File size: 10,595 Bytes
de8df7e df7957c de8df7e a50bb4c de8df7e a50bb4c de8df7e a61ea77 83d7c40 de8df7e a50bb4c 445f168 6fce28e de8df7e 20b4156 de8df7e b444f28 de8df7e 2276b90 de8df7e a50bb4c 2276b90 a50bb4c 83d7c40 a50bb4c 6fce28e de8df7e a50bb4c de8df7e 445f168 de8df7e b444f28 83d7c40 b444f28 de8df7e 445f168 de8df7e b444f28 1694ad7 a50bb4c 445f168 a50bb4c 445f168 de8df7e 445f168 de8df7e 6fce28e de8df7e 83d7c40 de8df7e b572f80 de8df7e 445f168 de8df7e 83d7c40 de8df7e 6fce28e df7957c 6fce28e 20b4156 6fce28e df7957c 445f168 6fce28e 20b4156 6fce28e a50bb4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from collections import defaultdict
import datasets
import csv
from trec_car import read_data
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@misc{dalton2020trec,
title={TREC CAsT 2019: The Conversational Assistance Track Overview},
author={Jeffrey Dalton and Chenyan Xiong and Jamie Callan},
year={2020},
eprint={2003.13624},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
"""
# You can copy an official description
_DESCRIPTION = """\
The Conversational Assistance Track (CAsT) is a new track for TREC 2019 to facilitate Conversational Information
Seeking (CIS) research and to create a large-scale reusable test collection for conversational search systems.
The document corpus is 38,426,252 passages from the TREC Complex Answer Retrieval (CAR) and Microsoft MAchine
Reading COmprehension (MARCO) datasets.
"""
_HOMEPAGE = "http://www.treccast.ai"
_LICENSE = ""
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://huggingface.co/datasets/uva-irlab/trec-cast-2019-multi-turn/resolve/main/"
_URLs = {
'topics': _URL+"cast2019_test_annotated_without_context.tsv",
'topics_with_context': _URL+"cast2019_test_annotated_with_context.tsv",
'qrels': _URL+"2019qrels.txt",
'test_collection': {
'car': "http://trec-car.cs.unh.edu/datareleases/v2.0/paragraphCorpus.v2.0.tar.xz",
'msmarco': 'https://msmarco.blob.core.windows.net/msmarcoranking/collection.tar.gz',
},
}
SAMPLE_SIZE = 100000
class TrecCast2019MultiTurn(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.1")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="qrels",
version=VERSION,
description=""),
datasets.BuilderConfig(name="topics",
version=VERSION,
description="The topics contain the queries, query IDs and their history."),
datasets.BuilderConfig(name="topics_with_context",
version=VERSION,
description="The topics contain the queries with relevant terms from the history, query IDs and their history."),
datasets.BuilderConfig(name="test_collection",
version=VERSION,
description="The test collection will provide the passages of TREC CAR and MSMARCO"),
datasets.BuilderConfig(name="test_collection_sample",
version=VERSION,
description="A small sample of 20000 of the test collection passages."),
]
# It's not mandatory to have a default configuration. Just use one if it make sense.
DEFAULT_CONFIG_NAME = "test_collection"
def _info(self):
# This is the name of the configuration selected in BUILDER_CONFIGS above
download_size = None
if self.config.name == "topics":
features = datasets.Features({
"qid": datasets.Value("string"),
"history": datasets.features.Sequence(feature=datasets.Value('string')),
"query": datasets.Value("string"),
})
download_size = 6784
elif self.config.name == "topics_with_context":
features = datasets.Features({
"qid": datasets.Value("string"),
"history": datasets.features.Sequence(feature=datasets.Value('string')),
"query": datasets.Value("string"),
})
download_size = 8010
elif self.config.name == "qrels":
features = datasets.Features({
"qid": datasets.Value("string"),
"qrels": datasets.features.Sequence(feature=datasets.Features({
'docno': datasets.Value("string"),
'relevance': datasets.Value("string"),
})),
})
download_size = 1138032
else: # for self.config.name == 'test_collection':
features = datasets.Features({
"docno": datasets.Value("string"),
"text": datasets.Value("string"),
})
download_size = 5085726092 + 1035009698
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
download_size=download_size
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urlkey = 'test_collection' if self.config.name == 'test_collection_sample' else self.config.name
my_urls = _URLs[urlkey]
downloaded_files = dl_manager.download_and_extract(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={ # These kwargs will be passed to _generate_examples
"file": downloaded_files,
"split": self.config.name
},
),
]
def _generate_examples(
self, file, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
""" Yields examples as (key, example) tuples. """
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
if split == 'qrels':
qrels_file = csv.reader(open(file), delimiter=" ")
qrels = defaultdict(list)
for row in qrels_file:
qid = row[0]
docno = row[2]
relevance = row[3]
qrels[qid].append({'docno': docno, 'relevance': relevance})
for qid in qrels.keys():
yield qid, {'qid': qid, 'qrels': qrels[qid]}
elif split == 'topics' or split == 'topics_with_context':
topics_file = csv.reader(open(file), delimiter="\t")
topics = defaultdict(list)
for row in topics_file:
qid, query = row
conversation_id, question_number = qid.split('_')
topics[conversation_id].append(query)
for conversation_id in topics.keys():
queries = topics[conversation_id] # type: list
for idx in range(len(queries)):
query = queries[idx]
qid = f"{conversation_id}_{str(idx+1)}"
yield qid, ({'query': query, 'history': queries[:idx], 'qid': qid})
elif split == 'test_collection' or split == 'test_collection_sample':
car_file = file['car'] + "/paragraphCorpus/dedup.articles-paragraphs.cbor"
msmarco_file = file['msmarco']+"/collection.tsv"
is_sample = split == 'test_collection_sample'
i = 0
with open(car_file, 'rb') as f:
for para in read_data.iter_paragraphs(f):
docid = f"CAR_{para.para_id}"
yield docid, ({"docno": docid, "text": para.get_text()})
i += 1
if is_sample and i >= SAMPLE_SIZE:
break
i = 0
with open(msmarco_file) as f:
msmarco = csv.reader(f, delimiter="\t")
for line in msmarco:
docid, text = line
docid = f"MARCO_{docid}"
yield docid, ({"docno": docid, "text": text})
i += 1
if is_sample and i >= SAMPLE_SIZE:
break
else:
raise NotImplementedError(f"'{split}' is not yet implemented")
|