loop finishes raise ValueError(f"Plate '{Name}' was not found in the model") #%% def GetQuad(self, Name): ''' Returns the quadrilateral with the given name. Parameters ---------- Name : string The name of the quadrilateral to be returned. ''' # Step through each quadrilateral in the 'Quads' list for quad in self.Quads: # Check the name of the quadrilateral if quad.Name == Name: # Return the quadrilateral of interest return quad # Raise an excption if the quadrilateral name is not found and loop # finishes raise ValueError(f"Quadrilateral '{Name}' was not found in the model") #%% def __Renumber(self): ''' Assigns node, spring, member, and plate member ID numbers to be used internally by the program. Numbers are assigned according to the order nodes, springs, members, and plates were added to the model. ''' # Number each node in the model i = 0 for node in self.Nodes: node.ID = i i += 1 # Number each spring in the model i = 0 for spring in self.Springs: spring.ID = i i += 1 # Number each member in the model i = 0 for member in self.Members: member.ID = i i += 1 # Number each plate in the model i = 0 for plate in self.Plates: plate.ID = i i += 1 # Number each quadrilateral in the model i = 0 for quad in self.Quads: quad.ID = i i += 1 #%% def __AuxList(self): ''' Builds a list with known nodal displacements and with the positions in global stiffness matrix of known and unknown nodal displacements Returns ------- D1_indices : number A list of the global matrix indices for the unknown nodal displacements D2_indices : number A list of the global matrix indices for the known nodal displacements D2 : number A list of the known nodal displacements ''' D1_indices = [] # A list of the indices for the unknown nodal displacements D2_indices = [] # A list of the indices for the known nodal displacements D2 = [] # A list of the values of the known nodal displacements (D != None) # Create the auxiliary table for node in self.Nodes: # Unknown displacement DX if node.SupportDX == False and node.EnforcedDX == None: D1_indices.append((node.ID*6) + 0) # Known displacement DX elif node.EnforcedDX != None: D2_indices.append((node.ID*6) + 0) D2.append(node.EnforcedDX) # Support at DX else: D2_indices.append((node.ID*6) + 0) D2.append(0.0) # Unknown displacement DY if node.SupportDY == False and node.EnforcedDY == None: D1_indices.append((node.ID*6) + 1) # Known displacement DY elif node.EnforcedDY != None: D2_indices.append((node.ID*6) + 1) D2.append(node.EnforcedDY) # Support at DY else: D2_indices.append((node.ID*6) + 1) D2.append(0.0) # Unknown displacement DZ if node.SupportDZ == False and node.EnforcedDZ == None: D1_indices.append((node.ID*6) + 2) # Known displacement DZ elif node.EnforcedDZ != None: D2_indices.append((node.ID*6) + 2) D2.append(node.EnforcedDZ) # Support at DZ else: D2_indices.append((node.ID*6) + 2) D2.append(0.0) # Unknown displacement RX if node.SupportRX == False and node.EnforcedRX == None: D1_indices.append((node.ID*6) + 3) # Known displacement RX elif node.EnforcedRX != None: D2_indices.append((node.ID*6) + 3) D2.append(node.EnforcedRX) # Support at RX else: D2_indices.append((node.ID*6) + 3) D2.append(0.0) # Unknown displacement RY if node.SupportRY == False and node.EnforcedRY == None: D1_indices.append((node.ID*6) + 4) # Known displacement RY elif node.EnforcedRY != None: D2_indices.append((node.ID*6) + 4) D2.append(node.EnforcedRY) # Support at RY else: D2_indices.append((node.ID*6) + 4) D2.append(0.0) # Unknown displacement RZ if node.SupportRZ == False and node.EnforcedRZ == None: D1_indices.append((node.ID*6) + 5) # Known displacement RZ elif node.EnforcedRZ != None: D2_indices.append((node.ID*6) + 5) D2.append(node.EnforcedRZ) # Support at RZ else: D2_indices.append((node.ID*6) + 5) D2.append(0.0) # Return the indices and the known displacements return D1_indices, D2_indices, D2 #%% def K(self, combo_name='Combo_1'): ''' Assembles and returns the global stiffness matrix. ''' # Initialize a zero matrix to hold all the stiffness terms K = zeros((len(self.Nodes)*6, len(self.Nodes)*6)) # Add stiffness terms for each spring in the model print('...Adding spring stiffness terms to global stiffness matrix') for spring in self.Springs: if spring.active[combo_name] == True: # Get the spring's global stiffness matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed spring_K = spring.K() # Step through each term in the spring's stiffness matrix # 'a' & 'b' below are row/column indices in the spring's stiffness matrix # 'm' & 'n' are corresponding row/column indices in the global stiffness matrix for a in range(12): # Determine if index 'a' is related to the i-node or j-node if a < 6: # Find the corresponding index 'm' in the global stiffness matrix m = spring.iNode.ID*6 + a else: # Find the corresponding index 'm' in the global stiffness matrix m = spring.jNode.ID*6 + (a-6) for b in range(12): # Determine if index 'b' is related to the i-node or j-node if b < 6: # Find the corresponding index 'n' in the global stiffness matrix n = spring.iNode.ID*6 + b else: # Find the corresponding index 'n' in the global stiffness matrix n = spring.jNode.ID*6 + (b-6) # Now that 'm' and 'n' are known, place the term in the global stiffness matrix K.itemset((m, n), K.item((m, n)) + spring_K.item((a, b))) # Add stiffness terms for each member in the model print('...Adding member stiffness terms to global stiffness matrix') for member in self.Members: if member.active[combo_name] == True: # Get the member's global stiffness matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed member_K = member.K() # Step through each term in the member's stiffness matrix # 'a' & 'b' below are row/column indices in the member's stiffness matrix # 'm' & 'n' are corresponding row/column indices in the global stiffness matrix for a in range(12): # Determine if index 'a' is related to the i-node or j-node if a < 6: # Find the corresponding index 'm' in the global stiffness matrix m = member.iNode.ID*6 + a else: # Find the corresponding index 'm' in the global stiffness matrix m = member.jNode.ID*6 + (a-6) for b in range(12): # Determine if index 'b' is related to the i-node or j-node if b < 6: # Find the corresponding index 'n' in the global stiffness matrix n = member.iNode.ID*6 + b else: # Find the corresponding index 'n' in the global stiffness matrix n = member.jNode.ID*6 + (b-6) # Now that 'm' and 'n' are known, place the term in the global stiffness matrix K.itemset((m, n), K.item((m, n)) + member_K.item((a, b))) # Add stiffness terms for each quadrilateral in the model print('...Adding quadrilateral stiffness terms to global stiffness matrix') for quad in self.Quads: # Get the quadrilateral's global stiffness matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed quad_K = quad.K() # Step through each term in the quadrilateral's stiffness matrix # 'a' & 'b' below are row/column indices in the quadrilateral's stiffness matrix # 'm' & 'n' are corresponding row/column indices in the global stiffness matrix for a in range(24): # Determine which node the index 'a' is related to if a < 6: # Find the corresponding index 'm' in the global stiffness matrix m = quad.mNode.ID*6 + a elif a < 12: # Find the corresponding index 'm' in the global stiffness matrix m = quad.nNode.ID*6 + (a-6) elif a < 18: # Find the corresponding index 'm' in the global stiffness matrix m = quad.iNode.ID*6 + (a-12) else: # Find the corresponding index 'm' in the global stiffness matrix m = quad.jNode.ID*6 + (a-18) for b in range(24): # Determine which node the index 'b' is related to if b < 6: # Find the corresponding index 'n' in the global stiffness matrix n = quad.mNode.ID*6 + b elif b < 12: # Find the corresponding index 'n' in the global stiffness matrix n = quad.nNode.ID*6 + (b-6) elif b < 18: # Find the corresponding index 'n' in the global stiffness matrix n = quad.iNode.ID*6 + (b-12) else: # Find the corresponding index 'n' in the global stiffness matrix n = quad.jNode.ID*6 + (b-18) # Now that 'm' and 'n' are known, place the term in the global stiffness matrix K.itemset((m, n), K.item((m, n)) + quad_K.item((a, b))) # Add stiffness terms for each plate in the model print('...Adding plate stiffness terms to global stiffness matrix') for plate in self.Plates: # Get the plate's global stiffness matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed plate_K = plate.K() # Step through each term in the plate's stiffness matrix # 'a' & 'b' below are row/column indices in the plate's stiffness matrix # 'm' & 'n' are corresponding row/column indices in the global stiffness matrix for a in range(24): # Determine which node the index 'a' is related to if a < 6: # Find the corresponding index 'm' in the global stiffness matrix m = plate.iNode.ID*6 + a elif a < 12: # Find the corresponding index 'm' in the global stiffness matrix m = plate.nNode.ID*6 + (a-6) elif a < 18: # Find the corresponding index 'm' in the global stiffness matrix m = plate.mNode.ID*6 + (a-12) else: # Find the corresponding index 'm' in the global stiffness matrix m = plate.jNode.ID*6 + (a-18) for b in range(24): # Determine which node the index 'b' is related to if b < 6: # Find the corresponding index 'n' in the global stiffness matrix n = plate.iNode.ID*6 + b elif b < 12: # Find the corresponding index 'n' in the global stiffness matrix n = plate.nNode.ID*6 + (b-6) elif b < 18: # Find the corresponding index 'n' in the global stiffness matrix n = plate.mNode.ID*6 + (b-12) else: # Find the corresponding index 'n' in the global stiffness matrix n = plate.jNode.ID*6 + (b-18) # Now that 'm' and 'n' are known, place the term in the global stiffness matrix K.itemset((m, n), K.item((m, n)) + plate_K.item((a, b))) # Return the global stiffness matrix return K #%% def Kg(self, combo_name='Combo 1'): ''' Assembles and returns the global geometric stiffness matrix. The model must have a static solution prior to obtaining the geometric stiffness matrix. Stiffness of plates is not included. Parameters ---------- combo_name : string The name of the load combination to derive the matrix for (not the load combination itself). ''' # Initialize a zero matrix to hold all the stiffness terms Kg = zeros((len(self.Nodes)*6, len(self.Nodes)*6)) # Add stiffness terms for each member in the model print('...Adding member geometric stiffness terms to global geometric stiffness matrix') for member in self.Members: if member.active[combo_name] == True: # Calculate the axial force in the member E = member.E A = member.A L = member.L() d = member.d(combo_name) P = E*A/L*(d[6, 0] - d[0, 0]) # Get the member's global stiffness matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed member_Kg = member.Kg(P) # Step through each term in the member's stiffness matrix # 'a' & 'b' below are row/column indices in the member's stiffness matrix # 'm' & 'n' are corresponding row/column indices in the global stiffness matrix for a in range(12): # Determine if index 'a' is related to the i-node or j-node if a < 6: # Find the corresponding index 'm' in the global stiffness matrix m = member.iNode.ID*6 + a else: # Find the corresponding index 'm' in the global stiffness matrix m = member.jNode.ID*6 + (a-6) for b in range(12): # Determine if index 'b' is related to the i-node or j-node if b < 6: # Find the corresponding index 'n' in the global stiffness matrix n = member.iNode.ID*6 + b else: # Find the corresponding index 'n' in the global stiffness matrix n = member.jNode.ID*6 + (b-6) # Now that 'm' and 'n' are known, place the term in the global stiffness matrix Kg.itemset((m, n), Kg.item((m, n)) + member_Kg.item((a, b))) # Return the global geometric stiffness matrix return Kg #%% def FER(self, combo_name='Combo 1'): ''' Assembles and returns the global fixed end reaction vector. Parameters ---------- combo_name : string The name of the load combination to get the fixed end reaction vector for (not the load combination itself). ''' # Initialize a zero vector to hold all the terms FER = zeros((len(self.Nodes) * 6, 1)) # Add terms for each member in the model for member in self.Members: # Get the member's global fixed end reaction vector # Storing it as a local variable eliminates the need to rebuild it every time a term is needed member_FER = member.FER(combo_name) # Step through each term in the member's fixed end reaction vector # 'a' below is the row index in the member's fixed end reaction vector # 'm' below is the corresponding row index in the global fixed end reaction vector for a in range(12): # Determine if index 'a' is related to the i-node or j-node if a < 6: # Find the corresponding index 'm' in the global fixed end reaction vector m = member.iNode.ID * 6 + a else: # Find the corresponding index 'm' in the global fixed end reaction vector m = member.jNode.ID * 6 + (a - 6) # Now that 'm' is known, place the term in the global fixed end reaction vector FER.itemset((m, 0), FER[m, 0] + member_FER[a, 0]) # Add terms for each rectangle in the model for plate in self.Plates: # Get the quadrilateral's global fixed end reaction vector # Storing it as a local variable eliminates the need to rebuild it every time a term is needed plate_FER = plate.FER(combo_name) # Step through each term in the quadrilateral's fixed end reaction vector # 'a' below is the row index in the quadrilateral's fixed end reaction vector # 'm' below is the corresponding row index in the global fixed end reaction vector for a in range(24): # Determine if index 'a' is related to the i-node, j-node, m-node, or n-node if a < 6: # Find the corresponding index 'm' in the global fixed end reaction vector m = plate.iNode.ID*6 + a elif a < 12: # Find the corresponding index 'm' in the global fixed end reaction vector m = plate.nNode.ID*6 + (a - 6) elif a < 18: # Find the corresponding index 'm' in the global fixed end reaction vector m = plate.mNode.ID*6 + (a - 12) else: # Find the corresponding index 'm' in the global fixed end reaction vector m = plate.jNode.ID*6 + (a - 18) # Now that 'm' is known, place the term in the global fixed end reaction vector FER.itemset((m, 0), FER[m, 0] + plate_FER[a, 0]) # Add terms for each quadrilateral in the model for quad in self.Quads: # Get the quadrilateral's global fixed end reaction vector # Storing it as a local variable eliminates the need to rebuild it every time a term is needed quad_FER = quad.FER(combo_name) # Step through each term in the quadrilateral's fixed end reaction vector # 'a' below is the row index in the quadrilateral's fixed end reaction vector # 'm' below is the corresponding row index in the global fixed end reaction vector for a in range(24): # Determine if index 'a' is related to the i-node, j-node, m-node, or n-node if a < 6: # Find the corresponding index 'm' in the global fixed end reaction vector m = quad.mNode.ID*6 + a elif a < 12: # Find the corresponding index 'm' in the global fixed end reaction vector m = quad.nNode.ID*6 + (a - 6) elif a < 18: # Find the corresponding index 'm' in the global fixed end reaction vector m = quad.iNode.ID*6 + (a - 12) else: # Find the corresponding index 'm' in the global fixed end reaction vector m = quad.jNode.ID*6 + (a - 18) # Now that 'm' is known, place the term in the global fixed end reaction vector FER.itemset((m, 0), FER[m, 0] + quad_FER[a, 0]) # Return the global fixed end reaction vector return FER #%% def P(self, combo_name='Combo 1'): ''' Assembles and returns the global nodal force vector. Parameters ---------- combo_name : string The name of the load combination to get the force vector for (not the load combination itself). ''' # Initialize a zero vector to hold all the terms P = zeros((len(self.Nodes)*6, 1)) # Add terms for each node in the model for node in self.Nodes: # Get the node's ID ID = node.ID # Get the load combination for the given 'combo_name' combo = self.LoadCombos[combo_name] # Step through each load factor in the load combination for case, factor in combo.factors.items(): # Add the node's loads to the global nodal load vector for load in node.NodeLoads: if load[2] == case: if load[0] == 'FX': P.itemset((ID*6 + 0, 0), P[ID*6 + 0, 0] + factor*load[1]) elif load[0] == 'FY': P.itemset((ID*6 + 1, 0), P[ID*6 + 1, 0] + factor*load[1]) elif load[0] == 'FZ': P.itemset((ID*6 + 2, 0), P[ID*6 + 2, 0] + factor*load[1]) elif load[0] == 'MX': P.itemset((ID*6 + 3, 0), P[ID*6 + 3, 0] + factor*load[1]) elif load[0] == 'MY': P.itemset((ID*6 + 4, 0), P[ID*6 + 4, 0] + factor*load[1]) elif load[0] == 'MZ': P.itemset((ID*6 + 5, 0), P[ID*6 + 5, 0] + factor*load[1]) # Return the global nodal force vector return P #%% def D(self, combo_name='Combo 1'): ''' Returns the global displacement vector for the model. Parameters ---------- combo_name : string The name of the load combination to get the displacements for (not the load combination itself). ''' # Return the global displacement vector return self.__D[combo_name] #%% def __Partition(self, unp_matrix, D1_indices, D2_indices): ''' Partitions a matrix into submatrices based on degree of freedom boundary conditions Parameters ---------- unp_matrix : matrix The unpartitioned matrix to be partitioned. ''' if unp_matrix.shape[1] == 1: m1 = unp_matrix[D1_indices, :] m2 = unp_matrix[D2_indices, :] return m1, m2 else: m11 = unp_matrix[D1_indices, :][:, D1_indices] m12 = unp_matrix[D1_indices, :][:, D2_indices] m21 = unp_matrix[D2_indices, :][:, D1_indices] m22 = unp_matrix[D2_indices, :][:, D2_indices] return m11, m12, m21, m22 #%% def Analyze(self, check_statics=False, max_iter=30, sparse=True): ''' Performs first-order static analysis. Iterations are performed if tension-only members or compression-only members are present. Parameters ---------- check_statics : bool, optional When set to True, causes a statics check to be performed max_iter : number, optional The maximum number of iterations to try to get convergence for tension/compression-only analysis. sparse : bool, optional Indicates whether the sparse matrix solver should be used. A matrix can be considered sparse or dense depening on how many zero terms there are. Structural stiffness matrices often contain many zero terms. The sparse solver can offer faster solutions for such matrices. Using the sparse solver on dense matrices may lead to slower solution times. ''' print('+-----------+') print('| Analyzing |') print('+-----------+') # Assign an ID to all nodes and elements in the model self.__Renumber() # Ensure there is at least 1 load combination to solve if the user didn't define any if self.LoadCombos == {}: # Create and add a default load combination to the dictionary of load combinations self.LoadCombos['Combo 1'] = LoadCombo('Combo 1', factors={'Case 1':1.0}) # Activate all springs and members for all load combinations for spring in self.Springs: for combo_name in self.LoadCombos.keys(): spring.active[combo_name] = True for member in self.Members: for combo_name in self.LoadCombos.keys(): member.active[combo_name] = True # Get the auxiliary list used to determine how the matrices will be partitioned D1_indices, D2_indices, D2 = self.__AuxList() # Convert D2 from a list to a matrix D2 = matrix(D2).T # Step through each load combination for combo in self.LoadCombos.values(): print('') print('...Analyzing load combination ' + combo.name) # Keep track of the number of iterations iter_count = 1 convergence = False divergence = False # Iterate until convergence or divergence occurs while convergence == False and divergence == False: # Get the partitioned global stiffness matrix K11, K12, K21, K22 K11, K12, K21, K22 = self.__Partition(self.K(combo.name), D1_indices, D2_indices) # Get the partitioned global fixed end reaction vector FER1, FER2 = self.__Partition(self.FER(combo.name), D1_indices, D2_indices) # Get the partitioned global nodal force vector P1, P2 = self.__Partition(self.P(combo.name), D1_indices, D2_indices) # Calculate the global displacement vector print('...Calculating global displacement vector for load combination', combo.name) if K11.shape == (0, 0): # All displacements are known, so D1 is an empty vector D1 = [] else: try: # Calculate the unknown displacements D1 if sparse == True: D1 = spsolve(csc_matrix(K11), subtract(subtract(P1, FER1), matmul(K12, D2))) D1 = D1.reshape(len(D1), 1) else: D1 = solve(K11, subtract(subtract(P1, FER1), matmul(K12, D2))) except: # Return out of the method if 'K' is singular and provide an error message raise Exception('The stiffness matrix is singular, which implies rigid body motion. The structure is unstable. Aborting analysis.') # Form the global displacement vector, D, from D1 and D2 D = zeros((len(self.Nodes)*6, 1)) for node in self.Nodes: if D2_indices.count(node.ID*6 + 0) == 1: D.itemset((node.ID*6 + 0, 0), D2[D2_indices.index(node.ID*6 + 0), 0]) else: D.itemset((node.ID*6 + 0, 0), D1[D1_indices.index(node.ID*6 + 0), 0]) if D2_indices.count(node.ID*6 + 1) == 1: D.itemset((node.ID*6 + 1, 0), D2[D2_indices.index(node.ID*6 + 1), 0]) else: D.itemset((node.ID*6 + 1, 0), D1[D1_indices.index(node.ID*6 + 1), 0]) if D2_indices.count(node.ID*6 + 2) == 1: D.itemset((node.ID*6 + 2, 0), D2[D2_indices.index(node.ID*6 + 2), 0]) else: D.itemset((node.ID*6 + 2, 0), D1[D1_indices.index(node.ID*6 + 2), 0]) if D2_indices.count(node.ID*6 + 3) == 1: D.itemset((node.ID*6 + 3, 0), D2[D2_indices.index(node.ID*6 + 3), 0]) else: D.itemset((node.ID*6 + 3, 0), D1[D1_indices.index(node.ID*6 + 3), 0]) if D2_indices.count(node.ID*6 + 4) == 1: D.itemset((node.ID*6 + 4, 0), D2[D2_indices.index(node.ID*6 + 4), 0]) else: D.itemset((node.ID*6 + 4, 0), D1[D1_indices.index(node.ID*6 + 4), 0]) if D2_indices.count(node.ID*6 + 5) == 1: D.itemset((node.ID*6 + 5, 0), D2[D2_indices.index(node.ID*6 + 5), 0]) else: D.itemset((node.ID*6 + 5, 0), D1[D1_indices.index(node.ID*6 + 5), 0]) # Save the global displacement vector self.__D[combo.name] = D # Store the calculated global nodal displacements into each node for node in self.Nodes: node.DX[combo.name] = D[node.ID*6 + 0, 0] node.DY[combo.name] = D[node.ID*6 + 1, 0] node.DZ[combo.name] = D[node.ID*6 + 2, 0] node.RX[combo.name] = D[node.ID*6 + 3, 0] node.RY[combo.name] = D[node.ID*6 + 4, 0] node.RZ[combo.name] = D[node.ID*6 + 5, 0] # Check for divergence if iter_count > max_iter: divergence = True raise Exception('...Model diverged during tension/compression-only analysis') # Assume the model has converged (to be checked below) convergence = True # Check tension-only and compression-only springs print('...Checking for tension/compression-only spring convergence') for spring in self.Springs: if spring.active[combo.name] == True: # Check if tension-only conditions exist if spring.tension_only == True and spring.Axial(combo.name) > 0: spring.active[combo.name] = False convergence = False # Check if compression-only conditions exist elif spring.comp_only == True and spring.Axial(combo.name) < 0: spring.active[combo.name] = False convergence = False # Check tension-only and compression-only members print('...Checking for tension/compression-only member convergence') for member in self.Members: # Only run the tension/compression only check if the member is still active if member.active[combo.name] == True: # Check if tension-only conditions exist if member.tension_only == True and member.MaxAxial(combo.name) > 0: member.active[combo.name] = False convergence = False # Check if compression-only conditions exist elif member.comp_only == True and member.MinAxial(combo.name) < 0: member.active[combo.name] = False convergence = False if convergence == False: print('...Tension/compression-only analysis did not converge. Adjusting stiffness matrix and reanalyzing.') else: print('...Tension/compression-only analysis converged after ' + str(iter_count) + ' iteration(s)') # Keep track of the number of tension/compression only iterations iter_count += 1 # Calculate reactions self.__CalcReactions() print('...Analysis complete') print('') # Check statics if requested if check_statics == True: self.__CheckStatics() #%% def Analyze_PDelta(self, max_iter=30, tol=0.01, sparse=True): ''' Performs second order (P-Delta) analysis. Parameters ---------- max_iter : number The maximum number of iterations permitted. If this value is exceeded the program will report divergence. tol : number The deflection tolerance (as a percentage) between iterations that will be used to define whether the model has converged (e.g. 0.01 = deflections must converge within 1% between iterations). sparse : bool, optional Indicates whether the sparse matrix solver should be used. A matrix can be considered sparse or dense depening on how many zero terms there are. Structural stiffness matrices often contain many zero terms. The sparse solver can offer faster solutions for such matrices. Using the sparse solver on dense matrices may lead to slower solution times. ''' print('+--------------------+') print('| Analyzing: P-Delta |') print('+--------------------+') # Assign an ID to all nodes and elements in the model self.__Renumber() # Ensure there is at least 1 load combination to solve if the user didn't define any if self.LoadCombos == {}: # Create and add a default load combination to the dictionary of load combinations self.LoadCombos['Combo 1'] = LoadCombo('Combo 1', factors={'Case 1':1.0}) # Activate all springs and members for all load combinations. They can be turned inactive # during the course of the tension/compression-only analysis for spring in self.Springs: for combo_name in self.LoadCombos.keys(): spring.active[combo_name] = True for member in self.Members: for combo_name in self.LoadCombos.keys(): member.active[combo_name] = True # Get the auxiliary list used to determine how the matrices will be partitioned D1_indices, D2_indices, D2 = self.__AuxList() # Convert D2 from a list to a matrix D2 = array(D2, ndmin=2).T # Step through each load combination for combo in self.LoadCombos.values(): print('') print('...Analyzing load combination ' + combo.name) iter_count_TC = 1 # Tracks tension/compression-only iterations iter_count_PD = 1 # Tracks P-Delta iterations convergence_TC = False # Tracks tension/compression-only convergence convergence_PD = False # Tracks P-Delta convergence divergence_TC = False # Tracks tension/compression-only divergence divergence_PD = False # Tracks P-Delta divergence # Iterate until convergence or divergence occurs while ((convergence_TC == False or convergence_PD == False) and (divergence_TC == False and divergence_PD == False)): # Inform the user which iteration we're on print('...Beginning tension/compression-only iteration #' + str(iter_count_TC)) print('...Beginning P-Delta iteration #' + str(iter_count_PD)) # Get the partitioned global matrices if iter_count_PD == 1: K11, K12, K21, K22 = self.__Partition(self.K(combo.name), D1_indices, D2_indices) # Initial stiffness matrix FER1, FER2 = self.__Partition(self.FER(combo.name), D1_indices, D2_indices) # Fixed end reactions P1, P2 = self.__Partition(self.P(combo.name), D1_indices, D2_indices) # Nodal forces else: # Calculate the global stiffness matrices (partitioned) K11, K12, K21, K22 = self.__Partition(self.K(combo.name), D1_indices, D2_indices) # Initial stiffness matrix Kg11, Kg12, Kg21, Kg22 = self.__Partition(self.Kg(combo.name), D1_indices, D2_indices) # Geometric stiffness matrix # Combine the stiffness matrices K11 = add(K11, Kg11) K12 = add(K12, Kg12) K21 = add(K21, Kg21) K22 = add(K22, Kg22) # Calculate the global displacement vector print('...Calculating the global displacement vector') if K11.shape == (0, 0): # All displacements are known, so D1 is an empty vector D1 = [] else: try: # Calculate the global displacement vector if sparse == True: D1 = spsolve(csc_matrix(K11), subtract(subtract(P1, FER1), matmul(K12, D2))) D1 = D1.reshape(len(D1), 1) else: D1 = solve(K11, subtract(subtract(P1, FER1), matmul(K12, D2))) except: # Return out of the method if 'K' is singular and provide an error message raise ValueError('The stiffness matrix is singular, which implies rigid body motion. The structure is unstable. Aborting analysis.') D = zeros((len(self.Nodes)*6, 1)) for node in self.Nodes: if D2_indices.count(node.ID*6 + 0) == 1: D.itemset((node.ID*6 + 0, 0), D2[D2_indices.index(node.ID*6 + 0), 0]) else: D.itemset((node.ID*6 + 0, 0), D1[D1_indices.index(node.ID*6 + 0), 0]) if D2_indices.count(node.ID*6 + 1) == 1: D.itemset((node.ID*6 + 1, 0), D2[D2_indices.index(node.ID*6 + 1), 0]) else: D.itemset((node.ID*6 + 1, 0), D1[D1_indices.index(node.ID*6 + 1), 0]) if D2_indices.count(node.ID*6 + 2) == 1: D.itemset((node.ID*6 + 2, 0), D2[D2_indices.index(node.ID*6 + 2), 0]) else: D.itemset((node.ID*6 + 2, 0), D1[D1_indices.index(node.ID*6 + 2), 0]) if D2_indices.count(node.ID*6 + 3) == 1: D.itemset((node.ID*6 + 3, 0), D2[D2_indices.index(node.ID*6 + 3), 0]) else: D.itemset((node.ID*6 + 3, 0), D1[D1_indices.index(node.ID*6 + 3), 0]) if D2_indices.count(node.ID*6 + 4) == 1: D.itemset((node.ID*6 + 4, 0), D2[D2_indices.index(node.ID*6 + 4), 0]) else: D.itemset((node.ID*6 + 4, 0), D1[D1_indices.index(node.ID*6 + 4), 0]) if D2_indices.count(node.ID*6 + 5) == 1: D.itemset((node.ID*6 + 5, 0), D2[D2_indices.index(node.ID*6 + 5), 0]) else: D.itemset((node.ID*6 + 5, 0), D1[D1_indices.index(node.ID*6 + 5), 0]) # Save the global displacement vector self.__D[combo.name] = D # Store the calculated global nodal displacements into each node for node in self.Nodes: node.DX[combo.name] = D[node.ID*6 + 0, 0] node.DY[combo.name] = D[node.ID*6 + 1, 0] node.DZ[combo.name] = D[node.ID*6 + 2, 0] node.RX[combo.name] = D[node.ID*6 + 3, 0] node.RY[combo.name] = D[node.ID*6 + 4, 0] node.RZ[combo.name] = D[node.ID*6 + 5, 0] # Assume the model has converged (to be checked below) convergence_TC = True # Check for tension/compression-only springs that need to be deactivated print('...Checking for tension/compression-only spring convergence') for spring in self.Springs: # Only run the tension/compression only check if the spring is still active if spring.active[combo.name] == True: # Check if tension-only conditions exist if spring.tension_only == True and spring.Axial(combo.name) > 0: spring.active[combo.name] = False convergence_TC = False # Reset the P-Delta analysis for the new geometry iter_count_PD = 0 convergence_PD = False # Check if compression-only conditions exist elif spring.comp_only == True and spring.Axial(combo.name) < 0: spring.active[combo.name] = False convergence_TC = False # Reset the P-Delta analysis for the new geometry iter_count_PD = 0 convergence_PD = False # Check for tension/compression-only members that need to be deactivated print('...Checking for tension/compression-only member convergence') for member in self.Members: # Only run the tension/compression only check if the member is still active if member.active[combo.name] == True: # Check if tension-only conditions exist if member.tension_only == True and member.MaxAxial(combo.name) > 0: member.active[combo.name] = False convergence_TC = False # Reset the P-Delta analysis for the new geometry iter_count_PD = 0 convergence_PD = False # Check if compression-only conditions exist elif member.comp_only == True and member.MinAxial(combo.name) < 0: member.active[combo.name] = False convergence_TC = False # Reset the P-Delta analysis for the new geometry iter_count_PD = 0 convergence_PD = False # Report on convergence of tension/compression only analysis if convergence_TC == False: print('...Tension/compression-only analysis did not converge on this iteration') print('...Stiffness matrix will be adjusted for newly deactivated elements') print('...P-Delta analysis will be restarted') # Increment the tension/compression-only iteration count iter_count_TC += 1 else: print('...Tension/compression-only analysis converged after ' + str(iter_count_TC) + ' iteration(s)') # Check for divergence in the tension/compression-only analysis if iter_count_TC > max_iter: divergence_TC = True raise Exception('...Model diverged during tension/compression-only analysis') # Check for P-Delta convergence if iter_count_PD > 1: # Print a status update for the user print('...Checking for convergence') # Temporarily disable error messages for invalid values. # We'll be dealing with some 'nan' values due to division by zero at supports with zero deflection. seterr(invalid='ignore') # Check for convergence if abs(1 - nanmax(divide(prev_results, D1))) <= tol: convergence_PD = True print('...P-Delta analysis converged after ' + str(iter_count_PD) + ' iteration(s)') # Check for divergence elif iter_count_PD > max_iter: divergence_PD = True print('...P-Delta analysis failed to converge after ' + str(max_iter) + ' iteration(s)') # Turn invalid value warnings back on seterr(invalid='warn') # Save the results for the next iteration prev_results = D1 # Increment the P-Delta iteration count iter_count_PD += 1 # Calculate reactions self.__CalcReactions() print('...Analysis complete') print('') #%% def __CalcReactions(self): ''' Calculates reactions once the model is solved. ''' # Print a status update to the console print('...Calculating reactions') # Calculate the reactions, node by node for node in self.Nodes: # Step through each load combination for combo in self.LoadCombos.values(): # Initialize reactions for this node and load combination node.RxnFX[combo.name] = 0.0 node.RxnFY[combo.name] = 0.0 node.RxnFZ[combo.name] = 0.0 node.RxnMX[combo.name] = 0.0 node.RxnMY[combo.name] = 0.0 node.RxnMZ[combo.name] = 0.0 # Determine if the node has any supports if (node.SupportDX == True) \ or (node.SupportDY == True) \ or (node.SupportDZ == True) \ or (node.SupportRX == True) \ or (node.SupportRY == True) \ or (node.SupportRZ == True): # Sum the spring end forces at the node for spring in self.Springs: if spring.iNode == node and spring.active[combo.name] == True: # Get the spring's global force matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed spring_F = spring.F(combo.name) node.RxnFX[combo.name] += spring_F[0, 0] node.RxnFY[combo.name] += spring_F[1, 0] node.RxnFZ[combo.name] += spring_F[2, 0] node.RxnMX[combo.name] += spring_F[3, 0] node.RxnMY[combo.name] += spring_F[4, 0] node.RxnMZ[combo.name] += spring_F[5, 0] elif spring.jNode == node and spring.active[combo.name] == True: # Get the spring's global force matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed spring_F = spring.F(combo.name) node.RxnFX[combo.name] += spring_F[6, 0] node.RxnFY[combo.name] += spring_F[7, 0] node.RxnFZ[combo.name] += spring_F[8, 0] node.RxnMX[combo.name] += spring_F[9, 0] node.RxnMY[combo.name] += spring_F[10, 0] node.RxnMZ[combo.name] += spring_F[11, 0] # Sum the member end forces at the node for member in self.Members: if member.iNode == node and member.active[combo.name] == True: # Get the member's global force matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed member_F = member.F(combo.name) node.RxnFX[combo.name] += member_F[0, 0] node.RxnFY[combo.name] += member_F[1, 0] node.RxnFZ[combo.name] += member_F[2, 0] node.RxnMX[combo.name] += member_F[3, 0] node.RxnMY[combo.name] += member_F[4, 0] node.RxnMZ[combo.name] += member_F[5, 0] elif member.jNode == node and member.active[combo.name] == True: # Get the member's global force matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed member_F = member.F(combo.name) node.RxnFX[combo.name] += member_F[6, 0] node.RxnFY[combo.name] += member_F[7, 0] node.RxnFZ[combo.name] += member_F[8, 0] node.RxnMX[combo.name] += member_F[9, 0] node.RxnMY[combo.name] += member_F[10, 0] node.RxnMZ[combo.name] += member_F[11, 0] # Sum the plate forces at the node for plate in self.Plates: if plate.iNode == node: # Get the plate's global force matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed plate_F = plate.F(combo.name) node.RxnFX[combo.name] += plate_F[0, 0] node.RxnFY[combo.name] += plate_F[1, 0] node.RxnFZ[combo.name] += plate_F[2, 0] node.RxnMX[combo.name] += plate_F[3, 0] node.RxnMY[combo.name] += plate_F[4, 0] node.RxnMZ[combo.name] += plate_F[5, 0] elif plate.jNode == node: # Get the plate's global force matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed plate_F = plate.F(combo.name) node.RxnFX[combo.name] += plate_F[18, 0] node.RxnFY[combo.name] += plate_F[19, 0] node.RxnFZ[combo.name] += plate_F[20, 0] node.RxnMX[combo.name] += plate_F[21, 0] node.RxnMY[combo.name] += plate_F[22, 0] node.RxnMZ[combo.name] += plate_F[23, 0] elif plate.mNode == node: # Get the plate's global force matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed plate_F = plate.F(combo.name) node.RxnFX[combo.name] += plate_F[12, 0] node.RxnFY[combo.name] += plate_F[13, 0] node.RxnFZ[combo.name] += plate_F[14, 0] node.RxnMX[combo.name] += plate_F[15, 0] node.RxnMY[combo.name] += plate_F[16, 0] node.RxnMZ[combo.name] += plate_F[17, 0] elif plate.nNode == node: # Get the plate's global force matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed plate_F = plate.F(combo.name) node.RxnFX[combo.name] += plate_F[6, 0] node.RxnFY[combo.name] += plate_F[7, 0] node.RxnFZ[combo.name] += plate_F[8, 0] node.RxnMX[combo.name] += plate_F[9, 0] node.RxnMY[combo.name] += plate_F[10, 0] node.RxnMZ[combo.name] += plate_F[11, 0] # Sum the quad forces at the node for quad in self.Quads: if quad.iNode == node: # Get the quad's global force matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed quad_F = quad.F(combo.name) node.RxnFX[combo.name] += quad_F[12, 0] node.RxnFY[combo.name] += quad_F[13, 0] node.RxnFZ[combo.name] += quad_F[14, 0] node.RxnMX[combo.name] += quad_F[15, 0] node.RxnMY[combo.name] += quad_F[16, 0] node.RxnMZ[combo.name] += quad_F[17, 0] elif quad.jNode == node: # Get the quad's global force matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed quad_F = quad.F(combo.name) node.RxnFX[combo.name] += quad_F[18, 0] node.RxnFY[combo.name] += quad_F[19, 0] node.RxnFZ[combo.name] += quad_F[20, 0] node.RxnMX[combo.name] += quad_F[21, 0] node.RxnMY[combo.name] += quad_F[22, 0] node.RxnMZ[combo.name] += quad_F[23, 0] elif quad.mNode == node: # Get the quad's global force matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed quad_F = quad.F(combo.name) node.RxnFX[combo.name] += quad_F[0, 0] node.RxnFY[combo.name] += quad_F[1, 0] node.RxnFZ[combo.name] += quad_F[2, 0] node.RxnMX[combo.name] += quad_F[3, 0] node.RxnMY[combo.name] += quad_F[4, 0] node.RxnMZ[combo.name] += quad_F[5, 0] elif quad.nNode == node: # Get the quad's global force matrix # Storing it as a local variable eliminates the need to rebuild it every time a term is needed quad_F = quad.F(combo.name) node.RxnFX[combo.name] += quad_F[6, 0] node.RxnFY[combo.name] += quad_F[7, 0] node.RxnFZ[combo.name] += quad_F[8, 0] node.RxnMX[combo.name] += quad_F[9, 0] node.RxnMY[combo.name] += quad_F[10, 0] node.RxnMZ[combo.name] += quad_F[11, 0] # Sum the joint forces at the node for load in node.NodeLoads: if load[0] == 'FX': node.RxnFX[combo.name] -= load[1] elif load[0] == 'FY': node.RxnFY[combo.name] -= load[1] elif load[0] == 'FZ': node.RxnFZ[combo.name] -= load[1] elif load[0] == 'MX': node.RxnMX[combo.name] -= load[1] elif load[0] == 'MY': node.RxnMY[combo.name] -= load[1] elif load[0] == 'MZ': node.RxnMZ[combo.name] -= load[1] #%% def __CheckStatics(self): ''' Checks static equilibrium and prints results to the console. Parameters ---------- precision : number The number of decimal places to carry the results to. ''' print('+----------------+') print('| Statics Check: |') print('+----------------+') print('') from prettytable import PrettyTable # Start a blank table and create a header row statics_table = PrettyTable() statics_table.field_names = ['Load Combination', 'Sum FX', 'Sum RX', 'Sum FY', 'Sum RY', 'Sum FZ', 'Sum RZ', 'Sum MX', 'Sum RMX', 'Sum MY', 'Sum RMY', 'Sum MZ', 'Sum RMZ'] # Step through each load combination for combo in self.LoadCombos.values(): # Initialize force and moment summations to zero SumFX, SumFY, SumFZ = 0.0, 0.0, 0.0 SumMX, SumMY, SumMZ = 0.0, 0.0, 0.0 SumRFX, SumRFY, SumRFZ = 0.0, 0.0, 0.0 SumRMX, SumRMY, SumRMZ = 0.0, 0.0, 0.0 # Get the global force vector and the global fixed end reaction vector P = self.P(combo.name) FER = self.FER(combo.name) # Step through each node and sum its forces for node in self.Nodes: # Get the node's coordinates X = node.X Y = node.Y Z = node.Z # Get the nodal forces FX = P[node.ID*6+0][0] - FER[node.ID*6+0][0] FY = P[node.ID*6+1][0] - FER[node.ID*6+1][0] FZ = P[node.ID*6+2][0] - FER[node.ID*6+2][0] MX = P[node.ID*6+3][0] - FER[node.ID*6+3][0] MY = P[node.ID*6+4][0] - FER[node.ID*6+4][0] MZ = P[node.ID*6+5][0] - FER[node.ID*6+5][0] # Get the nodal reactions RFX = node.RxnFX[combo.name] RFY = node.RxnFY[combo.name] RFZ = node.RxnFZ[combo.name] RMX = node.RxnMX[combo.name] RMY = node.RxnMY[combo.name] RMZ = node.RxnMZ[combo.name] # Sum the global forces SumFX += FX SumFY += FY SumFZ += FZ SumMX += MX - FY*Z + FZ*Y SumMY += MY + FX*Z - FZ*X SumMZ += MZ - FX*Y + FY*X # Sum the global reactions SumRFX += RFX SumRFY += RFY SumRFZ += RFZ SumRMX += RMX - RFY*Z + RFZ*Y SumRMY += RMY + RFX*Z - RFZ*X SumRMZ += RMZ - RFX*Y + RFY*X # Add the results to the table statics_table.add_row([combo.name, '{:.3g}'.format(SumFX), '{:.3g}'.format(SumRFX), '{:.3g}'.format(SumFY), '{:.3g}'.format(SumRFY), '{:.3g}'.format(SumFZ), '{:.3g}'.format(SumRFZ), '{:.3g}'.format(SumMX), '{:.3g}'.format(SumRMX), '{:.3g}'.format(SumMY), '{:.3g}'.format(SumRMY), '{:.3g}'.format(SumMZ), '{:.3g}'.format(SumRMZ)]) # Print the static check table print(statics_table) print('')
py
1a476bdc613d9ff3df8c999095969ee363e078df
import pytest from bispy.utilities.graph_entities import ( _QBlock, _Vertex, _Edge, ) from typing import Set, Tuple, List import networkx as nx from bispy.saha.ranked_pta import ranked_split from bispy.paige_tarjan.paige_tarjan import paige_tarjan from bispy.saha.saha import add_edge from bispy.utilities.graph_decorator import decorate_nx_graph def partition_to_integer(partition: List[_QBlock]) -> Set[Set[int]]: return set( frozenset(vertex.label for vertex in block.vertexes) for block in filter(lambda b: b.vertexes.size > 0, partition) ) def integer_to_partition( partition: List[Tuple], vertexes: List[_Vertex] ) -> List[_QBlock]: qblocks = [] for block in partition: qblocks.append(_QBlock([vertexes[i] for i in block], None)) return qblocks def test_resets_aux_count(): g = nx.DiGraph() g.add_nodes_from(range(5)) g.add_edges_from([(0, 1), (0, 2), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)]) vertexes, _ = decorate_nx_graph(g) integer_partition = paige_tarjan(g) q_partition = integer_to_partition(integer_partition, vertexes) # now we modify the graph add_edge(vertexes[3], vertexes[0]) # find [v] modified_destination_block = None for block in q_partition: for vertex in block.vertexes: if vertex.label == 0: modified_destination_block = block break ranked_split(q_partition, modified_destination_block, 2) for vx in vertexes: assert not hasattr(vx, "aux_count") or vx.aux_count is None def test_ranked_split(): g = nx.DiGraph() g.add_nodes_from(range(5)) g.add_edges_from([(0, 1), (0, 2), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)]) vertexes, _ = decorate_nx_graph(g) integer_partition = paige_tarjan(g) q_partition = integer_to_partition(integer_partition, vertexes) # now we modify the graph add_edge(vertexes[3], vertexes[0]) # find [v] modified_destination_block = None for block in q_partition: for vertex in block.vertexes: if vertex.label == 0: modified_destination_block = block break ranked_split(q_partition, modified_destination_block, 2) final_integer_partition = partition_to_integer(q_partition) assert final_integer_partition == set( [frozenset([0]), frozenset([1, 2]), frozenset([3]), frozenset([4])] )
py
1a476d496790ee6a0b38b1aa74ea4d16157645f8
# -*- coding: utf-8 -*- """ Fast Kalman Filter attitude estimation ====================================== References ---------- .. [Guo] Siwen Guo, Jin Wu, Zuocai Wang, and Jide Qian, "Novel MARG-Sensor Orientation Estimation Algorithm Using Fast Kalman Filter." Journal of Sensors, vol. 2017, Article ID 8542153, 12 pages. https://doi.org/10.1155/2017/8542153 and https://github.com/zarathustr/FKF """ import numpy as np from ahrs.common.orientation import * from ahrs.common import DEG2RAD class FKF: """ Class of Fast Kalman Filter algorithm Parameters ---------- acc : array Sample of tri-axial Accelerometer. mag : array Sample of tri-axial Magnetometer. """ def __init__(self, acc: np.ndarray = None, mag: np.ndarray = None, **kwargs): self.q = np.array([1.0, 0.0, 0.0, 0.0]) self.Ar = np.array([0.0, 0.0, 1.0]) self.Mr = np.array([0.0, 0.0, 1.0]) def update(self, acc, mag): """ FKF algorithm with a 6-axis Accelerometer-Magnetometer architecture. Parameters ---------- acc : array Sample of tri-axial Accelerometer. mag : array Sample of tri-axial Magnetometer. Returns ------- q : array Estimated quaternion. """ Ab = acc.copy() Mb = mag.copy() return self.q
py
1a476db7cd76d7ae200f6910321aa02a2137810d
import cv2 import numpy as np def detect_face(net, frame, conf_threshold=0.7): # Siapkan input image h, w, c = frame.shape blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), [104, 117, 123], False, False) # Feedforward # prediksi dari SSD mengeluarkan output (1, 1, N, 7) # 7 output tersebut merupakan: image_id, label, conf, x_min, y_min, x_max, y_max net.setInput(blob) detections = net.forward() # Filter prediksi yang low confidence bbox = [] for _, _, conf, x1, y1, x2, y2 in detections[0, 0]: if conf > conf_threshold: box = np.array([x1, y1, x2, y2]) * [w, h, w, h] bbox.append(box.astype(int)) return bbox def normalize_image(img): mean = img.reshape(-1, 3).mean(0).reshape(1, 1, -1) std = img.reshape(-1, 3).std(0).reshape(1, 1, -1) img = (img - mean) / std img = (np.clip(img, [-4, -4, -4], [4, 4, 4]) + 4) / 8 img = (img*255).astype(np.uint8) return img def calculate_skin_percent(face, min_val=(90, 100, 110), max_val=(150, 150, 150)): face = normalize_image(face) min_val = np.array(min_val, dtype=np.uint8) max_val = np.array(max_val, dtype=np.uint8) skin = ((face >= min_val) & (face <= max_val)).all(2) skin_percent = skin.mean() return skin_percent
py
1a476de9dfd09f30c3371f3dbb98e85f16cc8a05
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2018-08-11 17:53 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('polls', '0005_option_votes'), ] operations = [ migrations.AlterField( model_name='option', name='details', field=models.CharField(help_text='Episodes watched (Ep.1, Eps. 1-3), etc.', max_length=200, null=True), ), migrations.AlterField( model_name='poll', name='description', field=models.CharField(help_text='Description of the poll', max_length=50, null=True), ), migrations.AlterField( model_name='poll', name='name', field=models.CharField(help_text='Enter name of poll', max_length=30), ), ]
py
1a476fae70439fa39efdf14392cf089b1cc5cdd7
# Copyright 2004-2008 Roman Yakovenko. # Distributed under the Boost Software License, Version 1.0. (See # accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) import os import sys import unittest import fundamental_tester_base from pyplusplus import code_creators class tester_t(fundamental_tester_base.fundamental_tester_base_t): EXTENSION_NAME = 'duplicate_aliases' def __init__( self, *args ): fundamental_tester_base.fundamental_tester_base_t.__init__( self , tester_t.EXTENSION_NAME , *args ) def customize(self, mb): classes = mb.classes( lambda decl: 'duplicate_aliases' in decl.name ) classes.alias = 'duplicate_aliases' classes.wrapper_alias = 'wrapper_duplicate_aliases' def run_tests( self, module): #check compilation pass def create_suite(): suite = unittest.TestSuite() suite.addTest( unittest.makeSuite(tester_t)) return suite def run_suite(): unittest.TextTestRunner(verbosity=2).run( create_suite() ) if __name__ == "__main__": run_suite()
py
1a4770867afeb94a76d8dd47245efaad59b444e3
from easydict import EasyDict cartpole_iqn_config = dict( env=dict( collector_env_num=8, evaluator_env_num=5, n_evaluator_episode=5, stop_value=195, ), policy=dict( cuda=False, on_policy=False, priority=True, model=dict( obs_shape=4, action_shape=2, encoder_hidden_size_list=[128, 128, 64], num_quantiles=32, ), discount_factor=0.97, nstep=3, learn=dict( update_per_collect=3, batch_size=64, learning_rate=0.001, target_update_freq=100, kappa=1.0, ), collect=dict( n_sample=80, unroll_len=1, ), other=dict( eps=dict( type='exp', start=0.95, end=0.1, decay=10000, ), replay_buffer=dict(replay_buffer_size=20000, ) ), ), ) cartpole_iqn_config = EasyDict(cartpole_iqn_config) main_config = cartpole_iqn_config cartpole_iqn_create_config = dict( env=dict( type='cartpole', import_names=['dizoo.classic_control.cartpole.envs.cartpole_env'], ), env_manager=dict(type='base'), policy=dict(type='iqn'), ) cartpole_iqn_create_config = EasyDict(cartpole_iqn_create_config) create_config = cartpole_iqn_create_config
py
1a4770909ed65743f4eb3301f9568472c62f85b0
#!/usr/bin/env python # # This example can be used to demonstrate pvaPy server/client channel # monitoring # # Run server.py in one window, and client.py in another one. # import sys import time from pvaccess import Channel from collections import OrderedDict class ClientMonitor: def __init__(self, name): self.name = name self.value = 0 self.nReceived = 0 self.nMissed = 0 self.percentageMissed = 0 self.startTime = 0 self.receiveRate = 0 def toString(self): return '%6s: Received: %7d (%6.2f [kHz]); Missed: %7d (%6.2f%%)' % (self.name, self.nReceived, self.receiveRateKHz, self.nMissed, self.percentageMissed) def monitor(self, pv): oldValue = self.value self.value = pv['c'] self.nReceived += 1 diff = self.value - oldValue if oldValue > 0: self.nMissed += diff-1 else: self.startTime = time.time() if self.nReceived % 10000 == 0: currentTime = time.time() deltaT = currentTime - self.startTime self.receiveRateKHz = self.nReceived/deltaT/1000.0 self.percentageMissed = (self.nMissed*100.0)/(self.nReceived+self.nMissed) if self.nReceived % 100000 == 0: print(self.toString()) if __name__ == '__main__': runtime = 60 if len(sys.argv) > 1: runtime = float(sys.argv[1]) channelName = 'counter' c = Channel(channelName) #print('CONNECT TO %s:\n%s\n' % (channelName, c.get())) m = ClientMonitor(channelName) t0 = time.time() print('STARTING MONITOR for %s at %s\n' % (channelName, t0)) #c.monitor(m.monitor) c.monitor(m.monitor, 'field(c)') time.sleep(runtime) c.stopMonitor() t1 = time.time() deltaT = t1-t0 print('STOP MONITOR at %s\n' % t1) print('FINAL STATS:') print(m.toString()) print('') print('RUNTIME: %.2f [s]' % (deltaT)) print('\nDONE')
py
1a47713a0531c57bcc413e90552d434bfc7a3455
# -*- coding: utf-8 -*- """ drftoolbox.views ~~~~~~~~~~~~~~~~ This module defines view classes used by the API :copyright: (c) 2018 by Medical Decisions LLC """ import functools import json import logging import re from django.contrib.auth import get_user_model from rest_framework import generics from jose import jwt as jose_jwt, exceptions as jose_exceptions from drftoolbox.serializers import UserKMSKeySerializer LOGGER = logging.getLogger(__name__) class BaseUserKMSKeyView(generics.RetrieveAPIView): queryset = get_user_model().objects.filter(is_active=True) serializer_class = UserKMSKeySerializer def http_sign_class(self): raise NotImplementedError class RequestLoggingViewMixin(object): REQUEST_LOGGING_LOGGER = LOGGER REQUEST_LOGGING_LEVEL = logging.INFO REQUEST_LOGGING_OBFUSCATE_PATTERN = re.compile(r'.*(authorization|cookie)$', re.I) @classmethod def obfuscate(cls, value): result = [] for section in str(value).split('; '): # try handling the value as a cookie, and if so see if we can # only obfuscate the value parts of that cookie, however if not # a cookie just fall back to obfuscating everything after the # first 6 chars parts = section.split('=', 1) k = parts[0] if len(parts) > 1 else '' v = parts[-1] result.append(f'{k} {v[:6]}...'.strip()) return ' '.join(result) @classmethod def request_logging(cls, request): """ utility method to log the details of a request """ log = functools.partial(cls.REQUEST_LOGGING_LOGGER.log, cls.REQUEST_LOGGING_LEVEL) pattern = cls.REQUEST_LOGGING_OBFUSCATE_PATTERN data, headers = {}, {} for k, v in request.data.items(): if pattern.match(k): v = cls.obfuscate(v) data[k] = v for k, v in request._request.headers.items(): # pylint: disable=protected-access if pattern.match(k): try: token = v.split()[-1] v = { 'jwt_headers': jose_jwt.get_unverified_header(token), 'jwt_claims': jose_jwt.get_unverified_claims(token), } except (jose_exceptions.JOSEError, IndexError): v = cls.obfuscate(v) headers[k] = v msg = { 'path': request._request.path, # pylint: disable=protected-access 'query params': dict(request.query_params), 'data': data, 'headers': headers, } log(f'REQUEST => {json.dumps(msg, indent=2)}') def initialize_request(self, *args, **kwargs): request = super().initialize_request(*args, **kwargs) self.request_logging(request) return request
py
1a477177db1fc6daea92f3094a8f6b4bfb1ddcc2
""" Dialog for building Tkinter accelerator key bindings """ from Tkinter import * import tkMessageBox import string, os class GetKeysDialog(Toplevel): def __init__(self,parent,title,action,currentKeySequences): """ action - string, the name of the virtual event these keys will be mapped to currentKeys - list, a list of all key sequence lists currently mapped to virtual events, for overlap checking """ Toplevel.__init__(self, parent) self.configure(borderwidth=5) self.resizable(height=FALSE,width=FALSE) self.title(title) self.transient(parent) self.grab_set() self.protocol("WM_DELETE_WINDOW", self.Cancel) self.parent = parent self.action=action self.currentKeySequences=currentKeySequences self.result='' self.keyString=StringVar(self) self.keyString.set('') self.SetModifiersForPlatform() # set self.modifiers, self.modifier_label self.modifier_vars = [] for modifier in self.modifiers: variable = StringVar(self) variable.set('') self.modifier_vars.append(variable) self.advanced = False self.CreateWidgets() self.LoadFinalKeyList() self.withdraw() #hide while setting geometry self.update_idletasks() self.geometry("+%d+%d" % ((parent.winfo_rootx()+((parent.winfo_width()/2) -(self.winfo_reqwidth()/2)), parent.winfo_rooty()+((parent.winfo_height()/2) -(self.winfo_reqheight()/2)) )) ) #centre dialog over parent self.deiconify() #geometry set, unhide self.wait_window() def CreateWidgets(self): frameMain = Frame(self,borderwidth=2,relief=SUNKEN) frameMain.pack(side=TOP,expand=TRUE,fill=BOTH) frameButtons=Frame(self) frameButtons.pack(side=BOTTOM,fill=X) self.buttonOK = Button(frameButtons,text='OK', width=8,command=self.OK) self.buttonOK.grid(row=0,column=0,padx=5,pady=5) self.buttonCancel = Button(frameButtons,text='Cancel', width=8,command=self.Cancel) self.buttonCancel.grid(row=0,column=1,padx=5,pady=5) self.frameKeySeqBasic = Frame(frameMain) self.frameKeySeqAdvanced = Frame(frameMain) self.frameControlsBasic = Frame(frameMain) self.frameHelpAdvanced = Frame(frameMain) self.frameKeySeqAdvanced.grid(row=0,column=0,sticky=NSEW,padx=5,pady=5) self.frameKeySeqBasic.grid(row=0,column=0,sticky=NSEW,padx=5,pady=5) self.frameKeySeqBasic.lift() self.frameHelpAdvanced.grid(row=1,column=0,sticky=NSEW,padx=5) self.frameControlsBasic.grid(row=1,column=0,sticky=NSEW,padx=5) self.frameControlsBasic.lift() self.buttonLevel = Button(frameMain,command=self.ToggleLevel, text='Advanced Key Binding Entry >>') self.buttonLevel.grid(row=2,column=0,stick=EW,padx=5,pady=5) labelTitleBasic = Label(self.frameKeySeqBasic, text="New keys for '"+self.action+"' :") labelTitleBasic.pack(anchor=W) labelKeysBasic = Label(self.frameKeySeqBasic,justify=LEFT, textvariable=self.keyString,relief=GROOVE,borderwidth=2) labelKeysBasic.pack(ipadx=5,ipady=5,fill=X) self.modifier_checkbuttons = {} column = 0 for modifier, variable in zip(self.modifiers, self.modifier_vars): label = self.modifier_label.get(modifier, modifier) check=Checkbutton(self.frameControlsBasic, command=self.BuildKeyString, text=label,variable=variable,onvalue=modifier,offvalue='') check.grid(row=0,column=column,padx=2,sticky=W) self.modifier_checkbuttons[modifier] = check column += 1 labelFnAdvice=Label(self.frameControlsBasic,justify=LEFT, text=\ "Select the desired modifier keys\n"+ "above, and the final key from the\n"+ "list on the right.\n\n" + "Use upper case Symbols when using\n" + "the Shift modifier. (Letters will be\n" + "converted automatically.)") labelFnAdvice.grid(row=1,column=0,columnspan=4,padx=2,sticky=W) self.listKeysFinal=Listbox(self.frameControlsBasic,width=15,height=10, selectmode=SINGLE) self.listKeysFinal.bind('<ButtonRelease-1>',self.FinalKeySelected) self.listKeysFinal.grid(row=0,column=4,rowspan=4,sticky=NS) scrollKeysFinal=Scrollbar(self.frameControlsBasic,orient=VERTICAL, command=self.listKeysFinal.yview) self.listKeysFinal.config(yscrollcommand=scrollKeysFinal.set) scrollKeysFinal.grid(row=0,column=5,rowspan=4,sticky=NS) self.buttonClear=Button(self.frameControlsBasic, text='Clear Keys',command=self.ClearKeySeq) self.buttonClear.grid(row=2,column=0,columnspan=4) labelTitleAdvanced = Label(self.frameKeySeqAdvanced,justify=LEFT, text="Enter new binding(s) for '"+self.action+"' :\n"+ "(These bindings will not be checked for validity!)") labelTitleAdvanced.pack(anchor=W) self.entryKeysAdvanced=Entry(self.frameKeySeqAdvanced, textvariable=self.keyString) self.entryKeysAdvanced.pack(fill=X) labelHelpAdvanced=Label(self.frameHelpAdvanced,justify=LEFT, text="Key bindings are specified using Tkinter keysyms as\n"+ "in these samples: <Control-f>, <Shift-F2>, <F12>,\n" "<Control-space>, <Meta-less>, <Control-Alt-Shift-X>.\n" "Upper case is used when the Shift modifier is present!\n\n" + "'Emacs style' multi-keystroke bindings are specified as\n" + "follows: <Control-x><Control-y>, where the first key\n" + "is the 'do-nothing' keybinding.\n\n" + "Multiple separate bindings for one action should be\n"+ "separated by a space, eg., <Alt-v> <Meta-v>." ) labelHelpAdvanced.grid(row=0,column=0,sticky=NSEW) def SetModifiersForPlatform(self): """Determine list of names of key modifiers for this platform. The names are used to build Tk bindings -- it doesn't matter if the keyboard has these keys, it matters if Tk understands them. The order is also important: key binding equality depends on it, so config-keys.def must use the same ordering. """ import sys if sys.platform == 'darwin' and sys.argv[0].count('.app'): self.modifiers = ['Shift', 'Control', 'Option', 'Command'] else: self.modifiers = ['Control', 'Alt', 'Shift'] self.modifier_label = {'Control': 'Ctrl'} # short name def ToggleLevel(self): if self.buttonLevel.cget('text')[:8]=='Advanced': self.ClearKeySeq() self.buttonLevel.config(text='<< Basic Key Binding Entry') self.frameKeySeqAdvanced.lift() self.frameHelpAdvanced.lift() self.entryKeysAdvanced.focus_set() self.advanced = True else: self.ClearKeySeq() self.buttonLevel.config(text='Advanced Key Binding Entry >>') self.frameKeySeqBasic.lift() self.frameControlsBasic.lift() self.advanced = False def FinalKeySelected(self,event): self.BuildKeyString() def BuildKeyString(self): keyList = modifiers = self.GetModifiers() finalKey = self.listKeysFinal.get(ANCHOR) if finalKey: finalKey = self.TranslateKey(finalKey, modifiers) keyList.append(finalKey) self.keyString.set('<' + string.join(keyList,'-') + '>') def GetModifiers(self): modList = [variable.get() for variable in self.modifier_vars] return filter(None, modList) def ClearKeySeq(self): self.listKeysFinal.select_clear(0,END) self.listKeysFinal.yview(MOVETO, '0.0') for variable in self.modifier_vars: variable.set('') self.keyString.set('') def LoadFinalKeyList(self): #these tuples are also available for use in validity checks self.functionKeys=('F1','F2','F2','F4','F5','F6','F7','F8','F9', 'F10','F11','F12') self.alphanumKeys=tuple(string.ascii_lowercase+string.digits) self.punctuationKeys=tuple('~!@#%^&*()_-+={}[]|;:,.<>/?') self.whitespaceKeys=('Tab','Space','Return') self.editKeys=('BackSpace','Delete','Insert') self.moveKeys=('Home','End','Page Up','Page Down','Left Arrow', 'Right Arrow','Up Arrow','Down Arrow') #make a tuple of most of the useful common 'final' keys keys=(self.alphanumKeys+self.punctuationKeys+self.functionKeys+ self.whitespaceKeys+self.editKeys+self.moveKeys) self.listKeysFinal.insert(END, *keys) def TranslateKey(self, key, modifiers): "Translate from keycap symbol to the Tkinter keysym" translateDict = {'Space':'space', '~':'asciitilde','!':'exclam','@':'at','#':'numbersign', '%':'percent','^':'asciicircum','&':'ampersand','*':'asterisk', '(':'parenleft',')':'parenright','_':'underscore','-':'minus', '+':'plus','=':'equal','{':'braceleft','}':'braceright', '[':'bracketleft',']':'bracketright','|':'bar',';':'semicolon', ':':'colon',',':'comma','.':'period','<':'less','>':'greater', '/':'slash','?':'question','Page Up':'Prior','Page Down':'Next', 'Left Arrow':'Left','Right Arrow':'Right','Up Arrow':'Up', 'Down Arrow': 'Down', 'Tab':'Tab'} if key in translateDict.keys(): key = translateDict[key] if 'Shift' in modifiers and key in string.ascii_lowercase: key = key.upper() key = 'Key-' + key return key def OK(self, event=None): if self.advanced or self.KeysOK(): # doesn't check advanced string yet self.result=self.keyString.get() self.destroy() def Cancel(self, event=None): self.result='' self.destroy() def KeysOK(self): '''Validity check on user's 'basic' keybinding selection. Doesn't check the string produced by the advanced dialog because 'modifiers' isn't set. ''' keys = self.keyString.get() keys.strip() finalKey = self.listKeysFinal.get(ANCHOR) modifiers = self.GetModifiers() # create a key sequence list for overlap check: keySequence = keys.split() keysOK = False title = 'Key Sequence Error' if not keys: tkMessageBox.showerror(title=title, parent=self, message='No keys specified.') elif not keys.endswith('>'): tkMessageBox.showerror(title=title, parent=self, message='Missing the final Key') elif (not modifiers and finalKey not in self.functionKeys + self.moveKeys): tkMessageBox.showerror(title=title, parent=self, message='No modifier key(s) specified.') elif (modifiers == ['Shift']) \ and (finalKey not in self.functionKeys + self.moveKeys + ('Tab', 'Space')): msg = 'The shift modifier by itself may not be used with'\ ' this key symbol.' tkMessageBox.showerror(title=title, parent=self, message=msg) elif keySequence in self.currentKeySequences: msg = 'This key combination is already in use.' tkMessageBox.showerror(title=title, parent=self, message=msg) else: keysOK = True return keysOK if __name__ == '__main__': #test the dialog root=Tk() def run(): keySeq='' dlg=GetKeysDialog(root,'Get Keys','find-again',[]) print dlg.result Button(root,text='Dialog',command=run).pack() root.mainloop()
py
1a4771f0bcc082903de994caed18c8cf0ee234fe
from django.db.models import CharField, Expression from psycopg2.sql import Identifier, Literal, SQL from usaspending_api.common.helpers.sql_helpers import convert_composable_query_to_string from usaspending_api.recipient.models import RecipientLookup, RecipientProfile from usaspending_api.recipient.v2.lookups import SPECIAL_CASES def obtain_recipient_uri(recipient_name, recipient_unique_id, parent_recipient_unique_id, is_parent_recipient=False): """ Return a valid string to be used for api/v2/recipient/duns/<recipient-hash>/ (or None) Keyword Arguments: recipient_name -- Legal Entity Name from the record recipient_unique_id -- DUNS from the record parent_recipient_unique_id -- parent DUNS from the record is_parent_recipient -- boolean flag to force the recipient level to be "P" (default False) By the nature of transaction records, the listed recipient can only be "R" or "C" This flag is for the parent recipient link (as appropriate) Return example string: 11fcdf15-3490-cdad-3df4-3b410f3d9b20-C """ if (is_parent_recipient and not recipient_unique_id) or not (recipient_unique_id or recipient_name): return None if recipient_unique_id: recipient_hash = fetch_recipient_hash_using_duns(recipient_unique_id) else: recipient_hash = None if recipient_hash is None: recipient_hash = generate_missing_recipient_hash(recipient_unique_id, recipient_name) recipient_level = obtain_recipient_level( { "duns": recipient_unique_id, "parent_duns": parent_recipient_unique_id, "is_parent_recipient": is_parent_recipient, } ) # Confirm that a recipient profile exists for the recipient information we have collected/generated. if RecipientProfile.objects.filter(recipient_hash=recipient_hash, recipient_level=recipient_level).exists(): return combine_recipient_hash_and_level(recipient_hash, recipient_level) return None def generate_missing_recipient_hash(recipient_unique_id, recipient_name): # SQL: MD5(UPPER( # CASE # WHEN awardee_or_recipient_uniqu IS NOT NULL THEN CONCAT('duns-', awardee_or_recipient_uniqu) # ELSE CONCAT('name-', awardee_or_recipient_legal) END # ))::uuid AS recipient_hash, import hashlib import uuid if recipient_unique_id is None: prefix = "name" value = recipient_name else: prefix = "duns" value = recipient_unique_id return str(uuid.UUID(hashlib.md5(f"{prefix}-{value}".upper().encode("utf-8")).hexdigest())) def fetch_recipient_hash_using_duns(recipient_unique_id): recipient = RecipientLookup.objects.filter(duns=recipient_unique_id).values("recipient_hash").first() return recipient["recipient_hash"] if recipient else None def obtain_recipient_level(recipient_record: dict) -> str: level = None if recipient_is_parent(recipient_record): level = "P" elif recipient_is_standalone(recipient_record): level = "R" elif recipient_is_child(recipient_record): level = "C" return level def recipient_is_parent(recipient_record: dict) -> bool: return recipient_record["is_parent_recipient"] def recipient_is_standalone(recipient_record: dict) -> bool: return recipient_record["parent_duns"] is None def recipient_is_child(recipient_record: dict) -> bool: return recipient_record["parent_duns"] is not None def combine_recipient_hash_and_level(recipient_hash, recipient_level): return f"{recipient_hash}-{recipient_level.upper()}" def _annotate_recipient_id(field_name, queryset, annotation_sql): """ Add recipient id (recipient hash + recipient level) to a queryset. The assumption here is that the queryset is based on a data source that contains recipient_unique_id and parent_recipient_unique_id which, currently, all of our advanced search materialized views do. """ class RecipientId(Expression): """ Used to graft a subquery into a queryset that can build recipient ids. This is a bit less than ideal, but I just couldn't construct an ORM query to mimic this logic. There are several issues including but not limited to: - There are currently no relations between these tables in the Django ORM which makes joining them... challenging. - Adding relations to the ORM changes how the fields behave making this a much bigger enhancement than originally planned. - When I did add relations to the ORM, I couldn't figure out how to make the Django OuterRef expression check for nulls since the subquery needs to check to see if the parent_recipient_unique_id in the outer query is null. Anyhow, this works and is encapsulated so if someone smart figures out how to use pure ORM, it should be easy to patch in. """ def __init__(self): super(RecipientId, self).__init__(CharField()) def as_sql(self, compiler, connection): return ( convert_composable_query_to_string( SQL(annotation_sql).format( outer_table=Identifier(compiler.query.model._meta.db_table), special_cases=Literal(tuple(sc for sc in SPECIAL_CASES)), ) ), [], ) return queryset.annotate(**{field_name: RecipientId()}) def annotate_recipient_id(field_name, queryset): return _annotate_recipient_id( field_name, queryset, """( select rp.recipient_hash || '-' || rp.recipient_level from recipient_profile rp inner join recipient_lookup rl on rl.recipient_hash = rp.recipient_hash where ( ( {outer_table}.recipient_unique_id is null and rl.duns is null and {outer_table}.recipient_name = rl.legal_business_name ) or ( {outer_table}.recipient_unique_id is not null and rl.duns is not null and rl.duns = {outer_table}.recipient_unique_id ) ) and rp.recipient_level = case when {outer_table}.parent_recipient_unique_id is null then 'R' else 'C' end and rp.recipient_name not in {special_cases} )""", ) def annotate_prime_award_recipient_id(field_name, queryset): return _annotate_recipient_id( field_name, queryset, """( select rp.recipient_hash || '-' || rp.recipient_level from broker_subaward bs inner join recipient_lookup rl on rl.duns = bs.awardee_or_recipient_uniqu inner join recipient_profile rp on rp.recipient_hash = rl.recipient_hash where bs.id = {outer_table}.subaward_id and rp.recipient_level = case when bs.ultimate_parent_unique_ide is null or bs.ultimate_parent_unique_ide = '' then 'R' else 'C' end and rp.recipient_name not in {special_cases} )""", )
py
1a47724112d7cd66bbf02a7fb8c1ced501c0fc20
#!/usr/bin/env python3 import sys import asyncio from electrum_spero.util import json_encode, print_msg, create_and_start_event_loop, log_exceptions from electrum_spero.simple_config import SimpleConfig from electrum_spero.network import Network from electrum_spero.keystore import bip39_to_seed from electrum_spero.bip32 import BIP32Node from electrum_spero.bip39_recovery import account_discovery try: mnemonic = sys.argv[1] passphrase = sys.argv[2] if len(sys.argv) > 2 else "" except Exception: print("usage: bip39_recovery <mnemonic> [<passphrase>]") sys.exit(1) loop, stopping_fut, loop_thread = create_and_start_event_loop() config = SimpleConfig() network = Network(config) network.start() @log_exceptions async def f(): try: def get_account_xpub(account_path): root_seed = bip39_to_seed(mnemonic, passphrase) root_node = BIP32Node.from_rootseed(root_seed, xtype="standard") account_node = root_node.subkey_at_private_derivation(account_path) account_xpub = account_node.to_xpub() return account_xpub active_accounts = await account_discovery(network, get_account_xpub) print_msg(json_encode(active_accounts)) finally: stopping_fut.set_result(1) asyncio.run_coroutine_threadsafe(f(), loop)