repository_name
stringlengths 5
67
| func_path_in_repository
stringlengths 4
234
| func_name
stringlengths 0
314
| whole_func_string
stringlengths 52
3.87M
| language
stringclasses 6
values | func_code_string
stringlengths 39
1.84M
| func_code_tokens
listlengths 15
672k
| func_documentation_string
stringlengths 1
47.2k
| func_documentation_tokens
listlengths 1
3.92k
| split_name
stringclasses 1
value | func_code_url
stringlengths 85
339
|
---|---|---|---|---|---|---|---|---|---|---|
eventable/vobject | vobject/vcard.py | serializeFields | def serializeFields(obj, order=None):
"""
Turn an object's fields into a ';' and ',' seperated string.
If order is None, obj should be a list, backslash escape each field and
return a ';' separated string.
"""
fields = []
if order is None:
fields = [backslashEscape(val) for val in obj]
else:
for field in order:
escapedValueList = [backslashEscape(val) for val in
toList(getattr(obj, field))]
fields.append(','.join(escapedValueList))
return ';'.join(fields) | python | def serializeFields(obj, order=None):
fields = []
if order is None:
fields = [backslashEscape(val) for val in obj]
else:
for field in order:
escapedValueList = [backslashEscape(val) for val in
toList(getattr(obj, field))]
fields.append(','.join(escapedValueList))
return ';'.join(fields) | [
"def",
"serializeFields",
"(",
"obj",
",",
"order",
"=",
"None",
")",
":",
"fields",
"=",
"[",
"]",
"if",
"order",
"is",
"None",
":",
"fields",
"=",
"[",
"backslashEscape",
"(",
"val",
")",
"for",
"val",
"in",
"obj",
"]",
"else",
":",
"for",
"field",
"in",
"order",
":",
"escapedValueList",
"=",
"[",
"backslashEscape",
"(",
"val",
")",
"for",
"val",
"in",
"toList",
"(",
"getattr",
"(",
"obj",
",",
"field",
")",
")",
"]",
"fields",
".",
"append",
"(",
"','",
".",
"join",
"(",
"escapedValueList",
")",
")",
"return",
"';'",
".",
"join",
"(",
"fields",
")"
]
| Turn an object's fields into a ';' and ',' seperated string.
If order is None, obj should be a list, backslash escape each field and
return a ';' separated string. | [
"Turn",
"an",
"object",
"s",
"fields",
"into",
"a",
";",
"and",
"seperated",
"string",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/vcard.py#L264-L279 |
eventable/vobject | vobject/vcard.py | Address.toString | def toString(val, join_char='\n'):
"""
Turn a string or array value into a string.
"""
if type(val) in (list, tuple):
return join_char.join(val)
return val | python | def toString(val, join_char='\n'):
if type(val) in (list, tuple):
return join_char.join(val)
return val | [
"def",
"toString",
"(",
"val",
",",
"join_char",
"=",
"'\\n'",
")",
":",
"if",
"type",
"(",
"val",
")",
"in",
"(",
"list",
",",
"tuple",
")",
":",
"return",
"join_char",
".",
"join",
"(",
"val",
")",
"return",
"val"
]
| Turn a string or array value into a string. | [
"Turn",
"a",
"string",
"or",
"array",
"value",
"into",
"a",
"string",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/vcard.py#L75-L81 |
eventable/vobject | vobject/vcard.py | VCardTextBehavior.encode | def encode(cls, line):
"""
Backslash escape line.value.
"""
if not line.encoded:
encoding = getattr(line, 'encoding_param', None)
if encoding and encoding.upper() == cls.base64string:
if isinstance(line.value, bytes):
line.value = codecs.encode(line.value, "base64").decode("utf-8").replace('\n', '')
else:
line.value = codecs.encode(line.value.encode(encoding), "base64").decode("utf-8")
else:
line.value = backslashEscape(line.value)
line.encoded = True | python | def encode(cls, line):
if not line.encoded:
encoding = getattr(line, 'encoding_param', None)
if encoding and encoding.upper() == cls.base64string:
if isinstance(line.value, bytes):
line.value = codecs.encode(line.value, "base64").decode("utf-8").replace('\n', '')
else:
line.value = codecs.encode(line.value.encode(encoding), "base64").decode("utf-8")
else:
line.value = backslashEscape(line.value)
line.encoded = True | [
"def",
"encode",
"(",
"cls",
",",
"line",
")",
":",
"if",
"not",
"line",
".",
"encoded",
":",
"encoding",
"=",
"getattr",
"(",
"line",
",",
"'encoding_param'",
",",
"None",
")",
"if",
"encoding",
"and",
"encoding",
".",
"upper",
"(",
")",
"==",
"cls",
".",
"base64string",
":",
"if",
"isinstance",
"(",
"line",
".",
"value",
",",
"bytes",
")",
":",
"line",
".",
"value",
"=",
"codecs",
".",
"encode",
"(",
"line",
".",
"value",
",",
"\"base64\"",
")",
".",
"decode",
"(",
"\"utf-8\"",
")",
".",
"replace",
"(",
"'\\n'",
",",
"''",
")",
"else",
":",
"line",
".",
"value",
"=",
"codecs",
".",
"encode",
"(",
"line",
".",
"value",
".",
"encode",
"(",
"encoding",
")",
",",
"\"base64\"",
")",
".",
"decode",
"(",
"\"utf-8\"",
")",
"else",
":",
"line",
".",
"value",
"=",
"backslashEscape",
"(",
"line",
".",
"value",
")",
"line",
".",
"encoded",
"=",
"True"
]
| Backslash escape line.value. | [
"Backslash",
"escape",
"line",
".",
"value",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/vcard.py#L149-L162 |
eventable/vobject | vobject/vcard.py | VCard3_0.generateImplicitParameters | def generateImplicitParameters(cls, obj):
"""
Create PRODID, VERSION, and VTIMEZONEs if needed.
VTIMEZONEs will need to exist whenever TZID parameters exist or when
datetimes with tzinfo exist.
"""
if not hasattr(obj, 'version'):
obj.add(ContentLine('VERSION', [], cls.versionString)) | python | def generateImplicitParameters(cls, obj):
if not hasattr(obj, 'version'):
obj.add(ContentLine('VERSION', [], cls.versionString)) | [
"def",
"generateImplicitParameters",
"(",
"cls",
",",
"obj",
")",
":",
"if",
"not",
"hasattr",
"(",
"obj",
",",
"'version'",
")",
":",
"obj",
".",
"add",
"(",
"ContentLine",
"(",
"'VERSION'",
",",
"[",
"]",
",",
"cls",
".",
"versionString",
")",
")"
]
| Create PRODID, VERSION, and VTIMEZONEs if needed.
VTIMEZONEs will need to exist whenever TZID parameters exist or when
datetimes with tzinfo exist. | [
"Create",
"PRODID",
"VERSION",
"and",
"VTIMEZONEs",
"if",
"needed",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/vcard.py#L193-L201 |
eventable/vobject | vobject/vcard.py | Photo.serialize | def serialize(cls, obj, buf, lineLength, validate):
"""
Apple's Address Book is *really* weird with images, it expects
base64 data to have very specific whitespace. It seems Address Book
can handle PHOTO if it's not wrapped, so don't wrap it.
"""
if wacky_apple_photo_serialize:
lineLength = REALLY_LARGE
VCardTextBehavior.serialize(obj, buf, lineLength, validate) | python | def serialize(cls, obj, buf, lineLength, validate):
if wacky_apple_photo_serialize:
lineLength = REALLY_LARGE
VCardTextBehavior.serialize(obj, buf, lineLength, validate) | [
"def",
"serialize",
"(",
"cls",
",",
"obj",
",",
"buf",
",",
"lineLength",
",",
"validate",
")",
":",
"if",
"wacky_apple_photo_serialize",
":",
"lineLength",
"=",
"REALLY_LARGE",
"VCardTextBehavior",
".",
"serialize",
"(",
"obj",
",",
"buf",
",",
"lineLength",
",",
"validate",
")"
]
| Apple's Address Book is *really* weird with images, it expects
base64 data to have very specific whitespace. It seems Address Book
can handle PHOTO if it's not wrapped, so don't wrap it. | [
"Apple",
"s",
"Address",
"Book",
"is",
"*",
"really",
"*",
"weird",
"with",
"images",
"it",
"expects",
"base64",
"data",
"to",
"have",
"very",
"specific",
"whitespace",
".",
"It",
"seems",
"Address",
"Book",
"can",
"handle",
"PHOTO",
"if",
"it",
"s",
"not",
"wrapped",
"so",
"don",
"t",
"wrap",
"it",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/vcard.py#L229-L237 |
eventable/vobject | vobject/vcard.py | NameBehavior.transformToNative | def transformToNative(obj):
"""
Turn obj.value into a Name.
"""
if obj.isNative:
return obj
obj.isNative = True
obj.value = Name(**dict(zip(NAME_ORDER, splitFields(obj.value))))
return obj | python | def transformToNative(obj):
if obj.isNative:
return obj
obj.isNative = True
obj.value = Name(**dict(zip(NAME_ORDER, splitFields(obj.value))))
return obj | [
"def",
"transformToNative",
"(",
"obj",
")",
":",
"if",
"obj",
".",
"isNative",
":",
"return",
"obj",
"obj",
".",
"isNative",
"=",
"True",
"obj",
".",
"value",
"=",
"Name",
"(",
"*",
"*",
"dict",
"(",
"zip",
"(",
"NAME_ORDER",
",",
"splitFields",
"(",
"obj",
".",
"value",
")",
")",
")",
")",
"return",
"obj"
]
| Turn obj.value into a Name. | [
"Turn",
"obj",
".",
"value",
"into",
"a",
"Name",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/vcard.py#L294-L302 |
eventable/vobject | vobject/vcard.py | NameBehavior.transformFromNative | def transformFromNative(obj):
"""
Replace the Name in obj.value with a string.
"""
obj.isNative = False
obj.value = serializeFields(obj.value, NAME_ORDER)
return obj | python | def transformFromNative(obj):
obj.isNative = False
obj.value = serializeFields(obj.value, NAME_ORDER)
return obj | [
"def",
"transformFromNative",
"(",
"obj",
")",
":",
"obj",
".",
"isNative",
"=",
"False",
"obj",
".",
"value",
"=",
"serializeFields",
"(",
"obj",
".",
"value",
",",
"NAME_ORDER",
")",
"return",
"obj"
]
| Replace the Name in obj.value with a string. | [
"Replace",
"the",
"Name",
"in",
"obj",
".",
"value",
"with",
"a",
"string",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/vcard.py#L305-L311 |
eventable/vobject | vobject/vcard.py | AddressBehavior.transformToNative | def transformToNative(obj):
"""
Turn obj.value into an Address.
"""
if obj.isNative:
return obj
obj.isNative = True
obj.value = Address(**dict(zip(ADDRESS_ORDER, splitFields(obj.value))))
return obj | python | def transformToNative(obj):
if obj.isNative:
return obj
obj.isNative = True
obj.value = Address(**dict(zip(ADDRESS_ORDER, splitFields(obj.value))))
return obj | [
"def",
"transformToNative",
"(",
"obj",
")",
":",
"if",
"obj",
".",
"isNative",
":",
"return",
"obj",
"obj",
".",
"isNative",
"=",
"True",
"obj",
".",
"value",
"=",
"Address",
"(",
"*",
"*",
"dict",
"(",
"zip",
"(",
"ADDRESS_ORDER",
",",
"splitFields",
"(",
"obj",
".",
"value",
")",
")",
")",
")",
"return",
"obj"
]
| Turn obj.value into an Address. | [
"Turn",
"obj",
".",
"value",
"into",
"an",
"Address",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/vcard.py#L322-L330 |
eventable/vobject | vobject/vcard.py | OrgBehavior.transformToNative | def transformToNative(obj):
"""
Turn obj.value into a list.
"""
if obj.isNative:
return obj
obj.isNative = True
obj.value = splitFields(obj.value)
return obj | python | def transformToNative(obj):
if obj.isNative:
return obj
obj.isNative = True
obj.value = splitFields(obj.value)
return obj | [
"def",
"transformToNative",
"(",
"obj",
")",
":",
"if",
"obj",
".",
"isNative",
":",
"return",
"obj",
"obj",
".",
"isNative",
"=",
"True",
"obj",
".",
"value",
"=",
"splitFields",
"(",
"obj",
".",
"value",
")",
"return",
"obj"
]
| Turn obj.value into a list. | [
"Turn",
"obj",
".",
"value",
"into",
"a",
"list",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/vcard.py#L350-L358 |
eventable/vobject | docs/build/lib/vobject/vcard.py | VCardTextBehavior.decode | def decode(cls, line):
"""
Remove backslash escaping from line.valueDecode line, either to remove
backslash espacing, or to decode base64 encoding. The content line should
contain a ENCODING=b for base64 encoding, but Apple Addressbook seems to
export a singleton parameter of 'BASE64', which does not match the 3.0
vCard spec. If we encouter that, then we transform the parameter to
ENCODING=b
"""
if line.encoded:
if 'BASE64' in line.singletonparams:
line.singletonparams.remove('BASE64')
line.encoding_param = cls.base64string
encoding = getattr(line, 'encoding_param', None)
if encoding:
line.value = codecs.decode(line.value.encode("utf-8"), "base64")
else:
line.value = stringToTextValues(line.value)[0]
line.encoded=False | python | def decode(cls, line):
if line.encoded:
if 'BASE64' in line.singletonparams:
line.singletonparams.remove('BASE64')
line.encoding_param = cls.base64string
encoding = getattr(line, 'encoding_param', None)
if encoding:
line.value = codecs.decode(line.value.encode("utf-8"), "base64")
else:
line.value = stringToTextValues(line.value)[0]
line.encoded=False | [
"def",
"decode",
"(",
"cls",
",",
"line",
")",
":",
"if",
"line",
".",
"encoded",
":",
"if",
"'BASE64'",
"in",
"line",
".",
"singletonparams",
":",
"line",
".",
"singletonparams",
".",
"remove",
"(",
"'BASE64'",
")",
"line",
".",
"encoding_param",
"=",
"cls",
".",
"base64string",
"encoding",
"=",
"getattr",
"(",
"line",
",",
"'encoding_param'",
",",
"None",
")",
"if",
"encoding",
":",
"line",
".",
"value",
"=",
"codecs",
".",
"decode",
"(",
"line",
".",
"value",
".",
"encode",
"(",
"\"utf-8\"",
")",
",",
"\"base64\"",
")",
"else",
":",
"line",
".",
"value",
"=",
"stringToTextValues",
"(",
"line",
".",
"value",
")",
"[",
"0",
"]",
"line",
".",
"encoded",
"=",
"False"
]
| Remove backslash escaping from line.valueDecode line, either to remove
backslash espacing, or to decode base64 encoding. The content line should
contain a ENCODING=b for base64 encoding, but Apple Addressbook seems to
export a singleton parameter of 'BASE64', which does not match the 3.0
vCard spec. If we encouter that, then we transform the parameter to
ENCODING=b | [
"Remove",
"backslash",
"escaping",
"from",
"line",
".",
"valueDecode",
"line",
"either",
"to",
"remove",
"backslash",
"espacing",
"or",
"to",
"decode",
"base64",
"encoding",
".",
"The",
"content",
"line",
"should",
"contain",
"a",
"ENCODING",
"=",
"b",
"for",
"base64",
"encoding",
"but",
"Apple",
"Addressbook",
"seems",
"to",
"export",
"a",
"singleton",
"parameter",
"of",
"BASE64",
"which",
"does",
"not",
"match",
"the",
"3",
".",
"0",
"vCard",
"spec",
".",
"If",
"we",
"encouter",
"that",
"then",
"we",
"transform",
"the",
"parameter",
"to",
"ENCODING",
"=",
"b"
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/docs/build/lib/vobject/vcard.py#L124-L142 |
eventable/vobject | vobject/behavior.py | Behavior.validate | def validate(cls, obj, raiseException=False, complainUnrecognized=False):
"""Check if the object satisfies this behavior's requirements.
@param obj:
The L{ContentLine<base.ContentLine>} or
L{Component<base.Component>} to be validated.
@param raiseException:
If True, raise a L{base.ValidateError} on validation failure.
Otherwise return a boolean.
@param complainUnrecognized:
If True, fail to validate if an uncrecognized parameter or child is
found. Otherwise log the lack of recognition.
"""
if not cls.allowGroup and obj.group is not None:
err = "{0} has a group, but this object doesn't support groups".format(obj)
raise base.VObjectError(err)
if isinstance(obj, base.ContentLine):
return cls.lineValidate(obj, raiseException, complainUnrecognized)
elif isinstance(obj, base.Component):
count = {}
for child in obj.getChildren():
if not child.validate(raiseException, complainUnrecognized):
return False
name = child.name.upper()
count[name] = count.get(name, 0) + 1
for key, val in cls.knownChildren.items():
if count.get(key, 0) < val[0]:
if raiseException:
m = "{0} components must contain at least {1} {2}"
raise base.ValidateError(m .format(cls.name, val[0], key))
return False
if val[1] and count.get(key, 0) > val[1]:
if raiseException:
m = "{0} components cannot contain more than {1} {2}"
raise base.ValidateError(m.format(cls.name, val[1], key))
return False
return True
else:
err = "{0} is not a Component or Contentline".format(obj)
raise base.VObjectError(err) | python | def validate(cls, obj, raiseException=False, complainUnrecognized=False):
if not cls.allowGroup and obj.group is not None:
err = "{0} has a group, but this object doesn't support groups".format(obj)
raise base.VObjectError(err)
if isinstance(obj, base.ContentLine):
return cls.lineValidate(obj, raiseException, complainUnrecognized)
elif isinstance(obj, base.Component):
count = {}
for child in obj.getChildren():
if not child.validate(raiseException, complainUnrecognized):
return False
name = child.name.upper()
count[name] = count.get(name, 0) + 1
for key, val in cls.knownChildren.items():
if count.get(key, 0) < val[0]:
if raiseException:
m = "{0} components must contain at least {1} {2}"
raise base.ValidateError(m .format(cls.name, val[0], key))
return False
if val[1] and count.get(key, 0) > val[1]:
if raiseException:
m = "{0} components cannot contain more than {1} {2}"
raise base.ValidateError(m.format(cls.name, val[1], key))
return False
return True
else:
err = "{0} is not a Component or Contentline".format(obj)
raise base.VObjectError(err) | [
"def",
"validate",
"(",
"cls",
",",
"obj",
",",
"raiseException",
"=",
"False",
",",
"complainUnrecognized",
"=",
"False",
")",
":",
"if",
"not",
"cls",
".",
"allowGroup",
"and",
"obj",
".",
"group",
"is",
"not",
"None",
":",
"err",
"=",
"\"{0} has a group, but this object doesn't support groups\"",
".",
"format",
"(",
"obj",
")",
"raise",
"base",
".",
"VObjectError",
"(",
"err",
")",
"if",
"isinstance",
"(",
"obj",
",",
"base",
".",
"ContentLine",
")",
":",
"return",
"cls",
".",
"lineValidate",
"(",
"obj",
",",
"raiseException",
",",
"complainUnrecognized",
")",
"elif",
"isinstance",
"(",
"obj",
",",
"base",
".",
"Component",
")",
":",
"count",
"=",
"{",
"}",
"for",
"child",
"in",
"obj",
".",
"getChildren",
"(",
")",
":",
"if",
"not",
"child",
".",
"validate",
"(",
"raiseException",
",",
"complainUnrecognized",
")",
":",
"return",
"False",
"name",
"=",
"child",
".",
"name",
".",
"upper",
"(",
")",
"count",
"[",
"name",
"]",
"=",
"count",
".",
"get",
"(",
"name",
",",
"0",
")",
"+",
"1",
"for",
"key",
",",
"val",
"in",
"cls",
".",
"knownChildren",
".",
"items",
"(",
")",
":",
"if",
"count",
".",
"get",
"(",
"key",
",",
"0",
")",
"<",
"val",
"[",
"0",
"]",
":",
"if",
"raiseException",
":",
"m",
"=",
"\"{0} components must contain at least {1} {2}\"",
"raise",
"base",
".",
"ValidateError",
"(",
"m",
".",
"format",
"(",
"cls",
".",
"name",
",",
"val",
"[",
"0",
"]",
",",
"key",
")",
")",
"return",
"False",
"if",
"val",
"[",
"1",
"]",
"and",
"count",
".",
"get",
"(",
"key",
",",
"0",
")",
">",
"val",
"[",
"1",
"]",
":",
"if",
"raiseException",
":",
"m",
"=",
"\"{0} components cannot contain more than {1} {2}\"",
"raise",
"base",
".",
"ValidateError",
"(",
"m",
".",
"format",
"(",
"cls",
".",
"name",
",",
"val",
"[",
"1",
"]",
",",
"key",
")",
")",
"return",
"False",
"return",
"True",
"else",
":",
"err",
"=",
"\"{0} is not a Component or Contentline\"",
".",
"format",
"(",
"obj",
")",
"raise",
"base",
".",
"VObjectError",
"(",
"err",
")"
]
| Check if the object satisfies this behavior's requirements.
@param obj:
The L{ContentLine<base.ContentLine>} or
L{Component<base.Component>} to be validated.
@param raiseException:
If True, raise a L{base.ValidateError} on validation failure.
Otherwise return a boolean.
@param complainUnrecognized:
If True, fail to validate if an uncrecognized parameter or child is
found. Otherwise log the lack of recognition. | [
"Check",
"if",
"the",
"object",
"satisfies",
"this",
"behavior",
"s",
"requirements",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/behavior.py#L63-L103 |
eventable/vobject | vobject/behavior.py | Behavior.serialize | def serialize(cls, obj, buf, lineLength, validate=True):
"""
Set implicit parameters, do encoding, return unicode string.
If validate is True, raise VObjectError if the line doesn't validate
after implicit parameters are generated.
Default is to call base.defaultSerialize.
"""
cls.generateImplicitParameters(obj)
if validate:
cls.validate(obj, raiseException=True)
if obj.isNative:
transformed = obj.transformFromNative()
undoTransform = True
else:
transformed = obj
undoTransform = False
out = base.defaultSerialize(transformed, buf, lineLength)
if undoTransform:
obj.transformToNative()
return out | python | def serialize(cls, obj, buf, lineLength, validate=True):
cls.generateImplicitParameters(obj)
if validate:
cls.validate(obj, raiseException=True)
if obj.isNative:
transformed = obj.transformFromNative()
undoTransform = True
else:
transformed = obj
undoTransform = False
out = base.defaultSerialize(transformed, buf, lineLength)
if undoTransform:
obj.transformToNative()
return out | [
"def",
"serialize",
"(",
"cls",
",",
"obj",
",",
"buf",
",",
"lineLength",
",",
"validate",
"=",
"True",
")",
":",
"cls",
".",
"generateImplicitParameters",
"(",
"obj",
")",
"if",
"validate",
":",
"cls",
".",
"validate",
"(",
"obj",
",",
"raiseException",
"=",
"True",
")",
"if",
"obj",
".",
"isNative",
":",
"transformed",
"=",
"obj",
".",
"transformFromNative",
"(",
")",
"undoTransform",
"=",
"True",
"else",
":",
"transformed",
"=",
"obj",
"undoTransform",
"=",
"False",
"out",
"=",
"base",
".",
"defaultSerialize",
"(",
"transformed",
",",
"buf",
",",
"lineLength",
")",
"if",
"undoTransform",
":",
"obj",
".",
"transformToNative",
"(",
")",
"return",
"out"
]
| Set implicit parameters, do encoding, return unicode string.
If validate is True, raise VObjectError if the line doesn't validate
after implicit parameters are generated.
Default is to call base.defaultSerialize. | [
"Set",
"implicit",
"parameters",
"do",
"encoding",
"return",
"unicode",
"string",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/behavior.py#L144-L169 |
eventable/vobject | vobject/win32tz.py | list_timezones | def list_timezones():
"""Return a list of all time zones known to the system."""
l = []
for i in xrange(parentsize):
l.append(_winreg.EnumKey(tzparent, i))
return l | python | def list_timezones():
l = []
for i in xrange(parentsize):
l.append(_winreg.EnumKey(tzparent, i))
return l | [
"def",
"list_timezones",
"(",
")",
":",
"l",
"=",
"[",
"]",
"for",
"i",
"in",
"xrange",
"(",
"parentsize",
")",
":",
"l",
".",
"append",
"(",
"_winreg",
".",
"EnumKey",
"(",
"tzparent",
",",
"i",
")",
")",
"return",
"l"
]
| Return a list of all time zones known to the system. | [
"Return",
"a",
"list",
"of",
"all",
"time",
"zones",
"known",
"to",
"the",
"system",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/win32tz.py#L15-L20 |
eventable/vobject | vobject/win32tz.py | pickNthWeekday | def pickNthWeekday(year, month, dayofweek, hour, minute, whichweek):
"""dayofweek == 0 means Sunday, whichweek > 4 means last instance"""
first = datetime.datetime(year=year, month=month, hour=hour, minute=minute,
day=1)
weekdayone = first.replace(day=((dayofweek - first.isoweekday()) % 7 + 1))
for n in xrange(whichweek - 1, -1, -1):
dt = weekdayone + n * WEEKS
if dt.month == month:
return dt | python | def pickNthWeekday(year, month, dayofweek, hour, minute, whichweek):
first = datetime.datetime(year=year, month=month, hour=hour, minute=minute,
day=1)
weekdayone = first.replace(day=((dayofweek - first.isoweekday()) % 7 + 1))
for n in xrange(whichweek - 1, -1, -1):
dt = weekdayone + n * WEEKS
if dt.month == month:
return dt | [
"def",
"pickNthWeekday",
"(",
"year",
",",
"month",
",",
"dayofweek",
",",
"hour",
",",
"minute",
",",
"whichweek",
")",
":",
"first",
"=",
"datetime",
".",
"datetime",
"(",
"year",
"=",
"year",
",",
"month",
"=",
"month",
",",
"hour",
"=",
"hour",
",",
"minute",
"=",
"minute",
",",
"day",
"=",
"1",
")",
"weekdayone",
"=",
"first",
".",
"replace",
"(",
"day",
"=",
"(",
"(",
"dayofweek",
"-",
"first",
".",
"isoweekday",
"(",
")",
")",
"%",
"7",
"+",
"1",
")",
")",
"for",
"n",
"in",
"xrange",
"(",
"whichweek",
"-",
"1",
",",
"-",
"1",
",",
"-",
"1",
")",
":",
"dt",
"=",
"weekdayone",
"+",
"n",
"*",
"WEEKS",
"if",
"dt",
".",
"month",
"==",
"month",
":",
"return",
"dt"
]
| dayofweek == 0 means Sunday, whichweek > 4 means last instance | [
"dayofweek",
"==",
"0",
"means",
"Sunday",
"whichweek",
">",
"4",
"means",
"last",
"instance"
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/win32tz.py#L77-L85 |
eventable/vobject | vobject/win32tz.py | valuesToDict | def valuesToDict(key):
"""Convert a registry key's values to a dictionary."""
d = {}
size = _winreg.QueryInfoKey(key)[1]
for i in xrange(size):
d[_winreg.EnumValue(key, i)[0]] = _winreg.EnumValue(key, i)[1]
return d | python | def valuesToDict(key):
d = {}
size = _winreg.QueryInfoKey(key)[1]
for i in xrange(size):
d[_winreg.EnumValue(key, i)[0]] = _winreg.EnumValue(key, i)[1]
return d | [
"def",
"valuesToDict",
"(",
"key",
")",
":",
"d",
"=",
"{",
"}",
"size",
"=",
"_winreg",
".",
"QueryInfoKey",
"(",
"key",
")",
"[",
"1",
"]",
"for",
"i",
"in",
"xrange",
"(",
"size",
")",
":",
"d",
"[",
"_winreg",
".",
"EnumValue",
"(",
"key",
",",
"i",
")",
"[",
"0",
"]",
"]",
"=",
"_winreg",
".",
"EnumValue",
"(",
"key",
",",
"i",
")",
"[",
"1",
"]",
"return",
"d"
]
| Convert a registry key's values to a dictionary. | [
"Convert",
"a",
"registry",
"key",
"s",
"values",
"to",
"a",
"dictionary",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/win32tz.py#L148-L154 |
eventable/vobject | docs/build/lib/vobject/ics_diff.py | diff | def diff(left, right):
"""
Take two VCALENDAR components, compare VEVENTs and VTODOs in them,
return a list of object pairs containing just UID and the bits
that didn't match, using None for objects that weren't present in one
version or the other.
When there are multiple ContentLines in one VEVENT, for instance many
DESCRIPTION lines, such lines original order is assumed to be
meaningful. Order is also preserved when comparing (the unlikely case
of) multiple parameters of the same type in a ContentLine
"""
def processComponentLists(leftList, rightList):
output = []
rightIndex = 0
rightListSize = len(rightList)
for comp in leftList:
if rightIndex >= rightListSize:
output.append((comp, None))
else:
leftKey = getSortKey(comp)
rightComp = rightList[rightIndex]
rightKey = getSortKey(rightComp)
while leftKey > rightKey:
output.append((None, rightComp))
rightIndex += 1
if rightIndex >= rightListSize:
output.append((comp, None))
break
else:
rightComp = rightList[rightIndex]
rightKey = getSortKey(rightComp)
if leftKey < rightKey:
output.append((comp, None))
elif leftKey == rightKey:
rightIndex += 1
matchResult = processComponentPair(comp, rightComp)
if matchResult is not None:
output.append(matchResult)
return output
def newComponent(name, body):
if body is None:
return None
else:
c = Component(name)
c.behavior = getBehavior(name)
c.isNative = True
return c
def processComponentPair(leftComp, rightComp):
"""
Return None if a match, or a pair of components including UIDs and
any differing children.
"""
leftChildKeys = leftComp.contents.keys()
rightChildKeys = rightComp.contents.keys()
differentContentLines = []
differentComponents = {}
for key in leftChildKeys:
rightList = rightComp.contents.get(key, [])
if isinstance(leftComp.contents[key][0], Component):
compDifference = processComponentLists(leftComp.contents[key],
rightList)
if len(compDifference) > 0:
differentComponents[key] = compDifference
elif leftComp.contents[key] != rightList:
differentContentLines.append((leftComp.contents[key],
rightList))
for key in rightChildKeys:
if key not in leftChildKeys:
if isinstance(rightComp.contents[key][0], Component):
differentComponents[key] = ([], rightComp.contents[key])
else:
differentContentLines.append(([], rightComp.contents[key]))
if len(differentContentLines) == 0 and len(differentComponents) == 0:
return None
else:
left = newFromBehavior(leftComp.name)
right = newFromBehavior(leftComp.name)
# add a UID, if one existed, despite the fact that they'll always be
# the same
uid = leftComp.getChildValue('uid')
if uid is not None:
left.add( 'uid').value = uid
right.add('uid').value = uid
for name, childPairList in differentComponents.items():
leftComponents, rightComponents = zip(*childPairList)
if len(leftComponents) > 0:
# filter out None
left.contents[name] = filter(None, leftComponents)
if len(rightComponents) > 0:
# filter out None
right.contents[name] = filter(None, rightComponents)
for leftChildLine, rightChildLine in differentContentLines:
nonEmpty = leftChildLine or rightChildLine
name = nonEmpty[0].name
if leftChildLine is not None:
left.contents[name] = leftChildLine
if rightChildLine is not None:
right.contents[name] = rightChildLine
return left, right
vevents = processComponentLists(sortByUID(getattr(left, 'vevent_list', [])),
sortByUID(getattr(right, 'vevent_list', [])))
vtodos = processComponentLists(sortByUID(getattr(left, 'vtodo_list', [])),
sortByUID(getattr(right, 'vtodo_list', [])))
return vevents + vtodos | python | def diff(left, right):
def processComponentLists(leftList, rightList):
output = []
rightIndex = 0
rightListSize = len(rightList)
for comp in leftList:
if rightIndex >= rightListSize:
output.append((comp, None))
else:
leftKey = getSortKey(comp)
rightComp = rightList[rightIndex]
rightKey = getSortKey(rightComp)
while leftKey > rightKey:
output.append((None, rightComp))
rightIndex += 1
if rightIndex >= rightListSize:
output.append((comp, None))
break
else:
rightComp = rightList[rightIndex]
rightKey = getSortKey(rightComp)
if leftKey < rightKey:
output.append((comp, None))
elif leftKey == rightKey:
rightIndex += 1
matchResult = processComponentPair(comp, rightComp)
if matchResult is not None:
output.append(matchResult)
return output
def newComponent(name, body):
if body is None:
return None
else:
c = Component(name)
c.behavior = getBehavior(name)
c.isNative = True
return c
def processComponentPair(leftComp, rightComp):
leftChildKeys = leftComp.contents.keys()
rightChildKeys = rightComp.contents.keys()
differentContentLines = []
differentComponents = {}
for key in leftChildKeys:
rightList = rightComp.contents.get(key, [])
if isinstance(leftComp.contents[key][0], Component):
compDifference = processComponentLists(leftComp.contents[key],
rightList)
if len(compDifference) > 0:
differentComponents[key] = compDifference
elif leftComp.contents[key] != rightList:
differentContentLines.append((leftComp.contents[key],
rightList))
for key in rightChildKeys:
if key not in leftChildKeys:
if isinstance(rightComp.contents[key][0], Component):
differentComponents[key] = ([], rightComp.contents[key])
else:
differentContentLines.append(([], rightComp.contents[key]))
if len(differentContentLines) == 0 and len(differentComponents) == 0:
return None
else:
left = newFromBehavior(leftComp.name)
right = newFromBehavior(leftComp.name)
uid = leftComp.getChildValue('uid')
if uid is not None:
left.add( 'uid').value = uid
right.add('uid').value = uid
for name, childPairList in differentComponents.items():
leftComponents, rightComponents = zip(*childPairList)
if len(leftComponents) > 0:
left.contents[name] = filter(None, leftComponents)
if len(rightComponents) > 0:
right.contents[name] = filter(None, rightComponents)
for leftChildLine, rightChildLine in differentContentLines:
nonEmpty = leftChildLine or rightChildLine
name = nonEmpty[0].name
if leftChildLine is not None:
left.contents[name] = leftChildLine
if rightChildLine is not None:
right.contents[name] = rightChildLine
return left, right
vevents = processComponentLists(sortByUID(getattr(left, 'vevent_list', [])),
sortByUID(getattr(right, 'vevent_list', [])))
vtodos = processComponentLists(sortByUID(getattr(left, 'vtodo_list', [])),
sortByUID(getattr(right, 'vtodo_list', [])))
return vevents + vtodos | [
"def",
"diff",
"(",
"left",
",",
"right",
")",
":",
"def",
"processComponentLists",
"(",
"leftList",
",",
"rightList",
")",
":",
"output",
"=",
"[",
"]",
"rightIndex",
"=",
"0",
"rightListSize",
"=",
"len",
"(",
"rightList",
")",
"for",
"comp",
"in",
"leftList",
":",
"if",
"rightIndex",
">=",
"rightListSize",
":",
"output",
".",
"append",
"(",
"(",
"comp",
",",
"None",
")",
")",
"else",
":",
"leftKey",
"=",
"getSortKey",
"(",
"comp",
")",
"rightComp",
"=",
"rightList",
"[",
"rightIndex",
"]",
"rightKey",
"=",
"getSortKey",
"(",
"rightComp",
")",
"while",
"leftKey",
">",
"rightKey",
":",
"output",
".",
"append",
"(",
"(",
"None",
",",
"rightComp",
")",
")",
"rightIndex",
"+=",
"1",
"if",
"rightIndex",
">=",
"rightListSize",
":",
"output",
".",
"append",
"(",
"(",
"comp",
",",
"None",
")",
")",
"break",
"else",
":",
"rightComp",
"=",
"rightList",
"[",
"rightIndex",
"]",
"rightKey",
"=",
"getSortKey",
"(",
"rightComp",
")",
"if",
"leftKey",
"<",
"rightKey",
":",
"output",
".",
"append",
"(",
"(",
"comp",
",",
"None",
")",
")",
"elif",
"leftKey",
"==",
"rightKey",
":",
"rightIndex",
"+=",
"1",
"matchResult",
"=",
"processComponentPair",
"(",
"comp",
",",
"rightComp",
")",
"if",
"matchResult",
"is",
"not",
"None",
":",
"output",
".",
"append",
"(",
"matchResult",
")",
"return",
"output",
"def",
"newComponent",
"(",
"name",
",",
"body",
")",
":",
"if",
"body",
"is",
"None",
":",
"return",
"None",
"else",
":",
"c",
"=",
"Component",
"(",
"name",
")",
"c",
".",
"behavior",
"=",
"getBehavior",
"(",
"name",
")",
"c",
".",
"isNative",
"=",
"True",
"return",
"c",
"def",
"processComponentPair",
"(",
"leftComp",
",",
"rightComp",
")",
":",
"\"\"\"\n Return None if a match, or a pair of components including UIDs and\n any differing children.\n\n \"\"\"",
"leftChildKeys",
"=",
"leftComp",
".",
"contents",
".",
"keys",
"(",
")",
"rightChildKeys",
"=",
"rightComp",
".",
"contents",
".",
"keys",
"(",
")",
"differentContentLines",
"=",
"[",
"]",
"differentComponents",
"=",
"{",
"}",
"for",
"key",
"in",
"leftChildKeys",
":",
"rightList",
"=",
"rightComp",
".",
"contents",
".",
"get",
"(",
"key",
",",
"[",
"]",
")",
"if",
"isinstance",
"(",
"leftComp",
".",
"contents",
"[",
"key",
"]",
"[",
"0",
"]",
",",
"Component",
")",
":",
"compDifference",
"=",
"processComponentLists",
"(",
"leftComp",
".",
"contents",
"[",
"key",
"]",
",",
"rightList",
")",
"if",
"len",
"(",
"compDifference",
")",
">",
"0",
":",
"differentComponents",
"[",
"key",
"]",
"=",
"compDifference",
"elif",
"leftComp",
".",
"contents",
"[",
"key",
"]",
"!=",
"rightList",
":",
"differentContentLines",
".",
"append",
"(",
"(",
"leftComp",
".",
"contents",
"[",
"key",
"]",
",",
"rightList",
")",
")",
"for",
"key",
"in",
"rightChildKeys",
":",
"if",
"key",
"not",
"in",
"leftChildKeys",
":",
"if",
"isinstance",
"(",
"rightComp",
".",
"contents",
"[",
"key",
"]",
"[",
"0",
"]",
",",
"Component",
")",
":",
"differentComponents",
"[",
"key",
"]",
"=",
"(",
"[",
"]",
",",
"rightComp",
".",
"contents",
"[",
"key",
"]",
")",
"else",
":",
"differentContentLines",
".",
"append",
"(",
"(",
"[",
"]",
",",
"rightComp",
".",
"contents",
"[",
"key",
"]",
")",
")",
"if",
"len",
"(",
"differentContentLines",
")",
"==",
"0",
"and",
"len",
"(",
"differentComponents",
")",
"==",
"0",
":",
"return",
"None",
"else",
":",
"left",
"=",
"newFromBehavior",
"(",
"leftComp",
".",
"name",
")",
"right",
"=",
"newFromBehavior",
"(",
"leftComp",
".",
"name",
")",
"# add a UID, if one existed, despite the fact that they'll always be",
"# the same",
"uid",
"=",
"leftComp",
".",
"getChildValue",
"(",
"'uid'",
")",
"if",
"uid",
"is",
"not",
"None",
":",
"left",
".",
"add",
"(",
"'uid'",
")",
".",
"value",
"=",
"uid",
"right",
".",
"add",
"(",
"'uid'",
")",
".",
"value",
"=",
"uid",
"for",
"name",
",",
"childPairList",
"in",
"differentComponents",
".",
"items",
"(",
")",
":",
"leftComponents",
",",
"rightComponents",
"=",
"zip",
"(",
"*",
"childPairList",
")",
"if",
"len",
"(",
"leftComponents",
")",
">",
"0",
":",
"# filter out None",
"left",
".",
"contents",
"[",
"name",
"]",
"=",
"filter",
"(",
"None",
",",
"leftComponents",
")",
"if",
"len",
"(",
"rightComponents",
")",
">",
"0",
":",
"# filter out None",
"right",
".",
"contents",
"[",
"name",
"]",
"=",
"filter",
"(",
"None",
",",
"rightComponents",
")",
"for",
"leftChildLine",
",",
"rightChildLine",
"in",
"differentContentLines",
":",
"nonEmpty",
"=",
"leftChildLine",
"or",
"rightChildLine",
"name",
"=",
"nonEmpty",
"[",
"0",
"]",
".",
"name",
"if",
"leftChildLine",
"is",
"not",
"None",
":",
"left",
".",
"contents",
"[",
"name",
"]",
"=",
"leftChildLine",
"if",
"rightChildLine",
"is",
"not",
"None",
":",
"right",
".",
"contents",
"[",
"name",
"]",
"=",
"rightChildLine",
"return",
"left",
",",
"right",
"vevents",
"=",
"processComponentLists",
"(",
"sortByUID",
"(",
"getattr",
"(",
"left",
",",
"'vevent_list'",
",",
"[",
"]",
")",
")",
",",
"sortByUID",
"(",
"getattr",
"(",
"right",
",",
"'vevent_list'",
",",
"[",
"]",
")",
")",
")",
"vtodos",
"=",
"processComponentLists",
"(",
"sortByUID",
"(",
"getattr",
"(",
"left",
",",
"'vtodo_list'",
",",
"[",
"]",
")",
")",
",",
"sortByUID",
"(",
"getattr",
"(",
"right",
",",
"'vtodo_list'",
",",
"[",
"]",
")",
")",
")",
"return",
"vevents",
"+",
"vtodos"
]
| Take two VCALENDAR components, compare VEVENTs and VTODOs in them,
return a list of object pairs containing just UID and the bits
that didn't match, using None for objects that weren't present in one
version or the other.
When there are multiple ContentLines in one VEVENT, for instance many
DESCRIPTION lines, such lines original order is assumed to be
meaningful. Order is also preserved when comparing (the unlikely case
of) multiple parameters of the same type in a ContentLine | [
"Take",
"two",
"VCALENDAR",
"components",
"compare",
"VEVENTs",
"and",
"VTODOs",
"in",
"them",
"return",
"a",
"list",
"of",
"object",
"pairs",
"containing",
"just",
"UID",
"and",
"the",
"bits",
"that",
"didn",
"t",
"match",
"using",
"None",
"for",
"objects",
"that",
"weren",
"t",
"present",
"in",
"one",
"version",
"or",
"the",
"other",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/docs/build/lib/vobject/ics_diff.py#L47-L171 |
eventable/vobject | vobject/icalendar.py | stringToDateTime | def stringToDateTime(s, tzinfo=None):
"""
Returns datetime.datetime object.
"""
try:
year = int(s[0:4])
month = int(s[4:6])
day = int(s[6:8])
hour = int(s[9:11])
minute = int(s[11:13])
second = int(s[13:15])
if len(s) > 15:
if s[15] == 'Z':
tzinfo = getTzid('UTC')
except:
raise ParseError("'{0!s}' is not a valid DATE-TIME".format(s))
year = year and year or 2000
if tzinfo is not None and hasattr(tzinfo,'localize'): # PyTZ case
return tzinfo.localize(datetime.datetime(year, month, day, hour, minute, second))
return datetime.datetime(year, month, day, hour, minute, second, 0, tzinfo) | python | def stringToDateTime(s, tzinfo=None):
try:
year = int(s[0:4])
month = int(s[4:6])
day = int(s[6:8])
hour = int(s[9:11])
minute = int(s[11:13])
second = int(s[13:15])
if len(s) > 15:
if s[15] == 'Z':
tzinfo = getTzid('UTC')
except:
raise ParseError("'{0!s}' is not a valid DATE-TIME".format(s))
year = year and year or 2000
if tzinfo is not None and hasattr(tzinfo,'localize'):
return tzinfo.localize(datetime.datetime(year, month, day, hour, minute, second))
return datetime.datetime(year, month, day, hour, minute, second, 0, tzinfo) | [
"def",
"stringToDateTime",
"(",
"s",
",",
"tzinfo",
"=",
"None",
")",
":",
"try",
":",
"year",
"=",
"int",
"(",
"s",
"[",
"0",
":",
"4",
"]",
")",
"month",
"=",
"int",
"(",
"s",
"[",
"4",
":",
"6",
"]",
")",
"day",
"=",
"int",
"(",
"s",
"[",
"6",
":",
"8",
"]",
")",
"hour",
"=",
"int",
"(",
"s",
"[",
"9",
":",
"11",
"]",
")",
"minute",
"=",
"int",
"(",
"s",
"[",
"11",
":",
"13",
"]",
")",
"second",
"=",
"int",
"(",
"s",
"[",
"13",
":",
"15",
"]",
")",
"if",
"len",
"(",
"s",
")",
">",
"15",
":",
"if",
"s",
"[",
"15",
"]",
"==",
"'Z'",
":",
"tzinfo",
"=",
"getTzid",
"(",
"'UTC'",
")",
"except",
":",
"raise",
"ParseError",
"(",
"\"'{0!s}' is not a valid DATE-TIME\"",
".",
"format",
"(",
"s",
")",
")",
"year",
"=",
"year",
"and",
"year",
"or",
"2000",
"if",
"tzinfo",
"is",
"not",
"None",
"and",
"hasattr",
"(",
"tzinfo",
",",
"'localize'",
")",
":",
"# PyTZ case",
"return",
"tzinfo",
".",
"localize",
"(",
"datetime",
".",
"datetime",
"(",
"year",
",",
"month",
",",
"day",
",",
"hour",
",",
"minute",
",",
"second",
")",
")",
"return",
"datetime",
".",
"datetime",
"(",
"year",
",",
"month",
",",
"day",
",",
"hour",
",",
"minute",
",",
"second",
",",
"0",
",",
"tzinfo",
")"
]
| Returns datetime.datetime object. | [
"Returns",
"datetime",
".",
"datetime",
"object",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/icalendar.py#L1726-L1745 |
eventable/vobject | vobject/icalendar.py | VCalendar2_0.serialize | def serialize(cls, obj, buf, lineLength, validate=True):
"""
Set implicit parameters, do encoding, return unicode string.
If validate is True, raise VObjectError if the line doesn't validate
after implicit parameters are generated.
Default is to call base.defaultSerialize.
"""
cls.generateImplicitParameters(obj)
if validate:
cls.validate(obj, raiseException=True)
if obj.isNative:
transformed = obj.transformFromNative()
undoTransform = True
else:
transformed = obj
undoTransform = False
out = None
outbuf = buf or six.StringIO()
if obj.group is None:
groupString = ''
else:
groupString = obj.group + '.'
if obj.useBegin:
foldOneLine(outbuf, "{0}BEGIN:{1}".format(groupString, obj.name),
lineLength)
try:
first_props = [s for s in cls.sortFirst if s in obj.contents \
and not isinstance(obj.contents[s][0], Component)]
first_components = [s for s in cls.sortFirst if s in obj.contents \
and isinstance(obj.contents[s][0], Component)]
except Exception:
first_props = first_components = []
# first_components = []
prop_keys = sorted(list(k for k in obj.contents.keys() if k not in first_props \
and not isinstance(obj.contents[k][0], Component)))
comp_keys = sorted(list(k for k in obj.contents.keys() if k not in first_components \
and isinstance(obj.contents[k][0], Component)))
sorted_keys = first_props + prop_keys + first_components + comp_keys
children = [o for k in sorted_keys for o in obj.contents[k]]
for child in children:
# validate is recursive, we only need to validate once
child.serialize(outbuf, lineLength, validate=False)
if obj.useBegin:
foldOneLine(outbuf, "{0}END:{1}".format(groupString, obj.name),
lineLength)
out = buf or outbuf.getvalue()
if undoTransform:
obj.transformToNative()
return out | python | def serialize(cls, obj, buf, lineLength, validate=True):
cls.generateImplicitParameters(obj)
if validate:
cls.validate(obj, raiseException=True)
if obj.isNative:
transformed = obj.transformFromNative()
undoTransform = True
else:
transformed = obj
undoTransform = False
out = None
outbuf = buf or six.StringIO()
if obj.group is None:
groupString = ''
else:
groupString = obj.group + '.'
if obj.useBegin:
foldOneLine(outbuf, "{0}BEGIN:{1}".format(groupString, obj.name),
lineLength)
try:
first_props = [s for s in cls.sortFirst if s in obj.contents \
and not isinstance(obj.contents[s][0], Component)]
first_components = [s for s in cls.sortFirst if s in obj.contents \
and isinstance(obj.contents[s][0], Component)]
except Exception:
first_props = first_components = []
prop_keys = sorted(list(k for k in obj.contents.keys() if k not in first_props \
and not isinstance(obj.contents[k][0], Component)))
comp_keys = sorted(list(k for k in obj.contents.keys() if k not in first_components \
and isinstance(obj.contents[k][0], Component)))
sorted_keys = first_props + prop_keys + first_components + comp_keys
children = [o for k in sorted_keys for o in obj.contents[k]]
for child in children:
child.serialize(outbuf, lineLength, validate=False)
if obj.useBegin:
foldOneLine(outbuf, "{0}END:{1}".format(groupString, obj.name),
lineLength)
out = buf or outbuf.getvalue()
if undoTransform:
obj.transformToNative()
return out | [
"def",
"serialize",
"(",
"cls",
",",
"obj",
",",
"buf",
",",
"lineLength",
",",
"validate",
"=",
"True",
")",
":",
"cls",
".",
"generateImplicitParameters",
"(",
"obj",
")",
"if",
"validate",
":",
"cls",
".",
"validate",
"(",
"obj",
",",
"raiseException",
"=",
"True",
")",
"if",
"obj",
".",
"isNative",
":",
"transformed",
"=",
"obj",
".",
"transformFromNative",
"(",
")",
"undoTransform",
"=",
"True",
"else",
":",
"transformed",
"=",
"obj",
"undoTransform",
"=",
"False",
"out",
"=",
"None",
"outbuf",
"=",
"buf",
"or",
"six",
".",
"StringIO",
"(",
")",
"if",
"obj",
".",
"group",
"is",
"None",
":",
"groupString",
"=",
"''",
"else",
":",
"groupString",
"=",
"obj",
".",
"group",
"+",
"'.'",
"if",
"obj",
".",
"useBegin",
":",
"foldOneLine",
"(",
"outbuf",
",",
"\"{0}BEGIN:{1}\"",
".",
"format",
"(",
"groupString",
",",
"obj",
".",
"name",
")",
",",
"lineLength",
")",
"try",
":",
"first_props",
"=",
"[",
"s",
"for",
"s",
"in",
"cls",
".",
"sortFirst",
"if",
"s",
"in",
"obj",
".",
"contents",
"and",
"not",
"isinstance",
"(",
"obj",
".",
"contents",
"[",
"s",
"]",
"[",
"0",
"]",
",",
"Component",
")",
"]",
"first_components",
"=",
"[",
"s",
"for",
"s",
"in",
"cls",
".",
"sortFirst",
"if",
"s",
"in",
"obj",
".",
"contents",
"and",
"isinstance",
"(",
"obj",
".",
"contents",
"[",
"s",
"]",
"[",
"0",
"]",
",",
"Component",
")",
"]",
"except",
"Exception",
":",
"first_props",
"=",
"first_components",
"=",
"[",
"]",
"# first_components = []",
"prop_keys",
"=",
"sorted",
"(",
"list",
"(",
"k",
"for",
"k",
"in",
"obj",
".",
"contents",
".",
"keys",
"(",
")",
"if",
"k",
"not",
"in",
"first_props",
"and",
"not",
"isinstance",
"(",
"obj",
".",
"contents",
"[",
"k",
"]",
"[",
"0",
"]",
",",
"Component",
")",
")",
")",
"comp_keys",
"=",
"sorted",
"(",
"list",
"(",
"k",
"for",
"k",
"in",
"obj",
".",
"contents",
".",
"keys",
"(",
")",
"if",
"k",
"not",
"in",
"first_components",
"and",
"isinstance",
"(",
"obj",
".",
"contents",
"[",
"k",
"]",
"[",
"0",
"]",
",",
"Component",
")",
")",
")",
"sorted_keys",
"=",
"first_props",
"+",
"prop_keys",
"+",
"first_components",
"+",
"comp_keys",
"children",
"=",
"[",
"o",
"for",
"k",
"in",
"sorted_keys",
"for",
"o",
"in",
"obj",
".",
"contents",
"[",
"k",
"]",
"]",
"for",
"child",
"in",
"children",
":",
"# validate is recursive, we only need to validate once",
"child",
".",
"serialize",
"(",
"outbuf",
",",
"lineLength",
",",
"validate",
"=",
"False",
")",
"if",
"obj",
".",
"useBegin",
":",
"foldOneLine",
"(",
"outbuf",
",",
"\"{0}END:{1}\"",
".",
"format",
"(",
"groupString",
",",
"obj",
".",
"name",
")",
",",
"lineLength",
")",
"out",
"=",
"buf",
"or",
"outbuf",
".",
"getvalue",
"(",
")",
"if",
"undoTransform",
":",
"obj",
".",
"transformToNative",
"(",
")",
"return",
"out"
]
| Set implicit parameters, do encoding, return unicode string.
If validate is True, raise VObjectError if the line doesn't validate
after implicit parameters are generated.
Default is to call base.defaultSerialize. | [
"Set",
"implicit",
"parameters",
"do",
"encoding",
"return",
"unicode",
"string",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/icalendar.py#L988-L1044 |
eventable/vobject | vobject/ics_diff.py | deleteExtraneous | def deleteExtraneous(component, ignore_dtstamp=False):
"""
Recursively walk the component's children, deleting extraneous details like
X-VOBJ-ORIGINAL-TZID.
"""
for comp in component.components():
deleteExtraneous(comp, ignore_dtstamp)
for line in component.lines():
if 'X-VOBJ-ORIGINAL-TZID' in line.params:
del line.params['X-VOBJ-ORIGINAL-TZID']
if ignore_dtstamp and hasattr(component, 'dtstamp_list'):
del component.dtstamp_list | python | def deleteExtraneous(component, ignore_dtstamp=False):
for comp in component.components():
deleteExtraneous(comp, ignore_dtstamp)
for line in component.lines():
if 'X-VOBJ-ORIGINAL-TZID' in line.params:
del line.params['X-VOBJ-ORIGINAL-TZID']
if ignore_dtstamp and hasattr(component, 'dtstamp_list'):
del component.dtstamp_list | [
"def",
"deleteExtraneous",
"(",
"component",
",",
"ignore_dtstamp",
"=",
"False",
")",
":",
"for",
"comp",
"in",
"component",
".",
"components",
"(",
")",
":",
"deleteExtraneous",
"(",
"comp",
",",
"ignore_dtstamp",
")",
"for",
"line",
"in",
"component",
".",
"lines",
"(",
")",
":",
"if",
"'X-VOBJ-ORIGINAL-TZID'",
"in",
"line",
".",
"params",
":",
"del",
"line",
".",
"params",
"[",
"'X-VOBJ-ORIGINAL-TZID'",
"]",
"if",
"ignore_dtstamp",
"and",
"hasattr",
"(",
"component",
",",
"'dtstamp_list'",
")",
":",
"del",
"component",
".",
"dtstamp_list"
]
| Recursively walk the component's children, deleting extraneous details like
X-VOBJ-ORIGINAL-TZID. | [
"Recursively",
"walk",
"the",
"component",
"s",
"children",
"deleting",
"extraneous",
"details",
"like",
"X",
"-",
"VOBJ",
"-",
"ORIGINAL",
"-",
"TZID",
"."
]
| train | https://github.com/eventable/vobject/blob/498555a553155ea9b26aace93332ae79365ecb31/vobject/ics_diff.py#L37-L48 |
SoftwareDefinedBuildings/XBOS | apps/hole_filling/pelican/backfill.py | fillPelicanHole | def fillPelicanHole(site, username, password, tstat_name, start_time, end_time):
"""Fill a hole in a Pelican thermostat's data stream.
Arguments:
site -- The thermostat's Pelican site name
username -- The Pelican username for the site
password -- The Pelican password for the site
tstat_name -- The name of the thermostat, as identified by Pelican
start_time -- The start of the data hole in UTC, e.g. "2018-01-29 15:00:00"
end_time -- The end of the data hole in UTC, e.g. "2018-01-29 16:00:00"
Returns:
A Pandas dataframe with historical Pelican data that falls between the
specified start and end times.
Note that this function assumes the Pelican thermostat's local time zone is
US/Pacific. It will properly handle PST vs. PDT.
"""
start = datetime.strptime(start_time, _INPUT_TIME_FORMAT).replace(tzinfo=pytz.utc).astimezone(_pelican_time)
end = datetime.strptime(end_time, _INPUT_TIME_FORMAT).replace(tzinfo=pytz.utc).astimezone(_pelican_time)
heat_needs_fan = _lookupHeatNeedsFan(site, username, password, tstat_name)
if heat_needs_fan is None:
return None
# Pelican's API only allows a query covering a time range of up to 1 month
# So we may need run multiple requests for historical data
history_blocks = []
while start < end:
block_start = start
block_end = min(start + timedelta(days=30), end)
blocks = _lookupHistoricalData(site, username, password, tstat_name, block_start, block_end)
if blocks is None:
return None
history_blocks.extend(blocks)
start += timedelta(days=30, minutes=1)
output_rows = []
for block in history_blocks:
runStatus = block.find("runStatus").text
if runStatus.startswith("Heat"):
fanState = (heatNeedsFan == "Yes")
else:
fanState = (runStatus != "Off")
api_time = datetime.strptime(block.find("timestamp").text, "%Y-%m-%dT%H:%M").replace(tzinfo=_pelican_time)
# Need to convert seconds to nanoseconds
timestamp = int(api_time.timestamp() * 10**9)
output_rows.append({
"temperature": float(block.find("temperature").text),
"relative_humidity": float(block.find("humidity").text),
"heating_setpoint": float(block.find("heatSetting").text),
"cooling_setpoint": float(block.find("coolSetting").text),
# Driver explicitly uses "Schedule" field, but we don't have this in history
"override": block.find("setBy").text != "Schedule",
"fan": fanState,
"mode": _mode_name_mappings[block.find("system").text],
"state": _state_mappings.get(runStatus, 0),
"time": timestamp,
})
df = pd.DataFrame(output_rows)
df.drop_duplicates(subset="time", keep="first", inplace=True)
return df | python | def fillPelicanHole(site, username, password, tstat_name, start_time, end_time):
start = datetime.strptime(start_time, _INPUT_TIME_FORMAT).replace(tzinfo=pytz.utc).astimezone(_pelican_time)
end = datetime.strptime(end_time, _INPUT_TIME_FORMAT).replace(tzinfo=pytz.utc).astimezone(_pelican_time)
heat_needs_fan = _lookupHeatNeedsFan(site, username, password, tstat_name)
if heat_needs_fan is None:
return None
history_blocks = []
while start < end:
block_start = start
block_end = min(start + timedelta(days=30), end)
blocks = _lookupHistoricalData(site, username, password, tstat_name, block_start, block_end)
if blocks is None:
return None
history_blocks.extend(blocks)
start += timedelta(days=30, minutes=1)
output_rows = []
for block in history_blocks:
runStatus = block.find("runStatus").text
if runStatus.startswith("Heat"):
fanState = (heatNeedsFan == "Yes")
else:
fanState = (runStatus != "Off")
api_time = datetime.strptime(block.find("timestamp").text, "%Y-%m-%dT%H:%M").replace(tzinfo=_pelican_time)
timestamp = int(api_time.timestamp() * 10**9)
output_rows.append({
"temperature": float(block.find("temperature").text),
"relative_humidity": float(block.find("humidity").text),
"heating_setpoint": float(block.find("heatSetting").text),
"cooling_setpoint": float(block.find("coolSetting").text),
"override": block.find("setBy").text != "Schedule",
"fan": fanState,
"mode": _mode_name_mappings[block.find("system").text],
"state": _state_mappings.get(runStatus, 0),
"time": timestamp,
})
df = pd.DataFrame(output_rows)
df.drop_duplicates(subset="time", keep="first", inplace=True)
return df | [
"def",
"fillPelicanHole",
"(",
"site",
",",
"username",
",",
"password",
",",
"tstat_name",
",",
"start_time",
",",
"end_time",
")",
":",
"start",
"=",
"datetime",
".",
"strptime",
"(",
"start_time",
",",
"_INPUT_TIME_FORMAT",
")",
".",
"replace",
"(",
"tzinfo",
"=",
"pytz",
".",
"utc",
")",
".",
"astimezone",
"(",
"_pelican_time",
")",
"end",
"=",
"datetime",
".",
"strptime",
"(",
"end_time",
",",
"_INPUT_TIME_FORMAT",
")",
".",
"replace",
"(",
"tzinfo",
"=",
"pytz",
".",
"utc",
")",
".",
"astimezone",
"(",
"_pelican_time",
")",
"heat_needs_fan",
"=",
"_lookupHeatNeedsFan",
"(",
"site",
",",
"username",
",",
"password",
",",
"tstat_name",
")",
"if",
"heat_needs_fan",
"is",
"None",
":",
"return",
"None",
"# Pelican's API only allows a query covering a time range of up to 1 month",
"# So we may need run multiple requests for historical data",
"history_blocks",
"=",
"[",
"]",
"while",
"start",
"<",
"end",
":",
"block_start",
"=",
"start",
"block_end",
"=",
"min",
"(",
"start",
"+",
"timedelta",
"(",
"days",
"=",
"30",
")",
",",
"end",
")",
"blocks",
"=",
"_lookupHistoricalData",
"(",
"site",
",",
"username",
",",
"password",
",",
"tstat_name",
",",
"block_start",
",",
"block_end",
")",
"if",
"blocks",
"is",
"None",
":",
"return",
"None",
"history_blocks",
".",
"extend",
"(",
"blocks",
")",
"start",
"+=",
"timedelta",
"(",
"days",
"=",
"30",
",",
"minutes",
"=",
"1",
")",
"output_rows",
"=",
"[",
"]",
"for",
"block",
"in",
"history_blocks",
":",
"runStatus",
"=",
"block",
".",
"find",
"(",
"\"runStatus\"",
")",
".",
"text",
"if",
"runStatus",
".",
"startswith",
"(",
"\"Heat\"",
")",
":",
"fanState",
"=",
"(",
"heatNeedsFan",
"==",
"\"Yes\"",
")",
"else",
":",
"fanState",
"=",
"(",
"runStatus",
"!=",
"\"Off\"",
")",
"api_time",
"=",
"datetime",
".",
"strptime",
"(",
"block",
".",
"find",
"(",
"\"timestamp\"",
")",
".",
"text",
",",
"\"%Y-%m-%dT%H:%M\"",
")",
".",
"replace",
"(",
"tzinfo",
"=",
"_pelican_time",
")",
"# Need to convert seconds to nanoseconds",
"timestamp",
"=",
"int",
"(",
"api_time",
".",
"timestamp",
"(",
")",
"*",
"10",
"**",
"9",
")",
"output_rows",
".",
"append",
"(",
"{",
"\"temperature\"",
":",
"float",
"(",
"block",
".",
"find",
"(",
"\"temperature\"",
")",
".",
"text",
")",
",",
"\"relative_humidity\"",
":",
"float",
"(",
"block",
".",
"find",
"(",
"\"humidity\"",
")",
".",
"text",
")",
",",
"\"heating_setpoint\"",
":",
"float",
"(",
"block",
".",
"find",
"(",
"\"heatSetting\"",
")",
".",
"text",
")",
",",
"\"cooling_setpoint\"",
":",
"float",
"(",
"block",
".",
"find",
"(",
"\"coolSetting\"",
")",
".",
"text",
")",
",",
"# Driver explicitly uses \"Schedule\" field, but we don't have this in history",
"\"override\"",
":",
"block",
".",
"find",
"(",
"\"setBy\"",
")",
".",
"text",
"!=",
"\"Schedule\"",
",",
"\"fan\"",
":",
"fanState",
",",
"\"mode\"",
":",
"_mode_name_mappings",
"[",
"block",
".",
"find",
"(",
"\"system\"",
")",
".",
"text",
"]",
",",
"\"state\"",
":",
"_state_mappings",
".",
"get",
"(",
"runStatus",
",",
"0",
")",
",",
"\"time\"",
":",
"timestamp",
",",
"}",
")",
"df",
"=",
"pd",
".",
"DataFrame",
"(",
"output_rows",
")",
"df",
".",
"drop_duplicates",
"(",
"subset",
"=",
"\"time\"",
",",
"keep",
"=",
"\"first\"",
",",
"inplace",
"=",
"True",
")",
"return",
"df"
]
| Fill a hole in a Pelican thermostat's data stream.
Arguments:
site -- The thermostat's Pelican site name
username -- The Pelican username for the site
password -- The Pelican password for the site
tstat_name -- The name of the thermostat, as identified by Pelican
start_time -- The start of the data hole in UTC, e.g. "2018-01-29 15:00:00"
end_time -- The end of the data hole in UTC, e.g. "2018-01-29 16:00:00"
Returns:
A Pandas dataframe with historical Pelican data that falls between the
specified start and end times.
Note that this function assumes the Pelican thermostat's local time zone is
US/Pacific. It will properly handle PST vs. PDT. | [
"Fill",
"a",
"hole",
"in",
"a",
"Pelican",
"thermostat",
"s",
"data",
"stream",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/hole_filling/pelican/backfill.py#L73-L137 |
SoftwareDefinedBuildings/XBOS | apps/data_analysis/XBOS_data_analytics/Preprocess_Data.py | Preprocess_Data.add_degree_days | def add_degree_days(self, col='OAT', hdh_cpoint=65, cdh_cpoint=65):
""" Adds Heating & Cooling Degree Hours.
Parameters
----------
col : str
Column name which contains the outdoor air temperature.
hdh_cpoint : int
Heating degree hours. Defaults to 65.
cdh_cpoint : int
Cooling degree hours. Defaults to 65.
"""
if self.preprocessed_data.empty:
data = self.original_data
else:
data = self.preprocessed_data
# Calculate hdh
data['hdh'] = data[col]
over_hdh = data.loc[:, col] > hdh_cpoint
data.loc[over_hdh, 'hdh'] = 0
data.loc[~over_hdh, 'hdh'] = hdh_cpoint - data.loc[~over_hdh, col]
# Calculate cdh
data['cdh'] = data[col]
under_cdh = data.loc[:, col] < cdh_cpoint
data.loc[under_cdh, 'cdh'] = 0
data.loc[~under_cdh, 'cdh'] = data.loc[~under_cdh, col] - cdh_cpoint
self.preprocessed_data = data | python | def add_degree_days(self, col='OAT', hdh_cpoint=65, cdh_cpoint=65):
if self.preprocessed_data.empty:
data = self.original_data
else:
data = self.preprocessed_data
data['hdh'] = data[col]
over_hdh = data.loc[:, col] > hdh_cpoint
data.loc[over_hdh, 'hdh'] = 0
data.loc[~over_hdh, 'hdh'] = hdh_cpoint - data.loc[~over_hdh, col]
data['cdh'] = data[col]
under_cdh = data.loc[:, col] < cdh_cpoint
data.loc[under_cdh, 'cdh'] = 0
data.loc[~under_cdh, 'cdh'] = data.loc[~under_cdh, col] - cdh_cpoint
self.preprocessed_data = data | [
"def",
"add_degree_days",
"(",
"self",
",",
"col",
"=",
"'OAT'",
",",
"hdh_cpoint",
"=",
"65",
",",
"cdh_cpoint",
"=",
"65",
")",
":",
"if",
"self",
".",
"preprocessed_data",
".",
"empty",
":",
"data",
"=",
"self",
".",
"original_data",
"else",
":",
"data",
"=",
"self",
".",
"preprocessed_data",
"# Calculate hdh",
"data",
"[",
"'hdh'",
"]",
"=",
"data",
"[",
"col",
"]",
"over_hdh",
"=",
"data",
".",
"loc",
"[",
":",
",",
"col",
"]",
">",
"hdh_cpoint",
"data",
".",
"loc",
"[",
"over_hdh",
",",
"'hdh'",
"]",
"=",
"0",
"data",
".",
"loc",
"[",
"~",
"over_hdh",
",",
"'hdh'",
"]",
"=",
"hdh_cpoint",
"-",
"data",
".",
"loc",
"[",
"~",
"over_hdh",
",",
"col",
"]",
"# Calculate cdh",
"data",
"[",
"'cdh'",
"]",
"=",
"data",
"[",
"col",
"]",
"under_cdh",
"=",
"data",
".",
"loc",
"[",
":",
",",
"col",
"]",
"<",
"cdh_cpoint",
"data",
".",
"loc",
"[",
"under_cdh",
",",
"'cdh'",
"]",
"=",
"0",
"data",
".",
"loc",
"[",
"~",
"under_cdh",
",",
"'cdh'",
"]",
"=",
"data",
".",
"loc",
"[",
"~",
"under_cdh",
",",
"col",
"]",
"-",
"cdh_cpoint",
"self",
".",
"preprocessed_data",
"=",
"data"
]
| Adds Heating & Cooling Degree Hours.
Parameters
----------
col : str
Column name which contains the outdoor air temperature.
hdh_cpoint : int
Heating degree hours. Defaults to 65.
cdh_cpoint : int
Cooling degree hours. Defaults to 65. | [
"Adds",
"Heating",
"&",
"Cooling",
"Degree",
"Hours",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/data_analysis/XBOS_data_analytics/Preprocess_Data.py#L34-L65 |
SoftwareDefinedBuildings/XBOS | apps/data_analysis/XBOS_data_analytics/Preprocess_Data.py | Preprocess_Data.add_col_features | def add_col_features(self, col=None, degree=None):
""" Exponentiate columns of dataframe.
Basically this function squares/cubes a column.
e.g. df[col^2] = pow(df[col], degree) where degree=2.
Parameters
----------
col : list(str)
Column to exponentiate.
degree : list(str)
Exponentiation degree.
"""
if not col and not degree:
return
else:
if isinstance(col, list) and isinstance(degree, list):
if len(col) != len(degree):
print('col len: ', len(col))
print('degree len: ', len(degree))
raise ValueError('col and degree should have equal length.')
else:
if self.preprocessed_data.empty:
data = self.original_data
else:
data = self.preprocessed_data
for i in range(len(col)):
data.loc[:,col[i]+str(degree[i])] = pow(data.loc[:,col[i]],degree[i]) / pow(10,degree[i]-1)
self.preprocessed_data = data
else:
raise TypeError('col and degree should be lists.') | python | def add_col_features(self, col=None, degree=None):
if not col and not degree:
return
else:
if isinstance(col, list) and isinstance(degree, list):
if len(col) != len(degree):
print('col len: ', len(col))
print('degree len: ', len(degree))
raise ValueError('col and degree should have equal length.')
else:
if self.preprocessed_data.empty:
data = self.original_data
else:
data = self.preprocessed_data
for i in range(len(col)):
data.loc[:,col[i]+str(degree[i])] = pow(data.loc[:,col[i]],degree[i]) / pow(10,degree[i]-1)
self.preprocessed_data = data
else:
raise TypeError('col and degree should be lists.') | [
"def",
"add_col_features",
"(",
"self",
",",
"col",
"=",
"None",
",",
"degree",
"=",
"None",
")",
":",
"if",
"not",
"col",
"and",
"not",
"degree",
":",
"return",
"else",
":",
"if",
"isinstance",
"(",
"col",
",",
"list",
")",
"and",
"isinstance",
"(",
"degree",
",",
"list",
")",
":",
"if",
"len",
"(",
"col",
")",
"!=",
"len",
"(",
"degree",
")",
":",
"print",
"(",
"'col len: '",
",",
"len",
"(",
"col",
")",
")",
"print",
"(",
"'degree len: '",
",",
"len",
"(",
"degree",
")",
")",
"raise",
"ValueError",
"(",
"'col and degree should have equal length.'",
")",
"else",
":",
"if",
"self",
".",
"preprocessed_data",
".",
"empty",
":",
"data",
"=",
"self",
".",
"original_data",
"else",
":",
"data",
"=",
"self",
".",
"preprocessed_data",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"col",
")",
")",
":",
"data",
".",
"loc",
"[",
":",
",",
"col",
"[",
"i",
"]",
"+",
"str",
"(",
"degree",
"[",
"i",
"]",
")",
"]",
"=",
"pow",
"(",
"data",
".",
"loc",
"[",
":",
",",
"col",
"[",
"i",
"]",
"]",
",",
"degree",
"[",
"i",
"]",
")",
"/",
"pow",
"(",
"10",
",",
"degree",
"[",
"i",
"]",
"-",
"1",
")",
"self",
".",
"preprocessed_data",
"=",
"data",
"else",
":",
"raise",
"TypeError",
"(",
"'col and degree should be lists.'",
")"
]
| Exponentiate columns of dataframe.
Basically this function squares/cubes a column.
e.g. df[col^2] = pow(df[col], degree) where degree=2.
Parameters
----------
col : list(str)
Column to exponentiate.
degree : list(str)
Exponentiation degree. | [
"Exponentiate",
"columns",
"of",
"dataframe",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/data_analysis/XBOS_data_analytics/Preprocess_Data.py#L68-L103 |
SoftwareDefinedBuildings/XBOS | apps/data_analysis/XBOS_data_analytics/Preprocess_Data.py | Preprocess_Data.standardize | def standardize(self):
""" Standardize data. """
if self.preprocessed_data.empty:
data = self.original_data
else:
data = self.preprocessed_data
scaler = preprocessing.StandardScaler()
data = pd.DataFrame(scaler.fit_transform(data), columns=data.columns, index=data.index)
self.preprocessed_data = data | python | def standardize(self):
if self.preprocessed_data.empty:
data = self.original_data
else:
data = self.preprocessed_data
scaler = preprocessing.StandardScaler()
data = pd.DataFrame(scaler.fit_transform(data), columns=data.columns, index=data.index)
self.preprocessed_data = data | [
"def",
"standardize",
"(",
"self",
")",
":",
"if",
"self",
".",
"preprocessed_data",
".",
"empty",
":",
"data",
"=",
"self",
".",
"original_data",
"else",
":",
"data",
"=",
"self",
".",
"preprocessed_data",
"scaler",
"=",
"preprocessing",
".",
"StandardScaler",
"(",
")",
"data",
"=",
"pd",
".",
"DataFrame",
"(",
"scaler",
".",
"fit_transform",
"(",
"data",
")",
",",
"columns",
"=",
"data",
".",
"columns",
",",
"index",
"=",
"data",
".",
"index",
")",
"self",
".",
"preprocessed_data",
"=",
"data"
]
| Standardize data. | [
"Standardize",
"data",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/data_analysis/XBOS_data_analytics/Preprocess_Data.py#L106-L116 |
SoftwareDefinedBuildings/XBOS | apps/data_analysis/XBOS_data_analytics/Preprocess_Data.py | Preprocess_Data.normalize | def normalize(self):
""" Normalize data. """
if self.preprocessed_data.empty:
data = self.original_data
else:
data = self.preprocessed_data
data = pd.DataFrame(preprocessing.normalize(data), columns=data.columns, index=data.index)
self.preprocessed_data = data | python | def normalize(self):
if self.preprocessed_data.empty:
data = self.original_data
else:
data = self.preprocessed_data
data = pd.DataFrame(preprocessing.normalize(data), columns=data.columns, index=data.index)
self.preprocessed_data = data | [
"def",
"normalize",
"(",
"self",
")",
":",
"if",
"self",
".",
"preprocessed_data",
".",
"empty",
":",
"data",
"=",
"self",
".",
"original_data",
"else",
":",
"data",
"=",
"self",
".",
"preprocessed_data",
"data",
"=",
"pd",
".",
"DataFrame",
"(",
"preprocessing",
".",
"normalize",
"(",
"data",
")",
",",
"columns",
"=",
"data",
".",
"columns",
",",
"index",
"=",
"data",
".",
"index",
")",
"self",
".",
"preprocessed_data",
"=",
"data"
]
| Normalize data. | [
"Normalize",
"data",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/data_analysis/XBOS_data_analytics/Preprocess_Data.py#L119-L128 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Preprocess_Data.py | Preprocess_Data.add_time_features | def add_time_features(self, year=False, month=False, week=True, tod=True, dow=True):
""" Add time features to dataframe.
Parameters
----------
year : bool
Year.
month : bool
Month.
week : bool
Week.
tod : bool
Time of Day.
dow : bool
Day of Week.
"""
var_to_expand = []
if self.preprocessed_data.empty:
data = self.original_data
else:
data = self.preprocessed_data
if year:
data["year"] = data.index.year
var_to_expand.append("year")
if month:
data["month"] = data.index.month
var_to_expand.append("month")
if week:
data["week"] = data.index.week
var_to_expand.append("week")
if tod:
data["tod"] = data.index.hour
var_to_expand.append("tod")
if dow:
data["dow"] = data.index.weekday
var_to_expand.append("dow")
# One-hot encode the time features
for var in var_to_expand:
add_var = pd.get_dummies(data[var], prefix=var, drop_first=True)
# Add all the columns to the model data
data = data.join(add_var)
# Drop the original column that was expanded
data.drop(columns=[var], inplace=True)
self.preprocessed_data = data | python | def add_time_features(self, year=False, month=False, week=True, tod=True, dow=True):
var_to_expand = []
if self.preprocessed_data.empty:
data = self.original_data
else:
data = self.preprocessed_data
if year:
data["year"] = data.index.year
var_to_expand.append("year")
if month:
data["month"] = data.index.month
var_to_expand.append("month")
if week:
data["week"] = data.index.week
var_to_expand.append("week")
if tod:
data["tod"] = data.index.hour
var_to_expand.append("tod")
if dow:
data["dow"] = data.index.weekday
var_to_expand.append("dow")
for var in var_to_expand:
add_var = pd.get_dummies(data[var], prefix=var, drop_first=True)
data = data.join(add_var)
data.drop(columns=[var], inplace=True)
self.preprocessed_data = data | [
"def",
"add_time_features",
"(",
"self",
",",
"year",
"=",
"False",
",",
"month",
"=",
"False",
",",
"week",
"=",
"True",
",",
"tod",
"=",
"True",
",",
"dow",
"=",
"True",
")",
":",
"var_to_expand",
"=",
"[",
"]",
"if",
"self",
".",
"preprocessed_data",
".",
"empty",
":",
"data",
"=",
"self",
".",
"original_data",
"else",
":",
"data",
"=",
"self",
".",
"preprocessed_data",
"if",
"year",
":",
"data",
"[",
"\"year\"",
"]",
"=",
"data",
".",
"index",
".",
"year",
"var_to_expand",
".",
"append",
"(",
"\"year\"",
")",
"if",
"month",
":",
"data",
"[",
"\"month\"",
"]",
"=",
"data",
".",
"index",
".",
"month",
"var_to_expand",
".",
"append",
"(",
"\"month\"",
")",
"if",
"week",
":",
"data",
"[",
"\"week\"",
"]",
"=",
"data",
".",
"index",
".",
"week",
"var_to_expand",
".",
"append",
"(",
"\"week\"",
")",
"if",
"tod",
":",
"data",
"[",
"\"tod\"",
"]",
"=",
"data",
".",
"index",
".",
"hour",
"var_to_expand",
".",
"append",
"(",
"\"tod\"",
")",
"if",
"dow",
":",
"data",
"[",
"\"dow\"",
"]",
"=",
"data",
".",
"index",
".",
"weekday",
"var_to_expand",
".",
"append",
"(",
"\"dow\"",
")",
"# One-hot encode the time features",
"for",
"var",
"in",
"var_to_expand",
":",
"add_var",
"=",
"pd",
".",
"get_dummies",
"(",
"data",
"[",
"var",
"]",
",",
"prefix",
"=",
"var",
",",
"drop_first",
"=",
"True",
")",
"# Add all the columns to the model data",
"data",
"=",
"data",
".",
"join",
"(",
"add_var",
")",
"# Drop the original column that was expanded",
"data",
".",
"drop",
"(",
"columns",
"=",
"[",
"var",
"]",
",",
"inplace",
"=",
"True",
")",
"self",
".",
"preprocessed_data",
"=",
"data"
]
| Add time features to dataframe.
Parameters
----------
year : bool
Year.
month : bool
Month.
week : bool
Week.
tod : bool
Time of Day.
dow : bool
Day of Week. | [
"Add",
"time",
"features",
"to",
"dataframe",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Preprocess_Data.py#L135-L187 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Model_Data.py | Model_Data.split_data | def split_data(self):
""" Split data according to baseline and projection time period values. """
try:
# Extract data ranging in time_period1
time_period1 = (slice(self.baseline_period[0], self.baseline_period[1]))
self.baseline_in = self.original_data.loc[time_period1, self.input_col]
self.baseline_out = self.original_data.loc[time_period1, self.output_col]
if self.exclude_time_period:
for i in range(0, len(self.exclude_time_period), 2):
# Drop data ranging in exclude_time_period1
exclude_time_period1 = (slice(self.exclude_time_period[i], self.exclude_time_period[i+1]))
self.baseline_in.drop(self.baseline_in.loc[exclude_time_period1].index, axis=0, inplace=True)
self.baseline_out.drop(self.baseline_out.loc[exclude_time_period1].index, axis=0, inplace=True)
except Exception as e:
raise e
# CHECK: Can optimize this part
# Error checking to ensure time_period values are valid
if self.projection_period:
for i in range(0, len(self.projection_period), 2):
period = (slice(self.projection_period[i], self.projection_period[i+1]))
try:
self.original_data.loc[period, self.input_col]
self.original_data.loc[period, self.output_col]
except Exception as e:
raise e | python | def split_data(self):
try:
time_period1 = (slice(self.baseline_period[0], self.baseline_period[1]))
self.baseline_in = self.original_data.loc[time_period1, self.input_col]
self.baseline_out = self.original_data.loc[time_period1, self.output_col]
if self.exclude_time_period:
for i in range(0, len(self.exclude_time_period), 2):
exclude_time_period1 = (slice(self.exclude_time_period[i], self.exclude_time_period[i+1]))
self.baseline_in.drop(self.baseline_in.loc[exclude_time_period1].index, axis=0, inplace=True)
self.baseline_out.drop(self.baseline_out.loc[exclude_time_period1].index, axis=0, inplace=True)
except Exception as e:
raise e
if self.projection_period:
for i in range(0, len(self.projection_period), 2):
period = (slice(self.projection_period[i], self.projection_period[i+1]))
try:
self.original_data.loc[period, self.input_col]
self.original_data.loc[period, self.output_col]
except Exception as e:
raise e | [
"def",
"split_data",
"(",
"self",
")",
":",
"try",
":",
"# Extract data ranging in time_period1",
"time_period1",
"=",
"(",
"slice",
"(",
"self",
".",
"baseline_period",
"[",
"0",
"]",
",",
"self",
".",
"baseline_period",
"[",
"1",
"]",
")",
")",
"self",
".",
"baseline_in",
"=",
"self",
".",
"original_data",
".",
"loc",
"[",
"time_period1",
",",
"self",
".",
"input_col",
"]",
"self",
".",
"baseline_out",
"=",
"self",
".",
"original_data",
".",
"loc",
"[",
"time_period1",
",",
"self",
".",
"output_col",
"]",
"if",
"self",
".",
"exclude_time_period",
":",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"self",
".",
"exclude_time_period",
")",
",",
"2",
")",
":",
"# Drop data ranging in exclude_time_period1",
"exclude_time_period1",
"=",
"(",
"slice",
"(",
"self",
".",
"exclude_time_period",
"[",
"i",
"]",
",",
"self",
".",
"exclude_time_period",
"[",
"i",
"+",
"1",
"]",
")",
")",
"self",
".",
"baseline_in",
".",
"drop",
"(",
"self",
".",
"baseline_in",
".",
"loc",
"[",
"exclude_time_period1",
"]",
".",
"index",
",",
"axis",
"=",
"0",
",",
"inplace",
"=",
"True",
")",
"self",
".",
"baseline_out",
".",
"drop",
"(",
"self",
".",
"baseline_out",
".",
"loc",
"[",
"exclude_time_period1",
"]",
".",
"index",
",",
"axis",
"=",
"0",
",",
"inplace",
"=",
"True",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"e",
"# CHECK: Can optimize this part",
"# Error checking to ensure time_period values are valid",
"if",
"self",
".",
"projection_period",
":",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"self",
".",
"projection_period",
")",
",",
"2",
")",
":",
"period",
"=",
"(",
"slice",
"(",
"self",
".",
"projection_period",
"[",
"i",
"]",
",",
"self",
".",
"projection_period",
"[",
"i",
"+",
"1",
"]",
")",
")",
"try",
":",
"self",
".",
"original_data",
".",
"loc",
"[",
"period",
",",
"self",
".",
"input_col",
"]",
"self",
".",
"original_data",
".",
"loc",
"[",
"period",
",",
"self",
".",
"output_col",
"]",
"except",
"Exception",
"as",
"e",
":",
"raise",
"e"
]
| Split data according to baseline and projection time period values. | [
"Split",
"data",
"according",
"to",
"baseline",
"and",
"projection",
"time",
"period",
"values",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Model_Data.py#L125-L152 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Model_Data.py | Model_Data.linear_regression | def linear_regression(self):
""" Linear Regression.
This function runs linear regression and stores the,
1. Model
2. Model name
3. Mean score of cross validation
4. Metrics
"""
model = LinearRegression()
scores = []
kfold = KFold(n_splits=self.cv, shuffle=True, random_state=42)
for i, (train, test) in enumerate(kfold.split(self.baseline_in, self.baseline_out)):
model.fit(self.baseline_in.iloc[train], self.baseline_out.iloc[train])
scores.append(model.score(self.baseline_in.iloc[test], self.baseline_out.iloc[test]))
mean_score = sum(scores) / len(scores)
self.models.append(model)
self.model_names.append('Linear Regression')
self.max_scores.append(mean_score)
self.metrics['Linear Regression'] = {}
self.metrics['Linear Regression']['R2'] = mean_score
self.metrics['Linear Regression']['Adj R2'] = self.adj_r2(mean_score, self.baseline_in.shape[0], self.baseline_in.shape[1]) | python | def linear_regression(self):
model = LinearRegression()
scores = []
kfold = KFold(n_splits=self.cv, shuffle=True, random_state=42)
for i, (train, test) in enumerate(kfold.split(self.baseline_in, self.baseline_out)):
model.fit(self.baseline_in.iloc[train], self.baseline_out.iloc[train])
scores.append(model.score(self.baseline_in.iloc[test], self.baseline_out.iloc[test]))
mean_score = sum(scores) / len(scores)
self.models.append(model)
self.model_names.append('Linear Regression')
self.max_scores.append(mean_score)
self.metrics['Linear Regression'] = {}
self.metrics['Linear Regression']['R2'] = mean_score
self.metrics['Linear Regression']['Adj R2'] = self.adj_r2(mean_score, self.baseline_in.shape[0], self.baseline_in.shape[1]) | [
"def",
"linear_regression",
"(",
"self",
")",
":",
"model",
"=",
"LinearRegression",
"(",
")",
"scores",
"=",
"[",
"]",
"kfold",
"=",
"KFold",
"(",
"n_splits",
"=",
"self",
".",
"cv",
",",
"shuffle",
"=",
"True",
",",
"random_state",
"=",
"42",
")",
"for",
"i",
",",
"(",
"train",
",",
"test",
")",
"in",
"enumerate",
"(",
"kfold",
".",
"split",
"(",
"self",
".",
"baseline_in",
",",
"self",
".",
"baseline_out",
")",
")",
":",
"model",
".",
"fit",
"(",
"self",
".",
"baseline_in",
".",
"iloc",
"[",
"train",
"]",
",",
"self",
".",
"baseline_out",
".",
"iloc",
"[",
"train",
"]",
")",
"scores",
".",
"append",
"(",
"model",
".",
"score",
"(",
"self",
".",
"baseline_in",
".",
"iloc",
"[",
"test",
"]",
",",
"self",
".",
"baseline_out",
".",
"iloc",
"[",
"test",
"]",
")",
")",
"mean_score",
"=",
"sum",
"(",
"scores",
")",
"/",
"len",
"(",
"scores",
")",
"self",
".",
"models",
".",
"append",
"(",
"model",
")",
"self",
".",
"model_names",
".",
"append",
"(",
"'Linear Regression'",
")",
"self",
".",
"max_scores",
".",
"append",
"(",
"mean_score",
")",
"self",
".",
"metrics",
"[",
"'Linear Regression'",
"]",
"=",
"{",
"}",
"self",
".",
"metrics",
"[",
"'Linear Regression'",
"]",
"[",
"'R2'",
"]",
"=",
"mean_score",
"self",
".",
"metrics",
"[",
"'Linear Regression'",
"]",
"[",
"'Adj R2'",
"]",
"=",
"self",
".",
"adj_r2",
"(",
"mean_score",
",",
"self",
".",
"baseline_in",
".",
"shape",
"[",
"0",
"]",
",",
"self",
".",
"baseline_in",
".",
"shape",
"[",
"1",
"]",
")"
]
| Linear Regression.
This function runs linear regression and stores the,
1. Model
2. Model name
3. Mean score of cross validation
4. Metrics | [
"Linear",
"Regression",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Model_Data.py#L176-L203 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Model_Data.py | Model_Data.lasso_regression | def lasso_regression(self):
""" Lasso Regression.
This function runs lasso regression and stores the,
1. Model
2. Model name
3. Max score
4. Metrics
"""
score_list = []
max_score = float('-inf')
best_alpha = None
for alpha in self.alphas:
# model = Lasso(normalize=True, alpha=alpha, max_iter=5000)
model = Lasso(alpha=alpha, max_iter=5000)
model.fit(self.baseline_in, self.baseline_out.values.ravel())
scores = []
kfold = KFold(n_splits=self.cv, shuffle=True, random_state=42)
for i, (train, test) in enumerate(kfold.split(self.baseline_in, self.baseline_out)):
model.fit(self.baseline_in.iloc[train], self.baseline_out.iloc[train])
scores.append(model.score(self.baseline_in.iloc[test], self.baseline_out.iloc[test]))
mean_score = np.mean(scores)
score_list.append(mean_score)
if mean_score > max_score:
max_score = mean_score
best_alpha = alpha
# self.models.append(Lasso(normalize=True, alpha=best_alpha, max_iter=5000))
self.models.append(Lasso(alpha=best_alpha, max_iter=5000))
self.model_names.append('Lasso Regression')
self.max_scores.append(max_score)
self.metrics['Lasso Regression'] = {}
self.metrics['Lasso Regression']['R2'] = max_score
self.metrics['Lasso Regression']['Adj R2'] = self.adj_r2(max_score, self.baseline_in.shape[0], self.baseline_in.shape[1]) | python | def lasso_regression(self):
score_list = []
max_score = float('-inf')
best_alpha = None
for alpha in self.alphas:
model = Lasso(alpha=alpha, max_iter=5000)
model.fit(self.baseline_in, self.baseline_out.values.ravel())
scores = []
kfold = KFold(n_splits=self.cv, shuffle=True, random_state=42)
for i, (train, test) in enumerate(kfold.split(self.baseline_in, self.baseline_out)):
model.fit(self.baseline_in.iloc[train], self.baseline_out.iloc[train])
scores.append(model.score(self.baseline_in.iloc[test], self.baseline_out.iloc[test]))
mean_score = np.mean(scores)
score_list.append(mean_score)
if mean_score > max_score:
max_score = mean_score
best_alpha = alpha
self.models.append(Lasso(alpha=best_alpha, max_iter=5000))
self.model_names.append('Lasso Regression')
self.max_scores.append(max_score)
self.metrics['Lasso Regression'] = {}
self.metrics['Lasso Regression']['R2'] = max_score
self.metrics['Lasso Regression']['Adj R2'] = self.adj_r2(max_score, self.baseline_in.shape[0], self.baseline_in.shape[1]) | [
"def",
"lasso_regression",
"(",
"self",
")",
":",
"score_list",
"=",
"[",
"]",
"max_score",
"=",
"float",
"(",
"'-inf'",
")",
"best_alpha",
"=",
"None",
"for",
"alpha",
"in",
"self",
".",
"alphas",
":",
"# model = Lasso(normalize=True, alpha=alpha, max_iter=5000)",
"model",
"=",
"Lasso",
"(",
"alpha",
"=",
"alpha",
",",
"max_iter",
"=",
"5000",
")",
"model",
".",
"fit",
"(",
"self",
".",
"baseline_in",
",",
"self",
".",
"baseline_out",
".",
"values",
".",
"ravel",
"(",
")",
")",
"scores",
"=",
"[",
"]",
"kfold",
"=",
"KFold",
"(",
"n_splits",
"=",
"self",
".",
"cv",
",",
"shuffle",
"=",
"True",
",",
"random_state",
"=",
"42",
")",
"for",
"i",
",",
"(",
"train",
",",
"test",
")",
"in",
"enumerate",
"(",
"kfold",
".",
"split",
"(",
"self",
".",
"baseline_in",
",",
"self",
".",
"baseline_out",
")",
")",
":",
"model",
".",
"fit",
"(",
"self",
".",
"baseline_in",
".",
"iloc",
"[",
"train",
"]",
",",
"self",
".",
"baseline_out",
".",
"iloc",
"[",
"train",
"]",
")",
"scores",
".",
"append",
"(",
"model",
".",
"score",
"(",
"self",
".",
"baseline_in",
".",
"iloc",
"[",
"test",
"]",
",",
"self",
".",
"baseline_out",
".",
"iloc",
"[",
"test",
"]",
")",
")",
"mean_score",
"=",
"np",
".",
"mean",
"(",
"scores",
")",
"score_list",
".",
"append",
"(",
"mean_score",
")",
"if",
"mean_score",
">",
"max_score",
":",
"max_score",
"=",
"mean_score",
"best_alpha",
"=",
"alpha",
"# self.models.append(Lasso(normalize=True, alpha=best_alpha, max_iter=5000))",
"self",
".",
"models",
".",
"append",
"(",
"Lasso",
"(",
"alpha",
"=",
"best_alpha",
",",
"max_iter",
"=",
"5000",
")",
")",
"self",
".",
"model_names",
".",
"append",
"(",
"'Lasso Regression'",
")",
"self",
".",
"max_scores",
".",
"append",
"(",
"max_score",
")",
"self",
".",
"metrics",
"[",
"'Lasso Regression'",
"]",
"=",
"{",
"}",
"self",
".",
"metrics",
"[",
"'Lasso Regression'",
"]",
"[",
"'R2'",
"]",
"=",
"max_score",
"self",
".",
"metrics",
"[",
"'Lasso Regression'",
"]",
"[",
"'Adj R2'",
"]",
"=",
"self",
".",
"adj_r2",
"(",
"max_score",
",",
"self",
".",
"baseline_in",
".",
"shape",
"[",
"0",
"]",
",",
"self",
".",
"baseline_in",
".",
"shape",
"[",
"1",
"]",
")"
]
| Lasso Regression.
This function runs lasso regression and stores the,
1. Model
2. Model name
3. Max score
4. Metrics | [
"Lasso",
"Regression",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Model_Data.py#L206-L246 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Model_Data.py | Model_Data.random_forest | def random_forest(self):
""" Random Forest.
This function runs random forest and stores the,
1. Model
2. Model name
3. Max score
4. Metrics
"""
model = RandomForestRegressor(random_state=42)
scores = []
kfold = KFold(n_splits=self.cv, shuffle=True, random_state=42)
for i, (train, test) in enumerate(kfold.split(self.baseline_in, self.baseline_out)):
model.fit(self.baseline_in.iloc[train], self.baseline_out.iloc[train])
scores.append(model.score(self.baseline_in.iloc[test], self.baseline_out.iloc[test]))
mean_score = np.mean(scores)
self.models.append(model)
self.model_names.append('Random Forest Regressor')
self.max_scores.append(mean_score)
self.metrics['Random Forest Regressor'] = {}
self.metrics['Random Forest Regressor']['R2'] = mean_score
self.metrics['Random Forest Regressor']['Adj R2'] = self.adj_r2(mean_score, self.baseline_in.shape[0], self.baseline_in.shape[1]) | python | def random_forest(self):
model = RandomForestRegressor(random_state=42)
scores = []
kfold = KFold(n_splits=self.cv, shuffle=True, random_state=42)
for i, (train, test) in enumerate(kfold.split(self.baseline_in, self.baseline_out)):
model.fit(self.baseline_in.iloc[train], self.baseline_out.iloc[train])
scores.append(model.score(self.baseline_in.iloc[test], self.baseline_out.iloc[test]))
mean_score = np.mean(scores)
self.models.append(model)
self.model_names.append('Random Forest Regressor')
self.max_scores.append(mean_score)
self.metrics['Random Forest Regressor'] = {}
self.metrics['Random Forest Regressor']['R2'] = mean_score
self.metrics['Random Forest Regressor']['Adj R2'] = self.adj_r2(mean_score, self.baseline_in.shape[0], self.baseline_in.shape[1]) | [
"def",
"random_forest",
"(",
"self",
")",
":",
"model",
"=",
"RandomForestRegressor",
"(",
"random_state",
"=",
"42",
")",
"scores",
"=",
"[",
"]",
"kfold",
"=",
"KFold",
"(",
"n_splits",
"=",
"self",
".",
"cv",
",",
"shuffle",
"=",
"True",
",",
"random_state",
"=",
"42",
")",
"for",
"i",
",",
"(",
"train",
",",
"test",
")",
"in",
"enumerate",
"(",
"kfold",
".",
"split",
"(",
"self",
".",
"baseline_in",
",",
"self",
".",
"baseline_out",
")",
")",
":",
"model",
".",
"fit",
"(",
"self",
".",
"baseline_in",
".",
"iloc",
"[",
"train",
"]",
",",
"self",
".",
"baseline_out",
".",
"iloc",
"[",
"train",
"]",
")",
"scores",
".",
"append",
"(",
"model",
".",
"score",
"(",
"self",
".",
"baseline_in",
".",
"iloc",
"[",
"test",
"]",
",",
"self",
".",
"baseline_out",
".",
"iloc",
"[",
"test",
"]",
")",
")",
"mean_score",
"=",
"np",
".",
"mean",
"(",
"scores",
")",
"self",
".",
"models",
".",
"append",
"(",
"model",
")",
"self",
".",
"model_names",
".",
"append",
"(",
"'Random Forest Regressor'",
")",
"self",
".",
"max_scores",
".",
"append",
"(",
"mean_score",
")",
"self",
".",
"metrics",
"[",
"'Random Forest Regressor'",
"]",
"=",
"{",
"}",
"self",
".",
"metrics",
"[",
"'Random Forest Regressor'",
"]",
"[",
"'R2'",
"]",
"=",
"mean_score",
"self",
".",
"metrics",
"[",
"'Random Forest Regressor'",
"]",
"[",
"'Adj R2'",
"]",
"=",
"self",
".",
"adj_r2",
"(",
"mean_score",
",",
"self",
".",
"baseline_in",
".",
"shape",
"[",
"0",
"]",
",",
"self",
".",
"baseline_in",
".",
"shape",
"[",
"1",
"]",
")"
]
| Random Forest.
This function runs random forest and stores the,
1. Model
2. Model name
3. Max score
4. Metrics | [
"Random",
"Forest",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Model_Data.py#L338-L364 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Model_Data.py | Model_Data.run_models | def run_models(self):
""" Run all models.
Returns
-------
model
Best model
dict
Metrics of the models
"""
self.linear_regression()
self.lasso_regression()
self.ridge_regression()
self.elastic_net_regression()
self.random_forest()
self.ann()
# Index of the model with max score
best_model_index = self.max_scores.index(max(self.max_scores))
# Store name of the optimal model
self.best_model_name = self.model_names[best_model_index]
# Store optimal model
self.best_model = self.models[best_model_index]
return self.metrics | python | def run_models(self):
self.linear_regression()
self.lasso_regression()
self.ridge_regression()
self.elastic_net_regression()
self.random_forest()
self.ann()
best_model_index = self.max_scores.index(max(self.max_scores))
self.best_model_name = self.model_names[best_model_index]
self.best_model = self.models[best_model_index]
return self.metrics | [
"def",
"run_models",
"(",
"self",
")",
":",
"self",
".",
"linear_regression",
"(",
")",
"self",
".",
"lasso_regression",
"(",
")",
"self",
".",
"ridge_regression",
"(",
")",
"self",
".",
"elastic_net_regression",
"(",
")",
"self",
".",
"random_forest",
"(",
")",
"self",
".",
"ann",
"(",
")",
"# Index of the model with max score",
"best_model_index",
"=",
"self",
".",
"max_scores",
".",
"index",
"(",
"max",
"(",
"self",
".",
"max_scores",
")",
")",
"# Store name of the optimal model",
"self",
".",
"best_model_name",
"=",
"self",
".",
"model_names",
"[",
"best_model_index",
"]",
"# Store optimal model",
"self",
".",
"best_model",
"=",
"self",
".",
"models",
"[",
"best_model_index",
"]",
"return",
"self",
".",
"metrics"
]
| Run all models.
Returns
-------
model
Best model
dict
Metrics of the models | [
"Run",
"all",
"models",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Model_Data.py#L396-L424 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Model_Data.py | Model_Data.custom_model | def custom_model(self, func):
""" Run custom model provided by user.
To Do,
1. Define custom function's parameters, its data types, and return types
Parameters
----------
func : function
Custom function
Returns
-------
dict
Custom function's metrics
"""
y_pred = func(self.baseline_in, self.baseline_out)
self.custom_metrics = {}
self.custom_metrics['r2'] = r2_score(self.baseline_out, y_pred)
self.custom_metrics['mse'] = mean_squared_error(self.baseline_out, y_pred)
self.custom_metrics['rmse'] = math.sqrt(self.custom_metrics['mse'])
self.custom_metrics['adj_r2'] = self.adj_r2(self.custom_metrics['r2'], self.baseline_in.shape[0], self.baseline_in.shape[1])
return self.custom_metrics | python | def custom_model(self, func):
y_pred = func(self.baseline_in, self.baseline_out)
self.custom_metrics = {}
self.custom_metrics['r2'] = r2_score(self.baseline_out, y_pred)
self.custom_metrics['mse'] = mean_squared_error(self.baseline_out, y_pred)
self.custom_metrics['rmse'] = math.sqrt(self.custom_metrics['mse'])
self.custom_metrics['adj_r2'] = self.adj_r2(self.custom_metrics['r2'], self.baseline_in.shape[0], self.baseline_in.shape[1])
return self.custom_metrics | [
"def",
"custom_model",
"(",
"self",
",",
"func",
")",
":",
"y_pred",
"=",
"func",
"(",
"self",
".",
"baseline_in",
",",
"self",
".",
"baseline_out",
")",
"self",
".",
"custom_metrics",
"=",
"{",
"}",
"self",
".",
"custom_metrics",
"[",
"'r2'",
"]",
"=",
"r2_score",
"(",
"self",
".",
"baseline_out",
",",
"y_pred",
")",
"self",
".",
"custom_metrics",
"[",
"'mse'",
"]",
"=",
"mean_squared_error",
"(",
"self",
".",
"baseline_out",
",",
"y_pred",
")",
"self",
".",
"custom_metrics",
"[",
"'rmse'",
"]",
"=",
"math",
".",
"sqrt",
"(",
"self",
".",
"custom_metrics",
"[",
"'mse'",
"]",
")",
"self",
".",
"custom_metrics",
"[",
"'adj_r2'",
"]",
"=",
"self",
".",
"adj_r2",
"(",
"self",
".",
"custom_metrics",
"[",
"'r2'",
"]",
",",
"self",
".",
"baseline_in",
".",
"shape",
"[",
"0",
"]",
",",
"self",
".",
"baseline_in",
".",
"shape",
"[",
"1",
"]",
")",
"return",
"self",
".",
"custom_metrics"
]
| Run custom model provided by user.
To Do,
1. Define custom function's parameters, its data types, and return types
Parameters
----------
func : function
Custom function
Returns
-------
dict
Custom function's metrics | [
"Run",
"custom",
"model",
"provided",
"by",
"user",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Model_Data.py#L427-L453 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Model_Data.py | Model_Data.best_model_fit | def best_model_fit(self):
""" Fit data to optimal model and return its metrics.
Returns
-------
dict
Best model's metrics
"""
self.best_model.fit(self.baseline_in, self.baseline_out)
self.y_true = self.baseline_out # Pandas Series
self.y_pred = self.best_model.predict(self.baseline_in) # numpy.ndarray
# Set all negative values to zero since energy > 0
self.y_pred[self.y_pred < 0] = 0
# n and k values for adj r2 score
self.n_test = self.baseline_in.shape[0] # Number of points in data sample
self.k_test = self.baseline_in.shape[1] # Number of variables in model, excluding the constant
# Store best model's metrics
self.best_metrics['name'] = self.best_model_name
self.best_metrics['r2'] = r2_score(self.y_true, self.y_pred)
self.best_metrics['mse'] = mean_squared_error(self.y_true, self.y_pred)
self.best_metrics['rmse'] = math.sqrt(self.best_metrics['mse'])
self.best_metrics['adj_r2'] = self.adj_r2(self.best_metrics['r2'], self.n_test, self.k_test)
# Normalized Mean Bias Error
numerator = sum(self.y_true - self.y_pred)
denominator = (self.n_test - self.k_test) * (sum(self.y_true) / len(self.y_true))
self.best_metrics['nmbe'] = numerator / denominator
# MAPE can't have 0 values in baseline_out -> divide by zero error
self.baseline_out_copy = self.baseline_out[self.baseline_out != 0]
self.baseline_in_copy = self.baseline_in[self.baseline_in.index.isin(self.baseline_out_copy.index)]
self.y_true_copy = self.baseline_out_copy # Pandas Series
self.y_pred_copy = self.best_model.predict(self.baseline_in_copy) # numpy.ndarray
self.best_metrics['mape'] = np.mean(np.abs((self.y_true_copy - self.y_pred_copy) / self.y_true_copy)) * 100
return self.best_metrics | python | def best_model_fit(self):
self.best_model.fit(self.baseline_in, self.baseline_out)
self.y_true = self.baseline_out
self.y_pred = self.best_model.predict(self.baseline_in)
self.y_pred[self.y_pred < 0] = 0
self.n_test = self.baseline_in.shape[0]
self.k_test = self.baseline_in.shape[1]
self.best_metrics['name'] = self.best_model_name
self.best_metrics['r2'] = r2_score(self.y_true, self.y_pred)
self.best_metrics['mse'] = mean_squared_error(self.y_true, self.y_pred)
self.best_metrics['rmse'] = math.sqrt(self.best_metrics['mse'])
self.best_metrics['adj_r2'] = self.adj_r2(self.best_metrics['r2'], self.n_test, self.k_test)
numerator = sum(self.y_true - self.y_pred)
denominator = (self.n_test - self.k_test) * (sum(self.y_true) / len(self.y_true))
self.best_metrics['nmbe'] = numerator / denominator
self.baseline_out_copy = self.baseline_out[self.baseline_out != 0]
self.baseline_in_copy = self.baseline_in[self.baseline_in.index.isin(self.baseline_out_copy.index)]
self.y_true_copy = self.baseline_out_copy
self.y_pred_copy = self.best_model.predict(self.baseline_in_copy)
self.best_metrics['mape'] = np.mean(np.abs((self.y_true_copy - self.y_pred_copy) / self.y_true_copy)) * 100
return self.best_metrics | [
"def",
"best_model_fit",
"(",
"self",
")",
":",
"self",
".",
"best_model",
".",
"fit",
"(",
"self",
".",
"baseline_in",
",",
"self",
".",
"baseline_out",
")",
"self",
".",
"y_true",
"=",
"self",
".",
"baseline_out",
"# Pandas Series",
"self",
".",
"y_pred",
"=",
"self",
".",
"best_model",
".",
"predict",
"(",
"self",
".",
"baseline_in",
")",
"# numpy.ndarray",
"# Set all negative values to zero since energy > 0",
"self",
".",
"y_pred",
"[",
"self",
".",
"y_pred",
"<",
"0",
"]",
"=",
"0",
"# n and k values for adj r2 score",
"self",
".",
"n_test",
"=",
"self",
".",
"baseline_in",
".",
"shape",
"[",
"0",
"]",
"# Number of points in data sample",
"self",
".",
"k_test",
"=",
"self",
".",
"baseline_in",
".",
"shape",
"[",
"1",
"]",
"# Number of variables in model, excluding the constant",
"# Store best model's metrics",
"self",
".",
"best_metrics",
"[",
"'name'",
"]",
"=",
"self",
".",
"best_model_name",
"self",
".",
"best_metrics",
"[",
"'r2'",
"]",
"=",
"r2_score",
"(",
"self",
".",
"y_true",
",",
"self",
".",
"y_pred",
")",
"self",
".",
"best_metrics",
"[",
"'mse'",
"]",
"=",
"mean_squared_error",
"(",
"self",
".",
"y_true",
",",
"self",
".",
"y_pred",
")",
"self",
".",
"best_metrics",
"[",
"'rmse'",
"]",
"=",
"math",
".",
"sqrt",
"(",
"self",
".",
"best_metrics",
"[",
"'mse'",
"]",
")",
"self",
".",
"best_metrics",
"[",
"'adj_r2'",
"]",
"=",
"self",
".",
"adj_r2",
"(",
"self",
".",
"best_metrics",
"[",
"'r2'",
"]",
",",
"self",
".",
"n_test",
",",
"self",
".",
"k_test",
")",
"# Normalized Mean Bias Error",
"numerator",
"=",
"sum",
"(",
"self",
".",
"y_true",
"-",
"self",
".",
"y_pred",
")",
"denominator",
"=",
"(",
"self",
".",
"n_test",
"-",
"self",
".",
"k_test",
")",
"*",
"(",
"sum",
"(",
"self",
".",
"y_true",
")",
"/",
"len",
"(",
"self",
".",
"y_true",
")",
")",
"self",
".",
"best_metrics",
"[",
"'nmbe'",
"]",
"=",
"numerator",
"/",
"denominator",
"# MAPE can't have 0 values in baseline_out -> divide by zero error",
"self",
".",
"baseline_out_copy",
"=",
"self",
".",
"baseline_out",
"[",
"self",
".",
"baseline_out",
"!=",
"0",
"]",
"self",
".",
"baseline_in_copy",
"=",
"self",
".",
"baseline_in",
"[",
"self",
".",
"baseline_in",
".",
"index",
".",
"isin",
"(",
"self",
".",
"baseline_out_copy",
".",
"index",
")",
"]",
"self",
".",
"y_true_copy",
"=",
"self",
".",
"baseline_out_copy",
"# Pandas Series",
"self",
".",
"y_pred_copy",
"=",
"self",
".",
"best_model",
".",
"predict",
"(",
"self",
".",
"baseline_in_copy",
")",
"# numpy.ndarray",
"self",
".",
"best_metrics",
"[",
"'mape'",
"]",
"=",
"np",
".",
"mean",
"(",
"np",
".",
"abs",
"(",
"(",
"self",
".",
"y_true_copy",
"-",
"self",
".",
"y_pred_copy",
")",
"/",
"self",
".",
"y_true_copy",
")",
")",
"*",
"100",
"return",
"self",
".",
"best_metrics"
]
| Fit data to optimal model and return its metrics.
Returns
-------
dict
Best model's metrics | [
"Fit",
"data",
"to",
"optimal",
"model",
"and",
"return",
"its",
"metrics",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Model_Data.py#L456-L497 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Plot_Data.py | Plot_Data.correlation_plot | def correlation_plot(self, data):
""" Create heatmap of Pearson's correlation coefficient.
Parameters
----------
data : pd.DataFrame()
Data to display.
Returns
-------
matplotlib.figure
Heatmap.
"""
# CHECK: Add saved filename in result.json
fig = plt.figure(Plot_Data.count)
corr = data.corr()
ax = sns.heatmap(corr)
Plot_Data.count += 1
return fig | python | def correlation_plot(self, data):
fig = plt.figure(Plot_Data.count)
corr = data.corr()
ax = sns.heatmap(corr)
Plot_Data.count += 1
return fig | [
"def",
"correlation_plot",
"(",
"self",
",",
"data",
")",
":",
"# CHECK: Add saved filename in result.json",
"fig",
"=",
"plt",
".",
"figure",
"(",
"Plot_Data",
".",
"count",
")",
"corr",
"=",
"data",
".",
"corr",
"(",
")",
"ax",
"=",
"sns",
".",
"heatmap",
"(",
"corr",
")",
"Plot_Data",
".",
"count",
"+=",
"1",
"return",
"fig"
]
| Create heatmap of Pearson's correlation coefficient.
Parameters
----------
data : pd.DataFrame()
Data to display.
Returns
-------
matplotlib.figure
Heatmap. | [
"Create",
"heatmap",
"of",
"Pearson",
"s",
"correlation",
"coefficient",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Plot_Data.py#L42-L63 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Plot_Data.py | Plot_Data.baseline_projection_plot | def baseline_projection_plot(self, y_true, y_pred,
baseline_period, projection_period,
model_name, adj_r2,
data, input_col, output_col, model,
site):
""" Create baseline and projection plots.
Parameters
----------
y_true : pd.Series()
Actual y values.
y_pred : np.ndarray
Predicted y values.
baseline_period : list(str)
Baseline period.
projection_period : list(str)
Projection periods.
model_name : str
Optimal model's name.
adj_r2 : float
Adjusted R2 score of optimal model.
data : pd.Dataframe()
Data containing real values.
input_col : list(str)
Predictor column(s).
output_col : str
Target column.
model : func
Optimal model.
Returns
-------
matplotlib.figure
Baseline plot
"""
# Baseline and projection plots
fig = plt.figure(Plot_Data.count)
# Number of plots to display
if projection_period:
nrows = len(baseline_period) + len(projection_period) / 2
else:
nrows = len(baseline_period) / 2
# Plot 1 - Baseline
base_df = pd.DataFrame()
base_df['y_true'] = y_true
base_df['y_pred'] = y_pred
ax1 = fig.add_subplot(nrows, 1, 1)
base_df.plot(ax=ax1, figsize=self.figsize,
title='Baseline Period ({}-{}). \nBest Model: {}. \nBaseline Adj R2: {}. \nSite: {}.'.format(baseline_period[0], baseline_period[1],
model_name, adj_r2, site))
if projection_period:
# Display projection plots
num_plot = 2
for i in range(0, len(projection_period), 2):
ax = fig.add_subplot(nrows, 1, num_plot)
period = (slice(projection_period[i], projection_period[i+1]))
project_df = pd.DataFrame()
try:
project_df['y_true'] = data.loc[period, output_col]
project_df['y_pred'] = model.predict(data.loc[period, input_col])
# Set all negative values to zero since energy > 0
project_df['y_pred'][project_df['y_pred'] < 0] = 0
project_df.plot(ax=ax, figsize=self.figsize, title='Projection Period ({}-{})'.format(projection_period[i],
projection_period[i+1]))
num_plot += 1
fig.tight_layout()
Plot_Data.count += 1
return fig, project_df['y_true'], project_df['y_pred']
except:
raise TypeError("If projecting into the future, please specify project_ind_col that has data available \
in the future time period requested.")
return fig, None, None | python | def baseline_projection_plot(self, y_true, y_pred,
baseline_period, projection_period,
model_name, adj_r2,
data, input_col, output_col, model,
site):
fig = plt.figure(Plot_Data.count)
if projection_period:
nrows = len(baseline_period) + len(projection_period) / 2
else:
nrows = len(baseline_period) / 2
base_df = pd.DataFrame()
base_df['y_true'] = y_true
base_df['y_pred'] = y_pred
ax1 = fig.add_subplot(nrows, 1, 1)
base_df.plot(ax=ax1, figsize=self.figsize,
title='Baseline Period ({}-{}). \nBest Model: {}. \nBaseline Adj R2: {}. \nSite: {}.'.format(baseline_period[0], baseline_period[1],
model_name, adj_r2, site))
if projection_period:
num_plot = 2
for i in range(0, len(projection_period), 2):
ax = fig.add_subplot(nrows, 1, num_plot)
period = (slice(projection_period[i], projection_period[i+1]))
project_df = pd.DataFrame()
try:
project_df['y_true'] = data.loc[period, output_col]
project_df['y_pred'] = model.predict(data.loc[period, input_col])
project_df['y_pred'][project_df['y_pred'] < 0] = 0
project_df.plot(ax=ax, figsize=self.figsize, title='Projection Period ({}-{})'.format(projection_period[i],
projection_period[i+1]))
num_plot += 1
fig.tight_layout()
Plot_Data.count += 1
return fig, project_df['y_true'], project_df['y_pred']
except:
raise TypeError("If projecting into the future, please specify project_ind_col that has data available \
in the future time period requested.")
return fig, None, None | [
"def",
"baseline_projection_plot",
"(",
"self",
",",
"y_true",
",",
"y_pred",
",",
"baseline_period",
",",
"projection_period",
",",
"model_name",
",",
"adj_r2",
",",
"data",
",",
"input_col",
",",
"output_col",
",",
"model",
",",
"site",
")",
":",
"# Baseline and projection plots",
"fig",
"=",
"plt",
".",
"figure",
"(",
"Plot_Data",
".",
"count",
")",
"# Number of plots to display",
"if",
"projection_period",
":",
"nrows",
"=",
"len",
"(",
"baseline_period",
")",
"+",
"len",
"(",
"projection_period",
")",
"/",
"2",
"else",
":",
"nrows",
"=",
"len",
"(",
"baseline_period",
")",
"/",
"2",
"# Plot 1 - Baseline",
"base_df",
"=",
"pd",
".",
"DataFrame",
"(",
")",
"base_df",
"[",
"'y_true'",
"]",
"=",
"y_true",
"base_df",
"[",
"'y_pred'",
"]",
"=",
"y_pred",
"ax1",
"=",
"fig",
".",
"add_subplot",
"(",
"nrows",
",",
"1",
",",
"1",
")",
"base_df",
".",
"plot",
"(",
"ax",
"=",
"ax1",
",",
"figsize",
"=",
"self",
".",
"figsize",
",",
"title",
"=",
"'Baseline Period ({}-{}). \\nBest Model: {}. \\nBaseline Adj R2: {}. \\nSite: {}.'",
".",
"format",
"(",
"baseline_period",
"[",
"0",
"]",
",",
"baseline_period",
"[",
"1",
"]",
",",
"model_name",
",",
"adj_r2",
",",
"site",
")",
")",
"if",
"projection_period",
":",
"# Display projection plots",
"num_plot",
"=",
"2",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"projection_period",
")",
",",
"2",
")",
":",
"ax",
"=",
"fig",
".",
"add_subplot",
"(",
"nrows",
",",
"1",
",",
"num_plot",
")",
"period",
"=",
"(",
"slice",
"(",
"projection_period",
"[",
"i",
"]",
",",
"projection_period",
"[",
"i",
"+",
"1",
"]",
")",
")",
"project_df",
"=",
"pd",
".",
"DataFrame",
"(",
")",
"try",
":",
"project_df",
"[",
"'y_true'",
"]",
"=",
"data",
".",
"loc",
"[",
"period",
",",
"output_col",
"]",
"project_df",
"[",
"'y_pred'",
"]",
"=",
"model",
".",
"predict",
"(",
"data",
".",
"loc",
"[",
"period",
",",
"input_col",
"]",
")",
"# Set all negative values to zero since energy > 0",
"project_df",
"[",
"'y_pred'",
"]",
"[",
"project_df",
"[",
"'y_pred'",
"]",
"<",
"0",
"]",
"=",
"0",
"project_df",
".",
"plot",
"(",
"ax",
"=",
"ax",
",",
"figsize",
"=",
"self",
".",
"figsize",
",",
"title",
"=",
"'Projection Period ({}-{})'",
".",
"format",
"(",
"projection_period",
"[",
"i",
"]",
",",
"projection_period",
"[",
"i",
"+",
"1",
"]",
")",
")",
"num_plot",
"+=",
"1",
"fig",
".",
"tight_layout",
"(",
")",
"Plot_Data",
".",
"count",
"+=",
"1",
"return",
"fig",
",",
"project_df",
"[",
"'y_true'",
"]",
",",
"project_df",
"[",
"'y_pred'",
"]",
"except",
":",
"raise",
"TypeError",
"(",
"\"If projecting into the future, please specify project_ind_col that has data available \\\n in the future time period requested.\"",
")",
"return",
"fig",
",",
"None",
",",
"None"
]
| Create baseline and projection plots.
Parameters
----------
y_true : pd.Series()
Actual y values.
y_pred : np.ndarray
Predicted y values.
baseline_period : list(str)
Baseline period.
projection_period : list(str)
Projection periods.
model_name : str
Optimal model's name.
adj_r2 : float
Adjusted R2 score of optimal model.
data : pd.Dataframe()
Data containing real values.
input_col : list(str)
Predictor column(s).
output_col : str
Target column.
model : func
Optimal model.
Returns
-------
matplotlib.figure
Baseline plot | [
"Create",
"baseline",
"and",
"projection",
"plots",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Plot_Data.py#L66-L147 |
SoftwareDefinedBuildings/XBOS | apps/system_identification/rtu_energy.py | get_thermostat_meter_data | def get_thermostat_meter_data(zone):
"""
This method subscribes to the output of the meter for the given zone.
It returns a handler to call when you want to stop subscribing data, which
returns a list of the data readins over that time period
"""
meter_uri = zone2meter.get(zone, "None")
data = []
def cb(msg):
for po in msg.payload_objects:
if po.type_dotted == (2,0,9,1):
m = msgpack.unpackb(po.content)
data.append(m['current_demand'])
handle = c.subscribe(meter_uri+"/signal/meter", cb)
def stop():
c.unsubscribe(handle)
return data
return stop | python | def get_thermostat_meter_data(zone):
meter_uri = zone2meter.get(zone, "None")
data = []
def cb(msg):
for po in msg.payload_objects:
if po.type_dotted == (2,0,9,1):
m = msgpack.unpackb(po.content)
data.append(m['current_demand'])
handle = c.subscribe(meter_uri+"/signal/meter", cb)
def stop():
c.unsubscribe(handle)
return data
return stop | [
"def",
"get_thermostat_meter_data",
"(",
"zone",
")",
":",
"meter_uri",
"=",
"zone2meter",
".",
"get",
"(",
"zone",
",",
"\"None\"",
")",
"data",
"=",
"[",
"]",
"def",
"cb",
"(",
"msg",
")",
":",
"for",
"po",
"in",
"msg",
".",
"payload_objects",
":",
"if",
"po",
".",
"type_dotted",
"==",
"(",
"2",
",",
"0",
",",
"9",
",",
"1",
")",
":",
"m",
"=",
"msgpack",
".",
"unpackb",
"(",
"po",
".",
"content",
")",
"data",
".",
"append",
"(",
"m",
"[",
"'current_demand'",
"]",
")",
"handle",
"=",
"c",
".",
"subscribe",
"(",
"meter_uri",
"+",
"\"/signal/meter\"",
",",
"cb",
")",
"def",
"stop",
"(",
")",
":",
"c",
".",
"unsubscribe",
"(",
"handle",
")",
"return",
"data",
"return",
"stop"
]
| This method subscribes to the output of the meter for the given zone.
It returns a handler to call when you want to stop subscribing data, which
returns a list of the data readins over that time period | [
"This",
"method",
"subscribes",
"to",
"the",
"output",
"of",
"the",
"meter",
"for",
"the",
"given",
"zone",
".",
"It",
"returns",
"a",
"handler",
"to",
"call",
"when",
"you",
"want",
"to",
"stop",
"subscribing",
"data",
"which",
"returns",
"a",
"list",
"of",
"the",
"data",
"readins",
"over",
"that",
"time",
"period"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/system_identification/rtu_energy.py#L53-L71 |
SoftwareDefinedBuildings/XBOS | apps/system_identification/rtu_energy.py | call_heat | def call_heat(tstat):
"""
Adjusts the temperature setpoints in order to call for heating. Returns
a handler to call when you want to reset the thermostat
"""
current_hsp, current_csp = tstat.heating_setpoint, tstat.cooling_setpoint
current_temp = tstat.temperature
tstat.write({
'heating_setpoint': current_temp+10,
'cooling_setpoint': current_temp+20,
'mode': HEAT,
})
def restore():
tstat.write({
'heating_setpoint': current_hsp,
'cooling_setpoint': current_csp,
'mode': AUTO,
})
return restore | python | def call_heat(tstat):
current_hsp, current_csp = tstat.heating_setpoint, tstat.cooling_setpoint
current_temp = tstat.temperature
tstat.write({
'heating_setpoint': current_temp+10,
'cooling_setpoint': current_temp+20,
'mode': HEAT,
})
def restore():
tstat.write({
'heating_setpoint': current_hsp,
'cooling_setpoint': current_csp,
'mode': AUTO,
})
return restore | [
"def",
"call_heat",
"(",
"tstat",
")",
":",
"current_hsp",
",",
"current_csp",
"=",
"tstat",
".",
"heating_setpoint",
",",
"tstat",
".",
"cooling_setpoint",
"current_temp",
"=",
"tstat",
".",
"temperature",
"tstat",
".",
"write",
"(",
"{",
"'heating_setpoint'",
":",
"current_temp",
"+",
"10",
",",
"'cooling_setpoint'",
":",
"current_temp",
"+",
"20",
",",
"'mode'",
":",
"HEAT",
",",
"}",
")",
"def",
"restore",
"(",
")",
":",
"tstat",
".",
"write",
"(",
"{",
"'heating_setpoint'",
":",
"current_hsp",
",",
"'cooling_setpoint'",
":",
"current_csp",
",",
"'mode'",
":",
"AUTO",
",",
"}",
")",
"return",
"restore"
]
| Adjusts the temperature setpoints in order to call for heating. Returns
a handler to call when you want to reset the thermostat | [
"Adjusts",
"the",
"temperature",
"setpoints",
"in",
"order",
"to",
"call",
"for",
"heating",
".",
"Returns",
"a",
"handler",
"to",
"call",
"when",
"you",
"want",
"to",
"reset",
"the",
"thermostat"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/system_identification/rtu_energy.py#L73-L92 |
SoftwareDefinedBuildings/XBOS | apps/system_identification/rtu_energy.py | call_cool | def call_cool(tstat):
"""
Adjusts the temperature setpoints in order to call for cooling. Returns
a handler to call when you want to reset the thermostat
"""
current_hsp, current_csp = tstat.heating_setpoint, tstat.cooling_setpoint
current_temp = tstat.temperature
tstat.write({
'heating_setpoint': current_temp-20,
'cooling_setpoint': current_temp-10,
'mode': COOL,
})
def restore():
tstat.write({
'heating_setpoint': current_hsp,
'cooling_setpoint': current_csp,
'mode': AUTO,
})
return restore | python | def call_cool(tstat):
current_hsp, current_csp = tstat.heating_setpoint, tstat.cooling_setpoint
current_temp = tstat.temperature
tstat.write({
'heating_setpoint': current_temp-20,
'cooling_setpoint': current_temp-10,
'mode': COOL,
})
def restore():
tstat.write({
'heating_setpoint': current_hsp,
'cooling_setpoint': current_csp,
'mode': AUTO,
})
return restore | [
"def",
"call_cool",
"(",
"tstat",
")",
":",
"current_hsp",
",",
"current_csp",
"=",
"tstat",
".",
"heating_setpoint",
",",
"tstat",
".",
"cooling_setpoint",
"current_temp",
"=",
"tstat",
".",
"temperature",
"tstat",
".",
"write",
"(",
"{",
"'heating_setpoint'",
":",
"current_temp",
"-",
"20",
",",
"'cooling_setpoint'",
":",
"current_temp",
"-",
"10",
",",
"'mode'",
":",
"COOL",
",",
"}",
")",
"def",
"restore",
"(",
")",
":",
"tstat",
".",
"write",
"(",
"{",
"'heating_setpoint'",
":",
"current_hsp",
",",
"'cooling_setpoint'",
":",
"current_csp",
",",
"'mode'",
":",
"AUTO",
",",
"}",
")",
"return",
"restore"
]
| Adjusts the temperature setpoints in order to call for cooling. Returns
a handler to call when you want to reset the thermostat | [
"Adjusts",
"the",
"temperature",
"setpoints",
"in",
"order",
"to",
"call",
"for",
"cooling",
".",
"Returns",
"a",
"handler",
"to",
"call",
"when",
"you",
"want",
"to",
"reset",
"the",
"thermostat"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/system_identification/rtu_energy.py#L94-L113 |
SoftwareDefinedBuildings/XBOS | apps/system_identification/rtu_energy.py | call_fan | def call_fan(tstat):
"""
Toggles the fan
"""
old_fan = tstat.fan
tstat.write({
'fan': not old_fan,
})
def restore():
tstat.write({
'fan': old_fan,
})
return restore | python | def call_fan(tstat):
old_fan = tstat.fan
tstat.write({
'fan': not old_fan,
})
def restore():
tstat.write({
'fan': old_fan,
})
return restore | [
"def",
"call_fan",
"(",
"tstat",
")",
":",
"old_fan",
"=",
"tstat",
".",
"fan",
"tstat",
".",
"write",
"(",
"{",
"'fan'",
":",
"not",
"old_fan",
",",
"}",
")",
"def",
"restore",
"(",
")",
":",
"tstat",
".",
"write",
"(",
"{",
"'fan'",
":",
"old_fan",
",",
"}",
")",
"return",
"restore"
]
| Toggles the fan | [
"Toggles",
"the",
"fan"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/system_identification/rtu_energy.py#L115-L129 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Import_Data.py | Import_Data.import_csv | def import_csv(self, file_name='*', folder_name='.', head_row=0, index_col=0, convert_col=True, concat_files=False):
""" Imports csv file(s) and stores the result in data.
Note
----
1. If folder exists out of current directory, folder_name should contain correct regex
2. Assuming there's no file called "\*.csv"
Parameters
----------
file_name : str
CSV file to be imported. Defaults to '\*', i.e. all csv files in the folder.
folder_name : str
Folder where file resides. Defaults to '.', i.e. current directory.
head_row : int
Skips all rows from 0 to head_row-1
index_col : int
Skips all columns from 0 to index_col-1
convert_col : bool
Convert columns to numeric type
concat_files : bool
Appends data from files to result dataframe
"""
# Import a specific or all csv files in folder
if isinstance(file_name, str) and isinstance(folder_name, str):
try:
self.data = self._load_csv(file_name, folder_name, head_row, index_col, convert_col, concat_files)
except Exception as e:
raise e
# Import multiple csv files in a particular folder.
elif isinstance(file_name, list) and isinstance(folder_name, str):
for i, file in enumerate(file_name):
if isinstance(head_row, list):
_head_row = head_row[i]
else:
_head_row = head_row
if isinstance(index_col, list):
_index_col = index_col[i]
else:
_index_col = index_col
try:
data_tmp = self._load_csv(file, folder_name, _head_row, _index_col, convert_col, concat_files)
if concat_files:
self.data = self.data.append(data_tmp, ignore_index=False, verify_integrity=False)
else:
self.data = self.data.join(data_tmp, how="outer")
except Exception as e:
raise e
else:
# Current implementation can't accept,
# 1. file_name of type str and folder_name of type list(str)
# 2. file_name and folder_name both of type list(str)
raise NotImplementedError("Filename and Folder name can't both be of type list.") | python | def import_csv(self, file_name='*', folder_name='.', head_row=0, index_col=0, convert_col=True, concat_files=False):
if isinstance(file_name, str) and isinstance(folder_name, str):
try:
self.data = self._load_csv(file_name, folder_name, head_row, index_col, convert_col, concat_files)
except Exception as e:
raise e
elif isinstance(file_name, list) and isinstance(folder_name, str):
for i, file in enumerate(file_name):
if isinstance(head_row, list):
_head_row = head_row[i]
else:
_head_row = head_row
if isinstance(index_col, list):
_index_col = index_col[i]
else:
_index_col = index_col
try:
data_tmp = self._load_csv(file, folder_name, _head_row, _index_col, convert_col, concat_files)
if concat_files:
self.data = self.data.append(data_tmp, ignore_index=False, verify_integrity=False)
else:
self.data = self.data.join(data_tmp, how="outer")
except Exception as e:
raise e
else:
raise NotImplementedError("Filename and Folder name can't both be of type list.") | [
"def",
"import_csv",
"(",
"self",
",",
"file_name",
"=",
"'*'",
",",
"folder_name",
"=",
"'.'",
",",
"head_row",
"=",
"0",
",",
"index_col",
"=",
"0",
",",
"convert_col",
"=",
"True",
",",
"concat_files",
"=",
"False",
")",
":",
"# Import a specific or all csv files in folder",
"if",
"isinstance",
"(",
"file_name",
",",
"str",
")",
"and",
"isinstance",
"(",
"folder_name",
",",
"str",
")",
":",
"try",
":",
"self",
".",
"data",
"=",
"self",
".",
"_load_csv",
"(",
"file_name",
",",
"folder_name",
",",
"head_row",
",",
"index_col",
",",
"convert_col",
",",
"concat_files",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"e",
"# Import multiple csv files in a particular folder.",
"elif",
"isinstance",
"(",
"file_name",
",",
"list",
")",
"and",
"isinstance",
"(",
"folder_name",
",",
"str",
")",
":",
"for",
"i",
",",
"file",
"in",
"enumerate",
"(",
"file_name",
")",
":",
"if",
"isinstance",
"(",
"head_row",
",",
"list",
")",
":",
"_head_row",
"=",
"head_row",
"[",
"i",
"]",
"else",
":",
"_head_row",
"=",
"head_row",
"if",
"isinstance",
"(",
"index_col",
",",
"list",
")",
":",
"_index_col",
"=",
"index_col",
"[",
"i",
"]",
"else",
":",
"_index_col",
"=",
"index_col",
"try",
":",
"data_tmp",
"=",
"self",
".",
"_load_csv",
"(",
"file",
",",
"folder_name",
",",
"_head_row",
",",
"_index_col",
",",
"convert_col",
",",
"concat_files",
")",
"if",
"concat_files",
":",
"self",
".",
"data",
"=",
"self",
".",
"data",
".",
"append",
"(",
"data_tmp",
",",
"ignore_index",
"=",
"False",
",",
"verify_integrity",
"=",
"False",
")",
"else",
":",
"self",
".",
"data",
"=",
"self",
".",
"data",
".",
"join",
"(",
"data_tmp",
",",
"how",
"=",
"\"outer\"",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"e",
"else",
":",
"# Current implementation can't accept,",
"# 1. file_name of type str and folder_name of type list(str)",
"# 2. file_name and folder_name both of type list(str)",
"raise",
"NotImplementedError",
"(",
"\"Filename and Folder name can't both be of type list.\"",
")"
]
| Imports csv file(s) and stores the result in data.
Note
----
1. If folder exists out of current directory, folder_name should contain correct regex
2. Assuming there's no file called "\*.csv"
Parameters
----------
file_name : str
CSV file to be imported. Defaults to '\*', i.e. all csv files in the folder.
folder_name : str
Folder where file resides. Defaults to '.', i.e. current directory.
head_row : int
Skips all rows from 0 to head_row-1
index_col : int
Skips all columns from 0 to index_col-1
convert_col : bool
Convert columns to numeric type
concat_files : bool
Appends data from files to result dataframe | [
"Imports",
"csv",
"file",
"(",
"s",
")",
"and",
"stores",
"the",
"result",
"in",
"data",
".",
"Note",
"----",
"1",
".",
"If",
"folder",
"exists",
"out",
"of",
"current",
"directory",
"folder_name",
"should",
"contain",
"correct",
"regex",
"2",
".",
"Assuming",
"there",
"s",
"no",
"file",
"called",
"\\",
"*",
".",
"csv"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Import_Data.py#L44-L103 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Import_Data.py | Import_Data._load_csv | def _load_csv(self, file_name, folder_name, head_row, index_col, convert_col, concat_files):
""" Load single csv file.
Parameters
----------
file_name : str
CSV file to be imported. Defaults to '*' - all csv files in the folder.
folder_name : str
Folder where file resides. Defaults to '.' - current directory.
head_row : int
Skips all rows from 0 to head_row-1
index_col : int
Skips all columns from 0 to index_col-1
convert_col : bool
Convert columns to numeric type
concat_files : bool
Appends data from files to result dataframe
Returns
-------
pd.DataFrame()
Dataframe containing csv data
"""
# Denotes all csv files
if file_name == "*":
if not os.path.isdir(folder_name):
raise OSError('Folder does not exist.')
else:
file_name_list = sorted(glob.glob(folder_name + '*.csv'))
if not file_name_list:
raise OSError('Either the folder does not contain any csv files or invalid folder provided.')
else:
# Call previous function again with parameters changed (file_name=file_name_list, folder_name=None)
# Done to reduce redundancy of code
self.import_csv(file_name=file_name_list, head_row=head_row, index_col=index_col,
convert_col=convert_col, concat_files=concat_files)
return self.data
else:
if not os.path.isdir(folder_name):
raise OSError('Folder does not exist.')
else:
path = os.path.join(folder_name, file_name)
if head_row > 0:
data = pd.read_csv(path, index_col=index_col, skiprows=[i for i in range(head_row-1)])
else:
data = pd.read_csv(path, index_col=index_col)
# Convert time into datetime format
try:
# Special case format 1/4/14 21:30
data.index = pd.to_datetime(data.index, format='%m/%d/%y %H:%M')
except:
data.index = pd.to_datetime(data.index, dayfirst=False, infer_datetime_format=True)
# Convert all columns to numeric type
if convert_col:
# Check columns in dataframe to see if they are numeric
for col in data.columns:
# If particular column is not numeric, then convert to numeric type
if data[col].dtype != np.number:
data[col] = pd.to_numeric(data[col], errors="coerce")
return data | python | def _load_csv(self, file_name, folder_name, head_row, index_col, convert_col, concat_files):
if file_name == "*":
if not os.path.isdir(folder_name):
raise OSError('Folder does not exist.')
else:
file_name_list = sorted(glob.glob(folder_name + '*.csv'))
if not file_name_list:
raise OSError('Either the folder does not contain any csv files or invalid folder provided.')
else:
self.import_csv(file_name=file_name_list, head_row=head_row, index_col=index_col,
convert_col=convert_col, concat_files=concat_files)
return self.data
else:
if not os.path.isdir(folder_name):
raise OSError('Folder does not exist.')
else:
path = os.path.join(folder_name, file_name)
if head_row > 0:
data = pd.read_csv(path, index_col=index_col, skiprows=[i for i in range(head_row-1)])
else:
data = pd.read_csv(path, index_col=index_col)
try:
data.index = pd.to_datetime(data.index, format='%m/%d/%y %H:%M')
except:
data.index = pd.to_datetime(data.index, dayfirst=False, infer_datetime_format=True)
if convert_col:
for col in data.columns:
if data[col].dtype != np.number:
data[col] = pd.to_numeric(data[col], errors="coerce")
return data | [
"def",
"_load_csv",
"(",
"self",
",",
"file_name",
",",
"folder_name",
",",
"head_row",
",",
"index_col",
",",
"convert_col",
",",
"concat_files",
")",
":",
"# Denotes all csv files",
"if",
"file_name",
"==",
"\"*\"",
":",
"if",
"not",
"os",
".",
"path",
".",
"isdir",
"(",
"folder_name",
")",
":",
"raise",
"OSError",
"(",
"'Folder does not exist.'",
")",
"else",
":",
"file_name_list",
"=",
"sorted",
"(",
"glob",
".",
"glob",
"(",
"folder_name",
"+",
"'*.csv'",
")",
")",
"if",
"not",
"file_name_list",
":",
"raise",
"OSError",
"(",
"'Either the folder does not contain any csv files or invalid folder provided.'",
")",
"else",
":",
"# Call previous function again with parameters changed (file_name=file_name_list, folder_name=None)",
"# Done to reduce redundancy of code",
"self",
".",
"import_csv",
"(",
"file_name",
"=",
"file_name_list",
",",
"head_row",
"=",
"head_row",
",",
"index_col",
"=",
"index_col",
",",
"convert_col",
"=",
"convert_col",
",",
"concat_files",
"=",
"concat_files",
")",
"return",
"self",
".",
"data",
"else",
":",
"if",
"not",
"os",
".",
"path",
".",
"isdir",
"(",
"folder_name",
")",
":",
"raise",
"OSError",
"(",
"'Folder does not exist.'",
")",
"else",
":",
"path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"folder_name",
",",
"file_name",
")",
"if",
"head_row",
">",
"0",
":",
"data",
"=",
"pd",
".",
"read_csv",
"(",
"path",
",",
"index_col",
"=",
"index_col",
",",
"skiprows",
"=",
"[",
"i",
"for",
"i",
"in",
"range",
"(",
"head_row",
"-",
"1",
")",
"]",
")",
"else",
":",
"data",
"=",
"pd",
".",
"read_csv",
"(",
"path",
",",
"index_col",
"=",
"index_col",
")",
"# Convert time into datetime format",
"try",
":",
"# Special case format 1/4/14 21:30",
"data",
".",
"index",
"=",
"pd",
".",
"to_datetime",
"(",
"data",
".",
"index",
",",
"format",
"=",
"'%m/%d/%y %H:%M'",
")",
"except",
":",
"data",
".",
"index",
"=",
"pd",
".",
"to_datetime",
"(",
"data",
".",
"index",
",",
"dayfirst",
"=",
"False",
",",
"infer_datetime_format",
"=",
"True",
")",
"# Convert all columns to numeric type",
"if",
"convert_col",
":",
"# Check columns in dataframe to see if they are numeric",
"for",
"col",
"in",
"data",
".",
"columns",
":",
"# If particular column is not numeric, then convert to numeric type",
"if",
"data",
"[",
"col",
"]",
".",
"dtype",
"!=",
"np",
".",
"number",
":",
"data",
"[",
"col",
"]",
"=",
"pd",
".",
"to_numeric",
"(",
"data",
"[",
"col",
"]",
",",
"errors",
"=",
"\"coerce\"",
")",
"return",
"data"
]
| Load single csv file.
Parameters
----------
file_name : str
CSV file to be imported. Defaults to '*' - all csv files in the folder.
folder_name : str
Folder where file resides. Defaults to '.' - current directory.
head_row : int
Skips all rows from 0 to head_row-1
index_col : int
Skips all columns from 0 to index_col-1
convert_col : bool
Convert columns to numeric type
concat_files : bool
Appends data from files to result dataframe
Returns
-------
pd.DataFrame()
Dataframe containing csv data | [
"Load",
"single",
"csv",
"file",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Import_Data.py#L106-L174 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Import_Data.py | Import_MDAL.convert_to_utc | def convert_to_utc(time):
""" Convert time to UTC
Parameters
----------
time : str
Time to convert. Has to be of the format '2016-01-01T00:00:00-08:00'.
Returns
-------
str
UTC timestamp.
"""
# time is already in UTC
if 'Z' in time:
return time
else:
time_formatted = time[:-3] + time[-2:]
dt = datetime.strptime(time_formatted, '%Y-%m-%dT%H:%M:%S%z')
dt = dt.astimezone(timezone('UTC'))
return dt.strftime('%Y-%m-%dT%H:%M:%SZ') | python | def convert_to_utc(time):
if 'Z' in time:
return time
else:
time_formatted = time[:-3] + time[-2:]
dt = datetime.strptime(time_formatted, '%Y-%m-%dT%H:%M:%S%z')
dt = dt.astimezone(timezone('UTC'))
return dt.strftime('%Y-%m-%dT%H:%M:%SZ') | [
"def",
"convert_to_utc",
"(",
"time",
")",
":",
"# time is already in UTC",
"if",
"'Z'",
"in",
"time",
":",
"return",
"time",
"else",
":",
"time_formatted",
"=",
"time",
"[",
":",
"-",
"3",
"]",
"+",
"time",
"[",
"-",
"2",
":",
"]",
"dt",
"=",
"datetime",
".",
"strptime",
"(",
"time_formatted",
",",
"'%Y-%m-%dT%H:%M:%S%z'",
")",
"dt",
"=",
"dt",
".",
"astimezone",
"(",
"timezone",
"(",
"'UTC'",
")",
")",
"return",
"dt",
".",
"strftime",
"(",
"'%Y-%m-%dT%H:%M:%SZ'",
")"
]
| Convert time to UTC
Parameters
----------
time : str
Time to convert. Has to be of the format '2016-01-01T00:00:00-08:00'.
Returns
-------
str
UTC timestamp. | [
"Convert",
"time",
"to",
"UTC"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Import_Data.py#L190-L212 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Import_Data.py | Import_MDAL.get_meter | def get_meter(self, site, start, end, point_type='Green_Button_Meter',
var="meter", agg='MEAN', window='24h', aligned=True, return_names=True):
""" Get meter data from MDAL.
Parameters
----------
site : str
Building name.
start : str
Start date - 'YYYY-MM-DDTHH:MM:SSZ'
end : str
End date - 'YYYY-MM-DDTHH:MM:SSZ'
point_type : str
Type of data, i.e. Green_Button_Meter, Building_Electric_Meter...
var : str
Variable - "meter", "weather"...
agg : str
Aggregation - MEAN, SUM, RAW...
window : str
Size of the moving window.
aligned : bool
???
return_names : bool
???
Returns
-------
(df, mapping, context)
???
"""
# Convert time to UTC
start = self.convert_to_utc(start)
end = self.convert_to_utc(end)
request = self.compose_MDAL_dic(point_type=point_type, site=site, start=start, end=end,
var=var, agg=agg, window=window, aligned=aligned)
resp = self.m.query(request)
if return_names:
resp = self.replace_uuid_w_names(resp)
return resp | python | def get_meter(self, site, start, end, point_type='Green_Button_Meter',
var="meter", agg='MEAN', window='24h', aligned=True, return_names=True):
start = self.convert_to_utc(start)
end = self.convert_to_utc(end)
request = self.compose_MDAL_dic(point_type=point_type, site=site, start=start, end=end,
var=var, agg=agg, window=window, aligned=aligned)
resp = self.m.query(request)
if return_names:
resp = self.replace_uuid_w_names(resp)
return resp | [
"def",
"get_meter",
"(",
"self",
",",
"site",
",",
"start",
",",
"end",
",",
"point_type",
"=",
"'Green_Button_Meter'",
",",
"var",
"=",
"\"meter\"",
",",
"agg",
"=",
"'MEAN'",
",",
"window",
"=",
"'24h'",
",",
"aligned",
"=",
"True",
",",
"return_names",
"=",
"True",
")",
":",
"# Convert time to UTC",
"start",
"=",
"self",
".",
"convert_to_utc",
"(",
"start",
")",
"end",
"=",
"self",
".",
"convert_to_utc",
"(",
"end",
")",
"request",
"=",
"self",
".",
"compose_MDAL_dic",
"(",
"point_type",
"=",
"point_type",
",",
"site",
"=",
"site",
",",
"start",
"=",
"start",
",",
"end",
"=",
"end",
",",
"var",
"=",
"var",
",",
"agg",
"=",
"agg",
",",
"window",
"=",
"window",
",",
"aligned",
"=",
"aligned",
")",
"resp",
"=",
"self",
".",
"m",
".",
"query",
"(",
"request",
")",
"if",
"return_names",
":",
"resp",
"=",
"self",
".",
"replace_uuid_w_names",
"(",
"resp",
")",
"return",
"resp"
]
| Get meter data from MDAL.
Parameters
----------
site : str
Building name.
start : str
Start date - 'YYYY-MM-DDTHH:MM:SSZ'
end : str
End date - 'YYYY-MM-DDTHH:MM:SSZ'
point_type : str
Type of data, i.e. Green_Button_Meter, Building_Electric_Meter...
var : str
Variable - "meter", "weather"...
agg : str
Aggregation - MEAN, SUM, RAW...
window : str
Size of the moving window.
aligned : bool
???
return_names : bool
???
Returns
-------
(df, mapping, context)
??? | [
"Get",
"meter",
"data",
"from",
"MDAL",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Import_Data.py#L215-L258 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Import_Data.py | Import_MDAL.get_tstat | def get_tstat(self, site, start, end, var="tstat_temp", agg='MEAN', window='24h', aligned=True, return_names=True):
""" Get thermostat data from MDAL.
Parameters
----------
site : str
Building name.
start : str
Start date - 'YYYY-MM-DDTHH:MM:SSZ'
end : str
End date - 'YYYY-MM-DDTHH:MM:SSZ'
var : str
Variable - "meter", "weather"...
agg : str
Aggregation - MEAN, SUM, RAW...
window : str
Size of the moving window.
aligned : bool
???
return_names : bool
???
Returns
-------
(df, mapping, context)
???
"""
# Convert time to UTC
start = self.convert_to_utc(start)
end = self.convert_to_utc(end)
point_map = {
"tstat_state" : "Thermostat_Status",
"tstat_hsp" : "Supply_Air_Temperature_Heating_Setpoint",
"tstat_csp" : "Supply_Air_Temperature_Cooling_Setpoint",
"tstat_temp": "Temperature_Sensor"
}
if isinstance(var,list):
point_type = [point_map[point_type] for point_type in var] # list of all the point names using BRICK classes
else:
point_type = point_map[var] # single value using BRICK classes
request = self.compose_MDAL_dic(point_type=point_type, site=site, start=start, end=end,
var=var, agg=agg, window=window, aligned=aligned)
resp = self.m.query(request)
if return_names:
resp = self.replace_uuid_w_names(resp)
return resp | python | def get_tstat(self, site, start, end, var="tstat_temp", agg='MEAN', window='24h', aligned=True, return_names=True):
start = self.convert_to_utc(start)
end = self.convert_to_utc(end)
point_map = {
"tstat_state" : "Thermostat_Status",
"tstat_hsp" : "Supply_Air_Temperature_Heating_Setpoint",
"tstat_csp" : "Supply_Air_Temperature_Cooling_Setpoint",
"tstat_temp": "Temperature_Sensor"
}
if isinstance(var,list):
point_type = [point_map[point_type] for point_type in var]
else:
point_type = point_map[var]
request = self.compose_MDAL_dic(point_type=point_type, site=site, start=start, end=end,
var=var, agg=agg, window=window, aligned=aligned)
resp = self.m.query(request)
if return_names:
resp = self.replace_uuid_w_names(resp)
return resp | [
"def",
"get_tstat",
"(",
"self",
",",
"site",
",",
"start",
",",
"end",
",",
"var",
"=",
"\"tstat_temp\"",
",",
"agg",
"=",
"'MEAN'",
",",
"window",
"=",
"'24h'",
",",
"aligned",
"=",
"True",
",",
"return_names",
"=",
"True",
")",
":",
"# Convert time to UTC",
"start",
"=",
"self",
".",
"convert_to_utc",
"(",
"start",
")",
"end",
"=",
"self",
".",
"convert_to_utc",
"(",
"end",
")",
"point_map",
"=",
"{",
"\"tstat_state\"",
":",
"\"Thermostat_Status\"",
",",
"\"tstat_hsp\"",
":",
"\"Supply_Air_Temperature_Heating_Setpoint\"",
",",
"\"tstat_csp\"",
":",
"\"Supply_Air_Temperature_Cooling_Setpoint\"",
",",
"\"tstat_temp\"",
":",
"\"Temperature_Sensor\"",
"}",
"if",
"isinstance",
"(",
"var",
",",
"list",
")",
":",
"point_type",
"=",
"[",
"point_map",
"[",
"point_type",
"]",
"for",
"point_type",
"in",
"var",
"]",
"# list of all the point names using BRICK classes",
"else",
":",
"point_type",
"=",
"point_map",
"[",
"var",
"]",
"# single value using BRICK classes",
"request",
"=",
"self",
".",
"compose_MDAL_dic",
"(",
"point_type",
"=",
"point_type",
",",
"site",
"=",
"site",
",",
"start",
"=",
"start",
",",
"end",
"=",
"end",
",",
"var",
"=",
"var",
",",
"agg",
"=",
"agg",
",",
"window",
"=",
"window",
",",
"aligned",
"=",
"aligned",
")",
"resp",
"=",
"self",
".",
"m",
".",
"query",
"(",
"request",
")",
"if",
"return_names",
":",
"resp",
"=",
"self",
".",
"replace_uuid_w_names",
"(",
"resp",
")",
"return",
"resp"
]
| Get thermostat data from MDAL.
Parameters
----------
site : str
Building name.
start : str
Start date - 'YYYY-MM-DDTHH:MM:SSZ'
end : str
End date - 'YYYY-MM-DDTHH:MM:SSZ'
var : str
Variable - "meter", "weather"...
agg : str
Aggregation - MEAN, SUM, RAW...
window : str
Size of the moving window.
aligned : bool
???
return_names : bool
???
Returns
-------
(df, mapping, context)
??? | [
"Get",
"thermostat",
"data",
"from",
"MDAL",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Import_Data.py#L307-L359 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Import_Data.py | Import_MDAL.compose_MDAL_dic | def compose_MDAL_dic(self, site, point_type,
start, end, var, agg, window, aligned, points=None, return_names=False):
""" Create dictionary for MDAL request.
Parameters
----------
site : str
Building name.
start : str
Start date - 'YYYY-MM-DDTHH:MM:SSZ'
end : str
End date - 'YYYY-MM-DDTHH:MM:SSZ'
point_type : str
Type of data, i.e. Green_Button_Meter, Building_Electric_Meter...
var : str
Variable - "meter", "weather"...
agg : str
Aggregation - MEAN, SUM, RAW...
window : str
Size of the moving window.
aligned : bool
???
return_names : bool
???
Returns
-------
(df, mapping, context)
???
"""
# Convert time to UTC
start = self.convert_to_utc(start)
end = self.convert_to_utc(end)
request = {}
# Add Time Details - single set for one or multiple series
request['Time'] = {
'Start': start,
'End': end,
'Window': window,
'Aligned': aligned
}
# Define Variables
request["Variables"] = {}
request['Composition'] = []
request['Aggregation'] = {}
if isinstance(point_type, str): # if point_type is a string -> single type of point requested
request["Variables"][var] = self.compose_BRICK_query(point_type=point_type,site=site) # pass one point type at the time
request['Composition'] = [var]
request['Aggregation'][var] = [agg]
elif isinstance(point_type, list): # loop through all the point_types and create one section of the brick query at the time
for idx, point in enumerate(point_type):
request["Variables"][var[idx]] = self.compose_BRICK_query(point_type=point,site=site) # pass one point type at the time
request['Composition'].append(var[idx])
if isinstance(agg, str): # if agg is a string -> single type of aggregation requested
request['Aggregation'][var[idx]] = [agg]
elif isinstance(agg, list): # if agg is a list -> expected one agg per point
request['Aggregation'][var[idx]] = [agg[idx]]
return request | python | def compose_MDAL_dic(self, site, point_type,
start, end, var, agg, window, aligned, points=None, return_names=False):
start = self.convert_to_utc(start)
end = self.convert_to_utc(end)
request = {}
request['Time'] = {
'Start': start,
'End': end,
'Window': window,
'Aligned': aligned
}
request["Variables"] = {}
request['Composition'] = []
request['Aggregation'] = {}
if isinstance(point_type, str):
request["Variables"][var] = self.compose_BRICK_query(point_type=point_type,site=site)
request['Composition'] = [var]
request['Aggregation'][var] = [agg]
elif isinstance(point_type, list):
for idx, point in enumerate(point_type):
request["Variables"][var[idx]] = self.compose_BRICK_query(point_type=point,site=site)
request['Composition'].append(var[idx])
if isinstance(agg, str):
request['Aggregation'][var[idx]] = [agg]
elif isinstance(agg, list):
request['Aggregation'][var[idx]] = [agg[idx]]
return request | [
"def",
"compose_MDAL_dic",
"(",
"self",
",",
"site",
",",
"point_type",
",",
"start",
",",
"end",
",",
"var",
",",
"agg",
",",
"window",
",",
"aligned",
",",
"points",
"=",
"None",
",",
"return_names",
"=",
"False",
")",
":",
"# Convert time to UTC",
"start",
"=",
"self",
".",
"convert_to_utc",
"(",
"start",
")",
"end",
"=",
"self",
".",
"convert_to_utc",
"(",
"end",
")",
"request",
"=",
"{",
"}",
"# Add Time Details - single set for one or multiple series",
"request",
"[",
"'Time'",
"]",
"=",
"{",
"'Start'",
":",
"start",
",",
"'End'",
":",
"end",
",",
"'Window'",
":",
"window",
",",
"'Aligned'",
":",
"aligned",
"}",
"# Define Variables ",
"request",
"[",
"\"Variables\"",
"]",
"=",
"{",
"}",
"request",
"[",
"'Composition'",
"]",
"=",
"[",
"]",
"request",
"[",
"'Aggregation'",
"]",
"=",
"{",
"}",
"if",
"isinstance",
"(",
"point_type",
",",
"str",
")",
":",
"# if point_type is a string -> single type of point requested",
"request",
"[",
"\"Variables\"",
"]",
"[",
"var",
"]",
"=",
"self",
".",
"compose_BRICK_query",
"(",
"point_type",
"=",
"point_type",
",",
"site",
"=",
"site",
")",
"# pass one point type at the time",
"request",
"[",
"'Composition'",
"]",
"=",
"[",
"var",
"]",
"request",
"[",
"'Aggregation'",
"]",
"[",
"var",
"]",
"=",
"[",
"agg",
"]",
"elif",
"isinstance",
"(",
"point_type",
",",
"list",
")",
":",
"# loop through all the point_types and create one section of the brick query at the time",
"for",
"idx",
",",
"point",
"in",
"enumerate",
"(",
"point_type",
")",
":",
"request",
"[",
"\"Variables\"",
"]",
"[",
"var",
"[",
"idx",
"]",
"]",
"=",
"self",
".",
"compose_BRICK_query",
"(",
"point_type",
"=",
"point",
",",
"site",
"=",
"site",
")",
"# pass one point type at the time",
"request",
"[",
"'Composition'",
"]",
".",
"append",
"(",
"var",
"[",
"idx",
"]",
")",
"if",
"isinstance",
"(",
"agg",
",",
"str",
")",
":",
"# if agg is a string -> single type of aggregation requested",
"request",
"[",
"'Aggregation'",
"]",
"[",
"var",
"[",
"idx",
"]",
"]",
"=",
"[",
"agg",
"]",
"elif",
"isinstance",
"(",
"agg",
",",
"list",
")",
":",
"# if agg is a list -> expected one agg per point",
"request",
"[",
"'Aggregation'",
"]",
"[",
"var",
"[",
"idx",
"]",
"]",
"=",
"[",
"agg",
"[",
"idx",
"]",
"]",
"return",
"request"
]
| Create dictionary for MDAL request.
Parameters
----------
site : str
Building name.
start : str
Start date - 'YYYY-MM-DDTHH:MM:SSZ'
end : str
End date - 'YYYY-MM-DDTHH:MM:SSZ'
point_type : str
Type of data, i.e. Green_Button_Meter, Building_Electric_Meter...
var : str
Variable - "meter", "weather"...
agg : str
Aggregation - MEAN, SUM, RAW...
window : str
Size of the moving window.
aligned : bool
???
return_names : bool
???
Returns
-------
(df, mapping, context)
??? | [
"Create",
"dictionary",
"for",
"MDAL",
"request",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Import_Data.py#L362-L428 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Import_Data.py | Import_MDAL.get_point_name | def get_point_name(self, context):
""" Get point name.
Parameters
----------
context : ???
???
Returns
-------
???
???
"""
metadata_table = self.parse_context(context)
return metadata_table.apply(self.strip_point_name, axis=1) | python | def get_point_name(self, context):
metadata_table = self.parse_context(context)
return metadata_table.apply(self.strip_point_name, axis=1) | [
"def",
"get_point_name",
"(",
"self",
",",
"context",
")",
":",
"metadata_table",
"=",
"self",
".",
"parse_context",
"(",
"context",
")",
"return",
"metadata_table",
".",
"apply",
"(",
"self",
".",
"strip_point_name",
",",
"axis",
"=",
"1",
")"
]
| Get point name.
Parameters
----------
context : ???
???
Returns
-------
???
??? | [
"Get",
"point",
"name",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Import_Data.py#L510-L526 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Import_Data.py | Import_MDAL.replace_uuid_w_names | def replace_uuid_w_names(self, resp):
""" Replace the uuid's with names.
Parameters
----------
resp : ???
???
Returns
-------
???
???
"""
col_mapper = self.get_point_name(resp.context)["?point"].to_dict()
resp.df.rename(columns=col_mapper, inplace=True)
return resp | python | def replace_uuid_w_names(self, resp):
col_mapper = self.get_point_name(resp.context)["?point"].to_dict()
resp.df.rename(columns=col_mapper, inplace=True)
return resp | [
"def",
"replace_uuid_w_names",
"(",
"self",
",",
"resp",
")",
":",
"col_mapper",
"=",
"self",
".",
"get_point_name",
"(",
"resp",
".",
"context",
")",
"[",
"\"?point\"",
"]",
".",
"to_dict",
"(",
")",
"resp",
".",
"df",
".",
"rename",
"(",
"columns",
"=",
"col_mapper",
",",
"inplace",
"=",
"True",
")",
"return",
"resp"
]
| Replace the uuid's with names.
Parameters
----------
resp : ???
???
Returns
-------
???
??? | [
"Replace",
"the",
"uuid",
"s",
"with",
"names",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Import_Data.py#L529-L546 |
SoftwareDefinedBuildings/XBOS | apps/data_analysis/XBOS_data_analytics/Import_Data.py | Import_XBOS.get_weather_power_tstat | def get_weather_power_tstat(self, site, start, end, data_type=['weather', 'power']):
""" Get weather and power data.
Parameters
----------
site : str
Site name.
start : str
Start date.
end : str
End date.
data_type : str
Type of data needed (all, weather, power, temperature, hsp, csp)
"""
m = dataclient.MDALClient("corbusier.cs.berkeley.edu:8088")
request = {
"Variables": {
"greenbutton": {
"Definition": """SELECT ?meter ?meter_uuid FROM %s WHERE {
?meter rdf:type brick:Green_Button_Meter .
?meter bf:uuid ?meter_uuid
};""" % site,
},
"weather": {
"Definition": """SELECT ?t ?t_uuid FROM %s WHERE {
?t rdf:type/rdfs:subClassOf* brick:Weather_Temperature_Sensor .
?t bf:uuid ?t_uuid
};""" % site,
},
"tstat_state": {
"Definition": """SELECT ?t ?t_uuid ?tstat FROM %s WHERE {
?t rdf:type/rdfs:subClassOf* brick:Thermostat_Status .
?t bf:uuid ?t_uuid
?t bf:isPointOf ?tstat .
?tstat rdf:type brick:Thermostat
};""" % site,
},
"tstat_hsp": {
"Definition": """SELECT ?t ?t_uuid ?tstat FROM %s WHERE {
?t rdf:type/rdfs:subClassOf* brick:Supply_Air_Temperature_Heating_Setpoint .
?t bf:uuid ?t_uuid .
?t bf:isPointOf ?tstat .
?tstat rdf:type brick:Thermostat
};""" % site,
},
"tstat_csp": {
"Definition": """SELECT ?t ?t_uuid ?tstat FROM %s WHERE {
?t rdf:type/rdfs:subClassOf* brick:Supply_Air_Temperature_Cooling_Setpoint .
?t bf:uuid ?t_uuid .
?t bf:isPointOf ?tstat .
?tstat rdf:type brick:Thermostat
};""" % site,
},
"tstat_temp": {
"Definition": """SELECT ?t ?t_uuid ?tstat FROM %s WHERE {
?t rdf:type/rdfs:subClassOf* brick:Temperature_Sensor .
?t bf:uuid ?t_uuid .
?t bf:isPointOf ?tstat .
?tstat rdf:type brick:Thermostat
};""" % site,
},
},
}
# outside air temp
request['Composition'] = ['weather']
request['Aggregation'] = {'weather': ['MEAN']}
request['Time'] = {
'Start': start,
'End': end,
'Window': '15m',
'Aligned': True
}
resp_weather = m.query(request)
self.weather_data = resp_weather.df
# power
request['Composition'] = ['greenbutton']
request['Aggregation'] = {'greenbutton': ['MEAN']}
resp_power = m.query(request)
self.power_data = resp_power.df
# tstat temperature
request['Composition'] = ['tstat_temp', 'tstat_hsp', 'tstat_csp']
request['Aggregation'] = {'tstat_temp': ['MEAN']}
resp_temp = m.query(request)
self.temp_data = resp_temp
# tstat heat setpoint
request['Composition'] = ['tstat_hsp']
request['Aggregation'] = {'tstat_hsp': ['MAX']}
resp_hsp = m.query(request)
self.hsp_data = resp_hsp
# tstat cool setpoint
request['Composition'] = ['tstat_csp']
request['Aggregation'] = {'tstat_csp': ['MAX']}
resp_csp = m.query(request)
self.csp_data = resp_csp
mapping = {
'weather': resp_weather,
'power': resp_power,
'temperature': resp_temp,
'hsp': resp_hsp,
'csp': resp_csp
}
first = True
for dat in data_type:
if first:
try:
self.data = mapping[dat].df
first = False
except:
raise SystemError('Undefined data_type (Make sure all characters are lowercase)')
else:
try:
self.data = self.data.join(mapping[dat].df)
except:
raise SystemError('Undefined data_type (Make sure all characters are lowercase)')
return mapping | python | def get_weather_power_tstat(self, site, start, end, data_type=['weather', 'power']):
m = dataclient.MDALClient("corbusier.cs.berkeley.edu:8088")
request = {
"Variables": {
"greenbutton": {
"Definition": % site,
},
"weather": {
"Definition": % site,
},
"tstat_state": {
"Definition": % site,
},
"tstat_hsp": {
"Definition": % site,
},
"tstat_csp": {
"Definition": % site,
},
"tstat_temp": {
"Definition": % site,
},
},
}
request['Composition'] = ['weather']
request['Aggregation'] = {'weather': ['MEAN']}
request['Time'] = {
'Start': start,
'End': end,
'Window': '15m',
'Aligned': True
}
resp_weather = m.query(request)
self.weather_data = resp_weather.df
request['Composition'] = ['greenbutton']
request['Aggregation'] = {'greenbutton': ['MEAN']}
resp_power = m.query(request)
self.power_data = resp_power.df
request['Composition'] = ['tstat_temp', 'tstat_hsp', 'tstat_csp']
request['Aggregation'] = {'tstat_temp': ['MEAN']}
resp_temp = m.query(request)
self.temp_data = resp_temp
request['Composition'] = ['tstat_hsp']
request['Aggregation'] = {'tstat_hsp': ['MAX']}
resp_hsp = m.query(request)
self.hsp_data = resp_hsp
request['Composition'] = ['tstat_csp']
request['Aggregation'] = {'tstat_csp': ['MAX']}
resp_csp = m.query(request)
self.csp_data = resp_csp
mapping = {
'weather': resp_weather,
'power': resp_power,
'temperature': resp_temp,
'hsp': resp_hsp,
'csp': resp_csp
}
first = True
for dat in data_type:
if first:
try:
self.data = mapping[dat].df
first = False
except:
raise SystemError('Undefined data_type (Make sure all characters are lowercase)')
else:
try:
self.data = self.data.join(mapping[dat].df)
except:
raise SystemError('Undefined data_type (Make sure all characters are lowercase)')
return mapping | [
"def",
"get_weather_power_tstat",
"(",
"self",
",",
"site",
",",
"start",
",",
"end",
",",
"data_type",
"=",
"[",
"'weather'",
",",
"'power'",
"]",
")",
":",
"m",
"=",
"dataclient",
".",
"MDALClient",
"(",
"\"corbusier.cs.berkeley.edu:8088\"",
")",
"request",
"=",
"{",
"\"Variables\"",
":",
"{",
"\"greenbutton\"",
":",
"{",
"\"Definition\"",
":",
"\"\"\"SELECT ?meter ?meter_uuid FROM %s WHERE {\n ?meter rdf:type brick:Green_Button_Meter .\n ?meter bf:uuid ?meter_uuid\n };\"\"\"",
"%",
"site",
",",
"}",
",",
"\"weather\"",
":",
"{",
"\"Definition\"",
":",
"\"\"\"SELECT ?t ?t_uuid FROM %s WHERE {\n ?t rdf:type/rdfs:subClassOf* brick:Weather_Temperature_Sensor .\n ?t bf:uuid ?t_uuid\n };\"\"\"",
"%",
"site",
",",
"}",
",",
"\"tstat_state\"",
":",
"{",
"\"Definition\"",
":",
"\"\"\"SELECT ?t ?t_uuid ?tstat FROM %s WHERE {\n ?t rdf:type/rdfs:subClassOf* brick:Thermostat_Status .\n ?t bf:uuid ?t_uuid\n ?t bf:isPointOf ?tstat .\n ?tstat rdf:type brick:Thermostat\n };\"\"\"",
"%",
"site",
",",
"}",
",",
"\"tstat_hsp\"",
":",
"{",
"\"Definition\"",
":",
"\"\"\"SELECT ?t ?t_uuid ?tstat FROM %s WHERE {\n ?t rdf:type/rdfs:subClassOf* brick:Supply_Air_Temperature_Heating_Setpoint .\n ?t bf:uuid ?t_uuid .\n ?t bf:isPointOf ?tstat .\n ?tstat rdf:type brick:Thermostat\n };\"\"\"",
"%",
"site",
",",
"}",
",",
"\"tstat_csp\"",
":",
"{",
"\"Definition\"",
":",
"\"\"\"SELECT ?t ?t_uuid ?tstat FROM %s WHERE {\n ?t rdf:type/rdfs:subClassOf* brick:Supply_Air_Temperature_Cooling_Setpoint .\n ?t bf:uuid ?t_uuid .\n ?t bf:isPointOf ?tstat .\n ?tstat rdf:type brick:Thermostat\n };\"\"\"",
"%",
"site",
",",
"}",
",",
"\"tstat_temp\"",
":",
"{",
"\"Definition\"",
":",
"\"\"\"SELECT ?t ?t_uuid ?tstat FROM %s WHERE {\n ?t rdf:type/rdfs:subClassOf* brick:Temperature_Sensor .\n ?t bf:uuid ?t_uuid .\n ?t bf:isPointOf ?tstat .\n ?tstat rdf:type brick:Thermostat\n };\"\"\"",
"%",
"site",
",",
"}",
",",
"}",
",",
"}",
"# outside air temp",
"request",
"[",
"'Composition'",
"]",
"=",
"[",
"'weather'",
"]",
"request",
"[",
"'Aggregation'",
"]",
"=",
"{",
"'weather'",
":",
"[",
"'MEAN'",
"]",
"}",
"request",
"[",
"'Time'",
"]",
"=",
"{",
"'Start'",
":",
"start",
",",
"'End'",
":",
"end",
",",
"'Window'",
":",
"'15m'",
",",
"'Aligned'",
":",
"True",
"}",
"resp_weather",
"=",
"m",
".",
"query",
"(",
"request",
")",
"self",
".",
"weather_data",
"=",
"resp_weather",
".",
"df",
"# power",
"request",
"[",
"'Composition'",
"]",
"=",
"[",
"'greenbutton'",
"]",
"request",
"[",
"'Aggregation'",
"]",
"=",
"{",
"'greenbutton'",
":",
"[",
"'MEAN'",
"]",
"}",
"resp_power",
"=",
"m",
".",
"query",
"(",
"request",
")",
"self",
".",
"power_data",
"=",
"resp_power",
".",
"df",
"# tstat temperature",
"request",
"[",
"'Composition'",
"]",
"=",
"[",
"'tstat_temp'",
",",
"'tstat_hsp'",
",",
"'tstat_csp'",
"]",
"request",
"[",
"'Aggregation'",
"]",
"=",
"{",
"'tstat_temp'",
":",
"[",
"'MEAN'",
"]",
"}",
"resp_temp",
"=",
"m",
".",
"query",
"(",
"request",
")",
"self",
".",
"temp_data",
"=",
"resp_temp",
"# tstat heat setpoint",
"request",
"[",
"'Composition'",
"]",
"=",
"[",
"'tstat_hsp'",
"]",
"request",
"[",
"'Aggregation'",
"]",
"=",
"{",
"'tstat_hsp'",
":",
"[",
"'MAX'",
"]",
"}",
"resp_hsp",
"=",
"m",
".",
"query",
"(",
"request",
")",
"self",
".",
"hsp_data",
"=",
"resp_hsp",
"# tstat cool setpoint",
"request",
"[",
"'Composition'",
"]",
"=",
"[",
"'tstat_csp'",
"]",
"request",
"[",
"'Aggregation'",
"]",
"=",
"{",
"'tstat_csp'",
":",
"[",
"'MAX'",
"]",
"}",
"resp_csp",
"=",
"m",
".",
"query",
"(",
"request",
")",
"self",
".",
"csp_data",
"=",
"resp_csp",
"mapping",
"=",
"{",
"'weather'",
":",
"resp_weather",
",",
"'power'",
":",
"resp_power",
",",
"'temperature'",
":",
"resp_temp",
",",
"'hsp'",
":",
"resp_hsp",
",",
"'csp'",
":",
"resp_csp",
"}",
"first",
"=",
"True",
"for",
"dat",
"in",
"data_type",
":",
"if",
"first",
":",
"try",
":",
"self",
".",
"data",
"=",
"mapping",
"[",
"dat",
"]",
".",
"df",
"first",
"=",
"False",
"except",
":",
"raise",
"SystemError",
"(",
"'Undefined data_type (Make sure all characters are lowercase)'",
")",
"else",
":",
"try",
":",
"self",
".",
"data",
"=",
"self",
".",
"data",
".",
"join",
"(",
"mapping",
"[",
"dat",
"]",
".",
"df",
")",
"except",
":",
"raise",
"SystemError",
"(",
"'Undefined data_type (Make sure all characters are lowercase)'",
")",
"return",
"mapping"
]
| Get weather and power data.
Parameters
----------
site : str
Site name.
start : str
Start date.
end : str
End date.
data_type : str
Type of data needed (all, weather, power, temperature, hsp, csp) | [
"Get",
"weather",
"and",
"power",
"data",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/data_analysis/XBOS_data_analytics/Import_Data.py#L193-L318 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.drop_columns | def drop_columns(self, col):
""" Drop columns in dataframe.
Parameters
----------
col : str
Column to drop.
"""
try:
self.cleaned_data.drop(col, axis=1, inplace=True)
except Exception as e:
raise e | python | def drop_columns(self, col):
try:
self.cleaned_data.drop(col, axis=1, inplace=True)
except Exception as e:
raise e | [
"def",
"drop_columns",
"(",
"self",
",",
"col",
")",
":",
"try",
":",
"self",
".",
"cleaned_data",
".",
"drop",
"(",
"col",
",",
"axis",
"=",
"1",
",",
"inplace",
"=",
"True",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"e"
]
| Drop columns in dataframe.
Parameters
----------
col : str
Column to drop. | [
"Drop",
"columns",
"in",
"dataframe",
".",
"Parameters",
"----------",
"col",
":",
"str",
"Column",
"to",
"drop",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L46-L58 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.rename_columns | def rename_columns(self, col):
""" Rename columns of dataframe.
Parameters
----------
col : list(str)
List of columns to rename.
"""
try:
self.cleaned_data.columns = col
except Exception as e:
raise e | python | def rename_columns(self, col):
try:
self.cleaned_data.columns = col
except Exception as e:
raise e | [
"def",
"rename_columns",
"(",
"self",
",",
"col",
")",
":",
"try",
":",
"self",
".",
"cleaned_data",
".",
"columns",
"=",
"col",
"except",
"Exception",
"as",
"e",
":",
"raise",
"e"
]
| Rename columns of dataframe.
Parameters
----------
col : list(str)
List of columns to rename. | [
"Rename",
"columns",
"of",
"dataframe",
".",
"Parameters",
"----------",
"col",
":",
"list",
"(",
"str",
")",
"List",
"of",
"columns",
"to",
"rename",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L61-L73 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.resample_data | def resample_data(self, data, freq, resampler='mean'):
""" Resample dataframe.
Note
----
1. Figure out how to apply different functions to different columns .apply()
2. This theoretically work in upsampling too, check docs
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html
Parameters
----------
data : pd.DataFrame()
Dataframe to resample
freq : str
Resampling frequency i.e. d, h, 15T...
resampler : str
Resampling type i.e. mean, max.
Returns
-------
pd.DataFrame()
Dataframe containing resampled data
"""
if resampler == 'mean':
data = data.resample(freq).mean()
elif resampler == 'max':
data = data.resample(freq).max()
else:
raise ValueError('Resampler can be \'mean\' or \'max\' only.')
return data | python | def resample_data(self, data, freq, resampler='mean'):
if resampler == 'mean':
data = data.resample(freq).mean()
elif resampler == 'max':
data = data.resample(freq).max()
else:
raise ValueError('Resampler can be \'mean\' or \'max\' only.')
return data | [
"def",
"resample_data",
"(",
"self",
",",
"data",
",",
"freq",
",",
"resampler",
"=",
"'mean'",
")",
":",
"if",
"resampler",
"==",
"'mean'",
":",
"data",
"=",
"data",
".",
"resample",
"(",
"freq",
")",
".",
"mean",
"(",
")",
"elif",
"resampler",
"==",
"'max'",
":",
"data",
"=",
"data",
".",
"resample",
"(",
"freq",
")",
".",
"max",
"(",
")",
"else",
":",
"raise",
"ValueError",
"(",
"'Resampler can be \\'mean\\' or \\'max\\' only.'",
")",
"return",
"data"
]
| Resample dataframe.
Note
----
1. Figure out how to apply different functions to different columns .apply()
2. This theoretically work in upsampling too, check docs
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html
Parameters
----------
data : pd.DataFrame()
Dataframe to resample
freq : str
Resampling frequency i.e. d, h, 15T...
resampler : str
Resampling type i.e. mean, max.
Returns
-------
pd.DataFrame()
Dataframe containing resampled data | [
"Resample",
"dataframe",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L76-L108 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.interpolate_data | def interpolate_data(self, data, limit, method):
""" Interpolate dataframe.
Parameters
----------
data : pd.DataFrame()
Dataframe to interpolate
limit : int
Interpolation limit.
method : str
Interpolation method.
Returns
-------
pd.DataFrame()
Dataframe containing interpolated data
"""
data = data.interpolate(how="index", limit=limit, method=method)
return data | python | def interpolate_data(self, data, limit, method):
data = data.interpolate(how="index", limit=limit, method=method)
return data | [
"def",
"interpolate_data",
"(",
"self",
",",
"data",
",",
"limit",
",",
"method",
")",
":",
"data",
"=",
"data",
".",
"interpolate",
"(",
"how",
"=",
"\"index\"",
",",
"limit",
"=",
"limit",
",",
"method",
"=",
"method",
")",
"return",
"data"
]
| Interpolate dataframe.
Parameters
----------
data : pd.DataFrame()
Dataframe to interpolate
limit : int
Interpolation limit.
method : str
Interpolation method.
Returns
-------
pd.DataFrame()
Dataframe containing interpolated data | [
"Interpolate",
"dataframe",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L111-L130 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.remove_na | def remove_na(self, data, remove_na_how):
""" Remove NAs from dataframe.
Parameters
----------
data : pd.DataFrame()
Dataframe to remove NAs from.
remove_na_how : str
Specificies how to remove NA i.e. all, any...
Returns
-------
pd.DataFrame()
Dataframe with NAs removed.
"""
data = data.dropna(how=remove_na_how)
return data | python | def remove_na(self, data, remove_na_how):
data = data.dropna(how=remove_na_how)
return data | [
"def",
"remove_na",
"(",
"self",
",",
"data",
",",
"remove_na_how",
")",
":",
"data",
"=",
"data",
".",
"dropna",
"(",
"how",
"=",
"remove_na_how",
")",
"return",
"data"
]
| Remove NAs from dataframe.
Parameters
----------
data : pd.DataFrame()
Dataframe to remove NAs from.
remove_na_how : str
Specificies how to remove NA i.e. all, any...
Returns
-------
pd.DataFrame()
Dataframe with NAs removed. | [
"Remove",
"NAs",
"from",
"dataframe",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L133-L150 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.remove_outlier | def remove_outlier(self, data, sd_val):
""" Remove outliers from dataframe.
Note
----
1. This function excludes all lines with NA in all columns.
Parameters
----------
data : pd.DataFrame()
Dataframe to remove outliers from.
sd_val : int
Standard Deviation Value (specifices how many SDs away is a point considered an outlier)
Returns
-------
pd.DataFrame()
Dataframe with outliers removed.
"""
data = data.dropna()
data = data[(np.abs(stats.zscore(data)) < float(sd_val)).all(axis=1)]
return data | python | def remove_outlier(self, data, sd_val):
data = data.dropna()
data = data[(np.abs(stats.zscore(data)) < float(sd_val)).all(axis=1)]
return data | [
"def",
"remove_outlier",
"(",
"self",
",",
"data",
",",
"sd_val",
")",
":",
"data",
"=",
"data",
".",
"dropna",
"(",
")",
"data",
"=",
"data",
"[",
"(",
"np",
".",
"abs",
"(",
"stats",
".",
"zscore",
"(",
"data",
")",
")",
"<",
"float",
"(",
"sd_val",
")",
")",
".",
"all",
"(",
"axis",
"=",
"1",
")",
"]",
"return",
"data"
]
| Remove outliers from dataframe.
Note
----
1. This function excludes all lines with NA in all columns.
Parameters
----------
data : pd.DataFrame()
Dataframe to remove outliers from.
sd_val : int
Standard Deviation Value (specifices how many SDs away is a point considered an outlier)
Returns
-------
pd.DataFrame()
Dataframe with outliers removed. | [
"Remove",
"outliers",
"from",
"dataframe",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L153-L175 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.remove_out_of_bounds | def remove_out_of_bounds(self, data, low_bound, high_bound):
""" Remove out of bound datapoints from dataframe.
This function removes all points < low_bound and > high_bound.
To Do,
1. Add a different boundary for each column.
Parameters
----------
data : pd.DataFrame()
Dataframe to remove bounds from.
low_bound : int
Low bound of the data.
high_bound : int
High bound of the data.
Returns
-------
pd.DataFrame()
Dataframe with out of bounds removed.
"""
data = data.dropna()
data = data[(data > low_bound).all(axis=1) & (data < high_bound).all(axis=1)]
return data | python | def remove_out_of_bounds(self, data, low_bound, high_bound):
data = data.dropna()
data = data[(data > low_bound).all(axis=1) & (data < high_bound).all(axis=1)]
return data | [
"def",
"remove_out_of_bounds",
"(",
"self",
",",
"data",
",",
"low_bound",
",",
"high_bound",
")",
":",
"data",
"=",
"data",
".",
"dropna",
"(",
")",
"data",
"=",
"data",
"[",
"(",
"data",
">",
"low_bound",
")",
".",
"all",
"(",
"axis",
"=",
"1",
")",
"&",
"(",
"data",
"<",
"high_bound",
")",
".",
"all",
"(",
"axis",
"=",
"1",
")",
"]",
"return",
"data"
]
| Remove out of bound datapoints from dataframe.
This function removes all points < low_bound and > high_bound.
To Do,
1. Add a different boundary for each column.
Parameters
----------
data : pd.DataFrame()
Dataframe to remove bounds from.
low_bound : int
Low bound of the data.
high_bound : int
High bound of the data.
Returns
-------
pd.DataFrame()
Dataframe with out of bounds removed. | [
"Remove",
"out",
"of",
"bound",
"datapoints",
"from",
"dataframe",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L178-L203 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data._set_TS_index | def _set_TS_index(self, data):
""" Convert index to datetime and all other columns to numeric
Parameters
----------
data : pd.DataFrame()
Input dataframe.
Returns
-------
pd.DataFrame()
Modified dataframe.
"""
# Set index
data.index = pd.to_datetime(data.index, error= "ignore")
# Format types to numeric
for col in data.columns:
data[col] = pd.to_numeric(data[col], errors="coerce")
return data | python | def _set_TS_index(self, data):
data.index = pd.to_datetime(data.index, error= "ignore")
for col in data.columns:
data[col] = pd.to_numeric(data[col], errors="coerce")
return data | [
"def",
"_set_TS_index",
"(",
"self",
",",
"data",
")",
":",
"# Set index",
"data",
".",
"index",
"=",
"pd",
".",
"to_datetime",
"(",
"data",
".",
"index",
",",
"error",
"=",
"\"ignore\"",
")",
"# Format types to numeric",
"for",
"col",
"in",
"data",
".",
"columns",
":",
"data",
"[",
"col",
"]",
"=",
"pd",
".",
"to_numeric",
"(",
"data",
"[",
"col",
"]",
",",
"errors",
"=",
"\"coerce\"",
")",
"return",
"data"
]
| Convert index to datetime and all other columns to numeric
Parameters
----------
data : pd.DataFrame()
Input dataframe.
Returns
-------
pd.DataFrame()
Modified dataframe. | [
"Convert",
"index",
"to",
"datetime",
"and",
"all",
"other",
"columns",
"to",
"numeric"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L283-L305 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data._utc_to_local | def _utc_to_local(self, data, local_zone="America/Los_Angeles"):
""" Adjust index of dataframe according to timezone that is requested by user.
Parameters
----------
data : pd.DataFrame()
Pandas dataframe of json timeseries response from server.
local_zone : str
pytz.timezone string of specified local timezone to change index to.
Returns
-------
pd.DataFrame()
Pandas dataframe with timestamp index adjusted for local timezone.
"""
# Accounts for localtime shift
data.index = data.index.tz_localize(pytz.utc).tz_convert(local_zone)
# Gets rid of extra offset information so can compare with csv data
data.index = data.index.tz_localize(None)
return data | python | def _utc_to_local(self, data, local_zone="America/Los_Angeles"):
data.index = data.index.tz_localize(pytz.utc).tz_convert(local_zone)
data.index = data.index.tz_localize(None)
return data | [
"def",
"_utc_to_local",
"(",
"self",
",",
"data",
",",
"local_zone",
"=",
"\"America/Los_Angeles\"",
")",
":",
"# Accounts for localtime shift",
"data",
".",
"index",
"=",
"data",
".",
"index",
".",
"tz_localize",
"(",
"pytz",
".",
"utc",
")",
".",
"tz_convert",
"(",
"local_zone",
")",
"# Gets rid of extra offset information so can compare with csv data",
"data",
".",
"index",
"=",
"data",
".",
"index",
".",
"tz_localize",
"(",
"None",
")",
"return",
"data"
]
| Adjust index of dataframe according to timezone that is requested by user.
Parameters
----------
data : pd.DataFrame()
Pandas dataframe of json timeseries response from server.
local_zone : str
pytz.timezone string of specified local timezone to change index to.
Returns
-------
pd.DataFrame()
Pandas dataframe with timestamp index adjusted for local timezone. | [
"Adjust",
"index",
"of",
"dataframe",
"according",
"to",
"timezone",
"that",
"is",
"requested",
"by",
"user",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L308-L331 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data._local_to_utc | def _local_to_utc(self, timestamp, local_zone="America/Los_Angeles"):
""" Convert local timestamp to UTC.
Parameters
----------
timestamp : pd.DataFrame()
Input Pandas dataframe whose index needs to be changed.
local_zone : str
Name of local zone. Defaults to PST.
Returns
-------
pd.DataFrame()
Dataframe with UTC timestamps.
"""
timestamp_new = pd.to_datetime(timestamp, infer_datetime_format=True, errors='coerce')
timestamp_new = timestamp_new.tz_localize(local_zone).tz_convert(pytz.utc)
timestamp_new = timestamp_new.strftime('%Y-%m-%d %H:%M:%S')
return timestamp_new | python | def _local_to_utc(self, timestamp, local_zone="America/Los_Angeles"):
timestamp_new = pd.to_datetime(timestamp, infer_datetime_format=True, errors='coerce')
timestamp_new = timestamp_new.tz_localize(local_zone).tz_convert(pytz.utc)
timestamp_new = timestamp_new.strftime('%Y-%m-%d %H:%M:%S')
return timestamp_new | [
"def",
"_local_to_utc",
"(",
"self",
",",
"timestamp",
",",
"local_zone",
"=",
"\"America/Los_Angeles\"",
")",
":",
"timestamp_new",
"=",
"pd",
".",
"to_datetime",
"(",
"timestamp",
",",
"infer_datetime_format",
"=",
"True",
",",
"errors",
"=",
"'coerce'",
")",
"timestamp_new",
"=",
"timestamp_new",
".",
"tz_localize",
"(",
"local_zone",
")",
".",
"tz_convert",
"(",
"pytz",
".",
"utc",
")",
"timestamp_new",
"=",
"timestamp_new",
".",
"strftime",
"(",
"'%Y-%m-%d %H:%M:%S'",
")",
"return",
"timestamp_new"
]
| Convert local timestamp to UTC.
Parameters
----------
timestamp : pd.DataFrame()
Input Pandas dataframe whose index needs to be changed.
local_zone : str
Name of local zone. Defaults to PST.
Returns
-------
pd.DataFrame()
Dataframe with UTC timestamps. | [
"Convert",
"local",
"timestamp",
"to",
"UTC",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L334-L354 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.remove_start_NaN | def remove_start_NaN(self, data, var=None):
""" Remove start NaN.
CHECK: Note issue with multi-column df.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
var : list(str)
List that specifies specific columns of dataframe.
Returns
-------
pd.DataFrame()
Dataframe starting from its first valid index.
"""
# Limit to one or some variables
if var:
start_ok_data = data[var].first_valid_index()
else:
start_ok_data = data.first_valid_index()
data = data.loc[start_ok_data:, :]
return data | python | def remove_start_NaN(self, data, var=None):
if var:
start_ok_data = data[var].first_valid_index()
else:
start_ok_data = data.first_valid_index()
data = data.loc[start_ok_data:, :]
return data | [
"def",
"remove_start_NaN",
"(",
"self",
",",
"data",
",",
"var",
"=",
"None",
")",
":",
"# Limit to one or some variables",
"if",
"var",
":",
"start_ok_data",
"=",
"data",
"[",
"var",
"]",
".",
"first_valid_index",
"(",
")",
"else",
":",
"start_ok_data",
"=",
"data",
".",
"first_valid_index",
"(",
")",
"data",
"=",
"data",
".",
"loc",
"[",
"start_ok_data",
":",
",",
":",
"]",
"return",
"data"
]
| Remove start NaN.
CHECK: Note issue with multi-column df.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
var : list(str)
List that specifies specific columns of dataframe.
Returns
-------
pd.DataFrame()
Dataframe starting from its first valid index. | [
"Remove",
"start",
"NaN",
".",
"CHECK",
":",
"Note",
"issue",
"with",
"multi",
"-",
"column",
"df",
".",
"Parameters",
"----------",
"data",
":",
"pd",
".",
"DataFrame",
"()",
"Input",
"dataframe",
".",
"var",
":",
"list",
"(",
"str",
")",
"List",
"that",
"specifies",
"specific",
"columns",
"of",
"dataframe",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L357-L383 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.remove_end_NaN | def remove_end_NaN(self, data, var=None):
""" Remove end NaN.
CHECK: Note issue with multi-column df.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
var : list(str)
List that specifies specific columns of dataframe.
Returns
-------
pd.DataFrame()
Dataframe starting from its last valid index.
"""
# Limit to one or some variables
if var:
end_ok_data = data[var].last_valid_index()
else:
end_ok_data = data.last_valid_index()
data = data.loc[:end_ok_data, :]
return data | python | def remove_end_NaN(self, data, var=None):
if var:
end_ok_data = data[var].last_valid_index()
else:
end_ok_data = data.last_valid_index()
data = data.loc[:end_ok_data, :]
return data | [
"def",
"remove_end_NaN",
"(",
"self",
",",
"data",
",",
"var",
"=",
"None",
")",
":",
"# Limit to one or some variables",
"if",
"var",
":",
"end_ok_data",
"=",
"data",
"[",
"var",
"]",
".",
"last_valid_index",
"(",
")",
"else",
":",
"end_ok_data",
"=",
"data",
".",
"last_valid_index",
"(",
")",
"data",
"=",
"data",
".",
"loc",
"[",
":",
"end_ok_data",
",",
":",
"]",
"return",
"data"
]
| Remove end NaN.
CHECK: Note issue with multi-column df.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
var : list(str)
List that specifies specific columns of dataframe.
Returns
-------
pd.DataFrame()
Dataframe starting from its last valid index. | [
"Remove",
"end",
"NaN",
".",
"CHECK",
":",
"Note",
"issue",
"with",
"multi",
"-",
"column",
"df",
".",
"Parameters",
"----------",
"data",
":",
"pd",
".",
"DataFrame",
"()",
"Input",
"dataframe",
".",
"var",
":",
"list",
"(",
"str",
")",
"List",
"that",
"specifies",
"specific",
"columns",
"of",
"dataframe",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L386-L412 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data._find_missing | def _find_missing(self, data, return_bool=False):
""" ???
Parameters
----------
data : pd.DataFrame()
Input dataframe.
return_bool : bool
???
Returns
-------
pd.DataFrame()
???
"""
# This returns the full table with True where the condition is true
if return_bool == False:
data = self._find_missing_return_frame(data)
return data
# This returns a bool selector if any of the column is True
elif return_bool == "any":
bool_sel = self._find_missing_return_frame(data).any(axis=0)
return bool_sel
# This returns a bool selector if all of the column are True
elif return_bool == "all":
bool_sel = self._find_missing_return_frame(data).all(axis=0)
return bool_sel
else:
print("error in multi_col_how input") | python | def _find_missing(self, data, return_bool=False):
if return_bool == False:
data = self._find_missing_return_frame(data)
return data
elif return_bool == "any":
bool_sel = self._find_missing_return_frame(data).any(axis=0)
return bool_sel
elif return_bool == "all":
bool_sel = self._find_missing_return_frame(data).all(axis=0)
return bool_sel
else:
print("error in multi_col_how input") | [
"def",
"_find_missing",
"(",
"self",
",",
"data",
",",
"return_bool",
"=",
"False",
")",
":",
"# This returns the full table with True where the condition is true",
"if",
"return_bool",
"==",
"False",
":",
"data",
"=",
"self",
".",
"_find_missing_return_frame",
"(",
"data",
")",
"return",
"data",
"# This returns a bool selector if any of the column is True",
"elif",
"return_bool",
"==",
"\"any\"",
":",
"bool_sel",
"=",
"self",
".",
"_find_missing_return_frame",
"(",
"data",
")",
".",
"any",
"(",
"axis",
"=",
"0",
")",
"return",
"bool_sel",
"# This returns a bool selector if all of the column are True",
"elif",
"return_bool",
"==",
"\"all\"",
":",
"bool_sel",
"=",
"self",
".",
"_find_missing_return_frame",
"(",
"data",
")",
".",
"all",
"(",
"axis",
"=",
"0",
")",
"return",
"bool_sel",
"else",
":",
"print",
"(",
"\"error in multi_col_how input\"",
")"
]
| ???
Parameters
----------
data : pd.DataFrame()
Input dataframe.
return_bool : bool
???
Returns
-------
pd.DataFrame()
??? | [
"???"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L432-L465 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.display_missing | def display_missing(self, data, return_bool="any"):
""" ???
Parameters
----------
data : pd.DataFrame()
Input dataframe.
return_bool : bool
???
Returns
-------
pd.DataFrame()
???
"""
if return_bool == "any":
bool_sel = self._find_missing(data, return_bool="any")
elif return_bool == "all":
bool_sel = self._find_missing(data, return_bool="all")
return data[bool_sel] | python | def display_missing(self, data, return_bool="any"):
if return_bool == "any":
bool_sel = self._find_missing(data, return_bool="any")
elif return_bool == "all":
bool_sel = self._find_missing(data, return_bool="all")
return data[bool_sel] | [
"def",
"display_missing",
"(",
"self",
",",
"data",
",",
"return_bool",
"=",
"\"any\"",
")",
":",
"if",
"return_bool",
"==",
"\"any\"",
":",
"bool_sel",
"=",
"self",
".",
"_find_missing",
"(",
"data",
",",
"return_bool",
"=",
"\"any\"",
")",
"elif",
"return_bool",
"==",
"\"all\"",
":",
"bool_sel",
"=",
"self",
".",
"_find_missing",
"(",
"data",
",",
"return_bool",
"=",
"\"all\"",
")",
"return",
"data",
"[",
"bool_sel",
"]"
]
| ???
Parameters
----------
data : pd.DataFrame()
Input dataframe.
return_bool : bool
???
Returns
-------
pd.DataFrame()
??? | [
"???",
"Parameters",
"----------",
"data",
":",
"pd",
".",
"DataFrame",
"()",
"Input",
"dataframe",
".",
"return_bool",
":",
"bool",
"???"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L468-L491 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.count_missing | def count_missing(self, data, output="number"):
""" ???
Parameters
----------
data : pd.DataFrame()
Input dataframe.
output : str
Sting indicating the output of function (number or percent)
Returns
-------
int/float
Count of missing data (int or float)
"""
count = self._find_missing(data,return_bool=False).sum()
if output == "number":
return count
elif output == "percent":
return ((count / (data.shape[0])) * 100) | python | def count_missing(self, data, output="number"):
count = self._find_missing(data,return_bool=False).sum()
if output == "number":
return count
elif output == "percent":
return ((count / (data.shape[0])) * 100) | [
"def",
"count_missing",
"(",
"self",
",",
"data",
",",
"output",
"=",
"\"number\"",
")",
":",
"count",
"=",
"self",
".",
"_find_missing",
"(",
"data",
",",
"return_bool",
"=",
"False",
")",
".",
"sum",
"(",
")",
"if",
"output",
"==",
"\"number\"",
":",
"return",
"count",
"elif",
"output",
"==",
"\"percent\"",
":",
"return",
"(",
"(",
"count",
"/",
"(",
"data",
".",
"shape",
"[",
"0",
"]",
")",
")",
"*",
"100",
")"
]
| ???
Parameters
----------
data : pd.DataFrame()
Input dataframe.
output : str
Sting indicating the output of function (number or percent)
Returns
-------
int/float
Count of missing data (int or float) | [
"???",
"Parameters",
"----------",
"data",
":",
"pd",
".",
"DataFrame",
"()",
"Input",
"dataframe",
".",
"output",
":",
"str",
"Sting",
"indicating",
"the",
"output",
"of",
"function",
"(",
"number",
"or",
"percent",
")"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L494-L516 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.remove_missing | def remove_missing(self, data, return_bool="any"):
""" ???
Parameters
----------
data : pd.DataFrame()
Input dataframe.
return_bool : bool
???
Returns
-------
pd.DataFrame()
???
"""
if return_bool == "any":
bool_sel = self._find_missing(data,return_bool="any")
elif return_bool == "all":
bool_sel = self._find_missing(data,return_bool="all")
return data[~bool_sel] | python | def remove_missing(self, data, return_bool="any"):
if return_bool == "any":
bool_sel = self._find_missing(data,return_bool="any")
elif return_bool == "all":
bool_sel = self._find_missing(data,return_bool="all")
return data[~bool_sel] | [
"def",
"remove_missing",
"(",
"self",
",",
"data",
",",
"return_bool",
"=",
"\"any\"",
")",
":",
"if",
"return_bool",
"==",
"\"any\"",
":",
"bool_sel",
"=",
"self",
".",
"_find_missing",
"(",
"data",
",",
"return_bool",
"=",
"\"any\"",
")",
"elif",
"return_bool",
"==",
"\"all\"",
":",
"bool_sel",
"=",
"self",
".",
"_find_missing",
"(",
"data",
",",
"return_bool",
"=",
"\"all\"",
")",
"return",
"data",
"[",
"~",
"bool_sel",
"]"
]
| ???
Parameters
----------
data : pd.DataFrame()
Input dataframe.
return_bool : bool
???
Returns
-------
pd.DataFrame()
??? | [
"???",
"Parameters",
"----------",
"data",
":",
"pd",
".",
"DataFrame",
"()",
"Input",
"dataframe",
".",
"return_bool",
":",
"bool",
"???"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L519-L541 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data._find_outOfBound | def _find_outOfBound(self, data, lowBound, highBound):
""" Mask for selecting data that is out of bounds.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
lowBound : float
Lower bound for dataframe.
highBound : float
Higher bound for dataframe.
Returns
-------
???
"""
data = ((data < lowBound) | (data > highBound))
return data | python | def _find_outOfBound(self, data, lowBound, highBound):
data = ((data < lowBound) | (data > highBound))
return data | [
"def",
"_find_outOfBound",
"(",
"self",
",",
"data",
",",
"lowBound",
",",
"highBound",
")",
":",
"data",
"=",
"(",
"(",
"data",
"<",
"lowBound",
")",
"|",
"(",
"data",
">",
"highBound",
")",
")",
"return",
"data"
]
| Mask for selecting data that is out of bounds.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
lowBound : float
Lower bound for dataframe.
highBound : float
Higher bound for dataframe.
Returns
-------
??? | [
"Mask",
"for",
"selecting",
"data",
"that",
"is",
"out",
"of",
"bounds",
".",
"Parameters",
"----------",
"data",
":",
"pd",
".",
"DataFrame",
"()",
"Input",
"dataframe",
".",
"lowBound",
":",
"float",
"Lower",
"bound",
"for",
"dataframe",
".",
"highBound",
":",
"float",
"Higher",
"bound",
"for",
"dataframe",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L544-L563 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.display_outOfBound | def display_outOfBound(self, data, lowBound, highBound):
""" Select data that is out of bounds.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
lowBound : float
Lower bound for dataframe.
highBound : float
Higher bound for dataframe.
Returns
-------
pd.DataFrame()
Dataframe containing data that is out of bounds.
"""
data = data[self._find_outOfBound(data, lowBound, highBound).any(axis=1)]
return data | python | def display_outOfBound(self, data, lowBound, highBound):
data = data[self._find_outOfBound(data, lowBound, highBound).any(axis=1)]
return data | [
"def",
"display_outOfBound",
"(",
"self",
",",
"data",
",",
"lowBound",
",",
"highBound",
")",
":",
"data",
"=",
"data",
"[",
"self",
".",
"_find_outOfBound",
"(",
"data",
",",
"lowBound",
",",
"highBound",
")",
".",
"any",
"(",
"axis",
"=",
"1",
")",
"]",
"return",
"data"
]
| Select data that is out of bounds.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
lowBound : float
Lower bound for dataframe.
highBound : float
Higher bound for dataframe.
Returns
-------
pd.DataFrame()
Dataframe containing data that is out of bounds. | [
"Select",
"data",
"that",
"is",
"out",
"of",
"bounds",
".",
"Parameters",
"----------",
"data",
":",
"pd",
".",
"DataFrame",
"()",
"Input",
"dataframe",
".",
"lowBound",
":",
"float",
"Lower",
"bound",
"for",
"dataframe",
".",
"highBound",
":",
"float",
"Higher",
"bound",
"for",
"dataframe",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L566-L586 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.count_outOfBound | def count_outOfBound(self, data, lowBound, highBound, output):
""" Count the number of out of bounds data.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
lowBound : float
Lower bound for dataframe.
highBound : float
Higher bound for dataframe.
output : str
Sting indicating the output of function (number or percent)
Returns
-------
int/float
Count of out of bounds data (int or float)
"""
count = self._find_outOfBound(data, lowBound, highBound).sum()
if output == "number":
return count
elif output == "percent":
return count / (data.shape[0]) * 1.0 * 100 | python | def count_outOfBound(self, data, lowBound, highBound, output):
count = self._find_outOfBound(data, lowBound, highBound).sum()
if output == "number":
return count
elif output == "percent":
return count / (data.shape[0]) * 1.0 * 100 | [
"def",
"count_outOfBound",
"(",
"self",
",",
"data",
",",
"lowBound",
",",
"highBound",
",",
"output",
")",
":",
"count",
"=",
"self",
".",
"_find_outOfBound",
"(",
"data",
",",
"lowBound",
",",
"highBound",
")",
".",
"sum",
"(",
")",
"if",
"output",
"==",
"\"number\"",
":",
"return",
"count",
"elif",
"output",
"==",
"\"percent\"",
":",
"return",
"count",
"/",
"(",
"data",
".",
"shape",
"[",
"0",
"]",
")",
"*",
"1.0",
"*",
"100"
]
| Count the number of out of bounds data.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
lowBound : float
Lower bound for dataframe.
highBound : float
Higher bound for dataframe.
output : str
Sting indicating the output of function (number or percent)
Returns
-------
int/float
Count of out of bounds data (int or float) | [
"Count",
"the",
"number",
"of",
"out",
"of",
"bounds",
"data",
".",
"Parameters",
"----------",
"data",
":",
"pd",
".",
"DataFrame",
"()",
"Input",
"dataframe",
".",
"lowBound",
":",
"float",
"Lower",
"bound",
"for",
"dataframe",
".",
"highBound",
":",
"float",
"Higher",
"bound",
"for",
"dataframe",
".",
"output",
":",
"str",
"Sting",
"indicating",
"the",
"output",
"of",
"function",
"(",
"number",
"or",
"percent",
")"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L589-L615 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.remove_outOfBound | def remove_outOfBound(self, data, lowBound, highBound):
""" Remove out of bounds data from input dataframe.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
lowBound : float
Lower bound for dataframe.
highBound : float
Higher bound for dataframe.
Returns
-------
pd.DataFrame()
Dataframe with no out of bounds data.
"""
data = data[~self._find_outOfBound(data, lowBound, highBound).any(axis=1)]
return data | python | def remove_outOfBound(self, data, lowBound, highBound):
data = data[~self._find_outOfBound(data, lowBound, highBound).any(axis=1)]
return data | [
"def",
"remove_outOfBound",
"(",
"self",
",",
"data",
",",
"lowBound",
",",
"highBound",
")",
":",
"data",
"=",
"data",
"[",
"~",
"self",
".",
"_find_outOfBound",
"(",
"data",
",",
"lowBound",
",",
"highBound",
")",
".",
"any",
"(",
"axis",
"=",
"1",
")",
"]",
"return",
"data"
]
| Remove out of bounds data from input dataframe.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
lowBound : float
Lower bound for dataframe.
highBound : float
Higher bound for dataframe.
Returns
-------
pd.DataFrame()
Dataframe with no out of bounds data. | [
"Remove",
"out",
"of",
"bounds",
"data",
"from",
"input",
"dataframe",
".",
"Parameters",
"----------",
"data",
":",
"pd",
".",
"DataFrame",
"()",
"Input",
"dataframe",
".",
"lowBound",
":",
"float",
"Lower",
"bound",
"for",
"dataframe",
".",
"highBound",
":",
"float",
"Higher",
"bound",
"for",
"dataframe",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L618-L638 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data._calc_outliers_bounds | def _calc_outliers_bounds(self, data, method, coeff, window):
""" Calculate the lower and higher bound for outlier detection.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
method : str
Method to use for calculating the lower and higher bounds.
coeff : int
Coefficient to use in calculation.
window : int
Size of the moving window.
Returns
-------
(float, float)
Lower and higher bound for detecting outliers.
"""
if method == "std":
lowBound = (data.mean(axis=0) - coeff * data.std(axis=0)).values[0]
highBound = (data.mean(axis=0) + coeff * data.std(axis=0)).values[0]
elif method == "rstd":
rl_mean=data.rolling(window=window).mean(how=any)
rl_std = data.rolling(window=window).std(how=any).fillna(method='bfill').fillna(method='ffill')
lowBound = rl_mean - coeff * rl_std
highBound = rl_mean + coeff * rl_std
elif method == "rmedian":
rl_med = data.rolling(window=window, center=True).median().fillna(
method='bfill').fillna(method='ffill')
lowBound = rl_med - coeff
highBound = rl_med + coeff
# Coeff is multip for std and IQR or threshold for rolling median
elif method == "iqr":
Q1 = data.quantile(.25) # Coeff is multip for std or % of quartile
Q3 = data.quantile(.75)
IQR = Q3 - Q1
lowBound = Q1 - coeff * IQR
highBound = Q3 + coeff * IQR
elif method == "qtl":
lowBound = data.quantile(.005)
highBound = data.quantile(.995)
else:
print ("Method chosen does not exist")
lowBound = None
highBound = None
return lowBound, highBound | python | def _calc_outliers_bounds(self, data, method, coeff, window):
if method == "std":
lowBound = (data.mean(axis=0) - coeff * data.std(axis=0)).values[0]
highBound = (data.mean(axis=0) + coeff * data.std(axis=0)).values[0]
elif method == "rstd":
rl_mean=data.rolling(window=window).mean(how=any)
rl_std = data.rolling(window=window).std(how=any).fillna(method='bfill').fillna(method='ffill')
lowBound = rl_mean - coeff * rl_std
highBound = rl_mean + coeff * rl_std
elif method == "rmedian":
rl_med = data.rolling(window=window, center=True).median().fillna(
method='bfill').fillna(method='ffill')
lowBound = rl_med - coeff
highBound = rl_med + coeff
elif method == "iqr":
Q1 = data.quantile(.25)
Q3 = data.quantile(.75)
IQR = Q3 - Q1
lowBound = Q1 - coeff * IQR
highBound = Q3 + coeff * IQR
elif method == "qtl":
lowBound = data.quantile(.005)
highBound = data.quantile(.995)
else:
print ("Method chosen does not exist")
lowBound = None
highBound = None
return lowBound, highBound | [
"def",
"_calc_outliers_bounds",
"(",
"self",
",",
"data",
",",
"method",
",",
"coeff",
",",
"window",
")",
":",
"if",
"method",
"==",
"\"std\"",
":",
"lowBound",
"=",
"(",
"data",
".",
"mean",
"(",
"axis",
"=",
"0",
")",
"-",
"coeff",
"*",
"data",
".",
"std",
"(",
"axis",
"=",
"0",
")",
")",
".",
"values",
"[",
"0",
"]",
"highBound",
"=",
"(",
"data",
".",
"mean",
"(",
"axis",
"=",
"0",
")",
"+",
"coeff",
"*",
"data",
".",
"std",
"(",
"axis",
"=",
"0",
")",
")",
".",
"values",
"[",
"0",
"]",
"elif",
"method",
"==",
"\"rstd\"",
":",
"rl_mean",
"=",
"data",
".",
"rolling",
"(",
"window",
"=",
"window",
")",
".",
"mean",
"(",
"how",
"=",
"any",
")",
"rl_std",
"=",
"data",
".",
"rolling",
"(",
"window",
"=",
"window",
")",
".",
"std",
"(",
"how",
"=",
"any",
")",
".",
"fillna",
"(",
"method",
"=",
"'bfill'",
")",
".",
"fillna",
"(",
"method",
"=",
"'ffill'",
")",
"lowBound",
"=",
"rl_mean",
"-",
"coeff",
"*",
"rl_std",
"highBound",
"=",
"rl_mean",
"+",
"coeff",
"*",
"rl_std",
"elif",
"method",
"==",
"\"rmedian\"",
":",
"rl_med",
"=",
"data",
".",
"rolling",
"(",
"window",
"=",
"window",
",",
"center",
"=",
"True",
")",
".",
"median",
"(",
")",
".",
"fillna",
"(",
"method",
"=",
"'bfill'",
")",
".",
"fillna",
"(",
"method",
"=",
"'ffill'",
")",
"lowBound",
"=",
"rl_med",
"-",
"coeff",
"highBound",
"=",
"rl_med",
"+",
"coeff",
"# Coeff is multip for std and IQR or threshold for rolling median",
"elif",
"method",
"==",
"\"iqr\"",
":",
"Q1",
"=",
"data",
".",
"quantile",
"(",
".25",
")",
"# Coeff is multip for std or % of quartile",
"Q3",
"=",
"data",
".",
"quantile",
"(",
".75",
")",
"IQR",
"=",
"Q3",
"-",
"Q1",
"lowBound",
"=",
"Q1",
"-",
"coeff",
"*",
"IQR",
"highBound",
"=",
"Q3",
"+",
"coeff",
"*",
"IQR",
"elif",
"method",
"==",
"\"qtl\"",
":",
"lowBound",
"=",
"data",
".",
"quantile",
"(",
".005",
")",
"highBound",
"=",
"data",
".",
"quantile",
"(",
".995",
")",
"else",
":",
"print",
"(",
"\"Method chosen does not exist\"",
")",
"lowBound",
"=",
"None",
"highBound",
"=",
"None",
"return",
"lowBound",
",",
"highBound"
]
| Calculate the lower and higher bound for outlier detection.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
method : str
Method to use for calculating the lower and higher bounds.
coeff : int
Coefficient to use in calculation.
window : int
Size of the moving window.
Returns
-------
(float, float)
Lower and higher bound for detecting outliers. | [
"Calculate",
"the",
"lower",
"and",
"higher",
"bound",
"for",
"outlier",
"detection",
".",
"Parameters",
"----------",
"data",
":",
"pd",
".",
"DataFrame",
"()",
"Input",
"dataframe",
".",
"method",
":",
"str",
"Method",
"to",
"use",
"for",
"calculating",
"the",
"lower",
"and",
"higher",
"bounds",
".",
"coeff",
":",
"int",
"Coefficient",
"to",
"use",
"in",
"calculation",
".",
"window",
":",
"int",
"Size",
"of",
"the",
"moving",
"window",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L641-L698 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.display_outliers | def display_outliers(self, data, method, coeff, window=10):
""" Returns dataframe with outliers.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
method : str
Method to use for calculating the lower and higher bounds.
coeff : int
Coefficient to use in calculation.
window : int
Size of the moving window.
Returns
-------
pd.DataFrame()
Dataframe containing outliers.
"""
lowBound, highBound = self._calc_outliers_bounds(data, method, coeff, window)
data = self.display_outOfBound(data, lowBound, highBound)
return data | python | def display_outliers(self, data, method, coeff, window=10):
lowBound, highBound = self._calc_outliers_bounds(data, method, coeff, window)
data = self.display_outOfBound(data, lowBound, highBound)
return data | [
"def",
"display_outliers",
"(",
"self",
",",
"data",
",",
"method",
",",
"coeff",
",",
"window",
"=",
"10",
")",
":",
"lowBound",
",",
"highBound",
"=",
"self",
".",
"_calc_outliers_bounds",
"(",
"data",
",",
"method",
",",
"coeff",
",",
"window",
")",
"data",
"=",
"self",
".",
"display_outOfBound",
"(",
"data",
",",
"lowBound",
",",
"highBound",
")",
"return",
"data"
]
| Returns dataframe with outliers.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
method : str
Method to use for calculating the lower and higher bounds.
coeff : int
Coefficient to use in calculation.
window : int
Size of the moving window.
Returns
-------
pd.DataFrame()
Dataframe containing outliers. | [
"Returns",
"dataframe",
"with",
"outliers",
".",
"Parameters",
"----------",
"data",
":",
"pd",
".",
"DataFrame",
"()",
"Input",
"dataframe",
".",
"method",
":",
"str",
"Method",
"to",
"use",
"for",
"calculating",
"the",
"lower",
"and",
"higher",
"bounds",
".",
"coeff",
":",
"int",
"Coefficient",
"to",
"use",
"in",
"calculation",
".",
"window",
":",
"int",
"Size",
"of",
"the",
"moving",
"window",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L701-L724 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.count_outliers | def count_outliers(self, data, method, coeff, output, window=10):
""" Count the number of outliers in dataframe.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
method : str
Method to use for calculating the lower and higher bounds.
coeff : int
Coefficient to use in calculation.
output : str
Sting indicating the output of function (number or percent)
window : int
Size of the moving window.
Returns
-------
int/float
Count of out of bounds data (int or float)
"""
lowBound, highBound = self._calc_outliers_bounds(data, method, coeff, window)
count = self.count_outOfBound(data, lowBound, highBound, output=output)
return count | python | def count_outliers(self, data, method, coeff, output, window=10):
lowBound, highBound = self._calc_outliers_bounds(data, method, coeff, window)
count = self.count_outOfBound(data, lowBound, highBound, output=output)
return count | [
"def",
"count_outliers",
"(",
"self",
",",
"data",
",",
"method",
",",
"coeff",
",",
"output",
",",
"window",
"=",
"10",
")",
":",
"lowBound",
",",
"highBound",
"=",
"self",
".",
"_calc_outliers_bounds",
"(",
"data",
",",
"method",
",",
"coeff",
",",
"window",
")",
"count",
"=",
"self",
".",
"count_outOfBound",
"(",
"data",
",",
"lowBound",
",",
"highBound",
",",
"output",
"=",
"output",
")",
"return",
"count"
]
| Count the number of outliers in dataframe.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
method : str
Method to use for calculating the lower and higher bounds.
coeff : int
Coefficient to use in calculation.
output : str
Sting indicating the output of function (number or percent)
window : int
Size of the moving window.
Returns
-------
int/float
Count of out of bounds data (int or float) | [
"Count",
"the",
"number",
"of",
"outliers",
"in",
"dataframe",
".",
"Parameters",
"----------",
"data",
":",
"pd",
".",
"DataFrame",
"()",
"Input",
"dataframe",
".",
"method",
":",
"str",
"Method",
"to",
"use",
"for",
"calculating",
"the",
"lower",
"and",
"higher",
"bounds",
".",
"coeff",
":",
"int",
"Coefficient",
"to",
"use",
"in",
"calculation",
".",
"output",
":",
"str",
"Sting",
"indicating",
"the",
"output",
"of",
"function",
"(",
"number",
"or",
"percent",
")",
"window",
":",
"int",
"Size",
"of",
"the",
"moving",
"window",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L727-L752 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.remove_outliers | def remove_outliers(self, data, method, coeff, window=10):
""" Remove the outliers in dataframe.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
method : str
Method to use for calculating the lower and higher bounds.
coeff : int
Coefficient to use in calculation.
window : int
Size of the moving window.
Returns
-------
pd.DataFrame()
Dataframe with its outliers removed.
"""
lowBound, highBound = self._calc_outliers_bounds(data, method, coeff, window)
data = self.remove_outOfBound(data, lowBound, highBound)
return data | python | def remove_outliers(self, data, method, coeff, window=10):
lowBound, highBound = self._calc_outliers_bounds(data, method, coeff, window)
data = self.remove_outOfBound(data, lowBound, highBound)
return data | [
"def",
"remove_outliers",
"(",
"self",
",",
"data",
",",
"method",
",",
"coeff",
",",
"window",
"=",
"10",
")",
":",
"lowBound",
",",
"highBound",
"=",
"self",
".",
"_calc_outliers_bounds",
"(",
"data",
",",
"method",
",",
"coeff",
",",
"window",
")",
"data",
"=",
"self",
".",
"remove_outOfBound",
"(",
"data",
",",
"lowBound",
",",
"highBound",
")",
"return",
"data"
]
| Remove the outliers in dataframe.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
method : str
Method to use for calculating the lower and higher bounds.
coeff : int
Coefficient to use in calculation.
window : int
Size of the moving window.
Returns
-------
pd.DataFrame()
Dataframe with its outliers removed. | [
"Remove",
"the",
"outliers",
"in",
"dataframe",
".",
"Parameters",
"----------",
"data",
":",
"pd",
".",
"DataFrame",
"()",
"Input",
"dataframe",
".",
"method",
":",
"str",
"Method",
"to",
"use",
"for",
"calculating",
"the",
"lower",
"and",
"higher",
"bounds",
".",
"coeff",
":",
"int",
"Coefficient",
"to",
"use",
"in",
"calculation",
".",
"window",
":",
"int",
"Size",
"of",
"the",
"moving",
"window",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L755-L778 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.count_if | def count_if(self, data, condition, val, output="number"):
""" Count the number of values that match the condition.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
condition : str
Condition to match.
val : float
Value to compare against.
output : str
Sting indicating the output of function (number or percent)
Returns
-------
int/float
Count of values that match the condition (int or float)
"""
if condition == "=":
count = self._find_equal_to_values(data,val).sum()
elif condition == ">":
count = self._find_greater_than_values(data,val).sum()
elif condition == "<":
count = self._find_less_than_values(data,val).sum()
elif condition == ">=":
count = self._find_greater_than_or_equal_to_values(data,val).sum()
elif condition == "<=":
count = self._find_less_than_or_equal_to_values(data,val).sum()
elif condition == "!=":
count = self._find_different_from_values(data,val).sum()
if output == "number":
return count
elif output == "percent":
return count/data.shape[0]*1.0*100
return count | python | def count_if(self, data, condition, val, output="number"):
if condition == "=":
count = self._find_equal_to_values(data,val).sum()
elif condition == ">":
count = self._find_greater_than_values(data,val).sum()
elif condition == "<":
count = self._find_less_than_values(data,val).sum()
elif condition == ">=":
count = self._find_greater_than_or_equal_to_values(data,val).sum()
elif condition == "<=":
count = self._find_less_than_or_equal_to_values(data,val).sum()
elif condition == "!=":
count = self._find_different_from_values(data,val).sum()
if output == "number":
return count
elif output == "percent":
return count/data.shape[0]*1.0*100
return count | [
"def",
"count_if",
"(",
"self",
",",
"data",
",",
"condition",
",",
"val",
",",
"output",
"=",
"\"number\"",
")",
":",
"if",
"condition",
"==",
"\"=\"",
":",
"count",
"=",
"self",
".",
"_find_equal_to_values",
"(",
"data",
",",
"val",
")",
".",
"sum",
"(",
")",
"elif",
"condition",
"==",
"\">\"",
":",
"count",
"=",
"self",
".",
"_find_greater_than_values",
"(",
"data",
",",
"val",
")",
".",
"sum",
"(",
")",
"elif",
"condition",
"==",
"\"<\"",
":",
"count",
"=",
"self",
".",
"_find_less_than_values",
"(",
"data",
",",
"val",
")",
".",
"sum",
"(",
")",
"elif",
"condition",
"==",
"\">=\"",
":",
"count",
"=",
"self",
".",
"_find_greater_than_or_equal_to_values",
"(",
"data",
",",
"val",
")",
".",
"sum",
"(",
")",
"elif",
"condition",
"==",
"\"<=\"",
":",
"count",
"=",
"self",
".",
"_find_less_than_or_equal_to_values",
"(",
"data",
",",
"val",
")",
".",
"sum",
"(",
")",
"elif",
"condition",
"==",
"\"!=\"",
":",
"count",
"=",
"self",
".",
"_find_different_from_values",
"(",
"data",
",",
"val",
")",
".",
"sum",
"(",
")",
"if",
"output",
"==",
"\"number\"",
":",
"return",
"count",
"elif",
"output",
"==",
"\"percent\"",
":",
"return",
"count",
"/",
"data",
".",
"shape",
"[",
"0",
"]",
"*",
"1.0",
"*",
"100",
"return",
"count"
]
| Count the number of values that match the condition.
Parameters
----------
data : pd.DataFrame()
Input dataframe.
condition : str
Condition to match.
val : float
Value to compare against.
output : str
Sting indicating the output of function (number or percent)
Returns
-------
int/float
Count of values that match the condition (int or float) | [
"Count",
"the",
"number",
"of",
"values",
"that",
"match",
"the",
"condition",
".",
"Parameters",
"----------",
"data",
":",
"pd",
".",
"DataFrame",
"()",
"Input",
"dataframe",
".",
"condition",
":",
"str",
"Condition",
"to",
"match",
".",
"val",
":",
"float",
"Value",
"to",
"compare",
"against",
".",
"output",
":",
"str",
"Sting",
"indicating",
"the",
"output",
"of",
"function",
"(",
"number",
"or",
"percent",
")"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L907-L946 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.find_uuid | def find_uuid(self, obj, column_name):
""" Find uuid.
Parameters
----------
obj : ???
the object returned by the MDAL Query
column_name : str
input point returned from MDAL Query
Returns
-------
str
the uuid that correlates with the data
"""
keys = obj.context.keys()
for i in keys:
if column_name in obj.context[i]['?point']:
uuid = i
return i | python | def find_uuid(self, obj, column_name):
keys = obj.context.keys()
for i in keys:
if column_name in obj.context[i]['?point']:
uuid = i
return i | [
"def",
"find_uuid",
"(",
"self",
",",
"obj",
",",
"column_name",
")",
":",
"keys",
"=",
"obj",
".",
"context",
".",
"keys",
"(",
")",
"for",
"i",
"in",
"keys",
":",
"if",
"column_name",
"in",
"obj",
".",
"context",
"[",
"i",
"]",
"[",
"'?point'",
"]",
":",
"uuid",
"=",
"i",
"return",
"i"
]
| Find uuid.
Parameters
----------
obj : ???
the object returned by the MDAL Query
column_name : str
input point returned from MDAL Query
Returns
-------
str
the uuid that correlates with the data | [
"Find",
"uuid",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L952-L975 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.identify_missing | def identify_missing(self, df, check_start=True):
""" Identify missing data.
Parameters
----------
df : pd.DataFrame()
Dataframe to check for missing data.
check_start : bool
turns 0 to 1 for the first observation, to display the start of the data
as the beginning of the missing data event
Returns
-------
pd.DataFrame(), str
dataframe where 1 indicates missing data and 0 indicates reported data,
returns the column name generated from the MDAL Query
"""
# Check start changes the first value of df to 1, when the data stream is initially missing
# This allows the diff function to acknowledge the missing data
data_missing = df.isnull() * 1
col_name = str(data_missing.columns[0])
# When there is no data stream at the beginning we change it to 1
if check_start & data_missing[col_name][0] == 1:
data_missing[col_name][0] = 0
return data_missing, col_name | python | def identify_missing(self, df, check_start=True):
data_missing = df.isnull() * 1
col_name = str(data_missing.columns[0])
if check_start & data_missing[col_name][0] == 1:
data_missing[col_name][0] = 0
return data_missing, col_name | [
"def",
"identify_missing",
"(",
"self",
",",
"df",
",",
"check_start",
"=",
"True",
")",
":",
"# Check start changes the first value of df to 1, when the data stream is initially missing",
"# This allows the diff function to acknowledge the missing data",
"data_missing",
"=",
"df",
".",
"isnull",
"(",
")",
"*",
"1",
"col_name",
"=",
"str",
"(",
"data_missing",
".",
"columns",
"[",
"0",
"]",
")",
"# When there is no data stream at the beginning we change it to 1",
"if",
"check_start",
"&",
"data_missing",
"[",
"col_name",
"]",
"[",
"0",
"]",
"==",
"1",
":",
"data_missing",
"[",
"col_name",
"]",
"[",
"0",
"]",
"=",
"0",
"return",
"data_missing",
",",
"col_name"
]
| Identify missing data.
Parameters
----------
df : pd.DataFrame()
Dataframe to check for missing data.
check_start : bool
turns 0 to 1 for the first observation, to display the start of the data
as the beginning of the missing data event
Returns
-------
pd.DataFrame(), str
dataframe where 1 indicates missing data and 0 indicates reported data,
returns the column name generated from the MDAL Query | [
"Identify",
"missing",
"data",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L978-L1006 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.diff_boolean | def diff_boolean(self, df, column_name=None, uuid=None, duration=True, min_event_filter='3 hours'):
""" takes the dataframe of missing values, and returns a dataframe that indicates the
length of each event where data was continuously missing
Parameters
----------
df : pd.DataFrame()
Dataframe to check for missing data (must be in boolean format where 1 indicates missing data.
column_name : str
the original column name produced by MDAL Query
uuid : str
the uuid associated with the meter, if known
duration : bool
If True, the duration will be displayed in the results. If false the column will be dropped.
min_event_filter : str
Filters out the events that are less than the given time period
Returns
-------
pd.DataFrame()
dataframe with the start time of the event (as the index),
end time of the event (first time when data is reported)
"""
if uuid == None:
uuid = 'End'
data_gaps = df[(df.diff() == 1) | (df.diff() == -1)].dropna()
data_gaps["duration"] = abs(data_gaps.index.to_series().diff(periods=-1))
data_gaps[uuid] = data_gaps.index + (data_gaps["duration"])
data_gaps = data_gaps[data_gaps["duration"] > pd.Timedelta(min_event_filter)]
data_gaps = data_gaps[data_gaps[column_name] == 1]
data_gaps.pop(column_name)
if not duration:
data_gaps.pop('duration')
data_gaps.index = data_gaps.index.strftime(date_format="%Y-%m-%d %H:%M:%S")
data_gaps[uuid] = data_gaps[uuid].dt.strftime(date_format="%Y-%m-%d %H:%M:%S")
return data_gaps | python | def diff_boolean(self, df, column_name=None, uuid=None, duration=True, min_event_filter='3 hours'):
if uuid == None:
uuid = 'End'
data_gaps = df[(df.diff() == 1) | (df.diff() == -1)].dropna()
data_gaps["duration"] = abs(data_gaps.index.to_series().diff(periods=-1))
data_gaps[uuid] = data_gaps.index + (data_gaps["duration"])
data_gaps = data_gaps[data_gaps["duration"] > pd.Timedelta(min_event_filter)]
data_gaps = data_gaps[data_gaps[column_name] == 1]
data_gaps.pop(column_name)
if not duration:
data_gaps.pop('duration')
data_gaps.index = data_gaps.index.strftime(date_format="%Y-%m-%d %H:%M:%S")
data_gaps[uuid] = data_gaps[uuid].dt.strftime(date_format="%Y-%m-%d %H:%M:%S")
return data_gaps | [
"def",
"diff_boolean",
"(",
"self",
",",
"df",
",",
"column_name",
"=",
"None",
",",
"uuid",
"=",
"None",
",",
"duration",
"=",
"True",
",",
"min_event_filter",
"=",
"'3 hours'",
")",
":",
"if",
"uuid",
"==",
"None",
":",
"uuid",
"=",
"'End'",
"data_gaps",
"=",
"df",
"[",
"(",
"df",
".",
"diff",
"(",
")",
"==",
"1",
")",
"|",
"(",
"df",
".",
"diff",
"(",
")",
"==",
"-",
"1",
")",
"]",
".",
"dropna",
"(",
")",
"data_gaps",
"[",
"\"duration\"",
"]",
"=",
"abs",
"(",
"data_gaps",
".",
"index",
".",
"to_series",
"(",
")",
".",
"diff",
"(",
"periods",
"=",
"-",
"1",
")",
")",
"data_gaps",
"[",
"uuid",
"]",
"=",
"data_gaps",
".",
"index",
"+",
"(",
"data_gaps",
"[",
"\"duration\"",
"]",
")",
"data_gaps",
"=",
"data_gaps",
"[",
"data_gaps",
"[",
"\"duration\"",
"]",
">",
"pd",
".",
"Timedelta",
"(",
"min_event_filter",
")",
"]",
"data_gaps",
"=",
"data_gaps",
"[",
"data_gaps",
"[",
"column_name",
"]",
"==",
"1",
"]",
"data_gaps",
".",
"pop",
"(",
"column_name",
")",
"if",
"not",
"duration",
":",
"data_gaps",
".",
"pop",
"(",
"'duration'",
")",
"data_gaps",
".",
"index",
"=",
"data_gaps",
".",
"index",
".",
"strftime",
"(",
"date_format",
"=",
"\"%Y-%m-%d %H:%M:%S\"",
")",
"data_gaps",
"[",
"uuid",
"]",
"=",
"data_gaps",
"[",
"uuid",
"]",
".",
"dt",
".",
"strftime",
"(",
"date_format",
"=",
"\"%Y-%m-%d %H:%M:%S\"",
")",
"return",
"data_gaps"
]
| takes the dataframe of missing values, and returns a dataframe that indicates the
length of each event where data was continuously missing
Parameters
----------
df : pd.DataFrame()
Dataframe to check for missing data (must be in boolean format where 1 indicates missing data.
column_name : str
the original column name produced by MDAL Query
uuid : str
the uuid associated with the meter, if known
duration : bool
If True, the duration will be displayed in the results. If false the column will be dropped.
min_event_filter : str
Filters out the events that are less than the given time period
Returns
-------
pd.DataFrame()
dataframe with the start time of the event (as the index),
end time of the event (first time when data is reported) | [
"takes",
"the",
"dataframe",
"of",
"missing",
"values",
"and",
"returns",
"a",
"dataframe",
"that",
"indicates",
"the",
"length",
"of",
"each",
"event",
"where",
"data",
"was",
"continuously",
"missing"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L1009-L1050 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.analyze_quality_table | def analyze_quality_table(self, obj,low_bound=None, high_bound=None):
""" Takes in an the object returned by the MDAL query, and analyzes the quality
of the data for each column in the df. Returns a df of data quality metrics
To Do
-----
Need to make it specific for varying meters and label it for each type,
Either separate functions or make the function broader
Parameters
----------
obj : ???
the object returned by the MDAL Query
low_bound : float
all data equal to or below this value will be interpreted as missing data
high_bound : float
all data above this value will be interpreted as missing
Returns
-------
pd.DataFrame()
returns data frame with % missing data, average duration of missing data
event and standard deviation of that duration for each column of data
"""
data = obj.df
N_rows = 3
N_cols = data.shape[1]
d = pd.DataFrame(np.zeros((N_rows, N_cols)),
index=['% Missing', 'AVG Length Missing', 'Std dev. Missing'],
columns=[data.columns])
if low_bound:
data = data.where(data >= low_bound)
if high_bound:
data=data.where(data < high_bound)
for i in range(N_cols):
data_per_meter = data.iloc[:, [i]]
data_missing, meter = self.identify_missing(data_per_meter)
percentage = data_missing.sum() / (data.shape[0]) * 100
data_gaps = self.diff_boolean(data_missing, column_name=meter)
missing_mean = data_gaps.mean()
std_dev = data_gaps.std()
d.loc["% Missing", meter] = percentage[meter]
d.loc["AVG Length Missing", meter] = missing_mean['duration']
d.loc["Std dev. Missing", meter] = std_dev['duration']
return d | python | def analyze_quality_table(self, obj,low_bound=None, high_bound=None):
data = obj.df
N_rows = 3
N_cols = data.shape[1]
d = pd.DataFrame(np.zeros((N_rows, N_cols)),
index=['% Missing', 'AVG Length Missing', 'Std dev. Missing'],
columns=[data.columns])
if low_bound:
data = data.where(data >= low_bound)
if high_bound:
data=data.where(data < high_bound)
for i in range(N_cols):
data_per_meter = data.iloc[:, [i]]
data_missing, meter = self.identify_missing(data_per_meter)
percentage = data_missing.sum() / (data.shape[0]) * 100
data_gaps = self.diff_boolean(data_missing, column_name=meter)
missing_mean = data_gaps.mean()
std_dev = data_gaps.std()
d.loc["% Missing", meter] = percentage[meter]
d.loc["AVG Length Missing", meter] = missing_mean['duration']
d.loc["Std dev. Missing", meter] = std_dev['duration']
return d | [
"def",
"analyze_quality_table",
"(",
"self",
",",
"obj",
",",
"low_bound",
"=",
"None",
",",
"high_bound",
"=",
"None",
")",
":",
"data",
"=",
"obj",
".",
"df",
"N_rows",
"=",
"3",
"N_cols",
"=",
"data",
".",
"shape",
"[",
"1",
"]",
"d",
"=",
"pd",
".",
"DataFrame",
"(",
"np",
".",
"zeros",
"(",
"(",
"N_rows",
",",
"N_cols",
")",
")",
",",
"index",
"=",
"[",
"'% Missing'",
",",
"'AVG Length Missing'",
",",
"'Std dev. Missing'",
"]",
",",
"columns",
"=",
"[",
"data",
".",
"columns",
"]",
")",
"if",
"low_bound",
":",
"data",
"=",
"data",
".",
"where",
"(",
"data",
">=",
"low_bound",
")",
"if",
"high_bound",
":",
"data",
"=",
"data",
".",
"where",
"(",
"data",
"<",
"high_bound",
")",
"for",
"i",
"in",
"range",
"(",
"N_cols",
")",
":",
"data_per_meter",
"=",
"data",
".",
"iloc",
"[",
":",
",",
"[",
"i",
"]",
"]",
"data_missing",
",",
"meter",
"=",
"self",
".",
"identify_missing",
"(",
"data_per_meter",
")",
"percentage",
"=",
"data_missing",
".",
"sum",
"(",
")",
"/",
"(",
"data",
".",
"shape",
"[",
"0",
"]",
")",
"*",
"100",
"data_gaps",
"=",
"self",
".",
"diff_boolean",
"(",
"data_missing",
",",
"column_name",
"=",
"meter",
")",
"missing_mean",
"=",
"data_gaps",
".",
"mean",
"(",
")",
"std_dev",
"=",
"data_gaps",
".",
"std",
"(",
")",
"d",
".",
"loc",
"[",
"\"% Missing\"",
",",
"meter",
"]",
"=",
"percentage",
"[",
"meter",
"]",
"d",
".",
"loc",
"[",
"\"AVG Length Missing\"",
",",
"meter",
"]",
"=",
"missing_mean",
"[",
"'duration'",
"]",
"d",
".",
"loc",
"[",
"\"Std dev. Missing\"",
",",
"meter",
"]",
"=",
"std_dev",
"[",
"'duration'",
"]",
"return",
"d"
]
| Takes in an the object returned by the MDAL query, and analyzes the quality
of the data for each column in the df. Returns a df of data quality metrics
To Do
-----
Need to make it specific for varying meters and label it for each type,
Either separate functions or make the function broader
Parameters
----------
obj : ???
the object returned by the MDAL Query
low_bound : float
all data equal to or below this value will be interpreted as missing data
high_bound : float
all data above this value will be interpreted as missing
Returns
-------
pd.DataFrame()
returns data frame with % missing data, average duration of missing data
event and standard deviation of that duration for each column of data | [
"Takes",
"in",
"an",
"the",
"object",
"returned",
"by",
"the",
"MDAL",
"query",
"and",
"analyzes",
"the",
"quality",
"of",
"the",
"data",
"for",
"each",
"column",
"in",
"the",
"df",
".",
"Returns",
"a",
"df",
"of",
"data",
"quality",
"metrics"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L1053-L1108 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.analyze_quality_graph | def analyze_quality_graph(self, obj):
""" Takes in an the object returned by the MDAL query, and analyzes the quality
of the data for each column in the df in the form of graphs. The Graphs returned
show missing data events over time, and missing data frequency during each hour
of the day
To Do
-----
Need to make it specific for varying meters and label it for each type,
Either separate functions or make the function broader
Parameters
----------
obj : ???
the object returned by the MDAL Query
"""
data = obj.df
for i in range(data.shape[1]):
data_per_meter = data.iloc[:, [i]] # need to make this work or change the structure
data_missing, meter = self.identify_missing(data_per_meter)
percentage = data_missing.sum() / (data.shape[0]) * 100
print('Percentage Missing of ' + meter + ' data: ' + str(int(percentage)) + '%')
data_missing.plot(figsize=(18, 5), x_compat=True, title=meter + " Missing Data over the Time interval")
data_gaps = self.diff_boolean(data_missing, column_name=meter)
data_missing['Hour'] = data_missing.index.hour
ymax = int(data_missing.groupby('Hour').sum().max() + 10)
data_missing.groupby('Hour').sum().plot(ylim=(0, ymax), figsize=(18, 5),
title=meter + " Time of Day of Missing Data")
print(data_gaps) | python | def analyze_quality_graph(self, obj):
data = obj.df
for i in range(data.shape[1]):
data_per_meter = data.iloc[:, [i]]
data_missing, meter = self.identify_missing(data_per_meter)
percentage = data_missing.sum() / (data.shape[0]) * 100
print('Percentage Missing of ' + meter + ' data: ' + str(int(percentage)) + '%')
data_missing.plot(figsize=(18, 5), x_compat=True, title=meter + " Missing Data over the Time interval")
data_gaps = self.diff_boolean(data_missing, column_name=meter)
data_missing['Hour'] = data_missing.index.hour
ymax = int(data_missing.groupby('Hour').sum().max() + 10)
data_missing.groupby('Hour').sum().plot(ylim=(0, ymax), figsize=(18, 5),
title=meter + " Time of Day of Missing Data")
print(data_gaps) | [
"def",
"analyze_quality_graph",
"(",
"self",
",",
"obj",
")",
":",
"data",
"=",
"obj",
".",
"df",
"for",
"i",
"in",
"range",
"(",
"data",
".",
"shape",
"[",
"1",
"]",
")",
":",
"data_per_meter",
"=",
"data",
".",
"iloc",
"[",
":",
",",
"[",
"i",
"]",
"]",
"# need to make this work or change the structure",
"data_missing",
",",
"meter",
"=",
"self",
".",
"identify_missing",
"(",
"data_per_meter",
")",
"percentage",
"=",
"data_missing",
".",
"sum",
"(",
")",
"/",
"(",
"data",
".",
"shape",
"[",
"0",
"]",
")",
"*",
"100",
"print",
"(",
"'Percentage Missing of '",
"+",
"meter",
"+",
"' data: '",
"+",
"str",
"(",
"int",
"(",
"percentage",
")",
")",
"+",
"'%'",
")",
"data_missing",
".",
"plot",
"(",
"figsize",
"=",
"(",
"18",
",",
"5",
")",
",",
"x_compat",
"=",
"True",
",",
"title",
"=",
"meter",
"+",
"\" Missing Data over the Time interval\"",
")",
"data_gaps",
"=",
"self",
".",
"diff_boolean",
"(",
"data_missing",
",",
"column_name",
"=",
"meter",
")",
"data_missing",
"[",
"'Hour'",
"]",
"=",
"data_missing",
".",
"index",
".",
"hour",
"ymax",
"=",
"int",
"(",
"data_missing",
".",
"groupby",
"(",
"'Hour'",
")",
".",
"sum",
"(",
")",
".",
"max",
"(",
")",
"+",
"10",
")",
"data_missing",
".",
"groupby",
"(",
"'Hour'",
")",
".",
"sum",
"(",
")",
".",
"plot",
"(",
"ylim",
"=",
"(",
"0",
",",
"ymax",
")",
",",
"figsize",
"=",
"(",
"18",
",",
"5",
")",
",",
"title",
"=",
"meter",
"+",
"\" Time of Day of Missing Data\"",
")",
"print",
"(",
"data_gaps",
")"
]
| Takes in an the object returned by the MDAL query, and analyzes the quality
of the data for each column in the df in the form of graphs. The Graphs returned
show missing data events over time, and missing data frequency during each hour
of the day
To Do
-----
Need to make it specific for varying meters and label it for each type,
Either separate functions or make the function broader
Parameters
----------
obj : ???
the object returned by the MDAL Query | [
"Takes",
"in",
"an",
"the",
"object",
"returned",
"by",
"the",
"MDAL",
"query",
"and",
"analyzes",
"the",
"quality",
"of",
"the",
"data",
"for",
"each",
"column",
"in",
"the",
"df",
"in",
"the",
"form",
"of",
"graphs",
".",
"The",
"Graphs",
"returned",
"show",
"missing",
"data",
"events",
"over",
"time",
"and",
"missing",
"data",
"frequency",
"during",
"each",
"hour",
"of",
"the",
"day"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L1111-L1147 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Clean_Data.py | Clean_Data.event_duration | def event_duration(self, obj, dictionary, low_bound=None, high_bound=None):
""" Takes in an object and returns a dictionary with the missing data events (start and end)
for each column in the inputted object (will map to a uuid)
To Do
-----
Need to make it specific for varying meters and label it for each type,
Either separate functions or make the function broader
Parameters
----------
obj : ???
the object returned by the MDAL Query
dictionary : dict
name of the dictionary
low_bound : float
all data equal to or below this value will be interpreted as missing data
high_bound : float
all data above this value will be interpreted as missing data
Returns
-------
dict
dictionary with the format:
{uuid:{start of event 1: end of event 1, start of event 2: end of event 2, ...}, uuid:{..}}
"""
data = obj.df
N_cols = data.shape[1]
if low_bound:
data = data.where(data >= low_bound)
if high_bound:
data=data.where(data < high_bound)
for i in range(N_cols):
data_per_meter = data.iloc[:, [i]]
data_missing, meter = self.identify_missing(data_per_meter)
uuid = self.find_uuid(obj, column_name=meter)
data_gaps = self.diff_boolean(data_missing, meter, uuid)
dictionary_solo = data_gaps.to_dict()
dictionary[uuid] = dictionary_solo[uuid]
# dictionary[uuid]=data_gaps # uncomment to get a dictionary of dfs
return dictionary | python | def event_duration(self, obj, dictionary, low_bound=None, high_bound=None):
data = obj.df
N_cols = data.shape[1]
if low_bound:
data = data.where(data >= low_bound)
if high_bound:
data=data.where(data < high_bound)
for i in range(N_cols):
data_per_meter = data.iloc[:, [i]]
data_missing, meter = self.identify_missing(data_per_meter)
uuid = self.find_uuid(obj, column_name=meter)
data_gaps = self.diff_boolean(data_missing, meter, uuid)
dictionary_solo = data_gaps.to_dict()
dictionary[uuid] = dictionary_solo[uuid]
return dictionary | [
"def",
"event_duration",
"(",
"self",
",",
"obj",
",",
"dictionary",
",",
"low_bound",
"=",
"None",
",",
"high_bound",
"=",
"None",
")",
":",
"data",
"=",
"obj",
".",
"df",
"N_cols",
"=",
"data",
".",
"shape",
"[",
"1",
"]",
"if",
"low_bound",
":",
"data",
"=",
"data",
".",
"where",
"(",
"data",
">=",
"low_bound",
")",
"if",
"high_bound",
":",
"data",
"=",
"data",
".",
"where",
"(",
"data",
"<",
"high_bound",
")",
"for",
"i",
"in",
"range",
"(",
"N_cols",
")",
":",
"data_per_meter",
"=",
"data",
".",
"iloc",
"[",
":",
",",
"[",
"i",
"]",
"]",
"data_missing",
",",
"meter",
"=",
"self",
".",
"identify_missing",
"(",
"data_per_meter",
")",
"uuid",
"=",
"self",
".",
"find_uuid",
"(",
"obj",
",",
"column_name",
"=",
"meter",
")",
"data_gaps",
"=",
"self",
".",
"diff_boolean",
"(",
"data_missing",
",",
"meter",
",",
"uuid",
")",
"dictionary_solo",
"=",
"data_gaps",
".",
"to_dict",
"(",
")",
"dictionary",
"[",
"uuid",
"]",
"=",
"dictionary_solo",
"[",
"uuid",
"]",
"# dictionary[uuid]=data_gaps # uncomment to get a dictionary of dfs",
"return",
"dictionary"
]
| Takes in an object and returns a dictionary with the missing data events (start and end)
for each column in the inputted object (will map to a uuid)
To Do
-----
Need to make it specific for varying meters and label it for each type,
Either separate functions or make the function broader
Parameters
----------
obj : ???
the object returned by the MDAL Query
dictionary : dict
name of the dictionary
low_bound : float
all data equal to or below this value will be interpreted as missing data
high_bound : float
all data above this value will be interpreted as missing data
Returns
-------
dict
dictionary with the format:
{uuid:{start of event 1: end of event 1, start of event 2: end of event 2, ...}, uuid:{..}} | [
"Takes",
"in",
"an",
"object",
"and",
"returns",
"a",
"dictionary",
"with",
"the",
"missing",
"data",
"events",
"(",
"start",
"and",
"end",
")",
"for",
"each",
"column",
"in",
"the",
"inputted",
"object",
"(",
"will",
"map",
"to",
"a",
"uuid",
")"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L1151-L1199 |
SoftwareDefinedBuildings/XBOS | models/ciee/thermal_model.py | execute_schedule | def execute_schedule(day, sched, popt, initial_temperature):
"""
sched is a list of (hsp, csp) setpoints at 30m intervals
"""
output = []
actions = []
prev_temp = initial_temperature
weather = predict_weather(day)
print len(sched), len(weather)
for idx, epoch in enumerate(sched):
if prev_temp < epoch[0]: # hsp
next_temp = next_temperature(popt, prev_temp, 1, weather[idx]) # 1 is heat
actions.append(1)
elif prev_temp > epoch[1]: # csp
next_temp = next_temperature(popt, prev_temp, 2, weather[idx]) # 2 is cool
actions.append(2)
else:
next_temp = next_temperature(popt, prev_temp, 0, weather[idx]) # 0 is off
actions.append(0)
print prev_temp, weather[idx], actions[-1], next_temp
output.append(next_temp)
prev_temp = next_temp
return output, actions | python | def execute_schedule(day, sched, popt, initial_temperature):
output = []
actions = []
prev_temp = initial_temperature
weather = predict_weather(day)
print len(sched), len(weather)
for idx, epoch in enumerate(sched):
if prev_temp < epoch[0]:
next_temp = next_temperature(popt, prev_temp, 1, weather[idx])
actions.append(1)
elif prev_temp > epoch[1]:
next_temp = next_temperature(popt, prev_temp, 2, weather[idx])
actions.append(2)
else:
next_temp = next_temperature(popt, prev_temp, 0, weather[idx])
actions.append(0)
print prev_temp, weather[idx], actions[-1], next_temp
output.append(next_temp)
prev_temp = next_temp
return output, actions | [
"def",
"execute_schedule",
"(",
"day",
",",
"sched",
",",
"popt",
",",
"initial_temperature",
")",
":",
"output",
"=",
"[",
"]",
"actions",
"=",
"[",
"]",
"prev_temp",
"=",
"initial_temperature",
"weather",
"=",
"predict_weather",
"(",
"day",
")",
"print",
"len",
"(",
"sched",
")",
",",
"len",
"(",
"weather",
")",
"for",
"idx",
",",
"epoch",
"in",
"enumerate",
"(",
"sched",
")",
":",
"if",
"prev_temp",
"<",
"epoch",
"[",
"0",
"]",
":",
"# hsp",
"next_temp",
"=",
"next_temperature",
"(",
"popt",
",",
"prev_temp",
",",
"1",
",",
"weather",
"[",
"idx",
"]",
")",
"# 1 is heat",
"actions",
".",
"append",
"(",
"1",
")",
"elif",
"prev_temp",
">",
"epoch",
"[",
"1",
"]",
":",
"# csp",
"next_temp",
"=",
"next_temperature",
"(",
"popt",
",",
"prev_temp",
",",
"2",
",",
"weather",
"[",
"idx",
"]",
")",
"# 2 is cool",
"actions",
".",
"append",
"(",
"2",
")",
"else",
":",
"next_temp",
"=",
"next_temperature",
"(",
"popt",
",",
"prev_temp",
",",
"0",
",",
"weather",
"[",
"idx",
"]",
")",
"# 0 is off",
"actions",
".",
"append",
"(",
"0",
")",
"print",
"prev_temp",
",",
"weather",
"[",
"idx",
"]",
",",
"actions",
"[",
"-",
"1",
"]",
",",
"next_temp",
"output",
".",
"append",
"(",
"next_temp",
")",
"prev_temp",
"=",
"next_temp",
"return",
"output",
",",
"actions"
]
| sched is a list of (hsp, csp) setpoints at 30m intervals | [
"sched",
"is",
"a",
"list",
"of",
"(",
"hsp",
"csp",
")",
"setpoints",
"at",
"30m",
"intervals"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/models/ciee/thermal_model.py#L72-L95 |
SoftwareDefinedBuildings/XBOS | apps/data_analysis/XBOS_data_analytics/Clean_Data.py | Clean_Data.clean_data | def clean_data(self, resample=True, freq='h', resampler='mean',
interpolate=True, limit=1, method='linear',
remove_na=True, remove_na_how='any',
remove_outliers=True, sd_val=3,
remove_out_of_bounds=True, low_bound=0, high_bound=9998):
""" Clean dataframe.
Parameters
----------
resample : bool
Indicates whether to resample data or not.
freq : str
Resampling frequency i.e. d, h, 15T...
resampler : str
Resampling type i.e. mean, max.
interpolate : bool
Indicates whether to interpolate data or not.
limit : int
Interpolation limit.
method : str
Interpolation method.
remove_na : bool
Indicates whether to remove NAs or not.
remove_na_how : str
Specificies how to remove NA i.e. all, any...
remove_outliers : bool
Indicates whether to remove outliers or not.
sd_val : int
Standard Deviation Value (specifices how many SDs away is a point considered an outlier)
remove_out_of_bounds : bool
Indicates whether to remove out of bounds datapoints or not.
low_bound : int
Low bound of the data.
high_bound : int
High bound of the data.
"""
# Store copy of the original data
data = self.original_data
if resample:
try:
data = self.resample_data(data, freq, resampler)
except Exception as e:
raise e
if interpolate:
try:
data = self.interpolate_data(data, limit=limit, method=method)
except Exception as e:
raise e
if remove_na:
try:
data = self.remove_na(data, remove_na_how)
except Exception as e:
raise e
if remove_outliers:
try:
data = self.remove_outliers(data, sd_val)
except Exception as e:
raise e
if remove_out_of_bounds:
try:
data = self.remove_out_of_bounds(data, low_bound, high_bound)
except Exception as e:
raise e
self.cleaned_data = data | python | def clean_data(self, resample=True, freq='h', resampler='mean',
interpolate=True, limit=1, method='linear',
remove_na=True, remove_na_how='any',
remove_outliers=True, sd_val=3,
remove_out_of_bounds=True, low_bound=0, high_bound=9998):
data = self.original_data
if resample:
try:
data = self.resample_data(data, freq, resampler)
except Exception as e:
raise e
if interpolate:
try:
data = self.interpolate_data(data, limit=limit, method=method)
except Exception as e:
raise e
if remove_na:
try:
data = self.remove_na(data, remove_na_how)
except Exception as e:
raise e
if remove_outliers:
try:
data = self.remove_outliers(data, sd_val)
except Exception as e:
raise e
if remove_out_of_bounds:
try:
data = self.remove_out_of_bounds(data, low_bound, high_bound)
except Exception as e:
raise e
self.cleaned_data = data | [
"def",
"clean_data",
"(",
"self",
",",
"resample",
"=",
"True",
",",
"freq",
"=",
"'h'",
",",
"resampler",
"=",
"'mean'",
",",
"interpolate",
"=",
"True",
",",
"limit",
"=",
"1",
",",
"method",
"=",
"'linear'",
",",
"remove_na",
"=",
"True",
",",
"remove_na_how",
"=",
"'any'",
",",
"remove_outliers",
"=",
"True",
",",
"sd_val",
"=",
"3",
",",
"remove_out_of_bounds",
"=",
"True",
",",
"low_bound",
"=",
"0",
",",
"high_bound",
"=",
"9998",
")",
":",
"# Store copy of the original data",
"data",
"=",
"self",
".",
"original_data",
"if",
"resample",
":",
"try",
":",
"data",
"=",
"self",
".",
"resample_data",
"(",
"data",
",",
"freq",
",",
"resampler",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"e",
"if",
"interpolate",
":",
"try",
":",
"data",
"=",
"self",
".",
"interpolate_data",
"(",
"data",
",",
"limit",
"=",
"limit",
",",
"method",
"=",
"method",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"e",
"if",
"remove_na",
":",
"try",
":",
"data",
"=",
"self",
".",
"remove_na",
"(",
"data",
",",
"remove_na_how",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"e",
"if",
"remove_outliers",
":",
"try",
":",
"data",
"=",
"self",
".",
"remove_outliers",
"(",
"data",
",",
"sd_val",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"e",
"if",
"remove_out_of_bounds",
":",
"try",
":",
"data",
"=",
"self",
".",
"remove_out_of_bounds",
"(",
"data",
",",
"low_bound",
",",
"high_bound",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"e",
"self",
".",
"cleaned_data",
"=",
"data"
]
| Clean dataframe.
Parameters
----------
resample : bool
Indicates whether to resample data or not.
freq : str
Resampling frequency i.e. d, h, 15T...
resampler : str
Resampling type i.e. mean, max.
interpolate : bool
Indicates whether to interpolate data or not.
limit : int
Interpolation limit.
method : str
Interpolation method.
remove_na : bool
Indicates whether to remove NAs or not.
remove_na_how : str
Specificies how to remove NA i.e. all, any...
remove_outliers : bool
Indicates whether to remove outliers or not.
sd_val : int
Standard Deviation Value (specifices how many SDs away is a point considered an outlier)
remove_out_of_bounds : bool
Indicates whether to remove out of bounds datapoints or not.
low_bound : int
Low bound of the data.
high_bound : int
High bound of the data. | [
"Clean",
"dataframe",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/data_analysis/XBOS_data_analytics/Clean_Data.py#L198-L269 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Wrapper.py | Wrapper.get_global_count | def get_global_count(self):
""" Return global count (used for naming of .json and .png files)
Returns
-------
int
Global count
"""
# Check current number of json files in results directory and dump current json in new file
path_to_json = self.results_folder_name + '/'
json_files = [pos_json for pos_json in os.listdir(path_to_json) if pos_json.endswith('.json')]
Wrapper.global_count = len(json_files) + 1
return Wrapper.global_count | python | def get_global_count(self):
path_to_json = self.results_folder_name + '/'
json_files = [pos_json for pos_json in os.listdir(path_to_json) if pos_json.endswith('.json')]
Wrapper.global_count = len(json_files) + 1
return Wrapper.global_count | [
"def",
"get_global_count",
"(",
"self",
")",
":",
"# Check current number of json files in results directory and dump current json in new file",
"path_to_json",
"=",
"self",
".",
"results_folder_name",
"+",
"'/'",
"json_files",
"=",
"[",
"pos_json",
"for",
"pos_json",
"in",
"os",
".",
"listdir",
"(",
"path_to_json",
")",
"if",
"pos_json",
".",
"endswith",
"(",
"'.json'",
")",
"]",
"Wrapper",
".",
"global_count",
"=",
"len",
"(",
"json_files",
")",
"+",
"1",
"return",
"Wrapper",
".",
"global_count"
]
| Return global count (used for naming of .json and .png files)
Returns
-------
int
Global count | [
"Return",
"global",
"count",
"(",
"used",
"for",
"naming",
"of",
".",
"json",
"and",
".",
"png",
"files",
")"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Wrapper.py#L114-L128 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Wrapper.py | Wrapper.write_json | def write_json(self):
""" Dump data into json file. """
with open(self.results_folder_name + '/results-' + str(self.get_global_count()) + '.json', 'a') as f:
json.dump(self.result, f) | python | def write_json(self):
with open(self.results_folder_name + '/results-' + str(self.get_global_count()) + '.json', 'a') as f:
json.dump(self.result, f) | [
"def",
"write_json",
"(",
"self",
")",
":",
"with",
"open",
"(",
"self",
".",
"results_folder_name",
"+",
"'/results-'",
"+",
"str",
"(",
"self",
".",
"get_global_count",
"(",
")",
")",
"+",
"'.json'",
",",
"'a'",
")",
"as",
"f",
":",
"json",
".",
"dump",
"(",
"self",
".",
"result",
",",
"f",
")"
]
| Dump data into json file. | [
"Dump",
"data",
"into",
"json",
"file",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Wrapper.py#L143-L147 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Wrapper.py | Wrapper.site_analysis | def site_analysis(self, folder_name, site_install_mapping, end_date):
""" Summarize site data into a single table.
folder_name : str
Folder where all site data resides.
site_event_mapping : dic
Dictionary of site name to date of installation.
end_date : str
End date of data collected.
"""
def count_number_of_days(site, end_date):
""" Counts the number of days between two dates.
Parameters
----------
site : str
Key to a dic containing site_name -> pelican installation date.
end_date : str
End date.
Returns
-------
int
Number of days
"""
start_date = site_install_mapping[site]
start_date = start_date.split('-')
start = date(int(start_date[0]), int(start_date[1]), int(start_date[2]))
end_date = end_date.split('-')
end = date(int(end_date[0]), int(end_date[1]), int(end_date[2]))
delta = end - start
return delta.days
if not folder_name or not isinstance(folder_name, str):
raise TypeError("folder_name should be type string")
else:
list_json_files = []
df = pd.DataFrame()
temp_df = pd.DataFrame()
json_files = [f for f in os.listdir(folder_name) if f.endswith('.json')]
for json_file in json_files:
with open(folder_name + json_file) as f:
js = json.load(f)
num_days = count_number_of_days(js['Site'], end_date)
e_abs_sav = round(js['Energy Savings (absolute)'] / 1000, 2) # Energy Absolute Savings
e_perc_sav = round(js['Energy Savings (%)'], 2) # Energy Percent Savings
ann_e_abs_sav = (e_abs_sav / num_days) * 365 # Annualized Energy Absolute Savings
d_abs_sav = round(js['User Comments']['Dollar Savings (absolute)'], 2) # Dollar Absolute Savings
d_perc_sav = round(js['User Comments']['Dollar Savings (%)'], 2) # Dollar Percent Savings
ann_d_abs_sav = (d_abs_sav / num_days) * 365 # Annualized Dollar Absolute Savings
temp_df = pd.DataFrame({
'Site': js['Site'],
'#Days since Pelican Installation': num_days,
'Energy Savings (%)': e_perc_sav,
'Energy Savings (kWh)': e_abs_sav,
'Annualized Energy Savings (kWh)': ann_e_abs_sav,
'Dollar Savings (%)': d_perc_sav,
'Dollar Savings ($)': d_abs_sav,
'Annualized Dollar Savings ($)': ann_d_abs_sav,
'Best Model': js['Model']['Optimal Model\'s Metrics']['name'],
'Adj R2': round(js['Model']['Optimal Model\'s Metrics']['adj_cross_val_score'], 2),
'RMSE': round(js['Model']['Optimal Model\'s Metrics']['rmse'], 2),
'MAPE': js['Model']['Optimal Model\'s Metrics']['mape'],
'Uncertainity': js['Uncertainity'],
}, index=[0])
df = df.append(temp_df)
df.set_index('Site', inplace=True)
return df | python | def site_analysis(self, folder_name, site_install_mapping, end_date):
def count_number_of_days(site, end_date):
start_date = site_install_mapping[site]
start_date = start_date.split('-')
start = date(int(start_date[0]), int(start_date[1]), int(start_date[2]))
end_date = end_date.split('-')
end = date(int(end_date[0]), int(end_date[1]), int(end_date[2]))
delta = end - start
return delta.days
if not folder_name or not isinstance(folder_name, str):
raise TypeError("folder_name should be type string")
else:
list_json_files = []
df = pd.DataFrame()
temp_df = pd.DataFrame()
json_files = [f for f in os.listdir(folder_name) if f.endswith('.json')]
for json_file in json_files:
with open(folder_name + json_file) as f:
js = json.load(f)
num_days = count_number_of_days(js['Site'], end_date)
e_abs_sav = round(js['Energy Savings (absolute)'] / 1000, 2)
e_perc_sav = round(js['Energy Savings (%)'], 2)
ann_e_abs_sav = (e_abs_sav / num_days) * 365
d_abs_sav = round(js['User Comments']['Dollar Savings (absolute)'], 2)
d_perc_sav = round(js['User Comments']['Dollar Savings (%)'], 2)
ann_d_abs_sav = (d_abs_sav / num_days) * 365
temp_df = pd.DataFrame({
'Site': js['Site'],
'
'Energy Savings (%)': e_perc_sav,
'Energy Savings (kWh)': e_abs_sav,
'Annualized Energy Savings (kWh)': ann_e_abs_sav,
'Dollar Savings (%)': d_perc_sav,
'Dollar Savings ($)': d_abs_sav,
'Annualized Dollar Savings ($)': ann_d_abs_sav,
'Best Model': js['Model']['Optimal Model\'s Metrics']['name'],
'Adj R2': round(js['Model']['Optimal Model\'s Metrics']['adj_cross_val_score'], 2),
'RMSE': round(js['Model']['Optimal Model\'s Metrics']['rmse'], 2),
'MAPE': js['Model']['Optimal Model\'s Metrics']['mape'],
'Uncertainity': js['Uncertainity'],
}, index=[0])
df = df.append(temp_df)
df.set_index('Site', inplace=True)
return df | [
"def",
"site_analysis",
"(",
"self",
",",
"folder_name",
",",
"site_install_mapping",
",",
"end_date",
")",
":",
"def",
"count_number_of_days",
"(",
"site",
",",
"end_date",
")",
":",
"\"\"\" Counts the number of days between two dates.\n\n Parameters\n ----------\n site : str\n Key to a dic containing site_name -> pelican installation date.\n end_date : str\n End date.\n\n Returns\n -------\n int\n Number of days\n\n \"\"\"",
"start_date",
"=",
"site_install_mapping",
"[",
"site",
"]",
"start_date",
"=",
"start_date",
".",
"split",
"(",
"'-'",
")",
"start",
"=",
"date",
"(",
"int",
"(",
"start_date",
"[",
"0",
"]",
")",
",",
"int",
"(",
"start_date",
"[",
"1",
"]",
")",
",",
"int",
"(",
"start_date",
"[",
"2",
"]",
")",
")",
"end_date",
"=",
"end_date",
".",
"split",
"(",
"'-'",
")",
"end",
"=",
"date",
"(",
"int",
"(",
"end_date",
"[",
"0",
"]",
")",
",",
"int",
"(",
"end_date",
"[",
"1",
"]",
")",
",",
"int",
"(",
"end_date",
"[",
"2",
"]",
")",
")",
"delta",
"=",
"end",
"-",
"start",
"return",
"delta",
".",
"days",
"if",
"not",
"folder_name",
"or",
"not",
"isinstance",
"(",
"folder_name",
",",
"str",
")",
":",
"raise",
"TypeError",
"(",
"\"folder_name should be type string\"",
")",
"else",
":",
"list_json_files",
"=",
"[",
"]",
"df",
"=",
"pd",
".",
"DataFrame",
"(",
")",
"temp_df",
"=",
"pd",
".",
"DataFrame",
"(",
")",
"json_files",
"=",
"[",
"f",
"for",
"f",
"in",
"os",
".",
"listdir",
"(",
"folder_name",
")",
"if",
"f",
".",
"endswith",
"(",
"'.json'",
")",
"]",
"for",
"json_file",
"in",
"json_files",
":",
"with",
"open",
"(",
"folder_name",
"+",
"json_file",
")",
"as",
"f",
":",
"js",
"=",
"json",
".",
"load",
"(",
"f",
")",
"num_days",
"=",
"count_number_of_days",
"(",
"js",
"[",
"'Site'",
"]",
",",
"end_date",
")",
"e_abs_sav",
"=",
"round",
"(",
"js",
"[",
"'Energy Savings (absolute)'",
"]",
"/",
"1000",
",",
"2",
")",
"# Energy Absolute Savings",
"e_perc_sav",
"=",
"round",
"(",
"js",
"[",
"'Energy Savings (%)'",
"]",
",",
"2",
")",
"# Energy Percent Savings",
"ann_e_abs_sav",
"=",
"(",
"e_abs_sav",
"/",
"num_days",
")",
"*",
"365",
"# Annualized Energy Absolute Savings",
"d_abs_sav",
"=",
"round",
"(",
"js",
"[",
"'User Comments'",
"]",
"[",
"'Dollar Savings (absolute)'",
"]",
",",
"2",
")",
"# Dollar Absolute Savings",
"d_perc_sav",
"=",
"round",
"(",
"js",
"[",
"'User Comments'",
"]",
"[",
"'Dollar Savings (%)'",
"]",
",",
"2",
")",
"# Dollar Percent Savings",
"ann_d_abs_sav",
"=",
"(",
"d_abs_sav",
"/",
"num_days",
")",
"*",
"365",
"# Annualized Dollar Absolute Savings",
"temp_df",
"=",
"pd",
".",
"DataFrame",
"(",
"{",
"'Site'",
":",
"js",
"[",
"'Site'",
"]",
",",
"'#Days since Pelican Installation'",
":",
"num_days",
",",
"'Energy Savings (%)'",
":",
"e_perc_sav",
",",
"'Energy Savings (kWh)'",
":",
"e_abs_sav",
",",
"'Annualized Energy Savings (kWh)'",
":",
"ann_e_abs_sav",
",",
"'Dollar Savings (%)'",
":",
"d_perc_sav",
",",
"'Dollar Savings ($)'",
":",
"d_abs_sav",
",",
"'Annualized Dollar Savings ($)'",
":",
"ann_d_abs_sav",
",",
"'Best Model'",
":",
"js",
"[",
"'Model'",
"]",
"[",
"'Optimal Model\\'s Metrics'",
"]",
"[",
"'name'",
"]",
",",
"'Adj R2'",
":",
"round",
"(",
"js",
"[",
"'Model'",
"]",
"[",
"'Optimal Model\\'s Metrics'",
"]",
"[",
"'adj_cross_val_score'",
"]",
",",
"2",
")",
",",
"'RMSE'",
":",
"round",
"(",
"js",
"[",
"'Model'",
"]",
"[",
"'Optimal Model\\'s Metrics'",
"]",
"[",
"'rmse'",
"]",
",",
"2",
")",
",",
"'MAPE'",
":",
"js",
"[",
"'Model'",
"]",
"[",
"'Optimal Model\\'s Metrics'",
"]",
"[",
"'mape'",
"]",
",",
"'Uncertainity'",
":",
"js",
"[",
"'Uncertainity'",
"]",
",",
"}",
",",
"index",
"=",
"[",
"0",
"]",
")",
"df",
"=",
"df",
".",
"append",
"(",
"temp_df",
")",
"df",
".",
"set_index",
"(",
"'Site'",
",",
"inplace",
"=",
"True",
")",
"return",
"df"
]
| Summarize site data into a single table.
folder_name : str
Folder where all site data resides.
site_event_mapping : dic
Dictionary of site name to date of installation.
end_date : str
End date of data collected. | [
"Summarize",
"site",
"data",
"into",
"a",
"single",
"table",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Wrapper.py#L150-L235 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Wrapper.py | Wrapper.read_json | def read_json(self, file_name=None, input_json=None, imported_data=pd.DataFrame()):
""" Read input json file.
Notes
-----
The input json file should include ALL parameters.
Parameters
----------
file_name : str
Filename to be read.
input_json : dict
JSON object to be read.
imported_data : pd.DataFrame()
Pandas Dataframe containing data.
"""
if not file_name and not input_json or file_name and input_json:
raise TypeError('Provide either json file or json object to read.')
# Read json file
if file_name:
if not isinstance(file_name, str) or not file_name.endswith('.json') or not os.path.isfile('./'+file_name):
raise TypeError('File name should be a valid .json file residing in current directory.')
else:
f = open(file_name)
input_json = json.load(f)
if imported_data.empty:
import_json = input_json['Import']
imported_data = self.import_data(file_name=import_json['File Name'], folder_name=import_json['Folder Name'],
head_row=import_json['Head Row'], index_col=import_json['Index Col'],
convert_col=import_json['Convert Col'], concat_files=import_json['Concat Files'],
save_file=import_json['Save File'])
clean_json = input_json['Clean']
cleaned_data = self.clean_data(imported_data, rename_col=clean_json['Rename Col'], drop_col=clean_json['Drop Col'],
resample=clean_json['Resample'], freq=clean_json['Frequency'], resampler=clean_json['Resampler'],
interpolate=clean_json['Interpolate'], limit=clean_json['Limit'],
method=clean_json['Method'], remove_na=clean_json['Remove NA'],
remove_na_how=clean_json['Remove NA How'], remove_outliers=clean_json['Remove Outliers'],
sd_val=clean_json['SD Val'], remove_out_of_bounds=clean_json['Remove Out of Bounds'],
low_bound=clean_json['Low Bound'], high_bound=clean_json['High Bound'],
save_file=clean_json['Save File'])
preproc_json = input_json['Preprocess']
preprocessed_data = self.preprocess_data(cleaned_data, cdh_cpoint=preproc_json['CDH CPoint'],
hdh_cpoint=preproc_json['HDH CPoint'], col_hdh_cdh=preproc_json['HDH CDH Calc Col'],
col_degree=preproc_json['Col Degree'], degree=preproc_json['Degree'],
standardize=preproc_json['Standardize'], normalize=preproc_json['Normalize'],
year=preproc_json['Year'], month=preproc_json['Month'], week=preproc_json['Week'],
tod=preproc_json['Time of Day'], dow=preproc_json['Day of Week'],
save_file=preproc_json['Save File'])
model_json = input_json['Model']
model_data = self.model(preprocessed_data, ind_col=model_json['Independent Col'], dep_col=model_json['Dependent Col'],
project_ind_col=model_json['Projection Independent Col'],
baseline_period=model_json['Baseline Period'], projection_period=model_json['Projection Period'],
exclude_time_period=model_json['Exclude Time Period'],
alphas=model_json['Alphas'], cv=model_json['CV'], plot=model_json['Plot'], figsize=model_json['Fig Size']) | python | def read_json(self, file_name=None, input_json=None, imported_data=pd.DataFrame()):
if not file_name and not input_json or file_name and input_json:
raise TypeError('Provide either json file or json object to read.')
if file_name:
if not isinstance(file_name, str) or not file_name.endswith('.json') or not os.path.isfile('./'+file_name):
raise TypeError('File name should be a valid .json file residing in current directory.')
else:
f = open(file_name)
input_json = json.load(f)
if imported_data.empty:
import_json = input_json['Import']
imported_data = self.import_data(file_name=import_json['File Name'], folder_name=import_json['Folder Name'],
head_row=import_json['Head Row'], index_col=import_json['Index Col'],
convert_col=import_json['Convert Col'], concat_files=import_json['Concat Files'],
save_file=import_json['Save File'])
clean_json = input_json['Clean']
cleaned_data = self.clean_data(imported_data, rename_col=clean_json['Rename Col'], drop_col=clean_json['Drop Col'],
resample=clean_json['Resample'], freq=clean_json['Frequency'], resampler=clean_json['Resampler'],
interpolate=clean_json['Interpolate'], limit=clean_json['Limit'],
method=clean_json['Method'], remove_na=clean_json['Remove NA'],
remove_na_how=clean_json['Remove NA How'], remove_outliers=clean_json['Remove Outliers'],
sd_val=clean_json['SD Val'], remove_out_of_bounds=clean_json['Remove Out of Bounds'],
low_bound=clean_json['Low Bound'], high_bound=clean_json['High Bound'],
save_file=clean_json['Save File'])
preproc_json = input_json['Preprocess']
preprocessed_data = self.preprocess_data(cleaned_data, cdh_cpoint=preproc_json['CDH CPoint'],
hdh_cpoint=preproc_json['HDH CPoint'], col_hdh_cdh=preproc_json['HDH CDH Calc Col'],
col_degree=preproc_json['Col Degree'], degree=preproc_json['Degree'],
standardize=preproc_json['Standardize'], normalize=preproc_json['Normalize'],
year=preproc_json['Year'], month=preproc_json['Month'], week=preproc_json['Week'],
tod=preproc_json['Time of Day'], dow=preproc_json['Day of Week'],
save_file=preproc_json['Save File'])
model_json = input_json['Model']
model_data = self.model(preprocessed_data, ind_col=model_json['Independent Col'], dep_col=model_json['Dependent Col'],
project_ind_col=model_json['Projection Independent Col'],
baseline_period=model_json['Baseline Period'], projection_period=model_json['Projection Period'],
exclude_time_period=model_json['Exclude Time Period'],
alphas=model_json['Alphas'], cv=model_json['CV'], plot=model_json['Plot'], figsize=model_json['Fig Size']) | [
"def",
"read_json",
"(",
"self",
",",
"file_name",
"=",
"None",
",",
"input_json",
"=",
"None",
",",
"imported_data",
"=",
"pd",
".",
"DataFrame",
"(",
")",
")",
":",
"if",
"not",
"file_name",
"and",
"not",
"input_json",
"or",
"file_name",
"and",
"input_json",
":",
"raise",
"TypeError",
"(",
"'Provide either json file or json object to read.'",
")",
"# Read json file",
"if",
"file_name",
":",
"if",
"not",
"isinstance",
"(",
"file_name",
",",
"str",
")",
"or",
"not",
"file_name",
".",
"endswith",
"(",
"'.json'",
")",
"or",
"not",
"os",
".",
"path",
".",
"isfile",
"(",
"'./'",
"+",
"file_name",
")",
":",
"raise",
"TypeError",
"(",
"'File name should be a valid .json file residing in current directory.'",
")",
"else",
":",
"f",
"=",
"open",
"(",
"file_name",
")",
"input_json",
"=",
"json",
".",
"load",
"(",
"f",
")",
"if",
"imported_data",
".",
"empty",
":",
"import_json",
"=",
"input_json",
"[",
"'Import'",
"]",
"imported_data",
"=",
"self",
".",
"import_data",
"(",
"file_name",
"=",
"import_json",
"[",
"'File Name'",
"]",
",",
"folder_name",
"=",
"import_json",
"[",
"'Folder Name'",
"]",
",",
"head_row",
"=",
"import_json",
"[",
"'Head Row'",
"]",
",",
"index_col",
"=",
"import_json",
"[",
"'Index Col'",
"]",
",",
"convert_col",
"=",
"import_json",
"[",
"'Convert Col'",
"]",
",",
"concat_files",
"=",
"import_json",
"[",
"'Concat Files'",
"]",
",",
"save_file",
"=",
"import_json",
"[",
"'Save File'",
"]",
")",
"clean_json",
"=",
"input_json",
"[",
"'Clean'",
"]",
"cleaned_data",
"=",
"self",
".",
"clean_data",
"(",
"imported_data",
",",
"rename_col",
"=",
"clean_json",
"[",
"'Rename Col'",
"]",
",",
"drop_col",
"=",
"clean_json",
"[",
"'Drop Col'",
"]",
",",
"resample",
"=",
"clean_json",
"[",
"'Resample'",
"]",
",",
"freq",
"=",
"clean_json",
"[",
"'Frequency'",
"]",
",",
"resampler",
"=",
"clean_json",
"[",
"'Resampler'",
"]",
",",
"interpolate",
"=",
"clean_json",
"[",
"'Interpolate'",
"]",
",",
"limit",
"=",
"clean_json",
"[",
"'Limit'",
"]",
",",
"method",
"=",
"clean_json",
"[",
"'Method'",
"]",
",",
"remove_na",
"=",
"clean_json",
"[",
"'Remove NA'",
"]",
",",
"remove_na_how",
"=",
"clean_json",
"[",
"'Remove NA How'",
"]",
",",
"remove_outliers",
"=",
"clean_json",
"[",
"'Remove Outliers'",
"]",
",",
"sd_val",
"=",
"clean_json",
"[",
"'SD Val'",
"]",
",",
"remove_out_of_bounds",
"=",
"clean_json",
"[",
"'Remove Out of Bounds'",
"]",
",",
"low_bound",
"=",
"clean_json",
"[",
"'Low Bound'",
"]",
",",
"high_bound",
"=",
"clean_json",
"[",
"'High Bound'",
"]",
",",
"save_file",
"=",
"clean_json",
"[",
"'Save File'",
"]",
")",
"preproc_json",
"=",
"input_json",
"[",
"'Preprocess'",
"]",
"preprocessed_data",
"=",
"self",
".",
"preprocess_data",
"(",
"cleaned_data",
",",
"cdh_cpoint",
"=",
"preproc_json",
"[",
"'CDH CPoint'",
"]",
",",
"hdh_cpoint",
"=",
"preproc_json",
"[",
"'HDH CPoint'",
"]",
",",
"col_hdh_cdh",
"=",
"preproc_json",
"[",
"'HDH CDH Calc Col'",
"]",
",",
"col_degree",
"=",
"preproc_json",
"[",
"'Col Degree'",
"]",
",",
"degree",
"=",
"preproc_json",
"[",
"'Degree'",
"]",
",",
"standardize",
"=",
"preproc_json",
"[",
"'Standardize'",
"]",
",",
"normalize",
"=",
"preproc_json",
"[",
"'Normalize'",
"]",
",",
"year",
"=",
"preproc_json",
"[",
"'Year'",
"]",
",",
"month",
"=",
"preproc_json",
"[",
"'Month'",
"]",
",",
"week",
"=",
"preproc_json",
"[",
"'Week'",
"]",
",",
"tod",
"=",
"preproc_json",
"[",
"'Time of Day'",
"]",
",",
"dow",
"=",
"preproc_json",
"[",
"'Day of Week'",
"]",
",",
"save_file",
"=",
"preproc_json",
"[",
"'Save File'",
"]",
")",
"model_json",
"=",
"input_json",
"[",
"'Model'",
"]",
"model_data",
"=",
"self",
".",
"model",
"(",
"preprocessed_data",
",",
"ind_col",
"=",
"model_json",
"[",
"'Independent Col'",
"]",
",",
"dep_col",
"=",
"model_json",
"[",
"'Dependent Col'",
"]",
",",
"project_ind_col",
"=",
"model_json",
"[",
"'Projection Independent Col'",
"]",
",",
"baseline_period",
"=",
"model_json",
"[",
"'Baseline Period'",
"]",
",",
"projection_period",
"=",
"model_json",
"[",
"'Projection Period'",
"]",
",",
"exclude_time_period",
"=",
"model_json",
"[",
"'Exclude Time Period'",
"]",
",",
"alphas",
"=",
"model_json",
"[",
"'Alphas'",
"]",
",",
"cv",
"=",
"model_json",
"[",
"'CV'",
"]",
",",
"plot",
"=",
"model_json",
"[",
"'Plot'",
"]",
",",
"figsize",
"=",
"model_json",
"[",
"'Fig Size'",
"]",
")"
]
| Read input json file.
Notes
-----
The input json file should include ALL parameters.
Parameters
----------
file_name : str
Filename to be read.
input_json : dict
JSON object to be read.
imported_data : pd.DataFrame()
Pandas Dataframe containing data. | [
"Read",
"input",
"json",
"file",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Wrapper.py#L238-L298 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Wrapper.py | Wrapper.search | def search(self, file_name, imported_data=None):
""" Run models on different data configurations.
Note
----
The input json file should include ALL parameters.
Parameters
----------
file_name : str
Optional json file to read parameters.
imported_data : pd.DataFrame()
Pandas Dataframe containing data.
"""
resample_freq=['15T', 'h', 'd']
time_freq = {
'year' : [True, False, False, False, False],
'month' : [False, True, False, False, False],
'week' : [False, False, True, False, False],
'tod' : [False, False, False, True, False],
'dow' : [False, False, False, False, True],
}
optimal_score = float('-inf')
optimal_model = None
# CSV Files
if not imported_data:
with open(file_name) as f:
input_json = json.load(f)
import_json = input_json['Import']
imported_data = self.import_data(file_name=import_json['File Name'], folder_name=import_json['Folder Name'],
head_row=import_json['Head Row'], index_col=import_json['Index Col'],
convert_col=import_json['Convert Col'], concat_files=import_json['Concat Files'],
save_file=import_json['Save File'])
with open(file_name) as f:
input_json = json.load(f)
for x in resample_freq: # Resample data interval
input_json['Clean']['Frequency'] = x
for i in range(len(time_freq.items())): # Add time features
input_json['Preprocess']['Year'] = time_freq['year'][i]
input_json['Preprocess']['Month'] = time_freq['month'][i]
input_json['Preprocess']['Week'] = time_freq['week'][i]
input_json['Preprocess']['Time of Day'] = time_freq['tod'][i]
input_json['Preprocess']['Day of Week'] = time_freq['dow'][i]
# Putting comment in json file to indicate which parameters have been changed
time_feature = None
for key in time_freq:
if time_freq[key][i]:
time_feature = key
self.result['Comment'] = 'Freq: ' + x + ', ' + 'Time Feature: ' + time_feature
# Read parameters in input_json
self.read_json(file_name=None, input_json=input_json, imported_data=imported_data)
# Keep track of highest adj_r2 score
if self.result['Model']['Optimal Model\'s Metrics']['adj_r2'] > optimal_score:
optimal_score = self.result['Model']['Optimal Model\'s Metrics']['adj_r2']
optimal_model_file_name = self.results_folder_name + '/results-' + str(self.get_global_count()) + '.json'
# Wrapper.global_count += 1
print('Most optimal model: ', optimal_model_file_name)
freq = self.result['Comment'].split(' ')[1][:-1]
time_feat = self.result['Comment'].split(' ')[-1]
print('Freq: ', freq, 'Time Feature: ', time_feat) | python | def search(self, file_name, imported_data=None):
resample_freq=['15T', 'h', 'd']
time_freq = {
'year' : [True, False, False, False, False],
'month' : [False, True, False, False, False],
'week' : [False, False, True, False, False],
'tod' : [False, False, False, True, False],
'dow' : [False, False, False, False, True],
}
optimal_score = float('-inf')
optimal_model = None
if not imported_data:
with open(file_name) as f:
input_json = json.load(f)
import_json = input_json['Import']
imported_data = self.import_data(file_name=import_json['File Name'], folder_name=import_json['Folder Name'],
head_row=import_json['Head Row'], index_col=import_json['Index Col'],
convert_col=import_json['Convert Col'], concat_files=import_json['Concat Files'],
save_file=import_json['Save File'])
with open(file_name) as f:
input_json = json.load(f)
for x in resample_freq:
input_json['Clean']['Frequency'] = x
for i in range(len(time_freq.items())):
input_json['Preprocess']['Year'] = time_freq['year'][i]
input_json['Preprocess']['Month'] = time_freq['month'][i]
input_json['Preprocess']['Week'] = time_freq['week'][i]
input_json['Preprocess']['Time of Day'] = time_freq['tod'][i]
input_json['Preprocess']['Day of Week'] = time_freq['dow'][i]
time_feature = None
for key in time_freq:
if time_freq[key][i]:
time_feature = key
self.result['Comment'] = 'Freq: ' + x + ', ' + 'Time Feature: ' + time_feature
self.read_json(file_name=None, input_json=input_json, imported_data=imported_data)
if self.result['Model']['Optimal Model\'s Metrics']['adj_r2'] > optimal_score:
optimal_score = self.result['Model']['Optimal Model\'s Metrics']['adj_r2']
optimal_model_file_name = self.results_folder_name + '/results-' + str(self.get_global_count()) + '.json'
print('Most optimal model: ', optimal_model_file_name)
freq = self.result['Comment'].split(' ')[1][:-1]
time_feat = self.result['Comment'].split(' ')[-1]
print('Freq: ', freq, 'Time Feature: ', time_feat) | [
"def",
"search",
"(",
"self",
",",
"file_name",
",",
"imported_data",
"=",
"None",
")",
":",
"resample_freq",
"=",
"[",
"'15T'",
",",
"'h'",
",",
"'d'",
"]",
"time_freq",
"=",
"{",
"'year'",
":",
"[",
"True",
",",
"False",
",",
"False",
",",
"False",
",",
"False",
"]",
",",
"'month'",
":",
"[",
"False",
",",
"True",
",",
"False",
",",
"False",
",",
"False",
"]",
",",
"'week'",
":",
"[",
"False",
",",
"False",
",",
"True",
",",
"False",
",",
"False",
"]",
",",
"'tod'",
":",
"[",
"False",
",",
"False",
",",
"False",
",",
"True",
",",
"False",
"]",
",",
"'dow'",
":",
"[",
"False",
",",
"False",
",",
"False",
",",
"False",
",",
"True",
"]",
",",
"}",
"optimal_score",
"=",
"float",
"(",
"'-inf'",
")",
"optimal_model",
"=",
"None",
"# CSV Files",
"if",
"not",
"imported_data",
":",
"with",
"open",
"(",
"file_name",
")",
"as",
"f",
":",
"input_json",
"=",
"json",
".",
"load",
"(",
"f",
")",
"import_json",
"=",
"input_json",
"[",
"'Import'",
"]",
"imported_data",
"=",
"self",
".",
"import_data",
"(",
"file_name",
"=",
"import_json",
"[",
"'File Name'",
"]",
",",
"folder_name",
"=",
"import_json",
"[",
"'Folder Name'",
"]",
",",
"head_row",
"=",
"import_json",
"[",
"'Head Row'",
"]",
",",
"index_col",
"=",
"import_json",
"[",
"'Index Col'",
"]",
",",
"convert_col",
"=",
"import_json",
"[",
"'Convert Col'",
"]",
",",
"concat_files",
"=",
"import_json",
"[",
"'Concat Files'",
"]",
",",
"save_file",
"=",
"import_json",
"[",
"'Save File'",
"]",
")",
"with",
"open",
"(",
"file_name",
")",
"as",
"f",
":",
"input_json",
"=",
"json",
".",
"load",
"(",
"f",
")",
"for",
"x",
"in",
"resample_freq",
":",
"# Resample data interval",
"input_json",
"[",
"'Clean'",
"]",
"[",
"'Frequency'",
"]",
"=",
"x",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"time_freq",
".",
"items",
"(",
")",
")",
")",
":",
"# Add time features",
"input_json",
"[",
"'Preprocess'",
"]",
"[",
"'Year'",
"]",
"=",
"time_freq",
"[",
"'year'",
"]",
"[",
"i",
"]",
"input_json",
"[",
"'Preprocess'",
"]",
"[",
"'Month'",
"]",
"=",
"time_freq",
"[",
"'month'",
"]",
"[",
"i",
"]",
"input_json",
"[",
"'Preprocess'",
"]",
"[",
"'Week'",
"]",
"=",
"time_freq",
"[",
"'week'",
"]",
"[",
"i",
"]",
"input_json",
"[",
"'Preprocess'",
"]",
"[",
"'Time of Day'",
"]",
"=",
"time_freq",
"[",
"'tod'",
"]",
"[",
"i",
"]",
"input_json",
"[",
"'Preprocess'",
"]",
"[",
"'Day of Week'",
"]",
"=",
"time_freq",
"[",
"'dow'",
"]",
"[",
"i",
"]",
"# Putting comment in json file to indicate which parameters have been changed",
"time_feature",
"=",
"None",
"for",
"key",
"in",
"time_freq",
":",
"if",
"time_freq",
"[",
"key",
"]",
"[",
"i",
"]",
":",
"time_feature",
"=",
"key",
"self",
".",
"result",
"[",
"'Comment'",
"]",
"=",
"'Freq: '",
"+",
"x",
"+",
"', '",
"+",
"'Time Feature: '",
"+",
"time_feature",
"# Read parameters in input_json",
"self",
".",
"read_json",
"(",
"file_name",
"=",
"None",
",",
"input_json",
"=",
"input_json",
",",
"imported_data",
"=",
"imported_data",
")",
"# Keep track of highest adj_r2 score",
"if",
"self",
".",
"result",
"[",
"'Model'",
"]",
"[",
"'Optimal Model\\'s Metrics'",
"]",
"[",
"'adj_r2'",
"]",
">",
"optimal_score",
":",
"optimal_score",
"=",
"self",
".",
"result",
"[",
"'Model'",
"]",
"[",
"'Optimal Model\\'s Metrics'",
"]",
"[",
"'adj_r2'",
"]",
"optimal_model_file_name",
"=",
"self",
".",
"results_folder_name",
"+",
"'/results-'",
"+",
"str",
"(",
"self",
".",
"get_global_count",
"(",
")",
")",
"+",
"'.json'",
"# Wrapper.global_count += 1",
"print",
"(",
"'Most optimal model: '",
",",
"optimal_model_file_name",
")",
"freq",
"=",
"self",
".",
"result",
"[",
"'Comment'",
"]",
".",
"split",
"(",
"' '",
")",
"[",
"1",
"]",
"[",
":",
"-",
"1",
"]",
"time_feat",
"=",
"self",
".",
"result",
"[",
"'Comment'",
"]",
".",
"split",
"(",
"' '",
")",
"[",
"-",
"1",
"]",
"print",
"(",
"'Freq: '",
",",
"freq",
",",
"'Time Feature: '",
",",
"time_feat",
")"
]
| Run models on different data configurations.
Note
----
The input json file should include ALL parameters.
Parameters
----------
file_name : str
Optional json file to read parameters.
imported_data : pd.DataFrame()
Pandas Dataframe containing data. | [
"Run",
"models",
"on",
"different",
"data",
"configurations",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Wrapper.py#L302-L373 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Wrapper.py | Wrapper.import_data | def import_data(self, file_name='*', folder_name='.', head_row=0, index_col=0,
convert_col=True, concat_files=False, save_file=True):
""" Imports csv file(s) and stores the result in self.imported_data.
Note
----
1. If folder exists out of current directory, folder_name should contain correct regex
2. Assuming there's no file called "\*.csv"
Parameters
----------
file_name : str
CSV file to be imported. Defaults to '\*' - all csv files in the folder.
folder_name : str
Folder where file resides. Defaults to '.' - current directory.
head_row : int
Skips all rows from 0 to head_row-1
index_col : int
Skips all columns from 0 to index_col-1
convert_col : bool
Convert columns to numeric type
concat_files : bool
Appends data from files to result dataframe
save_file : bool
Specifies whether to save file or not. Defaults to True.
Returns
-------
pd.DataFrame()
Dataframe containing imported data.
"""
# Create instance and import the data
import_data_obj = Import_Data()
import_data_obj.import_csv(file_name=file_name, folder_name=folder_name,
head_row=head_row, index_col=index_col,
convert_col=convert_col, concat_files=concat_files)
# Store imported data in wrapper class
self.imported_data = import_data_obj.data
# Logging
self.result['Import'] = {
'File Name': file_name,
'Folder Name': folder_name,
'Head Row': head_row,
'Index Col': index_col,
'Convert Col': convert_col,
'Concat Files': concat_files,
'Save File': save_file
}
if save_file:
f = self.results_folder_name + '/imported_data-' + str(self.get_global_count()) + '.csv'
self.imported_data.to_csv(f)
self.result['Import']['Saved File'] = f
else:
self.result['Import']['Saved File'] = ''
return self.imported_data | python | def import_data(self, file_name='*', folder_name='.', head_row=0, index_col=0,
convert_col=True, concat_files=False, save_file=True):
import_data_obj = Import_Data()
import_data_obj.import_csv(file_name=file_name, folder_name=folder_name,
head_row=head_row, index_col=index_col,
convert_col=convert_col, concat_files=concat_files)
self.imported_data = import_data_obj.data
self.result['Import'] = {
'File Name': file_name,
'Folder Name': folder_name,
'Head Row': head_row,
'Index Col': index_col,
'Convert Col': convert_col,
'Concat Files': concat_files,
'Save File': save_file
}
if save_file:
f = self.results_folder_name + '/imported_data-' + str(self.get_global_count()) + '.csv'
self.imported_data.to_csv(f)
self.result['Import']['Saved File'] = f
else:
self.result['Import']['Saved File'] = ''
return self.imported_data | [
"def",
"import_data",
"(",
"self",
",",
"file_name",
"=",
"'*'",
",",
"folder_name",
"=",
"'.'",
",",
"head_row",
"=",
"0",
",",
"index_col",
"=",
"0",
",",
"convert_col",
"=",
"True",
",",
"concat_files",
"=",
"False",
",",
"save_file",
"=",
"True",
")",
":",
"# Create instance and import the data",
"import_data_obj",
"=",
"Import_Data",
"(",
")",
"import_data_obj",
".",
"import_csv",
"(",
"file_name",
"=",
"file_name",
",",
"folder_name",
"=",
"folder_name",
",",
"head_row",
"=",
"head_row",
",",
"index_col",
"=",
"index_col",
",",
"convert_col",
"=",
"convert_col",
",",
"concat_files",
"=",
"concat_files",
")",
"# Store imported data in wrapper class",
"self",
".",
"imported_data",
"=",
"import_data_obj",
".",
"data",
"# Logging",
"self",
".",
"result",
"[",
"'Import'",
"]",
"=",
"{",
"'File Name'",
":",
"file_name",
",",
"'Folder Name'",
":",
"folder_name",
",",
"'Head Row'",
":",
"head_row",
",",
"'Index Col'",
":",
"index_col",
",",
"'Convert Col'",
":",
"convert_col",
",",
"'Concat Files'",
":",
"concat_files",
",",
"'Save File'",
":",
"save_file",
"}",
"if",
"save_file",
":",
"f",
"=",
"self",
".",
"results_folder_name",
"+",
"'/imported_data-'",
"+",
"str",
"(",
"self",
".",
"get_global_count",
"(",
")",
")",
"+",
"'.csv'",
"self",
".",
"imported_data",
".",
"to_csv",
"(",
"f",
")",
"self",
".",
"result",
"[",
"'Import'",
"]",
"[",
"'Saved File'",
"]",
"=",
"f",
"else",
":",
"self",
".",
"result",
"[",
"'Import'",
"]",
"[",
"'Saved File'",
"]",
"=",
"''",
"return",
"self",
".",
"imported_data"
]
| Imports csv file(s) and stores the result in self.imported_data.
Note
----
1. If folder exists out of current directory, folder_name should contain correct regex
2. Assuming there's no file called "\*.csv"
Parameters
----------
file_name : str
CSV file to be imported. Defaults to '\*' - all csv files in the folder.
folder_name : str
Folder where file resides. Defaults to '.' - current directory.
head_row : int
Skips all rows from 0 to head_row-1
index_col : int
Skips all columns from 0 to index_col-1
convert_col : bool
Convert columns to numeric type
concat_files : bool
Appends data from files to result dataframe
save_file : bool
Specifies whether to save file or not. Defaults to True.
Returns
-------
pd.DataFrame()
Dataframe containing imported data. | [
"Imports",
"csv",
"file",
"(",
"s",
")",
"and",
"stores",
"the",
"result",
"in",
"self",
".",
"imported_data",
".",
"Note",
"----",
"1",
".",
"If",
"folder",
"exists",
"out",
"of",
"current",
"directory",
"folder_name",
"should",
"contain",
"correct",
"regex",
"2",
".",
"Assuming",
"there",
"s",
"no",
"file",
"called",
"\\",
"*",
".",
"csv"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Wrapper.py#L376-L436 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Wrapper.py | Wrapper.clean_data | def clean_data(self, data, rename_col=None, drop_col=None,
resample=True, freq='h', resampler='mean',
interpolate=True, limit=1, method='linear',
remove_na=True, remove_na_how='any',
remove_outliers=True, sd_val=3,
remove_out_of_bounds=True, low_bound=0, high_bound=float('inf'),
save_file=True):
""" Cleans dataframe according to user specifications and stores result in self.cleaned_data.
Parameters
----------
data : pd.DataFrame()
Dataframe to be cleaned.
rename_col : list(str)
List of new column names.
drop_col : list(str)
Columns to be dropped.
resample : bool
Indicates whether to resample data or not.
freq : str
Resampling frequency i.e. d, h, 15T...
resampler : str
Resampling type i.e. mean, max.
interpolate : bool
Indicates whether to interpolate data or not.
limit : int
Interpolation limit.
method : str
Interpolation method.
remove_na : bool
Indicates whether to remove NAs or not.
remove_na_how : str
Specificies how to remove NA i.e. all, any...
remove_outliers : bool
Indicates whether to remove outliers or not.
sd_val : int
Standard Deviation Value (specifices how many SDs away is a point considered an outlier)
remove_out_of_bounds : bool
Indicates whether to remove out of bounds datapoints or not.
low_bound : int
Low bound of the data.
high_bound : int
High bound of the data.
save_file : bool
Specifies whether to save file or not. Defaults to True.
Returns
-------
pd.DataFrame()
Dataframe containing cleaned data.
"""
# Check to ensure data is a pandas dataframe
if not isinstance(data, pd.DataFrame):
raise TypeError('data has to be a pandas dataframe.')
# Create instance and clean the data
clean_data_obj = Clean_Data(data)
clean_data_obj.clean_data(resample=resample, freq=freq, resampler=resampler,
interpolate=interpolate, limit=limit, method=method,
remove_na=remove_na, remove_na_how=remove_na_how,
remove_outliers=remove_outliers, sd_val=sd_val,
remove_out_of_bounds=remove_out_of_bounds, low_bound=low_bound, high_bound=high_bound)
# Correlation plot
# fig = self.plot_data_obj.correlation_plot(clean_data_obj.cleaned_data)
# fig.savefig(self.results_folder_name + '/correlation_plot-' + str(Wrapper.global_count) + '.png')
if rename_col: # Rename columns of dataframe
clean_data_obj.rename_columns(rename_col)
if drop_col: # Drop columns of dataframe
clean_data_obj.drop_columns(drop_col)
# Store cleaned data in wrapper class
self.cleaned_data = clean_data_obj.cleaned_data
# Logging
self.result['Clean'] = {
'Rename Col': rename_col,
'Drop Col': drop_col,
'Resample': resample,
'Frequency': freq,
'Resampler': resampler,
'Interpolate': interpolate,
'Limit': limit,
'Method': method,
'Remove NA': remove_na,
'Remove NA How': remove_na_how,
'Remove Outliers': remove_outliers,
'SD Val': sd_val,
'Remove Out of Bounds': remove_out_of_bounds,
'Low Bound': low_bound,
'High Bound': str(high_bound) if high_bound == float('inf') else high_bound,
'Save File': save_file
}
if save_file:
f = self.results_folder_name + '/cleaned_data-' + str(self.get_global_count()) + '.csv'
self.cleaned_data.to_csv(f)
self.result['Clean']['Saved File'] = f
else:
self.result['Clean']['Saved File'] = ''
return self.cleaned_data | python | def clean_data(self, data, rename_col=None, drop_col=None,
resample=True, freq='h', resampler='mean',
interpolate=True, limit=1, method='linear',
remove_na=True, remove_na_how='any',
remove_outliers=True, sd_val=3,
remove_out_of_bounds=True, low_bound=0, high_bound=float('inf'),
save_file=True):
if not isinstance(data, pd.DataFrame):
raise TypeError('data has to be a pandas dataframe.')
clean_data_obj = Clean_Data(data)
clean_data_obj.clean_data(resample=resample, freq=freq, resampler=resampler,
interpolate=interpolate, limit=limit, method=method,
remove_na=remove_na, remove_na_how=remove_na_how,
remove_outliers=remove_outliers, sd_val=sd_val,
remove_out_of_bounds=remove_out_of_bounds, low_bound=low_bound, high_bound=high_bound)
if rename_col:
clean_data_obj.rename_columns(rename_col)
if drop_col:
clean_data_obj.drop_columns(drop_col)
self.cleaned_data = clean_data_obj.cleaned_data
self.result['Clean'] = {
'Rename Col': rename_col,
'Drop Col': drop_col,
'Resample': resample,
'Frequency': freq,
'Resampler': resampler,
'Interpolate': interpolate,
'Limit': limit,
'Method': method,
'Remove NA': remove_na,
'Remove NA How': remove_na_how,
'Remove Outliers': remove_outliers,
'SD Val': sd_val,
'Remove Out of Bounds': remove_out_of_bounds,
'Low Bound': low_bound,
'High Bound': str(high_bound) if high_bound == float('inf') else high_bound,
'Save File': save_file
}
if save_file:
f = self.results_folder_name + '/cleaned_data-' + str(self.get_global_count()) + '.csv'
self.cleaned_data.to_csv(f)
self.result['Clean']['Saved File'] = f
else:
self.result['Clean']['Saved File'] = ''
return self.cleaned_data | [
"def",
"clean_data",
"(",
"self",
",",
"data",
",",
"rename_col",
"=",
"None",
",",
"drop_col",
"=",
"None",
",",
"resample",
"=",
"True",
",",
"freq",
"=",
"'h'",
",",
"resampler",
"=",
"'mean'",
",",
"interpolate",
"=",
"True",
",",
"limit",
"=",
"1",
",",
"method",
"=",
"'linear'",
",",
"remove_na",
"=",
"True",
",",
"remove_na_how",
"=",
"'any'",
",",
"remove_outliers",
"=",
"True",
",",
"sd_val",
"=",
"3",
",",
"remove_out_of_bounds",
"=",
"True",
",",
"low_bound",
"=",
"0",
",",
"high_bound",
"=",
"float",
"(",
"'inf'",
")",
",",
"save_file",
"=",
"True",
")",
":",
"# Check to ensure data is a pandas dataframe",
"if",
"not",
"isinstance",
"(",
"data",
",",
"pd",
".",
"DataFrame",
")",
":",
"raise",
"TypeError",
"(",
"'data has to be a pandas dataframe.'",
")",
"# Create instance and clean the data",
"clean_data_obj",
"=",
"Clean_Data",
"(",
"data",
")",
"clean_data_obj",
".",
"clean_data",
"(",
"resample",
"=",
"resample",
",",
"freq",
"=",
"freq",
",",
"resampler",
"=",
"resampler",
",",
"interpolate",
"=",
"interpolate",
",",
"limit",
"=",
"limit",
",",
"method",
"=",
"method",
",",
"remove_na",
"=",
"remove_na",
",",
"remove_na_how",
"=",
"remove_na_how",
",",
"remove_outliers",
"=",
"remove_outliers",
",",
"sd_val",
"=",
"sd_val",
",",
"remove_out_of_bounds",
"=",
"remove_out_of_bounds",
",",
"low_bound",
"=",
"low_bound",
",",
"high_bound",
"=",
"high_bound",
")",
"# Correlation plot",
"# fig = self.plot_data_obj.correlation_plot(clean_data_obj.cleaned_data)",
"# fig.savefig(self.results_folder_name + '/correlation_plot-' + str(Wrapper.global_count) + '.png')",
"if",
"rename_col",
":",
"# Rename columns of dataframe",
"clean_data_obj",
".",
"rename_columns",
"(",
"rename_col",
")",
"if",
"drop_col",
":",
"# Drop columns of dataframe",
"clean_data_obj",
".",
"drop_columns",
"(",
"drop_col",
")",
"# Store cleaned data in wrapper class",
"self",
".",
"cleaned_data",
"=",
"clean_data_obj",
".",
"cleaned_data",
"# Logging",
"self",
".",
"result",
"[",
"'Clean'",
"]",
"=",
"{",
"'Rename Col'",
":",
"rename_col",
",",
"'Drop Col'",
":",
"drop_col",
",",
"'Resample'",
":",
"resample",
",",
"'Frequency'",
":",
"freq",
",",
"'Resampler'",
":",
"resampler",
",",
"'Interpolate'",
":",
"interpolate",
",",
"'Limit'",
":",
"limit",
",",
"'Method'",
":",
"method",
",",
"'Remove NA'",
":",
"remove_na",
",",
"'Remove NA How'",
":",
"remove_na_how",
",",
"'Remove Outliers'",
":",
"remove_outliers",
",",
"'SD Val'",
":",
"sd_val",
",",
"'Remove Out of Bounds'",
":",
"remove_out_of_bounds",
",",
"'Low Bound'",
":",
"low_bound",
",",
"'High Bound'",
":",
"str",
"(",
"high_bound",
")",
"if",
"high_bound",
"==",
"float",
"(",
"'inf'",
")",
"else",
"high_bound",
",",
"'Save File'",
":",
"save_file",
"}",
"if",
"save_file",
":",
"f",
"=",
"self",
".",
"results_folder_name",
"+",
"'/cleaned_data-'",
"+",
"str",
"(",
"self",
".",
"get_global_count",
"(",
")",
")",
"+",
"'.csv'",
"self",
".",
"cleaned_data",
".",
"to_csv",
"(",
"f",
")",
"self",
".",
"result",
"[",
"'Clean'",
"]",
"[",
"'Saved File'",
"]",
"=",
"f",
"else",
":",
"self",
".",
"result",
"[",
"'Clean'",
"]",
"[",
"'Saved File'",
"]",
"=",
"''",
"return",
"self",
".",
"cleaned_data"
]
| Cleans dataframe according to user specifications and stores result in self.cleaned_data.
Parameters
----------
data : pd.DataFrame()
Dataframe to be cleaned.
rename_col : list(str)
List of new column names.
drop_col : list(str)
Columns to be dropped.
resample : bool
Indicates whether to resample data or not.
freq : str
Resampling frequency i.e. d, h, 15T...
resampler : str
Resampling type i.e. mean, max.
interpolate : bool
Indicates whether to interpolate data or not.
limit : int
Interpolation limit.
method : str
Interpolation method.
remove_na : bool
Indicates whether to remove NAs or not.
remove_na_how : str
Specificies how to remove NA i.e. all, any...
remove_outliers : bool
Indicates whether to remove outliers or not.
sd_val : int
Standard Deviation Value (specifices how many SDs away is a point considered an outlier)
remove_out_of_bounds : bool
Indicates whether to remove out of bounds datapoints or not.
low_bound : int
Low bound of the data.
high_bound : int
High bound of the data.
save_file : bool
Specifies whether to save file or not. Defaults to True.
Returns
-------
pd.DataFrame()
Dataframe containing cleaned data. | [
"Cleans",
"dataframe",
"according",
"to",
"user",
"specifications",
"and",
"stores",
"result",
"in",
"self",
".",
"cleaned_data",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Wrapper.py#L439-L543 |
SoftwareDefinedBuildings/XBOS | apps/Data_quality_analysis/Wrapper.py | Wrapper.uncertainity_equation | def uncertainity_equation(self, model_data_obj, E_measured, E_predicted, confidence_level):
"""
model_data_obj : Model_Data()
An instance of Model_Data() which is a user defined class.
E_measured : pd.Series()
Actual values of energy in the post-retrofit period.
E_predicted : pd.Series()
Predicted values of energy in the post-retrofit period.
confidence_level : float
Confidence level of uncertainity in decimal, i.e. 90% = 0.9
"""
# Number of rows in baseline period
n = model_data_obj.baseline_in.shape[0]
# Number of columns in baseline period
p = model_data_obj.baseline_in.shape[1]
# Number of rows in post period
m = E_measured.count()
# t-stats value
# CHECK: degrees of freedom = E_predicted.count() - 1?
t = stats.t.ppf(confidence_level, E_predicted.count() - 1)
# Rho - Autocorrelation coefficient
residuals = E_measured - E_predicted
auto_corr = residuals.autocorr(lag=1)
rho = pow(auto_corr, 0.5)
# Effective number of points after accounting for autocorrelation
n_prime = n * ((1 - rho) / (1 + rho))
# Coefficient of variation of RMSE
# CHECK: Is the denominator correct?
cv_rmse = pow(sum(pow(E_measured - E_predicted, 2) / (n - p)), 0.5) / (sum(E_measured) / E_measured.count())
# Bracket in the numerator - refer to page 20
numerator_bracket = pow((n / n_prime) * (1 + (2 / n_prime)) * (1 / m), 0.5)
# Esave should be absolute value?
f = abs(sum(E_measured - E_predicted) / sum(model_data_obj.y_true))
# Main equation
uncertainity = t * ((1.26 * cv_rmse * numerator_bracket) / f)
return uncertainity | python | def uncertainity_equation(self, model_data_obj, E_measured, E_predicted, confidence_level):
n = model_data_obj.baseline_in.shape[0]
p = model_data_obj.baseline_in.shape[1]
m = E_measured.count()
t = stats.t.ppf(confidence_level, E_predicted.count() - 1)
residuals = E_measured - E_predicted
auto_corr = residuals.autocorr(lag=1)
rho = pow(auto_corr, 0.5)
n_prime = n * ((1 - rho) / (1 + rho))
cv_rmse = pow(sum(pow(E_measured - E_predicted, 2) / (n - p)), 0.5) / (sum(E_measured) / E_measured.count())
numerator_bracket = pow((n / n_prime) * (1 + (2 / n_prime)) * (1 / m), 0.5)
f = abs(sum(E_measured - E_predicted) / sum(model_data_obj.y_true))
uncertainity = t * ((1.26 * cv_rmse * numerator_bracket) / f)
return uncertainity | [
"def",
"uncertainity_equation",
"(",
"self",
",",
"model_data_obj",
",",
"E_measured",
",",
"E_predicted",
",",
"confidence_level",
")",
":",
"# Number of rows in baseline period",
"n",
"=",
"model_data_obj",
".",
"baseline_in",
".",
"shape",
"[",
"0",
"]",
"# Number of columns in baseline period",
"p",
"=",
"model_data_obj",
".",
"baseline_in",
".",
"shape",
"[",
"1",
"]",
"# Number of rows in post period",
"m",
"=",
"E_measured",
".",
"count",
"(",
")",
"# t-stats value",
"# CHECK: degrees of freedom = E_predicted.count() - 1?",
"t",
"=",
"stats",
".",
"t",
".",
"ppf",
"(",
"confidence_level",
",",
"E_predicted",
".",
"count",
"(",
")",
"-",
"1",
")",
"# Rho - Autocorrelation coefficient",
"residuals",
"=",
"E_measured",
"-",
"E_predicted",
"auto_corr",
"=",
"residuals",
".",
"autocorr",
"(",
"lag",
"=",
"1",
")",
"rho",
"=",
"pow",
"(",
"auto_corr",
",",
"0.5",
")",
"# Effective number of points after accounting for autocorrelation",
"n_prime",
"=",
"n",
"*",
"(",
"(",
"1",
"-",
"rho",
")",
"/",
"(",
"1",
"+",
"rho",
")",
")",
"# Coefficient of variation of RMSE",
"# CHECK: Is the denominator correct?",
"cv_rmse",
"=",
"pow",
"(",
"sum",
"(",
"pow",
"(",
"E_measured",
"-",
"E_predicted",
",",
"2",
")",
"/",
"(",
"n",
"-",
"p",
")",
")",
",",
"0.5",
")",
"/",
"(",
"sum",
"(",
"E_measured",
")",
"/",
"E_measured",
".",
"count",
"(",
")",
")",
"# Bracket in the numerator - refer to page 20",
"numerator_bracket",
"=",
"pow",
"(",
"(",
"n",
"/",
"n_prime",
")",
"*",
"(",
"1",
"+",
"(",
"2",
"/",
"n_prime",
")",
")",
"*",
"(",
"1",
"/",
"m",
")",
",",
"0.5",
")",
"# Esave should be absolute value? ",
"f",
"=",
"abs",
"(",
"sum",
"(",
"E_measured",
"-",
"E_predicted",
")",
"/",
"sum",
"(",
"model_data_obj",
".",
"y_true",
")",
")",
"# Main equation ",
"uncertainity",
"=",
"t",
"*",
"(",
"(",
"1.26",
"*",
"cv_rmse",
"*",
"numerator_bracket",
")",
"/",
"f",
")",
"return",
"uncertainity"
]
| model_data_obj : Model_Data()
An instance of Model_Data() which is a user defined class.
E_measured : pd.Series()
Actual values of energy in the post-retrofit period.
E_predicted : pd.Series()
Predicted values of energy in the post-retrofit period.
confidence_level : float
Confidence level of uncertainity in decimal, i.e. 90% = 0.9 | [
"model_data_obj",
":",
"Model_Data",
"()",
"An",
"instance",
"of",
"Model_Data",
"()",
"which",
"is",
"a",
"user",
"defined",
"class",
".",
"E_measured",
":",
"pd",
".",
"Series",
"()",
"Actual",
"values",
"of",
"energy",
"in",
"the",
"post",
"-",
"retrofit",
"period",
".",
"E_predicted",
":",
"pd",
".",
"Series",
"()",
"Predicted",
"values",
"of",
"energy",
"in",
"the",
"post",
"-",
"retrofit",
"period",
".",
"confidence_level",
":",
"float",
"Confidence",
"level",
"of",
"uncertainity",
"in",
"decimal",
"i",
".",
"e",
".",
"90%",
"=",
"0",
".",
"9"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Wrapper.py#L754-L801 |
SoftwareDefinedBuildings/XBOS | python/xbos/services/mdal.py | MDALClient.do_query | def do_query(self, query, timeout=DEFAULT_TIMEOUT, tz=pytz.timezone("US/Pacific")):
"""
Query structure is as follows:
query = {
# We bind UUIDs found as the result of a Brick query to a variable name
# that we can use later.
# Each variable definition has the following:
# - name: how we will refer to this group of UUIDs
# - definition: a Brick query. The SELECT clause should return variables that end in '_uuid', which can be found as the
# object of a 'bf:uuid' relationship
# - units: what units we want to retrieve this stream as. Currently supports W/kW, Wh/kWh, F/C, Lux
"Variables": [
{"Name": "meter",
"Definition": "SELECT ?meter_uuid WHERE { ?meter rdf:type/rdfs:subClassOf* brick:Electric_Meter . ?meter bf:uuid ?meter_uuid . };",
"Units": "kW",
},
{"Name": "temp",
"Definition": "SELECT ?temp_uuid WHERE { ?temp rdf:type/rdfs:subClassOf* brick:Temperature_Sensor . ?temp bf:uuid ?temp_uuid . };",
"Units": "F",
},
],
# this is the composition of the data matrix we are returning. Below, all the uuids for the "meter" variable will be placed before
# all of the uuids for the "temp" variable. We cannot guarantee order of uuids within those groups, but the ordering of the groups
# will be preserved. Explicit UUIDs can also be used here
"Composition": ["meter", "temp"],
# If we are retrieving statistical data, then we need to say which statistical elements we want to download.
# The options are RAW, MEAN, MIN, MAX and COUNT. To query multiple, you can OR them together (e.g. MEAN|MAX).
# This maps 1-1 to the "Composition" field
"Selectors": [MEAN, MEAN],
# Themporal parameters for the query. Retrieves data in the range [T0, T1]. By convention, T0 < T1,
# but MDAL will take care of it if this is reversed.
# WindowSize is the size of the resample window in nanoseconds
# if Aligned is true, then MDAL will snap all data to the begining of the window (e.g. if 5min window + Aligned=true,
# then all timestamps will be on 00:05:00, 00:10:00, 00:15:00, etc)
"Time": {
"T0": "2017-08-01 00:00:00",
"T1": "2017-08-08 00:00:00",
"WindowSize": '2h',
"Aligned": True,
},
}
"""
nonce = str(random.randint(0, 2**32))
query['Nonce'] = nonce
ev = threading.Event()
response = {}
def _handleresult(msg):
got_response = False
for po in msg.payload_objects:
if po.type_dotted != (2,0,10,4): continue
data = msgpack.unpackb(po.content)
if data['Nonce'] != query['Nonce']: continue
if 'error' in data:
response['error'] = data['error']
response['df'] = None
got_response=True
continue
uuids = [str(uuid.UUID(bytes=x)) for x in data['Rows']]
data = data_capnp.StreamCollection.from_bytes_packed(data['Data'])
if hasattr(data, 'times') and len(data.times):
times = list(data.times)
if len(times) == 0:
response['df'] = pd.DataFrame(columns=uuids)
got_response = True
break
df = pd.DataFrame(index=pd.to_datetime(times, unit='ns', utc=False))
for idx, s in enumerate(data.streams):
if len(s.values) == 0:
df[uuids[idx]] = None
else:
df[uuids[idx]] = s.values
df.index = df.index.tz_localize(pytz.utc).tz_convert(tz)
response['df'] = df
got_response = True
else:
df = pd.DataFrame()
for idx, s in enumerate(data.streams):
if hasattr(s, 'times'):
newdf = pd.DataFrame(list(s.values), index=list(s.times), columns=[uuids[idx]])
newdf.index = pd.to_datetime(newdf.index, unit='ns').tz_localize(pytz.utc).tz_convert(tz)
df = df.join(newdf, how='outer')
else:
raise Exception("Does this ever happen? Tell gabe!")
response['df'] = df
got_response = True
df = response.get('df')
if df is not None:
response['df'] = df#[df.index.duplicated(keep='first')]
if got_response:
ev.set()
h = self.c.subscribe("{0}/s.mdal/_/i.mdal/signal/{1}".format(self.url, self.vk[:-1]), _handleresult)
po = PayloadObject((2,0,10,3), None, msgpack.packb(query))
self.c.publish("{0}/s.mdal/_/i.mdal/slot/query".format(self.url), payload_objects=(po,))
ev.wait(timeout)
self.c.unsubscribe(h)
if 'error' in response:
raise Exception(response['error'])
return response | python | def do_query(self, query, timeout=DEFAULT_TIMEOUT, tz=pytz.timezone("US/Pacific")):
nonce = str(random.randint(0, 2**32))
query['Nonce'] = nonce
ev = threading.Event()
response = {}
def _handleresult(msg):
got_response = False
for po in msg.payload_objects:
if po.type_dotted != (2,0,10,4): continue
data = msgpack.unpackb(po.content)
if data['Nonce'] != query['Nonce']: continue
if 'error' in data:
response['error'] = data['error']
response['df'] = None
got_response=True
continue
uuids = [str(uuid.UUID(bytes=x)) for x in data['Rows']]
data = data_capnp.StreamCollection.from_bytes_packed(data['Data'])
if hasattr(data, 'times') and len(data.times):
times = list(data.times)
if len(times) == 0:
response['df'] = pd.DataFrame(columns=uuids)
got_response = True
break
df = pd.DataFrame(index=pd.to_datetime(times, unit='ns', utc=False))
for idx, s in enumerate(data.streams):
if len(s.values) == 0:
df[uuids[idx]] = None
else:
df[uuids[idx]] = s.values
df.index = df.index.tz_localize(pytz.utc).tz_convert(tz)
response['df'] = df
got_response = True
else:
df = pd.DataFrame()
for idx, s in enumerate(data.streams):
if hasattr(s, 'times'):
newdf = pd.DataFrame(list(s.values), index=list(s.times), columns=[uuids[idx]])
newdf.index = pd.to_datetime(newdf.index, unit='ns').tz_localize(pytz.utc).tz_convert(tz)
df = df.join(newdf, how='outer')
else:
raise Exception("Does this ever happen? Tell gabe!")
response['df'] = df
got_response = True
df = response.get('df')
if df is not None:
response['df'] = df
if got_response:
ev.set()
h = self.c.subscribe("{0}/s.mdal/_/i.mdal/signal/{1}".format(self.url, self.vk[:-1]), _handleresult)
po = PayloadObject((2,0,10,3), None, msgpack.packb(query))
self.c.publish("{0}/s.mdal/_/i.mdal/slot/query".format(self.url), payload_objects=(po,))
ev.wait(timeout)
self.c.unsubscribe(h)
if 'error' in response:
raise Exception(response['error'])
return response | [
"def",
"do_query",
"(",
"self",
",",
"query",
",",
"timeout",
"=",
"DEFAULT_TIMEOUT",
",",
"tz",
"=",
"pytz",
".",
"timezone",
"(",
"\"US/Pacific\"",
")",
")",
":",
"nonce",
"=",
"str",
"(",
"random",
".",
"randint",
"(",
"0",
",",
"2",
"**",
"32",
")",
")",
"query",
"[",
"'Nonce'",
"]",
"=",
"nonce",
"ev",
"=",
"threading",
".",
"Event",
"(",
")",
"response",
"=",
"{",
"}",
"def",
"_handleresult",
"(",
"msg",
")",
":",
"got_response",
"=",
"False",
"for",
"po",
"in",
"msg",
".",
"payload_objects",
":",
"if",
"po",
".",
"type_dotted",
"!=",
"(",
"2",
",",
"0",
",",
"10",
",",
"4",
")",
":",
"continue",
"data",
"=",
"msgpack",
".",
"unpackb",
"(",
"po",
".",
"content",
")",
"if",
"data",
"[",
"'Nonce'",
"]",
"!=",
"query",
"[",
"'Nonce'",
"]",
":",
"continue",
"if",
"'error'",
"in",
"data",
":",
"response",
"[",
"'error'",
"]",
"=",
"data",
"[",
"'error'",
"]",
"response",
"[",
"'df'",
"]",
"=",
"None",
"got_response",
"=",
"True",
"continue",
"uuids",
"=",
"[",
"str",
"(",
"uuid",
".",
"UUID",
"(",
"bytes",
"=",
"x",
")",
")",
"for",
"x",
"in",
"data",
"[",
"'Rows'",
"]",
"]",
"data",
"=",
"data_capnp",
".",
"StreamCollection",
".",
"from_bytes_packed",
"(",
"data",
"[",
"'Data'",
"]",
")",
"if",
"hasattr",
"(",
"data",
",",
"'times'",
")",
"and",
"len",
"(",
"data",
".",
"times",
")",
":",
"times",
"=",
"list",
"(",
"data",
".",
"times",
")",
"if",
"len",
"(",
"times",
")",
"==",
"0",
":",
"response",
"[",
"'df'",
"]",
"=",
"pd",
".",
"DataFrame",
"(",
"columns",
"=",
"uuids",
")",
"got_response",
"=",
"True",
"break",
"df",
"=",
"pd",
".",
"DataFrame",
"(",
"index",
"=",
"pd",
".",
"to_datetime",
"(",
"times",
",",
"unit",
"=",
"'ns'",
",",
"utc",
"=",
"False",
")",
")",
"for",
"idx",
",",
"s",
"in",
"enumerate",
"(",
"data",
".",
"streams",
")",
":",
"if",
"len",
"(",
"s",
".",
"values",
")",
"==",
"0",
":",
"df",
"[",
"uuids",
"[",
"idx",
"]",
"]",
"=",
"None",
"else",
":",
"df",
"[",
"uuids",
"[",
"idx",
"]",
"]",
"=",
"s",
".",
"values",
"df",
".",
"index",
"=",
"df",
".",
"index",
".",
"tz_localize",
"(",
"pytz",
".",
"utc",
")",
".",
"tz_convert",
"(",
"tz",
")",
"response",
"[",
"'df'",
"]",
"=",
"df",
"got_response",
"=",
"True",
"else",
":",
"df",
"=",
"pd",
".",
"DataFrame",
"(",
")",
"for",
"idx",
",",
"s",
"in",
"enumerate",
"(",
"data",
".",
"streams",
")",
":",
"if",
"hasattr",
"(",
"s",
",",
"'times'",
")",
":",
"newdf",
"=",
"pd",
".",
"DataFrame",
"(",
"list",
"(",
"s",
".",
"values",
")",
",",
"index",
"=",
"list",
"(",
"s",
".",
"times",
")",
",",
"columns",
"=",
"[",
"uuids",
"[",
"idx",
"]",
"]",
")",
"newdf",
".",
"index",
"=",
"pd",
".",
"to_datetime",
"(",
"newdf",
".",
"index",
",",
"unit",
"=",
"'ns'",
")",
".",
"tz_localize",
"(",
"pytz",
".",
"utc",
")",
".",
"tz_convert",
"(",
"tz",
")",
"df",
"=",
"df",
".",
"join",
"(",
"newdf",
",",
"how",
"=",
"'outer'",
")",
"else",
":",
"raise",
"Exception",
"(",
"\"Does this ever happen? Tell gabe!\"",
")",
"response",
"[",
"'df'",
"]",
"=",
"df",
"got_response",
"=",
"True",
"df",
"=",
"response",
".",
"get",
"(",
"'df'",
")",
"if",
"df",
"is",
"not",
"None",
":",
"response",
"[",
"'df'",
"]",
"=",
"df",
"#[df.index.duplicated(keep='first')]",
"if",
"got_response",
":",
"ev",
".",
"set",
"(",
")",
"h",
"=",
"self",
".",
"c",
".",
"subscribe",
"(",
"\"{0}/s.mdal/_/i.mdal/signal/{1}\"",
".",
"format",
"(",
"self",
".",
"url",
",",
"self",
".",
"vk",
"[",
":",
"-",
"1",
"]",
")",
",",
"_handleresult",
")",
"po",
"=",
"PayloadObject",
"(",
"(",
"2",
",",
"0",
",",
"10",
",",
"3",
")",
",",
"None",
",",
"msgpack",
".",
"packb",
"(",
"query",
")",
")",
"self",
".",
"c",
".",
"publish",
"(",
"\"{0}/s.mdal/_/i.mdal/slot/query\"",
".",
"format",
"(",
"self",
".",
"url",
")",
",",
"payload_objects",
"=",
"(",
"po",
",",
")",
")",
"ev",
".",
"wait",
"(",
"timeout",
")",
"self",
".",
"c",
".",
"unsubscribe",
"(",
"h",
")",
"if",
"'error'",
"in",
"response",
":",
"raise",
"Exception",
"(",
"response",
"[",
"'error'",
"]",
")",
"return",
"response"
]
| Query structure is as follows:
query = {
# We bind UUIDs found as the result of a Brick query to a variable name
# that we can use later.
# Each variable definition has the following:
# - name: how we will refer to this group of UUIDs
# - definition: a Brick query. The SELECT clause should return variables that end in '_uuid', which can be found as the
# object of a 'bf:uuid' relationship
# - units: what units we want to retrieve this stream as. Currently supports W/kW, Wh/kWh, F/C, Lux
"Variables": [
{"Name": "meter",
"Definition": "SELECT ?meter_uuid WHERE { ?meter rdf:type/rdfs:subClassOf* brick:Electric_Meter . ?meter bf:uuid ?meter_uuid . };",
"Units": "kW",
},
{"Name": "temp",
"Definition": "SELECT ?temp_uuid WHERE { ?temp rdf:type/rdfs:subClassOf* brick:Temperature_Sensor . ?temp bf:uuid ?temp_uuid . };",
"Units": "F",
},
],
# this is the composition of the data matrix we are returning. Below, all the uuids for the "meter" variable will be placed before
# all of the uuids for the "temp" variable. We cannot guarantee order of uuids within those groups, but the ordering of the groups
# will be preserved. Explicit UUIDs can also be used here
"Composition": ["meter", "temp"],
# If we are retrieving statistical data, then we need to say which statistical elements we want to download.
# The options are RAW, MEAN, MIN, MAX and COUNT. To query multiple, you can OR them together (e.g. MEAN|MAX).
# This maps 1-1 to the "Composition" field
"Selectors": [MEAN, MEAN],
# Themporal parameters for the query. Retrieves data in the range [T0, T1]. By convention, T0 < T1,
# but MDAL will take care of it if this is reversed.
# WindowSize is the size of the resample window in nanoseconds
# if Aligned is true, then MDAL will snap all data to the begining of the window (e.g. if 5min window + Aligned=true,
# then all timestamps will be on 00:05:00, 00:10:00, 00:15:00, etc)
"Time": {
"T0": "2017-08-01 00:00:00",
"T1": "2017-08-08 00:00:00",
"WindowSize": '2h',
"Aligned": True,
},
} | [
"Query",
"structure",
"is",
"as",
"follows",
":"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/python/xbos/services/mdal.py#L64-L167 |
SoftwareDefinedBuildings/XBOS | dashboards/sitedash/occupancy.py | get_occupancy | def get_occupancy(last, bucketsize):
"""
We deliver historical occupancy up until "now". If the building has occupancy sensors, we pull that data
and aggregate it by zone. Take mean occupancy per zone (across all sensors).
If building does *not* have occupancy sensors, then we need to read the results from some occupancy file.
"""
if last not in ['hour','day','week']:
return "Must be hour, day, week"
start_date = get_start(last)
zones = defaultdict(list)
prediction_start = datetime.now(config.TZ)
md = config.HOD.do_query(occupancy_query)
if md['Rows'] is not None:
for row in md['Rows']:
zones[row['?zone']].append(row['?occ_uuid'])
q = occupancy_data_query.copy()
q["Time"] = {
"T0": start_date.strftime("%Y-%m-%d %H:%M:%S %Z"),
"T1": prediction_start.strftime("%Y-%m-%d %H:%M:%S %Z"),
"WindowSize": bucketsize,
"Aligned": True,
}
resp = config.MDAL.do_query(q, timeout=120)
if 'error' in resp:
print 'ERROR', resp
return
df = resp['df'].fillna(method='ffill')
for zone, uuidlist in zones.items():
if len(uuidlist) > 0:
zones[zone] = json.loads(df[uuidlist].mean(axis=1).to_json())
else:
zones[zone] = {}
# get predicted output
prediction_end = get_tomorrow()
predicted = list(rrule.rrule(freq=rrule.HOURLY, dtstart=prediction_start, until=prediction_end))
for zone, occdict in zones.items():
for date in predicted:
occdict[int(int(date.strftime('%s'))*1000)] = 'predicted' # prediction
zones[zone] = occdict
else:
md = config.HOD.do_query(zone_query)
zonenames = [x['?zone'].lower() for x in md['Rows']]
conn = sqlite3.connect('occupancy_schedule.db')
sql = conn.cursor()
for zone in zonenames:
query = "SELECT * FROM schedules WHERE site='{0}' and zone='{1}' and dayofweek='{2}'".format(config.SITE, zone, prediction_start.strftime('%A').lower())
res = sql.execute(query).fetchall()
records = {'time': [], 'occ': [], 'zone': []}
for sqlrow in res:
hour, minute = sqlrow[3].split(':')
time = datetime(year=prediction_start.year, month=prediction_start.month, day=prediction_start.day, hour=int(hour), minute=int(minute), tzinfo=prediction_start.tzinfo)
occ = sqlrow[5]
zone = sqlrow[1]
records['time'].append(time)
records['occ'].append(occ)
records['zone'].append(zone)
df = pd.DataFrame.from_records(records)
df = df.set_index(df.pop('time'))
if len(df) ==0:
continue
sched = df.resample(bucketsize.replace('m','T')).ffill()
zones[zone] = json.loads(sched['occ'].to_json())
conn.close()
return zones | python | def get_occupancy(last, bucketsize):
if last not in ['hour','day','week']:
return "Must be hour, day, week"
start_date = get_start(last)
zones = defaultdict(list)
prediction_start = datetime.now(config.TZ)
md = config.HOD.do_query(occupancy_query)
if md['Rows'] is not None:
for row in md['Rows']:
zones[row['?zone']].append(row['?occ_uuid'])
q = occupancy_data_query.copy()
q["Time"] = {
"T0": start_date.strftime("%Y-%m-%d %H:%M:%S %Z"),
"T1": prediction_start.strftime("%Y-%m-%d %H:%M:%S %Z"),
"WindowSize": bucketsize,
"Aligned": True,
}
resp = config.MDAL.do_query(q, timeout=120)
if 'error' in resp:
print 'ERROR', resp
return
df = resp['df'].fillna(method='ffill')
for zone, uuidlist in zones.items():
if len(uuidlist) > 0:
zones[zone] = json.loads(df[uuidlist].mean(axis=1).to_json())
else:
zones[zone] = {}
prediction_end = get_tomorrow()
predicted = list(rrule.rrule(freq=rrule.HOURLY, dtstart=prediction_start, until=prediction_end))
for zone, occdict in zones.items():
for date in predicted:
occdict[int(int(date.strftime('%s'))*1000)] = 'predicted'
zones[zone] = occdict
else:
md = config.HOD.do_query(zone_query)
zonenames = [x['?zone'].lower() for x in md['Rows']]
conn = sqlite3.connect('occupancy_schedule.db')
sql = conn.cursor()
for zone in zonenames:
query = "SELECT * FROM schedules WHERE site='{0}' and zone='{1}' and dayofweek='{2}'".format(config.SITE, zone, prediction_start.strftime('%A').lower())
res = sql.execute(query).fetchall()
records = {'time': [], 'occ': [], 'zone': []}
for sqlrow in res:
hour, minute = sqlrow[3].split(':')
time = datetime(year=prediction_start.year, month=prediction_start.month, day=prediction_start.day, hour=int(hour), minute=int(minute), tzinfo=prediction_start.tzinfo)
occ = sqlrow[5]
zone = sqlrow[1]
records['time'].append(time)
records['occ'].append(occ)
records['zone'].append(zone)
df = pd.DataFrame.from_records(records)
df = df.set_index(df.pop('time'))
if len(df) ==0:
continue
sched = df.resample(bucketsize.replace('m','T')).ffill()
zones[zone] = json.loads(sched['occ'].to_json())
conn.close()
return zones | [
"def",
"get_occupancy",
"(",
"last",
",",
"bucketsize",
")",
":",
"if",
"last",
"not",
"in",
"[",
"'hour'",
",",
"'day'",
",",
"'week'",
"]",
":",
"return",
"\"Must be hour, day, week\"",
"start_date",
"=",
"get_start",
"(",
"last",
")",
"zones",
"=",
"defaultdict",
"(",
"list",
")",
"prediction_start",
"=",
"datetime",
".",
"now",
"(",
"config",
".",
"TZ",
")",
"md",
"=",
"config",
".",
"HOD",
".",
"do_query",
"(",
"occupancy_query",
")",
"if",
"md",
"[",
"'Rows'",
"]",
"is",
"not",
"None",
":",
"for",
"row",
"in",
"md",
"[",
"'Rows'",
"]",
":",
"zones",
"[",
"row",
"[",
"'?zone'",
"]",
"]",
".",
"append",
"(",
"row",
"[",
"'?occ_uuid'",
"]",
")",
"q",
"=",
"occupancy_data_query",
".",
"copy",
"(",
")",
"q",
"[",
"\"Time\"",
"]",
"=",
"{",
"\"T0\"",
":",
"start_date",
".",
"strftime",
"(",
"\"%Y-%m-%d %H:%M:%S %Z\"",
")",
",",
"\"T1\"",
":",
"prediction_start",
".",
"strftime",
"(",
"\"%Y-%m-%d %H:%M:%S %Z\"",
")",
",",
"\"WindowSize\"",
":",
"bucketsize",
",",
"\"Aligned\"",
":",
"True",
",",
"}",
"resp",
"=",
"config",
".",
"MDAL",
".",
"do_query",
"(",
"q",
",",
"timeout",
"=",
"120",
")",
"if",
"'error'",
"in",
"resp",
":",
"print",
"'ERROR'",
",",
"resp",
"return",
"df",
"=",
"resp",
"[",
"'df'",
"]",
".",
"fillna",
"(",
"method",
"=",
"'ffill'",
")",
"for",
"zone",
",",
"uuidlist",
"in",
"zones",
".",
"items",
"(",
")",
":",
"if",
"len",
"(",
"uuidlist",
")",
">",
"0",
":",
"zones",
"[",
"zone",
"]",
"=",
"json",
".",
"loads",
"(",
"df",
"[",
"uuidlist",
"]",
".",
"mean",
"(",
"axis",
"=",
"1",
")",
".",
"to_json",
"(",
")",
")",
"else",
":",
"zones",
"[",
"zone",
"]",
"=",
"{",
"}",
"# get predicted output",
"prediction_end",
"=",
"get_tomorrow",
"(",
")",
"predicted",
"=",
"list",
"(",
"rrule",
".",
"rrule",
"(",
"freq",
"=",
"rrule",
".",
"HOURLY",
",",
"dtstart",
"=",
"prediction_start",
",",
"until",
"=",
"prediction_end",
")",
")",
"for",
"zone",
",",
"occdict",
"in",
"zones",
".",
"items",
"(",
")",
":",
"for",
"date",
"in",
"predicted",
":",
"occdict",
"[",
"int",
"(",
"int",
"(",
"date",
".",
"strftime",
"(",
"'%s'",
")",
")",
"*",
"1000",
")",
"]",
"=",
"'predicted'",
"# prediction",
"zones",
"[",
"zone",
"]",
"=",
"occdict",
"else",
":",
"md",
"=",
"config",
".",
"HOD",
".",
"do_query",
"(",
"zone_query",
")",
"zonenames",
"=",
"[",
"x",
"[",
"'?zone'",
"]",
".",
"lower",
"(",
")",
"for",
"x",
"in",
"md",
"[",
"'Rows'",
"]",
"]",
"conn",
"=",
"sqlite3",
".",
"connect",
"(",
"'occupancy_schedule.db'",
")",
"sql",
"=",
"conn",
".",
"cursor",
"(",
")",
"for",
"zone",
"in",
"zonenames",
":",
"query",
"=",
"\"SELECT * FROM schedules WHERE site='{0}' and zone='{1}' and dayofweek='{2}'\"",
".",
"format",
"(",
"config",
".",
"SITE",
",",
"zone",
",",
"prediction_start",
".",
"strftime",
"(",
"'%A'",
")",
".",
"lower",
"(",
")",
")",
"res",
"=",
"sql",
".",
"execute",
"(",
"query",
")",
".",
"fetchall",
"(",
")",
"records",
"=",
"{",
"'time'",
":",
"[",
"]",
",",
"'occ'",
":",
"[",
"]",
",",
"'zone'",
":",
"[",
"]",
"}",
"for",
"sqlrow",
"in",
"res",
":",
"hour",
",",
"minute",
"=",
"sqlrow",
"[",
"3",
"]",
".",
"split",
"(",
"':'",
")",
"time",
"=",
"datetime",
"(",
"year",
"=",
"prediction_start",
".",
"year",
",",
"month",
"=",
"prediction_start",
".",
"month",
",",
"day",
"=",
"prediction_start",
".",
"day",
",",
"hour",
"=",
"int",
"(",
"hour",
")",
",",
"minute",
"=",
"int",
"(",
"minute",
")",
",",
"tzinfo",
"=",
"prediction_start",
".",
"tzinfo",
")",
"occ",
"=",
"sqlrow",
"[",
"5",
"]",
"zone",
"=",
"sqlrow",
"[",
"1",
"]",
"records",
"[",
"'time'",
"]",
".",
"append",
"(",
"time",
")",
"records",
"[",
"'occ'",
"]",
".",
"append",
"(",
"occ",
")",
"records",
"[",
"'zone'",
"]",
".",
"append",
"(",
"zone",
")",
"df",
"=",
"pd",
".",
"DataFrame",
".",
"from_records",
"(",
"records",
")",
"df",
"=",
"df",
".",
"set_index",
"(",
"df",
".",
"pop",
"(",
"'time'",
")",
")",
"if",
"len",
"(",
"df",
")",
"==",
"0",
":",
"continue",
"sched",
"=",
"df",
".",
"resample",
"(",
"bucketsize",
".",
"replace",
"(",
"'m'",
",",
"'T'",
")",
")",
".",
"ffill",
"(",
")",
"zones",
"[",
"zone",
"]",
"=",
"json",
".",
"loads",
"(",
"sched",
"[",
"'occ'",
"]",
".",
"to_json",
"(",
")",
")",
"conn",
".",
"close",
"(",
")",
"return",
"zones"
]
| We deliver historical occupancy up until "now". If the building has occupancy sensors, we pull that data
and aggregate it by zone. Take mean occupancy per zone (across all sensors).
If building does *not* have occupancy sensors, then we need to read the results from some occupancy file. | [
"We",
"deliver",
"historical",
"occupancy",
"up",
"until",
"now",
".",
"If",
"the",
"building",
"has",
"occupancy",
"sensors",
"we",
"pull",
"that",
"data",
"and",
"aggregate",
"it",
"by",
"zone",
".",
"Take",
"mean",
"occupancy",
"per",
"zone",
"(",
"across",
"all",
"sensors",
")",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/dashboards/sitedash/occupancy.py#L41-L110 |
SoftwareDefinedBuildings/XBOS | apps/prediction_service_framework/prediction_service.py | run_service | def run_service(prediction_fxn, namespace, prediction_type, block=False):
"""
Supported prediction_type:
- hvac
- occupancy
"""
subscribe = '{0}/s.predictions/+/i.{1}/slot/request'.format(namespace, prediction_type)
if block:
print 'Blocking is True! This will loop forever and program will not exit until killed'
else:
print 'Blocking is False! This will run in background until program exits or is killed'
print 'Subscribe on', subscribe
def run():
c = get_client(config.AGENT, config.ENTITY)
def cb(msg):
po = msgpack.unpackb(msg.payload_objects[0].content)
if not isinstance(po, dict): return
client_id = msg.uri.split('/')[2]
start = po.get('predstart')
start = parse(start) if start else get_today()
end = po.get('predend')
end = parse(end) if end else get_today()+datetime.timedelta(days=1)
resolution = po.get('resolution', '1h')
result = prediction_fxn(start, end, resolution)
po = PayloadObject((2,0,0,0), None, msgpack.packb(result))
publish = '{0}/s.predictions/{1}/i.{2}/signal/response'.format(namespace, client_id, prediction_type)
print "Respond on", publish
c.publish(publish, payload_objects=(po,))
c.subscribe(subscribe, cb)
while True:
time.sleep(10)
t = threading.Thread(target=run)
t.daemon = True
t.start()
while block:
time.sleep(10)
return t | python | def run_service(prediction_fxn, namespace, prediction_type, block=False):
subscribe = '{0}/s.predictions/+/i.{1}/slot/request'.format(namespace, prediction_type)
if block:
print 'Blocking is True! This will loop forever and program will not exit until killed'
else:
print 'Blocking is False! This will run in background until program exits or is killed'
print 'Subscribe on', subscribe
def run():
c = get_client(config.AGENT, config.ENTITY)
def cb(msg):
po = msgpack.unpackb(msg.payload_objects[0].content)
if not isinstance(po, dict): return
client_id = msg.uri.split('/')[2]
start = po.get('predstart')
start = parse(start) if start else get_today()
end = po.get('predend')
end = parse(end) if end else get_today()+datetime.timedelta(days=1)
resolution = po.get('resolution', '1h')
result = prediction_fxn(start, end, resolution)
po = PayloadObject((2,0,0,0), None, msgpack.packb(result))
publish = '{0}/s.predictions/{1}/i.{2}/signal/response'.format(namespace, client_id, prediction_type)
print "Respond on", publish
c.publish(publish, payload_objects=(po,))
c.subscribe(subscribe, cb)
while True:
time.sleep(10)
t = threading.Thread(target=run)
t.daemon = True
t.start()
while block:
time.sleep(10)
return t | [
"def",
"run_service",
"(",
"prediction_fxn",
",",
"namespace",
",",
"prediction_type",
",",
"block",
"=",
"False",
")",
":",
"subscribe",
"=",
"'{0}/s.predictions/+/i.{1}/slot/request'",
".",
"format",
"(",
"namespace",
",",
"prediction_type",
")",
"if",
"block",
":",
"print",
"'Blocking is True! This will loop forever and program will not exit until killed'",
"else",
":",
"print",
"'Blocking is False! This will run in background until program exits or is killed'",
"print",
"'Subscribe on'",
",",
"subscribe",
"def",
"run",
"(",
")",
":",
"c",
"=",
"get_client",
"(",
"config",
".",
"AGENT",
",",
"config",
".",
"ENTITY",
")",
"def",
"cb",
"(",
"msg",
")",
":",
"po",
"=",
"msgpack",
".",
"unpackb",
"(",
"msg",
".",
"payload_objects",
"[",
"0",
"]",
".",
"content",
")",
"if",
"not",
"isinstance",
"(",
"po",
",",
"dict",
")",
":",
"return",
"client_id",
"=",
"msg",
".",
"uri",
".",
"split",
"(",
"'/'",
")",
"[",
"2",
"]",
"start",
"=",
"po",
".",
"get",
"(",
"'predstart'",
")",
"start",
"=",
"parse",
"(",
"start",
")",
"if",
"start",
"else",
"get_today",
"(",
")",
"end",
"=",
"po",
".",
"get",
"(",
"'predend'",
")",
"end",
"=",
"parse",
"(",
"end",
")",
"if",
"end",
"else",
"get_today",
"(",
")",
"+",
"datetime",
".",
"timedelta",
"(",
"days",
"=",
"1",
")",
"resolution",
"=",
"po",
".",
"get",
"(",
"'resolution'",
",",
"'1h'",
")",
"result",
"=",
"prediction_fxn",
"(",
"start",
",",
"end",
",",
"resolution",
")",
"po",
"=",
"PayloadObject",
"(",
"(",
"2",
",",
"0",
",",
"0",
",",
"0",
")",
",",
"None",
",",
"msgpack",
".",
"packb",
"(",
"result",
")",
")",
"publish",
"=",
"'{0}/s.predictions/{1}/i.{2}/signal/response'",
".",
"format",
"(",
"namespace",
",",
"client_id",
",",
"prediction_type",
")",
"print",
"\"Respond on\"",
",",
"publish",
"c",
".",
"publish",
"(",
"publish",
",",
"payload_objects",
"=",
"(",
"po",
",",
")",
")",
"c",
".",
"subscribe",
"(",
"subscribe",
",",
"cb",
")",
"while",
"True",
":",
"time",
".",
"sleep",
"(",
"10",
")",
"t",
"=",
"threading",
".",
"Thread",
"(",
"target",
"=",
"run",
")",
"t",
".",
"daemon",
"=",
"True",
"t",
".",
"start",
"(",
")",
"while",
"block",
":",
"time",
".",
"sleep",
"(",
"10",
")",
"return",
"t"
]
| Supported prediction_type:
- hvac
- occupancy | [
"Supported",
"prediction_type",
":",
"-",
"hvac",
"-",
"occupancy"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/prediction_service_framework/prediction_service.py#L13-L49 |
SoftwareDefinedBuildings/XBOS | dashboards/sitedash/app.py | prevmonday | def prevmonday(num):
"""
Return unix SECOND timestamp of "num" mondays ago
"""
today = get_today()
lastmonday = today - timedelta(days=today.weekday(), weeks=num)
return lastmonday | python | def prevmonday(num):
today = get_today()
lastmonday = today - timedelta(days=today.weekday(), weeks=num)
return lastmonday | [
"def",
"prevmonday",
"(",
"num",
")",
":",
"today",
"=",
"get_today",
"(",
")",
"lastmonday",
"=",
"today",
"-",
"timedelta",
"(",
"days",
"=",
"today",
".",
"weekday",
"(",
")",
",",
"weeks",
"=",
"num",
")",
"return",
"lastmonday"
]
| Return unix SECOND timestamp of "num" mondays ago | [
"Return",
"unix",
"SECOND",
"timestamp",
"of",
"num",
"mondays",
"ago"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/dashboards/sitedash/app.py#L74-L80 |
SoftwareDefinedBuildings/XBOS | apps/consumption/iec.py | med_filt | def med_filt(x, k=201):
"""Apply a length-k median filter to a 1D array x.
Boundaries are extended by repeating endpoints.
"""
if x.ndim > 1:
x = np.squeeze(x)
med = np.median(x)
assert k % 2 == 1, "Median filter length must be odd."
assert x.ndim == 1, "Input must be one-dimensional."
k2 = (k - 1) // 2
y = np.zeros((len(x), k), dtype=x.dtype)
y[:, k2] = x
for i in range(k2):
j = k2 - i
y[j:, i] = x[:-j]
y[:j, i] = x[0]
y[:-j, -(i + 1)] = x[j:]
y[-j:, -(i + 1)] = med
return np.median(y, axis=1) | python | def med_filt(x, k=201):
if x.ndim > 1:
x = np.squeeze(x)
med = np.median(x)
assert k % 2 == 1, "Median filter length must be odd."
assert x.ndim == 1, "Input must be one-dimensional."
k2 = (k - 1) // 2
y = np.zeros((len(x), k), dtype=x.dtype)
y[:, k2] = x
for i in range(k2):
j = k2 - i
y[j:, i] = x[:-j]
y[:j, i] = x[0]
y[:-j, -(i + 1)] = x[j:]
y[-j:, -(i + 1)] = med
return np.median(y, axis=1) | [
"def",
"med_filt",
"(",
"x",
",",
"k",
"=",
"201",
")",
":",
"if",
"x",
".",
"ndim",
">",
"1",
":",
"x",
"=",
"np",
".",
"squeeze",
"(",
"x",
")",
"med",
"=",
"np",
".",
"median",
"(",
"x",
")",
"assert",
"k",
"%",
"2",
"==",
"1",
",",
"\"Median filter length must be odd.\"",
"assert",
"x",
".",
"ndim",
"==",
"1",
",",
"\"Input must be one-dimensional.\"",
"k2",
"=",
"(",
"k",
"-",
"1",
")",
"//",
"2",
"y",
"=",
"np",
".",
"zeros",
"(",
"(",
"len",
"(",
"x",
")",
",",
"k",
")",
",",
"dtype",
"=",
"x",
".",
"dtype",
")",
"y",
"[",
":",
",",
"k2",
"]",
"=",
"x",
"for",
"i",
"in",
"range",
"(",
"k2",
")",
":",
"j",
"=",
"k2",
"-",
"i",
"y",
"[",
"j",
":",
",",
"i",
"]",
"=",
"x",
"[",
":",
"-",
"j",
"]",
"y",
"[",
":",
"j",
",",
"i",
"]",
"=",
"x",
"[",
"0",
"]",
"y",
"[",
":",
"-",
"j",
",",
"-",
"(",
"i",
"+",
"1",
")",
"]",
"=",
"x",
"[",
"j",
":",
"]",
"y",
"[",
"-",
"j",
":",
",",
"-",
"(",
"i",
"+",
"1",
")",
"]",
"=",
"med",
"return",
"np",
".",
"median",
"(",
"y",
",",
"axis",
"=",
"1",
")"
]
| Apply a length-k median filter to a 1D array x.
Boundaries are extended by repeating endpoints. | [
"Apply",
"a",
"length",
"-",
"k",
"median",
"filter",
"to",
"a",
"1D",
"array",
"x",
".",
"Boundaries",
"are",
"extended",
"by",
"repeating",
"endpoints",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/consumption/iec.py#L114-L132 |
SoftwareDefinedBuildings/XBOS | apps/occupancy/OccupancyThanos.py | find_similar_days | def find_similar_days(training_data, now, observation_length, k, method=hamming_distance):
min_time = training_data.index[0] + timedelta(minutes=observation_length)
# Find moments in our dataset that have the same hour/minute and is_weekend() == weekend.
selector = ((training_data.index.minute == now.minute) &
(training_data.index.hour == now.hour) &
(training_data.index > min_time))
"""
if now.weekday() < 5:
selector = (
(training_data.index.minute == now.minute) &
(training_data.index.hour == now.hour) &
(training_data.index > min_time) &
(training_data.index.weekday < 5)
)
else:
selector = (
(training_data.index.minute == now.minute) &
(training_data.index.hour == now.hour) &
(training_data.index > min_time) &
(training_data.index.weekday >= 5)
)
"""
similar_moments = training_data[selector][:-1]
obs_td = timedelta(minutes=observation_length)
similar_moments['Similarity'] = [
method(
training_data[(training_data.index >= now - obs_td) &
(training_data.index <= now)].get_values(),
training_data[(training_data.index >= i - obs_td) &
(training_data.index <= i)].get_values()
) for i in similar_moments.index
]
indexes = (similar_moments.sort_values('Similarity', ascending=True)
.head(k).index)
return indexes | python | def find_similar_days(training_data, now, observation_length, k, method=hamming_distance):
min_time = training_data.index[0] + timedelta(minutes=observation_length)
selector = ((training_data.index.minute == now.minute) &
(training_data.index.hour == now.hour) &
(training_data.index > min_time))
similar_moments = training_data[selector][:-1]
obs_td = timedelta(minutes=observation_length)
similar_moments['Similarity'] = [
method(
training_data[(training_data.index >= now - obs_td) &
(training_data.index <= now)].get_values(),
training_data[(training_data.index >= i - obs_td) &
(training_data.index <= i)].get_values()
) for i in similar_moments.index
]
indexes = (similar_moments.sort_values('Similarity', ascending=True)
.head(k).index)
return indexes | [
"def",
"find_similar_days",
"(",
"training_data",
",",
"now",
",",
"observation_length",
",",
"k",
",",
"method",
"=",
"hamming_distance",
")",
":",
"min_time",
"=",
"training_data",
".",
"index",
"[",
"0",
"]",
"+",
"timedelta",
"(",
"minutes",
"=",
"observation_length",
")",
"# Find moments in our dataset that have the same hour/minute and is_weekend() == weekend.",
"selector",
"=",
"(",
"(",
"training_data",
".",
"index",
".",
"minute",
"==",
"now",
".",
"minute",
")",
"&",
"(",
"training_data",
".",
"index",
".",
"hour",
"==",
"now",
".",
"hour",
")",
"&",
"(",
"training_data",
".",
"index",
">",
"min_time",
")",
")",
"similar_moments",
"=",
"training_data",
"[",
"selector",
"]",
"[",
":",
"-",
"1",
"]",
"obs_td",
"=",
"timedelta",
"(",
"minutes",
"=",
"observation_length",
")",
"similar_moments",
"[",
"'Similarity'",
"]",
"=",
"[",
"method",
"(",
"training_data",
"[",
"(",
"training_data",
".",
"index",
">=",
"now",
"-",
"obs_td",
")",
"&",
"(",
"training_data",
".",
"index",
"<=",
"now",
")",
"]",
".",
"get_values",
"(",
")",
",",
"training_data",
"[",
"(",
"training_data",
".",
"index",
">=",
"i",
"-",
"obs_td",
")",
"&",
"(",
"training_data",
".",
"index",
"<=",
"i",
")",
"]",
".",
"get_values",
"(",
")",
")",
"for",
"i",
"in",
"similar_moments",
".",
"index",
"]",
"indexes",
"=",
"(",
"similar_moments",
".",
"sort_values",
"(",
"'Similarity'",
",",
"ascending",
"=",
"True",
")",
".",
"head",
"(",
"k",
")",
".",
"index",
")",
"return",
"indexes"
]
| if now.weekday() < 5:
selector = (
(training_data.index.minute == now.minute) &
(training_data.index.hour == now.hour) &
(training_data.index > min_time) &
(training_data.index.weekday < 5)
)
else:
selector = (
(training_data.index.minute == now.minute) &
(training_data.index.hour == now.hour) &
(training_data.index > min_time) &
(training_data.index.weekday >= 5)
) | [
"if",
"now",
".",
"weekday",
"()",
"<",
"5",
":",
"selector",
"=",
"(",
"(",
"training_data",
".",
"index",
".",
"minute",
"==",
"now",
".",
"minute",
")",
"&",
"(",
"training_data",
".",
"index",
".",
"hour",
"==",
"now",
".",
"hour",
")",
"&",
"(",
"training_data",
".",
"index",
">",
"min_time",
")",
"&",
"(",
"training_data",
".",
"index",
".",
"weekday",
"<",
"5",
")",
")",
"else",
":",
"selector",
"=",
"(",
"(",
"training_data",
".",
"index",
".",
"minute",
"==",
"now",
".",
"minute",
")",
"&",
"(",
"training_data",
".",
"index",
".",
"hour",
"==",
"now",
".",
"hour",
")",
"&",
"(",
"training_data",
".",
"index",
">",
"min_time",
")",
"&",
"(",
"training_data",
".",
"index",
".",
"weekday",
">",
"=",
"5",
")",
")"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/occupancy/OccupancyThanos.py#L48-L88 |
SoftwareDefinedBuildings/XBOS | apps/data_analysis/XBOS_data_analytics/Wrapper.py | Wrapper.preprocess_data | def preprocess_data(self, data,
hdh_cpoint=65, cdh_cpoint=65, col_hdh_cdh=None,
col_degree=None, degree=None,
standardize=False, normalize=False,
year=False, month=False, week=False, tod=False, dow=False,
save_file=True):
""" Preprocesses dataframe according to user specifications and stores result in self.preprocessed_data.
Parameters
----------
data : pd.DataFrame()
Dataframe to be preprocessed.
hdh_cpoint : int
Heating degree hours. Defaults to 65.
cdh_cpoint : int
Cooling degree hours. Defaults to 65.
col_hdh_cdh : str
Column name which contains the outdoor air temperature.
col_degree : list(str)
Column to exponentiate.
degree : list(str)
Exponentiation degree.
standardize : bool
Standardize data.
normalize : bool
Normalize data.
year : bool
Year.
month : bool
Month.
week : bool
Week.
tod : bool
Time of Day.
dow : bool
Day of Week.
save_file : bool
Specifies whether to save file or not. Defaults to True.
Returns
-------
pd.DataFrame()
Dataframe containing preprocessed data.
"""
# Check to ensure data is a pandas dataframe
if not isinstance(data, pd.DataFrame):
raise SystemError('data has to be a pandas dataframe.')
# Create instance
preprocess_data_obj = Preprocess_Data(data)
if col_hdh_cdh:
preprocess_data_obj.add_degree_days(col=col_hdh_cdh, hdh_cpoint=hdh_cpoint, cdh_cpoint=cdh_cpoint)
preprocess_data_obj.add_col_features(col=col_degree, degree=degree)
if standardize:
preprocess_data_obj.standardize()
if normalize:
preprocess_data_obj.normalize()
preprocess_data_obj.add_time_features(year=year, month=month, week=week, tod=tod, dow=dow)
# Store preprocessed data in wrapper class
self.preprocessed_data = preprocess_data_obj.preprocessed_data
# Logging
self.result['Preprocess'] = {
'HDH CPoint': hdh_cpoint,
'CDH CPoint': cdh_cpoint,
'HDH CDH Calc Col': col_hdh_cdh,
'Col Degree': col_degree,
'Degree': degree,
'Standardize': standardize,
'Normalize': normalize,
'Year': year,
'Month': month,
'Week': week,
'Time of Day': tod,
'Day of Week': dow,
'Save File': save_file
}
if save_file:
f = self.results_folder_name + '/preprocessed_data-' + str(self.get_global_count()) + '.csv'
self.preprocessed_data.to_csv(f)
self.result['Preprocess']['Saved File'] = f
else:
self.result['Preprocess']['Saved File'] = ''
return self.preprocessed_data | python | def preprocess_data(self, data,
hdh_cpoint=65, cdh_cpoint=65, col_hdh_cdh=None,
col_degree=None, degree=None,
standardize=False, normalize=False,
year=False, month=False, week=False, tod=False, dow=False,
save_file=True):
if not isinstance(data, pd.DataFrame):
raise SystemError('data has to be a pandas dataframe.')
preprocess_data_obj = Preprocess_Data(data)
if col_hdh_cdh:
preprocess_data_obj.add_degree_days(col=col_hdh_cdh, hdh_cpoint=hdh_cpoint, cdh_cpoint=cdh_cpoint)
preprocess_data_obj.add_col_features(col=col_degree, degree=degree)
if standardize:
preprocess_data_obj.standardize()
if normalize:
preprocess_data_obj.normalize()
preprocess_data_obj.add_time_features(year=year, month=month, week=week, tod=tod, dow=dow)
self.preprocessed_data = preprocess_data_obj.preprocessed_data
self.result['Preprocess'] = {
'HDH CPoint': hdh_cpoint,
'CDH CPoint': cdh_cpoint,
'HDH CDH Calc Col': col_hdh_cdh,
'Col Degree': col_degree,
'Degree': degree,
'Standardize': standardize,
'Normalize': normalize,
'Year': year,
'Month': month,
'Week': week,
'Time of Day': tod,
'Day of Week': dow,
'Save File': save_file
}
if save_file:
f = self.results_folder_name + '/preprocessed_data-' + str(self.get_global_count()) + '.csv'
self.preprocessed_data.to_csv(f)
self.result['Preprocess']['Saved File'] = f
else:
self.result['Preprocess']['Saved File'] = ''
return self.preprocessed_data | [
"def",
"preprocess_data",
"(",
"self",
",",
"data",
",",
"hdh_cpoint",
"=",
"65",
",",
"cdh_cpoint",
"=",
"65",
",",
"col_hdh_cdh",
"=",
"None",
",",
"col_degree",
"=",
"None",
",",
"degree",
"=",
"None",
",",
"standardize",
"=",
"False",
",",
"normalize",
"=",
"False",
",",
"year",
"=",
"False",
",",
"month",
"=",
"False",
",",
"week",
"=",
"False",
",",
"tod",
"=",
"False",
",",
"dow",
"=",
"False",
",",
"save_file",
"=",
"True",
")",
":",
"# Check to ensure data is a pandas dataframe",
"if",
"not",
"isinstance",
"(",
"data",
",",
"pd",
".",
"DataFrame",
")",
":",
"raise",
"SystemError",
"(",
"'data has to be a pandas dataframe.'",
")",
"# Create instance",
"preprocess_data_obj",
"=",
"Preprocess_Data",
"(",
"data",
")",
"if",
"col_hdh_cdh",
":",
"preprocess_data_obj",
".",
"add_degree_days",
"(",
"col",
"=",
"col_hdh_cdh",
",",
"hdh_cpoint",
"=",
"hdh_cpoint",
",",
"cdh_cpoint",
"=",
"cdh_cpoint",
")",
"preprocess_data_obj",
".",
"add_col_features",
"(",
"col",
"=",
"col_degree",
",",
"degree",
"=",
"degree",
")",
"if",
"standardize",
":",
"preprocess_data_obj",
".",
"standardize",
"(",
")",
"if",
"normalize",
":",
"preprocess_data_obj",
".",
"normalize",
"(",
")",
"preprocess_data_obj",
".",
"add_time_features",
"(",
"year",
"=",
"year",
",",
"month",
"=",
"month",
",",
"week",
"=",
"week",
",",
"tod",
"=",
"tod",
",",
"dow",
"=",
"dow",
")",
"# Store preprocessed data in wrapper class",
"self",
".",
"preprocessed_data",
"=",
"preprocess_data_obj",
".",
"preprocessed_data",
"# Logging",
"self",
".",
"result",
"[",
"'Preprocess'",
"]",
"=",
"{",
"'HDH CPoint'",
":",
"hdh_cpoint",
",",
"'CDH CPoint'",
":",
"cdh_cpoint",
",",
"'HDH CDH Calc Col'",
":",
"col_hdh_cdh",
",",
"'Col Degree'",
":",
"col_degree",
",",
"'Degree'",
":",
"degree",
",",
"'Standardize'",
":",
"standardize",
",",
"'Normalize'",
":",
"normalize",
",",
"'Year'",
":",
"year",
",",
"'Month'",
":",
"month",
",",
"'Week'",
":",
"week",
",",
"'Time of Day'",
":",
"tod",
",",
"'Day of Week'",
":",
"dow",
",",
"'Save File'",
":",
"save_file",
"}",
"if",
"save_file",
":",
"f",
"=",
"self",
".",
"results_folder_name",
"+",
"'/preprocessed_data-'",
"+",
"str",
"(",
"self",
".",
"get_global_count",
"(",
")",
")",
"+",
"'.csv'",
"self",
".",
"preprocessed_data",
".",
"to_csv",
"(",
"f",
")",
"self",
".",
"result",
"[",
"'Preprocess'",
"]",
"[",
"'Saved File'",
"]",
"=",
"f",
"else",
":",
"self",
".",
"result",
"[",
"'Preprocess'",
"]",
"[",
"'Saved File'",
"]",
"=",
"''",
"return",
"self",
".",
"preprocessed_data"
]
| Preprocesses dataframe according to user specifications and stores result in self.preprocessed_data.
Parameters
----------
data : pd.DataFrame()
Dataframe to be preprocessed.
hdh_cpoint : int
Heating degree hours. Defaults to 65.
cdh_cpoint : int
Cooling degree hours. Defaults to 65.
col_hdh_cdh : str
Column name which contains the outdoor air temperature.
col_degree : list(str)
Column to exponentiate.
degree : list(str)
Exponentiation degree.
standardize : bool
Standardize data.
normalize : bool
Normalize data.
year : bool
Year.
month : bool
Month.
week : bool
Week.
tod : bool
Time of Day.
dow : bool
Day of Week.
save_file : bool
Specifies whether to save file or not. Defaults to True.
Returns
-------
pd.DataFrame()
Dataframe containing preprocessed data. | [
"Preprocesses",
"dataframe",
"according",
"to",
"user",
"specifications",
"and",
"stores",
"result",
"in",
"self",
".",
"preprocessed_data",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/data_analysis/XBOS_data_analytics/Wrapper.py#L544-L634 |
SoftwareDefinedBuildings/XBOS | apps/data_analysis/XBOS_data_analytics/Wrapper.py | Wrapper.model | def model(self, data,
ind_col=None, dep_col=None,
project_ind_col=None,
baseline_period=[None, None], projection_period=None, exclude_time_period=None,
alphas=np.logspace(-4,1,30),
cv=3, plot=True, figsize=None,
custom_model_func=None):
""" Split data into baseline and projection periods, run models on them and display metrics & plots.
Parameters
----------
data : pd.DataFrame()
Dataframe to model.
ind_col : list(str)
Independent column(s) of dataframe. Defaults to all columns except the last.
dep_col : str
Dependent column of dataframe.
project_ind_col : list(str)
Independent column(s) to use for projection. If none, use ind_col.
baseline_period : list(str)
List of time periods to split the data into baseline periods. It needs to have a start and an end date.
projection_period : list(str)
List of time periods to split the data into projection periods. It needs to have a start and an end date.
exclude_time_period : list(str)
List of time periods to exclude for modeling.
alphas : list(int)
List of alphas to run regression on.
cv : int
Number of folds for cross-validation.
plot : bool
Specifies whether to save plots or not.
figsize : tuple
Size of the plots.
custom_model_func : function
Model with specific hyper-parameters provided by user.
Returns
-------
dict
Metrics of the optimal/best model.
"""
# Check to ensure data is a pandas dataframe
if not isinstance(data, pd.DataFrame):
raise SystemError('data has to be a pandas dataframe.')
# Create instance
model_data_obj = Model_Data(data, ind_col, dep_col, alphas, cv, exclude_time_period, baseline_period, projection_period)
# Split data into baseline and projection
model_data_obj.split_data()
# Logging
self.result['Model'] = {
'Independent Col': ind_col,
'Dependent Col': dep_col,
'Projection Independent Col': project_ind_col,
'Baseline Period': baseline_period,
'Projection Period': projection_period,
'Exclude Time Period': exclude_time_period,
'Alphas': list(alphas),
'CV': cv,
'Plot': plot,
'Fig Size': figsize
}
# Runs all models on the data and returns optimal model
all_metrics = model_data_obj.run_models()
self.result['Model']['All Model\'s Metrics'] = all_metrics
# CHECK: Define custom model's parameter and return types in documentation.
if custom_model_func:
self.result['Model']['Custom Model\'s Metrics'] = model_data_obj.custom_model(custom_model_func)
# Fit optimal model to data
self.result['Model']['Optimal Model\'s Metrics'] = model_data_obj.best_model_fit()
if plot:
# Use project_ind_col if projecting into the future (no input data other than weather data)
input_col = model_data_obj.input_col if not project_ind_col else project_ind_col
fig, y_true, y_pred = self.plot_data_obj.baseline_projection_plot(model_data_obj.y_true, model_data_obj.y_pred,
model_data_obj.baseline_period, model_data_obj.projection_period,
model_data_obj.best_model_name, model_data_obj.best_metrics['adj_r2'],
model_data_obj.original_data,
input_col, model_data_obj.output_col,
model_data_obj.best_model,
self.result['Site'])
fig.savefig(self.results_folder_name + '/baseline_projection_plot-' + str(self.get_global_count()) + '.png')
if not y_true.empty and not y_pred.empty:
saving_absolute = (y_pred - y_true).sum()
saving_perc = (saving_absolute / y_pred.sum()) * 100
self.result['Energy Savings (%)'] = float(saving_perc)
self.result['Energy Savings (absolute)'] = saving_absolute
# Temporary
self.project_df['true'] = y_true
self.project_df['pred'] = y_pred
# Calculate uncertainity of savings
self.result['Uncertainity'] = self.uncertainity_equation(model_data_obj, y_true, y_pred, 0.9)
else:
print('y_true: ', y_true)
print('y_pred: ', y_pred)
print('Error: y_true and y_pred are empty. Default to -1.0 savings.')
self.result['Energy Savings (%)'] = float(-1.0)
self.result['Energy Savings (absolute)'] = float(-1.0)
return self.best_metrics | python | def model(self, data,
ind_col=None, dep_col=None,
project_ind_col=None,
baseline_period=[None, None], projection_period=None, exclude_time_period=None,
alphas=np.logspace(-4,1,30),
cv=3, plot=True, figsize=None,
custom_model_func=None):
if not isinstance(data, pd.DataFrame):
raise SystemError('data has to be a pandas dataframe.')
model_data_obj = Model_Data(data, ind_col, dep_col, alphas, cv, exclude_time_period, baseline_period, projection_period)
model_data_obj.split_data()
self.result['Model'] = {
'Independent Col': ind_col,
'Dependent Col': dep_col,
'Projection Independent Col': project_ind_col,
'Baseline Period': baseline_period,
'Projection Period': projection_period,
'Exclude Time Period': exclude_time_period,
'Alphas': list(alphas),
'CV': cv,
'Plot': plot,
'Fig Size': figsize
}
all_metrics = model_data_obj.run_models()
self.result['Model']['All Model\'s Metrics'] = all_metrics
if custom_model_func:
self.result['Model']['Custom Model\'s Metrics'] = model_data_obj.custom_model(custom_model_func)
self.result['Model']['Optimal Model\'s Metrics'] = model_data_obj.best_model_fit()
if plot:
input_col = model_data_obj.input_col if not project_ind_col else project_ind_col
fig, y_true, y_pred = self.plot_data_obj.baseline_projection_plot(model_data_obj.y_true, model_data_obj.y_pred,
model_data_obj.baseline_period, model_data_obj.projection_period,
model_data_obj.best_model_name, model_data_obj.best_metrics['adj_r2'],
model_data_obj.original_data,
input_col, model_data_obj.output_col,
model_data_obj.best_model,
self.result['Site'])
fig.savefig(self.results_folder_name + '/baseline_projection_plot-' + str(self.get_global_count()) + '.png')
if not y_true.empty and not y_pred.empty:
saving_absolute = (y_pred - y_true).sum()
saving_perc = (saving_absolute / y_pred.sum()) * 100
self.result['Energy Savings (%)'] = float(saving_perc)
self.result['Energy Savings (absolute)'] = saving_absolute
self.project_df['true'] = y_true
self.project_df['pred'] = y_pred
self.result['Uncertainity'] = self.uncertainity_equation(model_data_obj, y_true, y_pred, 0.9)
else:
print('y_true: ', y_true)
print('y_pred: ', y_pred)
print('Error: y_true and y_pred are empty. Default to -1.0 savings.')
self.result['Energy Savings (%)'] = float(-1.0)
self.result['Energy Savings (absolute)'] = float(-1.0)
return self.best_metrics | [
"def",
"model",
"(",
"self",
",",
"data",
",",
"ind_col",
"=",
"None",
",",
"dep_col",
"=",
"None",
",",
"project_ind_col",
"=",
"None",
",",
"baseline_period",
"=",
"[",
"None",
",",
"None",
"]",
",",
"projection_period",
"=",
"None",
",",
"exclude_time_period",
"=",
"None",
",",
"alphas",
"=",
"np",
".",
"logspace",
"(",
"-",
"4",
",",
"1",
",",
"30",
")",
",",
"cv",
"=",
"3",
",",
"plot",
"=",
"True",
",",
"figsize",
"=",
"None",
",",
"custom_model_func",
"=",
"None",
")",
":",
"# Check to ensure data is a pandas dataframe",
"if",
"not",
"isinstance",
"(",
"data",
",",
"pd",
".",
"DataFrame",
")",
":",
"raise",
"SystemError",
"(",
"'data has to be a pandas dataframe.'",
")",
"# Create instance",
"model_data_obj",
"=",
"Model_Data",
"(",
"data",
",",
"ind_col",
",",
"dep_col",
",",
"alphas",
",",
"cv",
",",
"exclude_time_period",
",",
"baseline_period",
",",
"projection_period",
")",
"# Split data into baseline and projection",
"model_data_obj",
".",
"split_data",
"(",
")",
"# Logging",
"self",
".",
"result",
"[",
"'Model'",
"]",
"=",
"{",
"'Independent Col'",
":",
"ind_col",
",",
"'Dependent Col'",
":",
"dep_col",
",",
"'Projection Independent Col'",
":",
"project_ind_col",
",",
"'Baseline Period'",
":",
"baseline_period",
",",
"'Projection Period'",
":",
"projection_period",
",",
"'Exclude Time Period'",
":",
"exclude_time_period",
",",
"'Alphas'",
":",
"list",
"(",
"alphas",
")",
",",
"'CV'",
":",
"cv",
",",
"'Plot'",
":",
"plot",
",",
"'Fig Size'",
":",
"figsize",
"}",
"# Runs all models on the data and returns optimal model",
"all_metrics",
"=",
"model_data_obj",
".",
"run_models",
"(",
")",
"self",
".",
"result",
"[",
"'Model'",
"]",
"[",
"'All Model\\'s Metrics'",
"]",
"=",
"all_metrics",
"# CHECK: Define custom model's parameter and return types in documentation.",
"if",
"custom_model_func",
":",
"self",
".",
"result",
"[",
"'Model'",
"]",
"[",
"'Custom Model\\'s Metrics'",
"]",
"=",
"model_data_obj",
".",
"custom_model",
"(",
"custom_model_func",
")",
"# Fit optimal model to data",
"self",
".",
"result",
"[",
"'Model'",
"]",
"[",
"'Optimal Model\\'s Metrics'",
"]",
"=",
"model_data_obj",
".",
"best_model_fit",
"(",
")",
"if",
"plot",
":",
"# Use project_ind_col if projecting into the future (no input data other than weather data)",
"input_col",
"=",
"model_data_obj",
".",
"input_col",
"if",
"not",
"project_ind_col",
"else",
"project_ind_col",
"fig",
",",
"y_true",
",",
"y_pred",
"=",
"self",
".",
"plot_data_obj",
".",
"baseline_projection_plot",
"(",
"model_data_obj",
".",
"y_true",
",",
"model_data_obj",
".",
"y_pred",
",",
"model_data_obj",
".",
"baseline_period",
",",
"model_data_obj",
".",
"projection_period",
",",
"model_data_obj",
".",
"best_model_name",
",",
"model_data_obj",
".",
"best_metrics",
"[",
"'adj_r2'",
"]",
",",
"model_data_obj",
".",
"original_data",
",",
"input_col",
",",
"model_data_obj",
".",
"output_col",
",",
"model_data_obj",
".",
"best_model",
",",
"self",
".",
"result",
"[",
"'Site'",
"]",
")",
"fig",
".",
"savefig",
"(",
"self",
".",
"results_folder_name",
"+",
"'/baseline_projection_plot-'",
"+",
"str",
"(",
"self",
".",
"get_global_count",
"(",
")",
")",
"+",
"'.png'",
")",
"if",
"not",
"y_true",
".",
"empty",
"and",
"not",
"y_pred",
".",
"empty",
":",
"saving_absolute",
"=",
"(",
"y_pred",
"-",
"y_true",
")",
".",
"sum",
"(",
")",
"saving_perc",
"=",
"(",
"saving_absolute",
"/",
"y_pred",
".",
"sum",
"(",
")",
")",
"*",
"100",
"self",
".",
"result",
"[",
"'Energy Savings (%)'",
"]",
"=",
"float",
"(",
"saving_perc",
")",
"self",
".",
"result",
"[",
"'Energy Savings (absolute)'",
"]",
"=",
"saving_absolute",
"# Temporary",
"self",
".",
"project_df",
"[",
"'true'",
"]",
"=",
"y_true",
"self",
".",
"project_df",
"[",
"'pred'",
"]",
"=",
"y_pred",
"# Calculate uncertainity of savings",
"self",
".",
"result",
"[",
"'Uncertainity'",
"]",
"=",
"self",
".",
"uncertainity_equation",
"(",
"model_data_obj",
",",
"y_true",
",",
"y_pred",
",",
"0.9",
")",
"else",
":",
"print",
"(",
"'y_true: '",
",",
"y_true",
")",
"print",
"(",
"'y_pred: '",
",",
"y_pred",
")",
"print",
"(",
"'Error: y_true and y_pred are empty. Default to -1.0 savings.'",
")",
"self",
".",
"result",
"[",
"'Energy Savings (%)'",
"]",
"=",
"float",
"(",
"-",
"1.0",
")",
"self",
".",
"result",
"[",
"'Energy Savings (absolute)'",
"]",
"=",
"float",
"(",
"-",
"1.0",
")",
"return",
"self",
".",
"best_metrics"
]
| Split data into baseline and projection periods, run models on them and display metrics & plots.
Parameters
----------
data : pd.DataFrame()
Dataframe to model.
ind_col : list(str)
Independent column(s) of dataframe. Defaults to all columns except the last.
dep_col : str
Dependent column of dataframe.
project_ind_col : list(str)
Independent column(s) to use for projection. If none, use ind_col.
baseline_period : list(str)
List of time periods to split the data into baseline periods. It needs to have a start and an end date.
projection_period : list(str)
List of time periods to split the data into projection periods. It needs to have a start and an end date.
exclude_time_period : list(str)
List of time periods to exclude for modeling.
alphas : list(int)
List of alphas to run regression on.
cv : int
Number of folds for cross-validation.
plot : bool
Specifies whether to save plots or not.
figsize : tuple
Size of the plots.
custom_model_func : function
Model with specific hyper-parameters provided by user.
Returns
-------
dict
Metrics of the optimal/best model. | [
"Split",
"data",
"into",
"baseline",
"and",
"projection",
"periods",
"run",
"models",
"on",
"them",
"and",
"display",
"metrics",
"&",
"plots",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/data_analysis/XBOS_data_analytics/Wrapper.py#L637-L749 |
SoftwareDefinedBuildings/XBOS | python/xbos/services/pundat.py | make_dataframe | def make_dataframe(result):
"""
Turns the results of one of the data API calls into a pandas dataframe
"""
import pandas as pd
ret = {}
if isinstance(result,dict):
if 'timeseries' in result:
result = result['timeseries']
for uuid, data in result.items():
df = pd.DataFrame(data)
if len(df.columns) == 5: # statistical data
df.columns = ['time','min','mean','max','count']
else:
df.columns = ['time','value']
df['time'] = pd.to_datetime(df['time'],unit='ns')
df = df.set_index(df.pop('time'))
ret[uuid] = df
return ret | python | def make_dataframe(result):
import pandas as pd
ret = {}
if isinstance(result,dict):
if 'timeseries' in result:
result = result['timeseries']
for uuid, data in result.items():
df = pd.DataFrame(data)
if len(df.columns) == 5:
df.columns = ['time','min','mean','max','count']
else:
df.columns = ['time','value']
df['time'] = pd.to_datetime(df['time'],unit='ns')
df = df.set_index(df.pop('time'))
ret[uuid] = df
return ret | [
"def",
"make_dataframe",
"(",
"result",
")",
":",
"import",
"pandas",
"as",
"pd",
"ret",
"=",
"{",
"}",
"if",
"isinstance",
"(",
"result",
",",
"dict",
")",
":",
"if",
"'timeseries'",
"in",
"result",
":",
"result",
"=",
"result",
"[",
"'timeseries'",
"]",
"for",
"uuid",
",",
"data",
"in",
"result",
".",
"items",
"(",
")",
":",
"df",
"=",
"pd",
".",
"DataFrame",
"(",
"data",
")",
"if",
"len",
"(",
"df",
".",
"columns",
")",
"==",
"5",
":",
"# statistical data",
"df",
".",
"columns",
"=",
"[",
"'time'",
",",
"'min'",
",",
"'mean'",
",",
"'max'",
",",
"'count'",
"]",
"else",
":",
"df",
".",
"columns",
"=",
"[",
"'time'",
",",
"'value'",
"]",
"df",
"[",
"'time'",
"]",
"=",
"pd",
".",
"to_datetime",
"(",
"df",
"[",
"'time'",
"]",
",",
"unit",
"=",
"'ns'",
")",
"df",
"=",
"df",
".",
"set_index",
"(",
"df",
".",
"pop",
"(",
"'time'",
")",
")",
"ret",
"[",
"uuid",
"]",
"=",
"df",
"return",
"ret"
]
| Turns the results of one of the data API calls into a pandas dataframe | [
"Turns",
"the",
"results",
"of",
"one",
"of",
"the",
"data",
"API",
"calls",
"into",
"a",
"pandas",
"dataframe"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/python/xbos/services/pundat.py#L247-L265 |
SoftwareDefinedBuildings/XBOS | python/xbos/services/pundat.py | merge_dfs | def merge_dfs(dfs, resample=None, do_mean=False, do_sum=False, do_min=False, do_max=False):
"""
dfs is a dictionary of key => dataframe
This method resamples each of the dataframes if a period is provided
(http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases)
"""
if len(dfs) == 0:
raise Exception("No dataframes provided")
df = dfs.values()[0]
name = dfs.keys()[0]
df.columns = map(lambda x: name+"_"+x if not x.startswith(name) else x, df.columns)
if resample is not None:
df = df.resample(resample)
if do_mean: df = df.mean()
elif do_sum: df = df.sum()
elif do_min: df = df.min()
elif do_max: df = df.max()
else: df = df.mean()
if len(dfs) > 1:
for name, newdf in dfs.items()[1:]:
if resample is not None:
newdf = newdf.resample(resample)
if do_mean: newdf = newdf.mean()
elif do_sum: newdf = newdf.sum()
elif do_min: newdf = newdf.min()
elif do_max: newdf = newdf.max()
else: newdf = newdf.mean()
newdf.columns = map(lambda x: name+"_"+x if not x.startswith(name) else x, newdf.columns)
df = df.merge(newdf, left_index=True, right_index=True, how='outer')
return df | python | def merge_dfs(dfs, resample=None, do_mean=False, do_sum=False, do_min=False, do_max=False):
if len(dfs) == 0:
raise Exception("No dataframes provided")
df = dfs.values()[0]
name = dfs.keys()[0]
df.columns = map(lambda x: name+"_"+x if not x.startswith(name) else x, df.columns)
if resample is not None:
df = df.resample(resample)
if do_mean: df = df.mean()
elif do_sum: df = df.sum()
elif do_min: df = df.min()
elif do_max: df = df.max()
else: df = df.mean()
if len(dfs) > 1:
for name, newdf in dfs.items()[1:]:
if resample is not None:
newdf = newdf.resample(resample)
if do_mean: newdf = newdf.mean()
elif do_sum: newdf = newdf.sum()
elif do_min: newdf = newdf.min()
elif do_max: newdf = newdf.max()
else: newdf = newdf.mean()
newdf.columns = map(lambda x: name+"_"+x if not x.startswith(name) else x, newdf.columns)
df = df.merge(newdf, left_index=True, right_index=True, how='outer')
return df | [
"def",
"merge_dfs",
"(",
"dfs",
",",
"resample",
"=",
"None",
",",
"do_mean",
"=",
"False",
",",
"do_sum",
"=",
"False",
",",
"do_min",
"=",
"False",
",",
"do_max",
"=",
"False",
")",
":",
"if",
"len",
"(",
"dfs",
")",
"==",
"0",
":",
"raise",
"Exception",
"(",
"\"No dataframes provided\"",
")",
"df",
"=",
"dfs",
".",
"values",
"(",
")",
"[",
"0",
"]",
"name",
"=",
"dfs",
".",
"keys",
"(",
")",
"[",
"0",
"]",
"df",
".",
"columns",
"=",
"map",
"(",
"lambda",
"x",
":",
"name",
"+",
"\"_\"",
"+",
"x",
"if",
"not",
"x",
".",
"startswith",
"(",
"name",
")",
"else",
"x",
",",
"df",
".",
"columns",
")",
"if",
"resample",
"is",
"not",
"None",
":",
"df",
"=",
"df",
".",
"resample",
"(",
"resample",
")",
"if",
"do_mean",
":",
"df",
"=",
"df",
".",
"mean",
"(",
")",
"elif",
"do_sum",
":",
"df",
"=",
"df",
".",
"sum",
"(",
")",
"elif",
"do_min",
":",
"df",
"=",
"df",
".",
"min",
"(",
")",
"elif",
"do_max",
":",
"df",
"=",
"df",
".",
"max",
"(",
")",
"else",
":",
"df",
"=",
"df",
".",
"mean",
"(",
")",
"if",
"len",
"(",
"dfs",
")",
">",
"1",
":",
"for",
"name",
",",
"newdf",
"in",
"dfs",
".",
"items",
"(",
")",
"[",
"1",
":",
"]",
":",
"if",
"resample",
"is",
"not",
"None",
":",
"newdf",
"=",
"newdf",
".",
"resample",
"(",
"resample",
")",
"if",
"do_mean",
":",
"newdf",
"=",
"newdf",
".",
"mean",
"(",
")",
"elif",
"do_sum",
":",
"newdf",
"=",
"newdf",
".",
"sum",
"(",
")",
"elif",
"do_min",
":",
"newdf",
"=",
"newdf",
".",
"min",
"(",
")",
"elif",
"do_max",
":",
"newdf",
"=",
"newdf",
".",
"max",
"(",
")",
"else",
":",
"newdf",
"=",
"newdf",
".",
"mean",
"(",
")",
"newdf",
".",
"columns",
"=",
"map",
"(",
"lambda",
"x",
":",
"name",
"+",
"\"_\"",
"+",
"x",
"if",
"not",
"x",
".",
"startswith",
"(",
"name",
")",
"else",
"x",
",",
"newdf",
".",
"columns",
")",
"df",
"=",
"df",
".",
"merge",
"(",
"newdf",
",",
"left_index",
"=",
"True",
",",
"right_index",
"=",
"True",
",",
"how",
"=",
"'outer'",
")",
"return",
"df"
]
| dfs is a dictionary of key => dataframe
This method resamples each of the dataframes if a period is provided
(http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases) | [
"dfs",
"is",
"a",
"dictionary",
"of",
"key",
"=",
">",
"dataframe",
"This",
"method",
"resamples",
"each",
"of",
"the",
"dataframes",
"if",
"a",
"period",
"is",
"provided",
"(",
"http",
":",
"//",
"pandas",
".",
"pydata",
".",
"org",
"/",
"pandas",
"-",
"docs",
"/",
"stable",
"/",
"timeseries",
".",
"html#offset",
"-",
"aliases",
")"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/python/xbos/services/pundat.py#L267-L296 |
SoftwareDefinedBuildings/XBOS | python/xbos/services/pundat.py | DataClient.query | def query(self, query, archiver="", timeout=DEFAULT_TIMEOUT):
"""
Runs the given pundat query and returns the results as a Python object.
Arguments:
[query]: the query string
[archiver]: if specified, this is the archiver to use. Else, it will run on the first archiver passed
into the constructor for the client
[timeout]: time in seconds to wait for a response from the archiver
"""
if archiver == "":
archiver = self.archivers[0]
nonce = random.randint(0, 2**32)
ev = threading.Event()
response = {}
def _handleresult(msg):
# decode, throw away if not correct nonce
got_response = False
error = getError(nonce, msg)
if error is not None:
got_response = True
response["error"] = error
metadata = getMetadata(nonce, msg)
if metadata is not None:
got_response = True
response["metadata"] = metadata
timeseries = getTimeseries(nonce, msg)
if timeseries is not None:
got_response = True
response["timeseries"] = timeseries
if got_response:
ev.set()
vk = self.vk[:-1] # remove last part of VK because archiver doesn't expect it
# set up receiving
self.c.subscribe("{0}/s.giles/_/i.archiver/signal/{1},queries".format(archiver, vk), _handleresult)
# execute query
q_struct = msgpack.packb({"Query": query, "Nonce": nonce})
po = PayloadObject((2,0,8,1), None, q_struct)
self.c.publish("{0}/s.giles/_/i.archiver/slot/query".format(archiver), payload_objects=(po,))
ev.wait(timeout)
if len(response) == 0: # no results
raise TimeoutException("Query of {0} timed out".format(query))
return response | python | def query(self, query, archiver="", timeout=DEFAULT_TIMEOUT):
if archiver == "":
archiver = self.archivers[0]
nonce = random.randint(0, 2**32)
ev = threading.Event()
response = {}
def _handleresult(msg):
got_response = False
error = getError(nonce, msg)
if error is not None:
got_response = True
response["error"] = error
metadata = getMetadata(nonce, msg)
if metadata is not None:
got_response = True
response["metadata"] = metadata
timeseries = getTimeseries(nonce, msg)
if timeseries is not None:
got_response = True
response["timeseries"] = timeseries
if got_response:
ev.set()
vk = self.vk[:-1]
self.c.subscribe("{0}/s.giles/_/i.archiver/signal/{1},queries".format(archiver, vk), _handleresult)
q_struct = msgpack.packb({"Query": query, "Nonce": nonce})
po = PayloadObject((2,0,8,1), None, q_struct)
self.c.publish("{0}/s.giles/_/i.archiver/slot/query".format(archiver), payload_objects=(po,))
ev.wait(timeout)
if len(response) == 0:
raise TimeoutException("Query of {0} timed out".format(query))
return response | [
"def",
"query",
"(",
"self",
",",
"query",
",",
"archiver",
"=",
"\"\"",
",",
"timeout",
"=",
"DEFAULT_TIMEOUT",
")",
":",
"if",
"archiver",
"==",
"\"\"",
":",
"archiver",
"=",
"self",
".",
"archivers",
"[",
"0",
"]",
"nonce",
"=",
"random",
".",
"randint",
"(",
"0",
",",
"2",
"**",
"32",
")",
"ev",
"=",
"threading",
".",
"Event",
"(",
")",
"response",
"=",
"{",
"}",
"def",
"_handleresult",
"(",
"msg",
")",
":",
"# decode, throw away if not correct nonce",
"got_response",
"=",
"False",
"error",
"=",
"getError",
"(",
"nonce",
",",
"msg",
")",
"if",
"error",
"is",
"not",
"None",
":",
"got_response",
"=",
"True",
"response",
"[",
"\"error\"",
"]",
"=",
"error",
"metadata",
"=",
"getMetadata",
"(",
"nonce",
",",
"msg",
")",
"if",
"metadata",
"is",
"not",
"None",
":",
"got_response",
"=",
"True",
"response",
"[",
"\"metadata\"",
"]",
"=",
"metadata",
"timeseries",
"=",
"getTimeseries",
"(",
"nonce",
",",
"msg",
")",
"if",
"timeseries",
"is",
"not",
"None",
":",
"got_response",
"=",
"True",
"response",
"[",
"\"timeseries\"",
"]",
"=",
"timeseries",
"if",
"got_response",
":",
"ev",
".",
"set",
"(",
")",
"vk",
"=",
"self",
".",
"vk",
"[",
":",
"-",
"1",
"]",
"# remove last part of VK because archiver doesn't expect it",
"# set up receiving",
"self",
".",
"c",
".",
"subscribe",
"(",
"\"{0}/s.giles/_/i.archiver/signal/{1},queries\"",
".",
"format",
"(",
"archiver",
",",
"vk",
")",
",",
"_handleresult",
")",
"# execute query",
"q_struct",
"=",
"msgpack",
".",
"packb",
"(",
"{",
"\"Query\"",
":",
"query",
",",
"\"Nonce\"",
":",
"nonce",
"}",
")",
"po",
"=",
"PayloadObject",
"(",
"(",
"2",
",",
"0",
",",
"8",
",",
"1",
")",
",",
"None",
",",
"q_struct",
")",
"self",
".",
"c",
".",
"publish",
"(",
"\"{0}/s.giles/_/i.archiver/slot/query\"",
".",
"format",
"(",
"archiver",
")",
",",
"payload_objects",
"=",
"(",
"po",
",",
")",
")",
"ev",
".",
"wait",
"(",
"timeout",
")",
"if",
"len",
"(",
"response",
")",
"==",
"0",
":",
"# no results",
"raise",
"TimeoutException",
"(",
"\"Query of {0} timed out\"",
".",
"format",
"(",
"query",
")",
")",
"return",
"response"
]
| Runs the given pundat query and returns the results as a Python object.
Arguments:
[query]: the query string
[archiver]: if specified, this is the archiver to use. Else, it will run on the first archiver passed
into the constructor for the client
[timeout]: time in seconds to wait for a response from the archiver | [
"Runs",
"the",
"given",
"pundat",
"query",
"and",
"returns",
"the",
"results",
"as",
"a",
"Python",
"object",
"."
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/python/xbos/services/pundat.py#L61-L111 |
SoftwareDefinedBuildings/XBOS | python/xbos/services/pundat.py | DataClient.uuids | def uuids(self, where, archiver="", timeout=DEFAULT_TIMEOUT):
"""
Using the given where-clause, finds all UUIDs that match
Arguments:
[where]: the where clause (e.g. 'path like "keti"', 'SourceName = "TED Main"')
[archiver]: if specified, this is the archiver to use. Else, it will run on the first archiver passed
into the constructor for the client
[timeout]: time in seconds to wait for a response from the archiver
"""
resp = self.query("select uuid where {0}".format(where), archiver, timeout)
uuids = []
for r in resp["metadata"]:
uuids.append(r["uuid"])
return uuids | python | def uuids(self, where, archiver="", timeout=DEFAULT_TIMEOUT):
resp = self.query("select uuid where {0}".format(where), archiver, timeout)
uuids = []
for r in resp["metadata"]:
uuids.append(r["uuid"])
return uuids | [
"def",
"uuids",
"(",
"self",
",",
"where",
",",
"archiver",
"=",
"\"\"",
",",
"timeout",
"=",
"DEFAULT_TIMEOUT",
")",
":",
"resp",
"=",
"self",
".",
"query",
"(",
"\"select uuid where {0}\"",
".",
"format",
"(",
"where",
")",
",",
"archiver",
",",
"timeout",
")",
"uuids",
"=",
"[",
"]",
"for",
"r",
"in",
"resp",
"[",
"\"metadata\"",
"]",
":",
"uuids",
".",
"append",
"(",
"r",
"[",
"\"uuid\"",
"]",
")",
"return",
"uuids"
]
| Using the given where-clause, finds all UUIDs that match
Arguments:
[where]: the where clause (e.g. 'path like "keti"', 'SourceName = "TED Main"')
[archiver]: if specified, this is the archiver to use. Else, it will run on the first archiver passed
into the constructor for the client
[timeout]: time in seconds to wait for a response from the archiver | [
"Using",
"the",
"given",
"where",
"-",
"clause",
"finds",
"all",
"UUIDs",
"that",
"match"
]
| train | https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/python/xbos/services/pundat.py#L113-L127 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.