|
# Dataset for HybRank |
|
|
|
You can download preprocessed data from [HuggingFace Repo](https://huggingface.co/datasets/ustc-zhangzm/HybRank) |
|
|
|
Note that `train_scores.hdf5` of `MS MARCO` dataset files are split via |
|
```bash |
|
split -d -b 3G train_scores.hdf5 train_scores.hdf5. |
|
``` |
|
|
|
Run following command to concatenate these files after all shards have been downloaded |
|
```bash |
|
cat train_scores.hdf5.* > train_scores.hdf5 |
|
``` |
|
|
|
Or you can generate data by yourself via the following steps: |
|
|
|
## Dependencies |
|
``` |
|
java 11.0.16 |
|
maven 3.8.6 |
|
anserini 0.14.3 |
|
faiss-cpu 1.7.2 |
|
pyserini 0.17.1 |
|
``` |
|
|
|
|
|
## Natural Questions |
|
|
|
### 1. Download raw data (Refer to [DPR](https://github.com/facebookresearch/DPR) for more details of the dataset) |
|
```shell |
|
python download_DPR_data.py --resource data.wikipedia_split.psgs_w100 |
|
python download_DPR_data.py --resource data.retriever.nq |
|
python download_DPR_data.py --resource data.retriever.qas.nq |
|
mkdir -p raw && mv downloads raw/NQ |
|
``` |
|
|
|
### 2. Convert collections to jsonl format for Pyserini |
|
```shell |
|
python convert_NQ_collection_to_jsonl.py --collection-path raw/NQ/data/wikipedia_split/psgs_w100.tsv --output-folder pyserini/collections/NQ |
|
``` |
|
|
|
### 3. Build Lucene indexes via Pyserini |
|
```shell |
|
python -m pyserini.index.lucene \ |
|
--collection JsonCollection \ |
|
--input pyserini/collections/NQ \ |
|
--index pyserini/indexes/NQ \ |
|
--generator DefaultLuceneDocumentGenerator \ |
|
--threads 1 \ |
|
--storePositions --storeDocvectors --storeRaw |
|
``` |
|
|
|
### 4. Generate data |
|
```shell |
|
RETRIEVERS=("DPR-Multi" "DPR-Single" "ANCE" "FiD-KD" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker") |
|
|
|
for RETRIEVER in ${RETRIEVERS[@]}; do |
|
python generate_NQ_data.py --retriever $RETRIEVER |
|
done |
|
``` |
|
Note that before generate data for retriever `RocketQA*`, please generate the retrieval results following the instructions in `data/RocketQA_baselines/README.md`. Data for other retrievers can be generated directly. |
|
|
|
|
|
## MS MARCO & TREC 2019/2020 |
|
|
|
### 1. Download raw data (Refer to [MS MARCO](https://microsoft.github.io/msmarco/) for more details of the dataset) |
|
* Download and uncompress MSMARCO Passage Ranking Collections and Queries [collectionandqueries.tar.gz](https://msmarco.blob.core.windows.net/msmarcoranking/collectionandqueries.tar.gz) to `data/raw/MSMARCO/` |
|
* TREC DL Test Queries and Qrels |
|
* [TREC DL-2019](https://microsoft.github.io/msmarco/TREC-Deep-Learning-2019.html) |
|
* Download and uncompress [msmarco-test2019-queries.tsv](https://msmarco.blob.core.windows.net/msmarcoranking/msmarco-test2019-queries.tsv.gz) |
|
* Download [2019qrels-pass.txt](https://trec.nist.gov/data/deep/2019qrels-pass.txt) |
|
* [TREC DL-2020](https://microsoft.github.io/msmarco/TREC-Deep-Learning-2020) |
|
* Download and uncompress [msmarco-test2019-queries.tsv](https://msmarco.blob.core.windows.net/msmarcoranking/msmarco-test2020-queries.tsv.gz) |
|
* Download [2019qrels-pass.txt](https://trec.nist.gov/data/deep/2020qrels-pass.txt) |
|
* Put them into `data/raw/TRECDL/` |
|
|
|
### 2. Convert collections to jsonl format for Pyserini |
|
|
|
```shell |
|
python convert_MSMARCO_collection_to_jsonl.py --collection-path raw/MSMARCO/collection.tsv --output-folder pyserini/collections/MSMARCO |
|
``` |
|
|
|
### 3. Build Lucene indexes via Pyserini |
|
|
|
```shell |
|
python -m pyserini.index.lucene \ |
|
--collection JsonCollection \ |
|
--input pyserini/collections/MSMARCO \ |
|
--index pyserini/indexes/MSMARCO \ |
|
--generator DefaultLuceneDocumentGenerator \ |
|
--threads 1 \ |
|
--storePositions --storeDocvectors --storeRaw |
|
``` |
|
|
|
### 4. Generate data |
|
```shell |
|
RETRIEVERS=("ANCE" "DistilBERT-KD" "TAS-B" "TCT-ColBERT-v1" "TCT-ColBERT-v2" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker") |
|
|
|
for RETRIEVER in ${RETRIEVERS[@]}; do |
|
python generate_MSMARCO_data.py --retriever $RETRIEVER |
|
done |
|
``` |
|
|
|
```shell |
|
RETRIEVERS=("ANCE" "DistilBERT-KD" "TAS-B" "TCT-ColBERT-v1" "TCT-ColBERT-v2" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker") |
|
|
|
SPLITS=("2019" "2020") |
|
|
|
for RETRIEVER in ${RETRIEVERS[@]}; do |
|
for SPLIT in ${SPLITS[@]}; do |
|
python generate_TRECDL_data.py --split $SPLIT --retriever $RETRIEVER |
|
done |
|
done |
|
``` |