repo_url
stringclasses
13 values
commit
stringclasses
13 values
file_path
stringlengths
15
79
full_name
stringlengths
2
121
status
stringclasses
2 values
state_pp
stringlengths
7
13.4k
state_message
stringclasses
2 values
state_goals
stringlengths
42
31.4k
tactic
stringlengths
3
4.55k
result_type
stringclasses
6 values
result
stringlengths
4
14.1k
result_message
stringlengths
0
13.4k
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Constructions/Uniform.lean
Matroid.unif_eq_freeOn
Status.PROVED
α : Type u_1 M : Matroid α E I B X C : Set α k : ℕ∞ a b a' b' : ℕ h : b ≤ a ⊢ unif a b = freeOn univ
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='E', lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='k', lean_type='ℕ∞'), Declaration(ident='a', lean_type='ℕ'), Declaration(ident='b', lean_type='ℕ'), Declaration(ident="a'", lean_type='ℕ'), Declaration(ident="b'", lean_type='ℕ'), Declaration(ident='h', lean_type='b ≤ a')], conclusion='unif a b = freeOn univ')]
simpa [eq_freeOn_iff]
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=1, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Closure.lean
Matroid.not_spanning_iff_closure
Status.PROVED
α : Type u_1 ι : Type u_2 M : Matroid α F I J X Y B C R : Set α e f x y : α S T : Set α hS : autoParam (S ⊆ M.E) _auto✝ ⊢ ¬M.Spanning S ↔ M.closure S ⊂ M.E
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='x', lean_type='α'), Declaration(ident='y', lean_type='α'), Declaration(ident='S', lean_type='Set α'), Declaration(ident='T', lean_type='Set α'), Declaration(ident='hS', lean_type='autoParam (S ⊆ M.E) _auto✝')], conclusion='¬M.Spanning S ↔ M.closure S ⊂ M.E')]
rw [spanning_iff_closure, ssubset_iff_subset_ne, iff_and_self, iff_true_intro (M.closure_subset_ground _)]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp='α : Type u_1\nι : Type u_2\nM : Matroid α\nF I J X Y B C R : Set α\ne f x y : α\nS T : Set α\nhS : autoParam (S ⊆ M.E) _auto✝\n⊢ ¬M.closure S = M.E → True', id=1, message='')
α : Type u_1 ι : Type u_2 M : Matroid α F I J X Y B C R : Set α e f x y : α S T : Set α hS : autoParam (S ⊆ M.E) _auto✝ ⊢ ¬M.closure S = M.E → True
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Closure.lean
Matroid.not_spanning_iff_closure
Status.PROVED
α : Type u_1 ι : Type u_2 M : Matroid α F I J X Y B C R : Set α e f x y : α S T : Set α hS : autoParam (S ⊆ M.E) _auto✝ ⊢ ¬M.closure S = M.E → True
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='x', lean_type='α'), Declaration(ident='y', lean_type='α'), Declaration(ident='S', lean_type='Set α'), Declaration(ident='T', lean_type='Set α'), Declaration(ident='hS', lean_type='autoParam (S ⊆ M.E) _auto✝')], conclusion='¬M.closure S = M.E → True')]
exact fun _ ↦ trivial
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=2, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.delete_inter_ground_eq
Status.PROVED
α : Type u_1 M✝ M' N : Matroid α e f : α I J R✝ B X Y Z K D✝ D₁ D₂ R : Set α M : Matroid α D : Set α ⊢ M \ (D ∩ M.E) = M \ D
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R✝', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='D✝', lean_type='Set α'), Declaration(ident='D₁', lean_type='Set α'), Declaration(ident='D₂', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='D', lean_type='Set α')], conclusion='M \ (D ∩ M.E) = M \ D')]
rw [← restrict_compl, ← restrict_compl, diff_inter_self_eq_diff]
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=1, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/ForMathlib/SetPartition.lean
Partition.setOf_rel_eq
Status.FAILED
α : Type u_1 inst✝² : CompleteLattice α s✝¹ x y z : α s✝ t : Set α a b : α P : Partition s✝ r : α → α → Prop inst✝¹ : IsSymm α r inst✝ : IsTrans α r s : Set α ht : t ∈ P hx : x ∈ t ⊢ {y | P.Rel x y} = t
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='inst✝²', lean_type='CompleteLattice α'), Declaration(ident='s✝¹', lean_type='α'), Declaration(ident='x', lean_type='α'), Declaration(ident='y', lean_type='α'), Declaration(ident='z', lean_type='α'), Declaration(ident='s✝', lean_type='Set α'), Declaration(ident='t', lean_type='Set α'), Declaration(ident='a', lean_type='α'), Declaration(ident='b', lean_type='α'), Declaration(ident='P', lean_type='Partition s✝'), Declaration(ident='r', lean_type='α → α → Prop'), Declaration(ident='inst✝¹', lean_type='IsSymm α r'), Declaration(ident='inst✝', lean_type='IsTrans α r'), Declaration(ident='s', lean_type='Set α'), Declaration(ident='ht', lean_type='t ∈ P'), Declaration(ident='hx', lean_type='x ∈ t')], conclusion='{y | P.Rel x y} = t')]
rwa [P.eq_of_mem_of_mem ht ht' hx hx']
<class 'lean_dojo.interaction.dojo.LeanError'>
LeanError(error='no goals to be solved')
no goals to be solved
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Rank.lean
Matroid.er_inter_add_er_union_le_er_add_er
Status.PROVED
α : Type u_1 ι : Type u_2 M✝ N : Matroid α I B X✝ X' Y✝ Y' Z R : Set α n : ℕ∞ e f : α M : Matroid α X Y : Set α ⊢ M.er (X ∩ Y) + M.er (X ∪ Y) ≤ M.er X + M.er Y
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X✝', lean_type='Set α'), Declaration(ident="X'", lean_type='Set α'), Declaration(ident='Y✝', lean_type='Set α'), Declaration(ident="Y'", lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ∞'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α')], conclusion='M.er (X ∩ Y) + M.er (X ∪ Y) ≤ M.er X + M.er Y')]
obtain ⟨Ii, hIi⟩ := M.exists_basis' (X ∩ Y)
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro\nα : Type u_1\nι : Type u_2\nM✝ N : Matroid α\nI B X✝ X' Y✝ Y' Z R : Set α\nn : ℕ∞\ne f : α\nM : Matroid α\nX Y Ii : Set α\nhIi : M.Basis' Ii (X ∩ Y)\n⊢ M.er (X ∩ Y) + M.er (X ∪ Y) ≤ M.er X + M.er Y", id=1, message='')
case intro α : Type u_1 ι : Type u_2 M✝ N : Matroid α I B X✝ X' Y✝ Y' Z R : Set α n : ℕ∞ e f : α M : Matroid α X Y Ii : Set α hIi : M.Basis' Ii (X ∩ Y) ⊢ M.er (X ∩ Y) + M.er (X ∪ Y) ≤ M.er X + M.er Y
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Rank.lean
Matroid.er_inter_add_er_union_le_er_add_er
Status.PROVED
case intro α : Type u_1 ι : Type u_2 M✝ N : Matroid α I B X✝ X' Y✝ Y' Z R : Set α n : ℕ∞ e f : α M : Matroid α X Y Ii : Set α hIi : M.Basis' Ii (X ∩ Y) ⊢ M.er (X ∩ Y) + M.er (X ∪ Y) ≤ M.er X + M.er Y
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X✝', lean_type='Set α'), Declaration(ident="X'", lean_type='Set α'), Declaration(ident='Y✝', lean_type='Set α'), Declaration(ident="Y'", lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ∞'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Ii', lean_type='Set α'), Declaration(ident='hIi', lean_type="M.Basis' Ii (X ∩ Y)")], conclusion='M.er (X ∩ Y) + M.er (X ∪ Y) ≤ M.er X + M.er Y')]
obtain ⟨IX, hIX, hIX'⟩ := hIi.indep.subset_basis'_of_subset (hIi.subset.trans inter_subset_left)
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro\nα : Type u_1\nι : Type u_2\nM✝ N : Matroid α\nI B X✝ X' Y✝ Y' Z R : Set α\nn : ℕ∞\ne f : α\nM : Matroid α\nX Y Ii : Set α\nhIi : M.Basis' Ii (X ∩ Y)\nIX : Set α\nhIX : M.Basis' IX X\nhIX' : Ii ⊆ IX\n⊢ M.er (X ∩ Y) + M.er (X ∪ Y) ≤ M.er X + M.er Y", id=2, message='')
case intro.intro.intro α : Type u_1 ι : Type u_2 M✝ N : Matroid α I B X✝ X' Y✝ Y' Z R : Set α n : ℕ∞ e f : α M : Matroid α X Y Ii : Set α hIi : M.Basis' Ii (X ∩ Y) IX : Set α hIX : M.Basis' IX X hIX' : Ii ⊆ IX ⊢ M.er (X ∩ Y) + M.er (X ∪ Y) ≤ M.er X + M.er Y
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Rank.lean
Matroid.er_inter_add_er_union_le_er_add_er
Status.PROVED
case intro.intro.intro α : Type u_1 ι : Type u_2 M✝ N : Matroid α I B X✝ X' Y✝ Y' Z R : Set α n : ℕ∞ e f : α M : Matroid α X Y Ii : Set α hIi : M.Basis' Ii (X ∩ Y) IX : Set α hIX : M.Basis' IX X hIX' : Ii ⊆ IX ⊢ M.er (X ∩ Y) + M.er (X ∪ Y) ≤ M.er X + M.er Y
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X✝', lean_type='Set α'), Declaration(ident="X'", lean_type='Set α'), Declaration(ident='Y✝', lean_type='Set α'), Declaration(ident="Y'", lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ∞'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Ii', lean_type='Set α'), Declaration(ident='hIi', lean_type="M.Basis' Ii (X ∩ Y)"), Declaration(ident='IX', lean_type='Set α'), Declaration(ident='hIX', lean_type="M.Basis' IX X"), Declaration(ident="hIX'", lean_type='Ii ⊆ IX')], conclusion='M.er (X ∩ Y) + M.er (X ∪ Y) ≤ M.er X + M.er Y')]
obtain ⟨IY, hIY, hIY'⟩ := hIi.indep.subset_basis'_of_subset (hIi.subset.trans inter_subset_right)
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro.intro.intro\nα : Type u_1\nι : Type u_2\nM✝ N : Matroid α\nI B X✝ X' Y✝ Y' Z R : Set α\nn : ℕ∞\ne f : α\nM : Matroid α\nX Y Ii : Set α\nhIi : M.Basis' Ii (X ∩ Y)\nIX : Set α\nhIX : M.Basis' IX X\nhIX' : Ii ⊆ IX\nIY : Set α\nhIY : M.Basis' IY Y\nhIY' : Ii ⊆ IY\n⊢ M.er (X ∩ Y) + M.er (X ∪ Y) ≤ M.er X + M.er Y", id=3, message='')
case intro.intro.intro.intro.intro α : Type u_1 ι : Type u_2 M✝ N : Matroid α I B X✝ X' Y✝ Y' Z R : Set α n : ℕ∞ e f : α M : Matroid α X Y Ii : Set α hIi : M.Basis' Ii (X ∩ Y) IX : Set α hIX : M.Basis' IX X hIX' : Ii ⊆ IX IY : Set α hIY : M.Basis' IY Y hIY' : Ii ⊆ IY ⊢ M.er (X ∩ Y) + M.er (X ∪ Y) ≤ M.er X + M.er Y
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Rank.lean
Matroid.er_inter_add_er_union_le_er_add_er
Status.PROVED
case intro.intro.intro.intro.intro α : Type u_1 ι : Type u_2 M✝ N : Matroid α I B X✝ X' Y✝ Y' Z R : Set α n : ℕ∞ e f : α M : Matroid α X Y Ii : Set α hIi : M.Basis' Ii (X ∩ Y) IX : Set α hIX : M.Basis' IX X hIX' : Ii ⊆ IX IY : Set α hIY : M.Basis' IY Y hIY' : Ii ⊆ IY ⊢ M.er (X ∩ Y) + M.er (X ∪ Y) ≤ M.er X + M.er Y
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X✝', lean_type='Set α'), Declaration(ident="X'", lean_type='Set α'), Declaration(ident='Y✝', lean_type='Set α'), Declaration(ident="Y'", lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ∞'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Ii', lean_type='Set α'), Declaration(ident='hIi', lean_type="M.Basis' Ii (X ∩ Y)"), Declaration(ident='IX', lean_type='Set α'), Declaration(ident='hIX', lean_type="M.Basis' IX X"), Declaration(ident="hIX'", lean_type='Ii ⊆ IX'), Declaration(ident='IY', lean_type='Set α'), Declaration(ident='hIY', lean_type="M.Basis' IY Y"), Declaration(ident="hIY'", lean_type='Ii ⊆ IY')], conclusion='M.er (X ∩ Y) + M.er (X ∪ Y) ≤ M.er X + M.er Y')]
rw [← hIX.er_eq_er_union, union_comm, ← hIY.er_eq_er_union, ← hIi.encard, ← hIX.encard, ← hIY.encard, union_comm, ← encard_union_add_encard_inter, add_comm]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro.intro.intro\nα : Type u_1\nι : Type u_2\nM✝ N : Matroid α\nI B X✝ X' Y✝ Y' Z R : Set α\nn : ℕ∞\ne f : α\nM : Matroid α\nX Y Ii : Set α\nhIi : M.Basis' Ii (X ∩ Y)\nIX : Set α\nhIX : M.Basis' IX X\nhIX' : Ii ⊆ IX\nIY : Set α\nhIY : M.Basis' IY Y\nhIY' : Ii ⊆ IY\n⊢ M.er (IX ∪ IY) + Ii.encard ≤ (IX ∪ IY).encard + (IX ∩ IY).encard", id=4, message='')
case intro.intro.intro.intro.intro α : Type u_1 ι : Type u_2 M✝ N : Matroid α I B X✝ X' Y✝ Y' Z R : Set α n : ℕ∞ e f : α M : Matroid α X Y Ii : Set α hIi : M.Basis' Ii (X ∩ Y) IX : Set α hIX : M.Basis' IX X hIX' : Ii ⊆ IX IY : Set α hIY : M.Basis' IY Y hIY' : Ii ⊆ IY ⊢ M.er (IX ∪ IY) + Ii.encard ≤ (IX ∪ IY).encard + (IX ∩ IY).encard
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Rank.lean
Matroid.er_inter_add_er_union_le_er_add_er
Status.PROVED
case intro.intro.intro.intro.intro α : Type u_1 ι : Type u_2 M✝ N : Matroid α I B X✝ X' Y✝ Y' Z R : Set α n : ℕ∞ e f : α M : Matroid α X Y Ii : Set α hIi : M.Basis' Ii (X ∩ Y) IX : Set α hIX : M.Basis' IX X hIX' : Ii ⊆ IX IY : Set α hIY : M.Basis' IY Y hIY' : Ii ⊆ IY ⊢ M.er (IX ∪ IY) + Ii.encard ≤ (IX ∪ IY).encard + (IX ∩ IY).encard
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X✝', lean_type='Set α'), Declaration(ident="X'", lean_type='Set α'), Declaration(ident='Y✝', lean_type='Set α'), Declaration(ident="Y'", lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ∞'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Ii', lean_type='Set α'), Declaration(ident='hIi', lean_type="M.Basis' Ii (X ∩ Y)"), Declaration(ident='IX', lean_type='Set α'), Declaration(ident='hIX', lean_type="M.Basis' IX X"), Declaration(ident="hIX'", lean_type='Ii ⊆ IX'), Declaration(ident='IY', lean_type='Set α'), Declaration(ident='hIY', lean_type="M.Basis' IY Y"), Declaration(ident="hIY'", lean_type='Ii ⊆ IY')], conclusion='M.er (IX ∪ IY) + Ii.encard ≤ (IX ∪ IY).encard + (IX ∩ IY).encard')]
exact add_le_add (er_le_encard _ _) (encard_mono (subset_inter hIX' hIY'))
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=5, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.Minor.C_union_D_eq
Status.PROVED
α : Type u_1 M M' N : Matroid α e f : α I J R B X Y Z K : Set α M₀ M₁ M₂ : Matroid α h : N ≤m M ⊢ h.C ∪ h.D = M.E \ N.E
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='M₀', lean_type='Matroid α'), Declaration(ident='M₁', lean_type='Matroid α'), Declaration(ident='M₂', lean_type='Matroid α'), Declaration(ident='h', lean_type='N ≤m M')], conclusion='h.C ∪ h.D = M.E \\ N.E')]
simp only [h.eq_con_del, delete_ground, contract_ground, diff_diff]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM M' N : Matroid α\ne f : α\nI J R B X Y Z K : Set α\nM₀ M₁ M₂ : Matroid α\nh : N ≤m M\n⊢ h.C ∪ h.D = M.E \\ (M.E \\ (h.C ∪ h.D))", id=1, message='')
α : Type u_1 M M' N : Matroid α e f : α I J R B X Y Z K : Set α M₀ M₁ M₂ : Matroid α h : N ≤m M ⊢ h.C ∪ h.D = M.E \ (M.E \ (h.C ∪ h.D))
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.Minor.C_union_D_eq
Status.PROVED
α : Type u_1 M M' N : Matroid α e f : α I J R B X Y Z K : Set α M₀ M₁ M₂ : Matroid α h : N ≤m M ⊢ h.C ∪ h.D = M.E \ (M.E \ (h.C ∪ h.D))
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='M₀', lean_type='Matroid α'), Declaration(ident='M₁', lean_type='Matroid α'), Declaration(ident='M₂', lean_type='Matroid α'), Declaration(ident='h', lean_type='N ≤m M')], conclusion='h.C ∪ h.D = M.E \\ (M.E \\ (h.C ∪ h.D))')]
rw [Set.diff_diff_cancel_left]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM M' N : Matroid α\ne f : α\nI J R B X Y Z K : Set α\nM₀ M₁ M₂ : Matroid α\nh : N ≤m M\n⊢ h.C ∪ h.D ⊆ M.E", id=2, message='')
α : Type u_1 M M' N : Matroid α e f : α I J R B X Y Z K : Set α M₀ M₁ M₂ : Matroid α h : N ≤m M ⊢ h.C ∪ h.D ⊆ M.E
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.Minor.C_union_D_eq
Status.PROVED
α : Type u_1 M M' N : Matroid α e f : α I J R B X Y Z K : Set α M₀ M₁ M₂ : Matroid α h : N ≤m M ⊢ h.C ∪ h.D ⊆ M.E
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='M₀', lean_type='Matroid α'), Declaration(ident='M₁', lean_type='Matroid α'), Declaration(ident='M₂', lean_type='Matroid α'), Declaration(ident='h', lean_type='N ≤m M')], conclusion='h.C ∪ h.D ⊆ M.E')]
exact union_subset h.C_indep.subset_ground h.D_coindep.subset_ground
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=3, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Simple.lean
Matroid.closure_eq_self_of_subset_singleton
Status.FAILED
α : Type u_1 M N : Matroid α e f g : α I X P D : Set α inst✝ : M.Simple he : e ∈ M.E hX : X ⊆ {e} ⊢ M.closure X = X
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='g', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='inst✝', lean_type='M.Simple'), Declaration(ident='he', lean_type='e ∈ M.E'), Declaration(ident='hX', lean_type='X ⊆ {e}')], conclusion='M.closure X = X')]
obtain (rfl | rfl) := subset_singleton_iff_eq.1 hX
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp='case inl\nα : Type u_1\nM N : Matroid α\ne f g : α\nI P D : Set α\ninst✝ : M.Simple\nhe : e ∈ M.E\nhX : ∅ ⊆ {e}\n⊢ M.closure ∅ = ∅\n\ncase inr\nα : Type u_1\nM N : Matroid α\ne f g : α\nI P D : Set α\ninst✝ : M.Simple\nhe : e ∈ M.E\nhX : {e} ⊆ {e}\n⊢ M.closure {e} = {e}', id=1, message='')
case inl α : Type u_1 M N : Matroid α e f g : α I P D : Set α inst✝ : M.Simple he : e ∈ M.E hX : ∅ ⊆ {e} ⊢ M.closure ∅ = ∅ case inr α : Type u_1 M N : Matroid α e f g : α I P D : Set α inst✝ : M.Simple he : e ∈ M.E hX : {e} ⊆ {e} ⊢ M.closure {e} = {e}
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Simple.lean
Matroid.closure_eq_self_of_subset_singleton
Status.FAILED
case inl α : Type u_1 M N : Matroid α e f g : α I P D : Set α inst✝ : M.Simple he : e ∈ M.E hX : ∅ ⊆ {e} ⊢ M.closure ∅ = ∅ case inr α : Type u_1 M N : Matroid α e f g : α I P D : Set α inst✝ : M.Simple he : e ∈ M.E hX : {e} ⊆ {e} ⊢ M.closure {e} = {e}
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='g', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='inst✝', lean_type='M.Simple'), Declaration(ident='he', lean_type='e ∈ M.E'), Declaration(ident='hX', lean_type='∅ ⊆ {e}')], conclusion='M.closure ∅ = ∅'), Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='g', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='inst✝', lean_type='M.Simple'), Declaration(ident='he', lean_type='e ∈ M.E'), Declaration(ident='hX', lean_type='{e} ⊆ {e}')], conclusion='M.closure {e} = {e}')]
exact closure_singleton_eq he
<class 'lean_dojo.interaction.dojo.LeanError'>
LeanError(error='type mismatch\n Matroid.closure_singleton_eq he\nhas type\n M.closure {e} = {e} : Prop\nbut is expected to have type\n M.closure ∅ = ∅ : Prop')
type mismatch Matroid.closure_singleton_eq he has type M.closure {e} = {e} : Prop but is expected to have type M.closure ∅ = ∅ : Prop
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Rank.lean
Matroid.loopyOn_r_eq
Status.PROVED
α : Type u_1 ι : Type u_2 M N : Matroid α I B X✝ X' Y Y' Z R : Set α n : ℕ∞ e f : α E✝ E X : Set α ⊢ (loopyOn E).r X = 0
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X✝', lean_type='Set α'), Declaration(ident="X'", lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="Y'", lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ∞'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='E✝', lean_type='Set α'), Declaration(ident='E', lean_type='Set α'), Declaration(ident='X', lean_type='Set α')], conclusion='(loopyOn E).r X = 0')]
rw [← er_toNat_eq_r, loopyOn_er_eq]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nι : Type u_2\nM N : Matroid α\nI B X✝ X' Y Y' Z R : Set α\nn : ℕ∞\ne f : α\nE✝ E X : Set α\n⊢ toNat 0 = 0", id=1, message='')
α : Type u_1 ι : Type u_2 M N : Matroid α I B X✝ X' Y Y' Z R : Set α n : ℕ∞ e f : α E✝ E X : Set α ⊢ toNat 0 = 0
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Rank.lean
Matroid.loopyOn_r_eq
Status.PROVED
α : Type u_1 ι : Type u_2 M N : Matroid α I B X✝ X' Y Y' Z R : Set α n : ℕ∞ e f : α E✝ E X : Set α ⊢ toNat 0 = 0
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X✝', lean_type='Set α'), Declaration(ident="X'", lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="Y'", lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ∞'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='E✝', lean_type='Set α'), Declaration(ident='E', lean_type='Set α'), Declaration(ident='X', lean_type='Set α')], conclusion='toNat 0 = 0')]
rfl
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=2, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.restriction_iff_exists_eq_delete
Status.FAILED
α : Type u_1 M M' N : Matroid α e f : α I J R✝ B X Y Z K D D₁ D₂ R : Set α ⊢ N ≤r M ↔ ∃ D ⊆ M.E, N = M \ D
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R✝', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='D₁', lean_type='Set α'), Declaration(ident='D₂', lean_type='Set α'), Declaration(ident='R', lean_type='Set α')], conclusion='N ≤r M ↔ ∃ D ⊆ M.E, N = M \ D')]
rintro ⟨D, -, rfl⟩
<class 'lean_dojo.interaction.dojo.LeanError'>
LeanError(error="tactic 'introN' failed, insufficient number of binders\nα : Type u_1\nM M' N : Matroid α\ne f : α\nI J R✝ B X Y Z K D D₁ D₂ R : Set α\n⊢ N ≤r M ↔ ∃ D ⊆ M.E, N = M \ D")
tactic 'introN' failed, insufficient number of binders α : Type u_1 M M' N : Matroid α e f : α I J R✝ B X Y Z K D D₁ D₂ R : Set α ⊢ N ≤r M ↔ ∃ D ⊆ M.E, N = M \ D
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Flat.lean
Matroid.Flat.iInter_inter_ground
Status.FAILED
α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α ι : Type u_2 Fs : ι → Set α hFs : ∀ (i : ι), M.Flat (Fs i) ⊢ M.Flat ((⋂ i, Fs i) ∩ M.E)
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F₁', lean_type='Set α'), Declaration(ident='F₂', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident='H', lean_type='Set α'), Declaration(ident='H₁', lean_type='Set α'), Declaration(ident='H₂', lean_type='Set α'), Declaration(ident="H'", lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='Fs', lean_type='ι → Set α'), Declaration(ident='hFs', lean_type='∀ (i : ι), M.Flat (Fs i)')], conclusion='M.Flat ((⋂ i, Fs i) ∩ M.E)')]
obtain (hι | hι) := isEmpty_or_nonempty ι
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case inl\nα : Type u_1\nM : Matroid α\nI F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α\ne f : α\nι : Type u_2\nFs : ι → Set α\nhFs : ∀ (i : ι), M.Flat (Fs i)\nhι : IsEmpty ι\n⊢ M.Flat ((⋂ i, Fs i) ∩ M.E)\n\ncase inr\nα : Type u_1\nM : Matroid α\nI F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α\ne f : α\nι : Type u_2\nFs : ι → Set α\nhFs : ∀ (i : ι), M.Flat (Fs i)\nhι : Nonempty ι\n⊢ M.Flat ((⋂ i, Fs i) ∩ M.E)", id=1, message='')
case inl α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α ι : Type u_2 Fs : ι → Set α hFs : ∀ (i : ι), M.Flat (Fs i) hι : IsEmpty ι ⊢ M.Flat ((⋂ i, Fs i) ∩ M.E) case inr α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α ι : Type u_2 Fs : ι → Set α hFs : ∀ (i : ι), M.Flat (Fs i) hι : Nonempty ι ⊢ M.Flat ((⋂ i, Fs i) ∩ M.E)
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Flat.lean
Matroid.Flat.iInter_inter_ground
Status.FAILED
case inl α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α ι : Type u_2 Fs : ι → Set α hFs : ∀ (i : ι), M.Flat (Fs i) hι : IsEmpty ι ⊢ M.Flat ((⋂ i, Fs i) ∩ M.E) case inr α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α ι : Type u_2 Fs : ι → Set α hFs : ∀ (i : ι), M.Flat (Fs i) hι : Nonempty ι ⊢ M.Flat ((⋂ i, Fs i) ∩ M.E)
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F₁', lean_type='Set α'), Declaration(ident='F₂', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident='H', lean_type='Set α'), Declaration(ident='H₁', lean_type='Set α'), Declaration(ident='H₂', lean_type='Set α'), Declaration(ident="H'", lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='Fs', lean_type='ι → Set α'), Declaration(ident='hFs', lean_type='∀ (i : ι), M.Flat (Fs i)'), Declaration(ident='hι', lean_type='IsEmpty ι')], conclusion='M.Flat ((⋂ i, Fs i) ∩ M.E)'), Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F₁', lean_type='Set α'), Declaration(ident='F₂', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident='H', lean_type='Set α'), Declaration(ident='H₁', lean_type='Set α'), Declaration(ident='H₂', lean_type='Set α'), Declaration(ident="H'", lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='Fs', lean_type='ι → Set α'), Declaration(ident='hFs', lean_type='∀ (i : ι), M.Flat (Fs i)'), Declaration(ident='hι', lean_type='Nonempty ι')], conclusion='M.Flat ((⋂ i, Fs i) ∩ M.E)')]
exact (Flat.iInter hFs).inter M.ground_flat
<class 'lean_dojo.interaction.dojo.LeanError'>
LeanError(error='failed to synthesize\n Nonempty ι\nuse `set_option diagnostics true` to get diagnostic information')
failed to synthesize Nonempty ι use `set_option diagnostics true` to get diagnostic information
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Rank.lean
Matroid.restrict_r_eq'
Status.PROVED
α : Type u_1 M✝ N : Matroid α I J C D X✝ Y Z : Set α e f : α M : Matroid α R X : Set α ⊢ (M ↾ R).r X = M.r (X ∩ R)
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='X✝', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='X', lean_type='Set α')], conclusion='(M ↾ R).r X = M.r (X ∩ R)')]
rw [r, restrict_er_eq', r]
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=1, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.Minor.eq_of_ground_subset
Status.PROVED
α : Type u_1 M M' N : Matroid α e f : α I J R B X Y Z K : Set α M₀ M₁ M₂ : Matroid α h : N ≤m M hE : M.E ⊆ N.E ⊢ M = N
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='M₀', lean_type='Matroid α'), Declaration(ident='M₁', lean_type='Matroid α'), Declaration(ident='M₂', lean_type='Matroid α'), Declaration(ident='h', lean_type='N ≤m M'), Declaration(ident='hE', lean_type='M.E ⊆ N.E')], conclusion='M = N')]
obtain ⟨C, D, -, -, -, rfl⟩ := h
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro.intro.intro\nα : Type u_1\nM M' : Matroid α\ne f : α\nI J R B X Y Z K : Set α\nM₀ M₁ M₂ : Matroid α\nC D : Set α\nhE : M.E ⊆ (M / C \ D).E\n⊢ M = M / C \ D", id=1, message='')
case intro.intro.intro.intro.intro α : Type u_1 M M' : Matroid α e f : α I J R B X Y Z K : Set α M₀ M₁ M₂ : Matroid α C D : Set α hE : M.E ⊆ (M / C \ D).E ⊢ M = M / C \ D
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.Minor.eq_of_ground_subset
Status.PROVED
case intro.intro.intro.intro.intro α : Type u_1 M M' : Matroid α e f : α I J R B X Y Z K : Set α M₀ M₁ M₂ : Matroid α C D : Set α hE : M.E ⊆ (M / C \ D).E ⊢ M = M / C \ D
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='M₀', lean_type='Matroid α'), Declaration(ident='M₁', lean_type='Matroid α'), Declaration(ident='M₂', lean_type='Matroid α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='hE', lean_type='M.E ⊆ (M / C \ D).E')], conclusion='M = M / C \ D')]
rw [delete_ground, contract_ground, subset_diff, subset_diff] at hE
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro.intro.intro\nα : Type u_1\nM M' : Matroid α\ne f : α\nI J R B X Y Z K : Set α\nM₀ M₁ M₂ : Matroid α\nC D : Set α\nhE : (M.E ⊆ M.E ∧ Disjoint M.E C) ∧ Disjoint M.E D\n⊢ M = M / C \ D", id=2, message='')
case intro.intro.intro.intro.intro α : Type u_1 M M' : Matroid α e f : α I J R B X Y Z K : Set α M₀ M₁ M₂ : Matroid α C D : Set α hE : (M.E ⊆ M.E ∧ Disjoint M.E C) ∧ Disjoint M.E D ⊢ M = M / C \ D
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.Minor.eq_of_ground_subset
Status.PROVED
case intro.intro.intro.intro.intro α : Type u_1 M M' : Matroid α e f : α I J R B X Y Z K : Set α M₀ M₁ M₂ : Matroid α C D : Set α hE : (M.E ⊆ M.E ∧ Disjoint M.E C) ∧ Disjoint M.E D ⊢ M = M / C \ D
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='M₀', lean_type='Matroid α'), Declaration(ident='M₁', lean_type='Matroid α'), Declaration(ident='M₂', lean_type='Matroid α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='hE', lean_type='(M.E ⊆ M.E ∧ Disjoint M.E C) ∧ Disjoint M.E D')], conclusion='M = M / C \ D')]
rw [← contract_inter_ground_eq, hE.1.2.symm.inter_eq, contract_empty, ← delete_inter_ground_eq, hE.2.symm.inter_eq, delete_empty]
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=3, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Constructions/Uniform.lean
Matroid.unifOn_indep_iff
Status.PROVED
α : Type u_1 M : Matroid α E I B X C : Set α k : ℕ∞ ⊢ (unifOn E k).Indep I ↔ I.encard ≤ k ∧ I ⊆ E
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='E', lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='k', lean_type='ℕ∞')], conclusion='(unifOn E k).Indep I ↔ I.encard ≤ k ∧ I ⊆ E')]
simp [unifOn, and_comm]
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=1, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.Minor.eq_con_del
Status.PROVED
α : Type u_1 M M' N : Matroid α e f : α I J R B X Y Z K : Set α M₀ M₁ M₂ : Matroid α h : N ≤m M ⊢ N = M / h.C \ h.D
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='M₀', lean_type='Matroid α'), Declaration(ident='M₁', lean_type='Matroid α'), Declaration(ident='M₂', lean_type='Matroid α'), Declaration(ident='h', lean_type='N ≤m M')], conclusion='N = M / h.C \ h.D')]
obtain ⟨-,-,-,h⟩ := h.exists_contract_indep_delete_coindep.choose_spec.choose_spec
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro\nα : Type u_1\nM M' N : Matroid α\ne f : α\nI J R B X Y Z K : Set α\nM₀ M₁ M₂ : Matroid α\nh✝ : N ≤m M\nh : N = M / ⋯.choose \ ⋯.choose\n⊢ N = M / h✝.C \ h✝.D", id=1, message='')
case intro.intro.intro α : Type u_1 M M' N : Matroid α e f : α I J R B X Y Z K : Set α M₀ M₁ M₂ : Matroid α h✝ : N ≤m M h : N = M / ⋯.choose \ ⋯.choose ⊢ N = M / h✝.C \ h✝.D
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.Minor.eq_con_del
Status.PROVED
case intro.intro.intro α : Type u_1 M M' N : Matroid α e f : α I J R B X Y Z K : Set α M₀ M₁ M₂ : Matroid α h✝ : N ≤m M h : N = M / ⋯.choose \ ⋯.choose ⊢ N = M / h✝.C \ h✝.D
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='M₀', lean_type='Matroid α'), Declaration(ident='M₁', lean_type='Matroid α'), Declaration(ident='M₂', lean_type='Matroid α'), Declaration(ident='h✝', lean_type='N ≤m M'), Declaration(ident='h', lean_type='N = M / ⋯.choose \ ⋯.choose')], conclusion='N = M / h✝.C \ h✝.D')]
exact h
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=2, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Simple.lean
Matroid.IsSimplification.eq_self_iff
Status.PROVED
α : Type u_1 M N : Matroid α e f g : α I X P D : Set α x y : α h : N.IsSimplification M ⊢ N = M ↔ M.Simple
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='g', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='x', lean_type='α'), Declaration(ident='y', lean_type='α'), Declaration(ident='h', lean_type='N.IsSimplification M')], conclusion='N = M ↔ M.Simple')]
refine ⟨fun h' ↦ h' ▸ h.simple, fun h' ↦ ?_⟩
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM N : Matroid α\ne f g : α\nI X P D : Set α\nx y : α\nh : N.IsSimplification M\nh' : M.Simple\n⊢ N = M", id=1, message='')
α : Type u_1 M N : Matroid α e f g : α I X P D : Set α x y : α h : N.IsSimplification M h' : M.Simple ⊢ N = M
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Simple.lean
Matroid.IsSimplification.eq_self_iff
Status.PROVED
α : Type u_1 M N : Matroid α e f g : α I X P D : Set α x y : α h : N.IsSimplification M h' : M.Simple ⊢ N = M
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='g', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='x', lean_type='α'), Declaration(ident='y', lean_type='α'), Declaration(ident='h', lean_type='N.IsSimplification M'), Declaration(ident="h'", lean_type='M.Simple')], conclusion='N = M')]
obtain ⟨f, rfl⟩ := h
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro\nα : Type u_1\nM : Matroid α\ne f✝ g : α\nI X P D : Set α\nx y : α\nh' : M.Simple\nf : M.parallelClasses.RepFun\n⊢ M ↾ ⇑f '' {e | M.Nonloop e} = M", id=2, message='')
case intro α : Type u_1 M : Matroid α e f✝ g : α I X P D : Set α x y : α h' : M.Simple f : M.parallelClasses.RepFun ⊢ M ↾ ⇑f '' {e | M.Nonloop e} = M
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Simple.lean
Matroid.IsSimplification.eq_self_iff
Status.PROVED
case intro α : Type u_1 M : Matroid α e f✝ g : α I X P D : Set α x y : α h' : M.Simple f : M.parallelClasses.RepFun ⊢ M ↾ ⇑f '' {e | M.Nonloop e} = M
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f✝', lean_type='α'), Declaration(ident='g', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='x', lean_type='α'), Declaration(ident='y', lean_type='α'), Declaration(ident="h'", lean_type='M.Simple'), Declaration(ident='f', lean_type='M.parallelClasses.RepFun')], conclusion="M ↾ ⇑f '' {e | M.Nonloop e} = M")]
rw [restrict_eq_self_iff, f.coeFun_eq_id_of_eq_discrete M.parallelClasses_eq_discrete, image_id, Loopless.ground_eq]
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=3, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Loop.lean
Matroid.Nonloop.closure_eq_closure_iff_eq_or_dep
Status.FAILED
α : Type u_1 β : Type u_2 M N : Matroid α e f : α B L L' I X Y Z F C K : Set α he : M.Nonloop e hf : M.Nonloop f ⊢ M.closure {e} = M.closure {f} ↔ e = f ∨ ¬M.Indep {e, f}
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident="L'", lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='he', lean_type='M.Nonloop e'), Declaration(ident='hf', lean_type='M.Nonloop f')], conclusion='M.closure {e} = M.closure {f} ↔ e = f ∨ ¬M.Indep {e, f}')]
obtain (rfl | hne) := eq_or_ne e f
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case inl\nα : Type u_1\nβ : Type u_2\nM N : Matroid α\ne : α\nB L L' I X Y Z F C K : Set α\nhe hf : M.Nonloop e\n⊢ M.closure {e} = M.closure {e} ↔ e = e ∨ ¬M.Indep {e, e}\n\ncase inr\nα : Type u_1\nβ : Type u_2\nM N : Matroid α\ne f : α\nB L L' I X Y Z F C K : Set α\nhe : M.Nonloop e\nhf : M.Nonloop f\nhne : e ≠ f\n⊢ M.closure {e} = M.closure {f} ↔ e = f ∨ ¬M.Indep {e, f}", id=1, message='')
case inl α : Type u_1 β : Type u_2 M N : Matroid α e : α B L L' I X Y Z F C K : Set α he hf : M.Nonloop e ⊢ M.closure {e} = M.closure {e} ↔ e = e ∨ ¬M.Indep {e, e} case inr α : Type u_1 β : Type u_2 M N : Matroid α e f : α B L L' I X Y Z F C K : Set α he : M.Nonloop e hf : M.Nonloop f hne : e ≠ f ⊢ M.closure {e} = M.closure {f} ↔ e = f ∨ ¬M.Indep {e, f}
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Loop.lean
Matroid.Nonloop.closure_eq_closure_iff_eq_or_dep
Status.FAILED
case inl α : Type u_1 β : Type u_2 M N : Matroid α e : α B L L' I X Y Z F C K : Set α he hf : M.Nonloop e ⊢ M.closure {e} = M.closure {e} ↔ e = e ∨ ¬M.Indep {e, e} case inr α : Type u_1 β : Type u_2 M N : Matroid α e f : α B L L' I X Y Z F C K : Set α he : M.Nonloop e hf : M.Nonloop f hne : e ≠ f ⊢ M.closure {e} = M.closure {f} ↔ e = f ∨ ¬M.Indep {e, f}
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident="L'", lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='he', lean_type='M.Nonloop e'), Declaration(ident='hf', lean_type='M.Nonloop e')], conclusion='M.closure {e} = M.closure {e} ↔ e = e ∨ ¬M.Indep {e, e}'), Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident="L'", lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='he', lean_type='M.Nonloop e'), Declaration(ident='hf', lean_type='M.Nonloop f'), Declaration(ident='hne', lean_type='e ≠ f')], conclusion='M.closure {e} = M.closure {f} ↔ e = f ∨ ¬M.Indep {e, f}')]
simp_rw [he.closure_eq_closure_iff_circuit_of_ne hne, or_iff_right hne, circuit_iff_dep_forall_diff_singleton_indep, dep_iff, insert_subset_iff, singleton_subset_iff, and_iff_left hf.mem_ground, and_iff_left he.mem_ground, and_iff_left_iff_imp]
<class 'lean_dojo.interaction.dojo.LeanError'>
LeanError(error='simp made no progress')
simp made no progress
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Flat.lean
Matroid.hyperplane_iff_maximal_proper_flat
Status.PROVED
α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α ⊢ M.Hyperplane H ↔ M.Flat H ∧ H ⊂ M.E ∧ ∀ (F : Set α), H ⊂ F → M.Flat F → F = M.E
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F₁', lean_type='Set α'), Declaration(ident='F₂', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident='H', lean_type='Set α'), Declaration(ident='H₁', lean_type='Set α'), Declaration(ident='H₂', lean_type='Set α'), Declaration(ident="H'", lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α')], conclusion='M.Hyperplane H ↔ M.Flat H ∧ H ⊂ M.E ∧ ∀ (F : Set α), H ⊂ F → M.Flat F → F = M.E')]
rw [hyperplane_iff_covBy, covBy_iff, and_iff_right M.ground_flat, and_congr_right_iff, and_congr_right_iff]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM : Matroid α\nI F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α\ne f : α\n⊢ M.Flat H →\n H ⊂ M.E →\n ((∀ (F : Set α), M.Flat F → H ⊆ F → F ⊆ M.E → F = H ∨ F = M.E) ↔ ∀ (F : Set α), H ⊂ F → M.Flat F → F = M.E)", id=1, message='')
α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α ⊢ M.Flat H → H ⊂ M.E → ((∀ (F : Set α), M.Flat F → H ⊆ F → F ⊆ M.E → F = H ∨ F = M.E) ↔ ∀ (F : Set α), H ⊂ F → M.Flat F → F = M.E)
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Flat.lean
Matroid.hyperplane_iff_maximal_proper_flat
Status.PROVED
α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α ⊢ M.Flat H → H ⊂ M.E → ((∀ (F : Set α), M.Flat F → H ⊆ F → F ⊆ M.E → F = H ∨ F = M.E) ↔ ∀ (F : Set α), H ⊂ F → M.Flat F → F = M.E)
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F₁', lean_type='Set α'), Declaration(ident='F₂', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident='H', lean_type='Set α'), Declaration(ident='H₁', lean_type='Set α'), Declaration(ident='H₂', lean_type='Set α'), Declaration(ident="H'", lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α')], conclusion='M.Flat H →\n H ⊂ M.E →\n ((∀ (F : Set α), M.Flat F → H ⊆ F → F ⊆ M.E → F = H ∨ F = M.E) ↔ ∀ (F : Set α), H ⊂ F → M.Flat F → F = M.E)')]
simp_rw [or_iff_not_imp_left, ssubset_iff_subset_ne, and_imp]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM : Matroid α\nI F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α\ne f : α\n⊢ M.Flat H →\n H ⊆ M.E →\n H ≠ M.E →\n ((∀ (F : Set α), M.Flat F → H ⊆ F → F ⊆ M.E → ¬F = H → F = M.E) ↔\n ∀ (F : Set α), H ⊆ F → H ≠ F → M.Flat F → F = M.E)", id=2, message='')
α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α ⊢ M.Flat H → H ⊆ M.E → H ≠ M.E → ((∀ (F : Set α), M.Flat F → H ⊆ F → F ⊆ M.E → ¬F = H → F = M.E) ↔ ∀ (F : Set α), H ⊆ F → H ≠ F → M.Flat F → F = M.E)
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Flat.lean
Matroid.hyperplane_iff_maximal_proper_flat
Status.PROVED
α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α ⊢ M.Flat H → H ⊆ M.E → H ≠ M.E → ((∀ (F : Set α), M.Flat F → H ⊆ F → F ⊆ M.E → ¬F = H → F = M.E) ↔ ∀ (F : Set α), H ⊆ F → H ≠ F → M.Flat F → F = M.E)
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F₁', lean_type='Set α'), Declaration(ident='F₂', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident='H', lean_type='Set α'), Declaration(ident='H₁', lean_type='Set α'), Declaration(ident='H₂', lean_type='Set α'), Declaration(ident="H'", lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α')], conclusion='M.Flat H →\n H ⊆ M.E →\n H ≠ M.E →\n ((∀ (F : Set α), M.Flat F → H ⊆ F → F ⊆ M.E → ¬F = H → F = M.E) ↔\n ∀ (F : Set α), H ⊆ F → H ≠ F → M.Flat F → F = M.E)')]
exact fun _ _ _ ↦ ⟨fun h F hHF hne' hF ↦ h F hF hHF hF.subset_ground hne'.symm, fun h F hF hHF _ hne' ↦ h F hHF (Ne.symm hne') hF⟩
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=3, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Constructions/Uniform.lean
Matroid.unif_isoMinor_unif_iff
Status.PROVED
α : Type u_1 M : Matroid α E I B X C : Set α k : ℕ∞ a b a' b' a₁ a₂ d₁ d₂ : ℕ ⊢ Nonempty (unif a₁ (a₁ + d₁) ≤i unif a₂ (a₂ + d₂)) ↔ a₁ ≤ a₂ ∧ d₁ ≤ d₂
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='E', lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='k', lean_type='ℕ∞'), Declaration(ident='a', lean_type='ℕ'), Declaration(ident='b', lean_type='ℕ'), Declaration(ident="a'", lean_type='ℕ'), Declaration(ident="b'", lean_type='ℕ'), Declaration(ident='a₁', lean_type='ℕ'), Declaration(ident='a₂', lean_type='ℕ'), Declaration(ident='d₁', lean_type='ℕ'), Declaration(ident='d₂', lean_type='ℕ')], conclusion='Nonempty (unif a₁ (a₁ + d₁) ≤i unif a₂ (a₂ + d₂)) ↔ a₁ ≤ a₂ ∧ d₁ ≤ d₂')]
refine ⟨fun ⟨e⟩ ↦ ⟨by simpa using e.rk_le, by simpa using IsoMinor.rk_le e.dual⟩, fun h ↦ ?_⟩
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM : Matroid α\nE I B X C : Set α\nk : ℕ∞\na b a' b' a₁ a₂ d₁ d₂ : ℕ\nh : a₁ ≤ a₂ ∧ d₁ ≤ d₂\n⊢ Nonempty (unif a₁ (a₁ + d₁) ≤i unif a₂ (a₂ + d₂))", id=1, message='')
α : Type u_1 M : Matroid α E I B X C : Set α k : ℕ∞ a b a' b' a₁ a₂ d₁ d₂ : ℕ h : a₁ ≤ a₂ ∧ d₁ ≤ d₂ ⊢ Nonempty (unif a₁ (a₁ + d₁) ≤i unif a₂ (a₂ + d₂))
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Constructions/Uniform.lean
Matroid.unif_isoMinor_unif_iff
Status.PROVED
α : Type u_1 M : Matroid α E I B X C : Set α k : ℕ∞ a b a' b' a₁ a₂ d₁ d₂ : ℕ h : a₁ ≤ a₂ ∧ d₁ ≤ d₂ ⊢ Nonempty (unif a₁ (a₁ + d₁) ≤i unif a₂ (a₂ + d₂))
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='E', lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='k', lean_type='ℕ∞'), Declaration(ident='a', lean_type='ℕ'), Declaration(ident='b', lean_type='ℕ'), Declaration(ident="a'", lean_type='ℕ'), Declaration(ident="b'", lean_type='ℕ'), Declaration(ident='a₁', lean_type='ℕ'), Declaration(ident='a₂', lean_type='ℕ'), Declaration(ident='d₁', lean_type='ℕ'), Declaration(ident='d₂', lean_type='ℕ'), Declaration(ident='h', lean_type='a₁ ≤ a₂ ∧ d₁ ≤ d₂')], conclusion='Nonempty (unif a₁ (a₁ + d₁) ≤i unif a₂ (a₂ + d₂))')]
obtain ⟨j, rfl⟩ := Nat.exists_eq_add_of_le h.1
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro\nα : Type u_1\nM : Matroid α\nE I B X C : Set α\nk : ℕ∞\na b a' b' a₁ d₁ d₂ j : ℕ\nh : a₁ ≤ a₁ + j ∧ d₁ ≤ d₂\n⊢ Nonempty (unif a₁ (a₁ + d₁) ≤i unif (a₁ + j) (a₁ + j + d₂))", id=2, message='')
case intro α : Type u_1 M : Matroid α E I B X C : Set α k : ℕ∞ a b a' b' a₁ d₁ d₂ j : ℕ h : a₁ ≤ a₁ + j ∧ d₁ ≤ d₂ ⊢ Nonempty (unif a₁ (a₁ + d₁) ≤i unif (a₁ + j) (a₁ + j + d₂))
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Constructions/Uniform.lean
Matroid.unif_isoMinor_unif_iff
Status.PROVED
case intro α : Type u_1 M : Matroid α E I B X C : Set α k : ℕ∞ a b a' b' a₁ d₁ d₂ j : ℕ h : a₁ ≤ a₁ + j ∧ d₁ ≤ d₂ ⊢ Nonempty (unif a₁ (a₁ + d₁) ≤i unif (a₁ + j) (a₁ + j + d₂))
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='E', lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='k', lean_type='ℕ∞'), Declaration(ident='a', lean_type='ℕ'), Declaration(ident='b', lean_type='ℕ'), Declaration(ident="a'", lean_type='ℕ'), Declaration(ident="b'", lean_type='ℕ'), Declaration(ident='a₁', lean_type='ℕ'), Declaration(ident='d₁', lean_type='ℕ'), Declaration(ident='d₂', lean_type='ℕ'), Declaration(ident='j', lean_type='ℕ'), Declaration(ident='h', lean_type='a₁ ≤ a₁ + j ∧ d₁ ≤ d₂')], conclusion='Nonempty (unif a₁ (a₁ + d₁) ≤i unif (a₁ + j) (a₁ + j + d₂))')]
exact ⟨(unif_isoMinor_contr a₁ (a₁ + d₁) j).trans (unif_isoRestr_unif _ (by linarith)).isoMinor⟩
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=3, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Rank.lean
Matroid.r_le_rk
Status.PROVED
α : Type u_1 ι : Type u_2 M✝ N : Matroid α I B X✝ X' Y Y' Z R : Set α n : ℕ∞ e f : α M : Matroid α inst✝ : M.FiniteRk X : Set α ⊢ M.r X ≤ M.rk
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X✝', lean_type='Set α'), Declaration(ident="X'", lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="Y'", lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ∞'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='inst✝', lean_type='M.FiniteRk'), Declaration(ident='X', lean_type='Set α')], conclusion='M.r X ≤ M.rk')]
rw [r_eq_r_inter_ground, rk_def]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nι : Type u_2\nM✝ N : Matroid α\nI B X✝ X' Y Y' Z R : Set α\nn : ℕ∞\ne f : α\nM : Matroid α\ninst✝ : M.FiniteRk\nX : Set α\n⊢ M.r (X ∩ M.E) ≤ M.r M.E", id=1, message='')
α : Type u_1 ι : Type u_2 M✝ N : Matroid α I B X✝ X' Y Y' Z R : Set α n : ℕ∞ e f : α M : Matroid α inst✝ : M.FiniteRk X : Set α ⊢ M.r (X ∩ M.E) ≤ M.r M.E
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Rank.lean
Matroid.r_le_rk
Status.PROVED
α : Type u_1 ι : Type u_2 M✝ N : Matroid α I B X✝ X' Y Y' Z R : Set α n : ℕ∞ e f : α M : Matroid α inst✝ : M.FiniteRk X : Set α ⊢ M.r (X ∩ M.E) ≤ M.r M.E
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X✝', lean_type='Set α'), Declaration(ident="X'", lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="Y'", lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ∞'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='inst✝', lean_type='M.FiniteRk'), Declaration(ident='X', lean_type='Set α')], conclusion='M.r (X ∩ M.E) ≤ M.r M.E')]
exact M.r_mono inter_subset_right
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=2, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Rank.lean
Matroid.relRank_add_of_subset_of_subset
Status.PROVED
α : Type u_1 M✝ N : Matroid α I J C D X Y Z : Set α e f : α M : Matroid α hXY : X ⊆ Y hYZ : Y ⊆ Z ⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='hXY', lean_type='X ⊆ Y'), Declaration(ident='hYZ', lean_type='Y ⊆ Z')], conclusion='M.relRank X Y + M.relRank Y Z = M.relRank X Z')]
obtain ⟨I, hI⟩ := M.exists_basis' X
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro\nα : Type u_1\nM✝ N : Matroid α\nI✝ J C D X Y Z : Set α\ne f : α\nM : Matroid α\nhXY : X ⊆ Y\nhYZ : Y ⊆ Z\nI : Set α\nhI : M.Basis' I X\n⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z", id=1, message='')
case intro α : Type u_1 M✝ N : Matroid α I✝ J C D X Y Z : Set α e f : α M : Matroid α hXY : X ⊆ Y hYZ : Y ⊆ Z I : Set α hI : M.Basis' I X ⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Rank.lean
Matroid.relRank_add_of_subset_of_subset
Status.PROVED
case intro α : Type u_1 M✝ N : Matroid α I✝ J C D X Y Z : Set α e f : α M : Matroid α hXY : X ⊆ Y hYZ : Y ⊆ Z I : Set α hI : M.Basis' I X ⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I✝', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='hXY', lean_type='X ⊆ Y'), Declaration(ident='hYZ', lean_type='Y ⊆ Z'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='hI', lean_type="M.Basis' I X")], conclusion='M.relRank X Y + M.relRank Y Z = M.relRank X Z')]
obtain ⟨J, hJ, hIJ⟩ := hI.indep.subset_basis'_of_subset (hI.subset.trans hXY)
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro\nα : Type u_1\nM✝ N : Matroid α\nI✝ J✝ C D X Y Z : Set α\ne f : α\nM : Matroid α\nhXY : X ⊆ Y\nhYZ : Y ⊆ Z\nI : Set α\nhI : M.Basis' I X\nJ : Set α\nhJ : M.Basis' J Y\nhIJ : I ⊆ J\n⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z", id=2, message='')
case intro.intro.intro α : Type u_1 M✝ N : Matroid α I✝ J✝ C D X Y Z : Set α e f : α M : Matroid α hXY : X ⊆ Y hYZ : Y ⊆ Z I : Set α hI : M.Basis' I X J : Set α hJ : M.Basis' J Y hIJ : I ⊆ J ⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Rank.lean
Matroid.relRank_add_of_subset_of_subset
Status.PROVED
case intro.intro.intro α : Type u_1 M✝ N : Matroid α I✝ J✝ C D X Y Z : Set α e f : α M : Matroid α hXY : X ⊆ Y hYZ : Y ⊆ Z I : Set α hI : M.Basis' I X J : Set α hJ : M.Basis' J Y hIJ : I ⊆ J ⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I✝', lean_type='Set α'), Declaration(ident='J✝', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='hXY', lean_type='X ⊆ Y'), Declaration(ident='hYZ', lean_type='Y ⊆ Z'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='hI', lean_type="M.Basis' I X"), Declaration(ident='J', lean_type='Set α'), Declaration(ident='hJ', lean_type="M.Basis' J Y"), Declaration(ident='hIJ', lean_type='I ⊆ J')], conclusion='M.relRank X Y + M.relRank Y Z = M.relRank X Z')]
obtain ⟨K, hK, hJK⟩ := hJ.indep.subset_basis'_of_subset (hJ.subset.trans hYZ)
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro.intro.intro\nα : Type u_1\nM✝ N : Matroid α\nI✝ J✝ C D X Y Z : Set α\ne f : α\nM : Matroid α\nhXY : X ⊆ Y\nhYZ : Y ⊆ Z\nI : Set α\nhI : M.Basis' I X\nJ : Set α\nhJ : M.Basis' J Y\nhIJ : I ⊆ J\nK : Set α\nhK : M.Basis' K Z\nhJK : J ⊆ K\n⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z", id=3, message='')
case intro.intro.intro.intro.intro α : Type u_1 M✝ N : Matroid α I✝ J✝ C D X Y Z : Set α e f : α M : Matroid α hXY : X ⊆ Y hYZ : Y ⊆ Z I : Set α hI : M.Basis' I X J : Set α hJ : M.Basis' J Y hIJ : I ⊆ J K : Set α hK : M.Basis' K Z hJK : J ⊆ K ⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Rank.lean
Matroid.relRank_add_of_subset_of_subset
Status.PROVED
case intro.intro.intro.intro.intro α : Type u_1 M✝ N : Matroid α I✝ J✝ C D X Y Z : Set α e f : α M : Matroid α hXY : X ⊆ Y hYZ : Y ⊆ Z I : Set α hI : M.Basis' I X J : Set α hJ : M.Basis' J Y hIJ : I ⊆ J K : Set α hK : M.Basis' K Z hJK : J ⊆ K ⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I✝', lean_type='Set α'), Declaration(ident='J✝', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='hXY', lean_type='X ⊆ Y'), Declaration(ident='hYZ', lean_type='Y ⊆ Z'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='hI', lean_type="M.Basis' I X"), Declaration(ident='J', lean_type='Set α'), Declaration(ident='hJ', lean_type="M.Basis' J Y"), Declaration(ident='hIJ', lean_type='I ⊆ J'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='hK', lean_type="M.Basis' K Z"), Declaration(ident='hJK', lean_type='J ⊆ K')], conclusion='M.relRank X Y + M.relRank Y Z = M.relRank X Z')]
obtain rfl := hI.inter_eq_of_subset_indep hIJ hJ.indep
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro.intro.intro\nα : Type u_1\nM✝ N : Matroid α\nI J✝ C D X Y Z : Set α\ne f : α\nM : Matroid α\nhXY : X ⊆ Y\nhYZ : Y ⊆ Z\nJ : Set α\nhJ : M.Basis' J Y\nK : Set α\nhK : M.Basis' K Z\nhJK : J ⊆ K\nhI : M.Basis' (J ∩ X) X\nhIJ : J ∩ X ⊆ J\n⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z", id=4, message='')
case intro.intro.intro.intro.intro α : Type u_1 M✝ N : Matroid α I J✝ C D X Y Z : Set α e f : α M : Matroid α hXY : X ⊆ Y hYZ : Y ⊆ Z J : Set α hJ : M.Basis' J Y K : Set α hK : M.Basis' K Z hJK : J ⊆ K hI : M.Basis' (J ∩ X) X hIJ : J ∩ X ⊆ J ⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Rank.lean
Matroid.relRank_add_of_subset_of_subset
Status.PROVED
case intro.intro.intro.intro.intro α : Type u_1 M✝ N : Matroid α I J✝ C D X Y Z : Set α e f : α M : Matroid α hXY : X ⊆ Y hYZ : Y ⊆ Z J : Set α hJ : M.Basis' J Y K : Set α hK : M.Basis' K Z hJK : J ⊆ K hI : M.Basis' (J ∩ X) X hIJ : J ∩ X ⊆ J ⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J✝', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='hXY', lean_type='X ⊆ Y'), Declaration(ident='hYZ', lean_type='Y ⊆ Z'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='hJ', lean_type="M.Basis' J Y"), Declaration(ident='K', lean_type='Set α'), Declaration(ident='hK', lean_type="M.Basis' K Z"), Declaration(ident='hJK', lean_type='J ⊆ K'), Declaration(ident='hI', lean_type="M.Basis' (J ∩ X) X"), Declaration(ident='hIJ', lean_type='J ∩ X ⊆ J')], conclusion='M.relRank X Y + M.relRank Y Z = M.relRank X Z')]
obtain rfl := hJ.inter_eq_of_subset_indep hJK hK.indep
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro.intro.intro\nα : Type u_1\nM✝ N : Matroid α\nI J C D X Y Z : Set α\ne f : α\nM : Matroid α\nhXY : X ⊆ Y\nhYZ : Y ⊆ Z\nK : Set α\nhK : M.Basis' K Z\nhJ : M.Basis' (K ∩ Y) Y\nhJK : K ∩ Y ⊆ K\nhI : M.Basis' (K ∩ Y ∩ X) X\nhIJ : K ∩ Y ∩ X ⊆ K ∩ Y\n⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z", id=5, message='')
case intro.intro.intro.intro.intro α : Type u_1 M✝ N : Matroid α I J C D X Y Z : Set α e f : α M : Matroid α hXY : X ⊆ Y hYZ : Y ⊆ Z K : Set α hK : M.Basis' K Z hJ : M.Basis' (K ∩ Y) Y hJK : K ∩ Y ⊆ K hI : M.Basis' (K ∩ Y ∩ X) X hIJ : K ∩ Y ∩ X ⊆ K ∩ Y ⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Rank.lean
Matroid.relRank_add_of_subset_of_subset
Status.PROVED
case intro.intro.intro.intro.intro α : Type u_1 M✝ N : Matroid α I J C D X Y Z : Set α e f : α M : Matroid α hXY : X ⊆ Y hYZ : Y ⊆ Z K : Set α hK : M.Basis' K Z hJ : M.Basis' (K ∩ Y) Y hJK : K ∩ Y ⊆ K hI : M.Basis' (K ∩ Y ∩ X) X hIJ : K ∩ Y ∩ X ⊆ K ∩ Y ⊢ M.relRank X Y + M.relRank Y Z = M.relRank X Z
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='hXY', lean_type='X ⊆ Y'), Declaration(ident='hYZ', lean_type='Y ⊆ Z'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='hK', lean_type="M.Basis' K Z"), Declaration(ident='hJ', lean_type="M.Basis' (K ∩ Y) Y"), Declaration(ident='hJK', lean_type='K ∩ Y ⊆ K'), Declaration(ident='hI', lean_type="M.Basis' (K ∩ Y ∩ X) X"), Declaration(ident='hIJ', lean_type='K ∩ Y ∩ X ⊆ K ∩ Y')], conclusion='M.relRank X Y + M.relRank Y Z = M.relRank X Z')]
rw [hJ.relRank_eq_encard_diff_of_subset hXY hI, hK.relRank_eq_encard_diff_of_subset hYZ hJ, hK.relRank_eq_encard_diff_of_subset (hXY.trans hYZ) (by rwa [inter_assoc, inter_eq_self_of_subset_right hXY] at hI), ← encard_union_eq, diff_eq, diff_eq, inter_assoc, ← inter_union_distrib_left, inter_union_distrib_right, union_compl_self, univ_inter, ← compl_inter, inter_eq_self_of_subset_left hXY, diff_eq]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro.intro.intro\nα : Type u_1\nM✝ N : Matroid α\nI J C D X Y Z : Set α\ne f : α\nM : Matroid α\nhXY : X ⊆ Y\nhYZ : Y ⊆ Z\nK : Set α\nhK : M.Basis' K Z\nhJ : M.Basis' (K ∩ Y) Y\nhJK : K ∩ Y ⊆ K\nhI : M.Basis' (K ∩ Y ∩ X) X\nhIJ : K ∩ Y ∩ X ⊆ K ∩ Y\n⊢ Disjoint ((K ∩ Y) \\ X) (K \\ Y)", id=6, message='')
case intro.intro.intro.intro.intro α : Type u_1 M✝ N : Matroid α I J C D X Y Z : Set α e f : α M : Matroid α hXY : X ⊆ Y hYZ : Y ⊆ Z K : Set α hK : M.Basis' K Z hJ : M.Basis' (K ∩ Y) Y hJK : K ∩ Y ⊆ K hI : M.Basis' (K ∩ Y ∩ X) X hIJ : K ∩ Y ∩ X ⊆ K ∩ Y ⊢ Disjoint ((K ∩ Y) \ X) (K \ Y)
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Rank.lean
Matroid.relRank_add_of_subset_of_subset
Status.PROVED
case intro.intro.intro.intro.intro α : Type u_1 M✝ N : Matroid α I J C D X Y Z : Set α e f : α M : Matroid α hXY : X ⊆ Y hYZ : Y ⊆ Z K : Set α hK : M.Basis' K Z hJ : M.Basis' (K ∩ Y) Y hJK : K ∩ Y ⊆ K hI : M.Basis' (K ∩ Y ∩ X) X hIJ : K ∩ Y ∩ X ⊆ K ∩ Y ⊢ Disjoint ((K ∩ Y) \ X) (K \ Y)
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M✝', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='hXY', lean_type='X ⊆ Y'), Declaration(ident='hYZ', lean_type='Y ⊆ Z'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='hK', lean_type="M.Basis' K Z"), Declaration(ident='hJ', lean_type="M.Basis' (K ∩ Y) Y"), Declaration(ident='hJK', lean_type='K ∩ Y ⊆ K'), Declaration(ident='hI', lean_type="M.Basis' (K ∩ Y ∩ X) X"), Declaration(ident='hIJ', lean_type='K ∩ Y ∩ X ⊆ K ∩ Y')], conclusion='Disjoint ((K ∩ Y) \\ X) (K \\ Y)')]
exact disjoint_of_subset_left (diff_subset.trans inter_subset_right) disjoint_sdiff_right
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=7, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/ForMathlib/Card.lean
Fin.nonempty_embedding_iff_le_encard
Status.FAILED
α : Type u_1 β : Type u_2 s t : Set α n : ℕ ⊢ Nonempty (Fin n ↪ ↑s) ↔ ↑n ≤ s.encard
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='s', lean_type='Set α'), Declaration(ident='t', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ')], conclusion='Nonempty (Fin n ↪ ↑s) ↔ ↑n ≤ s.encard')]
refine ⟨fun ⟨i⟩ ↦ ?_, fun h ↦ ?_⟩
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp='case refine_1\nα : Type u_1\nβ : Type u_2\ns t : Set α\nn : ℕ\nx✝ : Nonempty (Fin n ↪ ↑s)\ni : Fin n ↪ ↑s\n⊢ ↑n ≤ s.encard\n\ncase refine_2\nα : Type u_1\nβ : Type u_2\ns t : Set α\nn : ℕ\nh : ↑n ≤ s.encard\n⊢ Nonempty (Fin n ↪ ↑s)', id=1, message='')
case refine_1 α : Type u_1 β : Type u_2 s t : Set α n : ℕ x✝ : Nonempty (Fin n ↪ ↑s) i : Fin n ↪ ↑s ⊢ ↑n ≤ s.encard case refine_2 α : Type u_1 β : Type u_2 s t : Set α n : ℕ h : ↑n ≤ s.encard ⊢ Nonempty (Fin n ↪ ↑s)
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/ForMathlib/Card.lean
Fin.nonempty_embedding_iff_le_encard
Status.FAILED
case refine_1 α : Type u_1 β : Type u_2 s t : Set α n : ℕ x✝ : Nonempty (Fin n ↪ ↑s) i : Fin n ↪ ↑s ⊢ ↑n ≤ s.encard case refine_2 α : Type u_1 β : Type u_2 s t : Set α n : ℕ h : ↑n ≤ s.encard ⊢ Nonempty (Fin n ↪ ↑s)
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='s', lean_type='Set α'), Declaration(ident='t', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ'), Declaration(ident='x✝', lean_type='Nonempty (Fin n ↪ ↑s)'), Declaration(ident='i', lean_type='Fin n ↪ ↑s')], conclusion='↑n ≤ s.encard'), Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='s', lean_type='Set α'), Declaration(ident='t', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ'), Declaration(ident='h', lean_type='↑n ≤ s.encard')], conclusion='Nonempty (Fin n ↪ ↑s)')]
obtain ⟨t, hts, hcard⟩ := exists_subset_encard_eq h
<class 'lean_dojo.interaction.dojo.LeanError'>
LeanError(error="unknown identifier 'h'")
unknown identifier 'h'
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Extension.lean
Matroid.ModularCut.closure_mem_of_mem
Status.PROVED
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hF : F ∈ U ⊢ M.closure F ∈ U
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hF', lean_type='F ∈ U')], conclusion='M.closure F ∈ U')]
rwa [(U.flat_of_mem hF).closure]
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=1, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/ForMathlib/Card.lean
Set.coe_le_encard_iff
Status.FAILED
α : Type u_1 β : Type u_2 s t : Set α n : ℕ ⊢ ↑n ≤ s.encard ↔ s.Finite → n ≤ s.ncard
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='s', lean_type='Set α'), Declaration(ident='t', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ')], conclusion='↑n ≤ s.encard ↔ s.Finite → n ≤ s.ncard')]
obtain (hfin | hinf) := s.finite_or_infinite
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp='case inl\nα : Type u_1\nβ : Type u_2\ns t : Set α\nn : ℕ\nhfin : s.Finite\n⊢ ↑n ≤ s.encard ↔ s.Finite → n ≤ s.ncard\n\ncase inr\nα : Type u_1\nβ : Type u_2\ns t : Set α\nn : ℕ\nhinf : s.Infinite\n⊢ ↑n ≤ s.encard ↔ s.Finite → n ≤ s.ncard', id=1, message='')
case inl α : Type u_1 β : Type u_2 s t : Set α n : ℕ hfin : s.Finite ⊢ ↑n ≤ s.encard ↔ s.Finite → n ≤ s.ncard case inr α : Type u_1 β : Type u_2 s t : Set α n : ℕ hinf : s.Infinite ⊢ ↑n ≤ s.encard ↔ s.Finite → n ≤ s.ncard
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/ForMathlib/Card.lean
Set.coe_le_encard_iff
Status.FAILED
case inl α : Type u_1 β : Type u_2 s t : Set α n : ℕ hfin : s.Finite ⊢ ↑n ≤ s.encard ↔ s.Finite → n ≤ s.ncard case inr α : Type u_1 β : Type u_2 s t : Set α n : ℕ hinf : s.Infinite ⊢ ↑n ≤ s.encard ↔ s.Finite → n ≤ s.ncard
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='s', lean_type='Set α'), Declaration(ident='t', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ'), Declaration(ident='hfin', lean_type='s.Finite')], conclusion='↑n ≤ s.encard ↔ s.Finite → n ≤ s.ncard'), Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='s', lean_type='Set α'), Declaration(ident='t', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ'), Declaration(ident='hinf', lean_type='s.Infinite')], conclusion='↑n ≤ s.encard ↔ s.Finite → n ≤ s.ncard')]
rw [hinf.encard_eq, iff_true_intro le_top, true_iff, iff_false_intro hinf, false_imp_iff]
<class 'lean_dojo.interaction.dojo.LeanError'>
LeanError(error="tactic 'rewrite' failed, equality or iff proof expected\n ?m.5635\ncase inl\nα : Type u_1\nβ : Type u_2\ns t : Set α\nn : ℕ\nhfin : s.Finite\n⊢ ↑n ≤ s.encard ↔ s.Finite → n ≤ s.ncard")
tactic 'rewrite' failed, equality or iff proof expected ?m.5635 case inl α : Type u_1 β : Type u_2 s t : Set α n : ℕ hfin : s.Finite ⊢ ↑n ≤ s.encard ↔ s.Finite → n ≤ s.ncard
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Extension.lean
Matroid.ModularCut.maximal_extIndep_iff
Status.FAILED
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X ⊢ I ∈ maximals (fun x x_1 => x ⊆ x_1) {J | U.ExtIndep e J ∧ J ⊆ X} ↔ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ ((e ∈ I ↔ M.closure (X \ {e}) ∈ U) → e ∉ X) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hX', lean_type='X ⊆ insert e M.E'), Declaration(ident='hI', lean_type='U.ExtIndep e I'), Declaration(ident='hIX', lean_type='I ⊆ X')], conclusion='I ∈ maximals (fun x x_1 => x ⊆ x_1) {J | U.ExtIndep e J ∧ J ⊆ X} ↔\n M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ ((e ∈ I ↔ M.closure (X \\ {e}) ∈ U) → e ∉ X) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U')]
have hss : I \ {e} ⊆ X \ {e} := diff_subset_diff_left hIX
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM : Matroid α\nI J B F₀ F F' X Y : Set α\ne f : α\nU : M.ModularCut\nhX : X ⊆ insert e M.E\nhI : U.ExtIndep e I\nhIX : I ⊆ X\nhss : I \\ {e} ⊆ X \\ {e}\n⊢ I ∈ maximals (fun x x_1 => x ⊆ x_1) {J | U.ExtIndep e J ∧ J ⊆ X} ↔\n M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ ((e ∈ I ↔ M.closure (X \\ {e}) ∈ U) → e ∉ X) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U", id=1, message='')
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} ⊢ I ∈ maximals (fun x x_1 => x ⊆ x_1) {J | U.ExtIndep e J ∧ J ⊆ X} ↔ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ ((e ∈ I ↔ M.closure (X \ {e}) ∈ U) → e ∉ X) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Extension.lean
Matroid.ModularCut.maximal_extIndep_iff
Status.FAILED
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} ⊢ I ∈ maximals (fun x x_1 => x ⊆ x_1) {J | U.ExtIndep e J ∧ J ⊆ X} ↔ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ ((e ∈ I ↔ M.closure (X \ {e}) ∈ U) → e ∉ X) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hX', lean_type='X ⊆ insert e M.E'), Declaration(ident='hI', lean_type='U.ExtIndep e I'), Declaration(ident='hIX', lean_type='I ⊆ X'), Declaration(ident='hss', lean_type='I \\ {e} ⊆ X \\ {e}')], conclusion='I ∈ maximals (fun x x_1 => x ⊆ x_1) {J | U.ExtIndep e J ∧ J ⊆ X} ↔\n M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ ((e ∈ I ↔ M.closure (X \\ {e}) ∈ U) → e ∉ X) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U')]
have hX' : X \ {e} ⊆ M.E := by simpa
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM : Matroid α\nI J B F₀ F F' X Y : Set α\ne f : α\nU : M.ModularCut\nhX : X ⊆ insert e M.E\nhI : U.ExtIndep e I\nhIX : I ⊆ X\nhss : I \\ {e} ⊆ X \\ {e}\nhX' : X \\ {e} ⊆ M.E\n⊢ I ∈ maximals (fun x x_1 => x ⊆ x_1) {J | U.ExtIndep e J ∧ J ⊆ X} ↔\n M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ ((e ∈ I ↔ M.closure (X \\ {e}) ∈ U) → e ∉ X) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U", id=2, message='')
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E ⊢ I ∈ maximals (fun x x_1 => x ⊆ x_1) {J | U.ExtIndep e J ∧ J ⊆ X} ↔ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ ((e ∈ I ↔ M.closure (X \ {e}) ∈ U) → e ∉ X) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Extension.lean
Matroid.ModularCut.maximal_extIndep_iff
Status.FAILED
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E ⊢ I ∈ maximals (fun x x_1 => x ⊆ x_1) {J | U.ExtIndep e J ∧ J ⊆ X} ↔ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ ((e ∈ I ↔ M.closure (X \ {e}) ∈ U) → e ∉ X) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hX', lean_type='X ⊆ insert e M.E'), Declaration(ident='hI', lean_type='U.ExtIndep e I'), Declaration(ident='hIX', lean_type='I ⊆ X'), Declaration(ident='hss', lean_type='I \\ {e} ⊆ X \\ {e}'), Declaration(ident="hX'", lean_type='X \\ {e} ⊆ M.E')], conclusion='I ∈ maximals (fun x x_1 => x ⊆ x_1) {J | U.ExtIndep e J ∧ J ⊆ X} ↔\n M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ ((e ∈ I ↔ M.closure (X \\ {e}) ∈ U) → e ∉ X) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U')]
rw [mem_maximals_iff_forall_insert (fun _ _ ht hst ↦ ⟨ht.1.subset hst, hst.trans ht.2⟩)]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM : Matroid α\nI J B F₀ F F' X Y : Set α\ne f : α\nU : M.ModularCut\nhX : X ⊆ insert e M.E\nhI : U.ExtIndep e I\nhIX : I ⊆ X\nhss : I \\ {e} ⊆ X \\ {e}\nhX' : X \\ {e} ⊆ M.E\n⊢ ((U.ExtIndep e I ∧ I ⊆ X) ∧ ∀ x ∉ I, ¬(U.ExtIndep e (insert x I) ∧ insert x I ⊆ X)) ↔\n M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ ((e ∈ I ↔ M.closure (X \\ {e}) ∈ U) → e ∉ X) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U", id=3, message='')
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E ⊢ ((U.ExtIndep e I ∧ I ⊆ X) ∧ ∀ x ∉ I, ¬(U.ExtIndep e (insert x I) ∧ insert x I ⊆ X)) ↔ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ ((e ∈ I ↔ M.closure (X \ {e}) ∈ U) → e ∉ X) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Extension.lean
Matroid.ModularCut.maximal_extIndep_iff
Status.FAILED
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E ⊢ ((U.ExtIndep e I ∧ I ⊆ X) ∧ ∀ x ∉ I, ¬(U.ExtIndep e (insert x I) ∧ insert x I ⊆ X)) ↔ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ ((e ∈ I ↔ M.closure (X \ {e}) ∈ U) → e ∉ X) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hX', lean_type='X ⊆ insert e M.E'), Declaration(ident='hI', lean_type='U.ExtIndep e I'), Declaration(ident='hIX', lean_type='I ⊆ X'), Declaration(ident='hss', lean_type='I \\ {e} ⊆ X \\ {e}'), Declaration(ident="hX'", lean_type='X \\ {e} ⊆ M.E')], conclusion='((U.ExtIndep e I ∧ I ⊆ X) ∧ ∀ x ∉ I, ¬(U.ExtIndep e (insert x I) ∧ insert x I ⊆ X)) ↔\n M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ ((e ∈ I ↔ M.closure (X \\ {e}) ∈ U) → e ∉ X) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U')]
simp only [hI, hIX, and_self, insert_subset_iff, and_true, not_and, true_and, imp_not_comm]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM : Matroid α\nI J B F₀ F F' X Y : Set α\ne f : α\nU : M.ModularCut\nhX : X ⊆ insert e M.E\nhI : U.ExtIndep e I\nhIX : I ⊆ X\nhss : I \\ {e} ⊆ X \\ {e}\nhX' : X \\ {e} ⊆ M.E\n⊢ (∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I)) ↔\n M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U", id=4, message='')
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E ⊢ (∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I)) ↔ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Extension.lean
Matroid.ModularCut.maximal_extIndep_iff
Status.FAILED
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E ⊢ (∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I)) ↔ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hX', lean_type='X ⊆ insert e M.E'), Declaration(ident='hI', lean_type='U.ExtIndep e I'), Declaration(ident='hIX', lean_type='I ⊆ X'), Declaration(ident='hss', lean_type='I \\ {e} ⊆ X \\ {e}'), Declaration(ident="hX'", lean_type='X \\ {e} ⊆ M.E')], conclusion='(∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I)) ↔\n M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U')]
refine ⟨fun h ↦ ?_, fun h x hxI hi hind ↦ ?_⟩
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case refine_1\nα : Type u_1\nM : Matroid α\nI J B F₀ F F' X Y : Set α\ne f : α\nU : M.ModularCut\nhX : X ⊆ insert e M.E\nhI : U.ExtIndep e I\nhIX : I ⊆ X\nhss : I \\ {e} ⊆ X \\ {e}\nhX' : X \\ {e} ⊆ M.E\nh : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I)\n⊢ M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U\n\ncase refine_2\nα : Type u_1\nM : Matroid α\nI J B F₀ F F' X Y : Set α\ne f : α\nU : M.ModularCut\nhX : X ⊆ insert e M.E\nhI : U.ExtIndep e I\nhIX : I ⊆ X\nhss : I \\ {e} ⊆ X \\ {e}\nhX' : X \\ {e} ⊆ M.E\nh :\n M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U\nx : α\nhxI : x ∉ I\nhi : x ∈ X\nhind : U.ExtIndep e (insert x I)\n⊢ False", id=5, message='')
case refine_1 α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I) ⊢ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U case refine_2 α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U x : α hxI : x ∉ I hi : x ∈ X hind : U.ExtIndep e (insert x I) ⊢ False
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Extension.lean
Matroid.ModularCut.maximal_extIndep_iff
Status.FAILED
case refine_1 α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I) ⊢ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U case refine_2 α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U x : α hxI : x ∉ I hi : x ∈ X hind : U.ExtIndep e (insert x I) ⊢ False
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hX', lean_type='X ⊆ insert e M.E'), Declaration(ident='hI', lean_type='U.ExtIndep e I'), Declaration(ident='hIX', lean_type='I ⊆ X'), Declaration(ident='hss', lean_type='I \\ {e} ⊆ X \\ {e}'), Declaration(ident="hX'", lean_type='X \\ {e} ⊆ M.E'), Declaration(ident='h', lean_type='∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I)')], conclusion='M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U'), Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hX', lean_type='X ⊆ insert e M.E'), Declaration(ident='hI', lean_type='U.ExtIndep e I'), Declaration(ident='hIX', lean_type='I ⊆ X'), Declaration(ident='hss', lean_type='I \\ {e} ⊆ X \\ {e}'), Declaration(ident="hX'", lean_type='X \\ {e} ⊆ M.E'), Declaration(ident='h', lean_type='M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U'), Declaration(ident='x', lean_type='α'), Declaration(ident='hxI', lean_type='x ∉ I'), Declaration(ident='hi', lean_type='x ∈ X'), Declaration(ident='hind', lean_type='U.ExtIndep e (insert x I)')], conclusion='False')]
by_cases heI : e ∈ I
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case pos\nα : Type u_1\nM : Matroid α\nI J B F₀ F F' X Y : Set α\ne f : α\nU : M.ModularCut\nhX : X ⊆ insert e M.E\nhI : U.ExtIndep e I\nhIX : I ⊆ X\nhss : I \\ {e} ⊆ X \\ {e}\nhX' : X \\ {e} ⊆ M.E\nh : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I)\nheI : e ∈ I\n⊢ M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U\n\ncase neg\nα : Type u_1\nM : Matroid α\nI J B F₀ F F' X Y : Set α\ne f : α\nU : M.ModularCut\nhX : X ⊆ insert e M.E\nhI : U.ExtIndep e I\nhIX : I ⊆ X\nhss : I \\ {e} ⊆ X \\ {e}\nhX' : X \\ {e} ⊆ M.E\nh : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I)\nheI : e ∉ I\n⊢ M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U\n\ncase refine_2\nα : Type u_1\nM : Matroid α\nI J B F₀ F F' X Y : Set α\ne f : α\nU : M.ModularCut\nhX : X ⊆ insert e M.E\nhI : U.ExtIndep e I\nhIX : I ⊆ X\nhss : I \\ {e} ⊆ X \\ {e}\nhX' : X \\ {e} ⊆ M.E\nh :\n M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U\nx : α\nhxI : x ∉ I\nhi : x ∈ X\nhind : U.ExtIndep e (insert x I)\n⊢ False", id=6, message='')
case pos α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I) heI : e ∈ I ⊢ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U case neg α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I) heI : e ∉ I ⊢ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U case refine_2 α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U x : α hxI : x ∉ I hi : x ∈ X hind : U.ExtIndep e (insert x I) ⊢ False
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Extension.lean
Matroid.ModularCut.maximal_extIndep_iff
Status.FAILED
case pos α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I) heI : e ∈ I ⊢ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U case neg α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I) heI : e ∉ I ⊢ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U case refine_2 α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U x : α hxI : x ∉ I hi : x ∈ X hind : U.ExtIndep e (insert x I) ⊢ False
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hX', lean_type='X ⊆ insert e M.E'), Declaration(ident='hI', lean_type='U.ExtIndep e I'), Declaration(ident='hIX', lean_type='I ⊆ X'), Declaration(ident='hss', lean_type='I \\ {e} ⊆ X \\ {e}'), Declaration(ident="hX'", lean_type='X \\ {e} ⊆ M.E'), Declaration(ident='h', lean_type='∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I)'), Declaration(ident='heI', lean_type='e ∈ I')], conclusion='M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U'), Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hX', lean_type='X ⊆ insert e M.E'), Declaration(ident='hI', lean_type='U.ExtIndep e I'), Declaration(ident='hIX', lean_type='I ⊆ X'), Declaration(ident='hss', lean_type='I \\ {e} ⊆ X \\ {e}'), Declaration(ident="hX'", lean_type='X \\ {e} ⊆ M.E'), Declaration(ident='h', lean_type='∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I)'), Declaration(ident='heI', lean_type='e ∉ I')], conclusion='M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U'), Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hX', lean_type='X ⊆ insert e M.E'), Declaration(ident='hI', lean_type='U.ExtIndep e I'), Declaration(ident='hIX', lean_type='I ⊆ X'), Declaration(ident='hss', lean_type='I \\ {e} ⊆ X \\ {e}'), Declaration(ident="hX'", lean_type='X \\ {e} ⊆ M.E'), Declaration(ident='h', lean_type='M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U'), Declaration(ident='x', lean_type='α'), Declaration(ident='hxI', lean_type='x ∉ I'), Declaration(ident='hi', lean_type='x ∈ X'), Declaration(ident='hind', lean_type='U.ExtIndep e (insert x I)')], conclusion='False')]
simp only [heI, not_false_eq_true, diff_singleton_eq_self, false_iff, not_not, false_and, and_false, or_false] at h
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case pos\nα : Type u_1\nM : Matroid α\nI J B F₀ F F' X Y : Set α\ne f : α\nU : M.ModularCut\nhX : X ⊆ insert e M.E\nhI : U.ExtIndep e I\nhIX : I ⊆ X\nhss : I \\ {e} ⊆ X \\ {e}\nhX' : X \\ {e} ⊆ M.E\nh : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I)\nheI : e ∈ I\n⊢ M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U\n\ncase neg\nα : Type u_1\nM : Matroid α\nI J B F₀ F F' X Y : Set α\ne f : α\nU : M.ModularCut\nhX : X ⊆ insert e M.E\nhI : U.ExtIndep e I\nhIX : I ⊆ X\nhss : I \\ {e} ⊆ X \\ {e}\nhX' : X \\ {e} ⊆ M.E\nh : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I)\nheI : e ∉ I\n⊢ M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U\n\ncase refine_2\nα : Type u_1\nM : Matroid α\nI J B F₀ F F' X Y : Set α\ne f : α\nU : M.ModularCut\nhX : X ⊆ insert e M.E\nhI : U.ExtIndep e I\nhIX : I ⊆ X\nhss : I \\ {e} ⊆ X \\ {e}\nhX' : X \\ {e} ⊆ M.E\nh :\n M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U\nx : α\nhxI : x ∉ I\nhi : x ∈ X\nhind : U.ExtIndep e (insert x I)\n⊢ False", id=7, message='')
case pos α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I) heI : e ∈ I ⊢ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U case neg α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I) heI : e ∉ I ⊢ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U case refine_2 α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U x : α hxI : x ∉ I hi : x ∈ X hind : U.ExtIndep e (insert x I) ⊢ False
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Extension.lean
Matroid.ModularCut.maximal_extIndep_iff
Status.FAILED
case pos α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I) heI : e ∈ I ⊢ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U case neg α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : ∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I) heI : e ∉ I ⊢ M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U case refine_2 α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U : M.ModularCut hX : X ⊆ insert e M.E hI : U.ExtIndep e I hIX : I ⊆ X hss : I \ {e} ⊆ X \ {e} hX' : X \ {e} ⊆ M.E h : M.closure (I \ {e}) = M.closure (X \ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \ {e}) ∈ U)) ∨ (M.closure (I \ {e}) ⋖[M] M.closure (X \ {e})) ∧ e ∈ I ∧ M.closure (X \ {e}) ∈ U x : α hxI : x ∉ I hi : x ∈ X hind : U.ExtIndep e (insert x I) ⊢ False
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hX', lean_type='X ⊆ insert e M.E'), Declaration(ident='hI', lean_type='U.ExtIndep e I'), Declaration(ident='hIX', lean_type='I ⊆ X'), Declaration(ident='hss', lean_type='I \\ {e} ⊆ X \\ {e}'), Declaration(ident="hX'", lean_type='X \\ {e} ⊆ M.E'), Declaration(ident='h', lean_type='∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I)'), Declaration(ident='heI', lean_type='e ∈ I')], conclusion='M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U'), Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hX', lean_type='X ⊆ insert e M.E'), Declaration(ident='hI', lean_type='U.ExtIndep e I'), Declaration(ident='hIX', lean_type='I ⊆ X'), Declaration(ident='hss', lean_type='I \\ {e} ⊆ X \\ {e}'), Declaration(ident="hX'", lean_type='X \\ {e} ⊆ M.E'), Declaration(ident='h', lean_type='∀ x ∉ I, x ∈ X → ¬U.ExtIndep e (insert x I)'), Declaration(ident='heI', lean_type='e ∉ I')], conclusion='M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U'), Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hX', lean_type='X ⊆ insert e M.E'), Declaration(ident='hI', lean_type='U.ExtIndep e I'), Declaration(ident='hIX', lean_type='I ⊆ X'), Declaration(ident='hss', lean_type='I \\ {e} ⊆ X \\ {e}'), Declaration(ident="hX'", lean_type='X \\ {e} ⊆ M.E'), Declaration(ident='h', lean_type='M.closure (I \\ {e}) = M.closure (X \\ {e}) ∧ (e ∈ X → ¬(e ∈ I ↔ M.closure (X \\ {e}) ∈ U)) ∨\n (M.closure (I \\ {e}) ⋖[M] M.closure (X \\ {e})) ∧ e ∈ I ∧ M.closure (X \\ {e}) ∈ U'), Declaration(ident='x', lean_type='α'), Declaration(ident='hxI', lean_type='x ∉ I'), Declaration(ident='hi', lean_type='x ∈ X'), Declaration(ident='hind', lean_type='U.ExtIndep e (insert x I)')], conclusion='False')]
obtain (rfl | hne) := eq_or_ne e x
<class 'lean_dojo.interaction.dojo.LeanError'>
LeanError(error="unknown identifier 'x'")
unknown identifier 'x'
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Parallel.lean
Matroid.Parallel'.mem_closure
Status.PROVED
α : Type u_1 M N : Matroid α e f g : α I X P D : Set α h : M.Parallel' e f ⊢ e ∈ M.closure {f}
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='g', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='h', lean_type="M.Parallel' e f")], conclusion='e ∈ M.closure {f}')]
rw [← h.closure_eq_closure]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM N : Matroid α\ne f g : α\nI X P D : Set α\nh : M.Parallel' e f\n⊢ e ∈ M.closure {e}", id=1, message='')
α : Type u_1 M N : Matroid α e f g : α I X P D : Set α h : M.Parallel' e f ⊢ e ∈ M.closure {e}
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Parallel.lean
Matroid.Parallel'.mem_closure
Status.PROVED
α : Type u_1 M N : Matroid α e f g : α I X P D : Set α h : M.Parallel' e f ⊢ e ∈ M.closure {e}
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='g', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='h', lean_type="M.Parallel' e f")], conclusion='e ∈ M.closure {e}')]
apply mem_closure_self _ _ h.mem_ground_left
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=2, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Flat.lean
Matroid.Hyperplane.inter_ssubset_left_of_ne
Status.PROVED
α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α h₁ : M.Hyperplane H₁ h₂ : M.Hyperplane H₂ hne : H₁ ≠ H₂ ⊢ H₁ ∩ H₂ ⊂ H₁
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F₁', lean_type='Set α'), Declaration(ident='F₂', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident='H', lean_type='Set α'), Declaration(ident='H₁', lean_type='Set α'), Declaration(ident='H₂', lean_type='Set α'), Declaration(ident="H'", lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='h₁', lean_type='M.Hyperplane H₁'), Declaration(ident='h₂', lean_type='M.Hyperplane H₂'), Declaration(ident='hne', lean_type='H₁ ≠ H₂')], conclusion='H₁ ∩ H₂ ⊂ H₁')]
refine inter_subset_left.ssubset_of_ne fun h_eq ↦ hne <| h₁.eq_of_subset h₂ ?_
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM : Matroid α\nI F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α\ne f : α\nh₁ : M.Hyperplane H₁\nh₂ : M.Hyperplane H₂\nhne : H₁ ≠ H₂\nh_eq : H₁ ∩ H₂ = H₁\n⊢ H₁ ⊆ H₂", id=1, message='')
α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α h₁ : M.Hyperplane H₁ h₂ : M.Hyperplane H₂ hne : H₁ ≠ H₂ h_eq : H₁ ∩ H₂ = H₁ ⊢ H₁ ⊆ H₂
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Flat.lean
Matroid.Hyperplane.inter_ssubset_left_of_ne
Status.PROVED
α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α h₁ : M.Hyperplane H₁ h₂ : M.Hyperplane H₂ hne : H₁ ≠ H₂ h_eq : H₁ ∩ H₂ = H₁ ⊢ H₁ ⊆ H₂
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F₁', lean_type='Set α'), Declaration(ident='F₂', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident='H', lean_type='Set α'), Declaration(ident='H₁', lean_type='Set α'), Declaration(ident='H₂', lean_type='Set α'), Declaration(ident="H'", lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='h₁', lean_type='M.Hyperplane H₁'), Declaration(ident='h₂', lean_type='M.Hyperplane H₂'), Declaration(ident='hne', lean_type='H₁ ≠ H₂'), Declaration(ident='h_eq', lean_type='H₁ ∩ H₂ = H₁')], conclusion='H₁ ⊆ H₂')]
rw [← h_eq]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM : Matroid α\nI F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α\ne f : α\nh₁ : M.Hyperplane H₁\nh₂ : M.Hyperplane H₂\nhne : H₁ ≠ H₂\nh_eq : H₁ ∩ H₂ = H₁\n⊢ H₁ ∩ H₂ ⊆ H₂", id=2, message='')
α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α h₁ : M.Hyperplane H₁ h₂ : M.Hyperplane H₂ hne : H₁ ≠ H₂ h_eq : H₁ ∩ H₂ = H₁ ⊢ H₁ ∩ H₂ ⊆ H₂
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Flat.lean
Matroid.Hyperplane.inter_ssubset_left_of_ne
Status.PROVED
α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α h₁ : M.Hyperplane H₁ h₂ : M.Hyperplane H₂ hne : H₁ ≠ H₂ h_eq : H₁ ∩ H₂ = H₁ ⊢ H₁ ∩ H₂ ⊆ H₂
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F₁', lean_type='Set α'), Declaration(ident='F₂', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident='H', lean_type='Set α'), Declaration(ident='H₁', lean_type='Set α'), Declaration(ident='H₂', lean_type='Set α'), Declaration(ident="H'", lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='h₁', lean_type='M.Hyperplane H₁'), Declaration(ident='h₂', lean_type='M.Hyperplane H₂'), Declaration(ident='hne', lean_type='H₁ ≠ H₂'), Declaration(ident='h_eq', lean_type='H₁ ∩ H₂ = H₁')], conclusion='H₁ ∩ H₂ ⊆ H₂')]
exact inter_subset_right
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=3, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Equiv.lean
Matroid.Iso.preimage_subset_iff
Status.PROVED
α : Type u_1 β : Type u_2 M : Matroid α N : Matroid β e : M ≂ N X : Set ↑N.E Y : Set ↑M.E ⊢ ⇑e ⁻¹' X ⊆ Y ↔ X ⊆ ⇑e '' Y
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid β'), Declaration(ident='e', lean_type='M ≂ N'), Declaration(ident='X', lean_type='Set ↑N.E'), Declaration(ident='Y', lean_type='Set ↑M.E')], conclusion="⇑e ⁻¹' X ⊆ Y ↔ X ⊆ ⇑e '' Y")]
rw [← e.image_symm_eq_preimage, image_subset_iff, e.preimage_symm_eq_image]
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=1, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Flat.lean
Matroid.closure_covBy_iff
Status.PROVED
α : Type u_1 M : Matroid α I F X Y F' F₀ F₁ F₂ P L H H₁ H₂ H' B C K : Set α e f : α ⊢ M.closure X ⋖[M] F ↔ ∃ e ∈ M.E \ M.closure X, F = M.closure (insert e X)
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F₁', lean_type='Set α'), Declaration(ident='F₂', lean_type='Set α'), Declaration(ident='P', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident='H', lean_type='Set α'), Declaration(ident='H₁', lean_type='Set α'), Declaration(ident='H₂', lean_type='Set α'), Declaration(ident="H'", lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α')], conclusion='M.closure X ⋖[M] F ↔ ∃ e ∈ M.E \\ M.closure X, F = M.closure (insert e X)')]
simp_rw [(M.closure_flat X).covBy_iff_eq_closure_insert, closure_insert_closure_eq_closure_insert]
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=1, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Loop.lean
Matroid.Coloop.insert_indep_of_indep
Status.PROVED
α : Type u_1 β : Type u_2 M N : Matroid α e f : α B L L' I X Y Z F C K : Set α he : M.Coloop e hI : M.Indep I ⊢ M.Indep (insert e I)
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident="L'", lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='he', lean_type='M.Coloop e'), Declaration(ident='hI', lean_type='M.Indep I')], conclusion='M.Indep (insert e I)')]
refine (em (e ∈ I)).elim (fun h ↦ by rwa [insert_eq_of_mem h]) fun h ↦ ?_
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nβ : Type u_2\nM N : Matroid α\ne f : α\nB L L' I X Y Z F C K : Set α\nhe : M.Coloop e\nhI : M.Indep I\nh : e ∉ I\n⊢ M.Indep (insert e I)", id=1, message='')
α : Type u_1 β : Type u_2 M N : Matroid α e f : α B L L' I X Y Z F C K : Set α he : M.Coloop e hI : M.Indep I h : e ∉ I ⊢ M.Indep (insert e I)
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Loop.lean
Matroid.Coloop.insert_indep_of_indep
Status.PROVED
α : Type u_1 β : Type u_2 M N : Matroid α e f : α B L L' I X Y Z F C K : Set α he : M.Coloop e hI : M.Indep I h : e ∉ I ⊢ M.Indep (insert e I)
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident="L'", lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='he', lean_type='M.Coloop e'), Declaration(ident='hI', lean_type='M.Indep I'), Declaration(ident='h', lean_type='e ∉ I')], conclusion='M.Indep (insert e I)')]
rw [← hI.not_mem_closure_iff_of_not_mem h]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nβ : Type u_2\nM N : Matroid α\ne f : α\nB L L' I X Y Z F C K : Set α\nhe : M.Coloop e\nhI : M.Indep I\nh : e ∉ I\n⊢ e ∉ M.closure I", id=2, message='')
α : Type u_1 β : Type u_2 M N : Matroid α e f : α B L L' I X Y Z F C K : Set α he : M.Coloop e hI : M.Indep I h : e ∉ I ⊢ e ∉ M.closure I
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Loop.lean
Matroid.Coloop.insert_indep_of_indep
Status.PROVED
α : Type u_1 β : Type u_2 M N : Matroid α e f : α B L L' I X Y Z F C K : Set α he : M.Coloop e hI : M.Indep I h : e ∉ I ⊢ e ∉ M.closure I
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='L', lean_type='Set α'), Declaration(ident="L'", lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='he', lean_type='M.Coloop e'), Declaration(ident='hI', lean_type='M.Indep I'), Declaration(ident='h', lean_type='e ∉ I')], conclusion='e ∉ M.closure I')]
exact he.not_mem_closure_of_not_mem h
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=3, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/ForMathlib/MatroidMap.lean
Matroid.restrictSubtype_ground_base_iff
Status.PROVED
α : Type u_1 β : Type u_2 M : Matroid α X : Set α B : Set ↑M.E ⊢ (M.restrictSubtype M.E).Base B ↔ M.Base (Subtype.val '' B)
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='B', lean_type='Set ↑M.E')], conclusion="(M.restrictSubtype M.E).Base B ↔ M.Base (Subtype.val '' B)")]
rw [restrictSubtype_base_iff, basis'_iff_basis, basis_ground_iff]
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=1, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Circuit.lean
Matroid.girth_emptyOn
Status.PROVED
α : Type u_1 M : Matroid α C C' I X K C₁ C₂ R : Set α e f x y : α E D : Set α ⊢ (emptyOn α).girth = ⊤
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident="C'", lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='C₁', lean_type='Set α'), Declaration(ident='C₂', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='x', lean_type='α'), Declaration(ident='y', lean_type='α'), Declaration(ident='E', lean_type='Set α'), Declaration(ident='D', lean_type='Set α')], conclusion='(emptyOn α).girth = ⊤')]
simp [girth]
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=1, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/ForMathlib/Other.lean
Set.Finite.encard_le_iff_nonempty_embedding
Status.FAILED
α : Type u_1 β : Type u_2 s✝ s₁ s₂ t✝ t' : Set α f : α → β s : Set α t : Set β hs : s.Finite ⊢ s.encard ≤ t.encard ↔ Nonempty (↑s ↪ ↑t)
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='s✝', lean_type='Set α'), Declaration(ident='s₁', lean_type='Set α'), Declaration(ident='s₂', lean_type='Set α'), Declaration(ident='t✝', lean_type='Set α'), Declaration(ident="t'", lean_type='Set α'), Declaration(ident='f', lean_type='α → β'), Declaration(ident='s', lean_type='Set α'), Declaration(ident='t', lean_type='Set β'), Declaration(ident='hs', lean_type='s.Finite')], conclusion='s.encard ≤ t.encard ↔ Nonempty (↑s ↪ ↑t)')]
cases isEmpty_or_nonempty β
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case inl\nα : Type u_1\nβ : Type u_2\ns✝ s₁ s₂ t✝ t' : Set α\nf : α → β\ns : Set α\nt : Set β\nhs : s.Finite\nh✝ : IsEmpty β\n⊢ s.encard ≤ t.encard ↔ Nonempty (↑s ↪ ↑t)\n\ncase inr\nα : Type u_1\nβ : Type u_2\ns✝ s₁ s₂ t✝ t' : Set α\nf : α → β\ns : Set α\nt : Set β\nhs : s.Finite\nh✝ : Nonempty β\n⊢ s.encard ≤ t.encard ↔ Nonempty (↑s ↪ ↑t)", id=1, message='')
case inl α : Type u_1 β : Type u_2 s✝ s₁ s₂ t✝ t' : Set α f : α → β s : Set α t : Set β hs : s.Finite h✝ : IsEmpty β ⊢ s.encard ≤ t.encard ↔ Nonempty (↑s ↪ ↑t) case inr α : Type u_1 β : Type u_2 s✝ s₁ s₂ t✝ t' : Set α f : α → β s : Set α t : Set β hs : s.Finite h✝ : Nonempty β ⊢ s.encard ≤ t.encard ↔ Nonempty (↑s ↪ ↑t)
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/ForMathlib/Other.lean
Set.Finite.encard_le_iff_nonempty_embedding
Status.FAILED
case inl α : Type u_1 β : Type u_2 s✝ s₁ s₂ t✝ t' : Set α f : α → β s : Set α t : Set β hs : s.Finite h✝ : IsEmpty β ⊢ s.encard ≤ t.encard ↔ Nonempty (↑s ↪ ↑t) case inr α : Type u_1 β : Type u_2 s✝ s₁ s₂ t✝ t' : Set α f : α → β s : Set α t : Set β hs : s.Finite h✝ : Nonempty β ⊢ s.encard ≤ t.encard ↔ Nonempty (↑s ↪ ↑t)
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='s✝', lean_type='Set α'), Declaration(ident='s₁', lean_type='Set α'), Declaration(ident='s₂', lean_type='Set α'), Declaration(ident='t✝', lean_type='Set α'), Declaration(ident="t'", lean_type='Set α'), Declaration(ident='f', lean_type='α → β'), Declaration(ident='s', lean_type='Set α'), Declaration(ident='t', lean_type='Set β'), Declaration(ident='hs', lean_type='s.Finite'), Declaration(ident='h✝', lean_type='IsEmpty β')], conclusion='s.encard ≤ t.encard ↔ Nonempty (↑s ↪ ↑t)'), Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='s✝', lean_type='Set α'), Declaration(ident='s₁', lean_type='Set α'), Declaration(ident='s₂', lean_type='Set α'), Declaration(ident='t✝', lean_type='Set α'), Declaration(ident="t'", lean_type='Set α'), Declaration(ident='f', lean_type='α → β'), Declaration(ident='s', lean_type='Set α'), Declaration(ident='t', lean_type='Set β'), Declaration(ident='hs', lean_type='s.Finite'), Declaration(ident='h✝', lean_type='Nonempty β')], conclusion='s.encard ≤ t.encard ↔ Nonempty (↑s ↪ ↑t)')]
refine ⟨fun h ↦ ?_, fun ⟨e⟩ ↦ e.enccard_le⟩
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case inl\nα : Type u_1\nβ : Type u_2\ns✝ s₁ s₂ t✝ t' : Set α\nf : α → β\ns : Set α\nt : Set β\nhs : s.Finite\nh✝ : IsEmpty β\nh : s.encard ≤ t.encard\n⊢ Nonempty (↑s ↪ ↑t)\n\ncase inr\nα : Type u_1\nβ : Type u_2\ns✝ s₁ s₂ t✝ t' : Set α\nf : α → β\ns : Set α\nt : Set β\nhs : s.Finite\nh✝ : Nonempty β\n⊢ s.encard ≤ t.encard ↔ Nonempty (↑s ↪ ↑t)", id=2, message='')
case inl α : Type u_1 β : Type u_2 s✝ s₁ s₂ t✝ t' : Set α f : α → β s : Set α t : Set β hs : s.Finite h✝ : IsEmpty β h : s.encard ≤ t.encard ⊢ Nonempty (↑s ↪ ↑t) case inr α : Type u_1 β : Type u_2 s✝ s₁ s₂ t✝ t' : Set α f : α → β s : Set α t : Set β hs : s.Finite h✝ : Nonempty β ⊢ s.encard ≤ t.encard ↔ Nonempty (↑s ↪ ↑t)
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/ForMathlib/Other.lean
Set.Finite.encard_le_iff_nonempty_embedding
Status.FAILED
case inl α : Type u_1 β : Type u_2 s✝ s₁ s₂ t✝ t' : Set α f : α → β s : Set α t : Set β hs : s.Finite h✝ : IsEmpty β h : s.encard ≤ t.encard ⊢ Nonempty (↑s ↪ ↑t) case inr α : Type u_1 β : Type u_2 s✝ s₁ s₂ t✝ t' : Set α f : α → β s : Set α t : Set β hs : s.Finite h✝ : Nonempty β ⊢ s.encard ≤ t.encard ↔ Nonempty (↑s ↪ ↑t)
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='s✝', lean_type='Set α'), Declaration(ident='s₁', lean_type='Set α'), Declaration(ident='s₂', lean_type='Set α'), Declaration(ident='t✝', lean_type='Set α'), Declaration(ident="t'", lean_type='Set α'), Declaration(ident='f', lean_type='α → β'), Declaration(ident='s', lean_type='Set α'), Declaration(ident='t', lean_type='Set β'), Declaration(ident='hs', lean_type='s.Finite'), Declaration(ident='h✝', lean_type='IsEmpty β'), Declaration(ident='h', lean_type='s.encard ≤ t.encard')], conclusion='Nonempty (↑s ↪ ↑t)'), Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='β', lean_type='Type u_2'), Declaration(ident='s✝', lean_type='Set α'), Declaration(ident='s₁', lean_type='Set α'), Declaration(ident='s₂', lean_type='Set α'), Declaration(ident='t✝', lean_type='Set α'), Declaration(ident="t'", lean_type='Set α'), Declaration(ident='f', lean_type='α → β'), Declaration(ident='s', lean_type='Set α'), Declaration(ident='t', lean_type='Set β'), Declaration(ident='hs', lean_type='s.Finite'), Declaration(ident='h✝', lean_type='Nonempty β')], conclusion='s.encard ≤ t.encard ↔ Nonempty (↑s ↪ ↑t)')]
obtain ⟨f, hst, hf⟩ := hs.exists_injOn_of_encard_le h
<class 'lean_dojo.interaction.dojo.LeanError'>
LeanError(error='rcases tactic failed: x✝ : ?m.27594 is not an inductive datatype')
rcases tactic failed: x✝ : ?m.27594 is not an inductive datatype
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Circuit.lean
Matroid.finitary_iff_forall_circuit_finite
Status.FAILED
α : Type u_1 M : Matroid α C C' I X K C₁ C₂ R : Set α e f x y : α ⊢ M.Finitary ↔ ∀ (C : Set α), M.Circuit C → C.Finite
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident="C'", lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='C₁', lean_type='Set α'), Declaration(ident='C₂', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='x', lean_type='α'), Declaration(ident='y', lean_type='α')], conclusion='M.Finitary ↔ ∀ (C : Set α), M.Circuit C → C.Finite')]
refine ⟨fun _ _ ↦ Circuit.finite, fun h ↦ ⟨fun I hI ↦ indep_iff_not_dep.2 ⟨fun hd ↦ ?_,fun x hx ↦ ?_⟩⟩ ⟩
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case refine_1\nα : Type u_1\nM : Matroid α\nC C' I✝ X K C₁ C₂ R : Set α\ne f x y : α\nh : ∀ (C : Set α), M.Circuit C → C.Finite\nI : Set α\nhI : ∀ J ⊆ I, J.Finite → M.Indep J\nhd : M.Dep I\n⊢ False\n\ncase refine_2\nα : Type u_1\nM : Matroid α\nC C' I✝ X K C₁ C₂ R : Set α\ne f x✝ y : α\nh : ∀ (C : Set α), M.Circuit C → C.Finite\nI : Set α\nhI : ∀ J ⊆ I, J.Finite → M.Indep J\nx : α\nhx : x ∈ I\n⊢ x ∈ M.E", id=1, message='')
case refine_1 α : Type u_1 M : Matroid α C C' I✝ X K C₁ C₂ R : Set α e f x y : α h : ∀ (C : Set α), M.Circuit C → C.Finite I : Set α hI : ∀ J ⊆ I, J.Finite → M.Indep J hd : M.Dep I ⊢ False case refine_2 α : Type u_1 M : Matroid α C C' I✝ X K C₁ C₂ R : Set α e f x✝ y : α h : ∀ (C : Set α), M.Circuit C → C.Finite I : Set α hI : ∀ J ⊆ I, J.Finite → M.Indep J x : α hx : x ∈ I ⊢ x ∈ M.E
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Circuit.lean
Matroid.finitary_iff_forall_circuit_finite
Status.FAILED
case refine_1 α : Type u_1 M : Matroid α C C' I✝ X K C₁ C₂ R : Set α e f x y : α h : ∀ (C : Set α), M.Circuit C → C.Finite I : Set α hI : ∀ J ⊆ I, J.Finite → M.Indep J hd : M.Dep I ⊢ False case refine_2 α : Type u_1 M : Matroid α C C' I✝ X K C₁ C₂ R : Set α e f x✝ y : α h : ∀ (C : Set α), M.Circuit C → C.Finite I : Set α hI : ∀ J ⊆ I, J.Finite → M.Indep J x : α hx : x ∈ I ⊢ x ∈ M.E
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident="C'", lean_type='Set α'), Declaration(ident='I✝', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='C₁', lean_type='Set α'), Declaration(ident='C₂', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='x', lean_type='α'), Declaration(ident='y', lean_type='α'), Declaration(ident='h', lean_type='∀ (C : Set α), M.Circuit C → C.Finite'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='hI', lean_type='∀ J ⊆ I, J.Finite → M.Indep J'), Declaration(ident='hd', lean_type='M.Dep I')], conclusion='False'), Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident="C'", lean_type='Set α'), Declaration(ident='I✝', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='C₁', lean_type='Set α'), Declaration(ident='C₂', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='x✝', lean_type='α'), Declaration(ident='y', lean_type='α'), Declaration(ident='h', lean_type='∀ (C : Set α), M.Circuit C → C.Finite'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='hI', lean_type='∀ J ⊆ I, J.Finite → M.Indep J'), Declaration(ident='x', lean_type='α'), Declaration(ident='hx', lean_type='x ∈ I')], conclusion='x ∈ M.E')]
simpa using (hI {x} (by simpa) (finite_singleton _)).subset_ground
<class 'lean_dojo.interaction.dojo.LeanError'>
LeanError(error='type mismatch\n h✝\nhas type\n x ∈ M.E : Prop\nbut is expected to have type\n False : Prop')
type mismatch h✝ has type x ∈ M.E : Prop but is expected to have type False : Prop
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.contract_loop_iff_mem_closure
Status.PROVED
α : Type u_1 M M' N : Matroid α e f : α I J R B X Y Z K C C₁ C₂ : Set α ⊢ (M / C).Loop e ↔ e ∈ M.closure C \ C
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='C₁', lean_type='Set α'), Declaration(ident='C₂', lean_type='Set α')], conclusion='(M / C).Loop e ↔ e ∈ M.closure C \\ C')]
obtain ⟨I, D, hI, -, -, hM⟩ := M.exists_eq_contract_indep_delete C
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro.intro.intro\nα : Type u_1\nM M' N : Matroid α\ne f : α\nI✝ J R B X Y Z K C C₁ C₂ I D : Set α\nhI : M.Basis I (C ∩ M.E)\nhM : M / C = M / I \ D\n⊢ (M / C).Loop e ↔ e ∈ M.closure C \\ C", id=1, message='')
case intro.intro.intro.intro.intro α : Type u_1 M M' N : Matroid α e f : α I✝ J R B X Y Z K C C₁ C₂ I D : Set α hI : M.Basis I (C ∩ M.E) hM : M / C = M / I \ D ⊢ (M / C).Loop e ↔ e ∈ M.closure C \ C
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.contract_loop_iff_mem_closure
Status.PROVED
case intro.intro.intro.intro.intro α : Type u_1 M M' N : Matroid α e f : α I✝ J R B X Y Z K C C₁ C₂ I D : Set α hI : M.Basis I (C ∩ M.E) hM : M / C = M / I \ D ⊢ (M / C).Loop e ↔ e ∈ M.closure C \ C
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I✝', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='C₁', lean_type='Set α'), Declaration(ident='C₂', lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='hI', lean_type='M.Basis I (C ∩ M.E)'), Declaration(ident='hM', lean_type='M / C = M / I \ D')], conclusion='(M / C).Loop e ↔ e ∈ M.closure C \\ C')]
rw [hM, delete_loop_iff, ← singleton_dep, hI.indep.contract_dep_iff, disjoint_singleton_left, singleton_union, hI.indep.insert_dep_iff, mem_diff, ← M.closure_inter_ground C, hI.closure_eq_closure, and_comm (a := e ∉ I), and_self_right, ← mem_diff, ← mem_diff, diff_diff]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro.intro.intro\nα : Type u_1\nM M' N : Matroid α\ne f : α\nI✝ J R B X Y Z K C C₁ C₂ I D : Set α\nhI : M.Basis I (C ∩ M.E)\nhM : M / C = M / I \ D\n⊢ e ∈ M.closure (C ∩ M.E) \\ (I ∪ D) ↔ e ∈ M.closure (C ∩ M.E) \\ C", id=2, message='')
case intro.intro.intro.intro.intro α : Type u_1 M M' N : Matroid α e f : α I✝ J R B X Y Z K C C₁ C₂ I D : Set α hI : M.Basis I (C ∩ M.E) hM : M / C = M / I \ D ⊢ e ∈ M.closure (C ∩ M.E) \ (I ∪ D) ↔ e ∈ M.closure (C ∩ M.E) \ C
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.contract_loop_iff_mem_closure
Status.PROVED
case intro.intro.intro.intro.intro α : Type u_1 M M' N : Matroid α e f : α I✝ J R B X Y Z K C C₁ C₂ I D : Set α hI : M.Basis I (C ∩ M.E) hM : M / C = M / I \ D ⊢ e ∈ M.closure (C ∩ M.E) \ (I ∪ D) ↔ e ∈ M.closure (C ∩ M.E) \ C
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I✝', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='C₁', lean_type='Set α'), Declaration(ident='C₂', lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='hI', lean_type='M.Basis I (C ∩ M.E)'), Declaration(ident='hM', lean_type='M / C = M / I \ D')], conclusion='e ∈ M.closure (C ∩ M.E) \\ (I ∪ D) ↔ e ∈ M.closure (C ∩ M.E) \\ C')]
apply_fun Matroid.E at hM
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro.intro.intro\nα : Type u_1\nM M' N : Matroid α\ne f : α\nI✝ J R B X Y Z K C C₁ C₂ I D : Set α\nhI : M.Basis I (C ∩ M.E)\nhM : (M / C).E = (M / I \ D).E\n⊢ e ∈ M.closure (C ∩ M.E) \\ (I ∪ D) ↔ e ∈ M.closure (C ∩ M.E) \\ C", id=3, message='')
case intro.intro.intro.intro.intro α : Type u_1 M M' N : Matroid α e f : α I✝ J R B X Y Z K C C₁ C₂ I D : Set α hI : M.Basis I (C ∩ M.E) hM : (M / C).E = (M / I \ D).E ⊢ e ∈ M.closure (C ∩ M.E) \ (I ∪ D) ↔ e ∈ M.closure (C ∩ M.E) \ C
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.contract_loop_iff_mem_closure
Status.PROVED
case intro.intro.intro.intro.intro α : Type u_1 M M' N : Matroid α e f : α I✝ J R B X Y Z K C C₁ C₂ I D : Set α hI : M.Basis I (C ∩ M.E) hM : (M / C).E = (M / I \ D).E ⊢ e ∈ M.closure (C ∩ M.E) \ (I ∪ D) ↔ e ∈ M.closure (C ∩ M.E) \ C
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I✝', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='C₁', lean_type='Set α'), Declaration(ident='C₂', lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='hI', lean_type='M.Basis I (C ∩ M.E)'), Declaration(ident='hM', lean_type='(M / C).E = (M / I \ D).E')], conclusion='e ∈ M.closure (C ∩ M.E) \\ (I ∪ D) ↔ e ∈ M.closure (C ∩ M.E) \\ C')]
rw [delete_ground, contract_ground, contract_ground, diff_diff, diff_eq_diff_iff_inter_eq_inter, inter_comm, inter_comm M.E] at hM
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="case intro.intro.intro.intro.intro\nα : Type u_1\nM M' N : Matroid α\ne f : α\nI✝ J R B X Y Z K C C₁ C₂ I D : Set α\nhI : M.Basis I (C ∩ M.E)\nhM : C ∩ M.E = (I ∪ D) ∩ M.E\n⊢ e ∈ M.closure (C ∩ M.E) \\ (I ∪ D) ↔ e ∈ M.closure (C ∩ M.E) \\ C", id=4, message='')
case intro.intro.intro.intro.intro α : Type u_1 M M' N : Matroid α e f : α I✝ J R B X Y Z K C C₁ C₂ I D : Set α hI : M.Basis I (C ∩ M.E) hM : C ∩ M.E = (I ∪ D) ∩ M.E ⊢ e ∈ M.closure (C ∩ M.E) \ (I ∪ D) ↔ e ∈ M.closure (C ∩ M.E) \ C
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Minor/Basic.lean
Matroid.contract_loop_iff_mem_closure
Status.PROVED
case intro.intro.intro.intro.intro α : Type u_1 M M' N : Matroid α e f : α I✝ J R B X Y Z K C C₁ C₂ I D : Set α hI : M.Basis I (C ∩ M.E) hM : C ∩ M.E = (I ∪ D) ∩ M.E ⊢ e ∈ M.closure (C ∩ M.E) \ (I ∪ D) ↔ e ∈ M.closure (C ∩ M.E) \ C
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident="M'", lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='I✝', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident='C₁', lean_type='Set α'), Declaration(ident='C₂', lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='D', lean_type='Set α'), Declaration(ident='hI', lean_type='M.Basis I (C ∩ M.E)'), Declaration(ident='hM', lean_type='C ∩ M.E = (I ∪ D) ∩ M.E')], conclusion='e ∈ M.closure (C ∩ M.E) \\ (I ∪ D) ↔ e ∈ M.closure (C ∩ M.E) \\ C')]
exact ⟨fun h ↦ ⟨h.1, fun heC ↦ h.2 (hM.subset ⟨heC, M.closure_subset_ground _ h.1⟩).1⟩, fun h ↦ ⟨h.1, fun h' ↦ h.2 (hM.symm.subset ⟨h', M.closure_subset_ground _ h.1⟩).1⟩⟩
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=5, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Extension.lean
Matroid.ModularCut.inter_mem
Status.PROVED
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U✝ U : M.ModularCut hF : F ∈ U hF' : F' ∈ U h : M.ModularPair F F' ⊢ F ∩ F' ∈ U
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U✝', lean_type='M.ModularCut'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hF', lean_type='F ∈ U'), Declaration(ident="hF'", lean_type="F' ∈ U"), Declaration(ident='h', lean_type="M.ModularPair F F'")], conclusion="F ∩ F' ∈ U")]
rw [inter_eq_iInter]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM : Matroid α\nI J B F₀ F F' X Y : Set α\ne f : α\nU✝ U : M.ModularCut\nhF : F ∈ U\nhF' : F' ∈ U\nh : M.ModularPair F F'\n⊢ (⋂ b, bif b then F else F') ∈ U", id=1, message='')
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U✝ U : M.ModularCut hF : F ∈ U hF' : F' ∈ U h : M.ModularPair F F' ⊢ (⋂ b, bif b then F else F') ∈ U
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Extension.lean
Matroid.ModularCut.inter_mem
Status.PROVED
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U✝ U : M.ModularCut hF : F ∈ U hF' : F' ∈ U h : M.ModularPair F F' ⊢ (⋂ b, bif b then F else F') ∈ U
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U✝', lean_type='M.ModularCut'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hF', lean_type='F ∈ U'), Declaration(ident="hF'", lean_type="F' ∈ U"), Declaration(ident='h', lean_type="M.ModularPair F F'")], conclusion="(⋂ b, bif b then F else F') ∈ U")]
apply U.iInter_mem _ _ h
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nM : Matroid α\nI J B F₀ F F' X Y : Set α\ne f : α\nU✝ U : M.ModularCut\nhF : F ∈ U\nhF' : F' ∈ U\nh : M.ModularPair F F'\n⊢ ∀ (i : Bool), (bif i then F else F') ∈ U", id=2, message='')
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U✝ U : M.ModularCut hF : F ∈ U hF' : F' ∈ U h : M.ModularPair F F' ⊢ ∀ (i : Bool), (bif i then F else F') ∈ U
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Extension.lean
Matroid.ModularCut.inter_mem
Status.PROVED
α : Type u_1 M : Matroid α I J B F₀ F F' X Y : Set α e f : α U✝ U : M.ModularCut hF : F ∈ U hF' : F' ∈ U h : M.ModularPair F F' ⊢ ∀ (i : Bool), (bif i then F else F') ∈ U
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='J', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='F₀', lean_type='Set α'), Declaration(ident='F', lean_type='Set α'), Declaration(ident="F'", lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='U✝', lean_type='M.ModularCut'), Declaration(ident='U', lean_type='M.ModularCut'), Declaration(ident='hF', lean_type='F ∈ U'), Declaration(ident="hF'", lean_type="F' ∈ U"), Declaration(ident='h', lean_type="M.ModularPair F F'")], conclusion="∀ (i : Bool), (bif i then F else F') ∈ U")]
simp [hF, hF']
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=3, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Circuit.lean
Matroid.loopyOn_dep_iff
Status.PROVED
α : Type u_1 M : Matroid α C C' I X K C₁ C₂ R : Set α e f x y : α E D : Set α ⊢ (loopyOn E).Dep D ↔ D.Nonempty ∧ D ⊆ E
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='C', lean_type='Set α'), Declaration(ident="C'", lean_type='Set α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident='K', lean_type='Set α'), Declaration(ident='C₁', lean_type='Set α'), Declaration(ident='C₂', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='x', lean_type='α'), Declaration(ident='y', lean_type='α'), Declaration(ident='E', lean_type='Set α'), Declaration(ident='D', lean_type='Set α')], conclusion='(loopyOn E).Dep D ↔ D.Nonempty ∧ D ⊆ E')]
simp [Dep, nonempty_iff_ne_empty]
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=1, message='')
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Rank.lean
Matroid.rFin.r_le_r_of_er_le_er
Status.PROVED
α : Type u_1 ι : Type u_2 M N : Matroid α I B X X' Y Y' Z R : Set α n : ℕ∞ e f : α hY : M.rFin Y hle : M.er X ≤ M.er Y ⊢ M.r X ≤ M.r Y
None
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident="X'", lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="Y'", lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ∞'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='hY', lean_type='M.rFin Y'), Declaration(ident='hle', lean_type='M.er X ≤ M.er Y')], conclusion='M.r X ≤ M.r Y')]
rwa [← rFin.er_le_er_iff _ hY]
<class 'lean_dojo.interaction.dojo.TacticState'>
TacticState(pp="α : Type u_1\nι : Type u_2\nM N : Matroid α\nI B X X' Y Y' Z R : Set α\nn : ℕ∞\ne f : α\nhY : M.rFin Y\nhle : M.er X ≤ M.er Y\n⊢ M.rFin X", id=1, message='')
α : Type u_1 ι : Type u_2 M N : Matroid α I B X X' Y Y' Z R : Set α n : ℕ∞ e f : α hY : M.rFin Y hle : M.er X ≤ M.er Y ⊢ M.rFin X
https://github.com/apnelson1/Matroid
510262f56c0025be19502ab3457a788e2f6d2d1c
Matroid/Rank.lean
Matroid.rFin.r_le_r_of_er_le_er
Status.PROVED
α : Type u_1 ι : Type u_2 M N : Matroid α I B X X' Y Y' Z R : Set α n : ℕ∞ e f : α hY : M.rFin Y hle : M.er X ≤ M.er Y ⊢ M.rFin X
[Goal(assumptions=[Declaration(ident='α', lean_type='Type u_1'), Declaration(ident='ι', lean_type='Type u_2'), Declaration(ident='M', lean_type='Matroid α'), Declaration(ident='N', lean_type='Matroid α'), Declaration(ident='I', lean_type='Set α'), Declaration(ident='B', lean_type='Set α'), Declaration(ident='X', lean_type='Set α'), Declaration(ident="X'", lean_type='Set α'), Declaration(ident='Y', lean_type='Set α'), Declaration(ident="Y'", lean_type='Set α'), Declaration(ident='Z', lean_type='Set α'), Declaration(ident='R', lean_type='Set α'), Declaration(ident='n', lean_type='ℕ∞'), Declaration(ident='e', lean_type='α'), Declaration(ident='f', lean_type='α'), Declaration(ident='hY', lean_type='M.rFin Y'), Declaration(ident='hle', lean_type='M.er X ≤ M.er Y')], conclusion='M.rFin X')]
exact hle.trans_lt hY.lt
<class 'lean_dojo.interaction.dojo.ProofFinished'>
ProofFinished(tactic_state_id=2, message='')
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Repo: Matroid

Total Theorems: 1119. Proved: 860

Matroid


Repo: lean-math-workshop

Total Theorems: 78. Proved: 47

lean-math-workshop


Repo: mathematics_in_lean_source

Total Theorems: 139. Proved: 68

mathematics_in_lean_source


Repo: NazgandLean4

Total Theorems: 0. Proved: 0

NazgandLean4


Repo: std4

Total Theorems: 1018. Proved: 680

std4


Repo: extra4

Total Theorems: 289. Proved: 256

extra4


Repo: lean-workbook

Total Theorems: 13469. Proved: 10286

lean-workbook


Repo: flt-regular

Total Theorems: 351. Proved: 255

flt-regular


Repo: lean4lean

Total Theorems: 248. Proved: 166

lean4lean


Repo: Weights

Total Theorems: 113. Proved: 81

Weights


Repo: EulerProducts

Total Theorems: 65. Proved: 47

EulerProducts


Repo: lean4-ascii

Total Theorems: 31. Proved: 28

lean4-ascii


Repo: compfiles

Total Theorems: 346. Proved: 246

compfiles


Repo: mathlib4

Total Theorems: 60971. Proved: 45487

mathlib4


Downloads last month
106