ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a484d2310d0a815e25f197a93e44f6710f7319f
""" disk_dict.py Copyright 2012 Andres Riancho This file is part of w3af, http://w3af.org/ . w3af is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation version 2 of the License. w3af is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with w3af; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """ import cPickle from w3af.core.data.misc.cpickle_dumps import cpickle_dumps from w3af.core.data.fuzzer.utils import rand_alpha from w3af.core.data.db.dbms import get_default_temp_db_instance class DiskDict(object): """ It's a dict that stores items in a sqlite3 database and has the following features: - Dict-like API - Is thread safe - Deletes the table when the instance object is deleted :author: Andres Riancho ([email protected]) """ def __init__(self, table_prefix=None): self.db = get_default_temp_db_instance() prefix = '' if table_prefix is None else ('%s_' % table_prefix) self.table_name = 'disk_dict_' + prefix + rand_alpha(30) # Create table # DO NOT add the AUTOINCREMENT flag to the table creation since that # will break __getitem__ when an item is removed, see: # http://www.sqlite.org/faq.html#q1 columns = [('index_', 'INTEGER'), ('key', 'BLOB'), ('value', 'BLOB')] pks = ['index_'] self.db.create_table(self.table_name, columns, pks) self.db.create_index(self.table_name, ['key']) self.db.commit() def cleanup(self): self.db.drop_table(self.table_name) def keys(self): pickled_keys = self.db.select('SELECT key FROM %s' % self.table_name) result_list = [] for r in pickled_keys: result_list.append(cPickle.loads(r[0])) return result_list def iterkeys(self): pickled_keys = self.db.select('SELECT key FROM %s' % self.table_name) for r in pickled_keys: yield cPickle.loads(r[0]) def iteritems(self): pickled_keys = self.db.select('SELECT key, value FROM %s' % self.table_name) for r in pickled_keys: yield cPickle.loads(r[0]), cPickle.loads(r[1]) def __contains__(self, key): """ :return: True if the value is in keys """ # Adding the "limit 1" to the query makes it faster, as it won't # have to scan through all the table/index, it just stops on the # first match. query = 'SELECT count(*) FROM %s WHERE key=? limit 1' % self.table_name r = self.db.select_one(query, (cpickle_dumps(key),)) return bool(r[0]) def __delitem__(self, key): """ Delete the key from the dict :param key: The key to delete :return: None """ query = 'DELETE FROM %s WHERE key = ?' % self.table_name self.db.execute(query, (cpickle_dumps(key),)) def __setitem__(self, key, value): # Test if it is already in the DB: if key in self: query = 'UPDATE %s SET value = ? WHERE key=?' % self.table_name self.db.execute(query, (cpickle_dumps(value), cpickle_dumps(key))) else: query = "INSERT INTO %s VALUES (NULL, ?, ?)" % self.table_name self.db.execute(query, (cpickle_dumps(key), cpickle_dumps(value))) def __getitem__(self, key): query = 'SELECT value FROM %s WHERE key=? limit 1' % self.table_name r = self.db.select(query, (cpickle_dumps(key),)) if not r: args = (key, self.table_name) raise KeyError('%s not in %s.' % args) return cPickle.loads(r[0][0]) def __len__(self): query = 'SELECT count(*) FROM %s' % self.table_name r = self.db.select_one(query) return r[0] def get(self, key, default=-456): try: return self[key] except KeyError: if default is not -456: return default raise KeyError() def pop(self, key, default=-456): value = self.get(key, default=default) del self[key] return value
py
1a484d540e55931951fc16f8714ba8678edb4736
from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager, PermissionsMixin class UserManager(BaseUserManager): def create_user(self, email, password=None, **extra_fields): """Creates and saves a new user""" if not email: raise ValueError('Users must have an email address') user = self.model(email=self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password): """Creates and saves a new super user""" user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): """Custom user model that suppors using email instead of username""" email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserManager() USERNAME_FIELD = 'email'
py
1a484db62ace1ec5577f68686456cd0c4f2be679
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class RZoo(RPackage): """S3 Infrastructure for Regular and Irregular Time Series (Z's Ordered Observations). An S3 class with methods for totally ordered indexed observations. It is particularly aimed at irregular time series of numeric vectors/matrices and factors. zoo's key design goals are independence of a particular index/date/time class and consistency with ts and base R by providing methods to extend standard generics.""" cran = "zoo" version('1.8-9', sha256='b7be259067a8b9d4a8f5d387e0946a5ba1eb43474baa67ccf4f8bf4b15f772a3') version('1.8-8', sha256='4e8cc4065047ba12e103b9664f3b607c770673096e9c2b694fad2b2ec3203ce7') version('1.8-6', sha256='2217a4f362f2201443b5fdbfd9a77d9a6caeecb05f02d703ee8b3b9bf2af37cc') version('1.8-5', sha256='8773969973d28d7d1a48f74b73be1dbd97acb3b22a4668a102e8bb585a7de826') version('1.7-14', sha256='4858675fed056a4329c4998517cc944db386447483390bd342de719e0509f598') version('1.7-13', sha256='0ca5264d6077c785963705e462aec3e57e0d0651379f9bf4ee32e4f3b25dc754') depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run'), when='@1.8-2:') depends_on('[email protected]:', type=('build', 'run'))
py
1a484e3839e5be5e2d36e8dd5a4a222f5dcb22ea
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ploting tools.""" import numpy as np import nibabel as nb import pandas as pd from nilearn.signal import clean import matplotlib.pyplot as plt from matplotlib import gridspec as mgs import seaborn as sns from niworkflows.viz.plots import plot_carpet as plot_carpetX from ..utils import read_ndata def plotimage(img,out_file): fig = plt.figure(constrained_layout=False, figsize=(30, 15)) from nilearn.plotting import plot_anat plot_anat(img,draw_cross=False,figure=fig) fig.savefig(out_file,bbox_inches="tight", pad_inches=None) return out_file def plot_svg(fdata,fd,dvars,filename,tr=1): ''' plot carpetplot with fd and dvars ------------ fdata: 4D ndarray fd: framewise displacement dvars: dvars filename filename tr: repetion time ''' fig = plt.figure(constrained_layout=False, figsize=(30, 15)) grid = mgs.GridSpec(3, 1, wspace=0.0, hspace=0.05, height_ratios=[1] * (3 - 1) + [5]) confoundplot(fd, grid[0], tr=tr, color='b', name='FD') confoundplot(dvars, grid[1], tr=tr, color='r', name='DVARS') plot_carpet(func_data=fdata,subplot=grid[-1], tr=tr,) fig.savefig(filename,bbox_inches="tight", pad_inches=None) def compute_dvars(datat): ''' compute standard dvars datat : numpy darrays data matrix vertices by timepoints ''' firstcolumn=np.zeros((datat.shape[0]))[...,None] datax=np.hstack((firstcolumn,np.diff(datat))) datax_ss=np.sum(np.square(datax),axis=0)/datat.shape[0] return np.sqrt(datax_ss) def plot_carpet(func_data,detrend=True, nskip=0, size=(950, 800), subplot=None, title=None, output_file=None, legend=False, tr=None): """ Plot an image representation of voxel intensities across time also know as the "carpet plot" from Niworkflows Parameters ---------- func_data : 4D ndarray detrend : boolean, optional Detrend and standardize the data prior to plotting. nskip : int Number of volumes at the beginning of the scan marked to be excluded. title : string, optional The title displayed on the figure. output_file : string, or None, optional The name of an image file to export the plot to. Valid extensions are .png, .pdf, .svg. If output_file is not None, the plot is saved to a file, and the display is closed. legend : bool Whether to render the average functional series with ``atlaslabels`` as overlay. tr : float , optional Specify the TR, if specified it uses this value. If left as None, # Frames is plotted instead of time. """ # Define TR and number of frames notr = False if tr is None: notr = True tr = 1 ntsteps = func_data.shape[-1] data = func_data.reshape(-1, ntsteps) p_dec = 1 + data.shape[0] // size[0] if p_dec: data = data[::p_dec, :] t_dec = 1 + data.shape[1] // size[1] if t_dec: data = data[:, ::t_dec] # Detrend data v = (None, None) if detrend: data = clean(data.T, t_r=tr).T v = (-2, 2) # If subplot is not defined if subplot is None: subplot = mgs.GridSpec(1, 1)[0] # Define nested GridSpec wratios = [1, 100, 20] gs = mgs.GridSpecFromSubplotSpec(1, 2 + int(legend), subplot_spec=subplot, width_ratios=wratios[:2 + int(legend)], wspace=0.0) # Carpet plot ax1 = plt.subplot(gs[1]) ax1.imshow(data, interpolation='nearest', aspect='auto', cmap='gray', vmin=v[0], vmax=v[1]) ax1.grid(False) ax1.set_yticks([]) ax1.set_yticklabels([]) # Set 10 frame markers in X axis interval = max((int(data.shape[-1] + 1) // 10, int(data.shape[-1] + 1) // 5, 1)) xticks = list(range(0, data.shape[-1])[::interval]) ax1.set_xticks(xticks) if notr: ax1.set_xlabel('time (frame #)') else: ax1.set_xlabel('time (s)') labels = tr * (np.array(xticks)) * t_dec ax1.set_xticklabels(['%.02f' % t for t in labels.tolist()], fontsize=10) # Remove and redefine spines for side in ["top", "right"]: ax1.spines[side].set_color('none') ax1.spines[side].set_visible(False) ax1.yaxis.set_ticks_position('left') ax1.xaxis.set_ticks_position('bottom') ax1.spines["bottom"].set_visible(False) ax1.spines["left"].set_color('none') ax1.spines["left"].set_visible(False) if output_file is not None: figure = plt.gcf() figure.savefig(output_file, bbox_inches='tight') plt.close(figure) figure = None return output_file return [ax1], gs def confoundplot(tseries, gs_ts, gs_dist=None, name=None, units=None, tr=None, hide_x=True, color='b', nskip=0, cutoff=None, ylims=None): ''' adapted from niworkflows tseries: numpy array gs_ts: GridSpec name: file name units: tseries unit tr: repetition time ''' # Define TR and number of frames notr = False if tr is None: notr = True tr = 1. ntsteps = len(tseries) tseries = np.array(tseries) # Define nested GridSpec gs = mgs.GridSpecFromSubplotSpec(1, 2, subplot_spec=gs_ts, width_ratios=[1, 100], wspace=0.0) ax_ts = plt.subplot(gs[1]) ax_ts.grid(False) # Set 10 frame markers in X axis interval = max((ntsteps // 10, ntsteps // 5, 1)) xticks = list(range(0, ntsteps)[::interval]) ax_ts.set_xticks(xticks) if not hide_x: if notr: ax_ts.set_xlabel('time (frame #)') else: ax_ts.set_xlabel('time (s)') labels = tr * np.array(xticks) ax_ts.set_xticklabels(['%.02f' % t for t in labels.tolist()]) else: ax_ts.set_xticklabels([]) if name is not None: if units is not None: name += ' [%s]' % units ax_ts.annotate( name, xy=(0.0, 0.7), xytext=(0, 0), xycoords='axes fraction', textcoords='offset points', va='center', ha='left', color=color, size=20, bbox={'boxstyle': 'round', 'fc': 'w', 'ec': 'none', 'color': 'none', 'lw': 0, 'alpha': 0.8}) for side in ["top", "right"]: ax_ts.spines[side].set_color('none') ax_ts.spines[side].set_visible(False) if not hide_x: ax_ts.spines["bottom"].set_position(('outward', 20)) ax_ts.xaxis.set_ticks_position('bottom') else: ax_ts.spines["bottom"].set_color('none') ax_ts.spines["bottom"].set_visible(False) # ax_ts.spines["left"].set_position(('outward', 30)) ax_ts.spines["left"].set_color('none') ax_ts.spines["left"].set_visible(False) # ax_ts.yaxis.set_ticks_position('left') ax_ts.set_yticks([]) ax_ts.set_yticklabels([]) nonnan = tseries[~np.isnan(tseries)] if nonnan.size > 0: # Calculate Y limits valrange = (nonnan.max() - nonnan.min()) def_ylims = [nonnan.min() - 0.1 * valrange, nonnan.max() + 0.1 * valrange] if ylims is not None: if ylims[0] is not None: def_ylims[0] = min([def_ylims[0], ylims[0]]) if ylims[1] is not None: def_ylims[1] = max([def_ylims[1], ylims[1]]) # Add space for plot title and mean/SD annotation def_ylims[0] -= 0.1 * (def_ylims[1] - def_ylims[0]) ax_ts.set_ylim(def_ylims) # Annotate stats maxv = nonnan.max() mean = nonnan.mean() stdv = nonnan.std() p95 = np.percentile(nonnan, 95.0) else: maxv = 0 mean = 0 stdv = 0 p95 = 0 stats_label = (r'max: {max:.3f}{units} $\bullet$ mean: {mean:.3f}{units} ' r'$\bullet$ $\sigma$: {sigma:.3f}').format( max=maxv, mean=mean, units=units or '', sigma=stdv) ax_ts.annotate( stats_label, xy=(0.98, 0.7), xycoords='axes fraction', xytext=(0, 0), textcoords='offset points', va='center', ha='right', color=color, size=10, bbox={'boxstyle': 'round', 'fc': 'w', 'ec': 'none', 'color': 'none', 'lw': 0, 'alpha': 0.8} ) # Annotate percentile 95 ax_ts.plot((0, ntsteps - 1), [p95] * 2, linewidth=.1, color='lightgray') ax_ts.annotate( '%.2f' % p95, xy=(0, p95), xytext=(-1, 0), textcoords='offset points', va='center', ha='right', color='lightgray', size=3) if cutoff is None: cutoff = [] for thr in enumerate(cutoff): ax_ts.plot((0, ntsteps - 1), [thr] * 2, linewidth=.2, color='dimgray') ax_ts.annotate( '%.2f' % thr, xy=(0, thr), xytext=(-1, 0), textcoords='offset points', va='center', ha='right', color='dimgray', size=3) ax_ts.plot(tseries, color=color, linewidth=1.5) ax_ts.set_xlim((0, ntsteps - 1)) if gs_dist is not None: ax_dist = plt.subplot(gs_dist) sns.distplot(tseries, vertical=True, ax=ax_dist) ax_dist.set_xlabel('Timesteps') ax_dist.set_ylim(ax_ts.get_ylim()) ax_dist.set_yticklabels([]) return [ax_ts, ax_dist], gs return ax_ts, gs # for executive summmary report # Azeez Adebimpe, 2021 def plotseries(conf,gs_ts,ylim=None,ylabelx=None,hide_x=None,tr=None,ax=None): colums =conf.columns notr = False if tr is None: notr = True tr = 1. xtick = np.linspace(0,conf.shape[0]*tr,num=conf.shape[0]) plt.style.use('seaborn-white') plt.xticks(color='k') plt.yticks(color='k') gs = mgs.GridSpecFromSubplotSpec(1, 2, subplot_spec=gs_ts, width_ratios=[1, 100], wspace=0.0) ax= plt.subplot(gs[1]) ax.grid(False) for k in colums: ax.plot(xtick,conf[k],label=k,linewidth=2) if ylim: ax.set_ylim(ylim) else: ax.set_ylim([-2*conf[k].max(),2*conf[k].max()]) ax.set_ylabel(ylabelx,fontsize=20) ax.legend(fontsize=20) last = conf.shape[0] - 1 interval = max((last // 10, last // 5, 1)) ax.set_xlim(0, last) if not hide_x: xticks = list(range(0, last)[::interval]) else: xticks = [] ax.set_xticks(xticks) if not hide_x: if tr is None: ax.set_xlabel("time (frame #)") else: ax.set_xlabel("time (s)") ax.set_xticklabels(["%.01f" % t for t in (tr * np.array(xticks)).tolist()]) for axis in ['top','bottom','left','right']: ax.spines[axis].set_linewidth(2) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(20) return ax def plot_svgx(rawdata,regdata,resddata,fd,filenamebf,filenameaf,mask=None,seg=None,tr=1): ''' generate carpet plot with dvars, fd, and WB ------------ rawdata: nifti or cifti regdata: nifti or cifti after nuissance regression resddata: nifti or cifti after regression and filtering mask: mask for nifti if available seg: 3 tissues seg files tr: repetition times fd: framewise displacement filenamebf: output file svg before processing filenameaf: output file svg after processing ''' rxdata = compute_dvars(read_ndata(datafile=rawdata,maskfile=mask)) rgdata = compute_dvars(read_ndata(datafile=regdata,maskfile=mask)) rsdata = compute_dvars(read_ndata(datafile=resddata,maskfile=mask)) rgdata = compute_dvars(read_ndata(datafile=rawdata,maskfile=mask)) conf = pd.DataFrame({'Pre reg': rxdata, 'Post reg': rgdata, 'Post all': rsdata}) fdx = pd.DataFrame({'FD':np.loadtxt(fd)}) rw = read_ndata(datafile=rawdata,maskfile=mask) rs = read_ndata(datafile=resddata,maskfile=mask) wbbf = pd.DataFrame({'Mean':np.nanmean(rw,axis=0),'Std':np.nanstd(rw,axis=0)}) wbaf = pd.DataFrame({'Mean':np.nanmean(rs,axis=0),'Std':np.nanstd(rs,axis=0)}) if seg is not None: atlaslabels = nb.load(seg).get_fdata() else: atlaslabels = None # plt.cla() plt.clf() figx = plt.figure(constrained_layout=True, figsize=(45,60)) grid = mgs.GridSpec(4, 1, wspace=0.0, hspace=0.05,height_ratios=[1,1,2.5,1]) confoundplotx(tseries=conf,gs_ts=grid[0],tr=tr,ylabel='DVARS',hide_x=True) confoundplotx(tseries=wbbf,gs_ts=grid[1],tr=tr,hide_x=True,ylabel='WB') plot_carpetX(func=rawdata,atlaslabels=atlaslabels,tr=tr,subplot=grid[2],legend=True,title='Raw') confoundplotx(tseries=fdx,gs_ts=grid[3],tr=tr,hide_x=False,ylims=[0,1],ylabel='FD[mm]') figx.savefig(filenamebf,bbox_inches="tight", pad_inches=None,dpi=300) plt.cla() plt.clf() figy = plt.figure(constrained_layout=True, figsize=(45,60)) grid = mgs.GridSpec(4, 1, wspace=0.0, hspace=0.05,height_ratios=[1,1,2.5,1]) confoundplotx(tseries=conf,gs_ts=grid[0],tr=tr,ylabel='DVARS',hide_x=True) confoundplotx(tseries=wbaf,gs_ts=grid[1],tr=tr,hide_x=True,ylabel='WB') plot_carpetX(func=resddata,atlaslabels=atlaslabels,tr=tr,subplot=grid[2],legend=True,title='Processed') confoundplotx(tseries=fdx,gs_ts=grid[3],tr=tr,hide_x=False,ylims=[0,1],ylabel='FD[mm]') figy.savefig(filenameaf,bbox_inches="tight", pad_inches=None,dpi=300) return filenamebf,filenameaf def confoundplotx( tseries, gs_ts, tr=None, hide_x=True, ylims=None, ylabel=None ): import seaborn as sns # Define TR and number of frames notr = False if tr is None: notr = True tr = 1.0 ntsteps = tseries.shape[0] #tseries = np.array(tseries) # Define nested GridSpec gs = mgs.GridSpecFromSubplotSpec( 1, 2, subplot_spec=gs_ts, width_ratios=[1, 100], wspace=0.0 ) ax_ts = plt.subplot(gs[1]) ax_ts.grid(False) # Set 10 frame markers in X axis interval = max((ntsteps // 10, ntsteps // 5, 1)) xticks = list(range(0, ntsteps)[::interval]) ax_ts.set_xticks(xticks) if not hide_x: if notr: ax_ts.set_xlabel("Time (frame #)") else: ax_ts.set_xlabel("Time (s)") labels = tr * np.array(xticks) ax_ts.set_xticklabels(["%.01f" % t for t in labels.tolist()]) else: ax_ts.set_xticklabels([]) if ylabel: ax_ts.set_ylabel(ylabel) columns= tseries.columns maxim_value =[] minim_value =[] for c in columns: ax_ts.plot(tseries[c],label=c, linewidth=3) maxim_value.append(max(tseries[c])) minim_value.append(min(tseries[c])) minx_value = [abs(x) for x in minim_value] ax_ts.set_xlim((0, ntsteps - 1)) ax_ts.legend(fontsize=30) if ylims: ax_ts.set_ylim(ylims) else: ax_ts.set_ylim([-1.5*max(minx_value),1.5*max(maxim_value)]) for item in ([ax_ts.title, ax_ts.xaxis.label, ax_ts.yaxis.label] + ax_ts.get_xticklabels() + ax_ts.get_yticklabels()): item.set_fontsize(30) return ax_ts, gs
py
1a485023853d3c92991f688ef7a4c81e102a328a
def load_config(fname): config_dict = {} with open(fname, 'r') as f: for line in f: if line[0] in ('#', '\n'): continue (key, val) = line.split()[:2] try: val = eval(val) except SyntaxError: pass config_dict[key] = val return config_dict def save_config(config, fname): with open(fname, 'w') as f: for key, value in config.items(): f.write("%s\t%s\n" % (key, value))
py
1a4852cfe35133d0f65c363ce430f06346ed7df5
from setuptools import setup , setuptools # reading long description from file with open("README.md", "r") as fh: long_description = fh.read() # specify requirements of your package here REQUIREMENTS = [] # some more details CLASSIFIERS = [ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ] # calling the setup function setup(name='dirman', version='1.0.1', description='extract dir given its root path', long_description_content_type="text/markdown", long_description=long_description, url='https://github.com/sonusharma07/dirman', author='sonu sharma', author_email='[email protected]', license='MIT', packages=setuptools.find_packages(), classifiers=CLASSIFIERS, install_requires=REQUIREMENTS, keywords='os path dir' )
py
1a4852e687f0a1a7579ceb887d4f526d87695478
#from YourClassParentDir.YourClass import YourClass from math import floor import cv2 import numpy as np import pandas as pd #import multiprocessing as mp from video_process.tracktor import Tracktor class VideoCapture: """ VideoCapture is a class that takes a video, processes it, and returns it. This means that VideoCapture is responsible for working with the data (Tracktor) managing the data, adding and removing tracktor objects from the video as well as retreiving and exporting data. It is also related for video related functions such as play and pause. Parameters ---------- video_source: string This is the directory of the video that is to be processed. """ def __init__(self, video_source=""): # Open the video source self.cap = cv2.VideoCapture(video_source) if not self.cap.isOpened(): raise ValueError("Unable to open video source", video_source) #print(cv2.getBuildInformation()) #print(cv2.ocl.haveOpenCL()) #cv2.ocl.setUseOpenCL(True) # Get video source width, height (resolution) and video length in frames self.width = self.cap.get(cv2.CAP_PROP_FRAME_WIDTH) self.height = self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT) self.length = self.cap.get(cv2.CAP_PROP_FRAME_COUNT) self.FPS = 60 #set the video framerate self.cap.set(cv2.CAP_PROP_FPS, self.FPS) #current frame is used to know what frame it is, as well as assigning frames self.current_frame = 10 self.last_frame = self.current_frame #playstate is used to play/pause the video self.play_state = False #working number is the index for which tracktor to process self.working_number = 0 self.trackers = [] #a list of tuples with position to track and frame to assign on. self.track_history = [] #List of gps coordinates, possible triangulation self.gps_coord = [] #Ground Sample Distance variables self.cam_distance = 0 self.cam_focal_length = 0 self.cam_sensor_width = 0 self.cam_sensor_height = 0 #the path to export the data self.output_path = "./output/" #tracking constants for getting frame types self.TRACK_ALL = -1 self.NO_TRACKING = -2 #zoom variable for setting focused frame self.zoom = 1 def draw_gps(self): """ Draws the GPS coordinated onto the current frame. If 1 point, draw a circle If 2 points, draw a line and calculate distance If points > 3, draw a polygon and calculate distance of all the edges """ pass def calculate_location(self, pos_x, pos_y): """ Calculates GPS location of a point passed in. Based on the GPS points, the location will calculate distance and direction to find the location. """ pass def calculate_size(self, tracktor): """ Based on calculated distance of the GPS coordinates, size of the object is calculated. This should be the distance between the two farthest points (extreme points) Based on pixel length, calculate the related length. """ pass def create_tracker_pos(self, pos_x, pos_y): """ This function creates a new coordinate in history according to current frame """ if self.working_number >= 0: location = (pos_x, pos_y, self.working_number, self.current_frame) self.track_history.append(location) print("Adding clicked location to", end="") print(self.track_history[-1]) def delete_tracker_pos(self, frame_number): """ This function removes an assignment on a given frame """ def set_tracker_pos(self, tracktor): """ This function sets the tracker position at a given frame """ for i in range(len(self.track_history)): #if frame number is equal to set frame ex: (x,y,working_number,frame) if self.current_frame == self.track_history[i][3]: tracktor_index = self.find_tracker_index_by_id(tracktor.id) #if the saved tracktor in the list matches the saved working_number if tracktor_index == self.track_history[i][2]: #assign that tracktor's clicked to the saved coordinates(x,y) self.trackers[tracktor_index].clicked = (self.track_history[i][0], self.track_history[i][1]) # print("Assigning point from history at:", end="") # print(self.track_history[i]) def play(self): """ Sets the play_state of the video to play, if not already. """ if self.play_state is False: self.play_state = True def pause(self): """ Sets the play_state of the video to pause, if not already. """ #pause only if play is set if self.play_state is True: print("Pausing") self.play_state = False def set_frame(self, value): """ Sets the current frame to process to the value passed in. Parameters ---------- Value: float Assigns the current_frame """ value = floor(float(value)) self.current_frame = value self.cap.set(cv2.CAP_PROP_POS_FRAMES, value) def previous_frame(self): """ Sets the current frame to process to the previous frame. """ self.set_frame(self.current_frame-1) def next_frame(self): """ Sets the current frame to process to the next frame. """ self.set_frame(self.current_frame+1) def add_tracker(self): """ Appends a Tracktor object to the trackers list. """ self.trackers.append(Tracktor()) def delete_tracker(self, index): """ !NOT COMPLETE! Removes a tracktor object from the trackers list """ del self.trackers[index] #search the list of trackers by name and return -1 if not fouond def find_tracker_index_by_id(self, name): """ Finds the index in trackers where the name matches the tracktor's id. Parameters ---------- name: string compared to the tracktor's id """ if name == "None": return self.NO_TRACKING elif name == "All": return self.TRACK_ALL else: for i in range(len(self.trackers)): if name == self.trackers[i].id: return i return -1 def set_tracker_offset(self, value): """ Sets the working_number tracktor's offset to the value passed in. Offset is the constant subtracted from the mean value within the block Parameters ---------- value: float """ self.trackers[self.working_number].offset = value def set_tracker_blocksize(self, value): """ Sets the working_number tracktor's block_size to the value passed in. block_size determines the width of the kernel used for adaptive thresholding. Note: block_size must be odd. This is automatically handled. Parameters ---------- value: float """ if value % 2 == 0: value += 1 self.trackers[self.working_number].block_size = value def set_tracker_minarea(self, value): """ Sets the working_number tracktor's min_area to the value passed in. min_area is the minimum area threhold used to detect the object of interest. Parameters ---------- value: float """ self.trackers[self.working_number].min_area = value def set_tracker_maxarea(self, value): """ Sets the working_number tracktor's max_area to the value passed in. max_area is the maximum area threhold used to detect the object of interest. Parameters ---------- value: float """ self.trackers[self.working_number].max_area = value def set_zoom(self, value): """ Sets the zoom to adjust region of interest on a specific tracktor Parameters: value: float The zoom multiplier """ self.zoom = float(value) def get_frame(self, tracking=0): """ Returns a processed frame based on what tracking value is passed in Parameters ---------- tracking: int determines what to track. (-2: NONE, -1 ALL, 0...n working_number tracking index) """ if self.cap.isOpened(): #initialize ret to false so we enter the while loop ret = False #if we cannot retreive the frame, continue onto the next one while ret is False: if self.play_state is False: self.set_frame(self.current_frame - 1) #grab a frame ret, frame = self.cap.read() #use openCL on this data when it can. frame = cv2.UMat(frame) #set the current frame number to the frame we just received self.current_frame = self.cap.get(cv2.CAP_PROP_POS_FRAMES) if tracking == self.NO_TRACKING: return (True, frame) elif tracking == self.TRACK_ALL: ret, final = self.show_all(frame) else: ret, final = self.process(frame, self.trackers[tracking]) ret, final = self.get_focused_frame(final, self.trackers[tracking], self.zoom) if ret: final = final.get() #when we retreive a new frame, we can assume we updated values with it return (ret, final) else: frame = frame.get() print("unprocessed") return(True, frame) def get_focused_frame(self, frame, tracktor, zoom): """ Returns a frame centered and zoomed in on the individual being tracked. Parameters ---------- frame: ndarray, shape(n_rows, n_cols, 3) source image containing all three colour channels tracktor: tracktor object Contains data and basic functions for tracked individual zoom: int The value in pixels to be zoomed in. This is the number of pixels to be zoomed in on all sides; the original aspect ratio is adjusted. """ try: frame = frame.get() #create point from tracked individual pos_x = int(floor(tracktor.meas_now[0][0])) pos_y = int(floor(tracktor.meas_now[0][1])) min_y = int(pos_y - (self.height/zoom)) max_y = int(pos_y + (self.height/zoom)) min_x = int(pos_x -(self.width/zoom)) max_x = pos_x + int(self.width/zoom) if min_y < 0: min_y = 0 if min_x < 0: min_x = 0 if min_y >= 0 and max_y <= self.height and min_x >= 0 and max_x <= self.width: roi = frame[min_y:max_y, min_x:max_x] roi = cv2.UMat(roi) cv2.imshow("resize", roi) return (True, roi) else: frame = cv2.UMat(frame) return (True, frame) #roi = cv2.resize(roi, (int(self.width), int(self.height))) # # #calculate edges based on points # min_x = int(pos_x - zoom) # max_x = int(pos_x + zoom) # min_y = int(pos_y - zoom) # max_y = int(pos_y + zoom) # #keeping aspect ratio solves constant oblongness # original_aspect = self.width/self.height # zoomed_aspect = (max_x - min_x)/(max_y - min_y) # print(zoomed_aspect) # #difference between ratios needed to change # adjust_aspect = zoomed_aspect - original_aspect # #ratio is applied to current height # adjust_height = (max_y - min_y) * adjust_aspect # #ratio is applied to current width # adjust_width = (max_x - min_x) * adjust_aspect # #when height ratio is off # if original_aspect > zoomed_aspect: # #subtract half the ammount needed to meet original aspect # min_y = int(min_y - (adjust_height/2)) # #add half the ammount needed to meet original aspect # max_y = int(max_y + (adjust_height/2)) # #when width ratio is off # elif original_aspect < zoomed_aspect: # #subtract half the ammount needed to meet original aspect # min_x = int(min_x - (adjust_width/2)) # #add half the ammount needed to meet original aspect # max_x = int(max_x + (adjust_width/2)) # NOTE: CAUSE OF DISTORTION, we need the outer edge to stop moving as well # #limit zoom to video edge # # region of interest # roi = frame[min_y:max_y, min_x:max_x] except: print("Cannot focus frame") frame = cv2.UMat(frame) return (True, frame) def show_all(self, frame, detail=True): """ Returns a frame that shows all of the tracked individuals. Parameters ---------- frame: ndarray, shape(n_rows, n_cols, 3) source image containing all three colour channels detail: bool determines whether or not to display contours, min_area circle and max_area circle. """ #iterate through all try: final = frame ret = True for i in range(len(self.trackers)): #accumulate tracker's processes onto final frame ret, final = self.process(final, self.trackers[i]) if ret is True and detail is False: cv2.circle(frame, tuple([int(x) for x in self.trackers[i].meas_now[0]]), 5, self.trackers[i].colour, -1, cv2.LINE_AA) if detail is True: return (True, final) else: return (True, frame) except: print("cannot track more than one individual") return frame def process(self, frame, tracktor): """ This function takes a frame, and a tracked individua and performs operations on the frame and applies information to the tracktor such as x,y coordinates First it applies a threshold, erodes and dialates to reduce noise Before measuring contours, it records the previous coordinates of the tracker Second, it applies contours to each clustered individual Last, hungarian_algorithm calculates minimum cost between frames to continue tracking then Reorder_and_draw then draws the center dot, and min/max area circles Parameters ---------- tracktor: Tracktor Object The object containing all the data to be processed frame: ndarray, shape(n_rows, n_cols, 3) source image containing all three colour channels """ try: if len(self.track_history) > 0: self.set_tracker_pos(tracktor) #eliminate small noise thresh = tracktor.colour_to_thresh(frame) # cv2.imshow("thresh", thresh) thresh = cv2.erode(thresh, tracktor.kernel, iterations=1) # cv2.imshow("dialate", thresh) thresh = cv2.dilate(thresh, tracktor.kernel, iterations=1) # cv2.imshow("erode", thresh) #x, y coordinates of previous tracktor if meas_now is not empty if tracktor.meas_now: pos_x = tracktor.meas_now[0][0] pos_y = tracktor.meas_now[0][1] else: # self.pause() print("Unable to track " + tracktor.id) #from our current frame, draw contours and display it on final frame final, contours = tracktor.detect_and_draw_contours(frame, thresh.get()) # cv2.imshow("detect_and_draw", final) #detect if the tracker is changed changed = self.tracker_changed(pos_x, pos_y, contours) if changed is True: # self.pause() print(tracktor.id + "has changed") row_ind, col_ind = tracktor.hungarian_algorithm() #try to re-draw, separate try-except block allows redraw of min_area/max_area final = tracktor.reorder_and_draw(final, col_ind, self.current_frame) return (True, final) except: print("Cannot Process Frame.") return (False, frame) def tracker_changed(self, pos_x, pos_y, contours): """ NOTE: Function name needs a change. This function checks if the (pos_x, pos_y) coordinate passed in exists within the contours that are passed in. This can either be used to select and assign contours to a tracker, or check if tracker has changed from it's last position to new contours. Parameters ---------- pos_x: float x coordinate on frame pos_y: float y coordinate on frame contours: list a list of all detected contours that pass the area based threhold criterion """ #assign default flag to True (assume changed until proven not) changed_tracker_flag = True #if contours exist (not empty) if contours: #we look at all the contours for contour in contours: #check if previous position exists in updated contour (1= Yes, -1= No) dist = cv2.pointPolygonTest(contour, (pos_x, pos_y), False) # print(dist) #if previous point exists in the same contour, set changed flag to false if dist != -1.0: changed_tracker_flag = False if changed_tracker_flag is True: print("changed contours") return changed_tracker_flag # if no contours exist, we cannot process anything else: print("Unable to track ") return changed_tracker_flag def export_all(self): """ Iterates through the video collecting the data of each tracktor in trackers the list. Once data is collected, it exports it in a Pandas dataframe with the frame number, x and y coordinates. Each individual exports it's own CSV file. """ #self.set_frame_pos(1) #print("setting fame to start:" + str(self.current_frame)) #sets the process to process ALL self.working_number = self.find_tracker_index_by_id("ALL") ret = True #we want to process as fast as we can(1000 fps should be good) self.cap.set(cv2.CAP_PROP_FPS, 1000) self.cap.set(cv2.CAP_PROP_POS_FRAMES, self.current_frame) #we want playstate to be true so get_frame will work self.play_state = True #reset all tracktor's data for i in range(len(self.trackers)): self.trackers[i].df = [] # while self.current_frame < self.length: while self.current_frame < 1030: # Get a frame from the video source, already processed ret, frame = self.get_frame(self.working_number) print("loading: " + str(int(self.current_frame)) + " of "+ str(int(self.length))) #frame already processed, retreive data from that frame, store it in each trackers for i in range(len(self.trackers)): #ignore duplicate frame if len(self.trackers[i].df) > 1: last_frame = self.trackers[i].df[i-1][0] #it is the first frame and we can simulate the previous_frame else: last_frame = self.current_frame-1 #try to append data try: #if we have a new frame, append it if self.current_frame != last_frame: self.trackers[i].df.append([self.current_frame, self.trackers[i].meas_now[0][0],#store X coord self.trackers[i].meas_now[0][1] #store Y coord ]) #we received bad data and cannot process it. return -1 except: print("Could not get location from " + self.trackers[i].id + " at frame " + str(self.current_frame) ) self.trackers[i].df.append([self.current_frame, -1, -1]) self.cap.set(cv2.CAP_PROP_FPS, self.FPS) print("Starting to export....") #once done processing the video (last frame complete), export to file for i in range(len(self.trackers)): print("Exporting: " + self.trackers[i].id) #load our data into a pandas dataframe self.trackers[i].df = pd.DataFrame(np.matrix(self.trackers[i].df), columns=['frame', 'pos_x', 'pos_y']) #export the data into a csv file self.trackers[i].df.to_csv(self.output_path + "csv/" + self.trackers[i].id + ".csv") # Release the video source when the object is destroyed def __del__(self): if self.cap.isOpened(): self.cap.release()
py
1a48549e0992edb2082aa8f3c599afdb2b2a2fdb
def maxSubArray(nums): max_sum = nums[0] for i in range(len(nums)): now_sum = 0 for j in range(i, len(nums)): now_sum += nums[j] max_sum = max(now_sum, max_sum) return max_sum nums = [-57,9,-72,-72,-62,45,-97,24,-39,35,-82,-4,-63,1,-93,42,44,1,-75,-25,-87,-16,9,-59,20,5,-95,-41,4,-30,47,46,78,52,74,93,-3,53,17,34,-34,34,-69,-21,-87,-86,-79,56,-9,-55,-69,3,5,16,21,-75,-79,2,-39,25,72,84,-52,27,36,98,20,-90,52,-85,44,94,25,51,-27,37,41,-6,-30,-68,15,-23,11,-79,93,-68,-78,90,11,-41,-8,-17,-56,17,86,56,15,7,66,-56,-2,-13,-62,-77,-62,-12,37,55,81,-93,86,-27,-39,-3,-30,-46,6,-8,-79,-83,50,-10,-24,70,-93,-38,27,-2,45,-7,42,-57,79,56,-57,93,-56,79,48,-98,62,11,-48,-77,84,21,-47,-10,-87,-49,-17,40,40,35,10,23,97,-63,-79,19,6,39,62,-38,-27,81,-68,-7,60,79,-28,-1,-33,23,22,-48,-79,51,18,-66,-98,-98,50,41,13,-63,-59,10,-49,-38,-70,56,77,68,95,-73,26,-73,20,-14,83,91,61,-50,-9,-40,1,11,-88,-80,21,89,97,-29,8,10,-15,48,97,35,86,-96,-9,64,48,-37,90,-26,-10,-13,36,-27,-45,-3,-1,45,34,77,-66,22,73,54,11,70,-97,-81,-43,-13,44,-69,-78,30,-66,-11,-29,58,52,-61,-68,-81,25,44,-32,57,-81,66,2,52,43,35,-26,16,-33,61,-37,-54,80,-3,32,24,27,30,-69,38,-81,2,-4,47,17,5,42,-58,-51,-90,98,-33,76,-22,95,-4,89,-31,-87,-44,-69,-48,1,87,48,-90,-12,-24,39,18,-86,35,96,-14,-41,13,90,-98,32,-83,-89,7,-17,63,84,-21,-40,51,24,-51,83,31,0,-38,-5,-74,-29,59,1,87,-22,-9,-1,-49,76,57,41,44,35,-27,60,23,56,-80,-14,41,-2,22,-31,99,47,-48,7,-75,13,-97,-50,61,61,27,48,-84,94,-76,-56,70,57,84,-9,-7,-66,-49,-84,89,-29,-22,7,45,-99,75,21,24,-95,-71,48,17,-92,74,-22,45,1,-97,61,-5,-74,81,-57,83,42,33,-47,75,61,-55,41,-68,22,-51,53,-1,-99,-25,-76,-95,3,48,-1,-13,23,53,-68,-76,33,92,-4,35,50,38,18,-8,-52,47,-33,-91,91,85,-60,14,-89,93,89,-89,-55,89,92,47,38,-9,-66,-39,-79,-58,-39,53,-65,56,-11,61,-29,83,-46,19,31,-3,27,-1,-18,67,-87,-8,37,79,-20,58,68,-28,-18,-17,39,-8,43,59,33,81,13,44,37,-98,6,85,84,59,4,-8,-44,-69,91,15,74,80,83,-12,59,-37,-54,5,34,27,87,-50,-81,8,-90,52,-11,-1,-4,-97,0,78,87,-39,37,-32,30,70,-1,21,-38,-50,-22,-55,15,-85,8,60,19,-81,-35,-17,-31,-40,90,-45,-88,-44,53,-15,-41,-70,-37,-77,-33,77,-9,96,24,66,-6,85,92,72,-70,7,86,14,-32,-18,33,9,64,78,68,32,-90,57,87,62,-58,-77,68,-19,-54,-65,-42,13,-68,58,-44,25,43,-52,-26,73,55,-63,-13,-77,18,96,31,-40,51,-1,91,60,-44,55,22,-26,78,-10,32,-99,2,66,13,33,25,68,-65,-32,-84,-14,-82,70,22,5,69,-59,-22,-23,0,-70,53,-32,89,85,-77,-11,-40,77,55,68,77,-43,34,-33,66,-41,-88,-98,27,-72,-13,21,74,85,-74,21,-74,-19,97,2,10,50,46,-1,13,69,87,72,23,20,40,1,76,-49,67,43,10,79,21,-86,83,84,34,34,69,37,-45,72,-82,-70,-26,27,56,97,-97,-31,66,67,-82,-11,-13,57,66,-37,85,11,82,-5,-33,3,-15,-50,-13,95,60,-66,9,-84,-94,26,-78,-44,-70,77,-47,-90,-53,95,76,-36,-38,-60,98,-72,-21,83,15,-38,-45,81,41,16,-69,-94,11,91,-84,-79,83,-79,23,-95,-24,30,58,6,39,-95,1,-8,-54,62,31,-56,67,86,-96,-18,-75,-42,-36,66,73,-29,48,-39,-61,63,-42,98,60,81,-97,-64,11,61,18,-73,42,-80,18,87,58,-51,-69,2,-88,-66,84,-63,-32,-75,79,-82,-28,27,-21,11,-33,13,9,-73,-6,-11,-61,81,-73,57,-92,45,53,25,33,11,50,40,90,62,51,74,75,-81,75,54,-86,-53,-42,-8,34,1,-95,-79,27,-24,-14,42,-66,12,-24,-58,-66,-71,43,66,17,-29,-16,7,-90,-65,-42,84,-70,-90,15,-57,-67,49,11,67,-50,-7,64,53,68,-50,-5,78,38,71,96,71,76,40,15,-7,87,98,76,96,-90,-66,57,-61,-57,-51,-41,-47,97,69,-80,-53,-61,83,76,83,-90,-29,62,47,-81,58,18,95,-2,-67,-12,-38,-92,-35,-65,-83,-25,91,-44,-5,-83,-9,47,-86,-40,43,-63,-1,3,-87,-18,12,-39,-79,-41,-21,79,53,-26,-46,63,39,16,70,80,50,87,-45,19,-80,26,35,10,-27,26,46,92,62,-55,-5,52,4,-93,-87,1,-58,-9,-20,95,42,34,58,-19,-73,5,-39,53,-31,-8,-28,-12,95,84,97,-55,10,44,-62,-51,65,32,-99,-54,16,89,47,57,-42,-96,52,99,14,-13,-43,40,69,-6,-6,-62,85,42,26,80,26,0,-74,-87,-79,-60,-38,63,71,-61,85,-13,-71,9,-78,-14,13,50,-38,-73,-85,18,44,83,-88,-85,-79,73,56,23,31,-40,-99,33,-51,97,72,-13,60,20,26,46,84,31,-45,-94,93,67,55,-45,71,69,49,15,52,37,29,50,-13,-38,-50,-82,-2,-73,27,47,-75,-24,-66,84,96,36,7,80,-56,62,62,-63,6,17,-32,-46,-13,93,45,-84,30,-26,42,-82,13,92,-88,-89,-81,16,34,-57,91,45,-95,87,-42,11,44,2,-50,6,15,33,-76,83,86,-13,76,32,-21,-16,82,-78,-22,-28,90,-34,-40,-91,81,93,-71,73,15,-90,37,73,-3,-41,-48,47,64,66,-43,64,49,-57,-72,3,51,7,63,11,28,-82,82,18,-17,-58,3,-58,-87,8,-85,27,17,28,-23,-85,86,28,38,28,-5,94,-31,-79,-86,-3,0,65,80,-60,-24,8,-43,-65,-97,40,-23,-18,81,-11,90,72,92,-16,0,-30,-25,-36,97,-87,68,-31,83,-63,-33,97,10,66,39,-10,-93,91,74,-37,-74,53,79,-21,-64,37,67,-74,9,60,9,86,-70,84,-73,-96,73,94,-50,57,-69,16,31,18,-18,-53,-92,-35,-62,59,5,-60,12,-16,19,47,-78,-14,49,7,-77,-64,-7,-71,96,19,-67,69,-10,-18,3,-2,97,-89,-84,-44,-43,99,-2,-6,58,-97,11,-29,-14,-70,94,-16,-8,44,91,15,79,-39,20,75,57,52,21,-53,-89,-98,44,84,-88,36,-82,-31,36,15,39,-29,17,-50,41,79,-21,13,-36,71,-66,-68,-37,89,-8,82,41,-74,12,-38,-50,-1,-37,70,-39,-48,7,-22,20,-57,69,-41,13,-14,-14,-68,-58,64,21,5,12,54,13,51,43,-94,11,-16,-92,99,22,-43,-2,62,-72,58,-86,11,-87,33,53,81,68,-57,-56,-46,-49,-14,95,71,67,-16,2,-19,-87,-78,-37,0,-18,-30,-1,-95,4,96,66,31,32,79,-81,44,-11,48,3,-66,90,46,-12,-81,-91,-40,66,76,20,-54,-43,9,-33,19,-91,49,88,7,30,-8,-19,-4,99,-87,-48,-82,33,40,65,-64,73,33,59,-62,28,67,-26,-29,43,71,16,99,-20,83,18,-11,9,-16,72,-61,52,-47,34,29,-58,85,23,75,2,-34,87,-48,75,46,-33,3,-9,40,73,-66,-12,-10,-89,68,-50,5,-66,58,88,82,96,18,-64,7,-53,-23,-31,69,-71,47,-88,-83,98,86,39,-35,-34,-70,82,-60,-36,-30,6,-26,-85,55,55,-75,-10,44,84,-37,-38,-80,69,-15,-27,-85,-69,-21,61,-57,-5,59,-71,-66,-98,-5,-59,60,11,4,-93,93,54,98,48,9,99,-85,-70,83,-23,-32,79,-77,52,-47,-63,60,8,97,-97,-97,33,-92,-87,11,-21,-47,-29,66,33,-45,59,-36,-47,-16,50,-48,-2,79,-64,51,-75,-85,73,76,-56,-90,13,51,83,-8,30,17,-23,20,-72,55,49,-24,-1,-17,7,-42,23,59,42,-27,87,-83,-47,99,68,-46,91,18,-93,-88,28,20,40,-12,-88,-30,-95,-12,66,-90,-79,16,-38,19,75,68,76,-2,27,-5,71,-9,12,-99,-32,-43,-46,-41,74,-40,-53,-21,79,86,67,68,-66,48,-67,99,57,-47,15,-81,71,-33,86,25,65,-10,96,36,58,-15,13,-74,41,66,-39,-7,-97,7,71,59,-6,15,27,4,-36,59,3,-79,89,95,-83,37,-38,79,-38,-96,-53,-41,39,-95,43,-71,-93,-38,71,-33,54,74,50,2,10,-79,-82,-86,24,-19,49,-95,1,38,99,-6,-24,-62,-26,14,-58,20,49,57,1,-7,63,-16,31,34,50,-15,-15,-23,86,94,-2,-96,-92,98,-39,34,-97,62,-28,78,-67,24,93,6,-61,-65,-97,87,68,-20,-43,31,63,87,-57,-10,-51,27,67,-87,-1,-35,-84,-17,-60,-23,-83,-57,-84,-34,-79,-52,89,-86,31,-95,-75,10,69,70,90,-97,1,53,67,43,-56,-84,-52,87,-72,46,-71,-79,-71,-32,-26,-77,10,-34,-12,8,-10,-46,-2,-79,-41,0,8,-95,-30,-2,83,47,-72,50,-9,-29,43,15,-65,70,-39,-37,67,-34,31,-59,-12,-82,6,75,25,96,-70,-99,93,-35,0,1,-54,69,75,-71,16,-96,56,83,-49,-1,-2,-14,-31,35,48,-86,-98,-21,-46,-34,-3,37,-58,98,10,-52,98,3,-11,-2,81,11,-33,56,16,60,36,-28,43,87,47,-81,-50,93,53,97,-93,31,-46,-40,97,27,73,-84,25,-17,-60,1,63,5,98,44,-84,-57,-23,8,79,90,57,22,54,4,17,-96,-3,-29,-99,3,78,-69,40,52,57,13,67,-40,73,83,60,36,-12,35,-43,-20,54,10,88,33,0,45,-67,-46,-51,49,-43,23,96,-65,-74,52,-35,42,4,99,-67,-28,-41,-94,-45,-81,18,43,53,74,99,-15,-39,87,-82,61,9,-73,91,58,76,-74,-19,49,-63,-17,1,1,-97,-94,-23,-65,-46,35,-83,8,53,34,-72,-16,-15,-95,68,45,91,62,-17,1,89,-48,-64,42,-46,-7,-9,-10,52,69,67,54,74,-55,65,-72,79,58,12,10,-31,17,70,53,21,38,-24,-11,-23,35,89,-34,86,-98,-92,-60,-6,-24,6,-53,-55,-26,77,-81,18,20,-77,-26,-22,11,60,47,-72,30,-23,25,-55,52,-85,22,-12,80,87,-49,59,72,-32,-47,-52,73,-24,-8,-76,-69,-13,18,50,9,92,-95,96,52,51,-98,-40,-71,26,4,57,17,-74,-78,-25,90,-50,-66,39,17,-37,86,-33,39,-45,-9,69,41,-91,-4,-73,77,0,-77,7,-48,-76,66,-43,50,-30,90,-56,-27,-87,-5,-37,-38,28,-98,55,91,64,-78,7,-81,12,-47,36,-2,48,62,-25,-75,84,81,-47,-91,24,-14,35,94,-23,78,-56,-34,-49,-17,27,78,-16,-18,46,-75,-20,-70,-80,92,-18,55,-10,-93,17,41,-68,1,0,-39,-14,-76,47,-79,94,-76,76,-62,-11,-73,20,92,81,80,-49,28,-95,30,34,-99,22,-83,55,88,99,-28,7,-69,50,-93,-8,-64,-93,-61,-66,-98,-61,86,-61,27,-87,59,-4,70,16,46,-25,-2,-24,-90,-2,75,-74,-46,40,-98,2,-53,-67,-48,-70,1,-35,-63,16,-2,-62,31,-39,-47,-65,-27,88,30,-80,5,-24,-5,-97,51,4,0,26,6,30,-33,7,-67,-10,16,-39,20,93,25,56,-14,99,70,-83,-40,-77,-49,9,-88,80,29,16,-67,-99,-5,84,-19,71,-13,86,2,30,-30,11,-79,63,71,17,33,-26,-27,-80,-27,-57,-87,10,-35,-36,95,-47,-79,1,45,-69,1,-60,-85,81,-88,-22,44,-10,85,91,-99,-94,31,48,-1,-36,-78,71,-40,-28,90,-27,58,-68,13,53,-15,10,-45,-70,40,32,-30,31,-9,-42,86,-65,24,71,-97,24,53,33,-51,-48,97,-29,99,-66,42,89,6,0,-79,95,-70,5,6,-39,12,-54,93,58,54,-16,92,40,-5,16,11,-25,-83,-59,-92,-35,-8,81,35,-9,-84,-46,-43,-2,30,-23,-6,60,59,99,97,-29,-78,90,-94,52,-49,97,-8,23,13,79,97,6,-80,-95,70,-12,63,-17,55,55,36,-88,-47,-56,-34,23,-96,-98,22,-99,-28,21,68,-46,-50,95,-49,42,18,40,-2,15,-54,-5,-3,-84,82,-63,-25,15,91,-88,3,-56,-68,68,67,-88,69,-34,88,-82,63,56,-29,-86,52,-2,32,-53,-62,-70,62,-17,1,-64,-24,-39,-28,50,75,-37,38,-22,-17,69,-53,-73,80,92,-30,69,-89,-67,2,-42,-77,-69,56,31,-22,93,61,-83,-46,-61,-48,6,-1,23,-67,-26,62,48,29,-55,17,52,-51,-25,44,18,-79,31,27,22,89,50,53,22,-42,-92,-8,-81,-76,22,-65,-25,-72,33,74,-62,84,13,85,13,57,2,-58,82,53,62,0,73,-6,-72,-27,-40,54,-74,58,-88,-90,-50,-92,-67,72,-81,-16,76,51,-65,-86,35,47,98,-75,-19,-22,-57,-36,-69,-94,40,-95,-24,67,-46,35,-2,-44,-7,-13,-35,19,-29,-3,-9,-11,57,-55,-83,91,-42,29,38,-43,53,95,34,73,-41,41,78,99,22,-46,43,75,65,-81,-69,-65,-18,-5,53,29,68,-78,-82,25,-34,-89,-7,23,39,-69,56,-30,-96,-33,-57,-38,-91,97,-39,30,-49,81,6,92,99,36,-73,-42,-68,56,86,76,54,80,2,96,90,94,20,7,-97,-47,76,-94,20,-81,-56,28,-84,-18,-42,-57,-37,40,-88,-61,-23,-62,-4,-15,70,-18,-39,2,-61,39,-2,-71,34,94,35,13,-52,-12,18,67,-17,38,-28,-25,-80,6,17,-18,-53,5,-3,0,42,92,61,-10,-49,-78,91,-11,61,-11,-5,-28,-16,-93,84,8,-5,-21,-48,54,-83,0,-70,-86,-94,23,-5,-71,-71,92,5,47,61,-34,-63,89,-35,-95,-22,-74,-29,49,-26,31,33,-42,-61,-95,13,-10,58,6,89,87,19,71,-12,91,77,16,60,-18,-37,21,25,-23,10,89,-42,65,91,28,-9,-35,-41,-76,-1,-26,-72,88,40,63,-6,6,50,90,-45,-62,81,-68,30,41,-10,93,-61,-85,-53,26,80,4,-9,71,-90,58,-64,-55,82,11,19,86,-1,-64,49,70,42,-23,60,96,-9,18,-72,-78,-41,-6,91,-26,9,-62,99,-11,41,-33,-62,50,-74,-27,95,84,61,-9,70,-40,26,-3,-93,-55,73,66,-59,-59,-16,-55,-38,19,39,-47,93,-52,-10,69,13,-91,-63,50,35,-38,-99,7,-54,61,74,92,97,-22,-11,-95,22,-61,47,63,-20,-91,-92,18,27,23,71,-3,47,-62,-33,-39,-77,-20,87,35,41,87,-81,63,25,93,32,23,-29,98,4,92,-63,-72,32,-7,-64,17,-88,40,-60,59,-86,87,73,-43,-75,73,36,-88,8,-46,99,3,-83,1,-4,26,-99,43,24,-19,13,60,9,-55,-69,44,61,-81,-39,78,54,-25,65,4,31,89,-23,-55,77,61,-2,53,-35,-8,-45,37,-82,-45,-19,41,36,93,-22,-78,-85,8,65,76,3,-96,54,-43,-45,-4,61,62,-38,-62,-93,-61,76,-18,69,-82,73,-76,54,67,-45,-88,8,67,81,62,88,96,-52,54,49,50,34,-20,84,88,52,45,50,-86,59,57,-71,35,-84,97,29,88,97,-16,55,-47,-28,-60,-80,-46,78,-91,-73,-74,39,52,53,-50,-68,37,-62,60,-18,64,73,-82,-2,78,30,13,53,-41,-22,50,19,-90,79,91,-51,76,-78,-95,61,-75,-70,-23,76,59,26,84,-4,40,44,54,-19,-6,72,79,-51,2,-8,-98,37,47,29,-43,56,-15,-75,-94,-39,-77,86,98,-53,-84,-25,99,75,77,60,-52,-6,-19,-97,75,74,74,54,-77,-47,-77,-98,66,69,30,-77,26,-85,-76,8,-47,-54,-6,-49,-31,-14,3,-55,-62,-20,-95,-14,51,-15,-35,26,-64,-84,-43,-41,-32,-44,-63,-89,-97,66,-89,28,57,-66,-87,-90,-43,-17,-39,2,45,40,47,83,96,51,-54,47,-86,10,-50,-51,2,6,-16,46,62,20,56,64,-14,66,-31,-56,77,-42,-70,-66,17,-33,12,-38,-93,-41,-78,-96,87,-56,27,-99,30,77,-51,-68,-40,33,77,98,-70,34,39,16,0,-92,36,-23,-58,65,-13,35,-67,99,97,-84,-65,95,-81,-78,-60,23,98,69,0,-52,-98,59,57,78,58,86,-11,-3,-21,89,-18,91,-57,0,57,7,-64,66,-17,-90,81,17,-95,77,16,-79,0,14,90,99,38,68,35,-28,23,-30,-64,-87,67,14,-98,-74,6,-79,25,-60,4,37,82,86,46,63,-19,28,40,96,48,-60,-13,15,-84,-74,-17,28,-3,-93,97,9,95,41,-99,96,66,6,93,-31,22,-2,82,4,-16,29,-56,41,-66,84,37,58,-99,-75,-26,93,-73,33,21,0,16,18,-90,11,-63,-90,-16,-97,-8,-45,-52,-86,52,-69,-6,-87,36,37,54,69,-2,-32,27,-1,-8,77,-31,-5,-12,66,95,80,-39,-95,-31,-3,90,52,0,-18,-93,47,-28,35,54,65,25,-10,-21,-21,-41,77,46,63,-47,-84,17,-2,10,-95,-36,5,85,24,-14,-46,-78,-24,82,-2,34,66,-78,-94,-22,76,47,-97,-34,-96,-42,2,57,81,-58,-90,96,58,7,-17,40,47,65,2,-29,-72,55,-31,-19,14,66,-85,-43,65,97,35,41,21,14,83,24,72,-38,-19,53,3,-33,26,-61,73,85,78,-3,50,-20,68,78,-88,-63,-41,2,80,-50,59,45,-53,-6,-37,68,84,-77,-31,56,-38,27,-14,64,93,88,79,44,74,57,-59,24,-86,-91,-21,-75,-77,14,4,79,41,-37,24,87,33,63,32,17,62,78,-49,-76,5,36,65,-2,25,44,-58,-24,-21,-40,76,-8,-32,-44,-6,-33,46,97,-54,-13,-63,46,-48,69,9,60,-37,-28,38,13,-5,-57,-73,-63,18,28,81,59,-96,-40,-81,79,28,-36,-88,98,7,58,72,53,-78,-91,-1,-27,54,85,-66,-82,-66,48,7,5,91,33,42,9,-62,0,-55,-59,36,-59,-79,-36,-19,-68,-60,87,66,-88,17,88,97,93,-62,51,55,-52,45,88,96,-47,-7,64,62,-88,-50,-99,11,-6,-82,-53,11,-62,-12,68,-53,27,33,-87,38,-50,77,12,-80,92,-36,74,-60,-91,39,-87,-62,-90,76,77,-79,-74,54,9,-3,71,55,84,86,-57,53,-67,46,-14,-78,-38,12,76,73,9,68,-86,-40,-92,-77,99,97,-63,85,73,-86,-94,76,44,-9,-50,16,-53,-89,2,-34,63,34,89,-74,32,-49,15,8,-76,-99,-24,-62,-40,-39,-63,-41,-42,-50,-56,-92,-59,-73,60,84,17,-90,0,40,97,78,83,37,-11,72,40,-78,-77,-45,29,-77,-45,82,-63,-9,-80,-50,50,-46,0,70,-39,17,73,98,1,-32,-92,78,84,81,56,67,19,-54,39,-41,-33,38,13,72,38,44,31,51,-65,50,-98,61,-96,-22,9,-58,94,-41,-60,-5,26,-76,-27,11,-94,-70,-45,24,-48,71,82,18,-14,-28,-33,-76,92,98,75,-96,48,53,42,29,-69,-49,47,-75,-14,86,-4,-87,86,69,0,68,75,54,-8,-73,2,-49,21,88,-1,87,-88,-9,62,63,-5,-12,16,-63,-83,46,-36,40,47,49,26,-56,38,-11,89,-85,-42,41,46,26,44,-52,77,-58,-64,-24,-94,-52,44,68,87,-61,-44,4,-48,-51,-73,-8,65,51,-82,-9,71,56,56,60,70,-86,-22,-7,40,-78,41,-6,-60,76,46,-55,-99,-10,-87,65,5,-55,-31,33,-30,-28,-75,-65,99,-57,2,70,75,-64,7,22,-51,84,-84,65,82,56,-64,-78,9,82,-33,10,-28,-44,-25,54,-22,20,-13,24,68,12,36,68,31,-62,38,6,-27,-54,-72,-1,-93,-57,-59,89,75,-23,87,-15,-64,-69,71,7,-36,-77,-62,18,19,25,-58,-13,-63,77,-68,44,92,47,-50,-58,69,-23,17,75,-3,58,41,-28,-88,6,33,-53,36,4,30,99,3,68,-6,-78,-7,36,-14,6,-10,17,-50,-18,-36,-24,24,-67,29,-59,85,-74,75,26,-25,86,-68,-92,-67,45,-11,63,21,91,8,-84,90,77,51,-24,-17,-59,92,9,0,-66,84,-99,-34,-10,-82,-72,16,93,31,67,56,39,51,89,-16,-60,29,-94,-91,-86,97,98,90,25,-26,-50,42,-57,58,-58,-24,19,-58,19,-91,-63,46,1,-70,-23,-32,85,-83,-80,51,0,-64,-43,-18,-56,-30,-21,-58,-40,80,-8,9,23,35,-56,64,-89,39,83,29,48,-80,-24,-51,-74,29,-6,87,45,13,39,-77,48,72,4,69,-80,60,87,-21,40,-20,65,-60,-85,85,81,-98,25,64,31,-50,60,83,-2,62,12,68,49,-42,-19,-35,-20,-93,-85,60,75,-66,-3,62,-11,-85,-81,-69,-46,-67,-83,-65,-65,41,75,42,67,12,25,-35,-26,-63,-66,-99,-29,-9,-58,27,-26,-44,-12,-74,-11,61,65,78,75,83,-91,-93,93,-98,-59,-95,19,93,46,-14,5,-52,28,56,-39,38,56,32,-94,97,-41,-20,-69,23,5,19,-38,-30,-26,-63,-69,-40,-57,-76,-62,-39,-72,57,-46,50,-57,58,97,47,-9,-42,-15,-53,66,-9,-78,-97,70,-48,2,-48,47,63,-1,-78,-99,29,-42,-80,52,-5,-20,56,-48,10,6,-28,-31,-20,95,59,37,-19,83,-19,71,-95,-17,18,-67,61,46,79,25,-55,77,2,50,-88,21,2,7,78,-65,35,-12,40,83,33,-80,79,-30,34,-63,-47,-85,84,-66,-26,2,-34,-65,-75,-78,36,-30,76,-62,-80,87,59,-1,-29,37,33,83,-75,-49,66,58,-53,22,-72,57,58,-43,48,42,-10,-78,-79,32,-66,-54,30,69,-8,6,-92,-12,-29,43,63,41,-43,-3,24,-19,24,-32,-84,70,89,-80,5,48,-24,-47,-33,42,-25,-12,-49,-15,10,81,-69,-98,-36,-85,-11,34,57,-47,-47,-86,26,76,-28,-73,-79,-36,73,-89,-16,-22,35,36,31,78,-44,82,-34,6,-33,75,-36,-26,53,5,-11,-80,-84,-77,-28,-32,-63,74,-78,-15,-99,-58,48,73,-71,-91,-48,40,22,59,19,77,41,61,-40,84,14,1,-42,-33,-94,46,-37,-79,69,34,-34,82,-15,-13,-56,-15,5,68,-64,11,77,-36,-49,-24,-77,46,-47,63,8,-11,47,98,89,-95,-58,71,28,5,69,-3,-61,-65,-44,1,-2,-1,85,-97,-56,97,-10,-79,-39,41,-4,-17,-13,25,-54,71,91,92,69,57,97,88,29,2,-7,-2,98,8,9,-69,-91,83,6,71,62,49,68,-47,47,-70,93,-80,12,-43,22,58,-94,13,50,51,-30,24,39,75,-74,-68,-50,-99,17,35,-92,25,18,-10,-4,-19,-60,-35,33,63,-6,3,82,82,59,4,40,41,93,-32,-7,-59,68,-91,-84,71,-82,-57,48,34,77,56,-64,-4,-77,32,76,-38,73,9,-75,-56,-88,84,-74,47,-12,66,-34,-41,-89,35,-1,78,43,-9,49,37,33,-25,-29,11,-92,7,83,-70,-84,59,-8,88,-55,-7,-91,-67,-23,-66,79,42,76,-78,77,86,56,-24,65,-23,43,-9,-86,-23,65,-38,64,49,68,47,79,60,6,-29,25,27,40,33,59,-82,66,15,36,20,37,13,6,-30,65,-52,46,8,16,60,61,-42,-78,25,-92,66,-51,86,26,54,-66,-49,-19,73,60,-83,67,3,32,3,-77,-31,92,29,38,34,76,-38,-57,-31,-78,80,27,-80,6,34,85,54,20,-12,-14,53,15,43,26,-25,60,-29,54,-31,50,77,37,43,6,-48,-46,-41,13,-4,28,11,-46,-68,30,36,65,-8,-10,-15,56,52,-85,-52,-27,17,-1,-67,87,-46,-22,38,-69,-85,-19,13,-57,34,48,33,-92,-47,-56,-62,-16,51,73,-51,-80,-60,10,53,92,24,-99,-35,-58,0,-26,-71,30,51,66,60,42,-76,-50,61,35,97,-6,19,-49,15,56,34,-57,6,60,-38,45,-30,91,37,71,92,78,-87,-31,-71,-82,98,79,61,35,-2,61,84,-63,-27,81,30,68,-91,-78,24,43,-36,-93,3,3,52,49,-6,-11,20,-37,-55,9,31,-27,4,6,-70,-35,-59,27,-97,-75,40,-24,-93,-29,-56,91,-31,45,34,10,51,-86,89,3,63,-17,69,-40,23,-86,69,-46,-14,-27,60,-8,14,-99,96,16,-97,36,68,85,-93,-87,76,-47,34,11,62,-38,1,51,65,-59,-89,11,1,33,24,-53,64,86,-4,1,-44,86,-22,-48,-21,-20,87,-52,-35,71,-63,-58,-76,47,29,62,-91,-93,13,73,-52,0,-39,25,-66,61,48,74,48,-79,-25,-96,-93,52,-68,-38,-67,-81,-14,-26,89,22,-8,-87,-31,-79,74,-45,-95,-36,-72,-71,64,-34,53,74,-73,-22,25,51,-25,99,31,-19,28,62,19,37,81,-94,-88,70,4,3,83,50,1,34,-95,-18,75,-91,10,39,-26,-60,-10,1,17,-85,-48,91,90,83,-51,18,45,44,-44,3,49,-56,-26,-46,46,-66,-96,-76,67,-92,5,42,-84,-85,-42,-10,-46,24,67,47,38,-81,15,28,78,40,-76,1,-15,-21,-96,-66,22,-23,-36,-55,10,-33,-54,-45,-49,50,73,-33,42,-91,33,95,32,-23,20,-52,-5,-65,52,-49,52,75,51,-63,-69,54,-30,29,-91,34,51,-5,77,96,26,-71,46,-23,-28,-12,-15,81,-39,93,-42,57,-82,29,68,47,79,20,-1,7,56,30,-61,-96,-64,-53,14,86,18,-9,82,-55,-4,29,21,44,93,82,2,-69,52,36,87,70,-34,56,17,-78,-24,92,6,-67,22,44,-87,35,90,26,21,-15,93,4,29,-10,-90,-73,-89,79,85,13,-89,38,-51,74,-15,-9,30,78,-10,83,70,95,92,-30,39,-95,-95,6,30,2,90,0,-94,-3,66,91,23,77,48,-14,-33,35,-76,-8,9,-15,83,-83,-37,-27,76,-90,-32,68,-21,-93,49,-40,-11,-44,62,-21,55,44,52,22,13,-24,-24,-39,61,42,72,61,-66,-42,-54,-83,-26,-15,-34,-73,-29,10,94,27,-7,20,86,81,75,48,-62,8,-30,89,-70,82,-58,5,-80,-97,-76,91,40,-43,-51,62,-49,0,-53,16,26,-5,-73,-2,-78,19,-82,-92,-22,70,33,15,-22,-97,4,-16,61,46,65,80,25,88,48,-34,-55,96,-95,-5,-27,-71,88,99,23,91,-26,44,10,-32,28,64,-62,-39,-21,-8,-60,83,75,77,6,40,57,-69,28,-18,-27,50,-21,-22,-78,28,6,-90,4,-71,-99,77,49,-12,-54,-23,-48,-40,15,8,29,31,-32,-19,9,73,-78,-57,80,26,25,-46,-24,80,8,-25,8,90,-16,-87,95,-38,66,44,26,88,-79,54,-51,12,-38,54,-56,29,-65,52,-21,-44,71,-40,59,-4,-10,-88,-47,97,-14,61,87,47,50,82,85,16,3,-12,5,0,-58,30,-87,-19,-16,-44,86,18,84,-34,51,32,2,-13,-71,91,-2,-19,65,61,-81,52,8,45,11,-30,-38,90,57,43,-10,98,-50,2,-44,33,34,-57,-72,-5,-15,55,-72,86,-58,-67,77,17,-10,42,-45,-14,-29,39,-69,58,-91,-31,48,65,-88,-85,40,-39,-6,96,70,-95,-84,75,0,0,7,4,-37,26,13,-60,-57,-97,58,-3,-12,-94,-64,-4,40,-79,64,-35,85,53,-21,2,90,72,-25,38,77,-10,13,-46,66,96,34,-94,22,-53,-55,41,-51,79,-85,14,61,-73,-90,1,-53,50,65,-91,3,-78,11,-6,70,85,-68,47,-47,21,77,95,17,11,-98,-83,57,-77,57,83,79,72,-26,40,98,-40,-81,-54,-90,60,-46,13,58,41,83,29,4,91,-47,56,12,-69,28,-94,18,6,-78,-24,29,56,-64,-15,28,9,-98,3,45,-80,25,54,57,79,-56,15,-3,-73,-56,-99,-82,-3,33,6,27,-38,12,-78,44,10,-26,-27,-34,9,34,93,94,36,-26,39,55,98,-29,12,54,14,-95,-48,41,-52,-48,35,21,62,-58,-75,-99,30,-53,44,-83,20,94,-17,-70,28,-47,-99,-36,26,17,96,25,87,-15,-21,1,-11,7,-81,37,59,54,-42,-2,72,-17,-2,-21,6,-58,-5,-74,-64,77,-68,64,-92,-67,-72,33,49,-76,-65,36,-14,-9,-86,74,97,-67,-12,33,63,23,-69,12,-94,28,90,11,70,-38,13,82,-60,45,46,-76,77,51,56,3,51,68,-61,-63,-64,-48,-88,-67,-39,-24,43,-76,98,73,35,80,-21,2,-32,-74,64,81,-92,80,26,54,-96,-20,-18,36,82,-67,-19,-79,-53,16,-51,-65,49,-13,10,-8,-13,9,-58,99,-11,20,1,57,45,-35,15,30,-78,-59,-39,-75,20,42,38,2,51,-81,-1,97,35,24,-91,-39,87,19,29,-25,-95,70,-26,-30,-32,74,-96,89,-83,18,19,-62,58,79,-60,-45,-2,77,33,-50,72,-68,-76,7,33,-67,44,20,51,-27,94,32,-56,-55,-98,-12,-80,-94,-23,-87,23,73,-73,-41,29,-34,13,-72,-80,-76,-23,69,-45,0,-47,64,32,97,-38,-40,-30,-44,91,-10,1,93,54,-3,75,-91,-14,-2,81,12,33,10,55,-76,37,51,-53,90,20,-22,-32,73,-57,99,47,4,-63,93,36,-95,-16,-86,97,-62,-13,49,-54,72,-75,-96,-15,57,-9,-83,80,-72,67,-73,95,-35,-18,-37,-85,1,-61,61,81,-25,54,-6,-20,-85,8,-46,-70,71,-96,-48,21,-72,-44,82,61,46,98,42,50,42,45,45,-93,-73,84,97,4,-76,58,-15,-2,-10,79,54,-19,-36,-91,10,-65,88,62,55,-84,94,37,53,40,12,-5,-33,-45,-82,-87,-62,-79,96,-64,25,96,70,-90,-5,-40,65,-74,18,-71,-66,-72,-59,98,66,72,90,60,-13,44,-23,98,-61,44,-70,-67,33,-32,-46,6,3,55,3,-27,64,74,10,7,76,-72,35,-89,-68,52,85,98,25,76,35,-88,20,89,-90,58,10,-83,68,-57,-16,-78,25,86,76,-95,-41,17,55,45,-76,32,72,36,19,-95,-12,4,79,-87,-20,14,-99,99,-20,87,35,89,-96,3,-91,-13,1,34,-50,-46,15,-15,70,-29,-69,71,79,-97,-16,-2,83,71,78,62,61,-41,-46,61,-65,33,48,69,0,28,-51,8,-85,26,-81,-36,79,34,49,27,81,56,-25,60,58,58,-42,19,29,-87,-19,-33,-29,11,-71,6,-78,53,-48,21,-18,-22,-71,-27,-96,-75,14,60,58,-60,-13,39,95,38,-24,30,-4,33,-51,-98,22,7,-31,93,-82,-26,-24,-61,-96,4,36,-38,58,42,35,39,66,-51,-1,24,-35,62,-60,-40,0,15,89,95,-75,-61,73,46,45,-58,16,39,15,91,78,19,-27,-9,80,-69,-67,-8,69,98,17,-32,-1,81,-93,15,-59,-17,-70,-92,-45,-69,-77,-71,54,67,-30,-30,6,62,-61,-39,-42,11,52,-85,41,61,7,11,60,-99,55,-64,82,39,51,99,-78,57,83,-23,88,-94,-18,42,72,51,88,-44,-10,-73,-7,47,37,-78,62,-44,83,-54,43,20,-54,-25,55,-95,-86,-17,81,-87,-59,64,-34,-94,70,47,47,19,-25,35,51,65,39,-78,12,-24,-80,-49,8,79,-27,-49,-1,-4,26,-68,-23,16,-9,-42,28,31,99,70,36,69,17,-40,-35,92,72,93,57,11,-85,-54,63,-89,-26,-28,90,46,-1,-11,-58,-98,-3,19,18,88,53,-77,-4,52,93,-67,-2,10,-31,40,-21,-59,33,-64,28,24,-41,-8,34,32,40,24,-22,-84,90,-3,-82,-36,92,12,-48,45,11,25,-25,4,57,49,91,-74,-11,-53,-56,98,-17,71,-1,41,-60,-89,-27,56,11,27,72,1,-76,66,42,92,-22,70,38,88,-5,89,-30,-71,38,-62,-68,-95,-16,-25,79,43,-77,-21,-16,-37,-34,33,-81,76,-62,67,-45,-62,33,96,-69,87,66,45,76,-61,11,-77,-33,-51,-40,-2,-70,20,72,86,-36,72,-35,24,-65,30,-42,-70,-17,-28,74,37,9,7,10,16,-5,-23,-39,-52,-8,71,-53,58,97,-17,-43,-96,-97,-94,89,-34,77,-69,90,88,37,-75,-81,-79,-4,69,34,81,-24,-55,-2,47,-2,35,71,89,-16,94,47,-19,-23,-96,-39,-20,86,-49,45,63,-42,35,29,95,36,24,92,-68,-7,26,90,45,70,-12,-30,-32,99,-59,-43,-17,-87,81,40,-11,84,-98,68,47,-71,-9,-12,-14,-97,-83,-42,39,40,-50,47,-67,53,37,77,23,-98,-53,68,-98,-35,-75,-39,-23,-94,-98,65,67,79,11,-9,84,78,78,-53,80,94,-18,-4,34,31,-56,66,-16,80,21,84,59,67,52,37,-68,53,97,-15,36,75,-72,-20,31,38,70,15,16,49,39,-27,20,-79,69,-45,51,-87,97,-87,69,18,96,28,-37,25,-35,-29,-22,-60,56,-86,-85,60,-30,46,-2,-59,-62,90,66,76,-37,-14,96,-68,17,25,-79,15,14,90,-90,-13,-5,-51,-88,37,-3,-34,53,-47,-43,67,89,26,-10,-13,66,28,-23,9,-19,16,95,-22,25,12,79,45,-96,-7,12,90,79,84,-61,67,-2,35,-67,-49,64,-11,94,53,-84,-38,-83,58,89,-30,-32,-53,86,-60,1,-12,51,-20,-90,32,49,22,22,28,-17,37,-5,57,-50,5,-92,-86,93,78,44,-91,-60,37,67,-94,-92,-88,-47,70,-49,53,-42,78,-89,-33,10,59,65,-91,-35,-75,46,36,81,95,-59,65,85,-65,44,6,-80,83,-56,63,89,-72,74,-81,97,-75,48,-68,80,58,-25,-10,-5,-59,-1,36,-58,-78,-28,-76,93,-10,65,55,1,9,-38,20,-30,-18,-39,-64,9,-65,-46,-17,-63,-98,14,-83,37,88,-17,-91,-94,58,44,-52,79,92,-52,49,-18,-87,5,82,-1,43,-20,68,-98,40,-96,-13,74,-66,69,87,-88,-40,80,25,-52,-36,33,-69,-78,-23,-22,78,-30,2,27,51,14,-91,11,89,28,90,57,29,7,37,-84,-19,47,61,-54,36,-79,-74,-39,-54,-34,94,-24,-35,-29,30,-57,17,-68,46,-54,22,32,56,12,-40,23,-54,66,-70,60,58,-13,-16,20,9,-80,17,35,-19,62,77,-25,-85,-58,22,21,-16,-83,52,-92,-38,-48,39,94,40,98,17,62,41,23,-1,0,86,83,-80,-4,-97,13,-92,-17,-47,84,34,-33,-73,-66,88,-13,-73,17,-6,-12,45,-90,-41,-15,85,52,-75,26,-25,23,-74,-39,6,-78,33,9,35,40,68,64,2,-20,-69,28,-10,95,91,16,-10,-37,-96,-65,-28,-38,-3,-66,-86,21,60,-35,-56,62,2,50,84,-64,-64,-4,52,80,-40,-46,-40,-33,58,49,-60,50,-35,29,-87,-55,63,-39,-17,-40,-28,-27,57,-68,14,-98,93,-83,28,54,-71,63,-73,57,20,-37,-88,80,7,69,6,46,-4,48,-25,-15,92,-85,46,-47,-25,-82,2,-91,-74,-83,-90,95,-90,37,27,-85,-23,53,71,97,93,82,54,0,52,-40,-54,-52,-92,20,33,77,11,-44,-93,62,-50,8,71,-48,1,80,-53,10,-5,73,24,48,4,-4,22,-3,-22,-24,96,-93,13,-81,-68,-3,15,41,-49,-74,73,-43,88,99,42,59,-49,-57,16,-26,53,87,-52,-46,36,28,49,-65,-98,-95,-12,74,87,-99,92,95,-26,7,13,25,9,-14,58,-3,-15,0,-67,12,20,26,86,-27,13,-89,3,-74,38,-70,-39,39,-66,48,-10,97,25,-18,93,98,65,6,0,-49,69,-41,25,-69,35,57,43,-45,-40,6,4,73,16,-92,98,-46,-63,-64,69,-53,60,-64,-56,-15,-6,-86,-39,-64,-3,60,-14,-34,-81,-89,-27,54,45,-84,85,-95,21,-10,54,-86,-3,30,-56,10,65,89,56,26,-75,99,87,18,-86,-52,53,10,-91,-60,52,-96,-73,-75,34,71,-82,20,53,15,-90,7,29,-17,-63,72,92,-97,62,48,5,86,24,-8,-18,37,40,-65,-76,48,-26,52,28,-22,77,-37,-51,71,82,-98,-14,68,9,-85,-49,22,64,-57,24,3,67,-94,-11,-9,-2,70,-94,-62,82,-94,62,-44,58,-33,10,12,29,59,-17,11,37,45,-44,-54,37,6,45,1,25,-31,-96,-8,-25,-31,83,49,-83,88,63,98,93,2,-69,28,68,41,-60,-2,0,-1,85,-63,-55,-58,-40,81,47,-95,-41,-50,-50,-38,41,1,7,24,-50,23,-11,-87,21,-40,14,52,87,-40,-7,-72,57,69,3,42,82,47,60,-81,5,-15,99,63,34,-73,-98,-25,27,9,76,54,-68,-35,43,30,1,-65,-41,-11,-6,28,-7,-72,-26,95,69,-44,20,7,-48,-75,91,-72,88,25,-46,66,76,58,-25,29,12,-16,71,-68,90,-28,-57,-51,60,36,76,-70,63,-73,-74,10,-18,22,-83,10,46,84,38,11,-14,91,-22,-38,49,29,68,-62,89,39,-53,79,-89,-11,-95,48,-97,57,77,42,83,79,-48,-34,1,-55,52,-52,-94,-10,35,-9,-41,-87,30,84,42,-2,99,31,-63,-54,-12,-76,11,-8,71,13,-50,26,-44,-67,5,-16,-25,-93,29,-72,-69,34,17,65,-97,75,55,32,60,-26,-70,59,81,-57,81,-31,-34,-8,61,-85,82,87,40,-62,-80,-55,21,-28,-72,-73,-1,-65,38,92,-99,40,45,55,-51,-18,-94,-45,-82,86,-3,98,-44,39,-33,93,53,-51,57,-7,-37,53,15,61,-75,42,64,0,77,2,-7,54,-81,-85,-14,-56,-4,-9,-2,-10,-23,71,-12,9,11,31,-21,-59,57,-64,11,-80,89,-74,80,-86,44,22,-9,-2,-76,83,-48,-80,74,14,-37,-30,-95,38,59,-41,9,-76,44,96,31,-76,-85,-12,-64,25,-15,-75,50,-58,-84,-6,63,6,92,64,-34,-79,83,-60,35,-77,9,16,37,-55,51,-76,-55,-27,96,75,-27,-89,-59,8,35,25,33,-38,66,25,33,30,-69,2,-6,-27,22,-46,12,-66,-47,97,27,90,-81,-45,-86,-37,27,-90,-62,99,97,-22,-15,32,-97,-82,71,46,19,4,-47,26,-94,46,98,4,76,10,38,-71,-16,-58,95,2,-4,-91,64,-99,95,78,76,92,-66,-39,1,-87,-45,-28,58,73,75,-89,-1,57,33,-26,-38,9,83,76,15,-56,-82,10,45,-10,-4,9,-33,-9,-35,-56,-40,-2,4,37,10,59,-90,-31,9,61,-21,-91,19,89,-18,80,-2,-57,56,89,-14,50,0,-91,-83,95,-6,-16,-37,58,27,-1,-44,-92,-64,66,43,-55,-88,-47,-93,-33,-39,2,-44,19,-18,31,38,-85,20,-98,41,-80,-90,57,91,3,-82,-46,-38,21,29,-6,29,65,-63,-28,-90,-52,24,92,15,61,-6,47,-42,52,-22,95,43,98,96,-39,94,82,-81,86,-14,-87,-83,24,11,46,-82,-60,-12,-45,-12,-26,-21,89,-33,93,27,37,41,84,-33,95,57,86,70,30,-52,65,13,-57,28,98,-45,44,-1,65,-33,-7,81,54,24,-53,-71,-96,-64,-28,73,39,85,-9,24,-71,-13,-42,-84,-43,87,-37,98,0,5,26,-25,59,-52,50,2,-9,-56,-40,-54,67,6,-49,47,18,22,21,-42,-16,88,58,13,-48,-84,28,9,79,90,-16,-20,-28,-89,31,-92,-42,-18,9,25,25,69,70,-31,-48,97,93,70,-4,-9,-95,80,-21,39,-30,31,31,97,-83,10,64,0,89,-64,-13,21,-57,21,79,29,-53,4,-25,93,49,26,91,42,-27,-13,-67,-46,-56,12,92,13,-80,23,-13,-64,-66,-49,12,99,-14,99,-3,6,-3,-24,-65,43,79,9,37,29,-65,5,-52,-15,91,-19,38,-87,69,31,25,88,-69,-87,-99,-36,-37,-11,-36,26,-35,60,-68,62,-63,-57,5,92,51,-81,-2,62,23,46,-53,-8,-96,85,4,72,-7,-71,37,23,-82,14,64,-42,-97,-95,60,-55,64,68,-93,77,-89,-12,47,61,-16,-78,23,-93,67,47,-25,47,9,78,-4,78,84,-90,-22,78,23,-58,-64,3,-54,95,47,87,63,30,41,50,94,-12,11,-22,10,-88,-38,-46,35,13,78,-56,-8,-26,98,-47,-16,-24,-69,83,18,-56,-37,40,-61,-90,27,79,16,-54,6,-12,33,94,65,-80,82,-96,-49,17,17,-71,37,85,-21,35,-62,39,87,-55,0,5,-12,62,-77,4,72,49,-40,-35,71,65,52,-18,59,-5,1,41,-2,28,-65,91,33,71,53,89,-17,90,28,-29,-87,-72,75,0,90,74,-96,39,24,-60,80,-28,-94,33,53,41,-95,-68,-17,-21,59,17,-29,-30,-34,-76,-41,48,91,63,-81,-96,68,71,-20,35,45,-39,-26,-54,0,-69,18,-18,40,-29,-76,44,2,-17,-76,-61,99,-29,8,-58,-29,43,90,-38,6,85,-58,-49,56,22,85,-21,59,-64,24,-41,-33,-81,41,-93,-33,64,28,45,-76,51,83,-77,-78,-32,-58,-8,87,-68,31,-29,-83,49,21,50,-52,7,-71,-93,19,29,-34,85,25,83,69,91,47,-3,36,47,-75,-3,69,-54,41,87,14,6,-81,-78,76,-87,71,-26,62,-81,57,67,-74,-23,-27,-32,-61,97,-49,-92,65,74,-19,2,21,5,75,-33,27,-7,-45,-81,98,-50,-60,51,-38,87,-74,-99,83,59,44,85,-64,-82,-47,-48,91,-20,-64,57,-46,17,-64,74,-78,87,-82,26,-20,-28,44,-44,22,83,-93,60,48,-91,61,31,68,5,16,80,-1,45,-68,-9,-75,-55,-75,-45,61,-40,-94,59,-53,-77,-15,3,-28,-71,58,93,89,42,53,37,27,-9,-55,-5,73,37,-47,-28,-41,-39,39,-17,5,40,14,-34,76,19,-97,99,41,-13,3,-87,-7,-62,82,-18,56,13,95,-16,-96,-83,55,53,53,-92,-97,88,-54,18,-52,50,-41,61,93,-65,-20,95,-65,-79,-41,14,-89,51,51,92,-90,8,-18,81,68,-14,97,23,-84,27,8,-82,15,53,36,62,3,94,0,-27,-94,79,-32,-60,77,4,53,87,-45,-18,56,-58,66,-61,-77,34,24,97,-66,16,24,41,34,-83,-6,-30,55,74,-59,-44,-53,-54,-88,-8,-14,88,95,-84,75,-73,-26,32,-32,-60,70,-32,50,-29,-35,84,86,65,25,20,58,96,66,-9,70,-93,23,93,-70,34,-15,-8,23,-20,7,-2,-16,58,-93,51,97,76,95,48,-53,-63,9,-89,-97,-66,7,37,-93,-26,-72,76,-43,50,47,-14,-15,-68,77,84,-11,-38,-18,72,-80,-11,0,-83,-58,-4,41,-34,32,-50,-24,11,-39,82,-51,-33,-67,-47,-79,-10,80,67,75,-58,75,30,-74,-36,91,-16,-87,-89,49,13,-96,91,-91,45,-43,17,71,9,-71,-91,-32,-46,-47,1,6,-50,67,-14,93,42,4,68,-28,29,-90,-60,-86,-78,-50,62,11,-46,30,19,75,86,-86,23,-28,-58,32,40,-28,84,-82,77,-89,84,-59,-96,26,44,48,75,-49,57,-85,-59,56,-58,-97,-33,-28,33,63,-53,-4,76,46,45,94,-22,-15,-34,-61,2,-80,-51,-14,-63,-71,88,81,77,40,-91,11,32,-51,-33,73,-72,34,-55,37,-26,-32,-89,-73,-86,55,-79,-31,-60,-37,7,18,-41,33,80,-4,61,68,-46,15,9,-38,-73,-82,10,-7,90,14,-96,-88,-48,-23,-44,-38,-20,-31,-83,0,14,-67,39,-78,50,98,31,30,-6,-31,-25,47,84,60,85,-89,77,-28,-20,44,85,-16,55,-63,37,-89,-25,-82,-43,-32,-6,47,0,-66,45,-73,-91,-24,33,-21,45,85,-74,6,45,87,16,0,-41,95,-56,-56,-44,76,-42,70,63,9,87,-80,77,-42,67,-46,-32,12,-19,-24,65,90,54,-13,75,56,92,21,43,-15,-79,78,-43,-59,99,13,-83,-43,-17,80,42,-53,76,19,-19,20,50,49,-90,-69,-98,74,97,33,-62,73,-34,-70,-29,86,14,-32,64,70,8,63,-40,2,96,19,-18,39,42,-42,-65,-76,55,84,72,64,91,50,15,89,-40,52,39,26,58,-90,12,-28,-23,-24,-81,61,-83,-44,-37,-87,74,44,28,17,79,63,40,11,24,-11,-25,16,-84,66,-18,-24,18,-79,-98,-24,-70,-10,24,-17,42,19,-79,58,74,-16,48,49,-95,-47,-57,60,-84,82,-29,17,-52,22,-67,-37,-12,-9,15,-94,11,16,-42,17,82,81,76,25,1,96,-17,-25,-20,-92,-99,-38,-39,-57,-78,-47,-98,-30,69,-51,91,78,-11,-20,-31,-96,-15,56,-3,20,-50,-21,1,-74,-96,78,-77,-36,-69,-21,-52,-92,17,8,-49,39,38,-71,85,-16,-22,76,-37,43,-44,8,23,18,-58,-80,-62,-9,-1,15,17,-21,-29,16,19,1,71,67,-15,-11,-48,12,-95,89,41,89,-26,95,65,13,38,98,-79,-39,16,-38,-42,53,53,33,-32,-53,-88,38,39,31,-84,10,-25,1,75,26,-87,56,16,30,45,66,25,-12,-21,-60,-14,-24,-22,-98,38,35,31,-32,-32,75,-9,-44,-9,-70,63,6,16,-62,83,-31,64,73,-75,-43,3,70,-77,-94,-65,1,-55,20,76,22,-2,-9,-43,-71,35,1,-96,-74,57,-6,-68,-3,77,25,35,60,93,-24,10,-82,32,90,64,31,95,98,-91,-83,-5,61,39,92,-47,72,-79,64,-26,-75,67,-92,-5,98,-19,-28,0,-84,-90,-7,-9,-4,-12,99,-14,-48,30,-42,-72,38,-25,22,0,-86,15,29,62,35,-7,-87,36,-40,96,-68,-64,-22,-20,35,-7,-34,-94,61,62,-7,37,-52,44,-32,-17,71,82,57,-6,-41,47,-91,87,9,20,-42,22,-66,-6,-5,-58,29,72,21,-58,-57,87,-53,-96,26,39,40,73,-17,84,-44,-68,67,89,2,-97,36,-13,90,-77,-93,-52,21,-83,18,-84,-42,-52,88,56,-11,-69,20,35,-89,-54,-49,27,95,33,-11,-71,41,-67,-82,-57,-65,31,29,-75,53,13,-51,-26,6,67,-34,64,91,-69,-3,-43,-62,-83,68,-52,-61,-81,52,-66,28,-59,-38,-30,-27,-43,-11,7,87,95,9,40,8,34,90,90,-22,-67,54,-31,-36,-72,25,1,-79,-7,26,-41,11,-22,-30,-83,-5,31,-14,67,87,74,-49,51,46,36,-9,-46,-29,-42,-78,48,-9,75,94,54,80,-4,-45,-99,89,57,-63,-23,-65,6,-7,29,-86,55,-27,78,7,1,29,-47,-63,97,-16,-16,-45,5,-67,45,-43,-96,-24,-86,-1,8,-85,-35,-35,-72,42,0,33,-88,-94,23,44,-44,1,-72,56,-92,-43,92,-95,40,-23,-41,-78,-14,81,-44,-34,-43,-31,64,41,-40,-70,-93,-13,48,-17,-80,36,-12,20,-20,43,-79,7,-24,-95,64,-31,-91,-19,22,-55,-20,84,-97,35,-50,-64,-96,90,77,-36,-80,83,50,44,-34,47,-19,30,-33,60,-49,-36,-55,26,-54,85,71,-46,-57,-30,-25,22,-46,-23,-66,-20,-10,-62,-52,-33,-22,-33,-73,-95,-88,-31,28,-31,75,71,-71,-74,-64,-50,29,-19,-88,0,11,-68,70,63,53,-99,-83,64,-42,6,78,5,49,-44,48,75,-63,36,-79,65,-95,96,36,-89,98,48,-63,27,-94,-74,-95,-6,-43,51,-43,86,51,-27,50,85,56,28,-33,5,60,92,-42,97,28,-22,39,10,-26,-48,20,-27,-99,33,76,82,58,80,-24,-85,31,32,-98,-40,82,28,-78,38,-66,-11,-57,93,-19,0,67,85,78,-17,-5,-71,35,91,-22,12,2,-45,-6,-40,-88,47,-48,43,-21,-70,-97,-39,57,-99,98,90,-11,-81,61,46,18,28,9,-27,-88,80,2,23,49,56,-65,-49,-89,5,10,-77,-48,61,42,8,90,21,45,25,21,44,15,87,62,-47,33,-43,81,-81,30,69,99,-91,-31,48,64,-20,98,75,84,-15,74,-86,-76,-7,21,90,-86,-34,15,34,86,-92,-2,25,-40,-68,82,-82,-73,-11,63,-74,-3,-68,50,-39,11,25,-87,-27,-89,63,-37,-89,-44,83,-99,-54,-74,-7,80,89,0,-22,14,36,-14,-27,31,13,61,-29,15,-65,3,-34,-27,90,90,-38,-60,77,-97,2,87,-42,-38,65,4,-12,-42,-39,-23,34,15,67,-30,78,-82,77,-32,55,-51,59,90,28,-98,-60,-5,69,1,35,46,-20,-63,11,38,-1,-24,-81,63,33,-44,-83,-33,47,83,13,2,77,-32,69,33,16,6,0,-79,7,39,15,-24,-83,-50,99,-3,-13,10,-88,62,62,-93,25,-5,-61,41,38,62,1,-72,-35,-21,-5,-89,88,-89,16,-12,-92,-76,-96,23,-24,-80,72,-25,-7,-64,61,4,97,23,-13,-1,-82,25,-83,32,-12,18,60,29,73,-45,39,61,-57,-67,-74,-73,-67,-71,49,8,-52,22,83,18,34,21,-78,9,-55,-14,-92,-61,-89,-98,71,-25,-4,8,-96,-54,39,20,83,58,52,-91,85,84,-63,34,-31,-39,-67,-48,78,44,50,77,-47,94,-37,-63,-67,-50,-62,80,2,10,-12,5,55,-95,-98,38,62,30,46,47,14,59,-41,83,-79,-32,-88,75,-88,61,29,-36,55,91,-22,65,-81,-8,45,20,-97,-89,-98,57,-85,-96,-27,76,33,-81,1,-75,55,36,-92,52,-96,95,27,-84,34,-43,-44,-34,-75,33,-69,-57,-74,53,62,-95,40,64,38,54,44,-89,7,-23,-93,84,1,61,20,-15,13,24,-42,-83,39,91,-27,94,-43,-2,5,-35,17,7,-82,-20,11,57,-79,-74,-12,64,-63,71,-59,-57,56,19,80,-24,-96,-7,76,-39,9,-8,-71,59,-36,-14,-66,68,50,50,-25,44,-70,62,-22,-50,64,65,-86,-99,13,-68,-80,-31,50,76,22,30,-31,-2,68,55,90,96,-9,-69,-41,24,98,85,-49,-50,6,-42,88,83,-16,52,25,-25,30,-61,6,49,-16,-67,26,-94,39,71,-19,7,3,-52,-19,93,-22,39,-6,-47,2,45,2,-92,-97,-10,91,-14,-81,-7,60,48,8,-57,-25,92,-25,77,97,-85,25,-45,-2,-71,2,78,98,56,-5,-30,-91,73,-85,10,80,93,76,48,-44,72,-58,-83,20,49,-64,94,18,11,48,16,2,-26,47,99,-21,-50,55,-23,-94,-73,46,-85] print(maxSubArray(nums))
py
1a4854c7b1d6069c3f9b84d885935f98de2ef587
# This file is part of the Reproducible and Reusable Data Analysis Workflow # Server (flowServ). # # Copyright (C) 2019-2021 NYU. # # flowServ is free software; you can redistribute it and/or modify it under the # terms of the MIT License; see LICENSE file for more details. """Helper method to create a API generator based on the current configuration in the environment valriables. """ from contextlib import contextmanager from typing import Dict, Optional from flowserv.config import Config from flowserv.service.api import API, APIFactory from flowserv.service.local import LocalAPIFactory import flowserv.config as config # -- API factory pattern for client applications ------------------------------ def ClientAPI( env: Optional[Dict] = None, basedir: Optional[str] = None, database: Optional[str] = None, open_access: Optional[bool] = None, run_async: Optional[bool] = None, user_id: Optional[str] = None ) -> APIFactory: """Create an instance of the API factory that is responsible for generating API instances for a flowserv client. The main distinction here is whether a connection is made to a local instance of the service or to a remote instance. This distinction is made based on the value of the FLOWSERV_CLIENT environment variable that takes the values 'local' or 'remote'. The default is 'local'. Provides the option to alter the default settings of environment variables. Parameters ---------- env: dict, default=None Dictionary with configuration parameter values. basedir: string, default=None Base directory for all workflow files. If no directory is given or specified in the environment a temporary directory will be created. database: string, default=None Optional database connect url. open_access: bool, default=None Use an open access policy if set to True. run_async: bool, default=False Run workflows in asynchronous mode. user_id: string, default=None Optional identifier for the authenticated API user. Returns ------- flowserv.service.api.APIFactory """ # Get the base configuration settings from the environment if not given. env = env if env is not None else config.env() if not isinstance(env, Config): env = Config(env) # Update configuration based on the given optional arguments. if basedir is not None: env.basedir(basedir) if database is not None: env.database(database) if open_access is not None and open_access: env.open_access() # By default, the client runs all workflows synchronously. if run_async is not None and run_async: env.run_async() elif env.get(config.FLOWSERV_ASYNC) is None: env.run_sync() # Create local or remote API factory depending on the FLOWSERV_CLIENT value. client = env.get(config.FLOWSERV_CLIENT, config.LOCAL_CLIENT) if client == config.LOCAL_CLIENT: return LocalAPIFactory(env=env, user_id=user_id) elif client == config.REMOTE_CLIENT: # Not implemented yet. pass raise ValueError("inalid client type '{}'".format(client)) @contextmanager def service() -> API: """Context manager that returns a service API that was instantiated from the current configuration settings in the environment. Returns ------- flowserv.service.api.API """ # Create the API factory from the current environment settings. factory = ClientAPI() with factory() as api: yield api
py
1a4854c8b590c6ea8078a2fd7c10b40b5c1992ac
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.service_client import SDKClient from msrest import Serializer, Deserializer from ._configuration import LUISAuthoringClientConfiguration from msrest.exceptions import HttpOperationError from .operations import FeaturesOperations from .operations import ExamplesOperations from .operations import ModelOperations from .operations import AppsOperations from .operations import VersionsOperations from .operations import TrainOperations from .operations import PermissionsOperations from .operations import PatternOperations from .operations import SettingsOperations from .operations import AzureAccountsOperations from . import models class LUISAuthoringClient(SDKClient): """LUISAuthoringClient :ivar config: Configuration for client. :vartype config: LUISAuthoringClientConfiguration :ivar features: Features operations :vartype features: azure.cognitiveservices.language.luis.authoring.operations.FeaturesOperations :ivar examples: Examples operations :vartype examples: azure.cognitiveservices.language.luis.authoring.operations.ExamplesOperations :ivar model: Model operations :vartype model: azure.cognitiveservices.language.luis.authoring.operations.ModelOperations :ivar apps: Apps operations :vartype apps: azure.cognitiveservices.language.luis.authoring.operations.AppsOperations :ivar versions: Versions operations :vartype versions: azure.cognitiveservices.language.luis.authoring.operations.VersionsOperations :ivar train: Train operations :vartype train: azure.cognitiveservices.language.luis.authoring.operations.TrainOperations :ivar permissions: Permissions operations :vartype permissions: azure.cognitiveservices.language.luis.authoring.operations.PermissionsOperations :ivar pattern: Pattern operations :vartype pattern: azure.cognitiveservices.language.luis.authoring.operations.PatternOperations :ivar settings: Settings operations :vartype settings: azure.cognitiveservices.language.luis.authoring.operations.SettingsOperations :ivar azure_accounts: AzureAccounts operations :vartype azure_accounts: azure.cognitiveservices.language.luis.authoring.operations.AzureAccountsOperations :param endpoint: Supported Cognitive Services endpoints (protocol and hostname, for example: https://westus.api.cognitive.microsoft.com). :type endpoint: str :param credentials: Subscription credentials which uniquely identify client subscription. :type credentials: None """ def __init__( self, endpoint, credentials): self.config = LUISAuthoringClientConfiguration(endpoint, credentials) super(LUISAuthoringClient, self).__init__(self.config.credentials, self.config) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self.api_version = '3.0-preview' self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) self.features = FeaturesOperations( self._client, self.config, self._serialize, self._deserialize) self.examples = ExamplesOperations( self._client, self.config, self._serialize, self._deserialize) self.model = ModelOperations( self._client, self.config, self._serialize, self._deserialize) self.apps = AppsOperations( self._client, self.config, self._serialize, self._deserialize) self.versions = VersionsOperations( self._client, self.config, self._serialize, self._deserialize) self.train = TrainOperations( self._client, self.config, self._serialize, self._deserialize) self.permissions = PermissionsOperations( self._client, self.config, self._serialize, self._deserialize) self.pattern = PatternOperations( self._client, self.config, self._serialize, self._deserialize) self.settings = SettingsOperations( self._client, self.config, self._serialize, self._deserialize) self.azure_accounts = AzureAccountsOperations( self._client, self.config, self._serialize, self._deserialize)
py
1a48563133ff1a8201df1736f6ec96d5b9073440
""" WSGI config for dsite project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dsite.settings") application = get_wsgi_application()
py
1a4857a6dbaf5fc44b9554c9644aea48e288dc89
from zope.security.interfaces import Unauthorized from zope.testbrowser.browser import LinkNotFoundError import pytest EVENT_VIEW_CONFIGURATION_ADD_TEXT = 'event view configuration' def test_masterdata__Table__1(address_book, browser): """It allows to navigate to the event views list.""" browser.login('cal-visitor') browser.open(browser.CALENDAR_MASTERDATA_URL) browser.getLink('Event views').click() assert browser.url == browser.CALENDAR_MASTERDATA_EVENTVIEW_URL def test_masterdata__Table__2(address_book, browser): """It renders a message if there are no event view configurations yet.""" browser.login('cal-visitor') browser.open(browser.CALENDAR_MASTERDATA_EVENTVIEW_URL) assert 'No event views defined yet.' in browser.contents @pytest.mark.parametrize('login', ('cal-visitor', 'cal-editor')) def test_masterdata__Table__3(address_book, browser, login): """It renders no add link for any calendar user.""" browser.login(login) browser.open(browser.CALENDAR_MASTERDATA_EVENTVIEW_URL) with pytest.raises(LinkNotFoundError): browser.getLink(EVENT_VIEW_CONFIGURATION_ADD_TEXT) def test_masterdata__Table__4(address_book, browser): """It prevents access for anonymous.""" browser.handleErrors = False # needed to catch exception with pytest.raises(Unauthorized): browser.open(browser.CALENDAR_MASTERDATA_EVENTVIEW_URL) def test_masterdata__Add__1(address_book, browser): """It allows administrators to add a new category in the list.""" browser.login('mgr') browser.open(browser.CALENDAR_MASTERDATA_EVENTVIEW_URL) browser.getLink(EVENT_VIEW_CONFIGURATION_ADD_TEXT).click() assert browser.CALENDAR_EVENTVIEW_CONFIGURATION_ADD_URL == browser.url browser.getControl('title').value = 'default' browser.getControl('Add').click() assert '"default" added.' == browser.message # The new configuration shows up in the list: assert '>default<' in browser.contents def test_masterdata__Add__2( address_book, EventViewConfigurationFactory, browser): """It prevents adding a new config with an already existing title.""" EventViewConfigurationFactory(address_book, u'default') browser.login('mgr') browser.open(browser.CALENDAR_EVENTVIEW_CONFIGURATION_ADD_URL) browser.getControl('title').value = 'default' browser.getControl('Add').click() assert 'There were some errors.' in browser.contents assert 'This title is already used for an ' in browser.contents @pytest.mark.parametrize('login', ('cal-visitor', 'cal-editor')) def test_masterdata__Add__3(address_book, browser, login): """It is not accessible for any calendar user.""" browser.login(login) browser.assert_forbidden(browser.CALENDAR_EVENTVIEW_CONFIGURATION_ADD_URL) def test_masterdata__Edit__1( address_book, EventViewConfigurationFactory, CategoryFactory, browser): """It allows to edit a category.""" EventViewConfigurationFactory(address_book, u'default') CategoryFactory(address_book, u'foo') CategoryFactory(address_book, u'bar') browser.login('mgr') browser.open(browser.CALENDAR_MASTERDATA_EVENTVIEW_URL) browser.getLink('default').click() assert browser.CALENDAR_EVENTVIEW_CONFIGURATION_EDIT_URL == browser.url assert 'default' == browser.getControl('title').value browser.getControl('title').value = 'alternative' browser.getControl('start date').displayValue = ['3 days in past'] browser.getControl('duration').displayValue = ['3 weeks'] browser.getControl('categories').displayValue = ['bar'] browser.getControl('show fields').displayValue = ['persons'] browser.getControl('Save').click() assert 'Data successfully updated.' == browser.message # The changed category name shows up in the list: assert 'alternative' in browser.contents browser.getLink('alternative').click() assert browser.getControl('title').value == 'alternative' assert browser.getControl('start date').displayValue == ['3 days in past'] assert browser.getControl('duration').displayValue == ['3 weeks'] assert browser.getControl('categories').displayValue == ['bar'] assert browser.getControl('show fields').displayValue == ['persons'] def test_masterdata__Edit__2( address_book, EventViewConfigurationFactory, browser): """It prevents changing a category title to an existing one.""" EventViewConfigurationFactory(address_book, u'default') EventViewConfigurationFactory(address_book, u'alternative') browser.login('mgr') browser.open(browser.CALENDAR_EVENTVIEW_CONFIGURATION_EDIT_URL) browser.getControl('title').value = 'alternative' browser.getControl('Save').click() assert 'There were some errors.' in browser.contents assert 'This title is already used for an ' in browser.contents @pytest.mark.parametrize('login', ('cal-visitor', 'cal-editor')) def test_masterdata__Edit__3( address_book, EventViewConfigurationFactory, browser, login): """It allows calendar users only to see the event view configuration data. But they cannot change or delete them. """ EventViewConfigurationFactory(address_book, u'foo') browser.login(login) browser.open(browser.CALENDAR_EVENTVIEW_CONFIGURATION_EDIT_URL) # There are no fields and no delete button: assert (['form.buttons.apply', 'form.buttons.cancel'] == browser.all_control_names) def test_masterdata__Delete__1( address_book, EventViewConfigurationFactory, browser): """It allows to delete an event view configuration.""" EventViewConfigurationFactory(address_book, u'default') browser.login('mgr') browser.open(browser.CALENDAR_EVENTVIEW_CONFIGURATION_EDIT_URL) browser.getControl('Delete').click() assert browser.CALENDAR_EVENTVIEW_CONFIGURATION_DELETE_URL == browser.url assert ('Do you really want to delete this event view configuration?' in browser.contents) browser.getControl('Yes').click() assert '"default" deleted.' == browser.message @pytest.mark.parametrize('login', ('cal-visitor', 'cal-editor')) def test_masterdata__Delete__2( address_book, EventViewConfigurationFactory, browser, login): """It is not accessible for any calendar user.""" EventViewConfigurationFactory(address_book, u'foo') browser.login(login) browser.assert_forbidden( browser.CALENDAR_EVENTVIEW_CONFIGURATION_DELETE_URL)
py
1a4857fcd67a410e03843e75f848876c0363aea8
from setuptools import setup, find_packages PACKAGE_NAME = "lintreview" VERSION = "0.14.0" requirements = open('./requirements.txt', 'r') setup( name=PACKAGE_NAME, version=VERSION, description=""" Lint Review, an automated code review tool that integrates with github. Integrates with the github API & a variety of code checking tools. """, author="Mark story", author_email="[email protected]", packages=find_packages(), entry_points={ 'console_scripts': [ 'lintreview = lintreview.cli:main', ], }, install_requires=requirements.readlines(), )
py
1a48581f4c594ef3e014425db5f5ef4fa1989cda
from scrapy.spider import BaseSpider from scrapy.selector import HtmlXPathSelector from scrapy.http import Request, HtmlResponse from scrapy.utils.url import urljoin_rfc from product_spiders.items import Product, ProductLoaderWithNameStrip as ProductLoader class DialaphoneSpider(BaseSpider): name = 'dialaphone.co.uk' allowed_domains = ['dialaphone.co.uk'] start_urls = ['http://www.dialaphone.co.uk/pay-as-you-go/'] def parse(self, response): hxs = HtmlXPathSelector(response) urls = hxs.select('//*[@id="ulManufacturerLinks"]/li/a/@href').extract() for url in urls: yield Request(url, callback=self.parse_categories) def parse_categories(self, response): hxs = HtmlXPathSelector(response) products = hxs.select('//table[@class="List"]/tr') for product in products: loader = ProductLoader(item=Product(), selector=product) loader.add_xpath('name', 'td[@class="DealIncludes"]/a[@class="PhoneName"]/text()') loader.add_xpath('url', 'td[@class="DealIncludes"]/a[@class="PhoneName"]/@href') price = 0.0 if product.select('td[@class="Price"]/text()'): price = product.select('td[@class="Price"]/text()').extract()[0] loader.add_value('price', price) yield loader.load_item()
py
1a4859246f71670193f9b2ff929c6c8f3f6df6a3
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" from setuptools import setup, find_packages with open('README.md') as readme_file: readme = readme_file.read() with open('HISTORY.md') as history_file: history = history_file.read() install_requires = [ 'torch<2,>=1.0', 'torchvision<1,>=0.4.2', 'scikit-learn<0.23,>=0.21', 'numpy<2,>=1.17.4', 'pandas<0.26,>=0.24', ] setup_requires = [ 'pytest-runner>=2.11.1', ] tests_require = [ 'pytest>=3.4.2', 'pytest-cov>=2.6.0', ] development_requires = [ # general 'bumpversion>=0.5.3', 'pip>=9.0.1', 'watchdog>=0.8.3', # docs 'm2r>=0.2.0', 'Sphinx>=1.7.1', 'sphinx_rtd_theme>=0.2.4', 'autodocsumm>=0.1.10', # style check 'flake8>=3.7.7', 'isort>=4.3.4', # fix style issues 'autoflake>=1.2', 'autopep8>=1.4.3', # distribute on PyPI 'twine>=1.10.0', 'wheel>=0.30.0', # Advanced testing 'coverage>=4.5.1', 'tox>=2.9.1', ] setup( author='MIT Data To AI Lab', author_email='[email protected]', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], description='Conditional GAN for Tabular Data', entry_points={ 'console_scripts': [ 'ctgan=ctgan.__main__:main' ], }, extras_require={ 'test': tests_require, 'dev': development_requires + tests_require, }, install_package_data=True, install_requires=install_requires, license='MIT license', long_description=readme + '\n\n' + history, long_description_content_type='text/markdown', include_package_data=True, keywords='ctgan CTGAN', name='ctgan', packages=find_packages(include=['ctgan', 'ctgan.*']), python_requires='>=3.5', setup_requires=setup_requires, test_suite='tests', tests_require=tests_require, url='https://github.com/sbuttler/CTGAN', version='0.2.2.dev0', zip_safe=False, )
py
1a485a9fdb727bf529ba3ca19fc2e0569487953e
# This is a very trivial series of tests. If apply is subtlely broken, # we will have to find out some other way. class AppTestApply: def test_trivial_listonly(self): def mymin(*args): return min(list(args)) assert apply(mymin, [-1,-2,-3,-4]) == -4 def test_trivial_dictonly(self): def mymin(*arr, **kwargs): return min(list(arr) + kwargs.values()) assert apply(mymin, [], {'null' : 0, 'one': 1, 'two' : 2}) == ( 0) def test_trivial(self): def mymin(*arr, **kwargs): return min(list(arr) + kwargs.values()) assert apply(mymin, [-1,-2,-3,-4], {'null' : 0, 'one': 1, 'two' : 2}) == ( (-4))
py
1a485b0b754a5890f7c0b1d4e1805f52aea4cef5
balance = 3926 annualInterestRate = 0.2 #import time monthlyInterest = annualInterestRate / 12.0 workingBalance = balance minimumPayment = 0 while workingBalance > 0: minimumPayment += 10 workingBalance = balance for month in range(1, 13): workingBalance -= minimumPayment workingBalance = workingBalance + (workingBalance * monthlyInterest) # print month # print minimumPayment # print workingBalance # time.sleep(0.01) print "Lowest Payment: " + str(minimumPayment)
py
1a4861826473bc3f856dc52486d9f53ec2c229b4
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. ''' This is a poor man's port of set_up_volume.sh to allow `image_package` to emit btrfs loopbacks. In ~1 weeks' time, this will be replaced by a better-tested, more robust, and more coherent framework for handling images and loopbacks. ''' import logging import os import subprocess import sys import tempfile from typing import Optional from .common import byteme, get_file_logger, run_stdout_to_err from .unshare import Unshare, nsenter_as_root, nsenter_as_user log = get_file_logger(__file__) MiB = 2 ** 20 # Otherwise, `mkfs.btrfs` fails with: # ERROR: minimum size for each btrfs device is 114294784 MIN_CREATE_BYTES = 109 * MiB # The smallest size, to which btrfs will GROW a tiny filesystem. For # lower values, `btrfs resize` prints: # ERROR: unable to resize '_foo/volume': Invalid argument # MIN_GROW_BYTES = 175 * MiB # # When a filesystem's `min-dev-size` is small, `btrfs resize` below this # limit will fail to shrink with `Invalid argument`. MIN_SHRINK_BYTES = 256 * MiB def _round_to_loop_block_size(num_bytes: int, log_level: int) -> int: ''' Avoid T24578982: btrfs soft lockup: `losetup --set-capacity /dev/loopN` wrongly sets block size to 1024 when backing file size is 4096-odd. Future: maybe we shouldn't hardcode 4096, but instead query: blockdev --getbsz /dev/loopSOMETHING ''' block_size = 4096 rounded = num_bytes + (block_size - (num_bytes % block_size)) % block_size if num_bytes != rounded: log.log( log_level, f'Rounded image size {num_bytes} up to {rounded} to avoid kernel ' 'bug.' ) return rounded def _create_or_resize_image_file( path: bytes, at_least_bytes: int, log_level: int=logging.INFO, ): ''' Be sure to call `btrfs filesystem resize` and `losetup --set-capacity` in the appropriate order. ''' rounded_bytes = _round_to_loop_block_size(at_least_bytes, log_level) run_stdout_to_err([ 'truncate', '-s', str(rounded_bytes), path, ], check=True) def _fix_up_fs_size(size_bytes: int, min_usable_fs_size: int) -> int: if size_bytes < min_usable_fs_size: log.warning( f'btrfs cannot use a size of {size_bytes} < {min_usable_fs_size} ' 'bytes, will use the larger size' ) return min_usable_fs_size return size_bytes def _format_image_file(path: bytes, size_bytes: int) -> int: 'Returns the actual filesystem size, which may have been increased.' size_bytes = _fix_up_fs_size(size_bytes, MIN_CREATE_BYTES) log.info(f'Formatting btrfs {size_bytes}-byte FS at {path}') _create_or_resize_image_file(path, size_bytes) # Note that this can fail with 'cannot check mount status' if the # host is in a bad state: # - a file backing a loop device got deleted, or # - multiple filesystems with the same UUID got mounted as a loop # device, breaking the metadata for the affected loop device (this # latter issue is a kernel bug). # We don't check for this error case since there's nothing we can do to # remediate it. run_stdout_to_err(['mkfs.btrfs', path], check=True) return size_bytes def _mount_image_file( unshare: Optional[Unshare], file_path: bytes, mount_path: bytes, ) -> bytes: log.info(f'Mounting btrfs {file_path} at {mount_path}') # Explicitly set filesystem type to detect shenanigans. run_stdout_to_err(nsenter_as_root( unshare, 'mount', '-t', 'btrfs', '-o', 'loop,discard,nobarrier', file_path, mount_path, ), check=True) loop_dev = subprocess.check_output(nsenter_as_user( unshare, 'findmnt', '--noheadings', '--output', 'SOURCE', mount_path, )).rstrip(b'\n') # This increases the chances that --direct-io=on will succeed, since one # of the common failure modes is that the loopback's sector size is NOT # a multiple of the sector size of the underlying device (the devices # we've seen in production have sector sizes of 512, 1024, or 4096). if run_stdout_to_err([ 'sudo', 'losetup', '--sector-size=4096', loop_dev, ]).returncode != 0: log.error( f'Failed to set --sector-size=4096 for {loop_dev}, setting ' 'direct IO is more likely to fail.' ) # This helps perf and avoids doubling our usage of buffer cache. # Also, when the image is on tmpfs, setting direct IO fails. if run_stdout_to_err([ 'sudo', 'losetup', '--direct-io=on', loop_dev, ]).returncode != 0: log.error( f'Could not enable --direct-io for {loop_dev}, expect worse ' 'performance.' ) return loop_dev def _minimize_image_size( *, unshare: Optional[Unshare], cur_size: int, image_path: bytes, mount_path: bytes, loop_dev: bytes, ) -> int: 'Returns the new filesystem size.' min_size_out = subprocess.check_output(nsenter_as_root( unshare, 'btrfs', 'inspect-internal', 'min-dev-size', mount_path, )).split(b' ') assert min_size_out[1] == b'bytes' min_size = _fix_up_fs_size(int(min_size_out[0]), MIN_SHRINK_BYTES) if min_size >= cur_size: log.info( f'Nothing to do: the minimum resize limit {min_size} is no less ' f'than the current filesystem size of {cur_size} bytes.' ) return log.info(f'Shrinking {image_path} to the btrfs minimum, {min_size} bytes') run_stdout_to_err(nsenter_as_root( unshare, 'btrfs', 'filesystem', 'resize', str(min_size), mount_path, ), check=True) fs_bytes = int(subprocess.check_output(nsenter_as_user( unshare, 'findmnt', '--bytes', '--noheadings', '--output', 'SIZE', mount_path, ))) # Log an error on size rounding since this is not expected to need it. _create_or_resize_image_file(image_path, fs_bytes, log_level=logging.ERROR) run_stdout_to_err([ 'sudo', 'losetup', '--set-capacity', loop_dev, ], check=True) return min_size class LoopbackVolume: def __init__( self, unshare: Optional[Unshare], image_path: bytes, size_bytes: int, ): self._unshare = unshare self._temp_dir_ctx = tempfile.TemporaryDirectory() # noqa: P201 self._size_bytes = size_bytes self._image_path = byteme(os.path.abspath(image_path)) self._temp_dir: Optional[bytes] = None self._mount_dir: Optional[bytes] = None def __enter__(self) -> 'LoopbackVolume': self._temp_dir = byteme( os.path.abspath(self._temp_dir_ctx.__enter__()) ) try: self._size_bytes = _format_image_file( self._image_path, self._size_bytes ) self._mount_dir = os.path.join(self._temp_dir, b'volume') os.mkdir(self._mount_dir) self._loop_dev = _mount_image_file( self._unshare, self._image_path, self._mount_dir, ) except BaseException: self.__exit__(*sys.exc_info()) raise return self def __exit__(self, exc_type, exc_val, exc_tb) -> bool: 'This only suppresses exceptions if TemporaryDirectory.__exit__ does.' if self._mount_dir: # If this throws, we won't be able to clean up `_mount_dir`, so # let the error fly. If the loopback is inside an Unshare # object, the mount itself will eventually get cleaned up, but # we don't have ownership to trigger Unshare cleanup, and in any # case, that kind of clean-up is asynchronous, and would be # tricky to await properly. # # NB: It's possible to use tmpfs and namespaces to guarantee # cleanup, but it's just an empty directory in `/tmp`, so it's # really not worth the complexity. self.unmount_if_mounted() return self._temp_dir_ctx.__exit__(exc_type, exc_val, exc_tb) def unmount_if_mounted(self): if self._mount_dir: # Nothing might have been mounted, ignore exit code run_stdout_to_err( nsenter_as_root(self._unshare, 'umount', self._mount_dir), ) def dir(self) -> bytes: return self._mount_dir def minimize_size(self) -> int: 'Returns the new image size.' self._size_bytes = _minimize_image_size( unshare=self._unshare, cur_size=self._size_bytes, image_path=self._image_path, mount_path=self._mount_dir, loop_dev=self._loop_dev, ) return self._size_bytes
py
1a48619e2c0d507aba7ef76075212c592f7e7499
import numpy as np import chainer import chainer.functions as F from chainer import initializers import chainer.links as L from models.connections.conv_2d_bn_activ import Conv2DBNActiv from models.connections.resblock import ResBlock from chainercv.links import PickableSequentialChain class SERes2Net(PickableSequentialChain): _blocks = { 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3] } def __init__(self, n_layer, n_class=None, scale=4, pretrained_model=None, mean=None, initialW=None, fc_kwargs={}): blocks = self._blocks[n_layer] self.mean = mean if initialW is None: initialW = initializers.HeNormal(scale=1., fan_option='fan_out') if 'initialW' not in fc_kwargs: fc_kwargs['initialW'] = initializers.Normal(scale=0.01) kwargs = { 'scale': scale, 'initialW': initialW, 'stride_first': True, 'add_seblock': True} super(SERes2Net, self).__init__() with self.init_scope(): self.conv1 = Conv2DBNActiv(None, 64, 3, 1, 1, nobias=True, initialW=initialW) self.res2 = ResBlock(blocks[0], None, 64, 256, 2, **kwargs) self.res3 = ResBlock(blocks[1], None, 128, 512, 1, **kwargs) self.res4 = ResBlock(blocks[2], None, 256, 1024, 2, **kwargs) self.res5 = ResBlock(blocks[3], None, 512, 2048, 1, **kwargs) self.pool5 = lambda x: F.average(x, axis=(2, 3)) self.fc6 = L.Linear(None, n_class, **fc_kwargs) class SERes2Net50(SERes2Net): def __init__(self, n_class=10, scale=4, pretrained_model=None, mean=None, initialW=None, fc_kwargs={}): super(SERes2Net50, self).__init__( 50, n_class, scale, pretrained_model, mean, initialW, fc_kwargs) class SERes2Net101(SERes2Net): def __init__(self, n_class=10, scale=4, pretrained_model=None, mean=None, initialW=None, fc_kwargs={}): super(SERes2Net101, self).__init__( 101, n_class, scale, pretrained_model, mean, initialW, fc_kwargs) class SERes2Net152(SERes2Net): def __init__(self, n_class=10, scale=4, pretrained_model=None, mean=None, initialW=None, fc_kwargs={}): super(SERes2Net152, self).__init__( 152, n_class, scale, pretrained_model, mean, initialW, fc_kwargs)
py
1a4862fe2df399e15f31f7a1cdbba256e26f20fe
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2021/12/14 16:30 Desc: 申万指数-申万一级、二级和三级 http://www.swsindex.com/IdxMain.aspx https://legulegu.com/stockdata/index-composition?industryCode=851921.SI """ import time import json import pandas as pd from akshare.utils import demjson import requests from bs4 import BeautifulSoup from akshare.index.cons import sw_headers, sw_payload, sw_url def sw_index_representation_spot() -> pd.DataFrame: """ 申万-市场表征实时行情数据 http://www.swsindex.com/idx0120.aspx?columnid=8831 :return: 市场表征实时行情数据 :rtype: pandas.DataFrame """ url = "http://www.swsindex.com/handler.aspx" params = { "tablename": "swzs", "key": "L1", "p": "1", "where": "L1 in('801001','801002','801003','801005','801300','801901','801903','801905','801250','801260','801270','801280','802613')", "orderby": "", "fieldlist": "L1,L2,L3,L4,L5,L6,L7,L8,L11", "pagecount": "9", "timed": "1632300641756", } r = requests.get(url, params=params) data_json = demjson.decode(r.text) temp_df = pd.DataFrame(data_json["root"]) temp_df.columns = ["指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量"] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df def sw_index_spot() -> pd.DataFrame: """ 申万一级行业-实时行情数据 http://www.swsindex.com/idx0120.aspx?columnid=8832 :return: 申万一级行业实时行情数据 :rtype: pandas.DataFrame """ url = "http://www.swsindex.com/handler.aspx" result = [] for i in range(1, 3): payload = sw_payload.copy() payload.update({"p": i}) payload.update({"timed": int(time.time() * 1000)}) r = requests.post(url, headers=sw_headers, data=payload) data = r.content.decode() data = data.replace("'", '"') data = json.loads(data) result.extend(data["root"]) temp_df = pd.DataFrame(result) temp_df["L2"] = temp_df["L2"].str.strip() temp_df.columns = ["指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量"] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df def sw_index_second_spot() -> pd.DataFrame: """ 申万二级行业-实时行情数据 http://www.swsindex.com/idx0120.aspx?columnId=8833 :return: 申万二级行业-实时行情数据 :rtype: pandas.DataFrame """ result = [] for i in range(1, 6): payload = { "tablename": "swzs", "key": "L1", "p": "1", "where": "L1 in('801011','801012','801013','801014','801015','801016','801021','801022','801023','801032','801033','801034','801035','801036','801037','801041','801051','801072','801073','801074','801075','801081','801082','801083','801084','801092','801093','801094','801101','801102','801111','801112','801123','801131','801132','801141','801142','801143','801151','801152','801153','801154','801155','801156','801161','801162','801163','801164','801171','801172','801173','801174','801175','801176','801177','801178','801181','801182','801191','801192','801193','801194','801202','801211','801212','801213','801214','801222','801223','801053','801054','801055','801076','801203','801204','801205','801711','801712','801713','801721','801722','801723','801724','801725','801731','801732','801733','801734','801741','801742','801743','801744','801751','801752','801761','801881','801017','801018')", "orderby": "", "fieldlist": "L1,L2,L3,L4,L5,L6,L7,L8,L11", "pagecount": "98", "timed": "", } payload.update({"p": i}) payload.update({"timed": int(time.time() * 1000)}) r = requests.post(sw_url, headers=sw_headers, data=payload) data = r.content.decode() data = data.replace("'", '"') data = json.loads(data) result.extend(data["root"]) temp_df = pd.DataFrame(result) temp_df["L2"] = temp_df["L2"].str.strip() temp_df.columns = ["指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量"] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df def sw_index_cons(symbol: str = "801011") -> pd.DataFrame: """ 申万指数成份信息-包括一级和二级行业都可以查询 http://www.swsindex.com/idx0210.aspx?swindexcode=801010 :param symbol: 指数代码 :type symbol: str :return: 申万指数成份信息 :rtype: pandas.DataFrame """ url = f"http://www.swsindex.com/downfile.aspx?code={symbol}" r = requests.get(url) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 4: stock_code = cols[0].text stock_name = cols[1].text weight = cols[2].text start_date = cols[3].text data.append( { "stock_code": stock_code, "stock_name": stock_name, "start_date": start_date, "weight": weight, } ) temp_df = pd.DataFrame(data) temp_df["start_date"] = pd.to_datetime(temp_df["start_date"]).dt.date temp_df["weight"] = pd.to_numeric(temp_df["weight"]) return temp_df def sw_index_daily( symbol: str = "801011", start_date: str = "20191201", end_date: str = "20201207", ) -> pd.DataFrame: """ 申万指数一级和二级日频率行情数据 http://www.swsindex.com/idx0200.aspx?columnid=8838&type=Day :param symbol: 申万指数 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 申万指数日频率行情数据 :rtype: pandas.DataFrame """ start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) url = "http://www.swsindex.com/excel2.aspx" params = { "ctable": "swindexhistory", "where": f" swindexcode in ('{symbol}') and BargainDate >= '{start_date}' and BargainDate <= '{end_date}'", } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 10: symbol = cols[0].text index_name = cols[1].text date = cols[2].text open_ = cols[3].text high = cols[4].text low = cols[5].text close = cols[6].text vol = cols[7].text amount = cols[8].text change_pct = cols[9].text data.append( { "index_code": symbol.replace(",", ""), "index_name": index_name.replace(",", ""), "date": date.replace(",", ""), "open": open_.replace(",", ""), "high": high.replace(",", ""), "low": low.replace(",", ""), "close": close.replace(",", ""), "vol": vol.replace(",", ""), "amount": amount.replace(",", ""), "change_pct": change_pct.replace(",", ""), } ) temp_df = pd.DataFrame(data) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["vol"] = pd.to_numeric(temp_df["vol"]) temp_df["amount"] = pd.to_numeric(temp_df["amount"]) temp_df["change_pct"] = pd.to_numeric(temp_df["change_pct"]) return temp_df def sw_index_daily_indicator( symbol: str = "801011", start_date: str = "20191201", end_date: str = "20210907", data_type: str = "Day", ) -> pd.DataFrame: """ 申万一级和二级行业历史行情指标 http://www.swsindex.com/idx0200.aspx?columnid=8838&type=Day :param symbol: 申万指数 :type symbol: str :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :param data_type: choice of {"Day": 日报表, "Week": 周报表} :type data_type: str :return: 申万指数不同频率数据 :rtype: pandas.DataFrame """ start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) url = "http://www.swsindex.com/excel.aspx" params = { "ctable": "V_Report", "where": f" swindexcode in ('{symbol}') and BargainDate >= '{start_date}' and BargainDate <= '{end_date}' and type='{data_type}'", } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 14: symbol = cols[0].text index_name = cols[1].text date = cols[2].text close = cols[3].text volume = cols[4].text chg_pct = cols[5].text turn_rate = cols[6].text pe = cols[7].text pb = cols[8].text v_wap = cols[9].text turnover_pct = cols[10].text float_mv = cols[11].text avg_float_mv = cols[12].text dividend_yield_ratio = cols[13].text data.append( { "index_code": symbol, "index_name": index_name, "date": date, "close": close, "volume": volume, "chg_pct": chg_pct, "turn_rate": turn_rate, "pe": pe, "pb": pb, "vwap": v_wap, "float_mv": float_mv, "avg_float_mv": avg_float_mv, "dividend_yield_ratio": dividend_yield_ratio, "turnover_pct": turnover_pct, } ) temp_df = pd.DataFrame(data) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["volume"] = temp_df["volume"].apply(lambda x: x.replace(",", "")) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) temp_df["chg_pct"] = pd.to_numeric(temp_df["chg_pct"]) temp_df["turn_rate"] = pd.to_numeric(temp_df["turn_rate"]) temp_df["pe"] = pd.to_numeric(temp_df["pe"]) temp_df["pb"] = pd.to_numeric(temp_df["pb"]) temp_df["vwap"] = pd.to_numeric(temp_df["vwap"]) temp_df["float_mv"] = temp_df["float_mv"].apply(lambda x: x.replace(",", "")) temp_df["float_mv"] = pd.to_numeric( temp_df["float_mv"], ) temp_df["avg_float_mv"] = temp_df["avg_float_mv"].apply( lambda x: x.replace(",", "") ) temp_df["avg_float_mv"] = pd.to_numeric(temp_df["avg_float_mv"]) temp_df["dividend_yield_ratio"] = pd.to_numeric(temp_df["dividend_yield_ratio"]) temp_df["turnover_pct"] = pd.to_numeric(temp_df["turnover_pct"]) return temp_df def sw_index_third_info() -> pd.DataFrame: """ 乐咕乐股-申万三级-分类 https://legulegu.com/stockdata/sw-industry-overview#level1 :return: 分类 :rtype: pandas.DataFrame """ url = "https://legulegu.com/stockdata/sw-industry-overview" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") code_raw = soup.find("div", attrs={"id": "level3Items"}).find_all( "div", attrs={"class": "lg-industries-item-chinese-title"} ) name_raw = soup.find("div", attrs={"id": "level3Items"}).find_all( "div", attrs={"class": "lg-industries-item-number"} ) value_raw = soup.find("div", attrs={"id": "level3Items"}).find_all( "div", attrs={"class": "lg-sw-industries-item-value"} ) code = [item.get_text() for item in code_raw] name = [item.get_text().split("(")[0] for item in name_raw] num = [item.get_text().split("(")[1].split(")")[0] for item in name_raw] num_1 = [ item.find_all("span", attrs={"class": "value"})[0].get_text().strip() for item in value_raw ] num_2 = [ item.find_all("span", attrs={"class": "value"})[1].get_text().strip() for item in value_raw ] num_3 = [ item.find_all("span", attrs={"class": "value"})[2].get_text().strip() for item in value_raw ] num_4 = [ item.find_all("span", attrs={"class": "value"})[3].get_text().strip() for item in value_raw ] temp_df = pd.DataFrame([code, name, num, num_1, num_2, num_3, num_4]).T temp_df.columns = [ "行业代码", "行业名称", "成份个数", "静态市盈率", "TTM(滚动)市盈率", "市净率", "静态股息率", ] temp_df["成份个数"] = pd.to_numeric(temp_df["成份个数"]) temp_df["静态市盈率"] = pd.to_numeric(temp_df["静态市盈率"]) temp_df["TTM(滚动)市盈率"] = pd.to_numeric(temp_df["TTM(滚动)市盈率"]) temp_df["市净率"] = pd.to_numeric(temp_df["市净率"]) temp_df["静态股息率"] = pd.to_numeric(temp_df["静态股息率"]) return temp_df def sw_index_third_cons(symbol: str = "851921.SI") -> pd.DataFrame: """ 乐咕乐股-申万三级-行业成份 https://legulegu.com/stockdata/index-composition?industryCode=851921.SI :param symbol: 三级行业的行业代码 :type symbol: str :return: 行业成份 :rtype: pandas.DataFrame """ url = f"https://legulegu.com/stockdata/index-composition?industryCode={symbol}" temp_df = pd.read_html(url)[0] temp_df.columns = [ "序号", "股票代码", "股票简称", "纳入时间", "申万1级", "申万2级", "申万3级", "价格", "市盈率", "市盈率ttm", "市净率", "股息率", "市值", ] temp_df["价格"] = pd.to_numeric(temp_df["价格"], errors="coerce") temp_df["市盈率"] = pd.to_numeric(temp_df["市盈率"], errors="coerce") temp_df["市盈率ttm"] = pd.to_numeric(temp_df["市盈率ttm"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["股息率"] = pd.to_numeric(temp_df["股息率"].str.strip("%"), errors="coerce") temp_df["市值"] = pd.to_numeric(temp_df["市值"], errors="coerce") return temp_df if __name__ == "__main__": sw_index_representation_spot_df = sw_index_representation_spot() print(sw_index_representation_spot_df) sw_index_spot_df = sw_index_spot() print(sw_index_spot_df) sw_index_second_spot_df = sw_index_second_spot() print(sw_index_second_spot_df) sw_index_cons_df = sw_index_cons(symbol="801193") print(sw_index_cons_df) sw_index_daily_df = sw_index_daily( symbol="801733", start_date="20001201", end_date="20211207" ) print(sw_index_daily_df) sw_index_daily_indicator_df = sw_index_daily_indicator( symbol="801003", start_date="20191101", end_date="20191207", data_type="Week", ) print(sw_index_daily_indicator_df) sw_index_third_info_df = sw_index_third_info() print(sw_index_third_info_df) sw_index_third_cons_df = sw_index_third_cons(symbol="851921.SI") print(sw_index_third_cons_df)
py
1a48634e93838ce9a0d2fed2105813e7fc5cbbfc
import pytorch_lightning as pl from torch.utils.data import DataLoader, Dataset from sklearn.model_selection import train_test_split from torchvision import transforms import torch # read data import os import numpy as np from PIL import Image # utils TYPE = ['VA_Set', 'EXPR_Set', 'AU_Set'] CLASS = [2, 1, 12] MEAN = [0.485, 0.456, 0.406] STD = [0.229, 0.224, 0.225] READERS = { 'VA_Set': lambda path: np.genfromtxt(path, dtype=np.single, delimiter=',', skip_header=True), 'EXPR_Set': lambda path: np.genfromtxt(path, dtype=np.int_, skip_header=True), 'AU_Set': lambda path: np.genfromtxt(path, dtype=np.single, delimiter=',', skip_header=True) } # datasets class UnifiedDataset(Dataset): def __init__(self, idx: list, image: np.ndarray, label: dict, img_size: int, mode: str): # get image self.idx = idx self.image = image self.label = label # preprocess if mode == 'Train_Set': self.preprocess = transforms.Compose([ transforms.RandomHorizontalFlip(p=0.5), transforms.Resize(size=img_size), transforms.ToTensor(), transforms.Normalize( mean=MEAN, std=STD) ]) else: self.preprocess = transforms.Compose([ transforms.Resize(size=img_size), transforms.ToTensor(), transforms.Normalize( mean=MEAN, std=STD) ]) def __getitem__(self, i): image = Image.open(self.image[i]) image = self.preprocess(image) label = [self.label['VA_Set'][i], [self.label['EXPR_Set'][i]], self.label['AU_Set'][i]] label = np.concatenate(label) return image, torch.FloatTensor(label) def __len__(self): return len(self.idx) class UnifiedDataModule(pl.LightningDataModule): def __init__(self, params: dict): super().__init__() self.batch_size = params.get('batch_size', 32) self.img_size = params.get('img_size', 224) self.num_workers = params.get('num_workers', 4) self.dataset_dir = params.get('dataset_dir', '../dataset/Aff-Wild/') with open(os.path.join(self.dataset_dir, 'file.txt')) as f: self.image = list(map(lambda x: os.path.join(self.dataset_dir, 'cropped_aligned', x.strip()), f.readlines())) self.image = np.array(self.image) self.label = {} for label_type in TYPE: self.label[label_type] = READERS[label_type](os.path.join(self.dataset_dir, label_type + '.txt')) self.index = np.arange(0, len(self.image)) self.train_idx, self.val_idx = train_test_split(self.index, train_size=0.95, random_state=1234) def setup(self, stage: str = None) -> None: if stage == 'fit': self.train_dataset = UnifiedDataset( self.train_idx, self.image, self.label, self.img_size, 'Train_Set') self.val_dataset = UnifiedDataset( self.val_idx, self.image, self.label, self.img_size, 'Validation_Set') elif stage == 'validate': self.val_dataset = UnifiedDataset( self.val_idx, self.image, self.label, self.img_size, 'Validation_Set') def train_dataloader(self): return DataLoader( self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers) def val_dataloader(self): return DataLoader( self.val_dataset, batch_size=self.batch_size, num_workers=self.num_workers) if __name__ == '__main__': os.chdir('..') dm = UnifiedDataModule({'dataset_dir':'../dataset/Aff-Wild/'}) dm.setup('fit') dataloader = dm.train_dataloader() print(len(dataloader.dataset)) img, label = next(iter(dataloader)) print(img.shape, label.shape)
py
1a48639f1e27199deb7de4cbe696d8a37d82329a
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys if (sys.version_info > (3,)): import http.client from http.client import BAD_REQUEST, CONFLICT, NOT_FOUND, OK else: import httplib from httplib import BAD_REQUEST, CONFLICT, NOT_FOUND, OK from flask import request, session, make_response from flask_restful import Resource from cairis.daemon.CairisHTTPError import ARMHTTPError from cairis.data.PersonaDAO import PersonaDAO from cairis.tools.JsonConverter import json_serialize from cairis.tools.MessageDefinitions import PersonaMessage, PersonaEnvironmentPropertiesMessage, ValueTypeMessage from cairis.tools.ModelDefinitions import PersonaModel, PersonaEnvironmentPropertiesModel, ValueTypeModel from cairis.tools.SessionValidator import get_session_id, get_model_generator __author__ = 'Shamal Faily' class PersonasAPI(Resource): def get(self): session_id = get_session_id(session, request) constraint_id = request.args.get('constraint_id', -1) dao = PersonaDAO(session_id) personas = dao.get_personas(constraint_id=constraint_id) dao.close() resp = make_response(json_serialize(personas, session_id=session_id), OK) resp.contenttype = 'application/json' return resp def post(self): session_id = get_session_id(session, request) dao = PersonaDAO(session_id) new_persona = dao.from_json(request) persona_id = dao.add_persona(new_persona) dao.close() resp_dict = {'message': 'Persona successfully added', 'persona_id': persona_id} resp = make_response(json_serialize(resp_dict), OK) resp.contenttype = 'application/json' return resp class PersonaByNameAPI(Resource): def get(self, name): session_id = get_session_id(session, request) dao = PersonaDAO(session_id) persona = dao.get_persona_by_name(name=name) dao.close() resp = make_response(json_serialize(persona, session_id=session_id), OK) resp.headers['Content-type'] = 'application/json' return resp def put(self, name): session_id = get_session_id(session, request) dao = PersonaDAO(session_id) req = dao.from_json(request) dao.update_persona(req, name=name) dao.close() resp_dict = {'message': 'Persona successfully updated'} resp = make_response(json_serialize(resp_dict), OK) resp.headers['Content-type'] = 'application/json' return resp def delete(self, name): session_id = get_session_id(session, request) dao = PersonaDAO(session_id) dao.delete_persona(name=name) dao.close() resp_dict = {'message': 'Persona successfully deleted'} resp = make_response(json_serialize(resp_dict), OK) resp.headers['Content-type'] = 'application/json' return resp class PersonaModelByNameAPI(Resource): def get(self, persona, variable, characteristic): session_id = get_session_id(session, request) model_generator = get_model_generator() dao = PersonaDAO(session_id) if variable == 'All': variable = '' if characteristic == 'All': characteristic = '' dot_code = dao.get_persona_model(persona,variable,characteristic) dao.close() resp = make_response(model_generator.generate(dot_code, model_type='persona', renderer='dot'), OK) accept_header = request.headers.get('Accept', 'image/svg+xml') if accept_header.find('text/plain') > -1: resp.headers['Content-type'] = 'text/plain' else: resp.headers['Content-type'] = 'image/svg+xml' return resp class PersonaCharacteristicsByNameAPI(Resource): def get(self, persona, variable, characteristic): session_id = get_session_id(session, request) model_generator = get_model_generator() dao = PersonaDAO(session_id) if variable == 'All': variable = '' if characteristic == 'All': characteristic = '' char_names = dao.get_persona_characteristics(persona,variable,characteristic) dao.close() resp = make_response(json_serialize(char_names, session_id=session_id), OK) resp.headers['Content-type'] = 'application/json' return resp class PersonaNamesAPI(Resource): def get(self): session_id = get_session_id(session, request) dao = PersonaDAO(session_id) persona_names = dao.get_persona_names() dao.close() resp = make_response(json_serialize(persona_names, session_id=session_id), OK) resp.headers['Content-type'] = 'application/json' return resp class PersonaTypesAPI(Resource): def get(self): session_id = get_session_id(session, request) dao = PersonaDAO(session_id) pTypes = dao.get_persona_types() dao.close() resp = make_response(json_serialize(pTypes, session_id=session_id), OK) resp.contenttype = 'application/json' return resp class PersonaEnvironmentPropertiesAPI(Resource): def get(self, persona_name): session_id = get_session_id(session, request) dao = PersonaDAO(session_id) persona_props = dao.get_persona_props(name=persona_name) dao.close() resp = make_response(json_serialize(asset_props, session_id=session_id)) resp.contenttype = 'application/json' return resp def put(self, persona_name): session_id = get_session_id(session, request) dao = PersonaDAO(session_id) persona_prop = dao.from_json(request, to_props=True) dao.update_persona_properties(persona_prop, name=persona_name) dao.close() resp_dict = {'message': 'The persona properties were successfully updated.'} resp = make_response(json_serialize(resp_dict), OK) resp.contenttype = 'application/json' return resp class PersonasSummaryAPI(Resource): def get(self): session_id = get_session_id(session, request) dao = PersonaDAO(session_id) objts = dao.get_personas_summary() dao.close() resp = make_response(json_serialize(objts, session_id=session_id)) resp.headers['Content-Type'] = "application/json" return resp
py
1a48640a696e1d9f17acfbc823a82758ab8d3924
import functools, operator def read_map(fh): hmap = {} for y, line in enumerate(fh): for x, h in enumerate(line.strip()): hmap[x,y] = int(h) return hmap def neighbours(k): return [(k[0],k[1]+1), (k[0],k[1]-1), (k[0]+1,k[1]), (k[0]-1,k[1])] def low_point(hmap, k): return functools.reduce(operator.and_, (hmap[k] < hmap.get(n, 10) for n in neighbours(k))) def risk_map(hmap): return sum(1 + hmap[k] for k in hmap if low_point(hmap, k)) def basin_size(hmap, k, seen=set()): if k in seen or k not in hmap or hmap[k] == 9: return 0 else: seen.add(k) return 1 + sum(basin_size(hmap, n, seen) for n in neighbours(k)) def basin_sizes(hmap): sizes = sorted(basin_size(hmap, k) for k in hmap if low_point(hmap, k)) return sizes[-1] * sizes[-2] * sizes[-3] with open("day09.txt", "r") as fh: hmap = read_map(fh) print("2021 day 09 part 1: %d" % risk_map(hmap)) print("2021 day 09 part 2: %d" % basin_sizes(hmap))
py
1a48657bec6765e6ae688d3db94e81df787ebafc
import os import sys import shutil import jsbeautifier from utils.content import getContent from utils.formatter import Formatter from utils.merge import Merge from utils.classify import Classifier class Process: def main(self, file, argvs): path = sys.path[0] print("****************************") print(file) res = jsbeautifier.beautify_file(file) preFile = "preformat_" + file op = open(preFile, "w+") op.write(res) op.close() oFileContent = getContent(preFile) formatFile = Formatter() formatFile.formatter(file, oFileContent) fFile = "formatted_" + file fFileContent = getContent(fFile) isAbnormal = False isHighRisk = False mergeFile = Merge() isAbnormal, isHighRisk = mergeFile.mergeReduce(file, fFileContent, argvs) print(isAbnormal, isHighRisk) srcProcessedPath = path + "/" + file if not isAbnormal and not isHighRisk: #classify processible contract classify = Classifier() mFile = "merged_" + file mFileContent = getContent(mFile) isProcessible = classify.classifier(mFileContent) print(isProcessible) srcProcessiblePath = path + "/" + mFile if isProcessible: dstProcessiblePath = path + "/Processible/" + mFile shutil.copy(srcProcessiblePath, dstProcessiblePath) print(mFile, " is processible and has been put in the Processible directory.") os.remove(srcProcessiblePath) else: os.remove(srcProcessiblePath) desProcessedPath = path + "/ProcessedContracts/" + file noteStr = "ProcessedContracts" elif not isAbnormal and isHighRisk: desProcessedPath = path + "/varRepeatContracts/" + file noteStr = "varRepeatContracts" elif isAbnormal and not isHighRisk: desProcessedPath = path + "/abnormalContracts/" + file noteStr = "abnormalContracts" shutil.copy(srcProcessedPath, desProcessedPath) print(file, " has been moved to the " + noteStr +" directory.") #remove formatted contract formattedFile = path + "/" + fFile os.remove(formattedFile) os.remove(preFile) os.remove(srcProcessedPath) if __name__ == "__main__": filename = sys.argv[1] argvs = '' if len(sys.argv) > 2: argvs = sys.argv[2] main(filename, argvs)
py
1a4867583420b28776fcbe8333e8c5f974ea1694
import os import shutil import yaml from six import iteritems from ..base import PackageJson, BasePackageManager, PackageManagerError from .lockfile import PnpmLockfile from .workspace import PnpmWorkspace from .utils import build_pj_path, build_lockfile_path, build_ws_config_path, build_nm_bundle_path class PnpmPackageManager(BasePackageManager): _STORE_NM_PATH = os.path.join(".pnpm", "store") _VSTORE_NM_PATH = os.path.join(".pnpm", "virtual-store") _STORE_VER = "v3" def install(self): """ Creates node_modules directory according to the lockfile. """ self._prepare_workspace() self._exec_command([ "install", "--offline", "--frozen-lockfile", "--store-dir", self._nm_path(self._STORE_NM_PATH), "--virtual-store-dir", self._nm_path(self._VSTORE_NM_PATH), "--no-verify-store-integrity", "--package-import-method", "hardlink", "--ignore-pnpmfile", "--ignore-scripts", "--strict-peer-dependencies", ]) self._fix_stores_in_modules_yaml() def get_peer_paths_from_package_json(self): """ Returns paths of direct workspace dependencies (source root related). :rtype: list of str """ pj = PackageJson.load(build_pj_path(self.sources_path)) return map(lambda x: os.path.normpath(os.path.join(self.module_path, x[1])), pj.get_workspace_dep_paths()) def calc_node_modules_inouts(self): """ Returns input and output paths for command that creates `node_modules` bundle. :return: Pair of input and output paths with correct roots ($S or $B). :rtype: (list of str, list of str) """ # Inputs: source package.json and lockfile, built package.jsons, lockfiles and workspace configs of deps, tarballs. ins = [] # Source lockfiles are used only to get tarballs info. src_lf_paths = [build_lockfile_path(self.sources_path)] pj = PackageJson.load(build_pj_path(self.sources_path)) for [dep_src_path, (dep_pj, depth)] in iteritems(pj.get_workspace_map()): if dep_src_path == self.sources_path: continue dep_mod_path = dep_src_path[len(self.sources_root) + 1:] # pnpm requires all package.jsons. ins.append(build_pj_path(dep_mod_path)) dep_lf_src_path = build_lockfile_path(dep_src_path) if not os.path.isfile(dep_lf_src_path): continue src_lf_paths.append(dep_lf_src_path) # Merged workspace configs and lockfiles of direct deps. if depth == 1: ins.append(build_ws_config_path(dep_mod_path)) ins.append(build_lockfile_path(dep_mod_path)) for pkg in self.extract_packages_meta_from_lockfiles(src_lf_paths): ins.append(self._contrib_tarball_path(pkg)) s_root = lambda x: os.path.join("$S", x) b_root = lambda x: os.path.join("$B", x) ins = map(b_root, ins) + [ s_root(build_pj_path(self.module_path)), s_root(build_lockfile_path(self.module_path)), ] # Outputs: patched lockfile, generated workspace config, created node_modules bundle. outs = [b_root(f(self.module_path)) for f in (build_lockfile_path, build_ws_config_path, build_nm_bundle_path)] return (ins, outs) def extract_packages_meta_from_lockfiles(self, lf_paths): """ :type lf_paths: iterable of BaseLockfile :rtype: iterable of LockfilePackageMeta """ tarballs = set() for lf_path in lf_paths: try: for pkg in PnpmLockfile.load(lf_path).get_packages_meta(): if pkg.tarball_path not in tarballs: tarballs.add(pkg.tarball_path) yield pkg except Exception as e: raise PackageManagerError("Unable to process lockfile {}: {}".format(lf_path, e)) def _prepare_workspace(self): pj = self._build_package_json() ws = PnpmWorkspace(build_ws_config_path(self.build_path)) ws.set_from_package_json(pj) dep_paths = ws.get_paths() self._build_merged_workspace_config(ws, dep_paths) self._build_merged_lockfile(dep_paths) def _build_package_json(self): """ :rtype: PackageJson """ in_pj_path = build_pj_path(self.sources_path) out_pj_path = build_pj_path(self.build_path) shutil.copyfile(in_pj_path, out_pj_path) return PackageJson.load(out_pj_path) def _build_merged_lockfile(self, dep_paths): """ :type dep_paths: list of str :rtype: PnpmLockfile """ in_lf_path = build_lockfile_path(self.sources_path) out_lf_path = build_lockfile_path(self.build_path) lf = PnpmLockfile.load(in_lf_path) # Change to the output path for correct path calcs on merging. lf.path = out_lf_path for dep_path in dep_paths: if dep_path is self.build_path: continue lf_path = build_lockfile_path(dep_path) if os.path.isfile(lf_path): lf.merge(PnpmLockfile.load(lf_path)) lf.update_tarball_resolutions(lambda p: self._contrib_tarball_url(p)) lf.write() def _build_merged_workspace_config(self, ws, dep_paths): """ :type ws: PnpmWorkspaceConfig :type dep_paths: list of str """ for dep_path in dep_paths: if dep_path is self.build_path: continue ws_config_path = build_ws_config_path(dep_path) if os.path.isfile(ws_config_path): ws.merge(PnpmWorkspace.load(ws_config_path)) ws.write() def _fix_stores_in_modules_yaml(self): """ Ensures that store paths are the same as would be after installing deps in the source dir. This is required to reuse `node_modules` after build. """ with open(self._nm_path(".modules.yaml"), "r+") as f: data = yaml.load(f, Loader=yaml.CSafeLoader) # NOTE: pnpm requires absolute store path here. data["storeDir"] = os.path.join(self.sources_path, "node_modules", self._STORE_NM_PATH, self._STORE_VER) data["virtualStoreDir"] = self._VSTORE_NM_PATH f.seek(0) yaml.dump(data, f, Dumper=yaml.CSafeDumper) f.truncate() def _get_default_options(self): return super(PnpmPackageManager, self)._get_default_options() + [ "--stream", "--reporter", "append-only", "--no-color", ] def _get_debug_log_path(self): return self._nm_path(".pnpm-debug.log")
py
1a486799fc0d0584650e776bc5e6992f2d64905b
import unittest from models import articles Articles = articles.Articles class ArticlesTest(unittest.TestCase): ''' Test Class to test the behaviour of the Articles class ''' def setUp(self): ''' Set up method that will run before every test ''' self.new_articles = Articles('id','author','description','https://www.youtube.com/watch?v=RN75zSpYp7M',"https://i.kinja-img.com/gawker-media/image/upload/s--yDtXY-I4--/c_fill,fl_progressive,g_center,h_900,q_80,w_1600/pj5jc9ntilzdb4dfnivl.png",'kenya','content') def test_instance(self): self.assertTrue(isinstance(self.new_articles,Articles)) if __name__ == '__main__': unittest.main()
py
1a4867fcd2f0df5be9687bc2d3920e9658b396ed
# -*- coding: utf-8 -*- from seleniumbase import BaseCase class ChinesePdfTests(BaseCase): def test_chinese_pdf(self): pdf = ( "https://github.com/seleniumbase/SeleniumBase/" "files/3895614/unittest.pdf" ) # Get and print PDF text pdf_text = self.get_pdf_text(pdf, page=2) self._print("\n" + pdf_text) # Assert PDF contains the expected text on Page 2 self.assert_pdf_text(pdf, "个测试类", page=2) # Assert PDF contains the expected text on any of the pages self.assert_pdf_text(pdf, "运行单元测试") self.assert_pdf_text(pdf, "等待测试结束后显示所有结果") self.assert_pdf_text(pdf, "测试的执行跟方法的顺序没有关系")
py
1a4868c0544744b2651ef336da522860baf4b68a
import unittest from yoti_python_sdk.doc_scan.session.retrieve.frame_response import FrameResponse from yoti_python_sdk.doc_scan.session.retrieve.media_response import MediaResponse class FrameResponseTest(unittest.TestCase): def test_should_parse_correctly(self): data = {"media": {}} result = FrameResponse(data) assert isinstance(result.media, MediaResponse) def test_should_parse_when_none(self): result = FrameResponse(None) assert isinstance(result, FrameResponse) assert result.media is None if __name__ == "__main__": unittest.main()
py
1a4868c311462caaa30cc9dd5bfbcfc494658bef
from datetime import datetime from django.core.urlresolvers import reverse from django.db import models from django.utils.translation import ugettext, ugettext_lazy as _ from django.contrib.auth.models import User from django.db.models.query import QuerySet from django.contrib.contenttypes.models import ContentType from django.contrib.contenttypes import generic from tagging.fields import TagField import object_feeds class Paper(models.Model): """ A formal write-up of results. """ content_type = models.ForeignKey(ContentType, null=True, blank=True) object_id = models.PositiveIntegerField(null=True, blank=True) content_object = generic.GenericForeignKey("content_type", "object_id") title = models.CharField(_("title"), max_length=255, unique=True) slug = models.SlugField() creator = models.ForeignKey(User, verbose_name=_("creator"), related_name="%(class)s_created") created = models.DateTimeField(_("created"), default=datetime.now) last_editor = models.ForeignKey(User, verbose_name=_("last_editor"), related_name="%(class)s_edited") last_edited = models.DateTimeField(default=datetime.now) tags = TagField() contributor_users = models.ManyToManyField(User, through = "PaperContributor", verbose_name = _("contributor") ) ### denormalization # votes yeas = models.PositiveIntegerField(default=0, editable=False) nays = models.PositiveIntegerField(default=0, editable=False) votes = models.PositiveIntegerField(default=0, editable=False) # contributors contributors_count = models.PositiveIntegerField(default=0, editable=False) # comments comments_count = models.PositiveIntegerField(default=0, editable=False) # followers followers_count = models.PositiveIntegerField(default=0, editable=False) class Meta: app_label = "papers" verbose_name = _("Paper") verbose_name_plural = _("Papers") ordering = ['slug'] get_latest_by = 'last_edited' def __unicode__(self): return self.title def get_absolute_url(self): return reverse("paper_detail", kwargs={"slug": self.slug}) def user_is_contributor(self, user): return self.contributors.filter(user=user).exists() @property def current(self): return self.revisions.latest() @property def revision(self, rev_number): return self.revisions.get(revision=rev_number) object_feeds.register(Paper) class PaperRevision(models.Model): """ A change in Paper. """ paper = models.ForeignKey(Paper, verbose_name=_(u'Paper'), related_name="revisions") editor = models.ForeignKey(User, verbose_name=_(u'Editor'), null=True) revision = models.IntegerField(_(u"Revision Number")) comment = models.CharField(_(u"Editor comment"), max_length=255, blank=True) content = models.TextField(_(u"Content")) created = models.DateTimeField(_(u"Modified at"), default=datetime.now) yeas = models.PositiveIntegerField(default=0, editable=False) nays = models.PositiveIntegerField(default=0, editable=False) votes = models.PositiveIntegerField(default=0, editable=False) class Meta: verbose_name = _(u'Paper revision') verbose_name_plural = _(u'Paper revisions') get_latest_by = 'created' ordering = ['-revision'] def __unicode__(self): return ugettext('Revision %(created)s for %(page_title)s') % { 'created': self.created.strftime('%Y%m%d-%H%M'), 'page_title': self.paper.title, } def get_absolute_url(self): return reverse("paper_revision", kwargs={"paper_id": self.paper.id, "revision_number": self.revision}) class PaperContributor(models.Model): paper = models.ForeignKey(Paper, related_name = "contributors", verbose_name = _("paper")) user = models.ForeignKey(User, related_name = "papers", verbose_name = _("user")) contributions = models.PositiveIntegerField(_("contributions"), default=1) away = models.BooleanField(_("away"), default=False) away_message = models.CharField(_("away_message"), max_length=500) away_since = models.DateTimeField(_("away since"), default=datetime.now) class Meta: unique_together = [("user", "paper")] from django.db.models.signals import pre_save, post_save def paper_feed_title_update(sender, instance, created, **kwargs): instance.feed.title = instance.title instance.feed.save() post_save.connect(paper_feed_title_update, sender=Paper)
py
1a4869c77243b6d70bee5265eaddcff888194e6d
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2017-10-20 17:49 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('server', '0002_constraints'), ] operations = [ migrations.AlterModelOptions( name='anniversary', options={'get_latest_by': 'updated', 'ordering': ('order', 'name'), 'verbose_name': 'Gedenktag', 'verbose_name_plural': 'Gedenktage'}, ), migrations.AlterModelOptions( name='approximate', options={'get_latest_by': 'updated', 'ordering': ('start_time',), 'verbose_name': 'Ungefährer Zeitpunkt', 'verbose_name_plural': 'Ungefähre Zeitpunkte'}, ), migrations.AlterModelOptions( name='calendar', options={'get_latest_by': 'updated', 'ordering': ('season__name',), 'verbose_name': 'Kalender', 'verbose_name_plural': 'Kalender'}, ), migrations.AlterModelOptions( name='category', options={'get_latest_by': 'updated', 'ordering': ('order', 'code', 'name'), 'verbose_name': 'Kategorie', 'verbose_name_plural': 'Kategorien'}, ), migrations.AlterModelOptions( name='collective', options={'get_latest_by': 'updated', 'ordering': ('order', 'name'), 'verbose_name': 'Gruppe', 'verbose_name_plural': 'Gruppen'}, ), migrations.AlterModelOptions( name='equipment', options={'get_latest_by': 'updated', 'ordering': ('code',), 'verbose_name': 'Ausrüstung', 'verbose_name_plural': 'Ausrüstungen'}, ), migrations.AlterModelOptions( name='event', options={'get_latest_by': 'updated', 'ordering': ('start_date',), 'verbose_name': 'Veranstaltungstermin', 'verbose_name_plural': 'Veranstaltungstermine'}, ), migrations.AlterModelOptions( name='fitness', options={'get_latest_by': 'updated', 'ordering': ('order', 'code'), 'verbose_name': 'Konditionelle Anforderung', 'verbose_name_plural': 'Konditionelle Anforderungen'}, ), migrations.AlterModelOptions( name='fitnessdescription', options={'get_latest_by': 'updated', 'ordering': ('fitness__code', 'category__order'), 'verbose_name': 'Beschreibung der Konditionelle Anforderung', 'verbose_name_plural': 'Beschreibungen der Konditionelle Anforderungen'}, ), migrations.AlterModelOptions( name='guide', options={'get_latest_by': 'updated', 'ordering': ('user__last_name', 'user__first_name'), 'verbose_name': 'Touren/Kurs/Gruppenleiter', 'verbose_name_plural': 'Touren/Kurs/Gruppenleiter'}, ), migrations.AlterModelOptions( name='instruction', options={'get_latest_by': 'updated', 'ordering': ('instruction__start_date', 'topic__order'), 'verbose_name': 'Kurs', 'verbose_name_plural': 'Kurse'}, ), migrations.AlterModelOptions( name='part', options={'get_latest_by': 'updated', 'ordering': ('order', 'name'), 'verbose_name': 'Abschnitt', 'verbose_name_plural': 'Abschnitte'}, ), migrations.AlterModelOptions( name='profile', options={'get_latest_by': 'updated', 'ordering': ('user__last_name', 'user__first_name'), 'verbose_name': 'Steckbrief', 'verbose_name_plural': 'Steckbriefe'}, ), migrations.AlterModelOptions( name='retraining', options={'get_latest_by': 'updated', 'ordering': ['year', 'order'], 'verbose_name': 'Fortbildung', 'verbose_name_plural': 'Fortbildungen'}, ), migrations.AlterModelOptions( name='season', options={'get_latest_by': 'updated', 'ordering': ('name',), 'verbose_name': 'Saison', 'verbose_name_plural': 'Saisonen'}, ), migrations.AlterModelOptions( name='section', options={'get_latest_by': 'updated', 'ordering': ('order', 'name'), 'verbose_name': 'Unterabschnitt', 'verbose_name_plural': 'Unterabschnitte'}, ), migrations.AlterModelOptions( name='session', options={'get_latest_by': 'updated', 'ordering': ('collective__season__name', 'collective__name', 'session__start_date'), 'verbose_name': 'Gruppentermin', 'verbose_name_plural': 'Gruppentermine'}, ), migrations.AlterModelOptions( name='skill', options={'get_latest_by': 'updated', 'ordering': ('order', 'code'), 'verbose_name': 'Technische Anforderung', 'verbose_name_plural': 'Technische Anforderungen'}, ), migrations.AlterModelOptions( name='skilldescription', options={'get_latest_by': 'updated', 'ordering': ('skill__code', 'category__order'), 'verbose_name': 'Beschreibung der technischen Anforderung', 'verbose_name_plural': 'Beschreibung der technischen Anforderungen'}, ), migrations.AlterModelOptions( name='state', options={'get_latest_by': 'updated', 'ordering': ('order', 'name'), 'verbose_name': 'Bearbeitungsstand', 'verbose_name_plural': 'Bearbeitungsstände'}, ), migrations.AlterModelOptions( name='talk', options={'get_latest_by': 'updated', 'ordering': ('talk__start_date',), 'verbose_name': 'Vortrag', 'verbose_name_plural': 'Vortäge'}, ), migrations.AlterModelOptions( name='topic', options={'get_latest_by': 'updated', 'ordering': ('season__name', 'order', 'name'), 'verbose_name': 'Kursinhalt', 'verbose_name_plural': 'Kursinhalte'}, ), migrations.AlterModelOptions( name='tour', options={'get_latest_by': 'updated', 'ordering': ('tour__start_date',), 'verbose_name': 'Gemeinschaftstour', 'verbose_name_plural': 'Gemeinschaftstouren'}, ), migrations.AlterModelOptions( name='vacation', options={'get_latest_by': 'updated', 'ordering': ('start_date', 'name'), 'verbose_name': 'Ferien', 'verbose_name_plural': 'Ferien'}, ), migrations.AddField( model_name='category', name='deadline', field=models.BooleanField(db_index=True, default=False, help_text='Kategorie für den Anmeldeschluss', verbose_name='Anmeldeschluss'), ), migrations.AddField( model_name='category', name='preliminary', field=models.BooleanField(db_index=True, default=False, help_text='Kategorie für die Vorbesprechung', verbose_name='Vorbesprechung'), ), ]
py
1a486aeb97cee7fc392adb804ad59decb5488c31
from synapseclient.activity import Activity # SYNPY-744 def test_private_getStringList(): act = Activity() url_string = \ 'https://github.com/Sage-Bionetworks/ampAdScripts/blob/master/Broad-Rush/migrateROSMAPGenotypesFeb2015.R' act.used([{'wasExecuted': True, 'concreteType': 'org.sagebionetworks.repo.model.provenance.UsedURL', 'url': url_string} ]) assert [url_string] == act._getStringList()
py
1a486b5cccd224f7f3bd57855fa4aa2249c3c753
# base16-qutebrowser (https://github.com/theova/base16-qutebrowser) # Base16 qutebrowser template by theova # darkmoss scheme by Gabriel Avanzi (https://github.com/avanzzzi) base00 = "#171e1f" base01 = "#252c2d" base02 = "#373c3d" base03 = "#555e5f" base04 = "#818f80" base05 = "#c7c7a5" base06 = "#e3e3c8" base07 = "#e1eaef" base08 = "#ff4658" base09 = "#e6db74" base0A = "#fdb11f" base0B = "#499180" base0C = "#66d9ef" base0D = "#498091" base0E = "#9bc0c8" base0F = "#d27b53" # set qutebrowser colors # Text color of the completion widget. May be a single color to use for # all columns or a list of three colors, one for each column. c.colors.completion.fg = base05 # Background color of the completion widget for odd rows. c.colors.completion.odd.bg = base01 # Background color of the completion widget for even rows. c.colors.completion.even.bg = base00 # Foreground color of completion widget category headers. c.colors.completion.category.fg = base0A # Background color of the completion widget category headers. c.colors.completion.category.bg = base00 # Top border color of the completion widget category headers. c.colors.completion.category.border.top = base00 # Bottom border color of the completion widget category headers. c.colors.completion.category.border.bottom = base00 # Foreground color of the selected completion item. c.colors.completion.item.selected.fg = base05 # Background color of the selected completion item. c.colors.completion.item.selected.bg = base02 # Top border color of the selected completion item. c.colors.completion.item.selected.border.top = base02 # Bottom border color of the selected completion item. c.colors.completion.item.selected.border.bottom = base02 # Foreground color of the matched text in the selected completion item. c.colors.completion.item.selected.match.fg = base0B # Foreground color of the matched text in the completion. c.colors.completion.match.fg = base0B # Color of the scrollbar handle in the completion view. c.colors.completion.scrollbar.fg = base05 # Color of the scrollbar in the completion view. c.colors.completion.scrollbar.bg = base00 # Background color of disabled items in the context menu. c.colors.contextmenu.disabled.bg = base01 # Foreground color of disabled items in the context menu. c.colors.contextmenu.disabled.fg = base04 # Background color of the context menu. If set to null, the Qt default is used. c.colors.contextmenu.menu.bg = base00 # Foreground color of the context menu. If set to null, the Qt default is used. c.colors.contextmenu.menu.fg = base05 # Background color of the context menu’s selected item. If set to null, the Qt default is used. c.colors.contextmenu.selected.bg = base02 #Foreground color of the context menu’s selected item. If set to null, the Qt default is used. c.colors.contextmenu.selected.fg = base05 # Background color for the download bar. c.colors.downloads.bar.bg = base00 # Color gradient start for download text. c.colors.downloads.start.fg = base00 # Color gradient start for download backgrounds. c.colors.downloads.start.bg = base0D # Color gradient end for download text. c.colors.downloads.stop.fg = base00 # Color gradient stop for download backgrounds. c.colors.downloads.stop.bg = base0C # Foreground color for downloads with errors. c.colors.downloads.error.fg = base08 # Font color for hints. c.colors.hints.fg = base00 # Background color for hints. Note that you can use a `rgba(...)` value # for transparency. c.colors.hints.bg = base0A # Font color for the matched part of hints. c.colors.hints.match.fg = base05 # Text color for the keyhint widget. c.colors.keyhint.fg = base05 # Highlight color for keys to complete the current keychain. c.colors.keyhint.suffix.fg = base05 # Background color of the keyhint widget. c.colors.keyhint.bg = base00 # Foreground color of an error message. c.colors.messages.error.fg = base00 # Background color of an error message. c.colors.messages.error.bg = base08 # Border color of an error message. c.colors.messages.error.border = base08 # Foreground color of a warning message. c.colors.messages.warning.fg = base00 # Background color of a warning message. c.colors.messages.warning.bg = base0E # Border color of a warning message. c.colors.messages.warning.border = base0E # Foreground color of an info message. c.colors.messages.info.fg = base05 # Background color of an info message. c.colors.messages.info.bg = base00 # Border color of an info message. c.colors.messages.info.border = base00 # Foreground color for prompts. c.colors.prompts.fg = base05 # Border used around UI elements in prompts. c.colors.prompts.border = base00 # Background color for prompts. c.colors.prompts.bg = base00 # Background color for the selected item in filename prompts. c.colors.prompts.selected.bg = base02 # Foreground color for the selected item in filename prompts. c.colors.prompts.selected.fg = base05 # Foreground color of the statusbar. c.colors.statusbar.normal.fg = base0B # Background color of the statusbar. c.colors.statusbar.normal.bg = base00 # Foreground color of the statusbar in insert mode. c.colors.statusbar.insert.fg = base00 # Background color of the statusbar in insert mode. c.colors.statusbar.insert.bg = base0D # Foreground color of the statusbar in passthrough mode. c.colors.statusbar.passthrough.fg = base00 # Background color of the statusbar in passthrough mode. c.colors.statusbar.passthrough.bg = base0C # Foreground color of the statusbar in private browsing mode. c.colors.statusbar.private.fg = base00 # Background color of the statusbar in private browsing mode. c.colors.statusbar.private.bg = base01 # Foreground color of the statusbar in command mode. c.colors.statusbar.command.fg = base05 # Background color of the statusbar in command mode. c.colors.statusbar.command.bg = base00 # Foreground color of the statusbar in private browsing + command mode. c.colors.statusbar.command.private.fg = base05 # Background color of the statusbar in private browsing + command mode. c.colors.statusbar.command.private.bg = base00 # Foreground color of the statusbar in caret mode. c.colors.statusbar.caret.fg = base00 # Background color of the statusbar in caret mode. c.colors.statusbar.caret.bg = base0E # Foreground color of the statusbar in caret mode with a selection. c.colors.statusbar.caret.selection.fg = base00 # Background color of the statusbar in caret mode with a selection. c.colors.statusbar.caret.selection.bg = base0D # Background color of the progress bar. c.colors.statusbar.progress.bg = base0D # Default foreground color of the URL in the statusbar. c.colors.statusbar.url.fg = base05 # Foreground color of the URL in the statusbar on error. c.colors.statusbar.url.error.fg = base08 # Foreground color of the URL in the statusbar for hovered links. c.colors.statusbar.url.hover.fg = base05 # Foreground color of the URL in the statusbar on successful load # (http). c.colors.statusbar.url.success.http.fg = base0C # Foreground color of the URL in the statusbar on successful load # (https). c.colors.statusbar.url.success.https.fg = base0B # Foreground color of the URL in the statusbar when there's a warning. c.colors.statusbar.url.warn.fg = base0E # Background color of the tab bar. c.colors.tabs.bar.bg = base00 # Color gradient start for the tab indicator. c.colors.tabs.indicator.start = base0D # Color gradient end for the tab indicator. c.colors.tabs.indicator.stop = base0C # Color for the tab indicator on errors. c.colors.tabs.indicator.error = base08 # Foreground color of unselected odd tabs. c.colors.tabs.odd.fg = base05 # Background color of unselected odd tabs. c.colors.tabs.odd.bg = base01 # Foreground color of unselected even tabs. c.colors.tabs.even.fg = base05 # Background color of unselected even tabs. c.colors.tabs.even.bg = base00 # Background color of pinned unselected even tabs. c.colors.tabs.pinned.even.bg = base0C # Foreground color of pinned unselected even tabs. c.colors.tabs.pinned.even.fg = base07 # Background color of pinned unselected odd tabs. c.colors.tabs.pinned.odd.bg = base0B # Foreground color of pinned unselected odd tabs. c.colors.tabs.pinned.odd.fg = base07 # Background color of pinned selected even tabs. c.colors.tabs.pinned.selected.even.bg = base02 # Foreground color of pinned selected even tabs. c.colors.tabs.pinned.selected.even.fg = base05 # Background color of pinned selected odd tabs. c.colors.tabs.pinned.selected.odd.bg = base02 # Foreground color of pinned selected odd tabs. c.colors.tabs.pinned.selected.odd.fg = base05 # Foreground color of selected odd tabs. c.colors.tabs.selected.odd.fg = base05 # Background color of selected odd tabs. c.colors.tabs.selected.odd.bg = base02 # Foreground color of selected even tabs. c.colors.tabs.selected.even.fg = base05 # Background color of selected even tabs. c.colors.tabs.selected.even.bg = base02 # Background color for webpages if unset (or empty to use the theme's # color). # c.colors.webpage.bg = base00
py
1a486d30a53a9dbc45372244fccbac57c1a9f10c
from datetime import datetime, date from six import iteritems, PY2, PY3, u import json import pytz from enum import Enum if PY3: from datetime import timezone # compat from six.moves import map dthandler = lambda obj: obj.isoformat() if isinstance(obj, datetime) or isinstance(obj, date) else None class OutputModes(Enum): """List of valid settings for the output_mode parameter of the OpenTok.start_archive() method.""" composed = u('composed') """All streams in the archive are recorded to a single (composed) file.""" individual = u('individual') """Each stream in the archive is recorded to an individual file.""" class Archive(object): """Represents an archive of an OpenTok session. :ivar created_at: The time at which the archive was created, in milliseconds since the UNIX epoch. :ivar duration: The duration of the archive, in milliseconds. :ivar has_audio: Boolean value set to true when the archive contains an audio track, and set to false otherwise. :ivar has_video: Boolean value set to true when the archive contains a video track, and set to false otherwise. :ivar id: The archive ID. :ivar name: The name of the archive. If no name was provided when the archive was created, this is set to null. :ivar output_mode: Whether all streams in the archive are recorded to a single file (OutputModes.composed) or to individual files (OutputModes.individual). :ivar partnerId: The API key associated with the archive. :ivar reason: For archives with the status "stopped", this can be set to "90 mins exceeded", "failure", "session ended", or "user initiated". For archives with the status "failed", this can be set to "system failure". :ivar sessionId: The session ID of the OpenTok session associated with this archive. :ivar size: The size of the MP4 file. For archives that have not been generated, this value is set to 0. :ivar status: The status of the archive, which can be one of the following: * "available" -- The archive is available for download from the OpenTok cloud. * "expired" -- The archive is no longer available for download from the OpenTok cloud. * "failed" -- The archive recording failed. * "paused" -- The archive is in progress and no clients are publishing streams to the session. When an archive is in progress and any client publishes a stream, the status is "started". When an archive is paused, nothing is recorded. When a client starts publishing a stream, the recording starts (or resumes). If all clients disconnect from a session that is being archived, the status changes to "paused", and after 60 seconds the archive recording stops (and the status changes to "stopped"). * "started" -- The archive started and is in the process of being recorded. * "stopped" -- The archive stopped recording. * "uploaded" -- The archive is available for download from the the upload target Amazon S3 bucket or Windows Azure container that you set at the `OpenTok dashboard <https://dashboard.tokbox.com>`_. :ivar url: The download URL of the available MP4 file. This is only set for an archive with the status set to "available"; for other archives, (including archives with the status "uploaded") this property is set to null. The download URL is obfuscated, and the file is only available from the URL for 10 minutes. To generate a new URL, call the Archive.listArchives() or OpenTok.getArchive() method. """ def __init__(self, sdk, values): self.sdk = sdk self.id = values.get('id') self.name = values.get('name') self.status = values.get('status') self.session_id = values.get('sessionId') self.partner_id = values.get('partnerId') if PY2: self.created_at = datetime.fromtimestamp(values.get('createdAt') / 1000, pytz.UTC) if PY3: self.created_at = datetime.fromtimestamp(values.get('createdAt') // 1000, timezone.utc) self.size = values.get('size') self.duration = values.get('duration') self.has_audio = values.get('hasAudio') self.has_video = values.get('hasVideo') self.output_mode = OutputModes[values.get('outputMode', 'composed')] self.url = values.get('url') def stop(self): """ Stops an OpenTok archive that is being recorded. Archives automatically stop recording after 90 minutes or when all clients have disconnected from the session being archived. """ temp_archive = self.sdk.stop_archive(self.id) for k,v in iteritems(temp_archive.attrs()): setattr(self, k, v) def delete(self): """ Deletes an OpenTok archive. You can only delete an archive which has a status of "available" or "uploaded". Deleting an archive removes its record from the list of archives. For an "available" archive, it also removes the archive file, making it unavailable for download. """ self.sdk.delete_archive(self.id) # TODO: invalidate this object def attrs(self): """ Returns a dictionary of the archive's attributes. """ return dict((k, v) for k, v in iteritems(self.__dict__) if k is not "sdk") def json(self): """ Returns a JSON representation of the archive. """ return json.dumps(self.attrs(), default=dthandler, indent=4) class ArchiveList(object): def __init__(self, sdk, values): self.count = values.get('count') self.items = list(map(lambda x: Archive(sdk, x), values.get('items', []))) def __iter__(self): for x in self.items: yield x def attrs(self): return { 'count': self.count, 'items': map(Archive.attrs, self.items) } def json(self): return json.dumps(self.attrs(), default=dthandler, indent=4) def __getitem__(self, key): return self.items.get(key) def __setitem__(self, key, item): raise ArchiveError(u('Cannot set item {0} for key {1} in Archive object').format(item, key)) def __len__(self): return len(self.items)
py
1a486db4de22c63c27e928d0755d49a5c4c99b6f
import hashlib import os def upload_path(instance, filename, **kwargs): hasher = hashlib.md5() for chunk in instance.image.chunks(): hasher.update(chunk) hash = hasher.hexdigest() base, ext = os.path.splitext(filename) return '%(first)s/%(second)s/%(hash)s/%(base)s%(ext)s' % { 'first': hash[0], 'second': hash[1], 'hash': hash, 'base': base, 'ext': ext, }
py
1a486dfd9092760f22f143361e2fb52e067a3b17
import os import sys import django import logging sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) profile = os.environ.get('HELLOFAMILYCLUB', 'develop') os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'hellofamilyclub.settings.{}'.format(profile)) django.setup() from apscheduler.schedulers.blocking import BlockingScheduler from apscheduler.jobstores.mongodb import MongoDBJobStore from apscheduler.jobstores.memory import MemoryJobStore from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor from pictures.service.weibo import fetch_weibo_pictures from pictures.service.recognize import recognize_all_pictures from pictures.service.config import db_client from news.service.helloproject_news import run_collect_hello_project_news logging.basicConfig(filename='/Users/yuhao/log/job.log', filemode='a') logging.getLogger('apscheduler').setLevel(logging.DEBUG) jobstores = { 'mongo': MongoDBJobStore(collection='job', database='hellofamily', client=db_client), 'default': MemoryJobStore() } executors = { 'default': ThreadPoolExecutor(20), 'processpool': ProcessPoolExecutor(5), } job_defaults = { 'coalesce': False, 'max_instances': 10, } scheduler = BlockingScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults) scheduler.add_job(fetch_weibo_pictures, 'interval', hours=1, replace_existing=True, id='fetch_weibo_pictures', jobstore='mongo', max_instances=1) scheduler.add_job(recognize_all_pictures, 'interval', hours=1, replace_existing=True, id='recognize_all_pictures', jobstore='mongo', max_instances=1) scheduler.add_job(run_collect_hello_project_news, 'interval', hours=2, replace_existing=True, id='collect_hello_project_news', jobstore='mongo', max_instances=1) scheduler.start()
py
1a486e20b45e323dce963b1139d133ea8a2586d6
import os from appi2c.ext.database import db def init_app(app): app.config["SECRET_KEY"] = "appi2c_from_raspberry" basedir = os.path.abspath(os.path.dirname('ext/database/')) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + os.path.join(basedir, 'database.db') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['FLASK_ADMIN_SWATCH'] = 'cosmo' app.config["MAX_IMAGE_FILESIZE"] = 10 * 1024 * 1024 app.config["ALLOWED_IMAGE_EXTENSIONS"] = ["JPEG", "JPG", "PNG", "GIF"] if app.debug: app.config["DEBUG_TB_TEMPLATE_EDITOR_ENABLED"] = True app.config["DEBUG_TB_PROFILER_ENABLED"] = True
py
1a48701ac649dcd9545d56abec9f924d7683c9e5
import abc class LossFunction(object, metaclass=abc.ABCMeta): @abc.abstractmethod def compute_loss(self, batch, **kwargs): pass
py
1a4870209dbb61ad95702298378498efc8e78021
import pathlib import os import unittest from explainaboard import FileType, Source, TaskType, get_loader, get_processor artifacts_path = os.path.dirname(pathlib.Path(__file__)) + "/artifacts/" class TestTextPairClassification(unittest.TestCase): def test_snli(self): metadata = {"task_name": TaskType.text_classification.value, "metric_names": ["Accuracy"]} path_data = artifacts_path+ "test-snli.tsv" loader = get_loader(TaskType.text_pair_classification, Source.local_filesystem, FileType.tsv, path_data) data = loader.load() processor = get_processor(TaskType.text_pair_classification, metadata, data) self.assertEqual(len(processor._features), 8) analysis = processor.process() #analysis.to_memory() # analysis.write_to_directory("./") self.assertListEqual(analysis.metric_names, metadata["metric_names"]) # self.assertIsNotNone(analysis.results.fine_grained) # self.assertGreater(len(analysis.results.overall), 0)
py
1a4870d372eed090d088f45bd189f0605513dd55
import numpy as np import os import sys sys.path.append('mytorch') from loss import * from activation import * from batchnorm import * from linear import * class MLP(object): """ A simple multilayer perceptron """ def __init__(self, input_size, output_size, hiddens, activations, weight_init_fn, bias_init_fn, criterion, lr, momentum=0.0, num_bn_layers=0): self.train_mode = True self.num_bn_layers = num_bn_layers self.bn = num_bn_layers > 0 self.nlayers = len(hiddens) + 1 self.input_size = input_size self.output_size = output_size self.activations = activations self.criterion = criterion self.lr = lr self.momentum = momentum if (len(hiddens) <= 0): self.linear_layers = [Linear(input_size, output_size, weight_init_fn, bias_init_fn)] else: self.linear_layers = [] self.linear_layers.append(Linear(input_size, hiddens[0], weight_init_fn, bias_init_fn)) for i in range(1, len(hiddens)): self.linear_layers.append(Linear(hiddens[i-1], hiddens[i], weight_init_fn, bias_init_fn)) self.linear_layers.append(Linear(hiddens[-1], output_size, weight_init_fn, bias_init_fn)) if self.bn: self.bn_layers = [BatchNorm(hiddens[i]) for i in range(num_bn_layers)] self.output = None def forward(self, x): """ Argument: x (np.array): (batch size, input_size) Return: out (np.array): (batch size, output_size) """ for i in range(len(self.linear_layers)): x = self.linear_layers[i](x) if i < self.num_bn_layers: x = self.bn_layers[i](x, (not self.train_mode)) x = self.activations[i](x) # x = self.activations[-1](x) self.output = x return x def zero_grads(self): for i in range(len(self.linear_layers)): self.linear_layers[i].dW.fill(0.0) def step(self): for i in range(len(self.linear_layers)): self.linear_layers[i].momentum_W = self.momentum * self.linear_layers[i].momentum_W - self.lr * self.linear_layers[i].dW # print(self.linear_layers[i].dW) self.linear_layers[i].W = self.linear_layers[i].W + self.linear_layers[i].momentum_W self.linear_layers[i].momentum_b = self.momentum * self.linear_layers[i].momentum_b - self.lr * self.linear_layers[i].db self.linear_layers[i].b = self.linear_layers[i].b + self.linear_layers[i].momentum_b if self.bn: for i in range(len(self.bn_layers)): self.bn_layers[i].gamma = self.bn_layers[i].gamma - self.lr * self.bn_layers[i].dgamma # self.bn_layers[i].gamma = self.bn_layers[i].gamma/np.sqrt(self.bn_layers[i].running_var + self.bn_layers[i].eps) self.bn_layers[i].beta = self.bn_layers[i].beta - self.lr * self.bn_layers[i].dbeta # self.bn_layers[i].beta = self.bn_layers[i].beta - self.bn_layers[i].gamma * self.bn_layers[i].running_mean def backward(self, labels): self.criterion.forward(self.output, labels) grd = self.criterion.derivative() # print(self.criterion.logsum) for i in range(self.nlayers - 1, -1,-1): grd = self.activations[i].derivative() * grd # print(grd) if self.bn and i < self.num_bn_layers: grd = self.bn_layers[i].backward(grd) grd = self.linear_layers[i].backward(grd) return grd def error(self, labels): return (np.argmax(self.output, axis = 1) != np.argmax(labels, axis = 1)).sum() def total_loss(self, labels): return self.criterion(self.output, labels).sum() def __call__(self, x): return self.forward(x) def train(self): self.train_mode = True def eval(self): self.train_mode = False def get_training_stats(mlp, dset, nepochs, batch_size): train, val, _ = dset trainx, trainy = train valx, valy = val idxs = np.arange(len(trainx)) training_losses = np.zeros(nepochs) training_errors = np.zeros(nepochs) validation_losses = np.zeros(nepochs) validation_errors = np.zeros(nepochs) for e in range(nepochs): print(e) t_row= np.arange(trainx.shape[0]) np.random.shuffle(t_row) trainx = trainx[t_row,:] trainy = trainy[t_row,:] # print(t_row == idxs) # Per epoch setup ... batchmean = [] batchtotal = [] for b in range(0, len(trainx), batch_size): mlp.zero_grads() mlp.forward(trainx[b:b+batch_size, :]) mlp.backward(trainy[b:b+batch_size, :]) batchtotal.append(mlp.total_loss(trainy[b:b+batch_size, :])/batch_size) # print(type(mlp.total_loss(trainy[b:b+batch_size, :]))) batchmean.append(mlp.error(trainy[b:b+batch_size, :])/batch_size) mlp.step() valloss = [] valerror = [] for b in range(0, len(valx), batch_size): mlp.forward(valx[b:batch_size, :]) valloss.append(mlp.total_loss(valy[b:batch_size, :])/batch_size) valerror.append(mlp.error(valy[b:batch_size, :])/batch_size) training_errors[e] = np.array(batchmean).mean() training_losses[e] = np.array(batchtotal).mean() validation_errors[e] = np.array(valerror).mean() validation_losses[e] = np.array(valloss).mean() print(np.min(training_losses)) print(np.min(training_errors)) return (training_losses, training_errors, validation_losses, validation_errors)
py
1a487166c2d49ad6737dc8e062c89844e9adaaea
from ._city_transformer_postscripts import CityTransformerPostscripts from ._city_transformer_inverse_postscripts import CityTransformerInversePostscripts def get_postscripts(name): POST_SCRIPTS = { 'CityTransformer': CityTransformerPostscripts, 'CityTransformerInverse': CityTransformerInversePostscripts, } for n, p in POST_SCRIPTS.items(): if n.lower() == name.lower(): return p raise ValueError(f'trainer {name} is not defined')
py
1a487179ed78aa3dcca060f14d2629e6b97a7791
def humanise_passage(book: str, start_chapter: str, start_verse: str, end_chapter: str, end_verse: str) -> str: if len(start_chapter) == 0: # e.g. James return book if len(start_verse) == 0 and len(end_chapter) == 0 and len(end_verse) == 0: # e.g. Genesis 1 return f"{book} chapter {start_chapter}" if len(start_verse) == 0 and len(end_verse) == 0: # e.g. Genesis 1 - 2 return f"{book} chapters {start_chapter} to {end_chapter}" if len(start_verse) == 0: # e.g. Genesis 1 - 2:3 return f"{book} chapter {start_chapter} to chapter {end_chapter} verse {end_verse}" if len(end_chapter) == 0 and len(end_verse) == 0: # e.g. Genesis 1:2 return f"{book} chapter {start_chapter} verse {start_verse}" if len(end_chapter) == 0: # e.g. Genesis 1:2-3 return f"{book} chapter {start_chapter} verses {start_verse} to {end_verse}" # e.g. Genesis 1:2 - 2:3 return f"{book} chapter {start_chapter} verse {start_verse}- to chapter {end_chapter} verse {end_verse}"
py
1a4871e8f433d61bf1627458d57ae31d1f13ac23
import math from typing import Optional import torch from falkon.options import BaseOptions import falkon from falkon.mmv_ops.utils import _setup_opt, _get_cpu_ram from falkon.sparse.sparse_tensor import SparseTensor from falkon.utils.helpers import select_dim_over_d, sizeof_dtype, select_dim_over_m from falkon.utils.tensor_helpers import create_same_stride def fmmv_cpu_sparse(X1: SparseTensor, X2: SparseTensor, v: torch.Tensor, kernel: 'falkon.kernels.Kernel', out: Optional[torch.Tensor], opt: BaseOptions): opt = _setup_opt(opt, is_cpu=True) dtype = X1.dtype ntot, dtot = X1.size() mtot, T = v.size() # Create output matrix if out is None: out = torch.empty(ntot, T, dtype=dtype) out.fill_(0.0) avail_mem = _get_cpu_ram(opt, 0.95) / sizeof_dtype(dtype) # Narrowing X1, X2: n + m # Prepare - not computable, depends on kernel # ker_chunk : n*m # finalize : 0 (if can be implemented in place, kernel-dependent) n, m = select_dim_over_m( maxM=mtot, maxN=ntot, coef_nm=1, coef_n=1, coef_m=1, tot=avail_mem) ker_chunk = create_same_stride((n, m), out, dtype, device='cpu') for i in range(0, ntot, n): ic = min(n, ntot - i) cur_out = out[i:i + ic, :] X1_chunk = X1.narrow_rows(i, ic) for j in range(0, mtot, m): jc = min(m, mtot - j) X2_chunk = X2.narrow_rows(j, jc) cur_ker_chunk = ker_chunk[:ic, :jc] cur_ker_chunk.fill_(0.0) ddd = kernel._prepare_sparse(X1_chunk, X2_chunk) kernel._apply_sparse(X1_chunk, X2_chunk.transpose_csc(), cur_ker_chunk) kernel._finalize(cur_ker_chunk, ddd) # Multiply by the vector v cur_out.addmm_(cur_ker_chunk, v.narrow(0, j, jc)) return out def fmmv_cpu(X1, X2, v, kernel, out, opt): """Blockwise kernel-vector product This function computes ``kernel(X1, X2) @ v`` in a blockwise fashion, to avoid having the whole N*M kernel matrix in memory at once. Note that while the principle is that of matrix-vector product, `v` can have more than one column. Parameters ----------- X1 [N, D] array X2 [M, D] array v [M, T] array kernel Class representing the desired kernel function out : torch.Tensor or None [N, T] array for storing the kernel-vector product output. If None, will be allocated within the function. opt Basic options dictionary, used for determining available memory. """ opt = _setup_opt(opt, is_cpu=True) ntot, dtot = X1.size(0), X1.size(1) M, T = v.size() dtype = v.dtype # Create output matrix if out is None: out = torch.empty(ntot, T, dtype=dtype) avail_mem = _get_cpu_ram(opt, 0.95) / sizeof_dtype(dtype) # Only necessary memory allocation is that for the temporary kernel # `temp_out` of size n*M n, d = select_dim_over_d( maxD=dtot, maxN=ntot, coef_nd=0, coef_n=M, coef_d=0, rest=0, tot=avail_mem) # Run batched matrix multiplication for i in range(0, ntot, n): ic = min(n, ntot - i) ddd = kernel._prepare(X1.narrow(0, i, ic), X2) # , v=v) temp_out = torch.zeros(ic, M, dtype=dtype) for k in range(0, dtot, d): kc = min(d, dtot - k) X1d = X1[i: i + ic, k: k + kc] X2d = X2[:, k: k + kc] kernel._apply(X1d, X2d.T, temp_out) # temp_out = fnc(X1*X2', X1, X2) kernel._finalize(temp_out, ddd) torch.mm(temp_out, v, out=out[i: i + ic, :]) return out def fdmmv_cpu(X1, X2, v, w, kernel, out, opt): """Calculate a double kernel-vector product. This function computes the following quantity: ``kernel(X1, X2).T @ (kernel(X1, X2) @ v + w)`` Where one of `v` or `w` can be empty. All arrays passed to this function must be 2-dimensional, although the second dimension can be unitary. The expression is not computed directly. We separate the computation into smaller blocks so as to reduce the total memory consumption (the large N*M kernel matrix is never wholly stored in RAM.) Parameters ----------- X1 [N, D] array X2 [M, D] array v : torch.Tensor or None [M, T] array. But note that at least one of v or w must be specified. w : torch.Tensor or None [N, T] array. But note that at least one of v or w must be specified. kernel Class representing the desired kernel function out : torch.Tensor or None [M, T] array for storing the kernel-vector product output. If None, will be allocated within the function. opt Basic options dictionary, used for determining available memory. """ opt = _setup_opt(opt, is_cpu=True) # Parameter validation if v is None and w is None: raise ValueError("One of v and w must be specified to run fMMV.") T = v.shape[1] if v is not None else w.shape[1] ntot, dtot = X1.size() M = X2.size(0) dtype = X1.dtype # Create output matrix if out is None: out = torch.empty(M, T, dtype=dtype) out.fill_(0) avail_mem = _get_cpu_ram(opt, 0.95) / sizeof_dtype(dtype) # The only necessary temporary matrices are: `temp_out` of size n*M and # temp_w_block of size n*T n, d = select_dim_over_d( maxD=dtot, maxN=ntot, coef_nd=0, coef_n=M + T, coef_d=0, rest=0, tot=avail_mem) # Run Batched Matrix Computation for i in range(0, ntot, n): ic = min(n, ntot - i) ddd = kernel._prepare(X1[i: i + ic, :], X2) temp_out = torch.zeros(ic, M, dtype=dtype) for k in range(0, dtot, d): kc = min(d, dtot - k) X1d = X1[i: i + ic, k: k + kc] X2d = X2[:, k: k + kc] kernel._apply(X1d, X2d.T, temp_out) kernel._finalize(temp_out, ddd) # fnc(X1*X2', X1, X2) [n x M] w_blk = torch.zeros(ic, T, dtype=dtype) # n x T if w is not None: w_blk.copy_(w[i: i + ic, :]) if v is not None: # w_blk + c_out * v => (n x T) + (n x M)*(M x T) w_blk.addmm_(temp_out, v) out.add_(torch.mm(temp_out.T, w_blk)) return out def fdmmv_cpu_sparse(X1: SparseTensor, X2: SparseTensor, v: Optional[torch.Tensor], w: Optional[torch.Tensor], kernel, out: Optional[torch.Tensor] = None, opt: Optional[BaseOptions] = None): opt = _setup_opt(opt, is_cpu=True) # Parameter validation if v is None and w is None: raise ValueError("One of v and w must be specified to run fMMV.") T = v.size(1) if v is not None else w.size(1) ntot, dtot = X1.size() M = X2.size(0) dtype = X1.dtype # Create output matrix if out is None: out = torch.empty(M, T, dtype=dtype) out.fill_(0) avail_mem = _get_cpu_ram(opt, 0.95) / sizeof_dtype(dtype) # Narrow X1 : n # ker_chunk : n*M # w_blk : n*T n = avail_mem / (M * T + 1) n = int(math.floor(n)) if n < 1: raise MemoryError(("Available memory %.2fGB is insufficient " "for blockwise fdMMv.") % (avail_mem * sizeof_dtype(dtype) / 2**30)) # Allocate fixed arrays ker_chunk = create_same_stride((n, M), out, dtype, device='cpu') w_blk = create_same_stride((n, T), out, dtype, device='cpu') # Run blocked fdmmv for i in range(0, ntot, n): ic = min(n, ntot - i) X1_chunk = X1.narrow_rows(i, ic) cur_ker_chunk = ker_chunk[:ic] cur_ker_chunk.fill_(0.0) ddd = kernel._prepare_sparse(X1_chunk, X2) kernel._apply_sparse(X1_chunk, X2.transpose_csc(), cur_ker_chunk) kernel._finalize(cur_ker_chunk, ddd) # Multiply by the vector v cur_w_blk = w_blk[:ic] # n x T cur_w_blk.fill_(0.0) if w is not None: cur_w_blk.copy_(w[i: i + ic, :]) if v is not None: # w_blk + c_out * v => (n x T) + (n x M)*(M x T) cur_w_blk.addmm_(cur_ker_chunk, v) out.addmm_(cur_ker_chunk.T, cur_w_blk) del ker_chunk, w_blk return out
py
1a48723d584e308175ccf2a05cf504246d9b89b7
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Defines a set of constants shared by test runners and other scripts.""" # TODO(jbudorick): Split these constants into coherent modules. # pylint: disable=W0212 import collections import logging import os import subprocess import devil.android.sdk.keyevent from devil.android.sdk import version_codes from devil.constants import exit_codes keyevent = devil.android.sdk.keyevent DIR_SOURCE_ROOT = os.environ.get('CHECKOUT_SOURCE_ROOT', os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir, os.pardir, os.pardir))) PackageInfo = collections.namedtuple('PackageInfo', ['package', 'activity', 'cmdline_file', 'devtools_socket', 'test_package']) PACKAGE_INFO = { 'chrome_document': PackageInfo( 'com.google.android.apps.chrome.document', 'com.google.android.apps.chrome.document.ChromeLauncherActivity', '/data/local/chrome-command-line', 'chrome_devtools_remote', None), 'chrome': PackageInfo( 'com.google.android.apps.chrome', 'com.google.android.apps.chrome.Main', '/data/local/chrome-command-line', 'chrome_devtools_remote', 'com.google.android.apps.chrome.tests'), 'chrome_beta': PackageInfo( 'com.chrome.beta', 'com.google.android.apps.chrome.Main', '/data/local/chrome-command-line', 'chrome_devtools_remote', None), 'chrome_stable': PackageInfo( 'com.android.chrome', 'com.google.android.apps.chrome.Main', '/data/local/chrome-command-line', 'chrome_devtools_remote', None), 'chrome_dev': PackageInfo( 'com.chrome.dev', 'com.google.android.apps.chrome.Main', '/data/local/chrome-command-line', 'chrome_devtools_remote', None), 'chrome_canary': PackageInfo( 'com.chrome.canary', 'com.google.android.apps.chrome.Main', '/data/local/chrome-command-line', 'chrome_devtools_remote', None), 'chrome_work': PackageInfo( 'com.chrome.work', 'com.google.android.apps.chrome.Main', '/data/local/chrome-command-line', 'chrome_devtools_remote', None), 'chromium': PackageInfo( 'org.chromium.chrome', 'com.google.android.apps.chrome.Main', '/data/local/chrome-command-line', 'chrome_devtools_remote', 'org.chromium.chrome.tests'), 'legacy_browser': PackageInfo( 'com.google.android.browser', 'com.android.browser.BrowserActivity', None, None, None), 'chromecast_shell': PackageInfo( 'com.google.android.apps.mediashell', 'com.google.android.apps.mediashell.MediaShellActivity', '/data/local/tmp/castshell-command-line', None, None), 'content_shell': PackageInfo( 'org.chromium.content_shell_apk', 'org.chromium.content_shell_apk.ContentShellActivity', '/data/local/tmp/content-shell-command-line', None, 'org.chromium.content_shell_apk.tests'), 'android_webview_shell': PackageInfo( 'org.chromium.android_webview.shell', 'org.chromium.android_webview.shell.AwShellActivity', '/data/local/tmp/android-webview-command-line', None, 'org.chromium.android_webview.test'), 'gtest': PackageInfo( 'org.chromium.native_test', 'org.chromium.native_test.NativeUnitTestActivity', '/data/local/tmp/chrome-native-tests-command-line', None, None), 'components_browsertests': PackageInfo( 'org.chromium.components_browsertests_apk', ('org.chromium.components_browsertests_apk' + '.ComponentsBrowserTestsActivity'), '/data/local/tmp/chrome-native-tests-command-line', None, None), 'content_browsertests': PackageInfo( 'org.chromium.content_browsertests_apk', 'org.chromium.content_browsertests_apk.ContentBrowserTestsActivity', '/data/local/tmp/chrome-native-tests-command-line', None, None), 'chromedriver_webview_shell': PackageInfo( 'org.chromium.chromedriver_webview_shell', 'org.chromium.chromedriver_webview_shell.Main', None, None, None), } # Ports arrangement for various test servers used in Chrome for Android. # Lighttpd server will attempt to use 9000 as default port, if unavailable it # will find a free port from 8001 - 8999. LIGHTTPD_DEFAULT_PORT = 9000 LIGHTTPD_RANDOM_PORT_FIRST = 8001 LIGHTTPD_RANDOM_PORT_LAST = 8999 TEST_SYNC_SERVER_PORT = 9031 TEST_SEARCH_BY_IMAGE_SERVER_PORT = 9041 TEST_POLICY_SERVER_PORT = 9051 TEST_EXECUTABLE_DIR = '/data/local/tmp' # Directories for common java libraries for SDK build. # These constants are defined in build/android/ant/common.xml SDK_BUILD_JAVALIB_DIR = 'lib.java' SDK_BUILD_TEST_JAVALIB_DIR = 'test.lib.java' SDK_BUILD_APKS_DIR = 'apks' ADB_KEYS_FILE = '/data/misc/adb/adb_keys' PERF_OUTPUT_DIR = os.path.join(DIR_SOURCE_ROOT, 'out', 'step_results') # The directory on the device where perf test output gets saved to. DEVICE_PERF_OUTPUT_DIR = ( '/data/data/' + PACKAGE_INFO['chrome'].package + '/files') SCREENSHOTS_DIR = os.path.join(DIR_SOURCE_ROOT, 'out_screenshots') ANDROID_SDK_VERSION = version_codes.MARSHMALLOW ANDROID_SDK_BUILD_TOOLS_VERSION = '23.0.1' ANDROID_SDK_ROOT = os.path.join(DIR_SOURCE_ROOT, 'third_party', 'android_tools', 'sdk') ANDROID_SDK_TOOLS = os.path.join(ANDROID_SDK_ROOT, 'build-tools', ANDROID_SDK_BUILD_TOOLS_VERSION) ANDROID_NDK_ROOT = os.path.join(DIR_SOURCE_ROOT, 'third_party', 'android_tools', 'ndk') PROGUARD_SCRIPT_PATH = os.path.join( ANDROID_SDK_ROOT, 'tools', 'proguard', 'bin', 'proguard.sh') PROGUARD_ROOT = os.path.join(DIR_SOURCE_ROOT, 'third_party', 'proguard') BAD_DEVICES_JSON = os.path.join(DIR_SOURCE_ROOT, os.environ.get('CHROMIUM_OUT_DIR', 'out'), 'bad_devices.json') UPSTREAM_FLAKINESS_SERVER = 'test-results.appspot.com' # TODO(jbudorick): Remove once unused. DEVICE_LOCAL_PROPERTIES_PATH = '/data/local.prop' # TODO(jbudorick): Rework this into testing/buildbot/ PYTHON_UNIT_TEST_SUITES = { 'pylib_py_unittests': { 'path': os.path.join(DIR_SOURCE_ROOT, 'build', 'android'), 'test_modules': [ 'devil.android.device_utils_test', 'devil.android.md5sum_test', 'devil.utils.cmd_helper_test', 'pylib.results.json_results_test', 'pylib.utils.proguard_test', ] }, 'gyp_py_unittests': { 'path': os.path.join(DIR_SOURCE_ROOT, 'build', 'android', 'gyp'), 'test_modules': [ 'java_cpp_enum_tests', 'java_google_api_keys_tests', ] }, } LOCAL_MACHINE_TESTS = ['junit', 'python'] VALID_ENVIRONMENTS = ['local', 'remote_device'] VALID_TEST_TYPES = ['gtest', 'instrumentation', 'junit', 'linker', 'monkey', 'perf', 'python', 'uirobot'] VALID_DEVICE_TYPES = ['Android', 'iOS'] def GetBuildType(): try: return os.environ['BUILDTYPE'] except KeyError: raise EnvironmentError( 'The BUILDTYPE environment variable has not been set') def SetBuildType(build_type): os.environ['BUILDTYPE'] = build_type def SetBuildDirectory(build_directory): os.environ['CHROMIUM_OUT_DIR'] = build_directory def SetOutputDirectory(output_directory): os.environ['CHROMIUM_OUTPUT_DIR'] = output_directory def GetOutDirectory(build_type=None): """Returns the out directory where the output binaries are built. Args: build_type: Build type, generally 'Debug' or 'Release'. Defaults to the globally set build type environment variable BUILDTYPE. """ if 'CHROMIUM_OUTPUT_DIR' in os.environ: return os.path.abspath(os.path.join( DIR_SOURCE_ROOT, os.environ.get('CHROMIUM_OUTPUT_DIR'))) return os.path.abspath(os.path.join( DIR_SOURCE_ROOT, os.environ.get('CHROMIUM_OUT_DIR', 'out'), GetBuildType() if build_type is None else build_type)) # TODO(jbudorick): Convert existing callers to AdbWrapper.GetAdbPath() and # remove this. def GetAdbPath(): from devil.android.sdk import adb_wrapper return adb_wrapper.AdbWrapper.GetAdbPath() # Exit codes ERROR_EXIT_CODE = exit_codes.ERROR INFRA_EXIT_CODE = exit_codes.INFRA WARNING_EXIT_CODE = exit_codes.WARNING
py
1a48727d042ee63a5537b4038ce84d6bfbddefc8
"""For admin view.""" import logging from django.contrib import admin from django.http import HttpResponseRedirect from django.urls import reverse from django.contrib.auth import REDIRECT_FIELD_NAME # from django.contrib.auth.views import password_change from django.contrib import messages from cpovc_access.forms import StrictPasswordChangeForm from cpovc_access.models import AccessLog, AccessAttempt from cpovc_access.models import PasswordChange, UserChange logger = logging.getLogger(__name__) def unlock_user(modeladmin, request, queryset): """ These takes in a Django queryset and spits out a CSV file. Generic method for any queryset """ # model = qs.model queryset.update(failures_since_start=0) message = ('User(s) failed login counts reset to 0. ' 'User(s) can now log in.') messages.info(request, message) unlock_user.short_description = u"Unlock selected user(s)" class AccessAttemptAdmin(admin.ModelAdmin): """Class for handling attempts.""" list_display = ( 'attempt_time', 'ip_address', 'user_agent', 'username', 'path_info', 'failures_since_start', ) list_filter = [ 'attempt_time', 'ip_address', 'username', 'path_info', ] search_fields = [ 'ip_address', 'username', 'user_agent', 'path_info', ] date_hierarchy = 'attempt_time' fieldsets = ( (None, { 'fields': ('path_info', 'failures_since_start') }), ('Form Data', { 'fields': ('get_data', 'post_data') }), ('Meta Data', { 'fields': ('user_agent', 'ip_address', 'http_accept') }) ) actions = [unlock_user] admin.site.register(AccessAttempt, AccessAttemptAdmin) class AccessLogAdmin(admin.ModelAdmin): """Class for handling access logs.""" list_display = ( 'attempt_time', 'logout_time', 'ip_address', 'username', 'user_agent', 'path_info', ) list_filter = [ 'attempt_time', 'logout_time', 'ip_address', 'username', 'path_info', ] search_fields = [ 'ip_address', 'user_agent', 'username', 'path_info', ] date_hierarchy = 'attempt_time' fieldsets = ( (None, { 'fields': ('path_info',) }), ('Meta Data', { 'fields': ('user_agent', 'ip_address', 'http_accept') }) ) admin.site.register(AccessLog, AccessLogAdmin) def admin_login(request, extra_context=None): """Redirect to default login view which enforces auth policy.""" next_page = request.get_full_path() next_url = next_page.split('=')[1] if '=' in next_page else next_page q = REDIRECT_FIELD_NAME + '=' + next_url return HttpResponseRedirect(reverse('login') + '?' + q) admin.site.login = admin_login def admin_logout(request, extra_context=None): """Redirect to default login page and not /admin area.""" return HttpResponseRedirect(reverse('login')) admin.site.logout = admin_logout class PasswordChangeAdmin(admin.ModelAdmin): """Class to handle password change.""" readonly_fields = ('user', 'timestamp', 'successful', 'is_temporary') fields = ('user', 'timestamp', 'successful', 'is_temporary') list_display = ('user', 'successful', 'is_temporary', 'timestamp') list_filter = ('successful', 'is_temporary') date_hierarchy = 'timestamp' def has_add_permission(self, request): """Method to handle add permissions.""" return False def has_delete_permission(self, request, obj=None): """Method to handle delete permission.""" return False def save_model(self, request, obj, form, change): """Do not actually save anything to prevent changes.""" logger.info('Prevented change in PasswordChange item by user %s', request.user) def get_actions(self, request): """Disable deletion of user changes action.""" actions = super(PasswordChangeAdmin, self).get_actions(request) if 'delete_selected' in actions: del actions['delete_selected'] return actions admin.site.register(PasswordChange, PasswordChangeAdmin) class UserChangeAdmin(admin.ModelAdmin): """Class to handle user changes.""" readonly_fields = ('user', 'timestamp', 'by_user') fields = ('user', 'timestamp', 'by_user') list_display = ('user', 'by_user', 'timestamp') date_hierarchy = 'timestamp' def has_add_permission(self, request): """Method to handle add permission.""" return False def has_delete_permission(self, request, obj=None): """Method to handle delete permission.""" return False def save_model(self, request, obj, form, change): """Do not actually save anything to prevent changes.""" logger.info('Prevented change in UserChange item by user %s', request.user) def get_actions(self, request): """Disable deletion of user changes action.""" actions = super(UserChangeAdmin, self).get_actions(request) if 'delete_selected' in actions: del actions['delete_selected'] return actions admin.site.register(UserChange, UserChangeAdmin) def admin_password_change(request): """Handle the "change password" task - both display and validation.""" to_url = reverse('admin:password_change_done', current_app=admin.site.name) defaults = { 'current_app': admin.site.name, 'post_change_redirect': to_url, 'password_change_form': StrictPasswordChangeForm } if admin.site.password_change_template is not None: defaults['template_name'] = admin.site.password_change_template return password_change(request, **defaults) admin.site.password_change = admin_password_change
py
1a487390c379cc75bebb0959ba2870b612505c78
# Note: Before running this from your laptop, you must run "ray attach cluster.yaml -p 8000" to setup a port-forward from the laptop's port 8000 to the cluster's internal port 8000 # The other option is to use "ray submit" to run this on the cluster as-is without a port-forward import requests input_text_list = ["Ray Serve is great!", "Serving frameworks without DAG support are not great."] for input_text in input_text_list: prediction = requests.get("http://127.0.0.1:8000/invocations", data=input_text).text print("Average prediction for '{}' is {}".format(input_text, prediction))
py
1a4873d18b978c223f336033c07c753205ebbea9
class Example: 'Common base class for all employee' def printValue(self): print(Example.__doc__) print(Example.__name__) print(Example.__dict__) print(Example.__module__) print(Example.__bases__) example = Example() example.printValue()
py
1a48740c2a86902ff1b4d5b708717dc6d1073b3c
#!/usr/bin/env python """__init__ file for interator module.""" from .interator import (prime_stream, composite_stream, polygonal_stream, fibonacci_stream, negafibonacci_stream, lucas_stream, is_prime, miller_rabin, is_composite, is_polygonal, is_fibonacci, is_lucas, nth_fibonacci)
py
1a4874276c6443e6cc4cdc2ef2ee99961e59d5ae
import pytest from gitlabform.gitlabform import GitLabForm from gitlabform.gitlabform.test import create_group, create_project_in_group, get_gitlab, GROUP_NAME PROJECT_NAME = 'project_settings_project' GROUP_AND_PROJECT_NAME = GROUP_NAME + '/' + PROJECT_NAME @pytest.fixture(scope="module") def gitlab(request): create_group(GROUP_NAME) create_project_in_group(GROUP_NAME, PROJECT_NAME) gl = get_gitlab() def fin(): gl.delete_project(GROUP_AND_PROJECT_NAME) request.addfinalizer(fin) return gl # provide fixture value config_builds_for_private_projects = """ gitlab: api_version: 4 project_settings: project_settings: builds_access_level: private visibility: private """ class TestProjectSettings: def test__builds_for_private_projects(self, gitlab): gf = GitLabForm(config_string=config_builds_for_private_projects, project_or_group=GROUP_AND_PROJECT_NAME) gf.main() settings = gitlab.get_project_settings(GROUP_AND_PROJECT_NAME) assert settings['visibility'] == 'private' # there is no such field in the "Get single project" API :/ #assert settings['builds_access_level'] is 'private'
py
1a4875173394465d869f15e59a7c55195ec98922
# -*- coding: utf-8 -*- import json import requests from openerp import http from openerp.http import request def s2human(time): """Convert a time in second into an human readable string""" for delay, desc in [(86400,'d'),(3600,'h'),(60,'m')]: if time >= delay: return str(int(time / delay)) + desc return str(int(time)) + "s" class RunbotButtons(http.Controller): def build_info(self, build): real_build = build.duplicate_id if build.state == 'duplicate' else build return { 'id': build.id, 'name': build.name, 'state': real_build.state, 'result': real_build.result, 'subject': build.subject, 'author': build.author, 'committer': build.committer, 'dest': build.dest, 'real_dest': real_build.dest, 'job_age': s2human(real_build.job_age), 'job_time': s2human(real_build.job_time), 'job': real_build.job, 'domain': real_build.domain, 'host': real_build.host, 'port': real_build.port, 'subject': build.subject, 'server_match': real_build.server_match, } def build_html(self, build): res = [] try: url = 'http://%s/instance_introspection.json' % build.domain response = requests.get(url, timeout=5.00) if response.status_code == requests.codes.ok: res = response.json() except requests.exceptions.Timeout: res = [{'info': {'error': 'Timeout', 'message': '''Instance is not running https://github.com/Vauxoo/server-tools/tree/8.0/instance_introspection read the help to know how configure it properlly'''}}] except requests.exceptions.TooManyRedirects: res = [{'info': {'error': 'TooMany redirect', 'message': '''Install properly the instance_introspection: https://github.com/Vauxoo/server-tools/tree/8.0/instance_introspection read the help to know how'''}}] except requests.exceptions.RequestException as e: res = [{'info': {'error': 'Unknown Error', 'message': '''%s''' % e.message}}] # catastrophic error. bail. _logger.log(e) return res @http.route(['/vauxooci/build_button/<build_id>'], type='http', auth="public", website=True) def build(self, build_id=None, search=None, **post): registry, cr, uid, context = request.registry, request.cr, request.uid, request.context Build = registry['runbot.build'] build = Build.browse(cr, uid, [int(build_id)])[0] if not build.exists(): return request.not_found() context = { 'introspection': build.introspection, 'introspection_html': self.build_html(build), 'repo': build.repo_id, 'bu': self.build_info(build), 'br': {'branch': build.branch_id}, } return request.render("vauxooci.build_button", context) # @http.route('/runbot_frontend/runbot_frontend/objects/', auth='public') # def list(self, **kw): # return http.request.render('runbot_frontend.listing', { # 'root': '/runbot_frontend/runbot_frontend', # 'objects': http.request.env['runbot_frontend.runbot_frontend'].search([]), # }) # @http.route('/runbot_frontend/runbot_frontend/objects/<model("runbot_frontend.runbot_frontend"):obj>/', auth='public') # def object(self, obj, **kw): # return http.request.render('runbot_frontend.object', { # 'object': obj # })
py
1a4875c7e275ab1b82b4482a519f0c45fff86c63
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "MovingMedian", cycle_length = 12, transform = "None", sigma = 0.0, exog_count = 0, ar_order = 12);
py
1a4875e8989add16dadb5d301c5c087696e6e060
import _plotly_utils.basevalidators class BgcolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__(self, plotly_name="bgcolor", parent_name="heatmap.colorbar", **kwargs): super(BgcolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), **kwargs, )
py
1a48779e0fef07633644c30b73bcce6399120a38
# Generated by Django 2.0.1 on 2018-12-11 16:42 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("organisations", "0002_organisation_duplicate_of"), ] operations = [ migrations.AlterUniqueTogether(name="organisation", unique_together=set(),), ]
py
1a4877bd63c24842fa6ff28e142e04b167d80b36
# -*- coding:utf-8 -*- # # Original Author: # Twitter OAuth Sample Script # * techno - Hirotaka Kawata # * http://techno-st.net/ # import time, random import urllib, urllib2 import hmac, hashlib import cgi from pit import Pit oauth_keys = Pit.get('pytwtrmgmttool') ckey = oauth_keys['consumer_key'] csecret = oauth_keys['consumer_secret'] atoken = "" atoken_secret = "" def make_signature(params, url, method, csecret, secret = ""): # Generate Signature Base String plist = [] for i in sorted(params): plist.append("%s=%s" % (i, params[i])) pstr = "&".join(plist) msg = "%s&%s&%s" % (method, urllib.quote(url, ""), urllib.quote(pstr, "")) # Calculate Signature h = hmac.new("%s&%s" % (csecret, secret), msg, hashlib.sha1) sig = h.digest().encode("base64").strip() return sig def init_params(): p = { "oauth_consumer_key": ckey, "oauth_signature_method": "HMAC-SHA1", "oauth_timestamp": str(int(time.time())), "oauth_nonce": str(random.getrandbits(64)), "oauth_version": "1.0" } return p def oauth_header(params): plist = [] for p in params: plist.append('%s="%s"' % (p, urllib.quote(params[p]))) return "OAuth %s" % (", ".join(plist)) # Request Token URL reqt_url = 'http://twitter.com/oauth/request_token' # Authorize URL auth_url = 'http://twitter.com/oauth/authorize' # Access Token URL acct_url = 'http://twitter.com/oauth/access_token' # status update URL post_url = 'http://twitter.com/statuses/update.json' if not atoken and not atoken_secret: # Request Parameters params = init_params() print "Get request token:", # Generate Signature sig = make_signature(params, reqt_url, "GET", csecret) params["oauth_signature"] = sig # Get Token req = urllib2.Request("%s?%s" % (reqt_url, urllib.urlencode(params))) resp = urllib2.urlopen(req) print "\t[OK]" # Parse Token Parameters ret = cgi.parse_qs(resp.read()) token = ret["oauth_token"][0] token_secret = ret["oauth_token_secret"][0] # Get PIN print "* Please access to this URL, and allow." print "> %s?%s=%s" % (auth_url, "oauth_token", token) print "\n* After that, will display 7 digit PIN, input here." print "PIN ->", pin = raw_input() pin = int(pin) print "Get access token:", # Generate Access Token Request params = init_params() params["oauth_verifier"] = pin params["oauth_token"] = token sig = make_signature(params, acct_url, "GET", csecret, token_secret) params["oauth_signature"] = sig # Get Access Token req = urllib2.Request("%s?%s" % (acct_url, urllib.urlencode(params))) resp = urllib2.urlopen(req) print "\t[OK]" # Parse Access Token fin = cgi.parse_qs(resp.read()) atoken = fin["oauth_token"][0] atoken_secret = fin["oauth_token_secret"][0] print "Access Token: %s" % atoken print "Access Token Secret: %s" % atoken_secret print "Your screen_name is '%s'." % fin["screen_name"][0] # Update Status by OAuth Authorization print "What are you doing?:", post = raw_input() params = init_params() params["oauth_token"] = atoken params["status"] = urllib.quote(post, "") sig = make_signature(params, post_url, "POST", csecret, atoken_secret) params["oauth_signature"] = sig del params["status"] req = urllib2.Request(post_url) req.add_data("status=%s" % urllib.quote(post, "")) req.add_header("Authorization", oauth_header(params))
py
1a48781e24336b88f206198c75f21f89f4cdaa0b
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Bring Your Own Datatypes to TVM =============================== **Authors**: `Gus Smith <https://github.com/gussmith23>`_, `Andrew Liu <https://github.com/hypercubestart>`_ In this tutorial, we will show you how to utilize the Bring Your Own Datatypes framework to use your own custom datatypes in TVM. Note that the Bring Your Own Datatypes framework currently only handles **software emulated versions of datatypes**. The framework does not support compiling for custom accelerator datatypes out-of-the-box. Datatype Libraries ------------------ The Bring Your Own Datatypes allows users to register their own datatype implementations alongside TVM's native datatypes (such as ``float``). In the wild, these datatype implementations often appear as libraries. For example: - `libposit <https://github.com/cjdelisle/libposit>`_, a posit library - `Stillwater Universal <https://github.com/stillwater-sc/universal>`_, a library with posits, fixed-point numbers, and other types - `SoftFloat <https://github.com/ucb-bar/berkeley-softfloat-3>`_, Berkeley's software implementation of IEEE 754 floating-point The Bring Your Own Datatypes enables users to plug these datatype implementations into TVM! In this section, we will use an example library we have already implemented, located at ``3rdparty/byodt/myfloat.cc``. This datatype, which we dubbed "myfloat", is really just a IEE-754 float under-the-hood, but it serves a useful example to show that any datatype can be used in the BYODT framework. Setup ----- Since we do not use any 3rdparty library, there is no setup needed. If you would like to try this with your own datatype library, first bring the library's functions into the process space with ``CDLL``: .. code-block :: python ctypes.CDLL('my-datatype-lib.so', ctypes.RTLD_GLOBAL) """ ###################### # A Simple TVM Program # -------------------- # # We'll begin by writing a simple program in TVM; afterwards, we will re-write it to use custom datatypes. import tvm from tvm import relay # Our basic program: Z = X + Y x = relay.var("x", shape=(3,), dtype="float32") y = relay.var("y", shape=(3,), dtype="float32") z = x + y program = relay.Function([x, y], z) module = tvm.IRModule.from_expr(program) ###################################################################### # Now, we create random inputs to feed into this program using numpy: import numpy as np np.random.seed(23) # for reproducibility x_input = np.random.rand(3).astype("float32") y_input = np.random.rand(3).astype("float32") print("x: {}".format(x_input)) print("y: {}".format(y_input)) ###################################################################### # Finally, we're ready to run the program: z_output = relay.create_executor(mod=module).evaluate()(x_input, y_input) print("z: {}".format(z_output)) ###################################################################### # Adding Custom Datatypes # ----------------------- # Now, we will do the same, but we will use a custom datatype for our intermediate computation. # # We use the same input variables ``x`` and ``y`` as above, but before adding ``x + y``, we first cast both ``x`` and ``y`` to a custom datatype via the ``relay.cast(...)`` call. # # Note how we specify the custom datatype: we indicate it using the special ``custom[...]`` syntax. # Additionally, note the "32" after the datatype: this is the bitwidth of the custom datatype. This tells TVM that each instance of ``myfloat`` is 32 bits wide. try: with tvm.transform.PassContext(config={"tir.disable_vectorize": True}): x_myfloat = relay.cast(x, dtype="custom[myfloat]32") y_myfloat = relay.cast(y, dtype="custom[myfloat]32") z_myfloat = x_myfloat + y_myfloat z = relay.cast(z_myfloat, dtype="float32") except tvm.TVMError as e: # Print last line of error print(str(e).split("\n")[-1]) ###################################################################### # Trying to generate this program throws an error from TVM. # TVM does not know how to handle any custom datatype out of the box! # We first have to register the custom type with TVM, giving it a name and a type code: tvm.target.datatype.register("myfloat", 150) ###################################################################### # Note that the type code, 150, is currently chosen manually by the user. # See ``TVMTypeCode::kCustomBegin`` in `include/tvm/runtime/c_runtime_api.h <https://github.com/apache/tvm/blob/main/include/tvm/runtime/data_type.h>`_. # Now we can generate our program again: x_myfloat = relay.cast(x, dtype="custom[myfloat]32") y_myfloat = relay.cast(y, dtype="custom[myfloat]32") z_myfloat = x_myfloat + y_myfloat z = relay.cast(z_myfloat, dtype="float32") program = relay.Function([x, y], z) module = tvm.IRModule.from_expr(program) module = relay.transform.InferType()(module) ###################################################################### # Now we have a Relay program that uses myfloat! print(program) ###################################################################### # Now that we can express our program without errors, let's try running it! try: with tvm.transform.PassContext(config={"tir.disable_vectorize": True}): z_output_myfloat = relay.create_executor("graph", mod=module).evaluate()(x_input, y_input) print("z: {}".format(y_myfloat)) except tvm.TVMError as e: # Print last line of error print(str(e).split("\n")[-1]) ###################################################################### # Now, trying to compile this program throws an error. # Let's dissect this error. # # The error is occurring during the process of lowering the custom datatype code to code that TVM can compile and run. # TVM is telling us that it cannot find a *lowering function* for the ``Cast`` operation, when casting from source type 2 (``float``, in TVM), to destination type 150 (our custom datatype). # When lowering custom datatypes, if TVM encounters an operation over a custom datatype, it looks for a user-registered *lowering function*, which tells it how to lower the operation to an operation over datatypes it understands. # We have not told TVM how to lower ``Cast`` operations for our custom datatypes; thus, the source of this error. # # To fix this error, we simply need to specify a lowering function: tvm.target.datatype.register_op( tvm.target.datatype.create_lower_func( { (32, 32): "FloatToCustom32", # cast from float32 to myfloat32 } ), "Cast", "llvm", "float", "myfloat", ) ###################################################################### # The ``register_op(...)`` call takes a lowering function, and a number of parameters which specify exactly the operation which should be lowered with the provided lowering function. # In this case, the arguments we pass specify that this lowering function is for lowering a ``Cast`` from ``float`` to ``myfloat`` for target ``"llvm"``. # # The lowering function passed into this call is very general: it should take an operation of the specified type (in this case, `Cast`) and return another operation which only uses datatypes which TVM understands. # # In the general case, we expect users to implement operations over their custom datatypes using calls to an external library. # In our example, our ``myfloat`` library implements a ``Cast`` from ``float`` to 32-bit ``myfloat`` in the function ``FloatToCustom32``. # To provide for the general case, we have made a helper function, ``create_lower_func(...)``, # which does just this: given a dictionary, it replaces the given operation with a ``Call`` to the appropriate function name provided based on the op and the bit widths. # It additionally removes usages of the custom datatype by storing the custom datatype in an opaque ``uint`` of the appropriate width; in our case, a ``uint32_t``. # For more information, see `the source code <https://github.com/apache/tvm/blob/main/python/tvm/target/datatype.py>`_. # We can now re-try running the program: try: with tvm.transform.PassContext(config={"tir.disable_vectorize": True}): z_output_myfloat = relay.create_executor("graph", mod=module).evaluate()(x_input, y_input) print("z: {}".format(z_output_myfloat)) except tvm.TVMError as e: # Print last line of error print(str(e).split("\n")[-1]) ###################################################################### # This new error tells us that the ``Add`` lowering function is not found, which is good news, as it's no longer complaining about the ``Cast``! # We know what to do from here: we just need to register the lowering functions for the other operations in our program. # # Note that for ``Add``, ``create_lower_func`` takes in a dict where the key is an integer. # For ``Cast`` operations, we require a 2-tuple to specify the ``src_bit_length`` and the ``dest_bit_length``, # while for all other operations, the bit length is the same between the operands so we only require one integer to specify ``bit_length``. tvm.target.datatype.register_op( tvm.target.datatype.create_lower_func({32: "Custom32Add"}), "Add", "llvm", "myfloat", ) tvm.target.datatype.register_op( tvm.target.datatype.create_lower_func({(32, 32): "Custom32ToFloat"}), "Cast", "llvm", "myfloat", "float", ) # Now, we can run our program without errors. with tvm.transform.PassContext(config={"tir.disable_vectorize": True}): z_output_myfloat = relay.create_executor(mod=module).evaluate()(x_input, y_input) print("z: {}".format(z_output_myfloat)) print("x:\t\t{}".format(x_input)) print("y:\t\t{}".format(y_input)) print("z (float32):\t{}".format(z_output)) print("z (myfloat32):\t{}".format(z_output_myfloat)) # Perhaps as expected, the ``myfloat32`` results and ``float32`` are exactly the same! ###################################################################### # Running Models With Custom Datatypes # ------------------------------------ # # We will first choose the model which we would like to run with myfloat. # In this case we use `Mobilenet <https://arxiv.org/abs/1704.04861>`_. # We choose Mobilenet due to its small size. # In this alpha state of the Bring Your Own Datatypes framework, we have not implemented any software optimizations for running software emulations of custom datatypes; the result is poor performance due to many calls into our datatype emulation library. # # First let us define two helper functions to get the mobilenet model and a cat image. def get_mobilenet(): dshape = (1, 3, 224, 224) from mxnet.gluon.model_zoo.vision import get_model block = get_model("mobilenet0.25", pretrained=True) shape_dict = {"data": dshape} return relay.frontend.from_mxnet(block, shape_dict) def get_cat_image(): from tvm.contrib.download import download_testdata from PIL import Image url = "https://gist.githubusercontent.com/zhreshold/bcda4716699ac97ea44f791c24310193/raw/fa7ef0e9c9a5daea686d6473a62aacd1a5885849/cat.png" dst = "cat.png" real_dst = download_testdata(url, dst, module="data") img = Image.open(real_dst).resize((224, 224)) # CoreML's standard model image format is BGR img_bgr = np.array(img)[:, :, ::-1] img = np.transpose(img_bgr, (2, 0, 1))[np.newaxis, :] return np.asarray(img, dtype="float32") module, params = get_mobilenet() ###################################################################### # It's easy to execute MobileNet with native TVM: ex = tvm.relay.create_executor("graph", mod=module, params=params) input = get_cat_image() result = ex.evaluate()(input).numpy() # print first 10 elements print(result.flatten()[:10]) ###################################################################### # Now, we would like to change the model to use myfloat internally. To do so, we need to convert the network. To do this, we first define a function which will help us convert tensors: def convert_ndarray(dst_dtype, array): """Converts an NDArray into the specified datatype""" x = relay.var("x", shape=array.shape, dtype=str(array.dtype)) cast = relay.Function([x], x.astype(dst_dtype)) with tvm.transform.PassContext(config={"tir.disable_vectorize": True}): return relay.create_executor("graph").evaluate(cast)(array) ###################################################################### # Now, to actually convert the entire network, we have written `a pass in Relay <https://github.com/gussmith23/tvm/blob/ea174c01c54a2529e19ca71e125f5884e728da6e/python/tvm/relay/frontend/change_datatype.py#L21>`_ which simply converts all nodes within the model to use the new datatype. from tvm.relay.frontend.change_datatype import ChangeDatatype src_dtype = "float32" dst_dtype = "custom[myfloat]32" module = relay.transform.InferType()(module) # Currently, custom datatypes only work if you run simplify_inference beforehand module = tvm.relay.transform.SimplifyInference()(module) # Run type inference before changing datatype module = tvm.relay.transform.InferType()(module) # Change datatype from float to myfloat and re-infer types cdtype = ChangeDatatype(src_dtype, dst_dtype) expr = cdtype.visit(module["main"]) module = tvm.relay.transform.InferType()(module) # We also convert the parameters: params = {k: convert_ndarray(dst_dtype, v) for k, v in params.items()} # We also need to convert our input: input = convert_ndarray(dst_dtype, input) # Finally, we can try to run the converted model: try: # Vectorization is not implemented with custom datatypes. with tvm.transform.PassContext(config={"tir.disable_vectorize": True}): result_myfloat = tvm.relay.create_executor("graph", mod=module).evaluate(expr)( input, **params ) except tvm.TVMError as e: print(str(e).split("\n")[-1]) ###################################################################### # When we attempt to run the model, we get a familiar error telling us that more functions need to be registered for myfloat. # # Because this is a neural network, many more operations are required. # Here, we register all the needed functions: tvm.target.datatype.register_op( tvm.target.datatype.create_lower_func({32: "FloatToCustom32"}), "FloatImm", "llvm", "myfloat", ) tvm.target.datatype.register_op( tvm.target.datatype.lower_ite, "Call", "llvm", "myfloat", intrinsic_name="tir.if_then_else" ) tvm.target.datatype.register_op( tvm.target.datatype.lower_call_pure_extern, "Call", "llvm", "myfloat", intrinsic_name="tir.call_pure_extern", ) tvm.target.datatype.register_op( tvm.target.datatype.create_lower_func({32: "Custom32Mul"}), "Mul", "llvm", "myfloat", ) tvm.target.datatype.register_op( tvm.target.datatype.create_lower_func({32: "Custom32Div"}), "Div", "llvm", "myfloat", ) tvm.target.datatype.register_op( tvm.target.datatype.create_lower_func({32: "Custom32Sqrt"}), "Call", "llvm", "myfloat", intrinsic_name="tir.sqrt", ) tvm.target.datatype.register_op( tvm.target.datatype.create_lower_func({32: "Custom32Sub"}), "Sub", "llvm", "myfloat", ) tvm.target.datatype.register_op( tvm.target.datatype.create_lower_func({32: "Custom32Exp"}), "Call", "llvm", "myfloat", intrinsic_name="tir.exp", ) tvm.target.datatype.register_op( tvm.target.datatype.create_lower_func({32: "Custom32Max"}), "Max", "llvm", "myfloat", ) tvm.target.datatype.register_min_func( tvm.target.datatype.create_min_lower_func({32: "MinCustom32"}, "myfloat"), "myfloat", ) ###################################################################### # Note we are making use of two new functions: ``register_min_func`` and ``create_min_lower_func``. # # ``register_min_func`` takes in an integer ``num_bits`` for the bit length, and should return an operation # representing the minimum finite representable value for the custom data type with the specified bit length. # # Similar to ``register_op`` and ``create_lower_func``, the ``create_min_lower_func`` handles the general case # where the minimum representable custom datatype value is implemented using calls to an external library. # # Now we can finally run the model: # Vectorization is not implemented with custom datatypes. with tvm.transform.PassContext(config={"tir.disable_vectorize": True}): result_myfloat = relay.create_executor(mod=module).evaluate(expr)(input, **params) result_myfloat = convert_ndarray(src_dtype, result_myfloat).numpy() # print first 10 elements print(result_myfloat.flatten()[:10]) # Again, note that the output using 32-bit myfloat exactly the same as 32-bit floats, # because myfloat is exactly a float! np.testing.assert_array_equal(result, result_myfloat)
py
1a4878b504dad12eeb84c229b2c4507741c9e786
from sympy import (Add, Matrix, Mul, S, symbols, Eq, pi, factorint, oo, powsimp, Rational) from sympy.core.function import _mexpand from sympy.core.compatibility import ordered from sympy.functions.elementary.trigonometric import sin from sympy.solvers.diophantine import diophantine from sympy.solvers.diophantine.diophantine import (diop_DN, diop_solve, diop_ternary_quadratic_normal, diop_general_pythagorean, diop_ternary_quadratic, diop_linear, diop_quadratic, diop_general_sum_of_squares, diop_general_sum_of_even_powers, descent, diop_bf_DN, divisible, equivalent, find_DN, ldescent, length, reconstruct, partition, power_representation, prime_as_sum_of_two_squares, square_factor, sum_of_four_squares, sum_of_three_squares, transformation_to_DN, transformation_to_normal, classify_diop, base_solution_linear, cornacchia, sqf_normal, gaussian_reduce, holzer, check_param, parametrize_ternary_quadratic, sum_of_powers, sum_of_squares, _diop_ternary_quadratic_normal, _diop_general_sum_of_squares, _nint_or_floor, _odd, _even, _remove_gcd, _can_do_sum_of_squares) from sympy.utilities import default_sort_key from sympy.testing.pytest import slow, raises, XFAIL from sympy.utilities.iterables import ( signed_permutations) a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z = symbols( "a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z", integer=True) t_0, t_1, t_2, t_3, t_4, t_5, t_6 = symbols("t_:7", integer=True) m1, m2, m3 = symbols('m1:4', integer=True) n1 = symbols('n1', integer=True) def diop_simplify(eq): return _mexpand(powsimp(_mexpand(eq))) def test_input_format(): raises(TypeError, lambda: diophantine(sin(x))) raises(TypeError, lambda: diophantine(x/pi - 3)) def test_nosols(): # diophantine should sympify eq so that these are equivalent assert diophantine(3) == set() assert diophantine(S(3)) == set() def test_univariate(): assert diop_solve((x - 1)*(x - 2)**2) == set([(1,), (2,)]) assert diop_solve((x - 1)*(x - 2)) == set([(1,), (2,)]) def test_classify_diop(): raises(TypeError, lambda: classify_diop(x**2/3 - 1)) raises(ValueError, lambda: classify_diop(1)) raises(NotImplementedError, lambda: classify_diop(w*x*y*z - 1)) raises(NotImplementedError, lambda: classify_diop(x**3 + y**3 + z**4 - 90)) assert classify_diop(14*x**2 + 15*x - 42) == ( [x], {1: -42, x: 15, x**2: 14}, 'univariate') assert classify_diop(x*y + z) == ( [x, y, z], {x*y: 1, z: 1}, 'inhomogeneous_ternary_quadratic') assert classify_diop(x*y + z + w + x**2) == ( [w, x, y, z], {x*y: 1, w: 1, x**2: 1, z: 1}, 'inhomogeneous_general_quadratic') assert classify_diop(x*y + x*z + x**2 + 1) == ( [x, y, z], {x*y: 1, x*z: 1, x**2: 1, 1: 1}, 'inhomogeneous_general_quadratic') assert classify_diop(x*y + z + w + 42) == ( [w, x, y, z], {x*y: 1, w: 1, 1: 42, z: 1}, 'inhomogeneous_general_quadratic') assert classify_diop(x*y + z*w) == ( [w, x, y, z], {x*y: 1, w*z: 1}, 'homogeneous_general_quadratic') assert classify_diop(x*y**2 + 1) == ( [x, y], {x*y**2: 1, 1: 1}, 'cubic_thue') assert classify_diop(x**4 + y**4 + z**4 - (1 + 16 + 81)) == ( [x, y, z], {1: -98, x**4: 1, z**4: 1, y**4: 1}, 'general_sum_of_even_powers') def test_linear(): assert diop_solve(x) == (0,) assert diop_solve(1*x) == (0,) assert diop_solve(3*x) == (0,) assert diop_solve(x + 1) == (-1,) assert diop_solve(2*x + 1) == (None,) assert diop_solve(2*x + 4) == (-2,) assert diop_solve(y + x) == (t_0, -t_0) assert diop_solve(y + x + 0) == (t_0, -t_0) assert diop_solve(y + x - 0) == (t_0, -t_0) assert diop_solve(0*x - y - 5) == (-5,) assert diop_solve(3*y + 2*x - 5) == (3*t_0 - 5, -2*t_0 + 5) assert diop_solve(2*x - 3*y - 5) == (3*t_0 - 5, 2*t_0 - 5) assert diop_solve(-2*x - 3*y - 5) == (3*t_0 + 5, -2*t_0 - 5) assert diop_solve(7*x + 5*y) == (5*t_0, -7*t_0) assert diop_solve(2*x + 4*y) == (2*t_0, -t_0) assert diop_solve(4*x + 6*y - 4) == (3*t_0 - 2, -2*t_0 + 2) assert diop_solve(4*x + 6*y - 3) == (None, None) assert diop_solve(0*x + 3*y - 4*z + 5) == (4*t_0 + 5, 3*t_0 + 5) assert diop_solve(4*x + 3*y - 4*z + 5) == (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5) assert diop_solve(4*x + 3*y - 4*z + 5, None) == (0, 5, 5) assert diop_solve(4*x + 2*y + 8*z - 5) == (None, None, None) assert diop_solve(5*x + 7*y - 2*z - 6) == (t_0, -3*t_0 + 2*t_1 + 6, -8*t_0 + 7*t_1 + 18) assert diop_solve(3*x - 6*y + 12*z - 9) == (2*t_0 + 3, t_0 + 2*t_1, t_1) assert diop_solve(6*w + 9*x + 20*y - z) == (t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 20*t_2) # to ignore constant factors, use diophantine raises(TypeError, lambda: diop_solve(x/2)) def test_quadratic_simple_hyperbolic_case(): # Simple Hyperbolic case: A = C = 0 and B != 0 assert diop_solve(3*x*y + 34*x - 12*y + 1) == \ set([(-133, -11), (5, -57)]) assert diop_solve(6*x*y + 2*x + 3*y + 1) == set([]) assert diop_solve(-13*x*y + 2*x - 4*y - 54) == set([(27, 0)]) assert diop_solve(-27*x*y - 30*x - 12*y - 54) == set([(-14, -1)]) assert diop_solve(2*x*y + 5*x + 56*y + 7) == set([(-161, -3),\ (-47,-6), (-35, -12), (-29, -69),\ (-27, 64), (-21, 7),(-9, 1),\ (105, -2)]) assert diop_solve(6*x*y + 9*x + 2*y + 3) == set([]) assert diop_solve(x*y + x + y + 1) == set([(-1, t), (t, -1)]) assert diophantine(48*x*y) def test_quadratic_elliptical_case(): # Elliptical case: B**2 - 4AC < 0 # Two test cases highlighted require lot of memory due to quadratic_congruence() method. # This above method should be replaced by Pernici's square_mod() method when his PR gets merged. #assert diop_solve(42*x**2 + 8*x*y + 15*y**2 + 23*x + 17*y - 4915) == set([(-11, -1)]) assert diop_solve(4*x**2 + 3*y**2 + 5*x - 11*y + 12) == set([]) assert diop_solve(x**2 + y**2 + 2*x + 2*y + 2) == set([(-1, -1)]) #assert diop_solve(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) == set([(-15, 6)]) assert diop_solve(10*x**2 + 12*x*y + 12*y**2 - 34) == \ set([(-1, -1), (-1, 2), (1, -2), (1, 1)]) def test_quadratic_parabolic_case(): # Parabolic case: B**2 - 4AC = 0 assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 5*x + 7*y + 16) assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 6*x + 12*y - 6) assert check_solutions(8*x**2 + 24*x*y + 18*y**2 + 4*x + 6*y - 7) assert check_solutions(-4*x**2 + 4*x*y - y**2 + 2*x - 3) assert check_solutions(x**2 + 2*x*y + y**2 + 2*x + 2*y + 1) assert check_solutions(x**2 - 2*x*y + y**2 + 2*x + 2*y + 1) assert check_solutions(y**2 - 41*x + 40) def test_quadratic_perfect_square(): # B**2 - 4*A*C > 0 # B**2 - 4*A*C is a perfect square assert check_solutions(48*x*y) assert check_solutions(4*x**2 - 5*x*y + y**2 + 2) assert check_solutions(-2*x**2 - 3*x*y + 2*y**2 -2*x - 17*y + 25) assert check_solutions(12*x**2 + 13*x*y + 3*y**2 - 2*x + 3*y - 12) assert check_solutions(8*x**2 + 10*x*y + 2*y**2 - 32*x - 13*y - 23) assert check_solutions(4*x**2 - 4*x*y - 3*y- 8*x - 3) assert check_solutions(- 4*x*y - 4*y**2 - 3*y- 5*x - 10) assert check_solutions(x**2 - y**2 - 2*x - 2*y) assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y) assert check_solutions(4*x**2 - 9*y**2 - 4*x - 12*y - 3) def test_quadratic_non_perfect_square(): # B**2 - 4*A*C is not a perfect square # Used check_solutions() since the solutions are complex expressions involving # square roots and exponents assert check_solutions(x**2 - 2*x - 5*y**2) assert check_solutions(3*x**2 - 2*y**2 - 2*x - 2*y) assert check_solutions(x**2 - x*y - y**2 - 3*y) assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y) def test_issue_9106(): eq = -48 - 2*x*(3*x - 1) + y*(3*y - 1) v = (x, y) for sol in diophantine(eq): assert not diop_simplify(eq.xreplace(dict(zip(v, sol)))) def test_issue_18138(): eq = x**2 - x - y**2 v = (x, y) for sol in diophantine(eq): assert not diop_simplify(eq.xreplace(dict(zip(v, sol)))) @slow def test_quadratic_non_perfect_slow(): assert check_solutions(8*x**2 + 10*x*y - 2*y**2 - 32*x - 13*y - 23) # This leads to very large numbers. # assert check_solutions(5*x**2 - 13*x*y + y**2 - 4*x - 4*y - 15) assert check_solutions(-3*x**2 - 2*x*y + 7*y**2 - 5*x - 7) assert check_solutions(-4 - x + 4*x**2 - y - 3*x*y - 4*y**2) assert check_solutions(1 + 2*x + 2*x**2 + 2*y + x*y - 2*y**2) def test_DN(): # Most of the test cases were adapted from, # Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004. # http://www.jpr2718.org/pell.pdf # others are verified using Wolfram Alpha. # Covers cases where D <= 0 or D > 0 and D is a square or N = 0 # Solutions are straightforward in these cases. assert diop_DN(3, 0) == [(0, 0)] assert diop_DN(-17, -5) == [] assert diop_DN(-19, 23) == [(2, 1)] assert diop_DN(-13, 17) == [(2, 1)] assert diop_DN(-15, 13) == [] assert diop_DN(0, 5) == [] assert diop_DN(0, 9) == [(3, t)] assert diop_DN(9, 0) == [(3*t, t)] assert diop_DN(16, 24) == [] assert diop_DN(9, 180) == [(18, 4)] assert diop_DN(9, -180) == [(12, 6)] assert diop_DN(7, 0) == [(0, 0)] # When equation is x**2 + y**2 = N # Solutions are interchangeable assert diop_DN(-1, 5) == [(2, 1), (1, 2)] assert diop_DN(-1, 169) == [(12, 5), (5, 12), (13, 0), (0, 13)] # D > 0 and D is not a square # N = 1 assert diop_DN(13, 1) == [(649, 180)] assert diop_DN(980, 1) == [(51841, 1656)] assert diop_DN(981, 1) == [(158070671986249, 5046808151700)] assert diop_DN(986, 1) == [(49299, 1570)] assert diop_DN(991, 1) == [(379516400906811930638014896080, 12055735790331359447442538767)] assert diop_DN(17, 1) == [(33, 8)] assert diop_DN(19, 1) == [(170, 39)] # N = -1 assert diop_DN(13, -1) == [(18, 5)] assert diop_DN(991, -1) == [] assert diop_DN(41, -1) == [(32, 5)] assert diop_DN(290, -1) == [(17, 1)] assert diop_DN(21257, -1) == [(13913102721304, 95427381109)] assert diop_DN(32, -1) == [] # |N| > 1 # Some tests were created using calculator at # http://www.numbertheory.org/php/patz.html assert diop_DN(13, -4) == [(3, 1), (393, 109), (36, 10)] # Source I referred returned (3, 1), (393, 109) and (-3, 1) as fundamental solutions # So (-3, 1) and (393, 109) should be in the same equivalent class assert equivalent(-3, 1, 393, 109, 13, -4) == True assert diop_DN(13, 27) == [(220, 61), (40, 11), (768, 213), (12, 3)] assert set(diop_DN(157, 12)) == \ set([(13, 1), (10663, 851), (579160, 46222), \ (483790960,38610722), (26277068347, 2097138361), (21950079635497, 1751807067011)]) assert diop_DN(13, 25) == [(3245, 900)] assert diop_DN(192, 18) == [] assert diop_DN(23, 13) == [(-6, 1), (6, 1)] assert diop_DN(167, 2) == [(13, 1)] assert diop_DN(167, -2) == [] assert diop_DN(123, -2) == [(11, 1)] # One calculator returned [(11, 1), (-11, 1)] but both of these are in # the same equivalence class assert equivalent(11, 1, -11, 1, 123, -2) assert diop_DN(123, -23) == [(-10, 1), (10, 1)] assert diop_DN(0, 0, t) == [(0, t)] assert diop_DN(0, -1, t) == [] def test_bf_pell(): assert diop_bf_DN(13, -4) == [(3, 1), (-3, 1), (36, 10)] assert diop_bf_DN(13, 27) == [(12, 3), (-12, 3), (40, 11), (-40, 11)] assert diop_bf_DN(167, -2) == [] assert diop_bf_DN(1729, 1) == [(44611924489705, 1072885712316)] assert diop_bf_DN(89, -8) == [(9, 1), (-9, 1)] assert diop_bf_DN(21257, -1) == [(13913102721304, 95427381109)] assert diop_bf_DN(340, -4) == [(756, 41)] assert diop_bf_DN(-1, 0, t) == [(0, 0)] assert diop_bf_DN(0, 0, t) == [(0, t)] assert diop_bf_DN(4, 0, t) == [(2*t, t), (-2*t, t)] assert diop_bf_DN(3, 0, t) == [(0, 0)] assert diop_bf_DN(1, -2, t) == [] def test_length(): assert length(2, 1, 0) == 1 assert length(-2, 4, 5) == 3 assert length(-5, 4, 17) == 4 assert length(0, 4, 13) == 6 assert length(7, 13, 11) == 23 assert length(1, 6, 4) == 2 def is_pell_transformation_ok(eq): """ Test whether X*Y, X, or Y terms are present in the equation after transforming the equation using the transformation returned by transformation_to_pell(). If they are not present we are good. Moreover, coefficient of X**2 should be a divisor of coefficient of Y**2 and the constant term. """ A, B = transformation_to_DN(eq) u = (A*Matrix([X, Y]) + B)[0] v = (A*Matrix([X, Y]) + B)[1] simplified = diop_simplify(eq.subs(zip((x, y), (u, v)))) coeff = dict([reversed(t.as_independent(*[X, Y])) for t in simplified.args]) for term in [X*Y, X, Y]: if term in coeff.keys(): return False for term in [X**2, Y**2, 1]: if term not in coeff.keys(): coeff[term] = 0 if coeff[X**2] != 0: return divisible(coeff[Y**2], coeff[X**2]) and \ divisible(coeff[1], coeff[X**2]) return True def test_transformation_to_pell(): assert is_pell_transformation_ok(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y - 14) assert is_pell_transformation_ok(-17*x**2 + 19*x*y - 7*y**2 - 5*x - 13*y - 23) assert is_pell_transformation_ok(x**2 - y**2 + 17) assert is_pell_transformation_ok(-x**2 + 7*y**2 - 23) assert is_pell_transformation_ok(25*x**2 - 45*x*y + 5*y**2 - 5*x - 10*y + 5) assert is_pell_transformation_ok(190*x**2 + 30*x*y + y**2 - 3*y - 170*x - 130) assert is_pell_transformation_ok(x**2 - 2*x*y -190*y**2 - 7*y - 23*x - 89) assert is_pell_transformation_ok(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) def test_find_DN(): assert find_DN(x**2 - 2*x - y**2) == (1, 1) assert find_DN(x**2 - 3*y**2 - 5) == (3, 5) assert find_DN(x**2 - 2*x*y - 4*y**2 - 7) == (5, 7) assert find_DN(4*x**2 - 8*x*y - y**2 - 9) == (20, 36) assert find_DN(7*x**2 - 2*x*y - y**2 - 12) == (8, 84) assert find_DN(-3*x**2 + 4*x*y -y**2) == (1, 0) assert find_DN(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y -14) == (101, -7825480) def test_ldescent(): # Equations which have solutions u = ([(13, 23), (3, -11), (41, -113), (4, -7), (-7, 4), (91, -3), (1, 1), (1, -1), (4, 32), (17, 13), (123689, 1), (19, -570)]) for a, b in u: w, x, y = ldescent(a, b) assert a*x**2 + b*y**2 == w**2 assert ldescent(-1, -1) is None def test_diop_ternary_quadratic_normal(): assert check_solutions(234*x**2 - 65601*y**2 - z**2) assert check_solutions(23*x**2 + 616*y**2 - z**2) assert check_solutions(5*x**2 + 4*y**2 - z**2) assert check_solutions(3*x**2 + 6*y**2 - 3*z**2) assert check_solutions(x**2 + 3*y**2 - z**2) assert check_solutions(4*x**2 + 5*y**2 - z**2) assert check_solutions(x**2 + y**2 - z**2) assert check_solutions(16*x**2 + y**2 - 25*z**2) assert check_solutions(6*x**2 - y**2 + 10*z**2) assert check_solutions(213*x**2 + 12*y**2 - 9*z**2) assert check_solutions(34*x**2 - 3*y**2 - 301*z**2) assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2) def is_normal_transformation_ok(eq): A = transformation_to_normal(eq) X, Y, Z = A*Matrix([x, y, z]) simplified = diop_simplify(eq.subs(zip((x, y, z), (X, Y, Z)))) coeff = dict([reversed(t.as_independent(*[X, Y, Z])) for t in simplified.args]) for term in [X*Y, Y*Z, X*Z]: if term in coeff.keys(): return False return True def test_transformation_to_normal(): assert is_normal_transformation_ok(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z) assert is_normal_transformation_ok(x**2 + 3*y**2 - 100*z**2) assert is_normal_transformation_ok(x**2 + 23*y*z) assert is_normal_transformation_ok(3*y**2 - 100*z**2 - 12*x*y) assert is_normal_transformation_ok(x**2 + 23*x*y - 34*y*z + 12*x*z) assert is_normal_transformation_ok(z**2 + 34*x*y - 23*y*z + x*z) assert is_normal_transformation_ok(x**2 + y**2 + z**2 - x*y - y*z - x*z) assert is_normal_transformation_ok(x**2 + 2*y*z + 3*z**2) assert is_normal_transformation_ok(x*y + 2*x*z + 3*y*z) assert is_normal_transformation_ok(2*x*z + 3*y*z) def test_diop_ternary_quadratic(): assert check_solutions(2*x**2 + z**2 + y**2 - 4*x*y) assert check_solutions(x**2 - y**2 - z**2 - x*y - y*z) assert check_solutions(3*x**2 - x*y - y*z - x*z) assert check_solutions(x**2 - y*z - x*z) assert check_solutions(5*x**2 - 3*x*y - x*z) assert check_solutions(4*x**2 - 5*y**2 - x*z) assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) assert check_solutions(8*x**2 - 12*y*z) assert check_solutions(45*x**2 - 7*y**2 - 8*x*y - z**2) assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y) assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z) assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 17*y*z) assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 16*y*z + 12*x*z) assert check_solutions(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z) assert check_solutions(x*y - 7*y*z + 13*x*z) assert diop_ternary_quadratic_normal(x**2 + y**2 + z**2) == (None, None, None) assert diop_ternary_quadratic_normal(x**2 + y**2) is None raises(ValueError, lambda: _diop_ternary_quadratic_normal((x, y, z), {x*y: 1, x**2: 2, y**2: 3, z**2: 0})) eq = -2*x*y - 6*x*z + 7*y**2 - 3*y*z + 4*z**2 assert diop_ternary_quadratic(eq) == (7, 2, 0) assert diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) == \ (1, 0, 2) assert diop_ternary_quadratic(x*y + 2*y*z) == \ (-2, 0, n1) eq = -5*x*y - 8*x*z - 3*y*z + 8*z**2 assert parametrize_ternary_quadratic(eq) == \ (8*p**2 - 3*p*q, -8*p*q + 8*q**2, 5*p*q) # this cannot be tested with diophantine because it will # factor into a product assert diop_solve(x*y + 2*y*z) == (-2*p*q, -n1*p**2 + p**2, p*q) def test_square_factor(): assert square_factor(1) == square_factor(-1) == 1 assert square_factor(0) == 1 assert square_factor(5) == square_factor(-5) == 1 assert square_factor(4) == square_factor(-4) == 2 assert square_factor(12) == square_factor(-12) == 2 assert square_factor(6) == 1 assert square_factor(18) == 3 assert square_factor(52) == 2 assert square_factor(49) == 7 assert square_factor(392) == 14 assert square_factor(factorint(-12)) == 2 def test_parametrize_ternary_quadratic(): assert check_solutions(x**2 + y**2 - z**2) assert check_solutions(x**2 + 2*x*y + z**2) assert check_solutions(234*x**2 - 65601*y**2 - z**2) assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) assert check_solutions(x**2 - y**2 - z**2) assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y) assert check_solutions(8*x*y + z**2) assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2) assert check_solutions(236*x**2 - 225*y**2 - 11*x*y - 13*y*z - 17*x*z) assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z) assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2) def test_no_square_ternary_quadratic(): assert check_solutions(2*x*y + y*z - 3*x*z) assert check_solutions(189*x*y - 345*y*z - 12*x*z) assert check_solutions(23*x*y + 34*y*z) assert check_solutions(x*y + y*z + z*x) assert check_solutions(23*x*y + 23*y*z + 23*x*z) def test_descent(): u = ([(13, 23), (3, -11), (41, -113), (91, -3), (1, 1), (1, -1), (17, 13), (123689, 1), (19, -570)]) for a, b in u: w, x, y = descent(a, b) assert a*x**2 + b*y**2 == w**2 # the docstring warns against bad input, so these are expected results # - can't both be negative raises(TypeError, lambda: descent(-1, -3)) # A can't be zero unless B != 1 raises(ZeroDivisionError, lambda: descent(0, 3)) # supposed to be square-free raises(TypeError, lambda: descent(4, 3)) def test_diophantine(): assert check_solutions((x - y)*(y - z)*(z - x)) assert check_solutions((x - y)*(x**2 + y**2 - z**2)) assert check_solutions((x - 3*y + 7*z)*(x**2 + y**2 - z**2)) assert check_solutions((x**2 - 3*y**2 - 1)) assert check_solutions(y**2 + 7*x*y) assert check_solutions(x**2 - 3*x*y + y**2) assert check_solutions(z*(x**2 - y**2 - 15)) assert check_solutions(x*(2*y - 2*z + 5)) assert check_solutions((x**2 - 3*y**2 - 1)*(x**2 - y**2 - 15)) assert check_solutions((x**2 - 3*y**2 - 1)*(y - 7*z)) assert check_solutions((x**2 + y**2 - z**2)*(x - 7*y - 3*z + 4*w)) # Following test case caused problems in parametric representation # But this can be solved by factoring out y. # No need to use methods for ternary quadratic equations. assert check_solutions(y**2 - 7*x*y + 4*y*z) assert check_solutions(x**2 - 2*x + 1) assert diophantine(x - y) == diophantine(Eq(x, y)) # 18196 eq = x**4 + y**4 - 97 assert diophantine(eq, permute=True) == diophantine(-eq, permute=True) assert diophantine(3*x*pi - 2*y*pi) == set([(2*t_0, 3*t_0)]) eq = x**2 + y**2 + z**2 - 14 base_sol = set([(1, 2, 3)]) assert diophantine(eq) == base_sol complete_soln = set(signed_permutations(base_sol.pop())) assert diophantine(eq, permute=True) == complete_soln assert diophantine(x**2 + x*Rational(15, 14) - 3) == set() # test issue 11049 eq = 92*x**2 - 99*y**2 - z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ (9, 7, 51) assert diophantine(eq) == set([( 891*p**2 + 9*q**2, -693*p**2 - 102*p*q + 7*q**2, 5049*p**2 - 1386*p*q - 51*q**2)]) eq = 2*x**2 + 2*y**2 - z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ (1, 1, 2) assert diophantine(eq) == set([( 2*p**2 - q**2, -2*p**2 + 4*p*q - q**2, 4*p**2 - 4*p*q + 2*q**2)]) eq = 411*x**2+57*y**2-221*z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ (2021, 2645, 3066) assert diophantine(eq) == \ set([(115197*p**2 - 446641*q**2, -150765*p**2 + 1355172*p*q - 584545*q**2, 174762*p**2 - 301530*p*q + 677586*q**2)]) eq = 573*x**2+267*y**2-984*z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ (49, 233, 127) assert diophantine(eq) == \ set([(4361*p**2 - 16072*q**2, -20737*p**2 + 83312*p*q - 76424*q**2, 11303*p**2 - 41474*p*q + 41656*q**2)]) # this produces factors during reconstruction eq = x**2 + 3*y**2 - 12*z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ (0, 2, 1) assert diophantine(eq) == \ set([(24*p*q, 2*p**2 - 24*q**2, p**2 + 12*q**2)]) # solvers have not been written for every type raises(NotImplementedError, lambda: diophantine(x*y**2 + 1)) # rational expressions assert diophantine(1/x) == set() assert diophantine(1/x + 1/y - S.Half) set([(6, 3), (-2, 1), (4, 4), (1, -2), (3, 6)]) assert diophantine(x**2 + y**2 +3*x- 5, permute=True) == \ set([(-1, 1), (-4, -1), (1, -1), (1, 1), (-4, 1), (-1, -1), (4, 1), (4, -1)]) #test issue 18186 assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(x, y), permute=True) == \ set([(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)]) assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(y, x), permute=True) == \ set([(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)]) # issue 18122 assert check_solutions(x**2-y) assert check_solutions(y**2-x) assert diophantine((x**2-y), t) == set([(t, t**2)]) assert diophantine((y**2-x), t) == set([(t**2, -t)]) def test_general_pythagorean(): from sympy.abc import a, b, c, d, e assert check_solutions(a**2 + b**2 + c**2 - d**2) assert check_solutions(a**2 + 4*b**2 + 4*c**2 - d**2) assert check_solutions(9*a**2 + 4*b**2 + 4*c**2 - d**2) assert check_solutions(9*a**2 + 4*b**2 - 25*d**2 + 4*c**2 ) assert check_solutions(9*a**2 - 16*d**2 + 4*b**2 + 4*c**2) assert check_solutions(-e**2 + 9*a**2 + 4*b**2 + 4*c**2 + 25*d**2) assert check_solutions(16*a**2 - b**2 + 9*c**2 + d**2 + 25*e**2) def test_diop_general_sum_of_squares_quick(): for i in range(3, 10): assert check_solutions(sum(i**2 for i in symbols(':%i' % i)) - i) raises(ValueError, lambda: _diop_general_sum_of_squares((x, y), 2)) assert _diop_general_sum_of_squares((x, y, z), -2) == set() eq = x**2 + y**2 + z**2 - (1 + 4 + 9) assert diop_general_sum_of_squares(eq) == \ set([(1, 2, 3)]) eq = u**2 + v**2 + x**2 + y**2 + z**2 - 1313 assert len(diop_general_sum_of_squares(eq, 3)) == 3 # issue 11016 var = symbols(':5') + (symbols('6', negative=True),) eq = Add(*[i**2 for i in var]) - 112 base_soln = set( [(0, 1, 1, 5, 6, -7), (1, 1, 1, 3, 6, -8), (2, 3, 3, 4, 5, -7), (0, 1, 1, 1, 3, -10), (0, 0, 4, 4, 4, -8), (1, 2, 3, 3, 5, -8), (0, 1, 2, 3, 7, -7), (2, 2, 4, 4, 6, -6), (1, 1, 3, 4, 6, -7), (0, 2, 3, 3, 3, -9), (0, 0, 2, 2, 2, -10), (1, 1, 2, 3, 4, -9), (0, 1, 1, 2, 5, -9), (0, 0, 2, 6, 6, -6), (1, 3, 4, 5, 5, -6), (0, 2, 2, 2, 6, -8), (0, 3, 3, 3, 6, -7), (0, 2, 3, 5, 5, -7), (0, 1, 5, 5, 5, -6)]) assert diophantine(eq) == base_soln assert len(diophantine(eq, permute=True)) == 196800 # handle negated squares with signsimp assert diophantine(12 - x**2 - y**2 - z**2) == set([(2, 2, 2)]) # diophantine handles simplification, so classify_diop should # not have to look for additional patterns that are removed # by diophantine eq = a**2 + b**2 + c**2 + d**2 - 4 raises(NotImplementedError, lambda: classify_diop(-eq)) def test_diop_partition(): for n in [8, 10]: for k in range(1, 8): for p in partition(n, k): assert len(p) == k assert [p for p in partition(3, 5)] == [] assert [list(p) for p in partition(3, 5, 1)] == [ [0, 0, 0, 0, 3], [0, 0, 0, 1, 2], [0, 0, 1, 1, 1]] assert list(partition(0)) == [()] assert list(partition(1, 0)) == [()] assert [list(i) for i in partition(3)] == [[1, 1, 1], [1, 2], [3]] def test_prime_as_sum_of_two_squares(): for i in [5, 13, 17, 29, 37, 41, 2341, 3557, 34841, 64601]: a, b = prime_as_sum_of_two_squares(i) assert a**2 + b**2 == i assert prime_as_sum_of_two_squares(7) is None ans = prime_as_sum_of_two_squares(800029) assert ans == (450, 773) and type(ans[0]) is int def test_sum_of_three_squares(): for i in [0, 1, 2, 34, 123, 34304595905, 34304595905394941, 343045959052344, 800, 801, 802, 803, 804, 805, 806]: a, b, c = sum_of_three_squares(i) assert a**2 + b**2 + c**2 == i assert sum_of_three_squares(7) is None assert sum_of_three_squares((4**5)*15) is None assert sum_of_three_squares(25) == (5, 0, 0) assert sum_of_three_squares(4) == (0, 0, 2) def test_sum_of_four_squares(): from random import randint # this should never fail n = randint(1, 100000000000000) assert sum(i**2 for i in sum_of_four_squares(n)) == n assert sum_of_four_squares(0) == (0, 0, 0, 0) assert sum_of_four_squares(14) == (0, 1, 2, 3) assert sum_of_four_squares(15) == (1, 1, 2, 3) assert sum_of_four_squares(18) == (1, 2, 2, 3) assert sum_of_four_squares(19) == (0, 1, 3, 3) assert sum_of_four_squares(48) == (0, 4, 4, 4) def test_power_representation(): tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4), (32760, 2, 3)] for test in tests: n, p, k = test f = power_representation(n, p, k) while True: try: l = next(f) assert len(l) == k chk_sum = 0 for l_i in l: chk_sum = chk_sum + l_i**p assert chk_sum == n except StopIteration: break assert list(power_representation(20, 2, 4, True)) == \ [(1, 1, 3, 3), (0, 0, 2, 4)] raises(ValueError, lambda: list(power_representation(1.2, 2, 2))) raises(ValueError, lambda: list(power_representation(2, 0, 2))) raises(ValueError, lambda: list(power_representation(2, 2, 0))) assert list(power_representation(-1, 2, 2)) == [] assert list(power_representation(1, 1, 1)) == [(1,)] assert list(power_representation(3, 2, 1)) == [] assert list(power_representation(4, 2, 1)) == [(2,)] assert list(power_representation(3**4, 4, 6, zeros=True)) == \ [(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)] assert list(power_representation(3**4, 4, 5, zeros=False)) == [] assert list(power_representation(-2, 3, 2)) == [(-1, -1)] assert list(power_representation(-2, 4, 2)) == [] assert list(power_representation(0, 3, 2, True)) == [(0, 0)] assert list(power_representation(0, 3, 2, False)) == [] # when we are dealing with squares, do feasibility checks assert len(list(power_representation(4**10*(8*10 + 7), 2, 3))) == 0 # there will be a recursion error if these aren't recognized big = 2**30 for i in [13, 10, 7, 5, 4, 2, 1]: assert list(sum_of_powers(big, 2, big - i)) == [] def test_assumptions(): """ Test whether diophantine respects the assumptions. """ #Test case taken from the below so question regarding assumptions in diophantine module #https://stackoverflow.com/questions/23301941/how-can-i-declare-natural-symbols-with-sympy m, n = symbols('m n', integer=True, positive=True) diof = diophantine(n ** 2 + m * n - 500) assert diof == set([(5, 20), (40, 10), (95, 5), (121, 4), (248, 2), (499, 1)]) a, b = symbols('a b', integer=True, positive=False) diof = diophantine(a*b + 2*a + 3*b - 6) assert diof == set([(-15, -3), (-9, -4), (-7, -5), (-6, -6), (-5, -8), (-4, -14)]) def check_solutions(eq): """ Determines whether solutions returned by diophantine() satisfy the original equation. Hope to generalize this so we can remove functions like check_ternay_quadratic, check_solutions_normal, check_solutions() """ s = diophantine(eq) factors = Mul.make_args(eq) var = list(eq.free_symbols) var.sort(key=default_sort_key) while s: solution = s.pop() for f in factors: if diop_simplify(f.subs(zip(var, solution))) == 0: break else: return False return True def test_diopcoverage(): eq = (2*x + y + 1)**2 assert diop_solve(eq) == set([(t_0, -2*t_0 - 1)]) eq = 2*x**2 + 6*x*y + 12*x + 4*y**2 + 18*y + 18 assert diop_solve(eq) == set([(t_0, -t_0 - 3), (2*t_0 - 3, -t_0)]) assert diop_quadratic(x + y**2 - 3) == set([(-t**2 + 3, -t)]) assert diop_linear(x + y - 3) == (t_0, 3 - t_0) assert base_solution_linear(0, 1, 2, t=None) == (0, 0) ans = (3*t - 1, -2*t + 1) assert base_solution_linear(4, 8, 12, t) == ans assert base_solution_linear(4, 8, 12, t=None) == tuple(_.subs(t, 0) for _ in ans) assert cornacchia(1, 1, 20) is None assert cornacchia(1, 1, 5) == set([(2, 1)]) assert cornacchia(1, 2, 17) == set([(3, 2)]) raises(ValueError, lambda: reconstruct(4, 20, 1)) assert gaussian_reduce(4, 1, 3) == (1, 1) eq = -w**2 - x**2 - y**2 + z**2 assert diop_general_pythagorean(eq) == \ diop_general_pythagorean(-eq) == \ (m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2) assert check_param(S(3) + x/3, S(4) + x/2, S(2), x) == (None, None) assert check_param(Rational(3, 2), S(4) + x, S(2), x) == (None, None) assert check_param(S(4) + x, Rational(3, 2), S(2), x) == (None, None) assert _nint_or_floor(16, 10) == 2 assert _odd(1) == (not _even(1)) == True assert _odd(0) == (not _even(0)) == False assert _remove_gcd(2, 4, 6) == (1, 2, 3) raises(TypeError, lambda: _remove_gcd((2, 4, 6))) assert sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11) == \ (11, 1, 5) # it's ok if these pass some day when the solvers are implemented raises(NotImplementedError, lambda: diophantine(x**2 + y**2 + x*y + 2*y*z - 12)) raises(NotImplementedError, lambda: diophantine(x**3 + y**2)) assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \ set([(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)]) def test_holzer(): # if the input is good, don't let it diverge in holzer() # (but see test_fail_holzer below) assert holzer(2, 7, 13, 4, 79, 23) == (2, 7, 13) # None in uv condition met; solution is not Holzer reduced # so this will hopefully change but is here for coverage assert holzer(2, 6, 2, 1, 1, 10) == (2, 6, 2) raises(ValueError, lambda: holzer(2, 7, 14, 4, 79, 23)) @XFAIL def test_fail_holzer(): eq = lambda x, y, z: a*x**2 + b*y**2 - c*z**2 a, b, c = 4, 79, 23 x, y, z = xyz = 26, 1, 11 X, Y, Z = ans = 2, 7, 13 assert eq(*xyz) == 0 assert eq(*ans) == 0 assert max(a*x**2, b*y**2, c*z**2) <= a*b*c assert max(a*X**2, b*Y**2, c*Z**2) <= a*b*c h = holzer(x, y, z, a, b, c) assert h == ans # it would be nice to get the smaller soln def test_issue_9539(): assert diophantine(6*w + 9*y + 20*x - z) == \ set([(t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 9*t_2)]) def test_issue_8943(): assert diophantine( (3*(x**2 + y**2 + z**2) - 14*(x*y + y*z + z*x))) == \ set([(0, 0, 0)]) def test_diop_sum_of_even_powers(): eq = x**4 + y**4 + z**4 - 2673 assert diop_solve(eq) == set([(3, 6, 6), (2, 4, 7)]) assert diop_general_sum_of_even_powers(eq, 2) == set( [(3, 6, 6), (2, 4, 7)]) raises(NotImplementedError, lambda: diop_general_sum_of_even_powers(-eq, 2)) neg = symbols('neg', negative=True) eq = x**4 + y**4 + neg**4 - 2673 assert diop_general_sum_of_even_powers(eq) == set([(-3, 6, 6)]) assert diophantine(x**4 + y**4 + 2) == set() assert diop_general_sum_of_even_powers(x**4 + y**4 - 2, limit=0) == set() def test_sum_of_squares_powers(): tru = set([ (0, 0, 1, 1, 11), (0, 0, 5, 7, 7), (0, 1, 3, 7, 8), (0, 1, 4, 5, 9), (0, 3, 4, 7, 7), (0, 3, 5, 5, 8), (1, 1, 2, 6, 9), (1, 1, 6, 6, 7), (1, 2, 3, 3, 10), (1, 3, 4, 4, 9), (1, 5, 5, 6, 6), (2, 2, 3, 5, 9), (2, 3, 5, 6, 7), (3, 3, 4, 5, 8)]) eq = u**2 + v**2 + x**2 + y**2 + z**2 - 123 ans = diop_general_sum_of_squares(eq, oo) # allow oo to be used assert len(ans) == 14 assert ans == tru raises(ValueError, lambda: list(sum_of_squares(10, -1))) assert list(sum_of_squares(-10, 2)) == [] assert list(sum_of_squares(2, 3)) == [] assert list(sum_of_squares(0, 3, True)) == [(0, 0, 0)] assert list(sum_of_squares(0, 3)) == [] assert list(sum_of_squares(4, 1)) == [(2,)] assert list(sum_of_squares(5, 1)) == [] assert list(sum_of_squares(50, 2)) == [(5, 5), (1, 7)] assert list(sum_of_squares(11, 5, True)) == [ (1, 1, 1, 2, 2), (0, 0, 1, 1, 3)] assert list(sum_of_squares(8, 8)) == [(1, 1, 1, 1, 1, 1, 1, 1)] assert [len(list(sum_of_squares(i, 5, True))) for i in range(30)] == [ 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 3, 3, 3, 3, 4, 3, 3, 2, 2, 4, 4, 4, 4, 5] assert [len(list(sum_of_squares(i, 5))) for i in range(30)] == [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3] for i in range(30): s1 = set(sum_of_squares(i, 5, True)) assert not s1 or all(sum(j**2 for j in t) == i for t in s1) s2 = set(sum_of_squares(i, 5)) assert all(sum(j**2 for j in t) == i for t in s2) raises(ValueError, lambda: list(sum_of_powers(2, -1, 1))) raises(ValueError, lambda: list(sum_of_powers(2, 1, -1))) assert list(sum_of_powers(-2, 3, 2)) == [(-1, -1)] assert list(sum_of_powers(-2, 4, 2)) == [] assert list(sum_of_powers(2, 1, 1)) == [(2,)] assert list(sum_of_powers(2, 1, 3, True)) == [(0, 0, 2), (0, 1, 1)] assert list(sum_of_powers(5, 1, 2, True)) == [(0, 5), (1, 4), (2, 3)] assert list(sum_of_powers(6, 2, 2)) == [] assert list(sum_of_powers(3**5, 3, 1)) == [] assert list(sum_of_powers(3**6, 3, 1)) == [(9,)] and (9**3 == 3**6) assert list(sum_of_powers(2**1000, 5, 2)) == [] def test__can_do_sum_of_squares(): assert _can_do_sum_of_squares(3, -1) is False assert _can_do_sum_of_squares(-3, 1) is False assert _can_do_sum_of_squares(0, 1) assert _can_do_sum_of_squares(4, 1) assert _can_do_sum_of_squares(1, 2) assert _can_do_sum_of_squares(2, 2) assert _can_do_sum_of_squares(3, 2) is False def test_diophantine_permute_sign(): from sympy.abc import a, b, c, d, e eq = a**4 + b**4 - (2**4 + 3**4) base_sol = set([(2, 3)]) assert diophantine(eq) == base_sol complete_soln = set(signed_permutations(base_sol.pop())) assert diophantine(eq, permute=True) == complete_soln eq = a**2 + b**2 + c**2 + d**2 + e**2 - 234 assert len(diophantine(eq)) == 35 assert len(diophantine(eq, permute=True)) == 62000 soln = set([(-1, -1), (-1, 2), (1, -2), (1, 1)]) assert diophantine(10*x**2 + 12*x*y + 12*y**2 - 34, permute=True) == soln @XFAIL def test_not_implemented(): eq = x**2 + y**4 - 1**2 - 3**4 assert diophantine(eq, syms=[x, y]) == set([(9, 1), (1, 3)]) def test_issue_9538(): eq = x - 3*y + 2 assert diophantine(eq, syms=[y,x]) == set([(t_0, 3*t_0 - 2)]) raises(TypeError, lambda: diophantine(eq, syms=set([y,x]))) def test_ternary_quadratic(): # solution with 3 parameters s = diophantine(2*x**2 + y**2 - 2*z**2) p, q, r = ordered(S(s).free_symbols) assert s == {( p**2 - 2*q**2, -2*p**2 + 4*p*q - 4*p*r - 4*q**2, p**2 - 4*p*q + 2*q**2 - 4*q*r)} # solution with Mul in solution s = diophantine(x**2 + 2*y**2 - 2*z**2) assert s == {(4*p*q, p**2 - 2*q**2, p**2 + 2*q**2)} # solution with no Mul in solution s = diophantine(2*x**2 + 2*y**2 - z**2) assert s == {(2*p**2 - q**2, -2*p**2 + 4*p*q - q**2, 4*p**2 - 4*p*q + 2*q**2)} # reduced form when parametrized s = diophantine(3*x**2 + 72*y**2 - 27*z**2) assert s == {(24*p**2 - 9*q**2, 6*p*q, 8*p**2 + 3*q**2)} assert parametrize_ternary_quadratic( 3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) == ( 2*p**2 - 2*p*q - q**2, 2*p**2 + 2*p*q - q**2, 2*p**2 - 2*p*q + 3*q**2) assert parametrize_ternary_quadratic( 124*x**2 - 30*y**2 - 7729*z**2) == ( -1410*p**2 - 363263*q**2, 2700*p**2 + 30916*p*q - 695610*q**2, -60*p**2 + 5400*p*q + 15458*q**2)
py
1a4878eb8f1347bec0cc9f26f5a0a0ed67aa9c82
""" Скрипт, выводящий информацию о таблице экспорта PE-файла. Для каждой экспортируемой функции выводит имя функции и ее RVA. Также выводит общее количество экспортируемых функций. Пример использования: python get_export_info.py d:/file.exe """ import sys import pefile try: file_path = sys.argv[1] except IndexError: print('Не указан файл.') sys.exit(0) try: pe = pefile.PE(file_path) except FileNotFoundError: print('Не удается найти указанный файл:', sys.argv[1]) sys.exit(0) except pefile.PEFormatError: print('Файл', sys.argv[1], 'не является PE файлом Windows.') sys.exit(0) print('Библиотека:', pe.DIRECTORY_ENTRY_EXPORT.name.decode('utf-8')) if hasattr(pe, 'DIRECTORY_ENTRY_EXPORT'): for export_entry in pe.DIRECTORY_ENTRY_EXPORT.symbols: print('\t' + export_entry.name.decode('utf-8')) print('\t\tОрдинал:', str(hex(export_entry.ordinal))) print('\t\tRVA функции:', str(hex(export_entry.address))) else: print('Файл', sys.argv[1], 'не содержит секцию экспорта.') print('Всего экспортируется', len(pe.DIRECTORY_ENTRY_EXPORT.symbols), 'функций.')
py
1a4879e4524366ac435bcdf0ab15881e23c5432e
class Solution(object): def scoreOfParentheses(self, S): """ :type S: str :rtype: int """ ss = [] for i in S: if i == '(': ss.append(-1) else: cur = 0 while ss[-1] != -1: cur += ss.pop() print cur,"" ss.pop() if cur == 0: ss.append(1) else: ss.append(2 * cur) return sum(ss) def run(): s = Solution() st = "((())(()))()" print s.scoreOfParentheses(st)
py
1a487a9265c40ce57801a89e731e00aa93645f75
# Generated by Django 2.2.1 on 2020-05-11 12:00 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('PropelRapp', '0010_auto_20200507_0705'), ] operations = [ migrations.RenameModel( old_name='RoleDetails', new_name='Roledetail', ), migrations.AlterModelTable( name='roledetail', table='Roledetail', ), ]
py
1a487ae01519e9e92a3878b944036c3031d105be
import time import cv2 class DetectHumanMovement(object): def __init__(self): self.faceCascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") self.handCascade = cv2.CascadeClassifier("haarcascade_hand_default.xml") self.video_capture = cv2.VideoCapture(0) while True: if not self.video_capture.isOpened(): print('Unable to load camera.') time.sleep(2) continue else: break # To capture in main game loop def capture_gray_image(self): retval, frame = self.video_capture.read() self.frame = frame if not retval: raise Exception('Ops! Capture image failed.') # convert to gray scale self.gray = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY) return self.gray # detect all faces in gray image def detect_faces(self): faces = self.faceCascade.detectMultiScale( self.gray, scaleFactor=1.1, minNeighbors=5, minSize=(35, 35) ) return faces # detect all fist def detect_fists(self): fists = self.handCascade.detectMultiScale( self.gray, scaleFactor=1.1, minNeighbors=5, minSize=(35, 35) ) return fists """ Define Face Horizontal Orientation (Left or Right) window (ex = 0 to WIDTH) ---------------x'------- -----x'----------------- x' <- 500 and x' <- 300 p = x' - (WIDTH / 2) """ def face_laterality_orientation(self, face, width): (x, y, w, h) = face orientation = int((x + (w / 2)) - (width / 2)) return orientation """ Check Fist to shoot missile """ def fist_check(self): fists = self.detect_fists() return len(fists)
py
1a487b0a727b391bdd4f5eff7165216753a3f543
import os import time import torch import torch.nn as nn from model.utils.general import init_dir, get_logger class BaseModel(object): """Generic class for our model Usage: 1. init 2. build_train() or build_pred() 3. save and restore 4. train and evaluate """ # 1. init def __init__(self, config, dir_output): """Defines self._config Args: config: (Config instance) class with hyper parameters, from "model.json" dir_output: output dir """ self._config = config self._dir_output = dir_output self._init_relative_path(dir_output) self.logger = get_logger(dir_output + "model.log") def _init_relative_path(self, dir_output): # init parent dir init_dir(dir_output) # 1. init child dir # check dir one last time self._dir_model = dir_output + "model_weights/" init_dir(self._dir_model) # 2. define model path self._model_path = self._dir_model + "model.cpkt" # 2. build def build_train(self, config=None): """To overwrite with model-specific logic This logic must define - self.model_name - self.loss - self.lr - etc. Args: config: from "training.json" and "model.json" """ self.logger.info("- Building model...") self._init_model(config.model_name, config.device) self._init_optimizer(config.lr_method, config.lr_init) self._init_scheduler(config.lr_scheduler) self._init_criterion(config.criterion_method) self.logger.info("- done.") def build_pred(self, config=None): """Similar to build_train but no need to define train_op Args: config: from "model.json" """ self.logger.info("- Building model...") self._init_model(config.model_name, config.device) self.logger.info("- done.") def _init_model(self, model_name="CNN", device="cpu"): self.logger.info(" - " + model_name) self.logger.info(" - " + device) self.device = torch.device(device if torch.cuda.is_available() else 'cpu') self.model = self.getModel(model_name) self.model = self.model.to(self.device) def _init_optimizer(self, lr_method="adam", lr=1e-3): """Defines self.optimizer that performs an update on a batch Args: lr_method: (string) sgd method, for example "adam" lr: init learning rate (initial value) """ # 1. optimizer _lr_m = lr_method.lower() # lower to make sure print(" - " + _lr_m) self.optimizer = self.getOptimizer(_lr_m, lr) def _init_scheduler(self, lr_scheduler="CosineAnnealingLR"): """Defines self.scheduler that performs an update on a batch Args: lr_scheduler: (string) learning rate schedule method, for example "CosineAnnealingLR" """ # 2. scheduler print(" - lr_scheduler " + lr_scheduler) self.scheduler = self.getLearningRateScheduler(lr_scheduler) def _init_criterion(self, criterion_method="CrossEntropyLoss"): """Defines self.criterion that performs an update on a batch Args: criterion_method: (string) criterion method, for example "CrossEntropyLoss" """ # 3. criterion print(" - " + criterion_method) self.criterion = self.getCriterion(criterion_method) # ! MUST OVERWRITE def getModel(self, model_name="CNN"): """return your Model Args: model_name: String, from "model.json" Returns: your model that inherits from torch.nn """ raise NotImplementedError("return your model ({}) that inherits from torch.nn".format(model_name)) def getOptimizer(self, lr_method="adam", lr=1e-3): if lr_method == 'adam': return torch.optim.Adam(self.model.parameters(), lr=lr) elif lr_method == 'adamax': return torch.optim.Adamax(self.model.parameters(), lr=lr) elif lr_method == 'sgd': return torch.optim.SGD(self.model.parameters(), lr=lr) else: raise NotImplementedError("Unknown Optimizer {}".format(lr_method)) def getLearningRateScheduler(self, lr_scheduler="CosineAnnealingLR"): if lr_scheduler == "CosineAnnealingLR": return torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer, T_max=5, eta_min=4e-08) else: raise NotImplementedError("Unknown Learning Rate Scheduler {}".format(lr_scheduler)) def getCriterion(self, criterion_method="CrossEntropyLoss"): if criterion_method == 'CrossEntropyLoss': return torch.nn.CrossEntropyLoss() elif criterion_method == 'MSELoss': return torch.nn.MSELoss() elif criterion_method == 'BCEWithLogitsLoss': return torch.nn.BCEWithLogitsLoss() else: raise NotImplementedError("Unknown Criterion Method {}".format(criterion_method)) # 3. save and restore def auto_restore(self): if os.path.exists(self._model_path) and os.path.isfile(self._model_path): self.restore() def restore(self, model_path=None, map_location='cpu'): """Reload weights into session Args: model_path: weights path "model_weights/model.cpkt" map_location: 'cpu' or 'gpu:0' """ self.logger.info("- Reloading the latest trained model...") if model_path == None: self.model.load_state_dict(torch.load(self._model_path, map_location=map_location)) else: self.model.load_state_dict(torch.load(model_path, map_location=map_location)) def save(self): """Saves model""" self.logger.info("- Saving model...") torch.save(self.model.state_dict(), self._model_path) self.logger.info("- Saved model in {}".format(self._dir_model)) # 4. train and evaluate def train(self, config, train_set, val_set, lr_schedule, path_label): """Global training procedure Calls method self.run_epoch and saves weights if score improves. All the epoch-logic including the lr_schedule update must be done in self.run_epoch Args: config: Config instance contains params as attributes train_set: Dataset instance val_set: Dataset instance lr_schedule: LRSchedule instance that takes care of learning proc path_label: dataframe Returns: best_score: (float) """ best_score = None for epoch in range(config.n_epochs): # logging tic = time.time() self.logger.info("Epoch {:}/{:}".format(epoch + 1, config.n_epochs)) # epoch score = self._run_train_epoch(config, train_set, val_set, epoch, lr_schedule, path_label) # save weights if we have new best score on eval if best_score is None or score >= best_score: # abs(score-0.5) <= abs(best_score-0.5): best_score = score self.logger.info("- New best score ({:04.2f})!".format(best_score)) self.save() if lr_schedule.stop_training: self.logger.info("- Early Stopping.") break # logging toc = time.time() self.logger.info("- Elapsed time: {:04.2f}, learning rate: {:04.5f}".format(toc - tic, lr_schedule.lr)) return best_score def evaluate(self, config, test_set, path_label): """Evaluates model on test set Calls method run_evaluate on test_set and takes care of logging Args: config: Config test_set: instance of class Dataset path_label: dataframe Return: scores: (dict) scores["acc"] = 0.85 for instance """ self.logger.info("- Evaluating...") scores = self._run_evaluate_epoch(config, test_set, path_label) # evaluate msg = " ... ".join([" {} is {:04.2f} ".format(k, v) for k, v in scores.items()]) self.logger.info("- Eval: {}".format(msg)) return scores def _auto_backward(self, loss): self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ! MUST OVERWRITE def _run_train_epoch(config, train_set, val_set, epoch, lr_schedule, path_label): """Model_specific method to overwrite Performs an epoch of training Args: config: Config train_set: Dataset instance val_set: Dataset instance epoch: (int) id of the epoch, starting at 0 lr_schedule: LRSchedule instance that takes care of learning proc Returns: score: (float) model will select weights that achieve the highest score Alert: you can use the method below to simplify your code _auto_backward(self, loss) """ raise NotImplementedError("Performs an epoch of training") # ! MUST OVERWRITE def _run_evaluate_epoch(config, test_set): """Model-specific method to overwrite Performs an epoch of evaluation Args: config: Config test_set: Dataset instance Returns: scores: (dict) scores["acc"] = 0.85 for instance """ raise NotImplementedError("Performs an epoch of evaluation")
py
1a487cd816c7bf63e02e041c9a8e97ecab13ef7f
if __name__ == "__main__": #? string.split(separator, maxsplit) x, y = [set(input().split())for _ in range(4)][1::2] print(len(x-y))
py
1a487d0006d9e6417e6ebd0db5fbbaa7b9c90239
import requests base_url = 'https://api.ng.termii.com/api' class Token: def __init__(self, api_key): self.api_key = api_key def send_token(self, message_type, to, from_id, channel, pin_attempts, pin_time_to_live, pin_length, pin_placeholder, message_text, pin_type): url = base_url + f'/sms/otp/send' payload = { "api_key": self.api_key, "message_type": message_type, "to": to, "from": from_id, "channel": channel, "pin_attempts": int(pin_attempts), "pin_time_to_live": pin_time_to_live, "pin_length": pin_length, "pin_placeholder": pin_placeholder, "message_text": message_text, "pin_type": pin_type } headers = { 'Content-Type': 'application/json', } response = requests.post(url, headers=headers, json=payload) return response.json() def voice_token(self, phone_number, pin_attempts, pin_time_to_live, pin_length): url = base_url + f'/sms/otp/send/voice' payload = { "api_key": self.api_key, "phone_number": phone_number, "pin_attempts": int(pin_attempts), "pin_time_to_live": int(pin_time_to_live), "pin_length": int(pin_length), } headers = { 'Content-Type': 'application/json', } response = requests.post(url, headers=headers, json=payload) return response.json() def voice_call(self, phone_number, code): url = base_url + f'/sms/otp/call' payload = { "api_key": self.api_key, "phone_number": phone_number, "code": int(code) } headers = { 'Content-Type': 'application/json', } response = requests.post(url, headers=headers, json=payload) return response.json() def in_app_token(self, pin_type, phone_number, pin_attempts, pin_time_to_live, pin_length): url = base_url + f'/sms/otp/generate' payload = { "api_key": self.api_key, "pin_type": pin_type, "phone_number": phone_number, "pin_attempts": pin_attempts, "pin_time_to_live": pin_time_to_live, "pin_length": pin_length } headers = { 'Content-Type': 'application/json', } response = requests.post(url, headers=headers, json=payload) print(response.json()) return response.json() def verify_token(self, pin_id, pin): url = base_url + f'/sms/otp/verify' payload = { "api_key": self.api_key, "pin_id": pin_id, "pin": pin, } headers = { 'Content-Type': 'application/json', } response = requests.post(url, headers=headers, json=payload) return response.json()
py
1a487dc3c6b8ca647c293135ee9865b8885734a7
# -*- encoding: utf-8 -*- from django.db import models class Tweet(models.Model): id = models.AutoField(primary_key=True) username = models.CharField(max_length=200) short_description = models.TextField() predict = models.CharField(max_length=200) class Meta: db_table = "tweets" def __str__(self): return self.name class User(models.Model): id = models.AutoField(primary_key=True) username = models.CharField(max_length=200) followers = models.IntegerField() followings = models.IntegerField() favorites = models.IntegerField() tweets_count = models.IntegerField() profile_pic = models.CharField(max_length=200) cover_pic = models.CharField(max_length=200) wcloud_pic = models.CharField(max_length=200) name = models.CharField(max_length=200) bio = models.CharField(max_length=200) location = models.CharField(max_length=200) website = models.CharField(max_length=200) join_at = models.CharField(max_length=200) class Meta: db_table = "users" def __str__(self): return self.username
py
1a487defa522c9495b3cb0ba7589870688bdcbe6
import _plotly_utils.basevalidators class YanchorValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name='yanchor', parent_name='mesh3d.colorbar', **kwargs ): super(YanchorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'colorbars'), role=kwargs.pop('role', 'style'), values=kwargs.pop('values', ['top', 'middle', 'bottom']), **kwargs )
py
1a487e1863ac52fb0b4dc75165047e7671a47dfc
# -*- coding: utf-8 -*- """ flask ~~~~~ A microframework based on Werkzeug. It's extensively documented and follows best practice patterns. :copyright: 2010 Pallets :license: BSD-3-Clause """ # utilities we import from Werkzeug and Jinja2 that are unused # in the module but are exported as public interface. from jinja2 import escape from jinja2 import Markup from werkzeug.exceptions import abort from werkzeug.utils import redirect from . import json from ._compat import json_available from .app import Flask from .app import Request from .app import Response from .blueprints import Blueprint from .config import Config from .ctx import after_this_request from .ctx import copy_current_request_context from .ctx import has_app_context from .ctx import has_request_context from .globals import _app_ctx_stack from .globals import _request_ctx_stack from .globals import current_app from .globals import g from .globals import request from .globals import session from .helpers import flash from .helpers import get_flashed_messages from .helpers import get_template_attribute from .helpers import make_response from .helpers import safe_join from .helpers import send_file from .helpers import send_from_directory from .helpers import stream_with_context from .helpers import url_for from .json import jsonify from .signals import appcontext_popped from .signals import appcontext_pushed from .signals import appcontext_tearing_down from .signals import before_render_template from .signals import got_request_exception from .signals import message_flashed from .signals import request_finished from .signals import request_started from .signals import request_tearing_down from .signals import signals_available from .signals import template_rendered from .templating import render_template from .templating import render_template_string __version__ = "1.1.2"
py
1a487e6c872f2c6b07fb17af356a42c8d7cbc042
from __future__ import print_function import numpy as np import pytest def pytest_runtest_setup(item): seed = np.random.randint(1000) print("Seed used in np.random.seed(): %d" % seed) np.random.seed(seed) def pytest_addoption(parser): parser.addoption( "--block", action="store", default=True, help="Whether the plotting should block execution." ) @pytest.fixture def block(request): try: return request.config.getoption("--block") not in "False,false,no,0".split(",") except ValueError: return True
py
1a487e942f86f435d4e5cdc26c1a5035d545c23a
from rest_framework import status from rest_framework.reverse import reverse from tests.test_profile.test_quota.base_test_quota import BaseTestQuota from tests.utils import check_data_in_dict class TestApiQuotaCreate(BaseTestQuota): def setUp(self): super(TestApiQuotaCreate, self).setUp() self.post_data = { 'name': "My new quota", 'attribute_definitions': [self.memory_attributes.first().id, self.cpu_attributes.first().id] } self.create_quota_url = reverse('api_quota_list_create') def _create_quota(self): response = self.client.post(self.create_quota_url, data=self.post_data, content_type="application/json") self.assertEqual(response.status_code, status.HTTP_201_CREATED) check_data_in_dict(self, [self.post_data], [response.data]) def _create_quota_failed(self, status_error=status.HTTP_400_BAD_REQUEST): response = self.client.post(self.create_quota_url, data=self.post_data, content_type="application/json") self.assertEqual(response.status_code, status_error) def test_admin_post_quota(self): self._create_quota() def test_cannot_post_quota_with_existing_name(self): self._create_quota() self._create_quota_failed() def test_customer_cannot_post_quota(self): self.client.force_login(user=self.standard_user) response = self.client.post(self.create_quota_url, data=self.post_data, content_type="application/json") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_cannot_post_quota_when_logout(self): self.client.logout() response = self.client.post(self.create_quota_url, data=self.post_data, content_type="application/json") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN)
py
1a487ed26be2d8be36067c8a5b0ac2c8ccaa6859
# -*- coding: utf-8 -*- """ The MIT License (MIT) Copyright (c) 2017 SML Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import io import datetime as dt import asyncio import discord from urllib.parse import urljoin import pyrebase from discord import Message from discord import Server from discord import ChannelType from discord.ext import commands from discord.ext.commands import Command from discord.ext.commands import Context from cogs.utils import checks from __main__ import send_cmd_help import aiohttp from cogs.utils.dataIO import dataIO PATH = os.path.join('data', 'firebase') JSON = os.path.join(PATH, 'settings.json') SERVICE_KEY_JSON = os.path.join(PATH, "service_key.json") APP_NAME = "Discord" REQUIRED_SETTINGS = [ 'SERVER_KEY', 'AUTH_DOMAIN', 'DATABASE_URL', 'STORAGE_BUCKET', 'SERVICE_ACCOUNT' ] HELP_SETTINGS = 'Please set all settings.' class Firebase: """Send activity of Discord using Google Analytics.""" def __init__(self, bot): """Init.""" self.bot = bot self.settings = dataIO.load_json(JSON) self._fbapp = None @property def fbapp(self): """Firebase application reference using pyrebase.""" if self._fbapp is None: if not self.check_settings(): return None config = { "apiKey": self.settings["SERVER_KEY"], "authDomain": self.settings["AUTH_DOMAIN"], "databaseURL": self.settings["DATABASE_URL"], "storageBucket": self.settings['STORAGE_BUCKET'], "serviceAccount": self.settings['SERVICE_ACCOUNT'] } self._fbapp = pyrebase.initialize_app(config) return self._fbapp def check_settings(self): """Check all settings set.""" for setting in REQUIRED_SETTINGS: if setting not in self.settings: return False if not self.settings[setting]: return False return True @checks.serverowner_or_permissions(manage_server=True) @commands.group(pass_context=True) async def setfirebase(self, ctx): """Set Firebase settings.""" if ctx.invoked_subcommand is None: await send_cmd_help(ctx) @setfirebase.command(name="servicekey", pass_context=True) async def setfirebase_service_key(self, ctx): """Set Firebase Service key. This is generated by the Firebase Console. You can get it here: https://console.firebase.google.com/project/_/settings/serviceaccounts/adminsdk """ TIMEOUT = 30.0 await self.bot.say( "Please upload the Firebase service account key (json). " "[Timeout: {} seconds]".format(TIMEOUT)) attach_msg = await self.bot.wait_for_message( timeout=TIMEOUT, author=ctx.message.author) if attach_msg is None: await self.bot.say("Operation time out.") return if not len(attach_msg.attachments): await self.bot.say("Cannot find attachments.") return attach = attach_msg.attachments[0] url = attach["url"] async with aiohttp.get(url) as cred: with open(SERVICE_KEY_JSON, "wb") as f: f.write(await cred.read()) await self.bot.say( "Attachment received and saved as {}".format(SERVICE_KEY_JSON)) self.settings['SERVICE_ACCOUNT'] = SERVICE_KEY_JSON dataIO.save_json(JSON, self.settings) # Delete uploaded attachment await self.bot.delete_message(attach_msg) @setfirebase.command(name="serverkey", pass_context=True) async def setfirebase_server_key(self, ctx, key): """Set Firebase Cloud Messaging Server Key. This is generated by the Firebase Console You can get it here: https://console.firebase.google.com/project/_/settings/cloudmessaging """ self.settings["SERVER_KEY"] = key dataIO.save_json(JSON, self.settings) await self.bot.say("Saved Firebase Cloud Messaging Server Key.") await self.bot.delete_message(ctx.message) @setfirebase.command(name="authdomain", pass_context=True) async def setfirebase_auth_domain(self, ctx, domain): """Set Auth Domain. This is the URL in this format: projectid.firebaseapp.com """ self.settings["AUTH_DOMAIN"] = domain dataIO.save_json(JSON, self.settings) await self.bot.say("Saved Firebase Auth Domain.") await self.bot.delete_message(ctx.message) @setfirebase.command(name="databaseurl", pass_context=True) async def setfirebase_database_url(self, ctx, url): """Set Database URL. This is the database URL in this format: https://projectid.firebaseio.com """ self.settings["DATABASE_URL"] = url dataIO.save_json(JSON, self.settings) await self.bot.say("Saved Firebase Database URL.") await self.bot.delete_message(ctx.message) @setfirebase.command(name="storagebucket", pass_context=True) async def setfirebase_storage_bucket(self, ctx, domain): """Set Storage Bucket. This is the database URL in this format: projectid.appspot.com """ self.settings["STORAGE_BUCKET"] = domain dataIO.save_json(JSON, self.settings) await self.bot.say("Saved Firebase Storage bucket.") await self.bot.delete_message(ctx.message) @checks.serverowner_or_permissions(manage_server=True) @commands.group(pass_context=True) async def firebase(self, ctx): """Run Firebase commands.""" if ctx.invoked_subcommand is None: await send_cmd_help(ctx) @firebase.command(name="status", pass_context=True) async def firebase_status(self, ctx): """Show Firebase settings status.""" if not self.check_settings(): await self.bot.say("You are missing some settings.") em = discord.Embed(title="Firebase Settings") for setting in REQUIRED_SETTINGS: data_key = setting data_value = "--" if setting in self.settings: data_value = self.settings[setting] em.add_field(name=data_key, value=data_value) await self.bot.send_message(ctx.message.author, embed=em) await self.bot.say("Firebase settings have been sent as DM.") @firebase.command(name="toggle", pass_context=True) async def firebase_toggle(self, ctx): """Toggle server on/off.""" server = ctx.message.server if "SERVERS" not in self.settings: self.settings["SERVERS"] = {} if server.id not in self.settings["SERVERS"]: self.settings["SERVERS"][server.id] = False is_on = self.settings["SERVERS"][server.id] self.settings["SERVERS"][server.id] = not is_on await self.bot.say( "Firebase monitoring for this server set to {}.".format( self.settings["SERVERS"][server.id])) dataIO.save_json(JSON, self.settings) @firebase.command(name="data", pass_context=True) async def firebase_data(self, ctx, *, msg): author = ctx.message.author data = { "author": author.display_name, "author_id": author.id, "message": msg } db = self.fbapp.database() db.child("users").push(data) async def on_message(self, msg: Message): """Track on message.""" author = msg.author server = msg.server # check settings are set if not self.check_settings(): return # check server is tracked tracking_server = False try: tracking_server = self.settings["SERVERS"][server.id] except KeyError: return if not tracking_server: return data = { "author": author.display_name, "author_id": author.id, "message": msg.content, "datetime": dt.datetime.utcnow().isoformat() } db = self.fbapp.database() db.child("servers").child(server.id).push(data) def check_folder(): """Check folder.""" if not os.path.exists(PATH): os.makedirs(PATH) def check_file(): """Check files.""" defaults = {} if not dataIO.is_valid_json(JSON): dataIO.save_json(JSON, defaults) def setup(bot): """Setup bot.""" check_folder() check_file() n = Firebase(bot) bot.add_cog(n)
py
1a487fe69a051047dfcc8e878385cb376c7eb914
"""Tests for transformers.padding.py.""" import numpy as np import pytest class TestPadder2d: @pytest.fixture def padder_cls(self): from dstoolbox.transformers import Padder2d return Padder2d @pytest.fixture def padder(self, padder_cls): return padder_cls(max_len=4, pad_value=55, dtype=np.int64) @pytest.fixture def data(self): return [ [], [0, 1, 2], [10, 11, 12, 13, 14, 15], [100, 101, 102, 103], ] @pytest.fixture def expected(self): return np.asarray([ [55, 55, 55, 55], [0, 1, 2, 55], [10, 11, 12, 13], [100, 101, 102, 103] ]) def test_fit_and_transform_works(self, padder, data, expected): result = padder.fit(data).transform(data) assert np.allclose(result, expected) assert result.dtype == np.int64 assert isinstance(result, np.ndarray) def test_fit_transform_works(self, padder, data, expected): result = padder.fit_transform(data) assert np.allclose(result, expected) assert result.dtype == np.int64 assert isinstance(result, np.ndarray) @pytest.mark.parametrize('max_len', [1, 2, 3]) def test_other_max_len(self, padder_cls, data, expected, max_len): padder = padder_cls(max_len=max_len, pad_value=55, dtype=np.int64) result = padder.fit_transform(data) assert np.allclose(result, expected[:, :max_len]) assert result.dtype == np.int64 def test_other_pad_value(self, padder_cls, data, expected): padder = padder_cls(max_len=4, pad_value=-999, dtype=np.int64) result = padder.fit_transform(data) expected[expected == 55] = -999 assert np.allclose(result, expected) assert result.dtype == np.int64 def test_other_dtype(self, padder_cls, data, expected): padder = padder_cls(max_len=4, pad_value=55, dtype=np.float16) result = padder.fit_transform(data) assert np.allclose(result, expected) assert result.dtype == np.float16 class TestPadder3d: @pytest.fixture def padder_cls(self): from dstoolbox.transformers import Padder3d return Padder3d @pytest.fixture def padder(self, padder_cls): return padder_cls(max_size=(4, 2), pad_value=55, dtype=np.int64) @pytest.fixture def data(self): return [ [], [[0, 0], [1, 1, 1], [2]], [[10], [], [12, 12, 12], [13], [], [15]], [[100], [101], [102], [103, 104, 105]], ] @pytest.fixture def expected(self): return np.asarray([ [[55, 55], [55, 55], [55, 55], [55, 55]], [[0, 0], [1, 1], [2, 55], [55, 55]], [[10, 55], [55, 55], [12, 12], [13, 55]], [[100, 55], [101, 55], [102, 55], [103, 104]], ]) def test_fit_and_transform_works(self, padder, data, expected): result = padder.fit(data).transform(data) assert np.allclose(result, expected) assert result.dtype == np.int64 assert isinstance(result, np.ndarray) def test_fit_transform_works(self, padder, data, expected): result = padder.fit_transform(data) assert np.allclose(result, expected) assert result.dtype == np.int64 assert isinstance(result, np.ndarray) @pytest.mark.parametrize('max_size_0', [1, 2, 3]) def test_max_size_0(self, padder_cls, data, expected, max_size_0): padder = padder_cls( max_size=(max_size_0, 2), pad_value=55, dtype=np.int64) result = padder.fit_transform(data) assert np.allclose(result, expected[:, :max_size_0]) assert result.dtype == np.int64 def test_max_size_1(self, padder_cls, data, expected): padder = padder_cls( max_size=(4, 1), pad_value=55, dtype=np.int64) result = padder.fit_transform(data) assert np.allclose(result, expected[:, :, :1]) assert result.dtype == np.int64 def test_other_pad_value(self, padder_cls, data, expected): padder = padder_cls( max_size=(4, 2), pad_value=-999, dtype=np.int64) result = padder.fit_transform(data) expected[expected == 55] = -999 assert np.allclose(result, expected) assert result.dtype == np.int64 def test_other_dtype(self, padder_cls, data, expected): padder = padder_cls( max_size=(4, 2), pad_value=55, dtype=np.float16) result = padder.fit_transform(data) assert np.allclose(result, expected) assert result.dtype == np.float16
py
1a4880dbac82a82bce039a0e556a907dcf7f05fe
class ClusteringTypes: type = "type" params = "params" rmsd = "rmsd" contactMap = "contactMap" lastSnapshot = "lastSnapshot" null = "null" MSMClustering = "MSM" thresholdCalculator = "thresholdCalculator" ligandResname = "ligandResname" ligandResnum = "ligandResnum" ligandChain = "ligandChain" alternativeStructure = "alternativeStructure" contactThresholdDistance = "contactThresholdDistance" nclusters = "nclusters" similarityEvaluator = "similarityEvaluator" differenceDistance = "differenceDistance" Jaccard = "Jaccard" correlation = "correlation" symmetries = "symmetries" tica = "tica" atom_Ids = "atom_Ids" writeCA = "writeCA" sidechains = "sidechains" tica_lagtime = "tica_lagtime" tica_nICs = "tica_nICs" tica_kinetic_map = "tica_kinetic_map" tica_commute_map = "tica_commute_map" class ThresholdCalculator: type = "type" params = "params" heaviside = "heaviside" constant = "constant" class ThresholdCalculatorParams: conditions = "conditions" values = "values" value = "value" class DensityCalculator: type = "type" params = "params" heaviside = "heaviside" null = "null" constant = "constant" continuous = "continuous" exitContinuous = "exitContinuous" class DensityCalculatorParams: conditions = "conditions" values = "values" class StringSpawningTypes: type = "type" independent = "independent" independentMetric = "independentMetric" sameWeight = "sameWeight" inverselyProportional = "inverselyProportional" epsilon = "epsilon" fast = "FAST" simulatedAnnealing = "simulatedAnnealing" variableEpsilon = "variableEpsilon" UCB = "UCB" REAP = "REAP" null = "null" ProbabilityMSMCalculator = "ProbabilityMSM" MetastabilityMSMCalculator = "MetastabilityMSM" UncertaintyMSMCalculator = "UncertaintyMSM" IndependentMSMCalculator = "IndependentMSM" class SpawningParams: params = "params" epsilon = "epsilon" temperature = "T" threshold = "threshold" report_filename = "reportFilename" report_col = "metricColumnInReport" minValue = "min" maxValue = "max" condition = "condition" # New parameters for variable epsilon(experimental) varEpsilonType = "varEpsilonType" maxEpsilon = "maxEpsilon" minEpsilon = "minEpsilon" variationWindow = "variationWindow" # Last epoch of variable epsilon,if # current epoch > than variation Window, set epsilon to minEpsilon maxEpsilonWindow = "maxEpsilonWindow" period = "period" # Only useful for periodic epsilon modes density = "density" metricWeights = "metricWeights" linear = "linear" boltzmann = "boltzmann" alpha = "alpha" nclusters = "n" metricsInd = "metricsInd" lagtime = "lagtime" minPos = "minPos" class SpawningDensity: values = "values" conditions = "conditions" class VariableEpsilonTypes: linearVariation = "linearVariation" contactsVariation = "contactsVariation" class SimulationType: type = "type" pele = "pele" md = "md" test = "test" class SimulationParams: params = "params" processors = "processors" executable = "executable" templetizedControlFile = "controlFile" dataFolder = "data" documentsFolder = "documents" destination = "destination" origin = "origin" seed = "seed" peleSteps = "peleSteps" iterations = "iterations" exitCondition = "exitCondition" metricCol = "metricCol" exitValue = "exitValue" trajectories = "trajectories" modeMovingBox = "modeMovingBox" modeMovingBoxBinding = "binding" modeMovingBoxUnBinding = "unbinding" equilibrationMode = "equilibrationMode" equilibrationLastSnapshot = "equilibrationLastSnapshot" equilibrationSelect = "equilibrationSelect" equilibrationCluster = "equilibrationCluster" numberEquilibrationStructures = "numberEquilibrationStructures" boxCenter = "boxCenter" boxRadius = "boxRadius" runEquilibration = "runEquilibration" condition = "condition" numTrajs = "numberTrajectories" equilibrationLength = "equilibrationLength" trajectoryName = "trajectoryName" srun = "useSrun" srunParameters = "srunParameters" mpiParameters = "mpiParameters" # params for MD ligandCharge = "ligandCharge" nonBondedCutoff = "nonBondedCutoff" Temperature = "temperature" runningPlatform = "runningPlatform" minimizationIterations = "minimizationIterations" repoterfreq = "reporterFrequency" productionLength = "productionLength" waterBoxSize = "WaterBoxSize" trajsPerReplica = "trajectoriesPerReplica" numReplicas = "numReplicas" timeStep = "timeStep" equilibrationLengthNVT = "equilibrationLengthNVT" equilibrationLengthNPT = "equilibrationLengthNPT" constraintsMin = "constraintsMinimization" constraintsNVT = "constraintsNVT" constraintsNPT = "constraintsNPT" devicesPerTrajectory = "devicesPerTrajectory" forcefield = "forcefield" customparamspath = "customparamspath" maxDevicesPerReplica = "maxDevicesPerReplica" format = "format" ligandName = "ligandName" class ExitConditionType: type = "type" metric = "metric" clustering = "clustering" metricMultipleTrajs = "metricMultipleTrajectories" class ControlFileParams: generalParams = "generalParams" spawningBlockname = "spawning" simulationBlockname = "simulation" clusteringBlockname = "clustering" class GeneralParams: restart = "restart" outputPath = "outputPath" initialStructures = "initialStructures" debug = "debug" writeAllClustering = "writeAllClusteringStructures" nativeStructure = "nativeStructure"
py
1a48811ae8752c5044870beb2801a82d07ff1f3e
import nltk from nltk.corpus import cmudict import curses from curses.ascii import isdigit import re from nltk.probability import FreqDist from app import db import models from random import randrange d = cmudict.dict() def numSylsInWord(word): if word.lower() in d: return [len(list(y for y in x if y[-1].isdigit())) for x in d[word.lower()]][0] def isHaiku(potentialHaiku): syllableCount = countSyllables(potentialHaiku) if syllableCount == 17: result = True else: result = False return result def countSyllables(potentialHaiku): stripPunctuation = re.sub(ur"[^\w\d'\s]+",' ',potentialHaiku) wordsInHaiku = stripPunctuation.split() syllableCount = 0 for i in wordsInHaiku: syllableCount += numSylsInWord(i) return syllableCount def inDatabase(firstWord): container = [] from models import Unigram unigrams = Unigram.query.filter(Unigram.word1 == firstWord) for each in unigrams: addWords = [each.word2 for unigram in xrange(each.count)] container.append(addWords) if not container: return False if container: return True def generateHaiku(firstWord): inDB = inDatabase(firstWord) if inDB: haiku = startGenerateLine(5, firstWord) haiku += "\n" haiku += startGenerateLine(7) haiku += "\n" haiku += startGenerateLine(5) if not inDB: firstWord = pickRandomWord(5) haiku = generateHaiku(firstWord) return haiku def startGenerateLine(sylCount, startingWord= None): if not startingWord: startingWord = pickRandomWord(sylCount) remainingSylCount = sylCount - countSyllables(startingWord) line = buildLineList(remainingSylCount, [startingWord]) return " ".join(line) def buildLineList(sylCount, wordsFromBefore): from random import shuffle if sylCount == 0: return wordsFromBefore lastWord = wordsFromBefore[-1] possibilities = createPossibleWords(lastWord, sylCount) for possibleWord in possibilities: newWordsFromBefore = [word[:] for word in wordsFromBefore] newWordsFromBefore.append(possibleWord) newSyllableCount = sylCount - countSyllables(possibleWord) result = buildLineList(newSyllableCount, newWordsFromBefore) if result: return result return None def pickRandomWord(reqSylCount): from models import Unigram lengthDB = Unigram.query.count() while True: randomNumPick = randrange(1, lengthDB) tryWord = Unigram.query.filter(Unigram.id == randomNumPick).first() if countSyllables(tryWord.word1) <= reqSylCount: word = tryWord.word1 break return tryWord.word1 def createPossibleWords(lastWord, sylCount): from random import shuffle possibilities = grabPossibleWords(lastWord, sylCount) shuffle(possibilities) return possibilities def grabPossibleWords(baseWord, reqSylCount): from models import Unigram listOfUnigrams = Unigram.query.filter(Unigram.word1 ==baseWord) return filterPossibleWords(listOfUnigrams, reqSylCount) def filterPossibleWords(unigrams, reqSylCount): if reqSylCount == 1 or reqSylCount == 2: filteredUnigrams = removePartOfSpeech(unigrams) filteredUnigrams = removeBadWords(filteredUnigrams) filteredWords = sylCountFilter(filteredUnigrams, reqSylCount) return filteredWords else: filteredWords = sylCountFilter(unigrams, reqSylCount) return filteredWords def removePartOfSpeech(unigrams): filteredUnigrams = [unigram for unigram in unigrams if identifyPartsOfSpeech(unigram.word2) not in ['IN', 'CC', 'DT']] return filteredUnigrams def removeBadWords(unigrams): filteredUnigrams = [unigram for unigram in unigrams if unigram.word2 not in ['so','mr','oh','it','the', 'and', 'i', 'of', 'at', 'we', 'for', 'by', 'but', 'to', 'a', 'as', 'like', 'than', 'with', "i'm"]] return filteredUnigrams def sylCountFilter(unigrams, reqSylCount): filteredWords = [unigram.word2 for unigram in unigrams if countSyllables(unigram.word2) <= reqSylCount] return filteredWords def identifyPartsOfSpeech(word): cleanString = re.sub(ur"[^\w\d'\s]+",' ', word) pos = nltk.word_tokenize(cleanString) result = nltk.pos_tag(pos) return result[0][1]
py
1a48816c298f9631422c13aa96e9710ab638924d
from flask.ext.classy import FlaskView, route from flask import render_template, redirect, url_for, flash from flask_menu.classy import classy_menu_item from flask_login import current_user, login_required from Application.models import User from Application.models import Project from .forms import UserEditForm from Application import db from speaklater import make_lazy_string @make_lazy_string def account_text(): if current_user.is_authenticated: return "Account ({})".format(current_user.fullname) return "Account" def show_menu(): return current_user.is_authenticated class Profile(FlaskView): route_base = '/profile' @classy_menu_item('frontend-right.account', account_text, visible_when=show_menu, order=1) @classy_menu_item('frontend-right.account.profile', 'My Profile', order=0) @login_required def index(self): return redirect(url_for('.Profile:me')) @login_required @route('/me/') def me(self): user = current_user projects = None if user.projects.count(): projects = user.projects.order_by(Project.date_uploaded.desc()) following = False if current_user.is_authenticated: following = current_user.following.filter_by(zid=current_user.zid).count() != 0 return render_template( '.profile/index.html', user=user, following=following, projects=projects) @route('/<string:user_id>/') def user(self, user_id): user = User.query.filter(User.zid == user_id).first_or_404() projects = None if user.projects.count(): projects = user.projects.order_by(Project.date_uploaded.desc()) following = False if current_user.is_authenticated: following = current_user.following.filter_by(zid=user_id).count() != 0 return render_template( '.profile/index.html', user=user, following=following, projects=projects) @login_required @route('/edit/', methods=['GET', 'POST']) def edit(self): form = UserEditForm(obj=current_user) if form.submit.data and form.validate_on_submit: # update the user's details current_user.website = form.website.data current_user.github_username = form.github_username.data current_user.email = form.email.data current_user.about = form.about.data db.session.add(current_user) db.session.commit() flash('Sucessfully updated your details!', 'success') return redirect(url_for('.Profile:me')) return render_template( ".profile/edit_user.html", is_form=True, form=form, user=current_user) @login_required @route('/follow/<string:user_id>/') def follow(self, user_id): following = current_user.following.filter_by(zid=user_id).count() if user_id == current_user.zid: flash("Error: you cannot follow yourself", 'danger') return redirect(url_for('.Profile:user', user_id=user_id)) if following: flash("Error: you already follow this user", 'danger') return redirect(url_for('.Profile:user', user_id=user_id)) # Add follower relationship here followee = User.query.get_or_404(user_id) current_user.following.append(followee) db.session.add(current_user) db.session.commit() flash("User followed successfully", 'success') return redirect(url_for('.Profile:user', user_id=user_id)) @login_required @route('/unfollow/<string:user_id>/') def unfollow(self, user_id): following = current_user.following.filter_by(zid=user_id).count() if user_id == current_user.zid: flash("Error: you cannot unfollow yourself", 'danger') return redirect(url_for('.Profile:user', user_id=user_id)) if following: # Remove relationship here followee = User.query.get_or_404(user_id) current_user.following.remove(followee) db.session.add(current_user) db.session.commit() flash("User unfollowed successfully", 'success') return redirect(url_for('.Profile:user', user_id=user_id)) flash("Error: you don't follow this user", 'danger') return redirect(url_for('.Profile:user', user_id=user_id))
py
1a4882b70d2a7191fa0e7d3c987b7fba63f9f647
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2021, Shreyas Srish (@shrsr) <[email protected]> # GNU General Public License v3.0+ (see LICENSE or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = r''' --- module: mso_schema_template_bd_dhcp_policy short_description: Manage BD DHCP Policy in schema templates description: - Manage BD DHCP policies in schema templates on Cisco ACI Multi-Site. author: - Shreyas Srish (@shrsr) options: schema: description: - The name of the schema. type: str required: yes template: description: - The name of the template to change. type: str required: yes bd: description: - The name of the BD to manage. type: str required: yes dhcp_policy: description: - The DHCP Policy type: str aliases: [ name ] version: description: - The version of DHCP Relay Policy. type: int dhcp_option_policy: description: - The DHCP Option Policy. type: dict suboptions: name: description: - The name of the DHCP Option Policy. type: str required: yes version: description: - The version of the DHCP Option Policy. type: int required: yes state: description: - Use C(present) or C(absent) for adding or removing. - Use C(query) for listing an object or multiple objects. type: str choices: [ absent, present, query ] default: present notes: - This module can only be used on versions of MSO that are 3.1.1h or greater. extends_documentation_fragment: cisco.mso.modules ''' EXAMPLES = r''' - name: Add a new DHCP policy to a BD cisco.mso.mso_schema_template_bd_dhcp_policy: host: mso_host username: admin password: SomeSecretPassword schema: Schema 1 template: Template 1 bd: BD 1 name: ansible_test version: 1 dhcp_option_policy: name: ansible_test_option version: 1 state: present delegate_to: localhost - name: Remove a DHCP policy from a BD cisco.mso.mso_schema_template_bd_dhcp_policy: host: mso_host username: admin password: SomeSecretPassword schema: Schema 1 template: Template 1 bd: BD 1 name: ansible_test version: 1 state: absent delegate_to: localhost - name: Query a specific BD DHCP Policy cisco.mso.mso_schema_template_bd_dhcp_policy: host: mso_host username: admin password: SomeSecretPassword schema: Schema 1 template: Template 1 bd: BD 1 name: ansible_test state: query delegate_to: localhost register: query_result - name: Query all BD DHCP Policies cisco.mso.mso_schema_template_bd_dhcp_policy: host: mso_host username: admin password: SomeSecretPassword schema: Schema 1 template: Template 1 bd: BD 1 state: query delegate_to: localhost register: query_result ''' RETURN = r''' ''' from ansible.module_utils.basic import AnsibleModule from ansible_collections.cisco.mso.plugins.module_utils.mso import MSOModule, mso_argument_spec, mso_dhcp_option_spec def main(): argument_spec = mso_argument_spec() argument_spec.update( schema=dict(type='str', required=True), template=dict(type='str', required=True), bd=dict(type='str', required=True), dhcp_policy=dict(type='str', aliases=['name']), version=dict(type='int'), dhcp_option_policy=dict(type='dict', options=mso_dhcp_option_spec()), state=dict(type='str', default='present', choices=['absent', 'present', 'query']), ) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=True, required_if=[ ['state', 'absent', ['dhcp_policy']], ['state', 'present', ['dhcp_policy', 'version']], ], ) schema = module.params.get('schema') template = module.params.get('template').replace(' ', '') bd = module.params.get('bd') dhcp_policy = module.params.get('dhcp_policy') dhcp_option_policy = module.params.get('dhcp_option_policy') version = module.params.get('version') state = module.params.get('state') mso = MSOModule(module) # Get schema schema_id, schema_path, schema_obj = mso.query_schema(schema) # Get template templates = [t.get('name') for t in schema_obj.get('templates')] if template not in templates: mso.fail_json(msg="Provided template '{0}' does not exist. Existing templates: {1}".format(template, ', '.join(templates))) template_idx = templates.index(template) # Get BD bds = [b.get('name') for b in schema_obj.get('templates')[template_idx]['bds']] if bd not in bds: mso.fail_json(msg="Provided BD '{0}' does not exist. Existing BDs: {1}".format(bd, ', '.join(bds))) bd_idx = bds.index(bd) # Check if DHCP policy already exists if dhcp_policy: check_policy = mso.get_obj("policies/dhcp/relay", name=dhcp_policy, key="DhcpRelayPolicies") if check_policy: pass else: mso.fail_json(msg="DHCP policy '{dhcp_policy}' does not exist".format(dhcp_policy=dhcp_policy)) # Check if DHCP option policy already exists if dhcp_option_policy: check_option_policy = mso.get_obj("policies/dhcp/option", name=dhcp_option_policy.get('name'), key="DhcpRelayPolicies") if check_option_policy: pass else: mso.fail_json(msg="DHCP option policy '{dhcp_option_policy}' does not exist".format(dhcp_option_policy=dhcp_option_policy.get('name'))) # Get DHCP policies dhcp_policies = [s.get('name') for s in schema_obj.get('templates')[template_idx]['bds'][bd_idx]['dhcpLabels']] if dhcp_policy in dhcp_policies: dhcp_idx = dhcp_policies.index(dhcp_policy) # FIXME: Changes based on index are DANGEROUS dhcp_policy_path = '/templates/{0}/bds/{1}/dhcpLabels/{2}'.format(template, bd, dhcp_idx) mso.existing = schema_obj.get('templates')[template_idx]['bds'][bd_idx]['dhcpLabels'][dhcp_idx] if state == 'query': if dhcp_policy is None: mso.existing = schema_obj.get('templates')[template_idx]['bds'][bd_idx]['dhcpLabels'] elif not mso.existing: mso.fail_json(msg="DHCP policy not associated with the bd") mso.exit_json() dhcp_policy_paths = '/templates/{0}/bds/{1}/dhcpLabels'.format(template, bd) ops = [] mso.previous = mso.existing if state == 'absent': if mso.existing: mso.sent = mso.existing = {} ops.append(dict(op='remove', path=dhcp_policy_path)) elif state == 'present': payload = dict( name=dhcp_policy, version=version, dhcpOptionLabel=dhcp_option_policy, ) mso.sanitize(payload, collate=True) if mso.existing: ops.append(dict(op='replace', path=dhcp_policy_path, value=mso.sent)) else: ops.append(dict(op='add', path=dhcp_policy_paths + '/-', value=mso.sent)) mso.existing = mso.proposed if not module.check_mode: mso.request(schema_path, method='PATCH', data=ops) mso.exit_json() if __name__ == "__main__": main()
py
1a4882c3da83ba142ac0a2b7395c99424488cd6a
"""Tests.""" from django.test import TestCase from django.contrib.auth import get_user_model from .. import NotificationError from ..models import Notification from ..signals import read, notify class GeneralTestCase(TestCase): """Tests for General functionality.""" User = get_user_model() @classmethod def setUpTestData(cls): """Create Users.""" cls.user1 = cls.User.objects.create_user( username='[email protected]', password='password' ) cls.user2 = cls.User.objects.create( username='[email protected]', password='password' ) def test_to_json_without_extra_data(self): """ If the extra_data argument is ommitted, the default should be an empty dictionary """ # Create notification notification = Notification.objects.create( source=self.user2, source_display_name='User 2', recipient=self.user1, action='Notified', category='General notification', obj=1, url='http://example.com', short_description='Short Description', is_read=False, ) self.assertEqual( notification.to_json(), { 'source': self.user2.id, 'source_display_name': 'User 2', 'recipient': self.user1.id, 'action': 'Notified', 'category': 'General notification', 'obj': 1, 'short_description': 'Short Description', 'extra_data': {}, 'channels': '', 'url': 'http://example.com', 'is_read': False } ) def test_to_json_with_extra_data(self): """Test to_json method with extra data.""" notification = Notification.objects.create( source=self.user2, source_display_name='User 2', recipient=self.user1, action='Notified', category='General notification', obj=1, url='http://example.com', short_description='Short Description', is_read=False, extra_data={'hello': 'world'} ) self.assertEqual( notification.to_json(), { 'source': self.user2.id, 'source_display_name': 'User 2', 'recipient': self.user1.id, 'action': 'Notified', 'category': 'General notification', 'obj': 1, 'short_description': 'Short Description', 'channels': '', 'url': 'http://example.com', 'extra_data': {'hello': 'world'}, 'is_read': False, } ) class NotificationSignalTestCase(TestCase): """Tests for the notification signals.""" User = get_user_model() @classmethod def setUpTestData(cls): """Create Users.""" cls.user1 = cls.User.objects.create_user( username='[email protected]', password='password' ) cls.user2 = cls.User.objects.create( username='[email protected]', password='password' ) def test_user_cant_read_others_notifications(self): """A user should only be able to read THEIR notifications.""" # Create Notification for User2 notification = Notification.objects.create( source=self.user1, source_display_name='User 1', recipient=self.user2, action='Notified', category='General notification', obj=1, url='http://example.com', is_read=False ) # Try and Read the notification as User1 self.assertRaises( NotificationError, read.send, sender=self.__class__, notify_id=notification.id, recipient=self.user1 ) def test_user_can_read_notifications(self): """A user can read their notification""" # Create Notification for User1 notification = Notification.objects.create( source=self.user2, source_display_name='User 2', recipient=self.user1, action='Notified', category='General notification', obj=1, url='http://example.com', is_read=False ) # Try and Read the notification as user1 read.send( sender=self.__class__, notify_id=notification.id, recipient=self.user1 ) notification.refresh_from_db() self.assertEqual(notification.is_read, True) def test_silent_notification(self): """Test Silent notifications.""" notify.send( sender=self.__class__, source=self.user2, source_display_name='User 2', recipient=self.user1, action='Notified', category='Silent notification', obj=1, url='http://example.com', short_description='Short Description', is_read=False, silent=True, channels=('console',) ) notifications = Notification.objects.all() self.assertEqual(notifications.count(), 0) class JSONFieldTestCase(TestCase): """Test the Custom JSONField.""" User = get_user_model() @classmethod def setUpTestData(cls): """Create Users.""" cls.user1 = cls.User.objects.create_user( username='[email protected]', password='password' ) cls.user2 = cls.User.objects.create( username='[email protected]', password='password' ) def test_raise_exception(self): """ Should raise an exception When we try to save objects that can't be serialized by the json module. """ kwargs = { 'sender': self.__class__, 'source': self.user2, 'source_display_name': 'User 2', 'recipient': self.user1, 'action': 'Notified', 'category': 'General notification', 'obj': 1, 'short_description': 'Short Description', 'url': 'http://example.com', 'is_read': False, 'extra_data': {'hello': lambda x: 'world'}, 'channels': ('console',) } self.assertRaises(TypeError, notify.send, **kwargs) def test_json_decode(self): """Should return a dictionary back.""" notify.send( sender=self.__class__, source=self.user2, source_display_name='User 2', recipient=self.user1, action='Notified', category='Notification with extra data', obj=1, url='http://example.com', short_description='Short Description', is_read=False, extra_data={'hello': 'world'}, channels=('console',) ) notification = Notification.objects.last() self.assertEqual( notification.extra_data, {'hello': 'world'} ) class TestListField(TestCase): """Tests for the list field.""" User = get_user_model() @classmethod def setUpTestData(cls): """Create Users.""" cls.user1 = cls.User.objects.create_user( username='[email protected]', password='password' ) cls.user2 = cls.User.objects.create( username='[email protected]', password='password' ) def test_should_return_list(self): """Should return a list of channels back.""" notify.send( sender=self.__class__, source=self.user2, source_display_name='User 2', recipient=self.user1, action='Notified', category='Notification with extra data', obj=1, url='http://example.com', short_description='Short Description', is_read=False, extra_data={'hello': 'world'}, channels=('console', 'console') ) notification = Notification.objects.last() self.assertEqual( notification.to_json()['channels'], ['console', 'console'] )
py
1a4882d0c3a3dd58a8bcc9ddf3b33d0e137edf0b
# # POC FTP Browser for Enigma2 # # for localized messages from . import _ # Config from Components.config import config, ConfigInteger, ConfigSubList, \ ConfigSubsection, ConfigText, ConfigPassword, ConfigYesNo config.plugins.ftpbrowser = ConfigSubsection() config.plugins.ftpbrowser.server = ConfigSubList() config.plugins.ftpbrowser.servercount = ConfigInteger(0) i = 0 append = config.plugins.ftpbrowser.server.append while i < config.plugins.ftpbrowser.servercount.value: newServer = ConfigSubsection() append(newServer) newServer.name = ConfigText("Name", fixed_size=False) newServer.address = ConfigText("192.168.2.12", fixed_size=False) newServer.username = ConfigText("root", fixed_size=False) newServer.password = ConfigPassword("dreambox") newServer.port = ConfigInteger(21, (1, 65535)) newServer.passive = ConfigYesNo(False) i += 1 del newServer del append, i from FTPBrowser import FTPBrowser from FTPServerManager import ftpserverFromURI ftpbrowser = None def createSingleton(session): global ftpbrowser if not ftpbrowser: ftpbrowser = session.instantiateDialog(FTPBrowser) return False return True def main(session, **kwargs): createSingleton(session) session.execDialog(ftpbrowser) def filescan_chosen(session, item): if item: createSingleton(session) ftpbrowser.connect(ftpserverFromURI(item[1], save = False)) session.execDialog(ftpbrowser) def filescan_open_connected(res, items, session, **kwargs): if res: ftpbrowser.disconnect() filescan_open(items, session, **kwargs) def filescan_open(items, session, **kwargs): if createSingleton(session) and ftpbrowser.ftpclient: from Screens.MessageBox import MessageBox from Tools.BoundFunction import boundFunction session.openWithCallback( boundFunction(filescan_open_connected, items, session, **kwargs), MessageBox, _("There already is an active connection.\nDo you want to abort it?"), type = MessageBox.TYPE_YESNO ) return Len = len(items) if Len > 1: from Screens.ChoiceBox import ChoiceBox from Tools.BoundFunction import boundFunction session.openWithCallback( boundFunction(filescan_chosen, session), ChoiceBox, _("Which server do you want to connect to?"), [(item, item) for item in items] ) elif Len: filescan_chosen(items[0]) def filescan(**kwargs): from Components.Scanner import Scanner, ScanPath # Overwrite checkFile to detect remote files class RemoteScanner(Scanner): def checkFile(self, file): return file.path.startswith("ftp://") return [ RemoteScanner( mimetypes = None, paths_to_scan = ( ScanPath(path = "", with_subdirs = False), ), name = "Connect", description = _("Connect to FTP..."), openfnc = filescan_open, ), ] def Plugins(**kwargs): from Plugins.Plugin import PluginDescriptor return [ PluginDescriptor( name="FTPBrowser", description = _("A basic FTP client"), where = PluginDescriptor.WHERE_PLUGINMENU, icon = "plugin.png", fnc = main, needsRestart = False ), PluginDescriptor( name = "FTPBrowser", where = PluginDescriptor.WHERE_FILESCAN, fnc = filescan, needsRestart = False, ), ]
py
1a4883bfa2c641a0ee48d991f4bbba2b1c3ddcb9
from __future__ import absolute_import import os import re import json import base64 import inspect import requests import mimetypes from contextlib import contextmanager from datetime import datetime, timedelta from django.conf import settings from django.db import transaction from pytz import utc from random import randint from six import StringIO # Do not import from sentry here! Bad things will happen optional_group_matcher = re.compile(r'\(\?\:([^\)]+)\)') named_group_matcher = re.compile(r'\(\?P<(\w+)>[^\)]+\)') non_named_group_matcher = re.compile(r'\([^\)]+\)') # [foo|bar|baz] either_option_matcher = re.compile(r'\[([^\]]+)\|([^\]]+)\]') camel_re = re.compile(r'([A-Z]+)([a-z])') API_PREFIX = '/api/0/' scenarios = {} def simplify_regex(pattern): """Clean up urlpattern regexes into something somewhat readable by Mere Humans: turns something like "^(?P<sport_slug>\w+)/athletes/(?P<athlete_slug>\w+)/$" into "{sport_slug}/athletes/{athlete_slug}/" """ pattern = optional_group_matcher.sub(lambda m: '[%s]' % m.group(1), pattern) # handle named groups first pattern = named_group_matcher.sub(lambda m: '{%s}' % m.group(1), pattern) # handle non-named groups pattern = non_named_group_matcher.sub("{var}", pattern) # handle optional params pattern = either_option_matcher.sub(lambda m: m.group(1), pattern) # clean up any outstanding regex-y characters. pattern = pattern.replace('^', '').replace('$', '') \ .replace('?', '').replace('//', '/').replace('\\', '') if not pattern.startswith('/'): pattern = '/' + pattern return pattern def get_internal_endpoint_from_pattern(pattern): from sentry.api.base import Endpoint if not hasattr(pattern, 'callback'): return if hasattr(pattern.callback, 'cls'): cls = pattern.callback.cls if issubclass(cls, Endpoint): return cls elif hasattr(pattern.callback, 'cls_instance'): inst = pattern.callback.cls_instance if isinstance(inst, Endpoint): return inst.__class__ def extract_documentation(func): doc = inspect.getdoc(func) if doc is not None: return doc.decode('utf-8') def get_endpoint_path(internal_endpoint): return '%s.%s' % (internal_endpoint.__module__, internal_endpoint.__name__, ) def extract_title_and_text(doc): title = None iterable = iter((doc or u'').splitlines()) clean_end = False for line in iterable: line = line.strip() if title is None: if not line: continue title = line elif line[0] * len(line) == line: clean_end = True break else: break lines = [] if clean_end: for line in iterable: if line.strip(): lines.append(line) break lines.extend(iterable) return title, lines def camelcase_to_dashes(string): def handler(match): camel, regular = match.groups() if len(camel) != 1: camel = camel[:-1].lower() + '-' + camel[-1].lower() else: camel = camel.lower() return '-' + camel + regular.lower() return camel_re.sub(handler, string).lstrip('-') def extract_endpoint_info(pattern, internal_endpoint): path = simplify_regex(pattern.regex.pattern) from sentry.constants import HTTP_METHODS for method_name in HTTP_METHODS: if method_name in ('HEAD', 'OPTIONS'): continue method = getattr(internal_endpoint, method_name.lower(), None) if method is None: continue doc = extract_documentation(method) if doc is None: continue section = getattr(internal_endpoint, 'doc_section', None) if section is None: continue endpoint_name = method.__name__.title() + internal_endpoint.__name__ if endpoint_name.endswith('Endpoint'): endpoint_name = endpoint_name[:-8] endpoint_name = camelcase_to_dashes(endpoint_name) title, text = extract_title_and_text(doc) yield dict( path=API_PREFIX + path.lstrip('/'), method=method_name, title=title, text=text, scenarios=getattr(method, 'api_scenarios', None) or [], section=section.name.lower(), internal_path='%s:%s' % (get_endpoint_path(internal_endpoint), method.__name__), endpoint_name=endpoint_name, ) def iter_endpoints(): from sentry.api.urls import urlpatterns for pattern in urlpatterns: internal_endpoint = get_internal_endpoint_from_pattern(pattern) if internal_endpoint is None: continue for endpoint in extract_endpoint_info(pattern, internal_endpoint): yield endpoint def scenario(ident): def decorator(f): if ident in scenarios: raise RuntimeError('Scenario duplicate: %s' % ident) scenarios[ident] = f f.api_scenario_ident = ident return f return decorator def attach_scenarios(scenarios): def decorator(f): f.api_scenarios = [x.api_scenario_ident for x in scenarios] return f return decorator def iter_scenarios(): # Make sure everything is imported. for endpoint in iter_endpoints(): pass return iter(sorted(scenarios.items())) def get_sections(): from sentry.api.base import DocSection return dict((x.name.lower(), x.value) for x in DocSection) def create_sample_time_series(event): from sentry.app import tsdb group = event.group now = datetime.utcnow().replace(tzinfo=utc) for _ in range(60): count = randint(1, 10) tsdb.incr_multi( ((tsdb.models.project, group.project.id), (tsdb.models.group, group.id), ), now, count ) tsdb.incr_multi( ( (tsdb.models.organization_total_received, group.project.organization_id), (tsdb.models.project_total_received, group.project.id), ), now, int(count * 1.1) ) tsdb.incr_multi( ( (tsdb.models.organization_total_rejected, group.project.organization_id), (tsdb.models.project_total_rejected, group.project.id), ), now, int(count * 0.1) ) now = now - timedelta(seconds=1) for _ in range(24 * 30): count = randint(100, 1000) tsdb.incr_multi( ((tsdb.models.project, group.project.id), (tsdb.models.group, group.id), ), now, count ) tsdb.incr_multi( ( (tsdb.models.organization_total_received, group.project.organization_id), (tsdb.models.project_total_received, group.project.id), ), now, int(count * 1.1) ) tsdb.incr_multi( ( (tsdb.models.organization_total_rejected, group.project.organization_id), (tsdb.models.project_total_rejected, group.project.id), ), now, int(count * 0.1) ) now = now - timedelta(hours=1) class MockUtils(object): def create_user(self, mail): from sentry.models import User user, _ = User.objects.get_or_create( username=mail, defaults={ 'email': mail, } ) user.set_password('dummy') user.save() return user def create_org(self, name, owner): from sentry.models import Organization, OrganizationMember org, _ = Organization.objects.get_or_create( name=name, ) dummy_member, _ = OrganizationMember.objects.get_or_create( user=owner, organization=org, defaults={ 'role': 'member', } ) return org def create_api_key(self, org, label='Default'): from sentry.models import ApiKey return ApiKey.objects.get_or_create( organization=org, label=label, scopes=(1 << len(ApiKey.scopes.keys())) - 1, )[0] def create_client_key(self, project, label='Default'): from sentry.models import ProjectKey return ProjectKey.objects.get_or_create(project=project, label=label)[0] def create_team(self, name, org): from sentry.models import Team return Team.objects.get_or_create( name=name, defaults={ 'organization': org, }, )[0] def create_project(self, name, teams, org): from sentry.models import Project project = Project.objects.get_or_create( name=name, defaults={ 'organization': org, } )[0] for team in teams: project.add_team(team) return project def create_release(self, project, user, version=None): from sentry.models import Release, Activity if version is None: version = os.urandom(20).encode('hex') with transaction.atomic(): release = Release.objects.filter( version=version, organization_id=project.organization_id, projects=project ).first() if not release: release = Release.objects.filter( version=version, organization_id=project.organization_id, ).first() if not release: release = Release.objects.create( version=version, organization_id=project.organization_id, ) release.add_project(project) Activity.objects.create( type=Activity.RELEASE, project=project, ident=Activity.get_version_ident(version), user=user, data={'version': version}, ) return release def create_release_file(self, project, release, path, content_type=None, contents=None): from sentry.models import File, ReleaseFile if content_type is None: content_type = mimetypes.guess_type(path)[0] or 'text/plain' if content_type.startswith('text/'): content_type += '; encoding=utf-8' f = File.objects.create( name=path.rsplit('/', 1)[-1], type='release.file', headers={'Content-Type': content_type}, ) f.putfile(StringIO(contents or '')) return ReleaseFile.objects.create( organization_id=project.organization_id, release=release, file=f, name=path ) def create_event(self, project, release, platform='python', raw=True): from sentry.utils.samples import create_sample_event event = create_sample_event( project=project, platform=platform, release=release.version, raw=raw ) create_sample_time_series(event) return event class Runner(object): """The runner is a special object that holds state for the automatic running of example scenarios. It gets created by api-docs/generator.py which does the majority of the heavy lifting. It mainly exists here so that the scenarios can be run separately if needed. """ def __init__(self, ident, func, api_key, org, me, teams=None): self.ident = ident self.func = func self.requests = [] self.utils = MockUtils() self.api_key = api_key self.org = org self.me = me self.teams = teams @property def default_team(self): return self.teams[0]['team'] @property def default_project(self): return self.teams[0]['projects'][0]['project'] @property def default_release(self): return self.teams[0]['projects'][0]['release'] @property def default_event(self): return self.teams[0]['projects'][0]['events'][0] @contextmanager def isolated_project(self, project_name): from sentry.models import Group, Event project = self.utils.create_project(project_name, teams=[self.default_team], org=self.org) release = self.utils.create_release(project=project, user=self.me) self.utils.create_event(project=project, release=release, platform='python') self.utils.create_event(project=project, release=release, platform='java') try: yield project finally: # Enforce safe cascades into Group/Event Group.objects.filter( project=project, ).delete() Event.objects.filter( project_id=project.id, ).delete() project.delete() @contextmanager def isolated_org(self, org_name): from sentry.models import Group, Event org = self.utils.create_org(org_name, owner=self.me) try: yield org finally: # Enforce safe cascades into Group/Event Group.objects.filter( project__organization=org, ).delete() Event.objects.filter( project_id__in=org.project_set.values('id'), ).delete() org.delete() def request(self, method, path, headers=None, data=None, api_key=None, format='json'): if api_key is None: api_key = self.api_key path = '/api/0/' + path.lstrip('/') headers = dict(headers or {}) request_is_json = True body = None files = None was_multipart = False if data is not None: if format == 'json': body = json.dumps(data, sort_keys=True) headers['Content-Type'] = 'application/json' elif format == 'multipart': files = {} for key, value in data.items(): if hasattr(value, 'read') or isinstance(value, tuple): files[key] = value del data[key] was_multipart = True body = data req_headers = dict(headers) req_headers['Host'] = 'sentry.io' req_headers['Authorization'] = \ 'Basic %s' % base64.b64encode('%s:' % (api_key.key.encode('utf-8'))) url = 'http://127.0.0.1:%s%s' % (settings.SENTRY_APIDOCS_WEB_PORT, path, ) response = requests.request( method=method, url=url, files=files, headers=req_headers, data=body ) response_headers = dict(response.headers) # Don't want those response_headers.pop('server', None) response_headers.pop('date', None) if response.headers.get('Content-Type') == 'application/json': response_data = response.json() is_json = True else: response_data = response.text is_json = False if was_multipart: headers['Content-Type'] = response.request.headers['content-type'] data = response.request.body request_is_json = False rv = { 'request': { 'method': method, 'path': path, 'headers': headers, 'data': data, 'is_json': request_is_json, }, 'response': { 'headers': response_headers, 'status': response.status_code, 'reason': response.reason, 'data': response_data, 'is_json': is_json, } } self.requests.append(rv) return rv def to_json(self): doc = extract_documentation(self.func) title, text = extract_title_and_text(doc) return { 'ident': self.ident, 'requests': self.requests, 'title': title, 'text': text, }
py
1a4883f6b290e2426a12a2ecfc40fc0e7aeb1333
import setuptools with open("README.md", "r", encoding="utf-8") as f: long_description = f.read() setuptools.setup( name="better-ffmpeg-progress", version="2.0.0", author="GitHub.com/CrypticSignal", author_email="[email protected]", description="Run FFmpeg & see percentage progress + ETA.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/CrypticSignal/better-ffmpeg-progress", packages=["better_ffmpeg_progress"], install_requires=["ffmpeg-python", "tqdm"], python_requires=">=3.6", keywords=["ffmpeg", "progress"], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ] )
py
1a488844dec2133d3490cb03a0f610052a14175c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle from six.moves import reduce from .. import core from ..layers import utils from ..layers import nn as F from .. import dygraph_utils from . import layers from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype from ..param_attr import ParamAttr from ..initializer import Normal, Constant, NumpyArrayInitializer from .. import unique_name from .layer_object_helper import LayerObjectHelper from ..data_feeder import check_variable_and_dtype, check_type import numpy as np import numbers import logging import paddle.utils.deprecated as deprecated __all__ = [ 'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding', 'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm', 'SpectralNorm', 'TreeConv', 'Flatten' ] class Conv2D(layers.Layer): """ This interface is used to construct a callable object of the ``Conv2D`` class. For more details, refer to code examples. The convolution2D layer calculates the output based on the input, filter and strides, paddings, dilations, groups parameters. Input and Output are in NCHW format, where N is batch size, C is the number of the feature map, H is the height of the feature map, and W is the width of the feature map. Filter's shape is [MCHW] , where M is the number of output feature map, C is the number of input feature map, H is the height of the filter, and W is the width of the filter. If the groups is greater than 1, C will equal the number of input feature map divided by the groups. Please refer to UFLDL's `convolution <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ for more details. If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. For each input :math:`X`, the equation is: .. math:: Out = \\sigma (W \\ast X + b) Where: * :math:`X`: Input value, a ``Tensor`` with NCHW format. * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] . * :math:`\\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1]. * :math:`\\sigma`: Activation function. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)` - Output: Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\ W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 Parameters: num_channels(int): The number of channels in the input image. num_filters(int): The number of filter. It is as same as the output feature map. filter_size (int or tuple): The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise, the filter will be a square. stride (int or tuple, optional): The stride size. If stride is a tuple, it must contain two integers, (stride_H, stride_W). Otherwise, the stride_H = stride_W = stride. Default: 1. padding (int or tuple, optional): The padding size. If padding is a tuple, it must contain two integers, (padding_H, padding_W). Otherwise, the padding_H = padding_W = padding. Default: 0. dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must contain two integers, (dilation_H, dilation_W). Otherwise, the dilation_H = dilation_W = dilation. Default: 1. groups (int, optional): The groups number of the Conv2d Layer. According to grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: 1. param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter) of conv2d. If it is set to None or one attribute of ParamAttr, conv2d will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None. bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv2d will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True. act (str, optional): Activation type, if it is set to None, activation is not appended. Default: None. dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32". Attribute: **weight** (Parameter): the learnable weights of filter of this layer. **bias** (Parameter or None): the learnable bias of this layer. Returns: None Raises: ValueError: if ``use_cudnn`` is not a bool value. Examples: .. code-block:: python from paddle.fluid.dygraph.base import to_variable import paddle.fluid as fluid from paddle.fluid.dygraph import Conv2D import numpy as np data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32') with fluid.dygraph.guard(): conv2d = Conv2D(3, 2, 3) data = to_variable(data) conv = conv2d(data) """ def __init__(self, num_channels, num_filters, filter_size, stride=1, padding=0, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, dtype='float32'): assert param_attr is not False, "param_attr should not be False here." super(Conv2D, self).__init__() self._num_channels = num_channels self._groups = groups self._stride = utils.convert_to_list(stride, 2, 'stride') self._padding = utils.convert_to_list(padding, 2, 'padding') self._dilation = utils.convert_to_list(dilation, 2, 'dilation') self._act = act if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") self._use_cudnn = use_cudnn self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"] self._filter_size = filter_size self._num_filters = num_filters self._param_attr = param_attr self._bias_attr = bias_attr self._dtype = dtype if (self._num_channels == self._groups and num_filters % self._num_channels == 0 and not self._use_cudnn and not self._use_mkldnn): self._l_type = 'depthwise_conv2d' else: self._l_type = 'conv2d' self._num_channels = num_channels if self._groups is None: num_filter_channels = self._num_channels else: if self._num_channels % self._groups != 0: raise ValueError("num_channels must be divisible by groups.") num_filter_channels = self._num_channels // self._groups filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size') filter_shape = [self._num_filters, num_filter_channels] + filter_size def _get_default_param_initializer(): filter_elem_num = filter_size[0] * filter_size[ 1] * self._num_channels std = (2.0 / filter_elem_num)**0.5 return Normal(0.0, std, 0) self.weight = self.create_parameter( attr=self._param_attr, shape=filter_shape, dtype=self._dtype, default_initializer=_get_default_param_initializer()) self.bias = self.create_parameter( attr=self._bias_attr, shape=[self._num_filters], dtype=self._dtype, is_bias=True) def forward(self, input): if in_dygraph_mode() and self._l_type == 'conv2d': attrs = ('strides', self._stride, 'paddings', self._padding, 'dilations', self._dilation, 'groups', self._groups if self._groups else 1, 'use_cudnn', self._use_cudnn, 'use_mkldnn', self._use_mkldnn) out = core.ops.conv2d(input, self.weight, *attrs) pre_bias = out pre_act = dygraph_utils._append_bias_in_dygraph( pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn) return dygraph_utils._append_activation_in_dygraph( pre_act, self._act, use_mkldnn=self._use_mkldnn) inputs = { 'Input': [input], 'Filter': [self.weight], } attrs = { 'strides': self._stride, 'paddings': self._padding, 'dilations': self._dilation, 'groups': self._groups if self._groups else 1, 'use_cudnn': self._use_cudnn, 'use_mkldnn': self._use_mkldnn, } check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'], 'Conv2D') pre_bias = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type=self._l_type, inputs={ 'Input': input, 'Filter': self.weight, }, outputs={"Output": pre_bias}, attrs=attrs) if self.bias is not None: pre_act = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type='elementwise_add', inputs={'X': [pre_bias], 'Y': [self.bias]}, outputs={'Out': [pre_act]}, attrs={'axis': 1, 'use_mkldnn': self._use_mkldnn}) else: pre_act = pre_bias # Currently, we don't support inplace in dygraph mode return self._helper.append_activation(pre_act, act=self._act) class Conv3D(layers.Layer): """ **Convlution3D Layer** The convolution3D layer calculates the output based on the input, filter and strides, paddings, dilations, groups parameters. Input(Input) and Output(Output) are multidimensional tensors with a shape of :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of channels, D is the depth of the feature, H is the height of the feature, and W is the width of the feature. Convlution3D is similar with Convlution2D but adds one dimension(depth). If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. For each input :math:`X`, the equation is: .. math:: Out = \sigma (W \\ast X + b) In the above equation: * :math:`X`: Input value, a tensor with NCDHW or NDHWC format. * :math:`W`: Filter value, a tensor with MCDHW format. * :math:`\\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. * :math:`\\sigma`: Activation function. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)` - Output: Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` Where .. math:: D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\ H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\ W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1 Parameters: num_channels(int): The number of channels in the input image. num_filters(int): The number of filter. It is as same as the output image channel. filter_size (int|tuple, optional): The filter size. If filter_size is a tuple, it must contain three integers, (filter_size_D, filter_size_H, filter_size_W). Otherwise, the filter will be a square, filter_size_depth = filter_size_height = filter_size_width = filter_size. stride (int|tuple, optional): The stride size. If stride is a tuple, it must contain three integers, (stride_D, stride_H, stride_W). Otherwise, the stride_D = stride_H = stride_W = stride. The default value is 1. padding (int|tuple, optional): The padding size. If padding is a tuple, it must contain three integers, (padding_D, padding_H, padding_W). Otherwise, the padding_D = padding_H = padding_W = padding. The default value is 0. dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the dilation_D = dilation_H = dilation_W = dilation. The default value is 1. groups (int, optional): The groups number of the Conv3d Layer. According to grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. The default value is 1. param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights of conv3d. If it is set to None or one attribute of ParamAttr, conv3d will create ParamAttr as param_attr. If it is set to None, the parameter is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None. bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv3d will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. The default value is None. use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn library is installed. The default value is True. act (str, optional): Activation type, if it is set to None, activation is not appended. The default value is None. dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32". Attribute: **weight** (Parameter): the learnable weights of filters of this layer. **bias** (Parameter): the learnable bias of this layer. Returns: None. Raises: ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch. Examples: .. code-block:: python import paddle.fluid as fluid import numpy with fluid.dygraph.guard(): data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32') conv3d = fluid.dygraph.nn.Conv3D( num_channels=3, num_filters=2, filter_size=3, act="relu") ret = conv3d(fluid.dygraph.base.to_variable(data)) """ def __init__(self, num_channels, num_filters, filter_size, stride=1, padding=0, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, dtype='float32'): assert param_attr is not False, "param_attr should not be False here." super(Conv3D, self).__init__() self._num_channels = num_channels self._groups = groups self._stride = utils.convert_to_list(stride, 3, 'stride') self._padding = utils.convert_to_list(padding, 3, 'padding') self._dilation = utils.convert_to_list(dilation, 3, 'dilation') self._act = act self._use_cudnn = use_cudnn self._filter_size = filter_size self._num_filters = num_filters self._param_attr = param_attr self._bias_attr = bias_attr self._dtype = dtype if self._groups is None: num_filter_channels = self._num_channels else: if self._num_channels % self._groups != 0: raise ValueError("num_channels must be divisible by groups.") num_filter_channels = self._num_channels // self._groups filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size') filter_shape = [self._num_filters, num_filter_channels] + filter_size def _get_default_param_initializer(): filter_elem_num = filter_size[0] * filter_size[1] * filter_size[ 2] * self._num_channels std = (2.0 / filter_elem_num)**0.5 return Normal(0.0, std, 0) self.weight = self.create_parameter( attr=self._param_attr, shape=filter_shape, dtype=self._dtype, default_initializer=_get_default_param_initializer()) self.bias = self.create_parameter( attr=self._bias_attr, shape=[self._num_filters], dtype=self._dtype, is_bias=True) def forward(self, input): pre_bias = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type='conv3d', inputs={ 'Input': input, 'Filter': self.weight, }, outputs={"Output": pre_bias}, attrs={ 'strides': self._stride, 'paddings': self._padding, 'dilations': self._dilation, 'groups': self._groups if self._groups else 1, 'use_cudnn': self._use_cudnn, 'use_mkldnn': False }) if self.bias is not None: pre_act = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type='elementwise_add', inputs={'X': [pre_bias], 'Y': [self.bias]}, outputs={'Out': [pre_act]}, attrs={'axis': 1}) else: pre_act = pre_bias return self._helper.append_activation(pre_act, act=self._act) class Conv3DTranspose(layers.Layer): """ **Convlution3D transpose layer** The convolution3D transpose layer calculates the output based on the input, filter, and dilations, strides, paddings. Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the number of channels, D is the depth of the feature, H is the height of the feature, and W is the width of the feature. Parameters(dilations, strides, paddings) are two elements. These two elements represent height and width, respectively. The details of convolution transpose layer, please refer to the following explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_. If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. For each input :math:`X`, the equation is: .. math:: Out = \sigma (W \\ast X + b) In the above equation: * :math:`X`: Input value, a tensor with NCDHW format. * :math:`W`: Filter value, a tensor with MCDHW format. * :math:`\\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. * :math:`\\sigma`: Activation function. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)` - Output: Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` Where .. math:: D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\ H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\ W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\ D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\ H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\ **Note**: The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, when stride > 1, conv3d maps multiple input shape to the same output shape, so for conv3d_transpose, when stride > 1, input shape maps multiple output shape. If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \ H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, conv3d_transpose can compute the kernel size automatically. Parameters: num_channels(int): The number of channels in the input image. num_filters(int): The number of the filter. It is as same as the output image channel. filter_size(int|tuple): The filter size. If filter_size is a tuple, it must contain three integers, (filter_size_D, filter_size_H, filter_size_W). Otherwise, the filter will be a square. padding(int|tuple, optional): The padding size. The padding argument effectively adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string, either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding` is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `'NCDHW'`, `padding` can be in the form `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. when `data_format` is `'NDHWC'`, `padding` can be in the form `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. The default value is 0. stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. If stride is a tuple, it must contain three integers, (stride_depth, stride_height, stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. The default value is 1. dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the dilation_D = dilation_H = dilation_W = dilation. The default value is 1. groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by grouped convolution in Alex Krizhevsky's Deep CNN paper, in which when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. The default value is 1. param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. The default value is None. bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv3d_transpose will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. The default value is None. use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn library is installed. The default value is True. act (str, optional): Activation type, if it is set to None, activation is not appended. The default value is None. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Attribute: **weight** (Parameter): the learnable weights of filters of this layer. **bias** (Parameter): the learnable bias of this layer. Returns: None. Raises: ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch. Examples: .. code-block:: python import paddle.fluid as fluid import numpy with fluid.dygraph.guard(): data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32') conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose( num_channels=3, num_filters=12, filter_size=12, use_cudnn=False) ret = conv3dTranspose(fluid.dygraph.base.to_variable(data)) """ def __init__(self, num_channels, num_filters, filter_size, padding=0, stride=1, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, dtype='float32'): super(Conv3DTranspose, self).__init__() if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") assert param_attr is not False, "param_attr should not be False in conv3d_transpose." self._padding = utils.convert_to_list(padding, 3, 'padding') self._stride = utils.convert_to_list(stride, 3, 'stride') self._dilation = utils.convert_to_list(dilation, 3, 'dilation') self._param_attr = param_attr self._num_channels = num_channels self._filter_size = filter_size self._groups = 1 if groups is None else groups self._num_filters = num_filters self._use_cudnn = use_cudnn self._bias_attr = bias_attr self._act = act self._dtype = dtype self._filter_size = utils.convert_to_list( self._filter_size, 3, 'conv3d_transpose.filter_size') filter_shape = [self._num_channels, self._num_filters // self._groups ] + self._filter_size self.weight = self.create_parameter( dtype=self._dtype, shape=filter_shape, attr=self._param_attr) self.bias = self.create_parameter( attr=self._bias_attr, shape=[self._num_filters], dtype=self._dtype, is_bias=True) def forward(self, input): pre_bias = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type="conv3d_transpose", inputs={'Input': [input], 'Filter': [self.weight]}, outputs={'Output': pre_bias}, attrs={ 'strides': self._stride, 'paddings': self._padding, 'dilations': self._dilation, 'groups': self._groups if self._groups else 1, 'use_cudnn': self._use_cudnn }) if self._bias_attr: pre_act = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type='elementwise_add', inputs={'X': [pre_bias], 'Y': [self.bias]}, outputs={'Out': [pre_act]}, attrs={'axis': 1}) else: pre_act = pre_bias # Currently, we don't support inplace in imperative mode return self._helper.append_activation(pre_act, act=self._act) class Pool2D(layers.Layer): """ :alias_main: paddle.nn.Pool2D :alias: paddle.nn.Pool2D,paddle.nn.layer.Pool2D,paddle.nn.layer.common.Pool2D :old_api: paddle.fluid.dygraph.Pool2D This interface is used to construct a callable object of the ``Pool2D`` class. For more details, refer to code examples. The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride, pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map, H is the height of the feature map, and W is the width of the feature map. Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively. The input(X) size and output(Out) size may be different. Example: - Input: Input shape: :math:`(N, C, H_{in}, W_{in})` - Output: Output shape: :math:`(N, C, H_{out}, W_{out})` If ``ceil_mode`` = False: .. math:: H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\ W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 If ``ceil_mode`` = True: .. math:: H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\ W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1 If ``exclusive`` = False: .. math:: hstart &= i * strides[0] - paddings[0] \\\\ hend &= hstart + ksize[0] \\\\ wstart &= j * strides[1] - paddings[1] \\\\ wend &= wstart + ksize[1] \\\\ Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]} If ``exclusive`` = True: .. math:: hstart &= max(0, i * strides[0] - paddings[0])\\\\ hend &= min(H, hstart + ksize[0]) \\\\ wstart &= max(0, j * strides[1] - paddings[1]) \\\\ wend & = min(W, wstart + ksize[1]) \\\\ Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)} Parameters: pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list, it must contain two integers, (pool_size_Height, pool_size_Width). Otherwise, the pool kernel size will be a square of an int. Default: -1. pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. Default: max. pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list, it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise, the pool stride size will be a square of an int. Default: 1. pool_padding (int or list or tuple, optional): The padding size for pooling operation. If ``pool_padding`` is a tuple, it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width). Otherwise, the padding size for pooling operation will be a square of an int. Default: 0. global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true, kernel size and paddings will be ignored. Default: False. use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True. ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width. False is the default. If it is set to False, the floor function will be used. Default: False. exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True. data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is stored in the order of: ``[batch_size, input_height, input_width, input_channels]`` Returns: None Raises: ValueError: If ``pool_type`` is not "max" nor "avg". ValueError: If ``global_pooling`` is False and ``pool_size`` is -1. ValueError: If ``use_cudnn`` is not a bool value. ValueError: If ``data_format`` is not "NCHW" nor "NHWC". Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable import numpy as np with fluid.dygraph.guard(): data = numpy.random.random((3, 32, 32, 5)).astype('float32') pool2d = fluid.dygraph.Pool2D(pool_size=2, pool_type='max', pool_stride=1, global_pooling=False) pool2d_res = pool2d(to_variable(data)) """ def __init__(self, pool_size=-1, pool_type="max", pool_stride=1, pool_padding=0, global_pooling=False, use_cudnn=True, ceil_mode=False, exclusive=True, data_format="NCHW"): data_format = data_format.upper() # supprt NHWC, nhwc, etc. pool_type = pool_type.lower() # supprt max, Max, etc. if pool_type not in ["max", "avg"]: raise ValueError( "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.", str(pool_type)) if global_pooling is False and pool_size == -1: raise ValueError( "When the global_pooling is False, pool_size must be passed " "and be a valid value. Received pool_size: " + str(pool_size)) if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"] if data_format not in ["NCHW", "NHWC"]: raise ValueError( "Attr(data_format) should be 'NCHW' or 'NHWC'. Received " "Attr(data_format): %s." % str(data_format)) super(Pool2D, self).__init__() self._pool_type = pool_type self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size') self._pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding') self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride') self._global_pooling = global_pooling self._use_cudnn = use_cudnn self._ceil_mode = ceil_mode self._exclusive = exclusive self._data_format = data_format self._l_type = 'pool2d' def forward(self, input): if in_dygraph_mode(): attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size, 'global_pooling', self._global_pooling, 'strides', self._pool_stride, 'paddings', self._pool_padding, 'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode, 'use_mkldnn', self._use_mkldnn, 'exclusive', self._exclusive, 'data_format', self._data_format) return core.ops.pool2d(input, *attrs) check_variable_and_dtype( input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'], 'Pool2D') attrs = { "pooling_type": self._pool_type, "ksize": self._pool_size, "global_pooling": self._global_pooling, "strides": self._pool_stride, "paddings": self._pool_padding, "use_cudnn": self._use_cudnn, "ceil_mode": self._ceil_mode, "use_mkldnn": self._use_mkldnn, "exclusive": self._exclusive, "data_format": self._data_format, } inputs = {"X": [input]} pool_out = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type=self._l_type, inputs={"X": input}, outputs={"Out": pool_out}, attrs=attrs) return pool_out class Linear(layers.Layer): """ Fully-connected linear transformation layer: .. math:: Out = Act({XW + b}) where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively. Linear layer takes only one ``Tensor`` input. The Linear layer multiplies input tensor with weight matrix and produces an output Tensor of shape [N, *, `output_dim`], where N is batch size and `*` means any number of additional dimensions. If ``bias_attr`` is not None, a bias variable will be created and added to the output. Finally, if ``act`` is not None, it will be applied to the output as well. Parameters: input_dim(int): The number of input units in this layer. output_dim(int): The number of output units in this layer. param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable weights(Parameter) of this layer. Default: None. bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias of this layer. If it is set to False, no bias will be added to the output units. If it is set to None, the bias is initialized zero. Default: None. act(str, optional): Activation to be applied to the output of this layer. Default: None. dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32". Attributes: **weight** (Parameter): the learnable weights of this layer. **bias** (Parameter or None): the learnable bias of this layer. Returns: None Examples: .. code-block:: python from paddle.fluid.dygraph.base import to_variable import paddle.fluid as fluid from paddle.fluid.dygraph import Linear import numpy as np data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32') with fluid.dygraph.guard(): linear = Linear(32, 64) data = to_variable(data) res = linear(data) # [30, 10, 64] """ def __init__(self, input_dim, output_dim, param_attr=None, bias_attr=None, act=None, dtype="float32"): super(Linear, self).__init__() self._act = act self._dtype = dtype self.weight = self.create_parameter( shape=[input_dim, output_dim], attr=param_attr, dtype=dtype, is_bias=False) self.bias = self.create_parameter( shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True) self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"] def forward(self, input): if in_dygraph_mode(): pre_bias = _varbase_creator(dtype=input.dtype) core.ops.matmul(input, self.weight, pre_bias, 'transpose_X', False, 'transpose_Y', False, "alpha", 1, "use_mkldnn", self._use_mkldnn) pre_act = dygraph_utils._append_bias_in_dygraph( pre_bias, self.bias, axis=len(input.shape) - 1, use_mkldnn=self._use_mkldnn) return dygraph_utils._append_activation_in_dygraph( pre_act, self._act, use_mkldnn=self._use_mkldnn) check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'], "Linear") attrs = { "transpose_X": False, "transpose_Y": False, "alpha": 1, "use_mkldnn": self._use_mkldnn, } inputs = {"X": [input], "Y": [self.weight]} tmp = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs) if self.bias is not None: pre_activation = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type='elementwise_add', inputs={'X': [tmp], 'Y': [self.bias]}, outputs={'Out': [pre_activation]}, attrs={ 'axis': len(input.shape) - 1, 'use_mkldnn': self._use_mkldnn }) else: pre_activation = tmp return self._helper.append_activation(pre_activation, act=self._act) class InstanceNorm(layers.Layer): """ This interface is used to construct a callable object of the ``InstanceNorm`` class. For more details, refer to code examples. Can be used as a normalizer function for convolution or fully_connected operations. The required data format for this layer is one of the following: DataLayout: NCHW `[batch, in_channels, in_height, in_width]` Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_ for more details. :math:`input` is the input features over a mini-batch. .. math:: \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\ \\ mean\ of\ one\ feature\ map\ in\ mini-batch \\\\ \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\ \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\ \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\ \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\ y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift Note: `H` means height of feature map, `W` means width of feature map. Parameters: num_channels(int): Indicate the number of channels of the input ``Tensor``. epsilon(float, optional): A value added to the denominator for numerical stability. Default is 1e-5. param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale` of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm will create ParamAttr as param_attr, the name of scale can be set in ParamAttr. If the Initializer of the param_attr is not set, the parameter is initialized one. If it is set to False, will not create param_attr. Default: None. bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. If the Initializer of the bias_attr is not set, the bias is initialized zero. If it is set to False, will not create bias_attr. Default: None. dtype(str, optional): Indicate the data type of the input ``Tensor``, which can be float32 or float64. Default: float32. Returns: None. Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable import numpy as np import paddle # x's shape is [1, 3, 1, 2] x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32') with fluid.dygraph.guard(): x = to_variable(x) instanceNorm = paddle.nn.InstanceNorm(3) ret = instanceNorm(x) # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] print(ret) """ def __init__(self, num_channels, epsilon=1e-5, param_attr=None, bias_attr=None, dtype='float32'): super(InstanceNorm, self).__init__() if param_attr == False or bias_attr == False: assert bias_attr == param_attr, "param_attr and bias_attr must be set to Fasle at the same time in InstanceNorm" self._epsilon = epsilon self._param_attr = param_attr self._bias_attr = bias_attr self._dtype = dtype if param_attr != False and bias_attr != False: self.scale = self.create_parameter( attr=self._param_attr, shape=[num_channels], dtype=self._dtype, default_initializer=Constant(1.0), is_bias=False) self.bias = self.create_parameter( attr=self._bias_attr, shape=[num_channels], dtype=self._dtype, default_initializer=Constant(0.0), is_bias=True) else: self.scale = None self.bias = None def forward(self, input): if in_dygraph_mode(): out, _, _ = core.ops.instance_norm(input, self.scale, self.bias, 'epsilon', self._epsilon) return out check_variable_and_dtype(input, 'input', ['float32', 'float64'], "InstanceNorm") attrs = {"epsilon": self._epsilon} if self.scale and self.bias: inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]} else: inputs = {"X": [input]} saved_mean = self._helper.create_variable_for_type_inference( dtype=self._dtype, stop_gradient=True) saved_variance = self._helper.create_variable_for_type_inference( dtype=self._dtype, stop_gradient=True) instance_norm_out = self._helper.create_variable_for_type_inference( self._dtype) outputs = { "Y": [instance_norm_out], "SavedMean": [saved_mean], "SavedVariance": [saved_variance] } self._helper.append_op( type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs) return instance_norm_out class BatchNorm(layers.Layer): """ :alias_main: paddle.nn.BatchNorm :alias: paddle.nn.BatchNorm,paddle.nn.layer.BatchNorm,paddle.nn.layer.norm.BatchNorm :old_api: paddle.fluid.dygraph.BatchNorm This interface is used to construct a callable object of the ``BatchNorm`` class. For more details, refer to code examples. It implements the function of the Batch Normalization Layer and can be used as a normalizer function for conv2d and fully connected operations. The data is normalized by the mean and variance of the channel based on the current batch data. Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_ for more details. When use_global_stats = False, the :math:`\\mu_{\\beta}` and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch. Calculated as follows: .. math:: \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\ \ mini-batch\ mean \\\\ \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\ \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\ - :math:`x` : mini-batch data - :math:`m` : the size of the mini-batch data When use_global_stats = True, the :math:`\\mu_{\\beta}` and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch. They are global or running statistics (moving_mean and moving_variance). It usually got from the pre-trained model. Calculated as follows: .. math:: moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\ moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\ The normalization function formula is as follows: .. math:: \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\ \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\ y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero - :math:`\\gamma` : trainable proportional parameter - :math:`\\beta` : trainable deviation parameter Parameters: num_channels(int): Indicate the number of channels of the input ``Tensor``. act(str, optional): Activation to be applied to the output of batch normalization. Default: None. is_test (bool, optional): A flag indicating whether it is in test phrase or not. This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``. Default: False. momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9. epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5. param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale` of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. dtype(str, optional): Indicate the data type of the input ``Tensor``, which can be float32 or float64. Default: float32. data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW. in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False. moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None. moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None. do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model average when model average is enabled. Default: True. use_global_stats(bool, optional): Whether to use global mean and variance. In inference or test mode, set use_global_stats to true or is_test to true, and the behavior is equivalent. In train mode, when setting use_global_stats True, the global mean and variance are also used during train period. Default: False. trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when setting trainable_statistics True, mean and variance will be calculated by current batch statistics. Default: False. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable import numpy as np x = np.random.random(size=(3, 10, 3, 7)).astype('float32') with fluid.dygraph.guard(): x = to_variable(x) batch_norm = fluid.BatchNorm(10) hidden1 = batch_norm(x) """ def __init__(self, num_channels, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, dtype='float32', data_layout='NCHW', in_place=False, moving_mean_name=None, moving_variance_name=None, do_model_average_for_mean_and_var=True, use_global_stats=False, trainable_statistics=False): super(BatchNorm, self).__init__() self._param_attr = param_attr self._bias_attr = bias_attr self._act = act self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"] assert bias_attr is not False, "bias_attr should not be False in batch_norm." if dtype == "float16": self._dtype = "float32" else: self._dtype = dtype param_shape = [num_channels] # create parameter self.weight = self.create_parameter( attr=self._param_attr, shape=param_shape, dtype=self._dtype, default_initializer=Constant(1.0)) self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0. self.bias = self.create_parameter( attr=self._bias_attr, shape=param_shape, dtype=self._dtype, is_bias=True) self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0. self._mean = self.create_parameter( attr=ParamAttr( name=moving_mean_name, initializer=Constant(0.0), trainable=False, do_model_average=do_model_average_for_mean_and_var), shape=param_shape, dtype=self._dtype) self._mean.stop_gradient = True self._variance = self.create_parameter( attr=ParamAttr( name=moving_variance_name, initializer=Constant(1.0), trainable=False, do_model_average=do_model_average_for_mean_and_var), shape=param_shape, dtype=self._dtype) self._variance.stop_gradient = True self._in_place = in_place self._data_layout = data_layout self._momentum = momentum self._epsilon = epsilon self._is_test = is_test self._fuse_with_relu = False self._use_global_stats = use_global_stats self._trainable_statistics = trainable_statistics def forward(self, input): # create output # mean and mean_out share the same memory mean_out = self._mean # variance and variance out share the same memory variance_out = self._variance if in_dygraph_mode(): attrs = ("momentum", self._momentum, "epsilon", self._epsilon, "is_test", not self.training, "data_layout", self._data_layout, "use_mkldnn", self._use_mkldnn, "fuse_with_relu", self._fuse_with_relu, "use_global_stats", self._use_global_stats, 'trainable_statistics', self._trainable_statistics) batch_norm_out, _, _, _, _, _ = core.ops.batch_norm( input, self.weight, self.bias, self._mean, self._variance, mean_out, variance_out, *attrs) return dygraph_utils._append_activation_in_dygraph( batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn) check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'], 'BatchNorm') attrs = { "momentum": self._momentum, "epsilon": self._epsilon, "is_test": self._is_test, "data_layout": self._data_layout, "use_mkldnn": False, "fuse_with_relu": self._fuse_with_relu, "use_global_stats": self._use_global_stats, "trainable_statistics": self._trainable_statistics, } inputs = { "X": [input], "Scale": [self.weight], "Bias": [self.bias], "Mean": [self._mean], "Variance": [self._variance] } saved_mean = self._helper.create_variable_for_type_inference( dtype=self._dtype, stop_gradient=True) saved_variance = self._helper.create_variable_for_type_inference( dtype=self._dtype, stop_gradient=True) batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference( self._dtype) outputs = { "Y": [batch_norm_out], "MeanOut": [mean_out], "VarianceOut": [variance_out], "SavedMean": [saved_mean], "SavedVariance": [saved_variance] } self._helper.append_op( type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs) # Currently, we don't support inplace in dygraph mode return self._helper.append_activation(batch_norm_out, self._act) class Dropout(layers.Layer): """ This interface is used to construct a callable object of the ``Dropout`` class. For more details, refer to code examples. Drop or keep each element of input independently. Dropout is a regularization technique for reducing overfitting by preventing neuron co-adaption during training. The dropout operator randomly sets (according to the given dropout probability) the outputs of some units to zero, while others are remain unchanged. Dropout layer can be removed for efficiency concern. Parameters: p (float, optional): Probability of setting units to zero. Default: 0.5 seed (int, optional): A Python integer used to create random seeds. If this parameter is set to None, a random seed is used. NOTE: If an integer seed is given, always the same output units will be dropped. DO NOT use a fixed seed in training. Default: None. dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train'] 1. downgrade_in_infer(default), downgrade the outcome at inference - train: out = input * mask - inference: out = input * (1.0 - p) (mask is a tensor same shape with input, value is 0 or 1 ratio of 0 is dropout_prob) 2. upscale_in_train, upscale the outcome at training time - train: out = input * mask / ( 1.0 - p ) - inference: out = input (mask is a tensor same shape with input, value is 0 or 1 ratio of 0 is p) is_test (bool, optional): A flag indicating whether it is in test phrase or not. This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``. Default: False. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable import numpy as np x = np.random.random(size=(3, 10, 3, 7)).astype('float32') with fluid.dygraph.guard(): x = to_variable(x) m = fluid.dygraph.Dropout(p=0.5) droped_train = m(x) # switch to eval mode m.eval() droped_eval = m(x) """ def __init__(self, p=0.5, seed=None, dropout_implementation="downgrade_in_infer", is_test=False): super(Dropout, self).__init__() assert isinstance(p, (float, int)), "p argument should be a number" assert 0 <= p <= 1, "p argument should between 0 and 1" self._dropout_prob = p assert seed is None or isinstance( seed, int), "seed argument should be None or a integer" self._seed = seed assert dropout_implementation in ( 'downgrade_in_infer', 'upscale_in_train' ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'" self._dropout_implementation = dropout_implementation self._is_test = is_test def forward(self, input): prog = default_main_program() if (self._seed is None or self._seed == 0) and prog.random_seed != 0: self._seed = prog.random_seed attrs = { 'dropout_prob': self._dropout_prob, 'is_test': not self.training if in_dygraph_mode() else self._is_test, 'fix_seed': self._seed is not None, 'seed': self._seed if self._seed is not None else 0, 'dropout_implementation': self._dropout_implementation, } if in_dygraph_mode(): attrs = sum(attrs.items(), ()) out, mask = core.ops.dropout(input, *attrs) return out out = self._helper.create_variable_for_type_inference(dtype=input.dtype) mask = self._helper.create_variable_for_type_inference( dtype=core.VarDesc.VarType.UINT8, stop_gradient=True) self._helper.append_op( type='dropout', inputs={'X': [input]}, outputs={'Out': [out], 'Mask': [mask]}, attrs=attrs) return out class Embedding(layers.Layer): """ :alias_main: paddle.nn.Embedding :alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding :old_api: paddle.fluid.dygraph.Embedding **Embedding Layer** This interface is used to construct a callable object of the ``Embedding`` class. For specific usage, refer to code examples. It implements the function of the Embedding Layer. This layer is used to lookup embeddings vector of ids provided by :attr:`input` . It automatically constructs a 2D embedding matrix based on the input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` . The shape of output Tensor is generated by appending an emb_size dimension to the last dimension of the input Tensor shape. **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , otherwise the program will throw an exception and exit. .. code-block:: text Case 1: input is a Tensor. padding_idx = -1 input.data = [[1, 3], [2, 4], [4, 127] input.shape = [3, 2] Given size = [128, 16] output is a Tensor: out.shape = [3, 2, 16] out.data = [[[0.129435295, 0.244512452, ..., 0.436322452], [0.345421456, 0.524563927, ..., 0.144534654]], [[0.345249859, 0.124939536, ..., 0.194353745], [0.945345345, 0.435394634, ..., 0.435345365]], [[0.945345345, 0.435394634, ..., 0.435345365], [0.0, 0.0, ..., 0.0 ]]] # padding data The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127 It will pad all-zero data when ids is 127. Parameters: size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size of the dictionary of embeddings and the size of each embedding vector respectively. is_sparse(bool): The flag indicating whether to use sparse update. This parameter only affects the performance of the backwards gradient update. It is recommended to set True because sparse update is faster. But some optimizer does not support sparse update, such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` , :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` . In these case, is_sparse must be False. Default: False. is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used in multi-machine distributed CPU training. Default: False. padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup encounters :math:`padding\_idx` in id. And the padding data will not be updated while training. If set None, it makes no effect to output. Default: None. param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition, user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. The local word vector needs to be transformed into numpy format, and the shape of local word vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer` is used to load custom or pre-trained word vectors. See code example 2 for details. dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor. It must be "float32" or "float64". Default: "float32". Attribute: **weight** (Parameter): the learnable weights of this layer. Returns: Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` . Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.dygraph.base as base import numpy as np # example 1 inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64') inp_word.shape # [2, 3] dict_size = 20 with fluid.dygraph.guard(): emb = fluid.dygraph.Embedding( size=[dict_size, 32], param_attr='emb.w', is_sparse=False) static_rlt3 = emb(base.to_variable(inp_word)) static_rlt3.shape # [2, 3, 32] # example 2: load custom or pre-trained word vectors weight_data = np.random.random(size=(128, 100)) # word vectors with numpy format w_param_attrs = fluid.ParamAttr( name="emb_weight", learning_rate=0.5, initializer=fluid.initializer.NumpyArrayInitializer(weight_data), trainable=True) with fluid.dygraph.guard(): emb = fluid.dygraph.Embedding( size=[128, 100], param_attr= w_param_attrs, is_sparse=False) static_rlt3 = emb(base.to_variable(inp_word)) """ def __init__(self, size, is_sparse=False, is_distributed=False, padding_idx=None, param_attr=None, dtype='float32'): super(Embedding, self).__init__() self._size = size self._is_sparse = is_sparse self._is_distributed = is_distributed self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else ( size[0] + padding_idx) self._param_attr = param_attr self._dtype = dtype self._remote_prefetch = self._is_sparse and (not self._is_distributed) if self._remote_prefetch: assert self._is_sparse is True and self._is_distributed is False self.weight = self.create_parameter( attr=self._param_attr, shape=self._size, dtype=self._dtype, is_bias=False) def forward(self, input): if in_dygraph_mode(): return core.ops.lookup_table_v2( self.weight, input, 'is_sparse', self._is_sparse, 'is_distributed', self._is_distributed, 'remote_prefetch', self._remote_prefetch, 'padding_idx', self._padding_idx) check_variable_and_dtype(input, 'input', ['int64'], 'Embedding') attrs = { 'is_sparse': self._is_sparse, 'is_distributed': self._is_distributed, 'remote_prefetch': self._remote_prefetch, 'padding_idx': self._padding_idx } out = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type='lookup_table_v2', inputs={'Ids': input, 'W': self.weight}, outputs={'Out': out}, attrs=attrs) return out class LayerNorm(layers.Layer): """ :alias_main: paddle.nn.LayerNorm :alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm :old_api: paddle.fluid.dygraph.LayerNorm This interface is used to construct a callable object of the ``LayerNorm`` class. For more details, refer to code examples. It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data. Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_ The formula is as follows: .. math:: \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon} y & = f(\\frac{g}{\\sigma}(x - \\mu) + b) - :math:`x`: the vector representation of the summed inputs to the neurons in that layer. - :math:`H`: the number of hidden units in a layers - :math:`\\epsilon`: the small value added to the variance to prevent division by zero. - :math:`g`: the trainable scale parameter. - :math:`b`: the trainable bias parameter. Parameters: normalized_shape(int or list or tuple): Input shape from an expected input of size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`. If it is a single integer, this module will normalize over the last dimension which is expected to be of that specific size. scale(bool, optional): Whether to learn the adaptive gain :math:`g` after normalization. Default: True. shift(bool, optional): Whether to learn the adaptive bias :math:`b` after normalization. Default: True. epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-05. param_attr(ParamAttr, optional): The parameter attribute for the learnable gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is omitted. If :attr:`scale` is True and :attr:`param_attr` is None, a default :code:`ParamAttr` would be added as scale. The :attr:`param_attr` is initialized as 1 if it is added. Default: None. bias_attr(ParamAttr, optional): The parameter attribute for the learnable bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is omitted. If :attr:`shift` is True and :attr:`param_attr` is None, a default :code:`ParamAttr` would be added as bias. The :attr:`bias_attr` is initialized as 0 if it is added. Default: None. act(str, optional): Activation to be applied to the output of layer normalization. Default: None. dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32". Returns: None Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable import numpy x = numpy.random.random((3, 32, 32)).astype('float32') with fluid.dygraph.guard(): x = to_variable(x) layerNorm = fluid.LayerNorm([32, 32]) ret = layerNorm(x) """ def __init__(self, normalized_shape, scale=True, shift=True, epsilon=1e-05, param_attr=None, bias_attr=None, act=None, dtype='float32'): super(LayerNorm, self).__init__() if isinstance(normalized_shape, numbers.Integral): normalized_shape = [normalized_shape] self._normalized_shape = list(normalized_shape) self._scale = scale self._shift = shift self._epsilon = epsilon self._param_attr = param_attr self._bias_attr = bias_attr self._act = act self._dtype = dtype param_shape = [np.prod(self._normalized_shape)] if self._scale: self.weight = self.create_parameter( attr=self._param_attr, shape=param_shape, dtype=self._dtype, default_initializer=Constant(1.0)) else: if self._param_attr: logging.warn("param_attr are only available with scale is True") self.weight = None if self._shift: assert self._bias_attr is not False self.bias = self.create_parameter( attr=self._bias_attr, shape=param_shape, dtype=self._dtype, is_bias=True) else: if self._bias_attr: logging.warn("bias_attr are only available with shift is True") self.bias = None def forward(self, input): input_shape = list(input.shape) input_ndim = len(input_shape) normalized_ndim = len(self._normalized_shape) self._begin_norm_axis = input_ndim - normalized_ndim if input_ndim < normalized_ndim or input_shape[ self._begin_norm_axis:] != self._normalized_shape: str_normalized_shape = str(self._normalized_shape) raise ValueError( 'Given normalized_shape is ' + str_normalized_shape + ', expected input with shape [*, ' + str_normalized_shape[ 1:] + ', but got input shape ' + str(input_shape)) if in_dygraph_mode(): pre_act, _, _ = core.ops.layer_norm( input, self.weight, self.bias, 'epsilon', self._epsilon, 'begin_norm_axis', self._begin_norm_axis) return dygraph_utils._append_activation_in_dygraph( pre_act, act=self._act) check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'LayerNorm') inputs = dict() inputs['X'] = [input] if self._scale: inputs['Scale'] = [self.weight] if self._shift: inputs['Bias'] = [self.bias] attrs = { "epsilon": self._epsilon, "begin_norm_axis": self._begin_norm_axis } # create output mean_out = self._helper.create_variable_for_type_inference( dtype=self._dtype, stop_gradient=True) variance_out = self._helper.create_variable_for_type_inference( dtype=self._dtype, stop_gradient=True) layer_norm_out = self._helper.create_variable_for_type_inference( self._dtype) self._helper.append_op( type="layer_norm", inputs=inputs, outputs={ "Y": layer_norm_out, "Mean": mean_out, "Variance": variance_out, }, attrs={ "epsilon": self._epsilon, "begin_norm_axis": self._begin_norm_axis }) return self._helper.append_activation(layer_norm_out, act=self._act) class GRUUnit(layers.Layer): """ **GRU unit layer** It creates a callable object from GRUUnit class. If origin_mode is True, then the equation of a gru step is from paper `Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_ .. math:: u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u) r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r) m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m) h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t) If origin_mode is False, then the equation of a gru step is from paper `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .. math:: u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u) r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r) m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m) h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t) The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms of the equation above, the :math:`z_t` is split into 3 parts - :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to implement a full GRU unit operator for an input, a fully connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`. The terms :math:`u_t` and :math:`r_t` represent the update and reset gates of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is an intermediate candidate hidden output, which is denoted by :math:`m_t`. This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})` and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`. Parameters: size (int): The input dimension value. param_attr(ParamAttr, optional): The parameter attribute for the learnable hidden-hidden weight matrix. **Note**: 1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size. 2. All elements in the weight matrix can be divided into two parts. The first part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, and the second part are weights for candidate hidden state with shape :math:`[D, D]`. If it is set to None or one attribute of ParamAttr, gru_unit will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. The default value is None. bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of GRU.Note that the bias with :math:`[1, 3*D]` concatenates the bias in the update gate, reset gate and candidate calculations. If it is set to False, no bias will be applied to the update gate, reset gate and candidate calculations. If it is set to None or one attribute of ParamAttr, gru_unit will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. The default value is None. activation (str): The activation type for cell (actNode). The default value is 'tanh'. gate_activation (str): The activation type for gates (actGate). The default value is 'sigmoid'. dtype(str): The dtype of the layers. The data type can be set as 'float32', 'float64'. The default value is 'float32'. Attribute: **weight** (Parameter): the learnable weights of this layer. **bias** (Parameter): the learnable bias of this layer. Returns: tuple: The hidden value, reset-hidden value and gate values. The hidden value is a 2-D tensor with shape :math:`[T, D]` . The reset-hidden value is a 2-D tensor with shape :math:`[T, D]` . The gate value is a 2-D tensor with shape :math:`[T, 3*D]`. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.dygraph.base as base import numpy lod = [[2, 4, 3]] D = 5 T = sum(lod[0]) input = numpy.random.rand(T, 3 * D).astype('float32') hidden_input = numpy.random.rand(T, D).astype('float32') with fluid.dygraph.guard(): x = numpy.random.random((3, 32, 32)).astype('float32') gru = fluid.dygraph.GRUUnit(size=D * 3) dy_ret = gru( base.to_variable(input), base.to_variable(hidden_input)) """ def __init__(self, size, param_attr=None, bias_attr=None, activation='tanh', gate_activation='sigmoid', origin_mode=False, dtype='float32'): super(GRUUnit, self).__init__() self._bias_attr = bias_attr activation_dict = dict( identity=0, sigmoid=1, tanh=2, relu=3, ) self.activation = activation_dict[activation] self.gate_activation = activation_dict[gate_activation] self._dtype = dtype size = size // 3 # create weight self.weight = self.create_parameter( attr=param_attr, shape=[size, 3 * size], dtype=dtype) # create bias bias_size = [1, 3 * size] self._bias_size = bias_size self.bias = self.create_parameter( attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True) def forward(self, input, hidden): if in_dygraph_mode(): gate, reset_hidden_pre, updated_hidden = core.ops.gru_unit( input, hidden, self.weight, self.bias, 'activation', self.activation, 'gate_activation', self.gate_activation) return updated_hidden, reset_hidden_pre, gate check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'GRUUnit') check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'], 'GRUUnit') inputs = { 'Input': [input], 'HiddenPrev': [hidden], 'Weight': [self.weight] } if self.bias is not None: inputs['Bias'] = [self.bias] gate = self._helper.create_variable_for_type_inference(self._dtype) reset_hidden_pre = self._helper.create_variable_for_type_inference( self._dtype) updated_hidden = self._helper.create_variable_for_type_inference( self._dtype) self._helper.append_op( type='gru_unit', inputs=inputs, outputs={ 'Gate': gate, 'ResetHiddenPrev': reset_hidden_pre, 'Hidden': updated_hidden, }, attrs={ 'activation': self.activation, 'gate_activation': self.gate_activation, }) return updated_hidden, reset_hidden_pre, gate class NCE(layers.Layer): """ This interface is used to construct a callable object of the ``NCE`` class. For more details, refer to code examples. It implements the function of the ``NCE`` loss function. By default this function uses a uniform distribution for sampling, and it compute and return the noise-contrastive estimation training loss. See `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ . Parameters: num_total_classes (int): Total number of classes in all samples. dim (int): Dimension of input (possibly embedding dim). param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter) of nce. If it is set to None or one attribute of ParamAttr, nce will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, nce will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. num_neg_samples (int, optional): The number of negative classes. The default value is 10. sampler (str, optional): The sampler used to sample class from negative classes. It can be 'uniform', 'log_uniform' or 'custom_dist'. default: 'uniform'. custom_dist (float[], optional): A float[] with size=num_total_classes. It is used when sampler is set to 'custom_dist'. custom_dist[i] is the probability of i-th class to be sampled. Default: None. seed (int, optional): The seed used in sampler. Default: 0. is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False. dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32". Attribute: **weight** (Parameter): the learnable weights of this layer. **bias** (Parameter or None): the learnable bias of this layer. Returns: None Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid window_size = 5 dict_size = 20 label_word = int(window_size // 2) + 1 inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64') nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32') with fluid.dygraph.guard(): words = [] for i in range(window_size): words.append(fluid.dygraph.base.to_variable(inp_word[i])) emb = fluid.Embedding( size=[dict_size, 32], param_attr='emb.w', is_sparse=False) embs3 = [] for i in range(window_size): if i == label_word: continue emb_rlt = emb(words[i]) embs3.append(emb_rlt) embs3 = fluid.layers.concat(input=embs3, axis=1) nce = fluid.NCE( num_total_classes=dict_size, dim=embs3.shape[1], num_neg_samples=2, sampler="custom_dist", custom_dist=nid_freq_arr.tolist(), seed=1, param_attr='nce.w', bias_attr='nce.b') wl = fluid.layers.unsqueeze(words[label_word], axes=[0]) nce_loss3 = nce(embs3, wl) """ def __init__(self, num_total_classes, dim, sample_weight=None, param_attr=None, bias_attr=None, num_neg_samples=None, sampler="uniform", custom_dist=None, seed=0, is_sparse=False, dtype='float32'): super(NCE, self).__init__() self._param_attr = param_attr self._bias_attr = bias_attr self._num_total_classes = num_total_classes self._dtype = dtype self._inputs = dict() self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else [] if sampler == "uniform": sampler = 0 elif sampler == "log_uniform": sampler = 1 elif sampler == "custom_dist": assert custom_dist is not None # assert isinstance(custom_dist, Variable) custom_dist_len = len(custom_dist) alias_probs_ = [0] * custom_dist_len alias_ = [0] * custom_dist_len bigs = [] littles = [] for i in range(custom_dist_len): normal_prob = custom_dist[i] * custom_dist_len if normal_prob - 1.0 > 0: bigs.append((i, normal_prob)) elif 1.0 - normal_prob > 0: littles.append((i, normal_prob)) else: alias_probs_[i] = normal_prob alias_[i] = -1 while len(bigs) and len(littles): big = bigs.pop(0) little = littles.pop(0) big_idx = big[0] big_prob = big[1] alias_probs_[little[0]] = little[1] alias_[little[0]] = big_idx big_left = big[1] + little[1] - 1 if big_left - 1.0 > 0: bigs.append((big_idx, big_left)) elif 1.0 - big_left > 0: littles.append((big_idx, big_left)) else: alias_probs_[big_idx] = big_left alias_[big_idx] = -1 if len(bigs): big = bigs.pop(0) alias_probs_[big[0]] = 1.0 alias_[big[0]] = -1 if len(littles): little = littles.pop(0) alias_probs_[little[0]] = 1.0 alias_[little[0]] = -1 def _init_by_numpy_array(numpy_array): ret = self.create_parameter( attr=ParamAttr(), shape=numpy_array.shape, dtype=numpy_array.dtype, default_initializer=NumpyArrayInitializer(numpy_array)) ret.stop_gradient = True return ret self._inputs['CustomDistProbs'] = _init_by_numpy_array( np.array(custom_dist).astype('float32')) self._inputs['CustomDistAlias'] = _init_by_numpy_array( np.array(alias_).astype('int32')) self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array( np.array(alias_probs_).astype('float32')) sampler = 2 else: raise Exception("Unsupported sampler type.") if num_neg_samples is None: num_neg_samples = 10 else: num_neg_samples = int(num_neg_samples) self._num_neg_samples = num_neg_samples remote_prefetch = is_sparse print( "With sparse mode, if your models has only small parameter prefetch may cause speed down" ) self._attrs = { 'num_total_classes': int(num_total_classes), 'num_neg_samples': num_neg_samples, 'seed': seed, 'sampler': sampler, 'is_sparse': is_sparse, 'remote_prefetch': remote_prefetch } self.weight = self.create_parameter( attr=self._param_attr, shape=[self._num_total_classes, dim], is_bias=False, dtype=self._dtype) if self._bias_attr: self.bias = self.create_parameter( attr=self._bias_attr, shape=[self._num_total_classes, 1], is_bias=True, dtype=self._dtype) self._inputs['Bias'] = self.bias self._inputs['Weight'] = self.weight def forward(self, input, label, sample_weight=None): check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE") check_variable_and_dtype(label, "label", ['int64'], "NCE") check_type(sample_weight, 'sample_weight', (Variable, type(None)), 'NCE') assert isinstance(input, Variable) assert isinstance(label, Variable) self._inputs['Input'] = input self._inputs['Label'] = label self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else [] cost = self._helper.create_variable_for_type_inference( dtype=input.dtype) sample_logits = self._helper.create_variable_for_type_inference( dtype=input.dtype) sample_labels = self._helper.create_variable_for_type_inference( dtype=label.dtype) self._helper.append_op( type='nce', inputs=self._inputs, outputs={ 'Cost': cost, 'SampleLogits': sample_logits, 'SampleLabels': sample_labels }, attrs=self._attrs) return cost / (self._num_neg_samples + 1) class PRelu(layers.Layer): """ This interface is used to construct a callable object of the ``PRelu`` class. For more details, refer to code examples. It implements three activation methods of the ``PRelu`` activation function. Equation: .. math:: y = \max(0, x) + \\alpha * \min(0, x) Parameters: mode (str): The mode for weight sharing. It supports all, channel and element. all: all elements share same weight channel:elements in a channel share same weight element:each element has a weight channel (int, optional): The number of channels. This argument is required when mode is "channel". Default: None. input_shape (list or tuple, optional): The shape of input. This argument is required when mode is "element". Default: None. param_attr(ParamAttr, optional): The parameter attribute for the learnable weight (alpha). Default: None. dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32". Attribute: **weight** (Parameter): the learnable weights of this layer. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable import numpy as np inp_np = np.ones([5, 200, 100, 100]).astype('float32') with fluid.dygraph.guard(): inp_np = to_variable(inp_np) prelu0 = fluid.PRelu( mode='all', param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0))) dy_rlt0 = prelu0(inp_np) prelu1 = fluid.PRelu( mode='channel', channel=200, param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0))) dy_rlt1 = prelu1(inp_np) prelu2 = fluid.PRelu( mode='element', input_shape=inp_np.shape, param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0))) dy_rlt2 = prelu2(inp_np) """ def __init__(self, mode, channel=None, input_shape=None, param_attr=None, dtype='float32'): # need specify name_scope since snake-cased 'PRelu' is 'p_relu' super(PRelu, self).__init__(name_scope='prelu') self._mode = mode self._param_attr = param_attr self._dtype = dtype if mode == 'all': self._alpha_shape = [1] elif mode == 'channel': assert isinstance( channel, int), "channel argument is required when mode is 'channel'." #NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1]. # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation. # And, input_shape is not required when mode is 'channel', so it is simplified. #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version. self._alpha_shape = [1, channel, 1, 1] elif mode == 'element': assert isinstance(input_shape, ( list, tuple )), "input_shape argument is required when mode is 'element'." self._alpha_shape = [1] + list(input_shape)[1:] else: raise ValueError('mode should be one of all, channel, element.') self.weight = self.create_parameter( attr=self._param_attr, shape=self._alpha_shape, dtype='float32', is_bias=False, default_initializer=Constant(1.0)) def forward(self, input): check_variable_and_dtype(input, 'input', ['float32'], 'PRelu') out = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type="prelu", inputs={"X": input, 'Alpha': self.weight}, attrs={"mode": self._mode}, outputs={"Out": out}) return out class BilinearTensorProduct(layers.Layer): """ :alias_main: paddle.nn.BilinearTensorProduct :alias: paddle.nn.BilinearTensorProduct,paddle.nn.layer.BilinearTensorProduct,paddle.nn.layer.common.BilinearTensorProduct :old_api: paddle.fluid.dygraph.BilinearTensorProduct **Add Bilinear Tensor Product Layer** This layer performs bilinear tensor product on two inputs. For example: .. math:: out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1 In this formula: - :math:`x`: the first input contains M elements, shape is [batch_size, M]. - :math:`y`: the second input contains N elements, shape is [batch_size, N]. - :math:`W_{i}`: the i-th learned weight, shape is [M, N] - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size]. - :math:`y^\mathrm{T}`: the transpose of :math:`y`. Parameters: input1_dim (int): The dimension of each first input. input2_dim (int): The dimension of each second input. output_dim (int): The dimension of output of this layer. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None. act (str, optional): Activation to be applied to the output of this layer. The default value is None. param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of this layer. The default value is None. bias_attr (ParamAttr, optional): The parameter attribute for the bias of this layer. If it is set to False, no bias will be added to the output units. If it is set to None, the bias is initialized zero. The default value is None. dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32". Attribute: **weight** (Parameter): the learnable weights of this layer. **bias** (Parameter): the learnable bias of this layer. Returns: Variable: A 2-D Tensor of shape [batch_size, size]. Examples: .. code-block:: python import paddle.fluid as fluid import numpy with fluid.dygraph.guard(): layer1 = numpy.random.random((5, 5)).astype('float32') layer2 = numpy.random.random((5, 4)).astype('float32') bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct( input1_dim=5, input2_dim=4, output_dim=1000) ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1), fluid.dygraph.base.to_variable(layer2)) """ def __init__(self, input1_dim, input2_dim, output_dim, name=None, act=None, param_attr=None, bias_attr=None, dtype='float32'): super(BilinearTensorProduct, self).__init__() self._param_attr = param_attr self._bias_attr = bias_attr self._act = act self._name = name self._input1_dim = input1_dim self._input2_dim = input2_dim self._output_dim = output_dim self._inputs = dict() self._dtype = dtype param_shape = [self._output_dim, self._input1_dim, self._input2_dim] self.weight = self.create_parameter( attr=self._param_attr, shape=param_shape, dtype=self._dtype, is_bias=False) bias_size = [1, self._output_dim] self.bias = self.create_parameter( attr=self._bias_attr, shape=bias_size, dtype=self._dtype, is_bias=True) @deprecated( since="2.0.0", update_to="paddle.nn.Bilinear", reason="New name and new args in Bilinear, easier to use.") def forward(self, x, y): check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'BilinearTensorProduct') check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'BilinearTensorProduct') self._inputs = {"X": x, "Y": y, "Weight": self.weight} if self.bias is not None: self._inputs["Bias"] = self.bias if self._name is not None: out = self._helper.create_variable( name=".".join([self.full_name(), self._name]), dtype=self._dtype, persistable=False) else: out = self._helper.create_variable( dtype=self._dtype, persistable=False) self._helper.append_op( type="bilinear_tensor_product", inputs=self._inputs, outputs={"Out": out}) # add activation return self._helper.append_activation(out, act=self._act) class Conv2DTranspose(layers.Layer): """ This interface is used to construct a callable object of the ``Conv2DTranspose`` class. For more details, refer to code examples. The convolution2D transpose layer calculates the output based on the input, filter, and dilations, strides, paddings. Input and output are in NCHW format. Where N is batch size, C is the number of feature map, H is the height of the feature map, and W is the width of the feature map. Filter's shape is [MCHW] , where M is the number of input feature map, C is the number of output feature map, H is the height of the filter, and W is the width of the filter. If the groups is greater than 1, C will equal the number of input feature map divided by the groups. If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. The details of convolution transpose layer, please refer to the following explanation and references `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ . For each input :math:`X`, the equation is: .. math:: Out = \sigma (W \\ast X + b) Where: * :math:`X`: Input value, a ``Tensor`` with NCHW format. * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] . * :math:`\\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1]. * :math:`\\sigma`: Activation function. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)` - Output: Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\ W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\ H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\ W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ) Parameters: num_channels(int): The number of channels in the input image. num_filters(int): The number of the filter. It is as same as the output feature map. filter_size(int or tuple): The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise, the filter will be a square. output_size(int or tuple, optional): The output image size. If output size is a tuple, it must contain two integers, (image_H, image_W). None if use filter_size, padding, and stride to calculate output_size. if output_size and filter_size are specified at the same time, They should follow the formula above. Default: None. padding(int or tuple, optional): The padding size. If padding is a tuple, it must contain two integers, (padding_H, padding_W). Otherwise, the padding_H = padding_W = padding. Default: 0. stride(int or tuple, optional): The stride size. If stride is a tuple, it must contain two integers, (stride_H, stride_W). Otherwise, the stride_H = stride_W = stride. Default: 1. dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must contain two integers, (dilation_H, dilation_W). Otherwise, the dilation_H = dilation_W = dilation. Default: 1. groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by grouped convolution in Alex Krizhevsky's Deep CNN paper, in which when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: 1. param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter) of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv2d_transpose will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True. act (str, optional): Activation type, if it is set to None, activation is not appended. Default: None. dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32". Attribute: **weight** (Parameter): the learnable weights of filters of this layer. **bias** (Parameter or None): the learnable bias of this layer. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): data = np.random.random((3, 32, 32, 5)).astype('float32') conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose( num_channels=32, num_filters=2, filter_size=3) ret = conv2DTranspose(fluid.dygraph.base.to_variable(data)) """ def __init__(self, num_channels, num_filters, filter_size, output_size=None, padding=0, stride=1, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, dtype='float32'): super(Conv2DTranspose, self).__init__() assert param_attr is not False, "param_attr should not be False in conv2d_transpose." self._param_attr = param_attr self._bias_attr = bias_attr self._act = act self._groups = groups self._num_channels = num_channels self._num_filters = num_filters self._use_cudnn = use_cudnn self._padding = padding self._stride = stride self._dilation = dilation self._filter_size = filter_size self._output_size = output_size self._dtype = dtype if (self._num_channels == self._groups and self._num_filters == self._num_channels and not self._use_cudnn): self._op_type = 'depthwise_conv2d_transpose' else: self._op_type = 'conv2d_transpose' self._padding = utils.convert_to_list(self._padding, 2, 'padding') self._stride = utils.convert_to_list(self._stride, 2, 'stride') self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation') self._filter_size = utils.convert_to_list( self._filter_size, 2, 'conv2d_transpose.filter_size') if self._output_size is None: self._output_size = [] elif isinstance(self._output_size, list) or isinstance( self._output_size, int): self._output_size = utils.convert_to_list(self._output_size, 2, 'output_size') else: raise ValueError("output_size should be list or int") self._padding = utils.convert_to_list(self._padding, 2, 'padding') self._groups = 1 if self._groups is None else self._groups filter_shape = [self._num_channels, self._num_filters // self._groups ] + self._filter_size self.weight = self.create_parameter( dtype=self._dtype, shape=filter_shape, attr=self._param_attr) self.bias = self.create_parameter( attr=self._bias_attr, shape=[self._num_filters], dtype=self._dtype, is_bias=True) def forward(self, input): if in_dygraph_mode(): op = getattr(core.ops, self._op_type) out = op(input, self.weight, 'output_size', self._output_size, 'strides', self._stride, 'paddings', self._padding, 'dilations', self._dilation, 'groups', self._groups, 'use_cudnn', self._use_cudnn) pre_bias = out pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias, 1) return dygraph_utils._append_activation_in_dygraph( pre_act, act=self._act) check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'], "Conv2DTranspose") inputs = {'Input': [input], 'Filter': [self.weight]} attrs = { 'output_size': self._output_size, 'strides': self._stride, 'paddings': self._padding, 'dilations': self._dilation, 'groups': self._groups, 'use_cudnn': self._use_cudnn } pre_bias = self._helper.create_variable_for_type_inference( dtype=input.dtype) self._helper.append_op( type=self._op_type, inputs=inputs, outputs={'Output': pre_bias}, attrs=attrs) if self.bias is not None: pre_act = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type='elementwise_add', inputs={'X': [pre_bias], 'Y': [self.bias]}, outputs={'Out': [pre_act]}, attrs={'axis': 1}) else: pre_act = pre_bias out = self._helper.append_activation(pre_act, act=self._act) return out class SequenceConv(layers.Layer): """ This function creates the op for sequence_conv, using the inputs and other convolutional configurations for the filters and stride as given in the input parameters to the function. Parameters: name_scope(str): The name of this class. num_filters (int): number of filters. filter_size (int): the filter size (H and W). Default: 3. filter_stride (int): stride of the filter. Default: 1. padding (bool|None): if True, add paddings. Default: None bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, sequence_conv will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. act (str): Activation type, if it is set to None, activation is not appended. Default: None. Attributes: weight (Parameter): the learnable weights of filters of this layer. bias (Parameter|None): the learnable bias of this layer. Returns: Variable: output of sequence_conv """ def __init__(self, name_scope, num_filters, filter_size=3, filter_stride=1, padding=None, bias_attr=None, param_attr=None, act=None): assert not in_dygraph_mode( ), "SequenceConv is not supported by dynamic graph mode yet!" super(SequenceConv, self).__init__(name_scope) self._num_filters = num_filters self._filter_size = filter_size self._filter_stride = filter_stride self._padding = padding self._bias_attr = bias_attr self._param_attr = param_attr self._act = act def _build_once(self, input): self._dtype = self._helper.input_dtype(input) filter_shape = [self._filter_size * input.shape[1], self._num_filters] self.weight = self.create_parameter( attr=self._param_attr, shape=filter_shape, dtype=self._dtype) self.bias = self.create_parameter( attr=self._bias_attr, shape=[self._num_filters], dtype=self._dtype, is_bias=True) def forward(self, input): pre_bias = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type='sequence_conv', inputs={ 'X': [input], 'Filter': [self.weight], }, outputs={"Out": pre_bias}, attrs={ 'contextStride': self._filter_stride, 'contextStart': -int(self._filter_size // 2), 'contextLength': self._filter_size }) if self.bias is not None: pre_act = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type='elementwise_add', inputs={'X': [pre_bias], 'Y': [self.bias]}, outputs={'Out': [pre_act]}, attrs={'axis': 1}) else: pre_act = pre_bias return self._helper.append_activation(pre_act, act=self._act) class RowConv(layers.Layer): """ ***Row-convolution operator*** The row convolution is called lookahead convolution. This operator was introduced in the following paper for DeepSpeech2: http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a forward and a backward pass through the entire sequence. However, unlike unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online and low-latency setting. The lookahead convolution incorporates information from future subsequences in a computationally efficient manner to improve unidirectional recurrent neural networks. The row convolution operator is different from the 1D sequence convolution, and is computed as follows: Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D. More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 . Parameters: name_scope(str): The name of this class. future_context_size (int): Future context size. Please note, the shape of convolution kernel is [future_context_size + 1, D]. param_attr (ParamAttr): Attributes of parameters, including name, initializer etc. Default: None. act (str): Non-linear activation to be applied to output variable. Default: None. Attributes: weight (Parameter): the learnable weights of this layer. Returns: the output(Out) is a LodTensor, which supports variable time-length input sequences. The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X. Examples: .. code-block:: python import paddle.fluid as fluid import numpy with fluid.dygraph.guard(): x = numpy.random.random((16)).astype('float32') rowConv = fluid.dygraph.nn.RowConv( 'RowConv', future_context_size=2) ret = rowConv(fluid.dygraph.base.to_variable(x)) """ def __init__(self, name_scope, future_context_size, param_attr=None, act=None): assert not in_dygraph_mode( ), "RowConv is not supported by dynamic graph mode yet!" super(RowConv, self).__init__(name_scope) self._act = act self._param_attr = param_attr self._future_context_size = future_context_size def _build_once(self, input): self._dtype = self._helper.input_dtype(input) filter_shape = [self._future_context_size + 1, input.shape[1]] self.weight = self.create_parameter( attr=self._param_attr, shape=filter_shape, dtype=self._dtype, is_bias=False) def forward(self, input): out = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type='row_conv', inputs={'X': [input], 'Filter': [self.weight]}, outputs={'Out': [out]}) return self._helper.append_activation(out, act=self._act) class GroupNorm(layers.Layer): """ :alias_main: paddle.nn.GroupNorm :alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm :old_api: paddle.fluid.dygraph.GroupNorm This interface is used to construct a callable object of the ``GroupNorm`` class. For more details, refer to code examples. It implements the function of the Group Normalization Layer. Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ . Parameters: channels(int): The number of channels of input. groups(int): The number of groups that divided from channels. epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-05. param_attr(ParamAttr, optional): The parameter attribute for the learnable scale :math:`g`. If it is set to False, no scale will be added to the output units. If it is set to None, the bias is initialized one. Default: None. bias_attr(ParamAttr, optional): The parameter attribute for the learnable bias :math:`b`. If it is set to False, no bias will be added to the output units. If it is set to None, the bias is initialized zero. Default: None. act(str, optional): Activation to be applied to the output of group normalization. Default: None. data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): x = np.random.random((8, 32, 32)).astype('float32') groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4) ret = groupNorm(fluid.dygraph.base.to_variable(x)) """ def __init__(self, channels, groups, epsilon=1e-05, param_attr=None, bias_attr=None, act=None, data_layout='NCHW', dtype='float32'): super(GroupNorm, self).__init__() self._param_attr = param_attr self._bias_attr = bias_attr self._epsilon = epsilon self._channels = channels self._groups = groups self._act = act self._dtype = dtype if data_layout != 'NCHW': raise ValueError("unsupported data layout:" + data_layout) param_shape = [self._channels] self.weight = self.create_parameter( attr=self._param_attr or False, shape=param_shape, dtype=self._dtype, default_initializer=Constant(1.0)) self.bias = self.create_parameter( attr=self._bias_attr or False, shape=param_shape, dtype=self._dtype, is_bias=True) def forward(self, input): inputs = {'X': input} if self.bias is not None: inputs['Bias'] = self.bias if self.weight is not None: inputs['Scale'] = self.weight # create output mean_out = self._helper.create_variable_for_type_inference( dtype=self._dtype, stop_gradient=True) variance_out = self._helper.create_variable_for_type_inference( dtype=self._dtype, stop_gradient=True) group_norm_out = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type="group_norm", inputs=inputs, outputs={ "Y": group_norm_out, "Mean": mean_out, "Variance": variance_out, }, attrs={"epsilon": self._epsilon, "groups": self._groups}) return self._helper.append_activation(group_norm_out, self._act) class SpectralNorm(layers.Layer): """ :alias_main: paddle.nn.SpectralNorm :alias: paddle.nn.SpectralNorm,paddle.nn.layer.SpectralNorm,paddle.nn.layer.norm.SpectralNorm :old_api: paddle.fluid.dygraph.SpectralNorm This interface is used to construct a callable object of the ``SpectralNorm`` class. For more details, refer to code examples. It implements the function of the Spectral Normalization Layer. This layer calculates the spectral normalization value of weight parameters of fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D Parameters. Calculations are showed as follows. Step 1: Generate vector U in shape of [H], and V in shape of [W]. While H is the :attr:`dim` th dimension of the input weights, and W is the product result of remaining dimensions. Step 2: :attr:`power_iters` should be a positive integer, do following calculations with U and V for :attr:`power_iters` rounds. .. math:: \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2} \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2} Step 3: Calculate :math:`\sigma(\mathbf{W})` and normalize weight values. .. math:: \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v} \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})} Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ . Parameters: weight_shape(list or tuple): The shape of weight parameter. dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0. power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1. eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32". Returns: None Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): weight = np.random.random((2, 8, 32, 32)).astype('float32') spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2) ret = spectralNorm(fluid.dygraph.base.to_variable(weight)) """ def __init__(self, weight_shape, dim=0, power_iters=1, eps=1e-12, dtype='float32'): super(SpectralNorm, self).__init__() self._power_iters = power_iters self._eps = eps self._dim = dim self._dtype = dtype self._weight_shape = list(weight_shape) h = self._weight_shape[self._dim] w = np.prod(self._weight_shape) // h self.weight_u = self.create_parameter( attr=ParamAttr(), shape=[h], dtype=self._dtype, default_initializer=Normal(0., 1.)) self.weight_u.stop_gradient = True self.weight_v = self.create_parameter( attr=ParamAttr(), shape=[w], dtype=self._dtype, default_initializer=Normal(0., 1.)) self.weight_v.stop_gradient = True def forward(self, weight): check_variable_and_dtype(weight, "weight", ['float32', 'float64'], 'SpectralNorm') inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v} out = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type="spectral_norm", inputs=inputs, outputs={"Out": out, }, attrs={ "dim": self._dim, "power_iters": self._power_iters, "eps": self._eps, }) return out class TreeConv(layers.Layer): """ This interface is used to construct a callable object of the ``TreeConv`` class. For more details, refer to code examples. Tree-Based Convolution is a kind of convolution based on tree structure. Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN), which is used to classify tree structures, such as Abstract Syntax Tree. Tree-Based Convolution proposed a kind of data structure called continuous binary tree, which regards multiway tree as binary tree. The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ . Parameters: feature_size(int): last dimension of nodes_vector. output_size(int): output feature width. num_filters(int, optional): number of filters, Default: 1. max_depth(int, optional): max depth of filters, Default: 2. act(str, optional): activation function, Default: tanh. param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None. bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32". Attribute: **weight** (Parameter): the learnable weights of filters of this layer. **bias** (Parameter or None): the learnable bias of this layer. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid import numpy with fluid.dygraph.guard(): nodes_vector = numpy.random.random((1, 10, 5)).astype('float32') edge_set = numpy.random.random((1, 9, 2)).astype('int32') treeConv = fluid.dygraph.nn.TreeConv( feature_size=5, output_size=6, num_filters=1, max_depth=2) ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set)) """ def __init__(self, feature_size, output_size, num_filters=1, max_depth=2, act='tanh', param_attr=None, bias_attr=None, name=None, dtype='float32'): super(TreeConv, self).__init__() self._name = name self._feature_size = feature_size self._output_size = output_size self._act = act self._max_depth = max_depth self._num_filters = num_filters self._bias_attr = bias_attr self._param_attr = param_attr self._dtype = dtype w_shape = [self._feature_size, 3, self._output_size, self._num_filters] if self._bias_attr: self.bias = self.create_parameter( attr=self._bias_attr, shape=[self._num_filters], dtype=self._dtype, is_bias=True) self.weight = self.create_parameter( attr=self._param_attr, shape=w_shape, dtype=self._dtype, is_bias=False) def forward(self, nodes_vector, edge_set): check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv') check_type(edge_set, 'edge_set', (Variable), 'TreeConv') if self._name: out = self.create_variable( name=self._name, dtype=self._dtype, persistable=False) else: out = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type='tree_conv', inputs={ 'NodesVector': nodes_vector, 'EdgeSet': edge_set, 'Filter': self.weight }, outputs={'Out': out, }, attrs={'max_depth': self._max_depth}) if self._bias_attr: pre_activation = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type='elementwise_add', inputs={'X': [out], 'Y': [self.bias]}, outputs={'Out': [pre_activation]}, attrs={'axis': 1}) else: pre_activation = out return self._helper.append_activation(pre_activation, act=self._act) class Flatten(layers.Layer): """ :alias_main: paddle.nn.Flatten :alias: paddle.nn.Flatten,paddle.nn.layer.Flatten,paddle.nn.layer.common.Flatten This interface is used to construct a callable object of the ``FLatten`` class. For more details, refer to code examples. It implements flatten a contiguous range of dims into a tensor. Equation: Parameters: start_axis(int): first dim to flatten (default = 1) stop_axis(int): last dim to flatten (default = -1). Returns: None Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() inp_np = np.ones([5, 2, 3, 4]).astype('float32') inp_np = paddle.to_tensor(inp_np) flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2) flatten_res = flatten(inp_np) """ def __init__(self, start_axis=1, stop_axis=-1): super(Flatten, self).__init__() self.start_axis = start_axis self.stop_axis = stop_axis def forward(self, input): out = paddle.tensor.manipulation.flatten( input, start_axis=self.start_axis, stop_axis=self.stop_axis) return out
py
1a488b59626ce409ac46b0f314ed513ff3ff0474
import os os.environ['DGLBACKEND'] = 'mxnet' import mxnet as mx from mxnet import nd, gluon, autograd import dgl import numpy as np import pandas as pd import time import logging import pickle import math from estimator_fns import * from graph import * from data import * from utils import * from model.mxnet import * from sampler import * def normalize(feature_matrix): mean = nd.mean(feature_matrix, axis=0) stdev = nd.sqrt(nd.sum((feature_matrix - mean)**2, axis=0)/feature_matrix.shape[0]) return (feature_matrix - mean) / stdev def get_dataloader(data_size, batch_size, mini_batch=True): batch_size = batch_size if mini_batch else data_size train_dataloader = gluon.data.BatchSampler(gluon.data.RandomSampler(data_size), batch_size, 'keep') test_dataloader = gluon.data.BatchSampler(gluon.data.SequentialSampler(data_size), batch_size, 'keep') return train_dataloader, test_dataloader def train(model, trainer, loss, features, labels, train_loader, test_loader, train_g, test_g, train_mask, valid_mask, test_mask, ctx, n_epochs, batch_size, output_dir, thresh, scale_pos_weight, compute_metrics=True, mini_batch=True): duration = [] for epoch in range(n_epochs): tic = time.time() loss_val = 0. for n, batch in enumerate(train_loader): # logging.info("Iteration: {:05d}".format(n)) node_flow, batch_nids = train_g.sample_block(nd.array(batch).astype('int64')) batch_indices = nd.array(batch, ctx=ctx) with autograd.record(): pred = model(node_flow, features[batch_nids.as_in_context(ctx)]) l = loss(pred, labels[batch_indices], mx.nd.expand_dims(scale_pos_weight*train_mask, 1)[batch_indices]) l = l.sum()/len(batch) l.backward() trainer.step(batch_size=1, ignore_stale_grad=True) loss_val += l.asscalar() # logging.info("Current loss {:04f}".format(loss_val/(n+1))) duration.append(time.time() - tic) train_metric, valid_metric = evaluate(model, train_g, features, labels, train_mask, valid_mask, ctx, batch_size, mini_batch) logging.info("Epoch {:05d} | Time(s) {:.4f} | Training Loss {:.4f} | Training F1 {:.4f} | Validation F1 {:.4f}".format( epoch, np.mean(duration), loss_val/(n+1), train_metric, valid_metric)) class_preds, pred_proba = get_model_class_predictions(model, test_g, test_loader, features, ctx, threshold=thresh) if compute_metrics: acc, f1, p, r, roc, pr, ap, cm = get_metrics(class_preds, pred_proba, labels, test_mask, output_dir) logging.info("Metrics") logging.info("""Confusion Matrix: {} f1: {:.4f}, precision: {:.4f}, recall: {:.4f}, acc: {:.4f}, roc: {:.4f}, pr: {:.4f}, ap: {:.4f} """.format(cm, f1, p, r, acc, roc, pr, ap)) return model, class_preds, pred_proba def evaluate(model, g, features, labels, train_mask, valid_mask, ctx, batch_size, mini_batch=True): train_f1, valid_f1 = mx.metric.F1(), mx.metric.F1() preds = [] batch_size = batch_size if mini_batch else features.shape[0] dataloader = gluon.data.BatchSampler(gluon.data.SequentialSampler(features.shape[0]), batch_size, 'keep') for batch in dataloader: node_flow, batch_nids = g.sample_block(nd.array(batch).astype('int64')) preds.append(model(node_flow, features[batch_nids.as_in_context(ctx)])) nd.waitall() # preds = nd.concat(*preds, dim=0).argmax(axis=1) preds = nd.concat(*preds, dim=0) train_mask = nd.array(np.where(train_mask.asnumpy()), ctx=ctx) valid_mask = nd.array(np.where(valid_mask.asnumpy()), ctx=ctx) train_f1.update(preds=nd.softmax(preds[train_mask], axis=1).reshape(-3, 0), labels=labels[train_mask].reshape(-1,)) valid_f1.update(preds=nd.softmax(preds[valid_mask], axis=1).reshape(-3, 0), labels=labels[valid_mask].reshape(-1,)) return train_f1.get()[1], valid_f1.get()[1] def get_model_predictions(model, g, dataloader, features, ctx): pred = [] for batch in dataloader: node_flow, batch_nids = g.sample_block(nd.array(batch).astype('int64')) pred.append(model(node_flow, features[batch_nids.as_in_context(ctx)])) nd.waitall() return nd.concat(*pred, dim=0) def get_model_class_predictions(model, g, datalaoder, features, ctx, threshold=None): unnormalized_preds = get_model_predictions(model, g, datalaoder, features, ctx) pred_proba = nd.softmax(unnormalized_preds)[:, 1].asnumpy().flatten() if not threshold: return unnormalized_preds.argmax(axis=1).asnumpy().flatten().astype(int), pred_proba return np.where(pred_proba > threshold, 1, 0), pred_proba def save_prediction(pred, pred_proba, id_to_node, training_dir, new_accounts, output_dir, predictions_file): prediction_query = read_masked_nodes(os.path.join(training_dir, new_accounts)) pred_indices = np.array([id_to_node[query] for query in prediction_query]) pd.DataFrame.from_dict({'target': prediction_query, 'pred_proba': pred_proba[pred_indices], 'pred': pred[pred_indices]}).to_csv(os.path.join(output_dir, predictions_file), index=False) def save_model(g, model, model_dir, hyperparams): model.save_parameters(os.path.join(model_dir, 'model.params')) with open(os.path.join(model_dir, 'model_hyperparams.pkl'), 'wb') as f: pickle.dump(hyperparams, f) with open(os.path.join(model_dir, 'graph.pkl'), 'wb') as f: pickle.dump(g, f) def get_model(g, hyperparams, in_feats, n_classes, ctx, model_dir=None): if model_dir: # load using saved model state with open(os.path.join(model_dir, 'model_hyperparams.pkl'), 'rb') as f: hyperparams = pickle.load(f) with open(os.path.join(model_dir, 'graph.pkl'), 'rb') as f: g = pickle.load(f) if hyperparams['heterogeneous']: model = HeteroRGCN(g, in_feats, hyperparams['n_hidden'], n_classes, hyperparams['n_layers'], hyperparams['embedding_size'], ctx) else: if hyperparams['model'] == 'gcn': model = GCN(g, in_feats, hyperparams['n_hidden'], n_classes, hyperparams['n_layers'], nd.relu, hyperparams['dropout']) elif hyperparams['model'] == 'graphsage': model = GraphSAGE(g, in_feats, hyperparams['n_hidden'], n_classes, hyperparams['n_layers'], nd.relu, hyperparams['dropout'], hyperparams['aggregator_type']) else: heads = ([hyperparams['num_heads']] * hyperparams['n_layers']) + [hyperparams['num_out_heads']] model = GAT(g, in_feats, hyperparams['n_hidden'], n_classes, hyperparams['n_layers'], heads, gluon.nn.Lambda(lambda data: nd.LeakyReLU(data, act_type='elu')), hyperparams['dropout'], hyperparams['attn_drop'], hyperparams['alpha'], hyperparams['residual']) if hyperparams['no_features']: model = NodeEmbeddingGNN(model, in_feats, hyperparams['embedding_size']) if model_dir: model.load_parameters(os.path.join(model_dir, 'model.params')) else: model.initialize(ctx=ctx) return model if __name__ == '__main__': logging = get_logger(__name__) logging.info('numpy version:{} MXNet version:{} DGL version:{}'.format(np.__version__, mx.__version__, dgl.__version__)) args = parse_args() args.edges = get_edgelists(args.edges, args.training_dir) g, features, id_to_node = construct_graph(args.training_dir, args.edges, args.nodes, args.target_ntype, args.heterogeneous) features = normalize(nd.array(features)) if args.heterogeneous: g.nodes['target'].data['features'] = features else: g.ndata['features'] = features logging.info("Getting labels") n_nodes = g.number_of_nodes('target') if args.heterogeneous else g.number_of_nodes() labels, train_mask, valid_mask, test_mask = get_labels( id_to_node, n_nodes, args.target_ntype, os.path.join(args.training_dir, args.labels), os.path.join(args.training_dir, args.validation_data), os.path.join(args.training_dir, args.new_accounts), ) logging.info("Got labels") labels = nd.array(labels).astype('float32') train_mask = nd.array(train_mask).astype('float32') valid_mask = nd.array(valid_mask).astype('float32') test_mask = nd.array(test_mask).astype('float32') n_nodes = sum([g.number_of_nodes(n_type) for n_type in g.ntypes]) if args.heterogeneous else g.number_of_nodes() n_edges = sum([g.number_of_edges(e_type) for e_type in g.etypes]) if args.heterogeneous else g.number_of_edges() logging.info("""----Data statistics------' #Nodes: {} #Edges: {} #Features Shape: {} #Labeled Train samples: {} #Unlabeled Test samples: {}""".format(n_nodes, n_edges, features.shape, train_mask.sum().asscalar(), test_mask.sum().asscalar())) if args.num_gpus: cuda = True ctx = mx.gpu(0) else: cuda = False ctx = mx.cpu(0) logging.info("Initializing Model") in_feats = args.embedding_size if args.no_features else features.shape[1] n_classes = 2 model = get_model(g, vars(args), in_feats, n_classes, ctx) logging.info("Initialized Model") if args.no_features: features = nd.array(g.nodes('target'), ctx) if args.heterogeneous else nd.array(g.nodes(), ctx) else: features = features.as_in_context(ctx) labels = labels.as_in_context(ctx) train_mask = train_mask.as_in_context(ctx) valid_mask = valid_mask.as_in_context(ctx) test_mask = test_mask.as_in_context(ctx) if not args.heterogeneous: # normalization degs = g.in_degrees().astype('float32') norm = mx.nd.power(degs, -0.5) if cuda: norm = norm.as_in_context(ctx) g.ndata['norm'] = mx.nd.expand_dims(norm, 1) if args.mini_batch: train_g = HeteroGraphNeighborSampler(g, 'target', args.n_layers, args.n_neighbors) if args.heterogeneous\ else NeighborSampler(g, args.n_layers, args.n_neighbors) test_g = HeteroGraphNeighborSampler(g, 'target', args.n_layers) if args.heterogeneous\ else NeighborSampler(g, args.n_layers) else: train_g, test_g = FullGraphSampler(g, args.n_layers), FullGraphSampler(g, args.n_layers) train_data, test_data = get_dataloader(features.shape[0], args.batch_size, args.mini_batch) loss = gluon.loss.SoftmaxCELoss() scale_pos_weight = nd.sqrt((train_mask.shape[0] - train_mask.sum()) / train_mask.sum()) logging.info(model) logging.info(model.collect_params()) trainer = gluon.Trainer(model.collect_params(), args.optimizer, {'learning_rate': args.lr, 'wd': args.weight_decay}) logging.info("Starting Model training") model, pred, pred_proba = train(model, trainer, loss, features, labels, train_data, test_data, train_g, test_g, train_mask, valid_mask, test_mask, ctx, args.n_epochs, args.batch_size, args.output_dir, args.threshold, scale_pos_weight, args.compute_metrics, args.mini_batch) logging.info("Finished Model training") logging.info("Saving model") save_model(g, model, args.model_dir, vars(args)) logging.info("Saving model predictions for new accounts") save_prediction(pred, pred_proba, id_to_node, args.training_dir, args.new_accounts, args.output_dir, args.predictions)
py
1a488b72db5f9cbb4dd6c69bbe4724d32d8d73f6
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.core.exceptions import ImproperlyConfigured from django.utils.translation import ugettext_lazy as _ from django_fsm import transition, RETURN_VALUE from shop.models.order import BaseOrder, OrderModel from .base import PaymentProvider class ForwardFundPayment(PaymentProvider): """ Provides a simple prepayment payment provider. """ namespace = 'forward-fund-payment' def get_payment_request(self, cart, request): order = OrderModel.objects.create_from_cart(cart, request) order.populate_from_cart(cart, request) if order.total == 0: order.no_payment_required() else: order.awaiting_payment() order.save() thank_you_url = OrderModel.objects.get_latest_url() return '$window.location.href="{}";'.format(thank_you_url) class ManualPaymentWorkflowMixin(object): """ Add this class to `settings.SHOP_ORDER_WORKFLOWS` to mix it into your `OrderModel`. It adds all the methods required for state transitions, when used with the `ForwardFundPayment` provider from above. """ TRANSITION_TARGETS = { 'awaiting_payment': _("Awaiting a forward fund payment"), 'prepayment_deposited': _("Prepayment deposited"), 'no_payment_required': _("No Payment Required"), } def __init__(self, *args, **kwargs): if not isinstance(self, BaseOrder): raise ImproperlyConfigured("class 'ManualPaymentWorkflowMixin' is not of type 'BaseOrder'") CancelOrderWorkflowMixin.CANCELABLE_SOURCES.update(['awaiting_payment', 'prepayment_deposited', 'no_payment_required']) super(ManualPaymentWorkflowMixin, self).__init__(*args, **kwargs) def is_fully_paid(self): return super(ManualPaymentWorkflowMixin, self).is_fully_paid() @transition(field='status', source=['created'], target='no_payment_required') def no_payment_required(self): """ Signals that an Order can proceed directly, by confirming a payment of value zero. """ @transition(field='status', source=['created'], target='awaiting_payment') def awaiting_payment(self): """ Signals that the current Order awaits a payment. Invoked by ForwardFundPayment.get_payment_request. """ def deposited_too_little(self): return self.amount_paid > 0 and self.amount_paid < self.total @transition(field='status', source=['awaiting_payment'], target='awaiting_payment', conditions=[deposited_too_little], custom=dict(admin=True, button_name=_("Deposited too little"))) def prepayment_partially_deposited(self): """ Signals that the current Order received a payment, which was not enough. """ @transition(field='status', source=['awaiting_payment'], target='prepayment_deposited', conditions=[is_fully_paid], custom=dict(admin=True, button_name=_("Mark as Paid"))) def prepayment_fully_deposited(self): """ Signals that the current Order received a payment, which fully covers the requested sum. """ @transition(field='status', source=['prepayment_deposited', 'no_payment_required'], custom=dict(auto=True)) def acknowledge_prepayment(self): """ Acknowledge the payment. This method is invoked automatically. """ self.acknowledge_payment() @transition(field='status', source='refund_payment', target=RETURN_VALUE('refund_payment', 'order_canceled'), custom=dict(admin=True, button_name=_("Mark as Refunded"))) def payment_refunded(self): """ Signals that the payment for this Order has been refunded manually. """ return 'refund_payment' if self.amount_paid else 'order_canceled' class CancelOrderWorkflowMixin(object): """ Add this class to `settings.SHOP_ORDER_WORKFLOWS` to mix it into your `OrderModel`. It adds all the methods required for state transitions, to cancel an order. """ CANCELABLE_SOURCES = {'new', 'created', 'payment_confirmed', 'payment_declined'} TRANSITION_TARGETS = { 'refund_payment': _("Refund payment"), 'order_canceled': _("Order Canceled"), } def cancelable(self): return self.status in self.CANCELABLE_SOURCES @transition(field='status', target=RETURN_VALUE(*TRANSITION_TARGETS.keys()), conditions=[cancelable], custom=dict(admin=True, button_name=_("Cancel Order"))) def cancel_order(self): """ Signals that an Order shall be canceled. """ if self.amount_paid: self.refund_payment() return 'refund_payment' if self.amount_paid else 'order_canceled'
py
1a488bea775b2b2dcd23dc2ef71eb70a38d3f5fd
""" Rate expressions only for A+B=R (ABtoR) """ import numpy as np from pmutt import constants as c species_names = ['A', 'B', 'R'] #%% Define the form of the rate constant class RateConstant(): def __init__(self, name = 'k'): self.name = name def value(self, para_dict, temperature=None, energy_unit='eV'): if temperature is None: k_value = para_dict[self.name] # input is log10(prefactor) else: # based on the unit of Ea, must be J, kJ, cal, kcal, eV etc. # set the unit for kb kb_unit = energy_unit + '/K' prefactor = para_dict[self.name+'_prefactor'] Ea = 10**(para_dict[self.name+'_Ea']) # input is log10(Ea) k_value = prefactor * np.exp(-Ea/c.kb(kb_unit)/temperature) return k_value #%% Define all groups in the table as dictionaries #%% # Driving force group (DFG) def driving_suface_reaction_controlling(concentrations, para_dict, temperature=None): K = RateConstant('K').value(para_dict, temperature) return concentrations[0]*concentrations[1] - concentrations[2]/K def driving_adsorption_controlling_w_dissociation(concentrations, para_dict, temperature=None): K = RateConstant('K').value(para_dict, temperature) return concentrations[0] - concentrations[2]/concentrations[1]/K driving_force_groups = {'surface reaction controlling': driving_suface_reaction_controlling, 'adsorption controlling': driving_adsorption_controlling_w_dissociation} #%% # Kinetic group def kinetic_suface_reaction_controlling(para_dict, temperature=None): ksr = RateConstant('ksr').value(para_dict, temperature) KA = RateConstant('KA').value(para_dict, temperature) KB = RateConstant('KB').value(para_dict, temperature) return ksr*KA*KB def kinetic_adsorption_controlling_w_dissociation(para_dict, species = 'A', temperature=None): KA = RateConstant('K'+species).value(para_dict, temperature) return KA kinetic_groups = {'surface reaction controlling': kinetic_suface_reaction_controlling, 'adsorption controlling with dissociation': kinetic_adsorption_controlling_w_dissociation} #%% # Adsorption group def adsorption_default(concentrations, para_dict, species = 'A', temperature=None): Kx = RateConstant('K'+species).value(para_dict, temperature) return Kx*concentrations[species_names.index(species)] def adsorption_equilirium_w_dissociation(concentrations, para_dict, species = 'A', temperature=None): Kx = RateConstant('K'+species).value(para_dict, temperature) return np.sqrt(Kx*concentrations[species_names.index(species)]) def adsorption_controlling_w_dissociation(concentrations, para_dict, species = 'A', temperature=None): Kx = RateConstant('K'+species).value(para_dict, temperature) K = RateConstant('K').value(para_dict, temperature) return np.sqrt(Kx*concentrations[species_names.index('R')]/K/concentrations[species_names.index('B')]) adsorption_groups = {'adsorption default': adsorption_default, 'adsorption equilirium with dissociation': adsorption_equilirium_w_dissociation, 'adsorption controlling with dissociation': adsorption_controlling_w_dissociation} # Exponents of adsorption groups exponents = {'surface reaction controlling': {'dissociation': 3}, 'adsorption controlling with dissociation': 2} #%% Define the rate expressions # General rate experssion def general_rate(concentrations, para_dict, stoichiometry=None, name=None, temperature=None): """Rate expressions from Yang and Hougen """ controling_key = 'surface reaction controlling' ads_key = 'adsorption equilirium with dissociation' surface_reaction_key = 'dissociation' adsorption_terms = (1 + adsorption_groups[ads_key](concentrations, para_dict, 'A', temperature) + \ adsorption_groups[ads_key](concentrations, para_dict, 'B', temperature))**exponents[controling_key][surface_reaction_key] rate = driving_force_groups[controling_key](concentrations, para_dict, temperature) * \ kinetic_groups[controling_key](para_dict, temperature)/adsorption_terms return rate def general_rate_ads(concentrations, para_dict, stoichiometry=None, name=None, temperature=None): """Rate expressions from Yang and Hougen """ controling_key = 'adsorption controlling' ads_key = 'adsorption controlling with dissociation' #surface_reaction_key = 'dissociation' adsorption_terms = (1 + adsorption_groups[ads_key](concentrations, para_dict, 'A', temperature) + \ adsorption_groups['adsorption default'](concentrations, para_dict, 'B', temperature))**exponents[ads_key] rate = driving_force_groups[controling_key](concentrations, para_dict, temperature) * \ kinetic_groups[ads_key](para_dict, temperature)/adsorption_terms return rate
py
1a488c93e036bb7c79183a02a162711d300605a5
""" NOTE: This file is not using to.testing.assert_allclose because most methods need to work for both torch and numpy. """ import pytest import numpy as np import torch as to import itertools import pickle from typing import NamedTuple from pyrado.algorithms.utils import ReplayMemory from pyrado.sampling.step_sequence import StepSequence from pyrado.sampling.data_format import to_format from pyrado.sampling.step_sequence import discounted_value, gae_returns from pyrado.sampling.rollout import rollout from pyrado.environments.pysim.ball_on_beam import BallOnBeamSim rewards = [ -200, -100, -50, -25, -17.5, ] # Observations has one additional element observations = [ np.array([3, 2, 7]), np.array([3, 1, 7]), np.array([2, 0, 7]), np.array([3, 1, 3]), np.array([0, 2, 4]), np.array([1, 1, 1]), ] # Actions come from PyTorch actions = [ to.tensor([0, 1]), to.tensor([0, 3]), to.tensor([2, 4]), to.tensor([3, 1]), to.tensor([0, 0]), ] # Policy infos as dict collapse test policy_infos = [ {'mean': np.array([0, 1]), 'std': 0.4}, {'mean': np.array([0, 3]), 'std': 0.2}, {'mean': np.array([2, 4]), 'std': 0.1}, {'mean': np.array([3, 1]), 'std': 0.05}, {'mean': np.array([0, 0]), 'std': 0.025}, ] # Hidden is a tuple, like we see with LSTMs hidden = [ (np.array([3, 2, 7]), np.array([2, 1])), (np.array([4, 9, 8]), np.array([5, 6])), (np.array([1, 4, 9]), np.array([7, 3])), (np.array([0, 8, 2]), np.array([4, 9])), (np.array([2, 7, 6]), np.array([8, 0])), ] def test_create_rew_only(): # Don't require additional fields for this test StepSequence.required_fields = {} ro = StepSequence(rewards=rewards, data_format='numpy') assert len(ro) == 5 assert (ro.rewards == np.array(rewards)).all() @pytest.mark.parametrize( 'data_format, tensor_type', [('numpy', np.ndarray), ('torch', to.Tensor)], ids=['numpy', 'torch'] ) def test_create(data_format, tensor_type): # With actions, observations and dicts ro = StepSequence(rewards=rewards, observations=observations, actions=actions, policy_infos=policy_infos, hidden=hidden, data_format=data_format) assert len(ro) == 5 assert isinstance(ro.rewards, tensor_type) assert isinstance(ro.observations, tensor_type) assert isinstance(ro.actions, tensor_type) assert isinstance(ro.policy_infos['mean'], tensor_type) assert isinstance(ro.policy_infos['std'], tensor_type) assert isinstance(ro.hidden[0], tensor_type) # Done should always be a ndarray assert isinstance(ro.done, np.ndarray) assert not ro.done[:-1].any() assert ro.done[-1] @pytest.mark.parametrize( 'other_format, tensor_type', [('torch', np.ndarray), ('numpy', to.Tensor)], ids=['numpy to torch', 'torch to numpy'] ) def test_convert(other_format, tensor_type): ro = StepSequence(rewards=rewards, observations=observations, actions=actions, policy_infos=policy_infos, hidden=hidden, data_format=other_format) # convert if other_format == 'numpy': ro.torch() elif other_format == 'torch': ro.numpy() # Verify assert isinstance(ro.rewards, tensor_type) assert isinstance(ro.observations, tensor_type) assert isinstance(ro.actions, tensor_type) assert isinstance(ro.policy_infos['mean'], tensor_type) assert isinstance(ro.policy_infos['std'], tensor_type) assert isinstance(ro.hidden[0], tensor_type) # Done should always be a ndarray assert isinstance(ro.done, np.ndarray) @pytest.mark.parametrize( 'data_format', ['numpy', 'torch'] ) def test_step_iter(data_format): ro = StepSequence(rewards=rewards, observations=observations, actions=actions, policy_infos=policy_infos, hidden=hidden, data_format=data_format) assert len(ro) == 5 for i, step in enumerate(ro): assert step.reward == rewards[i] # Check current and next assert (step.observation == to_format(observations[i], data_format)).all() assert (step.next_observation == to_format(observations[i + 1], data_format)).all() # Check dict sub element assert (step.policy_info.mean == to_format(policy_infos[i]['mean'], data_format)).all() assert (step.hidden[0] == to_format(hidden[i][0], data_format)).all() @pytest.mark.parametrize( 'sls', [slice(2, 4), slice(2, 5, 2), slice(3), slice(4, None)] ) @pytest.mark.parametrize( 'data_format', ['numpy', 'torch'] ) def test_slice(sls, data_format): ro = StepSequence(rewards=rewards, observations=observations, actions=actions, policy_infos=policy_infos, hidden=hidden, data_format=data_format) # Slice rollout sliced = ro[sls] # Slice reward list for verification sliced_rew = rewards[sls] for i, step in enumerate(sliced): assert step.reward == sliced_rew[i] @pytest.mark.parametrize( 'data_format', ['numpy', 'torch'] ) def test_add_data(data_format): ro = StepSequence( rewards=rewards, observations=observations, actions=actions, policy_infos=policy_infos, hidden=hidden, data_format=data_format ) # Add a data field ro.add_data('return', discounted_value(ro, 0.9)) assert hasattr(ro, 'return') # Query new data field from steps assert abs(ro[2]['return'] - -86.675) < 0.01 @pytest.mark.parametrize( 'data_format', ['numpy', 'torch'] ) def test_concat(data_format): # Create some rollouts with random rewards ros = [ StepSequence( rewards=np.random.randn(5), observations=np.random.randn(6), actions=np.random.randn(5), policy_infos={'mean': np.random.randn(5)}, hidden=(np.random.randn(5), np.random.randn(5)), data_format=data_format ), StepSequence( rewards=np.random.randn(5), observations=np.random.randn(6), actions=np.random.randn(5), policy_infos={'mean': np.random.randn(5)}, hidden=(np.random.randn(5), np.random.randn(5)), data_format=data_format ) ] # Perform concatenation cat = StepSequence.concat(ros) assert cat.continuous assert cat.rollout_count == 2 # Check steps for step_ro, step_cat in zip(itertools.chain.from_iterable(ros), cat): assert step_ro.reward == step_cat.reward assert step_ro.observation == step_cat.observation assert step_ro.done == step_cat.done @pytest.mark.parametrize( 'data_format', ['numpy', 'torch'] ) def test_split_multi(data_format): # Don't require additional fields for this test StepSequence.required_fields = {} ro = StepSequence( rewards=np.arange(20), rollout_bounds=[0, 4, 11, 17, 20], data_format=data_format ) # There should be four parts assert ro.rollout_count == 4 # Of these sizes assert list(ro.rollout_lengths) == [4, 7, 6, 3] # Test selecting one s1 = ro.get_rollout(1) assert s1.rollout_count == 1 assert s1[0].reward == ro[4].reward # Test selecting a slice s2 = ro.get_rollout(slice(1, -1)) assert s2.rollout_count == 2 assert s2[0].reward == ro[4].reward assert s2[7].reward == ro[11].reward # Test selecting by list s2 = ro.get_rollout([1, 3]) assert s2.rollout_count == 2 assert s2[0].reward == ro[4].reward assert s2[7].reward == ro[17].reward @pytest.mark.parametrize( 'data_format', ['numpy', 'torch'] ) def test_pickle(data_format): ro = StepSequence(rewards=rewards, observations=observations, actions=actions, policy_infos=policy_infos, hidden=hidden, data_format=data_format) # Pickle/unpickle ro2 = pickle.loads(pickle.dumps(ro, pickle.HIGHEST_PROTOCOL)) for step, step_pi in zip(ro, ro2): assert step.reward == step_pi.reward assert (step.observation == step_pi.observation).all() assert (step.action == step_pi.action).all() assert step.done == step_pi.done @pytest.mark.parametrize( 'env', [ BallOnBeamSim(dt=0.01, max_steps=200), ], ids=['bob_linpol'] ) def test_advantage_calculation(env, linear_policy): ro = rollout(env, linear_policy) gamma = 0.99 lamb = 0.95 # Add dummy values values = np.ones_like(ro.rewards) if not ro.done[-1]: values = to.cat([values, 0]) ro.add_data('values', values) gae1 = gae_returns(ro, gamma, lamb) # Compute the advantages gae2 = np.empty_like(values) for k in reversed(range(ro.length)): if ro[k].done: gae2[k] = ro[k].reward - values[k] else: gae2[k] = ro[k].reward + gamma*values[k + 1] - values[k] + \ gamma*lamb*gae2[k + 1] assert (gae1 == gae2).all() @pytest.mark.replay @pytest.mark.parametrize( 'capacity', [ 1, 2, 8, ], ids=['1', '2', '8'] ) def test_replay_memory(capacity): rm = ReplayMemory(capacity) # Create fake rollouts (of length 5) ro1 = StepSequence(rewards=rewards, observations=observations, actions=actions, hidden=hidden) ro2 = StepSequence(rewards=rewards, observations=observations, actions=actions, hidden=hidden) # Concatenate them for testing only ros = StepSequence.concat([ro1, ro2], truncate_last=True) # same truncate_last behavior as push function # Check the lengths rm.push(ro1) assert len(rm) == len(ro1) or len(rm) == capacity rm.push(ro2) assert len(rm) == len(ro1) + len(ro1) or len(rm) == capacity # Check the elements shift = len(ros) - capacity if shift < len(ro1): assert all(rm.memory.observations[0] == ros.observations[shift]) assert all(rm.memory.observations[-1] == ro2.observations[-2]) # -2 since one was truncated # A dummy namedtuple for testing class DummyNT(NamedTuple): part1: to.Tensor part2: to.Tensor @pytest.mark.parametrize( 'data_format', ['numpy', 'torch'] ) def test_namedtuple(data_format): hid_nt = [DummyNT(*it) for it in hidden] ro = StepSequence( rewards=rewards, hidden=hid_nt, data_format=data_format ) assert isinstance(ro.hidden, DummyNT) for i, step in enumerate(ro): assert isinstance(step.hidden, DummyNT) assert (step.hidden.part1 == to_format(hid_nt[i].part1, data_format)).all()
py
1a488ca12c7ee52d974349be64557eaf04ca0742
import types import pytest from plenum.common.exceptions import UnauthorizedClientRequest from plenum.test.batching_3pc.helper import checkNodesHaveSameRoots from plenum.test.helper import sendRandomRequests, checkRejectWithReason, waitForSufficientRepliesForRequests from stp_core.loop.eventually import eventually from plenum.common.exceptions import InvalidClientRequest from plenum.test.helper import sdk_sign_request_from_dict, sdk_send_random_and_check from plenum.common.request import Request def testRequestStaticValidation(tconf, looper,txnPoolNodeSet, sdk_wallet_client): """ Check that for requests which fail static validation, REQNACK is sent :return: """ node = txnPoolNodeSet[0] req = sdk_sign_request_from_dict(looper, sdk_wallet_client, {'something': 'nothing'}) req = Request(**req) with pytest.raises(InvalidClientRequest): node.doStaticValidation(req) def test3PCOverBatchWithThresholdReqs(tconf, looper, txnPoolNodeSet, client, sdk_wallet_client, sdk_pool_handle): """ Check that 3 phase commit happens when threshold number of requests are received and propagated. :return: """ sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client, tconf.Max3PCBatchSize) def test3PCOverBatchWithLessThanThresholdReqs(tconf, looper, txnPoolNodeSet, sdk_wallet_client, sdk_pool_handle): """ Check that 3 phase commit happens when threshold number of requests are not received but threshold time has passed :return: """ sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client, tconf.Max3PCBatchSize - 1) def testTreeRootsCorrectAfterEachBatch(tconf, looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client): """ Check if both state root and txn tree root are correct and same on each node after each batch :return: """ # Send 1 batch sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client, tconf.Max3PCBatchSize) checkNodesHaveSameRoots(txnPoolNodeSet) # Send 2 batches sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client, 2 * tconf.Max3PCBatchSize) checkNodesHaveSameRoots(txnPoolNodeSet) def testRequestDynamicValidation(tconf, looper, txnPoolNodeSet, client, wallet1): """ Check that for requests which fail dynamic (state based) validation, REJECT is sent to the client :return: """ # TODO: Change this test for using SDK. # Now SDK, can't distinguish REJECTED messages and simply raise IndyError origMethods = [] names = {node.name: 0 for node in txnPoolNodeSet} def rejectingMethod(self, req): names[self.name] += 1 # Raise rejection for last request of batch if tconf.Max3PCBatchSize - names[self.name] == 0: raise UnauthorizedClientRequest(req.identifier, req.reqId, 'Simulated rejection') for node in txnPoolNodeSet: origMethods.append(node.doDynamicValidation) node.doDynamicValidation = types.MethodType(rejectingMethod, node) reqs = sendRandomRequests(wallet1, client, tconf.Max3PCBatchSize) waitForSufficientRepliesForRequests(looper, client, requests=reqs[:-1]) with pytest.raises(AssertionError): waitForSufficientRepliesForRequests(looper, client, requests=reqs[-1:]) for node in txnPoolNodeSet: looper.run(eventually(checkRejectWithReason, client, 'Simulated rejection', node.clientstack.name, retryWait=1)) for i, node in enumerate(txnPoolNodeSet): node.doDynamicValidation = origMethods[i]
py
1a488ca8d35562ecf256b35cf37f01e6a67a7399
# Copyright 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------ import logging from sanic import Blueprint from sanic import response from trial_rest_api.trial_common import transaction as trial_transaction from trial_rest_api.consent_common import transaction as consent_transaction from trial_rest_api import general, security_messaging from trial_rest_api.errors import ApiBadRequest, ApiInternalError INVESTIGATORS_BP = Blueprint('investigators') logging.basicConfig(level=logging.DEBUG) LOGGER = logging.getLogger(__name__) # Used @INVESTIGATORS_BP.get('investigators') async def get_all_investigators(request): """Fetches complete details of all Accounts in state""" client_key = general.get_request_key_header(request) investigator_list = await security_messaging.get_investigators(request.app.config.INVESTIGATOR_VAL_CONN, request.app.config.CONSENT_VAL_CONN, client_key) investigator_list_json = [] for address, dp in investigator_list.items(): investigator_list_json.append({ 'public_key': dp.public_key, 'name': dp.name }) return response.json(body={'data': investigator_list_json}, headers=general.get_response_headers()) # Used @INVESTIGATORS_BP.post('investigators') async def register_investigator(request): """Updates auth information for the authorized account""" required_fields = ['name'] general.validate_fields(required_fields, request.json) name = request.json.get('name') clinic_signer = request.app.config.SIGNER_INVESTIGATOR # .get_public_key().as_hex() # Consent network client_txn = consent_transaction.create_investigator_client( txn_signer=clinic_signer, batch_signer=clinic_signer ) batch, batch_id = consent_transaction.make_batch_and_id([client_txn], clinic_signer) await security_messaging.add_investigator( request.app.config.CONSENT_VAL_CONN, request.app.config.TIMEOUT, [batch]) try: await security_messaging.check_batch_status( request.app.config.CONSENT_VAL_CONN, [batch_id]) except (ApiBadRequest, ApiInternalError) as err: # await auth_query.remove_auth_entry( # request.app.config.DB_CONN, request.json.get('email')) raise err # Trial network clinic_txn = trial_transaction.create_investigator( txn_signer=clinic_signer, batch_signer=clinic_signer, name=name ) batch, batch_id = trial_transaction.make_batch_and_id([clinic_txn], clinic_signer) await security_messaging.add_investigator( request.app.config.INVESTIGATOR_VAL_CONN, request.app.config.TIMEOUT, [batch]) try: await security_messaging.check_batch_status( request.app.config.INVESTIGATOR_VAL_CONN, [batch_id]) except (ApiBadRequest, ApiInternalError) as err: # await auth_query.remove_auth_entry( # request.app.config.DB_CONN, request.json.get('email')) raise err return response.json(body={'status': general.DONE}, headers=general.get_response_headers()) # Used @INVESTIGATORS_BP.get('investigators/import_to_trial_data/<patient_pkey>/<ehr_id>') async def import_screening_data(request, patient_pkey, ehr_id): """Updates auth information for the authorized account""" res_json = general.get_response_from_ehr(request, "/ehrs/" + patient_pkey + "/" + ehr_id) investigator_pkey = general.get_request_key_header(request) client_signer = general.get_signer(request, investigator_pkey) data_json = res_json['data'] if not data_json: raise ApiBadRequest("Can not retrieve '" + ehr_id + "' EHR ' for '" + patient_pkey + "' patient") data_txn = trial_transaction.add_data( txn_signer=client_signer, batch_signer=client_signer, uid=data_json['id'], height=data_json['height'], weight=data_json['weight'], a1c=data_json['A1C'], fpg=data_json['FPG'], ogtt=data_json['OGTT'], rpgt=data_json['RPGT'], event_time=data_json['event_time']) batch, batch_id = trial_transaction.make_batch_and_id([data_txn], client_signer) await security_messaging.import_screening_data( request.app.config.INVESTIGATOR_VAL_CONN, request.app.config.CONSENT_VAL_CONN, request.app.config.TIMEOUT, [batch], investigator_pkey) try: await security_messaging.check_batch_status( request.app.config.INVESTIGATOR_VAL_CONN, [batch_id]) except (ApiBadRequest, ApiInternalError) as err: # await auth_query.remove_auth_entry( # request.app.config.DB_CONN, request.json.get('email')) raise err return response.json(body={'status': general.DONE}, headers=general.get_response_headers()) # Used @INVESTIGATORS_BP.get('investigators/data') async def get_all_data_from_investigators(request): """Fetches complete details of all Accounts in state""" client_key = general.get_request_key_header(request) data_list = await security_messaging.get_data_from_investigators(request.app.config.INVESTIGATOR_VAL_CONN, request.app.config.CONSENT_VAL_CONN, client_key) data_list_json = [] for address, data in data_list.items(): data_list_json.append({ 'id': data.id, 'height': data.height, 'weight': data.weight, 'A1C': data.A1C, 'FPG': data.FPG, 'OGTT': data.OGTT, 'RPGT': data.RPGT, 'event_time': data.event_time, 'eligible': data.eligible }) return response.json(body={'data': data_list_json}, headers=general.get_response_headers()) # Used @INVESTIGATORS_BP.post('investigators/data/update') async def update_data(request): client_key = general.get_request_key_header(request) required_fields = ['id', 'height', 'weight', 'A1C', 'FPG', 'OGTT', 'RPGT'] general.validate_fields(required_fields, request.json) uid = request.json.get('id') height = request.json.get('height') weight = request.json.get('weight') A1C = request.json.get('A1C') FPG = request.json.get('FPG') OGTT = request.json.get('OGTT') RPGT = request.json.get('RPGT') client_signer = request.app.config.SIGNER_INVESTIGATOR # .get_public_key().as_hex() client_txn = trial_transaction.update_data( txn_signer=client_signer, batch_signer=client_signer, uid=uid, height=height, weight=weight, a1c=A1C, fpg=FPG, ogtt=OGTT, rpgt=RPGT) batch, batch_id = trial_transaction.make_batch_and_id([client_txn], client_signer) await security_messaging.update_investigator( request.app.config.INVESTIGATOR_VAL_CONN, request.app.config.CONSENT_VAL_CONN, request.app.config.TIMEOUT, [batch], client_key) try: await security_messaging.check_batch_status( request.app.config.INVESTIGATOR_VAL_CONN, [batch_id]) except (ApiBadRequest, ApiInternalError) as err: # await auth_query.remove_auth_entry( # request.app.config.DB_CONN, request.json.get('email')) raise err return response.json(body={'status': general.DONE}, headers=general.get_response_headers()) # Used @INVESTIGATORS_BP.get('investigators/request_inform_consent/<patient_pkey>') async def request_inform_consent(request, patient_pkey): """Updates auth information for the authorized account""" client_key = general.get_request_key_header(request) client_signer = general.get_signer(request, client_key) grant_read_ehr_permission_txn = consent_transaction.request_inform_document_consent( txn_signer=client_signer, batch_signer=client_signer, patient_pkey=patient_pkey) batch, batch_id = trial_transaction.make_batch_and_id([grant_read_ehr_permission_txn], client_signer) await security_messaging.request_inform_document_consent( request.app.config.CONSENT_VAL_CONN, request.app.config.TIMEOUT, [batch], client_key) try: await security_messaging.check_batch_status( request.app.config.CONSENT_VAL_CONN, [batch_id]) except (ApiBadRequest, ApiInternalError) as err: # await auth_query.remove_auth_entry( # request.app.config.DB_CONN, request.json.get('email')) raise err return response.json(body={'status': general.DONE}, headers=general.get_response_headers()) # Used @INVESTIGATORS_BP.post('investigators/data/eligible') async def set_eligible(request): client_key = general.get_request_key_header(request) required_fields = ['id', 'eligible'] general.validate_fields(required_fields, request.json) uid = request.json.get('id') eligible = bool(request.json.get('eligible')) client_signer = request.app.config.SIGNER_INVESTIGATOR # .get_public_key().as_hex() client_txn = trial_transaction.set_eligible( txn_signer=client_signer, batch_signer=client_signer, uid=uid, eligible=eligible) batch, batch_id = trial_transaction.make_batch_and_id([client_txn], client_signer) await security_messaging.set_eligible( request.app.config.INVESTIGATOR_VAL_CONN, request.app.config.CONSENT_VAL_CONN, request.app.config.TIMEOUT, [batch], client_key) try: await security_messaging.check_batch_status( request.app.config.INVESTIGATOR_VAL_CONN, [batch_id]) except (ApiBadRequest, ApiInternalError) as err: # await auth_query.remove_auth_entry( # request.app.config.DB_CONN, request.json.get('email')) raise err return response.json(body={'status': general.DONE}, headers=general.get_response_headers())
py
1a488cd5a9a1b596b7c1f05975d443949dd032c3
import collections as co import itertools as it #argument_parser = argparse.ArgumentParser() #argument_parser.add_argument("jff_path", metavar="jff-file", type=str) #args = argument_parser.parse_args() _Original = co.namedtuple('_Original', ('symbol',)) _Term = co.namedtuple('_Term', ('symbol',)) _Bin = co.namedtuple('_Bin', ('string',)) _Start = co.namedtuple('_Start', ()) Grammar = co.namedtuple('Grammar', ('rules')) def _parse_rule(rule): tag, leaf, ( (left_tag, left_leaf, left), (right_tag, right_leaf, right), ) = rule assert tag == "production" assert not leaf assert left_tag == "left" assert left_leaf assert right_tag == "right" assert right_leaf return left, right def parse(structure): assert structure.type == "grammar" rules = {} for left, target in map(_parse_rule, structure.body): assert len(left) == 1 if left not in rules: rules[left] = set() if target is None: rules[left].add(()) continue rules[left].add(tuple(target)) return rules def _copy_rules(rules): return {left: set(targets) for left, targets in rules.items()} def _chomsky_normalize_rename(rules): return { ("original", left): { tuple(("original", symbol) for symbol in target) for target in targets } for left, targets in rules.items() } def _chomsky_normalize_start(rules, start): new_rules = {**rules, ('start',): {(start,)}} _copy_rules(rules) new_rules['start', ] = {(start,)} return new_rules def _compute_symbols(rules): symbols = set() for source, targets in rules.items(): for target in targets: symbols |= set(target) return symbols def _chomsky_normalize_term(rules): new_rules = { source: { tuple( ("term", symbol) if symbol not in rules else symbol for symbol in target ) for target in targets } for source, targets in rules.items() } for symbol in _compute_symbols(rules) - set(rules.keys()): new_rules[("term", symbol)] = {(symbol,)} return new_rules def _chomsky_normalize_bin(rules): new_rules = {} for source, targets in rules.items(): new_rules[source] = set() for target in targets: if len(target) <= 2: new_rules[source].add(target) continue new_rules[source].add((target[0], ("bin", target[1:]))) for symbol_i, symbol in enumerate(target[1:-2], start=1): new_rules["bin", target[symbol_i:]] = { (symbol, ("bin", target[symbol_i + 1:])) } new_rules["bin", target[-2:]] = {target[-2:]} return new_rules def _inline_nullable(string, symbol): if symbol not in string: yield string return index = string.index(symbol) for rest in _inline_nullable(string[index + 1:], symbol): yield string[:index] + rest yield string[: index + 1] + rest def _chomsky_normalize_del(rules): nullables = set() new_nullables = True while new_nullables: new_nullables = False for source, targets in rules.items(): if source in nullables: continue for target in targets: nullable = True for symbol in target: if symbol not in nullables: nullable = False break if nullable: nullables.add(source) new_nullables = True break new_rules = _copy_rules(rules) for source, targets in rules.items(): for target in targets: for nullable in set(target) & nullables: for new_target in _inline_nullable(target, nullable): new_rules[source].add(new_target) for source in nullables: new_rules[source].discard(()) return new_rules def _chomsky_normalize_unit_for_symbol(rules, source, seen=set()): for target in rules[source]: if not (len(target) == 1 and target[0] in rules): yield target continue for symbol in target: if symbol in seen: continue yield from _chomsky_normalize_unit_for_symbol( rules, symbol, seen | {source} ) def _chomsky_normalize_unit(rules): return { source: set(_chomsky_normalize_unit_for_symbol(rules, source)) for source in rules } def _chomsky_normalize(rules, start): return _chomsky_normalize_prettify( _chomsky_normalize_unit( _chomsky_normalize_del( _chomsky_normalize_bin( _chomsky_normalize_term( _chomsky_normalize_start( _chomsky_normalize_rename(rules), start ) ) ) ) ) ) def _prettify_symbol(symbol): symbol_type, *args = symbol if symbol_type == "original": return args[0] elif symbol_type == "term": return "T{}".format(_prettify_symbol(args[0])) elif symbol_type == "start": return "start" elif symbol_type == "bin": return tuple(map(_prettify_symbol, args[0])) return symbol def _chomsky_normalize_prettify(rules): return { _prettify_symbol(source): { tuple(_prettify_symbol(symbol) for symbol in target) for target in targets } for source, targets in rules.items() } def _cyk_products(rules, string): singles = co.defaultdict(set) pairs = co.defaultdict(set) for source, targets in rules.items(): for target in targets: (singles if len(target) == 1 else pairs)[source].add( target ) products = co.defaultdict(lambda: co.defaultdict(set)) for source, targets in singles.items(): for target in targets: products[source][target].add(target) for substring_length in range(2, len(string) + 1): for position in range(len(string) - substring_length + 1): substring = string[position: position + substring_length] for split in range(1, substring_length): left_string, right_string = ( substring[:split], substring[split:], ) for source, targets in pairs.items(): for left, right in targets: if ( left_string in products[left] and right_string in products[right] ): for left_tree, right_tree in it.product( products[left][left_string], products[right][right_string], ): products[source][substring].add( ( (left, left_tree), (right, right_tree), ) ) return products def _cyk(rules, string, start): for tree in _cyk_products(rules, string)[start][string]: yield start, tree def _format_parse_tree_lines(tree): node, children = tree if len(children) == 1: yield "{!r},".format((node, children)) return node, (left, right) = tree head = "({!r}, ".format(node) left_lines = _format_parse_tree_lines(left) yield head + next(left_lines) for line in left_lines: yield " " * len(head) + line for line in _format_parse_tree_lines(right): yield " " * len(head) + line def _format_parse_tree(tree): return "\n".join(_format_parse_tree_lines(tree)) def run(rules, string, start): return _cyk(_chomsky_normalize(rules, start)) # # # cnf = _chomsky_normalize( # _parse_grammar(parser._parse_jff_structure(args.jff_path)), # ("original", "S"), # ) # # for tree in _cyk(cnf, tuple("000#100"), "S"): # print(_format_parse_tree(tree)) #
py
1a488d039f2ddeb5bda029d161de12a6de4ea4d0
#!/usr/bin/env python """ Tables dependencies in an Oracle query """ import lib_oracle import lib_common import lib_sql from sources_types.sql import query as sql_query from sources_types.oracle import query as oracle_query def Main(): # cgiEnv = lib_common.CgiEnv() cgiEnv = lib_oracle.OracleEnv() grph = cgiEnv.GetGraph() sqlQuery = sql_query.GetEnvArgs(cgiEnv) dbNam = cgiEnv.m_entity_id_dict["Db"] # This is simply the user. oraSchema = cgiEnv.OracleSchema() nodeSqlQuery = oracle_query.MakeUri(sqlQuery,dbNam) propSheetToQuery = lib_common.MakeProp("Table dependency") list_of_table_names = lib_sql.TableDependencies(sqlQuery) list_of_nodes = oracle_query.QueryToNodesList(sqlQuery,{"Db":dbNam },list_of_table_names,oraSchema) for nodTab in list_of_nodes: grph.add( ( nodeSqlQuery, propSheetToQuery, nodTab ) ) cgiEnv.OutCgiRdf() if __name__ == '__main__': Main()
py
1a488d238f6ed2e6dfa04e857d509ae4ebb08e5c
#!/usr/bin/env python import sys from gribapi import * from array import array import random import traceback import itertools VERBOSE=1 WRITE=0 class Usage(Exception): def __init__(self): pass def product(*args, **kwds): # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111 pools = map(tuple, args) * kwds.get('repeat', 1) result = [[]] for pool in pools: result = [x+[y] for x in result for y in pool] for prod in result: yield tuple(prod) def test(): # test new from sample #grib_release(grib_new_from_samples("GRIB2")) if len(sys.argv) < 2: raise Usage infile = sys.argv[1] index_keys = ["shortName","level","number","step"] print "indexing..." iid = grib_index_new_from_file(infile,index_keys) print "end indexing..." index_vals = [] for key in index_keys: print "%sSize=%d" % ( key, grib_index_get_size(iid,key) ) key_vals = grib_index_get_string(iid,key) print " ".join(key_vals) index_vals.append(key_vals) for prod in product(*index_vals): for i in range(len(index_keys)): grib_index_select_string(iid,index_keys[i],str(prod[i])) while 1: gid = grib_new_from_index(iid) if gid is None: break print " ".join(["%s=%s" % (key,grib_get_string(gid,key)) for key in index_keys]) grib_release(gid) grib_index_release(iid) def main(): try: test() except GribInternalError as err: if VERBOSE: traceback.print_exc(file=sys.stderr) else: print >>sys.stderr,err.msg return 1 except Usage: print "Usage: %s infile" % sys.argv[0] sys.exit(2) if __name__ == "__main__": main() #print "------------------------------------"
py
1a488e24b4e89748d3fe2c34992a605943780a62
from image_cache.cache import * from image_cache import itertools
py
1a488eeb40c55244491eb0d0fc4466ff40558bd8
from decimal import Decimal from typing import Optional, Dict, List from django import forms from django.utils.translation import gettext as _ from rest_framework.request import Request from polaris.integrations import WithdrawalIntegration, calculate_fee from polaris.models import Transaction, Asset from polaris.sep10.token import SEP10Token from polaris.templates import Template from polaris.utils import getLogger from ..forms import WithdrawForm from .sep24_kyc import SEP24KYC from ..models import PolarisStellarAccount, PolarisUserTransaction logger = getLogger(__name__) class MyWithdrawalIntegration(WithdrawalIntegration): def form_for_transaction( self, request: Request, transaction: Transaction, post_data=None, amount=None, *args, **kwargs, ) -> Optional[forms.Form]: kyc_form, content = SEP24KYC.check_kyc(transaction, post_data) if kyc_form: return kyc_form elif content or transaction.amount_in: return None elif post_data: return WithdrawForm(transaction, post_data) else: return WithdrawForm(transaction, initial={"amount": amount}) def content_for_template( self, request: Request, template: Template, form: Optional[forms.Form] = None, transaction: Optional[Transaction] = None, *args, **kwargs, ) -> Optional[Dict]: na, content = SEP24KYC.check_kyc(transaction) if content: return content elif template == Template.WITHDRAW: if not form: return None return { "title": _("Polaris Transaction Information"), "icon_label": _("Stellar Development Foundation"), "guidance": ( _( "Please enter the banking details for the account " "you would like to receive your funds." ) ), } else: # template == Template.MORE_INFO return { "title": _("Polaris Transaction Information"), "icon_label": _("Stellar Development Foundation"), } def after_form_validation( self, request: Request, form: forms.Form, transaction: Transaction, *args, **kwargs, ): try: SEP24KYC.track_user_activity(form, transaction) except RuntimeError: # Since no polaris account exists for this transaction, KYCForm # will be returned from the next form_for_transaction() call logger.exception( f"KYCForm was not served first for unknown account, id: " f"{transaction.stellar_account}" ) def process_sep6_request( self, token: SEP10Token, request: Request, params: Dict, transaction: Transaction, *args, **kwargs, ) -> Dict: account = ( PolarisStellarAccount.objects.filter( account=params["account"], memo=params["memo"], memo_type=params["memo_type"], ) .select_related("user") .first() ) if not account: return { "type": "non_interactive_customer_info_needed", "fields": [ "first_name", "last_name", "email_address", "bank_number", "bank_account_number", ], } elif not (account.user.bank_account_number and account.user.bank_number): return { "type": "non_interactive_customer_info_needed", "fields": ["bank_number", "bank_account_number"], } elif params["type"] != "bank_account": raise ValueError(_("'type' must be 'bank_account'")) elif not params["dest"]: raise ValueError(_("'dest' is required")) elif not params["dest_extra"]: raise ValueError(_("'dest_extra' is required")) elif not account.confirmed: # Here is where you would normally return something like this: # { # "type": "customer_info_status", # "status": "pending" # } # However, we're not going to block the client from completing # the flow since this is a reference server. pass asset = params["asset"] min_amount = round(asset.withdrawal_min_amount, asset.significant_decimals) max_amount = round(asset.withdrawal_max_amount, asset.significant_decimals) if params["amount"]: if not (min_amount <= params["amount"] <= max_amount): raise ValueError(_("invalid 'amount'")) transaction.amount_in = params["amount"] transaction.amount_fee = calculate_fee( { "amount": params["amount"], "operation": "withdraw", "asset_code": asset.code, } ) transaction.amount_out = round( transaction.amount_in - transaction.amount_fee, asset.significant_decimals, ) transaction.save() response = { "account_id": asset.distribution_account, "min_amount": min_amount, "max_amount": max_amount, "fee_fixed": round(asset.withdrawal_fee_fixed, asset.significant_decimals), "fee_percent": asset.withdrawal_fee_percent, } if params["memo_type"] and params["memo"]: response["memo_type"] = params["memo_type"] response["memo"] = params["memo"] PolarisUserTransaction.objects.create( transaction_id=transaction.id, user=account.user, account=account ) return response def interactive_url( self, request: Request, transaction: Transaction, asset: Asset, amount: Optional[Decimal], callback: Optional[str], *args: List, **kwargs: Dict, ) -> Optional[str]: raise NotImplementedError() def save_sep9_fields( self, token: SEP10Token, request: Request, stellar_account: str, fields: Dict, language_code: str, muxed_account: Optional[str] = None, account_memo: Optional[str] = None, account_memo_type: Optional[str] = None, *args: List, **kwargs: Dict, ): raise NotImplementedError() def patch_transaction( self, token: SEP10Token, request: Request, params: Dict, transaction: Transaction, *args: List, **kwargs: Dict, ): raise NotImplementedError()
py
1a489011edb23adbfd4e6d1d40d4b3b90637b159
import csv import os.path import matplotlib import numpy as np from matplotlib import pyplot as plt matplotlib.rcParams.update({'font.size': 15}) n_trial = 5 top_k = 1 batch_size = 4000 max_step = np.inf max_reward = np.inf min_reward = -np.inf exp_name = 'CartpoleNd' exp_param = 'D1K05A05Ec10' extra_name = '' prepath = "../" + exp_name + "/Data/AST/Lexington/" + exp_param plot_path = "../" + exp_name + "/Data/Plot/top" + str(top_k) + "/" policies = [ # "TRPO",\ "MCTSRS",\ # "MCTSAS",\ # "MCTSBV",\ # "GAP100T20K3Step1.0Fmean","GASMP100T20K3Step1.0Fmean",\ # "GAP500T20K3Step1.0Fmean","GASMP500T20K3Step1.0Fmean",\ ] plot_name = exp_name + '_' + exp_param + 'avgtop' + str(top_k) + 'trial' + str(n_trial) + extra_name plts = [] legends = [] fig = plt.figure(figsize=(10, 10)) for (policy_index, policy) in enumerate(policies): print(policy) for trial in range(n_trial): file_path = prepath + '/' + policy + '/' + str(trial) + '/process.csv' if os.path.exists(file_path): print(trial) steps = [] rewards = [] with open(file_path) as csv_file: if '\0' in open(file_path).read(): print("you have null bytes in your input file") csv_reader = csv.reader(x.replace('\0', '') for x in csv_file) else: csv_reader = csv.reader(csv_file, delimiter=',') for (i, row) in enumerate(csv_reader): if i == 0: entry_dict = {} for index in range(len(row)): entry_dict[row[index]] = index else: # print(row[entry_dict["StepNum"]]) if int(row[entry_dict["StepNum"]]) > max_step: break if int(row[entry_dict["StepNum"]]) % batch_size == 0: steps.append(int(row[entry_dict["StepNum"]])) avg_top = 0.0 for k in range(top_k): avg_top += np.clip(float(row[entry_dict["reward " + str(k)]]), min_reward, max_reward) avg_top /= top_k rewards.append(avg_top) plot, = plt.plot(steps, rewards) # plot, = plt.plot(steps,np.mean(np.exp(Rewards),0)) # plot,_,_ = plt.errorbar(steps,np.mean(Rewards,0),yerr=np.std(Rewards,0)/np.sqrt(n_trial),errorevery=10) plts.append(plot) legends.append(policy + '_' + str(trial)) plt.legend(plts, legends) plt.xlabel('Step Number') plt.ylabel('Top ' + str(top_k) + ' Reward') fig.savefig(plot_path + plot_name) plt.close(fig)
py
1a48910bd4cf0a094a15231f2a2a3b67fb6ec43f
import os import torch from torch.utils.tensorboard import SummaryWriter from torch.cuda.amp import GradScaler, autocast from scripts.focalloss import FocalLoss from Transformers_VQA.dataset_final import make_final_loader from Transformers_VQA.modified_uniter_attnbias_rcnn_SBERT_graph import Modified_Uniter_attnbias_rcnn_SBERT_graph def train(): # Constant setup BATCH_SIZE = 3 BATCH_SIZE_DEV = 1 LR = 5e-6 N_EPOCH = 30 GAMMA = 2 ALPHA = 5 print(f'UNITERonCLIPBERT_attnbias_rcnn_SBERT_graph batch_size={BATCH_SIZE}, Adam_lr={LR}, FocalAlpha={ALPHA}, GAMMA={GAMMA}') torch.manual_seed(21) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(device) # Make loaders train_loader = make_final_loader('train', BATCH_SIZE, rcnn=True) dev_loader = make_final_loader('dev', BATCH_SIZE_DEV, rcnn=True) # Setup Tensorboard writer = SummaryWriter(comment = f'UNITERonCLIPBERT_attnbias_rcnn_SBERT_graph batch_size={BATCH_SIZE}, Adam_lr={LR}, FocalAlpha={ALPHA}, GAMMA={GAMMA}') # multiply by layer, do an embedding for indices 1 to 12 mask_stepper = torch.ones(1, 12, 512, 512).to(device) for i in range(12): mask_stepper[0, i, :, :] *= i+1 # Eval for F1 def eval(model): model.eval() with torch.no_grad(): total_hit, total_pred_positive, total_truth_positive, total_loss, total_pred = 0, 0, 0, [], 0 for idx, batch in enumerate(dev_loader): input_ids = batch['input_ids'].to(device) txt_seg_ids = batch['txt_seg_ids'].to(device) vis_feats = batch['vis_feats'].to(device) obj_embs = batch['obj_embs_SBERT'].to(device) obj_ids = batch['obj_ids'].to(device) pos_x = batch['pos_x'].to(device) pos_y = batch['pos_y'].to(device) pos_z = batch['pos_z'].to(device) bboxes = batch['bboxes'].to(device) vis_seg = batch['vis_seg'].to(device) extended_attention_mask = batch['extended_attention_mask'].to(device) output_mask = batch['output_mask'].to(device) reference = batch['reference'].to(device) scene_seg = batch['scene_segs'].to(device) rel_mask_left = batch['rel_mask_left'].to(device).unsqueeze(0).unsqueeze(2) rel_mask_right = batch['rel_mask_right'].to(device).unsqueeze(0).unsqueeze(2) rel_mask_up = batch['rel_mask_up'].to(device).unsqueeze(0).unsqueeze(2) rel_mask_down = batch['rel_mask_down'].to(device).unsqueeze(0).unsqueeze(2) rel_masks = torch.cat((rel_mask_left, rel_mask_right, rel_mask_up, rel_mask_down), axis=0) rel_masks = rel_masks * mask_stepper pred = model(input_ids , txt_seg_ids, vis_feats, obj_embs, obj_ids, pos_x, pos_y, pos_z, bboxes, vis_seg, extended_attention_mask, scene_seg, rel_masks) pred = pred.reshape(1,-1) pred = pred[output_mask==1].reshape(-1,1) truth = reference.float().reshape(-1,1) loss = criterion(pred, truth).detach() pred_bin = pred > 0 truth_bin = truth > 0.5 hit = torch.sum(pred_bin*truth_bin == 1).detach() pred_positive = torch.sum(pred > 0).detach() truth_positive = torch.sum(truth > 0.5).detach() total_loss.append(float(loss)) total_hit += int(hit) total_pred_positive += int(pred_positive) total_truth_positive += int(truth_positive) total_pred += int(pred.shape[0]) print('#pred positives',total_pred_positive) print('#groundtruth positives',total_truth_positive) print('#total pred', total_pred) print('#hit', total_hit) total_loss = sum(total_loss)/len(total_loss) if (total_pred_positive == 0): total_pred_positive = 1e10 prec = total_hit / total_pred_positive recall = total_hit / total_truth_positive try: f1 = 2/(1/prec + 1/recall) except: f1 = 0 return total_loss, prec, recall, f1 # Training setup model = Modified_Uniter_attnbias_rcnn_SBERT_graph().to(device) criterion = FocalLoss(gamma=GAMMA, alpha=ALPHA) optimizer = torch.optim.Adam(model.parameters(), lr=LR) scaler = GradScaler() # Train n_iter = 0 n_prev_iter = 0 running_loss = 0 for epoch in range(N_EPOCH): for batch_idx, batch in enumerate(train_loader): model.train() optimizer.zero_grad() input_ids = batch['input_ids'].to(device) txt_seg_ids = batch['txt_seg_ids'].to(device) vis_feats = batch['vis_feats'].to(device) obj_embs = batch['obj_embs_SBERT'].to(device) obj_ids = batch['obj_ids'].to(device) pos_x = batch['pos_x'].to(device) pos_y = batch['pos_y'].to(device) pos_z = batch['pos_z'].to(device) bboxes = batch['bboxes'].to(device) vis_seg = batch['vis_seg'].to(device) extended_attention_mask = batch['extended_attention_mask'].to(device) output_mask = batch['output_mask'].to(device) reference = batch['reference'].to(device) scene_seg = batch['scene_segs'].to(device) rel_mask_left = batch['rel_mask_left'].to(device).unsqueeze(0).unsqueeze(2) rel_mask_right = batch['rel_mask_right'].to(device).unsqueeze(0).unsqueeze(2) rel_mask_up = batch['rel_mask_up'].to(device).unsqueeze(0).unsqueeze(2) rel_mask_down = batch['rel_mask_down'].to(device).unsqueeze(0).unsqueeze(2) rel_masks = torch.cat((rel_mask_left, rel_mask_right, rel_mask_up, rel_mask_down), axis=0) rel_masks = rel_masks * mask_stepper truth = reference.float().reshape(-1,1) # To fix: NaN under mixed precision # with autocast(): # pred = model(input_ids , txt_seg_ids, vis_feats, obj_embs, obj_ids, pos_x, pos_y, pos_z, bboxes, vis_seg, extended_attention_mask) # pred = pred.reshape(1,-1) # pred = pred[output_mask==1].reshape(-1,1) # loss = criterion(pred, truth) # scaler.scale(loss).backward() # scaler.step(optimizer) # scaler.update() pred = model(input_ids , txt_seg_ids, vis_feats, obj_embs, obj_ids, pos_x, pos_y, pos_z, bboxes, vis_seg, extended_attention_mask, scene_seg, rel_masks) pred = pred.reshape(1,-1) pred = pred[output_mask==1].reshape(-1,1) loss = criterion(pred, truth) loss.backward() optimizer.step() n_iter += 1 writer.add_scalar('Loss/train_batch', loss, n_iter) running_loss += loss.detach() if batch_idx % 2000 == 0: print(pred.reshape(-1)) print(truth.reshape(-1)) print(running_loss/(n_iter-n_prev_iter)) loss, prec, recall, f1 = eval(model) writer.add_scalar('Loss/train_avg', running_loss/(n_iter-n_prev_iter), n_iter) n_prev_iter = n_iter running_loss = 0 writer.add_scalar('Loss/dev', loss, n_iter) writer.add_scalar('Precision/dev', prec, n_iter) writer.add_scalar('Recall/dev', recall, n_iter) writer.add_scalar('F1/dev', f1, n_iter) try: os.makedirs(f'./checkpoint/UNITERonCLIPBERT_attnbiasRcnn_SBERT_graph_n_batchsize{BATCH_SIZE}_lr{LR}_FocalALPHA{ALPHA}_GAMMA{GAMMA}') except: pass torch.save({ 'epoch': epoch, 'step': n_iter, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'dev_loss': loss, }, f'./checkpoint/UNITERonCLIPBERT_attnbiasRcnn_SBERT_graph_n_batchsize{BATCH_SIZE}_lr{LR}_FocalALPHA{ALPHA}_GAMMA{GAMMA}/{epoch}_{batch_idx}_{loss}_{f1}.bin') print('DONE !!!') if __name__ == '__main__': train()
py
1a48919c1532f52aacaf4cbef550548de7d12126
#!/usr/bin/env python # coding: utf-8 # # Star Type # # Author: Yufei Ren # # Course Project, UC Irvine, Math 10, W22 # ## Introduction # # The dataset "Star dataset to predict star types" consists several features of planets in 6 category: Brown Dwarf, Red Dwarf, White Dwarf, Main Sequence , SuperGiants, HyperGiants, and they are respectivley assigned with numbers 0, 1, 2, 3, 4, 5. # > # In this project, the temperature, radius, 'Absolute magnitude(Mv)', and luminorsity are first used to predict the star type. After that, sklearn is used to find the relationship between temperature, radius and luminorsity. # ## Main portion of the project # # (You can either have all one section or divide into multiple sections) # In[ ]: import numpy as np import pandas as pd import seaborn as sns import altair as alt # In[ ]: df = pd.read_csv("/work/6 class csv.csv") df = df.dropna(axis=1) # clear the data df.head() # In[ ]: df.describe() # In[ ]: df.columns # Atair charts is used to visualize the dataset before predicting. # In[ ]: brush = alt.selection_interval() c1 = alt.Chart(df).mark_point().encode( x='Absolute magnitude(Mv)', y='Radius(R/Ro):Q', color='Star type:N' ).add_selection(brush) c2= alt.Chart(df).mark_bar().encode( x = 'Star type:N', y='Absolute magnitude(Mv)' ).transform_filter(brush) c1|c2 # ## Predict the Star type # Firstly, KNeighborsClassifier is used to predict the star type # In[ ]: from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.metrics import log_loss from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, mean_absolute_error # In[ ]: X = df.iloc[:,:4] y = df["Star type"] # Before using using K-Nearest Neighbors Classifier, a scaler is used to scale the input data to avoid errors. # In[ ]: scaler = StandardScaler() scaler.fit(X) X_scaled = scaler.transform(X) # In[ ]: X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2) # In[ ]: clf = KNeighborsClassifier() clf.fit(X_train, y_train) loss_train = log_loss(y_train, clf.predict_proba(X_train)) loss_test = log_loss(y_test, clf.predict_proba(X_test)) # In[ ]: print(f"The log_loss of X_train and y_train is {loss_train:.2f}") print(f"The log_loss of X_test and y_test is {loss_test:.2f}") # In[ ]: df['predict_K'] = clf.predict(X_scaled) # The logloss of testing data is not large, so there isn't a sign of overfitting # In[ ]: (df["Star type"] == df["predict_K"]).value_counts() # Here we can see that the predicted data is very close to the real data, and there isn't a sign me over-fitting. # ## Predict the Luminosity # After using K Neraerst Neighbors to predict the type of a star, I am interested in finding how does radius and temperature are related to the luminorsity of a star. # I first try the LinearRegressor # In[ ]: from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error X2 = df[['Radius(R/Ro)','Temperature (K)']] y2 = df['Luminosity(L/Lo)'] reg1 = LinearRegression() reg1.fit(X2,y2) MSE1 = mean_squared_error(y2,reg1.predict(X2)) MAE1 = mean_absolute_error(y2,reg1.predict(X2)) print(f"the coefficients of reg are {reg1.coef_}") print(f"the intersept of reg is {reg1.intercept_}.") print(f'The Mean square error is {MSE1:.3f}') print(f'The Mean absolute error is {MAE1:.3f}') # The MSE is too high at this case, then I choose to try the KneighborRegressor, and again, the input should be scaled first because they are not in the same unit. # In[ ]: from sklearn.neighbors import KNeighborsRegressor scaler = StandardScaler() scaler.fit(X2) X2_scaled = scaler.transform(X2) reg2 = KNeighborsRegressor(n_neighbors=4) # In[ ]: reg2.fit(X2_scaled, y2) df['predict_l'] = reg2.predict(X2_scaled) MSE2 = mean_squared_error(reg2.predict(X2_scaled),y2) MAE2 = mean_absolute_error(reg2.predict(X2_scaled),y2) print(f'The Mean square error is {MSE2:.3f}') print(f'The Mean absolute error is {MAE2:.3f}') # The number is still large, but smaller than the prediced error in linear regression. The reason for it might be that it is not a linear relationship, but a polynomial relationship. # # To check if it is a polynomial regression, the polynomialfeatures is used. # In[ ]: df3 = df.iloc[:,:3] df3.columns # In[ ]: y_ply = df['Luminosity(L/Lo)'] X_ply = df[['Temperature (K)', 'Radius(R/Ro)']] # In[ ]: from sklearn.preprocessing import PolynomialFeatures # Here I first created a dataframe that contains all posibilities of combination of temperature and radius within 9 degree. # In[ ]: poly = PolynomialFeatures(degree=9) df_ply = pd.DataFrame(poly.fit_transform(X_ply)) df_ply.columns = poly.get_feature_names_out() # In[ ]: df_ply # Then I apply linear regression on luminorsity and each predited polynomial combination, and caculate the error. In the end, I printed out the smallest error and its combination. # In[ ]: error_dict = {} for column in df_ply: reg = LinearRegression() reg.fit(df_ply[[column]], y_ply) error = mean_squared_error(reg.predict(df_ply[[column]]), y_ply) error_dict[error] = column print("the smallest mean squared error is", min(error_dict), 'from column', error_dict[min(error_dict)]) # Here we can see the lowest mean squred error is around 2.3 * 10^10, and the linear combinaiton is Radius^1 * Temperature^0 # # The error is very large and a possible reason for that is that all star types are evaluated together and their ranges are in very different scales. As a result, different star types are evaluated separated below. # In[ ]: alt.Chart(df).mark_boxplot(extent='min-max').encode( x='Star type:N', y='Luminosity(L/Lo):Q' ) # In the plotbox above, it is apparent that the ranges of luminosity of different star types are in very different scale # In[ ]: def find_combination(star_type): df_star = df[df['Star type'] == star_type].iloc[:,:3] X = df_star[['Temperature (K)', 'Radius(R/Ro)']] y = df_star['Luminosity(L/Lo)'] poly = PolynomialFeatures(degree=9) df_ply = pd.DataFrame(poly.fit_transform(X)) df_ply.columns = poly.get_feature_names_out() error_dict = {} for column in df_ply: reg = LinearRegression() reg.fit(df_ply[[column]], y) error = mean_squared_error(reg.predict(df_ply[[column]]), y) error_dict[error] = column print(f"For the star type {star_type}, the smallest error is {min(error_dict)}, which is generagted form {error_dict[min(error_dict)]}") # In[ ]: for i in range(5): find_combination(i) # After applying polynomialfeatures to different star type separated, the mean squared error reduced apparently. However, different star type has lowest error with different polynomial combination. As a result, it is not safe to claim any polynomial combination of temperature and radius is the best to predict the Luminosity. # ## Summary # # In this project, I am able to predic the star's type by using KneighborClasifier with comparatively high acurracy. However, a best polynomial combination of temperature and radius to predic the luminorsity is not find, because the best structures of different star types differ. As a result, a larger dataset is needed to get a more accurate result. # ## References # The dataset “6 class csv.csv” was adapted from [Star dataset to predict star types](https://www.kaggle.com/deepu1109/star-dataset) # > # The mthods and application of polynomialfeature was adapted from [sklearn.preprocessing.PolynomialFeatures](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html) # > # The idea of polynomialfeature is adapted from [Introduction to Polynomial Regression (with Python Implementation)](https://www.analyticsvidhya.com/blog/2020/03/polynomial-regression-python/) # > # The code of drawing altair histogram is adapted from [Simple Histogram](https://altair-viz.github.io/gallery/simple_histogram.html) # > # The code of drawing boxplot is adapted from [Boxplot with Min/Max Whiskers](https://altair-viz.github.io/gallery/boxplot.html#) # <a style='text-decoration:none;line-height:16px;display:flex;color:#5B5B62;padding:10px;justify-content:end;' href='https://deepnote.com?utm_source=created-in-deepnote-cell&projectId=0fb54ba1-bdfd-468e-b41a-ed6482907af2' target="_blank"> # <img alt='Created in deepnote.com' style='display:inline;max-height:16px;margin:0px;margin-right:7.5px;' src='' > </img> # Created in <span style='font-weight:600;margin-left:4px;'>Deepnote</span></a>
py
1a4891a2169a3b02e26a71ec8938042fb7937a57
# DRUNKWATER TEMPLATE(add description and prototypes) # Question Title and Description on leetcode.com # Function Declaration and Function Prototypes on leetcode.com #757. Set Intersection Size At Least Two #An integer interval [a, b] (for integers a < b) is a set of all consecutive integers from a to b, including a and b. #Find the minimum size of a set S such that for every integer interval A in intervals, the intersection of S with A has size at least 2. #Example 1: #Input: intervals = [[1, 3], [1, 4], [2, 5], [3, 5]] #Output: 3 #Explanation: #Consider the set S = {2, 3, 4}. For each interval, there are at least 2 elements from S in the interval. #Also, there isn't a smaller size set that fulfills the above condition. #Thus, we output the size of this set, which is 3. #Example 2: #Input: intervals = [[1, 2], [2, 3], [2, 4], [4, 5]] #Output: 5 #Explanation: #An example of a minimum sized set is {1, 2, 3, 4, 5}. #Note: #intervals will have length in range [1, 3000]. #intervals[i] will have length 2, representing some integer interval. #intervals[i][j] will be an integer in [0, 10^8]. #class Solution: # def intersectionSizeTwo(self, intervals): # """ # :type intervals: List[List[int]] # :rtype: int # """ # Time Is Money
py
1a4891fe93c7020921cd7dc9982284148cd6fb2f
import csv import flask import operator import sqlite3 app = flask.Flask(__name__) @app.route('/api/ships/') def ships(): cursor = get_db() result = [] for ship in cursor.execute('select * from Ships'): result.append({'name': str(ship[0]), 'imo': str(ship[1])}) return flask.jsonify(result) @app.route('/api/positions/<imo>/') def positions(imo): cursor = get_db() result = [] for p in cursor.execute('select * from Positions where imo = "%s"' % imo): result.append({ 'timestamp': p[1], 'latitude': p[2], 'longitude': p[3] }) if not result: flask.abort(404) return flask.jsonify(sorted(result, key=operator.itemgetter('timestamp'), reverse=True)) def _build_db(): conn = sqlite3.connect(':memory:') c = conn.cursor() c.execute('''create table Ships (name text, imo integer)''') c.execute('''create table Positions ( imo integer, timestamp text, latitude real, longitude real)''') conn.commit() return conn def fill_db(positions_file): conn = _build_db() cursor = conn.cursor() ships = [('Mathilde Maersk', 9632179), ('Australian Spirit', 9247455), ('MSC Preziosa', 9595321)] for ship in ships: cursor.execute('insert into Ships values ("%s", %s)' % ship) for row in csv.reader(positions_file): cursor.execute('''insert into Positions values (%s, "%s", %s, %s)''' % tuple(row)) conn.commit() return cursor def get_db(): if 'db' not in flask.g: cursor = fill_db(open('positions.csv')) flask.g.db = cursor return flask.g.db def main(): app.run(debug=True) if __name__ == '__main__': main()
py
1a48922546748ca4703d74b30892d0ef21489e21
import subprocess import tempfile import os clone_dir = os.path.join(tempfile.gettempdir(), 'scikit-beam-examples') try: ret = subprocess.check_output( ['git', 'clone', 'https://github.com/scikit-beam/scikit-beam-examples', clone_dir]) except subprocess.CalledProcessError: print("scikit-beam-examples already exists at %s" % (clone_dir)) print("resetting to the master branch") subprocess.Popen(['git', 'remote', 'update'], cwd=clone_dir) subprocess.Popen(['git', 'reset', '--hard', 'origin/master'], cwd=clone_dir)
py
1a48924c7af548708bae325ebec05115d7b873ff
def unsafeHas(label): return lambda rec: label in rec def unsafeGet(label): return lambda rec: rec[label] def unsafeSet(label): return lambda val: lambda rec: {**rec, label: val} def unsafeDelete(label): def ap(rec): copy = rec.copy() del copy[label] return copy return ap
py
1a489265d87a3ef43f282443dde6ab1ac5666928
import argparse import os import torchvision.transforms as transforms from src.datamanager import * from src.datamanager import DataProvider import src.datamanager.utils as datautils from PIL import Image from src.configs import * from src.ml.net import PyNet from src.results import performance from src.results.reid import ReIDPerformance import torchvision.transforms.functional as F from src.ml.net.pt import factory as model_factory from operator import itemgetter from src.visualization import visualizer import src.pyrnet.model as reid_model import src.pyrnet.features as features import src.pyrnet.metric as metric # Arg parser parser = argparse.ArgumentParser(description='ReID Net') parser.add_argument('--dataset', default='Market-1501', type=str, metavar='STR', help='dataset name (default: Market-1501)') parser.add_argument('-j', '--workers', default=10, type=int, metavar='N', help='number of data loading workers (default: 10)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--print-freq', '--p', default=20, type=int, metavar='N', help='print frequency (default: 20)') parser.add_argument('--net', default='densenet', type=str, metavar='STR', help='network model (default: densenet)') parser.add_argument('--depth', default=201, type=int, metavar='N', help='network model depth (default: 201)') parser.add_argument('--bottleneck-size', default=512, type=int, metavar='N', help='classifier bottleneck size (default: 512)') parser.add_argument('--pyr-feature-size', default=256, type=int, metavar='N', help='pyramidal maps (default: 256)') parser.add_argument('--pyr-feature-size-dynamic', default=True, type=bool, metavar='B', help='pyramidal feature size dependent on detail level (default: True)') parser.add_argument('--pyr-operator', default='max_pool', type=str, metavar='STR', help='pyramidal operator (default: max_pool)') parser.add_argument('--pyr-levels', default=-1, type=int, metavar='N', help='pyramidal levels (default: -1 => dynamic)') parser.add_argument('--metric', default='euclidean', type=str, metavar='STR', help='metric (default: euclidean') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='filename of latest checkpoint (default: empty => latest experiment)') parser.add_argument('--epoch', default=100, type=int, metavar='N', help='evaluation epoch, used only if --checkpoint is not set (default: 100)') parser.add_argument('--rerank', default=False, type=bool, metavar='B', help='enable re-ranking (default: False)') def get_args(): return parser.parse_args() """ ================================================================================================================ EVALUATION ============================================================================================================ """ def evaluate(args, net=None, dset_train=None, dset_test=None, display_ranking_image_index=(0, 2, 10, 40, 60, 100, 120, 140, 160, 180, 200), layer_embeddings=('emb\\bottleneck1', 'emb\\bottleneck2', 'emb\\bottleneck3', 'emb\\bottleneck4'), sample_size=(384, 192)): # Just check the parsed arguments print(vars(args)) """ ---------------------------------------------------------------------------------------------------------------- DATA ------------------------------------------------------------------------------------------------------------ """ # Imagenet Normalization normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Data transformations transformations = DataTransformer([ transforms.Resize(sample_size, interpolation=Image.BICUBIC), transforms.ToTensor(), normalize ]) transformations_flipped = DataTransformer([ transforms.Resize(sample_size, interpolation=Image.BICUBIC), transforms.Lambda(lambda x: F.hflip(x)), transforms.ToTensor(), normalize]) # Dataset if dset_train is None or dset_test is None: dset_opts = DatasetConfig(args.dataset, None, (0.5, 0.5), cam_pair=(-1, -1)) dset = DatasetReID(dset_opts.name, os.path.join('data', dset_opts.name), im_size=dset_opts.imsize, in_memory=False, keep_aspect_ratio=True) # Splits dset_train, dset_test = dset.split(dset_opts.split, save_load=True, make_each_split_contiguous=True) # Data provider data_provider = DataProvider(dset_test, loader=datautils.load_image, transform=transformations) num_classes = len(dset_train.classes) # Data provider flipped data_provider_flipped = DataProvider(dset_test, loader=datautils.load_image, transform=transformations_flipped) """ ---------------------------------------------------------------------------------------------------------------- MODEL ------------------------------------------------------------------------------------------------------------ """ if net is None: # From which checkpoint do we need to load the model? checkpoint = args.checkpoint if checkpoint == '': folder = os.path.join('data', 'experiments', args.dataset, os.listdir(os.path.join('data', 'experiments', args.dataset))[-1]) checkpoint = os.path.join(folder, 'checkpoint_epoch-{}.pth.tar'.format(args.epoch)) folder = os.path.dirname(checkpoint) # Get model (load it from checkpoint!) model = reid_model.get_model(args.net, args.depth, data_provider[0][0].size(), num_classes, bottleneck_size=args.bottleneck_size, pyr_feature_size=args.pyr_feature_size, pyr_operator=args.pyr_operator, pyr_feature_size_dynamic=args.pyr_feature_size_dynamic, checkpoint_path=checkpoint) # Make it parallel.. model = model_factory.make_it_parallel(model, 'multigpu') # Net initialization net = PyNet() net.model = model net.exp_folder = folder # Move to GPU (if available) net.to_gpu() """ ---------------------------------------------------------------------------------------------------------------- FEATURES ------------------------------------------------------------------------------------------------------------ """ X_norm = [] data_providers = [data_provider, data_provider_flipped] # Get features from the data providers for ii, dp in enumerate(data_providers): X_norm_new = features.get_features(net, [dp], layer_embeddings=layer_embeddings, batch_size=args.batch_size, workers=args.workers) # Concat X_norm.extend(X_norm_new) """ ---------------------------------------------------------------------------------------------------------------- MATCH ------------------------------------------------------------------------------------------------------------ """ # Match images (re-rank if needed) D, D_rerank, probe_info, gallery_info = metric.get_distance(dset_test, X_norm, args.metric, re_rank=args.rerank) # Unpack matching info probe_idx, probe_id, probe_cam = probe_info gallery_idx, gallery_id, gallery_cam = gallery_info """ ---------------------------------------------------------------------------------------------------------------- PERFORMANCE ------------------------------------------------------------------------------------------------------------ """ # CMC reid_perf = ReIDPerformance() reid_perf.compute(-D, probe_idx, gallery_idx,probe_id, gallery_id, probe_cam=probe_cam, gallery_cam=gallery_cam) data_to_print = [reid_perf.cmc[0], reid_perf.cmc[4], reid_perf.cmc[9], reid_perf.cmc[19], reid_perf.cmc[49], reid_perf.nauc, reid_perf.ap.mean()*100] res_string = 'CMC [1-5-10-20-50]: {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} -- nAUC: {:.2f} -- mAP: {:.2f}'.format(*data_to_print) print(res_string) # CMC plot visualizer.plot_cmc(reid_perf.cmc, legend='Rank-1: {:.2f} - mAP: {:.2f}'.format(reid_perf.cmc[0], reid_perf.ap.mean()*100), title=str(layer_embeddings), render_on_screen=True) reid_perf_rerank = ReIDPerformance() if D_rerank is not None: # CMC with rerank reid_perf_rerank.compute(-D_rerank, probe_idx, gallery_idx,probe_id, gallery_id, probe_cam=probe_cam, gallery_cam=gallery_cam) data_to_print = [reid_perf_rerank.cmc[0], reid_perf_rerank.cmc[4], reid_perf_rerank.cmc[9], reid_perf_rerank.cmc[19], reid_perf_rerank.cmc[49], reid_perf_rerank.nauc, reid_perf_rerank.ap.mean()*100] res_string = 'Re-Rank => CMC [1-5-10-20-50]: {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} -- nAUC: {:.2f} -- mAP: {:.2f}'.format(*data_to_print) print(res_string) img = visualizer.plot_cmc(reid_perf_rerank.cmc, legend='Rank-1: {:.2f} - mAP: {:.2f}'.format(reid_perf_rerank.cmc[0], reid_perf_rerank.ap.mean()*100), title=str(layer_embeddings), render_on_screen=True) # Matching images dp = DataProvider(dset_test, loader=datautils.load_image) matching_images = performance.get_matching_images(dp, dp, reid_perf.matching_indexes, N=15, selected_indexes=display_ranking_image_index) matching_ids = itemgetter(*display_ranking_image_index)(reid_perf.matching_ids) visualizer.display_ranked_matching_images(matching_images, matching_ids=matching_ids, im_size=(256, 256), render_on_screen=True, true_match_line_width=10) return reid_perf, reid_perf_rerank if __name__ == '__main__': args = get_args() evaluate(args)
py
1a489274a275248bf6d61c313c9252f37ec92b37
from abc import ABCMeta, abstractmethod from collections.abc import Iterable from numbers import Integral from typing import Callable import operator from functools import reduce import numpy as np import scipy.sparse as ss from ._umath import elemwise from ._utils import _zero_of_dtype, html_table, equivalent, normalize_axis _reduce_super_ufunc = {np.add: np.multiply, np.multiply: np.power} class SparseArray: """ An abstract base class for all the sparse array classes. Attributes ---------- dtype : numpy.dtype The data type of this array. fill_value : scalar The fill value of this array. """ __metaclass__ = ABCMeta def __init__(self, shape, fill_value=None): if not isinstance(shape, Iterable): shape = (shape,) if not all(isinstance(l, Integral) and int(l) >= 0 for l in shape): raise ValueError( "shape must be an non-negative integer or a tuple " "of non-negative integers." ) self.shape = tuple(int(l) for l in shape) if fill_value is not None: if not hasattr(fill_value, "dtype") or fill_value.dtype != self.dtype: self.fill_value = self.dtype.type(fill_value) else: self.fill_value = fill_value else: self.fill_value = _zero_of_dtype(self.dtype) dtype = None @property @abstractmethod def nnz(self): """ The number of nonzero elements in this array. Note that any duplicates in :code:`coords` are counted multiple times. To avoid this, call :obj:`COO.sum_duplicates`. Returns ------- int The number of nonzero elements in this array. See Also -------- DOK.nnz : Equivalent :obj:`DOK` array property. numpy.count_nonzero : A similar Numpy function. scipy.sparse.coo_matrix.nnz : The Scipy equivalent property. Examples -------- >>> import numpy as np >>> from sparse import COO >>> x = np.array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0]) >>> np.count_nonzero(x) 6 >>> s = COO.from_numpy(x) >>> s.nnz 6 >>> np.count_nonzero(x) == s.nnz True """ @property def ndim(self): """ The number of dimensions of this array. Returns ------- int The number of dimensions of this array. See Also -------- DOK.ndim : Equivalent property for :obj:`DOK` arrays. numpy.ndarray.ndim : Numpy equivalent property. Examples -------- >>> from sparse import COO >>> import numpy as np >>> x = np.random.rand(1, 2, 3, 1, 2) >>> s = COO.from_numpy(x) >>> s.ndim 5 >>> s.ndim == x.ndim True """ return len(self.shape) @property def size(self): """ The number of all elements (including zeros) in this array. Returns ------- int The number of elements. See Also -------- numpy.ndarray.size : Numpy equivalent property. Examples -------- >>> from sparse import COO >>> import numpy as np >>> x = np.zeros((10, 10)) >>> s = COO.from_numpy(x) >>> s.size 100 """ # We use this instead of np.prod because np.prod # returns a float64 for an empty shape. return reduce(operator.mul, self.shape, 1) @property def density(self): """ The ratio of nonzero to all elements in this array. Returns ------- float The ratio of nonzero to all elements. See Also -------- COO.size : Number of elements. COO.nnz : Number of nonzero elements. Examples -------- >>> import numpy as np >>> from sparse import COO >>> x = np.zeros((8, 8)) >>> x[0, :] = 1 >>> s = COO.from_numpy(x) >>> s.density 0.125 """ return self.nnz / self.size def _repr_html_(self): """ Diagnostic report about this array. Renders in Jupyter. """ return html_table(self) @abstractmethod def asformat(self, format): """ Convert this sparse array to a given format. Parameters ---------- format : str A format string. Returns ------- out : SparseArray The converted array. Raises ------ NotImplementedError If the format isn't supported. """ @abstractmethod def todense(self): """ Convert this :obj:`SparseArray` array to a dense :obj:`numpy.ndarray`. Note that this may take a large amount of memory and time. Returns ------- numpy.ndarray The converted dense array. See Also -------- DOK.todense : Equivalent :obj:`DOK` array method. COO.todense : Equivalent :obj:`COO` array method. scipy.sparse.coo_matrix.todense : Equivalent Scipy method. Examples -------- >>> import sparse >>> x = np.random.randint(100, size=(7, 3)) >>> s = sparse.COO.from_numpy(x) >>> x2 = s.todense() >>> np.array_equal(x, x2) True """ def _make_shallow_copy_of(self, other): self.__dict__ = other.__dict__.copy() def __array__(self, *args, **kwargs): from ._settings import AUTO_DENSIFY if not AUTO_DENSIFY: raise RuntimeError( "Cannot convert a sparse array to dense automatically. " "To manually densify, use the todense method." ) return np.asarray(self.todense(), *args, **kwargs) def __array_function__(self, func, types, args, kwargs): import sparse as module sparse_func = None try: submodules = getattr(func, "__module__", "numpy").split(".")[1:] for submodule in submodules: module = getattr(module, submodule) sparse_func = getattr(module, func.__name__) except AttributeError: pass else: return sparse_func(*args, **kwargs) try: sparse_func = getattr(type(self), func.__name__) except AttributeError: pass if ( not isinstance(sparse_func, Callable) and len(args) == 1 and len(kwargs) == 0 ): try: return getattr(self, func.__name__) except AttributeError: pass if sparse_func is None: return NotImplemented return sparse_func(*args, **kwargs) @staticmethod def _reduce(method, *args, **kwargs): assert len(args) == 1 self = args[0] if isinstance(self, ss.spmatrix): self = type(self).from_scipy_sparse(self) return self.reduce(method, **kwargs) def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): out = kwargs.pop("out", None) if out is not None and not all(isinstance(x, type(self)) for x in out): return NotImplemented if getattr(ufunc, "signature", None) is not None: return self.__array_function__( ufunc, (np.ndarray, type(self)), inputs, kwargs ) if out is not None: kwargs["dtype"] = out[0].dtype if method == "outer": method = "__call__" cum_ndim = 0 inputs_transformed = [] for inp in reversed(inputs): inputs_transformed.append(inp[(Ellipsis,) + (None,) * cum_ndim]) cum_ndim += inp.ndim inputs = tuple(reversed(inputs_transformed)) if method == "__call__": result = elemwise(ufunc, *inputs, **kwargs) elif method == "reduce": result = SparseArray._reduce(ufunc, *inputs, **kwargs) else: return NotImplemented if out is not None: (out,) = out if out.shape != result.shape: raise ValueError( "non-broadcastable output operand with shape %s " "doesn't match the broadcast shape %s" % (out.shape, result.shape) ) out._make_shallow_copy_of(result) return out return result def reduce(self, method, axis=(0,), keepdims=False, **kwargs): """ Performs a reduction operation on this array. Parameters ---------- method : numpy.ufunc The method to use for performing the reduction. axis : Union[int, Iterable[int]], optional The axes along which to perform the reduction. Uses all axes by default. keepdims : bool, optional Whether or not to keep the dimensions of the original array. kwargs : dict Any extra arguments to pass to the reduction operation. See Also -------- numpy.ufunc.reduce : A similar Numpy method. COO.reduce : This method implemented on COO arrays. GCXS.reduce : This method implemented on GCXS arrays. """ axis = normalize_axis(axis, self.ndim) zero_reduce_result = method.reduce([self.fill_value, self.fill_value], **kwargs) reduce_super_ufunc = None if not equivalent(zero_reduce_result, self.fill_value): reduce_super_ufunc = _reduce_super_ufunc.get(method, None) if reduce_super_ufunc is None: raise ValueError( "Performing this reduction operation would produce " "a dense result: %s" % str(method) ) if not isinstance(axis, tuple): axis = (axis,) out = self._reduce_calc(method, axis, keepdims, **kwargs) if len(out) == 1: return out[0] data, counts, axis, n_cols, arr_attrs = out result_fill_value = self.fill_value if reduce_super_ufunc is None: missing_counts = counts != n_cols data[missing_counts] = method( data[missing_counts], self.fill_value, **kwargs ) else: data = method( data, reduce_super_ufunc(self.fill_value, n_cols - counts), ).astype(data.dtype) result_fill_value = reduce_super_ufunc(self.fill_value, n_cols) out = self._reduce_return(data, arr_attrs, result_fill_value) if keepdims: shape = list(self.shape) for ax in axis: shape[ax] = 1 out = out.reshape(shape) if out.ndim == 0: return out[()] return out def _reduce_calc(self, method, axis, keepdims, **kwargs): raise NotImplementedError def _reduce_return(self, data, arr_attrs, result_fill_value): raise NotImplementedError def sum(self, axis=None, keepdims=False, dtype=None, out=None): """ Performs a sum operation along the given axes. Uses all axes by default. Parameters ---------- axis : Union[int, Iterable[int]], optional The axes along which to sum. Uses all axes by default. keepdims : bool, optional Whether or not to keep the dimensions of the original array. dtype: numpy.dtype The data type of the output array. Returns ------- SparseArray The reduced output sparse array. See Also -------- :obj:`numpy.sum` : Equivalent numpy function. scipy.sparse.coo_matrix.sum : Equivalent Scipy function. """ return np.add.reduce(self, out=out, axis=axis, keepdims=keepdims, dtype=dtype) def max(self, axis=None, keepdims=False, out=None): """ Maximize along the given axes. Uses all axes by default. Parameters ---------- axis : Union[int, Iterable[int]], optional The axes along which to maximize. Uses all axes by default. keepdims : bool, optional Whether or not to keep the dimensions of the original array. dtype: numpy.dtype The data type of the output array. Returns ------- SparseArray The reduced output sparse array. See Also -------- :obj:`numpy.max` : Equivalent numpy function. scipy.sparse.coo_matrix.max : Equivalent Scipy function. """ return np.maximum.reduce(self, out=out, axis=axis, keepdims=keepdims) amax = max def any(self, axis=None, keepdims=False, out=None): """ See if any values along array are ``True``. Uses all axes by default. Parameters ---------- axis : Union[int, Iterable[int]], optional The axes along which to minimize. Uses all axes by default. keepdims : bool, optional Whether or not to keep the dimensions of the original array. Returns ------- SparseArray The reduced output sparse array. See Also -------- :obj:`numpy.all` : Equivalent numpy function. """ return np.logical_or.reduce(self, out=out, axis=axis, keepdims=keepdims) def all(self, axis=None, keepdims=False, out=None): """ See if all values in an array are ``True``. Uses all axes by default. Parameters ---------- axis : Union[int, Iterable[int]], optional The axes along which to minimize. Uses all axes by default. keepdims : bool, optional Whether or not to keep the dimensions of the original array. Returns ------- SparseArray The reduced output sparse array. See Also -------- :obj:`numpy.all` : Equivalent numpy function. """ return np.logical_and.reduce(self, out=out, axis=axis, keepdims=keepdims) def min(self, axis=None, keepdims=False, out=None): """ Minimize along the given axes. Uses all axes by default. Parameters ---------- axis : Union[int, Iterable[int]], optional The axes along which to minimize. Uses all axes by default. keepdims : bool, optional Whether or not to keep the dimensions of the original array. dtype: numpy.dtype The data type of the output array. Returns ------- SparseArray The reduced output sparse array. See Also -------- :obj:`numpy.min` : Equivalent numpy function. scipy.sparse.coo_matrix.min : Equivalent Scipy function. """ return np.minimum.reduce(self, out=out, axis=axis, keepdims=keepdims) amin = min def prod(self, axis=None, keepdims=False, dtype=None, out=None): """ Performs a product operation along the given axes. Uses all axes by default. Parameters ---------- axis : Union[int, Iterable[int]], optional The axes along which to multiply. Uses all axes by default. keepdims : bool, optional Whether or not to keep the dimensions of the original array. dtype: numpy.dtype The data type of the output array. Returns ------- SparseArray The reduced output sparse array. See Also -------- :obj:`numpy.prod` : Equivalent numpy function. """ return np.multiply.reduce( self, out=out, axis=axis, keepdims=keepdims, dtype=dtype ) def round(self, decimals=0, out=None): """ Evenly round to the given number of decimals. See also -------- :obj:`numpy.round` : NumPy equivalent ufunc. :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two arguments. """ if out is not None and not isinstance(out, tuple): out = (out,) return self.__array_ufunc__( np.round, "__call__", self, decimals=decimals, out=out ) round_ = round def clip(self, min=None, max=None, out=None): """ Clip (limit) the values in the array. Return an array whose values are limited to ``[min, max]``. One of min or max must be given. See Also -------- sparse.clip : For full documentation and more details. numpy.clip : Equivalent NumPy function. """ if min is None and max is None: raise ValueError("One of max or min must be given.") if out is not None and not isinstance(out, tuple): out = (out,) return self.__array_ufunc__( np.clip, "__call__", self, a_min=min, a_max=max, out=out ) def astype(self, dtype, casting="unsafe", copy=True): """ Copy of the array, cast to a specified type. See also -------- scipy.sparse.coo_matrix.astype : SciPy sparse equivalent function numpy.ndarray.astype : NumPy equivalent ufunc. :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two arguments. """ # this matches numpy's behavior if self.dtype == dtype and not copy: return self return self.__array_ufunc__( np.ndarray.astype, "__call__", self, dtype=dtype, copy=copy, casting=casting ) def mean(self, axis=None, keepdims=False, dtype=None, out=None): """ Compute the mean along the given axes. Uses all axes by default. Parameters ---------- axis : Union[int, Iterable[int]], optional The axes along which to compute the mean. Uses all axes by default. keepdims : bool, optional Whether or not to keep the dimensions of the original array. dtype: numpy.dtype The data type of the output array. Returns ------- SparseArray The reduced output sparse array. See Also -------- numpy.ndarray.mean : Equivalent numpy method. scipy.sparse.coo_matrix.mean : Equivalent Scipy method. Notes ----- * This function internally calls :obj:`COO.sum_duplicates` to bring the array into canonical form. * The :code:`out` parameter is provided just for compatibility with Numpy and isn't actually supported. Examples -------- You can use :obj:`COO.mean` to compute the mean of an array across any dimension. >>> from sparse import COO >>> x = np.array([[1, 2, 0, 0], ... [0, 1, 0, 0]], dtype='i8') >>> s = COO.from_numpy(x) >>> s2 = s.mean(axis=1) >>> s2.todense() # doctest: +SKIP array([0.5, 1.5, 0., 0.]) You can also use the :code:`keepdims` argument to keep the dimensions after the mean. >>> s3 = s.mean(axis=0, keepdims=True) >>> s3.shape (1, 4) You can pass in an output datatype, if needed. >>> s4 = s.mean(axis=0, dtype=np.float16) >>> s4.dtype dtype('float16') By default, this reduces the array down to one number, computing the mean along all axes. >>> s.mean() 0.5 """ if axis is None: axis = tuple(range(self.ndim)) elif not isinstance(axis, tuple): axis = (axis,) den = reduce(operator.mul, (self.shape[i] for i in axis), 1) if dtype is None: if issubclass(self.dtype.type, (np.integer, np.bool_)): dtype = inter_dtype = np.dtype("f8") else: dtype = self.dtype inter_dtype = ( np.dtype("f4") if issubclass(dtype.type, np.float16) else dtype ) else: inter_dtype = dtype num = self.sum(axis=axis, keepdims=keepdims, dtype=inter_dtype) if num.ndim: out = np.true_divide(num, den, casting="unsafe") return out.astype(dtype) if out.dtype != dtype else out return np.divide(num, den, dtype=dtype, out=out) def var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): """ Compute the variance along the gi66ven axes. Uses all axes by default. Parameters ---------- axis : Union[int, Iterable[int]], optional The axes along which to compute the variance. Uses all axes by default. dtype : numpy.dtype, optional The output datatype. out: SparseArray, optional The array to write the output to. ddof: int The degrees of freedom. keepdims : bool, optional Whether or not to keep the dimensions of the original array. Returns ------- SparseArray The reduced output sparse array. See Also -------- numpy.ndarray.var : Equivalent numpy method. Notes ----- * This function internally calls :obj:`COO.sum_duplicates` to bring the array into canonical form. Examples -------- You can use :obj:`COO.var` to compute the variance of an array across any dimension. >>> from sparse import COO >>> x = np.array([[1, 2, 0, 0], ... [0, 1, 0, 0]], dtype='i8') >>> s = COO.from_numpy(x) >>> s2 = s.var(axis=1) >>> s2.todense() # doctest: +SKIP array([0.6875, 0.1875]) You can also use the :code:`keepdims` argument to keep the dimensions after the variance. >>> s3 = s.var(axis=0, keepdims=True) >>> s3.shape (1, 4) You can pass in an output datatype, if needed. >>> s4 = s.var(axis=0, dtype=np.float16) >>> s4.dtype dtype('float16') By default, this reduces the array down to one number, computing the variance along all axes. >>> s.var() 0.5 """ axis = normalize_axis(axis, self.ndim) if axis is None: axis = tuple(range(self.ndim)) if not isinstance(axis, tuple): axis = (axis,) rcount = reduce(operator.mul, (self.shape[a] for a in axis), 1) # Make this warning show up on top. if ddof >= rcount: warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning) # Cast bool, unsigned int, and int to float64 by default if dtype is None and issubclass(self.dtype.type, (np.integer, np.bool_)): dtype = np.dtype("f8") arrmean = self.sum(axis, dtype=dtype, keepdims=True) np.divide(arrmean, rcount, out=arrmean) x = self - arrmean if issubclass(self.dtype.type, np.complexfloating): x = x.real * x.real + x.imag * x.imag else: x = np.multiply(x, x, out=x) ret = x.sum(axis=axis, dtype=dtype, out=out, keepdims=keepdims) # Compute degrees of freedom and make sure it is not negative. rcount = max([rcount - ddof, 0]) ret = ret[...] np.divide(ret, rcount, out=ret, casting="unsafe") return ret[()] def std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): """ Compute the standard deviation along the given axes. Uses all axes by default. Parameters ---------- axis : Union[int, Iterable[int]], optional The axes along which to compute the standard deviation. Uses all axes by default. dtype : numpy.dtype, optional The output datatype. out: SparseArray, optional The array to write the output to. ddof: int The degrees of freedom. keepdims : bool, optional Whether or not to keep the dimensions of the original array. Returns ------- SparseArray The reduced output sparse array. See Also -------- numpy.ndarray.std : Equivalent numpy method. Notes ----- * This function internally calls :obj:`COO.sum_duplicates` to bring the array into canonical form. Examples -------- You can use :obj:`COO.std` to compute the standard deviation of an array across any dimension. >>> from sparse import COO >>> x = np.array([[1, 2, 0, 0], ... [0, 1, 0, 0]], dtype='i8') >>> s = COO.from_numpy(x) >>> s2 = s.std(axis=1) >>> s2.todense() # doctest: +SKIP array([0.8291562, 0.4330127]) You can also use the :code:`keepdims` argument to keep the dimensions after the standard deviation. >>> s3 = s.std(axis=0, keepdims=True) >>> s3.shape (1, 4) You can pass in an output datatype, if needed. >>> s4 = s.std(axis=0, dtype=np.float16) >>> s4.dtype dtype('float16') By default, this reduces the array down to one number, computing the standard deviation along all axes. >>> s.std() # doctest: +SKIP 0.7071067811865476 """ ret = self.var(axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims) ret = np.sqrt(ret) return ret @property def real(self): """The real part of the array. Examples -------- >>> from sparse import COO >>> x = COO.from_numpy([1 + 0j, 0 + 1j]) >>> x.real.todense() # doctest: +SKIP array([1., 0.]) >>> x.real.dtype dtype('float64') Returns ------- out : SparseArray The real component of the array elements. If the array dtype is real, the dtype of the array is used for the output. If the array is complex, the output dtype is float. See Also -------- numpy.ndarray.real : NumPy equivalent attribute. numpy.real : NumPy equivalent function. """ return self.__array_ufunc__(np.real, "__call__", self) @property def imag(self): """The imaginary part of the array. Examples -------- >>> from sparse import COO >>> x = COO.from_numpy([1 + 0j, 0 + 1j]) >>> x.imag.todense() # doctest: +SKIP array([0., 1.]) >>> x.imag.dtype dtype('float64') Returns ------- out : SparseArray The imaginary component of the array elements. If the array dtype is real, the dtype of the array is used for the output. If the array is complex, the output dtype is float. See Also -------- numpy.ndarray.imag : NumPy equivalent attribute. numpy.imag : NumPy equivalent function. """ return self.__array_ufunc__(np.imag, "__call__", self) def conj(self): """Return the complex conjugate, element-wise. The complex conjugate of a complex number is obtained by changing the sign of its imaginary part. Examples -------- >>> from sparse import COO >>> x = COO.from_numpy([1 + 2j, 2 - 1j]) >>> res = x.conj() >>> res.todense() # doctest: +SKIP array([1.-2.j, 2.+1.j]) >>> res.dtype dtype('complex128') Returns ------- out : SparseArray The complex conjugate, with same dtype as the input. See Also -------- numpy.ndarray.conj : NumPy equivalent method. numpy.conj : NumPy equivalent function. """ return np.conj(self)
py
1a4892ac9870a1f63ee0954813b023c59d3afd19
"""Webroot plugin.""" import argparse import collections import json import logging from typing import DefaultDict from typing import Dict from typing import List from typing import Set from acme import challenges from certbot import crypto_util from certbot import errors from certbot import interfaces from certbot._internal import cli from certbot.achallenges import KeyAuthorizationAnnotatedChallenge as AnnotatedChallenge from certbot.compat import filesystem from certbot.compat import os from certbot.display import ops from certbot.display import util as display_util from certbot.plugins import common from certbot.plugins import util from certbot.util import safe_open logger = logging.getLogger(__name__) _WEB_CONFIG_CONTENT = """\ <?xml version="1.0" encoding="UTF-8" ?> <!--Generated by Certbot--> <configuration> <system.webServer> <staticContent> <remove fileExtension="."/> <mimeMap fileExtension="." mimeType="text/plain" /> </staticContent> </system.webServer> </configuration> """ # This list references the hashes of all versions of the web.config files that Certbot could # have generated during an HTTP-01 challenge. If you modify _WEB_CONFIG_CONTENT, you MUST add # the new hash in this list. _WEB_CONFIG_SHA256SUMS = [ "20c5ca1bd58fa8ad5f07a2f1be8b7cbb707c20fcb607a8fc8db9393952846a97", "8d31383d3a079d2098a9d0c0921f4ab87e708b9868dc3f314d54094c2fe70336" ] class Authenticator(common.Plugin, interfaces.Authenticator): """Webroot Authenticator.""" description = "Place files in webroot directory" MORE_INFO = """\ Authenticator plugin that performs http-01 challenge by saving necessary validation resources to appropriate paths on the file system. It expects that there is some other HTTP server configured to serve all files under specified web root ({0}).""" def more_info(self): # pylint: disable=missing-function-docstring return self.MORE_INFO.format(self.conf("path")) @classmethod def add_parser_arguments(cls, add): add("path", "-w", default=[], action=_WebrootPathAction, help="public_html / webroot path. This can be specified multiple " "times to handle different domains; each domain will have " "the webroot path that preceded it. For instance: `-w " "/var/www/example -d example.com -d www.example.com -w " "/var/www/thing -d thing.net -d m.thing.net` (default: Ask)") add("map", default={}, action=_WebrootMapAction, help="JSON dictionary mapping domains to webroot paths; this " "implies -d for each entry. You may need to escape this from " "your shell. E.g.: --webroot-map " '\'{"eg1.is,m.eg1.is":"/www/eg1/", "eg2.is":"/www/eg2"}\' ' "This option is merged with, but takes precedence over, -w / " "-d entries. At present, if you put webroot-map in a config " "file, it needs to be on a single line, like: webroot-map = " '{"example.com":"/var/www"}.') def auth_hint(self, failed_achalls): # pragma: no cover return ("The Certificate Authority failed to download the temporary challenge files " "created by Certbot. Ensure that the listed domains serve their content from " "the provided --webroot-path/-w and that files created there can be downloaded " "from the internet.") def get_chall_pref(self, domain): # pragma: no cover # pylint: disable=unused-argument,missing-function-docstring return [challenges.HTTP01] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.full_roots: Dict[str, str] = {} self.performed: DefaultDict[str, Set[AnnotatedChallenge]] = collections.defaultdict(set) # stack of dirs successfully created by this authenticator self._created_dirs: List[str] = [] def prepare(self): # pylint: disable=missing-function-docstring pass def perform(self, achalls): # pylint: disable=missing-function-docstring self._set_webroots(achalls) self._create_challenge_dirs() return [self._perform_single(achall) for achall in achalls] def _set_webroots(self, achalls): if self.conf("path"): webroot_path = self.conf("path")[-1] logger.info("Using the webroot path %s for all unmatched domains.", webroot_path) for achall in achalls: self.conf("map").setdefault(achall.domain, webroot_path) else: known_webroots = list(set(self.conf("map").values())) for achall in achalls: if achall.domain not in self.conf("map"): new_webroot = self._prompt_for_webroot(achall.domain, known_webroots) # Put the most recently input # webroot first for easy selection try: known_webroots.remove(new_webroot) except ValueError: pass known_webroots.insert(0, new_webroot) self.conf("map")[achall.domain] = new_webroot def _prompt_for_webroot(self, domain, known_webroots): webroot = None while webroot is None: if known_webroots: # Only show the menu if we have options for it webroot = self._prompt_with_webroot_list(domain, known_webroots) if webroot is None: webroot = self._prompt_for_new_webroot(domain) else: # Allow prompt to raise PluginError instead of looping forever webroot = self._prompt_for_new_webroot(domain, True) return webroot def _prompt_with_webroot_list(self, domain, known_webroots): path_flag = "--" + self.option_name("path") while True: code, index = display_util.menu( "Select the webroot for {0}:".format(domain), ["Enter a new webroot"] + known_webroots, cli_flag=path_flag, force_interactive=True) if code == display_util.CANCEL: raise errors.PluginError( "Every requested domain must have a " "webroot when using the webroot plugin.") return None if index == 0 else known_webroots[index - 1] # code == display_util.OK def _prompt_for_new_webroot(self, domain, allowraise=False): code, webroot = ops.validated_directory( _validate_webroot, "Input the webroot for {0}:".format(domain), force_interactive=True) if code == display_util.CANCEL: if not allowraise: return None raise errors.PluginError( "Every requested domain must have a " "webroot when using the webroot plugin.") return _validate_webroot(webroot) # code == display_util.OK def _create_challenge_dirs(self): path_map = self.conf("map") if not path_map: raise errors.PluginError( "Missing parts of webroot configuration; please set either " "--webroot-path and --domains, or --webroot-map. Run with " " --help webroot for examples.") for name, path in path_map.items(): self.full_roots[name] = os.path.join(path, os.path.normcase( challenges.HTTP01.URI_ROOT_PATH)) logger.debug("Creating root challenges validation dir at %s", self.full_roots[name]) # Change the permissions to be writable (GH #1389) # Umask is used instead of chmod to ensure the client can also # run as non-root (GH #1795) old_umask = filesystem.umask(0o022) try: # We ignore the last prefix in the next iteration, # as it does not correspond to a folder path ('/' or 'C:') for prefix in sorted(util.get_prefixes(self.full_roots[name])[:-1], key=len): if os.path.isdir(prefix): # Don't try to create directory if it already exists, as some filesystems # won't reliably raise EEXIST or EISDIR if directory exists. continue try: # Set owner as parent directory if possible, apply mode for Linux/Windows. # For Linux, this is coupled with the "umask" call above because # os.mkdir's "mode" parameter may not always work: # https://docs.python.org/3/library/os.html#os.mkdir filesystem.mkdir(prefix, 0o755) self._created_dirs.append(prefix) try: filesystem.copy_ownership_and_apply_mode( path, prefix, 0o755, copy_user=True, copy_group=True) except (OSError, AttributeError) as exception: logger.warning("Unable to change owner and uid of webroot directory") logger.debug("Error was: %s", exception) except OSError as exception: raise errors.PluginError( "Couldn't create root for {0} http-01 " "challenge responses: {1}".format(name, exception)) finally: filesystem.umask(old_umask) # On Windows, generate a local web.config file that allows IIS to serve expose # challenge files despite the fact they do not have a file extension. if not filesystem.POSIX_MODE: web_config_path = os.path.join(self.full_roots[name], "web.config") if os.path.exists(web_config_path): logger.info("A web.config file has not been created in " "%s because another one already exists.", self.full_roots[name]) continue logger.info("Creating a web.config file in %s to allow IIS " "to serve challenge files.", self.full_roots[name]) with safe_open(web_config_path, mode="w", chmod=0o644) as web_config: web_config.write(_WEB_CONFIG_CONTENT) def _get_validation_path(self, root_path, achall): return os.path.join(root_path, achall.chall.encode("token")) def _perform_single(self, achall): response, validation = achall.response_and_validation() root_path = self.full_roots[achall.domain] validation_path = self._get_validation_path(root_path, achall) logger.debug("Attempting to save validation to %s", validation_path) # Change permissions to be world-readable, owner-writable (GH #1795) old_umask = filesystem.umask(0o022) try: with safe_open(validation_path, mode="wb", chmod=0o644) as validation_file: validation_file.write(validation.encode()) finally: filesystem.umask(old_umask) self.performed[root_path].add(achall) return response def cleanup(self, achalls): # pylint: disable=missing-function-docstring for achall in achalls: root_path = self.full_roots.get(achall.domain, None) if root_path is not None: validation_path = self._get_validation_path(root_path, achall) logger.debug("Removing %s", validation_path) os.remove(validation_path) self.performed[root_path].remove(achall) if not filesystem.POSIX_MODE: web_config_path = os.path.join(root_path, "web.config") if os.path.exists(web_config_path): sha256sum = crypto_util.sha256sum(web_config_path) if sha256sum in _WEB_CONFIG_SHA256SUMS: logger.info("Cleaning web.config file generated by Certbot in %s.", root_path) os.remove(web_config_path) else: logger.info("Not cleaning up the web.config file in %s " "because it is not generated by Certbot.", root_path) not_removed: List[str] = [] while self._created_dirs: path = self._created_dirs.pop() try: os.rmdir(path) except OSError as exc: not_removed.insert(0, path) logger.info("Challenge directory %s was not empty, didn't remove", path) logger.debug("Error was: %s", exc) self._created_dirs = not_removed logger.debug("All challenges cleaned up") class _WebrootMapAction(argparse.Action): """Action class for parsing webroot_map.""" def __call__(self, parser, namespace, webroot_map, option_string=None): for domains, webroot_path in json.loads(webroot_map).items(): webroot_path = _validate_webroot(webroot_path) namespace.webroot_map.update( (d, webroot_path) for d in cli.add_domains(namespace, domains)) class _WebrootPathAction(argparse.Action): """Action class for parsing webroot_path.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._domain_before_webroot = False def __call__(self, parser, namespace, webroot_path, option_string=None): if self._domain_before_webroot: raise errors.PluginError( "If you specify multiple webroot paths, " "one of them must precede all domain flags") if namespace.webroot_path: # Apply previous webroot to all matched # domains before setting the new webroot path prev_webroot = namespace.webroot_path[-1] for domain in namespace.domains: namespace.webroot_map.setdefault(domain, prev_webroot) elif namespace.domains: self._domain_before_webroot = True namespace.webroot_path.append(_validate_webroot(webroot_path)) def _validate_webroot(webroot_path): """Validates and returns the absolute path of webroot_path. :param str webroot_path: path to the webroot directory :returns: absolute path of webroot_path :rtype: str """ if not os.path.isdir(webroot_path): raise errors.PluginError(webroot_path + " does not exist or is not a directory") return os.path.abspath(webroot_path)
py
1a48935e38818d22cc696fed37663cc02bd4fb0d
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from neodroid.utilities.unity_specifications import Motion, Reaction, ReactionParameters __author__ = "Christian Heider Nielsen" import neodroid.wrappers.formal_wrapper as neo def construct_reactions(env): parameters = ReactionParameters( terminable=True, step=True, reset=False, configure=False, describe=False, episode_count=True, ) action1, action2 = env.action_space.sample() motions = [ Motion("ActorActor", "ActorTransformX_", action1), Motion("ActorActor", "ActorTransformZ_", action2), ] reactions = [ Reaction( environment_name=f"EnvironmentPrototypingEnvironment", parameters=parameters, motions=motions, ) ] for i in range(19): action1, action2 = env.action_space.sample() motions = [ Motion("ActorActor", "ActorTransformX_", action1), Motion("ActorActor", "ActorTransformZ_", action2), ] reaction = Reaction( environment_name=f"Environment(Clone){i}PrototypingEnvironment", parameters=parameters, motions=motions, ) reactions.append(reaction) return reactions def main(): _environments = neo.NeodroidEnvironment(name="multienv", connect_to_running=True) while _environments.is_connected: reactions = construct_reactions(_environments) states = _environments.react(reactions) if __name__ == "__main__": main()