ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a4922573f55f9753b4b772ecf26b0a782505243
#!/usr/bin/env python from cattle import from_env import time def _time_str(start, stop, ms): running = '' if stop is None: running = '*' stop = int(time.time() * 1000) duration = stop - start if ms: unit = 'ms' else: duration = duration/1000 unit = 'seconds' return '{}{} {}'.format(running, duration, unit) def print_time(pi): if 'stopTime' in pi: return _time_str(pi.startTime, pi.stopTime, True) if 'endTimeTS' not in pi or pi.endTimeTS is None: return _time_str(pi.startTimeTS, None, False) return _time_str(pi.startTimeTS, pi.endTimeTS, False) def is_running(pi): if 'stopTime' in pi: return pi.stopTime is None return 'endTimeTS' not in pi or pi.endTimeTS is None def print_pi(pi, detail=False): print print_time(pi), \ pi.id, \ pi.processName, \ '{}:{}'.format(pi.resourceType, pi.resourceId), \ pi.phase, \ pi.exitReason, \ pi.result if detail or is_running(pi): for pe in pi.processExecutions(): for x in pe.log.executions: print_pe(x, prefix=' ') def print_pe(pe, prefix=''): print prefix, print_time(pe), 'PROCESS:', pe.name, \ '{}:{}'.format(pe.resourceType, pe.resourceId), pe.exitReason for phe in pe.processHandlerExecutions: print_phe(phe, prefix=prefix + ' ') def print_phe(phe, prefix=''): print prefix, print_time(phe), 'HANDLER:', phe.name for child in phe.children: for pe in child.executions: print_pe(pe, prefix=prefix + ' ') if __name__ == '__main__': import sys client = from_env() if len(sys.argv) == 1: for pi in client.list_process_instance(sort='startTime', order='desc', limit=30): print_pi(pi) else: pi = client.by_id_process_instance(sys.argv[1]) print_pi(pi, detail=True)
py
1a4923fe4d6a8bbc1188c688fd6684da4466bb40
""" Python 3.9 функция для запуска процесса обучения нейронной сети Название файла train_c4.py Version: 0.1 Author: Andrej Marinchenko Date: 2021-12-20 """ #!/usr/bin/env python from alpha_net_c4 import ConnectNet, AlphaLoss, board_data import os import pickle import datetime import numpy as np import torch import torch.optim as optim from torch.utils.data import DataLoader from torch.nn.utils import clip_grad_norm_ import matplotlib.pyplot as plt import logging logging.basicConfig(format='%(asctime)s [%(levelname)s]: %(message)s', \ datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO) logger = logging.getLogger(__file__) def save_as_pickle(filename, data): completeName = os.path.join("./model_data/",\ filename) with open(completeName, 'wb') as output: pickle.dump(data, output) def load_pickle(filename): completeName = os.path.join("./model_data/",\ filename) with open(completeName, 'rb') as pkl_file: data = pickle.load(pkl_file) return data def load_state(net, optimizer, scheduler, args, iteration, new_optim_state=True): """ Loads saved model and optimizer states if exists """ base_path = "./model_data/" checkpoint_path = os.path.join(base_path, "%s_iter%d.pth.tar" % (args.neural_net_name, iteration)) start_epoch, checkpoint = 0, None if os.path.isfile(checkpoint_path): checkpoint = torch.load(checkpoint_path) if checkpoint != None: if (len(checkpoint) == 1) or (new_optim_state == True): net.load_state_dict(checkpoint['state_dict']) logger.info("Loaded checkpoint model %s." % checkpoint_path) else: start_epoch = checkpoint['epoch'] net.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) logger.info("Loaded checkpoint model %s, and optimizer, scheduler." % checkpoint_path) return start_epoch def load_results(iteration): """ Loads saved results if exists """ losses_path = "./model_data/losses_per_epoch_iter%d.pkl" % iteration if os.path.isfile(losses_path): losses_per_epoch = load_pickle("losses_per_epoch_iter%d.pkl" % iteration) logger.info("Loaded results buffer") else: losses_per_epoch = [] return losses_per_epoch def train(net, dataset, optimizer, scheduler, start_epoch, cpu, args, iteration): torch.manual_seed(cpu) cuda = torch.cuda.is_available() net.train() criterion = AlphaLoss() train_set = board_data(dataset) train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=0, pin_memory=False) losses_per_epoch = load_results(iteration + 1) logger.info("Starting training process...") update_size = len(train_loader)//10 print("Update step size: %d" % update_size) for epoch in range(start_epoch, args.num_epochs): total_loss = 0.0 losses_per_batch = [] for i,data in enumerate(train_loader,0): state, policy, value = data state, policy, value = state.float(), policy.float(), value.float() if cuda: state, policy, value = state.cuda(), policy.cuda(), value.cuda() policy_pred, value_pred = net(state) # policy_pred = torch.Size([batch, 4672]) value_pred = torch.Size([batch, 1]) loss = criterion(value_pred[:,0], value, policy_pred, policy) loss = loss/args.gradient_acc_steps loss.backward() clip_grad_norm_(net.parameters(), args.max_norm) if (epoch % args.gradient_acc_steps) == 0: optimizer.step() optimizer.zero_grad() total_loss += loss.item() if i % update_size == (update_size - 1): # print every update_size-d mini-batches of size = batch_size losses_per_batch.append(args.gradient_acc_steps*total_loss/update_size) print('[Iteration %d] Process ID: %d [Epoch: %d, %5d/ %d points] total loss per batch: %.3f' % (iteration, os.getpid(), epoch + 1, (i + 1)*args.batch_size, len(train_set), losses_per_batch[-1])) print("Policy (actual, predicted):",policy[0].argmax().item(),policy_pred[0].argmax().item()) print("Policy data:", policy[0]); print("Policy pred:", policy_pred[0]) print("Value (actual, predicted):", value[0].item(), value_pred[0,0].item()) #print("Conv grad: %.7f" % net.conv.conv1.weight.grad.mean().item()) #print("Res18 grad %.7f:" % net.res_18.conv1.weight.grad.mean().item()) print(" ") total_loss = 0.0 scheduler.step() if len(losses_per_batch) >= 1: losses_per_epoch.append(sum(losses_per_batch)/len(losses_per_batch)) if (epoch % 2) == 0: save_as_pickle("losses_per_epoch_iter%d.pkl" % (iteration + 1), losses_per_epoch) torch.save({ 'epoch': epoch + 1,\ 'state_dict': net.state_dict(),\ 'optimizer' : optimizer.state_dict(),\ 'scheduler' : scheduler.state_dict(),\ }, os.path.join("./model_data/",\ "%s_iter%d.pth.tar" % (args.neural_net_name, (iteration + 1)))) ''' # Early stopping if len(losses_per_epoch) > 50: if abs(sum(losses_per_epoch[-4:-1])/3-sum(losses_per_epoch[-16:-13])/3) <= 0.00017: break ''' logger.info("Finished Training!") fig = plt.figure() ax = fig.add_subplot(222) ax.scatter([e for e in range(start_epoch, (len(losses_per_epoch) + start_epoch))], losses_per_epoch) ax.set_xlabel("Epoch") ax.set_ylabel("Loss per batch") ax.set_title("Loss vs Epoch") plt.savefig(os.path.join("./model_data/", "Loss_vs_Epoch_iter%d_%s.png" % ((iteration + 1), datetime.datetime.today().strftime("%Y-%m-%d")))) plt.show() def train_connectnet(args, iteration, new_optim_state): # gather data logger.info("Loading training data...") data_path="./datasets/iter_%d/" % iteration datasets = [] for idx,file in enumerate(os.listdir(data_path)): filename = os.path.join(data_path,file) with open(filename, 'rb') as fo: datasets.extend(pickle.load(fo, encoding='bytes')) datasets = np.array(datasets) logger.info("Loaded data from %s." % data_path) # train net net = ConnectNet() cuda = torch.cuda.is_available() if cuda: net.cuda() optimizer = optim.Adam(net.parameters(), lr=args.lr, betas=(0.8, 0.999)) scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50,100,150,200,250,300,400], gamma=0.77) start_epoch = load_state(net, optimizer, scheduler, args, iteration, new_optim_state) train(net, datasets, optimizer, scheduler, start_epoch, 0, args, iteration)
py
1a4924021b0c6d10c24a9dba92198ff87637d5cd
import unittest import numpy as np import matplotlib.pyplot as plt from scipy.stats import multivariate_normal from pyrolite.util.plot.density import ( percentile_contour_values_from_meshz, plot_Z_percentiles, ) from pyrolite.util.plot.legend import proxy_line from matplotlib.lines import _get_dash_pattern, _scale_dashes import matplotlib.colors class TestPercentileContourValuesFromMeshZ(unittest.TestCase): def setUp(self): x, y = np.mgrid[-1:1:100j, -1:1:100j] pos = np.empty(x.shape + (2,)) pos[:, :, 0] = x pos[:, :, 1] = y self.z = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]]).pdf(pos) def test_default(self): percentile_contour_values_from_meshz(self.z) def test_percentiles(self): for ps in [[1.0], [0.001], np.linspace(0.001, 1, 10), [0.95, 0.10]]: with self.subTest(ps=ps): pc, cs = percentile_contour_values_from_meshz(self.z, percentiles=ps) def test_resolution(self): for res in [10, 100, 1000, 10000]: with self.subTest(res=res): pc, cs = percentile_contour_values_from_meshz(self.z, resolution=res) def test_ask_below_minimum(self): for ps in [[0.0001], [0.000001]]: with self.subTest(ps=ps): pc, cs = percentile_contour_values_from_meshz( self.z, percentiles=ps, resolution=5 ) self.assertIn("min", pc) class TestPlotZPercentiles(unittest.TestCase): def setUp(self): x, y = np.mgrid[-1:1:100j, -1:1:100j] pos = np.empty(x.shape + (2,)) pos[:, :, 0] = x pos[:, :, 1] = y self.xi, self.yi = x, y self.zi = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]]).pdf(pos) def test_default(self): plot_Z_percentiles(self.xi, self.yi, zi=self.zi) def test_specified_contour_labels(self): contour_labels = ["95th", "66th", "33rd"] cs = plot_Z_percentiles( self.xi, self.yi, zi=self.zi, contour_labels=contour_labels ) for contour_label, label in zip(contour_labels, cs.labelTextsList): label = label.get_text() self.assertTrue(contour_label == label) def test_styling_specified(self): fig, ax = plt.subplots(1) colors = [matplotlib.colors.to_rgba(c) for c in ["g", "b", "k"]] linestyles = [_get_dash_pattern(d) for d in ["-", "--", "-."]] linewidths = [1, 2, 3] cs = plot_Z_percentiles( self.xi, self.yi, zi=self.zi, ax=ax, percentiles=[0.95, 0.66, 0.33], colors=colors, linestyles=linestyles, linewidths=linewidths, ) for contour, color, ls, lw in zip( cs.collections, colors, linestyles, linewidths ): self.assertTrue((contour.get_color() == color).all()) self.assertEqual(contour.get_linestyle(), [_scale_dashes(*ls, lw)]) self.assertEqual(contour.get_linewidth(), lw) def test_linestyles_specified(self): plot_Z_percentiles( self.xi, self.yi, zi=self.zi, percentiles=[0.95, 0.66, 0.33], ) def test_percentiles(self): for ps in [[1.0], [0.01], np.linspace(0.001, 1, 10), [0.95, 0.10]]: with self.subTest(ps=ps): plot_Z_percentiles(self.xi, self.yi, zi=self.zi, percentiles=ps) def test_external_ax(self): fig, ax = plt.subplots(1) plot_Z_percentiles(self.xi, self.yi, zi=self.zi, ax=ax) def test_extent(self): for extent in [[-1, 1, -1, 1], [-0.01, 0.99, -1.01, -0.01], [-2, 2, -2, -2]]: with self.subTest(extent=extent): plot_Z_percentiles(self.xi, self.yi, zi=self.zi, extent=extent) def tearDown(self): plt.close("all") if __name__ == "__main__": unittest.main()
py
1a492410f05ef26f73d1515deaf97009755fed9a
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models from ..._vendor import _convert_request from ...operations._kusto_pools_operations import build_add_language_extensions_request_initial, build_check_name_availability_request, build_create_or_update_request_initial, build_delete_request_initial, build_detach_follower_databases_request_initial, build_get_request, build_list_by_workspace_request, build_list_follower_databases_request, build_list_language_extensions_request, build_list_skus_by_resource_request, build_list_skus_request, build_remove_language_extensions_request_initial, build_start_request_initial, build_stop_request_initial, build_update_request_initial T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class KustoPoolsOperations: """KustoPoolsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.synapse.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def list_skus( self, **kwargs: Any ) -> AsyncIterable["_models.SkuDescriptionList"]: """Lists eligible SKUs for Kusto Pool resource. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either SkuDescriptionList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.synapse.models.SkuDescriptionList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SkuDescriptionList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_skus_request( subscription_id=self._config.subscription_id, template_url=self.list_skus.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_skus_request( subscription_id=self._config.subscription_id, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("SkuDescriptionList", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_skus.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Synapse/skus'} # type: ignore @distributed_trace_async async def check_name_availability( self, location: str, kusto_pool_name: "_models.KustoPoolCheckNameRequest", **kwargs: Any ) -> "_models.CheckNameResult": """Checks that the kusto pool name is valid and is not already in use. :param location: The name of Azure region. :type location: str :param kusto_pool_name: The name of the cluster. :type kusto_pool_name: ~azure.mgmt.synapse.models.KustoPoolCheckNameRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: CheckNameResult, or the result of cls(response) :rtype: ~azure.mgmt.synapse.models.CheckNameResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CheckNameResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(kusto_pool_name, 'KustoPoolCheckNameRequest') request = build_check_name_availability_request( subscription_id=self._config.subscription_id, location=location, content_type=content_type, json=_json, template_url=self.check_name_availability.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('CheckNameResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized check_name_availability.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Synapse/locations/{location}/kustoPoolCheckNameAvailability'} # type: ignore @distributed_trace_async async def list_by_workspace( self, resource_group_name: str, workspace_name: str, **kwargs: Any ) -> "_models.KustoPoolListResult": """List Kusto pools. List all Kusto pools. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: KustoPoolListResult, or the result of cls(response) :rtype: ~azure.mgmt.synapse.models.KustoPoolListResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.KustoPoolListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_list_by_workspace_request( resource_group_name=resource_group_name, subscription_id=self._config.subscription_id, workspace_name=workspace_name, template_url=self.list_by_workspace.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('KustoPoolListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_by_workspace.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools'} # type: ignore @distributed_trace_async async def get( self, workspace_name: str, kusto_pool_name: str, resource_group_name: str, **kwargs: Any ) -> "_models.KustoPool": """Gets a Kusto pool. :param workspace_name: The name of the workspace. :type workspace_name: str :param kusto_pool_name: The name of the Kusto pool. :type kusto_pool_name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: KustoPool, or the result of cls(response) :rtype: ~azure.mgmt.synapse.models.KustoPool :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.KustoPool"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_request( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, template_url=self.get.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('KustoPool', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}'} # type: ignore async def _create_or_update_initial( self, workspace_name: str, resource_group_name: str, kusto_pool_name: str, parameters: "_models.KustoPool", if_match: Optional[str] = None, if_none_match: Optional[str] = None, **kwargs: Any ) -> "_models.KustoPool": cls = kwargs.pop('cls', None) # type: ClsType["_models.KustoPool"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(parameters, 'KustoPool') request = build_create_or_update_request_initial( workspace_name=workspace_name, resource_group_name=resource_group_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, content_type=content_type, json=_json, if_match=if_match, if_none_match=if_none_match, template_url=self._create_or_update_initial.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('KustoPool', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('KustoPool', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}'} # type: ignore @distributed_trace_async async def begin_create_or_update( self, workspace_name: str, resource_group_name: str, kusto_pool_name: str, parameters: "_models.KustoPool", if_match: Optional[str] = None, if_none_match: Optional[str] = None, **kwargs: Any ) -> AsyncLROPoller["_models.KustoPool"]: """Create or update a Kusto pool. :param workspace_name: The name of the workspace. :type workspace_name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param kusto_pool_name: The name of the Kusto pool. :type kusto_pool_name: str :param parameters: The Kusto pool parameters supplied to the CreateOrUpdate operation. :type parameters: ~azure.mgmt.synapse.models.KustoPool :param if_match: The ETag of the Kusto Pool. Omit this value to always overwrite the current Kusto Pool. Specify the last-seen ETag value to prevent accidentally overwriting concurrent changes. :type if_match: str :param if_none_match: Set to '*' to allow a new Kusto Pool to be created, but to prevent updating an existing Kusto Pool. Other values will result in a 412 Pre-condition Failed response. :type if_none_match: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either KustoPool or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.synapse.models.KustoPool] :raises: ~azure.core.exceptions.HttpResponseError """ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.KustoPool"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( workspace_name=workspace_name, resource_group_name=resource_group_name, kusto_pool_name=kusto_pool_name, parameters=parameters, if_match=if_match, if_none_match=if_none_match, content_type=content_type, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) def get_long_running_output(pipeline_response): response = pipeline_response.http_response deserialized = self._deserialize('KustoPool', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}'} # type: ignore async def _update_initial( self, workspace_name: str, resource_group_name: str, kusto_pool_name: str, parameters: "_models.KustoPoolUpdate", if_match: Optional[str] = None, **kwargs: Any ) -> "_models.KustoPool": cls = kwargs.pop('cls', None) # type: ClsType["_models.KustoPool"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(parameters, 'KustoPoolUpdate') request = build_update_request_initial( workspace_name=workspace_name, resource_group_name=resource_group_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, content_type=content_type, json=_json, if_match=if_match, template_url=self._update_initial.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('KustoPool', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('KustoPool', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}'} # type: ignore @distributed_trace_async async def begin_update( self, workspace_name: str, resource_group_name: str, kusto_pool_name: str, parameters: "_models.KustoPoolUpdate", if_match: Optional[str] = None, **kwargs: Any ) -> AsyncLROPoller["_models.KustoPool"]: """Update a Kusto Kusto Pool. :param workspace_name: The name of the workspace. :type workspace_name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param kusto_pool_name: The name of the Kusto pool. :type kusto_pool_name: str :param parameters: The Kusto pool parameters supplied to the Update operation. :type parameters: ~azure.mgmt.synapse.models.KustoPoolUpdate :param if_match: The ETag of the Kusto Pool. Omit this value to always overwrite the current Kusto Pool. Specify the last-seen ETag value to prevent accidentally overwriting concurrent changes. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either KustoPool or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.synapse.models.KustoPool] :raises: ~azure.core.exceptions.HttpResponseError """ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.KustoPool"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._update_initial( workspace_name=workspace_name, resource_group_name=resource_group_name, kusto_pool_name=kusto_pool_name, parameters=parameters, if_match=if_match, content_type=content_type, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) def get_long_running_output(pipeline_response): response = pipeline_response.http_response deserialized = self._deserialize('KustoPool', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}'} # type: ignore async def _delete_initial( self, workspace_name: str, resource_group_name: str, kusto_pool_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_delete_request_initial( workspace_name=workspace_name, resource_group_name=resource_group_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, template_url=self._delete_initial.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}'} # type: ignore @distributed_trace_async async def begin_delete( self, workspace_name: str, resource_group_name: str, kusto_pool_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Deletes a Kusto pool. :param workspace_name: The name of the workspace. :type workspace_name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param kusto_pool_name: The name of the Kusto pool. :type kusto_pool_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises: ~azure.core.exceptions.HttpResponseError """ polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( workspace_name=workspace_name, resource_group_name=resource_group_name, kusto_pool_name=kusto_pool_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}'} # type: ignore async def _stop_initial( self, workspace_name: str, kusto_pool_name: str, resource_group_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_stop_request_initial( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, template_url=self._stop_initial.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _stop_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}/stop'} # type: ignore @distributed_trace_async async def begin_stop( self, workspace_name: str, kusto_pool_name: str, resource_group_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Stops a Kusto pool. :param workspace_name: The name of the workspace. :type workspace_name: str :param kusto_pool_name: The name of the Kusto pool. :type kusto_pool_name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises: ~azure.core.exceptions.HttpResponseError """ polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._stop_initial( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, resource_group_name=resource_group_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_stop.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}/stop'} # type: ignore async def _start_initial( self, workspace_name: str, kusto_pool_name: str, resource_group_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_start_request_initial( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, template_url=self._start_initial.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _start_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}/start'} # type: ignore @distributed_trace_async async def begin_start( self, workspace_name: str, kusto_pool_name: str, resource_group_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Starts a Kusto pool. :param workspace_name: The name of the workspace. :type workspace_name: str :param kusto_pool_name: The name of the Kusto pool. :type kusto_pool_name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises: ~azure.core.exceptions.HttpResponseError """ polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._start_initial( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, resource_group_name=resource_group_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_start.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}/start'} # type: ignore @distributed_trace def list_skus_by_resource( self, workspace_name: str, kusto_pool_name: str, resource_group_name: str, **kwargs: Any ) -> AsyncIterable["_models.ListResourceSkusResult"]: """Returns the SKUs available for the provided resource. :param workspace_name: The name of the workspace. :type workspace_name: str :param kusto_pool_name: The name of the Kusto pool. :type kusto_pool_name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ListResourceSkusResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.synapse.models.ListResourceSkusResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ListResourceSkusResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_skus_by_resource_request( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, template_url=self.list_skus_by_resource.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_skus_by_resource_request( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("ListResourceSkusResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_skus_by_resource.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}/skus'} # type: ignore @distributed_trace def list_language_extensions( self, workspace_name: str, kusto_pool_name: str, resource_group_name: str, **kwargs: Any ) -> AsyncIterable["_models.LanguageExtensionsList"]: """Returns a list of language extensions that can run within KQL queries. :param workspace_name: The name of the workspace. :type workspace_name: str :param kusto_pool_name: The name of the Kusto pool. :type kusto_pool_name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either LanguageExtensionsList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.synapse.models.LanguageExtensionsList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.LanguageExtensionsList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_language_extensions_request( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, template_url=self.list_language_extensions.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_language_extensions_request( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("LanguageExtensionsList", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_language_extensions.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}/listLanguageExtensions'} # type: ignore async def _add_language_extensions_initial( self, workspace_name: str, kusto_pool_name: str, resource_group_name: str, language_extensions_to_add: "_models.LanguageExtensionsList", **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(language_extensions_to_add, 'LanguageExtensionsList') request = build_add_language_extensions_request_initial( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, content_type=content_type, json=_json, template_url=self._add_language_extensions_initial.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _add_language_extensions_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}/addLanguageExtensions'} # type: ignore @distributed_trace_async async def begin_add_language_extensions( self, workspace_name: str, kusto_pool_name: str, resource_group_name: str, language_extensions_to_add: "_models.LanguageExtensionsList", **kwargs: Any ) -> AsyncLROPoller[None]: """Add a list of language extensions that can run within KQL queries. :param workspace_name: The name of the workspace. :type workspace_name: str :param kusto_pool_name: The name of the Kusto pool. :type kusto_pool_name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param language_extensions_to_add: The language extensions to add. :type language_extensions_to_add: ~azure.mgmt.synapse.models.LanguageExtensionsList :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises: ~azure.core.exceptions.HttpResponseError """ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._add_language_extensions_initial( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, resource_group_name=resource_group_name, language_extensions_to_add=language_extensions_to_add, content_type=content_type, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_add_language_extensions.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}/addLanguageExtensions'} # type: ignore async def _remove_language_extensions_initial( self, workspace_name: str, kusto_pool_name: str, resource_group_name: str, language_extensions_to_remove: "_models.LanguageExtensionsList", **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(language_extensions_to_remove, 'LanguageExtensionsList') request = build_remove_language_extensions_request_initial( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, content_type=content_type, json=_json, template_url=self._remove_language_extensions_initial.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _remove_language_extensions_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}/removeLanguageExtensions'} # type: ignore @distributed_trace_async async def begin_remove_language_extensions( self, workspace_name: str, kusto_pool_name: str, resource_group_name: str, language_extensions_to_remove: "_models.LanguageExtensionsList", **kwargs: Any ) -> AsyncLROPoller[None]: """Remove a list of language extensions that can run within KQL queries. :param workspace_name: The name of the workspace. :type workspace_name: str :param kusto_pool_name: The name of the Kusto pool. :type kusto_pool_name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param language_extensions_to_remove: The language extensions to remove. :type language_extensions_to_remove: ~azure.mgmt.synapse.models.LanguageExtensionsList :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises: ~azure.core.exceptions.HttpResponseError """ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._remove_language_extensions_initial( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, resource_group_name=resource_group_name, language_extensions_to_remove=language_extensions_to_remove, content_type=content_type, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_remove_language_extensions.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}/removeLanguageExtensions'} # type: ignore @distributed_trace def list_follower_databases( self, workspace_name: str, kusto_pool_name: str, resource_group_name: str, **kwargs: Any ) -> AsyncIterable["_models.FollowerDatabaseListResult"]: """Returns a list of databases that are owned by this Kusto Pool and were followed by another Kusto Pool. :param workspace_name: The name of the workspace. :type workspace_name: str :param kusto_pool_name: The name of the Kusto pool. :type kusto_pool_name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either FollowerDatabaseListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.synapse.models.FollowerDatabaseListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FollowerDatabaseListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_follower_databases_request( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, template_url=self.list_follower_databases.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_follower_databases_request( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("FollowerDatabaseListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_follower_databases.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}/listFollowerDatabases'} # type: ignore async def _detach_follower_databases_initial( self, workspace_name: str, kusto_pool_name: str, resource_group_name: str, follower_database_to_remove: "_models.FollowerDatabaseDefinition", **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(follower_database_to_remove, 'FollowerDatabaseDefinition') request = build_detach_follower_databases_request_initial( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, content_type=content_type, json=_json, template_url=self._detach_follower_databases_initial.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _detach_follower_databases_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}/detachFollowerDatabases'} # type: ignore @distributed_trace_async async def begin_detach_follower_databases( self, workspace_name: str, kusto_pool_name: str, resource_group_name: str, follower_database_to_remove: "_models.FollowerDatabaseDefinition", **kwargs: Any ) -> AsyncLROPoller[None]: """Detaches all followers of a database owned by this Kusto Pool. :param workspace_name: The name of the workspace. :type workspace_name: str :param kusto_pool_name: The name of the Kusto pool. :type kusto_pool_name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param follower_database_to_remove: The follower databases properties to remove. :type follower_database_to_remove: ~azure.mgmt.synapse.models.FollowerDatabaseDefinition :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises: ~azure.core.exceptions.HttpResponseError """ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._detach_follower_databases_initial( workspace_name=workspace_name, kusto_pool_name=kusto_pool_name, resource_group_name=resource_group_name, follower_database_to_remove=follower_database_to_remove, content_type=content_type, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_detach_follower_databases.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/kustoPools/{kustoPoolName}/detachFollowerDatabases'} # type: ignore
py
1a49242caf687db3bda16d0beed9327910d77878
import numpy as np # linear algebra import skimage.io import os import sys np.random.seed(1234) import scipy.misc import skimage.morphology as mph from skimage import color dd = sys.argv[1] STAGE1_TRAIN = "../inputs/"+dd STAGE1_TRAIN_IMAGE_PATTERN = "%s/{}/images/{}.png" % STAGE1_TRAIN STAGE1_TRAIN_MASK_PATTERN = "%s/{}/masks/*.png" % STAGE1_TRAIN # Get image names def image_ids_in(root_dir, ignore=['.DS_Store', 'summary.csv', 'stage1_train_labels.csv', 'vsamples.csv', 'stage1_solution.csv', 'samples.csv']): ids = [] for id in os.listdir(root_dir): if id in ignore: print('Skipping ID:', id) else: ids.append(id) return ids # read in images def read_image(image_id, space="rgb"): print(image_id) image_file = STAGE1_TRAIN_IMAGE_PATTERN.format(image_id, image_id) image = skimage.io.imread(image_file) # Drop alpha which is not used image = image[:, :, :3] if space == "hsv": image = skimage.color.rgb2hsv(image) return image # Get image width, height and combine masks available. def read_image_labels(image_id, space="rgb"): image = read_image(image_id, space = space) mask_file = STAGE1_TRAIN_MASK_PATTERN.format(image_id) masks = skimage.io.imread_collection(mask_file).concatenate() mkk = [] for i in masks: mask = i/255 selem = mph.disk(1) mask = mph.erosion(mask, selem) mkk.append(mask) mkk = np.asarray(mkk) height, width, _ = image.shape num_masks = masks.shape[0] labels = np.zeros((height, width), np.uint16) for index in range(0, num_masks): labels[mkk[index] > 0] = 1 try: os.mkdir(STAGE1_TRAIN+'/'+image_id+'/label') except: pass scipy.misc.imsave(STAGE1_TRAIN+'/'+image_id+'/label/ER_Combined.png', labels) return labels train_image_ids = image_ids_in(STAGE1_TRAIN) for im in train_image_ids: read_image_labels(im)
py
1a49250d6b14bb5542c0f559d76e77bdfd963e12
# @Time : 12/07/21 1:05 PM # @Author : Fabrice Harel-Canada # @File : rick_and_morty_stories.py import torch from transformers import pipeline, set_seed from transformers.pipelines import TextGenerationPipeline class RickAndMortyStories: def __init__(self, mask_bad_words=True): self.pipeline = pipeline("text-generation", model="e-tony/gpt2-rnm") if self.pipeline.tokenizer.pad_token is None: self.pipeline.tokenizer.pad_token = self.pipeline.tokenizer.eos_token self.pipeline.model.config.pad_token_id = self.pipeline.model.config.eos_token_id self.mask_bad_words = mask_bad_words self.bad_words = self.load_bad_words() def load_bad_words(self): import urllib bad_words = [] try: file = urllib.request.urlopen( "https://raw.githubusercontent.com/RobertJGabriel/Google-profanity-words/master/list.txt" ) for line in file: dline = line.decode("utf-8") bad_words.append(dline.split("\n")[0]) except: print("Failed to load bad words list.") return bad_words def tokens2text(self, tokens): return self.pipeline.tokenizer.decode(tokens) def generate(self, inputs, max_length=250): outputs = self.pipeline( inputs, do_sample=True, max_length=len(inputs) + max_length, top_k=50, top_p=0.95, num_return_sequences=1, ) output_text = self._mask_bad_words(outputs[0]["generated_text"]) return output_text def _mask_bad_words(self, text): explicit = False res_text = text.lower() for word in self.bad_words: if word in res_text: print(word) res_text = res_text.replace(word, word[0] + "*" * len(word[1:])) explicit = True if explicit: output_text = "" for oword, rword in zip(text.split(" "), res_text.split(" ")): if oword.lower() == rword: output_text += oword + " " else: output_text += rword + " " text = output_text return text if __name__ == "__main__": rm_story_generator = RickAndMortyStories() STARTERS = { 0: "Rick: Morty, quick! Get in the car!\nMorty: Oh no, I can't do it Rick! Please not this again.\nRick: You don't have a choice! The crystal demons are going to eat you if you don't get in!", 1: "Elon: Oh, you think you're all that Rick? Fight me in a game of space squash!\nRick: Let's go, you wanna-be genius!\nElon: SpaceX fleet, line up!", 2: "Morty: I love Jessica, I want us to get married on Octopulon 300 and have octopus babies.\nRick: Shut up, Morty! You're not going to Octopulon 300!", 3: "Rick: Hey there, Jerry! What a nice day for taking these anti-gravity shoes for a spin!\nJerry: Wow, Rick! You would let me try out one of your crazy gadgets?\nRick: Of course, Jerry! That's how much I respect you.", 4: "Rick: Come on, flip the pickle, Morty. You're not gonna regret it. The payoff is huge.", 5: "Rick: I turned myself into a pickle, Morty! Boom! Big reveal - I'm a pickle. What do you think about that? I turned myself into a pickle!", 6: "Rick: Come on, flip the pickle, Morty. You're not gonna regret it. The payoff is huge.\nMorty: What? Where are you?\nRick: Morty, just do it! [laughing] Just flip the pickle!", } for i, starter_text in STARTERS.items(): print("starter_text:", starter_text) outputs = rm_story_generator.generate(starter_text) texts = [out['generated_text'] for out in outputs] print(texts[0])
py
1a4925d7d482faaa22a796e6f26a7d71368b66be
# NASBench 301 stuff here import sys from pathlib import Path sys.path.append('./darts/cnn') lib_dir = (Path(__file__).parent / 'darts' / 'cnn').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) import genotypes from model_search import Network, NetworkNB import utils import time import math import copy import random import logging import os import gc import numpy as np import torch from torch.autograd import Variable import torchvision.datasets as dset import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn from typing import * from collections import namedtuple Genotype_tuple = namedtuple('Genotype_tuple', 'normal normal_concat reduce reduce_concat') class Genotype: def __init__(self, normal, normal_concat, reduce, reduce_concat) -> None: self.normal = normal self.normal_concat = normal_concat self.reduce = reduce self.reduce_concat = reduce_concat self.genotype_tuple = Genotype_tuple(normal, normal_concat, reduce, reduce_concat) def tostr(self): return str(self.genotype_tuple) def __hash__(self): return hash(str(self.genotype_tuple)) def __repr__(self): return str(self.genotype_tuple) def __getitem__(self, k): return getattr(self, k) def get_DARTS_randomNAS(discrete=True, layers=8): criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() model = NetworkNB(C=16, num_classes=10, layers=layers, criterion=criterion, multiplier=4, stem_multiplier=3, discrete=discrete) print(f"Instantiated DARTS model with discrete={discrete}") model = model.cuda() return model class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class DartsWrapper: def __init__(self, save_path, seed, batch_size, grad_clip, epochs, resume_iter=None, init_channels=16): args = {} args['data'] = r'C:\Users\miros\Documents\Oxford\thesis\liamcli_darts\darts\data' args['epochs'] = epochs args['learning_rate'] = 0.025 args['batch_size'] = batch_size args['learning_rate_min'] = 0.001 args['momentum'] = 0.9 args['weight_decay'] = 3e-4 args['init_channels'] = init_channels args['layers'] = 8 args['drop_path_prob'] = 0.3 args['grad_clip'] = grad_clip args['train_portion'] = 0.5 args['seed'] = seed args['log_interval'] = 50 args['save'] = save_path args['gpu'] = 0 args['cuda'] = True args['cutout'] = False args['cutout_length'] = 16 args['report_freq'] = 50 args = AttrDict(args) self.args = args self.seed = seed np.random.seed(args.seed) random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.set_device(args.gpu) cudnn.benchmark = False cudnn.enabled=True cudnn.deterministic=True torch.cuda.manual_seed_all(args.seed) train_transform, valid_transform = utils._data_transforms_cifar10(args) train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) num_train = len(train_data) indices = list(range(num_train)) split = int(np.floor(args.train_portion * num_train)) self.train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]), pin_memory=True, num_workers=0, worker_init_fn=np.random.seed(args.seed)) self.valid_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]), pin_memory=True, num_workers=0, worker_init_fn=np.random.seed(args.seed)) self.train_iter = iter(self.train_queue) self.valid_iter = iter(self.valid_queue) self.steps = 0 self.epochs = 0 self.total_loss = 0 self.start_time = time.time() criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() self.criterion = criterion model = Network(args.init_channels, 10, args.layers, self.criterion) model = model.cuda() self.model = model try: self.load() logging.info('loaded previously saved weights') except Exception as e: print(e) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) optimizer = torch.optim.SGD( self.model.parameters(), args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) self.optimizer = optimizer self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, float(args.epochs), eta_min=args.learning_rate_min) if resume_iter is not None: self.steps = resume_iter self.epochs = int(resume_iter / len(self.train_queue)) logging.info("Resuming from epoch %d" % self.epochs) self.objs = utils.AvgrageMeter() self.top1 = utils.AvgrageMeter() self.top5 = utils.AvgrageMeter() for i in range(self.epochs): self.scheduler.step() size = 0 for p in model.parameters(): size += p.nelement() logging.info('param size: {}'.format(size)) total_params = sum(x.data.nelement() for x in model.parameters()) logging.info('Args: {}'.format(args)) logging.info('Model total parameters: {}'.format(total_params)) def train_batch(self, arch): args = self.args if self.steps % len(self.train_queue) == 0: self.scheduler.step() self.objs = utils.AvgrageMeter() self.top1 = utils.AvgrageMeter() self.top5 = utils.AvgrageMeter() lr = self.scheduler.get_lr()[0] weights = self.get_weights_from_arch(arch) self.set_model_weights(weights) step = self.steps % len(self.train_queue) input, target = next(self.train_iter) self.model.train() n = input.size(0) input = Variable(input, requires_grad=False).cuda() target = Variable(target, requires_grad=False).cuda() # get a random minibatch from the search queue with replacement self.optimizer.zero_grad() logits = self.model(input, discrete=True) if type(logits) is tuple: _, logits = logits loss = self.criterion(logits, target) loss.backward() nn.utils.clip_grad_norm(self.model.parameters(), args.grad_clip) self.optimizer.step() prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5)) self.objs.update(loss.item(), n) self.top1.update(prec1.item(), n) self.top5.update(prec5.item(), n) if step % args.report_freq == 0: logging.info('train %03d %e %f %f', step, self.objs.avg, self.top1.avg, self.top5.avg) self.steps += 1 if self.steps % len(self.train_queue) == 0: self.epochs += 1 self.train_iter = iter(self.train_queue) valid_err = self.evaluate(arch) logging.info('epoch %d | train_acc %f | valid_acc %f' % (self.epochs, self.top1.avg, 1-valid_err)) self.save() def evaluate(self, arch, split=None): # Return error since we want to minimize obj val logging.info(arch) objs = utils.AvgrageMeter() top1 = utils.AvgrageMeter() top5 = utils.AvgrageMeter() weights = self.get_weights_from_arch(arch) self.set_model_weights(weights) self.model.eval() if split is None: n_batches = 10 else: n_batches = len(self.valid_queue) for step in range(n_batches): try: input, target = next(self.valid_iter) except Exception as e: logging.info('looping back over valid set') self.valid_iter = iter(self.valid_queue) input, target = next(self.valid_iter) with torch.no_grad(): input = Variable(input).cuda() target = Variable(target).cuda() logits = self.model(input, discrete=True) if type(logits) is tuple: _, logits = logits loss = self.criterion(logits, target) prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5)) n = input.size(0) objs.update(loss.item(), n) top1.update(prec1.item(), n) top5.update(prec5.item(), n) if step % self.args.report_freq == 0: logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg) return 1-top1.avg def save(self): utils.save(self.model, os.path.join(self.args.save, 'weights.pt')) def load(self): utils.load(self.model, os.path.join(self.args.save, 'weights.pt')) def get_weights_from_arch(self, arch): k = sum(1 for i in range(self.model._steps) for n in range(2+i)) num_ops = len(genotypes.PRIMITIVES) n_nodes = self.model._steps alphas_normal = Variable(torch.zeros(k, num_ops).cuda(), requires_grad=False) alphas_reduce = Variable(torch.zeros(k, num_ops).cuda(), requires_grad=False) offset = 0 for i in range(n_nodes): normal1 = arch[0][2*i] normal2 = arch[0][2*i+1] reduce1 = arch[1][2*i] reduce2 = arch[1][2*i+1] alphas_normal[offset+normal1[0], normal1[1]] = 1 alphas_normal[offset+normal2[0], normal2[1]] = 1 alphas_reduce[offset+reduce1[0], reduce1[1]] = 1 alphas_reduce[offset+reduce2[0], reduce2[1]] = 1 offset += (i+2) arch_parameters = [ alphas_normal, alphas_reduce, ] return arch_parameters def set_model_weights(self, weights): self.model.alphas_normal = weights[0] self.model.alphas_reduce = weights[1] self.model.arch_normal_parameters = weights[0] self.model.arch_reduce_parameters = weights[1] self.model._arch_parameters = [self.model.alphas_normal, self.model.alphas_reduce] self.model.dynamic_cell = Genotype(normal=self.model.alphas_normal, reduce = self.model.alphas_reduce, normal_concat=[2,3,4,5], reduce_concat=[2,3,4,5]) def sample_arch(self): k = sum(1 for i in range(self.model._steps) for n in range(2+i)) num_ops = len(genotypes.PRIMITIVES) n_nodes = self.model._steps normal = [] reduction = [] for i in range(n_nodes): ops = np.random.choice(range(num_ops), 4) nodes_in_normal = np.random.choice(range(i+2), 2, replace=False) nodes_in_reduce = np.random.choice(range(i+2), 2, replace=False) normal.extend([(nodes_in_normal[0], ops[0]), (nodes_in_normal[1], ops[1])]) reduction.extend([(nodes_in_reduce[0], ops[2]), (nodes_in_reduce[1], ops[3])]) return (normal, reduction) def perturb_arch(self, arch): new_arch = copy.deepcopy(arch) num_ops = len(genotypes.PRIMITIVES) cell_ind = np.random.choice(2) step_ind = np.random.choice(self.model._steps) nodes_in = np.random.choice(step_ind+2, 2, replace=False) ops = np.random.choice(range(num_ops), 2) new_arch[cell_ind][2*step_ind] = (nodes_in[0], ops[0]) new_arch[cell_ind][2*step_ind+1] = (nodes_in[1], ops[1]) return new_arch
py
1a49270b4e8c26e6630601352e341c1304a338ed
# -*- coding: utf-8 -*- """DNACenterAPI non_fabric_wireless API fixtures and tests. Copyright (c) 2019-2020 Cisco and/or its affiliates. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pytest from tests.environment import DNA_CENTER_VERSION pytestmark = pytest.mark.skipif(DNA_CENTER_VERSION != '1.2.10', reason='version does not match') def is_valid_delete_and_provision_ssid(json_schema_validate, obj): json_schema_validate('jsd_cca098344a489dfa_v1_2_10').validate(obj) return True def delete_and_provision_ssid(api): endpoint_result = api.non_fabric_wireless.delete_and_provision_ssid( managed_aplocations='string', ssid_name='string' ) return endpoint_result @pytest.mark.non_fabric_wireless def test_delete_and_provision_ssid(api, validator): assert is_valid_delete_and_provision_ssid( validator, delete_and_provision_ssid(api) ) def delete_and_provision_ssid_default(api): endpoint_result = api.non_fabric_wireless.delete_and_provision_ssid( managed_aplocations='string', ssid_name='string' ) return endpoint_result @pytest.mark.non_fabric_wireless def test_delete_and_provision_ssid_default(api, validator): try: assert is_valid_delete_and_provision_ssid( validator, delete_and_provision_ssid_default(api) ) except Exception as original_e: with pytest.raises(TypeError, match="but instead we received None"): raise original_e def is_valid_create_enterprise_ssid(json_schema_validate, obj): return True if obj else False def create_enterprise_ssid(api): endpoint_result = api.non_fabric_wireless.create_enterprise_ssid( active_validation=True, enableBroadcastSSID=True, enableFastLane=True, enableMACFiltering=True, fastTransition='Adaptive', name='********************************', passphrase='********', payload=None, radioPolicy='Dual band operation (2.4GHz and 5GHz)', securityLevel='WPA2_ENTERPRISE', trafficType='voicedata' ) return endpoint_result @pytest.mark.non_fabric_wireless def test_create_enterprise_ssid(api, validator): assert is_valid_create_enterprise_ssid( validator, create_enterprise_ssid(api) ) def create_enterprise_ssid_default(api): endpoint_result = api.non_fabric_wireless.create_enterprise_ssid( active_validation=True, enableBroadcastSSID=None, enableFastLane=None, enableMACFiltering=None, fastTransition=None, name=None, passphrase=None, payload=None, radioPolicy=None, securityLevel=None, trafficType=None ) return endpoint_result @pytest.mark.non_fabric_wireless def test_create_enterprise_ssid_default(api, validator): try: assert is_valid_create_enterprise_ssid( validator, create_enterprise_ssid_default(api) ) except Exception as original_e: with pytest.raises(TypeError, match="but instead we received None"): raise original_e def is_valid_create_and_provision_ssid(json_schema_validate, obj): json_schema_validate('jsd_db9f997f4e59aec1_v1_2_10').validate(obj) return True def create_and_provision_ssid(api): endpoint_result = api.non_fabric_wireless.create_and_provision_ssid( active_validation=True, enableFabric=True, flexConnect={'enableFlexConnect': True, 'localToVlan': 0}, managedAPLocations=['string'], payload=None, ssidDetails={'name': 'string', 'securityLevel': 'WPA2_ENTERPRISE', 'enableFastLane': True, 'passphrase': 'string', 'trafficType': 'data', 'enableBroadcastSSID': True, 'radioPolicy': 'Dual band operation (2.4GHz and 5GHz)', 'enableMACFiltering': True, 'fastTransition': 'Adaptive', 'webAuthURL': 'string'}, ssidType='Guest', vlanAndDynamicInterfaceDetails={'managedAPLocation': {'interfaceIPAddress': 'string', 'interfaceNetmaskInCIDR': 0, 'interfaceGateway': 'string', 'lagOrPortNumber': 0}, 'vlanId': 0, 'vlanName': 'string'} ) return endpoint_result @pytest.mark.non_fabric_wireless def test_create_and_provision_ssid(api, validator): assert is_valid_create_and_provision_ssid( validator, create_and_provision_ssid(api) ) def create_and_provision_ssid_default(api): endpoint_result = api.non_fabric_wireless.create_and_provision_ssid( active_validation=True, enableFabric=None, flexConnect=None, managedAPLocations=None, payload=None, ssidDetails=None, ssidType=None, vlanAndDynamicInterfaceDetails=None ) return endpoint_result @pytest.mark.non_fabric_wireless def test_create_and_provision_ssid_default(api, validator): try: assert is_valid_create_and_provision_ssid( validator, create_and_provision_ssid_default(api) ) except Exception as original_e: with pytest.raises(TypeError, match="but instead we received None"): raise original_e def is_valid_delete_enterprise_ssid(json_schema_validate, obj): json_schema_validate('jsd_c7a6592b4b98a369_v1_2_10').validate(obj) return True def delete_enterprise_ssid(api): endpoint_result = api.non_fabric_wireless.delete_enterprise_ssid( ssid_name='string' ) return endpoint_result @pytest.mark.non_fabric_wireless def test_delete_enterprise_ssid(api, validator): assert is_valid_delete_enterprise_ssid( validator, delete_enterprise_ssid(api) ) def delete_enterprise_ssid_default(api): endpoint_result = api.non_fabric_wireless.delete_enterprise_ssid( ssid_name='string' ) return endpoint_result @pytest.mark.non_fabric_wireless def test_delete_enterprise_ssid_default(api, validator): try: assert is_valid_delete_enterprise_ssid( validator, delete_enterprise_ssid_default(api) ) except Exception as original_e: with pytest.raises(TypeError, match="but instead we received None"): raise original_e def is_valid_get_enterprise_ssid(json_schema_validate, obj): json_schema_validate('jsd_cca519ba45ebb423_v1_2_10').validate(obj) return True def get_enterprise_ssid(api): endpoint_result = api.non_fabric_wireless.get_enterprise_ssid( ssid_name='string' ) return endpoint_result @pytest.mark.non_fabric_wireless def test_get_enterprise_ssid(api, validator): assert is_valid_get_enterprise_ssid( validator, get_enterprise_ssid(api) ) def get_enterprise_ssid_default(api): endpoint_result = api.non_fabric_wireless.get_enterprise_ssid( ssid_name=None ) return endpoint_result @pytest.mark.non_fabric_wireless def test_get_enterprise_ssid_default(api, validator): try: assert is_valid_get_enterprise_ssid( validator, get_enterprise_ssid_default(api) ) except Exception as original_e: with pytest.raises(TypeError, match="but instead we received None"): raise original_e
py
1a492817954c371f03888b0c2df13cbe92c25ec2
# coding=utf-8 from __future__ import absolute_import, print_function import os import numpy as np from suanpan.app import app from suanpan.storage import storage from suanpan.utils import image from arguments import Images @app.input(Images(key="inputImage")) @app.output(Images(key="outputImage")) def SPRemoveWatermark(context): args = context.args images = args.inputImage alpha = 2.0 beta = -160 for i, img in enumerate(images): new = alpha * img + beta new = np.clip(new, 0, 255).astype(np.uint8) image.save( os.path.join( args.outputImage, storage.delimiter.join(images.images[i].split(storage.delimiter)[8:]), ), new, ) return args.outputImage if __name__ == "__main__": SPRemoveWatermark()
py
1a49285b8a429ccfd6d07b8fc283699f2089fa37
#!/usr/bin/env python3 """ Prompt: Loop through all numbers from 1 to 100. If the number is divisible by 3, print out "Fizz" instead. If the number is divisible by 5, print out "Buzz" instead. """ from typing import Iterable from typing import Union def fizz_buzz(n: int) -> Iterable[Union[int, str]]: for i in range(n): if i%3 == 0: yield 'Fizz' elif i%5 == 0: yield 'Buzz' else: yield i if __name__ == '__main__': print(list(fizz_buzz(17)))
py
1a49290e5030729b4f7e055d04a116961252c40e
from gi.repository import Gtk, Gdk css = """ #top GtkComboBox { background-color: #000000; } GtkWindow { color: black; background: black; background-color: black; } GtkComboBox { color: black; background: black; background-color: black; } """ class ComboBoxWindow(Gtk.Window): def __init__(self): style_provider = Gtk.CssProvider() style_provider.load_from_data(css) Gtk.StyleContext.add_provider_for_screen( Gdk.Screen.get_default(), style_provider, Gtk.STYLE_PROVIDER_PRIORITY_APPLICATION ) Gtk.Window.__init__(self, title="ComboBox Example") self.set_border_width(10) name_store = Gtk.ListStore(int, str) name_store.append([1, "Billy Bob"]) name_store.append([11, "Billy Bob Junior"]) name_store.append([12, "Sue Bob"]) name_store.append([2, "Joey Jojo"]) name_store.append([3, "Rob McRoberts"]) name_store.append([31, "Xavier McRoberts"]) vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=6) name_combo = Gtk.ComboBox.new_with_model_and_entry(name_store) name_combo.connect("changed", self.on_name_combo_changed) name_combo.set_entry_text_column(1) vbox.pack_start(name_combo, False, False, 0) country_store = Gtk.ListStore(str) countries = ["Austria", "Brazil", "Belgium", "France", "Germany", "Switzerland", "United Kingdom", "United States of America", "Uruguay"] for country in countries: country_store.append([country]) country_combo = Gtk.ComboBox.new_with_model(country_store) country_combo.connect("changed", self.on_country_combo_changed) renderer_text = Gtk.CellRendererText() country_combo.pack_start(renderer_text, True) country_combo.add_attribute(renderer_text, "text", 0) vbox.pack_start(country_combo, False, False, True) currencies = ["Euro", "US Dollars", "British Pound", "Japanese Yen", "Russian Ruble", "Mexican peso", "Swiss franc"] currency_combo = Gtk.ComboBoxText() currency_combo.set_entry_text_column(0) currency_combo.connect("changed", self.on_currency_combo_changed) for currency in currencies: currency_combo.append_text(currency) vbox.pack_start(currency_combo, False, False, 0) self.add(vbox) def on_name_combo_changed(self, combo): tree_iter = combo.get_active_iter() if tree_iter != None: model = combo.get_model() row_id, name = model[tree_iter][:2] print("Selected: ID=%d, name=%s" % (row_id, name)) else: entry = combo.get_child() print("Entered: %s" % entry.get_text()) def on_country_combo_changed(self, combo): tree_iter = combo.get_active_iter() if tree_iter != None: model = combo.get_model() country = model[tree_iter][0] print("Selected: country=%s" % country) def on_currency_combo_changed(self, combo): text = combo.get_active_text() if text != None: print("Selected: currency=%s" % text) win = ComboBoxWindow() win.connect("delete-event", Gtk.main_quit) win.show_all() Gtk.main()
py
1a4929791466add09dd734c8bb7bdebe25764065
from django.db import models from django.contrib.auth.models import AbstractUser class User(AbstractUser): bio = models.TextField(max_length=500, blank=True) birth_date = models.DateField(null=True, blank=True)
py
1a492ab233df27d2aced22d90f0b9a18f6fa2557
# Generated by Django 3.0.8 on 2020-08-12 21:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("main", "0035_auto_20200812_2020"), ] operations = [ migrations.AddField( model_name="comment", name="email", field=models.EmailField(max_length=254, null=True), ), migrations.AddField( model_name="comment", name="name", field=models.CharField(default="Anonymous", max_length=150, null=True), ), ]
py
1a492bc82c5c087e82ae7ca1a783c34122c36528
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * import os class Templight(CMakePackage): """Templight is a Clang-based tool to profile the time and memory consumption of template instantiations and to perform interactive debugging sessions to gain introspection into the template instantiation process.""" homepage = "https://github.com/mikael-s-persson/templight" git = "https://github.com/mikael-s-persson/templight.git" llvm_svn = "http://llvm.org/svn/llvm-project/{0}/trunk" family = 'compiler' # Used by lmod # Templight is a patch to clang, so we have three versions to care about: # - The one that will be used in Spack specifications # - The git branch that we need to fetch from in the templight repo # - The svn tag that we need to fetch from in the LLVM repos version('develop', branch='master') resource(name='llvm-trunk', svn=llvm_svn.format('llvm'), destination='.', placement='llvm', when='@develop') resource(name='clang-trunk', svn=llvm_svn.format('cfe'), destination='llvm/tools', placement='clang', when='@develop') # Templight has no stable release yet, and is supposed to be built against # the LLVM trunk. As this is a brittle combination, I decided to # artificially create stable releases based on what works today. Please # feel free to remove these versions once templight has stabilized. version('2019.01.09', commit='0899a4345607f1bb244cae477214f274ad2c52cc') resource(name='llvm-r350726', svn=llvm_svn.format('llvm'), revision=350726, destination='.', placement='llvm', when='@2019.01.09') resource(name='clang-r350726', svn=llvm_svn.format('cfe'), revision=350726, destination='llvm/tools', placement='clang', when='@2019.01.09') version('2018.07.20', commit='91589f95427620dd0a2346bd69ba922f374aa42a') resource(name='llvm-r337566', svn=llvm_svn.format('llvm'), revision=337566, destination='.', placement='llvm', when='@2018.07.20') resource(name='clang-r337566', svn=llvm_svn.format('cfe'), revision=337566, destination='llvm/tools', placement='clang', when='@2018.07.20') patch('develop-20180720.patch', when='@2018.07.20') # Clang debug builds can be _huge_ (20+ GB), make sure you know what you # are doing before switching to them variant('build_type', default='Release', description='CMake build type', values=('Debug', 'Release', 'RelWithDebInfo', 'MinSizeRel')) # NOTE: LLVM has many configurable tweaks and optional tools/extensions. # I did not think that propagating all of these to a debugging and # performance analysis tool was worth the maintenance burden. But # if you disagree, the llvm package can be used for inspiration. depends_on('[email protected]:', type='build') depends_on('python') depends_on('py-lit', type=('build', 'run')) def patch(self): # We start with the templight source tree and an "llvm" subdir. # But we actually need an llvm source tree with a "templight" subdir. # Let's flip the directory organization around templight_files = os.listdir('.') templight_files.remove('llvm') templight_dir = 'llvm/tools/clang/tools/templight' os.mkdir(templight_dir) for name in templight_files: os.rename(name, os.path.join(templight_dir, name)) for name in os.listdir('llvm'): os.rename(os.path.join('llvm', name), name) os.rmdir('llvm') # Tell the clang build system that it needs to build templight with open("tools/clang/tools/CMakeLists.txt", "a") as cmake_lists: cmake_lists.write("add_clang_subdirectory(templight)") def setup_environment(self, spack_env, run_env): spack_env.append_flags('CXXFLAGS', self.compiler.cxx11_flag) run_env.set('CC', join_path(self.spec.prefix.bin, 'templight')) run_env.set('CXX', join_path(self.spec.prefix.bin, 'templight++')) def cmake_args(self): spec = self.spec # Templight is a debugging tool, not a production compiler, so we only # need a very bare-bones build of clang # # Minimal build config ideas were taken from the llvm package, with # the templight-specific assumption that we will always be building # for LLVM / Clang 5.0+ and can safely ignore older tricks. # cmake_args = [ '-DLLVM_REQUIRES_RTTI:BOOL=ON', '-DCLANG_DEFAULT_OPENMP_RUNTIME:STRING=libomp', '-DPYTHON_EXECUTABLE:PATH={0}'.format(spec['python'].command.path), '-DLLVM_EXTERNAL_POLLY_BUILD:Bool=OFF', '-DLLVM_TOOL_POLLY_BUILD:Bool=OFF', '-DLLVM_POLLY_BUILD:Bool=OFF', '-DLLVM_POLLY_LINK_INTO_TOOLS:Bool=OFF', '-DLLVM_EXTERNAL_LLDB_BUILD:Bool=OFF', '-DLLVM_TOOL_LLDB_BUILD:Bool=OFF', '-DLLVM_TOOL_LLD_BUILD:Bool=OFF', '-DLLVM_EXTERNAL_LIBUNWIND_BUILD:Bool=OFF', '-DLLVM_EXTERNAL_LIBCXX_BUILD:Bool=OFF', '-DLLVM_EXTERNAL_LIBCXXABI_BUILD:Bool=OFF', '-DLLVM_EXTERNAL_COMPILER_RT_BUILD:Bool=OFF', ] targets = ['NVPTX', 'AMDGPU'] if 'x86' in spec.architecture.target.lower(): targets.append('X86') elif 'arm' in spec.architecture.target.lower(): targets.append('ARM') elif 'aarch64' in spec.architecture.target.lower(): targets.append('AArch64') elif 'sparc' in spec.architecture.target.lower(): targets.append('Sparc') elif ('ppc' in spec.architecture.target.lower() or 'power' in spec.architecture.target.lower()): targets.append('PowerPC') cmake_args.append( '-DLLVM_TARGETS_TO_BUILD:Bool=' + ';'.join(targets)) if spec.satisfies('platform=linux'): cmake_args.append('-DCMAKE_BUILD_WITH_INSTALL_RPATH=1') return cmake_args @run_after('install') def post_install(self): with working_dir(self.build_directory): install_tree('bin', self.prefix.libexec.llvm)
py
1a492cbab36f4cb6366d851fe8ba5ac271cc76e6
"""Test for user views""" from datetime import timedelta import pytest from django.urls import reverse from rest_framework import status from social_django.models import UserSocialAuth from mitol.common.pytest_utils import any_instance_of from mitol.common.utils import now_in_utc from profiles.factories import UserFactory from profiles.models import ChangeEmailRequest @pytest.mark.django_db def test_cannot_create_user(client): """Verify the api to create a user is nonexistent""" resp = client.post("/api/users/", data={"name": "Name"}) assert resp.status_code == status.HTTP_404_NOT_FOUND def test_cannot_update_user(user_client, user): """Verify the api to update a user is doesn't accept the verb""" resp = user_client.patch( reverse("users_api-detail", kwargs={"pk": user.id}), data={"name": "Name"} ) assert resp.status_code == status.HTTP_405_METHOD_NOT_ALLOWED def test_get_user_by_id(user_client, user): """Test that user can request their own user by id""" resp = user_client.get(reverse("users_api-detail", kwargs={"pk": user.id})) assert resp.status_code == status.HTTP_200_OK assert resp.json() == { "id": user.id, "username": user.username, "email": user.email, "legal_address": { "first_name": user.legal_address.first_name, "last_name": user.legal_address.last_name, "street_address": [user.legal_address.street_address_1], "city": user.legal_address.city, "state_or_territory": user.legal_address.state_or_territory, "country": user.legal_address.country, "postal_code": user.legal_address.postal_code, "is_complete": True, }, "profile": { "name": user.profile.name, "gender": user.profile.gender, "company": user.profile.company, "company_size": user.profile.company_size, "job_title": user.profile.job_title, "birth_year": int(user.profile.birth_year), "job_function": user.profile.job_function, "years_experience": user.profile.years_experience, "highest_education": user.profile.highest_education, "industry": user.profile.industry, "is_complete": True, "updated_on": any_instance_of(str), "can_skip_application_steps": False, }, "is_anonymous": False, "is_authenticated": True, } def test_get_user_by_me(user_client, user): """Test that user can request their own user by the 'me' alias""" resp = user_client.get(reverse("users_api-me")) assert resp.status_code == status.HTTP_200_OK assert resp.json() == { "id": user.id, "username": user.username, "email": user.email, "legal_address": { "first_name": user.legal_address.first_name, "last_name": user.legal_address.last_name, "street_address": [user.legal_address.street_address_1], "city": user.legal_address.city, "state_or_territory": user.legal_address.state_or_territory, "country": user.legal_address.country, "postal_code": user.legal_address.postal_code, "is_complete": True, }, "profile": { "name": user.profile.name, "gender": user.profile.gender, "company": user.profile.company, "company_size": user.profile.company_size, "job_title": user.profile.job_title, "birth_year": int(user.profile.birth_year), "job_function": user.profile.job_function, "years_experience": user.profile.years_experience, "highest_education": user.profile.highest_education, "industry": user.profile.industry, "is_complete": True, "updated_on": any_instance_of(str), "can_skip_application_steps": False, }, "is_anonymous": False, "is_authenticated": True, } @pytest.mark.django_db def test_countries_states_view(client): """Test that a list of countries and states is returned""" resp = client.get(reverse("countries_api-list")) countries = {country["code"]: country for country in resp.json()} assert len(countries.get("US").get("states")) > 50 assert {"code": "CA-QC", "name": "Quebec"} in countries.get("CA").get("states") assert len(countries.get("FR").get("states")) == 0 assert countries.get("US").get("name") == "United States" assert countries.get("TW").get("name") == "Taiwan" def test_create_email_change_request_invalid_password(user_drf_client, user): """Test that invalid password is returned""" resp = user_drf_client.post( "/api/change-emails/", data={ "new_email": "[email protected]", "password": user.password, "old_password": "abc", }, ) assert resp.status_code == status.HTTP_400_BAD_REQUEST def test_create_email_change_request_existing_email(user_drf_client, user): """Test that create change email request gives validation error for existing user email""" new_user = UserFactory.create() user_password = user.password user.set_password(user.password) user.save() resp = user_drf_client.post( "/api/change-emails/", data={"new_email": new_user.email, "password": user_password}, ) assert resp.status_code == status.HTTP_400_BAD_REQUEST def test_create_email_change_request_same_email(user_drf_client, user): """Test that user same email wouldn't be processed""" resp = user_drf_client.post( "/api/change-emails/", data={ "new_email": user.email, "password": user.password, "old_password": user.password, }, ) assert resp.status_code == status.HTTP_400_BAD_REQUEST def test_create_email_change_request_valid_email(user_drf_client, user, mocker): """Test that change request is created""" user_password = "PaSsWoRd" user.set_password(user_password) user.save() mock_email = mocker.patch("mail.v2.verification_api.send_verify_email_change_email") resp = user_drf_client.post( "/api/change-emails/", data={"new_email": "[email protected]", "password": user_password}, ) assert resp.status_code == status.HTTP_201_CREATED code = mock_email.call_args[0][1].code assert code old_email = user.email resp = user_drf_client.patch( "/api/change-emails/{}/".format(code), data={"confirmed": True} ) assert not UserSocialAuth.objects.filter(uid=old_email, user=user).exists() assert resp.status_code == status.HTTP_200_OK user.refresh_from_db() assert user.email == "[email protected]" def test_create_email_change_request_expired_code(user_drf_client, user): """Check for expired code for Email Change Request""" change_request = ChangeEmailRequest.objects.create( user=user, new_email="[email protected]", expires_on=now_in_utc() - timedelta(seconds=5), ) resp = user_drf_client.patch( "/api/change-emails/{}/".format(change_request.code), data={"confirmed": True} ) assert resp.status_code == status.HTTP_404_NOT_FOUND def test_update_email_change_request_invalid_token(user_drf_client): """Test that invalid token doesn't work""" resp = user_drf_client.patch("/api/change-emails/abc/", data={"confirmed": True}) assert resp.status_code == status.HTTP_404_NOT_FOUND
py
1a492cc26eab16785e002863844bb4603bd8e858
from urllib2 import urlopen from zipfile import ZipFile from bs4 import BeautifulSoup import os import sys from MaudeMiner.settings import MAUDE_DATA_ORIGIN, DATA_PATH, ZIPS_PATH, TXTS_PATH from MaudeMiner.utils import update_progress def get_data_urls(): sys.stdout.write("Scraping MAUDE website for data urls: ") sys.stdout.flush() urls = [] soup = BeautifulSoup(str(urlopen(MAUDE_DATA_ORIGIN).read()), "html5lib") # search page for anchor tags with links to zip files for a in soup.findAll('a'): if a.has_attr('href') and ".zip" in a['href']: urls.append(a['href']) sys.stdout.write("OK - found %i URLs\n" % len(urls)) sys.stdout.flush() return urls def prepare_directory(): sys.stdout.write("Preparing data directory: ") sys.stdout.flush() # make directories if they dont exist if not os.path.exists(ZIPS_PATH): os.makedirs(ZIPS_PATH) if not os.path.exists(TXTS_PATH): os.makedirs(TXTS_PATH) # remove existing data files for file in os.listdir(ZIPS_PATH): os.remove(ZIPS_PATH+file) for file in os.listdir(TXTS_PATH): os.remove(TXTS_PATH+file) sys.stdout.write("OK - %s\n" % DATA_PATH) sys.stdout.flush() def download_data(urls): message = "Downloading data: " num_complete = 0 update_progress(message, 0, len(urls)) for url in urls: # get file name begin = url.rfind("/")+1 zip_filename = url[begin:] with open(ZIPS_PATH+zip_filename, 'wb') as zipfile: zipfile.write(urlopen(url).read()) num_complete += 1 update_progress(message, num_complete, len(urls)) print "\r{0}OK - {1}".format(message, ZIPS_PATH) return num_complete def extract_data(num_files): message = "Extracting data: " num_complete = 0 update_progress(message, 0, num_files) for file in os.listdir(ZIPS_PATH): zip_data = ZipFile(ZIPS_PATH+file, 'r').extractall(TXTS_PATH) num_complete += 1 update_progress(message, num_complete, num_files) print "\r{0}OK - {1}".format(message, TXTS_PATH) def run(args=None): print "=== Downloading Data ===" prepare_directory() zip_urls = get_data_urls() num_files = download_data(zip_urls) extract_data(num_files) print "Done!" if __name__ == "__main__": run()
py
1a492d985eb81de77e327e015fbbdcac8c1cb876
from __future__ import print_function, division import sys, os sys.path.append(os.path.abspath(".")) from problems.problem import * from helper.pom3 import pom3 __author__ = 'panzer' class POM3BSansComp(Problem): """ POM 3B without Completion """ def __init__(self): Problem.__init__(self) self.name = POM3BSansComp.__name__ names = ["Culture", "Criticality", "Criticality Modifier", "Initial Known", "Inter-Dependency", "Dynamism", "Size", "Plan", "Team Size"] lows = [0.10, 0.82, 80, 0.40, 0, 1, 0, 0, 1] ups = [0.90, 1.26, 95, 0.70, 100, 50, 2, 5, 20] self.decisions = [Decision(names[i], lows[i], ups[i]) for i in range(len(names))] self.objectives = [Objective("Cost", True, 0), Objective("Score", False, 0, 1), Objective("Idle", True, 0, 1)] def evaluate(self, decisions): p = pom3() output = p.simulate(decisions) return [output[0], output[1], output[3]]
py
1a492dffab361a0e6fbe11c2e335d11e4653814f
# Generated by Django 2.1.5 on 2019-01-31 13:57 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('wagtailcore', '0040_page_draft_title'), ('wagtailimages', '0021_image_file_hash'), ('kdl_wagtail_people', '0004_peopleindexpage_peopleindexpersonrelationship'), ] operations = [ migrations.CreateModel( name='PersonPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('introduction', models.TextField(blank=True, help_text='Text to describe the page')), ('image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ('person', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='pages', to='kdl_wagtail_people.Person')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), ]
py
1a492e25978fc83272913fee4492a56f4a8c4faa
def dobro(num, formatado=False): if formatado: return f'R${num * 2:.2f}' else: return num * 2 def metade(num, formatado=False): if formatado: return f'R${num / 2:.2f}' else: return num / 2 def adicionar(num, index, formatado=False): if formatado: return f'R${num + (num / 100 * index):.2f}' else: return num + (num / 100 * index) def descontar(num, index, formatado=False): if formatado: return f'R${num - (num / 100 * index):.2f}' else: return num - (num / 100 * index) def cifrar(num): return f'R${num:.2f}' def resumo(valor, aumento, desconto): print('-' * 40) print('{:^40}'.format('RESUMO DO VALOR')) print('¯' * 40) print('Preço analisado:', end='') print(f'{(cifrar(valor)):>24}') print('Dobro do Preço:', end='') print(f'{dobro(valor, True):>25}') print(f'Metado do Preço', end='') print(f'{metade(valor, True):>25}') print(f'{aumento}% de aumento:', end='') print(f'{adicionar(valor, aumento, True):>25}') print(f'{desconto}% de desconto:', end='') print(f'{descontar(valor, desconto, True):>24}') print('¯' * 40)
py
1a492e27097666ac2decf2d40feb2eb78f339dc1
import time def print_board(board): for e in board: for f in e: print(f, end=" ") print() def get_neighbour_count(board,y,x): c = 0 for a in range(y-1,y+2,1): for b in range(x-1,x+2,1): if not (a==y and b==x): try: if board[a][b] == 1: c+=1 except: pass return c def should_change(state, neighbours): if state == 1: if n < 2: return True if n == 2 or n == 3: return False if n > 3: return True else: if n == 3: return True return False def change(board, lst): for e in lst: tmp = board[e[0]][e[1]] if tmp == 1: board[e[0]][e[1]] = 0 else: board[e[0]][e[1]] = 1 return board def game_over(board): if sum(x.count(0) for x in board) == len(board)*len(board[0]): return True return False if __name__ == '__main__': board= [[0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0], [0,0,0,0,1,0,0,1,0,0], [0,0,0,0,1,1,0,1,0,0], [0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0]] h = len(board) w = len(board[0]) while not game_over(board): print('--'*w) print_board(board) change_lst = [] for y in range(h): for x in range(w): n = get_neighbour_count(board,y,x) if should_change(board[y][x],n): change_lst.append([y,x]) board = change(board, change_lst) time.sleep(0.5) print_board(board)
py
1a492e62ee0ab25db0dfa63d6a4b2b9eb3e3e634
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ exporters """ from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals import sys import os import itertools import six import inspect import abc import logging import numpy as np import paddle.fluid as F import paddle.fluid.layers as L from propeller.paddle.train import Saver from propeller.types import InferenceSpec from propeller.train.model import Model from propeller.paddle.train.trainer import _build_net from propeller.paddle.train.trainer import _build_model_fn from propeller.types import RunMode from propeller.types import ProgramPair log = logging.getLogger(__name__) @six.add_metaclass(abc.ABCMeta) class Exporter(object): """base exporter""" @abc.abstractmethod def export(self, exe, program, eval_result, state): """export""" raise NotImplementedError() class BestExporter(Exporter): """export saved model accordingto `cmp_fn`""" def __init__(self, export_dir, cmp_fn): """doc""" self._export_dir = export_dir self._best = None self.cmp_fn = cmp_fn def export(self, exe, program, eval_model_spec, eval_result, state): """doc""" log.debug('New evaluate result: %s \nold: %s' % (repr(eval_result), repr(self._best))) if self._best is None or self.cmp_fn(old=self._best, new=eval_result): log.debug('[Best Exporter]: export to %s' % self._export_dir) eval_program = program.train_program # FIXME: all eval datasets has same name/types/shapes now!!! so every eval program are the smae saver = Saver( self._export_dir, exe, program=eval_program, max_ckpt_to_keep=1) saver.save(state) self._best = eval_result else: log.debug('[Best Exporter]: skip step %s' % state.gstep) class BestInferenceModelExporter(Exporter): """export inference model accordingto `cmp_fn`""" def __init__(self, export_dir, cmp_fn, model_class_or_model_fn=None, hparams=None, dataset=None): """doc""" self._export_dir = export_dir self._best = None self.cmp_fn = cmp_fn self.model_class_or_model_fn = model_class_or_model_fn self.hparams = hparams self.dataset = dataset def export(self, exe, program, eval_model_spec, eval_result, state): """doc""" if self.model_class_or_model_fn is not None and self.hparams is not None \ and self.dataset is not None: log.info('Building program by user defined model function') if issubclass(self.model_class_or_model_fn, Model): _model_fn = _build_model_fn(self.model_class_or_model_fn) elif inspect.isfunction(self.model_class_or_model_fn): _model_fn = self.model_class_or_model_fn else: raise ValueError('unknown model %s' % self.model_class_or_model_fn) # build net infer_program = F.Program() startup_prog = F.Program() with F.program_guard(infer_program, startup_prog): #share var with Train net with F.unique_name.guard(): log.info('Building Infer Graph') infer_fea = self.dataset.features() # run_config is None self.model_spec = _build_net(_model_fn, infer_fea, RunMode.PREDICT, self.hparams, None) log.info('Done') infer_program = infer_program.clone(for_test=True) self.program = ProgramPair( train_program=infer_program, startup_program=startup_prog) else: self.program = program self.model_spec = eval_model_spec log.debug('New evaluate result: %s \nold: %s' % (repr(eval_result), repr(self._best))) if self._best is None or self.cmp_fn(old=self._best, new=eval_result): log.debug('[Best Exporter]: export to %s' % self._export_dir) if self.model_spec.inference_spec is None: raise ValueError('model_fn didnt return InferenceSpec') inf_spec_dict = self.model_spec.inference_spec if not isinstance(inf_spec_dict, dict): inf_spec_dict = {'inference': inf_spec_dict} for inf_spec_name, inf_spec in six.iteritems(inf_spec_dict): if not isinstance(inf_spec, InferenceSpec): raise ValueError('unknow inference spec type: %s' % inf_spec) save_dir = os.path.join(self._export_dir, inf_spec_name) log.debug('[Best Exporter]: save inference model: "%s" to %s' % (inf_spec_name, save_dir)) feed_var = [i.name for i in inf_spec.inputs] fetch_var = inf_spec.outputs infer_program = self.program.train_program startup_prog = F.Program() F.io.save_inference_model( save_dir, feed_var, fetch_var, exe, main_program=infer_program) self._best = eval_result else: log.debug('[Best Exporter]: skip step %s' % state.gstep)
py
1a492fee3a57bb72b064249c93c284f24f3492be
#!/usr/bin/env python """ ErrorServerDetection plugin performs CDN detection when attempts to access the web server via its IP address fail and disclose information about the CDN in place. """ from plugins.ErrorServerDetection.behaviors import detect
py
1a4930276b6df579d519dd309adf3babf87cea83
from __future__ import unicode_literals from django.db import models __all__ = ('CharModel', 'IntegerModel', 'TextModel', 'BooleanModel' 'DateModel', 'DateTimeModel', 'ForeignKeyModel', 'ManyToManyModel', 'FileModel', 'TestModel',) class CharModel(models.Model): field = models.CharField(max_length=10) class IntegerModel(models.Model): field = models.IntegerField() class TextModel(models.Model): field = models.TextField(max_length=100) class BooleanModel(models.Model): field = models.BooleanField(default=False) class DateModel(models.Model): field = models.DateField() class DateTimeModel(models.Model): field = models.DateTimeField() class ForeignKeyModel(models.Model): field = models.ForeignKey(CharModel, on_delete=models.CASCADE) class ManyToManyModel(models.Model): field = models.ManyToManyField(CharModel) class FileModel(models.Model): field = models.FileField(upload_to='.', max_length=256) class TestModel(models.Model): field1 = models.CharField(max_length=10, verbose_name="Field #1") field2 = models.IntegerField(verbose_name="Field #2") no_verbose = models.IntegerField() def __str__(self): return '%s %i' % (self.field1, self.field2) __unicode__ = __str__ def get_double(self): return self.field2 * 2
py
1a49307c49dd387a76f678e2aed1f1decf53aa12
# -*- coding: utf-8 -*- # Copyright (c) 2015, GoElite and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest # test_records = frappe.get_test_records('Conference booking') class TestConferencebooking(unittest.TestCase): pass
py
1a49319dc465ac6b855ddca18c769832ed332aa9
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Diamond(CMakePackage): """DIAMOND is a sequence aligner for protein and translated DNA searches, designed for high performance analysis of big sequence data.""" homepage = "https://ab.inf.uni-tuebingen.de/software/diamond" url = "https://github.com/bbuchfink/diamond/archive/v2.0.9.tar.gz" version('2.0.14', sha256='3eaef2b957e4ba845eac27a2ca3249aae4259ff1fe0ff5a21b094481328fdc53') version('2.0.11', sha256='41f3197aaafff9c42763fb7658b67f730ebc6dd3c0533c9c3d54bd3166e93f24') version('2.0.9', sha256='3019f1adb6411c6669a3a17351d0338ae02f6b3cab3c8a3bac91cf334dcda620') version('2.0.8', sha256='04eed7c83828f50c7d9a1d48fe7c50a4c753e008501dc639c6521cf8a756c43b') version('2.0.4', sha256='94e8fe72bdc28b83fd0f2d90c439b58b63b38263aa1a3905582ef68f614ae95d') version('0.9.25', sha256='65298f60cf9421dcc7669ce61642611cd9eeffc32f66fd39ebfa25dd64416808') version('0.9.23', sha256='0da5cdd5e5b77550ec0eaba2c6c431801cdd10d31606ca12f952b57d3d31db92') version('0.9.22', sha256='35e518cfa0ac2fbc57e422d380bdb5123c6335742dd7965b76c34c95f241b729') version('0.9.21', sha256='3f10e089c24d24f3066f3a58fa01bf356c4044e0a0bcab081b9bf1a8d946c9b1') version('0.9.20', sha256='5cf629baf135f54dc93728e3618ae08c64c1ecb81b3f2d2d48fcfd1c010ed8f0') version('0.9.19', sha256='fab783f51af9010666f2b569f438fb38843d0201fe0c0e167db5b70d12459e30') version('0.9.14', sha256='de870a7806ac0aa47b97c9b784dd7201e2c8e11a122003bde440d926211b911e') version('0.8.38', sha256='582a7932f3aa73b0eac2275dd773818665f0b067b32a79ff5a13b0e3ca375f60') version('0.8.26', sha256='00d2be32dad76511a767ab8e917962c0ecc572bc808080be60dec028df45439f') depends_on('zlib') conflicts('target=aarch64:', when='@:0.9.25') # fix error [-Wc++11-narrowing] # Ref: https://github.com/bbuchfink/diamond/commit/155e076d662b0e9268e2b00bef6d33d90aede7ff patch('fix_narrowing_error.patch', when='@:0.9.25')
py
1a4931bf3c01edadd732448e7b9b313674cb0761
# Django settings for demo project. import os settings_path, settings_module = os.path.split(__file__) import sys sys.path.append('../../') DEBUG = True #TEMPLATE_DEBUG = DEBUG USE_TZ=True #TIME_ZONE = 'America/Chicago' LANGUAGE_CODE = 'en-us' SECRET_KEY = '8(o*lht586wqr9hp5env&n!h!gu@t5g4*$$uupbyd*f+61!xjh' TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', ) DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'mydatabase', } } INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', # 'django.contrib.admin', ) MIDDLEWARE_CLASSES = ( ) ROOT_URLCONF = 'urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(settings_path, 'templates')], } ] #EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' #EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_BACKEND = 'postmark.django_backend.EmailBackend' #Supply your own API KEY POSTMARK_API_KEY = '' assert len(POSTMARK_API_KEY) != 0 #Use the sender set up in your postmark account POSTMARK_SENDER = '' assert len(POSTMARK_SENDER) != 0
py
1a49327c59ef887b434858537651f8cb7d71b646
def test_dictionary(): """Dictionary""" fruits_dictionary = { 'cherry': 'red', 'apple': 'green', 'banana': 'yellow', } assert isinstance(fruits_dictionary, dict) assert fruits_dictionary['apple'] == 'green' assert fruits_dictionary['banana'] == 'yellow' assert fruits_dictionary['cherry'] == 'red' assert 'apple' in fruits_dictionary assert 'pineapple' not in fruits_dictionary # Modify fruits_dictionary['apple'] = 'red' # Add fruits_dictionary['pineapple'] = 'yellow' assert fruits_dictionary['pineapple'] == "yellow" assert list(fruits_dictionary) == ['cherry', 'apple', 'banana', 'pineapple'] assert sorted(fruits_dictionary) == [ 'apple', 'banana', 'cherry', 'pineapple' ] del fruits_dictionary['pineapple'] assert list(fruits_dictionary) == ['cherry', 'apple', 'banana'] dictionary_via_constructor = dict([('sape', 4139), ('guido', 4127), ('jack', 4098)]) assert dictionary_via_constructor['sape'] == 4139 assert dictionary_via_constructor['guido'] == 4127 assert dictionary_via_constructor['jack'] == 4098 dictionary_via_expression = {x: x**2 for x in (2, 4, 6)} assert dictionary_via_expression[2] == 4 assert dictionary_via_expression[4] == 16 assert dictionary_via_expression[6] == 36 dictionary_for_string_keys = dict(sape=4139, guido=4127, jack=4098) assert dictionary_for_string_keys['sape'] == 4139 assert dictionary_for_string_keys['guido'] == 4127 assert dictionary_for_string_keys['jack'] == 4098
py
1a49345758697fa12afe239335dea4e78ddbb06f
# users/views.py from django.contrib.auth.models import User from django.views.decorators.csrf import csrf_exempt from rest_framework import generics, request, status from rest_framework.decorators import api_view from rest_framework.permissions import IsAuthenticated from rest_framework.authtoken.models import Token from rest_framework.response import Response from rest_framework.decorators import api_view from rest_framework.response import Response from house.services import CosineCalculator import ipdb from house.serializers import HouseSerializer from house.serializers import RoomSerializer from users.models import Profile from . import models from . import serializers from .models import House, Room @csrf_exempt @api_view(['POST']) def create_house(request): token_header = request.META.get("HTTP_AUTHORIZATION")[6:] token = Token.objects.get(key=token_header) user = User.objects.get(id=token.user_id) house = HouseSerializer(data=request.data) if house.is_valid(): house.save(landlord=user) return Response({'status':'ok'}, status=status.HTTP_201_CREATED) else: return Response(house._errors, status=status.HTTP_400_BAD_REQUEST) # @api_view(['GET']) # def get_rooms(request): # token_header = request.META.get("HTTP_AUTHORIZATION")[6:] # # import ipdb; # # ipdb.set_trace() # try: # token = Token.objects.get(key=token_header) # except Token.DoesNotExist: # return Response({"status": "Nao autenticado", "load": 0}, status=status.HTTP_200_OK) # # # rooms = models.Room.objects.all() # serializers_room = RoomSerializer(rooms, many=True) # return Response({"rooms": serializers_room.data}, status=status.HTTP_200_OK) # # @csrf_exempt @api_view(['GET']) def get_rooms(request): token_header = request.META.get("HTTP_AUTHORIZATION")[6:] token = Token.objects.get(key=token_header) profile = Profile.objects.get(user_id=token.user_id) cosine = CosineCalculator() houses = House.objects.all() future_tenant = Profile.objects.get(user_id=token.user_id) houses = cosine.calculate_similarity_all_houses(houses, future_tenant, profile) rooms = [] for house in houses: rooms_buffer = Room.objects.filter(house=house, tenant__isnull=True).all() for room_buffer in rooms_buffer: room_serializer = serializers.RoomSerializer(room_buffer) # ipdb.set_trace() # if room_serializer.tenant is not None: continue new_room = {"value": house.value} new_room.update(room_serializer.data) rooms.append(new_room) return Response({"rooms": rooms}, status=status.HTTP_200_OK)
py
1a49347844f964da5445e3393863be76ea404def
class PropertyExpectedException(Exception): pass class InvalidStateException(Exception): pass
py
1a49348dc83b5c1210cec19b7dc893df198276dd
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange from ccxt.base.errors import ExchangeError class paymium (Exchange): def describe(self): return self.deep_extend(super(paymium, self).describe(), { 'id': 'paymium', 'name': 'Paymium', 'countries': ['FR', 'EU'], 'rateLimit': 2000, 'version': 'v1', 'has': { 'CORS': True, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/27790564-a945a9d4-5ff9-11e7-9d2d-b635763f2f24.jpg', 'api': 'https://paymium.com/api', 'www': 'https://www.paymium.com', 'doc': [ 'https://github.com/Paymium/api-documentation', 'https://www.paymium.com/page/developers', ], }, 'api': { 'public': { 'get': [ 'countries', 'data/{id}/ticker', 'data/{id}/trades', 'data/{id}/depth', 'bitcoin_charts/{id}/trades', 'bitcoin_charts/{id}/depth', ], }, 'private': { 'get': [ 'merchant/get_payment/{UUID}', 'user', 'user/addresses', 'user/addresses/{btc_address}', 'user/orders', 'user/orders/{UUID}', 'user/price_alerts', ], 'post': [ 'user/orders', 'user/addresses', 'user/payment_requests', 'user/price_alerts', 'merchant/create_payment', ], 'delete': [ 'user/orders/{UUID}/cancel', 'user/price_alerts/{id}', ], }, }, 'markets': { 'BTC/EUR': {'id': 'eur', 'symbol': 'BTC/EUR', 'base': 'BTC', 'quote': 'EUR', 'baseId': 'btc', 'quoteId': 'eur'}, }, 'fees': { 'trading': { 'maker': 0.0059, 'taker': 0.0059, }, }, }) async def fetch_balance(self, params={}): await self.load_markets() response = await self.privateGetUser(params) result = {'info': response} currencies = list(self.currencies.keys()) for i in range(0, len(currencies)): code = currencies[i] currencyId = self.currencyId(code) free = 'balance_' + currencyId if free in response: account = self.account() used = 'locked_' + currencyId account['free'] = self.safe_float(response, free) account['used'] = self.safe_float(response, used) result[code] = account return self.parse_balance(result) async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() request = { 'id': self.market_id(symbol), } response = await self.publicGetDataIdDepth(self.extend(request, params)) return self.parse_order_book(response, None, 'bids', 'asks', 'price', 'amount') async def fetch_ticker(self, symbol, params={}): request = { 'id': self.market_id(symbol), } ticker = await self.publicGetDataIdTicker(self.extend(request, params)) timestamp = self.safe_timestamp(ticker, 'at') vwap = self.safe_float(ticker, 'vwap') baseVolume = self.safe_float(ticker, 'volume') quoteVolume = None if baseVolume is not None and vwap is not None: quoteVolume = baseVolume * vwap last = self.safe_float(ticker, 'price') return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_float(ticker, 'high'), 'low': self.safe_float(ticker, 'low'), 'bid': self.safe_float(ticker, 'bid'), 'bidVolume': None, 'ask': self.safe_float(ticker, 'ask'), 'askVolume': None, 'vwap': vwap, 'open': self.safe_float(ticker, 'open'), 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': self.safe_float(ticker, 'variation'), 'average': None, 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, } def parse_trade(self, trade, market): timestamp = self.safe_timestamp(trade, 'created_at_int') id = self.safe_string(trade, 'uuid') symbol = None if market is not None: symbol = market['symbol'] side = self.safe_string(trade, 'side') price = self.safe_float(trade, 'price') amountField = 'traded_' + market['base'].lower() amount = self.safe_float(trade, amountField) cost = None if price is not None: if amount is not None: cost = amount * price return { 'info': trade, 'id': id, 'order': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'type': None, 'side': side, 'takerOrMaker': None, 'price': price, 'amount': amount, 'cost': cost, 'fee': None, } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'id': market['id'], } response = await self.publicGetDataIdTrades(self.extend(request, params)) return self.parse_trades(response, market, since, limit) async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() request = { 'type': self.capitalize(type) + 'Order', 'currency': self.market_id(symbol), 'direction': side, 'amount': amount, } if type != 'market': request['price'] = price response = await self.privatePostUserOrders(self.extend(request, params)) return { 'info': response, 'id': response['uuid'], } async def cancel_order(self, id, symbol=None, params={}): request = { 'UUID': id, } return await self.privateDeleteUserOrdersUUIDCancel(self.extend(request, params)) def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'] + '/' + self.version + '/' + self.implode_params(path, params) query = self.omit(params, self.extract_params(path)) if api == 'public': if query: url += '?' + self.urlencode(query) else: self.check_required_credentials() nonce = str(self.nonce()) auth = nonce + url if method == 'POST': if query: body = self.json(query) auth += body headers = { 'Api-Key': self.apiKey, 'Api-Signature': self.hmac(self.encode(auth), self.encode(self.secret)), 'Api-Nonce': nonce, 'Content-Type': 'application/json', } return {'url': url, 'method': method, 'body': body, 'headers': headers} async def request(self, path, api='public', method='GET', params={}, headers=None, body=None): response = await self.fetch2(path, api, method, params, headers, body) if 'errors' in response: raise ExchangeError(self.id + ' ' + self.json(response)) return response
py
1a493591e279277130586739fb9366c90cb46b2e
# coding: utf-8 ######################################################################### # 网站: <a href="http://www.crazyit.org">疯狂Java联盟</a> # # author yeeku.H.lee [email protected] # # # # version 1.0 # # # # Copyright (C), 2001-2018, yeeku.H.Lee # # # # This program is protected by copyright laws. # # # # Program Name: # # # # <br>Date: # ######################################################################### import os path = 'my_dir' # 直接重命名当前目录下的子目录 os.rename(path, 'your_dir') path = "abc/xyz/wawa" # 递归重命名子目录 os.renames(path, 'foo/bar/haha')
py
1a4936a64a48de814bafb0d0506aede3ea1918b4
import fire import os import tensorflow as tf import matplotlib.pyplot as plt import os import time import datetime from dcgan.discriminator import make_discriminator_model, discriminator_loss from dcgan.generator import make_generator_model, generator_loss from dcgan.dataset import make_dataset from dcgan.utils import * from dcgan.metrics import * from dcgan import CHECKPOINT_DIR, MODEL_DIR try: from IPython import display except: pass @tf.function def train_step( images, epoch, summary_writer, generator, discriminator, generator_optimizer, discriminator_optimizer, ): noise = tf.random.normal([256, 100]) # tf.random.gau with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) gen_loss = generator_loss(fake_output) # gen_loss = tf.vectorized_map(generator_loss, fake_output) # disc_loss = tf.vectorized_map(discriminator_loss, fake_output) disc_loss = discriminator_loss(real_output, fake_output) gen_loss_metric.update_state(gen_loss) disc_loss_metric.update_state(disc_loss) fake_out.update_state(fake_output[0]) real_out.update_state(real_output[0]) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient( disc_loss, discriminator.trainable_variables ) generator_optimizer.apply_gradients( zip(gradients_of_generator, generator.trainable_variables) ) discriminator_optimizer.apply_gradients( zip(gradients_of_discriminator, discriminator.trainable_variables) ) record_metrics(epoch, summary_writer) def train(epochs, logname, channels=1, batch_size=256, data_folder=None): tf.profiler.experimental.server.start(6009) generator = make_generator_model(32, channels) discriminator = make_discriminator_model(32, channels) generator_optimizer = tf.keras.optimizers.Adam(1e-04, beta_1=0.5) discriminator_optimizer = tf.keras.optimizers.Adam(1e-04, beta_1=0.5) checkpoint = tf.train.Checkpoint( step=tf.Variable(1), generator_optimizer=generator_optimizer, discriminator_optimizer=discriminator_optimizer, generator=generator, discriminator=discriminator, ) manager = tf.train.CheckpointManager(checkpoint, CHECKPOINT_DIR, max_to_keep=3) summary_writer = make_summary_writer(logname) dataset = make_dataset(32, data_folder, channels) show_dataset(dataset, 16, summary_writer) checkpoint.restore(manager.latest_checkpoint) if manager.latest_checkpoint: print("Restored from {}".format(manager.latest_checkpoint)) current_step = int(checkpoint.step.numpy()) print( f"Continuing from epoch {current_step} + {epochs} -> {epochs + current_step}" ) epochs = range(current_step, epochs + current_step) else: epochs = range(epochs) print("Initializing from scratch.") for epoch in epochs: seed = tf.random.normal([16, 100]) start = time.time() fake_out.reset_states() real_out.reset_states() gen_loss_metric.reset_states() disc_loss_metric.reset_states() for step, img_batch in enumerate(dataset.take(256)): train_step(img_batch, epoch, summary_writer, generator, discriminator, generator_optimizer, discriminator_optimizer) display.clear_output(wait=True) generate_and_save_images(generator, epoch + 1, seed, summary_writer) checkpoint.step.assign_add(1) if int(checkpoint.step) % 15 == 0: save_path = manager.save() print( "Saved checkpoint for step {}: {}".format( int(checkpoint.step), save_path ) ) # Produce images for the GIF as we go print("Time for epoch {} is {} sec".format(epoch + 1, time.time() - start)) # Generate after the final epoch display.clear_output(wait=True) generate_and_save_images(generator, epochs, seed, summary_writer) current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") generator.save(os.path.join(MODEL_DIR, f"gen_trained_{current_time}")) discriminator.save(os.path.join(MODEL_DIR, f"disc_trained_{current_time}")) def fire_(): fire.Fire(train)
py
1a4936aab734f430c6de01905e80ce9304930a12
# -*- coding: utf-8 -*- import logging import re from urllib.parse import quote_plus from requests.exceptions import RequestException from flexget import plugin from flexget.components.sites.utils import normalize_scene, torrent_availability from flexget.config_schema import one_or_more from flexget.entry import Entry from flexget.event import event from flexget.plugin import PluginError from flexget.utils.requests import Session as RequestSession from flexget.utils.soup import get_soup from flexget.utils.tools import parse_filesize log = logging.getLogger('fuzer') requests = RequestSession() CATEGORIES = { # Movies 'HD Movies': 9, 'XviD': 7, 'BRRip': 59, 'Israeli HD Movies': 61, 'Israeli Movies': 60, 'DVDR': 58, 'Dubbed Movies': 83, # TV 'HD Shows': 10, 'Shows': 8, 'Israeli HD Shows': 63, 'Israeli Shows': 62, 'Dubbed Shows': 84, # Anime 'Anime': 65, # FuzePacks 'Movie Packs': 73, 'Shows Packs': 76, } class UrlRewriteFuzer: schema = { 'type': 'object', 'properties': { 'cookie_password': {'type': 'string'}, 'user_id': {'type': 'integer'}, 'rss_key': {'type': 'string'}, 'category': one_or_more( {'oneOf': [{'type': 'string', 'enum': list(CATEGORIES)}, {'type': 'integer'}]} ), }, 'required': ['user_id', 'cookie_password', 'rss_key'], 'additionalProperties': False, } def get_fuzer_soup(self, search_term, categories_list): params = {'matchquery': 'any', 'ref_': 'advanced'} query = '{}&{}'.format(search_term, '&'.join(categories_list)) try: page = requests.get( 'https://www.fuzer.me/browse.php?query={}'.format(query), params=params, cookies=self.cookies, ) except RequestException as e: raise PluginError('Could not connect to Fuzer: {}'.format(e)) if 'login' in page.url: raise PluginError('Could not fetch results from Fuzer. Check config') log.debug('Using %s as fuzer search url', page.url) return get_soup(page.content) def extract_entry_from_soup(self, soup): table = soup.find('div', {'id': 'main_table'}) if table is None: raise PluginError('Could not fetch results table from Fuzer, aborting') log.trace('fuzer results table: %s', table) table = table.find('table', {'class': 'table_info'}) if len(table.find_all('tr')) == 1: log.debug('No search results were returned from Fuzer, continuing') return [] entries = [] for tr in table.find_all("tr"): if not tr.get('class') or 'colhead_dark' in tr.get('class'): continue name = tr.find('div', {'class': 'main_title'}).find('a').text torrent_name = re.search( '\\n(.*)', tr.find('div', {'style': 'float: right;'}).find('a')['title'] ).group(1) attachment_link = tr.find('div', {'style': 'float: right;'}).find('a')['href'] attachment_id = re.search(r'attachmentid=(\d+)', attachment_link).group(1) raw_size = tr.find_all('td', {'class': 'inline_info'})[0].text.strip() seeders = int(tr.find_all('td', {'class': 'inline_info'})[2].text) leechers = int(tr.find_all('td', {'class': 'inline_info'})[3].text) e = Entry() e['title'] = name final_url = 'https://www.fuzer.me/rss/torrent.php/{}/{}/{}/{}'.format( attachment_id, self.user_id, self.rss_key, torrent_name ) log.debug('RSS-ified download link: %s', final_url) e['url'] = final_url e['torrent_seeds'] = seeders e['torrent_leeches'] = leechers e['torrent_availability'] = torrent_availability( e['torrent_seeds'], e['torrent_leeches'] ) size = re.search(r'(\d+(?:[.,]\d+)*)\s?([KMGTP]B)', raw_size) e['content_size'] = parse_filesize(size.group(0)) entries.append(e) return entries @plugin.internet(log) def search(self, task, entry, config=None): """ Search for name from fuzer. """ self.rss_key = config['rss_key'] self.user_id = config['user_id'] self.cookies = { 'fzr2lastactivity': '0', 'fzr2lastvisit': '', 'fzr2password': config['cookie_password'], 'fzr2sessionhash': '', 'fzr2userid': str(self.user_id), } category = config.get('category', [0]) # Make sure categories is a list if not isinstance(category, list): category = [category] # If there are any text categories, turn them into their id number categories = [c if isinstance(c, int) else CATEGORIES[c] for c in category] c_list = ['c{}={}'.format(quote_plus('[]'), c) for c in categories] entries = [] if entry.get('imdb_id'): log.debug("imdb_id '%s' detected, using in search.", entry['imdb_id']) soup = self.get_fuzer_soup(entry['imdb_id'], c_list) entries = self.extract_entry_from_soup(soup) if entries: for e in list(entries): e['imdb_id'] = entry.get('imdb_id') else: for search_string in entry.get('search_strings', [entry['title']]): query = normalize_scene(search_string) text = quote_plus(query.encode('windows-1255')) soup = self.get_fuzer_soup(text, c_list) entries += self.extract_entry_from_soup(soup) return ( sorted(entries, reverse=True, key=lambda x: x.get('torrent_availability')) if entries else [] ) @event('plugin.register') def register_plugin(): plugin.register(UrlRewriteFuzer, 'fuzer', interfaces=['search'], api_ver=2)
py
1a4936b5af64638c1cb60f13def88a6f9a9d4c8b
"""Progress bars for SDGym compatible with logging and dask.""" import io import logging from datetime import datetime, timedelta LOGGER = logging.getLogger(__name__) class TqdmLogger(io.StringIO): _buffer = '' def write(self, buf): self._buffer = buf.strip('\r\n\t ') def flush(self): LOGGER.info(self._buffer) def progress(*futures): """Track progress of dask computation in a remote cluster. LogProgressBar is defined inside here to avoid having to import its dependencies if not used. """ # Import distributed only when used from distributed.client import futures_of # pylint: disable=C0415 from distributed.diagnostics.progressbar import TextProgressBar # pylint: disable=c0415 class LogProgressBar(TextProgressBar): """Dask progress bar based on logging instead of stdout.""" last = 0 logger = logging.getLogger('distributed') def _draw_bar(self, remaining, all, **kwargs): # pylint: disable=W0221,W0622 done = all - remaining frac = (done / all) if all else 0 if frac > self.last + 0.01: self.last = int(frac * 100) / 100 bar = "#" * int(self.width * frac) percent = int(100 * frac) time_per_task = self.elapsed / (all - remaining) remaining_time = timedelta(seconds=time_per_task * remaining) eta = datetime.utcnow() + remaining_time elapsed = timedelta(seconds=self.elapsed) msg = "[{0:<{1}}] | {2}/{3} ({4}%) Completed | {5} | {6} | {7}".format( bar, self.width, done, all, percent, elapsed, remaining_time, eta ) self.logger.info(msg) LOGGER.info(msg) def _draw_stop(self, **kwargs): pass futures = futures_of(futures) if not isinstance(futures, (set, list)): futures = [futures] LogProgressBar(futures)
py
1a49374a2415ffe7e20cd98ddc67e8ad94b010ac
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class VirtualNetworkGatewaysOperations: """VirtualNetworkGatewaysOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_05_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _create_or_update_initial( self, resource_group_name: str, virtual_network_gateway_name: str, parameters: "models.VirtualNetworkGateway", **kwargs ) -> "models.VirtualNetworkGateway": cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkGateway"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'VirtualNetworkGateway') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('VirtualNetworkGateway', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('VirtualNetworkGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, virtual_network_gateway_name: str, parameters: "models.VirtualNetworkGateway", **kwargs ) -> AsyncLROPoller["models.VirtualNetworkGateway"]: """Creates or updates a virtual network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param parameters: Parameters supplied to create or update virtual network gateway operation. :type parameters: ~azure.mgmt.network.v2020_05_01.models.VirtualNetworkGateway :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VirtualNetworkGateway or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_05_01.models.VirtualNetworkGateway] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkGateway"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VirtualNetworkGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}'} # type: ignore async def get( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> "models.VirtualNetworkGateway": """Gets the specified virtual network gateway by resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VirtualNetworkGateway, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_05_01.models.VirtualNetworkGateway :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkGateway"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VirtualNetworkGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}'} # type: ignore async def begin_delete( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified virtual network gateway. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}'} # type: ignore async def _update_tags_initial( self, resource_group_name: str, virtual_network_gateway_name: str, parameters: "models.TagsObject", **kwargs ) -> Optional["models.VirtualNetworkGateway"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.VirtualNetworkGateway"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_tags_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('VirtualNetworkGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_tags_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}'} # type: ignore async def begin_update_tags( self, resource_group_name: str, virtual_network_gateway_name: str, parameters: "models.TagsObject", **kwargs ) -> AsyncLROPoller["models.VirtualNetworkGateway"]: """Updates a virtual network gateway tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param parameters: Parameters supplied to update virtual network gateway tags. :type parameters: ~azure.mgmt.network.v2020_05_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VirtualNetworkGateway or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_05_01.models.VirtualNetworkGateway] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkGateway"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._update_tags_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VirtualNetworkGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}'} # type: ignore def list( self, resource_group_name: str, **kwargs ) -> AsyncIterable["models.VirtualNetworkGatewayListResult"]: """Gets all virtual network gateways by resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either VirtualNetworkGatewayListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_05_01.models.VirtualNetworkGatewayListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkGatewayListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('VirtualNetworkGatewayListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways'} # type: ignore def list_connections( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> AsyncIterable["models.VirtualNetworkGatewayListConnectionsResult"]: """Gets all the connections in a virtual network gateway. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either VirtualNetworkGatewayListConnectionsResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_05_01.models.VirtualNetworkGatewayListConnectionsResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkGatewayListConnectionsResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_connections.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('VirtualNetworkGatewayListConnectionsResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_connections.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/connections'} # type: ignore async def _reset_initial( self, resource_group_name: str, virtual_network_gateway_name: str, gateway_vip: Optional[str] = None, **kwargs ) -> Optional["models.VirtualNetworkGateway"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.VirtualNetworkGateway"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self._reset_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if gateway_vip is not None: query_parameters['gatewayVip'] = self._serialize.query("gateway_vip", gateway_vip, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('VirtualNetworkGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _reset_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/reset'} # type: ignore async def begin_reset( self, resource_group_name: str, virtual_network_gateway_name: str, gateway_vip: Optional[str] = None, **kwargs ) -> AsyncLROPoller["models.VirtualNetworkGateway"]: """Resets the primary of the virtual network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param gateway_vip: Virtual network gateway vip address supplied to the begin reset of the active-active feature enabled gateway. :type gateway_vip: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VirtualNetworkGateway or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_05_01.models.VirtualNetworkGateway] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkGateway"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._reset_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, gateway_vip=gateway_vip, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VirtualNetworkGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_reset.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/reset'} # type: ignore async def _reset_vpn_client_shared_key_initial( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self._reset_vpn_client_shared_key_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _reset_vpn_client_shared_key_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/resetvpnclientsharedkey'} # type: ignore async def begin_reset_vpn_client_shared_key( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> AsyncLROPoller[None]: """Resets the VPN client shared key of the virtual network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._reset_vpn_client_shared_key_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_reset_vpn_client_shared_key.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/resetvpnclientsharedkey'} # type: ignore async def _generatevpnclientpackage_initial( self, resource_group_name: str, virtual_network_gateway_name: str, parameters: "models.VpnClientParameters", **kwargs ) -> Optional[str]: cls = kwargs.pop('cls', None) # type: ClsType[Optional[str]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._generatevpnclientpackage_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'VpnClientParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _generatevpnclientpackage_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/generatevpnclientpackage'} # type: ignore async def begin_generatevpnclientpackage( self, resource_group_name: str, virtual_network_gateway_name: str, parameters: "models.VpnClientParameters", **kwargs ) -> AsyncLROPoller[str]: """Generates VPN client package for P2S client of the virtual network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param parameters: Parameters supplied to the generate virtual network gateway VPN client package operation. :type parameters: ~azure.mgmt.network.v2020_05_01.models.VpnClientParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either str or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[str] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[str] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._generatevpnclientpackage_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_generatevpnclientpackage.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/generatevpnclientpackage'} # type: ignore async def _generate_vpn_profile_initial( self, resource_group_name: str, virtual_network_gateway_name: str, parameters: "models.VpnClientParameters", **kwargs ) -> Optional[str]: cls = kwargs.pop('cls', None) # type: ClsType[Optional[str]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._generate_vpn_profile_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'VpnClientParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _generate_vpn_profile_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/generatevpnprofile'} # type: ignore async def begin_generate_vpn_profile( self, resource_group_name: str, virtual_network_gateway_name: str, parameters: "models.VpnClientParameters", **kwargs ) -> AsyncLROPoller[str]: """Generates VPN profile for P2S client of the virtual network gateway in the specified resource group. Used for IKEV2 and radius based authentication. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param parameters: Parameters supplied to the generate virtual network gateway VPN client package operation. :type parameters: ~azure.mgmt.network.v2020_05_01.models.VpnClientParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either str or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[str] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[str] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._generate_vpn_profile_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_generate_vpn_profile.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/generatevpnprofile'} # type: ignore async def _get_vpn_profile_package_url_initial( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> Optional[str]: cls = kwargs.pop('cls', None) # type: ClsType[Optional[str]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self._get_vpn_profile_package_url_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_vpn_profile_package_url_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getvpnprofilepackageurl'} # type: ignore async def begin_get_vpn_profile_package_url( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> AsyncLROPoller[str]: """Gets pre-generated VPN profile for P2S client of the virtual network gateway in the specified resource group. The profile needs to be generated first using generateVpnProfile. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either str or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[str] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[str] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._get_vpn_profile_package_url_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_vpn_profile_package_url.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getvpnprofilepackageurl'} # type: ignore async def _get_bgp_peer_status_initial( self, resource_group_name: str, virtual_network_gateway_name: str, peer: Optional[str] = None, **kwargs ) -> Optional["models.BgpPeerStatusListResult"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.BgpPeerStatusListResult"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self._get_bgp_peer_status_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if peer is not None: query_parameters['peer'] = self._serialize.query("peer", peer, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('BgpPeerStatusListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_bgp_peer_status_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getBgpPeerStatus'} # type: ignore async def begin_get_bgp_peer_status( self, resource_group_name: str, virtual_network_gateway_name: str, peer: Optional[str] = None, **kwargs ) -> AsyncLROPoller["models.BgpPeerStatusListResult"]: """The GetBgpPeerStatus operation retrieves the status of all BGP peers. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param peer: The IP address of the peer to retrieve the status of. :type peer: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either BgpPeerStatusListResult or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_05_01.models.BgpPeerStatusListResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.BgpPeerStatusListResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._get_bgp_peer_status_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, peer=peer, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('BgpPeerStatusListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_bgp_peer_status.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getBgpPeerStatus'} # type: ignore async def supported_vpn_devices( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> str: """Gets a xml format representation for supported vpn devices. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self.supported_vpn_devices.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized supported_vpn_devices.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/supportedvpndevices'} # type: ignore async def _get_learned_routes_initial( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> Optional["models.GatewayRouteListResult"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.GatewayRouteListResult"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self._get_learned_routes_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('GatewayRouteListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_learned_routes_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getLearnedRoutes'} # type: ignore async def begin_get_learned_routes( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> AsyncLROPoller["models.GatewayRouteListResult"]: """This operation retrieves a list of routes the virtual network gateway has learned, including routes learned from BGP peers. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either GatewayRouteListResult or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_05_01.models.GatewayRouteListResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.GatewayRouteListResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._get_learned_routes_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('GatewayRouteListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_learned_routes.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getLearnedRoutes'} # type: ignore async def _get_advertised_routes_initial( self, resource_group_name: str, virtual_network_gateway_name: str, peer: str, **kwargs ) -> Optional["models.GatewayRouteListResult"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.GatewayRouteListResult"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self._get_advertised_routes_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['peer'] = self._serialize.query("peer", peer, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('GatewayRouteListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_advertised_routes_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getAdvertisedRoutes'} # type: ignore async def begin_get_advertised_routes( self, resource_group_name: str, virtual_network_gateway_name: str, peer: str, **kwargs ) -> AsyncLROPoller["models.GatewayRouteListResult"]: """This operation retrieves a list of routes the virtual network gateway is advertising to the specified peer. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param peer: The IP address of the peer. :type peer: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either GatewayRouteListResult or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_05_01.models.GatewayRouteListResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.GatewayRouteListResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._get_advertised_routes_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, peer=peer, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('GatewayRouteListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_advertised_routes.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getAdvertisedRoutes'} # type: ignore async def _set_vpnclient_ipsec_parameters_initial( self, resource_group_name: str, virtual_network_gateway_name: str, vpnclient_ipsec_params: "models.VpnClientIPsecParameters", **kwargs ) -> Optional["models.VpnClientIPsecParameters"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.VpnClientIPsecParameters"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._set_vpnclient_ipsec_parameters_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(vpnclient_ipsec_params, 'VpnClientIPsecParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('VpnClientIPsecParameters', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _set_vpnclient_ipsec_parameters_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/setvpnclientipsecparameters'} # type: ignore async def begin_set_vpnclient_ipsec_parameters( self, resource_group_name: str, virtual_network_gateway_name: str, vpnclient_ipsec_params: "models.VpnClientIPsecParameters", **kwargs ) -> AsyncLROPoller["models.VpnClientIPsecParameters"]: """The Set VpnclientIpsecParameters operation sets the vpnclient ipsec policy for P2S client of virtual network gateway in the specified resource group through Network resource provider. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param vpnclient_ipsec_params: Parameters supplied to the Begin Set vpnclient ipsec parameters of Virtual Network Gateway P2S client operation through Network resource provider. :type vpnclient_ipsec_params: ~azure.mgmt.network.v2020_05_01.models.VpnClientIPsecParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VpnClientIPsecParameters or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_05_01.models.VpnClientIPsecParameters] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.VpnClientIPsecParameters"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._set_vpnclient_ipsec_parameters_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, vpnclient_ipsec_params=vpnclient_ipsec_params, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VpnClientIPsecParameters', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_set_vpnclient_ipsec_parameters.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/setvpnclientipsecparameters'} # type: ignore async def _get_vpnclient_ipsec_parameters_initial( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> "models.VpnClientIPsecParameters": cls = kwargs.pop('cls', None) # type: ClsType["models.VpnClientIPsecParameters"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self._get_vpnclient_ipsec_parameters_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VpnClientIPsecParameters', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_vpnclient_ipsec_parameters_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getvpnclientipsecparameters'} # type: ignore async def begin_get_vpnclient_ipsec_parameters( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> AsyncLROPoller["models.VpnClientIPsecParameters"]: """The Get VpnclientIpsecParameters operation retrieves information about the vpnclient ipsec policy for P2S client of virtual network gateway in the specified resource group through Network resource provider. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The virtual network gateway name. :type virtual_network_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VpnClientIPsecParameters or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_05_01.models.VpnClientIPsecParameters] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.VpnClientIPsecParameters"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._get_vpnclient_ipsec_parameters_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VpnClientIPsecParameters', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_vpnclient_ipsec_parameters.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getvpnclientipsecparameters'} # type: ignore async def vpn_device_configuration_script( self, resource_group_name: str, virtual_network_gateway_connection_name: str, parameters: "models.VpnDeviceScriptParameters", **kwargs ) -> str: """Gets a xml format representation for vpn device configuration script. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_connection_name: The name of the virtual network gateway connection for which the configuration script is generated. :type virtual_network_gateway_connection_name: str :param parameters: Parameters supplied to the generate vpn device script operation. :type parameters: ~azure.mgmt.network.v2020_05_01.models.VpnDeviceScriptParameters :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.vpn_device_configuration_script.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayConnectionName': self._serialize.url("virtual_network_gateway_connection_name", virtual_network_gateway_connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'VpnDeviceScriptParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized vpn_device_configuration_script.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/connections/{virtualNetworkGatewayConnectionName}/vpndeviceconfigurationscript'} # type: ignore async def _start_packet_capture_initial( self, resource_group_name: str, virtual_network_gateway_name: str, parameters: Optional["models.VpnPacketCaptureStartParameters"] = None, **kwargs ) -> Optional[str]: cls = kwargs.pop('cls', None) # type: ClsType[Optional[str]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._start_packet_capture_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if parameters is not None: body_content = self._serialize.body(parameters, 'VpnPacketCaptureStartParameters') else: body_content = None body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _start_packet_capture_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/startPacketCapture'} # type: ignore async def begin_start_packet_capture( self, resource_group_name: str, virtual_network_gateway_name: str, parameters: Optional["models.VpnPacketCaptureStartParameters"] = None, **kwargs ) -> AsyncLROPoller[str]: """Starts packet capture on virtual network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param parameters: Virtual network gateway packet capture parameters supplied to start packet capture on gateway. :type parameters: ~azure.mgmt.network.v2020_05_01.models.VpnPacketCaptureStartParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either str or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[str] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[str] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._start_packet_capture_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_start_packet_capture.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/startPacketCapture'} # type: ignore async def _stop_packet_capture_initial( self, resource_group_name: str, virtual_network_gateway_name: str, parameters: "models.VpnPacketCaptureStopParameters", **kwargs ) -> Optional[str]: cls = kwargs.pop('cls', None) # type: ClsType[Optional[str]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._stop_packet_capture_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'VpnPacketCaptureStopParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _stop_packet_capture_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/stopPacketCapture'} # type: ignore async def begin_stop_packet_capture( self, resource_group_name: str, virtual_network_gateway_name: str, parameters: "models.VpnPacketCaptureStopParameters", **kwargs ) -> AsyncLROPoller[str]: """Stops packet capture on virtual network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param parameters: Virtual network gateway packet capture parameters supplied to stop packet capture on gateway. :type parameters: ~azure.mgmt.network.v2020_05_01.models.VpnPacketCaptureStopParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either str or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[str] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[str] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._stop_packet_capture_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_stop_packet_capture.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/stopPacketCapture'} # type: ignore async def _get_vpnclient_connection_health_initial( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> Optional["models.VpnClientConnectionHealthDetailListResult"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.VpnClientConnectionHealthDetailListResult"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self._get_vpnclient_connection_health_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('VpnClientConnectionHealthDetailListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_vpnclient_connection_health_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getVpnClientConnectionHealth'} # type: ignore async def begin_get_vpnclient_connection_health( self, resource_group_name: str, virtual_network_gateway_name: str, **kwargs ) -> AsyncLROPoller["models.VpnClientConnectionHealthDetailListResult"]: """Get VPN client connection health detail per P2S client connection of the virtual network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VpnClientConnectionHealthDetailListResult or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_05_01.models.VpnClientConnectionHealthDetailListResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.VpnClientConnectionHealthDetailListResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._get_vpnclient_connection_health_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VpnClientConnectionHealthDetailListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_vpnclient_connection_health.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getVpnClientConnectionHealth'} # type: ignore async def _disconnect_virtual_network_gateway_vpn_connections_initial( self, resource_group_name: str, virtual_network_gateway_name: str, request: "models.P2SVpnConnectionRequest", **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._disconnect_virtual_network_gateway_vpn_connections_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(request, 'P2SVpnConnectionRequest') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _disconnect_virtual_network_gateway_vpn_connections_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/disconnectVirtualNetworkGatewayVpnConnections'} # type: ignore async def begin_disconnect_virtual_network_gateway_vpn_connections( self, resource_group_name: str, virtual_network_gateway_name: str, request: "models.P2SVpnConnectionRequest", **kwargs ) -> AsyncLROPoller[None]: """Disconnect vpn connections of virtual network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param request: The parameters are supplied to disconnect vpn connections. :type request: ~azure.mgmt.network.v2020_05_01.models.P2SVpnConnectionRequest :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._disconnect_virtual_network_gateway_vpn_connections_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, request=request, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_disconnect_virtual_network_gateway_vpn_connections.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/disconnectVirtualNetworkGatewayVpnConnections'} # type: ignore
py
1a493761fc46af2782d9c2900c252ca2b0f074d9
import pickle import itertools import os import math from sklearn.preprocessing import normalize import re from operator import add import matplotlib.pyplot as plt #%matplotlib inline import numpy as np import argparse import pylab as pl import random def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def normalize_by_row(arr): row_sums = np.sqrt((arr*arr).sum(axis=1)) new_arr = arr / row_sums[:, np.newaxis] return new_arr def grep(pat, txt, ind): r = re.search(pat, txt) return int(r.group(1)) def compute_embds_matrix(path, M): pkls = [] for root, dirs, files in os.walk(path): if len(files) != 0: pkls.extend([os.path.join(root, file) for file in files if file.endswith('.pkl')]) pkls.sort(key=lambda txt: grep(r"(\d+)_(\d+)\.pkl", txt, 1)) #print(pkls) A_lst = [] for pkl in pkls: print(pkl) with open(pkl, 'rb') as handle: samples = pickle.load(handle) #keys = list(samples.keys()) #keys.sort(key=lambda txt: grep(r"(\d+)\.png", txt, 1)) #samples = [samples[key] for key in keys] chunks = [normalize(np.asarray(samples[i:i+M]), axis=1, norm='l2') for i in range(0, len(samples), M)] #print(chunks[0].shape) #print(len(chunks)) A_lst.extend(chunks) return A_lst def monte_carlo(A_lst, I0, N, d): Count = 0 for i in range(N): #print('i={}'.format(i)) Ai = A_lst[i] #print(I0) AiT = np.transpose(Ai) #print(np.matmul(I0, AiT)) theta_mat = np.arccos(np.matmul(I0, AiT)) / math.pi theta_mat = theta_mat - np.ones(theta_mat.shape)*d Count += np.sum(theta_mat <= 0) #Pr += np.sum(np.exp(1-np.arccos(np.matmul(I0, AiT)) / math.pi)) return Count if __name__ == "__main__": parser = argparse.ArgumentParser(description='Sampling nearest neighbors') parser.add_argument('--start', required=True, help='Start of the distance hard threshold', type=float) parser.add_argument('--end', required=True, help='End of the distance hard threshold', type=float) parser.add_argument('--step_size', required=True, help='Step size of the distance hard threshold', type=float) parser.add_argument('--job_id', required=True, help='The id of the submitted job', type=str) parser.add_argument('--sampling_path', required=True, help='The path of the saved embeddings', type=str) parser.add_argument('--M', default=10000, help='The dimension of the tiled matrix', type=int) parser.add_argument('--N', default=100, help='The number of tiled matrix', type=int) parser.add_argument('--K', default=100, help='The number of anchor points', type=int) parser.add_argument('--random_anchor', required=True, help='Whether we should get the anchor points by randomly sampling', type=str2bool) args, other_args = parser.parse_known_args() M = args.M N = args.N path = os.path.join(args.sampling_path, 'embds') anchor_pt_dct = {} if args.random_anchor: indices = random.sample(range(M * N), args.K) else: with open(os.path.join(args.sampling_path, 'neighbors', 'clustered_indices.pkl'), 'rb') as handle: indices = pickle.load(handle) print('Loading indices from saved pickle file') print(indices) for i in indices: pkl_dir = os.path.join(path, '{}_{}'.format((i // 1000000)*1000000, (i // 1000000 + 1)*1000000), '{}_{}.pkl'.format((i // 10000)*10000, (i // 10000 + 1)*10000)) with open(pkl_dir, 'rb') as handle: pkl = pickle.load(handle) vec = pkl[i % 10000] anchor_pt_dct[i] = vec / np.linalg.norm(vec) ripley_dir = os.path.join(args.sampling_path, 'ripley') if not os.path.exists(ripley_dir): os.makedirs(ripley_dir) A_lst = compute_embds_matrix(path, M) file = open(os.path.join(ripley_dir, 'ripley_{}.txt'.format(args.job_id)), 'w') for d in list(pl.frange(args.start,args.end,args.step_size)): for k,v in anchor_pt_dct.items(): print(d) v = v / np.linalg.norm(v) v = v[np.newaxis,:] count = monte_carlo(A_lst, v, N, d) #Pr = (monte_carlo(A_lst, v, N)-10000000)/((np.e-1)*10000000) result = '{}:\t{}:{}'.format(k, d, count) print(result) file.write(result+'\n') file.close()
py
1a49383eb169544c7eaed72080d81f4b9631bb6a
from typing import Dict import pytest import great_expectations.exceptions.exceptions as ge_exceptions from great_expectations.data_context import DataContext from great_expectations.execution_engine.execution_engine import MetricDomainTypes from great_expectations.rule_based_profiler.helpers.util import ( get_parameter_value_and_validate_return_type, ) from great_expectations.rule_based_profiler.parameter_builder import ( SimpleDateFormatStringParameterBuilder, ) from great_expectations.rule_based_profiler.parameter_builder.simple_date_format_string_parameter_builder import ( DEFAULT_CANDIDATE_STRINGS, ) from great_expectations.rule_based_profiler.types import Domain, ParameterContainer def test_simple_date_format_parameter_builder_instantiation( alice_columnar_table_single_batch_context, ): data_context: DataContext = alice_columnar_table_single_batch_context date_format_string_parameter: SimpleDateFormatStringParameterBuilder = ( SimpleDateFormatStringParameterBuilder( name="my_simple_date_format_string_parameter_builder", data_context=data_context, ) ) assert date_format_string_parameter.threshold == 1.0 assert date_format_string_parameter.candidate_strings == DEFAULT_CANDIDATE_STRINGS def test_simple_date_format_parameter_builder_zero_batch_id_error( alice_columnar_table_single_batch_context, ): data_context: DataContext = alice_columnar_table_single_batch_context date_format_string_parameter: SimpleDateFormatStringParameterBuilder = ( SimpleDateFormatStringParameterBuilder( name="my_simple_date_format_string_parameter_builder", data_context=data_context, ) ) domain: Domain = Domain(domain_type=MetricDomainTypes.COLUMN) parameter_container: ParameterContainer = ParameterContainer(parameter_nodes=None) parameters: Dict[str, ParameterContainer] = { domain.id: parameter_container, } with pytest.raises(ge_exceptions.ProfilerExecutionError) as e: date_format_string_parameter.build_parameters( domain=domain, parameters=parameters, ) assert ( str(e.value) == "Utilizing a SimpleDateFormatStringParameterBuilder requires a non-empty list of batch identifiers." ) def test_simple_date_format_parameter_builder_alice( alice_columnar_table_single_batch_context, ): data_context: DataContext = alice_columnar_table_single_batch_context batch_request: dict = { "datasource_name": "alice_columnar_table_single_batch_datasource", "data_connector_name": "alice_columnar_table_single_batch_data_connector", "data_asset_name": "alice_columnar_table_single_batch_data_asset", } metric_domain_kwargs = {"column": "event_ts"} date_format_string_parameter: SimpleDateFormatStringParameterBuilder = ( SimpleDateFormatStringParameterBuilder( name="my_date_format", metric_domain_kwargs=metric_domain_kwargs, batch_request=batch_request, data_context=data_context, ) ) assert date_format_string_parameter.candidate_strings == DEFAULT_CANDIDATE_STRINGS assert date_format_string_parameter._threshold == 1.0 domain: Domain = Domain( domain_type=MetricDomainTypes.COLUMN, domain_kwargs=metric_domain_kwargs ) parameter_container: ParameterContainer = ParameterContainer(parameter_nodes=None) parameters: Dict[str, ParameterContainer] = { domain.id: parameter_container, } assert parameter_container.parameter_nodes is None date_format_string_parameter.build_parameters( domain=domain, parameters=parameters, ) # noinspection PyTypeChecker assert len(parameter_container.parameter_nodes) == 1 fully_qualified_parameter_name_for_value: str = "$parameter.my_date_format" expected_value: dict = { "value": "%Y-%m-%d %H:%M:%S", "details": { "success_ratio": 1.0, "candidate_strings": { "%Y-%m-%d %H:%M:%S": 1.0, "%y/%m/%d %H:%M:%S": 0.0, "%y/%m/%d": 0.0, "%y-%m-%d %H:%M:%S,%f %z": 0.0, "%y-%m-%d %H:%M:%S,%f": 0.0, "%y-%m-%d %H:%M:%S": 0.0, "%y-%m-%d": 0.0, "%y%m%d %H:%M:%S": 0.0, "%m/%d/%y*%H:%M:%S": 0.0, "%m/%d/%y %H:%M:%S %z": 0.0, "%m/%d/%Y*%H:%M:%S*%f": 0.0, "%m/%d/%Y*%H:%M:%S": 0.0, "%m/%d/%Y %H:%M:%S %z": 0.0, "%m/%d/%Y %H:%M:%S %p:%f": 0.0, "%m/%d/%Y %H:%M:%S %p": 0.0, "%m/%d/%Y": 0.0, "%m-%d-%Y": 0.0, "%m%d_%H:%M:%S.%f": 0.0, "%m%d_%H:%M:%S": 0.0, "%d/%m/%Y": 0.0, "%d/%b/%Y:%H:%M:%S %z": 0.0, "%d/%b/%Y:%H:%M:%S": 0.0, "%d/%b/%Y %H:%M:%S": 0.0, "%d/%b %H:%M:%S,%f": 0.0, "%d-%m-%Y": 0.0, "%d-%b-%Y %H:%M:%S.%f": 0.0, "%d-%b-%Y %H:%M:%S": 0.0, "%d %b %Y %H:%M:%S*%f": 0.0, "%d %b %Y %H:%M:%S": 0.0, "%b %d, %Y %H:%M:%S %p": 0.0, "%b %d %Y %H:%M:%S": 0.0, "%b %d %H:%M:%S %z %Y": 0.0, "%b %d %H:%M:%S %z": 0.0, "%b %d %H:%M:%S %Y": 0.0, "%b %d %H:%M:%S": 0.0, "%Y/%m/%d*%H:%M:%S": 0.0, "%Y/%m/%d": 0.0, "%Y-%m-%dT%z": 0.0, "%Y-%m-%d*%H:%M:%S:%f": 0.0, "%Y-%m-%d*%H:%M:%S": 0.0, "%Y-%m-%d'T'%H:%M:%S.%f'%z'": 0.0, "%Y-%m-%d'T'%H:%M:%S.%f": 0.0, "%Y-%m-%d'T'%H:%M:%S'%z'": 0.0, "%Y-%m-%d'T'%H:%M:%S%z": 0.0, "%Y-%m-%d'T'%H:%M:%S": 0.0, "%Y-%m-%d %H:%M:%S.%f%z": 0.0, "%Y-%m-%d %H:%M:%S.%f": 0.0, "%Y-%m-%d %H:%M:%S,%f%z": 0.0, "%Y-%m-%d %H:%M:%S,%f": 0.0, "%Y-%m-%d %H:%M:%S%z": 0.0, "%Y-%m-%d %H:%M:%S %z": 0.0, "%Y-%m-%d": 0.0, "%Y%m%d %H:%M:%S.%f": 0.0, "%Y %b %d %H:%M:%S.%f*%Z": 0.0, "%Y %b %d %H:%M:%S.%f %Z": 0.0, "%Y %b %d %H:%M:%S.%f": 0.0, "%H:%M:%S.%f": 0.0, "%H:%M:%S,%f": 0.0, "%H:%M:%S": 0.0, }, }, } actual_value: dict = get_parameter_value_and_validate_return_type( parameter_reference=fully_qualified_parameter_name_for_value, expected_return_type=dict, domain=domain, parameters=parameters, ) assert actual_value == expected_value def test_simple_date_format_parameter_builder_bobby( bobby_columnar_table_multi_batch_deterministic_data_context, ): data_context: DataContext = ( bobby_columnar_table_multi_batch_deterministic_data_context ) metric_domain_kwargs: dict = {"column": "pickup_datetime"} candidate_strings: list[str] = [ "%Y-%m-%d", "%Y-%m-%d %H:%M:%S", ] threshold: float = 0.9 batch_request: dict = { "datasource_name": "taxi_pandas", "data_connector_name": "monthly", "data_asset_name": "my_reports", } date_format_string_parameter: SimpleDateFormatStringParameterBuilder = ( SimpleDateFormatStringParameterBuilder( name="my_simple_date_format_string_parameter_builder", metric_domain_kwargs=metric_domain_kwargs, candidate_strings=candidate_strings, threshold=threshold, batch_request=batch_request, data_context=data_context, ) ) assert date_format_string_parameter._candidate_strings == set(candidate_strings) assert date_format_string_parameter._threshold == 0.9 domain: Domain = Domain( domain_type=MetricDomainTypes.COLUMN, domain_kwargs=metric_domain_kwargs ) parameter_container: ParameterContainer = ParameterContainer(parameter_nodes=None) parameters: Dict[str, ParameterContainer] = { domain.id: parameter_container, } assert parameter_container.parameter_nodes is None date_format_string_parameter.build_parameters( domain=domain, parameters=parameters, ) assert ( parameter_container.parameter_nodes is None or len(parameter_container.parameter_nodes) == 1 ) fully_qualified_parameter_name_for_value: str = ( "$parameter.my_simple_date_format_string_parameter_builder.value" ) expected_value: str = "%Y-%m-%d %H:%M:%S" actual_value: str = get_parameter_value_and_validate_return_type( parameter_reference=fully_qualified_parameter_name_for_value, expected_return_type=str, domain=domain, parameters=parameters, ) assert actual_value == expected_value fully_qualified_parameter_name_for_meta: str = ( "$parameter.my_simple_date_format_string_parameter_builder.details" ) expected_meta: dict = { "success_ratio": 1.0, "candidate_strings": {"%Y-%m-%d": 0.0, "%Y-%m-%d %H:%M:%S": 1.0}, } meta: dict = get_parameter_value_and_validate_return_type( parameter_reference=fully_qualified_parameter_name_for_meta, expected_return_type=dict, domain=domain, parameters=parameters, ) assert meta == expected_meta
py
1a49384db1912b95569dbec1fa38f95acf55ceaf
# # This is Seisflows # # See LICENCE file # ############################################################################### # Import system modules import system import subprocess from glob import glob from os.path import join import sys # Import Numpy import numpy as np # Local imports import seisflows.plugins.solver.specfem3d_globe as solvertools from seisflows.tools.seismic import getpar, setpar, Minmax # from seisflows.plugins.io import loadbypar, copybin, loadbin, savebin from seisflows.tools import unix from seisflows.tools.seismic import call_solver from seisflows.tools.tools import Struct, exists from seisflows.config import ParameterError, custom_import try: PAR = sys.modules['seisflows_parameters'] PATH = sys.modules['seisflows_paths'] except: print("Check parameters and paths.") class specfem3d_globe(custom_import('solver', 'base')): """ Python interface for SPECFEM3D_GLOBE See base class for method descriptions """ try: if PAR.MATERIALS in ['Isotropic']: parameters = [] parameters += ['vp'] parameters += ['vs'] else: parameters = [] parameters += ['vpv'] parameters += ['vph'] parameters += ['vsv'] parameters += ['vsh'] parameters += ['eta'] except: print("Check parameters and paths.") def check(self): """ Checks parameters and paths """ super(specfem3d_globe, self).check() if 'CHANNELS' not in PAR: setattr(PAR, 'CHANNELS', 'ENZ') # check data format if 'FORMAT' not in PAR: raise Exception() def generate_data(self, **model_kwargs): """ Generates data """ self.generate_mesh(**model_kwargs) unix.cd(self.cwd) setpar('SIMULATION_TYPE', '1') setpar('SAVE_FORWARD', '.true.') call_solver(system.mpiexec(), 'bin/xspecfem3D') if PAR.FORMAT in ['ASCII', 'ascii']: src = glob('OUTPUT_FILES/*.sem.ascii') dst = 'traces/obs' unix.mv(src, dst) if PAR.SAVETRACES: self.export_traces(PATH.OUTPUT+'/'+'traces/obs') def generate_mesh(self, model_path=None, model_name=None, model_type='gll'): """ Performs meshing and database generation """ assert(model_name) assert(model_type) self.initialize_solver_directories() unix.cd(self.cwd) if model_type == 'gll': assert (exists(model_path)) self.check_mesh_properties(model_path) unix.cp(glob(model_path + '/' + '*'), self.model_databases) call_solver(system.mpiexec(), 'bin/xmeshfem3D') if self.taskid == 0: self.export_model(PATH.OUTPUT + '/' + model_name) else: raise NotImplementedError # Model input/output def load(self, path, prefix='reg1_', suffix='', verbose=False): """ reads SPECFEM model or kernel Models are stored in Fortran binary format and separated into multiple files according to material parameter and processor rank. """ raise NotImplementedError model = Model(self.parameters) minmax = Minmax(self.parameters) for iproc in range(self.mesh_properties.nproc): # read database files keys, vals = loadbypar(path, self.parameters, iproc, prefix, suffix) for key, val in zip(keys, vals): model[key] += [val] minmax.update(keys, vals) if verbose: minmax.write(path, logpath=PATH.SUBMIT) return model def save(self, path, model, prefix='reg1_', suffix=''): """ writes SPECFEM3D_GLOBE transerverly isotropic model """ unix.mkdir(path) for iproc in range(self.mesh_properties.nproc): for key in ['vpv', 'vph', 'vsv', 'vsh', 'eta']: if key in self.parameters: savebin(model[key][iproc], path, iproc, prefix+key+suffix) elif 'kernel' in suffix: pass else: src = PATH.OUTPUT + '/' + 'model_init' dst = path copybin(src, dst, iproc, prefix+key+suffix) if 'rho' in self.parameters: savebin(model['rho'][iproc], path, iproc, prefix+'rho'+suffix) elif 'kernel' in suffix: pass else: src = PATH.OUTPUT + '/' + 'model_init' dst = path copybin(src, dst, iproc, prefix+'rho'+suffix) # Low-level solver interface def forward(self, path='traces/syn'): """ Calls SPECFEM3D_GLOBE forward solver """ solvertools.setpar('SIMULATION_TYPE', '1') solvertools.setpar('SAVE_FORWARD', '.true.') call_solver(system.mpiexec(), 'bin/xspecfem3D') if PAR.FORMAT in ['ASCII', 'ascii']: src = glob('OUTPUT_FILES/*.sem.ascii') dst = path unix.mv(src, dst) def adjoint(self): """ Calls SPECFEM3D_GLOBE adjoint solver """ solvertools.setpar('SIMULATION_TYPE', '3') solvertools.setpar('SAVE_FORWARD', '.false.') unix.rm('SEM') unix.ln('traces/adj', 'SEM') call_solver(system.mpiexec(), 'bin/xspecfem3D') def check_mesh_properties(self, path=None, parameters=None): if not hasattr(self, '_mesh_properties'): if not path: path = PATH.MODEL_INIT if not parameters: parameters = self.parameters nproc = 0 ngll = [] while True: dummy = loadbin(path, nproc, 'reg1_'+parameters[0]) ngll += [len(dummy)] nproc += 1 if not exists('%s/proc%06d_reg1_%s.bin' % (path, nproc, parameters[0])): break self._mesh_properties = Struct([ ['nproc', nproc], ['ngll', ngll]]) return self._mesh_properties def rename_data(self): """ Works around conflicting data filename conventions """ files = glob(self.cwd + '/' + 'traces/adj/*sem.ascii') unix.rename('sem.ascii', 'sem.ascii.adj', files) def initialize_adjoint_traces(self): super(specfem3d_globe, self).initialize_adjoint_traces() # workaround for SPECFEM2D's use of different name conventions for # regular traces and 'adjoint' traces if PAR.FORMAT in ['ASCII', 'ascii']: files = glob(self.cwd + '/' + 'traces/adj/*sem.ascii') unix.rename('sem.ascii', 'adj', files) # Miscellaneous @property def data_filenames(self): unix.cd(self.cwd) unix.cd('traces/obs') print('made it here') if PAR.FORMAT in ['ASCII', 'ascii']: filenames = [] for channel in PAR.CHANNELS: filenames += glob('*.??%s.sem.ascii' % channel) return [filenames] @property def kernel_databases(self): return join(self.cwd, 'OUTPUT_FILES/DATABASES_MPI') @property def model_databases(self): return join(self.cwd, 'OUTPUT_FILES/DATABASES_MPI') @property def source_prefix(self): return 'CMTSOLUTION'
py
1a49388d8124395680c44ed00c41aa89df03a7df
""" DataFrame --------- An efficient 2D container for potentially mixed-type time series or other labeled data series. Similar to its R counterpart, data.frame, except providing automatic data alignment and a host of useful data manipulation methods having to do with the labeling information """ import collections from collections import abc from io import StringIO import itertools import sys from textwrap import dedent from typing import ( IO, TYPE_CHECKING, Any, FrozenSet, Hashable, Iterable, List, Optional, Sequence, Set, Tuple, Type, Union, cast, ) import warnings import numpy as np import numpy.ma as ma from pandas._config import get_option from pandas._libs import algos as libalgos, lib from pandas._typing import Axes, Axis, Dtype, FilePathOrBuffer, Level, Renamer from pandas.compat import PY37 from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, deprecate_kwarg, rewrite_axis_style_signature, ) from pandas.util._validators import ( validate_axis_style_args, validate_bool_kwarg, validate_percentile, ) from pandas.core.dtypes.cast import ( cast_scalar_to_array, coerce_to_dtypes, find_common_type, infer_dtype_from_scalar, invalidate_string_dtypes, maybe_cast_to_datetime, maybe_convert_platform, maybe_downcast_to_dtype, maybe_infer_to_datetimelike, maybe_upcast, maybe_upcast_putmask, ) from pandas.core.dtypes.common import ( ensure_float64, ensure_int64, ensure_platform_int, infer_dtype_from_object, is_bool_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_iterator, is_list_like, is_named_tuple, is_object_dtype, is_scalar, is_sequence, needs_i8_conversion, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndexClass, ABCMultiIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna, notna from pandas.core import algorithms, common as com, nanops, ops from pandas.core.accessor import CachedAccessor from pandas.core.arrays import Categorical, ExtensionArray from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin as DatetimeLikeArray from pandas.core.arrays.sparse import SparseFrameAccessor from pandas.core.generic import NDFrame, _shared_docs from pandas.core.indexes import base as ibase from pandas.core.indexes.api import Index, ensure_index, ensure_index_from_sequences from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.multi import maybe_droplevels from pandas.core.indexes.period import PeriodIndex from pandas.core.indexing import check_bool_indexer, convert_to_index_sliceable from pandas.core.internals import BlockManager from pandas.core.internals.construction import ( arrays_to_mgr, get_names_from_index, init_dict, init_ndarray, masked_rec_array_to_mgr, reorder_arrays, sanitize_index, to_arrays, ) from pandas.core.ops.missing import dispatch_fill_zeros from pandas.core.series import Series from pandas.io.common import get_filepath_or_buffer from pandas.io.formats import console, format as fmt from pandas.io.formats.printing import pprint_thing import pandas.plotting if TYPE_CHECKING: from pandas.core.groupby.generic import DataFrameGroupBy from pandas.io.formats.style import Styler # --------------------------------------------------------------------- # Docstring templates _shared_doc_kwargs = dict( axes="index, columns", klass="DataFrame", axes_single_arg="{0 or 'index', 1 or 'columns'}", axis="""axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index': apply function to each column. If 1 or 'columns': apply function to each row.""", optional_by=""" by : str or list of str Name or list of names to sort by. - if `axis` is 0 or `'index'` then `by` may contain index levels and/or column labels. - if `axis` is 1 or `'columns'` then `by` may contain column levels and/or index labels. .. versionchanged:: 0.23.0 Allow specifying index or column level names.""", versionadded_to_excel="", optional_labels="""labels : array-like, optional New labels / index to conform the axis specified by 'axis' to.""", optional_axis="""axis : int or str, optional Axis to target. Can be either the axis name ('index', 'columns') or number (0, 1).""", ) _numeric_only_doc = """numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data """ _merge_doc = """ Merge DataFrame or named Series objects with a database-style join. The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters ----------%s right : DataFrame or named Series Object to merge with. how : {'left', 'right', 'outer', 'inner'}, default 'inner' Type of merge to be performed. * left: use only keys from left frame, similar to a SQL left outer join; preserve key order. * right: use only keys from right frame, similar to a SQL right outer join; preserve key order. * outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. * inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. on : label or list Column or index level names to join on. These must be found in both DataFrames. If `on` is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on : label or list, or array-like Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on : label or list, or array-like Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index : bool, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index : bool, default False Use the index from the right DataFrame as the join key. Same caveats as left_index. sort : bool, default False Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword). suffixes : tuple of (str, str), default ('_x', '_y') Suffix to apply to overlapping column names in the left and right side, respectively. To raise an exception on overlapping columns use (False, False). copy : bool, default True If False, avoid copy if possible. indicator : bool or str, default False If True, adds a column to output DataFrame called "_merge" with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of "left_only" for observations whose merge key only appears in 'left' DataFrame, "right_only" for observations whose merge key only appears in 'right' DataFrame, and "both" if the observation's merge key is found in both. validate : str, optional If specified, checks if merge is of specified type. * "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets. * "one_to_many" or "1:m": check if merge keys are unique in left dataset. * "many_to_one" or "m:1": check if merge keys are unique in right dataset. * "many_to_many" or "m:m": allowed, but does not result in checks. .. versionadded:: 0.21.0 Returns ------- DataFrame A DataFrame of the two merged objects. See Also -------- merge_ordered : Merge with optional filling/interpolation. merge_asof : Merge on nearest keys. DataFrame.join : Similar method using indices. Notes ----- Support for specifying index levels as the `on`, `left_on`, and `right_on` parameters was added in version 0.23.0 Support for merging named Series objects was added in version 0.24.0 Examples -------- >>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> df1.merge(df2, left_on='lkey', right_on='rkey') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', ... suffixes=('_left', '_right')) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False)) Traceback (most recent call last): ... ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object') """ # ----------------------------------------------------------------------- # DataFrame class class DataFrame(NDFrame): """ Two-dimensional, size-mutable, potentially heterogeneous tabular data. Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure. Parameters ---------- data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame Dict can contain Series, arrays, constants, or list-like objects. .. versionchanged:: 0.23.0 If data is a dict, column order follows insertion-order for Python 3.6 and later. .. versionchanged:: 0.25.0 If data is a list of dicts, column order follows insertion-order for Python 3.6 and later. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided. columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, ..., n) if no column labels are provided. dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer. copy : bool, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input. See Also -------- DataFrame.from_records : Constructor from tuples, also record arrays. DataFrame.from_dict : From dicts of Series, arrays, or dicts. read_csv read_table read_clipboard Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = pd.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from numpy ndarray: >>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), ... columns=['a', 'b', 'c']) >>> df2 a b c 0 1 2 3 1 4 5 6 2 7 8 9 """ _typ = "dataframe" @property def _constructor(self) -> Type["DataFrame"]: return DataFrame _constructor_sliced: Type[Series] = Series _deprecations: FrozenSet[str] = NDFrame._deprecations | frozenset([]) _accessors: Set[str] = {"sparse"} @property def _constructor_expanddim(self): raise NotImplementedError("Not supported for DataFrames!") # ---------------------------------------------------------------------- # Constructors def __init__( self, data=None, index: Optional[Axes] = None, columns: Optional[Axes] = None, dtype: Optional[Dtype] = None, copy: bool = False, ): if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, DataFrame): data = data._data if isinstance(data, BlockManager): mgr = self._init_mgr( data, axes=dict(index=index, columns=columns), dtype=dtype, copy=copy ) elif isinstance(data, dict): mgr = init_dict(data, index, columns, dtype=dtype) elif isinstance(data, ma.MaskedArray): import numpy.ma.mrecords as mrecords # masked recarray if isinstance(data, mrecords.MaskedRecords): mgr = masked_rec_array_to_mgr(data, index, columns, dtype, copy) # a masked array else: mask = ma.getmaskarray(data) if mask.any(): data, fill_value = maybe_upcast(data, copy=True) data.soften_mask() # set hardmask False if it was True data[mask] = fill_value else: data = data.copy() mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) elif isinstance(data, (np.ndarray, Series, Index)): if data.dtype.names: data_columns = list(data.dtype.names) data = {k: data[k] for k in data_columns} if columns is None: columns = data_columns mgr = init_dict(data, index, columns, dtype=dtype) elif getattr(data, "name", None) is not None: mgr = init_dict({data.name: data}, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) # For data is list-like, or Iterable (will consume into list) elif isinstance(data, abc.Iterable) and not isinstance(data, (str, bytes)): if not isinstance(data, (abc.Sequence, ExtensionArray)): data = list(data) if len(data) > 0: if is_list_like(data[0]) and getattr(data[0], "ndim", 1) == 1: if is_named_tuple(data[0]) and columns is None: columns = data[0]._fields arrays, columns = to_arrays(data, columns, dtype=dtype) columns = ensure_index(columns) # set the index if index is None: if isinstance(data[0], Series): index = get_names_from_index(data) elif isinstance(data[0], Categorical): index = ibase.default_index(len(data[0])) else: index = ibase.default_index(len(data)) mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) else: mgr = init_dict({}, index, columns, dtype=dtype) else: try: arr = np.array(data, dtype=dtype, copy=copy) except (ValueError, TypeError) as e: exc = TypeError( "DataFrame constructor called with " f"incompatible data and dtype: {e}" ) raise exc from e if arr.ndim == 0 and index is not None and columns is not None: values = cast_scalar_to_array( (len(index), len(columns)), data, dtype=dtype ) mgr = init_ndarray( values, index, columns, dtype=values.dtype, copy=False ) else: raise ValueError("DataFrame constructor not properly called!") NDFrame.__init__(self, mgr, fastpath=True) # ---------------------------------------------------------------------- @property def axes(self) -> List[Index]: """ Return a list representing the axes of the DataFrame. It has the row axis labels and column axis labels as the only members. They are returned in that order. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.axes [RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'], dtype='object')] """ return [self.index, self.columns] @property def shape(self) -> Tuple[int, int]: """ Return a tuple representing the dimensionality of the DataFrame. See Also -------- ndarray.shape Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self.index), len(self.columns) @property def _is_homogeneous_type(self) -> bool: """ Whether all the columns in a DataFrame have the same type. Returns ------- bool See Also -------- Index._is_homogeneous_type : Whether the object has a single dtype. MultiIndex._is_homogeneous_type : Whether all the levels of a MultiIndex have the same dtype. Examples -------- >>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type True >>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type False Items with the same type but different sizes are considered different types. >>> DataFrame({ ... "A": np.array([1, 2], dtype=np.int32), ... "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type False """ if self._data.any_extension_types: return len({block.dtype for block in self._data.blocks}) == 1 else: return not self._data.is_mixed_type # ---------------------------------------------------------------------- # Rendering Methods def _repr_fits_vertical_(self) -> bool: """ Check length against max_rows. """ max_rows = get_option("display.max_rows") return len(self) <= max_rows def _repr_fits_horizontal_(self, ignore_width: bool = False) -> bool: """ Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns. In case off non-interactive session, no boundaries apply. `ignore_width` is here so ipnb+HTML output can behave the way users expect. display.max_columns remains in effect. GH3541, GH3573 """ width, height = console.get_console_size() max_columns = get_option("display.max_columns") nb_columns = len(self.columns) # exceed max columns if (max_columns and nb_columns > max_columns) or ( (not ignore_width) and width and nb_columns > (width // 2) ): return False # used by repr_html under IPython notebook or scripts ignore terminal # dims if ignore_width or not console.in_interactive_session(): return True if get_option("display.width") is not None or console.in_ipython_frontend(): # check at least the column row for excessive width max_rows = 1 else: max_rows = get_option("display.max_rows") # when auto-detecting, so width=None and not in ipython front end # check whether repr fits horizontal by actually checking # the width of the rendered repr buf = StringIO() # only care about the stuff we'll actually print out # and to_string on entire frame may be expensive d = self if not (max_rows is None): # unlimited rows # min of two, where one may be None d = d.iloc[: min(max_rows, len(d))] else: return True d.to_string(buf=buf) value = buf.getvalue() repr_width = max(len(l) for l in value.split("\n")) return repr_width < width def _info_repr(self) -> bool: """ True if the repr should show the info view. """ info_repr_option = get_option("display.large_repr") == "info" return info_repr_option and not ( self._repr_fits_horizontal_() and self._repr_fits_vertical_() ) def __repr__(self) -> str: """ Return a string representation for a particular DataFrame. """ buf = StringIO("") if self._info_repr(): self.info(buf=buf) return buf.getvalue() max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") max_colwidth = get_option("display.max_colwidth") show_dimensions = get_option("display.show_dimensions") if get_option("display.expand_frame_repr"): width, _ = console.get_console_size() else: width = None self.to_string( buf=buf, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, line_width=width, max_colwidth=max_colwidth, show_dimensions=show_dimensions, ) return buf.getvalue() def _repr_html_(self) -> Optional[str]: """ Return a html representation for a particular DataFrame. Mainly for IPython notebook. """ if self._info_repr(): buf = StringIO("") self.info(buf=buf) # need to escape the <class>, should be the first line. val = buf.getvalue().replace("<", r"&lt;", 1) val = val.replace(">", r"&gt;", 1) return "<pre>" + val + "</pre>" if get_option("display.notebook_repr_html"): max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") formatter = fmt.DataFrameFormatter( self, columns=None, col_space=None, na_rep="NaN", formatters=None, float_format=None, sparsify=None, justify=None, index_names=True, header=True, index=True, bold_rows=True, escape=True, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=".", table_id=None, render_links=False, ) return formatter.to_html(notebook=True) else: return None @Substitution( header_type="bool or sequence", header="Write out the column names. If a list of strings " "is given, it is assumed to be aliases for the " "column names", col_space_type="int", col_space="The minimum width of each column", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_string( self, buf: Optional[FilePathOrBuffer[str]] = None, columns: Optional[Sequence[str]] = None, col_space: Optional[int] = None, header: Union[bool, Sequence[str]] = True, index: bool = True, na_rep: str = "NaN", formatters: Optional[fmt.formatters_type] = None, float_format: Optional[fmt.float_format_type] = None, sparsify: Optional[bool] = None, index_names: bool = True, justify: Optional[str] = None, max_rows: Optional[int] = None, min_rows: Optional[int] = None, max_cols: Optional[int] = None, show_dimensions: bool = False, decimal: str = ".", line_width: Optional[int] = None, max_colwidth: Optional[int] = None, encoding: Optional[str] = None, ) -> Optional[str]: """ Render a DataFrame to a console-friendly tabular output. %(shared_params)s line_width : int, optional Width to wrap a line in characters. max_colwidth : int, optional Max width to truncate each column in characters. By default, no limit. .. versionadded:: 1.0.0 encoding : str, default "utf-8" Set character encoding. .. versionadded:: 1.0 %(returns)s See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} >>> df = pd.DataFrame(d) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 """ from pandas import option_context with option_context("display.max_colwidth", max_colwidth): formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, min_rows=min_rows, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, line_width=line_width, ) return formatter.to_string(buf=buf, encoding=encoding) # ---------------------------------------------------------------------- @property def style(self) -> "Styler": """ Returns a Styler object. Contains methods for building a styled HTML representation of the DataFrame. a styled HTML representation fo the DataFrame. See Also -------- io.formats.style.Styler """ from pandas.io.formats.style import Styler return Styler(self) _shared_docs[ "items" ] = r""" Iterate over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. Yields ------ label : object The column names for the DataFrame being iterated over. content : Series The column entries belonging to each label, as a Series. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. Examples -------- >>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.items(): ... print('label:', label) ... print('content:', content, sep='\n') ... label: species content: panda bear polar bear koala marsupial Name: species, dtype: object label: population content: panda 1864 polar 22000 koala 80000 Name: population, dtype: int64 """ @Appender(_shared_docs["items"]) def items(self) -> Iterable[Tuple[Optional[Hashable], Series]]: if self.columns.is_unique and hasattr(self, "_item_cache"): for k in self.columns: yield k, self._get_item_cache(k) else: for i, k in enumerate(self.columns): yield k, self._ixs(i, axis=1) @Appender(_shared_docs["items"]) def iteritems(self) -> Iterable[Tuple[Optional[Hashable], Series]]: yield from self.items() def iterrows(self) -> Iterable[Tuple[Optional[Hashable], Series]]: """ Iterate over DataFrame rows as (index, Series) pairs. Yields ------ index : label or tuple of label The index of the row. A tuple for a `MultiIndex`. data : Series The data of the row as a Series. it : generator A generator that iterates over the rows of the frame. See Also -------- DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- 1. Because ``iterrows`` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64 To preserve dtypes while iterating over the rows, it is better to use :meth:`itertuples` which returns namedtuples of the values and which is generally faster than ``iterrows``. 2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. """ columns = self.columns klass = self._constructor_sliced for k, v in zip(self.index, self.values): s = klass(v, index=columns, name=k) yield k, s def itertuples(self, index=True, name="Pandas"): """ Iterate over DataFrame rows as namedtuples. Parameters ---------- index : bool, default True If True, return the index as the first element of the tuple. name : str or None, default "Pandas" The name of the returned namedtuples or None to return regular tuples. Returns ------- iterator An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. On python versions < 3.7 regular tuples are returned for DataFrames with a large number of columns (>254). Examples -------- >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='dog', num_legs=4, num_wings=0) Pandas(Index='hawk', num_legs=2, num_wings=2) By setting the `index` parameter to False we can remove the index as the first element of the tuple: >>> for row in df.itertuples(index=False): ... print(row) ... Pandas(num_legs=4, num_wings=0) Pandas(num_legs=2, num_wings=2) With the `name` parameter set we set a custom name for the yielded namedtuples: >>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2) """ arrays = [] fields = list(self.columns) if index: arrays.append(self.index) fields.insert(0, "Index") # use integer indexing because of possible duplicate column names arrays.extend(self.iloc[:, k] for k in range(len(self.columns))) # Python versions before 3.7 support at most 255 arguments to constructors can_return_named_tuples = PY37 or len(self.columns) + index < 255 if name is not None and can_return_named_tuples: itertuple = collections.namedtuple(name, fields, rename=True) return map(itertuple._make, zip(*arrays)) # fallback to regular tuples return zip(*arrays) def __len__(self) -> int: """ Returns length of info axis, but here we use the index. """ return len(self.index) def dot(self, other): """ Compute the matrix multiplication between the DataFrame and other. This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array. It can also be called using ``self @ other`` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the matrix product with. Returns ------- Series or DataFrame If other is a Series, return the matrix product between self and other as a Serie. If other is a DataFrame or a numpy.array, return the matrix product of self and other in a DataFrame of a np.array. See Also -------- Series.dot: Similar method for Series. Notes ----- The dimensions of DataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication. The dot method for Series computes the inner product, instead of the matrix product here. Examples -------- Here we multiply a DataFrame with a Series. >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> s = pd.Series([1, 1, 2, 1]) >>> df.dot(s) 0 -4 1 5 dtype: int64 Here we multiply a DataFrame with another DataFrame. >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(other) 0 1 0 1 4 1 2 2 Note that the dot method give the same result as @ >>> df @ other 0 1 0 1 4 1 2 2 The dot method works also if other is an np.array. >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(arr) 0 1 0 1 4 1 2 2 Note how shuffling of the objects does not change the result. >>> s2 = s.reindex([1, 0, 2, 3]) >>> df.dot(s2) 0 -4 1 5 dtype: int64 """ if isinstance(other, (Series, DataFrame)): common = self.columns.union(other.index) if len(common) > len(self.columns) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(columns=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[1] != rvals.shape[0]: raise ValueError( f"Dot product shape mismatch, {lvals.shape} vs {rvals.shape}" ) if isinstance(other, DataFrame): return self._constructor( np.dot(lvals, rvals), index=left.index, columns=other.columns ) elif isinstance(other, Series): return Series(np.dot(lvals, rvals), index=left.index) elif isinstance(rvals, (np.ndarray, Index)): result = np.dot(lvals, rvals) if result.ndim == 2: return self._constructor(result, index=left.index) else: return Series(result, index=left.index) else: # pragma: no cover raise TypeError(f"unsupported type: {type(other)}") def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.T.dot(np.transpose(other)).T # ---------------------------------------------------------------------- # IO methods (to / from other formats) @classmethod def from_dict(cls, data, orient="columns", dtype=None, columns=None) -> "DataFrame": """ Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. dtype : dtype, default None Data type to force, otherwise infer. columns : list, default None Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'``. .. versionadded:: 0.23.0 Returns ------- DataFrame See Also -------- DataFrame.from_records : DataFrame from ndarray (structured dtype), list of tuples, dict, or DataFrame. DataFrame : DataFrame object creation using constructor. Examples -------- By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the 'index' orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d """ index = None orient = orient.lower() if orient == "index": if len(data) > 0: # TODO speed up Series case if isinstance(list(data.values())[0], (Series, dict)): data = _from_nested_dict(data) else: data, index = list(data.values()), list(data.keys()) elif orient == "columns": if columns is not None: raise ValueError("cannot use columns parameter with orient='columns'") else: # pragma: no cover raise ValueError("only recognize index or columns for orient") return cls(data, index=index, columns=columns, dtype=dtype) def to_numpy(self, dtype=None, copy=False) -> np.ndarray: """ Convert the DataFrame to a NumPy array. .. versionadded:: 0.24.0 By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are ``float16`` and ``float32``, the results dtype will be ``float32``. This may require copying data and coercing values, which may be expensive. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray`. copy : bool, default False Whether to ensure that the returned value is a not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. Returns ------- numpy.ndarray See Also -------- Series.to_numpy : Similar method for Series. Examples -------- >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) With heterogeneous data, the lowest common type will have to be used. >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]]) For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object) """ result = np.array(self.values, dtype=dtype, copy=copy) return result def to_dict(self, orient="dict", into=dict): """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. .. versionadded:: 0.21.0 Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. See Also -------- DataFrame.from_dict: Create a DataFrame from a dictionary. DataFrame.to_json: Convert a DataFrame to JSON format. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]} >>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}] >>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})] """ if not self.columns.is_unique: warnings.warn( "DataFrame columns are not unique, some columns will be omitted.", UserWarning, stacklevel=2, ) # GH16122 into_c = com.standardize_mapping(into) if orient.lower().startswith("d"): return into_c((k, v.to_dict(into)) for k, v in self.items()) elif orient.lower().startswith("l"): return into_c((k, v.tolist()) for k, v in self.items()) elif orient.lower().startswith("sp"): return into_c( ( ("index", self.index.tolist()), ("columns", self.columns.tolist()), ( "data", [ list(map(com.maybe_box_datetimelike, t)) for t in self.itertuples(index=False, name=None) ], ), ) ) elif orient.lower().startswith("s"): return into_c((k, com.maybe_box_datetimelike(v)) for k, v in self.items()) elif orient.lower().startswith("r"): columns = self.columns.tolist() rows = ( dict(zip(columns, row)) for row in self.itertuples(index=False, name=None) ) return [ into_c((k, com.maybe_box_datetimelike(v)) for k, v in row.items()) for row in rows ] elif orient.lower().startswith("i"): if not self.index.is_unique: raise ValueError("DataFrame index must be unique for orient='index'.") return into_c( (t[0], dict(zip(self.columns, t[1:]))) for t in self.itertuples(name=None) ) else: raise ValueError(f"orient '{orient}' not understood") def to_gbq( self, destination_table, project_id=None, chunksize=None, reauth=False, if_exists="fail", auth_local_webserver=False, table_schema=None, location=None, progress_bar=True, credentials=None, ) -> None: """ Write a DataFrame to a Google BigQuery table. This function requires the `pandas-gbq package <https://pandas-gbq.readthedocs.io>`__. See the `How to authenticate with Google BigQuery <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__ guide for authentication instructions. Parameters ---------- destination_table : str Name of table to be written, in the form ``dataset.tablename``. project_id : str, optional Google BigQuery Account project ID. Optional when available from the environment. chunksize : int, optional Number of rows to be inserted in each chunk from the dataframe. Set to ``None`` to load the whole dataframe at once. reauth : bool, default False Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. if_exists : str, default 'fail' Behavior when the destination table exists. Value can be one of: ``'fail'`` If table exists raise pandas_gbq.gbq.TableCreationError. ``'replace'`` If table exists, drop it, recreate it, and insert data. ``'append'`` If table exists, insert data. Create if does not exist. auth_local_webserver : bool, default False Use the `local webserver flow`_ instead of the `console flow`_ when getting user credentials. .. _local webserver flow: http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server .. _console flow: http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console *New in version 0.2.0 of pandas-gbq*. table_schema : list of dicts, optional List of BigQuery table fields to which according DataFrame columns conform to, e.g. ``[{'name': 'col1', 'type': 'STRING'},...]``. If schema is not provided, it will be generated according to dtypes of DataFrame columns. See BigQuery API documentation on available names of a field. *New in version 0.3.1 of pandas-gbq*. location : str, optional Location where the load job should run. See the `BigQuery locations documentation <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a list of available locations. The location must match that of the target dataset. *New in version 0.5.0 of pandas-gbq*. progress_bar : bool, default True Use the library `tqdm` to show the progress bar for the upload, chunk by chunk. *New in version 0.5.0 of pandas-gbq*. credentials : google.auth.credentials.Credentials, optional Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine :class:`google.auth.compute_engine.Credentials` or Service Account :class:`google.oauth2.service_account.Credentials` directly. *New in version 0.8.0 of pandas-gbq*. .. versionadded:: 0.24.0 See Also -------- pandas_gbq.to_gbq : This function in the pandas-gbq library. read_gbq : Read a DataFrame from Google BigQuery. """ from pandas.io import gbq gbq.to_gbq( self, destination_table, project_id=project_id, chunksize=chunksize, reauth=reauth, if_exists=if_exists, auth_local_webserver=auth_local_webserver, table_schema=table_schema, location=location, progress_bar=progress_bar, credentials=credentials, ) @classmethod def from_records( cls, data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None, ) -> "DataFrame": """ Convert structured or record ndarray to DataFrame. Parameters ---------- data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : str, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use. exclude : sequence, default None Columns or fields to exclude. columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns). coerce_float : bool, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets. nrows : int, default None Number of rows to read if data is an iterator. Returns ------- DataFrame """ # Make a copy of the input columns so we can modify it if columns is not None: columns = ensure_index(columns) if is_iterator(data): if nrows == 0: return cls() try: first_row = next(data) except StopIteration: return cls(index=index, columns=columns) dtype = None if hasattr(first_row, "dtype") and first_row.dtype.names: dtype = first_row.dtype values = [first_row] if nrows is None: values += data else: values.extend(itertools.islice(data, nrows - 1)) if dtype is not None: data = np.array(values, dtype=dtype) else: data = values if isinstance(data, dict): if columns is None: columns = arr_columns = ensure_index(sorted(data)) arrays = [data[k] for k in columns] else: arrays = [] arr_columns = [] for k, v in data.items(): if k in columns: arr_columns.append(k) arrays.append(v) arrays, arr_columns = reorder_arrays(arrays, arr_columns, columns) elif isinstance(data, (np.ndarray, DataFrame)): arrays, columns = to_arrays(data, columns) if columns is not None: columns = ensure_index(columns) arr_columns = columns else: arrays, arr_columns = to_arrays(data, columns, coerce_float=coerce_float) arr_columns = ensure_index(arr_columns) if columns is not None: columns = ensure_index(columns) else: columns = arr_columns if exclude is None: exclude = set() else: exclude = set(exclude) result_index = None if index is not None: if isinstance(index, str) or not hasattr(index, "__iter__"): i = columns.get_loc(index) exclude.add(index) if len(arrays) > 0: result_index = Index(arrays[i], name=index) else: result_index = Index([], name=index) else: try: index_data = [arrays[arr_columns.get_loc(field)] for field in index] except (KeyError, TypeError): # raised by get_loc, see GH#29258 result_index = index else: result_index = ensure_index_from_sequences(index_data, names=index) exclude.update(index) if any(exclude): arr_exclude = [x for x in exclude if x in arr_columns] to_remove = [arr_columns.get_loc(col) for col in arr_exclude] arrays = [v for i, v in enumerate(arrays) if i not in to_remove] arr_columns = arr_columns.drop(arr_exclude) columns = columns.drop(exclude) mgr = arrays_to_mgr(arrays, arr_columns, result_index, columns) return cls(mgr) def to_records( self, index=True, column_dtypes=None, index_dtypes=None ) -> np.recarray: """ Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. Parameters ---------- index : bool, default True Include index in resulting record array, stored in 'index' field or using the index label, if set. column_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if `index=True`. Returns ------- numpy.recarray NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See Also -------- DataFrame.from_records: Convert structured or record ndarray to DataFrame. numpy.recarray: An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) If the DataFrame index has no label then the recarray field name is set to 'index'. If the index has a label then this is used as the field name: >>> df.index = df.index.rename("I") >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) Data types can be specified for the columns: >>> df.to_records(column_dtypes={"A": "int32"}) rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')]) As well as for the index: >>> df.to_records(index_dtypes="<S2") rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')]) >>> index_dtypes = f"<S{df.index.str.len().max()}" >>> df.to_records(index_dtypes=index_dtypes) rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')]) """ if index: if isinstance(self.index, ABCMultiIndex): # array of tuples to numpy cols. copy copy copy ix_vals = list(map(np.array, zip(*self.index.values))) else: ix_vals = [self.index.values] arrays = ix_vals + [self[c]._internal_get_values() for c in self.columns] count = 0 index_names = list(self.index.names) if isinstance(self.index, ABCMultiIndex): for i, n in enumerate(index_names): if n is None: index_names[i] = f"level_{count}" count += 1 elif index_names[0] is None: index_names = ["index"] names = [str(name) for name in itertools.chain(index_names, self.columns)] else: arrays = [self[c]._internal_get_values() for c in self.columns] names = [str(c) for c in self.columns] index_names = [] index_len = len(index_names) formats = [] for i, v in enumerate(arrays): index = i # When the names and arrays are collected, we # first collect those in the DataFrame's index, # followed by those in its columns. # # Thus, the total length of the array is: # len(index_names) + len(DataFrame.columns). # # This check allows us to see whether we are # handling a name / array in the index or column. if index < index_len: dtype_mapping = index_dtypes name = index_names[index] else: index -= index_len dtype_mapping = column_dtypes name = self.columns[index] # We have a dictionary, so we get the data type # associated with the index or column (which can # be denoted by its name in the DataFrame or its # position in DataFrame's array of indices or # columns, whichever is applicable. if is_dict_like(dtype_mapping): if name in dtype_mapping: dtype_mapping = dtype_mapping[name] elif index in dtype_mapping: dtype_mapping = dtype_mapping[index] else: dtype_mapping = None # If no mapping can be found, use the array's # dtype attribute for formatting. # # A valid dtype must either be a type or # string naming a type. if dtype_mapping is None: formats.append(v.dtype) elif isinstance(dtype_mapping, (type, np.dtype, str)): formats.append(dtype_mapping) else: element = "row" if i < index_len else "column" msg = f"Invalid dtype {dtype_mapping} specified for {element} {name}" raise ValueError(msg) return np.rec.fromarrays(arrays, dtype={"names": names, "formats": formats}) @classmethod def _from_arrays(cls, arrays, columns, index, dtype=None) -> "DataFrame": mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) return cls(mgr) @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_stata( self, path, convert_dates=None, write_index=True, byteorder=None, time_stamp=None, data_label=None, variable_labels=None, version=114, convert_strl=None, ): """ Export DataFrame object to Stata dta format. Writes the DataFrame to a Stata dataset file. "dta" files contain a Stata dataset. Parameters ---------- path : str, buffer or path object String, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary write() function. If using a buffer then the buffer will not be automatically closed after the file data has been written. .. versionchanged:: 1.0.0 Previously this was "fname" convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information. write_index : bool Write the index to Stata dataset. byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder`. time_stamp : datetime A datetime to use as file creation date. Default is the current time. data_label : str, optional A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. version : {114, 117, 118, 119, None}, default 114 Version to use in the output dta file. Set to None to let pandas decide between 118 or 119 formats depending on the number of columns in the frame. Version 114 can be read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 118 is supported in Stata 14 and later. Version 119 is supported in Stata 15 and later. Version 114 limits string variables to 244 characters or fewer while versions 117 and later allow strings with lengths up to 2,000,000 characters. Versions 118 and 119 support Unicode characters, and version 119 supports more than 32,767 variables. .. versionadded:: 0.23.0 .. versionchanged:: 1.0.0 Added support for formats 118 and 119. convert_strl : list, optional List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated. .. versionadded:: 0.23.0 Raises ------ NotImplementedError * If datetimes contain timezone information * Column dtype is not representable in Stata ValueError * Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters See Also -------- read_stata : Import Stata data files. io.stata.StataWriter : Low-level writer for Stata data files. io.stata.StataWriter117 : Low-level writer for version 117 files. Examples -------- >>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df.to_stata('animals.dta') # doctest: +SKIP """ if version not in (114, 117, 118, 119, None): raise ValueError("Only formats 114, 117, 118 and 119 are supported.") if version == 114: if convert_strl is not None: raise ValueError("strl is not supported in format 114") from pandas.io.stata import StataWriter as statawriter elif version == 117: from pandas.io.stata import StataWriter117 as statawriter else: # versions 118 and 119 from pandas.io.stata import StataWriterUTF8 as statawriter kwargs = {} if version is None or version >= 117: # strl conversion is only supported >= 117 kwargs["convert_strl"] = convert_strl if version is None or version >= 118: # Specifying the version is only supported for UTF8 (118 or 119) kwargs["version"] = version writer = statawriter( path, self, convert_dates=convert_dates, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, write_index=write_index, variable_labels=variable_labels, **kwargs, ) writer.write_file() @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_feather(self, path) -> None: """ Write out the binary feather-format for DataFrames. Parameters ---------- path : str String file path. """ from pandas.io.feather_format import to_feather to_feather(self, path) @Appender( """ Examples -------- >>> df = pd.DataFrame( ... data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]} ... ) >>> print(df.to_markdown()) | | animal_1 | animal_2 | |---:|:-----------|:-----------| | 0 | elk | dog | | 1 | pig | quetzal | """ ) @Substitution(klass="DataFrame") @Appender(_shared_docs["to_markdown"]) def to_markdown( self, buf: Optional[IO[str]] = None, mode: Optional[str] = None, **kwargs ) -> Optional[str]: kwargs.setdefault("headers", "keys") kwargs.setdefault("tablefmt", "pipe") tabulate = import_optional_dependency("tabulate") result = tabulate.tabulate(self, **kwargs) if buf is None: return result buf, _, _, _ = get_filepath_or_buffer(buf, mode=mode) assert buf is not None # Help mypy. buf.writelines(result) return None @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_parquet( self, path, engine="auto", compression="snappy", index=None, partition_cols=None, **kwargs, ) -> None: """ Write a DataFrame to the binary parquet format. .. versionadded:: 0.21.0 This function writes the dataframe as a `parquet file <https://parquet.apache.org/>`_. You can choose different parquet backends, and have the option of compression. See :ref:`the user guide <io.parquet>` for more details. Parameters ---------- path : str File path or Root Directory path. Will be used as Root Directory path while writing a partitioned dataset. .. versionchanged:: 1.0.0 Previously this was "fname" engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy' Name of the compression to use. Use ``None`` for no compression. index : bool, default None If ``True``, include the dataframe's index(es) in the file output. If ``False``, they will not be written to the file. If ``None``, similar to ``True`` the dataframe's index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn't require much space and is faster. Other indexes will be included as columns in the file output. .. versionadded:: 0.24.0 partition_cols : list, optional, default None Column names by which to partition the dataset. Columns are partitioned in the order they are given. .. versionadded:: 0.24.0 **kwargs Additional arguments passed to the parquet library. See :ref:`pandas io <io.parquet>` for more details. See Also -------- read_parquet : Read a parquet file. DataFrame.to_csv : Write a csv file. DataFrame.to_sql : Write to a sql table. DataFrame.to_hdf : Write to hdf. Notes ----- This function requires either the `fastparquet <https://pypi.org/project/fastparquet>`_ or `pyarrow <https://arrow.apache.org/docs/python/>`_ library. Examples -------- >>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) >>> df.to_parquet('df.parquet.gzip', ... compression='gzip') # doctest: +SKIP >>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP col1 col2 0 1 3 1 2 4 """ from pandas.io.parquet import to_parquet to_parquet( self, path, engine, compression=compression, index=index, partition_cols=partition_cols, **kwargs, ) @Substitution( header_type="bool", header="Whether to print column labels, default True", col_space_type="str or int", col_space="The minimum width of each column in CSS length " "units. An int is assumed to be px units.\n\n" " .. versionadded:: 0.25.0\n" " Ability to use str", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_html( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal=".", bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False, encoding=None, ): """ Render a DataFrame as an HTML table. %(shared_params)s bold_rows : bool, default True Make the row labels bold in the output. classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table. escape : bool, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.display.html.border``. encoding : str, default "utf-8" Set character encoding. .. versionadded:: 1.0 table_id : str, optional A css id is included in the opening `<table>` tag if specified. .. versionadded:: 0.23.0 render_links : bool, default False Convert URLs to HTML links. .. versionadded:: 0.24.0 %(returns)s See Also -------- to_string : Convert DataFrame to a string. """ if justify is not None and justify not in fmt._VALID_JUSTIFY_PARAMETERS: raise ValueError("Invalid value for justify parameter") formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, bold_rows=bold_rows, escape=escape, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, table_id=table_id, render_links=render_links, ) # TODO: a generic formatter wld b in DataFrameFormatter return formatter.to_html( buf=buf, classes=classes, notebook=notebook, border=border, encoding=encoding, ) # ---------------------------------------------------------------------- def info( self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None ) -> None: """ Print a concise summary of a DataFrame. This method prints information about a DataFrame including the index dtype and column dtypes, non-null values and memory usage. Parameters ---------- verbose : bool, optional Whether to print the full summary. By default, the setting in ``pandas.options.display.max_info_columns`` is followed. buf : writable buffer, defaults to sys.stdout Where to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output. max_cols : int, optional When to switch from the verbose to the truncated output. If the DataFrame has more than `max_cols` columns, the truncated output is used. By default, the setting in ``pandas.options.display.max_info_columns`` is used. memory_usage : bool, str, optional Specifies whether total memory usage of the DataFrame elements (including the index) should be displayed. By default, this follows the ``pandas.options.display.memory_usage`` setting. True always show memory usage. False never shows memory usage. A value of 'deep' is equivalent to "True with deep introspection". Memory usage is shown in human-readable units (base-2 representation). Without deep introspection a memory estimation is made based in column dtype and number of rows assuming values consume the same memory amount for corresponding dtypes. With deep memory introspection, a real memory usage calculation is performed at the cost of computational resources. null_counts : bool, optional Whether to show the non-null counts. By default, this is shown only if the frame is smaller than ``pandas.options.display.max_info_rows`` and ``pandas.options.display.max_info_columns``. A value of True always shows the counts, and False never shows the counts. Returns ------- None This method prints a summary of a DataFrame and returns None. See Also -------- DataFrame.describe: Generate descriptive statistics of DataFrame columns. DataFrame.memory_usage: Memory usage of DataFrame columns. Examples -------- >>> int_values = [1, 2, 3, 4, 5] >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values, ... "float_col": float_values}) >>> df int_col text_col float_col 0 1 alpha 0.00 1 2 beta 0.25 2 3 gamma 0.50 3 4 delta 0.75 4 5 epsilon 1.00 Prints information of all columns: >>> df.info(verbose=True) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes Prints a summary of columns count and its dtypes but not per column information: >>> df.info(verbose=False) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Columns: 3 entries, int_col to float_col dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes Pipe output of DataFrame.info to buffer instead of sys.stdout, get buffer content and writes to a text file: >>> import io >>> buffer = io.StringIO() >>> df.info(buf=buffer) >>> s = buffer.getvalue() >>> with open("df_info.txt", "w", ... encoding="utf-8") as f: # doctest: +SKIP ... f.write(s) 260 The `memory_usage` parameter allows deep introspection mode, specially useful for big DataFrames and fine-tune memory optimization: >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6) >>> df = pd.DataFrame({ ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6) ... }) >>> df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 column_1 1000000 non-null object 1 column_2 1000000 non-null object 2 column_3 1000000 non-null object dtypes: object(3) memory usage: 22.9+ MB >>> df.info(memory_usage='deep') <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 column_1 1000000 non-null object 1 column_2 1000000 non-null object 2 column_3 1000000 non-null object dtypes: object(3) memory usage: 188.8 MB """ if buf is None: # pragma: no cover buf = sys.stdout lines = [] lines.append(str(type(self))) lines.append(self.index._summary()) if len(self.columns) == 0: lines.append(f"Empty {type(self).__name__}") fmt.buffer_put_lines(buf, lines) return cols = self.columns col_count = len(self.columns) # hack if max_cols is None: max_cols = get_option("display.max_info_columns", len(self.columns) + 1) max_rows = get_option("display.max_info_rows", len(self) + 1) if null_counts is None: show_counts = (col_count <= max_cols) and (len(self) < max_rows) else: show_counts = null_counts exceeds_info_cols = col_count > max_cols def _verbose_repr(): lines.append(f"Data columns (total {len(self.columns)} columns):") id_head = " # " column_head = "Column" col_space = 2 max_col = max(len(pprint_thing(k)) for k in cols) len_column = len(pprint_thing(column_head)) space = max(max_col, len_column) + col_space max_id = len(pprint_thing(col_count)) len_id = len(pprint_thing(id_head)) space_num = max(max_id, len_id) + col_space counts = None header = _put_str(id_head, space_num) + _put_str(column_head, space) if show_counts: counts = self.count() if len(cols) != len(counts): # pragma: no cover raise AssertionError( f"Columns must equal counts ({len(cols)} != {len(counts)})" ) count_header = "Non-Null Count" len_count = len(count_header) non_null = " non-null" max_count = max(len(pprint_thing(k)) for k in counts) + len(non_null) space_count = max(len_count, max_count) + col_space count_temp = "{count}" + non_null else: count_header = "" space_count = len(count_header) len_count = space_count count_temp = "{count}" dtype_header = "Dtype" len_dtype = len(dtype_header) max_dtypes = max(len(pprint_thing(k)) for k in self.dtypes) space_dtype = max(len_dtype, max_dtypes) header += _put_str(count_header, space_count) + _put_str( dtype_header, space_dtype ) lines.append(header) lines.append( _put_str("-" * len_id, space_num) + _put_str("-" * len_column, space) + _put_str("-" * len_count, space_count) + _put_str("-" * len_dtype, space_dtype) ) for i, col in enumerate(self.columns): dtype = self.dtypes.iloc[i] col = pprint_thing(col) line_no = _put_str(f" {i}", space_num) count = "" if show_counts: count = counts.iloc[i] lines.append( line_no + _put_str(col, space) + _put_str(count_temp.format(count=count), space_count) + _put_str(dtype, space_dtype) ) def _non_verbose_repr(): lines.append(self.columns._summary(name="Columns")) def _sizeof_fmt(num, size_qualifier): # returns size in human readable format for x in ["bytes", "KB", "MB", "GB", "TB"]: if num < 1024.0: return f"{num:3.1f}{size_qualifier} {x}" num /= 1024.0 return f"{num:3.1f}{size_qualifier} PB" if verbose: _verbose_repr() elif verbose is False: # specifically set to False, not nesc None _non_verbose_repr() else: if exceeds_info_cols: _non_verbose_repr() else: _verbose_repr() counts = self._data.get_dtype_counts() dtypes = [f"{k[0]}({k[1]:d})" for k in sorted(counts.items())] lines.append(f"dtypes: {', '.join(dtypes)}") if memory_usage is None: memory_usage = get_option("display.memory_usage") if memory_usage: # append memory usage of df to display size_qualifier = "" if memory_usage == "deep": deep = True else: # size_qualifier is just a best effort; not guaranteed to catch # all cases (e.g., it misses categorical data even with object # categories) deep = False if "object" in counts or self.index._is_memory_usage_qualified(): size_qualifier = "+" mem_usage = self.memory_usage(index=True, deep=deep).sum() lines.append(f"memory usage: {_sizeof_fmt(mem_usage, size_qualifier)}\n") fmt.buffer_put_lines(buf, lines) def memory_usage(self, index=True, deep=False) -> Series: """ Return the memory usage of each column in bytes. The memory usage can optionally include the contribution of the index and elements of `object` dtype. This value is displayed in `DataFrame.info` by default. This can be suppressed by setting ``pandas.options.display.memory_usage`` to False. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the DataFrame's index in returned Series. If ``index=True``, the memory usage of the index is the first item in the output. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned values. Returns ------- Series A Series whose index is the original column names and whose values is the memory usage of each column in bytes. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of an ndarray. Series.memory_usage : Bytes consumed by a Series. Categorical : Memory-efficient array for string values with many repeated values. DataFrame.info : Concise summary of a DataFrame. Examples -------- >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 1.000000+0.000000j 1 True 1 1 1.0 1.000000+0.000000j 1 True 2 1 1.0 1.000000+0.000000j 1 True 3 1 1.0 1.000000+0.000000j 1 True 4 1 1.0 1.000000+0.000000j 1 True >>> df.memory_usage() Index 128 int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 >>> df.memory_usage(index=False) int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 The memory footprint of `object` dtype columns is ignored by default: >>> df.memory_usage(deep=True) Index 128 int64 40000 float64 40000 complex128 80000 object 160000 bool 5000 dtype: int64 Use a Categorical for efficient storage of an object-dtype column with many repeated values. >>> df['object'].astype('category').memory_usage(deep=True) 5216 """ result = Series( [c.memory_usage(index=False, deep=deep) for col, c in self.items()], index=self.columns, ) if index: result = Series(self.index.memory_usage(deep=deep), index=["Index"]).append( result ) return result def transpose(self, *args, copy: bool = False) -> "DataFrame": """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. Parameters ---------- *args : tuple, optional Accepted for compatibility with NumPy. copy : bool, default False Whether to copy the data after transposing, even for DataFrames with a single dtype. Note that a copy is always required for mixed dtype DataFrames, or for DataFrames with any extension types. Returns ------- DataFrame The transposed DataFrame. See Also -------- numpy.transpose : Permute the dimensions of a given array. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the `object` dtype. In such a case, a copy of the data is always made. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the `object` dtype: >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object """ nv.validate_transpose(args, dict()) # construct the args dtypes = list(self.dtypes) if self._is_homogeneous_type and dtypes and is_extension_array_dtype(dtypes[0]): # We have EAs with the same dtype. We can preserve that dtype in transpose. dtype = dtypes[0] arr_type = dtype.construct_array_type() values = self.values new_values = [arr_type._from_sequence(row, dtype=dtype) for row in values] result = self._constructor( dict(zip(self.index, new_values)), index=self.columns ) else: new_values = self.values.T if copy: new_values = new_values.copy() result = self._constructor( new_values, index=self.columns, columns=self.index ) return result.__finalize__(self) T = property(transpose) # ---------------------------------------------------------------------- # Indexing Methods def _ixs(self, i: int, axis: int = 0): """ Parameters ---------- i : int axis : int Notes ----- If slice passed, the resulting data will be a view. """ # irow if axis == 0: new_values = self._data.fast_xs(i) # if we are a copy, mark as such copy = isinstance(new_values, np.ndarray) and new_values.base is None result = self._constructor_sliced( new_values, index=self.columns, name=self.index[i], dtype=new_values.dtype, ) result._set_is_copy(self, copy=copy) return result # icol else: label = self.columns[i] values = self._data.iget(i) result = self._box_col_values(values, label) # this is a cached value, mark it so result._set_as_cached(label, self) return result def __getitem__(self, key): key = lib.item_from_zerodim(key) key = com.apply_if_callable(key, self) if is_hashable(key): # shortcut if the key is in columns if self.columns.is_unique and key in self.columns: if self.columns.nlevels > 1: return self._getitem_multilevel(key) return self._get_item_cache(key) # Do we have a slicer (on rows)? indexer = convert_to_index_sliceable(self, key) if indexer is not None: # either we have a slice or we have a string that can be converted # to a slice for partial-string date indexing return self._slice(indexer, axis=0) # Do we have a (boolean) DataFrame? if isinstance(key, DataFrame): return self.where(key) # Do we have a (boolean) 1d indexer? if com.is_bool_indexer(key): return self._getitem_bool_array(key) # We are left with two options: a single key, and a collection of keys, # We interpret tuples as collections only for non-MultiIndex is_single_key = isinstance(key, tuple) or not is_list_like(key) if is_single_key: if self.columns.nlevels > 1: return self._getitem_multilevel(key) indexer = self.columns.get_loc(key) if is_integer(indexer): indexer = [indexer] else: if is_iterator(key): key = list(key) indexer = self.loc._get_listlike_indexer(key, axis=1, raise_missing=True)[1] # take() does not accept boolean indexers if getattr(indexer, "dtype", None) == bool: indexer = np.where(indexer)[0] data = self.take(indexer, axis=1) if is_single_key: # What does looking for a single key in a non-unique index return? # The behavior is inconsistent. It returns a Series, except when # - the key itself is repeated (test on data.shape, #9519), or # - we have a MultiIndex on columns (test on self.columns, #21309) if data.shape[1] == 1 and not isinstance(self.columns, ABCMultiIndex): data = data[key] return data def _getitem_bool_array(self, key): # also raises Exception if object array with NA values # warning here just in case -- previously __setitem__ was # reindexing but __getitem__ was not; it seems more reasonable to # go with the __setitem__ behavior since that is more consistent # with all other indexing behavior if isinstance(key, Series) and not key.index.equals(self.index): warnings.warn( "Boolean Series key will be reindexed to match DataFrame index.", UserWarning, stacklevel=3, ) elif len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}." ) # check_bool_indexer will throw exception if Series key cannot # be reindexed to match DataFrame rows key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] return self.take(indexer, axis=0) def _getitem_multilevel(self, key): # self.columns is a MultiIndex loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): new_columns = self.columns[loc] result_columns = maybe_droplevels(new_columns, key) if self._is_mixed_type: result = self.reindex(columns=new_columns) result.columns = result_columns else: new_values = self.values[:, loc] result = self._constructor( new_values, index=self.index, columns=result_columns ) result = result.__finalize__(self) # If there is only one column being returned, and its name is # either an empty string, or a tuple with an empty string as its # first element, then treat the empty string as a placeholder # and return the column as if the user had provided that empty # string in the key. If the result is a Series, exclude the # implied empty string from its name. if len(result.columns) == 1: top = result.columns[0] if isinstance(top, tuple): top = top[0] if top == "": result = result[""] if isinstance(result, Series): result = self._constructor_sliced( result, index=self.index, name=key ) result._set_is_copy(self) return result else: return self._get_item_cache(key) def _get_value(self, index, col, takeable: bool = False): """ Quickly retrieve single value at passed column and index. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- scalar """ if takeable: series = self._iget_item_cache(col) return com.maybe_box_datetimelike(series._values[index]) series = self._get_item_cache(col) engine = self.index._engine try: return engine.get_value(series._values, index) except KeyError: # GH 20629 if self.index.nlevels > 1: # partial indexing forbidden raise except (TypeError, ValueError): pass # we cannot handle direct indexing # use positional col = self.columns.get_loc(col) index = self.index.get_loc(index) return self._get_value(index, col, takeable=True) def __setitem__(self, key, value): key = com.apply_if_callable(key, self) # see if we can slice the rows indexer = convert_to_index_sliceable(self, key) if indexer is not None: # either we have a slice or we have a string that can be converted # to a slice for partial-string date indexing return self._setitem_slice(indexer, value) if isinstance(key, DataFrame) or getattr(key, "ndim", None) == 2: self._setitem_frame(key, value) elif isinstance(key, (Series, np.ndarray, list, Index)): self._setitem_array(key, value) else: # set column self._set_item(key, value) def _setitem_slice(self, key, value): self._check_setitem_copy() self.loc[key] = value def _setitem_array(self, key, value): # also raises Exception if object array with NA values if com.is_bool_indexer(key): if len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}!" ) key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] self._check_setitem_copy() self.loc._setitem_with_indexer(indexer, value) else: if isinstance(value, DataFrame): if len(value.columns) != len(key): raise ValueError("Columns must be same length as key") for k1, k2 in zip(key, value.columns): self[k1] = value[k2] else: indexer = self.loc._get_listlike_indexer( key, axis=1, raise_missing=False )[1] self._check_setitem_copy() self.loc._setitem_with_indexer((slice(None), indexer), value) def _setitem_frame(self, key, value): # support boolean setting with DataFrame input, e.g. # df[df > df2] = 0 if isinstance(key, np.ndarray): if key.shape != self.shape: raise ValueError("Array conditional must be same shape as self") key = self._constructor(key, **self._construct_axes_dict()) if key.values.size and not is_bool_dtype(key.values): raise TypeError( "Must pass DataFrame or 2-d ndarray with boolean values only" ) self._check_inplace_setting(value) self._check_setitem_copy() self._where(-key, value, inplace=True) def _set_item(self, key, value): """ Add series to DataFrame in specified column. If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataFrames index or an error will be thrown. Series/TimeSeries will be conformed to the DataFrames index to ensure homogeneity. """ self._ensure_valid_index(value) value = self._sanitize_column(key, value) NDFrame._set_item(self, key, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def _set_value(self, index, col, value, takeable: bool = False): """ Put single value at passed column and index. Parameters ---------- index : row label col : column label value : scalar takeable : interpret the index/col as indexers, default False Returns ------- DataFrame If label pair is contained, will be reference to calling DataFrame, otherwise a new object. """ try: if takeable is True: series = self._iget_item_cache(col) return series._set_value(index, value, takeable=True) series = self._get_item_cache(col) engine = self.index._engine engine.set_value(series._values, index, value) return self except (KeyError, TypeError): # set using a non-recursive method & reset the cache if takeable: self.iloc[index, col] = value else: self.loc[index, col] = value self._item_cache.pop(col, None) return self def _ensure_valid_index(self, value): """ Ensure that if we don't have an index, that we can create one from the passed value. """ # GH5632, make sure that we are a Series convertible if not len(self.index) and is_list_like(value) and len(value): try: value = Series(value) except (ValueError, NotImplementedError, TypeError): raise ValueError( "Cannot set a frame with no defined index " "and a value that cannot be converted to a " "Series" ) self._data = self._data.reindex_axis( value.index.copy(), axis=1, fill_value=np.nan ) def _box_item_values(self, key, values): items = self.columns[self.columns.get_loc(key)] if values.ndim == 2: return self._constructor(values.T, columns=items, index=self.index) else: return self._box_col_values(values, items) def _box_col_values(self, values, items): """ Provide boxed values for a column. """ klass = self._constructor_sliced return klass(values, index=self.index, name=items, fastpath=True) # ---------------------------------------------------------------------- # Unsorted def query(self, expr, inplace=False, **kwargs): """ Query the columns of a DataFrame with a boolean expression. Parameters ---------- expr : str The query string to evaluate. You can refer to variables in the environment by prefixing them with an '@' character like ``@a + b``. You can refer to column names that contain spaces or operators by surrounding them in backticks. This way you can also escape names that start with a digit, or those that are a Python keyword. Basically when it is not valid Python identifier. See notes down for more details. For example, if one of your columns is called ``a a`` and you want to sum it with ``b``, your query should be ```a a` + b``. .. versionadded:: 0.25.0 Backtick quoting introduced. .. versionadded:: 1.0.0 Expanding functionality of backtick quoting for more than only spaces. inplace : bool Whether the query should modify the data in place or return a modified copy. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`DataFrame.query`. Returns ------- DataFrame DataFrame resulting from the provided query expression. See Also -------- eval : Evaluate a string describing operations on DataFrame columns. DataFrame.eval : Evaluate a string describing operations on DataFrame columns. Notes ----- The result of the evaluation of this expression is first passed to :attr:`DataFrame.loc` and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to :meth:`DataFrame.__getitem__`. This method uses the top-level :func:`eval` function to evaluate the passed query. The :meth:`~pandas.DataFrame.query` method uses a slightly modified Python syntax by default. For example, the ``&`` and ``|`` (bitwise) operators have the precedence of their boolean cousins, :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument ``parser='python'``. This enforces the same semantics as evaluation in Python space. Likewise, you can pass ``engine='python'`` to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using ``numexpr`` as the engine. The :attr:`DataFrame.index` and :attr:`DataFrame.columns` attributes of the :class:`~pandas.DataFrame` instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier ``index`` is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers. For further details and examples see the ``query`` documentation in :ref:`indexing <indexing.query>`. *Backtick quoted variables* Backtick quoted variables are parsed as literal Python code and are converted internally to a Python valid identifier. This can lead to the following problems. During parsing a number of disallowed characters inside the backtick quoted string are replaced by strings that are allowed as a Python identifier. These characters include all operators in Python, the space character, the question mark, the exclamation mark, the dollar sign, and the euro sign. For other characters that fall outside the ASCII range (U+0001..U+007F) and those that are not further specified in PEP 3131, the query parser will raise an error. This excludes whitespace different than the space character, but also the hashtag (as it is used for comments) and the backtick itself (backtick can also not be escaped). In a special case, quotes that make a pair around a backtick can confuse the parser. For example, ```it's` > `that's``` will raise an error, as it forms a quoted string (``'s > `that'``) with a backtick inside. See also the Python documentation about lexical analysis (https://docs.python.org/3/reference/lexical_analysis.html) in combination with the source code in :mod:`pandas.core.computation.parsing`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), ... 'B': range(10, 0, -2), ... 'C C': range(10, 5, -1)}) >>> df A B C C 0 1 10 10 1 2 8 9 2 3 6 8 3 4 4 7 4 5 2 6 >>> df.query('A > B') A B C C 4 5 2 6 The previous expression is equivalent to >>> df[df.A > df.B] A B C C 4 5 2 6 For columns with spaces in their name, you can use backtick quoting. >>> df.query('B == `C C`') A B C C 0 1 10 10 The previous expression is equivalent to >>> df[df.B == df['C C']] A B C C 0 1 10 10 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(expr, str): msg = f"expr must be a string to be evaluated, {type(expr)} given" raise ValueError(msg) kwargs["level"] = kwargs.pop("level", 0) + 1 kwargs["target"] = None res = self.eval(expr, **kwargs) try: new_data = self.loc[res] except ValueError: # when res is multi-dimensional loc raises, but this is sometimes a # valid query new_data = self[res] if inplace: self._update_inplace(new_data) else: return new_data def eval(self, expr, inplace=False, **kwargs): """ Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows `eval` to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. Parameters ---------- expr : str The expression string to evaluate. inplace : bool, default False If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`~pandas.DataFrame.query`. Returns ------- ndarray, scalar, or pandas object The result of the evaluation. See Also -------- DataFrame.query : Evaluates a boolean expression to query the columns of a frame. DataFrame.assign : Can evaluate an expression or function to create new values for a column. eval : Evaluate a Python expression as a string using various backends. Notes ----- For more details see the API documentation for :func:`~eval`. For detailed examples see :ref:`enhancing performance with eval <enhancingperf.eval>`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Use ``inplace=True`` to modify the original DataFrame. >>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 """ from pandas.core.computation.eval import eval as _eval inplace = validate_bool_kwarg(inplace, "inplace") resolvers = kwargs.pop("resolvers", None) kwargs["level"] = kwargs.pop("level", 0) + 1 if resolvers is None: index_resolvers = self._get_index_resolvers() column_resolvers = self._get_cleaned_column_resolvers() resolvers = column_resolvers, index_resolvers if "target" not in kwargs: kwargs["target"] = self kwargs["resolvers"] = kwargs.get("resolvers", ()) + tuple(resolvers) return _eval(expr, inplace=inplace, **kwargs) def select_dtypes(self, include=None, exclude=None) -> "DataFrame": """ Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. Returns ------- DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty * If ``include`` and ``exclude`` have overlapping elements * If any kind of string dtype is passed in. Notes ----- * To select all *numeric* types, use ``np.number`` or ``'number'`` * To select strings you must use the ``object`` dtype, but note that this will return *all* object dtype columns * See the `numpy dtype hierarchy <http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__ * To select datetimes, use ``np.datetime64``, ``'datetime'`` or ``'datetime64'`` * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or ``'timedelta64'`` * To select Pandas categorical dtypes, use ``'category'`` * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in 0.20.0) or ``'datetime64[ns, tz]'`` Examples -------- >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0 """ if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () selection = (frozenset(include), frozenset(exclude)) if not any(selection): raise ValueError("at least one of include or exclude must be nonempty") # convert the myriad valid dtypes object to a single representation include = frozenset(infer_dtype_from_object(x) for x in include) exclude = frozenset(infer_dtype_from_object(x) for x in exclude) for dtypes in (include, exclude): invalidate_string_dtypes(dtypes) # can't both include AND exclude! if not include.isdisjoint(exclude): raise ValueError(f"include and exclude overlap on {(include & exclude)}") # We raise when both include and exclude are empty # Hence, we can just shrink the columns we want to keep keep_these = np.full(self.shape[1], True) def extract_unique_dtypes_from_dtypes_set( dtypes_set: FrozenSet[Dtype], unique_dtypes: np.ndarray ) -> List[Dtype]: extracted_dtypes = [ unique_dtype for unique_dtype in unique_dtypes if issubclass(unique_dtype.type, tuple(dtypes_set)) # type: ignore ] return extracted_dtypes unique_dtypes = self.dtypes.unique() if include: included_dtypes = extract_unique_dtypes_from_dtypes_set( include, unique_dtypes ) keep_these &= self.dtypes.isin(included_dtypes) if exclude: excluded_dtypes = extract_unique_dtypes_from_dtypes_set( exclude, unique_dtypes ) keep_these &= ~self.dtypes.isin(excluded_dtypes) return self.iloc[:, keep_these.values] def insert(self, loc, column, value, allow_duplicates=False) -> None: """ Insert column into DataFrame at specified location. Raises a ValueError if `column` is already contained in the DataFrame, unless `allow_duplicates` is set to True. Parameters ---------- loc : int Insertion index. Must verify 0 <= loc <= len(columns). column : str, number, or hashable object Label of the inserted column. value : int, Series, or array-like allow_duplicates : bool, optional """ self._ensure_valid_index(value) value = self._sanitize_column(column, value, broadcast=False) self._data.insert(loc, column, value, allow_duplicates=allow_duplicates) def assign(self, **kwargs) -> "DataFrame": r""" Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- **kwargs : dict of {str: callable or Series} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn't check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns ------- DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes ----- Assigning multiple columns within the same ``assign`` is possible. Later items in '\*\*kwargs' may refer to newly created or modified columns in 'df'; items are computed and assigned into 'df' in order. .. versionchanged:: 0.23.0 Keyword argument order is maintained. Examples -------- >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence: >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 You can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign: >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9) temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15 """ data = self.copy() for k, v in kwargs.items(): data[k] = com.apply_if_callable(v, data) return data def _sanitize_column(self, key, value, broadcast=True): """ Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array. Parameters ---------- key : object value : scalar, Series, or array-like broadcast : bool, default True If ``key`` matches multiple duplicate column names in the DataFrame, this parameter indicates whether ``value`` should be tiled so that the returned array contains a (duplicated) column for each occurrence of the key. If False, ``value`` will not be tiled. Returns ------- numpy.ndarray """ def reindexer(value): # reindex if necessary if value.index.equals(self.index) or not len(self.index): value = value._values.copy() else: # GH 4107 try: value = value.reindex(self.index)._values except ValueError as err: # raised in MultiIndex.from_tuples, see test_insert_error_msmgs if not value.index.is_unique: # duplicate axis raise err # other raise TypeError( "incompatible index of inserted column with frame index" ) return value if isinstance(value, Series): value = reindexer(value) elif isinstance(value, DataFrame): # align right-hand-side columns if self.columns # is multi-index and self[key] is a sub-frame if isinstance(self.columns, ABCMultiIndex) and key in self.columns: loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): cols = maybe_droplevels(self.columns[loc], key) if len(cols) and not cols.equals(value.columns): value = value.reindex(cols, axis=1) # now align rows value = reindexer(value).T elif isinstance(value, ExtensionArray): # Explicitly copy here, instead of in sanitize_index, # as sanitize_index won't copy an EA, even with copy=True value = value.copy() value = sanitize_index(value, self.index, copy=False) elif isinstance(value, Index) or is_sequence(value): # turn me into an ndarray value = sanitize_index(value, self.index, copy=False) if not isinstance(value, (np.ndarray, Index)): if isinstance(value, list) and len(value) > 0: value = maybe_convert_platform(value) else: value = com.asarray_tuplesafe(value) elif value.ndim == 2: value = value.copy().T elif isinstance(value, Index): value = value.copy(deep=True) else: value = value.copy() # possibly infer to datetimelike if is_object_dtype(value.dtype): value = maybe_infer_to_datetimelike(value) else: # cast ignores pandas dtypes. so save the dtype first infer_dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True) # upcast value = cast_scalar_to_array(len(self.index), value) value = maybe_cast_to_datetime(value, infer_dtype) # return internal types directly if is_extension_array_dtype(value): return value # broadcast across multiple columns if necessary if broadcast and key in self.columns and value.ndim == 1: if not self.columns.is_unique or isinstance(self.columns, ABCMultiIndex): existing_piece = self[key] if isinstance(existing_piece, DataFrame): value = np.tile(value, (len(existing_piece.columns), 1)) return np.atleast_2d(np.asarray(value)) @property def _series(self): return { item: Series(self._data.iget(idx), index=self.index, name=item) for idx, item in enumerate(self.columns) } def lookup(self, row_labels, col_labels) -> np.ndarray: """ Label-based "fancy indexing" function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. Parameters ---------- row_labels : sequence The row labels to use for lookup. col_labels : sequence The column labels to use for lookup. Returns ------- numpy.ndarray Examples -------- values : ndarray The found values """ n = len(row_labels) if n != len(col_labels): raise ValueError("Row labels must have same size as column labels") thresh = 1000 if not self._is_mixed_type or n > thresh: values = self.values ridx = self.index.get_indexer(row_labels) cidx = self.columns.get_indexer(col_labels) if (ridx == -1).any(): raise KeyError("One or more row labels was not found") if (cidx == -1).any(): raise KeyError("One or more column labels was not found") flat_index = ridx * len(self.columns) + cidx result = values.flat[flat_index] else: result = np.empty(n, dtype="O") for i, (r, c) in enumerate(zip(row_labels, col_labels)): result[i] = self._get_value(r, c) if is_object_dtype(result): result = lib.maybe_convert_objects(result) return result # ---------------------------------------------------------------------- # Reindexing and alignment def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): frame = self columns = axes["columns"] if columns is not None: frame = frame._reindex_columns( columns, method, copy, level, fill_value, limit, tolerance ) index = axes["index"] if index is not None: frame = frame._reindex_index( index, method, copy, level, fill_value, limit, tolerance ) return frame def _reindex_index( self, new_index, method, copy, level, fill_value=np.nan, limit=None, tolerance=None, ): new_index, indexer = self.index.reindex( new_index, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {0: [new_index, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_columns( self, new_columns, method, copy, level, fill_value=None, limit=None, tolerance=None, ): new_columns, indexer = self.columns.reindex( new_columns, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {1: [new_columns, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_multi(self, axes, copy, fill_value) -> "DataFrame": """ We are guaranteed non-Nones in the axes. """ new_index, row_indexer = self.index.reindex(axes["index"]) new_columns, col_indexer = self.columns.reindex(axes["columns"]) if row_indexer is not None and col_indexer is not None: indexer = row_indexer, col_indexer new_values = algorithms.take_2d_multi( self.values, indexer, fill_value=fill_value ) return self._constructor(new_values, index=new_index, columns=new_columns) else: return self._reindex_with_indexers( {0: [new_index, row_indexer], 1: [new_columns, col_indexer]}, copy=copy, fill_value=fill_value, ) @Appender(_shared_docs["align"] % _shared_doc_kwargs) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ) -> "DataFrame": return super().align( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.reindex.__doc__) @rewrite_axis_style_signature( "labels", [ ("method", None), ("copy", True), ("level", None), ("fill_value", np.nan), ("limit", None), ("tolerance", None), ], ) def reindex(self, *args, **kwargs) -> "DataFrame": axes = validate_axis_style_args(self, args, kwargs, "labels", "reindex") kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop("axis", None) kwargs.pop("labels", None) return self._ensure_type(super().reindex(**kwargs)) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors="raise", ): """ Drop specified labels from rows or columns. Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index or column labels to drop. axis : {0 or 'index', 1 or 'columns'}, default 0 Whether to drop labels from the index (0 or 'index') or columns (1 or 'columns'). index : single label or list-like Alternative to specifying axis (``labels, axis=0`` is equivalent to ``index=labels``). .. versionadded:: 0.21.0 columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). .. versionadded:: 0.21.0 level : int or level name, optional For MultiIndex, level from which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- DataFrame DataFrame without the removed index or column labels. Raises ------ KeyError If any of the labels is not found in the selected axis. See Also -------- DataFrame.loc : Label-location based indexer for selection by label. DataFrame.dropna : Return DataFrame with labels on given axis omitted where (all or any) data are missing. DataFrame.drop_duplicates : Return DataFrame with duplicate rows removed, optionally only considering certain columns. Series.drop : Return Series with specified index labels removed. Examples -------- >>> df = pd.DataFrame(np.arange(12).reshape(3, 4), ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 Drop columns >>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 >>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 Drop a row by index >>> df.drop([0, 1]) A B C D 2 8 9 10 11 Drop columns and/or rows of MultiIndex DataFrame >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = pd.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3, 0.2]]) >>> df big small lama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2 >>> df.drop(index='cow', columns='small') big lama speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 >>> df.drop(index='length', level=1) big small lama speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) @rewrite_axis_style_signature( "mapper", [("copy", True), ("inplace", False), ("level", None), ("errors", "ignore")], ) def rename( self, mapper: Optional[Renamer] = None, *, index: Optional[Renamer] = None, columns: Optional[Renamer] = None, axis: Optional[Axis] = None, copy: bool = True, inplace: bool = False, level: Optional[Level] = None, errors: str = "ignore", ) -> Optional["DataFrame"]: """ Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- mapper : dict-like or function Dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and ``columns``. index : dict-like or function Alternative to specifying axis (``mapper, axis=0`` is equivalent to ``index=mapper``). columns : dict-like or function Alternative to specifying axis (``mapper, axis=1`` is equivalent to ``columns=mapper``). axis : int or str Axis to target with ``mapper``. Can be either the axis name ('index', 'columns') or number (0, 1). The default is 'index'. copy : bool, default True Also copy underlying data. inplace : bool, default False Whether to return a new DataFrame. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise'}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- DataFrame DataFrame with the renamed axis labels. Raises ------ KeyError If any of the labels is not found in the selected axis and "errors='raise'". See Also -------- DataFrame.rename_axis : Set the name of the axis. Examples -------- ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Rename columns using a mapping: >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 Rename index using a mapping: >>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6 Cast index labels to a different type: >>> df.index RangeIndex(start=0, stop=3, step=1) >>> df.rename(index=str).index Index(['0', '1', '2'], dtype='object') >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 """ return super().rename( mapper=mapper, index=index, columns=columns, axis=axis, copy=copy, inplace=inplace, level=level, errors=errors, ) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.fillna.__doc__) def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, ) -> Optional["DataFrame"]: return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, ) @Appender(_shared_docs["replace"] % _shared_doc_kwargs) def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): return super().replace( to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method, ) @Appender(_shared_docs["shift"] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0, fill_value=None) -> "DataFrame": return self._ensure_type( super().shift(periods=periods, freq=freq, axis=axis, fill_value=fill_value) ) def set_index( self, keys, drop=True, append=False, inplace=False, verify_integrity=False ): """ Set the DataFrame index using existing columns. Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it. Parameters ---------- keys : label or array-like or list of labels/arrays This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, "array" encompasses :class:`Series`, :class:`Index`, ``np.ndarray``, and instances of :class:`~collections.abc.Iterator`. drop : bool, default True Delete columns to be used as the new index. append : bool, default False Whether to append columns to existing index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). verify_integrity : bool, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method. Returns ------- DataFrame Changed row labels. See Also -------- DataFrame.reset_index : Opposite of set_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 Set the index to become the 'month' column: >>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 Create a MultiIndex using columns 'year' and 'month': >>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 Create a MultiIndex using an Index and a column: >>> df.set_index([pd.Index([1, 2, 3, 4]), 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31 Create a MultiIndex using two Series: >>> s = pd.Series([1, 2, 3, 4]) >>> df.set_index([s, s**2]) month year sale 1 1 1 2012 55 2 4 4 2014 40 3 9 7 2013 84 4 16 10 2014 31 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(keys, list): keys = [keys] err_msg = ( 'The parameter "keys" may be a column key, one-dimensional ' "array, or a list containing only valid column keys and " "one-dimensional arrays." ) missing: List[Optional[Hashable]] = [] for col in keys: if isinstance( col, (ABCIndexClass, ABCSeries, np.ndarray, list, abc.Iterator) ): # arrays are fine as long as they are one-dimensional # iterators get converted to list below if getattr(col, "ndim", 1) != 1: raise ValueError(err_msg) else: # everything else gets tried as a key; see GH 24969 try: found = col in self.columns except TypeError: raise TypeError(f"{err_msg}. Received column of type {type(col)}") else: if not found: missing.append(col) if missing: raise KeyError(f"None of {missing} are in the columns") if inplace: frame = self else: frame = self.copy() arrays = [] names = [] if append: names = list(self.index.names) if isinstance(self.index, ABCMultiIndex): for i in range(self.index.nlevels): arrays.append(self.index._get_level_values(i)) else: arrays.append(self.index) to_remove: List[Optional[Hashable]] = [] for col in keys: if isinstance(col, ABCMultiIndex): for n in range(col.nlevels): arrays.append(col._get_level_values(n)) names.extend(col.names) elif isinstance(col, (ABCIndexClass, ABCSeries)): # if Index then not MultiIndex (treated above) arrays.append(col) names.append(col.name) elif isinstance(col, (list, np.ndarray)): arrays.append(col) names.append(None) elif isinstance(col, abc.Iterator): arrays.append(list(col)) names.append(None) # from here, col can only be a column label else: arrays.append(frame[col]._values) names.append(col) if drop: to_remove.append(col) if len(arrays[-1]) != len(self): # check newest element against length of calling frame, since # ensure_index_from_sequences would not raise for append=False. raise ValueError( f"Length mismatch: Expected {len(self)} rows, " f"received array of length {len(arrays[-1])}" ) index = ensure_index_from_sequences(arrays, names) if verify_integrity and not index.is_unique: duplicates = index[index.duplicated()].unique() raise ValueError(f"Index has duplicate keys: {duplicates}") # use set to handle duplicate column names gracefully in case of drop for c in set(to_remove): del frame[c] # clear up memory usage index._cleanup() frame.index = index if not inplace: return frame def reset_index( self, level: Optional[Union[Hashable, Sequence[Hashable]]] = None, drop: bool = False, inplace: bool = False, col_level: Hashable = 0, col_fill: Optional[Hashable] = "", ) -> Optional["DataFrame"]: """ Reset the index, or a level of it. Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default. drop : bool, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- DataFrame or None DataFrame with the new index or None if ``inplace=True``. See Also -------- DataFrame.set_index : Opposite of reset_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column, and a new sequential index is used: >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ inplace = validate_bool_kwarg(inplace, "inplace") if inplace: new_obj = self else: new_obj = self.copy() def _maybe_casted_values(index, labels=None): values = index._values if not isinstance(index, (PeriodIndex, DatetimeIndex)): if values.dtype == np.object_: values = lib.maybe_convert_objects(values) # if we have the labels, extract the values with a mask if labels is not None: mask = labels == -1 # we can have situations where the whole mask is -1, # meaning there is nothing found in labels, so make all nan's if mask.all(): values = np.empty(len(mask)) values.fill(np.nan) else: values = values.take(labels) # TODO(https://github.com/pandas-dev/pandas/issues/24206) # Push this into maybe_upcast_putmask? # We can't pass EAs there right now. Looks a bit # complicated. # So we unbox the ndarray_values, op, re-box. values_type = type(values) values_dtype = values.dtype if issubclass(values_type, DatetimeLikeArray): values = values._data if mask.any(): values, _ = maybe_upcast_putmask(values, mask, np.nan) if issubclass(values_type, DatetimeLikeArray): values = values_type(values, dtype=values_dtype) return values new_index = ibase.default_index(len(new_obj)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if not drop: to_insert: Iterable[Tuple[Any, Optional[Any]]] if isinstance(self.index, ABCMultiIndex): names = [ (n if n is not None else f"level_{i}") for i, n in enumerate(self.index.names) ] to_insert = zip(self.index.levels, self.index.codes) else: default = "index" if "index" not in self else "level_0" names = [default] if self.index.name is None else [self.index.name] to_insert = ((self.index, None),) multi_col = isinstance(self.columns, ABCMultiIndex) for i, (lev, lab) in reversed(list(enumerate(to_insert))): if not (level is None or i in level): continue name = names[i] if multi_col: col_name = list(name) if isinstance(name, tuple) else [name] if col_fill is None: if len(col_name) not in (1, self.columns.nlevels): raise ValueError( "col_fill=None is incompatible " f"with incomplete column name {name}" ) col_fill = col_name[0] lev_num = self.columns._get_level_number(col_level) name_lst = [col_fill] * lev_num + col_name missing = self.columns.nlevels - len(name_lst) name_lst += [col_fill] * missing name = tuple(name_lst) # to ndarray and maybe infer different dtype level_values = _maybe_casted_values(lev, lab) new_obj.insert(0, name, level_values) new_obj.index = new_index if not inplace: return new_obj return None # ---------------------------------------------------------------------- # Reindex-based selection methods @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isna(self) -> "DataFrame": return super().isna() @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isnull(self) -> "DataFrame": return super().isnull() @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notna(self) -> "DataFrame": return super().notna() @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notnull(self) -> "DataFrame": return super().notnull() def dropna(self, axis=0, how="any", thresh=None, subset=None, inplace=False): """ Remove missing values. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. * 1, or 'columns' : Drop columns which contain missing value. .. versionchanged:: 1.0.0 Pass tuple or list to drop on multiple axes. Only a single axis is allowed. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame DataFrame with NA entries dropped from it. See Also -------- DataFrame.isna: Indicate missing values. DataFrame.notna : Indicate existing (non-missing) values. DataFrame.fillna : Replace missing values. Series.dropna : Drop missing values. Index.dropna : Drop missing indices. Examples -------- >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the columns where at least one element is missing. >>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'born']) name toy born 1 Batman Batmobile 1940-04-25 Keep the DataFrame with valid entries in the same variable. >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 """ inplace = validate_bool_kwarg(inplace, "inplace") if isinstance(axis, (tuple, list)): # GH20987 raise TypeError("supplying multiple axes to axis is no longer supported.") axis = self._get_axis_number(axis) agg_axis = 1 - axis agg_obj = self if subset is not None: ax = self._get_axis(agg_axis) indices = ax.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(list(np.compress(check, subset))) agg_obj = self.take(indices, axis=agg_axis) count = agg_obj.count(axis=agg_axis) if thresh is not None: mask = count >= thresh elif how == "any": mask = count == len(agg_obj._get_axis(agg_axis)) elif how == "all": mask = count > 0 else: if how is not None: raise ValueError(f"invalid how option: {how}") else: raise TypeError("must specify how or thresh") result = self.loc(axis=axis)[mask] if inplace: self._update_inplace(result) else: return result def drop_duplicates( self, subset: Optional[Union[Hashable, Sequence[Hashable]]] = None, keep: Union[str, bool] = "first", inplace: bool = False, ignore_index: bool = False, ) -> Optional["DataFrame"]: """ Return DataFrame with duplicate rows removed. Considering certain columns is optional. Indexes, including time indexes are ignored. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to keep. - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplace : bool, default False Whether to drop duplicates in place or to return a copy. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- DataFrame DataFrame with duplicates removed or None if ``inplace=True``. """ if self.empty: return self.copy() inplace = validate_bool_kwarg(inplace, "inplace") duplicated = self.duplicated(subset, keep=keep) if inplace: (inds,) = (-duplicated)._ndarray_values.nonzero() new_data = self._data.take(inds) if ignore_index: new_data.axes[1] = ibase.default_index(len(inds)) self._update_inplace(new_data) else: result = self[-duplicated] if ignore_index: result.index = ibase.default_index(len(result)) return result return None def duplicated( self, subset: Optional[Union[Hashable, Sequence[Hashable]]] = None, keep: Union[str, bool] = "first", ) -> "Series": """ Return boolean Series denoting duplicate rows. Considering certain columns is optional. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to mark. - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- Series """ from pandas.core.sorting import get_group_index from pandas._libs.hashtable import duplicated_int64, _SIZE_HINT_LIMIT if self.empty: return Series(dtype=bool) def f(vals): labels, shape = algorithms.factorize( vals, size_hint=min(len(self), _SIZE_HINT_LIMIT) ) return labels.astype("i8", copy=False), len(shape) if subset is None: subset = self.columns elif ( not np.iterable(subset) or isinstance(subset, str) or isinstance(subset, tuple) and subset in self.columns ): subset = (subset,) # needed for mypy since can't narrow types using np.iterable subset = cast(Iterable, subset) # Verify all columns in subset exist in the queried dataframe # Otherwise, raise a KeyError, same as if you try to __getitem__ with a # key that doesn't exist. diff = Index(subset).difference(self.columns) if not diff.empty: raise KeyError(diff) vals = (col.values for name, col in self.items() if name in subset) labels, shape = map(list, zip(*map(f, vals))) ids = get_group_index(labels, shape, sort=False, xnull=False) return Series(duplicated_int64(ids, keep), index=self.index) # ---------------------------------------------------------------------- # Sorting @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.sort_values.__doc__) def sort_values( self, by, axis=0, ascending=True, inplace=False, kind="quicksort", na_position="last", ignore_index=False, ): inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) if not isinstance(by, list): by = [by] if is_sequence(ascending) and len(by) != len(ascending): raise ValueError( f"Length of ascending ({len(ascending)}) != length of by ({len(by)})" ) if len(by) > 1: from pandas.core.sorting import lexsort_indexer keys = [self._get_label_or_level_values(x, axis=axis) for x in by] indexer = lexsort_indexer(keys, orders=ascending, na_position=na_position) indexer = ensure_platform_int(indexer) else: from pandas.core.sorting import nargsort by = by[0] k = self._get_label_or_level_values(by, axis=axis) if isinstance(ascending, (tuple, list)): ascending = ascending[0] indexer = nargsort( k, kind=kind, ascending=ascending, na_position=na_position ) new_data = self._data.take( indexer, axis=self._get_block_manager_axis(axis), verify=False ) if ignore_index: new_data.axes[1] = ibase.default_index(len(indexer)) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def sort_index( self, axis=0, level=None, ascending: bool = True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", sort_remaining: bool = True, ignore_index: bool = False, ): """ Sort object by labels (along an axis). Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis along which to sort. The value 0 identifies the rows, and 1 identifies the columns. level : int or level name or list of ints or list of level names If not None, sort on values in specified index level(s). ascending : bool, default True Sort ascending vs. descending. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also ndarray.np.sort for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- sorted_obj : DataFrame or None DataFrame with sorted index if inplace=False, None otherwise. """ # TODO: this can be combined with Series.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) labels = self._get_axis(axis) # make sure that the axis is lexsorted to start # if not we need to reconstruct to get the correct indexer labels = labels._sort_levels_monotonic() if level is not None: new_axis, indexer = labels.sortlevel( level, ascending=ascending, sort_remaining=sort_remaining ) elif isinstance(labels, ABCMultiIndex): from pandas.core.sorting import lexsort_indexer indexer = lexsort_indexer( labels._get_codes_for_sorting(), orders=ascending, na_position=na_position, ) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if (ascending and labels.is_monotonic_increasing) or ( not ascending and labels.is_monotonic_decreasing ): if inplace: return else: return self.copy() indexer = nargsort( labels, kind=kind, ascending=ascending, na_position=na_position ) baxis = self._get_block_manager_axis(axis) new_data = self._data.take(indexer, axis=baxis, verify=False) # reconstruct axis if needed new_data.axes[baxis] = new_data.axes[baxis]._sort_levels_monotonic() if ignore_index: new_data.axes[1] = ibase.default_index(len(indexer)) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def nlargest(self, n, columns, keep="first") -> "DataFrame": """ Return the first `n` rows ordered by `columns` in descending order. Return the first `n` rows with the largest values in `columns`, in descending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=False).head(n)``, but more performant. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - `first` : prioritize the first occurrence(s) - `last` : prioritize the last occurrence(s) - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. See Also -------- DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in ascending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Notes ----- This function cannot be used with all column types. For example, when specifying columns with `object` or `category` dtypes, ``TypeError`` is raised. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "population". >>> df.nlargest(3, 'population') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT When using ``keep='last'``, ties are resolved in reverse order: >>> df.nlargest(3, 'population', keep='last') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN When using ``keep='all'``, all duplicate items are maintained: >>> df.nlargest(3, 'population', keep='all') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN To order by the largest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nlargest(3, ['population', 'GDP']) population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN """ return algorithms.SelectNFrame(self, n=n, keep=keep, columns=columns).nlargest() def nsmallest(self, n, columns, keep="first") -> "DataFrame": """ Return the first `n` rows ordered by `columns` in ascending order. Return the first `n` rows with the smallest values in `columns`, in ascending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=True).head(n)``, but more performant. Parameters ---------- n : int Number of items to retrieve. columns : list or str Column name or names to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame See Also -------- DataFrame.nlargest : Return the first `n` rows ordered by `columns` in descending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "a". >>> df.nsmallest(3, 'population') population GDP alpha-2 Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI When using ``keep='last'``, ties are resolved in reverse order: >>> df.nsmallest(3, 'population', keep='last') population GDP alpha-2 Anguilla 11300 311 AI Tuvalu 11300 38 TV Nauru 11300 182 NR When using ``keep='all'``, all duplicate items are maintained: >>> df.nsmallest(3, 'population', keep='all') population GDP alpha-2 Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI To order by the largest values in column "a" and then "c", we can specify multiple columns like in the next example. >>> df.nsmallest(3, ['population', 'GDP']) population GDP alpha-2 Tuvalu 11300 38 TV Nauru 11300 182 NR Anguilla 11300 311 AI """ return algorithms.SelectNFrame( self, n=n, keep=keep, columns=columns ).nsmallest() def swaplevel(self, i=-2, j=-1, axis=0) -> "DataFrame": """ Swap levels i and j in a MultiIndex on a particular axis. Parameters ---------- i, j : int or str Levels of the indices to be swapped. Can pass level name as string. Returns ------- DataFrame """ result = self.copy() axis = self._get_axis_number(axis) if axis == 0: result.index = result.index.swaplevel(i, j) else: result.columns = result.columns.swaplevel(i, j) return result def reorder_levels(self, order, axis=0) -> "DataFrame": """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : int Where to reorder levels. Returns ------- DataFrame """ axis = self._get_axis_number(axis) if not isinstance(self._get_axis(axis), ABCMultiIndex): # pragma: no cover raise TypeError("Can only reorder levels on a hierarchical axis.") result = self.copy() if axis == 0: result.index = result.index.reorder_levels(order) else: result.columns = result.columns.reorder_levels(order) return result # ---------------------------------------------------------------------- # Arithmetic / combination related def _combine_frame(self, other, func, fill_value=None, level=None): # at this point we have `self._indexed_same(other)` if fill_value is None: # since _arith_op may be called in a loop, avoid function call # overhead if possible by doing this check once _arith_op = func else: def _arith_op(left, right): # for the mixed_type case where we iterate over columns, # _arith_op(left, right) is equivalent to # left._binop(right, func, fill_value=fill_value) left, right = ops.fill_binop(left, right, fill_value) return func(left, right) if ops.should_series_dispatch(self, other, func): # iterate over columns new_data = ops.dispatch_to_series(self, other, _arith_op) else: with np.errstate(all="ignore"): res_values = _arith_op(self.values, other.values) new_data = dispatch_fill_zeros(func, self.values, other.values, res_values) return new_data def _combine_match_index(self, other, func): # at this point we have `self.index.equals(other.index)` if ops.should_series_dispatch(self, other, func): # operate column-wise; avoid costly object-casting in `.values` new_data = ops.dispatch_to_series(self, other, func) else: # fastpath --> operate directly on values with np.errstate(all="ignore"): new_data = func(self.values.T, other.values).T return new_data def _construct_result(self, result) -> "DataFrame": """ Wrap the result of an arithmetic, comparison, or logical operation. Parameters ---------- result : DataFrame Returns ------- DataFrame """ out = self._constructor(result, index=self.index, copy=False) # Pin columns instead of passing to constructor for compat with # non-unique columns case out.columns = self.columns return out def combine( self, other: "DataFrame", func, fill_value=None, overwrite=True ) -> "DataFrame": """ Perform column-wise combine with another DataFrame. Combines a DataFrame with `other` DataFrame using `func` to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame The DataFrame to merge column-wise. func : function Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns. fill_value : scalar value, default None The value to fill NaNs with prior to passing any column to the merge func. overwrite : bool, default True If True, columns in `self` that do not exist in `other` will be overwritten with NaNs. Returns ------- DataFrame Combination of the provided DataFrames. See Also -------- DataFrame.combine_first : Combine two DataFrame objects and default to non-null values in frame calling the method. Examples -------- Combine using a simple function that chooses the smaller column. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 >>> df1.combine(df2, take_smaller) A B 0 0 3 1 0 3 Example using a true element-wise combine function. >>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, np.minimum) A B 0 1 2 1 0 3 Using `fill_value` fills Nones prior to passing the column to the merge function. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 4.0 However, if the same element in both dataframes is None, that None is preserved >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 3.0 Example that demonstrates the use of `overwrite` and behavior when the axis differ between the dataframes. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2]) >>> df1.combine(df2, take_smaller) A B C 0 NaN NaN NaN 1 NaN 3.0 -10.0 2 NaN 3.0 1.0 >>> df1.combine(df2, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 -10.0 2 NaN 3.0 1.0 Demonstrating the preference of the passed in dataframe. >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2]) >>> df2.combine(df1, take_smaller) A B C 0 0.0 NaN NaN 1 0.0 3.0 NaN 2 NaN 3.0 NaN >>> df2.combine(df1, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ other_idxlen = len(other.index) # save for compare this, other = self.align(other, copy=False) new_index = this.index if other.empty and len(new_index) == len(self.index): return self.copy() if self.empty and len(other) == other_idxlen: return other.copy() # sorts if possible new_columns = this.columns.union(other.columns) do_fill = fill_value is not None result = {} for col in new_columns: series = this[col] otherSeries = other[col] this_dtype = series.dtype other_dtype = otherSeries.dtype this_mask = isna(series) other_mask = isna(otherSeries) # don't overwrite columns unnecessarily # DO propagate if this column is not in the intersection if not overwrite and other_mask.all(): result[col] = this[col].copy() continue if do_fill: series = series.copy() otherSeries = otherSeries.copy() series[this_mask] = fill_value otherSeries[other_mask] = fill_value if col not in self.columns: # If self DataFrame does not have col in other DataFrame, # try to promote series, which is all NaN, as other_dtype. new_dtype = other_dtype try: series = series.astype(new_dtype, copy=False) except ValueError: # e.g. new_dtype is integer types pass else: # if we have different dtypes, possibly promote new_dtype = find_common_type([this_dtype, other_dtype]) if not is_dtype_equal(this_dtype, new_dtype): series = series.astype(new_dtype) if not is_dtype_equal(other_dtype, new_dtype): otherSeries = otherSeries.astype(new_dtype) arr = func(series, otherSeries) arr = maybe_downcast_to_dtype(arr, this_dtype) result[col] = arr # convert_objects just in case return self._constructor(result, index=new_index, columns=new_columns) def combine_first(self, other: "DataFrame") -> "DataFrame": """ Update null elements with value in the same location in `other`. Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame Provided DataFrame to use to fill null values. Returns ------- DataFrame See Also -------- DataFrame.combine : Perform series-wise operation on two DataFrames using a given function. Examples -------- >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine_first(df2) A B 0 1.0 3.0 1 0.0 4.0 Null values still persist if the location of that null value does not exist in `other` >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) >>> df1.combine_first(df2) A B C 0 NaN 4.0 NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ import pandas.core.computation.expressions as expressions def extract_values(arr): # Does two things: # 1. maybe gets the values from the Series / Index # 2. convert datelike to i8 if isinstance(arr, (ABCIndexClass, ABCSeries)): arr = arr._values if needs_i8_conversion(arr): if is_extension_array_dtype(arr.dtype): arr = arr.asi8 else: arr = arr.view("i8") return arr def combiner(x, y): mask = isna(x) if isinstance(mask, (ABCIndexClass, ABCSeries)): mask = mask._values x_values = extract_values(x) y_values = extract_values(y) # If the column y in other DataFrame is not in first DataFrame, # just return y_values. if y.name not in self.columns: return y_values return expressions.where(mask, y_values, x_values) return self.combine(other, combiner, overwrite=False) def update( self, other, join="left", overwrite=True, filter_func=None, errors="ignore" ) -> None: """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or object coercible into a DataFrame Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame. join : {'left'}, default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. filter_func : callable(1d-array) -> bool 1d-array, optional Can choose to replace values other than NA. Return True for values that should be updated. errors : {'raise', 'ignore'}, default 'ignore' If 'raise', will raise a ValueError if the DataFrame and `other` both contain non-NA data in the same place. .. versionchanged:: 0.24.0 Changed from `raise_conflict=False|True` to `errors='ignore'|'raise'`. Returns ------- None : method directly changes calling object Raises ------ ValueError * When `errors='raise'` and there's overlapping non-NA data. * When `errors` is not either `'ignore'` or `'raise'` NotImplementedError * If `join != 'left'` See Also -------- dict.update : Similar method for dictionaries. DataFrame.merge : For column(s)-on-columns(s) operations. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f For Series, it's name attribute must be set. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2]) >>> df.update(new_df) >>> df A B 0 a x 1 b d 2 c e If `other` contains NaNs the corresponding values are not updated in the original dataframe. >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ import pandas.core.computation.expressions as expressions # TODO: Support other joins if join != "left": # pragma: no cover raise NotImplementedError("Only left join is supported") if errors not in ["ignore", "raise"]: raise ValueError("The parameter errors must be either 'ignore' or 'raise'") if not isinstance(other, DataFrame): other = DataFrame(other) other = other.reindex_like(self) for col in self.columns: this = self[col]._values that = other[col]._values if filter_func is not None: with np.errstate(all="ignore"): mask = ~filter_func(this) | isna(that) else: if errors == "raise": mask_this = notna(that) mask_that = notna(this) if any(mask_this & mask_that): raise ValueError("Data overlaps.") if overwrite: mask = isna(that) else: mask = notna(this) # don't overwrite columns unnecessarily if mask.all(): continue self[col] = expressions.where(mask, this, that) # ---------------------------------------------------------------------- # Data reshaping @Appender( """ Examples -------- >>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', ... 'Parrot', 'Parrot'], ... 'Max Speed': [380., 370., 24., 26.]}) >>> df Animal Max Speed 0 Falcon 380.0 1 Falcon 370.0 2 Parrot 24.0 3 Parrot 26.0 >>> df.groupby(['Animal']).mean() Max Speed Animal Falcon 375.0 Parrot 25.0 **Hierarchical Indexes** We can groupby different levels of a hierarchical index using the `level` parameter: >>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... ['Captive', 'Wild', 'Captive', 'Wild']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) >>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]}, ... index=index) >>> df Max Speed Animal Type Falcon Captive 390.0 Wild 350.0 Parrot Captive 30.0 Wild 20.0 >>> df.groupby(level=0).mean() Max Speed Animal Falcon 370.0 Parrot 25.0 >>> df.groupby(level="Type").mean() Max Speed Type Captive 210.0 Wild 185.0 """ ) @Appender(_shared_docs["groupby"] % _shared_doc_kwargs) def groupby( self, by=None, axis=0, level=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = False, observed: bool = False, ) -> "DataFrameGroupBy": from pandas.core.groupby.generic import DataFrameGroupBy if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") axis = self._get_axis_number(axis) return DataFrameGroupBy( obj=self, keys=by, axis=axis, level=level, as_index=as_index, sort=sort, group_keys=group_keys, squeeze=squeeze, observed=observed, ) _shared_docs[ "pivot" ] = """ Return reshaped DataFrame organized by given index / column values. Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the :ref:`User Guide <reshaping>` for more on reshaping. Parameters ----------%s index : str or object, optional Column to use to make new frame's index. If None, uses existing index. columns : str or object Column to use to make new frame's columns. values : str, object or a list of the previous, optional Column(s) to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns. .. versionchanged:: 0.23.0 Also accept list of column names. Returns ------- DataFrame Returns reshaped DataFrame. Raises ------ ValueError: When there are any `index`, `columns` combinations with multiple values. `DataFrame.pivot_table` when you need to aggregate. See Also -------- DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : Pivot based on the index values instead of a column. Notes ----- For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods. Examples -------- >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz') bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo']) baz zoo bar A B C A B C foo one 1 2 3 x y z two 4 5 6 q w t A ValueError is raised if there are any duplicates. >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 Notice that the first two rows are the same for our `index` and `columns` arguments. >>> df.pivot(index='foo', columns='bar', values='baz') Traceback (most recent call last): ... ValueError: Index contains duplicate entries, cannot reshape """ @Substitution("") @Appender(_shared_docs["pivot"]) def pivot(self, index=None, columns=None, values=None) -> "DataFrame": from pandas.core.reshape.pivot import pivot return pivot(self, index=index, columns=columns, values=values) _shared_docs[ "pivot_table" ] = """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame. Parameters ----------%s values : column to aggregate, optional index : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, list of functions, dict, default numpy.mean If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions. fill_value : scalar, default None Value to replace missing values with. margins : bool, default False Add all row / columns (e.g. for subtotal / grand totals). dropna : bool, default True Do not include columns whose entries are all NaN. margins_name : str, default 'All' Name of the row / column that will contain the totals when margins is True. observed : bool, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. .. versionchanged:: 0.25.0 Returns ------- DataFrame An Excel style pivot table. See Also -------- DataFrame.pivot : Pivot without aggregation that can handle non-numeric data. Examples -------- >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9 This first example aggregates values by taking the sum. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0 We can also fill missing values using the `fill_value` parameter. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum, fill_value=0) >>> table C large small A B bar one 4 5 two 7 6 foo one 4 1 two 0 6 The next example aggregates by taking the mean across multiple columns. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': np.mean}) >>> table D E A C bar large 5.500000 7.500000 small 5.500000 8.500000 foo large 2.000000 4.500000 small 2.333333 4.333333 We can also calculate multiple types of aggregations for any given value column. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': [min, max, np.mean]}) >>> table D E mean max mean min A C bar large 5.500000 9.0 7.500000 6.0 small 5.500000 9.0 8.500000 8.0 foo large 2.000000 5.0 4.500000 4.0 small 2.333333 6.0 4.333333 2.0 """ @Substitution("") @Appender(_shared_docs["pivot_table"]) def pivot_table( self, values=None, index=None, columns=None, aggfunc="mean", fill_value=None, margins=False, dropna=True, margins_name="All", observed=False, ) -> "DataFrame": from pandas.core.reshape.pivot import pivot_table return pivot_table( self, values=values, index=index, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, ) def stack(self, level=-1, dropna=True): """ Stack the prescribed level(s) from columns to index. Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe: - if the columns have a single level, the output is a Series; - if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame. The new index levels are sorted. Parameters ---------- level : int, str, list, default -1 Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels. dropna : bool, default True Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe. See Examples section. Returns ------- DataFrame or Series Stacked dataframe or series. See Also -------- DataFrame.unstack : Unstack prescribed level(s) from index axis onto column axis. DataFrame.pivot : Reshape dataframe from long format to wide format. DataFrame.pivot_table : Create a spreadsheet-style pivot table as a DataFrame. Notes ----- The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe). Examples -------- **Single level columns** >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height']) Stacking a dataframe with a single level column axis returns a Series: >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack() cat weight 0 height 1 dog weight 2 height 3 dtype: int64 **Multi level columns: simple case** >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1) Stacking a dataframe with a multi-level column axis: >>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack() weight cat kg 1 pounds 2 dog kg 2 pounds 4 **Missing values** >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2) It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs: >>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack() height weight cat kg NaN 1.0 m 2.0 NaN dog kg NaN 3.0 m 4.0 NaN **Prescribing the level(s) to be stacked** The first parameter controls which level or levels are stacked: >>> df_multi_level_cols2.stack(0) kg m cat height NaN 2.0 weight 1.0 NaN dog height NaN 4.0 weight 3.0 NaN >>> df_multi_level_cols2.stack([0, 1]) cat height m 2.0 weight kg 1.0 dog height m 4.0 weight kg 3.0 dtype: float64 **Dropping missing values** >>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]], ... index=['cat', 'dog'], ... columns=multicol2) Note that rows where all values are missing are dropped by default but this behaviour can be controlled via the dropna keyword parameter: >>> df_multi_level_cols3 weight height kg m cat NaN 1.0 dog 2.0 3.0 >>> df_multi_level_cols3.stack(dropna=False) height weight cat kg NaN NaN m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN >>> df_multi_level_cols3.stack(dropna=True) height weight cat m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN """ from pandas.core.reshape.reshape import stack, stack_multiple if isinstance(level, (tuple, list)): return stack_multiple(self, level, dropna=dropna) else: return stack(self, level, dropna=dropna) def explode(self, column: Union[str, Tuple]) -> "DataFrame": """ Transform each element of a list-like to a row, replicating index values. .. versionadded:: 0.25.0 Parameters ---------- column : str or tuple Column to explode. Returns ------- DataFrame Exploded lists to rows of the subset columns; index will be duplicated for these rows. Raises ------ ValueError : if columns of the frame are not unique. See Also -------- DataFrame.unstack : Pivot a level of the (necessarily hierarchical) index labels. DataFrame.melt : Unpivot a DataFrame from wide format to long format. Series.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged. Empty list-likes will result in a np.nan for that row. Examples -------- >>> df = pd.DataFrame({'A': [[1, 2, 3], 'foo', [], [3, 4]], 'B': 1}) >>> df A B 0 [1, 2, 3] 1 1 foo 1 2 [] 1 3 [3, 4] 1 >>> df.explode('A') A B 0 1 1 0 2 1 0 3 1 1 foo 1 2 NaN 1 3 3 1 3 4 1 """ if not (is_scalar(column) or isinstance(column, tuple)): raise ValueError("column must be a scalar") if not self.columns.is_unique: raise ValueError("columns must be unique") df = self.reset_index(drop=True) # TODO: use overload to refine return type of reset_index assert df is not None # needed for mypy result = df[column].explode() result = df.drop([column], axis=1).join(result) result.index = self.index.take(result.index) result = result.reindex(columns=self.columns, copy=False) return result def unstack(self, level=-1, fill_value=None): """ Pivot a level of the (necessarily hierarchical) index labels. Returns a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted. Parameters ---------- level : int, str, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name. fill_value : int, str or dict Replace NaN with this value if the unstack produces missing values. Returns ------- Series or DataFrame See Also -------- DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation from `unstack`). Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 >>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0 >>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0 >>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) _shared_docs[ "melt" ] = """ Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. %(versionadded)s Parameters ---------- id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar Name to use for the 'variable' column. If None it uses ``frame.columns.name`` or 'variable'. value_name : scalar, default 'value' Name to use for the 'value' column. col_level : int or str, optional If columns are a MultiIndex then use this level to melt. Returns ------- DataFrame Unpivoted DataFrame. See Also -------- %(other)s pivot_table DataFrame.pivot Series.explode Examples -------- >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)sid_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of 'variable' and 'value' columns can be customized: >>> %(caller)sid_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)scol_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5 """ @Appender( _shared_docs["melt"] % dict( caller="df.melt(", versionadded=".. versionadded:: 0.20.0\n", other="melt" ) ) def melt( self, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level=None, ) -> "DataFrame": from pandas.core.reshape.melt import melt return melt( self, id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level, ) # ---------------------------------------------------------------------- # Time series-related def diff(self, periods=1, axis=0) -> "DataFrame": """ First discrete difference of element. Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is the element in the same column of the previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. axis : {0 or 'index', 1 or 'columns'}, default 0 Take difference over rows (0) or columns (1). Returns ------- DataFrame See Also -------- Series.diff: First discrete difference for a Series. DataFrame.pct_change: Percent change over given number of periods. DataFrame.shift: Shift index by desired number of periods with an optional time freq. Examples -------- Difference with previous row >>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0 Difference with previous column >>> df.diff(axis=1) a b c 0 NaN 0.0 0.0 1 NaN -1.0 3.0 2 NaN -1.0 7.0 3 NaN -1.0 13.0 4 NaN 0.0 20.0 5 NaN 2.0 28.0 Difference with 3rd previous row >>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0 Difference with following row >>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN """ bm_axis = self._get_block_manager_axis(axis) new_data = self._data.diff(n=periods, axis=bm_axis) return self._constructor(new_data) # ---------------------------------------------------------------------- # Function application def _gotitem( self, key: Union[str, List[str]], ndim: int, subset: Optional[Union[Series, ABCDataFrame]] = None, ) -> Union[Series, ABCDataFrame]: """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if subset is None: subset = self elif subset.ndim == 1: # is Series return subset # TODO: _shallow_copy(subset)? return subset[key] _agg_summary_and_see_also_doc = dedent( """ The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from `numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`, `var`), where the default is to compute the aggregation of the flattened array, e.g., ``numpy.mean(arr_2d)`` as opposed to ``numpy.mean(arr_2d, axis=0)``. `agg` is an alias for `aggregate`. Use the alias. See Also -------- DataFrame.apply : Perform any type of operations. DataFrame.transform : Perform transformation type operations. core.groupby.GroupBy : Perform operations over groups. core.resample.Resampler : Perform operations over resampled bins. core.window.Rolling : Perform operations over rolling window. core.window.Expanding : Perform operations over expanding window. core.window.EWM : Perform operation over exponential weighted window. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) Aggregate these functions over the rows. >>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B max NaN 8.0 min 1.0 2.0 sum 12.0 NaN Aggregate over the columns. >>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64 """ ) @Substitution( see_also=_agg_summary_and_see_also_doc, examples=_agg_examples_doc, versionadded="\n.. versionadded:: 0.20.0\n", **_shared_doc_kwargs, ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func, axis=0, *args, **kwargs): axis = self._get_axis_number(axis) result = None try: result, how = self._aggregate(func, axis=axis, *args, **kwargs) except TypeError: pass if result is None: return self.apply(func, axis=axis, args=args, **kwargs) return result def _aggregate(self, arg, axis=0, *args, **kwargs): if axis == 1: # NDFrame.aggregate returns a tuple, and we need to transpose # only result result, how = self.T._aggregate(arg, *args, **kwargs) result = result.T if result is not None else result return result, how return super()._aggregate(arg, *args, **kwargs) agg = aggregate @Appender(_shared_docs["transform"] % _shared_doc_kwargs) def transform(self, func, axis=0, *args, **kwargs) -> "DataFrame": axis = self._get_axis_number(axis) if axis == 1: return self.T.transform(func, *args, **kwargs).T return super().transform(func, *args, **kwargs) def apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwds): """ Apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns (``axis=1``). By default (``result_type=None``), the final return type is inferred from the return type of the applied function. Otherwise, it depends on the `result_type` argument. Parameters ---------- func : function Function to apply to each column or row. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis along which the function is applied: * 0 or 'index': apply function to each column. * 1 or 'columns': apply function to each row. raw : bool, default False Determines if row or column is passed as a Series or ndarray object: * ``False`` : passes each row or column as a Series to the function. * ``True`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. result_type : {'expand', 'reduce', 'broadcast', None}, default None These only act when ``axis=1`` (columns): * 'expand' : list-like results will be turned into columns. * 'reduce' : returns a Series if possible rather than expanding list-like results. This is the opposite of 'expand'. * 'broadcast' : results will be broadcast to the original shape of the DataFrame, the original index and columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. .. versionadded:: 0.23.0 args : tuple Positional arguments to pass to `func` in addition to the array/series. **kwds Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- Series or DataFrame Result of applying ``func`` along the given axis of the DataFrame. See Also -------- DataFrame.applymap: For elementwise operations. DataFrame.aggregate: Only perform aggregating type operations. DataFrame.transform: Only perform transforming type operations. Examples -------- >>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B']) >>> df A B 0 4 9 1 4 9 2 4 9 Using a numpy universal function (in this case the same as ``np.sqrt(df)``): >>> df.apply(np.sqrt) A B 0 2.0 3.0 1 2.0 3.0 2 2.0 3.0 Using a reducing function on either axis >>> df.apply(np.sum, axis=0) A 12 B 27 dtype: int64 >>> df.apply(np.sum, axis=1) 0 13 1 13 2 13 dtype: int64 Returning a list-like will result in a Series >>> df.apply(lambda x: [1, 2], axis=1) 0 [1, 2] 1 [1, 2] 2 [1, 2] dtype: object Passing result_type='expand' will expand list-like results to columns of a Dataframe >>> df.apply(lambda x: [1, 2], axis=1, result_type='expand') 0 1 0 1 2 1 1 2 2 1 2 Returning a Series inside the function is similar to passing ``result_type='expand'``. The resulting column names will be the Series index. >>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) foo bar 0 1 2 1 1 2 2 1 2 Passing ``result_type='broadcast'`` will ensure the same shape result, whether list-like or scalar is returned by the function, and broadcast it along the axis. The resulting column names will be the originals. >>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') A B 0 1 2 1 1 2 2 1 2 """ from pandas.core.apply import frame_apply op = frame_apply( self, func=func, axis=axis, raw=raw, result_type=result_type, args=args, kwds=kwds, ) return op.get_result() def applymap(self, func) -> "DataFrame": """ Apply a function to a Dataframe elementwise. This method applies a function that accepts and returns a scalar to every element of a DataFrame. Parameters ---------- func : callable Python function, returns a single value from a single value. Returns ------- DataFrame Transformed DataFrame. See Also -------- DataFrame.apply : Apply a function along input axis of DataFrame. Notes ----- In the current implementation applymap calls `func` twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if `func` has side-effects, as they will take effect twice for the first column/row. Examples -------- >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> df.applymap(lambda x: len(str(x))) 0 1 0 3 4 1 5 5 Note that a vectorized version of `func` often exists, which will be much faster. You could square each number elementwise. >>> df.applymap(lambda x: x**2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 But it's better to avoid applymap in that case. >>> df ** 2 0 1 0 1.000000 4.494400 1 11.262736 20.857489 """ # if we have a dtype == 'M8[ns]', provide boxed values def infer(x): if x.empty: return lib.map_infer(x, func) return lib.map_infer(x.astype(object).values, func) return self.apply(infer) # ---------------------------------------------------------------------- # Merging / joining methods def append( self, other, ignore_index=False, verify_integrity=False, sort=False ) -> "DataFrame": """ Append rows of `other` to the end of caller, returning a new object. Columns in `other` that are not in the caller are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : bool, default False If True, do not use the index labels. verify_integrity : bool, default False If True, raise ValueError on creating index with duplicates. sort : bool, default False Sort columns if the columns of `self` and `other` are not aligned. .. versionadded:: 0.23.0 .. versionchanged:: 1.0.0 Changed to not sort by default. Returns ------- DataFrame See Also -------- concat : General function to concatenate DataFrame or Series objects. Notes ----- If a list of dict/series is passed and the keys are all contained in the DataFrame's index, the order of the columns in the resulting DataFrame will be unchanged. Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once. Examples -------- >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8 With `ignore_index` set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources. Less efficient: >>> df = pd.DataFrame(columns=['A']) >>> for i in range(5): ... df = df.append({'A': i}, ignore_index=True) >>> df A 0 0 1 1 2 2 3 3 4 4 More efficient: >>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)], ... ignore_index=True) A 0 0 1 1 2 2 3 3 4 4 """ if isinstance(other, (Series, dict)): if isinstance(other, dict): other = Series(other) if other.name is None and not ignore_index: raise TypeError( "Can only append a Series if ignore_index=True " "or if the Series has a name" ) index = Index([other.name], name=self.index.name) idx_diff = other.index.difference(self.columns) try: combined_columns = self.columns.append(idx_diff) except TypeError: combined_columns = self.columns.astype(object).append(idx_diff) other = ( other.reindex(combined_columns, copy=False) .to_frame() .T.infer_objects() .rename_axis(index.names, copy=False) ) if not self.columns.equals(combined_columns): self = self.reindex(columns=combined_columns) elif isinstance(other, list): if not other: pass elif not isinstance(other[0], DataFrame): other = DataFrame(other) if (self.columns.get_indexer(other.columns) >= 0).all(): other = other.reindex(columns=self.columns) from pandas.core.reshape.concat import concat if isinstance(other, (list, tuple)): to_concat = [self, *other] else: to_concat = [self, other] return concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity, sort=sort, ) def join( self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False ) -> "DataFrame": """ Join columns of another DataFrame. Join columns with `other` DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters ---------- other : DataFrame, Series, or list of DataFrame Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame. on : str, list of str, or array-like, optional Column or index level name(s) in the caller to join on the index in `other`, otherwise joins index-on-index. If multiple values given, the `other` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how : {'left', 'right', 'outer', 'inner'}, default 'left' How to handle the operation of the two objects. * left: use calling frame's index (or column if on is specified) * right: use `other`'s index. * outer: form union of calling frame's index (or column if on is specified) with `other`'s index, and sort it. lexicographically. * inner: form intersection of calling frame's index (or column if on is specified) with `other`'s index, preserving the order of the calling's one. lsuffix : str, default '' Suffix to use from left frame's overlapping columns. rsuffix : str, default '' Suffix to use from right frame's overlapping columns. sort : bool, default False Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword). Returns ------- DataFrame A dataframe containing columns from both the caller and `other`. See Also -------- DataFrame.merge : For column(s)-on-columns(s) operations. Notes ----- Parameters `on`, `lsuffix`, and `rsuffix` are not supported when passing a list of `DataFrame` objects. Support for specifying index levels as the `on` parameter was added in version 0.23.0. Examples -------- >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both `df` and `other`. The joined DataFrame will have key as its index. >>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the `on` parameter. DataFrame.join always uses `other`'s index but we can use any column in `df`. This method preserves the original DataFrame's index in the result. >>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN """ return self._join_compat( other, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort ) def _join_compat( self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False ): from pandas.core.reshape.merge import merge from pandas.core.reshape.concat import concat if isinstance(other, Series): if other.name is None: raise ValueError("Other Series must have a name") other = DataFrame({other.name: other}) if isinstance(other, DataFrame): return merge( self, other, left_on=on, how=how, left_index=on is None, right_index=True, suffixes=(lsuffix, rsuffix), sort=sort, ) else: if on is not None: raise ValueError( "Joining multiple DataFrames only supported for joining on index" ) frames = [self] + list(other) can_concat = all(df.index.is_unique for df in frames) # join indexes only using concat if can_concat: if how == "left": res = concat( frames, axis=1, join="outer", verify_integrity=True, sort=sort ) return res.reindex(self.index, copy=False) else: return concat( frames, axis=1, join=how, verify_integrity=True, sort=sort ) joined = frames[0] for frame in frames[1:]: joined = merge( joined, frame, how=how, left_index=True, right_index=True ) return joined @Substitution("") @Appender(_merge_doc, indents=2) def merge( self, right, how="inner", on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=("_x", "_y"), copy=True, indicator=False, validate=None, ) -> "DataFrame": from pandas.core.reshape.merge import merge return merge( self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate, ) def round(self, decimals=0, *args, **kwargs) -> "DataFrame": """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. *args Additional keywords have no effect but might be accepted for compatibility with numpy. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame A DataFrame with the affected columns rounded to the specified number of decimal places. See Also -------- numpy.around : Round a numpy array to the given number of decimals. Series.round : Round a Series to the given number of decimals. Examples -------- >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18 By providing an integer each column is rounded to the same number of decimal places >>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2 With a dict, the number of places for specific columns can be specified with the column names as key and the number of decimal places as value >>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 Using a Series, the number of places for specific columns can be specified with the column names as index and the number of decimal places as value >>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 """ from pandas.core.reshape.concat import concat def _dict_round(df, decimals): for col, vals in df.items(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(s, decimals): if is_integer_dtype(s) or is_float_dtype(s): return s.round(decimals) return s nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series): if not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") new_cols = list(_dict_round(self, decimals)) elif is_integer(decimals): # Dispatch to Series.round new_cols = [_series_round(v, decimals) for _, v in self.items()] else: raise TypeError("decimals must be an integer, a dict-like or a Series") if len(new_cols) > 0: return self._constructor( concat(new_cols, axis=1), index=self.index, columns=self.columns ) else: return self # ---------------------------------------------------------------------- # Statistical methods, etc. def corr(self, method="pearson", min_periods=1) -> "DataFrame": """ Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior. .. versionadded:: 0.24.0 min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation. Returns ------- DataFrame Correlation matrix. See Also -------- DataFrame.corrwith Series.corr Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if method == "pearson": correl = libalgos.nancorr(ensure_float64(mat), minp=min_periods) elif method == "spearman": correl = libalgos.nancorr_spearman(ensure_float64(mat), minp=min_periods) elif method == "kendall" or callable(method): if min_periods is None: min_periods = 1 mat = ensure_float64(mat).T corrf = nanops.get_corr_func(method) K = len(cols) correl = np.empty((K, K), dtype=float) mask = np.isfinite(mat) for i, ac in enumerate(mat): for j, bc in enumerate(mat): if i > j: continue valid = mask[i] & mask[j] if valid.sum() < min_periods: c = np.nan elif i == j: c = 1.0 elif not valid.all(): c = corrf(ac[valid], bc[valid]) else: c = corrf(ac, bc) correl[i, j] = c correl[j, i] = c else: raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " f"'{method}' was supplied" ) return self._constructor(correl, index=idx, columns=cols) def cov(self, min_periods=None) -> "DataFrame": """ Compute pairwise covariance of columns, excluding NA/null values. Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the `covariance matrix <https://en.wikipedia.org/wiki/Covariance_matrix>`__ of the columns of the DataFrame. Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as ``NaN``. This method is generally used for the analysis of time series data to understand the relationship between different measures across time. Parameters ---------- min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns ------- DataFrame The covariance matrix of the series of the DataFrame. See Also -------- Series.cov : Compute covariance with another Series. core.window.EWM.cov: Exponential weighted sample covariance. core.window.Expanding.cov : Expanding sample covariance. core.window.Rolling.cov : Rolling sample covariance. Notes ----- Returns the covariance matrix of the DataFrame's time series. The covariance is normalized by N-1. For DataFrames that have Series that are missing data (assuming that data is `missing at random <https://en.wikipedia.org/wiki/Missing_data#Missing_at_random>`__) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series. However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See `Estimation of covariance matrices <http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_ matrices>`__ for more details. Examples -------- >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795 **Minimum number of periods** This method also supports an optional ``min_periods`` keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result: >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if notna(mat).all(): if min_periods is not None and min_periods > len(mat): baseCov = np.empty((mat.shape[1], mat.shape[1])) baseCov.fill(np.nan) else: baseCov = np.cov(mat.T) baseCov = baseCov.reshape((len(cols), len(cols))) else: baseCov = libalgos.nancorr(ensure_float64(mat), cov=True, minp=min_periods) return self._constructor(baseCov, index=idx, columns=cols) def corrwith(self, other, axis=0, drop=False, method="pearson") -> Series: """ Compute pairwise correlation. Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. Parameters ---------- other : DataFrame, Series Object with which to compute correlations. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise. drop : bool, default False Drop missing indices from result. method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. .. versionadded:: 0.24.0 Returns ------- Series Pairwise correlations. See Also -------- DataFrame.corr """ axis = self._get_axis_number(axis) this = self._get_numeric_data() if isinstance(other, Series): return this.apply(lambda x: other.corr(x, method=method), axis=axis) other = other._get_numeric_data() left, right = this.align(other, join="inner", copy=False) if axis == 1: left = left.T right = right.T if method == "pearson": # mask missing values left = left + right * 0 right = right + left * 0 # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom elif method in ["kendall", "spearman"] or callable(method): def c(x): return nanops.nancorr(x[0], x[1], method=method) correl = Series( map(c, zip(left.values.T, right.values.T)), index=left.columns ) else: raise ValueError( f"Invalid method {method} was passed, " "valid methods are: 'pearson', 'kendall', " "'spearman', or callable" ) if not drop: # Find non-matching labels along the given axis # and append missing correlations (GH 22375) raxis = 1 if axis == 0 else 0 result_index = this._get_axis(raxis).union(other._get_axis(raxis)) idx_diff = result_index.difference(correl.index) if len(idx_diff) > 0: correl = correl.append(Series([np.nan] * len(idx_diff), index=idx_diff)) return correl # ---------------------------------------------------------------------- # ndarray-like stats methods def count(self, axis=0, level=None, numeric_only=False): """ Count non-NA cells for each column or row. The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending on `pandas.options.mode.use_inf_as_na`) are considered NA. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index' counts are generated for each column. If 1 or 'columns' counts are generated for each **row**. level : int or str, optional If the axis is a `MultiIndex` (hierarchical), count along a particular `level`, collapsing into a `DataFrame`. A `str` specifies the level name. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. Returns ------- Series or DataFrame For each column/row the number of non-NA/null entries. If `level` is specified returns a `DataFrame`. See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64 Counts for one level of a `MultiIndex`: >>> df.set_index(["Person", "Single"]).count(level="Person") Age Person John 2 Lewis 1 Myla 1 """ axis = self._get_axis_number(axis) if level is not None: return self._count_level(level, axis=axis, numeric_only=numeric_only) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = Series(0, index=frame._get_agg_axis(axis)) else: if frame._is_mixed_type or frame._data.any_extension_types: # the or any_extension_types is really only hit for single- # column frames with an extension array result = notna(frame).sum(axis=axis) else: # GH13407 series_counts = notna(frame).sum(axis=axis) counts = series_counts.values result = Series(counts, index=frame._get_agg_axis(axis)) return result.astype("int64") def _count_level(self, level, axis=0, numeric_only=False): if numeric_only: frame = self._get_numeric_data() else: frame = self count_axis = frame._get_axis(axis) agg_axis = frame._get_agg_axis(axis) if not isinstance(count_axis, ABCMultiIndex): raise TypeError( f"Can only count levels on hierarchical {self._get_axis_name(axis)}." ) if frame._is_mixed_type: # Since we have mixed types, calling notna(frame.values) might # upcast everything to object mask = notna(frame).values else: # But use the speedup when we have homogeneous dtypes mask = notna(frame.values) if axis == 1: # We're transposing the mask rather than frame to avoid potential # upcasts to object, which induces a ~20x slowdown mask = mask.T if isinstance(level, str): level = count_axis._get_level_number(level) level_name = count_axis._names[level] level_index = count_axis.levels[level]._shallow_copy(name=level_name) level_codes = ensure_int64(count_axis.codes[level]) counts = lib.count_level_2d(mask, level_codes, len(level_index), axis=0) result = DataFrame(counts, index=level_index, columns=agg_axis) if axis == 1: # Undo our earlier transpose return result.T else: return result def _reduce( self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds ): if axis is None and filter_type == "bool": labels = None constructor = None else: # TODO: Make other agg func handle axis=None properly axis = self._get_axis_number(axis) labels = self._get_agg_axis(axis) constructor = self._constructor def f(x): return op(x, axis=axis, skipna=skipna, **kwds) def _get_data(axis_matters): if filter_type is None or filter_type == "numeric": data = self._get_numeric_data() elif filter_type == "bool": if axis_matters: # GH#25101, GH#24434 data = self._get_bool_data() if axis == 0 else self else: data = self._get_bool_data() else: # pragma: no cover msg = ( f"Generating numeric_only data with filter_type {filter_type} " "not supported." ) raise NotImplementedError(msg) return data if numeric_only is not None and axis in [0, 1]: df = self if numeric_only is True: df = _get_data(axis_matters=True) if axis == 1: df = df.T axis = 0 out_dtype = "bool" if filter_type == "bool" else None # After possibly _get_data and transposing, we are now in the # simple case where we can use BlockManager._reduce res = df._data.reduce(op, axis=1, skipna=skipna, **kwds) assert isinstance(res, dict) if len(res): assert len(res) == max(list(res.keys())) + 1, res.keys() out = df._constructor_sliced(res, index=range(len(res)), dtype=out_dtype) out.index = df.columns return out if numeric_only is None: values = self.values try: result = f(values) if filter_type == "bool" and is_object_dtype(values) and axis is None: # work around https://github.com/numpy/numpy/issues/10489 # TODO: combine with hasattr(result, 'dtype') further down # hard since we don't have `values` down there. result = np.bool_(result) except TypeError: # e.g. in nanops trying to convert strs to float # try by-column first if filter_type is None and axis == 0: # this can end up with a non-reduction # but not always. if the types are mixed # with datelike then need to make sure a series # we only end up here if we have not specified # numeric_only and yet we have tried a # column-by-column reduction, where we have mixed type. # So let's just do what we can from pandas.core.apply import frame_apply opa = frame_apply( self, func=f, result_type="expand", ignore_failures=True ) result = opa.get_result() if result.ndim == self.ndim: result = result.iloc[0] return result # TODO: why doesnt axis matter here? data = _get_data(axis_matters=False) with np.errstate(all="ignore"): result = f(data.values) labels = data._get_agg_axis(axis) else: if numeric_only: data = _get_data(axis_matters=True) values = data.values labels = data._get_agg_axis(axis) else: values = self.values result = f(values) if hasattr(result, "dtype") and is_object_dtype(result.dtype): try: if filter_type is None or filter_type == "numeric": result = result.astype(np.float64) elif filter_type == "bool" and notna(result).all(): result = result.astype(np.bool_) except (ValueError, TypeError): # try to coerce to the original dtypes item by item if we can if axis == 0: result = coerce_to_dtypes(result, self.dtypes) if constructor is not None: result = Series(result, index=labels) return result def nunique(self, axis=0, dropna=True) -> Series: """ Count distinct observations over requested axis. Return Series with number of distinct observations. Can ignore NaN values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. dropna : bool, default True Don't include NaN in the counts. Returns ------- Series See Also -------- Series.nunique: Method nunique for Series. DataFrame.count: Count non-NA cells for each column or row. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 dtype: int64 >>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64 """ return self.apply(Series.nunique, axis=axis, dropna=dropna) def idxmin(self, axis=0, skipna=True) -> Series: """ Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of minima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmin Notes ----- This method is the DataFrame version of ``ndarray.argmin``. """ axis = self._get_axis_number(axis) indices = nanops.nanargmin(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def idxmax(self, axis=0, skipna=True) -> Series: """ Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of maxima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmax Notes ----- This method is the DataFrame version of ``ndarray.argmax``. """ axis = self._get_axis_number(axis) indices = nanops.nanargmax(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def _get_agg_axis(self, axis_num): """ Let's be explicit about this. """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError(f"Axis must be 0 or 1 (got {repr(axis_num)})") def mode(self, axis=0, numeric_only=False, dropna=True) -> "DataFrame": """ Get the mode(s) of each element along the selected axis. The mode of a set of values is the value that appears most often. It can be multiple values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to iterate over while searching for the mode: * 0 or 'index' : get mode of each column * 1 or 'columns' : get mode of each row. numeric_only : bool, default False If True, only apply to numeric columns. dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- DataFrame The modes of each column or row. See Also -------- Series.mode : Return the highest frequency value in a Series. Series.value_counts : Return the counts of values in a Series. Examples -------- >>> df = pd.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN By default, missing values are not considered, and the mode of wings are both 0 and 2. The second row of species and legs contains ``NaN``, because they have only one mode, but the DataFrame has two rows. >>> df.mode() species legs wings 0 bird 2.0 0.0 1 NaN NaN 2.0 Setting ``dropna=False`` ``NaN`` values are considered and they can be the mode (like for wings). >>> df.mode(dropna=False) species legs wings 0 bird 2 NaN Setting ``numeric_only=True``, only the mode of numeric columns is computed, and columns of other types are ignored. >>> df.mode(numeric_only=True) legs wings 0 2.0 0.0 1 NaN 2.0 To compute the mode over columns and not rows, use the axis parameter: >>> df.mode(axis='columns', numeric_only=True) 0 1 falcon 2.0 NaN horse 4.0 NaN spider 0.0 8.0 ostrich 2.0 NaN """ data = self if not numeric_only else self._get_numeric_data() def f(s): return s.mode(dropna=dropna) return data.apply(f, axis=axis) def quantile(self, q=0.5, axis=0, numeric_only=True, interpolation="linear"): """ Return values at the given quantile over requested axis. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value between 0 <= q <= 1, the quantile(s) to compute. axis : {0, 1, 'index', 'columns'} (default 0) Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise. numeric_only : bool, default True If False, the quantile of datetime and timedelta data will be computed as well. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- Series or DataFrame If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. See Also -------- core.window.Rolling.quantile: Rolling quantile. numpy.percentile: Numpy function to compute the percentile. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object """ validate_percentile(q) data = self._get_numeric_data() if numeric_only else self axis = self._get_axis_number(axis) is_transposed = axis == 1 if is_transposed: data = data.T if len(data.columns) == 0: # GH#23925 _get_numeric_data may have dropped all columns cols = Index([], name=self.columns.name) if is_list_like(q): return self._constructor([], index=q, columns=cols) return self._constructor_sliced([], index=cols, name=q, dtype=np.float64) result = data._data.quantile( qs=q, axis=1, interpolation=interpolation, transposed=is_transposed ) if result.ndim == 2: result = self._constructor(result) else: result = self._constructor_sliced(result, name=q) if is_transposed: result = result.T return result def to_timestamp(self, freq=None, how="start", axis=0, copy=True) -> "DataFrame": """ Cast to DatetimeIndex of timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- DataFrame with DatetimeIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_timestamp(freq=freq, how=how)) elif axis == 1: new_data.set_axis(0, self.columns.to_timestamp(freq=freq, how=how)) else: # pragma: no cover raise AssertionError(f"Axis must be 0 or 1. Got {axis}") return self._constructor(new_data) def to_period(self, freq=None, axis=0, copy=True) -> "DataFrame": """ Convert DataFrame from DatetimeIndex to PeriodIndex. Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : str, default Frequency of the PeriodIndex. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- TimeSeries with PeriodIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_period(freq=freq)) elif axis == 1: new_data.set_axis(0, self.columns.to_period(freq=freq)) else: # pragma: no cover raise AssertionError(f"Axis must be 0 or 1. Got {axis}") return self._constructor(new_data) def isin(self, values) -> "DataFrame": """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dict, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. See Also -------- DataFrame.eq: Equality test for DataFrame. Series.isin: Equivalent method on Series. Series.str.contains: Test if pattern or regex is contained within a string of a Series or Index. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True When ``values`` is a Series or DataFrame the index and column must match. Note that 'falcon' does not match based on the number of legs in df2. >>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon True True dog False False """ if isinstance(values, dict): from pandas.core.reshape.concat import concat values = collections.defaultdict(list, values) return self._ensure_type( concat( ( self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns) ), axis=1, ) ) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with a duplicate axis.") return self.eq(values.reindex_like(self), axis="index") elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with a duplicate axis.") return self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError( "only list-like or dict-like objects are allowed " "to be passed to DataFrame.isin(), " f"you passed a {repr(type(values).__name__)}" ) return DataFrame( algorithms.isin(self.values.ravel(), values).reshape(self.shape), self.index, self.columns, ) # ---------------------------------------------------------------------- # Add plotting methods to DataFrame plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) hist = pandas.plotting.hist_frame boxplot = pandas.plotting.boxplot_frame sparse = CachedAccessor("sparse", SparseFrameAccessor) DataFrame._setup_axes( ["index", "columns"], docs={ "index": "The index (row labels) of the DataFrame.", "columns": "The column labels of the DataFrame.", }, ) DataFrame._add_numeric_operations() DataFrame._add_series_or_dataframe_operations() ops.add_flex_arithmetic_methods(DataFrame) ops.add_special_arithmetic_methods(DataFrame) def _from_nested_dict(data): # TODO: this should be seriously cythonized new_data = {} for index, s in data.items(): for col, v in s.items(): new_data[col] = new_data.get(col, {}) new_data[col][index] = v return new_data def _put_str(s, space): return str(s)[:space].ljust(space)
py
1a49392f16b44e67cbacb72a2e4bdad3849fa182
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals, print_function import frappe import unittest, json, sys, os import xmlrunner import importlib from frappe.modules import load_doctype_module, get_module_name from frappe.utils import cstr import frappe.utils.scheduler import cProfile, pstats from six import StringIO from six.moves import reload_module from frappe.model.naming import revert_series_if_last unittest_runner = unittest.TextTestRunner def xmlrunner_wrapper(output): """Convenience wrapper to keep method signature unchanged for XMLTestRunner and TextTestRunner""" def _runner(*args, **kwargs): kwargs['output'] = output return xmlrunner.XMLTestRunner(*args, **kwargs) return _runner def main(app=None, module=None, doctype=None, verbose=False, tests=(), force=False, profile=False, junit_xml_output=None, ui_tests=False, doctype_list_path=None, skip_test_records=False, failfast=False): global unittest_runner if doctype_list_path: app, doctype_list_path = doctype_list_path.split(os.path.sep, 1) with open(frappe.get_app_path(app, doctype_list_path), 'r') as f: doctype = f.read().strip().splitlines() xmloutput_fh = None if junit_xml_output: xmloutput_fh = open(junit_xml_output, 'wb') unittest_runner = xmlrunner_wrapper(xmloutput_fh) else: unittest_runner = unittest.TextTestRunner try: frappe.flags.print_messages = verbose frappe.flags.in_test = True if not frappe.db: frappe.connect() # if not frappe.conf.get("db_name").startswith("test_"): # raise Exception, 'db_name must start with "test_"' # workaround! since there is no separate test db frappe.clear_cache() frappe.utils.scheduler.disable_scheduler() set_test_email_config() if not frappe.flags.skip_before_tests: if verbose: print('Running "before_tests" hooks') for fn in frappe.get_hooks("before_tests", app_name=app): frappe.get_attr(fn)() if doctype: ret = run_tests_for_doctype(doctype, verbose, tests, force, profile) elif module: ret = run_tests_for_module(module, verbose, tests, profile) else: ret = run_all_tests(app, verbose, profile, ui_tests, failfast=failfast) frappe.db.commit() # workaround! since there is no separate test db frappe.clear_cache() return ret finally: if xmloutput_fh: xmloutput_fh.flush() xmloutput_fh.close() def set_test_email_config(): frappe.conf.update({ "auto_email_id": "[email protected]", "mail_server": "smtp.example.com", "mail_login": "[email protected]", "mail_password": "test", "admin_password": "admin" }) def run_all_tests(app=None, verbose=False, profile=False, ui_tests=False, failfast=False): import os apps = [app] if app else frappe.get_installed_apps() test_suite = unittest.TestSuite() for app in apps: for path, folders, files in os.walk(frappe.get_pymodule_path(app)): for dontwalk in ('locals', '.git', 'public'): if dontwalk in folders: folders.remove(dontwalk) # print path for filename in files: filename = cstr(filename) if filename.startswith("test_") and filename.endswith(".py")\ and filename != 'test_runner.py': # print filename[:-3] _add_test(app, path, filename, verbose, test_suite, ui_tests) runner = unittest_runner(verbosity=1+(verbose and 1 or 0), failfast=failfast) if profile: pr = cProfile.Profile() pr.enable() out = runner.run(test_suite) if profile: pr.disable() s = StringIO() ps = pstats.Stats(pr, stream=s).sort_stats('cumulative') ps.print_stats() print(s.getvalue()) return out def run_tests_for_doctype(doctypes, verbose=False, tests=(), force=False, profile=False): modules = [] if not isinstance(doctypes, (list, tuple)): doctypes = [doctypes] for doctype in doctypes: module = frappe.db.get_value("DocType", doctype, "module") if not module: print('Invalid doctype {0}'.format(doctype)) sys.exit(1) test_module = get_module_name(doctype, module, "test_") if force: for name in frappe.db.sql_list("select name from `tab%s`" % doctype): frappe.delete_doc(doctype, name, force=True) make_test_records(doctype, verbose=verbose, force=force) modules.append(importlib.import_module(test_module)) return _run_unittest(modules, verbose=verbose, tests=tests, profile=profile) def run_tests_for_module(module, verbose=False, tests=(), profile=False): module = importlib.import_module(module) if hasattr(module, "test_dependencies"): for doctype in module.test_dependencies: make_test_records(doctype, verbose=verbose) return _run_unittest(module, verbose=verbose, tests=tests, profile=profile) def run_setup_wizard_ui_test(app=None, verbose=False, profile=False): '''Run setup wizard UI test using test_test_runner''' frappe.flags.run_setup_wizard_ui_test = 1 return run_ui_tests(app=app, test=None, verbose=verbose, profile=profile) def run_ui_tests(app=None, test=None, test_list=None, verbose=False, profile=False): '''Run a single unit test for UI using test_test_runner''' module = importlib.import_module('frappe.tests.ui.test_test_runner') frappe.flags.ui_test_app = app if test_list: frappe.flags.ui_test_list = test_list else: frappe.flags.ui_test_path = test return _run_unittest(module, verbose=verbose, tests=(), profile=profile) def _run_unittest(modules, verbose=False, tests=(), profile=False): test_suite = unittest.TestSuite() if not isinstance(modules, (list, tuple)): modules = [modules] for module in modules: module_test_cases = unittest.TestLoader().loadTestsFromModule(module) if tests: for each in module_test_cases: for test_case in each.__dict__["_tests"]: if test_case.__dict__["_testMethodName"] in tests: test_suite.addTest(test_case) else: test_suite.addTest(module_test_cases) runner = unittest_runner(verbosity=1+(verbose and 1 or 0)) if profile: pr = cProfile.Profile() pr.enable() frappe.flags.tests_verbose = verbose out = runner.run(test_suite) if profile: pr.disable() s = StringIO() ps = pstats.Stats(pr, stream=s).sort_stats('cumulative') ps.print_stats() print(s.getvalue()) return out def _add_test(app, path, filename, verbose, test_suite=None, ui_tests=False): import os if os.path.sep.join(["doctype", "doctype", "boilerplate"]) in path: # in /doctype/doctype/boilerplate/ return app_path = frappe.get_pymodule_path(app) relative_path = os.path.relpath(path, app_path) if relative_path=='.': module_name = app else: module_name = '{app}.{relative_path}.{module_name}'.format(app=app, relative_path=relative_path.replace('/', '.'), module_name=filename[:-3]) module = importlib.import_module(module_name) if hasattr(module, "test_dependencies"): for doctype in module.test_dependencies: make_test_records(doctype, verbose=verbose) is_ui_test = True if hasattr(module, 'TestDriver') else False if is_ui_test != ui_tests: return if not test_suite: test_suite = unittest.TestSuite() if os.path.basename(os.path.dirname(path))=="doctype": txt_file = os.path.join(path, filename[5:].replace(".py", ".json")) with open(txt_file, 'r') as f: doc = json.loads(f.read()) doctype = doc["name"] make_test_records(doctype, verbose) test_suite.addTest(unittest.TestLoader().loadTestsFromModule(module)) def make_test_records(doctype, verbose=0, force=False): if not frappe.db: frappe.connect() if frappe.flags.skip_test_records: return for options in get_dependencies(doctype): if options == "[Select]": continue if not options in frappe.local.test_objects: frappe.local.test_objects[options] = [] make_test_records(options, verbose, force) make_test_records_for_doctype(options, verbose, force) def get_modules(doctype): module = frappe.db.get_value("DocType", doctype, "module") try: test_module = load_doctype_module(doctype, module, "test_") if test_module: reload_module(test_module) except ImportError: test_module = None return module, test_module def get_dependencies(doctype): module, test_module = get_modules(doctype) meta = frappe.get_meta(doctype) link_fields = meta.get_link_fields() for df in meta.get_table_fields(): link_fields.extend(frappe.get_meta(df.options).get_link_fields()) options_list = [df.options for df in link_fields] + [doctype] if hasattr(test_module, "test_dependencies"): options_list += test_module.test_dependencies options_list = list(set(options_list)) if hasattr(test_module, "test_ignore"): for doctype_name in test_module.test_ignore: if doctype_name in options_list: options_list.remove(doctype_name) return options_list def make_test_records_for_doctype(doctype, verbose=0, force=False): if not force and doctype in get_test_record_log(): return module, test_module = get_modules(doctype) if verbose: print("Making for " + doctype) if hasattr(test_module, "_make_test_records"): frappe.local.test_objects[doctype] += test_module._make_test_records(verbose) elif hasattr(test_module, "test_records"): frappe.local.test_objects[doctype] += make_test_objects(doctype, test_module.test_records, verbose, force) else: test_records = frappe.get_test_records(doctype) if test_records: frappe.local.test_objects[doctype] += make_test_objects(doctype, test_records, verbose, force) elif verbose: print_mandatory_fields(doctype) add_to_test_record_log(doctype) def make_test_objects(doctype, test_records=None, verbose=None, reset=False): '''Make test objects from given list of `test_records` or from `test_records.json`''' records = [] def revert_naming(d): if getattr(d, 'naming_series', None): revert_series_if_last(d.naming_series, d.name) if test_records is None: test_records = frappe.get_test_records(doctype) for doc in test_records: if not doc.get("doctype"): doc["doctype"] = doctype d = frappe.copy_doc(doc) if d.meta.get_field("naming_series"): if not d.naming_series: d.naming_series = "_T-" + d.doctype + "-" if doc.get('name'): d.name = doc.get('name') else: d.set_new_name() if frappe.db.exists(d.doctype, d.name) and not reset: frappe.db.rollback() # do not create test records, if already exists continue # submit if docstatus is set to 1 for test record docstatus = d.docstatus d.docstatus = 0 try: d.run_method("before_test_insert") d.insert() if docstatus == 1: d.submit() except frappe.NameError: revert_naming(d) except Exception as e: if d.flags.ignore_these_exceptions_in_test and e.__class__ in d.flags.ignore_these_exceptions_in_test: revert_naming(d) else: raise records.append(d.name) frappe.db.commit() return records def print_mandatory_fields(doctype): print("Please setup make_test_records for: " + doctype) print("-" * 60) meta = frappe.get_meta(doctype) print("Autoname: " + (meta.autoname or "")) print("Mandatory Fields: ") for d in meta.get("fields", {"reqd":1}): print(d.parent + ":" + d.fieldname + " | " + d.fieldtype + " | " + (d.options or "")) print() def add_to_test_record_log(doctype): '''Add `doctype` to site/.test_log `.test_log` is a cache of all doctypes for which test records are created''' test_record_log = get_test_record_log() if not doctype in test_record_log: frappe.flags.test_record_log.append(doctype) with open(frappe.get_site_path('.test_log'), 'w') as f: f.write('\n'.join(filter(None, frappe.flags.test_record_log))) def get_test_record_log(): '''Return the list of doctypes for which test records have been created''' if 'test_record_log' not in frappe.flags: if os.path.exists(frappe.get_site_path('.test_log')): with open(frappe.get_site_path('.test_log'), 'r') as f: frappe.flags.test_record_log = f.read().splitlines() else: frappe.flags.test_record_log = [] return frappe.flags.test_record_log
py
1a49396f4d566aa184622ed0f413c55033dba4c7
from __future__ import print_function import os from unittest import SkipTest import yaml from parameterized import parameterized from commcare_cloud.environment.main import Environment from commcare_cloud.environment.paths import DefaultPaths from nose.tools import assert_equal TEST_ENVIRONMENTS_DIR = os.path.join(os.path.dirname(__file__), 'test_envs') TEST_ENVIRONMENTS = os.listdir(TEST_ENVIRONMENTS_DIR) @parameterized(TEST_ENVIRONMENTS) def test_postgresql_config(env_name): env = Environment(DefaultPaths(env_name, environments_dir=TEST_ENVIRONMENTS_DIR)) if not os.path.exists(env.paths.generated_yml): raise SkipTest with open(env.paths.generated_yml) as f: generated = yaml.safe_load(f) assert generated.keys() == ['postgresql_dbs'] expected_json = generated['postgresql_dbs'] actual_json = env.postgresql_config.to_generated_variables(env)['postgresql_dbs'] assert_equal(actual_json, expected_json)
py
1a493a4a3d22be95b0653c575af3ea2b735de282
"""Functions for converting between color spaces. The "central" color space in this module is RGB, more specifically the linear sRGB color space using D65 as a white-point [1]_. This represents a standard monitor (w/o gamma correction). For a good FAQ on color spaces see [2]_. The API consists of functions to convert to and from RGB as defined above, as well as a generic function to convert to and from any supported color space (which is done through RGB in most cases). Supported color spaces ---------------------- * RGB : Red Green Blue. Here the sRGB standard [1]_. * HSV : Hue, Saturation, Value. Uniquely defined when related to sRGB [3]_. * RGB CIE : Red Green Blue. The original RGB CIE standard from 1931 [4]_. Primary colors are 700 nm (red), 546.1 nm (blue) and 435.8 nm (green). * XYZ CIE : XYZ Derived from the RGB CIE color space. Chosen such that ``x == y == z == 1/3`` at the whitepoint, and all color matching functions are greater than zero everywhere. * LAB CIE : Lightness, a, b Colorspace derived from XYZ CIE that is intended to be more perceptually uniform * LUV CIE : Lightness, u, v Colorspace derived from XYZ CIE that is intended to be more perceptually uniform * LCH CIE : Lightness, Chroma, Hue Defined in terms of LAB CIE. C and H are the polar representation of a and b. The polar angle C is defined to be on ``(0, 2*pi)`` :author: Nicolas Pinto (rgb2hsv) :author: Ralf Gommers (hsv2rgb) :author: Travis Oliphant (XYZ and RGB CIE functions) :author: Matt Terry (lab2lch) :author: Alex Izvorski (yuv2rgb, rgb2yuv and related) :license: modified BSD References ---------- .. [1] Official specification of sRGB, IEC 61966-2-1:1999. .. [2] http://www.poynton.com/ColorFAQ.html .. [3] https://en.wikipedia.org/wiki/HSL_and_HSV .. [4] https://en.wikipedia.org/wiki/CIE_1931_color_space """ from warnings import warn import numpy as np from scipy import linalg from ..util import dtype, dtype_limits def guess_spatial_dimensions(image): """Make an educated guess about whether an image has a channels dimension. Parameters ---------- image : ndarray The input image. Returns ------- spatial_dims : int or None The number of spatial dimensions of `image`. If ambiguous, the value is ``None``. Raises ------ ValueError If the image array has less than two or more than four dimensions. """ if image.ndim == 2: return 2 if image.ndim == 3 and image.shape[-1] != 3: return 3 if image.ndim == 3 and image.shape[-1] == 3: return None if image.ndim == 4 and image.shape[-1] == 3: return 3 else: raise ValueError("Expected 2D, 3D, or 4D array, got %iD." % image.ndim) def convert_colorspace(arr, fromspace, tospace): """Convert an image array to a new color space. Valid color spaces are: 'RGB', 'HSV', 'RGB CIE', 'XYZ', 'YUV', 'YIQ', 'YPbPr', 'YCbCr', 'YDbDr' Parameters ---------- arr : array_like The image to convert. fromspace : valid color space The color space to convert from. Can be specified in lower case. tospace : valid color space The color space to convert to. Can be specified in lower case. Returns ------- out : ndarray The converted image. Notes ----- Conversion is performed through the "central" RGB color space, i.e. conversion from XYZ to HSV is implemented as ``XYZ -> RGB -> HSV`` instead of directly. Examples -------- >>> from skimage import data >>> img = data.astronaut() >>> img_hsv = convert_colorspace(img, 'RGB', 'HSV') """ fromdict = {'rgb': lambda im: im, 'hsv': hsv2rgb, 'rgb cie': rgbcie2rgb, 'xyz': xyz2rgb, 'yuv': yuv2rgb, 'yiq': yiq2rgb, 'ypbpr': ypbpr2rgb, 'ycbcr': ycbcr2rgb, 'ydbdr': ydbdr2rgb} todict = {'rgb': lambda im: im, 'hsv': rgb2hsv, 'rgb cie': rgb2rgbcie, 'xyz': rgb2xyz, 'yuv': rgb2yuv, 'yiq': rgb2yiq, 'ypbpr': rgb2ypbpr, 'ycbcr': rgb2ycbcr, 'ydbdr': rgb2ydbdr} fromspace = fromspace.lower() tospace = tospace.lower() if fromspace not in fromdict: msg = '`fromspace` has to be one of {}'.format(fromdict.keys()) raise ValueError(msg) if tospace not in todict: msg = '`tospace` has to be one of {}'.format(todict.keys()) raise ValueError(msg) return todict[tospace](fromdict[fromspace](arr)) def _prepare_colorarray(arr): """Check the shape of the array and convert it to floating point representation. """ arr = np.asanyarray(arr) if arr.ndim not in [3, 4] or arr.shape[-1] != 3: msg = ("the input array must be have a shape == (.., ..,[ ..,] 3)), " + "got (" + (", ".join(map(str, arr.shape))) + ")") raise ValueError(msg) return dtype.img_as_float(arr) def _prepare_rgba_array(arr): """Check the shape of the array to be RGBA and convert it to floating point representation. """ arr = np.asanyarray(arr) if arr.ndim not in [3, 4] or arr.shape[-1] != 4: msg = ("the input array must have a shape == (.., ..,[ ..,] 4)), " "got {0}".format(arr.shape)) raise ValueError(msg) return dtype.img_as_float(arr) def rgba2rgb(rgba, background=(1, 1, 1)): """RGBA to RGB conversion. Parameters ---------- rgba : array_like The image in RGBA format, in a 3-D array of shape ``(.., .., 4)``. background : array_like The color of the background to blend the image with. A tuple containing 3 floats between 0 to 1 - the RGB value of the background. Returns ------- out : ndarray The image in RGB format, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `rgba` is not a 3-D array of shape ``(.., .., 4)``. References ---------- .. [1] https://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending Examples -------- >>> from skimage import color >>> from skimage import data >>> img_rgba = data.logo() >>> img_rgb = color.rgba2rgb(img_rgba) """ arr = _prepare_rgba_array(rgba) if isinstance(background, tuple) and len(background) != 3: raise ValueError('the background must be a tuple with 3 items - the ' 'RGB color of the background. Got {0} items.' .format(len(background))) alpha = arr[..., -1] channels = arr[..., :-1] out = np.empty_like(channels) for ichan in range(channels.shape[-1]): out[..., ichan] = np.clip( (1 - alpha) * background[ichan] + alpha * channels[..., ichan], a_min=0, a_max=1) return out def rgb2hsv(rgb): """RGB to HSV color space conversion. Parameters ---------- rgb : array_like The image in RGB format, in a 3-D array of shape ``(.., .., 3)``. Returns ------- out : ndarray The image in HSV format, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `rgb` is not a 3-D array of shape ``(.., .., 3)``. Notes ----- Conversion between RGB and HSV color spaces results in some loss of precision, due to integer arithmetic and rounding [1]_. References ---------- .. [1] https://en.wikipedia.org/wiki/HSL_and_HSV Examples -------- >>> from skimage import color >>> from skimage import data >>> img = data.astronaut() >>> img_hsv = color.rgb2hsv(img) """ arr = _prepare_colorarray(rgb) out = np.empty_like(arr) # -- V channel out_v = arr.max(-1) # -- S channel delta = arr.ptp(-1) # Ignore warning for zero divided by zero old_settings = np.seterr(invalid='ignore') out_s = delta / out_v out_s[delta == 0.] = 0. # -- H channel # red is max idx = (arr[:, :, 0] == out_v) out[idx, 0] = (arr[idx, 1] - arr[idx, 2]) / delta[idx] # green is max idx = (arr[:, :, 1] == out_v) out[idx, 0] = 2. + (arr[idx, 2] - arr[idx, 0]) / delta[idx] # blue is max idx = (arr[:, :, 2] == out_v) out[idx, 0] = 4. + (arr[idx, 0] - arr[idx, 1]) / delta[idx] out_h = (out[:, :, 0] / 6.) % 1. out_h[delta == 0.] = 0. np.seterr(**old_settings) # -- output out[:, :, 0] = out_h out[:, :, 1] = out_s out[:, :, 2] = out_v # remove NaN out[np.isnan(out)] = 0 return out def hsv2rgb(hsv): """HSV to RGB color space conversion. Parameters ---------- hsv : array_like The image in HSV format, in a 3-D array of shape ``(.., .., 3)``. Returns ------- out : ndarray The image in RGB format, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `hsv` is not a 3-D array of shape ``(.., .., 3)``. Notes ----- Conversion between RGB and HSV color spaces results in some loss of precision, due to integer arithmetic and rounding [1]_. References ---------- .. [1] https://en.wikipedia.org/wiki/HSL_and_HSV Examples -------- >>> from skimage import data >>> img = data.astronaut() >>> img_hsv = rgb2hsv(img) >>> img_rgb = hsv2rgb(img_hsv) """ arr = _prepare_colorarray(hsv) hi = np.floor(arr[:, :, 0] * 6) f = arr[:, :, 0] * 6 - hi p = arr[:, :, 2] * (1 - arr[:, :, 1]) q = arr[:, :, 2] * (1 - f * arr[:, :, 1]) t = arr[:, :, 2] * (1 - (1 - f) * arr[:, :, 1]) v = arr[:, :, 2] hi = np.dstack([hi, hi, hi]).astype(np.uint8) % 6 out = np.choose(hi, [np.dstack((v, t, p)), np.dstack((q, v, p)), np.dstack((p, v, t)), np.dstack((p, q, v)), np.dstack((t, p, v)), np.dstack((v, p, q))]) return out # --------------------------------------------------------------- # Primaries for the coordinate systems # --------------------------------------------------------------- cie_primaries = np.array([700, 546.1, 435.8]) sb_primaries = np.array([1. / 155, 1. / 190, 1. / 225]) * 1e5 # --------------------------------------------------------------- # Matrices that define conversion between different color spaces # --------------------------------------------------------------- # From sRGB specification xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423], [0.212671, 0.715160, 0.072169], [0.019334, 0.119193, 0.950227]]) rgb_from_xyz = linalg.inv(xyz_from_rgb) # From https://en.wikipedia.org/wiki/CIE_1931_color_space # Note: Travis's code did not have the divide by 0.17697 xyz_from_rgbcie = np.array([[0.49, 0.31, 0.20], [0.17697, 0.81240, 0.01063], [0.00, 0.01, 0.99]]) / 0.17697 rgbcie_from_xyz = linalg.inv(xyz_from_rgbcie) # construct matrices to and from rgb: rgbcie_from_rgb = rgbcie_from_xyz @ xyz_from_rgb rgb_from_rgbcie = rgb_from_xyz @ xyz_from_rgbcie gray_from_rgb = np.array([[0.2125, 0.7154, 0.0721], [0, 0, 0], [0, 0, 0]]) yuv_from_rgb = np.array([[ 0.299 , 0.587 , 0.114 ], [-0.14714119, -0.28886916, 0.43601035 ], [ 0.61497538, -0.51496512, -0.10001026 ]]) rgb_from_yuv = linalg.inv(yuv_from_rgb) yiq_from_rgb = np.array([[0.299 , 0.587 , 0.114 ], [0.59590059, -0.27455667, -0.32134392], [0.21153661, -0.52273617, 0.31119955]]) rgb_from_yiq = linalg.inv(yiq_from_rgb) ypbpr_from_rgb = np.array([[ 0.299 , 0.587 , 0.114 ], [-0.168736,-0.331264, 0.5 ], [ 0.5 ,-0.418688,-0.081312]]) rgb_from_ypbpr = linalg.inv(ypbpr_from_rgb) ycbcr_from_rgb = np.array([[ 65.481, 128.553, 24.966], [ -37.797, -74.203, 112.0 ], [ 112.0 , -93.786, -18.214]]) rgb_from_ycbcr = linalg.inv(ycbcr_from_rgb) ydbdr_from_rgb = np.array([[ 0.299, 0.587, 0.114], [ -0.45 , -0.883, 1.333], [ -1.333, 1.116, 0.217]]) rgb_from_ydbdr = linalg.inv(ydbdr_from_rgb) # CIE LAB constants for Observer=2A, Illuminant=D65 # NOTE: this is actually the XYZ values for the illuminant above. lab_ref_white = np.array([0.95047, 1., 1.08883]) # XYZ coordinates of the illuminants, scaled to [0, 1]. For each illuminant I # we have: # # illuminant[I][0] corresponds to the XYZ coordinates for the 2 degree # field of view. # # illuminant[I][1] corresponds to the XYZ coordinates for the 10 degree # field of view. # # The XYZ coordinates are calculated from [1], using the formula: # # X = x * ( Y / y ) # Y = Y # Z = ( 1 - x - y ) * ( Y / y ) # # where Y = 1. The only exception is the illuminant "D65" with aperture angle # 2, whose coordinates are copied from 'lab_ref_white' for # backward-compatibility reasons. # # References # ---------- # .. [1] https://en.wikipedia.org/wiki/Standard_illuminant illuminants = \ {"A": {'2': (1.098466069456375, 1, 0.3558228003436005), '10': (1.111420406956693, 1, 0.3519978321919493)}, "D50": {'2': (0.9642119944211994, 1, 0.8251882845188288), '10': (0.9672062750333777, 1, 0.8142801513128616)}, "D55": {'2': (0.956797052643698, 1, 0.9214805860173273), '10': (0.9579665682254781, 1, 0.9092525159847462)}, "D65": {'2': (0.95047, 1., 1.08883), # This was: `lab_ref_white` '10': (0.94809667673716, 1, 1.0730513595166162)}, "D75": {'2': (0.9497220898840717, 1, 1.226393520724154), '10': (0.9441713925645873, 1, 1.2064272211720228)}, "E": {'2': (1.0, 1.0, 1.0), '10': (1.0, 1.0, 1.0)}} def get_xyz_coords(illuminant, observer): """Get the XYZ coordinates of the given illuminant and observer [1]_. Parameters ---------- illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10"}, optional The aperture angle of the observer. Returns ------- (x, y, z) : tuple A tuple with 3 elements containing the XYZ coordinates of the given illuminant. Raises ------ ValueError If either the illuminant or the observer angle are not supported or unknown. References ---------- .. [1] https://en.wikipedia.org/wiki/Standard_illuminant """ illuminant = illuminant.upper() try: return illuminants[illuminant][observer] except KeyError: raise ValueError("Unknown illuminant/observer combination\ (\'{0}\', \'{1}\')".format(illuminant, observer)) # Haematoxylin-Eosin-DAB colorspace # From original Ruifrok's paper: A. C. Ruifrok and D. A. Johnston, # "Quantification of histochemical staining by color deconvolution.," # Analytical and quantitative cytology and histology / the International # Academy of Cytology [and] American Society of Cytology, vol. 23, no. 4, # pp. 291-9, Aug. 2001. rgb_from_hed = np.array([[0.65, 0.70, 0.29], [0.07, 0.99, 0.11], [0.27, 0.57, 0.78]]) hed_from_rgb = linalg.inv(rgb_from_hed) # Following matrices are adapted form the Java code written by G.Landini. # The original code is available at: # http://www.dentistry.bham.ac.uk/landinig/software/cdeconv/cdeconv.html # Hematoxylin + DAB rgb_from_hdx = np.array([[0.650, 0.704, 0.286], [0.268, 0.570, 0.776], [0.0, 0.0, 0.0]]) rgb_from_hdx[2, :] = np.cross(rgb_from_hdx[0, :], rgb_from_hdx[1, :]) hdx_from_rgb = linalg.inv(rgb_from_hdx) # Feulgen + Light Green rgb_from_fgx = np.array([[0.46420921, 0.83008335, 0.30827187], [0.94705542, 0.25373821, 0.19650764], [0.0, 0.0, 0.0]]) rgb_from_fgx[2, :] = np.cross(rgb_from_fgx[0, :], rgb_from_fgx[1, :]) fgx_from_rgb = linalg.inv(rgb_from_fgx) # Giemsa: Methyl Blue + Eosin rgb_from_bex = np.array([[0.834750233, 0.513556283, 0.196330403], [0.092789, 0.954111, 0.283111], [0.0, 0.0, 0.0]]) rgb_from_bex[2, :] = np.cross(rgb_from_bex[0, :], rgb_from_bex[1, :]) bex_from_rgb = linalg.inv(rgb_from_bex) # FastRed + FastBlue + DAB rgb_from_rbd = np.array([[0.21393921, 0.85112669, 0.47794022], [0.74890292, 0.60624161, 0.26731082], [0.268, 0.570, 0.776]]) rbd_from_rgb = linalg.inv(rgb_from_rbd) # Methyl Green + DAB rgb_from_gdx = np.array([[0.98003, 0.144316, 0.133146], [0.268, 0.570, 0.776], [0.0, 0.0, 0.0]]) rgb_from_gdx[2, :] = np.cross(rgb_from_gdx[0, :], rgb_from_gdx[1, :]) gdx_from_rgb = linalg.inv(rgb_from_gdx) # Hematoxylin + AEC rgb_from_hax = np.array([[0.650, 0.704, 0.286], [0.2743, 0.6796, 0.6803], [0.0, 0.0, 0.0]]) rgb_from_hax[2, :] = np.cross(rgb_from_hax[0, :], rgb_from_hax[1, :]) hax_from_rgb = linalg.inv(rgb_from_hax) # Blue matrix Anilline Blue + Red matrix Azocarmine + Orange matrix Orange-G rgb_from_bro = np.array([[0.853033, 0.508733, 0.112656], [0.09289875, 0.8662008, 0.49098468], [0.10732849, 0.36765403, 0.9237484]]) bro_from_rgb = linalg.inv(rgb_from_bro) # Methyl Blue + Ponceau Fuchsin rgb_from_bpx = np.array([[0.7995107, 0.5913521, 0.10528667], [0.09997159, 0.73738605, 0.6680326], [0.0, 0.0, 0.0]]) rgb_from_bpx[2, :] = np.cross(rgb_from_bpx[0, :], rgb_from_bpx[1, :]) bpx_from_rgb = linalg.inv(rgb_from_bpx) # Alcian Blue + Hematoxylin rgb_from_ahx = np.array([[0.874622, 0.457711, 0.158256], [0.552556, 0.7544, 0.353744], [0.0, 0.0, 0.0]]) rgb_from_ahx[2, :] = np.cross(rgb_from_ahx[0, :], rgb_from_ahx[1, :]) ahx_from_rgb = linalg.inv(rgb_from_ahx) # Hematoxylin + PAS rgb_from_hpx = np.array([[0.644211, 0.716556, 0.266844], [0.175411, 0.972178, 0.154589], [0.0, 0.0, 0.0]]) rgb_from_hpx[2, :] = np.cross(rgb_from_hpx[0, :], rgb_from_hpx[1, :]) hpx_from_rgb = linalg.inv(rgb_from_hpx) # ------------------------------------------------------------- # The conversion functions that make use of the matrices above # ------------------------------------------------------------- def _convert(matrix, arr): """Do the color space conversion. Parameters ---------- matrix : array_like The 3x3 matrix to use. arr : array_like The input array. Returns ------- out : ndarray, dtype=float The converted array. """ arr = _prepare_colorarray(arr) return arr @ matrix.T.copy() def xyz2rgb(xyz): """XYZ to RGB color space conversion. Parameters ---------- xyz : array_like The image in XYZ format, in a 3-D array of shape ``(.., .., 3)``. Returns ------- out : ndarray The image in RGB format, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `xyz` is not a 3-D array of shape ``(.., .., 3)``. Notes ----- The CIE XYZ color space is derived from the CIE RGB color space. Note however that this function converts to sRGB. References ---------- .. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space Examples -------- >>> from skimage import data >>> from skimage.color import rgb2xyz, xyz2rgb >>> img = data.astronaut() >>> img_xyz = rgb2xyz(img) >>> img_rgb = xyz2rgb(img_xyz) """ # Follow the algorithm from http://www.easyrgb.com/index.php # except we don't multiply/divide by 100 in the conversion arr = _convert(rgb_from_xyz, xyz) mask = arr > 0.0031308 arr[mask] = 1.055 * np.power(arr[mask], 1 / 2.4) - 0.055 arr[~mask] *= 12.92 np.clip(arr, 0, 1, out=arr) return arr def rgb2xyz(rgb): """RGB to XYZ color space conversion. Parameters ---------- rgb : array_like The image in RGB format, in a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``. Returns ------- out : ndarray The image in XYZ format, in a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``. Raises ------ ValueError If `rgb` is not a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``. Notes ----- The CIE XYZ color space is derived from the CIE RGB color space. Note however that this function converts from sRGB. References ---------- .. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space Examples -------- >>> from skimage import data >>> img = data.astronaut() >>> img_xyz = rgb2xyz(img) """ # Follow the algorithm from http://www.easyrgb.com/index.php # except we don't multiply/divide by 100 in the conversion arr = _prepare_colorarray(rgb).copy() mask = arr > 0.04045 arr[mask] = np.power((arr[mask] + 0.055) / 1.055, 2.4) arr[~mask] /= 12.92 return _convert(xyz_from_rgb, arr) def rgb2rgbcie(rgb): """RGB to RGB CIE color space conversion. Parameters ---------- rgb : array_like The image in RGB format, in a 3-D array of shape ``(.., .., 3)``. Returns ------- out : ndarray The image in RGB CIE format, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `rgb` is not a 3-D array of shape ``(.., .., 3)``. References ---------- .. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space Examples -------- >>> from skimage import data >>> from skimage.color import rgb2rgbcie >>> img = data.astronaut() >>> img_rgbcie = rgb2rgbcie(img) """ return _convert(rgbcie_from_rgb, rgb) def rgbcie2rgb(rgbcie): """RGB CIE to RGB color space conversion. Parameters ---------- rgbcie : array_like The image in RGB CIE format, in a 3-D array of shape ``(.., .., 3)``. Returns ------- out : ndarray The image in RGB format, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `rgbcie` is not a 3-D array of shape ``(.., .., 3)``. References ---------- .. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space Examples -------- >>> from skimage import data >>> from skimage.color import rgb2rgbcie, rgbcie2rgb >>> img = data.astronaut() >>> img_rgbcie = rgb2rgbcie(img) >>> img_rgb = rgbcie2rgb(img_rgbcie) """ return _convert(rgb_from_rgbcie, rgbcie) def rgb2gray(rgb): """Compute luminance of an RGB image. Parameters ---------- rgb : array_like The image in RGB format, in a 3-D or 4-D array of shape ``(.., ..,[ ..,] 3)``, or in RGBA format with shape ``(.., ..,[ ..,] 4)``. Returns ------- out : ndarray The luminance image - an array which is the same size as the input array, but with the channel dimension removed. Raises ------ ValueError If `rgb2gray` is not a 3-D or 4-D arrays of shape ``(.., ..,[ ..,] 3)`` or ``(.., ..,[ ..,] 4)``. References ---------- .. [1] http://www.poynton.com/PDFs/ColorFAQ.pdf Notes ----- The weights used in this conversion are calibrated for contemporary CRT phosphors:: Y = 0.2125 R + 0.7154 G + 0.0721 B If there is an alpha channel present, it is ignored. Examples -------- >>> from skimage.color import rgb2gray >>> from skimage import data >>> img = data.astronaut() >>> img_gray = rgb2gray(img) """ if rgb.ndim == 2: return np.ascontiguousarray(rgb) rgb = _prepare_colorarray(rgb[..., :3]) coeffs = np.array([0.2125, 0.7154, 0.0721], dtype=rgb.dtype) return rgb @ coeffs rgb2grey = rgb2gray def gray2rgb(image, alpha=None): """Create an RGB representation of a gray-level image. Parameters ---------- image : array_like Input image of shape ``(M[, N][, P])``. alpha : bool, optional Ensure that the output image has an alpha layer. If None, alpha layers are passed through but not created. Returns ------- rgb : ndarray RGB image of shape ``(M[, N][, P], 3)``. Raises ------ ValueError If the input is not a 1-, 2- or 3-dimensional image. Notes ----- If the input is a 1-dimensional image of shape ``(M, )``, the output will be shape ``(M, 3)``. """ is_rgb = False is_alpha = False dims = np.squeeze(image).ndim if dims == 3: if image.shape[2] == 3: is_rgb = True elif image.shape[2] == 4: is_alpha = True is_rgb = True if is_rgb: if alpha is False: image = image[..., :3] elif alpha is True and is_alpha is False: alpha_layer = (np.ones_like(image[..., 0, np.newaxis]) * dtype_limits(image, clip_negative=False)[1]) image = np.concatenate((image, alpha_layer), axis=2) return image elif dims in (1, 2, 3): image = image[..., np.newaxis] if alpha: alpha_layer = (np.ones_like(image) * dtype_limits(image, clip_negative=False)[1]) return np.concatenate(3 * (image,) + (alpha_layer,), axis=-1) else: return np.concatenate(3 * (image,), axis=-1) else: raise ValueError("Input image expected to be RGB, RGBA or gray.") grey2rgb = gray2rgb def xyz2lab(xyz, illuminant="D65", observer="2"): """XYZ to CIE-LAB color space conversion. Parameters ---------- xyz : array_like The image in XYZ format, in a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``. illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10"}, optional The aperture angle of the observer. Returns ------- out : ndarray The image in CIE-LAB format, in a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``. Raises ------ ValueError If `xyz` is not a 3-D array of shape ``(.., ..,[ ..,] 3)``. ValueError If either the illuminant or the observer angle is unsupported or unknown. Notes ----- By default Observer= 2A, Illuminant= D65. CIE XYZ tristimulus values x_ref=95.047, y_ref=100., z_ref=108.883. See function `get_xyz_coords` for a list of supported illuminants. References ---------- .. [1] http://www.easyrgb.com/index.php?X=MATH&H=07#text7 .. [2] https://en.wikipedia.org/wiki/Lab_color_space Examples -------- >>> from skimage import data >>> from skimage.color import rgb2xyz, xyz2lab >>> img = data.astronaut() >>> img_xyz = rgb2xyz(img) >>> img_lab = xyz2lab(img_xyz) """ arr = _prepare_colorarray(xyz) xyz_ref_white = get_xyz_coords(illuminant, observer) # scale by CIE XYZ tristimulus values of the reference white point arr = arr / xyz_ref_white # Nonlinear distortion and linear transformation mask = arr > 0.008856 arr[mask] = np.cbrt(arr[mask]) arr[~mask] = 7.787 * arr[~mask] + 16. / 116. x, y, z = arr[..., 0], arr[..., 1], arr[..., 2] # Vector scaling L = (116. * y) - 16. a = 500.0 * (x - y) b = 200.0 * (y - z) return np.concatenate([x[..., np.newaxis] for x in [L, a, b]], axis=-1) def lab2xyz(lab, illuminant="D65", observer="2"): """CIE-LAB to XYZcolor space conversion. Parameters ---------- lab : array_like The image in lab format, in a 3-D array of shape ``(.., .., 3)``. illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10"}, optional The aperture angle of the observer. Returns ------- out : ndarray The image in XYZ format, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `lab` is not a 3-D array of shape ``(.., .., 3)``. ValueError If either the illuminant or the observer angle are not supported or unknown. UserWarning If any of the pixels are invalid (Z < 0). Notes ----- By default Observer= 2A, Illuminant= D65. CIE XYZ tristimulus values x_ref = 95.047, y_ref = 100., z_ref = 108.883. See function 'get_xyz_coords' for a list of supported illuminants. References ---------- .. [1] http://www.easyrgb.com/index.php?X=MATH&H=07#text7 .. [2] https://en.wikipedia.org/wiki/Lab_color_space """ arr = _prepare_colorarray(lab).copy() L, a, b = arr[:, :, 0], arr[:, :, 1], arr[:, :, 2] y = (L + 16.) / 116. x = (a / 500.) + y z = y - (b / 200.) if np.any(z < 0): invalid = np.nonzero(z < 0) warn('Color data out of range: Z < 0 in %s pixels' % invalid[0].size) z[invalid] = 0 out = np.dstack([x, y, z]) mask = out > 0.2068966 out[mask] = np.power(out[mask], 3.) out[~mask] = (out[~mask] - 16.0 / 116.) / 7.787 # rescale to the reference white (illuminant) xyz_ref_white = get_xyz_coords(illuminant, observer) out *= xyz_ref_white return out def rgb2lab(rgb, illuminant="D65", observer="2"): """RGB to lab color space conversion. Parameters ---------- rgb : array_like The image in RGB format, in a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``. illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10"}, optional The aperture angle of the observer. Returns ------- out : ndarray The image in Lab format, in a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``. Raises ------ ValueError If `rgb` is not a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``. References ---------- .. [1] https://en.wikipedia.org/wiki/Standard_illuminant Notes ----- This function uses rgb2xyz and xyz2lab. By default Observer= 2A, Illuminant= D65. CIE XYZ tristimulus values x_ref=95.047, y_ref=100., z_ref=108.883. See function `get_xyz_coords` for a list of supported illuminants. """ return xyz2lab(rgb2xyz(rgb), illuminant, observer) def lab2rgb(lab, illuminant="D65", observer="2"): """Lab to RGB color space conversion. Parameters ---------- lab : array_like The image in Lab format, in a 3-D array of shape ``(.., .., 3)``. illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10"}, optional The aperture angle of the observer. Returns ------- out : ndarray The image in RGB format, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `lab` is not a 3-D array of shape ``(.., .., 3)``. References ---------- .. [1] https://en.wikipedia.org/wiki/Standard_illuminant Notes ----- This function uses lab2xyz and xyz2rgb. By default Observer= 2A, Illuminant= D65. CIE XYZ tristimulus values x_ref=95.047, y_ref=100., z_ref=108.883. See function `get_xyz_coords` for a list of supported illuminants. """ return xyz2rgb(lab2xyz(lab, illuminant, observer)) def xyz2luv(xyz, illuminant="D65", observer="2"): """XYZ to CIE-Luv color space conversion. Parameters ---------- xyz : (M, N, [P,] 3) array_like The 3 or 4 dimensional image in XYZ format. Final dimension denotes channels. illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10"}, optional The aperture angle of the observer. Returns ------- out : (M, N, [P,] 3) ndarray The image in CIE-Luv format. Same dimensions as input. Raises ------ ValueError If `xyz` is not a 3-D or 4-D array of shape ``(M, N, [P,] 3)``. ValueError If either the illuminant or the observer angle are not supported or unknown. Notes ----- By default XYZ conversion weights use observer=2A. Reference whitepoint for D65 Illuminant, with XYZ tristimulus values of ``(95.047, 100., 108.883)``. See function 'get_xyz_coords' for a list of supported illuminants. References ---------- .. [1] http://www.easyrgb.com/index.php?X=MATH&H=16#text16 .. [2] https://en.wikipedia.org/wiki/CIELUV Examples -------- >>> from skimage import data >>> from skimage.color import rgb2xyz, xyz2luv >>> img = data.astronaut() >>> img_xyz = rgb2xyz(img) >>> img_luv = xyz2luv(img_xyz) """ arr = _prepare_colorarray(xyz) # extract channels x, y, z = arr[..., 0], arr[..., 1], arr[..., 2] eps = np.finfo(np.float).eps # compute y_r and L xyz_ref_white = np.array(get_xyz_coords(illuminant, observer)) L = y / xyz_ref_white[1] mask = L > 0.008856 L[mask] = 116. * np.cbrt(L[mask]) - 16. L[~mask] = 903.3 * L[~mask] u0 = 4 * xyz_ref_white[0] / ([1, 15, 3] @ xyz_ref_white) v0 = 9 * xyz_ref_white[1] / ([1, 15, 3] @ xyz_ref_white) # u' and v' helper functions def fu(X, Y, Z): return (4. * X) / (X + 15. * Y + 3. * Z + eps) def fv(X, Y, Z): return (9. * Y) / (X + 15. * Y + 3. * Z + eps) # compute u and v using helper functions u = 13. * L * (fu(x, y, z) - u0) v = 13. * L * (fv(x, y, z) - v0) return np.concatenate([q[..., np.newaxis] for q in [L, u, v]], axis=-1) def luv2xyz(luv, illuminant="D65", observer="2"): """CIE-Luv to XYZ color space conversion. Parameters ---------- luv : (M, N, [P,] 3) array_like The 3 or 4 dimensional image in CIE-Luv format. Final dimension denotes channels. illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10"}, optional The aperture angle of the observer. Returns ------- out : (M, N, [P,] 3) ndarray The image in XYZ format. Same dimensions as input. Raises ------ ValueError If `luv` is not a 3-D or 4-D array of shape ``(M, N, [P,] 3)``. ValueError If either the illuminant or the observer angle are not supported or unknown. Notes ----- XYZ conversion weights use observer=2A. Reference whitepoint for D65 Illuminant, with XYZ tristimulus values of ``(95.047, 100., 108.883)``. See function 'get_xyz_coords' for a list of supported illuminants. References ---------- .. [1] http://www.easyrgb.com/index.php?X=MATH&H=16#text16 .. [2] https://en.wikipedia.org/wiki/CIELUV """ arr = _prepare_colorarray(luv).copy() L, u, v = arr[:, :, 0], arr[:, :, 1], arr[:, :, 2] eps = np.finfo(np.float).eps # compute y y = L.copy() mask = y > 7.999625 y[mask] = np.power((y[mask] + 16.) / 116., 3.) y[~mask] = y[~mask] / 903.3 xyz_ref_white = get_xyz_coords(illuminant, observer) y *= xyz_ref_white[1] # reference white x,z uv_weights = np.array([1, 15, 3]) u0 = 4 * xyz_ref_white[0] / (uv_weights @ xyz_ref_white) v0 = 9 * xyz_ref_white[1] / (uv_weights @ xyz_ref_white) # compute intermediate values a = u0 + u / (13. * L + eps) b = v0 + v / (13. * L + eps) c = 3 * y * (5 * b - 3) # compute x and z z = ((a - 4) * c - 15 * a * b * y) / (12 * b) x = -(c / b + 3. * z) return np.concatenate([q[..., np.newaxis] for q in [x, y, z]], axis=-1) def rgb2luv(rgb): """RGB to CIE-Luv color space conversion. Parameters ---------- rgb : (M, N, [P,] 3) array_like The 3 or 4 dimensional image in RGB format. Final dimension denotes channels. Returns ------- out : (M, N, [P,] 3) ndarray The image in CIE Luv format. Same dimensions as input. Raises ------ ValueError If `rgb` is not a 3-D or 4-D array of shape ``(M, N, [P,] 3)``. Notes ----- This function uses rgb2xyz and xyz2luv. References ---------- .. [1] http://www.easyrgb.com/index.php?X=MATH&H=16#text16 .. [2] http://www.easyrgb.com/index.php?X=MATH&H=02#text2 .. [3] https://en.wikipedia.org/wiki/CIELUV """ return xyz2luv(rgb2xyz(rgb)) def luv2rgb(luv): """Luv to RGB color space conversion. Parameters ---------- luv : (M, N, [P,] 3) array_like The 3 or 4 dimensional image in CIE Luv format. Final dimension denotes channels. Returns ------- out : (M, N, [P,] 3) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `luv` is not a 3-D or 4-D array of shape ``(M, N, [P,] 3)``. Notes ----- This function uses luv2xyz and xyz2rgb. """ return xyz2rgb(luv2xyz(luv)) def rgb2hed(rgb): """RGB to Haematoxylin-Eosin-DAB (HED) color space conversion. Parameters ---------- rgb : array_like The image in RGB format, in a 3-D array of shape ``(.., .., 3)``. Returns ------- out : ndarray The image in HED format, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `rgb` is not a 3-D array of shape ``(.., .., 3)``. References ---------- .. [1] A. C. Ruifrok and D. A. Johnston, "Quantification of histochemical staining by color deconvolution.," Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology, vol. 23, no. 4, pp. 291-9, Aug. 2001. Examples -------- >>> from skimage import data >>> from skimage.color import rgb2hed >>> ihc = data.immunohistochemistry() >>> ihc_hed = rgb2hed(ihc) """ return separate_stains(rgb, hed_from_rgb) def hed2rgb(hed): """Haematoxylin-Eosin-DAB (HED) to RGB color space conversion. Parameters ---------- hed : array_like The image in the HED color space, in a 3-D array of shape ``(.., .., 3)``. Returns ------- out : ndarray The image in RGB, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `hed` is not a 3-D array of shape ``(.., .., 3)``. References ---------- .. [1] A. C. Ruifrok and D. A. Johnston, "Quantification of histochemical staining by color deconvolution.," Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology, vol. 23, no. 4, pp. 291-9, Aug. 2001. Examples -------- >>> from skimage import data >>> from skimage.color import rgb2hed, hed2rgb >>> ihc = data.immunohistochemistry() >>> ihc_hed = rgb2hed(ihc) >>> ihc_rgb = hed2rgb(ihc_hed) """ return combine_stains(hed, rgb_from_hed) def separate_stains(rgb, conv_matrix): """RGB to stain color space conversion. Parameters ---------- rgb : array_like The image in RGB format, in a 3-D array of shape ``(.., .., 3)``. conv_matrix: ndarray The stain separation matrix as described by G. Landini [1]_. Returns ------- out : ndarray The image in stain color space, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `rgb` is not a 3-D array of shape ``(.., .., 3)``. Notes ----- Stain separation matrices available in the ``color`` module and their respective colorspace: * ``hed_from_rgb``: Hematoxylin + Eosin + DAB * ``hdx_from_rgb``: Hematoxylin + DAB * ``fgx_from_rgb``: Feulgen + Light Green * ``bex_from_rgb``: Giemsa stain : Methyl Blue + Eosin * ``rbd_from_rgb``: FastRed + FastBlue + DAB * ``gdx_from_rgb``: Methyl Green + DAB * ``hax_from_rgb``: Hematoxylin + AEC * ``bro_from_rgb``: Blue matrix Anilline Blue + Red matrix Azocarmine\ + Orange matrix Orange-G * ``bpx_from_rgb``: Methyl Blue + Ponceau Fuchsin * ``ahx_from_rgb``: Alcian Blue + Hematoxylin * ``hpx_from_rgb``: Hematoxylin + PAS References ---------- .. [1] http://www.dentistry.bham.ac.uk/landinig/software/cdeconv/cdeconv.html Examples -------- >>> from skimage import data >>> from skimage.color import separate_stains, hdx_from_rgb >>> ihc = data.immunohistochemistry() >>> ihc_hdx = separate_stains(ihc, hdx_from_rgb) """ rgb = dtype.img_as_float(rgb, force_copy=True) rgb += 2 stains = np.reshape(-np.log10(rgb), (-1, 3)) @ conv_matrix return np.reshape(stains, rgb.shape) def combine_stains(stains, conv_matrix): """Stain to RGB color space conversion. Parameters ---------- stains : array_like The image in stain color space, in a 3-D array of shape ``(.., .., 3)``. conv_matrix: ndarray The stain separation matrix as described by G. Landini [1]_. Returns ------- out : ndarray The image in RGB format, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `stains` is not a 3-D array of shape ``(.., .., 3)``. Notes ----- Stain combination matrices available in the ``color`` module and their respective colorspace: * ``rgb_from_hed``: Hematoxylin + Eosin + DAB * ``rgb_from_hdx``: Hematoxylin + DAB * ``rgb_from_fgx``: Feulgen + Light Green * ``rgb_from_bex``: Giemsa stain : Methyl Blue + Eosin * ``rgb_from_rbd``: FastRed + FastBlue + DAB * ``rgb_from_gdx``: Methyl Green + DAB * ``rgb_from_hax``: Hematoxylin + AEC * ``rgb_from_bro``: Blue matrix Anilline Blue + Red matrix Azocarmine\ + Orange matrix Orange-G * ``rgb_from_bpx``: Methyl Blue + Ponceau Fuchsin * ``rgb_from_ahx``: Alcian Blue + Hematoxylin * ``rgb_from_hpx``: Hematoxylin + PAS References ---------- .. [1] http://www.dentistry.bham.ac.uk/landinig/software/cdeconv/cdeconv.html Examples -------- >>> from skimage import data >>> from skimage.color import (separate_stains, combine_stains, ... hdx_from_rgb, rgb_from_hdx) >>> ihc = data.immunohistochemistry() >>> ihc_hdx = separate_stains(ihc, hdx_from_rgb) >>> ihc_rgb = combine_stains(ihc_hdx, rgb_from_hdx) """ from ..exposure import rescale_intensity stains = dtype.img_as_float(stains) logrgb2 = -np.reshape(stains, (-1, 3)) @ conv_matrix rgb2 = np.power(10, logrgb2) return rescale_intensity(np.reshape(rgb2 - 2, stains.shape), in_range=(-1, 1)) def lab2lch(lab): """CIE-LAB to CIE-LCH color space conversion. LCH is the cylindrical representation of the LAB (Cartesian) colorspace Parameters ---------- lab : array_like The N-D image in CIE-LAB format. The last (``N+1``-th) dimension must have at least 3 elements, corresponding to the ``L``, ``a``, and ``b`` color channels. Subsequent elements are copied. Returns ------- out : ndarray The image in LCH format, in a N-D array with same shape as input `lab`. Raises ------ ValueError If `lch` does not have at least 3 color channels (i.e. l, a, b). Notes ----- The Hue is expressed as an angle between ``(0, 2*pi)`` Examples -------- >>> from skimage import data >>> from skimage.color import rgb2lab, lab2lch >>> img = data.astronaut() >>> img_lab = rgb2lab(img) >>> img_lch = lab2lch(img_lab) """ lch = _prepare_lab_array(lab) a, b = lch[..., 1], lch[..., 2] lch[..., 1], lch[..., 2] = _cart2polar_2pi(a, b) return lch def _cart2polar_2pi(x, y): """convert cartesian coordinates to polar (uses non-standard theta range!) NON-STANDARD RANGE! Maps to ``(0, 2*pi)`` rather than usual ``(-pi, +pi)`` """ r, t = np.hypot(x, y), np.arctan2(y, x) t += np.where(t < 0., 2 * np.pi, 0) return r, t def lch2lab(lch): """CIE-LCH to CIE-LAB color space conversion. LCH is the cylindrical representation of the LAB (Cartesian) colorspace Parameters ---------- lch : array_like The N-D image in CIE-LCH format. The last (``N+1``-th) dimension must have at least 3 elements, corresponding to the ``L``, ``a``, and ``b`` color channels. Subsequent elements are copied. Returns ------- out : ndarray The image in LAB format, with same shape as input `lch`. Raises ------ ValueError If `lch` does not have at least 3 color channels (i.e. l, c, h). Examples -------- >>> from skimage import data >>> from skimage.color import rgb2lab, lch2lab >>> img = data.astronaut() >>> img_lab = rgb2lab(img) >>> img_lch = lab2lch(img_lab) >>> img_lab2 = lch2lab(img_lch) """ lch = _prepare_lab_array(lch) c, h = lch[..., 1], lch[..., 2] lch[..., 1], lch[..., 2] = c * np.cos(h), c * np.sin(h) return lch def _prepare_lab_array(arr): """Ensure input for lab2lch, lch2lab are well-posed. Arrays must be in floating point and have at least 3 elements in last dimension. Return a new array. """ arr = np.asarray(arr) shape = arr.shape if shape[-1] < 3: raise ValueError('Input array has less than 3 color channels') return dtype.img_as_float(arr, force_copy=True) def rgb2yuv(rgb): """RGB to YUV color space conversion. Parameters ---------- rgb : array_like The image in RGB format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Returns ------- out : ndarray The image in YUV format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Raises ------ ValueError If `rgb` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Notes ----- Y is between 0 and 1. Use YCbCr instead of YUV for the color space which is commonly used by video codecs (where Y ranges from 16 to 235) References ---------- .. [1] https://en.wikipedia.org/wiki/YUV """ return _convert(yuv_from_rgb, rgb) def rgb2yiq(rgb): """RGB to YIQ color space conversion. Parameters ---------- rgb : array_like The image in RGB format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Returns ------- out : ndarray The image in YIQ format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Raises ------ ValueError If `rgb` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``. """ return _convert(yiq_from_rgb, rgb) def rgb2ypbpr(rgb): """RGB to YPbPr color space conversion. Parameters ---------- rgb : array_like The image in RGB format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Returns ------- out : ndarray The image in YPbPr format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Raises ------ ValueError If `rgb` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``. References ---------- .. [1] https://en.wikipedia.org/wiki/YPbPr """ return _convert(ypbpr_from_rgb, rgb) def rgb2ycbcr(rgb): """RGB to YCbCr color space conversion. Parameters ---------- rgb : array_like The image in RGB format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Returns ------- out : ndarray The image in YCbCr format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Raises ------ ValueError If `rgb` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Notes ----- Y is between 16 and 235. This is the color space which is commonly used by video codecs, it is sometimes incorrectly called "YUV" References ---------- .. [1] https://en.wikipedia.org/wiki/YCbCr """ arr = _convert(ycbcr_from_rgb, rgb) arr[..., 0] += 16 arr[..., 1] += 128 arr[..., 2] += 128 return arr def rgb2ydbdr(rgb): """RGB to YDbDr color space conversion. Parameters ---------- rgb : array_like The image in RGB format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Returns ------- out : ndarray The image in YDbDr format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Raises ------ ValueError If `rgb` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Notes ----- This is the color space which is commonly used by video codecs, it is also the reversible color transform in JPEG2000. References ---------- .. [1] https://en.wikipedia.org/wiki/YDbDr """ arr = _convert(ydbdr_from_rgb, rgb) return arr def yuv2rgb(yuv): """YUV to RGB color space conversion. Parameters ---------- yuv : array_like The image in YUV format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Returns ------- out : ndarray The image in RGB format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Raises ------ ValueError If `yuv` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``. References ---------- .. [1] https://en.wikipedia.org/wiki/YUV """ return _convert(rgb_from_yuv, yuv) def yiq2rgb(yiq): """YIQ to RGB color space conversion. Parameters ---------- yiq : array_like The image in YIQ format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Returns ------- out : ndarray The image in RGB format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Raises ------ ValueError If `yiq` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``. """ return _convert(rgb_from_yiq, yiq) def ypbpr2rgb(ypbpr): """YPbPr to RGB color space conversion. Parameters ---------- ypbpr : array_like The image in YPbPr format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Returns ------- out : ndarray The image in RGB format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Raises ------ ValueError If `ypbpr` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``. References ---------- .. [1] https://en.wikipedia.org/wiki/YPbPr """ return _convert(rgb_from_ypbpr, ypbpr) def ycbcr2rgb(ycbcr): """YCbCr to RGB color space conversion. Parameters ---------- ycbcr : array_like The image in YCbCr format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Returns ------- out : ndarray The image in RGB format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Raises ------ ValueError If `ycbcr` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Notes ----- Y is between 16 and 235. This is the color space which is commonly used by video codecs, it is sometimes incorrectly called "YUV" References ---------- .. [1] https://en.wikipedia.org/wiki/YCbCr """ arr = ycbcr.copy() arr[..., 0] -= 16 arr[..., 1] -= 128 arr[..., 2] -= 128 return _convert(rgb_from_ycbcr, arr) def ydbdr2rgb(ydbdr): """YDbDr to RGB color space conversion. Parameters ---------- ydbdr : array_like The image in YDbDr format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Returns ------- out : ndarray The image in RGB format, in a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Raises ------ ValueError If `ydbdr` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``. Notes ----- This is the color space which is commonly used by video codecs, it is also the reversible color transform in JPEG2000. References ---------- .. [1] https://en.wikipedia.org/wiki/YDbDr """ arr = ydbdr.copy() return _convert(rgb_from_ydbdr, arr)
py
1a493b5219ef9e996ca4f917b97f475af793d06b
# Code from Chapter 7 of Machine Learning: An Algorithmic Perspective # by Stephen Marsland (http://seat.massey.ac.nz/personal/s.r.marsland/MLBook.html) # You are free to use, change, or redistribute the code in any way you wish for # non-commercial purposes, but please maintain the name of the original author. # This code comes with no warranty of any kind. # Stephen Marsland, 2008 from numpy import * import dtree class bagger: """The bagging algorithm based on the decision tree of Chapter 6""" def __init__(self): """ Constructor """ self.tree = dtree.dtree() def bag(self,data,targets,features,nSamples): nPoints = shape(data)[0] nDim = shape(data)[1] self.nSamples = nSamples # Compute boostrap samples samplePoints = random.randint(0,nPoints,(nPoints,nSamples)) classifiers = [] for i in range(nSamples): sample = [] sampleTarget = [] for j in range(nPoints): sample.append(data[samplePoints[j,i]]) sampleTarget.append(targets[samplePoints[j,i]]) # Train classifiers classifiers.append(self.tree.make_tree(sample,sampleTarget,features,1)) return classifiers def bagclass(self,classifiers,data): decision = [] # Majority voting for j in range(len(data)): outputs = [] #print data[j] for i in range(self.nSamples): out = self.tree.classify(classifiers[i],data[j]) if out is not None: outputs.append(out) # List the possible outputs out = [] for each in outputs: if out.count(each)==0: out.append(each) frequency = zeros(len(out)) index = 0 if len(out)>0: for each in out: frequency[index] = outputs.count(each) index += 1 decision.append(out[frequency.argmax()]) else: decision.append(None) return decision
py
1a493b738bbcae9ea9e4ae7b8903108d0f3d918b
import typing import inspect import functools from base64 import b64decode from types import FunctionType import httpx from rpcpy.serializers import BaseSerializer, JSONSerializer from rpcpy.utils.openapi import set_type_model __all__ = ["Client"] Function = typing.TypeVar("Function", bound=FunctionType) class ClientMeta(type): def __call__(cls, *args: typing.Any, **kwargs: typing.Any) -> typing.Any: if cls.__name__ == "Client": if isinstance(args[0], httpx.Client): return SyncClient(*args, **kwargs) if isinstance(args[0], httpx.AsyncClient): return AsyncClient(*args, **kwargs) raise TypeError( "The parameter `client` must be an httpx.Client or httpx.AsyncClient object." ) return super().__call__(*args, **kwargs) class Client(metaclass=ClientMeta): def __init__( self, client: typing.Union[httpx.Client, httpx.AsyncClient], *, base_url: str, request_serializer: BaseSerializer = JSONSerializer(), response_serializer: BaseSerializer = JSONSerializer(), ) -> None: assert base_url.endswith("/"), "base_url must be end with '/'" self.base_url = base_url self.client = client self.request_serializer = request_serializer self.response_serializer = response_serializer def remote_call(self, func: Function) -> Function: set_type_model(func) # try set `__body_model__` return func def _get_url(self, func: Function) -> str: return self.base_url + func.__name__ def _get_content( self, func: typing.Callable, *args: typing.Any, **kwargs: typing.Any ) -> bytes: sig = inspect.signature(func) bound_values = sig.bind(*args, **kwargs) if hasattr(func, "__body_model__"): _params = getattr(func, "__body_model__")(**bound_values.arguments).dict() else: _params = dict(**bound_values.arguments) return self.request_serializer.encode(_params) class AsyncClient(Client): if typing.TYPE_CHECKING: client: httpx.AsyncClient def remote_call(self, func: Function) -> Function: if not (inspect.iscoroutinefunction(func) or inspect.isasyncgenfunction(func)): raise TypeError( "Asynchronous Client can only register asynchronous functions." ) func = super().remote_call(func) url = self._get_url(func) if not inspect.isasyncgenfunction(func): @functools.wraps(func) async def wrapper(*args: typing.Any, **kwargs: typing.Any) -> typing.Any: post_content = self._get_content(func, *args, **kwargs) resp = await self.client.post( url, content=post_content, headers={ "content-type": self.request_serializer.content_type, "serializer": self.request_serializer.name, }, ) resp.raise_for_status() return self.response_serializer.decode(resp.content) else: @functools.wraps(func) async def wrapper(*args: typing.Any, **kwargs: typing.Any) -> typing.Any: post_content = self._get_content(func, *args, **kwargs) async with self.client.stream( "POST", url, content=post_content, headers={ "content-type": self.request_serializer.content_type, "serializer": self.request_serializer.name, }, ) as resp: resp.raise_for_status() async for line in resp.aiter_lines(): if line.startswith("data:"): data = line.split(":", maxsplit=1)[1] yield self.response_serializer.decode( b64decode(data.encode("ascii")) ) return typing.cast(Function, wrapper) class SyncClient(Client): if typing.TYPE_CHECKING: client: httpx.Client def remote_call(self, func: Function) -> Function: if inspect.iscoroutinefunction(func) or inspect.isasyncgenfunction(func): raise TypeError( "Synchronization Client can only register synchronization functions." ) func = super().remote_call(func) url = self._get_url(func) if not inspect.isgeneratorfunction(func): @functools.wraps(func) def wrapper(*args: typing.Any, **kwargs: typing.Any) -> typing.Any: post_content = self._get_content(func, *args, **kwargs) resp = self.client.post( url, content=post_content, headers={ "content-type": self.request_serializer.content_type, "serializer": self.request_serializer.name, }, ) resp.raise_for_status() return self.response_serializer.decode(resp.content) else: @functools.wraps(func) def wrapper(*args: typing.Any, **kwargs: typing.Any) -> typing.Any: post_content = self._get_content(func, *args, **kwargs) with self.client.stream( "POST", url, content=post_content, headers={ "content-type": self.request_serializer.content_type, "serializer": self.request_serializer.name, }, ) as resp: resp.raise_for_status() for line in resp.iter_lines(): if line.startswith("data:"): data = line.split(":", maxsplit=1)[1] yield self.response_serializer.decode( b64decode(data.encode("ascii")) ) return typing.cast(Function, wrapper)
py
1a493bc58a2274d61bc6aad6437f8b3cdca45850
""" Expressions ----------- Offer fast expression evaluation through numexpr """ import warnings import numpy as np from pandas._config import get_option from pandas._libs.lib import values_from_object from pandas.core.dtypes.generic import ABCDataFrame from pandas.core.computation.check import _NUMEXPR_INSTALLED if _NUMEXPR_INSTALLED: import numexpr as ne _TEST_MODE = None _TEST_RESULT = None _USE_NUMEXPR = _NUMEXPR_INSTALLED _evaluate = None _where = None # the set of dtypes that we will allow pass to numexpr _ALLOWED_DTYPES = { "evaluate": {"int64", "int32", "float64", "float32", "bool"}, "where": {"int64", "float64", "bool"}, } # the minimum prod shape that we will use numexpr _MIN_ELEMENTS = 10000 def set_use_numexpr(v=True): # set/unset to use numexpr global _USE_NUMEXPR if _NUMEXPR_INSTALLED: _USE_NUMEXPR = v # choose what we are going to do global _evaluate, _where if not _USE_NUMEXPR: _evaluate = _evaluate_standard _where = _where_standard else: _evaluate = _evaluate_numexpr _where = _where_numexpr def set_numexpr_threads(n=None): # if we are using numexpr, set the threads to n # otherwise reset if _NUMEXPR_INSTALLED and _USE_NUMEXPR: if n is None: n = ne.detect_number_of_cores() ne.set_num_threads(n) def _evaluate_standard(op, op_str, a, b): """ standard evaluation """ if _TEST_MODE: _store_test_result(False) with np.errstate(all="ignore"): return op(a, b) def _can_use_numexpr(op, op_str, a, b, dtype_check): """ return a boolean if we WILL be using numexpr """ if op_str is not None: # required min elements (otherwise we are adding overhead) if np.prod(a.shape) > _MIN_ELEMENTS: # check for dtype compatibility dtypes = set() for o in [a, b]: # Series implements dtypes, check for dimension count as well if hasattr(o, "dtypes") and o.ndim > 1: s = o.dtypes.value_counts() if len(s) > 1: return False dtypes |= set(s.index.astype(str)) # ndarray and Series Case elif hasattr(o, "dtype"): dtypes |= {o.dtype.name} # allowed are a superset if not len(dtypes) or _ALLOWED_DTYPES[dtype_check] >= dtypes: return True return False def _evaluate_numexpr(op, op_str, a, b): result = None if _can_use_numexpr(op, op_str, a, b, "evaluate"): is_reversed = op.__name__.strip("_").startswith("r") if is_reversed: # we were originally called by a reversed op method a, b = b, a a_value = getattr(a, "values", a) b_value = getattr(b, "values", b) result = ne.evaluate( "a_value {op} b_value".format(op=op_str), local_dict={"a_value": a_value, "b_value": b_value}, casting="safe", ) if _TEST_MODE: _store_test_result(result is not None) if result is None: result = _evaluate_standard(op, op_str, a, b) return result def _where_standard(cond, a, b): return np.where( values_from_object(cond), values_from_object(a), values_from_object(b) ) def _where_numexpr(cond, a, b): result = None if _can_use_numexpr(None, "where", a, b, "where"): cond_value = getattr(cond, "values", cond) a_value = getattr(a, "values", a) b_value = getattr(b, "values", b) result = ne.evaluate( "where(cond_value, a_value, b_value)", local_dict={ "cond_value": cond_value, "a_value": a_value, "b_value": b_value, }, casting="safe", ) if result is None: result = _where_standard(cond, a, b) return result # turn myself on set_use_numexpr(get_option("compute.use_numexpr")) def _has_bool_dtype(x): if isinstance(x, ABCDataFrame): return "bool" in x.dtypes try: return x.dtype == bool except AttributeError: return isinstance(x, (bool, np.bool_)) def _bool_arith_check( op_str, a, b, not_allowed=frozenset(("/", "//", "**")), unsupported=None ): if unsupported is None: unsupported = {"+": "|", "*": "&", "-": "^"} if _has_bool_dtype(a) and _has_bool_dtype(b): if op_str in unsupported: warnings.warn( f"evaluating in Python space because the {repr(op_str)} " f"operator is not supported by numexpr for " f"the bool dtype, use {repr(unsupported[op_str])} instead" ) return False if op_str in not_allowed: raise NotImplementedError( f"operator {repr(op_str)} not implemented for bool dtypes" ) return True def evaluate(op, op_str, a, b, use_numexpr=True): """ Evaluate and return the expression of the op on a and b. Parameters ---------- op : the actual operand op_str : str The string version of the op. a : left operand b : right operand use_numexpr : bool, default True Whether to try to use numexpr. """ use_numexpr = use_numexpr and _bool_arith_check(op_str, a, b) if use_numexpr: return _evaluate(op, op_str, a, b) return _evaluate_standard(op, op_str, a, b) def where(cond, a, b, use_numexpr=True): """ Evaluate the where condition cond on a and b. Parameters ---------- cond : np.ndarray[bool] a : return if cond is True b : return if cond is False use_numexpr : bool, default True Whether to try to use numexpr. """ if use_numexpr: return _where(cond, a, b) return _where_standard(cond, a, b) def set_test_mode(v=True): """ Keeps track of whether numexpr was used. Stores an additional ``True`` for every successful use of evaluate with numexpr since the last ``get_test_result`` """ global _TEST_MODE, _TEST_RESULT _TEST_MODE = v _TEST_RESULT = [] def _store_test_result(used_numexpr): global _TEST_RESULT if used_numexpr: _TEST_RESULT.append(used_numexpr) def get_test_result(): """get test result and reset test_results""" global _TEST_RESULT res = _TEST_RESULT _TEST_RESULT = [] return res
py
1a493c3d2733815f93700e05f2d2493ffa17dbad
from __future__ import with_statement from time import time from fabric.api import cd, run, env, roles from fabric.decorators import task from fabric.contrib.files import exists env.use_ssh_config = True releases_dir = "/home/deploy/issadmin/releases" git_branch = "master" git_repo = "https://github.com/wgerez/iss-dashboard.git" repo_dir = "/home/deploy/issadmin/repo" persist_dir = "/home/deploy/issadmin/persist" next_release = "%(time).0f" % {'time': time()} current_release = "/home/deploy/issadmin/current" env.roledefs = { 'test': ['issqa'], 'production': ['iss'] } @task def deploy(migrate='no'): init() update_git() create_release() build_site() if migrate=='yes': migrate_from = "%s/%s" % (releases_dir, next_release) migrate_forward(migrate_from) swap_symlinks() @task def migrate(): migrate_forward() @task def migrate_back(): migrate_backward() def migrate_forward(release_dir=None, env='production'): if not release_dir: release_dir=current_release with cd(release_dir): run('php artisan migrate --env=%s' % env) def migrate_backward(release_dir=None, env='production'): if not release_dir: release_dir = current_release with cd(release_dir): run('php artisan migrate:rollback --env=%s' % env) def init(): if not exists(releases_dir): run("mkdir -p %s" % releases_dir) if not exists(repo_dir): run("git clone -b %s %s %s" % (git_branch, git_repo, repo_dir) ) if not exists("%s/storage" % persist_dir): run("mkdir -p %s/storage/cache" % persist_dir) run("mkdir -p %s/storage/fonts" % persist_dir) run("mkdir -p %s/storage/logs" % persist_dir) run("mkdir -p %s/storage/meta" % persist_dir) run("mkdir -p %s/storage/sessions" % persist_dir) run("mkdir -p %s/storage/views" % persist_dir) def update_git(): with cd(repo_dir): run("git checkout %s" % git_branch) run("git pull origin %s" % git_branch) def create_release(): release_into = "%s/%s" % (releases_dir, next_release) run("mkdir -p %s" % release_into) with cd(repo_dir): run("git archive --worktree-attributes %s | tar -x -C %s" % (git_branch, release_into)) def build_site(): with cd("%s/%s" % (releases_dir, next_release)): run("rm composer.lock") run("composer install") def swap_symlinks(): release_into = "%s/%s" % (releases_dir, next_release) run("ln -nfs %s/database.php %s/app/config/database.php" % (persist_dir, release_into)) run("rm -rf %s/app/storage" % release_into) run("rm -rf %s/public/alumnos" % release_into) run("rm -rf %s/public/docentes" % release_into) run("ln -nfs %s/storage %s/app/storage" % (persist_dir, release_into)) run("ln -nfs %s/alumnos %s/public/alumnos" % (persist_dir, release_into)) run("ln -nfs %s/docentes %s/public/docentes" % (persist_dir, release_into)) run("ln -nfs %s %s" % (release_into, current_release)) run("sudo service php7.0-fpm reload")
py
1a493c4150d01339670a405515bdc3b49b329d7b
''' This is the sample code from the homework. You shold NOT modify this file. Instead, please copy this file to src/students/<your student ID>.py and edit it there. ''' import os # Define global variables with upper case SRC_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) TEST_DATA_DIR = os.path.join(SRC_PATH, 'test_data') def task_1(dummy=None): ''' Task 1: Basic Syntax and Flake8 Checker Python uses indentations to separate blocks instead of backets. Unlike most programming language (like C++), indentations in Python are required. See https://www.python-course.eu/python3_blocks.php for some examples. Flake8 (http://flake8.pycqa.org/en/latest/) could help you check these syntax error. It also regular your coding style. For example, using two whitespaces as indentation is allowed in Python. However, Flake8 will tell you it is an error "E111: indentation is not a multiple of four". This is because when many people work on the same project, it would be confusing if people are using different identation style. Following the coding style in Flake8 is strongly suggested. ''' # Hint: # Run `python autograder.py -task 1 -student_id <your student ID>` # under src/ to see if you pass this task. # The correct output would be "Hello world" without any # error. Note that passing this task does NOT mean you pass the # Flake8 chcker. Please check your style with # `flake8 src/student/<your student ID>.py` # TODO: fix the syntax error for the following code if True: sentence = "Hello world" print(sentence) # End of TODO (do not change the code below) return True def task_2( input_list: list = [1, 4, 53, 27, 9], target_index: int = 0, input_dictionary: dict = {"a": " taiwan", "b": 20, "c": "CSIE"}, target_key: str = "a" ) -> tuple: ''' Task 2: Data Types Python has many data types, including Boolean, String, Integer, Float, List, Dictionary, etc. You could use the function type() to see the data type: >>> type(5) <class 'int'> >>> type("hi") <class 'str'> >>> type(9.2) <class 'float'> >>> type(["list", "could", "include", "different", "data type", 5, 3.2]) <class 'list'> >>> type(("you could not change elements", "in a tuple")) <class 'tuple'> >>> type({"a": 1, "b":20}) <class 'dict'> >>> type(True) <class 'bool'> >>> Try to play with the Python IDE to see different data types by yourself. In this task, you are asked to use these datatype. Args: input_list: a list with several items target_index: target index for the input_list. You need to get the list element with this index (i.e, 'input_list[target_index]') input_dictionary: a dictionary with several key-value pairs. target_key: target key for the input_dictionary You need to get the value with this key (i.e., input_dictionary[target_key]) Returns: input_list_length_and_sentence: a tuple that contains two elements. The first one is an integer that indicates the length of input_list The second one is a string that contains the combination of input_list[target_index] and input_dictionary[target_key] Examples: Inputs: input_list = [1, 3, 5, 7, 9] target_index = 0 input_dictionary = {"1": "8", "f": "abc", "s": 5.5, "5.5" 900} target_key = "5.5" Returns: input_list_length_and_sentence = (5, "1900") Hints: * Try to use print() to print out the inputs. * Use len() to get the length of the list. * Different data types could not be added. Use str() to convert data to string. * Run `python src/autograder.py -task 2 -student_id <your student ID>` to see if you pass this task. * The correct output would be (4, '1 taiwan') ''' # TODO: change length and sentence to fit the requirement length = len(input_list) sentence = str(input_list[target_index]) sentence += str(input_dictionary[str(target_key)]) # End of TODO input_list_length_and_sentence = (length, sentence) print(input_list_length_and_sentence) return input_list_length_and_sentence def task_3( number: int = 1314151677777 ) -> list: ''' Task 3: Conditions Args: number: a integer input Returns: prime_factors_below_10: a list of the number's largest factors below 10 if the number is negative, return [-1] if the number is zero, return [0] Hints: * Use % to get the remainder * Using a loop (introduced in the next task) will make some conditions simpler ''' prime_factors_below_10 = [] # TODO: fill in the conditions if number < 0: prime_factors_below_10 = [-1] # elif stands for "else if" in Python. elif number == 0: prime_factors_below_10 = [0] else: if number % 2 == 0: prime_factors_below_10.append(2) if number % 3 == 0: prime_factors_below_10.append(3) if number % 5 == 0: prime_factors_below_10.append(5) if number % 7 == 0: prime_factors_below_10.append(7) # End of TODO print(prime_factors_below_10) return prime_factors_below_10 def task_4( numbers: list = [2, 4, 5, 6, 9] ) -> list: ''' Task 4: For and While Loop Args: numbers: a list of integers Returns: list_of_stars: a list of stars (*) For each number n in the list, you need to append n lines of stars to the list, where the first line has one star, the last line has n stars. Examples: input: [1, 3, 5] output: ['*', '*', '**', '***', '*', '**', '***', '****', '*****'] Hints: * You could create a string with repetitive substring by <str> * <int> ''' list_of_stars = [] # In Python, the for loop could iterate through a list directly for number in numbers: # TODO: change stars to correct length for i in range(1, number+1): stars = "*" * i list_of_stars.append(stars) # End of TODO # This could be done by the while loop list_of_stars_while = [] i = 0 while i < len(numbers): # TODO: change stars to correct length j = 1 while j <= numbers[i]: stars = "*" * j j += 1 # This line is equivalant to j = j + 1 list_of_stars_while.append(stars) i += 1 # End of TODO print("=====> Output list_of_stars") for stars in list_of_stars: print(stars) print("=====> Output list_of_stars_while") for stars in list_of_stars_while: print(stars) for ans1, ans2 in zip(list_of_stars, list_of_stars_while): assert ans1 == ans2 return list_of_stars def task_5( input_filename: str = 'task_5_input.txt', output_filename: str = 'task_5_output.txt' ) -> str: ''' Task 5: I/O with files Args: input_filename: input filename output_filename: output filename Returns: lines: content in the output file without commas Hints: * Use <str>.split(something) to split a string into several substring * Use fout.write(something) to write text into the output file ''' input_filename = os.path.join(TEST_DATA_DIR, input_filename) output_filename = os.path.join(TEST_DATA_DIR, output_filename) # Remove previous output file if os.path.exists(output_filename): os.remove(output_filename) with open(input_filename, 'r') as fin, open(output_filename, 'w') as fout: lines = fin.readlines() print(f"=======> Input file content:") for line in lines: print(f"{line}") # TODO: read the content of the input file, where words are separate by # commas. Please remove the commas and write words to the output file line = line.replace(",", "") fout.write(line) pass # End of TODO with open(output_filename, 'r') as fin: lines = fin.readlines() print(f"=======> Output file content:") print(lines) return "".join(lines) def task_6( matrix: list = [[-0.5, 1], [1, 0.5], [-1, 0.5], [-1, -0.5]], vector: list = [1, 0.5] ) -> list: ''' Task 6: Functions Args: matrix: a list of v1 vector: v2 Returns: cos_sims: a list of cosine similarity between v1s and v2 Hints: * A good function name should be self-explained * A good function should be less than 30 lines * A good function should include comments to explain how to use it * Cosine similarity of the vector itself will be 0.9999999 instead of 1 ''' # You could define function B in function A, but function B could only # be used in the scope of function A def dot_product(v1, v2): assert len(v1) == len(v2) return sum(a*b for a, b in zip(v1, v2)) def norm(vector): # Note that this function would have some minor error due to the # approximation of square root return dot_product(vector, vector) ** 0.5 def get_cosine_simialrity(v1, v2): ''' Calculate the cosine similarity = v1 * v2 / (|v1| * |v2|) ''' # TODO: use the above functions to calculate cosine similarity of # the two vectors v1 and v2 cos_sim = dot_product(v1, v2) / (norm(v1) * norm(v2)) # End of TODO return cos_sim cos_sims = [] for v1 in matrix: cos_sim = get_cosine_simialrity(v1, vector) print(f"Cosine similarity between {v1} and {vector}: {cos_sim}") cos_sims.append(cos_sim) return cos_sims class Student(): def __init__(self, student_id, time): self.student_id = student_id self.time = time self.words_to_say = "initial value" def set_words_to_say(self, words_to_say): self.words_to_say = words_to_say def hello(self): return ( f"Hello, {self.student_id}! Time is {self.time}. " f"I want to say {self.words_to_say}" ) def task_7( student_id: str = 'test_id', time: str = '2018_11_24_0000' ) -> Student: ''' Task 7: Class Args: student_id: someone's student ID time: a certain time Returns: student: an Student object Hints: * Use Student(parameters1, parameters2 ...) to create an object and assign it to a variable * Use <created object>.<object function> to call object function ''' # TODO: create a student object with different words to say student = Student(student_id, time) student.set_words_to_say("Hi") # End of TODO print(student.hello()) return student def task_8( img_url: str = 'https://i.imgur.com/B75zq0x.jpg' ) -> object: ''' Task 8: Module Args: img_url: address of an image Returns: result_img: an PIL Image Hints: * Make sure you have installed the PIL package * Take a look at utils.py first * You could easily find answers with Google ''' from urllib import request result_img = None # TODO: download the image from img_url with the request module # and add your student ID on it with draw_text() in the utils module # under src/. from PIL import Image import utils response = request.urlopen(img_url) result_img = Image.open(response) result_img = utils.draw_text(result_img, "b07902005") # You are allowed to change the img_url to your own image URL. # Display the image: # result_img.show() # Note: please comment this line when hand in. # If you are running on a server, use # result.save('test.jpg') # and copy the file to local or use Jupyter Notebook to render. # End of TODO return result_img
py
1a493c53e2189ffd57b13c63afad680b95cf872f
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle.fluid as fluid import parl from parl import layers from parl.utils import machine_info class AtariAgent(parl.Agent): def __init__(self, algorithm, obs_shape, act_dim, learn_data_provider=None): assert isinstance(obs_shape, (list, tuple)) assert isinstance(act_dim, int) self.obs_shape = obs_shape self.act_dim = act_dim super(AtariAgent, self).__init__(algorithm) if learn_data_provider: self.learn_reader.decorate_tensor_provider(learn_data_provider) self.learn_reader.start() def build_program(self): self.sample_program = fluid.Program() self.predict_program = fluid.Program() self.learn_program = fluid.Program() with fluid.program_guard(self.sample_program): obs = layers.data( name='obs', shape=self.obs_shape, dtype='float32') self.sample_actions, self.behaviour_logits = self.alg.sample(obs) with fluid.program_guard(self.predict_program): obs = layers.data( name='obs', shape=self.obs_shape, dtype='float32') self.predict_actions = self.alg.predict(obs) with fluid.program_guard(self.learn_program): obs = layers.data( name='obs', shape=self.obs_shape, dtype='float32') actions = layers.data(name='actions', shape=[], dtype='int64') behaviour_logits = layers.data( name='behaviour_logits', shape=[self.act_dim], dtype='float32') rewards = layers.data(name='rewards', shape=[], dtype='float32') dones = layers.data(name='dones', shape=[], dtype='float32') lr = layers.data( name='lr', shape=[1], dtype='float32', append_batch_size=False) entropy_coeff = layers.data( name='entropy_coeff', shape=[], dtype='float32') self.learn_reader = fluid.layers.create_py_reader_by_data( capacity=32, feed_list=[ obs, actions, behaviour_logits, rewards, dones, lr, entropy_coeff ]) obs, actions, behaviour_logits, rewards, dones, lr, entropy_coeff = fluid.layers.read_file( self.learn_reader) vtrace_loss, kl = self.alg.learn(obs, actions, behaviour_logits, rewards, dones, lr, entropy_coeff) self.learn_outputs = [ vtrace_loss.total_loss, vtrace_loss.pi_loss, vtrace_loss.vf_loss, vtrace_loss.entropy, kl ] self.learn_program = parl.compile(self.learn_program, total_loss) def sample(self, obs_np): """ Args: obs_np: a numpy float32 array of shape ([B] + observation_space). Format of image input should be NCHW format. Returns: sample_ids: a numpy int64 array of shape [B] """ obs_np = obs_np.astype('float32') sample_actions, behaviour_logits = self.fluid_executor.run( self.sample_program, feed={'obs': obs_np}, fetch_list=[self.sample_actions, self.behaviour_logits]) return sample_actions, behaviour_logits def predict(self, obs_np): """ Args: obs_np: a numpy float32 array of shape ([B] + observation_space) Format of image input should be NCHW format. Returns: sample_ids: a numpy int64 array of shape [B] """ obs_np = obs_np.astype('float32') predict_actions = self.fluid_executor.run( self.predict_program, feed={'obs': obs_np}, fetch_list=[self.predict_actions])[0] return predict_actions def learn(self): total_loss, pi_loss, vf_loss, entropy, kl = self.fluid_executor.run( self.learn_program, fetch_list=self.learn_outputs) return total_loss, pi_loss, vf_loss, entropy, kl
py
1a493d842914d100ed1e00863df1920556d90e35
"""Utilities for calculating and reporting statistics about types.""" import cgi import os.path import re from typing import Any, Dict, List, cast, Tuple from mypy.traverser import TraverserVisitor from mypy.types import ( Type, AnyType, Instance, FunctionLike, TupleType, Void, TypeVarType, TypeQuery, ANY_TYPE_STRATEGY, CallableType ) from mypy import nodes from mypy.nodes import ( Node, FuncDef, TypeApplication, AssignmentStmt, NameExpr, CallExpr, MemberExpr, OpExpr, ComparisonExpr, IndexExpr, UnaryExpr, YieldFromExpr ) TYPE_EMPTY = 0 TYPE_PRECISE = 1 TYPE_IMPRECISE = 2 TYPE_ANY = 3 precision_names = [ 'empty', 'precise', 'imprecise', 'any', ] class StatisticsVisitor(TraverserVisitor): def __init__(self, inferred: bool, typemap: Dict[Node, Type] = None, all_nodes: bool = False) -> None: self.inferred = inferred self.typemap = typemap self.all_nodes = all_nodes self.num_precise = 0 self.num_imprecise = 0 self.num_any = 0 self.num_simple = 0 self.num_generic = 0 self.num_tuple = 0 self.num_function = 0 self.num_typevar = 0 self.num_complex = 0 self.line = -1 self.line_map = {} # type: Dict[int, int] self.output = [] # type: List[str] TraverserVisitor.__init__(self) def visit_func_def(self, o: FuncDef) -> None: self.line = o.line if len(o.expanded) > 1: if o in o.expanded: print('ERROR: cycle in function expansion; skipping') return for defn in o.expanded: self.visit_func_def(cast(FuncDef, defn)) else: if o.type: sig = cast(CallableType, o.type) arg_types = sig.arg_types if (sig.arg_names and sig.arg_names[0] == 'self' and not self.inferred): arg_types = arg_types[1:] for arg in arg_types: self.type(arg) self.type(sig.ret_type) elif self.all_nodes: self.record_line(self.line, TYPE_ANY) super().visit_func_def(o) def visit_type_application(self, o: TypeApplication) -> None: self.line = o.line for t in o.types: self.type(t) super().visit_type_application(o) def visit_assignment_stmt(self, o: AssignmentStmt) -> None: self.line = o.line if (isinstance(o.rvalue, nodes.CallExpr) and isinstance(cast(nodes.CallExpr, o.rvalue).analyzed, nodes.TypeVarExpr)): # Type variable definition -- not a real assignment. return if o.type: self.type(o.type) elif self.inferred: for lvalue in o.lvalues: if isinstance(lvalue, nodes.TupleExpr): items = lvalue.items elif isinstance(lvalue, nodes.ListExpr): items = lvalue.items else: items = [lvalue] for item in items: if hasattr(item, 'is_def') and cast(Any, item).is_def: t = self.typemap.get(item) if t: self.type(t) else: self.log(' !! No inferred type on line %d' % self.line) self.record_line(self.line, TYPE_ANY) super().visit_assignment_stmt(o) def visit_name_expr(self, o: NameExpr) -> None: self.process_node(o) super().visit_name_expr(o) def visit_yield_from_expr(self, o: YieldFromExpr) -> None: if o.expr: o.expr.accept(self) def visit_call_expr(self, o: CallExpr) -> None: self.process_node(o) if o.analyzed: o.analyzed.accept(self) else: o.callee.accept(self) for a in o.args: a.accept(self) def visit_member_expr(self, o: MemberExpr) -> None: self.process_node(o) super().visit_member_expr(o) def visit_op_expr(self, o: OpExpr) -> None: self.process_node(o) super().visit_op_expr(o) def visit_comparison_expr(self, o: ComparisonExpr) -> None: self.process_node(o) super().visit_comparison_expr(o) def visit_index_expr(self, o: IndexExpr) -> None: self.process_node(o) super().visit_index_expr(o) def visit_unary_expr(self, o: UnaryExpr) -> None: self.process_node(o) super().visit_unary_expr(o) def process_node(self, node: Node) -> None: if self.all_nodes: typ = self.typemap.get(node) if typ: self.line = node.line self.type(typ) def type(self, t: Type) -> None: if isinstance(t, AnyType): self.log(' !! Any type around line %d' % self.line) self.num_any += 1 self.record_line(self.line, TYPE_ANY) elif ((not self.all_nodes and is_imprecise(t)) or (self.all_nodes and is_imprecise2(t))): self.log(' !! Imprecise type around line %d' % self.line) self.num_imprecise += 1 self.record_line(self.line, TYPE_IMPRECISE) else: self.num_precise += 1 self.record_line(self.line, TYPE_PRECISE) if isinstance(t, Instance): if t.args: if any(is_complex(arg) for arg in t.args): self.num_complex += 1 else: self.num_generic += 1 else: self.num_simple += 1 elif isinstance(t, Void): self.num_simple += 1 elif isinstance(t, FunctionLike): self.num_function += 1 elif isinstance(t, TupleType): if any(is_complex(item) for item in t.items): self.num_complex += 1 else: self.num_tuple += 1 elif isinstance(t, TypeVarType): self.num_typevar += 1 def log(self, string: str) -> None: self.output.append(string) def record_line(self, line: int, precision: int) -> None: self.line_map[line] = max(precision, self.line_map.get(line, TYPE_PRECISE)) def dump_type_stats(tree: Node, path: str, inferred: bool = False, typemap: Dict[Node, Type] = None) -> None: if is_special_module(path): return print(path) visitor = StatisticsVisitor(inferred, typemap) tree.accept(visitor) for line in visitor.output: print(line) print(' ** precision **') print(' precise ', visitor.num_precise) print(' imprecise', visitor.num_imprecise) print(' any ', visitor.num_any) print(' ** kinds **') print(' simple ', visitor.num_simple) print(' generic ', visitor.num_generic) print(' function ', visitor.num_function) print(' tuple ', visitor.num_tuple) print(' TypeVar ', visitor.num_typevar) print(' complex ', visitor.num_complex) print(' any ', visitor.num_any) def is_special_module(path: str) -> bool: return os.path.basename(path) in ('abc.py', 'typing.py', 'builtins.py') def is_imprecise(t: Type) -> bool: return t.accept(HasAnyQuery()) class HasAnyQuery(TypeQuery): def __init__(self) -> None: super().__init__(False, ANY_TYPE_STRATEGY) def visit_any(self, t: AnyType) -> bool: return True def visit_instance(self, t: Instance) -> bool: if t.type.fullname() == 'builtins.tuple': return True else: return super().visit_instance(t) def is_imprecise2(t: Type) -> bool: return t.accept(HasAnyQuery2()) class HasAnyQuery2(HasAnyQuery): def visit_callable_type(self, t: CallableType) -> bool: # We don't want to flag references to functions with some Any # argument types (etc.) since they generally don't mean trouble. return False def is_generic(t: Type) -> bool: return isinstance(t, Instance) and bool(cast(Instance, t).args) def is_complex(t: Type) -> bool: return is_generic(t) or isinstance(t, (FunctionLike, TupleType, TypeVarType)) html_files = [] # type: List[Tuple[str, str, int, int]] def generate_html_report(tree: Node, path: str, type_map: Dict[Node, Type], output_dir: str) -> None: if is_special_module(path): return # There may be more than one right answer for "what should we do here?" # but this is a reasonable one. path = os.path.relpath(path) if path.startswith('..'): return visitor = StatisticsVisitor(inferred=True, typemap=type_map, all_nodes=True) tree.accept(visitor) assert not os.path.isabs(path) and not path.startswith('..') # This line is *wrong* if the preceding assert fails. target_path = os.path.join(output_dir, 'html', path) # replace .py or .pyi with .html target_path = os.path.splitext(target_path)[0] + '.html' assert target_path.endswith('.html') ensure_dir_exists(os.path.dirname(target_path)) output = [] # type: List[str] append = output.append append('''\ <html> <head> <style> .red { background-color: #faa; } .yellow { background-color: #ffa; } .white { } .lineno { color: #999; } </style> </head> <body> <pre>''') num_imprecise_lines = 0 num_lines = 0 with open(path) as input_file: for i, line in enumerate(input_file): lineno = i + 1 status = visitor.line_map.get(lineno, TYPE_PRECISE) style_map = {TYPE_PRECISE: 'white', TYPE_IMPRECISE: 'yellow', TYPE_ANY: 'red'} style = style_map[status] append('<span class="lineno">%4d</span> ' % lineno + '<span class="%s">%s</span>' % (style, cgi.escape(line))) if status != TYPE_PRECISE: num_imprecise_lines += 1 if line.strip(): num_lines += 1 append('</pre>') append('</body></html>') with open(target_path, 'w') as output_file: output_file.writelines(output) target_path = target_path[len(output_dir) + 1:] html_files.append((path, target_path, num_lines, num_imprecise_lines)) def generate_html_index(output_dir: str) -> None: path = os.path.join(output_dir, 'index.html') output = [] # type: List[str] append = output.append append('''\ <html> <head> <style> body { font-family: courier; } table { border-collapse: collapse; } table tr td { border: 1px solid black; } td { padding: 0.4em; } .red { background-color: #faa; } .yellow { background-color: #ffa; } </style> </head> <body>''') append('<h1>Mypy Type Check Coverage Report</h1>\n') append('<table>\n') for source_path, target_path, num_lines, num_imprecise in sorted(html_files): if num_lines == 0: continue source_path = os.path.normpath(source_path) # TODO: Windows paths. if (source_path.startswith('stubs/') or '/stubs/' in source_path): continue percent = 100.0 * num_imprecise / num_lines style = '' if percent >= 20: style = 'class="red"' elif percent >= 5: style = 'class="yellow"' append('<tr %s><td><a href="%s">%s</a><td>%.1f%% imprecise<td>%d LOC\n' % ( style, target_path, source_path, percent, num_lines)) append('</table>\n') append('</body></html>') with open(path, 'w') as file: file.writelines(output) print('Generated HTML report (old): %s' % os.path.abspath(path)) def ensure_dir_exists(dir: str) -> None: if not os.path.exists(dir): os.makedirs(dir)
py
1a493e74d0ae1f2791b7605b4790489b992313b0
#025: Crie um programa que leia o nome de uma pessoa e diga se ela tem "SILVA" no nome. nome = str(input('Escreva seu nome: ')) nome = nome.title() nome = nome.strip() nomeA = nome.split() if ('Silva' in nome): print('Seu nome tem Silva!') else: print('Seu nome não tem Silva!')
py
1a493f1188506ebd0301c8b3461398680a04c8d5
"""String functions in R""" import re import numpy as np from pipda import register_func from ..core.backends import pandas as pd from ..core.backends.pandas import Series from ..core.backends.pandas.core.base import PandasObject from ..core.backends.pandas.core.groupby import SeriesGroupBy from ..core.backends.pandas.api.types import is_string_dtype, is_scalar from ..core.tibble import Tibble, TibbleGrouped, TibbleRowwise from ..core.contexts import Context from ..core.factory import func_factory, dispatching from ..core.utils import ( arg_match, logger, regcall, ) from .casting import _as_type from .testing import _register_type_testing from .logical import as_logical @register_func(None, context=Context.EVAL) def as_character( x, str_dtype=str, _na=np.nan, ): """Convert an object or elements of an iterable into string Aliases `as_str` and `as_string` Args: x: The object str_dtype: The string dtype to convert to _na: How NAs should be casted. Specify np.nan will keep them unchanged. But the dtype will be object then. Returns: When x is an array or a series, return x.astype(str). When x is iterable, convert elements of it into strings Otherwise, convert x to string. """ return _as_type(x, str_dtype, na=_na) as_str = as_string = as_character is_character = _register_type_testing( "is_character", scalar_types=(str, np.str_), dtype_checker=is_string_dtype, doc="""Test if a value is characters/string Alias `is_str` and `is_string` Args: x: The value to be checked Returns: True if the value is string; with a string dtype; or all elements are strings """, ) is_str = is_string = is_character # Grep family ----------------------------------- @dispatching(kind="transform", qualname="datar.base.grep") def _grep( x, pattern, ignore_case=False, value=False, fixed=False, invert=False ): matched = _grepl.dispatch(Series)( x, pattern, ignore_case=ignore_case, fixed=fixed, invert=invert, ) if value: return x[matched] return np.flatnonzero(matched) @register_func(None, context=Context.EVAL) def grep( pattern, x, ignore_case=False, value=False, fixed=False, invert=False, ): """R's grep, get the element in x matching the pattern Args: pattern: The pattern x: A string or an iterable of strings; or those can be coerced to ignore_case: Do case-insensitive matching? value: Return values instead of indices? fixed: Fixed matching (instead of regex matching)? invert: Return elements thata don't match instead? Returns: The matched (or unmatched (`invert=True`)) indices (or values (`value=True`)). """ return _grep( x if isinstance(x, (Series, SeriesGroupBy)) else Series(x), pattern, ignore_case=ignore_case, value=value, fixed=fixed, invert=invert, ) @dispatching(kind="transform", qualname="datar.base.grepl") def _grepl(x, pattern, ignore_case, fixed, invert): pattern = _warn_more_pat_or_rep(pattern, "grepl") return _match( x, pattern, ignore_case=ignore_case, invert=invert, fixed=fixed, ) @register_func(None, context=Context.EVAL) def grepl( pattern, x, ignore_case=False, fixed=False, invert=False, ): """R's grepl, check whether elements in x matching the pattern Args: pattern: The pattern x: A string or an iterable of strings; or those can be coerced to ignore_case: Do case-insensitive matching? fixed: Fixed matching (instead of regex matching)? invert: Return elements thata don't match instead? Returns: A bool array indicating whether the elements in x match the pattern """ return _grepl( x if isinstance(x, (Series, SeriesGroupBy)) else Series(x), pattern, ignore_case=ignore_case, fixed=fixed, invert=invert, ) @dispatching(kind="transform", qualname="datar.base.sub") def _sub(x, pattern, replacement, ignore_case, fixed): return _sub_( pattern=pattern, replacement=replacement, x=x, ignore_case=ignore_case, fixed=fixed, ) @register_func(None, context=Context.EVAL) def sub( pattern, replacement, x, ignore_case=False, fixed=False, ): """R's sub, replace a pattern with replacement for elements in x, each only once Args: pattern: The pattern replacement: The replacement x: A string or an iterable of strings; or those can be coerced to ignore_case: Do case-insensitive matching? fixed: Fixed matching (instead of regex matching)? Returns: An array of strings with matched parts replaced. """ return _sub( x if isinstance(x, (Series, SeriesGroupBy)) else Series(x), pattern, replacement, ignore_case=ignore_case, fixed=fixed, ) @dispatching(kind="transform", qualname="datar.base.gsub") def _gsub(x, pattern, replacement, ignore_case, fixed): return _sub_( pattern=pattern, replacement=replacement, x=x, ignore_case=ignore_case, fixed=fixed, count=0, fun="gsub", ) @register_func(None, context=Context.EVAL) def gsub( pattern, replacement, x, ignore_case=False, fixed=False, ): """R's gsub, replace a pattern with replacement for elements in x, each for all matched parts See Also: [sub()](datar.base.string.sub) """ return _gsub( x if isinstance(x, (Series, SeriesGroupBy)) else Series(x), pattern, replacement, ignore_case=ignore_case, fixed=fixed, ) # Grep family helpers -------------------------------- def _warn_more_pat_or_rep(pattern, fun, arg="pattern"): """Warn when there are more than one pattern or replacement provided""" if is_scalar(pattern): return pattern if len(pattern) == 1: return pattern[0] logger.warning( "In %s(...), argument `%s` has length > 1 and only the " "first element will be used", fun, arg, ) return pattern[0] def _match(text, pattern, ignore_case, invert, fixed): """Do the regex match""" if pd.isnull(text): return False flags = re.IGNORECASE if ignore_case else 0 if fixed: pattern = re.escape(pattern) pattern = re.compile(pattern, flags) matched = pattern.search(text) if invert: matched = not bool(matched) return bool(matched) _match = np.vectorize(_match, excluded={"pattern"}) def _sub_( pattern, replacement, x, ignore_case=False, fixed=False, count=1, fun="sub", ): """Replace a pattern with replacement for elements in x, with argument count available """ pattern = _warn_more_pat_or_rep(pattern, fun) replacement = _warn_more_pat_or_rep(replacement, fun, "replacement") if fixed: pattern = re.escape(pattern) flags = re.IGNORECASE if ignore_case else 0 pattern = re.compile(pattern, flags) return pattern.sub(repl=replacement, count=count, string=x) _sub_ = np.vectorize(_sub_, excluded={"pattern", "replacement"}) @func_factory("transform", "x") def nchar( x, type="chars", allow_na=True, # i.e.: '\ud861' keep_na=None, _na_len=2, ): """Get the size of the elements in x""" x, keep_na = _prepare_nchar(x, type, keep_na) return _nchar_scalar( x, retn=type, allow_na=allow_na, keep_na=keep_na, na_len=_na_len ) @func_factory("transform", "x") def nzchar(x, keep_na=False): """Find out if elements of a character vector are non-empty strings. Args: x: Strings to test keep_na: What to return when for NA's Returns: A bool array to tell whether elements in x are non-empty strings """ x = regcall(as_character, x, _na=np.nan if keep_na else "") if not keep_na: return x.fillna(False).astype(bool) return as_logical(x, na=np.nan) # nchar helpers -------------------------------- def _prepare_nchar(x, type, keep_na): """Prepare arguments for n(z)char""" arg_match(type, "type", ["chars", "bytes", "width"]) if keep_na is None: keep_na = type != "width" return regcall(as_character, x), keep_na @np.vectorize def _nchar_scalar(x, retn, allow_na, keep_na, na_len): """Get the size of a scalar string""" if pd.isnull(x): return np.nan if keep_na else na_len if retn == "width": try: from wcwidth import wcswidth except ImportError as imperr: # pragma: no cover raise ValueError( "`nchar(x, type='width')` requires `wcwidth` package.\n" "Try: pip install -U datar[wcwidth]" ) from imperr return wcswidth(x) if retn == "chars": return len(x) try: x = x.encode("utf-8") except UnicodeEncodeError: if allow_na: return np.nan raise return len(x) # paste and paste0 -------------------- _is_empty = lambda x: ( (is_scalar(x) and not x) or (not is_scalar(x) and len(x) == 0) ) @register_func(None, context=Context.EVAL) def paste(*args, sep=" ", collapse=None): """Concatenate vectors after converting to character. Args: *args: strings to be concatenated sep: The separator collapse: The separator to collapse the final string arrays Returns: A single string if collapse is given, otherwise an array of strings. """ if len(args) == 1 and isinstance(args[0], TibbleRowwise): out = args[0].apply( lambda row: row.astype(str).str.cat(sep=sep), axis=1 ) return collapse.join(out) if collapse else out from ..tibble import tibble if all(_is_empty(arg) for arg in args): df = tibble(*args, _name_repair="minimal") else: df = tibble( *("" if _is_empty(arg) else arg for arg in args), _name_repair="minimal", ) if not isinstance(df, TibbleGrouped): out = df.apply(lambda col: col.astype(str).str.cat(sep=sep), axis=1) if collapse: return collapse.join(out) if any(isinstance(x, PandasObject) for x in args): return out return np.array(out, dtype=object) out = df.apply( lambda row: row.astype(str).str.cat(sep=sep), axis=1 ).groupby(df._datar["grouped"].grouper) if collapse: out = out.agg(lambda x: x.str.cat(sep=collapse)) return out @register_func(None, context=Context.EVAL) def paste0(*args, sep="", collapse=None): """Paste with empty string as sep""" return regcall(paste, *args, sep="", collapse=collapse) # sprintf ---------------------------------------------------------------- @register_func(None, context=Context.EVAL) def sprintf(fmt, *args): """C-style String Formatting Args: fmt: The formats *args: The values Returns: A scalar string if all fmt, *args are scalar strings, otherwise an array of formatted strings """ if is_scalar(fmt) and all(is_scalar(x) for x in args): if pd.isnull(fmt): return np.nan return fmt % args from ..tibble import tibble df = tibble(fmt, *args, _name_repair="minimal") aggfunc = lambda row: ( np.nan if pd.isnull(row.values[0]) else row.values[0] % tuple(row.values[1:]) ) if isinstance(df, TibbleGrouped): return Tibble(df, copy=False).agg(aggfunc, axis=1).groupby( df._datar["grouped"].grouper ) return df.agg(aggfunc, axis=1) # substr, substring ---------------------------------- @func_factory("transform", "x") def substr(x, start, stop): """Extract substrings in strings. Args: x: The strings start: The start positions to extract stop: The stop positions to extract Returns: The substrings from `x` """ x = regcall(as_character, x) return x.str[start:stop] @func_factory("transform", "x") def substring(x, first, last=1000000): """Extract substrings in strings. Args: x: The strings start: The start positions to extract stop: The stop positions to extract Returns: The substrings from `x` """ x = regcall(as_character, x) return x.str[first:last] # strsplit -------------------------------- @func_factory("transform", {"x", "split"}) def strsplit(x, split, fixed=False): """Split strings by separator Args: x: The strings. Have to be strings, no casting will be done. split: The separators to split fixed: fixed matching (instead of regex matching)? Returns: List of split strings of x if both x and split are scalars. Otherwise, an array of split strings """ def split_str(string, sep): if fixed: return string.split(sep) sep = re.compile(sep) return sep.split(string) return np.vectorize(split_str, [object])(x, split) # startsWith, endsWith @func_factory("transform", "x") def startswith(x, prefix): """Determines if entries of x start with prefix Args: x: A vector of strings or a string prefix: The prefix to test against Returns: A bool vector for each element in x if element startswith the prefix """ x = regcall(as_character, x) return x.str.startswith(prefix) @func_factory("transform", "x") def endswith(x, suffix): """Determines if entries of x end with suffix Args: x: A vector of strings or a string suffix: The suffix to test against Returns: A bool vector for each element in x if element endswith the suffix """ x = regcall(as_character, x) return x.str.endswith(suffix) @func_factory("transform", "x") def strtoi(x, base=0): """Convert strings to integers according to the given base Args: x: A string or vector of strings base: an integer which is between 2 and 36 inclusive, or zero. With zero, a suitable base will be chosen following the C rules. Returns: Converted integers """ return x.transform(int, base=base) @func_factory("transform", "x") def chartr(old, new, x): """Replace strings char by char Args: x: A string or vector of strings old: A set of characters to replace new: A set of characters to replace with Returns: The strings in x being replaced """ old = _warn_more_pat_or_rep(old, "chartr", "old") new = _warn_more_pat_or_rep(new, "chartr", "new") if len(old) > len(new): raise ValueError("'old' is longer than 'new'") new = new[: len(old)] for oldc, newc in zip(old, new): x = x.str.replace(oldc, newc) return x @func_factory("transform", "x") def tolower(x): """Convert strings to lower case Args: x: A string or vector of strings Returns: Converted strings """ x = regcall(as_character, x) return x.str.lower() @func_factory("transform", "x") def toupper(x): """Convert strings to upper case Args: x: A string or vector of strings Returns: Converted strings """ x = regcall(as_character, x) return x.str.upper() @func_factory("transform", "x") def trimws(x, which="both", whitespace=r"[ \t\r\n]"): """Remove leading and/or trailing whitespace from character strings. Args: x: A string or vector of strings which: A character string specifying whether to remove both leading and trailing whitespace (default), or only leading ("left") or trailing ("right"). whitespace: a string specifying a regular expression to match (one character of) “white space” Returns: The strings with whitespaces removed """ which = arg_match(which, "which", ["both", "left", "right"]) x = regcall(as_character, x) if which == "both": expr = f"^{whitespace}|{whitespace}$" elif which == "left": expr = f"^{whitespace}" else: expr = f"{whitespace}$" return np.vectorize(re.sub, excluded={"pattern", "repl"})(expr, "", x)
py
1a49410b58605f266658f970701eb4ca7180786f
from oud.models import Participant from django.contrib import admin # Register your models here. admin.site.register(Participant)
py
1a4941216b7666ed7f5683638ec1b76b821dccec
#!/usr/bin/env python """Basic pipeline building blocks. This modules provides the basic building blocks in a JIP pipeline and a way to search and find them at run-time. The basic buiding blocks are instances of :py:class:`Tool`. The JIP library comes with two sub-classes that can be used to create tool implementations: :py:class:`ScriptTool` This sub-class of `Tool` integrates file or script based tool implementations which can be served from stand-alone script files :py:class:`PythonTool` In contrast to the script tool, this `Tool` extension allows to create `Tool` instances from other, possibly non-related, python classes. The easiest way to used this is with the :py:class:`jip.tools.tool` decorator, which allows you to take arbitrary python classes and *make* them jip tools. In addition to the `Tool` implementations, this module provides the :py:class:`Scanner` class, which is used to find tool implementations either form disk or from an arbitrary python module. This class is supposed to be used as a *singleton* and an configured instance is available in the main `jip` module, exposed as `jip.scanner`. The scanner class itself is configured either through the :py:mod:`jip.configuration`, or through environment variables. The :py:class:`Scanner` documentation covers both the environment variables that can be used as well as the configuration properties. """ import copy import inspect from textwrap import dedent from os import remove, getcwd, getenv, listdir from os.path import exists, basename, dirname, abspath import os import sys import types import shutil import base64 import jip.templates from jip.options import Options, TYPE_OUTPUT, TYPE_INPUT, Option from jip.templates import render_template, set_global_context from jip.utils import list_dir from jip.logger import getLogger from jip.six import iteritems, string_types, PY3, PY2 from jip.six.moves import cPickle import jip.profiles from io import IOBase log = getLogger('jip.tools') # the pickle template to store a pyton tool _pickel_template = """ python -c ' import sys try: import pickle except ImportError: import cPickle as pickle import jip import jip.tools import types import base64 jip._disable_module_search = True source=base64.b64decode("".join([l for l in sys.stdin])) data = pickle.loads(source) deco = jip.tools.tool() tool = jip.tools.PythonTool( data["instance"], deco ) tool._options = data["options"] if isinstance(tool, types.FunctionType): tool() else: tool.run() '<< __EOF__ %s__EOF__ """ ######################################################### # Exceptions ######################################################### class ValidationError(Exception): """Exception raised in validation steps. The exception carries the source tool and a message. """ def __init__(self, source, message): self.source = source self.message = message def __repr__(self): import jip.cli if self.source: return "%s: %s" % ( jip.cli.colorize(self.source, jip.cli.RED), jip.cli.colorize(self.message, jip.cli.BLUE) ) else: return "%s" % ( jip.cli.colorize(self.message, jip.cli.RED) ) def __str__(self): return self.__repr__() class ToolNotFoundException(Exception): """Raised in case a tool is not found by the scanner""" pass ######################################################### # decorators ######################################################### class tool(object): """Decorate functions and classes and convert them to tools. The @jip.tool decorator turns classes and functions into valid JIP tools. The simplest way to use this decorator is to annotate a python function that returns a string. This string is then interpreted as a JIP script template. The functions docstring is used, similar to JIP scripts, to parse command line options and tool input and output parameters. For example:: @tool() def mytool(): ''' Send a greeting usage: mytool <name> ''' return 'echo "hello ${name}'" This create a single *bash* interpreted script and exposes a tool, `mytool`, into the JIP environment. You can use the decorators arguments to further customize the tool specification, i.e. specify a different name. If you want to use a different interpreter, you can return a tuple where the first element is the interpreter name and the second is the script template. :param name: specify a tool name. If no name is specified, the name of the decorated function or class is used as the tool name :param inputs: specify a list of option names that are treated as input options :param outputs: specify a list of option names that are treated as output options :param argparse: specify the name of the function or a function reference that take an ``ArgumentParser`` instance and populates it. This takes precedence over the doc string if the function exists. :param get_command: name of the function or a function reference that implements the tools ``get_command`` function :param validate: name of the function or a function reference that implements the tools ``validate`` function :param setup: name of the function or a function reference that implements the tools ``setup`` function :param init: name of the function or a function reference that implements the tools ``init`` function :param run: name of the function or a function reference that implements the tools ``run`` function :param pipeline: name of the function or a function reference that implements the tools ``pipeline`` function :param is_done: name of the function or a function reference that implements the tools ``is_done`` function :param cleanup: name of the function or a function reference that implements the tools ``cleanup`` function :param help: name of the function or a function reference that implements the tools ``help`` function :param add_outputs: takes a list of values to add hidden output options :param check_files: takes a list of option names that will be passed through file checks on validation """ def __init__(self, name=None, inputs=None, outputs=None, argparse='register', get_command='get_command', validate='validate', setup='setup', init='init', run='run', pipeline='pipeline', is_done='is_done', cleanup='cleanup', help='help', add_outputs=None, check_files=None, ensure=None, pytool=False, force_pipeline=False): self.name = name self.inputs = inputs self.outputs = outputs self.argparse = argparse self.add_outputs = add_outputs self._check_files = check_files self._ensure = ensure self._pytool = pytool self._force_pipeline = force_pipeline ################################################################ # tool delegates ################################################################ self._validate = validate if validate else "validate" self._setup = setup if setup else "setup" self._init = init if init else "init" self._is_done = is_done if is_done else "is_done" self._pipeline = pipeline if pipeline else "pipeline" self._get_command = get_command if get_command else "get_command" self._cleanup = cleanup if cleanup else "cleanup" self._help = help if help else "help" self._run = run if run else "run" def __call__(self, *args): cls = args[0] log.debug("Decorated tool or pipeline: %s", cls) # check the name if self.name is None: if isinstance(cls, types.FunctionType) and PY2: self.name = cls.func_name else: self.name = cls.__name__ # overwrite the string representation is_class = False if not isinstance(cls, types.FunctionType): cls.__repr__ = lambda x: self.name is_class = True if is_class: old = None if hasattr(cls, '__setattr__'): old = cls.__setattr__ def setatr(slf, name, value): ov = slf.__dict__.get(name, None) if ov is not None and isinstance(ov, Option): ov.set(value) else: if old: old(slf, name, value) else: if name in slf.__dict__: slf.__dict__[name] = value else: raise AttributeError() cls.__setattr__ = setatr tool_instance = PythonTool(cls, self, self.add_outputs) Scanner.registry[self.name] = tool_instance log.debug("Registered tool from module: %s", self.name) return cls ################################################################ # tool delegates ################################################################ def _update_delegate(self, wrapper, instance): # helper function to expose a name function directly def set_name(name): # set the job name wrapper.job.name = name # inject helper functions helper_function = { "name": set_name, "job": wrapper.job, "profile": wrapper.job, "add_output": wrapper.options.add_output, "add_input": wrapper.options.add_input, "add_option": wrapper.options.add_option, 'r': render_template, 'render_template': render_template, 'options': wrapper.options, 'opts': wrapper.options, 'args': wrapper.args, 'ensure': wrapper.ensure, 'check_file': wrapper.check_file, 'validation_error': wrapper.validation_error } for k, v in iteritems(helper_function): if not hasattr(instance, k): instance.__dict__[k] = v # inject options if they don't exists for o in wrapper.options: if not hasattr(instance, o.name): instance.__dict__[o.name] = o def __call_delegate(self, fun, wrapper, instance): if not callable(fun): name = fun try: fun = getattr(instance, name) except: # don't double validate, the python tool will call the # Tool validate already if name == 'validate': return # try to get the function frow main Tool implementation fun = getattr(Tool, name) if fun: # make sure the instance is aware of the options if (hasattr(fun, "__self__") and fun.__self__ is not None) or \ (hasattr(fun, "im_self") and fun.im_self is not None): self._update_delegate(wrapper, instance) # force options and args instance.options = wrapper.options instance.opts = wrapper.options instance.args = wrapper.args return fun() else: # function based implementation self._update_delegate(wrapper, wrapper) return fun(wrapper) def validate(self, wrapper, instance): try: r = self.__call_delegate(self._validate, wrapper, instance) if self._check_files: for check in self._check_files: wrapper.check_file(check) if self._ensure: for e in self._ensure: wrapper.ensure(e[0], e[1], None if len(e) < 3 else e[2]) return r except Exception as err: if not isinstance(err, ValidationError): log.debug("Validation error: %s", str(err).strip()) err = ValidationError(wrapper, str(err)) raise err def setup(self, wrapper, instance): return self.__call_delegate(self._setup, wrapper, instance) def init(self, wrapper, instance): return self.__call_delegate(self._init, wrapper, instance) def is_done(self, wrapper, instance): return self.__call_delegate(self._is_done, wrapper, instance) def pipeline(self, wrapper, instance): return self.__call_delegate(self._pipeline, wrapper, instance) def get_command(self, wrapper, instance): interp = "bash" cmd = None if not self._pytool and not isinstance(instance, types.FunctionType): cmds = self.__call_delegate(self._get_command, wrapper, instance) else: if self._pytool: # this is a python tool that wrapps a class or function. # In order to get a single command, we pickle the # wrapped instance and the options and then push it # through the pickel template data = { "instance": instance, "options": wrapper.options } r = ('bash', _pickel_template % (base64.b64encode(cPickle.dumps(data)))) return r else: # this is not a python tool function but a function # that will return a template argspec = inspect.getargspec(instance) if len(argspec[0]) > 0: cmds = instance(wrapper) else: cmds = instance() if isinstance(cmds, (list, tuple)): interp = cmds[0] cmd = cmds[1] else: cmd = cmds if interp and cmd: block = Block(content=cmd, interpreter=interp) return interp, block.render(wrapper) return None, None def cleanup(self, wrapper, instance): return self.__call_delegate(self._cleanup, wrapper, instance) def run(self, wrapper, instance): return self.__call_delegate(self._run, wrapper, instance) def help(self, wrapper, instance): return self.__call_delegate(self._help, wrapper, instance) class pytool(tool): """This is a decorator that can be used to mark single python functions as tools. The function will be wrapped in a PythonTool instance and the function must accept a single paramter self to access to tools options. """ def __init__(self, *args, **kwargs): kwargs['pytool'] = True tool.__init__(self, *args, **kwargs) class pipeline(tool): """This is a decorator that can be used to mark single python functions as pipelines. """ def __init__(self, *args, **kwargs): kwargs['force_pipeline'] = True tool.__init__(self, *args, **kwargs) class Scanner(): """ This class holds a script/tool cache The cache is organized in to dicts, the script_cache, which store name->instance pairs pointing form the name of the tool to its cahced instance. The find implementations will return clones of the instances in the cache. """ registry = {} def __init__(self, jip_path=None, jip_modules=None): self.initialized = False self.instances = {} self.jip_path = jip_path if jip_path else "" self.jip_modules = jip_modules if jip_modules else [] self.jip_file_paths = set([]) self.__scanned = False self.__scanned_files = None def find(self, name, path=None, is_pipeline=False): """Finds a tool by its name or file name. If the given name points to an existing file, the file is loaded as a script tools and returned. Otherwise, a default search is triggered, optionally including the specified path. :returns: a new instance of the tool :rtype: :class:`Tool` :raises ToolNotFoundException: if the tool could not be found """ if name is None: return None s = name.split(" ", 1) args = None if len(s) > 1: import shlex name = s[0] args = shlex.split(s[1]) if exists(name) and os.path.isfile(name): ## the passed argument is a file. Try to load it at a ## script and add the files directory to the search path tool = ScriptTool.from_file(name, is_pipeline=is_pipeline) self._register_tool(name, tool) self.jip_file_paths.add(dirname(name)) clone = tool.clone() clone.init() if args: log.debug("Scanner | Parsing arguments passed " "through tool name") clone.parse_args(args) return clone if not self.initialized: self.scan() self.initialized = True self.instances.update(Scanner.registry) tool = self.instances.get(name, None) if tool is None: tool = self.instances.get(name + ".jip", None) if tool is None: raise ToolNotFoundException("No tool named '%s' found!" % name) if isinstance(tool, string_types): ## the tool is not loaded, load the script, ## and add it to the cache tool = ScriptTool.from_file(tool, is_pipeline=is_pipeline) self._register_tool(name, tool) log.debug("Scanner | Cloning tool %s [%s]", tool, tool.__hash__()) clone = tool.clone() clone.init() if args: log.debug("Scanner | Parsing arguments passed through tool name") clone.parse_args(args) return clone def scan(self, path=None): """Searches for scripts and python modules in the configured locations and returns a dictionary of the detected instances :param path: optional path value to define a folder to scan :returns: dict of tools """ log.debug("Searching for JIP tools") if self.instances is None: self.instances = {} self.scan_files(parent=path) self.scan_modules() for n, m in iteritems(Scanner.registry): self._register_tool(n, m) return self.instances def _register_tool(self, name, tool): self.instances[name] = tool # check and load profile for the given tool if tool.path: spec_file = tool.path # replace extension with .spec try: i = spec_file.rindex(".") if i >= 0: spec_file = spec_file[:i] + ".spec" log.debug("Checking for spec file at: %s", spec_file) if os.path.exists(spec_file): log.info("Loading spec for %s from %s", name, spec_file) profile = jip.profiles.Profile.from_file(spec_file) tool._job = profile except Exception as err: log.error("Error while loading spec for %s: %s", name, err, exc_info=True) def scan_files(self, parent=None): """Scan files for jip tools. This functions detects files with the ``.jip`` extension in the default search locations. :param parent: optional parent folder :returns: list of found files """ if parent is None and self.__scanned_files is not None: return self.__scanned_files import re pattern = re.compile(r'^.*(.jip)$') files = {} if parent: for path in self.__search(parent, pattern): self.instances[basename(path)] = path files[basename(path)] = path #check cwd for path in self.__search(getcwd(), pattern, False): self.instances[basename(path)] = path files[basename(path)] = path jip_path = "%s:%s" % (self.jip_path, getenv("JIP_PATH", "")) for folder in jip_path.split(":") + list(self.jip_file_paths): for path in self.__search(folder, pattern): self.instances[basename(path)] = path files[basename(path)] = path if parent is None: self.__scanned_files = files return files def __search(self, folder, pattern, recursive=True): log.debug("Searching folder: %s", folder) for path in list_dir(folder, recursive=recursive): if pattern.match(path) and os.path.isfile(path): log.debug("Found tool: %s", path) yield path def add_module(self, path): """Add a module or a python file to the list of module that are scanned for tools. :param: path to the module that will be added to the search path """ self.jip_modules.append(path) self.__scanned = False def add_folder(self, path): """Add a folder to the list of folders that are scanned for tools. :param: path to the folder that will be added to the search path """ self.jip_file_paths.add(path) self.__scanned = False self.__scanned_files = None self.initialized = False def scan_modules(self): """Loads the python modules specified in the JIP configuration. This will register any functions and classes decorated with one of the JIP decorators. """ if self.__scanned: return path = getenv("JIP_MODULES", "") log.debug("Scanning modules") for module in path.split(":") + self.jip_modules + ['jip.scripts']: try: if module: log.debug("Importing module: %s", module) __import__(module) except ImportError as e: log.debug("Error while importing module: %s. " "Trying file import", str(e)) if exists(module): self._load_from_file(module) self.__scanned = True def _load_from_file(self, path): """Try to load a module from the given file. No module is loaded if the file does not exists. Otherwise, a fukk module name us guessed by checking for __init__.py files upwards. Then imp.load_source is used to import the module :param path: the path to the module file """ if not exists(path): return name, parent_dir = self._guess_module_name(path) log.debug("Importing module from file: %s %s %s", name, path, parent_dir) sys.path.insert(0, parent_dir) mod = __import__(name) log.debug("Imported module from file %s : %s", path, mod) #imp.load_source(name, path) def _guess_module_name(self, path): """Guess the absolute module name for the given file by checking for __init__.py files in the current folder structure and upwards""" path = abspath(path) base = basename(path) if base.endswith('.py'): base = base[:-3] name = [base] def _load_package_name(current, module_name): if '__init__.py' in listdir(current): module_name.append(basename(current)) return _load_package_name(dirname(current), module_name) return module_name, current # check if this is in a package name, parent_dir = _load_package_name(dirname(path), name) name.reverse() return ".".join(name), parent_dir class Block(object): """Base class for executable blocks that can render themselves to scripts and provide information about the interpreter that should be used to run the script. """ def __init__(self, content=None, interpreter=None, interpreter_args=None, lineno=0): self._lineno = lineno self.interpreter = interpreter self._process = None self.content = content if self.content is None: self.content = [] self.interpreter_args = interpreter_args def run(self, tool, stdin=None, stdout=None): """Execute this block """ import subprocess import jip # write template to named temp file and run with interpreter script_file = jip.create_temp_file() try: script_file.write(self.render(tool)) script_file.close() cmd = [self.interpreter if self.interpreter else "bash"] if self.interpreter_args: cmd += self.interpreter_args self.process = subprocess.Popen( cmd + [script_file.name], stdin=stdin, stdout=stdout ) return self.process except OSError as err: # catch the errno 2 No such file or directory, which indicates the # interpreter is not available if err.errno == 2: raise Exception("Interpreter %s not found!" % self.interpreter) raise err def render(self, tool): """Renders this blocks content within the context of the given tool :param tool: the tool :returns: rendered block content :rtype: string """ content = self.content if isinstance(content, (list, tuple)): content = "\n".join(content) ctx = dict(tool.options.to_dict(raw=True)) ctx['tool'] = tool ctx['__file__'] = tool.path ctx['args'] = tool.options.to_dict() ctx['options'] = tool.options.to_cmd return render_template(content, **ctx) def terminate(self): """ Terminate currently running blocks """ if self._process is not None: if self._process._popen is not None: self._process.terminate() import time # sleep and check job states a few times before we do a hard # kill for t in [0.01, 0.05, 0.10, 2, 3]: time.sleep(t) if not self.process.is_alive(): break if self.process.is_alive(): # kill it import os import signal os.kill(self.process._popen.pid, signal.SIGKILL) def __str__(self): return "Block['%s']" % self.interpreter class PythonBlockUtils(object): """Utility functions that are exposed in template blocks and template functions The block utilities store a reference to the *local* and *global* environment, to the current *tool* and to the current *pipeline*. """ def __init__(self, tool, local_env): self.tool = tool self._pipeline = None self._local_env = local_env self._global_env = None if hasattr(tool, "_pipeline"): self._pipeline = tool._pipeline @property def pipeline(self): from jip import Pipeline if self._pipeline is None: self._pipeline = Pipeline() self._pipeline._utils = self return self._pipeline def check_file(self, name): """Checks for the existence of a file referenced by an options. Please note that this doe **not** take a file name, but the name of an option. This function is preferred over a simple check using ``os.path.exists()`` because it also checks for job dependencies. This is important because a mandatory file might not *yet* exist within the context of a pipeline, but it will be created at runtime in a previous step. :param name: the options name :returns: True if the file exists or the file is created by another job that will run before this options job is executed. :rtype: boolean """ opt = self.tool.options[name] if not opt.is_dependency(): self.tool.options[name].validate() def validation_error(self, message, *args): """Quickly raise a validation error with a custom message. This function simply raises a ValidationError. You can use it in a custom validation implementation to quickly fail the validation :param message: the message :param args: argument interpolated into the message :raises ValidationError: always """ raise ValidationError(self.tool, message % args) def set(self, name, value): """Set an options value. :param name: the options name :type name: string :param value: the new value """ self.tool.options[name].value = value def run(self, _name, **kwargs): """Searches for a tool with the specified name and adds it as a new :py:class:`~jip.pipelines.Node` to the current pipeline. All specified keyword argument are passed as option values to the tool. Delegates to the pipelines :py:meth:`jip.pipelines.Pipeline.run` method. :param _name: the name of the tool :type _name: string :param kwargs: additional argument passed to the tool as options :returns: a new node that executes the specified tool and is added to the current pipeline :rtype: :py:class:`jip.pipelines.Node` """ return self.pipeline.run(_name, **kwargs) def job(self, *args, **kwargs): """Create and returns a new :class:`~jip.pipelines.Job`. The job instance can be used to customize the execution environment for *the next* job. For example:: job("Test", threads=2).run('mytool', ...) This is a typical usage in a pipeline context, where a new job environment is created and then applied to a new 'mytool' pipeline node. :param args: job arguments :param kwargs: job keyword arguments :returns: a new job instance :rtype: :class:`jip.pipelines.Job` """ return self.pipeline.job(*args, **kwargs) def name(self, name): """Set the runtime name of a pipeline. The runtime name of the pipeline is stored in the database and is used as a general identifier for a pipeline run. **Note** that this set the name of the *pipeline* if used in a pipeline context, otherwise it set the name of the tool/job. Within a pipeline context, you can be changed using a :py:func:`job`:: job("my job").run(...) or after the node was created: myrun = run(...) myrun.job.name = "my job" :param name: the name of the pipeline :type name: string """ self.tool._job.name = name def bash(self, command, **kwargs): """Create a *bash* job that executes a bash command. This us a fast way to build pipelines that execute shell commands. The functions wraps the given command string in the *bash tool* that is defined with ``input``, ``output``, and ``outfile``. Input and output default to stdin and stdout. Note that you can access your local context within the command string. Take for example the following pipeline script:: name = "Joe" bash("echo 'Hello ${name}'") This will work as expected. The command template can access local variables. Please keep in mind that the tools context takes precedence over the script context. That means that:: input="myfile.txt" bash("wc -l ${input}") in this example, the command ``wc -l`` will be rendered and wait for input on stdin. The bash command has an ``input`` option and that takes precedence before the globally defined ``input`` variable. This is true for ``input``, ``output``, and ``outfile``, even if they are not explicitly set. You can however access variables defined in the global context using the `_ctx`:: input="myfile.txt" bash("wc -l ${_ctx.input}") will indeed render and execute ``wc -l myfile.txt``. :param command: the bash command to execute :type command: string :param kwargs: arguments passed into the context used to render the bash command. ``input``, ``output``, and ``outfile`` are passed as options to the *bash* tool that is used to run the command :returns: a new pipeline node that represents the bash job :rtype: :class:`jip.pipelines.Node` """ bash_node = self.pipeline.run('bash', cmd=command, **kwargs) return bash_node def _update_global_env(self, env): if not self._global_env: self._global_env = {} self._global_env.update(env) def _update_context(self, ctx, kwargs=None, base_node=None): if self._global_env: for k, v in iteritems(self._global_env): if k not in ctx: ctx[k] = v if kwargs: ctx.update(kwargs) ## update all Nodes with their default output options if base_node is not None: from jip.pipelines import Node class OptionWrapper(object): def __init__(self, node, option): self.node = node self.option = option def __str__(self): if base_node != self.node: base_node.depends_on(self.node) if self.option.option_type != jip.options.TYPE_OPTION: log.debug("Adding additional input option " "for node %s : %s", base_node, self.option.name) self.node._tool.options.make_absolute( self.node._job.working_dir ) base_node._additional_input_options.add( self.option ) return str(self.option) def __getattr__(self, name): # check that the option exists (Issue #43) opt = self.node._tool.options[name] if opt is None: log.info("Option '%s' not found in %s", name, self.node, exc_info=True) raise ValidationError( self.node, "Option '%s' not found in node '%s'" % ( name, self.node ) ) return OptionWrapper( self.node, self.node._tool.options[name] ) for k in ctx.keys(): v = ctx[k] if isinstance(v, Node): try: ctx[k] = OptionWrapper( v, v._tool.options.get_default_output() ) except LookupError: # no default output option pass return ctx class PythonBlock(Block): """Extends block and runs the content as embedded python """ def __init__(self, content=None, lineno=0): Block.__init__(self, content=content, lineno=lineno) self.interpreter = "__embedded__" def run(self, tool, stdin=None, stdout=None): """Execute this block as an embedded python script """ log.debug("Block: run python block for: %s", tool) #tmpl = self.render(tool) content = self.content if isinstance(content, (list, tuple)): content = "\n".join(content) local_env = locals() utils = PythonBlockUtils(tool, local_env) profile = jip.profiles.Profile() if hasattr(tool, '_job'): profile = tool._job env = { "tool": tool, "args": tool.options.to_dict(), "opts": tool.options, "options": tool.options, "check_file": utils.check_file, "ensure": tool.ensure, "run": utils.run, "validation_error": utils.validation_error, "bash": utils.bash, "job": utils.job, "name": utils.name, "add_output": tool.options.add_output, "add_input": tool.options.add_input, "add_option": tool.options.add_option, "set": utils.set, 'r': render_template, 'render_template': render_template, 'utils': utils, 'profile': profile, 'basename': basename, 'dirname': dirname, 'abspath': abspath, 'pwd': getcwd(), 'exists': exists, '__file__': tool.path if tool.path else None } # link known tools into the context from jip import scanner from functools import partial scanner.scan_modules() for name, cls in iteritems(scanner.registry): if not name in env: env[name] = partial(utils.run, name) for name, path in iteritems(scanner.scan_files()): k = name if k.endswith(".jip"): k = k[:-4] if not k in env: env[k] = partial(utils.run, name) # link options to context for o in tool.options: if not o.name in env: n = o.name.replace("-", "_").replace(" ", "_") env[n] = o utils._global_env = env old_global_context = jip.templates.global_context set_global_context(env) try: env.update(local_env) exec(content, env) except Exception as e: if hasattr(e, 'lineno'): e.lineno += self._lineno raise # auto naming for tools from jip.pipelines import Node for k, v in iteritems(env): if isinstance(v, Node): if v._job.name is None: v._job.name = k # reset index log.debug("Block: block for: %s executed", tool) return env def terminate(self): """The terminate function on a python block does nothing. A Python block can not be terminated directly""" pass def __str__(self): return "PythonBlock" class Tool(object): """The base class for all implementation of executable units. This class provides all the building block to integrated new tool implementations that can be executed, submitted and integrated in pipelines to construct more complex setups. A `Tool` in a JIP setup is considered to be a container for the executions meta-data, i.e. options and files that are needed to the actual run. The main function of the `Tool` class is it :py:meth:`get_command` function, which returns a tuple `(interpreter, command)`, where the `interpreter` is a string like "bash" or "perl" or even a *path* to some interpreter executable that will be used to execute the `command`. The command itself is the string representation of the content of a script that will be passed to the `interpreter` at execution time. Please note that the :py:meth:`get_command` functions command part is supposed to be fully *rendered*, it will not be modified any further. The JIP default tool classes that are used, for example, to provide script to the system, are already integrated with the :py:mod:`jip.templates` system, but you can easily use the rendering function directly to create more dynamic commands that can adopt easily to changed in the configuration of a tool. The class exposes a name and a path to a source file as properties. Both are optional and can be omitted in order to implement anonymous tools. In addition to these *meta* data, the tools :py:meth:`__init__` function allows you to provide a *options_source*. This object is used to create the :py:class:`jip.options.Options` that cover the runtime configuration of a tool. The options are initialize lazily on first access using the `options_source` provided at initialization time. This object can be either a string or an instance of an `argparse.ArgumentParser`. Both styles of providing tool options are described in the :py:mod:`jip.options` module. """ def __init__(self, options_source=None, name=None): """Initialize a tool instance. If no options_source is given the class docstring is used as a the options source. :param options_source: either a string or an argparser instance defaults to the class docstring :param name: the name of this tool """ #: the tools name self._name = name #: path to the tools source file self.path = None self._options = None self._options_source = options_source self._job = None self._is_pipeline = False def setup(self): """Setup method that can be implemented to manipulate tool options before rendering and validation. Note that options here might still contain template string. You are also allowed to set option values to template strings. :raises Exception: in case of a critical error """ pass def init(self): """Initialization method that can be implemented to initialize the tool instance and, for example, add options. ``init`` is called once for the tool instance and the logic within the ``init`` is not allowed to rely on any values set or applied to the tool. :raises Exception: in case of a critical error """ pass @property def name(self): return self._name @name.setter def name(self, name): self._name = name @property def job(self): if self._job is None: self._job = jip.profiles.Profile() return self._job def profile(self): return self.job @property def options(self): """Access this tools :py:class:`jip.options.Options` instance. The tools options are the main way to interact with and configure a tool instance either from outside or from within a pipeline. """ if self._options is None: if self._options_source is not None: self._options = self._parse_options(self._options_source) return self._options @property def args(self): """Returns a dictionary from the option names to the option values """ return self.options.to_dict() def parse_args(self, args): """Parses the given argument. An excetion is raised if an error ocurres during argument parsing :param args: the argument list :type args: list of strings """ self.options.parse(args) def _parse_options(self, options_source, inputs=None, outputs=None): """Initialize the options from the docstring or an argparser. In addition to the options, the function tries to deduce a tool name if none was specified at construction time. Optional inputs and outputs lists can be specified. Both must be lists of strings containing option names. If the option is found the option type is set accordingly to input or output. This is usefull if the options are not organized in groups and the parser can not automatically identify the options type. :param options_source: ther a docstring or an argparser instance :type options_source: string or argparse.ArgumentParser :param inputs: list of option names that will be marked as inputs :type inputs: list of strings :param outputs: list of option names that will be marked as outputs :type outputs: list of strings """ if options_source is None: raise Exception("No docstring or argument parser provided!") opts = None if not isinstance(options_source, string_types): opts = Options.from_argparse(options_source, source=self, inputs=inputs, outputs=outputs) else: opts = Options.from_docopt(options_source, source=self, inputs=inputs, outputs=outputs) if self.name is None: import re match = re.match(r'usage:\s*\n*(\w+).*', opts.usage(), re.IGNORECASE | re.MULTILINE) if match: self.name = match.groups()[0] return opts def validate(self): """The default implementation validates all options that belong to this tool and checks that all options that are of `TYPE_INPUT` reference existing files. The method raises a :py:class:`ValidationError` in case an option could not be validated or an input file does not exist. """ log.debug("Default options validation for %s", self) try: self.options.validate() except Exception as e: log.debug("Validation error: %s", str(e).strip()) raise ValidationError(self, str(e)) for opt in self.options.get_by_type(TYPE_INPUT): if opt.source is not None and opt.source != self: continue if opt.is_dependency(): continue for value in opt._value: if isinstance(value, string_types): if not exists(value): raise ValidationError(self, "Input file not found: %s" % value) def validation_error(self, message, *args): """Quickly raise a validation error with a custom message. This function simply raises a ValidationError. You can use it in a custom validation implementation to quickly fail the validation :param message: the message :param args: argument interpolated into the message :raises ValidationError: always """ raise ValidationError(self, message % args) def ensure(self, option_name, check, message=None): """Check a given option value using the check pattern or function and raise a ValidationError in case the pattern does not match or the function does return False. In case of list values, please note that in case check is a pattern, all values are checked independently. If check is a function, the list is passed on as is if the option takes list values, otherwise, the check function is called for each value independently. Note also that you should not use this function to check for file existence. Use the `check_file()` function on the option or on the tool instead. `check_file` checks for incoming dependencies in pipelines, in which case the file does not exist _yet_ but it will be created by a parent job. :param option_name: the name of the option to check :param check: either a string that is interpreter as a regexp pattern or a function that takes the options value as a single paramter and returns True if the value is valid """ o = self.options[option_name] if isinstance(check, string_types): # regexp patter import re for v in o.value: if not re.match(check, str(v)): self.validation_error( message if message else "check failed for %s" % str(v) ) return elif callable(check): if o.nargs == 0 or o.nargs == 1: for v in o.value: if not check(v): self.validation_error( message if message else "check failed for %s" % str(v) ) else: if not check(o.value): self.validation_error( message if message else "check failed for %s" % o.name ) return raise Exception("Ensure check paramter has to be a " "function or a pattern") def check_file(self, option_name): """Delegates to the options check name function :param option_name: the name of the option """ try: self.options[option_name].check_file() except ValueError as e: self.validation_error(str(e)) def is_done(self): """The default implementation return true if the tools has output files and all output files exist. """ outfiles = set(self.get_output_files()) if len(outfiles) == 0: return False for outfile in outfiles: if not exists(outfile): return False return True def pipeline(self): """Create and return the pipeline that will run this tool""" return None def get_command(self): """Return a tuple of (template, interpreter) where the template is a string that will be rendered and the interpreter is a name of an interpreter that will be used to run the filled template. """ return "bash", _pickel_template % \ (cPickle.dumps(self).encode("base64")) def cleanup(self): """The celanup method removes all output files for this tool""" outfiles = list(self.get_output_files(sticky=False)) log.debug("Tool cleanup check files: %s", outfiles) for outfile in outfiles: if exists(outfile): log.warning("Tool cleanup! Removing: %s", outfile) if os.path.isfile(outfile): remove(outfile) elif os.path.isdir(outfile): shutil.rmtree(outfile) def get_output_files(self, sticky=True): """Yields a list of all output files for the options of this tool. Only TYPE_OUTPUT options are considered whose values are strings. If a source for the option is not None, it has to be equal to this tool. If `sticky` is set to False, all options marked with the sticky flag are ignored :param sticky: by default all output option values are returned, if this is set to False, only non-sticky output options are yield :type sticky: boolean :returns: list of file names """ for opt in self.options.get_by_type(TYPE_OUTPUT): if (opt.source and opt.source != self) or \ (not sticky and opt.sticky): continue values = opt.value if not isinstance(values, (list, tuple)): values = [values] for value in values: if isinstance(value, string_types): import glob globbed = glob.glob(value) if globbed: for v in globbed: yield v else: yield value def get_input_files(self): """Yields a list of all input files for the options of this tool. Only TYPE_INPUT options are considered whose values are strings. If a source for the option is not None, it has to be equal to this tool. :returns: list of file names """ for opt in self.options.get_by_type(TYPE_INPUT): if opt.source and opt.source != self: continue values = opt.raw() if not isinstance(values, (list, tuple)): values = [values] for value in values: if isinstance(value, string_types): yield value def help(self): """Return help for this tool. By default this delegates to the options help. """ return dedent(self.options.help()) def __repr__(self): return self.name if self.name else "<Unknown>" def __str__(self): return self.__repr__() def clone(self, counter=None): """Clones this instance of the tool and returns the clone. If the optional counter is profiled, the name of the cloned tool will be updated using .counter as a suffix. """ cloned_tool = copy.copy(self) cloned_tool._options = self.options.copy() if cloned_tool.name and counter is not None: cloned_tool.name = "%s.%d" % (cloned_tool.name, str(counter)) cloned_tool._options._help = self.options._help cloned_tool._options._usage = self.options._usage # update the options source cloned_tool._options.source = cloned_tool for o in cloned_tool._options: o.source = cloned_tool log.debug("Tool | cloned instance %s [%s->%s]", self, self.__hash__(), cloned_tool.__hash__()) return cloned_tool class PythonTool(Tool): """An extension of the tool class that is initialized with a decorated class to simplify the process of implementing Tools in python. """ def __init__(self, cls, decorator, add_outputs=None): """Initialize a new python tool :param cls: the wrapped class :type cls: class :param decorator: an instance of the :class:`jip.tool` decorator :type decorator: jip.tool :param add_outputs: list of additional names that will be added to the list of output options """ Tool.__init__(self) self.decorator = decorator self.cls = cls self.name = decorator.name try: if not isinstance(cls, types.FunctionType): self.instance = cls() else: self.instance = cls except: self.instance = cls try: self.path = inspect.getsourcefile(cls) except: log.debug("Unable to find source file for %s", self.name) ################################################################ # Load options either through a argparser function that was # specified by name in the decorator or load them from the # docstring of the instance ################################################################ self._options_source = None self._add_outputs = add_outputs self._is_pipeline = decorator._force_pipeline def clone(self, counter=None): cloned_tool = Tool.clone(self, counter=counter) try: if not isinstance(self.cls, types.FunctionType): cloned_tool.instance = self.cls() else: cloned_tool.instance = self.cls except: cloned_tool.instance = self.cls return cloned_tool @property def options(self): if self._options is not None: return self._options if self.decorator.argparse and hasattr(self.instance, self.decorator.argparse): #initialize the options from argparse import argparse class PrintDefaultsFormatter(argparse.HelpFormatter): def _get_help_string(self, action): help = action.help if '%(default)' not in action.help and \ '(default: ' not in action.help: if action.default is not argparse.SUPPRESS: defaulting_nargs = [argparse.OPTIONAL, argparse.ZERO_OR_MORE] if action.option_strings or \ action.nargs in defaulting_nargs: if isinstance(action.default, IOBase): if action.default == sys.stdout: help += ' (default: stdout)' elif action.default == sys.stdin: help += ' (default: stdin)' elif action.default == sys.stderr: help += ' (default: stderr)' else: help += ' (default: <stream>)' else: help += ' (default: %(default)s)' return help self._options_source = argparse.ArgumentParser( prog=self.name, formatter_class=PrintDefaultsFormatter ) init_parser = getattr(self.instance, self.decorator.argparse) init_parser(self._options_source) else: # initialize options from doc string import textwrap if self.instance.__doc__ is not None: self._options_source = textwrap.dedent(self.instance.__doc__) else: self._options_source = "" # create the options self._options = self._parse_options(self._options_source, inputs=self.decorator.inputs, outputs=self.decorator.outputs) ## add additional output arguments if self._add_outputs is not None: for arg in self._add_outputs: if isinstance(arg, (list, tuple)): # get default value arg = arg[0] self._options.add(Option( arg, option_type=TYPE_OUTPUT, nargs=1, hidden=True )) return self._options def run(self): self.instance.options = self.options self.instance.tool_instance = self if isinstance(self.instance, types.FunctionType): # check if the function takes a parameter argspec = inspect.getargspec(self.instance) if len(argspec[0]) > 0: self.instance(self) else: self.instance() else: self.decorator.run(self, self.instance) def validate(self): r = self.decorator.validate(self, self.instance) Tool.validate(self) return r def setup(self): return self.decorator.setup(self, self.instance) def init(self): if self._add_outputs is not None: for arg in self._add_outputs: if isinstance(arg, (list, tuple)): value = arg[1] arg = arg[0] if callable(value): try: value = value(self) except Exception as err: log.debug("Error evaluating output value: %s", str(err), exc_info=True) self.options[arg].set(value) return self.decorator.init(self, self.instance) def is_done(self): return self.decorator.is_done(self, self.instance) def pipeline(self): if self.decorator._force_pipeline and isinstance(self.instance, types.FunctionType): # force pipeline generation. Call the instance function # and check if the retrned value is a pipeline or a string # strings go into a pipeline block for evaluation, pipelines # are returned unmodified # check if the function takes a paramter argspec = inspect.getargspec(self.instance) r = None if len(argspec[0]) > 0: r = self.instance(self) else: r = self.instance() if isinstance(r, string_types): # create a pipeline block and evaluate it block = PythonBlock(r) e = block.run(self) return e['utils']._pipeline else: return r return self.decorator.pipeline(self, self.instance) def help(self): return self.decorator.help(self, self.instance) def cleanup(self): return self.decorator.cleanup(self, self.instance) def get_command(self): return self.decorator.get_command(self, self.instance) class ScriptTool(Tool): """An extension of the tool class that is initialized with a docstring and operates on Blocks that can be loade form a script file or from string. If specified as initializer parameters, both the validation and the pipeline block will be handled with special care. Pipeline blocks currently can only be embedded python block. Therefore the interpreter has to be 'python'. Validation blocks where the interpreter is 'python' will be converted to embedded python blocks. This allows the validation process to modify the tool and its arguments during validation. """ def __init__(self, docstring, command_block=None, setup_block=None, init_block=None, validation_block=None, pipeline_block=None): Tool.__init__(self, docstring) self.command_block = command_block self.validation_block = validation_block self.pipeline_block = pipeline_block self.setup_block = setup_block self.init_block = init_block if self.pipeline_block: if self.pipeline_block.interpreter is not None and \ self.pipeline_block.interpreter != 'python': raise Exception("Pipeline blocks have to be implemented in " "python! Sorry about that, but its really a " "nice language :)") self.pipeline_block = PythonBlock( lineno=self.pipeline_block._lineno, content=self.pipeline_block.content ) if self.validation_block and \ (self.validation_block.interpreter is None or self.validation_block.interpreter == 'python'): self.validation_block = PythonBlock( lineno=self.validation_block._lineno, content=self.validation_block.content ) if self.setup_block: self.setup_block = PythonBlock( lineno=self.setup_block._lineno, content=self.setup_block.content ) if self.init_block: self.init_block = PythonBlock( lineno=self.init_block._lineno, content=self.init_block.content ) if not self.command_block and not self.pipeline_block: raise Exception("No executable or pipeline block found!") self._is_pipeline = self.pipeline_block is not None def pipeline(self): if self.pipeline_block: r = self.pipeline_block.run(self) return r['utils'].pipeline return Tool.pipeline(self) def run(self): if self.command_block: self.command_block.run(self) def validate(self): if self.validation_block: self.validation_block.run(self) Tool.validate(self) def init(self): if self.init_block: self.init_block.run(self) Tool.init(self) def setup(self): if self.setup_block: self.setup_block.run(self) Tool.setup(self) def get_command(self): if self.command_block: return self.command_block.interpreter, \ self.command_block.render(self) return None, None @classmethod def from_string(cls, content): from jip.parser import load return load(content, script_class=cls) @classmethod def from_file(cls, path, is_pipeline=False): log.debug("Load script from file: %s", path) from jip.parser import loads s = loads(path, script_class=cls, is_pipeline=is_pipeline) return s
py
1a4947212c87de77ddc74c6741997be66fcc0725
#!/usr/bin/python -i # Copyright (c)2010-2014 the Boeing Company. # See the LICENSE file included in this distribution. # Example CORE Python script that attaches N nodes to an EMANE 802.11abg # network. One of the parameters is changed, the pathloss mode. import sys, datetime, optparse from core import pycore from core.misc import ipaddr from core.constants import * from core.emane.ieee80211abg import EmaneIeee80211abgModel # node list (count from 1) n = [None] def main(): usagestr = "usage: %prog [-h] [options] [args]" parser = optparse.OptionParser(usage = usagestr) parser.set_defaults(numnodes = 5) parser.add_option("-n", "--numnodes", dest = "numnodes", type = int, help = "number of nodes") def usage(msg = None, err = 0): sys.stdout.write("\n") if msg: sys.stdout.write(msg + "\n\n") parser.print_help() sys.exit(err) # parse command line options (options, args) = parser.parse_args() if options.numnodes < 1: usage("invalid number of nodes: %s" % options.numnodes) for a in args: sys.stderr.write("ignoring command line argument: '%s'\n" % a) start = datetime.datetime.now() # IP subnet prefix = ipaddr.IPv4Prefix("10.83.0.0/16") # session with some EMANE initialization cfg = {'verbose': 'false'} session = pycore.Session(cfg = cfg, persistent = True) session.master = True session.location.setrefgeo(47.57917,-122.13232,2.00000) session.location.refscale = 150.0 session.cfg['emane_models'] = "RfPipe, Ieee80211abg, Bypass" session.emane.loadmodels() if 'server' in globals(): server.addsession(session) # EMANE WLAN print "creating EMANE WLAN wlan1" wlan = session.addobj(cls = pycore.nodes.EmaneNode, name = "wlan1") wlan.setposition(x=80,y=50) names = EmaneIeee80211abgModel.getnames() values = list(EmaneIeee80211abgModel.getdefaultvalues()) # TODO: change any of the EMANE 802.11 parameter values here for i in range(0, len(names)): print "EMANE 80211 \"%s\" = \"%s\"" % (names[i], values[i]) try: values[ names.index('pathlossmode') ] = '2ray' except ValueError: values[ names.index('propagationmodel') ] = '2ray' session.emane.setconfig(wlan.objid, EmaneIeee80211abgModel._name, values) services_str = "zebra|OSPFv3MDR|IPForward" print "creating %d nodes with addresses from %s" % \ (options.numnodes, prefix) for i in xrange(1, options.numnodes + 1): tmp = session.addobj(cls = pycore.nodes.CoreNode, name = "n%d" % i, objid=i) tmp.newnetif(wlan, ["%s/%s" % (prefix.addr(i), prefix.prefixlen)]) tmp.cmd([SYSCTL_BIN, "net.ipv4.icmp_echo_ignore_broadcasts=0"]) tmp.setposition(x=150*i,y=150) session.services.addservicestonode(tmp, "", services_str, verbose=False) n.append(tmp) # this starts EMANE, etc. session.node_count = str(options.numnodes + 1) session.instantiate() # start a shell on node 1 n[1].term("bash") print "elapsed time: %s" % (datetime.datetime.now() - start) if __name__ == "__main__" or __name__ == "__builtin__": main()
py
1a494771c6b7e5611772eafe17cf4c29074e5d44
"""Gitlab service support. API docs: https://docs.gitlab.com/ee/api/ """ from dateutil.parser import parse as parsetime from snakeoil.klass import aliased, alias from urllib.parse import urlparse, urlunparse, quote_plus from ._jsonrest import JsonREST from ..exceptions import RequestError, BiteError from ..objects import Item, Attachment, Comment, TimeInterval from ._reqs import LinkHeaderPagedRequest, PagedRequest, ParseRequest, req_cmd from ._rest import RESTRequest class GitlabError(RequestError): def __init__(self, msg, code=None, text=None): msg = 'Gitlab error: ' + msg super().__init__(msg, code, text) class GitlabIssue(Item): attributes = { 'created': 'Created', 'updated': 'Modified', } attribute_aliases = { 'title': 'summary', 'creator': 'author', 'owner': 'assignee', } _print_fields = ( ('summary', 'Title'), ('assignee', 'Assignee'), ('id', 'ID'), ) type = 'issue' def __init__(self, repo=None, comments=None, attachments=None, **kw): for k, v in kw.items(): # Prefix project ID to issue iid depending on the connection type. # The 'id' field unique across all issues is essentially useless # for us since most API calls only use project IDs and iids. # https://docs.gitlab.com/ee/api/README.html#id-vs-iid if k == 'id': continue elif k == 'iid': k = 'id' if repo is None: v = f"{kw['project_id']}-{v}" elif k in ('created_at', 'updated_at', 'closed_at') and v: v = parsetime(v) elif k in ('author', 'assignee') and v: v = v['username'] setattr(self, k, v) self.attachments = attachments if attachments is not None else () self.comments = comments if comments is not None else () class GitlabComment(Comment): pass class GitlabAttachment(Attachment): pass class GitlabProject(object): def __init__(self, **kw): self.id = kw['id'] self.desc = kw['description'] self.owner, self.name = kw['path_with_namespace'].split('/', 1) self.created = parsetime(kw['created_at']) self.updated = parsetime(kw['last_activity_at']) self.git_repo = kw['http_url_to_repo'] self.webbase = kw['web_url'] self.tags = tuple(kw['tag_list']) self.stars = kw['star_count'] self.forks = kw['forks_count'] class Gitlab(JsonREST): """Service supporting the Gitlab issue tracker.""" _service = 'gitlab' _service_error_cls = GitlabError item = GitlabIssue item_endpoint = '/issues' attachment = GitlabAttachment #attachment_endpoint = '/file' def __init__(self, base, max_results=None, **kw): # extract gitlab domain url = urlparse(base) # TODO: generalize and allow versioned API support api_base = urlunparse(( url.scheme, url.netloc, '/api/v4', None, None, None)) paths = url.path.strip('/').split('/') try: group, project = paths self.repo = f'{group}/{project}' except ValueError: group = paths[0] if paths[0] else None self.repo = None self.group = group # gitlab maxes out at 100 results per page if max_results is None: max_results = 100 # use endpoint for namespaced API calls: # https://docs.gitlab.com/ee/api/README.html#namespaced-path-encoding endpoint = f"/projects/{quote_plus(self.repo)}" if self.repo is not None else '' super().__init__(endpoint=endpoint, base=api_base, max_results=max_results, **kw) self.webbase = base def parse_response(self, response): data = super().parse_response(response) if 'error' not in data: return data else: self.handle_error(code=response.status_code, msg=data['error']) class GitlabPagedRequest(PagedRequest, LinkHeaderPagedRequest, RESTRequest): """Requests supporting gitlab's pagination method. Docs: https://docs.gitlab.com/ee/api/README.html#pagination """ # Gitlab supports link headers as the canonical method for pagination, but # it also provides parameters to request a given page so use those instead # in order to easily generate async calls for future pages. Note that the # total size of the query is still extracted from the headers though since # that information isn't provided in the data response. _page_key = 'page' _size_key = 'per_page' _total_key = 'NONE' _total_header = 'X-Total' # gitlab defaults to starting at page 1 _start_page = 1 # TODO: Add more specific Elasticsearch functionality to another search req # class, especially since gitlab.com doesn't support elasticsearch queries yet # but newer self-hosted instances should. @req_cmd(Gitlab, cmd='search') class _SearchRequest(ParseRequest, GitlabPagedRequest): """Construct a search request. Gitlab uses Elasticsearch on the backend so advanced queries use its syntax. Docs: https://docs.gitlab.com/ee/user/search/advanced_search_syntax.html """ # map from standardized kwargs name to expected service parameter name _params_map = { 'status': 'state', } def __init__(self, **kw): if kw['service'].group is not None and kw['service'].repo is None: self.endpoint = f"/groups/{kw['service'].group}/issues" else: self.endpoint = '/issues' self._repo = kw['service'].repo super().__init__(endpoint=self.endpoint, **kw) def parse(self, data): issues = super().parse(data) for issue in issues: yield self.service.item(repo=self._repo, **issue) @aliased class ParamParser(ParseRequest.ParamParser): # map of allowed status input values to service parameters, aliases are # capitalized _status_map = { 'open': 'opened', 'closed': 'closed', 'ALL': 'ALL', } def _finalize(self, **kw): if not self.params: raise BiteError('no supported search terms or options specified') # default to returning only open issues self.params.setdefault('status', 'opened') # status must be unset to search across all values if self.params['status'] == 'ALL': del self.params['status'] # don't restrict scope by default self.params.setdefault('scope', 'all') # show issues in ascending order by default self.params.setdefault('sort', 'asc') def terms(self, k, v): self.params['search'] = v self.options.append(f"Summary: {', '.join(v)}") def id(self, k, v): self.params['iids[]'] = v self.options.append(f"IDs: {', '.join(map(str, v))}") def labels(self, k, v): self.params[k] = ','.join(v) self.options.append(f"{k.capitalize()}: {', '.join(v)}") def milestone(self, k, v): self.params[k] = v self.options.append(f"{k.capitalize()}: {v}") def status(self, k, v): value = self._status_map.get(v) if value is None: raise BiteError( f"invalid status value: {v} " f"(available: {', '.join(sorted(self._status_map))})") self.params[k] = value self.options.append(f"{k.capitalize()}: {v}") def group(self, k, v): self.request.kwargs['endpoint'] = f'/groups/{v}/issues' self.options.append(f"{k.capitalize()}: {v}") def repo(self, k, v): if self.service.group is None: if '/' not in v: raise BiteError(f'repo missing group: {v!r}') repo = v else: repo = f'{self.service.group}/{v}' self.request.kwargs['endpoint'] = f"/projects/{quote_plus(repo)}/issues" self.request._repo = repo self.options.append(f"{k.capitalize()}: {v}") def project(self, k, v): if self.service.group is None: raise BiteError(f'missing group') repo = f'{self.service.group}/{v}' self.request.kwargs['endpoint'] = f"/projects/{quote_plus(repo)}/issues" self.request._repo = repo self.options.append(f"{k.capitalize()}: {v}") @alias('modified') def created(self, k, v): field = 'updated' if k == 'modified' else k if not isinstance(v, TimeInterval): v = TimeInterval(v) start, end = v if start: self.params[f'{field}_after'] = start.isoformat() if end: self.params[f'{field}_before'] = end.isoformat() self.options.append(f'{k.capitalize()}: {v}') # TODO: move to using search API @req_cmd(Gitlab, cmd='project_search') class _ProjectSearchRequest(ParseRequest, GitlabPagedRequest): """Construct a project search request.""" def __init__(self, **kw): if kw['service'].group is not None and kw['service'].repo is None: self.endpoint = f"/groups/{kw['service'].group}/projects" else: self.endpoint = '/projects' super().__init__(endpoint=self.endpoint, **kw) def parse(self, data): projects = list(super().parse(data)) for project in projects: yield GitlabProject(**project) @aliased class ParamParser(ParseRequest.ParamParser): def _finalize(self, **kw): if not self.params: raise BiteError('no supported search terms or options specified') # show issues in ascending order by default self.params.setdefault('sort', 'asc') def terms(self, k, v): self.params['search'] = v self.options.append(f"Summary: {', '.join(v)}")
py
1a4947baa5da179d13f4c92e1121d8597f6aa76b
# pylint: disable=wildcard-import, unused-wildcard-import """Model store which handles pretrained models from both mxnet.gluon.model_zoo.vision and gluoncv.models """ from mxnet import gluon from .ssd import * from .faster_rcnn import * from .fcn import * from .pspnet import * from .cifarresnet import * from .cifarresnext import * from .cifarwideresnet import * from .resnetv1b import * from .resnext import * from .senet import * from .se_resnet import * from .yolo import * from .nasnet import * __all__ = ['get_model', 'get_model_list'] _models = { 'ssd_300_vgg16_atrous_voc': ssd_300_vgg16_atrous_voc, 'ssd_300_vgg16_atrous_coco': ssd_300_vgg16_atrous_coco, 'ssd_300_vgg16_atrous_custom' : ssd_300_vgg16_atrous_custom, 'ssd_512_vgg16_atrous_voc': ssd_512_vgg16_atrous_voc, 'ssd_512_vgg16_atrous_coco': ssd_512_vgg16_atrous_coco, 'ssd_512_vgg16_atrous_custom': ssd_512_vgg16_atrous_custom, 'ssd_512_resnet18_v1_voc': ssd_512_resnet18_v1_voc, 'ssd_512_resnet18_v1_coco': ssd_512_resnet18_v1_coco, 'ssd_512_resnet50_v1_voc': ssd_512_resnet50_v1_voc, 'ssd_512_resnet50_v1_coco': ssd_512_resnet50_v1_coco, 'ssd_512_resnet50_v1_custom': ssd_512_resnet50_v1_custom, 'ssd_512_resnet101_v2_voc': ssd_512_resnet101_v2_voc, 'ssd_512_resnet152_v2_voc': ssd_512_resnet152_v2_voc, 'ssd_512_mobilenet1_0_voc': ssd_512_mobilenet1_0_voc, 'ssd_512_mobilenet1_0_coco': ssd_512_mobilenet1_0_coco, 'ssd_512_mobilenet1_0_custom': ssd_512_mobilenet1_0_custom, 'faster_rcnn_resnet50_v1b_voc': faster_rcnn_resnet50_v1b_voc, 'faster_rcnn_resnet50_v1b_coco': faster_rcnn_resnet50_v1b_coco, 'cifar_resnet20_v1': cifar_resnet20_v1, 'cifar_resnet56_v1': cifar_resnet56_v1, 'cifar_resnet110_v1': cifar_resnet110_v1, 'cifar_resnet20_v2': cifar_resnet20_v2, 'cifar_resnet56_v2': cifar_resnet56_v2, 'cifar_resnet110_v2': cifar_resnet110_v2, 'cifar_wideresnet16_10': cifar_wideresnet16_10, 'cifar_wideresnet28_10': cifar_wideresnet28_10, 'cifar_wideresnet40_8': cifar_wideresnet40_8, 'cifar_resnext29_32x4d': cifar_resnext29_32x4d, 'cifar_resnext29_16x64d': cifar_resnext29_16x64d, 'fcn_resnet50_voc': get_fcn_voc_resnet50, 'fcn_resnet101_voc': get_fcn_voc_resnet101, 'fcn_resnet50_ade': get_fcn_ade_resnet50, 'psp_resnet50_ade': get_psp_ade_resnet50, 'resnet18_v1b': resnet18_v1b, 'resnet34_v1b': resnet34_v1b, 'resnet50_v1b': resnet50_v1b, 'resnet101_v1b': resnet101_v1b, 'resnet152_v1b': resnet152_v1b, 'resnet50_v1c': resnet50_v1c, 'resnet101_v1c': resnet101_v1c, 'resnet152_v1c': resnet152_v1c, 'resnet50_v1d': resnet50_v1d, 'resnet101_v1d': resnet101_v1d, 'resnet152_v1d': resnet152_v1d, 'resnext50_32x4d': resnext50_32x4d, 'resnext101_32x4d': resnext101_32x4d, 'resnext101_64x4d': resnext101_64x4d, 'se_resnext50_32x4d': se_resnext50_32x4d, 'se_resnext101_32x4d': se_resnext101_32x4d, 'se_resnext101_64x4d': se_resnext101_64x4d, 'senet_52': senet_52, 'senet_103': senet_103, 'senet_154': senet_154, 'se_resnet18_v1': se_resnet18_v1, 'se_resnet34_v1': se_resnet34_v1, 'se_resnet50_v1': se_resnet50_v1, 'se_resnet101_v1': se_resnet101_v1, 'se_resnet152_v1': se_resnet152_v1, 'se_resnet18_v2': se_resnet18_v2, 'se_resnet34_v2': se_resnet34_v2, 'se_resnet50_v2': se_resnet50_v2, 'se_resnet101_v2': se_resnet101_v2, 'se_resnet152_v2': se_resnet152_v2, 'darknet53': darknet53, 'yolo3_darknet53_coco': yolo3_darknet53_coco, 'yolo3_darknet53_voc': yolo3_darknet53_voc, 'yolo3_darknet53_custom': yolo3_darknet53_custom, 'nasnet_4_1056': nasnet_4_1056, 'nasnet_5_1538': nasnet_5_1538, 'nasnet_7_1920': nasnet_7_1920, 'nasnet_6_4032': nasnet_6_4032, } def get_model(name, **kwargs): """Returns a pre-defined model by name Parameters ---------- name : str Name of the model. pretrained : bool Whether to load the pretrained weights for model. classes : int Number of classes for the output layer. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. Returns ------- HybridBlock The model. """ try: net = gluon.model_zoo.vision.get_model(name, **kwargs) return net except ValueError as e: upstream_supported = str(e) # avoid raising inside which cause a bit messy error message name = name.lower() if name not in _models: raise ValueError('%s\n\t%s' % (upstream_supported, '\n\t'.join(sorted(_models.keys())))) net = _models[name](**kwargs) return net def get_model_list(): """Get the entire list of model names in model_zoo. Returns ------- list of str Entire list of model names in model_zoo. """ return _models.keys()
py
1a4947d52ad946e74a54059422dcf5bfaac8cc61
__all__ = ['DynamicPricingConfig'] from enum import Enum, unique from typing import List from ..primitives.base import attribute, BaseTolokaObject class DynamicPricingConfig(BaseTolokaObject, kw_only=False): """The dynamic pricing settings. Attributes: type: Parameter type for calculating dynamic pricing. The SKILL value. skill_id: ID of the skill that the task price is based on intervals: Skill level intervals. Must not overlap. A performer with a skill level that is not included in any interval will receive the basic price for a task suite. """ @unique class Type(Enum): """Dynamic pricing type""" SKILL = 'SKILL' class Interval(BaseTolokaObject): """Skill level interval Attributes: from_: Lower bound of the interval. to: dynamic_pricing_config.intervals.to reward_per_assignment: The price per task page for a performer with the specified skill level. """ from_: int = attribute(origin='from') to: int reward_per_assignment: float type: Type skill_id: str intervals: List[Interval]
py
1a49484dc0a8edd591e2f131c911fd6151f4f283
from functools import wraps import tensorflow as tf from tensorflow import keras from tensorflow.keras.losses import ( BinaryCrossentropy, CategoricalCrossentropy, MeanAbsoluteError, MeanSquaredError, ) def distributed_sum_over_batch_size(batch_size: int): def _distributed_sum_over_batch_size(function): @wraps(function) def wrapper(*args, **kwargs): output_tensor = function(*args, **kwargs) return tf.nn.compute_average_loss( output_tensor, global_batch_size=batch_size ) return wrapper return _distributed_sum_over_batch_size def distributed_mean(function): @wraps(function) def wrapper(*args, **kwargs): output_tensor = function(*args, **kwargs) return tf.math.reduce_mean(output_tensor) / 2 return wrapper @tf.function def apply_softmax(logits): return keras.activations.softmax(logits) @distributed_mean @tf.function def compute_l1_loss(fake_outputs, ground_truth): return MeanAbsoluteError(reduction=keras.losses.Reduction.NONE)( ground_truth, fake_outputs ) @distributed_mean @tf.function def compute_binary_crossentropy(y_true, y_predicted) -> float: """Compute Binary Categorical Crossentropy. ### Parameters: y_true: y_predicted: ### Returns: the computed loss. """ return BinaryCrossentropy( from_logits=False, reduction=keras.losses.Reduction.NONE, )(y_true, y_predicted) @tf.function def compute_categorical_crossentropy(logits, labels) -> float: """Compute Sparse Categorical Crossentropy. ### Parameters: logits: the logits labels: the labels ### Returns: Computed loss. """ # return CategoricalCrossentropy()( # reduction=keras.losses.Reduction.NONE)( # logits, labels # ) return CategoricalCrossentropy(reduction=keras.losses.Reduction.NONE)( labels, logits ) @distributed_mean @tf.function def compute_euclidean_distance(fake_outputs, ground_truth) -> float: return MeanSquaredError(reduction=keras.losses.Reduction.NONE)( ground_truth, fake_outputs ) @tf.function def normalize(logits, axis: int = None, name: str = None): normalized = tf.linalg.normalize(logits, ord="euclidean", axis=axis, name=name)[0] return tf.squeeze(normalized)
py
1a494929a501268b30d0769c452948eebd42baab
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Download and build the data if it does not exist. import parlai.core.build_data as build_data import gzip import os import re from parlai.core.build_data import DownloadableFile from parlai.utils.io import PathManager RESOURCES = [ DownloadableFile( 'http://opus.lingfil.uu.se/download.php?f=OpenSubtitles/en.tar.gz', 'OpenSubtitles.tar.gz', 'aef6d57db36c221b8cff1cf2356309874c27ef6a36bb8ca714509b37d0db29bc', ) ] def _regularize(sent): sent = sent.replace('i&gt;', '').replace('&lt;', '').replace('&gt;', '') sent = re.sub(r'x[0-9|a-f][0-9|a-f]', ' ', sent) sent = sent.replace('\\', '').replace('-', '') sent = ' '.join(re.findall(r"[\w']+|[.,!?:;]", sent)) sent = sent.replace('. .', '...') sent = ' '.join(sent.split()) return sent def create_fb_format(inpath, outpath): print('[building fbformat]') with PathManager.open( os.path.join(outpath, 'train.txt'), 'w' ) as ftrain, PathManager.open( os.path.join(outpath, 'valid.txt'), 'w' ) as fvalid, PathManager.open( os.path.join(outpath, 'test.txt'), 'w' ) as ftest: conv_id = 0 # find all the files. for root, _subfolder, files in os.walk(inpath): for f in files: if f.endswith('.gz'): dialog = [] conv_id = conv_id + 1 with gzip.open(os.path.join(root, f), 'r') as f1: words = [] line_id = 1 turn_id = 0 for line in f1: line = str(line) if line.find('<s id="') != -1: # new sentence if len(words) > 0: curr_words = _regularize(''.join(words)) if len(curr_words) > 0: if (turn_id % 2) == 0: dialog.append(str(line_id)) dialog.append(' ') dialog.append(curr_words) else: dialog.append('\t') dialog.append(curr_words) dialog.append('\n') line_id += 1 turn_id += +1 words.clear() else: i1 = line.find('<w id="') if i1 >= 0: line = line[i1:] word = line[line.find('>') + 1 : line.find('</w')] words.append(' ') words.append(word.replace('\t', ' ')) handle = ftrain if (conv_id % 10) == 0: handle = ftest if (conv_id % 10) == 1: handle = fvalid dialog.append('\n') handle.write(''.join(dialog)) def build(datapath): dpath = os.path.join(datapath, 'OpenSubtitles') version = '2' if not build_data.built(dpath, version_string=version): print('[building data: ' + dpath + ']') if build_data.built(dpath): # An older version exists, so remove these outdated files. build_data.remove_dir(dpath) build_data.make_dir(dpath) # Download the data. for downloadable_file in RESOURCES: downloadable_file.download_file(dpath) create_fb_format(os.path.join(dpath, 'OpenSubtitles', 'en'), dpath) # Mark the data as built. build_data.mark_done(dpath, version_string=version) return dpath
py
1a4949701436f51fde31cbe8f3fe5be76d7de155
import itertools as it, operator as op, functools as ft from xml.sax.saxutils import escape as xml_escape import html.parser, html.entities import os, re, collections as cs, urllib.request as ulr import gi gi.require_version('Gtk', '3.0') gi.require_version('Gdk', '3.0') from gi.repository import Gtk, Gdk, GdkPixbuf, GLib, Pango from . import core import logging log = logging.getLogger(__name__) class MarkupToText(html.parser.HTMLParser): def handle_starttag(self, tag, attrs): pass def handle_endtag(self, tag): pass def handle_entityref(self, ref): self.d.append(f'&{ref};') def handle_charref(self, ref): self.d.append(f'&#{ref};') def handle_data(self, data): self.d.append(data) def __call__(self, s): self.d = list() self.feed(s) return ''.join(self.d).strip() strip_markup = MarkupToText() class NotificationDisplay: '''Interface to display notification stack. Should have "display(note, cb_dismiss=None) -> nid(UInt32, >0)", "close(nid)" methods and NoWindowError(nid) exception, raised on erroneous nid's in close(). Current implementation based on notipy: git://github.com/the-isz/notipy.git''' window = cs.namedtuple('Window', 'gobj event_boxes') base_css = b''' #notification { background: transparent; } #notification #frame { background-color: #d4ded8; padding: 3px; } #notification #hs { background-color: black; } #notification #critical { background-color: #ffaeae; } #notification #normal { background-color: #f0ffec; } #notification #low { background-color: #bee3c6; } #notification #summary { color: black; padding-left: 5px; font-size: 1.2em; text-shadow: 1px 1px 0px gray; } #notification #body { color: black; font-size: 1em; } #notification #body * { color: black; background-color: #d4ded8; } ''' base_css_min = b'#notification * { font-size: 8; }' # simpliest fallback def __init__( self, layout_margin, layout_anchor, layout_direction, icon_scale=dict(), markup_default=False, markup_warn=False, markup_strip=False ): self.margins = dict(it.chain.from_iterable(map( lambda ax: ( (2**ax, layout_margin), (-2**ax, layout_margin) ), range(2) ))) self.layout_anchor = layout_anchor self.layout_direction = layout_direction self.icon_scale = icon_scale self.markup_default = markup_default self.markup_warn, self.markup_strip = markup_warn, markup_strip self._windows = dict() self._default_style = self._get_default_css() screen = Gdk.Screen.get_default() if not screen: raise core.StartupFailure('No X screen detected') Gtk.StyleContext.add_provider_for_screen( screen, self._default_style, Gtk.STYLE_PROVIDER_PRIORITY_APPLICATION ) def _pango_markup_parse(self, text, _err_mark='[TN82u8] '): try: success, _, text, _ = Pango.parse_markup(text, -1, '\0') if not success: raise GLib.GError('pango_parse_markup failure') except GLib.GError as err: success = False # should be rendered as text if self.markup_warn: msg_start = f'{_err_mark}Pango formatting failed' if msg_start not in text: # detect and avoid possible feedback loops log.warn('%s (%s) for text, stripping markup: %r', msg_start, err, text) if self.markup_strip: # strip + re-parse to convert xml entities and such text = strip_markup(text) try: _, _, text, _ = Pango.parse_markup(text, -1, '\0') except GLib.GError: pass return success, text def _get_default_css(self): css, base_css = Gtk.CssProvider(), self.base_css for attempt in range(6): try: css.load_from_data(base_css) except GLib.GError as err: log.warn('Failed to load default CSS style (try %s): %s', attempt+1, err) # print(base_css) else: break # Try to work around https://bugzilla.gnome.org/show_bug.cgi?id=678876 and similar issues if attempt == 0: base_css = re.sub(br'\b(background-color:)\s*rgba\([^;]+;', br'\1 white;', base_css) elif attempt == 1: base_css = re.sub(br'\b(font-size:)\s*(\d+)px\s*;', br'\1 \2;', base_css) elif attempt == 2: base_css = re.sub(br'\b(text-shadow:)[^;]+;', br'\1 1 1 0 gray;', base_css) elif attempt == 3: base_css = re.sub(br'\btext-shadow:[^;]+;', b'', base_css) elif attempt == 4: base_css = self.base_css_min # last resort before no-css-at-all else: break # don't load any css return css def _update_layout(self): # Get the coordinates of the "anchor" corner (screen corner +/- margins) base = tuple(map( lambda ax, gdk_dim=('width', 'height'):\ (getattr(Gdk.Screen, gdk_dim[ax])() - self.margins[2**ax])\ if 2**ax & self.layout_anchor else self.margins[-2**ax], range(2) )) # Iterate over windows in order, placing each one starting from a "base" corner for win in map(op.attrgetter('gobj'), self._windows.values()): win.move(*map(lambda ax: base[ax] - ( win.get_size()[ax] if 2**ax & self.layout_anchor else 0 ), range(2))) margin = self.margins[(2 * ( (2**self.layout_direction) & self.layout_anchor ) / 2**self.layout_direction - 1) * 2**self.layout_direction] base = tuple(map( lambda ax: base[ax] if self.layout_direction != ax else\ base[ax] + (margin + win.get_size()[ax])\ * (2 * (2**ax ^ (2**ax & self.layout_anchor)) / 2**ax - 1), range(2) )) def _get_icon(self, icon, remote=False): widget_icon = None if icon is not None: if isinstance(icon, str): icon_path = os.path.expanduser(ulr.url2pathname(icon)) if icon_path.startswith('file://'): icon_path = icon_path[7:] if os.path.isfile(icon_path): widget_icon = GdkPixbuf.Pixbuf.new_from_file(icon_path) else: # Available names: Gtk.IconTheme.get_default().list_icons(None) theme = Gtk.IconTheme.get_default() icon_size = any(self.icon_scale.get('fixed', list())) or 32 widget_icon = theme.lookup_icon( icon, icon_size, Gtk.IconLookupFlags.USE_BUILTIN ) if widget_icon: widget_icon = widget_icon.load_icon() else: # Msgs from remote hosts natually can have non-local icon paths in them (log.warn if not remote else log.debug)( 'Provided icon info seem to be neither valid icon file nor' ' a name in a freedesktop.org-compliant icon theme (or current theme' ' does not have that one), ignoring it: %r', core.format_trunc(icon) ) else: w, h, rowstride, has_alpha, bits_per_sample, channels, data = icon data = bytes(bytearray(data)) widget_icon = GdkPixbuf.Pixbuf.new_from_data( data, GdkPixbuf.Colorspace.RGB, bool(has_alpha), int(bits_per_sample), int(w), int(h), int(rowstride) ) widget_icon._data = data # must be preserved from gc if widget_icon: if any(it.chain.from_iterable(self.icon_scale.values())): # scale icon w, h = widget_icon.get_width(), widget_icon.get_height() for k in 'fixed', 'min', 'max': box_w, box_h = self.icon_scale.get(k, (0, 0)) if not any([box_w, box_h]): continue if k == 'min' and not ((box_w and w < box_w) or (box_h and h < box_h)): continue if k == 'max' and not ((box_w and w > box_w) or (box_h and h > box_h)): continue scale_down = (box_w and w > box_w) or (box_h and h > box_h) if scale_down: scale = min # factor<1, unspec=1, must fit on both dimensions elif box_w and box_h: scale = min # factor>1, but still pick min to fit on both else: scale = max # ignore unspec=1 and scale to max possible factor scale = scale(float(box_w or w) / w, float(box_h or h) / h) box_w, box_h = w * scale, h * scale log.debug( 'Scaling image (%s, criteria: %s) by a factor of' ' %.3f: %dx%d -> %dx%d', ['up', 'down'][scale_down], k, scale, w, h, box_w, box_h ) widget_icon = widget_icon.scale_simple(box_w, box_h, GdkPixbuf.InterpType.BILINEAR) if k == 'fixed': break # no need to apply min/max after that widget_icon, pixbuf = Gtk.Image(), widget_icon widget_icon.set_from_pixbuf(pixbuf) return widget_icon def _set_visual(self, win, ev=None): visual = win.get_screen().get_rgba_visual() if visual: win.set_visual(visual) def _create_win( self, summary, body, icon=None, urgency_label=None, markup=False, remote=None ): log.debug( 'Creating window with parameters: %s', core.repr_trunc_rec(dict( summary=summary, body=body, icon=icon, urgency=urgency_label, markup=markup )) ) win = Gtk.Window(name='notification', type=Gtk.WindowType.POPUP) win.set_default_size(400, 20) win.connect('screen-changed', self._set_visual) self._set_visual(win) ev_boxes = [win] frame = Gtk.Box(name='frame') win.add(frame) try: widget_icon = self._get_icon(icon, remote=remote) except Exception: # Gdk may raise errors for some images/formats log.exception('Failed to set notification icon') widget_icon = None box_margin = 3 v_box = Gtk.VBox(spacing=box_margin, expand=False) if widget_icon is not None: h_box = Gtk.HBox(spacing=box_margin * 2) frame.pack_start(h_box, True, True, 0) h_box.pack_start(widget_icon, False, False, 0) h_box.pack_start(v_box, True, True, 0) ev_boxes.append(h_box) else: frame.pack_start(v_box, True, True, 0) widget_summary = Gtk.Label(name='summary') # Sanitize tags through pango first, so set_markup won't produce empty label markup_summary = markup if markup_summary: markup_summary, text = self._pango_markup_parse(summary) if markup_summary: widget_summary.set_markup(summary) else: summary = text if not markup_summary: widget_summary.set_text(summary) widget_summary.set_alignment(0, 0) if urgency_label: summary_box = Gtk.EventBox(name=urgency_label) summary_box.add(widget_summary) else: summary_box = widget_summary v_box.pack_start(summary_box, False, False, 0) ev_boxes.append(summary_box) v_box.pack_start(Gtk.HSeparator(name='hs'), False, False, 0) widget_body = Gtk.TextView( name='body', wrap_mode=Gtk.WrapMode.WORD_CHAR, cursor_visible=False, editable=False ) widget_body_buffer = widget_body.get_buffer() # Same as with summary - sanitize tags through pango first markup_body = markup if markup_body: markup_body, text = self._pango_markup_parse(body) if markup_body: cursor = widget_body_buffer.get_end_iter() widget_body_buffer.insert_markup(cursor, body, -1) else: body = text if not markup_body: widget_body_buffer.set_text(body) v_box.pack_start(widget_body, True, True, 0) ev_boxes.append(widget_body) # Make sure the window is initially drawn off-screen, because it can't be # placed properly until it's size is known, and it's size is unknown until it's # actually handled by window manager and then drawn by X # Proper placement is done on update_layout() call win.move(-2000, -2000) win.show_all() return self.window(win, ev_boxes) def get_note_markup(self, note): return note.hints.get('x-nt-markup', self.markup_default) def get_note_text(self, note): 'Returns note text, stripped of all markup, if any (and if enabled).' markup, summary, body = self.get_note_markup(note), note.summary, note.body if markup: _, summary = self._pango_markup_parse(summary) _, body = self._pango_markup_parse(body) return summary, body def display(self, note, cb_dismiss=None, cb_hover=None, cb_leave=None): try: # Priorities for icon sources: # image{-,_}data: hint. raw image data structure of signature (iiibiiay) # image{-,_}path: hint. either an URI (file://...) or a name in a f.o-compliant icon theme # app_icon: parameter. same as image-path # icon_data: hint. same as image-data # image_* is a deprecated hints from 1.1 spec, 1.2 is preferred # (don't seem to be even mentioned in 1.2 spec icon priorities section) hints = note.hints.copy() k = '__app_icon' # to avoid clobbering anything hints[k] = note.icon for k in 'image-data', 'image_data',\ 'image-path', 'image_path', k, 'icon_data': image = hints.get(k) if image: log.debug('Got icon image from hint: %s', k) break urgency = note.hints.get('urgency') if urgency is not None: urgency = core.urgency_levels.by_id(int(urgency)) markup = self.get_note_markup(note) win = self._create_win( note.summary, note.body, image, urgency, markup=markup, remote=note.hints.get('x-nt-from-remote') ) for eb in win.event_boxes: eb.add_events( Gdk.EventMask.BUTTON_PRESS_MASK | Gdk.EventMask.POINTER_MOTION_MASK | Gdk.EventMask.LEAVE_NOTIFY_MASK ) for ev,cb in [ ('button-press-event', cb_dismiss), ('motion-notify-event', cb_hover), ('leave-notify-event', cb_leave) ]: if cb: eb.connect(ev, lambda w,ev,cb,nid: cb(nid), cb, note.id) if cb_dismiss and win.event_boxes: # Connect only to window object (or first eventbox in the list) win.event_boxes[0].connect( 'destroy', lambda w,cb,nid: cb(nid), cb_dismiss, note.id ) # update_layout() *must* be delayed until window "configure-event", because # actual window size is unknown until it's resized by window manager and drawn by X # See the list of caveats here: # http://developer.gnome.org/gtk3/unstable/GtkWindow.html#gtk-window-get-size win.gobj.connect('configure-event', lambda w,void: self._update_layout()) self._windows[note.id] = win except: log.exception('Failed to create notification window') class NoWindowError(Exception): pass def _close(self, nid): try: win = self._windows.pop(nid).gobj except KeyError: raise self.NoWindowError(nid) win.hide(), win.destroy() def close(self, nid): self._close(nid) self._update_layout()
py
1a4949d0e927efb5d5dbf61c6a7357840ac8ce59
# ============================================================================= # PROJECT CHRONO - http://projectchrono.org # # Copyright (c) 2021 projectchrono.org # All rights reserved. # # Use of this source code is governed by a BSD-style license that can be found # in the LICENSE file at the top level of the distribution and at # http://projectchrono.org/license-chrono.txt. # # ============================================================================= # Authors: Radu Serban # ============================================================================= # # Main driver function for the FED-alpha full model. # # The vehicle reference frame has Z up, X towards the front of the vehicle, and # Y pointing to the left. # # ============================================================================= import pychrono as chrono import pychrono.vehicle as veh import pychrono.irrlicht as irr import math as m # ============================================================================= def main(): #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n") # Create systems # Create the FEDA vehicle, set parameters, and initialize my_feda = veh.FEDA() my_feda.SetContactMethod(contact_method) my_feda.SetChassisCollisionType(chassis_collision_type) my_feda.SetChassisFixed(False) my_feda.SetInitPosition(chrono.ChCoordsysD(initLoc, initRot)) my_feda.SetPowertrainType(powertrain_model) my_feda.SetTireType(tire_model) my_feda.SetTireStepSize(tire_step_size) my_feda.Initialize() my_feda.SetChassisVisualizationType(chassis_vis_type) my_feda.SetSuspensionVisualizationType(suspension_vis_type) my_feda.SetSteeringVisualizationType(steering_vis_type) my_feda.SetWheelVisualizationType(wheel_vis_type) my_feda.SetTireVisualizationType(tire_vis_type) # Create the terrain terrain = veh.RigidTerrain(my_feda.GetSystem()) if (contact_method == chrono.ChContactMethod_NSC): patch_mat = chrono.ChMaterialSurfaceNSC() patch_mat.SetFriction(0.9) patch_mat.SetRestitution(0.01) elif (contact_method == chrono.ChContactMethod_SMC): patch_mat = chrono.ChMaterialSurfaceSMC() patch_mat.SetFriction(0.9) patch_mat.SetRestitution(0.01) patch_mat.SetYoungModulus(2e7) patch = terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0), chrono.ChVectorD(0, 0, 1), terrainLength, terrainWidth) patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200) patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5)) terrain.Initialize() # Create the vehicle Irrlicht interface vis = veh.ChWheeledVehicleVisualSystemIrrlicht() my_feda.GetVehicle().SetVisualSystem(vis) vis.SetWindowTitle('FED-Alpha') vis.SetWindowSize(1280, 1024) vis.SetChaseCamera(trackPoint, 6.0, 0.5) vis.Initialize() vis.AddLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png')) vis.AddTypicalLights() vis.AddSkyBox() # Create the interactive driver system driver = veh.ChIrrGuiDriver(vis) # Set the time response for steering and throttle keyboard inputs. steering_time = 1.0 # time to go from 0 to +1 (or from 0 to -1) throttle_time = 1.0 # time to go from 0 to +1 braking_time = 0.3 # time to go from 0 to +1 driver.SetSteeringDelta(10 * step_size / steering_time) driver.SetThrottleDelta(10 * step_size / throttle_time) driver.SetBrakingDelta(10 * step_size / braking_time) driver.Initialize() # Simulation loop realtime_timer = chrono.ChRealtimeStepTimer() while vis.Run() : time = my_feda.GetSystem().GetChTime() vis.BeginScene() vis.DrawAll() vis.EndScene() # Get driver inputs driver_inputs = driver.GetInputs() # Update modules (process inputs from other modules) driver.Synchronize(time) terrain.Synchronize(time) my_feda.Synchronize(time, driver_inputs, terrain) vis.Synchronize(driver.GetInputModeAsString(), driver_inputs) # Advance simulation for one timestep for all modules driver.Advance(step_size) terrain.Advance(step_size) my_feda.Advance(step_size) vis.Advance(step_size) # Spin in place for real time to catch up realtime_timer.Spin(step_size) return 0 # The path to the Chrono data directory containing various assets (meshes, textures, data files) # is automatically set, relative to the default location of this demo. # If running from a different directory, you must change the path to the data directory with: #chrono.SetChronoDataPath('path/to/data') veh.SetDataPath(chrono.GetChronoDataPath() + 'vehicle/') # Initial vehicle location and orientation initLoc = chrono.ChVectorD(0, 0, 0.5) initRot = chrono.ChQuaternionD(1, 0, 0, 0) # Visualization type for vehicle parts (PRIMITIVES, MESH, or NONE) chassis_vis_type = veh.VisualizationType_MESH suspension_vis_type = veh.VisualizationType_PRIMITIVES steering_vis_type = veh.VisualizationType_PRIMITIVES wheel_vis_type = veh.VisualizationType_MESH tire_vis_type = veh.VisualizationType_MESH # Collision type for chassis (PRIMITIVES, MESH, or NONE) chassis_collision_type = veh.CollisionType_NONE # Type of powertrain model (SHAFTS, SIMPLE_MAP) powertrain_model = veh.PowertrainModelType_SIMPLE_MAP # Type of tire model (RIGID, PAC02) tire_model = veh.TireModelType_PAC02 # Rigid terrain terrainHeight = 0; # terrain height (FLAT terrain only) terrainLength = 100.0; # size in X direction terrainWidth = 100.0; # size in Y direction # Point on chassis tracked by the camera trackPoint = chrono.ChVectorD(0.0, 0.0, 1.75) # Contact method contact_method = chrono.ChContactMethod_SMC # Simulation step sizes step_size = 1e-3; tire_step_size = 1e-3; main()
py
1a4949da7fa036474bda60b3eb26924778257458
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables __all__ = ['ControllerDetails'] class ControllerDetails(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, resource_name_: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ Represents an instance of a DNC controller. API Version: 2020-08-08-preview. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] location: Location of the resource. :param pulumi.Input[str] resource_group_name: The name of the Azure Resource group of which a given DelegatedNetwork resource is part. This name must be at least 1 character in length, and no more than 90. :param pulumi.Input[str] resource_name_: The name of the resource. It must be a minimum of 3 characters, and a maximum of 63. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: The resource tags. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['location'] = location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['resource_name'] = resource_name_ __props__['tags'] = tags __props__['dnc_app_id'] = None __props__['dnc_endpoint'] = None __props__['dnc_tenant_id'] = None __props__['name'] = None __props__['provisioning_state'] = None __props__['resource_guid'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:delegatednetwork:ControllerDetails"), pulumi.Alias(type_="azure-native:delegatednetwork/v20200808preview:ControllerDetails"), pulumi.Alias(type_="azure-nextgen:delegatednetwork/v20200808preview:ControllerDetails")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(ControllerDetails, __self__).__init__( 'azure-native:delegatednetwork:ControllerDetails', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'ControllerDetails': """ Get an existing ControllerDetails resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["dnc_app_id"] = None __props__["dnc_endpoint"] = None __props__["dnc_tenant_id"] = None __props__["location"] = None __props__["name"] = None __props__["provisioning_state"] = None __props__["resource_guid"] = None __props__["tags"] = None __props__["type"] = None return ControllerDetails(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="dncAppId") def dnc_app_id(self) -> pulumi.Output[str]: """ dnc application id should be used by customer to authenticate with dnc gateway. """ return pulumi.get(self, "dnc_app_id") @property @pulumi.getter(name="dncEndpoint") def dnc_endpoint(self) -> pulumi.Output[str]: """ dnc endpoint url that customers can use to connect to """ return pulumi.get(self, "dnc_endpoint") @property @pulumi.getter(name="dncTenantId") def dnc_tenant_id(self) -> pulumi.Output[str]: """ tenant id of dnc application id """ return pulumi.get(self, "dnc_tenant_id") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Location of the resource. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The current state of dnc controller resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> pulumi.Output[str]: """ Resource guid. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ The resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of resource. """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
py
1a494a3a842a103512814693c4d542c84af5f081
from django import forms from .models import Comment, Review class ReviewForm(forms.ModelForm): class Meta: model = Review fields = ('rating', 'experience', 'description') def clean_rating(self): data = self.cleaned_data['rating'] if not data >= 1 and data <= 5: raise forms.ValidationError("Please choose a rating") return data class CommentForm(forms.ModelForm): class Meta: model = Comment fields = ('body',)
py
1a494aa2da01db2ac12ed21a1ce6643f45aa5776
#!/usr/bin/env python3 # Copyright (c) 2015-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test transaction signing using the signrawtransaction RPC.""" from test_framework.test_framework import TitcoinTestFramework from test_framework.util import * class SignRawTransactionsTest(TitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def successful_signing_test(self): """Create and sign a valid raw transaction with one input. Expected results: 1) The transaction has a complete set of signatures 2) No script verification error occurred""" privKeys = ['cUeKHd5orzT3mz8P9pxyREHfsWtVfgsfDjiZZBcjUBAaGk1BTj7N', 'cVKpPfVKSJxKqVpE9awvXNWuLHCa5j5tiE7K6zbUSptFpTEtiFrA'] inputs = [ # Valid pay-to-pubkey scripts {'txid': '9b907ef1e3c26fc71fe4a4b3580bc75264112f95050014157059c736f0202e71', 'vout': 0, 'scriptPubKey': '76a91460baa0f494b38ce3c940dea67f3804dc52d1fb9488ac'}, {'txid': '83a4f6a6b73660e13ee6cb3c6063fa3759c50c9b7521d0536022961898f4fb02', 'vout': 0, 'scriptPubKey': '76a914669b857c03a5ed269d5d85a1ffac9ed5d663072788ac'}, ] outputs = {'mpLQjfK79b7CCV4VMJWEWAj5Mpx8Up5zxB': 0.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) rawTxSigned = self.nodes[0].signrawtransaction(rawTx, inputs, privKeys) # 1) The transaction has a complete set of signatures assert 'complete' in rawTxSigned assert_equal(rawTxSigned['complete'], True) # 2) No script verification error occurred assert 'errors' not in rawTxSigned def script_verification_error_test(self): """Create and sign a raw transaction with valid (vin 0), invalid (vin 1) and one missing (vin 2) input script. Expected results: 3) The transaction has no complete set of signatures 4) Two script verification errors occurred 5) Script verification errors have certain properties ("txid", "vout", "scriptSig", "sequence", "error") 6) The verification errors refer to the invalid (vin 1) and missing input (vin 2)""" privKeys = ['cUeKHd5orzT3mz8P9pxyREHfsWtVfgsfDjiZZBcjUBAaGk1BTj7N'] inputs = [ # Valid pay-to-pubkey script {'txid': '9b907ef1e3c26fc71fe4a4b3580bc75264112f95050014157059c736f0202e71', 'vout': 0}, # Invalid script {'txid': '5b8673686910442c644b1f4993d8f7753c7c8fcb5c87ee40d56eaeef25204547', 'vout': 7}, # Missing scriptPubKey {'txid': '9b907ef1e3c26fc71fe4a4b3580bc75264112f95050014157059c736f0202e71', 'vout': 1}, ] scripts = [ # Valid pay-to-pubkey script {'txid': '9b907ef1e3c26fc71fe4a4b3580bc75264112f95050014157059c736f0202e71', 'vout': 0, 'scriptPubKey': '76a91460baa0f494b38ce3c940dea67f3804dc52d1fb9488ac'}, # Invalid script {'txid': '5b8673686910442c644b1f4993d8f7753c7c8fcb5c87ee40d56eaeef25204547', 'vout': 7, 'scriptPubKey': 'badbadbadbad'} ] outputs = {'mpLQjfK79b7CCV4VMJWEWAj5Mpx8Up5zxB': 0.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) # Make sure decoderawtransaction is at least marginally sane decodedRawTx = self.nodes[0].decoderawtransaction(rawTx) for i, inp in enumerate(inputs): assert_equal(decodedRawTx["vin"][i]["txid"], inp["txid"]) assert_equal(decodedRawTx["vin"][i]["vout"], inp["vout"]) # Make sure decoderawtransaction throws if there is extra data assert_raises_rpc_error(-22, "TX decode failed", self.nodes[0].decoderawtransaction, rawTx + "00") rawTxSigned = self.nodes[0].signrawtransaction(rawTx, scripts, privKeys) # 3) The transaction has no complete set of signatures assert 'complete' in rawTxSigned assert_equal(rawTxSigned['complete'], False) # 4) Two script verification errors occurred assert 'errors' in rawTxSigned assert_equal(len(rawTxSigned['errors']), 2) # 5) Script verification errors have certain properties assert 'txid' in rawTxSigned['errors'][0] assert 'vout' in rawTxSigned['errors'][0] assert 'witness' in rawTxSigned['errors'][0] assert 'scriptSig' in rawTxSigned['errors'][0] assert 'sequence' in rawTxSigned['errors'][0] assert 'error' in rawTxSigned['errors'][0] # 6) The verification errors refer to the invalid (vin 1) and missing input (vin 2) assert_equal(rawTxSigned['errors'][0]['txid'], inputs[1]['txid']) assert_equal(rawTxSigned['errors'][0]['vout'], inputs[1]['vout']) assert_equal(rawTxSigned['errors'][1]['txid'], inputs[2]['txid']) assert_equal(rawTxSigned['errors'][1]['vout'], inputs[2]['vout']) assert not rawTxSigned['errors'][0]['witness'] # Now test signing failure for transaction with input witnesses p2wpkh_raw_tx = "01000000000102fff7f7881a8099afa6940d42d1e7f6362bec38171ea3edf433541db4e4ad969f00000000494830450221008b9d1dc26ba6a9cb62127b02742fa9d754cd3bebf337f7a55d114c8e5cdd30be022040529b194ba3f9281a99f2b1c0a19c0489bc22ede944ccf4ecbab4cc618ef3ed01eeffffffef51e1b804cc89d182d279655c3aa89e815b1b309fe287d9b2b55d57b90ec68a0100000000ffffffff02202cb206000000001976a9148280b37df378db99f66f85c95a783a76ac7a6d5988ac9093510d000000001976a9143bde42dbee7e4dbe6a21b2d50ce2f0167faa815988ac000247304402203609e17b84f6a7d30c80bfa610b5b4542f32a8a0d5447a12fb1366d7f01cc44a0220573a954c4518331561406f90300e8f3358f51928d43c212a8caed02de67eebee0121025476c2e83188368da1ff3e292e7acafcdb3566bb0ad253f62fc70f07aeee635711000000" rawTxSigned = self.nodes[0].signrawtransaction(p2wpkh_raw_tx) # 7) The transaction has no complete set of signatures assert 'complete' in rawTxSigned assert_equal(rawTxSigned['complete'], False) # 8) Two script verification errors occurred assert 'errors' in rawTxSigned assert_equal(len(rawTxSigned['errors']), 2) # 9) Script verification errors have certain properties assert 'txid' in rawTxSigned['errors'][0] assert 'vout' in rawTxSigned['errors'][0] assert 'witness' in rawTxSigned['errors'][0] assert 'scriptSig' in rawTxSigned['errors'][0] assert 'sequence' in rawTxSigned['errors'][0] assert 'error' in rawTxSigned['errors'][0] # Non-empty witness checked here assert_equal(rawTxSigned['errors'][1]['witness'], ["304402203609e17b84f6a7d30c80bfa610b5b4542f32a8a0d5447a12fb1366d7f01cc44a0220573a954c4518331561406f90300e8f3358f51928d43c212a8caed02de67eebee01", "025476c2e83188368da1ff3e292e7acafcdb3566bb0ad253f62fc70f07aeee6357"]) assert not rawTxSigned['errors'][0]['witness'] def run_test(self): self.successful_signing_test() self.script_verification_error_test() if __name__ == '__main__': SignRawTransactionsTest().main()
py
1a494b424d2a40955dbbfb96bd9597051f8ec117
# Read file, create an array of its values after removing the \n from each line with open('input') as file: values = file.readlines() values = [int(value[:len(value)-1]) for value in values] # PART 1: # Create a hashmap of every value's complements to reach 2020. # When you encounter that complement in the future, multiply the two together and print them. complements = dict() for i, value in enumerate(values): try: print(f'{values[complements[value]]} * {value} = {value * values[complements[value]]}') except KeyError: complements[2020 - value] = i # In PART 2 I'm going to use the filter() and combinations() functions from itertools import combinations import math def check(val): return sum(val) == 2020 combinations = list(filter(check, list(combinations(values, 3)))) for combination in combinations: print(f'{combination[0]} * {combination[1]} * {combination[2]} = {math.prod(combination)}')
py
1a494e3da23528c7cd1e04ed565d5203f889ea5b
#!/usr/bin/env python from __future__ import division from __future__ import print_function # from keras.layers.merge import Concatenate, Add, Dot, Multiply import glob import os import zipfile import keras import numpy as np import tensorflow as tf from PIL import Image from keras import backend as K from sklearn.metrics import classification_report, confusion_matrix from tensorflow.python.lib.io import file_io from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import tag_constants, signature_constants from tensorflow.python.saved_model.signature_def_utils_impl import predict_signature_def LABEL_SET = ['left', 'right', 'up', 'down', 'center', 'double_blink'] def normalize_image(img): # return (img - 127.5) / 127.5 return (img.astype(np.float32) - 127.5) / 127.5 def denormalize_image(img): result = img * 127.5 + 127.5 return result.astype(np.uint8) NORMALIZE = False def to_savedmodel(model, export_path): """Convert the Keras HDF5 model into TensorFlow SavedModel.""" builder = saved_model_builder.SavedModelBuilder(export_path) signature = predict_signature_def(inputs={'input': model.inputs[0]}, outputs={'income': model.outputs[0]}) with K.get_session() as sess: builder.add_meta_graph_and_variables( sess=sess, tags=[tag_constants.SERVING], signature_def_map={ signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature} ) builder.save() def session_to_savedmodel(session, inputs, outputs, export_path): """Convert the Keras HDF5 model into TensorFlow SavedModel.""" builder = saved_model_builder.SavedModelBuilder(export_path) signature = predict_signature_def(inputs={'inputs': inputs}, outputs={'outputs': outputs}) builder.add_meta_graph_and_variables( sess=session, tags=[tag_constants.SERVING], signature_def_map={ signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature} ) builder.save() def session_from_savedmodel(session, export_dir): tf.saved_model.loader.load(session, [tag_constants.SERVING], export_dir) def compare_url(a, b): ia = int(a.split('/')[-1].replace('img_', '').split('.')[0]) prefix_a = '/'.join(a.split('/')[:-1]) ib = int(b.split('/')[-1].replace('img_', '').split('.')[0]) prefix_b = '/'.join(b.split('/')[:-1]) if prefix_a == prefix_b: return ia - ib elif prefix_a > prefix_b: return 1 else: return 0 # key compare urls OFFSET_BATCH = 1000000 def key_compare_url(a): ia = int(a.split('/')[-1].replace('img_', '').split('.')[0]) batch_num = int(a.split('/')[-2].replace('batch_', '')) # prefix_a = '/'.join(a.split('/')[:-1]) return batch_num * OFFSET_BATCH + ia def load_npz(url): files = np.load(url) return files['X'], files['y'] # big problem with sorting data!!!!!! def load_dataset(base_urls, label_set, sequence_length=15, get_zip=True): globs = {} print(base_urls) zips = {} zip_dirs = {} if os.path.isdir(base_urls[0]): get_zip = False if not get_zip: for l in label_set: globs[l] = [] for d in base_urls: # print ('Open folder label {} in {}'.format(l, d)) path = os.path.join(d, l) # print (path) globs[l] += glob.glob('{dir}/*/*.jpg'.format(dir=path)) globs[l].sort(compare_url) else: for d in base_urls: zips[d] = zipfile.ZipFile(retrieve_file(d), 'r') # zips[d] = GzipFile(d, 'r+b') zip_dirs[d] = {} z_namelist = [n for n in zips[d].namelist() if n.split(".")[-1].lower() == 'jpg'] for l in label_set: zip_dirs[d][l] = [n for n in z_namelist if l in n] # zip_dirs[d][l].sort(compare_url) zip_dirs[d][l].sort(key=key_compare_url) # for u in zip_dirs[d][l]: # print(u) # datasets X = [] y = [] y_raws = [] eye = np.eye(len(label_set)) for i, l in enumerate(label_set): print('Label: {}'.format(l)) if get_zip: for d in base_urls: data = [] print('---Read Zip file: {}'.format(d)) for j, img_url in enumerate(zip_dirs[d][l]): with Image.open(zips[d].open(img_url, 'r')) as img: # img = Image.open(zips[d].open(img_url, 'r')) if NORMALIZE: img_array = normalize_image(np.array(img)) else: img_array = np.array(img) if j % sequence_length == 0 and j != 0: # package into sequence X.append(np.array(data)) y.append(np.array(eye[i])) y_raws.append(l) data = [] # else: data.append(img_array) else: data = [] for j, img_url in enumerate(globs[l]): # if j >= 61: # break with Image.open(img_url) as img: # img = Image.open(img_url) if NORMALIZE: img_array = normalize_image(np.array(img)) else: img_array = np.array(img) # img_array = normalize_image(np.array(img)) if j % sequence_length == 0 and j != 0: # package into sequence X.append(np.array(data)) y.append(np.array(eye[i])) y_raws.append(l) data = [] # else: data.append(img_array) if get_zip: for d in base_urls: zips[d].close() X = np.array(X) y = np.array(y) print(X.shape) print(y.shape) return X, y, y_raws, label_set # h5py workaround: copy local models over to GCS if the job_dir is GCS. def copy_file_to_gcs(job_dir, file_path): with file_io.FileIO(file_path, mode='r') as input_f: with file_io.FileIO(os.path.join(job_dir, file_path), mode='w+') as output_f: output_f.write(input_f.read()) def write_file(job_dir, file_path): if "gs://" in file_path: print ('Write file to: {}/{}'.format(job_dir, file_path)) # with as f: return copy_file_to_gcs(job_dir, file_path) else: return open(file_path, 'r') # read file handle opening of gsc def retrieve_file(file_path): if "gs://" in file_path: print ('readata from gcs: {}'.format(file_path)) # with as f: return file_io.FileIO(file_path, 'r') else: return open(file_path, 'r+b') def after_train(model, model_name, job_dir, print_fn=print): # def after_train(model, model_file, model_dir, train_config, label_set, model_name='cnn_', print_fn=print): # Unhappy hack to work around h5py not being able to write to GCS. # Force snapshots and saves to local filesystem, then copy them over to GCS. if job_dir.startswith("gs://"): model.save(model_name) copy_file_to_gcs(job_dir, model_name) else: model.save(os.path.join(job_dir, model_name)) # Convert the Keras model to TensorFlow SavedModel print_fn('Save model to {}'.format(job_dir)) to_savedmodel(model, os.path.join(job_dir, 'export')) def report(true_val, pred_val, label_set, epoch=0, print_fn=print, digits=4, **kwargs): report = classification_report(true_val, pred_val, target_names=label_set, digits=digits) matrix = confusion_matrix(true_val, pred_val) print_fn("----- Epoch:{} -----".format(epoch)) if 'loss' in kwargs: print_fn('--Loss: {}'.format(kwargs['loss'])) print_fn(report) print_fn(matrix) class EvalCheckPoint(keras.callbacks.Callback): def __init__(self, ml_model, job_dir, X, y, label_set, sequence_lenth, eval_freq=4, print_func=print, epochs=10, batch_norm=False ): self.job_dir = job_dir self.label_set = label_set self.sequence_length = sequence_lenth self.X_test = X self.y_test = y self.batch_norm = batch_norm self.epochs = epochs self.eval_freq = eval_freq self.model = None self.print_func = print_func self.set_model(ml_model) self.true_val = None self.pred_val = None self.true_val = np.array(np.argmax(self.y_test, axis=1)) def on_epoch_begin(self, epoch, logs={}): if epoch > 0 and (epoch % self.eval_freq == 0 or epoch == self.epochs): if self.model is not None: # if self.batch_norm: K.set_learning_phase(0) pred_val = np.argmax(self.model.predict(self.X_test), axis=1) K.set_learning_phase(1) report(self.true_val, pred_val, self.label_set, print_fn=self.print_func)
py
1a494e4e8f558ee848111ecb66ac129a8d72aadc
from wahlprogramme import create_app from wahlprogramme.database import load_db # load database db = load_db("data/", txt=False) app = create_app(db)
py
1a494eb4208680fb048af45eded11e1a1fd8af14
from statement import Statement def main(): feature = "project_creation" with open(f"./features/{feature}.feature", "r") as file, open(f"{feature}.steps.ts", "w") as outfile: outfile.write('import { Given, When, Then, TableDefinition } from "cucumber";\n\n\n') antecessors = [] previous_patterns = { "Given": [], "When": [], "Then": [], } for line in file.readlines(): statement = Statement.for_line(line, outfile) if statement: statement.write_statement_block(antecessors, previous_patterns) if __name__ == '__main__': main()
py
1a494f8a32e4f9549f44e00501e64ae274b18962
from utils import detector_utils as detector_utils import cv2 import tensorflow as tf import multiprocessing from multiprocessing import Queue, Pool import time from utils.detector_utils import WebcamVideoStream import datetime import argparse frame_processed = 0 score_thresh = 0.2 # Create a worker thread that loads graph and # does detection on images in an input queue and puts it on an output queue def worker(input_q, output_q, cap_params, frame_processed): print(">> loading frozen model for worker") detection_graph, sess = detector_utils.load_inference_graph() sess = tf.Session(graph=detection_graph) while True: #print("> ===== in worker loop, frame ", frame_processed) frame = input_q.get() if (frame is not None): # actual detection boxes, scores = detector_utils.detect_objects( frame, detection_graph, sess) # draw bounding boxes detector_utils.draw_box_on_image( cap_params['num_hands_detect'], cap_params["score_thresh"], scores, boxes, cap_params['im_width'], cap_params['im_height'], frame) # add frame annotated with bounding box to queue output_q.put(frame) frame_processed += 1 else: output_q.put(frame) sess.close() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-src', '--source', dest='video_source', type=int, default=0, help='Device index of the camera.') parser.add_argument('-nhands', '--num_hands', dest='num_hands', type=int, default=2, help='Max number of hands to detect.') parser.add_argument('-fps', '--fps', dest='fps', type=int, default=1, help='Show FPS on detection/display visualization') parser.add_argument('-wd', '--width', dest='width', type=int, default=300, help='Width of the frames in the video stream.') parser.add_argument('-ht', '--height', dest='height', type=int, default=200, help='Height of the frames in the video stream.') parser.add_argument('-ds', '--display', dest='display', type=int, default=1, help='Display the detected images using OpenCV. This reduces FPS') parser.add_argument('-num-w', '--num-workers', dest='num_workers', type=int, default=4, help='Number of workers.') parser.add_argument('-q-size', '--queue-size', dest='queue_size', type=int, default=5, help='Size of the queue.') args = parser.parse_args() input_q = Queue(maxsize=args.queue_size) output_q = Queue(maxsize=args.queue_size) video_capture = WebcamVideoStream(src=args.video_source, width=args.width, height=args.height).start() cap_params = {} frame_processed = 0 cap_params['im_width'], cap_params['im_height'] = video_capture.size() cap_params['score_thresh'] = score_thresh # max number of hands we want to detect/track cap_params['num_hands_detect'] = args.num_hands print(cap_params, args) # spin up workers to paralleize detection. pool = Pool(args.num_workers, worker, (input_q, output_q, cap_params, frame_processed)) start_time = datetime.datetime.now() num_frames = 0 fps = 0 index = 0 while True: frame = video_capture.read() frame = cv2.flip(frame, 1) index += 1 input_q.put(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) output_frame = output_q.get() output_frame = cv2.cvtColor(output_frame, cv2.COLOR_RGB2BGR) elapsed_time = (datetime.datetime.now() - start_time).total_seconds() num_frames += 1 fps = num_frames / elapsed_time # print("frame ", index, num_frames, elapsed_time, fps) if (output_frame is not None): if (args.display > 0): if (args.fps > 0): detector_utils.draw_fps_on_image( "FPS : " + str(int(fps)), output_frame) cv2.imshow('Muilti - threaded Detection', output_frame) if cv2.waitKey(1) & 0xFF == ord('q'): break else: if (num_frames == 400): num_frames = 0 start_time = datetime.datetime.now() else: print("frames processed: ", index, "elapsed time: ", elapsed_time, "fps: ", str(int(fps))) else: # print("video end") break elapsed_time = (datetime.datetime.now() - start_time).total_seconds() fps = num_frames / elapsed_time print("fps", fps) pool.terminate() video_capture.stop() cv2.destroyAllWindows()
py
1a495026ed8b6f314c3161ea83336be839dd3db0
from django.contrib import admin from django.contrib.auth.admin import UserAdmin as BaseUserAdmin from django.contrib.auth.models import User # Register your models here. from .models import Article, Comment, Profile, Book, BookTag, BookBlock, BookComment, Movie, Figure, MovieComment, MovieBlock, MovieTag, Picture, Source, Notice, FollowRela, Brand, Genre, Computer, CPU, GPU, Earphone, Phone, Collection, Like class ProfileAdmin(admin.ModelAdmin): list_display = ('user', 'media_editor_auth') list_filter = ('media_editor_auth',) list_per_page = 10 class ProfileInline(admin.StackedInline): model = Profile can_delete = False verbose_name_plural = 'profile' filter_horizontal = ('follow', ) class UserAdmin(BaseUserAdmin): inlines = (ProfileInline, ) class CommentInline(admin.StackedInline): model = Comment list_display = ('user',) list_filter = ('pub_date', 'user') list_per_page = 10 search_fields = ('user',) class BookTagInline(admin.StackedInline): model = BookTag list_display = ('title',) list_filter = ('pub_date',) list_per_page = 10 search_fields = ('title',) class BookBlockAdmin(admin.ModelAdmin): list_display = ('title',) list_per_page = 10 inlines = [BookTagInline, ] class MovieTagInline(admin.StackedInline): model = MovieTag list_display = ('title',) list_filter = ('pub_date',) list_per_page = 10 search_fields = ('title',) class MovieBlockAdmin(admin.ModelAdmin): list_display = ('title',) list_per_page = 10 inlines = [MovieTagInline, ] class ArticleAdmin(admin.ModelAdmin): list_display = ('id', 'title', 'user', 'status', 'views', 'cover') list_filter = ('pub_date', 'user') list_per_page = 10 search_fields = ('user',) inlines = [CommentInline, ] class CommentAdmin(admin.ModelAdmin): list_display = ('user',) list_filter = ('pub_date', 'user') list_per_page = 10 search_fields = ('user',) class MovieAdmin(admin.ModelAdmin): list_display = ('title', ) list_filter = ('pub_date', ) list_per_page = 10 filter_horizontal = ('actor', 'director', 'writer', 'tag', 'still', 'play_source') class FigureAdmin(admin.ModelAdmin): list_display = ('name', ) list_filter = ('name', ) list_per_page = 10 class BookAdmin(admin.ModelAdmin): list_display = ('title', 'subtitle') list_filter = ('pub_date', ) list_per_page = 10 filter_horizontal = ('tag', ) class NoticeAdmin(admin.ModelAdmin): list_display = ('release_date', 'tab') list_filter = ('tab', ) list_per_page = 10 admin.site.unregister(User) admin.site.register(User, UserAdmin) admin.site.register(Article, ArticleAdmin) admin.site.register(Comment, CommentAdmin) admin.site.register(Book, BookAdmin) admin.site.register(BookBlock, BookBlockAdmin) admin.site.register(MovieBlock, MovieBlockAdmin) admin.site.register(BookTag) admin.site.register(MovieTag) admin.site.register(BookComment) admin.site.register(Movie, MovieAdmin) admin.site.register(Figure, FigureAdmin) admin.site.register(MovieComment) admin.site.register(Profile, ProfileAdmin) admin.site.register(Picture) admin.site.register(Source) admin.site.register(Notice, NoticeAdmin) admin.site.register(FollowRela) admin.site.register(Brand) admin.site.register(Genre) admin.site.register(Computer) admin.site.register(CPU) admin.site.register(GPU) admin.site.register(Earphone) admin.site.register(Phone) admin.site.register(Collection) admin.site.register(Like)
py
1a495218c5d13215971afae32e10a360e2d374cd
import carla from challenge.data_provider import DataProvider class AutonomousAgent(): def __init__(self): # current global plans to reach a destination self._topological_plan = None, self._waypoints_plan = None # this data structure will contain all sensor data self.data_provider = DataProvider() # agent's initialization self.setup() def setup(self): """ Initialize everything needed by your agent. """ pass def sensors_setup(self): """ Define the sensor suite required by the agent :return: a list containing the required sensors in the following format: [ ['sensor.camera.rgb', {'x':x_rel, 'y': y_rel, 'z': z_rel, 'yaw': yaw, 'pitch': pitch, 'roll': roll, 'width': width, 'height': height, 'fov': fov}, 'Sensor01'], ['sensor.camera.rgb', {'x':x_rel, 'y': y_rel, 'z': z_rel, 'yaw': yaw, 'pitch': pitch, 'roll': roll, 'width': width, 'height': height, 'fov': fov}, 'Sensor02'], ['sensor.lidar.ray_cast', {'x':x_rel, 'y': y_rel, 'z': z_rel, 'yaw': yaw, 'pitch': pitch, 'roll': roll}, 'Sensor03'] ] """ sensors = [] return sensors def run_step(self): """ Execute one step of navigation. :return: control """ pass def __call__(self): input_data = self.data_provider.get_data() control = self.run_step(input_data) control.manual_gear_shift = False return control def all_sensors_ready(self): return self.data_provider.all_sensors_ready() def set_global_plan(self, topological_plan, waypoints_plan): self._topological_plan = topological_plan, self._waypoints_plan = waypoints_plan
py
1a4952b0be1c1b84e83d5b3e8967a5a3c66dcdbe
from sqlalchemy import * from migrate import * from migrate.changeset import schema pre_meta = MetaData() post_meta = MetaData() collections = Table('collections', pre_meta, Column('id', INTEGER, primary_key=True, nullable=False), Column('user_id', INTEGER), Column('collection_id', INTEGER), ) users = Table('users', post_meta, Column('id', Integer, primary_key=True, nullable=False), Column('user_id', Integer), Column('collection_id', Integer), ) def upgrade(migrate_engine): # Upgrade operations go here. Don't create your own engine; bind # migrate_engine to your metadata pre_meta.bind = migrate_engine post_meta.bind = migrate_engine pre_meta.tables['collections'].drop() post_meta.tables['users'].create() def downgrade(migrate_engine): # Operations to reverse the above upgrade go here. pre_meta.bind = migrate_engine post_meta.bind = migrate_engine pre_meta.tables['collections'].create() post_meta.tables['users'].drop()
py
1a49531e600932e6a5b169c03f9c698d16b7b919
############################### # # Created by Patrik Valkovic # 3/9/2021 # ############################### import unittest import ffeat class EachArgTest(unittest.TestCase): def test_oneparam(self): p = ffeat.flow.EachArg(lambda x: x + 1) result, kargs = p(8) self.assertSequenceEqual(result, [9]) def test_moreparams(self): p = ffeat.flow.EachArg(lambda x: x + 1) result, kargs = p(8, 12, 19, 20) self.assertSequenceEqual(result, [9, 13, 20, 21]) if __name__ == '__main__': unittest.main()
py
1a49534c7eda346c42348b2348c18f6d1e3cbe6f
from math import gcd A, B = map(int, input().split()) print(A * B // gcd(A, B))
py
1a4953b4ab52a2f2607bb630514a2c57071c03c7
# GENERATED BY KOMAND SDK - DO NOT EDIT from .action import BlacklistByIocHash
py
1a4953f8e5fc190cd0eae01aafc91012e10d64b2
import tensorflow as tf import os from niftynet.application.base_application import BaseApplication from niftynet.engine.application_factory import \ ApplicationNetFactory, InitializerFactory, OptimiserFactory from niftynet.engine.application_variables import \ CONSOLE, NETWORK_OUTPUT, TF_SUMMARIES from niftynet.engine.sampler_grid import GridSampler from niftynet.engine.sampler_resize import ResizeSampler from niftynet.engine.sampler_uniform import UniformSampler from niftynet.engine.sampler_weighted import WeightedSampler from niftynet.engine.sampler_balanced import BalancedSampler from niftynet.engine.windows_aggregator_grid import GridSamplesAggregator from niftynet.engine.windows_aggregator_resize import ResizeSamplesAggregator from niftynet.io.image_reader import ImageReader from niftynet.layer.binary_masking import BinaryMaskingLayer from niftynet.layer.discrete_label_normalisation import \ DiscreteLabelNormalisationLayer from niftynet.layer.histogram_normalisation import \ HistogramNormalisationLayer from niftynet.layer.loss_segmentation import LossFunction from niftynet.layer.mean_variance_normalisation import \ MeanVarNormalisationLayer from niftynet.layer.pad import PadLayer from niftynet.layer.post_processing import PostProcessingLayer from niftynet.layer.rand_flip import RandomFlipLayer from niftynet.layer.rand_rotation import RandomRotationLayer from niftynet.layer.rand_artefact import RandomArtefactLayer from niftynet.layer.rand_spatial_scaling import RandomSpatialScalingLayer from niftynet.evaluation.segmentation_evaluator import SegmentationEvaluator SUPPORTED_INPUT = set(['image', 'label', 'weight', 'sampler', 'inferred']) class SegmentationApplication(BaseApplication): REQUIRED_CONFIG_SECTION = "SEGMENTATION" def __init__(self, net_param, action_param, action): super(SegmentationApplication, self).__init__() tf.logging.info('starting segmentation application') self.action = action self.net_param = net_param self.action_param = action_param self.data_param = None self.segmentation_param = None self.SUPPORTED_SAMPLING = { 'uniform': (self.initialise_uniform_sampler, self.initialise_grid_sampler, self.initialise_grid_aggregator), 'weighted': (self.initialise_weighted_sampler, self.initialise_grid_sampler, self.initialise_grid_aggregator), 'resize': (self.initialise_resize_sampler, self.initialise_resize_sampler, self.initialise_resize_aggregator), 'balanced': (self.initialise_balanced_sampler, self.initialise_grid_sampler, self.initialise_grid_aggregator), } def initialise_dataset_loader( self, data_param=None, task_param=None, data_partitioner=None): self.data_param = data_param self.segmentation_param = task_param file_lists = self.get_file_lists(data_partitioner) # read each line of csv files into an instance of Subject if self.is_training: self.readers = [] for file_list in file_lists: reader = ImageReader({'image', 'label', 'weight', 'sampler'}) reader.initialise(data_param, task_param, file_list) self.readers.append(reader) elif self.is_inference: # in the inference process use image input only inference_reader = ImageReader({'image'}) file_list = data_partitioner.inference_files inference_reader.initialise(data_param, task_param, file_list) self.readers = [inference_reader] elif self.is_evaluation: file_list = data_partitioner.inference_files reader = ImageReader({'image', 'label', 'inferred'}) reader.initialise(data_param, task_param, file_list) self.readers = [reader] else: raise ValueError('Action `{}` not supported. Expected one of {}' .format(self.action, self.SUPPORTED_ACTIONS)) foreground_masking_layer = None if self.net_param.normalise_foreground_only: foreground_masking_layer = BinaryMaskingLayer( type_str=self.net_param.foreground_type, multimod_fusion=self.net_param.multimod_foreground_type, threshold=0.0) mean_var_normaliser = MeanVarNormalisationLayer( image_name='image', binary_masking_func=foreground_masking_layer) histogram_normaliser = None if self.net_param.histogram_ref_file: histogram_normaliser = HistogramNormalisationLayer( image_name='image', modalities=vars(task_param).get('image'), model_filename=self.net_param.histogram_ref_file, binary_masking_func=foreground_masking_layer, norm_type=self.net_param.norm_type, cutoff=self.net_param.cutoff, name='hist_norm_layer') label_normalisers = None if self.net_param.histogram_ref_file and \ task_param.label_normalisation: label_normalisers = [DiscreteLabelNormalisationLayer( image_name='label', modalities=vars(task_param).get('label'), model_filename=self.net_param.histogram_ref_file)] if self.is_evaluation: label_normalisers.append( DiscreteLabelNormalisationLayer( image_name='inferred', modalities=vars(task_param).get('inferred'), model_filename=self.net_param.histogram_ref_file)) label_normalisers[-1].key = label_normalisers[0].key normalisation_layers = [] if self.net_param.normalisation: normalisation_layers.append(histogram_normaliser) if self.net_param.whitening: normalisation_layers.append(mean_var_normaliser) if task_param.label_normalisation and \ (self.is_training or not task_param.output_prob): normalisation_layers.extend(label_normalisers) augmentation_layers = [] if self.is_training: if self.action_param.random_artefact != -1: augmentation_layers.append(RandomArtefactLayer()) if self.action_param.random_flipping_axes != -1: augmentation_layers.append(RandomFlipLayer(flip_axes=self.action_param.random_flipping_axes)) if self.action_param.scaling_percentage: augmentation_layers.append(RandomSpatialScalingLayer( min_percentage=self.action_param.scaling_percentage[0], max_percentage=self.action_param.scaling_percentage[1])) if self.action_param.rotation_angle or \ self.action_param.rotation_angle_x or \ self.action_param.rotation_angle_y or \ self.action_param.rotation_angle_z: rotation_layer = RandomRotationLayer() if self.action_param.rotation_angle: rotation_layer.init_uniform_angle( self.action_param.rotation_angle) else: rotation_layer.init_non_uniform_angle( self.action_param.rotation_angle_x, self.action_param.rotation_angle_y, self.action_param.rotation_angle_z) augmentation_layers.append(rotation_layer) volume_padding_layer = [] if self.net_param.volume_padding_size: volume_padding_layer.append(PadLayer( image_name=SUPPORTED_INPUT, border=self.net_param.volume_padding_size)) for reader in self.readers: reader.add_preprocessing_layers( volume_padding_layer + normalisation_layers + augmentation_layers) def initialise_uniform_sampler(self): self.sampler = [[UniformSampler( reader=reader, data_param=self.data_param, batch_size=self.net_param.batch_size, windows_per_image=self.action_param.sample_per_volume, queue_length=self.net_param.queue_length) for reader in self.readers]] def initialise_weighted_sampler(self): self.sampler = [[WeightedSampler( reader=reader, data_param=self.data_param, batch_size=self.net_param.batch_size, windows_per_image=self.action_param.sample_per_volume, queue_length=self.net_param.queue_length) for reader in self.readers]] def initialise_resize_sampler(self): self.sampler = [[ResizeSampler( reader=reader, data_param=self.data_param, batch_size=self.net_param.batch_size, shuffle_buffer=self.is_training, queue_length=self.net_param.queue_length) for reader in self.readers]] def initialise_grid_sampler(self): self.sampler = [[GridSampler( reader=reader, data_param=self.data_param, batch_size=self.net_param.batch_size, spatial_window_size=self.action_param.spatial_window_size, window_border=self.action_param.border, queue_length=self.net_param.queue_length) for reader in self.readers]] def initialise_balanced_sampler(self): self.sampler = [[BalancedSampler( reader=reader, data_param=self.data_param, batch_size=self.net_param.batch_size, windows_per_image=self.action_param.sample_per_volume, queue_length=self.net_param.queue_length) for reader in self.readers]] def initialise_grid_aggregator(self): self.output_decoder = GridSamplesAggregator( image_reader=self.readers[0], output_path=self.action_param.save_seg_dir, window_border=self.action_param.border, interp_order=self.action_param.output_interp_order) def initialise_resize_aggregator(self): self.output_decoder = ResizeSamplesAggregator( image_reader=self.readers[0], output_path=self.action_param.save_seg_dir, window_border=self.action_param.border, interp_order=self.action_param.output_interp_order) def initialise_sampler(self): if self.is_training: self.SUPPORTED_SAMPLING[self.net_param.window_sampling][0]() elif self.is_inference: self.SUPPORTED_SAMPLING[self.net_param.window_sampling][1]() def initialise_aggregator(self): self.SUPPORTED_SAMPLING[self.net_param.window_sampling][2]() def initialise_network(self): w_regularizer = None b_regularizer = None reg_type = self.net_param.reg_type.lower() decay = self.net_param.decay if reg_type == 'l2' and decay > 0: from tensorflow.contrib.layers.python.layers import regularizers w_regularizer = regularizers.l2_regularizer(decay) b_regularizer = regularizers.l2_regularizer(decay) elif reg_type == 'l1' and decay > 0: from tensorflow.contrib.layers.python.layers import regularizers w_regularizer = regularizers.l1_regularizer(decay) b_regularizer = regularizers.l1_regularizer(decay) self.net = ApplicationNetFactory.create(self.net_param.name)( num_classes=self.segmentation_param.num_classes, w_initializer=InitializerFactory.get_initializer( name=self.net_param.weight_initializer), b_initializer=InitializerFactory.get_initializer( name=self.net_param.bias_initializer), w_regularizer=w_regularizer, b_regularizer=b_regularizer, acti_func=self.net_param.activation_function) def connect_data_and_network(self, outputs_collector=None, gradients_collector=None): # def data_net(for_training): # with tf.name_scope('train' if for_training else 'validation'): # sampler = self.get_sampler()[0][0 if for_training else -1] # data_dict = sampler.pop_batch_op() # image = tf.cast(data_dict['image'], tf.float32) # return data_dict, self.net(image, is_training=for_training) def switch_sampler(for_training): with tf.name_scope('train' if for_training else 'validation'): sampler = self.get_sampler()[0][0 if for_training else -1] return sampler.pop_batch_op() if self.is_training: # if self.action_param.validation_every_n > 0: # data_dict, net_out = tf.cond(tf.logical_not(self.is_validation), # lambda: data_net(True), # lambda: data_net(False)) # else: # data_dict, net_out = data_net(True) if self.action_param.validation_every_n > 0: data_dict = tf.cond(tf.logical_not(self.is_validation), lambda: switch_sampler(for_training=True), lambda: switch_sampler(for_training=False)) else: data_dict = switch_sampler(for_training=True) image = tf.cast(data_dict['image'], tf.float32) net_out = self.net(image, is_training=self.is_training) with tf.name_scope('Optimiser'): optimiser_class = OptimiserFactory.create( name=self.action_param.optimiser) self.optimiser = optimiser_class.get_instance( learning_rate=self.action_param.lr) loss_func = LossFunction( n_class=self.segmentation_param.num_classes, loss_type=self.action_param.loss_type, softmax=self.segmentation_param.softmax) data_loss = loss_func( prediction=net_out, ground_truth=data_dict.get('label', None), weight_map=data_dict.get('weight', None)) reg_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) if self.net_param.decay > 0.0 and reg_losses: reg_loss = tf.reduce_mean( [tf.reduce_mean(reg_loss) for reg_loss in reg_losses]) loss = data_loss + reg_loss else: loss = data_loss grads = self.optimiser.compute_gradients(loss) # collecting gradients variables gradients_collector.add_to_collection([grads]) # collecting output variables outputs_collector.add_to_collection( var=data_loss, name='loss', average_over_devices=False, collection=CONSOLE) outputs_collector.add_to_collection( var=data_loss, name='loss', average_over_devices=True, summary_type='scalar', collection=TF_SUMMARIES) # outputs_collector.add_to_collection( # var=image*180.0, name='image', # average_over_devices=False, summary_type='image3_sagittal', # collection=TF_SUMMARIES) # outputs_collector.add_to_collection( # var=image, name='image', # average_over_devices=False, # collection=NETWORK_OUTPUT) # outputs_collector.add_to_collection( # var=tf.reduce_mean(image), name='mean_image', # average_over_devices=False, summary_type='scalar', # collection=CONSOLE) elif self.is_inference: # converting logits into final output for # classification probabilities or argmax classification labels data_dict = switch_sampler(for_training=False) image = tf.cast(data_dict['image'], tf.float32) net_out = self.net(image, is_training=True) output_prob = self.segmentation_param.output_prob num_classes = self.segmentation_param.num_classes if output_prob and num_classes > 1: post_process_layer = PostProcessingLayer( 'SOFTMAX', num_classes=num_classes) elif not output_prob and num_classes > 1: post_process_layer = PostProcessingLayer( 'ARGMAX', num_classes=num_classes) else: post_process_layer = PostProcessingLayer( 'IDENTITY', num_classes=num_classes) net_out = post_process_layer(net_out) outputs_collector.add_to_collection( var=net_out, name='window', average_over_devices=False, collection=NETWORK_OUTPUT) outputs_collector.add_to_collection( var=data_dict['image_location'], name='location', average_over_devices=False, collection=NETWORK_OUTPUT) self.initialise_aggregator() def interpret_output(self, batch_output): if self.is_inference: return self.output_decoder.decode_batch( batch_output['window'], batch_output['location']) return True def initialise_evaluator(self, eval_param): self.eval_param = eval_param self.evaluator = SegmentationEvaluator(self.readers[0], self.segmentation_param, eval_param) def add_inferred_output(self, data_param, task_param): return self.add_inferred_output_like(data_param, task_param, 'label')
py
1a49550594c0933a1cd34b31d99fc274e084ab6c
# Solution of; # Project Euler Problem 439: Sum of sum of divisors # https://projecteuler.net/problem=439 # # Let d(k) be the sum of all divisors of k. We define the function S(N) = # $\sum_{i=1}^N \sum_{j=1}^Nd(i \cdot j)$. For example, S(3) = d(1) + d(2) + # d(3) + d(2) + d(4) + d(6) + d(3) + d(6) + d(9) = 59. You are given that # S(103) = 563576517282 and S(105) mod 109 = 215766508. Find S(1011) mod 109. # # by lcsm29 http://github.com/lcsm29/project-euler import timed def dummy(n): pass if __name__ == '__main__': n = 1000 i = 10000 prob_id = 439 timed.caller(dummy, n, i, prob_id)
py
1a49551ad29ab9043a6597ac03175bc472cd3b37
import subprocess import paho.mqtt.client as mqtt import json import time class Control: def __init__(self): self.Fname = "fname" self.Fhash = "fhash" self.Chash = "chash" self.Runner = set() self.JobID = "JobID" def Publish(self, target, channel, message): client = mqtt.Client() client.max_inflight_messages_set(200000) client.connect(target, 1883) client.loop_start() msg_info = client.publish(channel, message, qos=1) if msg_info.is_published() == False: msg_info.wait_for_publish() client.disconnect() def DataUpload(self): # ClusterSpec Upload cmd = "timeout 10 ipfs add ClusterSpec.json" output = subprocess.check_output(cmd, shell=True) tmp = output.split(" ") self.Fhash = tmp[1] self.Fname = tmp[2].replace("\n","") # Create_Worker Upload cmd = "timeout 10 ipfs add create_worker.py" output = subprocess.check_output(cmd, shell=True) self.Chash = output.split(" ")[1] def GetSwarm(self): Rset = set() cmd = "ipfs swarm peers" output = subprocess.check_output(cmd, shell=True) tmp = output.split("\n") for x in tmp: if x=="":continue Rset.add(x.split("/")[2]) return Rset def SetKRunner(self,K): # How to choose K good machine... # To be continued... Rset = set() cmd = "ipfs swarm peers" output = subprocess.check_output(cmd, shell=True) tmp = output.split("\n") for i in range(len(tmp)): if i >= K or tmp[i]=="": break tmpp = tmp[i].split("/") self.Runner.add((tmpp[2],tmpp[len(tmpp)-1],i)) # format : tuple(IP, NodeID, RunnerID) print self.Runner def SetClusterSpec(self): f = open('ClusterSpec.conf','r') Jspec = "" while True: line = f.readline() if not line: break try: Jspec = json.loads(line) break except: print "Bad ClusterSpec.conf" exit(0) Wcnt = 0 # worker counter for x in Jspec: Wcnt += len(Jspec[x]) self.SetKRunner(Wcnt) ############################################## RunnerList = list() for x in self.Runner: RunnerList.append(x[0]+":2222") Rcnt = 0 # Runner counter TaskIndex = dict() RealSpec = dict() for x in Jspec: TmpList = list() for y in Jspec[x]: TmpList.append(RunnerList[Rcnt]) TaskIndex[RunnerList[Rcnt]] = y # set index to runner Rcnt += 1 RealSpec[x] = TmpList print json.dumps(Jspec) print json.dumps(RealSpec) OutputConf = dict() OutputConf["ClusterSpec"] = RealSpec OutputConf["TaskIndex"] = TaskIndex fw = open('ClusterSpec.json','w') fw.write(json.dumps(OutputConf)) fw.close() # default setting DefaultJname = "" for x in Jspec: DefaultJname = x break fw = open('create_worker.py','w') fw.write("import sys\n") fw.write("task_number = int(sys.argv[1])\n") fw.write("import tensorflow as tf\n") fw.write("cluster = tf.train.ClusterSpec("+json.dumps(RealSpec)+")\n") fw.write("# You can write yourself below.\n") fw.write("server = tf.train.Server(cluster, job_name=\""+DefaultJname+"\", task_index=task_number)\n") fw.write("server.start()\n") fw.write("server.join()\n") fw.close() def CallDownload(self): if self.Fhash == "fhash" or self.Chash == "chash": print "PLEASE UPLOAD FIRST" return if len(self.Runner) != 0: for x in self.Runner: self.Publish(x[0],"Download",self.Fhash+"###"+self.Fname) self.Publish(x[0],"Download",self.Chash+"###ClusterSpec.json") else: f = open("ClusterSpec.json",'r') while True: line = f.readline() if not line: break try: Jline = json.loads(line) Tkey = Jline["TaskIndex"].keys() for x in Tkey: RemoteIP = x.split(":")[0] self.Publish(RemoteIP,"Download",self.Fhash+"###"+self.Fname) self.Publish(RemoteIP,"Download",self.Chash+"###create_worker.py") self.Publish(RemoteIP,"RunCluster",Jline["TaskIndex"][x]) print Jline["TaskIndex"][x] except: print "No Good ClusterSpec.json" exit(0) def CloseCluster(self): if len(self.Runner) != 0: for x in self.Runner: self.Publish(x[0],"CloseCluster","KEVIN") else: f = open("ClusterSpec.json",'r') while True: line = f.readline() if not line: break try: Jline = json.loads(line) Tkey = Jline["TaskIndex"].keys() for x in Tkey: RemoteIP = x.split(":")[0] self.Publish(RemoteIP,"CloseCluster","KEVIN") except: print "No Good ClusterSpec.json" exit(0)
py
1a4955bbf5c952b0857be53de74d2ef68fe601d1
from __future__ import annotations from typing import Optional, TYPE_CHECKING from components.base_component import BaseComponent from equipment_types import EquipmentType if TYPE_CHECKING: from entity import Actor, Item class Equipment(BaseComponent): parent: Actor def __init__(self, weapon: Optional[Item] = None, armor: Optional[Item] = None): self.weapon = weapon self.armor = armor @property def defense_bonus(self) -> int: bonus = 0 if self.weapon is not None and self.weapon.equipable is not None: bonus += self.weapon.equipable.defense_bonus if self.armor is not None and self.armor.equipable is not None: bonus += self.armor.equipable.defense_bonus return bonus @property def power_bonus(self) -> int: bonus = 0 if self.weapon is not None and self.weapon.equipable is not None: bonus += self.weapon.equipable.power_bonus if self.armor is not None and self.armor.equipable is not None: bonus += self.armor.equipable.power_bonus return bonus def item_is_equipped(self, item: Item) -> bool: return self.weapon == item or self.armor == item def unequip_message(self, item_name: str) -> None: self.parent.gamemap.engine.message_log.add_message( f"You remove the {item_name}." ) def equip_message(self, item_name: str) -> None: self.parent.gamemap.engine.message_log.add_message( f"You gear up and equip the {item_name}." ) def equip_to_slot(self, slot: str, item: Item, add_message: bool) -> None: current_item = getattr(self, slot) if current_item is not None: self.unequip_from_slot(slot, add_message) setattr(self, slot, item) if add_message: self.equip_message(item.name) def unequip_from_slot(self, slot: str, add_message: bool) -> None: current_item = getattr(self, slot) if add_message: self.unequip_message(current_item.name) setattr(self, slot, None) def toggle_equip(self, equipable_item: Item, add_message: bool = True) -> None: if ( equipable_item.equipable and equipable_item.equipable.equipment_type == EquipmentType.WEAPON ): slot = "weapon" else: slot = "armor" if getattr(self, slot) == equipable_item: self.unequip_from_slot(slot, add_message) else: self.equip_to_slot(slot, equipable_item, add_message)
py
1a4955c5bc081c940356cb287e14deb835654aae
#!/usr/bin/env python3 import ecc_ed25519 import sys, getopt from cryptography.hazmat.primitives.asymmetric import ed25519 msg = "" public_key_hex = "" encoded_signature = "" try: opts, args = getopt.getopt(sys.argv[1:],"hm:k:s:",["message=","publickeyhex=", "signature="]) except getopt.GetoptError: print('verify.py -m YOURMESSAGE -k PUBLIC-KEY-HEX -s SIGNATURE') sys.exit(2) for opt, arg in opts: if opt == '-h': print('verify.py -m YOURMESSAGE -k PUBLIC-KEY-HEX -s SIGNATURE') sys.exit() elif opt in ("-m", "--message"): msg = arg msg_as_bytes = str.encode(msg) elif opt in ("-k", "--publickeyhex"): public_key_hex = arg # Get rid of the prefix 01 public_bytes_from_hex = bytes.fromhex(public_key_hex[2:]) loaded_public_key = ed25519.Ed25519PublicKey.from_public_bytes(public_bytes_from_hex) elif opt in ("-s", "--signature"): encoded_signature = arg signature = bytes.fromhex(encoded_signature) if msg == "" or encoded_signature == "": print("Message and signature are required!") print('./verify.py -m YOURMESSAGE -k PUBLIC-KEY-HEX -s SIGNATURE') sys.exit() # Read the public_key_hex from default location if not given as param if public_key_hex == "": public_key_hex_location = "/etc/casper/validator_keys/public_key_hex" try: with open(public_key_hex_location, 'r') as fstream: public_key_hex = fstream.readlines()[0] # Get rid of the prefix public_bytes_from_hex = bytes.fromhex(public_key_hex[2:]) loaded_public_key = ed25519.Ed25519PublicKey.from_public_bytes(public_bytes_from_hex) except: print("ERROR: Couldn't access your public key hex at this location: ", public_key_hex_location) print("Please make sure your public_key_hex file is at the given location and is accessible by the current user.") print("You can also directly provide your public key as an input parameter.") print("USAGE: verify.py -m YOURMESSAGE -k PUBLIC-KEY-HEX -s SIGNATURE") sys.exit() print("Public Key:\n", public_key_hex) print("Message:\n", msg) print("Signature:\n", encoded_signature) # Verify try: loaded_public_key.verify(signature, msg_as_bytes) print("Verified!") except: print("Verification failed!")
py
1a495603b19e7747574353ea7210387de48c7fe4
# -*- coding: utf-8 -*- # @Author: Jie # @Date: 2017-06-15 14:23:06 # @Last Modified by: Jie Yang, Contact: [email protected] # @Last Modified time: 2017-12-14 13:43:42 import sys import numpy as np from alphabet import Alphabet def normalize_word(word): new_word = "" for char in word: if char.isdigit(): new_word += '0' else: new_word += char return new_word def read_instance(input_file, word_alphabet, char_alphabet, label_alphabet, number_normalized, max_sent_length, char_padding_size=-1, char_padding_symbol = '</pad>'): in_lines = open(input_file,'r').readlines() instence_texts = [] instence_Ids = [] words = [] chars = [] labels = [] word_Ids = [] char_Ids = [] label_Ids = [] for line in in_lines: if len(line) > 2: pairs = line.strip().split() word = pairs[0].decode('utf-8') if number_normalized: word = normalize_word(word) label = pairs[-1] words.append(word) labels.append(label) word_Ids.append(word_alphabet.get_index(word)) label_Ids.append(label_alphabet.get_index(label)) char_list = [] char_Id = [] for char in word: char_list.append(char) if char_padding_size > 0: char_number = len(char_list) if char_number < char_padding_size: char_list = char_list + [char_padding_symbol]*(char_padding_size-char_number) assert(len(char_list) == char_padding_size) else: ### not padding pass for char in char_list: char_Id.append(char_alphabet.get_index(char)) chars.append(char_list) char_Ids.append(char_Id) else: if (max_sent_length < 0) or (len(words) < max_sent_length): instence_texts.append([words, chars, labels]) instence_Ids.append([word_Ids, char_Ids,label_Ids]) words = [] chars = [] labels = [] word_Ids = [] char_Ids = [] label_Ids = [] return instence_texts, instence_Ids def build_pretrain_embedding(embedding_path, word_alphabet, embedd_dim=100, norm=True): embedd_dict = dict() if embedding_path != None: embedd_dict, embedd_dim = load_pretrain_emb(embedding_path) alphabet_size = word_alphabet.size() scale = np.sqrt(3.0 / embedd_dim) pretrain_emb = np.empty([word_alphabet.size(), embedd_dim]) perfect_match = 0 case_match = 0 not_match = 0 for word, index in word_alphabet.iteritems(): if word in embedd_dict: if norm: pretrain_emb[index,:] = norm2one(embedd_dict[word]) else: pretrain_emb[index,:] = embedd_dict[word] perfect_match += 1 elif word.lower() in embedd_dict: if norm: pretrain_emb[index,:] = norm2one(embedd_dict[word.lower()]) else: pretrain_emb[index,:] = embedd_dict[word.lower()] case_match += 1 else: pretrain_emb[index,:] = np.random.uniform(-scale, scale, [1, embedd_dim]) not_match += 1 pretrained_size = len(embedd_dict) print("Embedding:\n pretrain word:%s, prefect match:%s, case_match:%s, oov:%s, oov%%:%s"%(pretrained_size, perfect_match, case_match, not_match, (not_match+0.)/alphabet_size)) return pretrain_emb, embedd_dim def norm2one(vec): root_sum_square = np.sqrt(np.sum(np.square(vec))) return vec/root_sum_square def load_pretrain_emb(embedding_path): embedd_dim = -1 embedd_dict = dict() with open(embedding_path, 'r') as file: for line in file: line = line.strip() if len(line) == 0: continue tokens = line.split() if embedd_dim < 0: embedd_dim = len(tokens) - 1 else: assert (embedd_dim + 1 == len(tokens)) embedd = np.empty([1, embedd_dim]) embedd[:] = tokens[1:] embedd_dict[tokens[0].decode('utf-8')] = embedd return embedd_dict, embedd_dim if __name__ == '__main__': a = np.arange(9.0) print a print norm2one(a)
py
1a4956dd7a07bdd2e9579871fc7d476385b0c7b8
from django.shortcuts import redirect from django.http import HttpResponse from .models import Link def index(request): return HttpResponse("Hello, world. You're at the polls index.") def openLink(request, temp): redirectLink = Link.objects.get(name=temp) link = redirectLink.redirect print(link) return redirect(link)
py
1a49586496dca9ee46ac7abc51c3d6721783e8fc
# _*_ coding: utf-8 _*_ from sqlalchemy import Column from ..extension import db from .constants import USER_ADMIN, USER_NORMAL from werkzeug import generate_password_hash, check_password_hash from flask_login import UserMixin class User(db.Model, UserMixin): __tablename__ = 'users' id = Column(db.Integer, primary_key=True) name = Column(db.String(128), nullable=False, unique=True) # 避免保存用户密码 _password = Column('password', db.String(256), nullable=False) def _get_password(self): return self._password def _set_password(self, password): self._password = generate_password_hash(password) password = db.synonym('_password', descriptor=property(_get_password, _set_password)) def check_password(self, password): if self.password is None: return False return check_password_hash(self.password, password) type_code = Column(db.SmallInteger, default=USER_NORMAL) def is_admin(self): return self.type_code == USER_ADMIN @classmethod def authenticate(cls, login, password): user = cls.query.filter(User.name == login).first() if user: authenticated = user.check_password(password) else: authenticated = False return user, authenticated
py
1a49586b06836d1b89a8c0de717517317e04860b
import gym from gym import spaces import numpy as np # from os import path import snakeoil3_gym as snakeoil3 import numpy as np import copy import collections as col import os import time import sys class TorcsEnv: terminal_judge_start = 50 #1000 # If after 100 timestep still no progress, terminated termination_limit_progress = 5 # [km/h], episode terminates if car is running slower than this limit default_speed = 50 initial_reset = True def __init__(self, vision=False, throttle=False, gear_change=False): self.vision = vision self.throttle = throttle self.gear_change = gear_change self.initial_run = True ##print("launch torcs") os.system('pkill torcs') time.sleep(0.5) if self.vision is True: os.system('torcs -nofuel -nodamage -nolaptime -vision &') else: os.system('torcs -nofuel -nolaptime &') time.sleep(0.5) os.system('sh autostart.sh') time.sleep(0.5) """ # Modify here if you use multiple tracks in the environment self.client = snakeoil3.Client(p=3101, vision=self.vision) # Open new UDP in vtorcs self.client.MAX_STEPS = np.inf client = self.client client.get_servers_input() # Get the initial input from torcs obs = client.S.d # Get the current full-observation from torcs """ if throttle is False: self.action_space = spaces.Box(low=-1.0, high=1.0, shape=(1,)) else: self.action_space = spaces.Box(low=-1.0, high=1.0, shape=(2,)) if vision is False: high = np.array([1., np.inf, np.inf, np.inf, 1., np.inf, 1., np.inf]) low = np.array([0., -np.inf, -np.inf, -np.inf, 0., -np.inf, 0., -np.inf]) self.observation_space = spaces.Box(low=low, high=high) else: high = np.array([1., np.inf, np.inf, np.inf, 1., np.inf, 1., np.inf, 255]) low = np.array([0., -np.inf, -np.inf, -np.inf, 0., -np.inf, 0., -np.inf, 0]) self.observation_space = spaces.Box(low=low, high=high) def step(self, u): #print("Step") # convert thisAction to the actual torcs actionstr client = self.client this_action = self.agent_to_torcs(u) # Apply Action action_torcs = client.R.d # Steering action_torcs['steer'] = this_action['steer'] # in [-1, 1] # Simple Autnmatic Throttle Control by Snakeoil if self.throttle is False: print("KAUSHIK: SHOULD NOT BE HERE! ") sys.exit() target_speed = self.default_speed if client.S.d['speedX'] < target_speed - (client.R.d['steer']*50): client.R.d['accel'] += .01 else: client.R.d['accel'] -= .01 if client.R.d['accel'] > 0.2: client.R.d['accel'] = 0.2 if client.S.d['speedX'] < 10: client.R.d['accel'] += 1/(client.S.d['speedX']+.1) # Traction Control System if ((client.S.d['wheelSpinVel'][2]+client.S.d['wheelSpinVel'][3]) - (client.S.d['wheelSpinVel'][0]+client.S.d['wheelSpinVel'][1]) > 5): action_torcs['accel'] -= .2 else: action_torcs['accel'] = this_action['accel'] action_torcs['brake'] = this_action['brake'] # Automatic Gear Change by Snakeoil if self.gear_change is True: action_torcs['gear'] = this_action['gear'] else: # Automatic Gear Change by Snakeoil is possible action_torcs['gear'] = 1 if self.throttle: if client.S.d['speedX'] > 50: action_torcs['gear'] = 2 if client.S.d['speedX'] > 80: action_torcs['gear'] = 3 if client.S.d['speedX'] > 110: action_torcs['gear'] = 4 if client.S.d['speedX'] > 140: action_torcs['gear'] = 5 if client.S.d['speedX'] > 170: action_torcs['gear'] = 6 # Save the privious full-obs from torcs for the reward calculation obs_pre = copy.deepcopy(client.S.d) # One-Step Dynamics Update ################################# # Apply the Agent's action into torcs client.respond_to_server() # Get the response of TORCS client.get_servers_input() # Get the current full-observation from torcs obs = client.S.d # Make an obsevation from a raw observation vector from TORCS self.observation = self.make_observaton(obs) # Reward setting Here ####################################### # direction-dependent positive reward track = np.array(obs['track']) trackPos = np.array(obs['trackPos']) sp = np.array(obs['speedX']) damage = np.array(obs['damage']) rpm = np.array(obs['rpm']) progress = sp*np.cos(obs['angle']) - np.abs(sp*np.sin(obs['angle'])) - sp * np.abs(obs['trackPos']) reward = progress # collision detection if obs['damage'] - obs_pre['damage'] > 0: reward = -1 # Termination judgement ######################### episode_terminate = False #--------------------------------------------------- if (abs(track.any()) > 1 or abs(trackPos) > 1): # Episode is terminated if the car is out of track print("Out of track ") reward = -100 #-200 episode_terminate = True client.R.d['meta'] = True if self.terminal_judge_start < self.time_step: # Episode terminates if the progress of agent is small if progress < self.termination_limit_progress: print("No progress", progress) reward = -100 # KAUSHIK ADDED THIS episode_terminate = True client.R.d['meta'] = True #--------------------------------------------------- if np.cos(obs['angle']) < 0: # Episode is terminated if the agent runs backward episode_terminate = True client.R.d['meta'] = True if client.R.d['meta'] is True: # Send a reset signal self.initial_run = False client.respond_to_server() self.time_step += 1 return self.get_obs(), reward, client.R.d['meta'], {} def reset(self, relaunch=False): #print("Reset") self.time_step = 0 if self.initial_reset is not True: self.client.R.d['meta'] = True self.client.respond_to_server() ## TENTATIVE. Restarting TORCS every episode suffers the memory leak bug! if relaunch is True: self.reset_torcs() print("### TORCS is RELAUNCHED ###") # Modify here if you use multiple tracks in the environment self.client = snakeoil3.Client(p=3101, vision=self.vision) # Open new UDP in vtorcs self.client.MAX_STEPS = np.inf client = self.client client.get_servers_input() # Get the initial input from torcs obs = client.S.d # Get the current full-observation from torcs self.observation = self.make_observaton(obs) self.last_u = None self.initial_reset = False return self.get_obs() def end(self): os.system('pkill torcs') def get_obs(self): return self.observation def reset_torcs(self): #print("relaunch torcs") os.system('pkill torcs') time.sleep(0.5) if self.vision is True: os.system('torcs -nofuel -nodamage -nolaptime -vision &') else: os.system('torcs -nofuel -nolaptime &') time.sleep(0.5) os.system('sh autostart.sh') time.sleep(0.5) def agent_to_torcs(self, u): torcs_action = {'steer': u[0]} if self.throttle is True: # throttle action is enabled torcs_action.update({'accel': u[1]}) torcs_action.update({'brake': u[2]}) if self.gear_change is True: # gear change action is enabled torcs_action.update({'gear': int(u[3])}) return torcs_action def obs_vision_to_image_rgb(self, obs_image_vec): image_vec = obs_image_vec r = image_vec[0:len(image_vec):3] g = image_vec[1:len(image_vec):3] b = image_vec[2:len(image_vec):3] sz = (64, 64) r = np.array(r).reshape(sz) g = np.array(g).reshape(sz) b = np.array(b).reshape(sz) return np.array([r, g, b], dtype=np.uint8) def make_observaton(self, raw_obs): if self.vision is False: names = ['focus', 'speedX', 'speedY', 'speedZ', 'angle', 'damage', 'opponents', 'rpm', 'track', 'trackPos', 'wheelSpinVel'] Observation = col.namedtuple('Observaion', names) return Observation(focus=np.array(raw_obs['focus'], dtype=np.float32)/200., speedX=np.array(raw_obs['speedX'], dtype=np.float32)/300.0, speedY=np.array(raw_obs['speedY'], dtype=np.float32)/300.0, speedZ=np.array(raw_obs['speedZ'], dtype=np.float32)/300.0, angle=np.array(raw_obs['angle'], dtype=np.float32)/3.1416, damage=np.array(raw_obs['damage'], dtype=np.float32), opponents=np.array(raw_obs['opponents'], dtype=np.float32)/200., rpm=np.array(raw_obs['rpm'], dtype=np.float32)/10000, track=np.array(raw_obs['track'], dtype=np.float32)/200., trackPos=np.array(raw_obs['trackPos'], dtype=np.float32)/1., wheelSpinVel=np.array(raw_obs['wheelSpinVel'], dtype=np.float32)) else: names = ['focus', 'speedX', 'speedY', 'speedZ', 'angle', 'opponents', 'rpm', 'track', 'trackPos', 'wheelSpinVel', 'img'] Observation = col.namedtuple('Observaion', names) # Get RGB from observation #image_rgb = self.obs_vision_to_image_rgb(raw_obs['img']) # KAUSHIK ADDED THIS image_rgb = self.obs_vision_to_image_rgb(raw_obs[names[8]]) return Observation(focus=np.array(raw_obs['focus'], dtype=np.float32)/200., speedX=np.array(raw_obs['speedX'], dtype=np.float32)/self.default_speed, speedY=np.array(raw_obs['speedY'], dtype=np.float32)/self.default_speed, speedZ=np.array(raw_obs['speedZ'], dtype=np.float32)/self.default_speed, opponents=np.array(raw_obs['opponents'], dtype=np.float32)/200., rpm=np.array(raw_obs['rpm'], dtype=np.float32), track=np.array(raw_obs['track'], dtype=np.float32)/200., trackPos=np.array(raw_obs['trackPos'], dtype=np.float32)/1., wheelSpinVel=np.array(raw_obs['wheelSpinVel'], dtype=np.float32), img=image_rgb)
py
1a4958ec06d8c1fd1f091362d2c5a22714ed0714
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ DETR Transformer class. Copy-paste from torch.nn.Transformer with modifications: * positional encodings are passed in MHattention * extra LN at the end of encoder is removed * decoder returns a stack of activations from all decoding layers """ import copy from typing import Optional import torch import torch.nn.functional as F from torch import nn, Tensor class Transformer(nn.Module): def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, return_intermediate_dec=False): super().__init__() # TransformerEncoderLayerThin encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation, normalize_before) encoder_norm = nn.LayerNorm(d_model) if normalize_before else None self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) # TransformerDecoderLayerThin decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, activation, normalize_before) decoder_norm = nn.LayerNorm(d_model) self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec) self._reset_parameters() self.d_model = d_model self.nhead = nhead def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, src, mask, query_embed, pos_embed): """ Args: src: (batch_size, L, d) mask: (batch_size, L) query_embed: (#queries, d) pos_embed: (batch_size, L, d) the same as src Returns: """ # flatten NxCxHxW to HWxNxC bs, l, d = src.shape src = src.permute(1, 0, 2) # (L, batch_size, d) pos_embed = pos_embed.permute(1, 0, 2) # (L, batch_size, d) query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) # (#queries, batch_size, d) tgt = torch.zeros_like(query_embed) memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) # (L, batch_size, d) hs = self.decoder(tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed) # (#layers, #queries, batch_size, d) hs = hs.transpose(1, 2) # (#layers, batch_size, #qeries, d) # memory = memory.permute(1, 2, 0) # (batch_size, d, L) memory = memory.transpose(0, 1) # (batch_size, L, d) return hs, memory class TransformerEncoder(nn.Module): def __init__(self, encoder_layer, num_layers, norm=None, return_intermediate=False): super().__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers self.norm = norm self.return_intermediate = return_intermediate def forward(self, src, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): output = src intermediate = [] for layer in self.layers: output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos) if self.return_intermediate: intermediate.append(output) if self.norm is not None: output = self.norm(output) if self.return_intermediate: return torch.stack(intermediate) return output class TransformerDecoder(nn.Module): def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False): super().__init__() self.layers = _get_clones(decoder_layer, num_layers) self.num_layers = num_layers self.norm = norm self.return_intermediate = return_intermediate def forward(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): output = tgt intermediate = [] for layer in self.layers: output = layer(output, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask, pos=pos, query_pos=query_pos) if self.return_intermediate: intermediate.append(self.norm(output)) if self.norm is not None: output = self.norm(output) if self.return_intermediate: intermediate.pop() intermediate.append(output) if self.return_intermediate: return torch.stack(intermediate) return output.unsqueeze(0) class TransformerEncoderLayerThin(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model # self.linear1 = nn.Linear(d_model, dim_feedforward) # self.dropout = nn.Dropout(dropout) # self.linear2 = nn.Linear(dim_feedforward, d_model) self.linear = nn.Linear(d_model, d_model) self.norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) # self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): q = k = self.with_pos_embed(src, pos) src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src2 = self.linear(src2) src = src + self.dropout(src2) src = self.norm(src) # src = src + self.dropout1(src2) # src = self.norm1(src) # src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) # src = src + self.dropout2(src2) # src = self.norm2(src) return src def forward_pre(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): """not used""" src2 = self.norm1(src) q = k = self.with_pos_embed(src2, pos) src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src2 = self.norm2(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) src = src + self.dropout2(src2) return src def forward(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): if self.normalize_before: return self.forward_pre(src, src_mask, src_key_padding_mask, pos) return self.forward_post(src, src_mask, src_key_padding_mask, pos) class TransformerEncoderLayer(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): q = k = self.with_pos_embed(src, pos) src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src def forward_pre(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): src2 = self.norm1(src) q = k = self.with_pos_embed(src2, pos) src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src2 = self.norm2(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) src = src + self.dropout2(src2) return src def forward(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): if self.normalize_before: return self.forward_pre(src, src_mask, src_key_padding_mask, pos) return self.forward_post(src, src_mask, src_key_padding_mask, pos) class TransformerDecoderLayer(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) return tgt def forward_pre(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): tgt2 = self.norm1(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) tgt2 = self.norm2(tgt) tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt + self.dropout2(tgt2) tgt2 = self.norm3(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout3(tgt2) return tgt def forward(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): if self.normalize_before: return self.forward_pre(tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) return self.forward_post(tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) class TransformerDecoderLayerThin(nn.Module): """removed intermediate layer""" def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, d_model) # self.linear1 = nn.Linear(d_model, dim_feedforward) # self.dropout = nn.Dropout(dropout) # self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) # self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) # self.dropout3 = nn.Dropout(dropout) # self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt2 = self.linear1(tgt2) tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) # tgt = tgt + self.dropout2(tgt2) # tgt = self.norm2(tgt) # tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) # tgt = tgt + self.dropout3(tgt2) # tgt = self.norm3(tgt) return tgt def forward_pre(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): tgt2 = self.norm1(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) tgt2 = self.norm2(tgt) tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt + self.dropout2(tgt2) tgt2 = self.norm3(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout3(tgt2) return tgt def forward(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): if self.normalize_before: return self.forward_pre(tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) return self.forward_post(tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def build_transformer(args): return Transformer( d_model=args.hidden_dim, dropout=args.dropout, nhead=args.nheads, dim_feedforward=args.dim_feedforward, num_encoder_layers=args.enc_layers, num_decoder_layers=args.dec_layers, normalize_before=args.pre_norm, return_intermediate_dec=True, ) def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
py
1a495ba88924dfeddc933bcf0bce23aca6107394
# -*- coding: utf-8 -*- ''' :codeauthor: :email:`Pedro Algarvio ([email protected])` :copyright: © 2012-2013 by the SaltStack Team, see AUTHORS for more details :license: Apache 2.0, see LICENSE for more details. tests.integration.shell.call ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ''' # Import python libs import os import sys import shutil import yaml from datetime import datetime # Import Salt Testing libs from salttesting import skipIf from salttesting.helpers import ensure_in_syspath ensure_in_syspath('../../') # Import salt libs import integration class CallTest(integration.ShellCase, integration.ShellCaseCommonTestsMixIn): _call_binary_ = 'salt-call' def test_default_output(self): out = self.run_call('-l quiet test.fib 3') expect = ['local:', ' |_', ' - 0', ' - 1', ' - 1', ' - 2'] self.assertEqual(expect, out[:-1]) def test_text_output(self): out = self.run_call('-l quiet --out txt test.fib 3') expect = [ 'local: ([0, 1, 1, 2]' ] self.assertEqual(''.join(expect), ''.join(out).rsplit(",", 1)[0]) @skipIf(sys.platform.startswith('win'), 'This test does not apply on Win') def test_user_delete_kw_output(self): ret = self.run_call('-l quiet -d user.delete') self.assertIn( 'salt \'*\' user.delete name remove=True force=True', ''.join(ret) ) def test_issue_6973_state_highstate_exit_code(self): ''' If there is no tops/master_tops or state file matches for this minion, salt-call should exit non-zero if invoked with option --retcode-passthrough ''' src = os.path.join(integration.FILES, 'file/base/top.sls') dst = os.path.join(integration.FILES, 'file/base/top.sls.bak') shutil.move(src, dst) expected_comment = 'No Top file or external nodes data matches found' try: stdout, retcode = self.run_call( '-l quiet --retcode-passthrough state.highstate', with_retcode=True ) finally: shutil.move(dst, src) self.assertIn(expected_comment, ''.join(stdout)) self.assertNotEqual(0, retcode) @skipIf(sys.platform.startswith('win'), 'This test does not apply on Win') def test_issue_2731_masterless(self): config_dir = '/tmp/salttest' minion_config_file = os.path.join(config_dir, 'minion') this_minion_key = os.path.join( config_dir, 'pki', 'minions', 'minion_test_issue_2731' ) minion_config = { 'id': 'minion_test_issue_2731', 'master': 'localhost', 'master_port': 64506, 'root_dir': '/tmp/salttest', 'pki_dir': 'pki', 'cachedir': 'cachedir', 'sock_dir': 'minion_sock', 'open_mode': True, 'log_file': '/tmp/salttest/minion_test_issue_2731', 'log_level': 'quiet', 'log_level_logfile': 'info' } # Remove existing logfile if os.path.isfile('/tmp/salttest/minion_test_issue_2731'): os.unlink('/tmp/salttest/minion_test_issue_2731') start = datetime.now() # Let's first test with a master running open(minion_config_file, 'w').write( yaml.dump(minion_config, default_flow_style=False) ) ret = self.run_script( 'salt-call', '--config-dir {0} cmd.run "echo foo"'.format( config_dir ) ) try: self.assertIn('local:', ret) except AssertionError: if os.path.isfile(minion_config_file): os.unlink(minion_config_file) # Let's remove our key from the master if os.path.isfile(this_minion_key): os.unlink(this_minion_key) raise # Calculate the required timeout, since next will fail. # I needed this because after many attempts, I was unable to catch: # WARNING: Master hostname: salt not found. Retrying in 30 seconds ellapsed = datetime.now() - start timeout = ellapsed.seconds + 3 # Now let's remove the master configuration minion_config.pop('master') minion_config.pop('master_port') open(minion_config_file, 'w').write( yaml.dump(minion_config, default_flow_style=False) ) out = self.run_script( 'salt-call', '--config-dir {0} cmd.run "echo foo"'.format( config_dir ), timeout=timeout, ) try: self.assertIn( 'Process took more than {0} seconds to complete. ' 'Process Killed!'.format(timeout), out ) except AssertionError: if os.path.isfile(minion_config_file): os.unlink(minion_config_file) # Let's remove our key from the master if os.path.isfile(this_minion_key): os.unlink(this_minion_key) raise # Should work with --local ret = self.run_script( 'salt-call', '--config-dir {0} --local cmd.run "echo foo"'.format( config_dir ), timeout=15 ) try: self.assertIn('local:', ret) except AssertionError: if os.path.isfile(minion_config_file): os.unlink(minion_config_file) # Let's remove our key from the master if os.path.isfile(this_minion_key): os.unlink(this_minion_key) raise # Should work with local file client minion_config['file_client'] = 'local' open(minion_config_file, 'w').write( yaml.dump(minion_config, default_flow_style=False) ) ret = self.run_script( 'salt-call', '--config-dir {0} cmd.run "echo foo"'.format( config_dir ), timeout=15 ) try: self.assertIn('local:', ret) finally: if os.path.isfile(minion_config_file): os.unlink(minion_config_file) # Let's remove our key from the master if os.path.isfile(this_minion_key): os.unlink(this_minion_key) if __name__ == '__main__': from integration import run_tests run_tests(CallTest)
py
1a495c94d8bec71b1358d9563c9ee185c35306f9
# Copyright (c) 2019-2021 CRS4 # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import pytest import pyecvl._core.ecvl as ecvl_core import pyecvl.ecvl as ecvl_py pytest.importorskip("pyecvl.augmentations") @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugmentationParam(ecvl): ap = ecvl.AugmentationParam() min_, max_ = 0.1, 1.2 ap = ecvl.AugmentationParam(min_, max_) assert ap.min_ == pytest.approx(min_) assert ap.max_ == pytest.approx(max_) ecvl.AugmentationParam.SetSeed(12345) ap.GenerateValue() assert min_ <= ap.value_ <= max_ @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugRotate(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugRotate([30, 50]) a.Apply(img) a = ecvl.AugRotate([30, 50], [2, 3]) a.Apply(img) a = ecvl.AugRotate([30, 50], [2, 3], 1.1) a.Apply(img) a = ecvl.AugRotate([30, 50], [2, 3], 1.1, ecvl.InterpolationType.nearest) a.Apply(img) a = ecvl.AugRotate([30, 50], [2, 3], 1.1, ecvl.InterpolationType.nearest, ecvl.InterpolationType.linear) a.Apply(img) # fromtext f = ecvl.AugRotate if ecvl is ecvl_core else ecvl.AugRotate.fromtext a = f('angle=[30, 50] center=(2, 3) scale=1.1 interp="nearest" ' 'gt_interp="linear"') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugResizeDim(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugResizeDim([4, 3]) a.Apply(img) a = ecvl.AugResizeDim([4, 3], ecvl.InterpolationType.nearest, ecvl.InterpolationType.linear) a.Apply(img) # fromtext f = ecvl.AugResizeDim if ecvl is ecvl_core else ecvl.AugResizeDim.fromtext a = f('dims=(4, 3) interp="linear" gt_interp="nearest"') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugResizeScale(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugResizeScale([0.5, 0.5]) a.Apply(img) a = ecvl.AugResizeScale([0.5, 0.5], ecvl.InterpolationType.nearest, ecvl.InterpolationType.linear) a.Apply(img) # fromtext f = ecvl.AugResizeScale if ecvl is ecvl_core else \ ecvl.AugResizeScale.fromtext a = f('scale=(0.5, 0.5) interp="linear" gt_interp="nearest"') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugFlip(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugFlip(0.5) a.Apply(img) # fromtext f = ecvl.AugFlip if ecvl is ecvl_core else ecvl.AugFlip.fromtext a = f('p=0.5') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugMirror(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugMirror(0.5) a.Apply(img) # fromtext f = ecvl.AugMirror if ecvl is ecvl_core else ecvl.AugMirror.fromtext a = f('p=0.5') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugGaussianBlur(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugGaussianBlur([0.2, 0.4]) a.Apply(img) # fromtext f = ecvl.AugGaussianBlur if ecvl is ecvl_core else \ ecvl.AugGaussianBlur.fromtext a = f('sigma=[0.2, 0.4]') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugAdditiveLaplaceNoise(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugAdditiveLaplaceNoise([255 * 0.05, 255 * 0.09]) a.Apply(img) # fromtext f = ecvl.AugAdditiveLaplaceNoise if ecvl is ecvl_core else \ ecvl.AugAdditiveLaplaceNoise.fromtext a = f('std_dev=[12.5, 23.1]') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugAdditivePoissonNoise(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugAdditivePoissonNoise([2.0, 3.0]) a.Apply(img) # fromtext f = ecvl.AugAdditivePoissonNoise if ecvl is ecvl_core else \ ecvl.AugAdditivePoissonNoise.fromtext a = f('lambda=[2.0, 3.0]') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugGammaContrast(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugGammaContrast([3, 4]) a.Apply(img) # fromtext f = ecvl.AugGammaContrast if ecvl is ecvl_core else \ ecvl.AugGammaContrast.fromtext a = f('gamma=[3, 4]') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugCoarseDropout(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugCoarseDropout([0.5, 0.7], [0.1, 0.2], 0.4) a.Apply(img) # fromtext f = ecvl.AugCoarseDropout if ecvl is ecvl_core else \ ecvl.AugCoarseDropout.fromtext a = f('p=[0.5, 0.7] drop_size=[0.1, 0.2] per_channel=0.4') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugTranspose(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugTranspose(0.5) a.Apply(img) # fromtext f = ecvl.AugTranspose if ecvl is ecvl_core else ecvl.AugTranspose.fromtext a = f('p=0.5') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugBrightness(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugBrightness([30, 60]) a.Apply(img) # fromtext f = ecvl.AugBrightness if ecvl is ecvl_core else \ ecvl.AugBrightness.fromtext a = f('beta=[30, 60]') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugGridDistortion(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugGridDistortion([5, 10], [-0.2, 0.2]) a.Apply(img) a = ecvl.AugGridDistortion( [5, 10], [-0.2, 0.2], ecvl.InterpolationType.nearest ) a.Apply(img) a = ecvl.AugGridDistortion( [5, 10], [-0.2, 0.2], ecvl.InterpolationType.nearest, ecvl.BorderType.BORDER_REFLECT_101 ) a.Apply(img) a = ecvl.AugGridDistortion( [5, 10], [-0.2, 0.2], ecvl.InterpolationType.nearest, ecvl.BorderType.BORDER_REFLECT_101, 0 ) a.Apply(img) # fromtext f = ecvl.AugGridDistortion if ecvl is ecvl_core else \ ecvl.AugGridDistortion.fromtext a = f('num_steps=[5,10] distort_limit=[-0.2,0.2] interp=\"linear\" ' 'border_type=\"reflect_101\" border_value=0') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugOpticalDistortion(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugOpticalDistortion([-0.2, 0.2], [-0.4, 0.4]) a.Apply(img) a = ecvl.AugOpticalDistortion( [-0.2, 0.2], [-0.4, 0.4], ecvl.InterpolationType.nearest ) a.Apply(img) a = ecvl.AugOpticalDistortion( [-0.2, 0.2], [-0.4, 0.4], ecvl.InterpolationType.nearest, ecvl.BorderType.BORDER_REFLECT_101 ) a.Apply(img) a = ecvl.AugOpticalDistortion( [-0.2, 0.2], [-0.4, 0.4], ecvl.InterpolationType.nearest, ecvl.BorderType.BORDER_REFLECT_101, 0 ) a.Apply(img) # fromtext f = ecvl.AugOpticalDistortion if ecvl is ecvl_core else \ ecvl.AugOpticalDistortion.fromtext a = f('distort_limit=[-0.2,0.2] shift_limit=[-0.4,0.4] interp=\"linear\" ' 'border_type=\"reflect_101\" border_value=0') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugSalt(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugSalt([0.1, 0.3], 0.5) a.Apply(img) # fromtext f = ecvl.AugSalt if ecvl is ecvl_core else ecvl.AugSalt.fromtext a = f('p=[0.1,0.3] per_channel=0.5') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugPepper(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugPepper([0.1, 0.3], 0.5) a.Apply(img) # fromtext f = ecvl.AugPepper if ecvl is ecvl_core else ecvl.AugPepper.fromtext a = f('p=[0.1,0.3] per_channel=0.5') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugSaltAndPepper(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugSaltAndPepper([0.1, 0.3], 0.5) a.Apply(img) # fromtext f = ecvl.AugSaltAndPepper if ecvl is ecvl_core else \ ecvl.AugSaltAndPepper.fromtext a = f('p=[0.1,0.3] per_channel=0.5') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugElasticTransform(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugElasticTransform([34, 60], [4, 6]) a.Apply(img) a = ecvl.AugElasticTransform( [34, 60], [4, 6], ecvl.InterpolationType.nearest ) a.Apply(img) a = ecvl.AugElasticTransform( [34, 60], [4, 6], ecvl.InterpolationType.nearest, ecvl.BorderType.BORDER_REFLECT_101 ) a.Apply(img) a = ecvl.AugElasticTransform( [34, 60], [4, 6], ecvl.InterpolationType.nearest, ecvl.BorderType.BORDER_REFLECT_101, 0 ) a.Apply(img) # fromtext f = ecvl.AugElasticTransform if ecvl is ecvl_core else \ ecvl.AugElasticTransform.fromtext a = f('alpha=[34,60] sigma=[4,6] interp=\"linear\" ' 'border_type=\"reflect_101\" border_value=0') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugNormalize(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugNormalize(20, 5.5) a.Apply(img) # fromtext f = ecvl.AugNormalize if ecvl is ecvl_core else \ ecvl.AugNormalize.fromtext a = f('mean=20 std=5.5') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugNormalize_separate(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugNormalize([20, 19, 21], [5, 5.5, 6]) a.Apply(img) # fromtext f = ecvl.AugNormalize if ecvl is ecvl_core else \ ecvl.AugNormalize.fromtext a = f('mean=(20,19,21) std=(5,5.5,6)') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugCenterCrop(ecvl): img = ecvl.Image([8, 6, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugCenterCrop([4, 3]) a.Apply(img) # fromtext f = ecvl.AugCenterCrop if ecvl is ecvl_core else \ ecvl.AugCenterCrop.fromtext a = f('size=(4,3)') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugToFloat32(ecvl): img = ecvl.Image([8, 6, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugToFloat32() a.Apply(img) assert img.elemtype_ == ecvl.DataType.float32 img = ecvl.Image([8, 6, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugToFloat32(2.) a.Apply(img) assert img.elemtype_ == ecvl.DataType.float32 img = ecvl.Image([8, 6, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugToFloat32(2., 3.) a.Apply(img) assert img.elemtype_ == ecvl.DataType.float32 # fromtext f = ecvl.AugToFloat32 if ecvl is ecvl_core else \ ecvl.AugToFloat32.fromtext img = ecvl.Image([8, 6, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = f('divisor=2. divisor_gt=3.') a.Apply(img) assert img.elemtype_ == ecvl.DataType.float32 @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugDivBy255(ecvl): img = ecvl.Image([8, 6, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugDivBy255() a.Apply(img) # fromtext f = ecvl.AugDivBy255 if ecvl is ecvl_core else \ ecvl.AugDivBy255.fromtext a = f('') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugScaleTo(ecvl): img = ecvl.Image([8, 6, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) a = ecvl.AugScaleTo(1, 254) a.Apply(img) # fromtext f = ecvl.AugScaleTo if ecvl is ecvl_core else \ ecvl.AugScaleTo.fromtext a = f('new_min=1 new_max=255') a.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_AugmentationFactory(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) # one arg a = ecvl.AugmentationFactory.create('AugFlip p=0.5') a.Apply(img) # two args a = ecvl.AugmentationFactory.create('AugFlip', 'p=0.5') a.Apply(img) # container txt = ('SequentialAugmentationContainer\n' 'AugRotate angle=[-5,5] center=(0,0) scale=0.5 interp="linear"\n' 'AugAdditiveLaplaceNoise std_dev=[0,0.51]\n' 'AugCoarseDropout p=[0,0.55] drop_size=[0.02,0.1] per_channel=0\n' 'AugAdditivePoissonNoise lambda=[0,40]\n' 'AugResizeDim dims=(30,30) interp="linear"\n' 'end') c = ecvl.AugmentationFactory.create(txt) c.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_SequentialAugmentationContainer(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) # from list c = ecvl.SequentialAugmentationContainer([ ecvl.AugRotate([-5, 5]), ecvl.AugMirror(.5), ]) c.Apply(img) # fromtext txt = ('AugFlip p=0.2\n' 'AugMirror p=0.2\n' 'end') f = ecvl.SequentialAugmentationContainer if ecvl is ecvl_core else \ ecvl.SequentialAugmentationContainer.fromtext c = f(txt) c.Apply(img) @pytest.mark.parametrize("ecvl", [ecvl_core, ecvl_py]) def test_OneOfAugmentationContainer(ecvl): img = ecvl.Image([5, 4, 3], ecvl.DataType.uint8, "xyc", ecvl.ColorType.BGR) # from list c = ecvl.OneOfAugmentationContainer(0.7, [ ecvl.AugRotate([-5, 5]), ecvl.AugMirror(.5), ]) c.Apply(img) # fromtext txt = ('p=0.7\n' 'AugFlip p=0.2\n' 'AugMirror p=0.2\n' 'end') f = ecvl.OneOfAugmentationContainer if ecvl is ecvl_core else \ ecvl.OneOfAugmentationContainer.fromtext c = f(txt) c.Apply(img)
py
1a495cec59dabd17eb4146eab54a1be620885927
import os from torchnlp.download import download_file_maybe_extract def wmt_dataset(directory='data/wmt16_en_de', train=False, dev=False, test=False, train_filename='train.tok.clean.bpe.32000', dev_filename='newstest2013.tok.bpe.32000', test_filename='newstest2014.tok.bpe.32000', check_files=['train.tok.clean.bpe.32000.en'], url='https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8'): """ The Workshop on Machine Translation (WMT) 2014 English-German dataset. Initially this dataset was preprocessed by Google Brain. Though this download contains test sets from 2015 and 2016, the train set differs slightly from WMT 2015 and 2016 and significantly from WMT 2017. The provided data is mainly taken from version 7 of the Europarl corpus, which is freely available. Note that this the same data as last year, since Europarl is not anymore translted across all 23 official European languages. Additional training data is taken from the new News Commentary corpus. There are about 50 million words of training data per language from the Europarl corpus and 3 million words from the News Commentary corpus. A new data resource from 2013 is the Common Crawl corpus which was collected from web sources. Each parallel corpus comes with a annotation file that gives the source of each sentence pair. References: * https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/translate_ende.py # noqa: E501 * http://www.statmt.org/wmt14/translation-task.html Args: directory (str, optional): Directory to cache the dataset. train (bool, optional): If to load the training split of the dataset. dev (bool, optional): If to load the dev split of the dataset. test (bool, optional): If to load the test split of the dataset. train_filename (str, optional): The filename of the training split. dev_filename (str, optional): The filename of the dev split. test_filename (str, optional): The filename of the test split. check_files (str, optional): Check if these files exist, then this download was successful. url (str, optional): URL of the dataset `tar.gz` file. Returns: :class:`tuple` of :class:`iterable` or :class:`iterable`: Returns between one and all dataset splits (train, dev and test) depending on if their respective boolean argument is ``True``. Example: >>> from torchnlp.datasets import wmt_dataset # doctest: +SKIP >>> train = wmt_dataset(train=True) # doctest: +SKIP >>> train[:2] # doctest: +SKIP [{ 'en': 'Res@@ um@@ ption of the session', 'de': 'Wiederaufnahme der Sitzungsperiode' }, { 'en': 'I declare resumed the session of the European Parliament ad@@ jour@@ ned on...' 'de': 'Ich erklär@@ e die am Freitag , dem 17. Dezember unterbro@@ ch@@ ene...' }] """ download_file_maybe_extract( url=url, directory=directory, check_files=check_files, filename='wmt16_en_de.tar.gz') ret = [] splits = [(train, train_filename), (dev, dev_filename), (test, test_filename)] splits = [f for (requested, f) in splits if requested] for filename in splits: examples = [] en_path = os.path.join(directory, filename + '.en') de_path = os.path.join(directory, filename + '.de') en_file = [l.strip() for l in open(en_path, 'r', encoding='utf-8')] de_file = [l.strip() for l in open(de_path, 'r', encoding='utf-8')] assert len(en_file) == len(de_file) for i in range(len(en_file)): if en_file[i] != '' and de_file[i] != '': examples.append({'en': en_file[i], 'de': de_file[i]}) ret.append(examples) if len(ret) == 1: return ret[0] else: return tuple(ret)
py
1a495d50f3ca0f3736175613ecf4993dbf2fdd15
# -*- coding: utf-8 -*- import rssit.config import rssit.globals def parse_args(args): url = None rssit.globals.config["config"]["args"] = {} for arg in args[1:]: if len(arg) > 0 and arg[0] == '/': url = arg continue if "=" not in arg: # ??? continue eq = arg.index("=") key = arg[:eq] value = rssit.config.parse_value_simple(arg[eq + 1:]) rssit.globals.config["config"]["args"][key] = value return url
py
1a495d6d903e306002501d23d6f53dbc1294069f
#!/usr/local/bin/python """ Xylinq schema setup for MySQL(tables creation). $Header: /home/inqwell/cvsroot/dev/scripts/python/setupMySqlXySchema.py,v 1.1 2009/05/22 22:15:51 sanderst Exp $ $Author: sanderst $ $DateTime: 2009/04/22 14:59:21 $ $Change: 164836 $ """ import glob from optparse import OptionParser import os from DBUtils.mysql_schema_setup import MySqlSchemaSetup def main(args): parser = OptionParser() parser.add_option("--dbserver", dest="db_server", help="Database server") parser.add_option("--db", dest="db", help="Database") parser.add_option("--dbuser", dest="db_user", help="Database user") parser.add_option("--dbpassword", dest="db_password", help="Database password") parser.add_option("--dirs", dest="dir_list", help="List of directories for the SQL files") parser.add_option("--no_fk", dest="do_foreign_keys", action="store_false", default=True, help="Ignore foreign key constraints") parser.add_option("--test", dest="test_mode", action="store_true", default=False, help="Test mode") options, dummy = parser.parse_args() test_mode = options.test_mode db_server = options.db_server if db_server is None and not test_mode: raise Exception("Missing mandatory 'dbserver' argument") db = options.db if db is None and not test_mode: raise Exception("Missing mandatory 'db' argument") db_user = options.db_user if db_user is None and not test_mode: raise Exception("Missing mandatory 'dbuser' argument") db_password = options.db_password if db_password is None and not test_mode: raise Exception("Missing mandatory 'dbpassword' argument") dir_list = options.dir_list if dir_list is None: raise Exception("Missing mandatory 'dirs' argument") dir_list = [dir_path.strip() for dir_path in dir_list.split(",")] do_foreign_keys = options.do_foreign_keys # Get the table creation SQL texts filenames = [] for dir in dir_list: path = os.path.join(dir, "*.sql") filenames.extend(glob.glob(path)) table_text_list = [] for filename in filenames: fh = open(filename) try: table_text = fh.read() finally: fh.close() table_text_list.append(table_text) # Create the tables if not test_mode: import MySQLdb dbh = MySQLdb.connect(host=db_server, db=db, user=db_user, passwd=db_password) db_cursor = dbh.cursor() else: db_cursor = None setup = MySqlSchemaSetup() setup.create_tables(db_cursor, table_text_list, do_foreign_keys=do_foreign_keys, test_mode=test_mode) if not test_mode: db_cursor.close() dbh.commit() dbh.close() if __name__ == "__main__": import sys sys.exit(main(sys.argv))
py
1a495def559d940cc0587821d978913272182b68
import argparse import json import os import subprocess import sys import time import copy root_account = "codex" def system_account(sub_name): return root_account + "." + sub_name relay_account_name = system_account("relay") token_account_name = system_account("token") code_account_name = system_account("code") match_account_name = system_account("match") bridge_account_name = system_account("bridge") relay_token_name = "relay.token" class dataSet(object): """data for forceio script""" def __init__(self): self.initAccounts = [] self.initProducers = [] self.initProducerSigKeys = [] self.initAccountsKeys = [] self.maxClients = 0 self.logFile = {} self.args = {} def processData(self, args): self.args = args self.config_dir = os.path.abspath(args.data_dir) + '/config/' self.nodes_dir = os.path.abspath(args.data_dir) + '/nodes/' self.wallet_dir = os.path.abspath(args.data_dir) + '/wallet/' self.log_path = os.path.abspath(args.data_dir) + '/' + args.log_path self.contracts_dir = args.contracts_dir run('mkdir -p ' + os.path.abspath(args.data_dir)) self.logFile = open(self.log_path, 'a') self.logFile.write('\n\n' + '*' * 80 + '\n\n\n') datas = dataSet() def jsonArg(a): return " '" + json.dumps(a) + "' " def log2File(l): print('forceio script:', l) if datas.logFile != {}: datas.logFile.write(l + '\n') def run(args): log2File(args) if subprocess.call(args, shell=True): print('bios-boot-eosforce.py: exiting because of error') sys.exit(1) def rm(path_to_del): run('rm -rf ' + path_to_del) def retry(args): while True: log2File(args) if subprocess.call(args, shell=True): print('*** Retry') else: break def background(args): log2File(args) return subprocess.Popen(args, shell=True) def sleep(t): print('sleep', t, '...') time.sleep(t) print('resume') def replaceFile(file, old, new): try: f = open(file,'r+') all_lines = f.readlines() f.seek(0) f.truncate() for line in all_lines: line = line.replace(old, new) f.write(line) f.close() except Exception,e: print('bios-boot-eosforce.py: replace %s frome %s to %s err by ' % (file, old, new)) print(e) sys.exit(1) def cleos(cmd): run(datas.args.cleos + cmd) def intToCurrency(i): return '%d.%04d %s' % (i // 10000, i % 10000, datas.args.symbol) def pushAction(account, action, auth, data ): cleos("push action %s %s '%s' -p %s" % (account, action, data, auth)) def setFuncStartBlock(func_typ, num): pushAction(root_account, "setconfig", "codex.config", '{"typ":"%s","num":%s,"key":"","fee":"%s"}' % ( func_typ, num, intToCurrency(0))) def setFee(account, act, fee, cpu, net, ram): cleos( 'set setfee ' + ('%s %s ' % (account, act)) + '"' + intToCurrency(fee) + '" ' + ('%d %d %d' % (cpu, net, ram))) def getRAM(account, ram): cleos("push action %s freeze '{\"voter\":\"%s\", \"stake\":\"%s\"}' -p %s" % (root_account, account, intToCurrency(ram), account)) cleos("push action %s vote4ram '{\"voter\":\"%s\",\"bpname\":\"codex.bpa\",\"stake\":\"%s\"}' -p %s" % (root_account, account, intToCurrency(ram), account)) def setContract(account): getRAM(account, 50000 * 10000) cleos('set contract %s %s/%s/' % (account, datas.config_dir, account)) def setContractByPath(account, path): getRAM(account, 50000 * 10000) cleos('set contract %s %s/%s/' % (account, datas.config_dir, path)) def parserArgsAndRun(parser, commands): parser.add_argument('--root', metavar='', help="Eosforce root dir from git", default='../../') parser.add_argument('--contracts-dir', metavar='', help="Path to contracts directory", default='tutorials/genesis/') parser.add_argument('--log-path', metavar='', help="Path to log file", default='output.log') parser.add_argument('--nodes-dir', metavar='', help="Path to nodes directory", default='./nodes/') parser.add_argument('--wallet-dir', metavar='', help="Path to wallet directory", default='./wallet/') parser.add_argument('--config-dir', metavar='', help="Path to config directory", default='./config') parser.add_argument('--data-dir', metavar='', help="Path to datas", default='./testnet') parser.add_argument('--symbol', metavar='', help="The core symbol", default='CDX') parser.add_argument('--pr', metavar='', help="The Public Key Start Symbol", default='CDX') parser.add_argument('-a', '--all', action='store_true', help="Do everything marked with (*)") parser.add_argument('--use-port', metavar='', help="port X to listen, http X001-X099, p2p X101-X199 and wallet X666", default='8') for (flag, command, function, inAll, help) in commands: prefix = '' if inAll: prefix += '*' if prefix: help = '(' + prefix + ') ' + help if flag: parser.add_argument('-' + flag, '--' + command, action='store_true', help=help, dest=command) else: parser.add_argument('--' + command, action='store_true', help=help, dest=command) args = parser.parse_args() args.use_port = int(args.use_port) if args.use_port >= 50 or args.use_port <= 4 : print("args --use-port should between 5-50") sys.exit(1) args.cleos += ' --wallet-url http://127.0.0.1:%d666' % args.use_port args.cleos += ' --url http://127.0.0.1:%d001 ' % args.use_port args.cleos = args.root + args.cleos args.nodeos = args.root + args.nodeos args.keosd = args.root + args.keosd args.contracts_dir = args.root + args.contracts_dir global datas datas.processData(args) haveCommand = False for (flag, command, function, inAll, help) in commands: if getattr(args, command) or inAll and args.all: if function: haveCommand = True function() if not haveCommand: print('bios-boot-eosforce.py: Tell me what to do. -a does almost everything. -h shows options.')
py
1a495e4af60a288b434c944de4c5e07123c6f00a
import sys import gym.spaces import itertools import numpy as np import random import tensorflow as tf import tensorflow.contrib.layers as layers from collections import namedtuple from dqn_utils import * OptimizerSpec = namedtuple("OptimizerSpec", ["constructor", "kwargs", "lr_schedule"]) def learn(env, q_func, optimizer_spec, session, exploration=LinearSchedule(1000000, 0.1), stopping_criterion=None, replay_buffer_size=1000000, batch_size=32, gamma=0.99, learning_starts=50000, learning_freq=4, frame_history_len=4, target_update_freq=10000, grad_norm_clipping=10): """Run Deep Q-learning algorithm. You can specify your own convnet using q_func. All schedules are w.r.t. total number of steps taken in the environment. Parameters ---------- env: gym.Env gym environment to train on. q_func: function Model to use for computing the q function. It should accept the following named arguments: img_in: tf.Tensor tensorflow tensor representing the input image num_actions: int number of actions scope: str scope in which all the model related variables should be created reuse: bool whether previously created variables should be reused. optimizer_spec: OptimizerSpec Specifying the constructor and kwargs, as well as learning rate schedule for the optimizer session: tf.Session tensorflow session to use. exploration: rl_algs.deepq.utils.schedules.Schedule schedule for probability of chosing random action. stopping_criterion: (env, t) -> bool should return true when it's ok for the RL algorithm to stop. takes in env and the number of steps executed so far. replay_buffer_size: int How many memories to store in the replay buffer. batch_size: int How many transitions to sample each time experience is replayed. gamma: float Discount Factor learning_starts: int After how many environment steps to start replaying experiences learning_freq: int How many steps of environment to take between every experience replay frame_history_len: int How many past frames to include as input to the model. target_update_freq: int How many experience replay rounds (not steps!) to perform between each update to the target Q network grad_norm_clipping: float or None If not None gradients' norms are clipped to this value. """ assert type(env.observation_space) == gym.spaces.Box assert type(env.action_space) == gym.spaces.Discrete ############### # BUILD MODEL # ############### if len(env.observation_space.shape) == 1: # This means we are running on low-dimensional observations (e.g. RAM) input_shape = env.observation_space.shape else: img_h, img_w, img_c = env.observation_space.shape input_shape = (img_h, img_w, frame_history_len * img_c) num_actions = env.action_space.n # set up placeholders # placeholder for current observation (or state) obs_t_ph = tf.placeholder(tf.uint8, [None] + list(input_shape)) # placeholder for current action act_t_ph = tf.placeholder(tf.int32, [None]) # placeholder for current reward rew_t_ph = tf.placeholder(tf.float32, [None]) # placeholder for next observation (or state) obs_tp1_ph = tf.placeholder(tf.uint8, [None] + list(input_shape)) # placeholder for end of episode mask # this value is 1 if the next state corresponds to the end of an episode, # in which case there is no Q-value at the next state; at the end of an # episode, only the current state reward contributes to the target, not the # next state Q-value (i.e. target is just rew_t_ph, not rew_t_ph + gamma * q_tp1) done_mask_ph = tf.placeholder(tf.float32, [None]) # casting to float on GPU ensures lower data transfer times. obs_t_float = tf.cast(obs_t_ph, tf.float32) / 255.0 obs_tp1_float = tf.cast(obs_tp1_ph, tf.float32) / 255.0 # Here, you should fill in your own code to compute the Bellman error. This requires # evaluating the current and next Q-values and constructing the corresponding error. # TensorFlow will differentiate this error for you, you just need to pass it to the # optimizer. See assignment text for details. # Your code should produce one scalar-valued tensor: total_error # This will be passed to the optimizer in the provided code below. # Your code should also produce two collections of variables: # q_func_vars # target_q_func_vars # These should hold all of the variables of the Q-function network and target network, # respectively. A convenient way to get these is to make use of TF's "scope" feature. # For example, you can create your Q-function network with the scope "q_func" like this: # <something> = q_func(obs_t_float, num_actions, scope="q_func", reuse=False) # And then you can obtain the variables like this: # q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='q_func') # Older versions of TensorFlow may require using "VARIABLES" instead of "GLOBAL_VARIABLES" ###### # YOUR CODE HERE ###### q_net = q_func(obs_t_float, num_actions, scope='q_func', reuse=False) # Q(s,prev_a) target_q_net = q_func(obs_tp1_float, num_actions, scope='target_q_func', reuse=False) q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='q_func') target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_q_func') one_hot_act = tf.one_hot(act_t_ph, depth=num_actions, dtype=tf.float32, name="action_one_hot") x = (rew_t_ph + gamma * tf.reduce_max(target_q_net) - tf.reduce_sum(one_hot_act*q_net,axis=1)) total_error = tf.square(x) # construct optimization op (with gradient clipping) learning_rate = tf.placeholder(tf.float32, (), name="learning_rate") optimizer = optimizer_spec.constructor(learning_rate=learning_rate, **optimizer_spec.kwargs) train_fn = minimize_and_clip(optimizer, total_error, var_list=q_func_vars, clip_val=grad_norm_clipping) # update_target_fn will be called periodically to copy Q network to target Q network update_target_fn = [] for var, var_target in zip(sorted(q_func_vars, key=lambda v: v.name), sorted(target_q_func_vars, key=lambda v: v.name)): update_target_fn.append(var_target.assign(var)) update_target_fn = tf.group(*update_target_fn) # construct the replay buffer replay_buffer = ReplayBuffer(replay_buffer_size, frame_history_len) ############### # RUN ENV # ############### model_initialized = False num_param_updates = 0 mean_episode_reward = -float('nan') best_mean_episode_reward = -float('inf') last_obs = env.reset() LOG_EVERY_N_STEPS = 10000 for t in itertools.count(): ### 1. Check stopping criterion if stopping_criterion is not None and stopping_criterion(env, t): break ### 2. Step the env and store the transition # At this point, "last_obs" contains the latest observation that was # recorded from the simulator. Here, your code needs to store this # observation and its outcome (reward, next observation, etc.) into # the replay buffer while stepping the simulator forward one step. # At the end of this block of code, the simulator should have been # advanced one step, and the replay buffer should contain one more # transition. # Specifically, last_obs must point to the new latest observation. # Useful functions you'll need to call: # obs, reward, done, info = env.step(action) # this steps the environment forward one step # obs = env.reset() # this resets the environment if you reached an episode boundary. # Don't forget to call env.reset() to get a new observation if done # is true!! # Note that you cannot use "last_obs" directly as input # into your network, since it needs to be processed to include context # from previous frames. You should check out the replay buffer # implementation in dqn_utils.py to see what functionality the replay # buffer exposes. The replay buffer has a function called # encode_recent_observation that will take the latest observation # that you pushed into the buffer and compute the corresponding # input that should be given to a Q network by appending some # previous frames. # Don't forget to include epsilon greedy exploration! # And remember that the first time you enter this loop, the model # may not yet have been initialized (but of course, the first step # might as well be random, since you haven't trained your net...) ##### # YOUR CODE HERE ##### idx = replay_buffer.store_frame(last_obs) eps = exploration.value(t) if model_initialized and random.random() > eps: q_input = replay_buffer.encode_recent_observation() q_input = np.expand_dims(q_input,axis=0) action = np.argmax(session.run(q_net,feed_dict = {obs_t_float:q_input})) else: action = env.action_space.sample() # exploration last_obs, reward, done, info = env.step(action) replay_buffer.store_effect(idx, action, reward, done) if done: last_obs = env.reset() # at this point, the environment should have been advanced one step (and # reset if done was true), and last_obs should point to the new latest # observation ### 3. Perform experience replay and train the network. # note that this is only done if the replay buffer contains enough samples # for us to learn something useful -- until then, the model will not be # initialized and random actions should be taken if (t > learning_starts and t % learning_freq == 0 and replay_buffer.can_sample(batch_size)): # Here, you should perform training. Training consists of four steps: # 3.a: use the replay buffer to sample a batch of transitions (see the # replay buffer code for function definition, each batch that you sample # should consist of current observations, current actions, rewards, # next observations, and done indicator). # 3.b: initialize the model if it has not been initialized yet; to do # that, call # initialize_interdependent_variables(session, tf.global_variables(), { # obs_t_ph: obs_t_batch, # obs_tp1_ph: obs_tp1_batch, # }) # where obs_t_batch and obs_tp1_batch are the batches of observations at # the current and next time step. The boolean variable model_initialized # indicates whether or not the model has been initialized. # Remember that you have to update the target network too (see 3.d)! # 3.c: train the model. To do this, you'll need to use the train_fn and # total_error ops that were created earlier: total_error is what you # created to compute the total Bellman error in a batch, and train_fn # will actually perform a gradient step and update the network parameters # to reduce total_error. When calling session.run on these you'll need to # populate the following placeholders: # obs_t_ph # act_t_ph # rew_t_ph # obs_tp1_ph # done_mask_ph # (this is needed for computing total_error) # learning_rate -- you can get this from optimizer_spec.lr_schedule.value(t) # (this is needed by the optimizer to choose the learning rate) # 3.d: periodically update the target network by calling # session.run(update_target_fn) # you should update every target_update_freq steps, and you may find the # variable num_param_updates useful for this (it was initialized to 0) ##### # YOUR CODE HERE ##### obs_t_batch, act_batch, rew_batch, obs_tp1_batch, done_mask = replay_buffer.sample(batch_size) if not model_initialized: initialize_interdependent_variables(session, tf.global_variables(), { obs_t_ph: obs_t_batch, obs_tp1_ph: obs_tp1_batch, }) model_initialized = True session.run(train_fn, feed_dict={ obs_t_ph:obs_t_batch, act_t_ph:act_batch, rew_t_ph:rew_batch, obs_tp1_ph:obs_tp1_batch, done_mask_ph:done_mask, learning_rate:optimizer_spec.lr_schedule.value(t)}) if num_param_updates % target_update_freq == 0: session.run(update_target_fn) ### 4. Log progress episode_rewards = get_wrapper_by_name(env, "Monitor").get_episode_rewards() if len(episode_rewards) > 0: mean_episode_reward = np.mean(episode_rewards[-100:]) if len(episode_rewards) > 100: best_mean_episode_reward = max(best_mean_episode_reward, mean_episode_reward) if t % LOG_EVERY_N_STEPS == 0 and model_initialized: print("Timestep %d" % (t,)) print("mean reward (100 episodes) %f" % mean_episode_reward) print("best mean reward %f" % best_mean_episode_reward) print("episodes %d" % len(episode_rewards)) print("exploration %f" % exploration.value(t)) print("learning_rate %f" % optimizer_spec.lr_schedule.value(t)) sys.stdout.flush()
py
1a495e90298b3c31de54fdc499efed3a7e2bd152
# -*- coding: utf-8 -*- """ Module with logic for the Environment sub-process """ __author__ = 'Samir Adrik' __email__ = '[email protected]' from source.util import Assertor, Tracking, Debugger from .finn_environment_process import FinnEnvironmentProcess from .engine import SubModel class FinnEnvironmentSubModel(SubModel): """ Implementation of Handler for Environmental statistics """ @Tracking def __init__(self, environmental_data: dict): """ Constructor / Instantiate the class. Parameters ---------- environmental_data : dict dict with family statistics """ Assertor.assert_data_types([environmental_data], [dict]) self.name = FinnEnvironmentSubModel.__name__ super().__init__(name=self.name, desc="Processing Finn Environmental Statistics") self.environmental_data = environmental_data @Debugger def run(self): """ method for running the environmental data sub model """ environment_process = FinnEnvironmentProcess(self.environmental_data) return environment_process.environment_statistics
py
1a495f859c0012d2bb98ca6a15bda0d1eb3deb08
# Copyright 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ http://developer.openstack.org/api-ref-identity-v3.html#groups-v3 """ from oslo_serialization import jsonutils as json from tempest.lib.common import rest_client class GroupsClient(rest_client.RestClient): api_version = "v3" def create_group(self, **kwargs): """Creates a group. Available params: see http://developer.openstack.org/ api-ref-identity-v3.html#createGroup """ post_body = json.dumps({'group': kwargs}) resp, body = self.post('groups', post_body) self.expected_success(201, resp.status) body = json.loads(body) return rest_client.ResponseBody(resp, body) def show_group(self, group_id): """Get group details.""" resp, body = self.get('groups/%s' % group_id) self.expected_success(200, resp.status) body = json.loads(body) return rest_client.ResponseBody(resp, body) def list_groups(self): """Lists the groups.""" resp, body = self.get('groups') self.expected_success(200, resp.status) body = json.loads(body) return rest_client.ResponseBody(resp, body) def update_group(self, group_id, **kwargs): """Updates a group. Available params: see http://developer.openstack.org/ api-ref-identity-v3.html#updateGroup """ post_body = json.dumps({'group': kwargs}) resp, body = self.patch('groups/%s' % group_id, post_body) self.expected_success(200, resp.status) body = json.loads(body) return rest_client.ResponseBody(resp, body) def delete_group(self, group_id): """Delete a group.""" resp, body = self.delete('groups/%s' % str(group_id)) self.expected_success(204, resp.status) return rest_client.ResponseBody(resp, body) def add_group_user(self, group_id, user_id): """Add user into group.""" resp, body = self.put('groups/%s/users/%s' % (group_id, user_id), None) self.expected_success(204, resp.status) return rest_client.ResponseBody(resp, body) def list_group_users(self, group_id): """List users in group.""" resp, body = self.get('groups/%s/users' % group_id) self.expected_success(200, resp.status) body = json.loads(body) return rest_client.ResponseBody(resp, body) def delete_group_user(self, group_id, user_id): """Delete user in group.""" resp, body = self.delete('groups/%s/users/%s' % (group_id, user_id)) self.expected_success(204, resp.status) return rest_client.ResponseBody(resp, body) def check_group_user_existence(self, group_id, user_id): """Check user in group.""" resp, body = self.head('groups/%s/users/%s' % (group_id, user_id)) self.expected_success(204, resp.status) return rest_client.ResponseBody(resp)
py
1a495fb2faa002a01410221b8ba2b30a0aac4f9e
import sys import inspect from scenic import scenarioFromString from scenic.core.simulators import DummySimulator, RejectSimulationException import scenic.syntax.veneer as veneer ## Scene generation utilities # Compilation def compileScenic(code, removeIndentation=True, scenario=None): if removeIndentation: # to allow indenting code to line up with test function code = inspect.cleandoc(code) checkVeneerIsInactive() scenario = scenarioFromString(code, scenario=scenario) checkVeneerIsInactive() return scenario # Static scenes def sampleScene(scenario, maxIterations=1): return generateChecked(scenario, maxIterations)[0] def sampleSceneFrom(code, maxIterations=1, scenario=None): scenario = compileScenic(code, scenario=scenario) return sampleScene(scenario, maxIterations=maxIterations) def sampleEgo(scenario, maxIterations=1): scene, iterations = generateChecked(scenario, maxIterations) return scene.egoObject def sampleEgoFrom(code, maxIterations=1): scenario = compileScenic(code) return sampleEgo(scenario, maxIterations=maxIterations) def sampleParamP(scenario, maxIterations=1): scene, iterations = generateChecked(scenario, maxIterations) return scene.params['p'] def sampleParamPFrom(code, maxIterations=1): scenario = compileScenic(code) return sampleParamP(scenario, maxIterations=maxIterations) # Dynamic simulations def sampleEgoActions(scenario, maxIterations=1, maxSteps=1, maxScenes=1, singleAction=True, timestep=1): allActions = sampleActions(scenario, maxIterations, maxSteps, maxScenes, singleAction, asMapping=False, timestep=timestep) return [actions[0] for actions in allActions] def sampleEgoActionsFromScene(scene, maxIterations=1, maxSteps=1, singleAction=True, timestep=1): allActions = sampleActionsFromScene(scene, maxIterations=maxIterations, maxSteps=maxSteps, singleAction=singleAction, asMapping=False, timestep=timestep) if allActions is None: return None return [actions[0] for actions in allActions] def sampleActions(scenario, maxIterations=1, maxSteps=1, maxScenes=1, singleAction=True, asMapping=False, timestep=1): for i in range(maxScenes): scene, iterations = generateChecked(scenario, maxIterations) actions = sampleActionsFromScene(scene, maxIterations=maxIterations, maxSteps=maxSteps, singleAction=singleAction, asMapping=asMapping, timestep=timestep) if actions is not None: return actions raise RejectSimulationException( f'unable to find successful simulation over {maxScenes} scenes') def sampleActionsFromScene(scene, maxIterations=1, maxSteps=1, singleAction=True, asMapping=False, timestep=1): sim = DummySimulator(timestep=timestep) simulation = sim.simulate(scene, maxSteps=maxSteps, maxIterations=maxIterations) if not simulation: return None actionSequence = simulation.result.actions if singleAction: for i, allActions in enumerate(actionSequence): for agent, actions in allActions.items(): assert len(actions) <= 1 allActions[agent] = actions[0] if actions else None if asMapping: return actionSequence else: return [tuple(actions.values()) for actions in actionSequence] def sampleTrajectory(scenario, maxIterations=1, maxSteps=1, maxScenes=1, raiseGuardViolations=False): for i in range(maxScenes): scene, iterations = generateChecked(scenario, maxIterations) trajectory = sampleTrajectoryFromScene(scene, maxIterations=maxIterations, maxSteps=maxSteps, raiseGuardViolations=raiseGuardViolations) if trajectory is not None: return trajectory raise RejectSimulationException( f'unable to find successful simulation over {maxScenes} scenes') def sampleResult(scenario, maxIterations=1, maxSteps=1, maxScenes=1): for i in range(maxScenes): scene, iterations = generateChecked(scenario, maxIterations) result = sampleResultFromScene(scene, maxIterations=maxIterations, maxSteps=maxSteps) if result is not None: return result raise RejectSimulationException( f'unable to find successful simulation over {maxScenes} scenes') def sampleResultFromScene(scene, maxIterations=1, maxSteps=1, raiseGuardViolations=False): sim = DummySimulator(timestep=1) simulation = sim.simulate(scene, maxSteps=maxSteps, maxIterations=maxIterations, raiseGuardViolations=raiseGuardViolations) if not simulation: return None return simulation.result def sampleTrajectoryFromScene(scene, maxIterations=1, maxSteps=1, raiseGuardViolations=False): result = sampleResultFromScene(scene, maxIterations=maxIterations, maxSteps=maxSteps, raiseGuardViolations=raiseGuardViolations) if not result: return None return result.trajectory # Helpers def generateChecked(scenario, maxIterations): checkVeneerIsInactive() scene, iterations = scenario.generate(maxIterations=maxIterations) checkVeneerIsInactive() return scene, iterations def checkVeneerIsInactive(): assert veneer.activity == 0 assert not veneer.scenarioStack assert not veneer.currentScenario assert not veneer.evaluatingRequirement assert not veneer.evaluatingGuard assert not veneer.scenarios assert not veneer._globalParameters assert not veneer.lockedParameters assert not veneer.lockedModel assert not veneer.currentSimulation assert not veneer.currentBehavior ## Error checking utilities def checkErrorLineNumber(line, exc_info=None): if exc_info is None: tb = sys.exc_info()[2] else: tb = exc_info.tb while tb.tb_next is not None: tb = tb.tb_next assert tb.tb_lineno == line
py
1a496150de2f57d0a97ce0984e8866a08d0c482f
# Created by Ilia # https://www.tensorflow.org/tutorials/keras/regression#the_auto_mpg_dataset import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data' column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin'] raw_dataset = pd.read_csv(url, names=column_names, na_values='?', comment='\t', sep=' ', skipinitialspace=True) dataset = raw_dataset.copy() print(dataset.tail()) dataset = dataset.dropna() dataset['Origin'] = dataset['Origin'].map({1: 'USA', 2: 'Europe', 3: 'Japan'}) dataset = pd.get_dummies(dataset, prefix='', prefix_sep='') print(dataset.tail()) train_dataset = dataset.sample(frac=0.8, random_state=0) test_dataset = dataset.drop(train_dataset.index) train_features = train_dataset.copy() test_features = test_dataset.copy() train_labels = train_features.pop('MPG') test_labels = test_features.pop('MPG') normalizer = preprocessing.Normalization() normalizer.adapt(np.array(train_features)) def build_and_compile_model(norm): model = keras.Sequential([ norm, layers.Dense(64, activation='relu'), layers.Dense(64, activation='relu'), layers.Dense(1) ]) model.compile(loss='mean_absolute_error', optimizer=tf.keras.optimizers.Adam(0.001)) return model dnn_model = build_and_compile_model(normalizer) dnn_model.summary() history = dnn_model.fit( train_features, train_labels, validation_split=0.2, verbose=0, epochs=100) def plot_loss(history): plt.plot(history.history['loss'], label='loss') plt.plot(history.history['val_loss'], label='val_loss') plt.ylim([0, 10]) plt.xlabel('Epoch') plt.ylabel('Error [MPG]') plt.legend() plt.grid(True) plot_loss(history) plt.show() dnn_model.evaluate(test_features, test_labels, verbose=0) # Make Predictions test_predictions = dnn_model.predict(test_features).flatten() a = plt.axes(aspect='equal') plt.scatter(test_labels, test_predictions) plt.xlabel('True Values [MPG]') plt.ylabel('Predictions [MPG]') lims = [0, 50] plt.xlim(lims) plt.ylim(lims) _ = plt.plot(lims, lims) plt.show() # Error distribution error = test_predictions - test_labels plt.hist(error, bins=25) plt.xlabel('Prediction Error [MPG]') _ = plt.ylabel('Count') plt.show() # Save model # dnn_model.save('dnn_model') # Load model # reloaded = tf.keras.models.load_model('dnn_model')
py
1a49619fb2ff0f8b9ffe1d7aa7e8088d9b73d72e
import unittest from unittest import mock from io import StringIO from snowfakery.data_generator import generate class TestGenerateMapping(unittest.TestCase): @mock.patch("snowfakery.output_streams.DebugOutputStream.write_row") def test_empty_string(self, write_row): yaml = """ - object: Foo fields: bar: "" """ generate(StringIO(yaml)) print(write_row.mock_calls[0][1][1]["bar"] == "")
py
1a49637af9c3a805dbc072d9e6fe7851f05767e7
"""Test accessor functions by ensuring accessor and xroms functions return same values.""" import cartopy import numpy as np import xarray as xr from xgcm import grid as xgrid import xroms grid1 = xr.open_dataset("xroms/tests/input/grid.nc") # ds = xroms.open_netcdf('xroms/tests/input/ocean_his_0001.nc') ds = xr.open_dataset("xroms/tests/input/ocean_his_0001.nc") # combine the two: ds = ds.merge(grid1, overwrite_vars=True, compat="override") ds, grid = xroms.roms_dataset(ds) axesTZYX = ["T", "Z", "Y", "X"] axesTYX = ["T", "Y", "X"] coordnamesTZYX = ["time", "vertical", "latitude", "longitude"] coordnamesTYX = ["time", "latitude", "longitude"] dim_dict = { "rho": { "s_rho": ["ocean_time", "s_rho", "eta_rho", "xi_rho"], "s_w": ["ocean_time", "s_w", "eta_rho", "xi_rho"], None: ["ocean_time", "eta_rho", "xi_rho"], }, "u": { "s_rho": ["ocean_time", "s_rho", "eta_rho", "xi_u"], "s_w": ["ocean_time", "s_w", "eta_rho", "xi_u"], None: ["ocean_time", "eta_rho", "xi_u"], }, "v": { "s_rho": ["ocean_time", "s_rho", "eta_v", "xi_rho"], "s_w": ["ocean_time", "s_w", "eta_v", "xi_rho"], None: ["ocean_time", "eta_v", "xi_rho"], }, "psi": { "s_rho": ["ocean_time", "s_rho", "eta_v", "xi_u"], "s_w": ["ocean_time", "s_w", "eta_v", "xi_u"], None: ["ocean_time", "eta_v", "xi_u"], }, } coord_dict = { "rho": { "s_rho": ["ocean_time", "z_rho", "lat_rho", "lon_rho"], "s_w": ["ocean_time", "z_w", "lat_rho", "lon_rho"], None: ["ocean_time", "lat_rho", "lon_rho"], }, "u": { "s_rho": ["ocean_time", "z_rho_u", "lat_u", "lon_u"], "s_w": ["ocean_time", "z_w_u", "lat_u", "lon_u"], None: ["ocean_time", "lat_u", "lon_u"], }, "v": { "s_rho": ["ocean_time", "z_rho_v", "lat_v", "lon_v"], "s_w": ["ocean_time", "z_w_v", "lat_v", "lon_v"], None: ["ocean_time", "lat_v", "lon_v"], }, "psi": { "s_rho": ["ocean_time", "z_rho_psi", "lat_psi", "lon_psi"], "s_w": ["ocean_time", "z_w_psi", "lat_psi", "lon_psi"], None: ["ocean_time", "lat_psi", "lon_psi"], }, } def test_grid(): assert isinstance(ds.xroms.grid, xgrid.Grid) def test_speed(): acc = ds.xroms.speed assert np.allclose(acc, xroms.speed(ds.u, ds.v, grid)) # also check attributes assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) # cf-xarray: make sure all Axes and Coordinates available in output hcoord = "rho" scoord = "s_rho" dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_KE(): s = xroms.speed(ds.u, ds.v, grid) acc = ds.xroms.KE assert np.allclose(acc, xroms.KE(ds.rho0, s)) # also check attributes assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) # cf-xarray: make sure all Axes and Coordinates available in output hcoord = "rho" scoord = "s_rho" dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_uv_geostrophic(): acc = ds.xroms.ug assert np.allclose(acc, xroms.uv_geostrophic(ds.zeta, ds.f, grid, which="xi")) # also check attributes assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) # cf-xarray: make sure all Axes and Coordinates available in output hcoord = "u" scoord = None dims = dim_dict[hcoord][scoord] axes = axesTYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord acc = ds.xroms.vg assert np.allclose(acc, xroms.uv_geostrophic(ds.zeta, ds.f, grid, which="eta")) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) hcoord = "v" scoord = None dims = dim_dict[hcoord][scoord] axes = axesTYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_EKE(): acc = ds.xroms.EKE xug, xvg = xroms.uv_geostrophic(ds.zeta, ds.f, grid, which="both") assert np.allclose(acc, xroms.EKE(xug, xvg, grid)) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) hcoord = "rho" scoord = None dims = dim_dict[hcoord][scoord] axes = axesTYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_dudz(): acc = ds.xroms.dudz assert np.allclose(acc, xroms.dudz(ds.u, grid)) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) hcoord = "u" scoord = "s_w" dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_dvdz(): acc = ds.xroms.dvdz assert np.allclose(acc, xroms.dvdz(ds.v, grid)) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) hcoord = "v" scoord = "s_w" dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_vertical_shear(): xdudz = ds.xroms.dudz xdvdz = ds.xroms.dvdz acc = ds.xroms.vertical_shear assert np.allclose(acc, xroms.vertical_shear(xdudz, xdvdz, grid)) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) hcoord = "rho" scoord = "s_w" dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_relative_vorticity(): acc = ds.xroms.vort assert np.allclose(acc, 0) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) hcoord = "psi" scoord = "s_w" dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_ertel(): acc = ds.xroms.ertel xsig0 = xroms.potential_density(ds.temp, ds.salt) xbuoy = xroms.buoyancy(xsig0) assert np.allclose(acc, xroms.ertel(xbuoy, ds.u, ds.v, ds.f, grid)) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) hcoord = "rho" scoord = "s_rho" dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_w(): # VRX pass # acc = ds.xroms.w # assert np.allclose(acc, xroms.w(ds.u, ds.v, grid)) # acc.name == acc.attrs['name'] # acc.attrs['grid'] == ds.xroms.grid # items = ['T','X','Y','Z','longitude','latitude','vertical','time'] # assert set(items).issubset(acc.cf.get_valid_keys()) def test_omega(): # VRX pass # acc = ds.xroms.omega # assert np.allclose(acc, xroms.omega(ds.u, ds.v, grid)) # acc.name == acc.attrs['name'] # acc.attrs['grid'] == ds.xroms.grid # items = ['T','X','Y','Z','longitude','latitude','vertical','time'] # assert set(items).issubset(acc.cf.get_valid_keys()) def test_rho(): acc = ds.xroms.rho assert np.allclose(acc, xroms.density(ds.temp, ds.salt, ds.z_rho)) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) hcoord = "rho" scoord = "s_rho" dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_sig0(): acc = ds.xroms.sig0 assert np.allclose(acc, xroms.potential_density(ds.temp, ds.salt, 0)) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) hcoord = "rho" scoord = "s_rho" dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_buoyancy(): acc = ds.xroms.buoyancy xsig0 = xroms.potential_density(ds.temp, ds.salt) assert np.allclose(acc, xroms.buoyancy(xsig0)) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) hcoord = "rho" scoord = "s_rho" dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_N2(): acc = ds.xroms.N2 xrho = xroms.density(ds.temp, ds.salt, ds.z_rho) assert np.allclose(acc, xroms.N2(xrho, grid), equal_nan=True) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) hcoord = "rho" scoord = "s_w" dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_M2(): acc = ds.xroms.M2 xrho = xroms.density(ds.temp, ds.salt, ds.z_rho) assert np.allclose(acc, xroms.M2(xrho, grid), equal_nan=True) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) hcoord = "rho" scoord = "s_w" dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_mld(): acc = ds.xroms.mld(thresh=0.03) sig0 = xroms.potential_density(ds.temp, ds.salt, 0) assert np.allclose(acc, xroms.mld(sig0, ds.h, ds.mask_rho), equal_nan=True) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) hcoord = "rho" scoord = None dims = dim_dict[hcoord][scoord] axes = axesTYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_ddxi(): testvars = ["salt", "u", "v"] for testvar in testvars: acc = ds[testvar].xroms.ddxi() assert np.allclose(acc, xroms.ddxi(ds[testvar], grid)) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) if testvar == "salt": hcoord = "u" scoord = "s_w" elif testvar == "u": hcoord = "rho" scoord = "s_w" elif testvar == "v": hcoord = "psi" scoord = "s_w" dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord acc = ds.xroms.ddxi(testvar) assert np.allclose(acc, xroms.ddxi(ds[testvar], grid)) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_ddeta(): testvars = ["salt", "u", "v"] for testvar in testvars: acc = ds[testvar].xroms.ddeta() assert np.allclose(acc, xroms.ddeta(ds[testvar], grid)) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) if testvar == "salt": hcoord = "v" scoord = "s_w" elif testvar == "u": hcoord = "psi" scoord = "s_w" elif testvar == "v": hcoord = "rho" scoord = "s_w" dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord acc = ds.xroms.ddeta(testvar) assert np.allclose(acc, xroms.ddeta(ds[testvar], grid)) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_ddz(): testvars = ["salt", "u", "v"] for testvar in testvars: acc = ds[testvar].xroms.ddz() assert np.allclose(acc, xroms.ddz(ds[testvar], grid)) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) dims = list(ds[testvar].dims) axes = axesTZYX coords = [ds[testvar].cf[coordname].name for coordname in coordnamesTZYX] coordnames = coordnamesTZYX # correct dim and coord in derivative direction if grid.axes["Z"]._get_axis_coord(ds[testvar])[1] == "s_rho": dims[1] = "s_w" coords[1] = coords[1].replace("rho", "w") else: dims[1] = "s_rho" coords[1] = coords[1].replace("w", "rho") for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord acc = ds.xroms.ddz(testvar) assert np.allclose(acc, xroms.ddz(ds[testvar], grid)) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_to_grid(): testvars = ["salt", "u", "v"] for testvar in testvars: for scoord in ["s_w", "s_rho"]: for hcoord in ["rho", "u", "v", "psi"]: acc = ds[testvar].xroms.to_grid(hcoord=hcoord, scoord=scoord) assert np.allclose( acc, xroms.to_grid(ds[testvar], grid, hcoord=hcoord, scoord=scoord) ) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) dims = dim_dict[hcoord][scoord] axes = axesTZYX coords = coord_dict[hcoord][scoord] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord acc = ds.xroms.to_grid(testvar, hcoord=hcoord, scoord=scoord) assert np.allclose( acc, xroms.to_grid(ds[testvar], grid, hcoord=hcoord, scoord=scoord) ) assert acc.name == acc.attrs["name"] assert isinstance(acc.attrs["grid"], xgrid.Grid) for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_sel2d(): lon0, lat0 = -94.8, 28.0 testvars = ["salt", "u", "v"] for testvar in testvars: acc = ds[testvar].xroms.sel2d(lon0, lat0) out = xroms.sel2d( ds[testvar], ds[testvar].cf["longitude"], ds[testvar].cf["latitude"], lon0, lat0, ) assert np.allclose(acc, out) assert acc.name == testvar assert isinstance(acc.attrs["grid"], xgrid.Grid) dims = ds[testvar].dims axes = axesTZYX coords = [ds[testvar].cf[coordname].name for coordname in coordnamesTZYX] coordnames = coordnamesTZYX for ax, dim in zip(axes, dims): assert acc.cf[ax].name == dim for coordname, coord in zip(coordnames, coords): assert acc.cf[coordname].name == coord def test_argsel2d(): lon0, lat0 = -94.8, 28.0 testvars = ["salt", "u", "v"] for testvar in testvars: inds = ds[testvar].xroms.argsel2d(lon0, lat0) outinds = xroms.argsel2d( ds[testvar].cf["longitude"], ds[testvar].cf["latitude"], lon0, lat0 ) assert np.allclose(inds, outinds) def test_gridmean(): testvars = ["salt", "u", "v"] for testvar in testvars: for axis in ["Z", "Y", "X"]: var1 = ds[testvar].xroms.gridmean(axis) var2 = xroms.gridmean(ds[testvar], grid, axis) assert np.allclose(var1, var2) def test_gridsum(): testvars = ["salt", "u", "v"] for testvar in testvars: for axis in ["Z", "Y", "X"]: var1 = ds[testvar].xroms.gridsum(axis) var2 = xroms.gridsum(ds[testvar], grid, axis) assert np.allclose(var1, var2) def test_interpll(): ie, ix = 2, 3 indexer = {"eta_rho": [ie], "xi_rho": [ix]} testvars = ["salt", "u", "v"] for testvar in testvars: var1 = xroms.interpll( ds[testvar], ds.lon_rho.isel(indexer), ds.lat_rho.isel(indexer) ) var2 = ds[testvar].xroms.interpll( ds.lon_rho.isel(indexer), ds.lat_rho.isel(indexer) ) assert np.allclose(var1, var2) def test_zslice(): testvars = ["salt", "u", "v"] for testvar in testvars: varin = ds[testvar] depths = np.asarray(ds[testvar].cf["vertical"][0, :, 0, 0].values) varout = xroms.isoslice(varin, depths, grid, axis="Z") varcomp = ds[testvar].xroms.isoslice(depths, axis="Z") assert np.allclose( varout.cf.isel(T=0, Y=0, X=0), varcomp.cf.isel(T=0, Y=0, X=0) )
py
1a496382ae27ee52375fa60f0e8aa67995619555
from django.contrib import admin from .models import Category class CategoryAdmin(admin.ModelAdmin): prepopulated_fields = {'slug': ('category_name', )} list_display = ('category_name', 'slug') # Register your models here. admin.site.register(Category, CategoryAdmin)
py
1a4963a8e001bde595007ae2f6356cc9edce6298
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange import math from ccxt.base.errors import ExchangeError class coinmarketcap(Exchange): def describe(self): return self.deep_extend(super(coinmarketcap, self).describe(), { 'id': 'coinmarketcap', 'name': 'CoinMarketCap', 'rateLimit': 10000, 'version': 'v1', 'countries': ['US'], 'has': { 'CORS': True, 'privateAPI': False, 'createOrder': False, 'createMarketOrder': False, 'createLimitOrder': False, 'cancelOrder': False, 'editOrder': False, 'fetchBalance': False, 'fetchOrderBook': False, 'fetchL2OrderBook': False, 'fetchOHLCV': False, 'fetchTrades': False, 'fetchTickers': True, 'fetchCurrencies': True, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/28244244-9be6312a-69ed-11e7-99c1-7c1797275265.jpg', 'api': { 'public': 'https://api.coinmarketcap.com', 'files': 'https://files.coinmarketcap.com', 'charts': 'https://graph.coinmarketcap.com', }, 'www': 'https://coinmarketcap.com', 'doc': 'https://coinmarketcap.com/api', }, 'requiredCredentials': { 'apiKey': False, 'secret': False, }, 'api': { 'files': { 'get': [ 'generated/stats/global.json', ], }, 'graphs': { 'get': [ 'currencies/{name}/', ], }, 'public': { 'get': [ 'ticker/', 'ticker/{id}/', 'global/', ], }, }, 'currencyCodes': [ 'AUD', 'BRL', 'CAD', 'CHF', 'CNY', 'EUR', 'GBP', 'HKD', 'IDR', 'INR', 'JPY', 'KRW', 'MXN', 'RUB', 'USD', 'BTC', 'ETH', 'LTC', ], }) async def fetch_order_book(self, symbol, limit=None, params={}): raise ExchangeError('Fetching order books is not supported by the API of ' + self.id) def currency_code(self, base, name): currencies = { 'ACChain': 'ACChain', 'AdCoin': 'AdCoin', 'BatCoin': 'BatCoin', 'Bitgem': 'Bitgem', 'BlazeCoin': 'BlazeCoin', 'BlockCAT': 'BlockCAT', 'Blocktrade Token': 'Blocktrade Token', 'Catcoin': 'Catcoin', 'CanYaCoin': 'CanYaCoin', # conflict with CAN(Content and AD Network) 'CryptoBossCoin': 'CryptoBossCoin', # conflict with CBC(CashBet Coin) 'Comet': 'Comet', # conflict with CMT(CyberMiles) 'CPChain': 'CPChain', 'CrowdCoin': 'CrowdCoin', # conflict with CRC CryCash 'Cryptaur': 'Cryptaur', # conflict with CPT = Contents Protocol https://github.com/ccxt/ccxt/issues/4920 and https://github.com/ccxt/ccxt/issues/6081 'Cubits': 'Cubits', # conflict with QBT(Qbao) 'DAO.Casino': 'DAO.Casino', # conflict with BET(BetaCoin) 'E-Dinar Coin': 'E-Dinar Coin', # conflict with EDR Endor Protocol and EDRCoin 'EDRcoin': 'EDRcoin', # conflict with EDR Endor Protocol and E-Dinar Coin 'ENTCash': 'ENTCash', # conflict with ENT(Eternity) 'FairCoin': 'FairCoin', # conflict with FAIR(FairGame) https://github.com/ccxt/ccxt/pull/5865 'Fabric Token': 'Fabric Token', # 'GET Protocol': 'GET Protocol', 'Global Tour Coin': 'Global Tour Coin', # conflict with GTC(Game.com) 'GuccioneCoin': 'GuccioneCoin', # conflict with GCC(Global Cryptocurrency) 'HarmonyCoin': 'HarmonyCoin', # conflict with HMC(Hi Mutual Society) 'Harvest Masternode Coin': 'Harvest Masternode Coin', # conflict with HC(HyperCash) 'HOT Token': 'HOT Token', 'Hydro Protocol': 'Hydro Protocol', # conflict with HOT(Holo) 'Huncoin': 'Huncoin', # conflict with HNC(Helleniccoin) 'iCoin': 'iCoin', 'Infinity Economics': 'Infinity Economics', # conflict with XIN(Mixin) 'KingN Coin': 'KingN Coin', # conflict with KNC(Kyber Network) 'LiteBitcoin': 'LiteBitcoin', # conflict with LBTC(LightningBitcoin) 'Maggie': 'Maggie', 'Monarch': 'Monarch', # conflict with MyToken(MT) 'MTC Mesh Network': 'MTC Mesh Network', # conflict with MTC Docademic doc.com Token https://github.com/ccxt/ccxt/issues/6081 https://github.com/ccxt/ccxt/issues/3025 'IOTA': 'IOTA', # a special case, most exchanges list it as IOTA, therefore we change just the Coinmarketcap instead of changing them all 'NetCoin': 'NetCoin', 'PCHAIN': 'PCHAIN', # conflict with PAI(Project Pai) 'Plair': 'Plair', # conflict with PLA(PLANET) 'PlayChip': 'PlayChip', # conflict with PLA(PLANET) 'Polcoin': 'Polcoin', 'PutinCoin': 'PutinCoin', # conflict with PUT(Profile Utility Token) 'Rcoin': 'Rcoin', # conflict with RCN(Ripio Credit Network) # https://github.com/ccxt/ccxt/issues/6081 # https://github.com/ccxt/ccxt/issues/3365 # https://github.com/ccxt/ccxt/issues/2873 'Themis': 'Themis', # conflict with GET(Guaranteed Entrance Token, GET Protocol) 'Menlo One': 'Menlo One', # conflict with Harmony(ONE) 'BigONE Token': 'BigONE Token', # conflict with Harmony(ONE) } return self.safe_value(currencies, name, base) async def fetch_markets(self, params={}): request = { 'limit': 0, } response = await self.publicGetTicker(self.extend(request, params)) result = [] for i in range(0, len(response)): market = response[i] currencies = self.currencyCodes for j in range(0, len(currencies)): quote = currencies[j] quoteId = quote.lower() baseId = market['id'] base = self.currency_code(market['symbol'], market['name']) symbol = base + '/' + quote id = baseId + '/' + quoteId result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'info': market, 'active': None, 'precision': self.precision, 'limits': self.limits, }) return result async def fetch_global(self, currency='USD'): await self.load_markets() request = {} if currency: request['convert'] = currency return await self.publicGetGlobal(request) def parse_ticker(self, ticker, market=None): timestamp = self.safe_timestamp(ticker, 'last_updated') if timestamp is None: timestamp = self.milliseconds() change = self.safe_float(ticker, 'percent_change_24h') last = None symbol = None volume = None if market is not None: symbol = market['symbol'] priceKey = 'price_' + market['quoteId'] last = self.safe_float(ticker, priceKey) volumeKey = '24h_volume_' + market['quoteId'] volume = self.safe_float(ticker, volumeKey) return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': None, 'low': None, 'bid': None, 'bidVolume': None, 'ask': None, 'askVolume': None, 'vwap': None, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': change, 'average': None, 'baseVolume': None, 'quoteVolume': volume, 'info': ticker, } async def fetch_tickers(self, currency='USD', params={}): await self.load_markets() request = { 'limit': 10000, } if currency: request['convert'] = currency response = await self.publicGetTicker(self.extend(request, params)) result = {} for t in range(0, len(response)): ticker = response[t] currencyId = currency.lower() id = ticker['id'] + '/' + currencyId symbol = id market = None if id in self.markets_by_id: market = self.markets_by_id[id] symbol = market['symbol'] result[symbol] = self.parse_ticker(ticker, market) return result async def fetch_ticker(self, symbol, params={}): await self.load_markets() market = self.market(symbol) request = { 'convert': market['quote'], 'id': market['baseId'], } response = await self.publicGetTickerId(self.extend(request, params)) ticker = response[0] return self.parse_ticker(ticker, market) async def fetch_currencies(self, params={}): request = { 'limit': 0, } response = await self.publicGetTicker(self.extend(request, params)) result = {} for i in range(0, len(response)): currency = response[i] id = self.safe_string(currency, 'symbol') name = self.safe_string(currency, 'name') # todo: will need to rethink the fees # to add support for multiple withdrawal/deposit methods and # differentiated fees for each particular method precision = 8 # default precision, todo: fix "magic constants" code = self.currency_code(id, name) result[code] = { 'id': id, 'code': code, 'info': currency, 'name': name, 'active': True, 'fee': None, # todo: redesign 'precision': precision, 'limits': { 'amount': { 'min': math.pow(10, -precision), 'max': math.pow(10, precision), }, 'price': { 'min': math.pow(10, -precision), 'max': math.pow(10, precision), }, 'cost': { 'min': None, 'max': None, }, 'withdraw': { 'min': None, 'max': None, }, }, } return result def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'][api] + '/' + self.version + '/' + self.implode_params(path, params) query = self.omit(params, self.extract_params(path)) if query: url += '?' + self.urlencode(query) return {'url': url, 'method': method, 'body': body, 'headers': headers} async def request(self, path, api='public', method='GET', params={}, headers=None, body=None): response = await self.fetch2(path, api, method, params, headers, body) if 'error' in response: if response['error']: raise ExchangeError(self.id + ' ' + self.json(response)) return response