File size: 10,595 Bytes
de8df7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df7957c
de8df7e
 
 
a50bb4c
 
 
 
 
 
 
 
de8df7e
 
 
 
a50bb4c
 
 
 
de8df7e
 
 
 
 
 
 
 
 
 
a61ea77
83d7c40
de8df7e
a50bb4c
 
445f168
6fce28e
de8df7e
 
20b4156
de8df7e
b444f28
de8df7e
2276b90
de8df7e
 
 
 
 
 
 
 
 
 
 
 
 
a50bb4c
 
 
 
2276b90
a50bb4c
83d7c40
 
 
a50bb4c
 
 
6fce28e
 
 
de8df7e
 
 
a50bb4c
de8df7e
 
 
445f168
de8df7e
 
 
 
 
 
b444f28
83d7c40
 
 
 
 
 
b444f28
de8df7e
 
 
 
 
445f168
de8df7e
 
b444f28
1694ad7
a50bb4c
445f168
 
a50bb4c
445f168
de8df7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
445f168
de8df7e
 
 
 
 
 
 
 
 
 
6fce28e
 
de8df7e
83d7c40
de8df7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b572f80
de8df7e
 
 
445f168
 
de8df7e
 
 
 
83d7c40
de8df7e
 
 
 
 
 
 
 
 
 
 
 
 
6fce28e
df7957c
 
6fce28e
 
 
 
 
 
 
20b4156
6fce28e
 
 
df7957c
445f168
 
 
 
 
6fce28e
20b4156
6fce28e
a50bb4c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from collections import defaultdict

import datasets
import csv
from trec_car import read_data

# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@misc{dalton2020trec,
      title={TREC CAsT 2019: The Conversational Assistance Track Overview}, 
      author={Jeffrey Dalton and Chenyan Xiong and Jamie Callan},
      year={2020},
      eprint={2003.13624},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}
"""

# You can copy an official description
_DESCRIPTION = """\
The Conversational Assistance Track (CAsT) is a new track for TREC 2019 to facilitate Conversational Information 
Seeking (CIS) research and to create a large-scale reusable test collection for conversational search systems. 
The document corpus is 38,426,252 passages from the TREC Complex Answer Retrieval (CAR) and Microsoft MAchine 
Reading COmprehension (MARCO) datasets.
"""

_HOMEPAGE = "http://www.treccast.ai"

_LICENSE = ""

# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://huggingface.co/datasets/uva-irlab/trec-cast-2019-multi-turn/resolve/main/"
_URLs = {
    'topics': _URL+"cast2019_test_annotated_without_context.tsv",
    'topics_with_context': _URL+"cast2019_test_annotated_with_context.tsv",
    'qrels': _URL+"2019qrels.txt",
    'test_collection': {
        'car': "http://trec-car.cs.unh.edu/datareleases/v2.0/paragraphCorpus.v2.0.tar.xz",
        'msmarco': 'https://msmarco.blob.core.windows.net/msmarcoranking/collection.tar.gz',
    },
}

SAMPLE_SIZE = 100000


class TrecCast2019MultiTurn(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.1")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="qrels",
                               version=VERSION,
                               description=""),
        datasets.BuilderConfig(name="topics",
                               version=VERSION,
                               description="The topics contain the queries, query IDs and their history."),
        datasets.BuilderConfig(name="topics_with_context",
                               version=VERSION,
                               description="The topics contain the queries with relevant terms from the history, query IDs and their history."),
        datasets.BuilderConfig(name="test_collection",
                               version=VERSION,
                               description="The test collection will provide the passages of TREC CAR and MSMARCO"),
        datasets.BuilderConfig(name="test_collection_sample",
                               version=VERSION,
                               description="A small sample of 20000 of the test collection passages."),
    ]

    # It's not mandatory to have a default configuration. Just use one if it make sense.
    DEFAULT_CONFIG_NAME = "test_collection"

    def _info(self):
        # This is the name of the configuration selected in BUILDER_CONFIGS above
        download_size = None
        if self.config.name == "topics":
            features = datasets.Features({
                "qid": datasets.Value("string"),
                "history": datasets.features.Sequence(feature=datasets.Value('string')),
                "query": datasets.Value("string"),
            })
            download_size = 6784
        elif self.config.name == "topics_with_context":
            features = datasets.Features({
                "qid": datasets.Value("string"),
                "history": datasets.features.Sequence(feature=datasets.Value('string')),
                "query": datasets.Value("string"),
            })
            download_size = 8010
        elif self.config.name == "qrels":
            features = datasets.Features({
                "qid": datasets.Value("string"),
                "qrels": datasets.features.Sequence(feature=datasets.Features({
                    'docno': datasets.Value("string"),
                    'relevance': datasets.Value("string"),
                })),
            })
            download_size = 1138032
        else: # for self.config.name == 'test_collection':
            features = datasets.Features({
                "docno": datasets.Value("string"),
                "text": datasets.Value("string"),
            })
            download_size = 5085726092 + 1035009698
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
            download_size=download_size
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urlkey = 'test_collection' if self.config.name == 'test_collection_sample' else self.config.name
        my_urls = _URLs[urlkey]
        downloaded_files = dl_manager.download_and_extract(my_urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={  # These kwargs will be passed to _generate_examples
                    "file": downloaded_files,
                    "split": self.config.name
                },
            ),
        ]

    def _generate_examples(
        self, file, split  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    ):
        """ Yields examples as (key, example) tuples. """
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is here for legacy reason (tfds) and is not important in itself.

        if split == 'qrels':
            qrels_file = csv.reader(open(file), delimiter=" ")
            qrels = defaultdict(list)
            for row in qrels_file:
                qid = row[0]
                docno = row[2]
                relevance = row[3]
                qrels[qid].append({'docno': docno, 'relevance': relevance})

            for qid in qrels.keys():
                yield qid, {'qid': qid, 'qrels': qrels[qid]}

        elif split == 'topics' or split == 'topics_with_context':
            topics_file = csv.reader(open(file), delimiter="\t")
            topics = defaultdict(list)
            for row in topics_file:
                qid, query = row
                conversation_id, question_number = qid.split('_')
                topics[conversation_id].append(query)

            for conversation_id in topics.keys():
                queries = topics[conversation_id]  # type: list
                for idx in range(len(queries)):
                    query = queries[idx]
                    qid = f"{conversation_id}_{str(idx+1)}"
                    yield qid, ({'query': query, 'history': queries[:idx], 'qid': qid})
        elif split == 'test_collection' or split == 'test_collection_sample':
            car_file = file['car'] + "/paragraphCorpus/dedup.articles-paragraphs.cbor"
            msmarco_file = file['msmarco']+"/collection.tsv"
            is_sample = split == 'test_collection_sample'
            i = 0
            with open(car_file, 'rb') as f:
                for para in read_data.iter_paragraphs(f):
                    docid = f"CAR_{para.para_id}"
                    yield docid, ({"docno": docid, "text": para.get_text()})
                    i += 1
                    if is_sample and i >= SAMPLE_SIZE:
                        break

            i = 0
            with open(msmarco_file) as f:
                msmarco = csv.reader(f, delimiter="\t")
                for line in msmarco:
                    docid, text = line
                    docid = f"MARCO_{docid}"
                    yield docid, ({"docno": docid, "text": text})
                    i += 1
                    if is_sample and i >= SAMPLE_SIZE:
                        break
        else:
            raise NotImplementedError(f"'{split}' is not yet implemented")