|
--- |
|
dataset_info: |
|
features: |
|
- name: dataset |
|
dtype: string |
|
- name: condition |
|
dtype: string |
|
- name: trial |
|
dtype: string |
|
- name: n_objects |
|
dtype: int64 |
|
- name: oddity_index |
|
dtype: int64 |
|
- name: images |
|
sequence: image |
|
- name: n_subjects |
|
dtype: int64 |
|
- name: human_avg |
|
dtype: float64 |
|
- name: human_sem |
|
dtype: float64 |
|
- name: human_std |
|
dtype: float64 |
|
- name: RT_avg |
|
dtype: float64 |
|
- name: RT_sem |
|
dtype: float64 |
|
- name: RT_std |
|
dtype: float64 |
|
- name: DINOv2G_avg |
|
dtype: float64 |
|
- name: DINOv2G_std |
|
dtype: float64 |
|
- name: DINOv2G_sem |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 384413356.563 |
|
num_examples: 2019 |
|
download_size: 382548893 |
|
dataset_size: 384413356.563 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
|
|
## MOCHI: Multiview Object Consistency in Humans and Image models |
|
|
|
We introduce a benchmark to evaluate the alignment between humans and image models on 3D shape understanding: **M**ultiview **O**bject **C**onsistency in **H**umans and **I**mage models (**MOCHI**) |
|
|
|
To download dataset from huggingface, install relevant huggingface libraries |
|
|
|
``` |
|
pip install datasets huggingface_hub |
|
``` |
|
and download MOCHI |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# download huggingface dataset |
|
benchmark = load_dataset("tzler/MOCHI")['train'] |
|
|
|
# there are 2019 trials let's pick one |
|
i_trial = benchmark[1879] |
|
``` |
|
|
|
Here, `i_trial` is a dictionary with trial-related data including human (`human` and `RT`) and model (`DINOv2G`) performance measures: |
|
|
|
``` |
|
{'dataset': 'shapegen', |
|
'condition': 'abstract2', |
|
'trial': 'shapegen2527', |
|
'n_objects': 3, |
|
'oddity_index': 2, |
|
'images': [<PIL.PngImagePlugin.PngImageFile image mode=RGB size=1000x1000>, |
|
<PIL.PngImagePlugin.PngImageFile image mode=RGB size=1000x1000>, |
|
<PIL.PngImagePlugin.PngImageFile image mode=RGB size=1000x1000>], |
|
'n_subjects': 15, |
|
'human_avg': 1.0, |
|
'human_sem': 0.0, |
|
'human_std': 0.0, |
|
'RT_avg': 4324.733333333334, |
|
'RT_sem': 544.4202024405384, |
|
'RT_std': 2108.530377391076, |
|
'DINOv2G_avg': 1.0, |
|
'DINOv2G_std': 0.0, |
|
'DINOv2G_sem': 0.0}``` |
|
|
|
``` |
|
|
|
as well as this trial's images: |
|
|
|
```python |
|
plt.figure(figsize=[15,4]) |
|
for i_plot in range(len(i_trial['images'])): |
|
plt.subplot(1,len(i_trial['images']),i_plot+1) |
|
plt.imshow(i_trial['images'][i_plot]) |
|
if i_plot == i_trial['oddity_index']: plt.title('odd-one-out') |
|
plt.axis('off') |
|
plt.show() |
|
``` |
|
<img src="example_trial.png" alt="example trial"/> |
|
|
|
The complete results on this benchmark, including all of the human and model (e.g., DINOv2, CLIP, and MAE at multiple sizes), can be downloaded from the github repo: |
|
|
|
``` |
|
git clone https://github.com/tzler/MOCHI.git |
|
``` |
|
And then imported with a few lines of code: |
|
|
|
```python |
|
import pandas |
|
# load data the github repo we just cloned |
|
df = pandas.read_csv('MOCHI/assets/benchmark.csv') |
|
# extract trial info with the index from huggingface repo above |
|
df.loc[i_trial_index]['trial'] |
|
``` |
|
This returns the trial, `shapegen2527`, which is the same as the huggingface dataset for this index. |
|
|
|
|
|
``` |
|
@misc{bonnen2024evaluatingmultiviewobjectconsistency, |
|
title={Evaluating Multiview Object Consistency in Humans and Image Models}, |
|
author={Tyler Bonnen and Stephanie Fu and Yutong Bai and Thomas O'Connell and Yoni Friedman and Nancy Kanwisher and Joshua B. Tenenbaum and Alexei A. Efros}, |
|
year={2024}, |
|
eprint={2409.05862}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2409.05862}, |
|
} |
|
``` |