version
stringclasses
21 values
code
stringlengths
225
174k
apis
sequence
full_version
stringlengths
1
6
repo_name
stringlengths
10
107
hexsha
stringlengths
40
40
1.1
import time import torch from hpc_rll.origin.rnn import get_lstm from hpc_rll.torch_utils.network.rnn import LSTM from testbase import mean_relative_error, times assert torch.cuda.is_available() use_cuda = True seq_len = 64 batch_size = 3 input_size = 1792 hidden_size = 384 num_layers = 3 norm_type = 'LN' dropout = 0 # 0.1 # Note: need open load_params for hpc_lstm to validation # Note: only used to case of num_layers = 3 def lstm_val(): ori_lstm = get_lstm('normal', input_size, hidden_size, num_layers, norm_type, dropout) hpc_lstm = LSTM(seq_len, batch_size, input_size, hidden_size, num_layers, norm_type, dropout) ori_x = torch.randn(seq_len, batch_size, input_size) ori_h0 = torch.randn(num_layers, batch_size, hidden_size) ori_c0 = torch.randn(num_layers, batch_size, hidden_size) if use_cuda: ori_x = ori_x.cuda() ori_h0 = ori_h0.cuda() ori_c0 = ori_c0.cuda() ori_lstm = ori_lstm.cuda() hpc_lstm = hpc_lstm.cuda() ori_x.requires_grad_(True) ori_output, ori_next_state = ori_lstm(ori_x, [ori_h0, ori_c0]) ori_loss = ori_output.mean() ori_loss.backward() hpc_x = ori_x.clone().detach() hpc_h0 = ori_h0.clone().detach() hpc_c0 = ori_c0.clone().detach() hpc_x.requires_grad_(True) hpc_output, hpc_next_state = hpc_lstm(hpc_x, [hpc_h0, hpc_c0]) hpc_loss = hpc_output.mean() hpc_loss.backward() torch.cuda.synchronize() mre = mean_relative_error( torch.flatten(ori_loss).cpu().detach().numpy(), torch.flatten(hpc_loss).cpu().detach().numpy() ) print("lstm fp mean_relative_error: " + str(mre)) mre = mean_relative_error( torch.flatten(ori_x.grad).cpu().detach().numpy(), torch.flatten(hpc_x.grad).cpu().detach().numpy() ) print("lstm bp mean_relative_error: " + str(mre)) ori_wx_grad = torch.cat((ori_lstm.wx[0].grad, ori_lstm.wx[1].grad, ori_lstm.wx[2].grad)) hpc_wx_grad = hpc_lstm.wx.grad mre = mean_relative_error(torch.flatten(ori_wx_grad).cpu().numpy(), torch.flatten(hpc_wx_grad).cpu().numpy()) print("wx grad mean_relative_error: " + str(mre)) ori_wh_grad = torch.cat((ori_lstm.wh[0].grad, ori_lstm.wh[1].grad, ori_lstm.wh[2].grad)) hpc_wh_grad = hpc_lstm.wh.grad mre = mean_relative_error(torch.flatten(ori_wh_grad).cpu().numpy(), torch.flatten(hpc_wh_grad).cpu().numpy()) print("wh grad mean_relative_error: " + str(mre)) ori_bias_grad = ori_lstm.bias.grad hpc_bias_grad = hpc_lstm.bias.grad mre = mean_relative_error(torch.flatten(ori_bias_grad).cpu().numpy(), torch.flatten(hpc_bias_grad).cpu().numpy()) print("bias grad mean_relative_error: " + str(mre)) params = list(ori_lstm.parameters()) gamma_0_x = params[1] beta_0_x = params[2] gamma_0_h = params[3] beta_0_h = params[4] gamma_1_x = params[5] beta_1_x = params[6] gamma_1_h = params[7] beta_1_h = params[8] gamma_2_x = params[9] beta_2_x = params[10] gamma_2_h = params[11] beta_2_h = params[12] ori_gamma_grad = torch.cat( (gamma_0_x.grad, gamma_0_h.grad, gamma_1_x.grad, gamma_1_h.grad, gamma_2_x.grad, gamma_2_h.grad) ) ori_beta_grad = torch.cat( (beta_0_x.grad, beta_0_h.grad, beta_1_x.grad, beta_1_h.grad, beta_2_x.grad, beta_2_h.grad) ) hpc_gamma_grad = hpc_lstm.ln_gamma.grad hpc_beta_grad = hpc_lstm.ln_beta.grad mre = mean_relative_error(torch.flatten(ori_gamma_grad).cpu().numpy(), torch.flatten(hpc_gamma_grad).cpu().numpy()) print("ln gamma grad mean_relative_error: " + str(mre)) mre = mean_relative_error(torch.flatten(ori_beta_grad).cpu().numpy(), torch.flatten(hpc_beta_grad).cpu().numpy()) print("ln beta grad mean_relative_error: " + str(mre)) def lstm_perf(): ori_lstm = get_lstm('normal', input_size, hidden_size, num_layers, norm_type, dropout) hpc_lstm = LSTM(seq_len, batch_size, input_size, hidden_size, num_layers, norm_type, dropout) lstms = {'normal': ori_lstm, 'hpc': hpc_lstm} for lstm_type, lstm in lstms.items(): x = torch.rand(seq_len, batch_size, input_size) h0 = torch.randn(num_layers, batch_size, hidden_size) c0 = torch.randn(num_layers, batch_size, hidden_size) if use_cuda: x = x.cuda() h0 = h0.cuda() c0 = c0.cuda() lstm = lstm.cuda() prev_state = [h0, c0] x.requires_grad_(True) for i in range(times): t = time.time() output, _ = lstm(x, prev_state) loss = output.mean() loss.backward() if use_cuda: torch.cuda.synchronize() print('epoch: {}, {} lstm cost time: {}'.format(i, lstm_type, time.time() - t)) if __name__ == '__main__': print( "target problem: seq_len = {}, batch_size = {}, input_size = {}, hidden_size = {}, num_layers = {}, norm_type = {}, dropout = {}" # noqa .format(seq_len, batch_size, input_size, hidden_size, num_layers, norm_type, dropout) ) print("==============lstm has no validation test================") #print("===============run lstm validation test==================") #lstm_val() print("===============run lstm performance test=================") lstm_perf()
[ "torch.rand", "torch.cat", "torch.cuda.synchronize", "torch.cuda.is_available", "torch.flatten", "torch.randn" ]
1.1.0
sailxjx/DI-engine
c6763f8e2ba885a2a02f611195a1b5f8b50bff00
1.1
from typing import Optional, Dict, Union import copy import torch import torch.nn as nn from ding.utils import SequenceType, MODEL_REGISTRY from .vac import VAC @MODEL_REGISTRY.register('ppg') class PPG(nn.Module): mode = ['compute_actor', 'compute_critic', 'compute_actor_critic'] def __init__( self, obs_shape: Union[int, SequenceType], action_shape: Union[int, SequenceType], share_encoder: bool = True, continuous: bool = False, encoder_hidden_size_list: SequenceType = [128, 128, 64], actor_head_hidden_size: int = 64, actor_head_layer_num: int = 2, critic_head_hidden_size: int = 64, critic_head_layer_num: int = 1, activation: Optional[nn.Module] = nn.ReLU(), norm_type: Optional[str] = None, ) -> None: super(PPG, self).__init__() self.actor_critic = VAC( obs_shape, action_shape, share_encoder, continuous, encoder_hidden_size_list, actor_head_hidden_size, actor_head_layer_num, critic_head_hidden_size, critic_head_layer_num, activation, norm_type ) self.aux_critic = copy.deepcopy(self.actor_critic.critic) def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict: assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode) return getattr(self, mode)(inputs) def compute_actor(self, x: torch.Tensor) -> Dict: """ ReturnsKeys: - necessary: ``logit`` """ return self.actor_critic(x, mode='compute_actor') def compute_critic(self, x: torch.Tensor) -> Dict: """ ReturnsKeys: - necessary: ``value`` """ x = self.aux_critic[0](x) # encoder x = self.aux_critic[1](x) # head return {'value': x['pred']} def compute_actor_critic(self, x: torch.Tensor) -> Dict: """ .. note:: ``compute_actor_critic`` interface aims to save computation when shares encoder ReturnsKeys: - necessary: ``value``, ``logit`` """ return self.actor_critic(x, mode='compute_actor_critic')
[ "torch.nn.ReLU" ]
1.1.0
sailxjx/DI-engine
c6763f8e2ba885a2a02f611195a1b5f8b50bff00
1.1
import os import torch import numpy as np import nn.vnn as vnn import collections from torch import nn from torch.nn import functional as F from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence, pad_packed_sequence from model.seq2seq import Module as Base from models.utils.metric import compute_f1, compute_exact from gen.utils.image_util import decompress_mask from torchvision import transforms from PIL import Image class Module(Base): def __init__(self, args, vocab): ''' Seq2Seq agent ''' super().__init__(args, vocab) # encoder and self-attention self.enc = nn.LSTM(args.demb, args.dhid, bidirectional=True, batch_first=True) self.enc_att = vnn.SelfAttn(args.dhid*2) # subgoal monitoring self.subgoal_monitoring = (self.args.pm_aux_loss_wt > 0 or self.args.subgoal_aux_loss_wt > 0) # frame mask decoder decoder = vnn.ConvFrameMaskDecoderProgressMonitorFinetune if self.subgoal_monitoring else vnn.ConvFrameMaskDecoder self.dec = decoder(self.emb_action_low, args.dframe, 2*args.dhid, pframe=args.pframe, attn_dropout=args.attn_dropout, hstate_dropout=args.hstate_dropout, actor_dropout=args.actor_dropout, input_dropout=args.input_dropout, teacher_forcing=args.dec_teacher_forcing) # dropouts self.vis_dropout = nn.Dropout(args.vis_dropout) self.lang_dropout = nn.Dropout(args.lang_dropout, inplace=True) self.input_dropout = nn.Dropout(args.input_dropout) # internal states self.state_t = None self.e_t = None self.test_mode = False # bce reconstruction loss self.bce_with_logits = torch.nn.BCEWithLogitsLoss(reduction='none') self.mse_loss = torch.nn.MSELoss(reduction='none') # paths self.root_path = os.getcwd() self.feat_pt = 'feat_conv.pt' # params self.max_subgoals = 25 self.max_episode_len = args.max_episode_len # reset model self.reset() def featurize(self, batch, load_mask=True, load_frames=True): ''' tensorize and pad batch input ''' device = torch.device('cuda') if self.args.gpu else torch.device('cpu') feat = collections.defaultdict(list) for ex in batch: ########### # auxillary ########### if not self.test_mode: # subgoal completion supervision if self.args.subgoal_aux_loss_wt > 0: feat['subgoals_completed'].append(np.array(ex['num']['low_to_high_idx']) / self.max_subgoals) # progress monitor supervision if self.args.pm_aux_loss_wt > 0: num_actions = len([a for sg in ex['num']['action_low'] for a in sg]) subgoal_progress = [(i+1)/float(num_actions) for i in range(num_actions)] feat['subgoal_progress'].append(subgoal_progress) ######### # inputs ######### # serialize segments self.serialize_lang_action(ex) # goal and instr language lang_goal, lang_instr = ex['num']['lang_goal'], ex['num']['lang_instr'] # zero inputs if specified lang_goal = self.zero_input(lang_goal) if self.args.zero_goal else lang_goal lang_instr = self.zero_input(lang_instr) if self.args.zero_instr else lang_instr # append goal + instr lang_goal_instr = lang_goal + lang_instr feat['lang_goal_instr'].append(lang_goal_instr) episode_len = 0 # load Resnet features from disk if load_frames and not self.test_mode: root = self.get_task_root(ex) #im = torch.load(os.path.join(root, self.feat_pt)) im = [] path = "{}/{}".format(root,'raw_images') imgs = sorted(os.listdir(path)) tfms = transforms.Compose([transforms.Resize(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),]) for img in imgs: im.append(tfms(Image.open("{}/{}".format(path,img)))) im = torch.stack(im) num_low_actions = len(ex['plan']['low_actions']) num_feat_frames = im.shape[0] if num_low_actions != num_feat_frames: keep = [None] * len(ex['plan']['low_actions']) for i, d in enumerate(ex['images']): # only add frames linked with low-level actions (i.e. skip filler frames like smooth rotations and dish washing) if keep[d['low_idx']] is None: keep[d['low_idx']] = im[i] keep.append(keep[-1]) # stop frame episode_len = min(self.max_episode_len, len(keep)) keep = keep[:episode_len] feat['frames'].append(torch.stack(keep, dim=0)) else: episode_len = min(self.max_episode_len, len(im)) im = im[:episode_len] feat['frames'].append(torch.cat([im, im[-1].unsqueeze(0)], dim=0)) # add stop frame ######### # outputs ######### if self.args.subgoal_aux_loss_wt > 0: feat['subgoals_completed'][-1] = feat['subgoals_completed'][-1][:episode_len] if self.args.pm_aux_loss_wt > 0: feat['subgoal_progress'][-1] = feat['subgoal_progress'][-1][:episode_len] if not self.test_mode: # low-level action feat['action_low'].append([a['action'] for a in ex['num']['action_low']][:episode_len]) # low-level action mask if load_mask: feat['action_low_mask'].append([self.decompress_mask(a['mask']) for i,a in enumerate(ex['num']['action_low']) if a['mask'] is not None and i<episode_len]) # low-level valid interact feat['action_low_valid_interact'].append([a['valid_interact'] for a in ex['num']['action_low']][:episode_len]) # tensorization and padding for k, v in feat.items(): if k in {'lang_goal_instr'}: # language embedding and padding seqs = [torch.tensor(vv, device=device) for vv in v] pad_seq = pad_sequence(seqs, batch_first=True, padding_value=self.pad) seq_lengths = np.array(list(map(len, v))) embed_seq = self.emb_word(pad_seq) packed_input = pack_padded_sequence(embed_seq, seq_lengths, batch_first=True, enforce_sorted=False) feat[k] = packed_input elif k in {'action_low_mask'}: # mask padding seqs = [torch.tensor(vv, device=device, dtype=torch.float) for vv in v] feat[k] = seqs elif k in {'subgoal_progress', 'subgoals_completed'}: # auxillary padding seqs = [torch.tensor(vv, device=device, dtype=torch.float) for vv in v] pad_seq = pad_sequence(seqs, batch_first=True, padding_value=self.pad) feat[k] = pad_seq else: # default: tensorize and pad sequence seqs = [torch.tensor(vv, device=device, dtype=torch.float if ('frames' in k) else torch.long) for vv in v] pad_seq = pad_sequence(seqs, batch_first=True, padding_value=self.pad) feat[k] = pad_seq return feat def serialize_lang_action(self, feat): ''' append segmented instr language and low-level actions into single sequences ''' is_serialized = not isinstance(feat['num']['lang_instr'][0], list) if not is_serialized: feat['num']['lang_instr'] = [word for desc in feat['num']['lang_instr'] for word in desc] if not self.test_mode: feat['num']['action_low'] = [a for a_group in feat['num']['action_low'] for a in a_group] def decompress_mask(self, compressed_mask): ''' decompress mask from json files ''' mask = np.array(decompress_mask(compressed_mask)) mask = np.expand_dims(mask, axis=0) return mask def forward(self, feat, max_decode=300): cont_lang, enc_lang = self.encode_lang(feat) state_0 = cont_lang, torch.zeros_like(cont_lang) frames = self.vis_dropout(feat['frames']) res = self.dec(enc_lang, frames, max_decode=self.max_episode_len, gold=feat['action_low'], state_0=state_0) feat.update(res) return feat def encode_lang(self, feat): ''' encode goal+instr language ''' emb_lang_goal_instr = feat['lang_goal_instr'] self.lang_dropout(emb_lang_goal_instr.data) enc_lang_goal_instr, _ = self.enc(emb_lang_goal_instr) enc_lang_goal_instr, _ = pad_packed_sequence(enc_lang_goal_instr, batch_first=True) self.lang_dropout(enc_lang_goal_instr) cont_lang_goal_instr = self.enc_att(enc_lang_goal_instr) return cont_lang_goal_instr, enc_lang_goal_instr def reset(self): ''' reset internal states (used for real-time execution during eval) ''' self.r_state = { 'state_t': None, 'e_t': None, 'cont_lang': None, 'enc_lang': None } def step(self, feat, prev_action=None): ''' forward the model for a single time-step (used for real-time execution during eval) ''' # encode language features if self.r_state['cont_lang'] is None and self.r_state['enc_lang'] is None: self.r_state['cont_lang'], self.r_state['enc_lang'] = self.encode_lang(feat) # initialize embedding and hidden states if self.r_state['e_t'] is None and self.r_state['state_t'] is None: self.r_state['e_t'] = self.dec.go.repeat(self.r_state['enc_lang'].size(0), 1) self.r_state['state_t'] = self.r_state['cont_lang'], torch.zeros_like(self.r_state['cont_lang']) # previous action embedding e_t = self.embed_action(prev_action) if prev_action is not None else self.r_state['e_t'] # decode and save embedding and hidden states out_action_low, out_action_low_mask, state_t, *_ = self.dec.step(self.r_state['enc_lang'], feat['frames'][:, 0], e_t=e_t, state_tm1=self.r_state['state_t']) # save states self.r_state['state_t'] = state_t self.r_state['e_t'] = self.dec.emb(out_action_low.max(1)[1]) # output formatting feat['out_action_low'] = out_action_low.unsqueeze(0) feat['out_action_low_mask'] = out_action_low_mask.unsqueeze(0) return feat def extract_preds(self, out, batch, feat, clean_special_tokens=True): ''' output processing ''' pred = {} for ex, alow, alow_mask in zip(batch, feat['out_action_low'].max(2)[1].tolist(), feat['out_action_low_mask']): # remove padding tokens if self.pad in alow: pad_start_idx = alow.index(self.pad) alow = alow[:pad_start_idx] alow_mask = alow_mask[:pad_start_idx] if clean_special_tokens: # remove <<stop>> tokens if self.stop_token in alow: stop_start_idx = alow.index(self.stop_token) alow = alow[:stop_start_idx] alow_mask = alow_mask[:stop_start_idx] # index to API actions words = self.vocab['action_low'].index2word(alow) # sigmoid preds to binary mask alow_mask = F.sigmoid(alow_mask) p_mask = [(alow_mask[t] > 0.5).cpu().numpy() for t in range(alow_mask.shape[0])] task_id_ann = self.get_task_and_ann_id(ex) pred[task_id_ann] = { 'action_low': ' '.join(words), 'action_low_mask': p_mask, } return pred def embed_action(self, action): ''' embed low-level action ''' device = torch.device('cuda') if self.args.gpu else torch.device('cpu') action_num = torch.tensor(self.vocab['action_low'].word2index(action), device=device) action_emb = self.dec.emb(action_num).unsqueeze(0) return action_emb def compute_loss(self, out, batch, feat): ''' loss function for Seq2Seq agent ''' losses = dict() # GT and predictions p_alow = out['out_action_low'].view(-1, len(self.vocab['action_low'])) l_alow = feat['action_low'].view(-1) p_alow_mask = out['out_action_low_mask'] valid = feat['action_low_valid_interact'] # action loss pad_valid = (l_alow != self.pad) alow_loss = F.cross_entropy(p_alow, l_alow, reduction='none') alow_loss *= pad_valid.float() alow_loss = alow_loss.mean() losses['action_low'] = alow_loss * self.args.action_loss_wt # mask loss valid_idxs = valid.view(-1).nonzero().view(-1) flat_p_alow_mask = p_alow_mask.view(p_alow_mask.shape[0]*p_alow_mask.shape[1], *p_alow_mask.shape[2:])[valid_idxs] if flat_p_alow_mask.shape[0]!=0: flat_alow_mask = torch.cat(feat['action_low_mask'], dim=0) alow_mask_loss = self.weighted_mask_loss(flat_p_alow_mask, flat_alow_mask) losses['action_low_mask'] = alow_mask_loss * self.args.mask_loss_wt # subgoal completion loss if self.args.subgoal_aux_loss_wt > 0: p_subgoal = feat['out_subgoal'].squeeze(2) l_subgoal = feat['subgoals_completed'] sg_loss = self.mse_loss(p_subgoal, l_subgoal) sg_loss = sg_loss.view(-1) * pad_valid.float() subgoal_loss = sg_loss.mean() losses['subgoal_aux'] = self.args.subgoal_aux_loss_wt * subgoal_loss # progress monitoring loss if self.args.pm_aux_loss_wt > 0: p_progress = feat['out_progress'].squeeze(2) l_progress = feat['subgoal_progress'] pg_loss = self.mse_loss(p_progress, l_progress) pg_loss = pg_loss.view(-1) * pad_valid.float() progress_loss = pg_loss.mean() losses['progress_aux'] = self.args.pm_aux_loss_wt * progress_loss return losses def weighted_mask_loss(self, pred_masks, gt_masks): ''' mask loss that accounts for weight-imbalance between 0 and 1 pixels ''' bce = self.bce_with_logits(pred_masks, gt_masks) flipped_mask = self.flip_tensor(gt_masks) inside = (bce * gt_masks).sum() / (gt_masks).sum() outside = (bce * flipped_mask).sum() / (flipped_mask).sum() return inside + outside def flip_tensor(self, tensor, on_zero=1, on_non_zero=0): ''' flip 0 and 1 values in tensor ''' res = tensor.clone() res[tensor == 0] = on_zero res[tensor != 0] = on_non_zero return res def compute_metric(self, preds, data): ''' compute f1 and extract match scores for output ''' m = collections.defaultdict(list) for task in data: ex = self.load_task_json(task) i = self.get_task_and_ann_id(ex) label = ' '.join([a['discrete_action']['action'] for a in ex['plan']['low_actions']]) m['action_low_f1'].append(compute_f1(label.lower(), preds[i]['action_low'].lower())) m['action_low_em'].append(compute_exact(label.lower(), preds[i]['action_low'].lower())) return {k: sum(v)/len(v) for k, v in m.items()}
[ "torch.device", "torch.nn.Dropout", "torch.nn.functional.sigmoid", "torch.nn.LSTM", "torch.nn.MSELoss", "torch.cat", "torch.stack", "torch.nn.utils.rnn.pad_sequence", "torch.nn.functional.cross_entropy", "torch.nn.utils.rnn.pad_packed_sequence", "torch.tensor", "torch.nn.BCEWithLogitsLoss", "torch.nn.utils.rnn.pack_padded_sequence", "torch.zeros_like" ]
1.1.0
shivgarg/alfred_transformers
3eab07d3a218eb9b809dec8b7120b92ebd00c890
1.0
# -*- coding: utf-8 -*- # file: text_classifier.py # author: yangheng <[email protected]> # Copyright (C) 2020. All Rights Reserved. import json import os import pickle import random import numpy import torch from findfile import find_file from termcolor import colored from torch.utils.data import DataLoader from transformers import AutoTokenizer, AutoModel from pyabsa.functional.dataset import detect_infer_dataset from ..models import GloVeClassificationModelList, BERTClassificationModelList from ..classic.__glove__.dataset_utils.data_utils_for_inferring import GloVeClassificationDataset from ..classic.__bert__.dataset_utils.data_utils_for_inferring import BERTClassificationDataset from ..classic.__glove__.dataset_utils.data_utils_for_training import LABEL_PADDING, build_embedding_matrix, build_tokenizer from pyabsa.utils.pyabsa_utils import print_args, TransformerConnectionError class TextClassifier: def __init__(self, model_arg=None, label_map=None, eval_batch_size=128): ''' from_train_model: load inferring_tutorials model from trained model ''' self.initializers = { 'xavier_uniform_': torch.nn.init.xavier_uniform_, 'xavier_normal_': torch.nn.init.xavier_normal, 'orthogonal_': torch.nn.init.orthogonal_ } # load from a training if not isinstance(model_arg, str): print('Load text classifier from training') self.model = model_arg[0] self.opt = model_arg[1] self.tokenizer = model_arg[2] else: try: if 'fine-tuned' in model_arg: raise ValueError('Do not support to directly load a fine-tuned model, please load a .state_dict or .model instead!') print('Load text classifier from', model_arg) state_dict_path = find_file(model_arg, '.state_dict', exclude_key=['__MACOSX']) model_path = find_file(model_arg, '.model', exclude_key=['__MACOSX']) tokenizer_path = find_file(model_arg, '.tokenizer', exclude_key=['__MACOSX']) config_path = find_file(model_arg, '.config', exclude_key=['__MACOSX']) print('config: {}'.format(config_path)) print('state_dict: {}'.format(state_dict_path)) print('model: {}'.format(model_path)) print('tokenizer: {}'.format(tokenizer_path)) self.opt = pickle.load(open(config_path, mode='rb')) if state_dict_path or model_path: if not hasattr(GloVeClassificationModelList, self.opt.model.__name__.upper()): if 'pretrained_bert_name' in self.opt.args or 'pretrained_bert' in self.opt.args: if 'pretrained_bert_name' in self.opt.args: self.opt.pretrained_bert = self.opt.pretrained_bert_name if state_dict_path: try: self.bert = AutoModel.from_pretrained(self.opt.pretrained_bert) self.model = self.opt.model(self.bert, self.opt) except ValueError: raise TransformerConnectionError() elif model_path: if model_path: self.model = torch.load(model_path, map_location='cpu') if tokenizer_path: self.tokenizer = pickle.load(open(tokenizer_path, mode='rb')) else: raise ValueError('No .tokenizer found!') else: self.tokenizer = build_tokenizer( dataset_list=self.opt.dataset_file, max_seq_len=self.opt.max_seq_len, dat_fname='{0}_tokenizer.dat'.format(os.path.basename(self.opt.dataset_name)), opt=self.opt ) if model_path: self.model = torch.load(model_path, map_location='cpu') else: self.embedding_matrix = build_embedding_matrix( word2idx=self.tokenizer.word2idx, embed_dim=self.opt.embed_dim, dat_fname='{0}_{1}_embedding_matrix.dat'.format(str(self.opt.embed_dim), os.path.basename(self.opt.dataset_name)), opt=self.opt ) self.model = self.opt.model(self.embedding_matrix, self.opt).to(self.opt.device) self.model.load_state_dict(torch.load(state_dict_path, map_location='cpu')) print('Config used in Training:') print_args(self.opt, mode=1) except Exception as e: raise RuntimeError('Exception: {} Fail to load the model from {}! '.format(e, model_arg)) if not hasattr(GloVeClassificationModelList, self.model.__class__.__name__) \ and not hasattr(BERTClassificationModelList, self.model.__class__.__name__): raise KeyError('The checkpoint you are loading is not from classifier model.') if hasattr(BERTClassificationModelList, self.opt.model.__name__): self.dataset = BERTClassificationDataset(tokenizer=self.tokenizer, opt=self.opt) elif hasattr(GloVeClassificationModelList, self.opt.model.__name__): self.dataset = GloVeClassificationDataset(tokenizer=self.tokenizer, opt=self.opt) self.opt.inputs_cols = self.model.inputs self.infer_dataloader = None self.opt.eval_batch_size = eval_batch_size if self.opt.seed is not None: random.seed(self.opt.seed) numpy.random.seed(self.opt.seed) torch.manual_seed(self.opt.seed) torch.cuda.manual_seed(self.opt.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False self.opt.initializer = self.opt.initializer self.label_map = None self.set_label_map(label_map) def set_label_map(self, label_map): if label_map: print(colored('Warning: label map is deprecated, please directly set labels within dataset.', 'red')) label_map[LABEL_PADDING] = '' self.label_map = label_map def to(self, device=None): self.opt.device = device self.model.to(device) def cpu(self): self.opt.device = 'cpu' self.model.to('cpu') def cuda(self, device='cuda:0'): self.opt.device = device self.model.to(device) def _log_write_args(self): n_trainable_params, n_nontrainable_params = 0, 0 for p in self.model.parameters(): n_params = torch.prod(torch.tensor(p.shape)) if p.requires_grad: n_trainable_params += n_params else: n_nontrainable_params += n_params print( 'n_trainable_params: {0}, n_nontrainable_params: {1}'.format(n_trainable_params, n_nontrainable_params)) for arg in vars(self.opt): if getattr(self.opt, arg) is not None: print('>>> {0}: {1}'.format(arg, getattr(self.opt, arg))) def batch_infer(self, target_file=None, print_result=True, save_result=False, clear_input_samples=True, ignore_error=True): if clear_input_samples: self.clear_input_samples() save_path = os.path.join(os.getcwd(), 'text_classification.result.json') target_file = detect_infer_dataset(target_file, task='text_classification') if not target_file: raise FileNotFoundError('Can not find inference datasets!') self.dataset.prepare_infer_dataset(target_file, ignore_error=ignore_error) self.infer_dataloader = DataLoader(dataset=self.dataset, batch_size=self.opt.eval_batch_size, pin_memory=True, shuffle=False) return self._infer(save_path=save_path if save_result else None, print_result=print_result) def infer(self, text: str = None, print_result=True, clear_input_samples=True): if clear_input_samples: self.clear_input_samples() if text: self.dataset.prepare_infer_sample(text) else: raise RuntimeError('Please specify your datasets path!') self.infer_dataloader = DataLoader(dataset=self.dataset, batch_size=self.opt.eval_batch_size, shuffle=False) return self._infer(print_result=print_result) def merge_results(self, results): """ merge APC results have the same input text """ final_res = [] for result in results: if final_res and "".join(final_res[-1]['text'].split()) == "".join(result['text'].split()): final_res[-1]['label'].append(result['label']) final_res[-1]['ref_label'].append(result['ref_label']) final_res[-1]['ref_check'].append(result['ref_check']) else: final_res.append( { 'text': result['text'].replace(' ', ' '), 'label': [result['label']], 'ref_label': [result['ref_label']], 'ref_check': [result['ref_check']] } ) return final_res def _infer(self, save_path=None, print_result=True): _params = filter(lambda p: p.requires_grad, self.model.parameters()) correct = {True: 'Correct', False: 'Wrong'} results = [] with torch.no_grad(): self.model.eval() n_correct = 0 n_labeled = 0 n_total = 0 for _, sample in enumerate(self.infer_dataloader): inputs = [sample[col].to(self.opt.device) for col in self.opt.inputs_cols if col != 'label'] self.model.eval() outputs = self.model(inputs) sen_logits = outputs t_probs = torch.softmax(sen_logits, dim=-1).cpu().numpy() for i, i_probs in enumerate(t_probs): if 'index_to_label' in self.opt.args and int(i_probs.argmax(axis=-1)): sent = self.opt.index_to_label[int(i_probs.argmax(axis=-1))] if sample['label'] != -999: real_sent = sample['label'][i] if isinstance(sample['label'][i], str) else self.opt.index_to_label.get(int(sample['label'][i]), 'N.A.') else: real_sent = 'N.A.' if real_sent != -999 and real_sent != '-999': n_labeled += 1 if sent == real_sent: n_correct += 1 else: # for the former versions until 1.2.0 sent = int(i_probs.argmax(axis=-1)) real_sent = int(sample['label'][i]) text_raw = sample['text_raw'][i] results.append({ 'text': text_raw, 'label': sent, 'ref_label': real_sent, 'ref_check': correct[sent == real_sent] if real_sent != '-999' else '', }) n_total += 1 if len(self.infer_dataloader) > 1: print('Total samples:{}'.format(n_total)) print('Labeled samples:{}'.format(n_labeled)) print('Prediction Accuracy:{}%'.format(100 * n_correct / n_labeled if n_labeled else 'N.A.')) try: if print_result: for result in results: text_printing = result['text'] if result['ref_label'] != -999: if result['label'] == result['ref_label']: text_info = colored(' -> {}(ref:{})'.format(result['label'], result['ref_label']), 'green') else: text_info = colored(' -> {}(ref:{})'.format(result['label'], result['ref_label']), 'red') else: text_info = ' -> {}'.format(result['label']) text_printing += text_info print(text_printing) if save_path: fout = open(save_path, 'w', encoding='utf8') json.dump(json.JSONEncoder().encode({'results': results}), fout, ensure_ascii=False) # fout.write('Total samples:{}\n'.format(n_total)) # fout.write('Labeled samples:{}\n'.format(n_labeled)) # fout.write('Prediction Accuracy:{}%\n'.format(100 * n_correct / n_labeled)) if n_labeled else 'N.A.' print('inference result saved in: {}'.format(save_path)) except Exception as e: print('Can not save result: {}, Exception: {}'.format(text_raw, e)) return results def clear_input_samples(self): self.dataset.all_data = []
[ "torch.cuda.manual_seed", "torch.no_grad", "torch.softmax", "torch.manual_seed", "torch.tensor", "torch.utils.data.DataLoader", "torch.load" ]
1.0
yangheng95/PyABSA
f5b46047a58fa8054a0469486be3f1cada933814
1.4
from typing import Any, Dict, List, Optional, Type import gym import torch as th from torch import nn from stable_baselines3.common.policies import BasePolicy, register_policy from stable_baselines3.common.torch_layers import BaseFeaturesExtractor, FlattenExtractor, NatureCNN, create_mlp from stable_baselines3.common.type_aliases import Schedule class QNetwork(BasePolicy): """ Action-Value (Q-Value) network for DQN :param observation_space: Observation space :param action_space: Action space :param net_arch: The specification of the policy and value networks. :param activation_fn: Activation function :param normalize_images: Whether to normalize images or not, dividing by 255.0 (True by default) """ def __init__( self, observation_space: gym.spaces.Space, action_space: gym.spaces.Space, features_extractor: nn.Module, features_dim: int, net_arch: Optional[List[int]] = None, activation_fn: Type[nn.Module] = nn.ReLU, normalize_images: bool = True, ): super(QNetwork, self).__init__( observation_space, action_space, features_extractor=features_extractor, normalize_images=normalize_images, ) if net_arch is None: net_arch = [64, 64] self.net_arch = net_arch self.activation_fn = activation_fn self.features_extractor = features_extractor self.features_dim = features_dim self.normalize_images = normalize_images action_dim = self.action_space.n # number of actions q_net = create_mlp(self.features_dim, action_dim, self.net_arch, self.activation_fn) self.q_net = nn.Sequential(*q_net) def forward(self, obs: th.Tensor) -> th.Tensor: """ Predict the q-values. :param obs: Observation :return: The estimated Q-Value for each action. """ return self.q_net(self.extract_features(obs)) def _predict(self, observation: th.Tensor, deterministic: bool = True) -> th.Tensor: q_values = self.forward(observation) # Greedy action action = q_values.argmax(dim=1).reshape(-1) return action def _get_data(self) -> Dict[str, Any]: data = super()._get_data() data.update( dict( net_arch=self.net_arch, features_dim=self.features_dim, activation_fn=self.activation_fn, features_extractor=self.features_extractor, epsilon=self.epsilon, ) ) return data class DQNPolicy(BasePolicy): """ Policy class with Q-Value Net and target net for DQN :param observation_space: Observation space :param action_space: Action space :param lr_schedule: Learning rate schedule (could be constant) :param net_arch: The specification of the policy and value networks. :param activation_fn: Activation function :param features_extractor_class: Features extractor to use. :param features_extractor_kwargs: Keyword arguments to pass to the features extractor. :param normalize_images: Whether to normalize images or not, dividing by 255.0 (True by default) :param optimizer_class: The optimizer to use, ``th.optim.Adam`` by default :param optimizer_kwargs: Additional keyword arguments, excluding the learning rate, to pass to the optimizer """ def __init__( self, observation_space: gym.spaces.Space, action_space: gym.spaces.Space, lr_schedule: Schedule, net_arch: Optional[List[int]] = None, activation_fn: Type[nn.Module] = nn.ReLU, features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor, features_extractor_kwargs: Optional[Dict[str, Any]] = None, normalize_images: bool = True, optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, optimizer_kwargs: Optional[Dict[str, Any]] = None, ): super(DQNPolicy, self).__init__( observation_space, action_space, features_extractor_class, features_extractor_kwargs, optimizer_class=optimizer_class, optimizer_kwargs=optimizer_kwargs, ) if net_arch is None: if features_extractor_class == FlattenExtractor: net_arch = [64, 64] else: net_arch = [] self.net_arch = net_arch self.activation_fn = activation_fn self.normalize_images = normalize_images self.net_args = { "observation_space": self.observation_space, "action_space": self.action_space, "net_arch": self.net_arch, "activation_fn": self.activation_fn, "normalize_images": normalize_images, } self.q_net, self.q_net_target = None, None self._build(lr_schedule) def _build(self, lr_schedule: Schedule) -> None: """ Create the network and the optimizer. :param lr_schedule: Learning rate schedule lr_schedule(1) is the initial learning rate """ self.q_net = self.make_q_net() self.q_net_target = self.make_q_net() self.q_net_target.load_state_dict(self.q_net.state_dict()) # Setup optimizer with initial learning rate self.optimizer = self.optimizer_class(self.parameters(), lr=lr_schedule(1), **self.optimizer_kwargs) def make_q_net(self) -> QNetwork: # Make sure we always have separate networks for features extractors etc net_args = self._update_features_extractor(self.net_args, features_extractor=None) return QNetwork(**net_args).to(self.device) def forward(self, obs: th.Tensor, deterministic: bool = True) -> th.Tensor: return self._predict(obs, deterministic=deterministic) def _predict(self, obs: th.Tensor, deterministic: bool = True) -> th.Tensor: return self.q_net._predict(obs, deterministic=deterministic) def _get_data(self) -> Dict[str, Any]: data = super()._get_data() data.update( dict( net_arch=self.net_args["net_arch"], activation_fn=self.net_args["activation_fn"], lr_schedule=self._dummy_schedule, # dummy lr schedule, not needed for loading policy alone optimizer_class=self.optimizer_class, optimizer_kwargs=self.optimizer_kwargs, features_extractor_class=self.features_extractor_class, features_extractor_kwargs=self.features_extractor_kwargs, ) ) return data MlpPolicy = DQNPolicy class CnnPolicy(DQNPolicy): """ Policy class for DQN when using images as input. :param observation_space: Observation space :param action_space: Action space :param lr_schedule: Learning rate schedule (could be constant) :param net_arch: The specification of the policy and value networks. :param activation_fn: Activation function :param features_extractor_class: Features extractor to use. :param normalize_images: Whether to normalize images or not, dividing by 255.0 (True by default) :param optimizer_class: The optimizer to use, ``th.optim.Adam`` by default :param optimizer_kwargs: Additional keyword arguments, excluding the learning rate, to pass to the optimizer """ def __init__( self, observation_space: gym.spaces.Space, action_space: gym.spaces.Space, lr_schedule: Schedule, net_arch: Optional[List[int]] = None, activation_fn: Type[nn.Module] = nn.ReLU, features_extractor_class: Type[BaseFeaturesExtractor] = NatureCNN, features_extractor_kwargs: Optional[Dict[str, Any]] = None, normalize_images: bool = True, optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, optimizer_kwargs: Optional[Dict[str, Any]] = None, ): super(CnnPolicy, self).__init__( observation_space, action_space, lr_schedule, net_arch, activation_fn, features_extractor_class, features_extractor_kwargs, normalize_images, optimizer_class, optimizer_kwargs, ) register_policy("MlpPolicy", MlpPolicy) register_policy("CnnPolicy", CnnPolicy)
[ "torch.nn.Sequential" ]
1.4.0
LucasAlegre/stable-baselines3
6b598323ae070bb0a998d25230f6e11eca4cbe61
1.4
import io import os import pathlib import warnings from collections import OrderedDict from copy import deepcopy import gym import numpy as np import pytest import torch as th from stable_baselines3 import A2C, DDPG, DQN, PPO, SAC, TD3 from stable_baselines3.common.base_class import BaseAlgorithm from stable_baselines3.common.identity_env import FakeImageEnv, IdentityEnv, IdentityEnvBox from stable_baselines3.common.save_util import load_from_pkl, open_path, save_to_pkl from stable_baselines3.common.utils import get_device from stable_baselines3.common.vec_env import DummyVecEnv MODEL_LIST = [PPO, A2C, TD3, SAC, DQN, DDPG] def select_env(model_class: BaseAlgorithm) -> gym.Env: """ Selects an environment with the correct action space as DQN only supports discrete action space """ if model_class == DQN: return IdentityEnv(10) else: return IdentityEnvBox(10) @pytest.mark.parametrize("model_class", MODEL_LIST) def test_save_load(tmp_path, model_class): """ Test if 'save' and 'load' saves and loads model correctly and if 'get_parameters' and 'set_parameters' and work correctly. ''warning does not test function of optimizer parameter load :param model_class: (BaseAlgorithm) A RL model """ env = DummyVecEnv([lambda: select_env(model_class)]) # create model model = model_class("MlpPolicy", env, policy_kwargs=dict(net_arch=[16]), verbose=1) model.learn(total_timesteps=500) env.reset() observations = np.concatenate([env.step([env.action_space.sample()])[0] for _ in range(10)], axis=0) # Get parameters of different objects # deepcopy to avoid referencing to tensors we are about to modify original_params = deepcopy(model.get_parameters()) # Test different error cases of set_parameters. # Test that invalid object names throw errors invalid_object_params = deepcopy(original_params) invalid_object_params["I_should_not_be_a_valid_object"] = "and_I_am_an_invalid_tensor" with pytest.raises(ValueError): model.set_parameters(invalid_object_params, exact_match=True) with pytest.raises(ValueError): model.set_parameters(invalid_object_params, exact_match=False) # Test that exact_match catches when something was missed. missing_object_params = dict((k, v) for k, v in list(original_params.items())[:-1]) with pytest.raises(ValueError): model.set_parameters(missing_object_params, exact_match=True) # Test that exact_match catches when something inside state-dict # is missing but we have exact_match. missing_state_dict_tensor_params = {} for object_name in original_params: object_params = {} missing_state_dict_tensor_params[object_name] = object_params # Skip last item in state-dict for k, v in list(original_params[object_name].items())[:-1]: object_params[k] = v with pytest.raises(RuntimeError): # PyTorch load_state_dict throws RuntimeError if strict but # invalid state-dict. model.set_parameters(missing_state_dict_tensor_params, exact_match=True) # Test that parameters do indeed change. random_params = {} for object_name, params in original_params.items(): # Do not randomize optimizer parameters (custom layout) if "optim" in object_name: random_params[object_name] = params else: # Again, skip the last item in state-dict random_params[object_name] = OrderedDict( (param_name, th.rand_like(param)) for param_name, param in list(params.items())[:-1] ) # Update model parameters with the new random values model.set_parameters(random_params, exact_match=False) new_params = model.get_parameters() # Check that all params except the final item in each state-dict are different. for object_name in original_params: # Skip optimizers (no valid comparison with just th.allclose) if "optim" in object_name: continue # state-dicts use ordered dictionaries, so key order # is guaranteed. last_key = list(original_params[object_name].keys())[-1] for k in original_params[object_name]: if k == last_key: # Should be same as before assert th.allclose( original_params[object_name][k], new_params[object_name][k] ), "Parameter changed despite not included in the loaded parameters." else: # Should be different assert not th.allclose( original_params[object_name][k], new_params[object_name][k] ), "Parameters did not change as expected." params = new_params # get selected actions selected_actions, _ = model.predict(observations, deterministic=True) # Check model.save(tmp_path / "test_save.zip") del model # Check if the model loads as expected for every possible choice of device: for device in ["auto", "cpu", "cuda"]: model = model_class.load(str(tmp_path / "test_save.zip"), env=env, device=device) # check if the model was loaded to the correct device assert model.device.type == get_device(device).type assert model.policy.device.type == get_device(device).type # check if params are still the same after load new_params = model.get_parameters() # Check that all params are the same as before save load procedure now for object_name in new_params: # Skip optimizers (no valid comparison with just th.allclose) if "optim" in object_name: continue for key in params[object_name]: assert new_params[object_name][key].device.type == get_device(device).type assert th.allclose( params[object_name][key].to("cpu"), new_params[object_name][key].to("cpu") ), "Model parameters not the same after save and load." # check if model still selects the same actions new_selected_actions, _ = model.predict(observations, deterministic=True) assert np.allclose(selected_actions, new_selected_actions, 1e-4) # check if learn still works model.learn(total_timesteps=500) del model # clear file from os os.remove(tmp_path / "test_save.zip") @pytest.mark.parametrize("model_class", MODEL_LIST) def test_set_env(model_class): """ Test if set_env function does work correct :param model_class: (BaseAlgorithm) A RL model """ # use discrete for DQN env = DummyVecEnv([lambda: select_env(model_class)]) env2 = DummyVecEnv([lambda: select_env(model_class)]) env3 = select_env(model_class) kwargs = {} if model_class in {DQN, DDPG, SAC, TD3}: kwargs = dict(learning_starts=100) elif model_class in {A2C, PPO}: kwargs = dict(n_steps=100) # create model model = model_class("MlpPolicy", env, policy_kwargs=dict(net_arch=[16]), **kwargs) # learn model.learn(total_timesteps=300) # change env model.set_env(env2) # learn again model.learn(total_timesteps=300) # change env test wrapping model.set_env(env3) # learn again model.learn(total_timesteps=300) @pytest.mark.parametrize("model_class", MODEL_LIST) def test_exclude_include_saved_params(tmp_path, model_class): """ Test if exclude and include parameters of save() work :param model_class: (BaseAlgorithm) A RL model """ env = DummyVecEnv([lambda: select_env(model_class)]) # create model, set verbose as 2, which is not standard model = model_class("MlpPolicy", env, policy_kwargs=dict(net_arch=[16]), verbose=2) # Check if exclude works model.save(tmp_path / "test_save", exclude=["verbose"]) del model model = model_class.load(str(tmp_path / "test_save.zip")) # check if verbose was not saved assert model.verbose != 2 # set verbose as something different then standard settings model.verbose = 2 # Check if include works model.save(tmp_path / "test_save", exclude=["verbose"], include=["verbose"]) del model model = model_class.load(str(tmp_path / "test_save.zip")) assert model.verbose == 2 # clear file from os os.remove(tmp_path / "test_save.zip") @pytest.mark.parametrize("model_class", [A2C, TD3]) def test_save_load_env_cnn(tmp_path, model_class): """ Test loading with an env that requires a ``CnnPolicy``. This is to test wrapping and observation space check. We test one on-policy and one off-policy algorithm as the rest share the loading part. """ env = FakeImageEnv(screen_height=40, screen_width=40, n_channels=2, discrete=False) kwargs = dict(policy_kwargs=dict(net_arch=[32])) if model_class == TD3: kwargs.update(dict(buffer_size=100, learning_starts=50)) model = model_class("CnnPolicy", env, **kwargs).learn(100) model.save(tmp_path / "test_save") # Test loading with env and continuing training model = model_class.load(str(tmp_path / "test_save.zip"), env=env).learn(100) # clear file from os os.remove(tmp_path / "test_save.zip") @pytest.mark.parametrize("model_class", [SAC, TD3, DQN]) def test_save_load_replay_buffer(tmp_path, model_class): path = pathlib.Path(tmp_path / "logs/replay_buffer.pkl") path.parent.mkdir(exist_ok=True, parents=True) # to not raise a warning model = model_class( "MlpPolicy", select_env(model_class), buffer_size=1000, policy_kwargs=dict(net_arch=[64]), learning_starts=200 ) model.learn(300) old_replay_buffer = deepcopy(model.replay_buffer) model.save_replay_buffer(path) model.replay_buffer = None model.load_replay_buffer(path) assert np.allclose(old_replay_buffer.observations, model.replay_buffer.observations) assert np.allclose(old_replay_buffer.actions, model.replay_buffer.actions) assert np.allclose(old_replay_buffer.rewards, model.replay_buffer.rewards) assert np.allclose(old_replay_buffer.dones, model.replay_buffer.dones) # test extending replay buffer model.replay_buffer.extend( old_replay_buffer.observations, old_replay_buffer.observations, old_replay_buffer.actions, old_replay_buffer.rewards, old_replay_buffer.dones, ) @pytest.mark.parametrize("model_class", [DQN, SAC, TD3]) @pytest.mark.parametrize("optimize_memory_usage", [False, True]) def test_warn_buffer(recwarn, model_class, optimize_memory_usage): """ When using memory efficient replay buffer, a warning must be emitted when calling `.learn()` multiple times. See https://github.com/DLR-RM/stable-baselines3/issues/46 """ # remove gym warnings warnings.filterwarnings(action="ignore", category=DeprecationWarning) warnings.filterwarnings(action="ignore", category=UserWarning, module="gym") model = model_class( "MlpPolicy", select_env(model_class), buffer_size=100, optimize_memory_usage=optimize_memory_usage, policy_kwargs=dict(net_arch=[64]), learning_starts=10, ) model.learn(150) model.learn(150, reset_num_timesteps=False) # Check that there is no warning assert len(recwarn) == 0 model.learn(150) if optimize_memory_usage: assert len(recwarn) == 1 warning = recwarn.pop(UserWarning) assert "The last trajectory in the replay buffer will be truncated" in str(warning.message) else: assert len(recwarn) == 0 @pytest.mark.parametrize("model_class", MODEL_LIST) @pytest.mark.parametrize("policy_str", ["MlpPolicy", "CnnPolicy"]) def test_save_load_policy(tmp_path, model_class, policy_str): """ Test saving and loading policy only. :param model_class: (BaseAlgorithm) A RL model :param policy_str: (str) Name of the policy. """ kwargs = dict(policy_kwargs=dict(net_arch=[16])) if policy_str == "MlpPolicy": env = select_env(model_class) else: if model_class in [SAC, TD3, DQN, DDPG]: # Avoid memory error when using replay buffer # Reduce the size of the features kwargs = dict( buffer_size=250, learning_starts=100, policy_kwargs=dict(features_extractor_kwargs=dict(features_dim=32)) ) env = FakeImageEnv(screen_height=40, screen_width=40, n_channels=2, discrete=model_class == DQN) env = DummyVecEnv([lambda: env]) # create model model = model_class(policy_str, env, verbose=1, **kwargs) model.learn(total_timesteps=300) env.reset() observations = np.concatenate([env.step([env.action_space.sample()])[0] for _ in range(10)], axis=0) policy = model.policy policy_class = policy.__class__ actor, actor_class = None, None if model_class in [SAC, TD3]: actor = policy.actor actor_class = actor.__class__ # Get dictionary of current parameters params = deepcopy(policy.state_dict()) # Modify all parameters to be random values random_params = dict((param_name, th.rand_like(param)) for param_name, param in params.items()) # Update model parameters with the new random values policy.load_state_dict(random_params) new_params = policy.state_dict() # Check that all params are different now for k in params: assert not th.allclose(params[k], new_params[k]), "Parameters did not change as expected." params = new_params # get selected actions selected_actions, _ = policy.predict(observations, deterministic=True) # Should also work with the actor only if actor is not None: selected_actions_actor, _ = actor.predict(observations, deterministic=True) # Save and load policy policy.save(tmp_path / "policy.pkl") # Save and load actor if actor is not None: actor.save(tmp_path / "actor.pkl") del policy, actor policy = policy_class.load(tmp_path / "policy.pkl") if actor_class is not None: actor = actor_class.load(tmp_path / "actor.pkl") # check if params are still the same after load new_params = policy.state_dict() # Check that all params are the same as before save load procedure now for key in params: assert th.allclose(params[key], new_params[key]), "Policy parameters not the same after save and load." # check if model still selects the same actions new_selected_actions, _ = policy.predict(observations, deterministic=True) assert np.allclose(selected_actions, new_selected_actions, 1e-4) if actor_class is not None: new_selected_actions_actor, _ = actor.predict(observations, deterministic=True) assert np.allclose(selected_actions_actor, new_selected_actions_actor, 1e-4) assert np.allclose(selected_actions_actor, new_selected_actions, 1e-4) # clear file from os os.remove(tmp_path / "policy.pkl") if actor_class is not None: os.remove(tmp_path / "actor.pkl") @pytest.mark.parametrize("pathtype", [str, pathlib.Path]) def test_open_file_str_pathlib(tmp_path, pathtype): # check that suffix isn't added because we used open_path first with open_path(pathtype(f"{tmp_path}/t1"), "w") as fp1: save_to_pkl(fp1, "foo") assert fp1.closed with pytest.warns(None) as record: assert load_from_pkl(pathtype(f"{tmp_path}/t1")) == "foo" assert not record # test custom suffix with open_path(pathtype(f"{tmp_path}/t1.custom_ext"), "w") as fp1: save_to_pkl(fp1, "foo") assert fp1.closed with pytest.warns(None) as record: assert load_from_pkl(pathtype(f"{tmp_path}/t1.custom_ext")) == "foo" assert not record # test without suffix with open_path(pathtype(f"{tmp_path}/t1"), "w", suffix="pkl") as fp1: save_to_pkl(fp1, "foo") assert fp1.closed with pytest.warns(None) as record: assert load_from_pkl(pathtype(f"{tmp_path}/t1.pkl")) == "foo" assert not record # test that a warning is raised when the path doesn't exist with open_path(pathtype(f"{tmp_path}/t2.pkl"), "w") as fp1: save_to_pkl(fp1, "foo") assert fp1.closed with pytest.warns(None) as record: assert load_from_pkl(open_path(pathtype(f"{tmp_path}/t2"), "r", suffix="pkl")) == "foo" assert len(record) == 0 with pytest.warns(None) as record: assert load_from_pkl(open_path(pathtype(f"{tmp_path}/t2"), "r", suffix="pkl", verbose=2)) == "foo" assert len(record) == 1 fp = pathlib.Path(f"{tmp_path}/t2").open("w") fp.write("rubbish") fp.close() # test that a warning is only raised when verbose = 0 with pytest.warns(None) as record: open_path(pathtype(f"{tmp_path}/t2"), "w", suffix="pkl", verbose=0).close() open_path(pathtype(f"{tmp_path}/t2"), "w", suffix="pkl", verbose=1).close() open_path(pathtype(f"{tmp_path}/t2"), "w", suffix="pkl", verbose=2).close() assert len(record) == 1 def test_open_file(tmp_path): # path must much the type with pytest.raises(TypeError): open_path(123, None, None, None) p1 = tmp_path / "test1" fp = p1.open("wb") # provided path must match the mode with pytest.raises(ValueError): open_path(fp, "r") with pytest.raises(ValueError): open_path(fp, "randomstuff") # test identity _ = open_path(fp, "w") assert _ is not None assert fp is _ # Can't use a closed path with pytest.raises(ValueError): fp.close() open_path(fp, "w") buff = io.BytesIO() assert buff.writable() assert buff.readable() is ("w" == "w") _ = open_path(buff, "w") assert _ is buff with pytest.raises(ValueError): buff.close() open_path(buff, "w")
[ "torch.allclose", "torch.rand_like" ]
1.4.0
LucasAlegre/stable-baselines3
6b598323ae070bb0a998d25230f6e11eca4cbe61
1.5
import torch import torch.distributions as td class GMM2D(td.MixtureSameFamily): def __init__(self, mixture_distribution, component_distribution): super(GMM2D, self).__init__(mixture_distribution, component_distribution) def mode_mode(self): mode_k = torch.argmax(self.mixture_distribution.probs[0, 0]).item() mode_gaussian = self.component_distribution.mean[:, 0, mode_k, :2] return mode_gaussian def position_log_prob(self, x): # Computing the log probability over only the positions. component_dist = td.MultivariateNormal(loc=self.component_distribution.mean[..., :2], scale_tril=self.component_distribution.scale_tril[..., :2, :2]) position_dist = td.MixtureSameFamily(self.mixture_distribution, component_dist) return position_dist.log_prob(x) @property def pis(self): return self.mixture_distribution.probs[0, 0]
[ "torch.distributions.MultivariateNormal", "torch.argmax", "torch.distributions.MixtureSameFamily" ]
1.5.0
StanfordASL/MATS
b31a86eb56728fc6025c71c7202ab425b078e3e5
1.0
""" Adapted from the pytorch-lamb library at https://github.com/cybertronai/pytorch-lamb """ import torch from torch.optim import Optimizer from colossalai.registry import OPTIMIZERS @OPTIMIZERS.register_module class Lamb(Optimizer): r"""Implements Lamb algorithm. It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) adam (bool, optional): always use trust ratio = 1, which turns this into Adam. Useful for comparison purposes. .. _Large Batch Optimization for Deep Learning\: Training BERT in 76 minutes: https://arxiv.org/abs/1904.00962 """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6, weight_decay=0, adam=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError( "Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError( "Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) self.adam = adam super(Lamb, self).__init__(params, defaults) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( 'Lamb does not support sparse gradients, consider SparseAdam instad.') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient # m_t exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # v_t exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) # Paper v3 does not use debiasing. # bias_correction1 = 1 - beta1 ** state['step'] # bias_correction2 = 1 - beta2 ** state['step'] # Apply bias to lr to avoid broadcast. # * math.sqrt(bias_correction2) / bias_correction1 step_size = group['lr'] weight_norm = p.data.pow(2).sum().sqrt() adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps']) if group['weight_decay'] != 0: adam_step.add_(p.data, alpha=group['weight_decay']) adam_norm = adam_step.pow(2).sum().sqrt() if weight_norm == 0 or adam_norm == 0: trust_ratio = 1 else: trust_ratio = weight_norm / adam_norm state['weight_norm'] = weight_norm state['adam_norm'] = adam_norm state['trust_ratio'] = trust_ratio if self.adam: trust_ratio = 1 p.data.add_(adam_step, alpha=-step_size * trust_ratio) return loss
[ "torch.zeros_like" ]
1.0
xdjiangkai/ColossalAI
4a3d3446b04065fa1c89b78cba673e96115c6325
1.1
import os import numpy as np import torch from tensorboardX import SummaryWriter import distributed from models.reporter_ext import ReportMgr, Statistics from others.logging import logger from others.utils import test_rouge, rouge_results_to_str def _tally_parameters(model): n_params = sum([p.nelement() for p in model.parameters()]) return n_params def build_trainer(args, device_id, model, optim): """ Simplify `Trainer` creation based on user `opt`s* Args: opt (:obj:`Namespace`): user options (usually from argument parsing) model (:obj:`onmt.models.NMTModel`): the model to train fields (dict): dict of fields optim (:obj:`onmt.utils.Optimizer`): optimizer used during training data_type (str): string describing the type of data e.g. "text", "img", "audio" model_saver(:obj:`onmt.models.ModelSaverBase`): the utility object used to save the model """ grad_accum_count = args.accum_count n_gpu = args.world_size if device_id >= 0: gpu_rank = int(args.gpu_ranks[device_id]) else: gpu_rank = 0 n_gpu = 0 print('gpu_rank %d' % gpu_rank) tensorboard_log_dir = args.model_path writer = SummaryWriter(tensorboard_log_dir, comment="Unmt") report_manager = ReportMgr(args.report_every, start_time=-1, tensorboard_writer=writer) trainer = Trainer(args, model, optim, grad_accum_count, n_gpu, gpu_rank, report_manager) # print(tr) if (model): n_params = _tally_parameters(model) logger.info('* number of parameters: %d' % n_params) return trainer class Trainer(object): """ Class that controls the training process. Args: model(:py:class:`onmt.models.model.NMTModel`): translation model to train train_loss(:obj:`onmt.utils.loss.LossComputeBase`): training loss computation valid_loss(:obj:`onmt.utils.loss.LossComputeBase`): training loss computation optim(:obj:`onmt.utils.optimizers.Optimizer`): the optimizer responsible for update trunc_size(int): length of truncated back propagation through time shard_size(int): compute loss in shards of this size for efficiency data_type(string): type of the source input: [text|img|audio] norm_method(string): normalization methods: [sents|tokens] grad_accum_count(int): accumulate gradients this many times. report_manager(:obj:`onmt.utils.ReportMgrBase`): the object that creates reports, or None model_saver(:obj:`onmt.models.ModelSaverBase`): the saver is used to save a checkpoint. Thus nothing will be saved if this parameter is None """ def __init__(self, args, model, optim, grad_accum_count=1, n_gpu=1, gpu_rank=1, report_manager=None): # Basic attributes. self.args = args self.save_checkpoint_steps = args.save_checkpoint_steps self.model = model self.optim = optim self.grad_accum_count = grad_accum_count self.n_gpu = n_gpu self.gpu_rank = gpu_rank self.report_manager = report_manager self.loss = torch.nn.BCELoss(reduction='none') assert grad_accum_count > 0 # Set model in training mode. if (model): self.model.train() def train(self, train_iter_fct, train_steps, valid_iter_fct=None, valid_steps=-1): """ The main training loops. by iterating over training data (i.e. `train_iter_fct`) and running validation (i.e. iterating over `valid_iter_fct` Args: train_iter_fct(function): a function that returns the train iterator. e.g. something like train_iter_fct = lambda: generator(*args, **kwargs) valid_iter_fct(function): same as train_iter_fct, for valid data train_steps(int): valid_steps(int): save_checkpoint_steps(int): Return: None """ logger.info('Start training...') # step = self.optim._step + 1 step = self.optim._step + 1 true_batchs = [] accum = 0 normalization = 0 train_iter = train_iter_fct() total_stats = Statistics() report_stats = Statistics() self._start_report_manager(start_time=total_stats.start_time) while step <= train_steps: reduce_counter = 0 for i, batch in enumerate(train_iter): if self.n_gpu == 0 or (i % self.n_gpu == self.gpu_rank): true_batchs.append(batch) normalization += batch.batch_size accum += 1 if accum == self.grad_accum_count: reduce_counter += 1 if self.n_gpu > 1: normalization = sum(distributed .all_gather_list (normalization)) self._gradient_accumulation( true_batchs, normalization, total_stats, report_stats) report_stats = self._maybe_report_training( step, train_steps, self.optim.learning_rate, report_stats) true_batchs = [] accum = 0 normalization = 0 if (step % self.save_checkpoint_steps == 0 and self.gpu_rank == 0): self._save(step) step += 1 if step > train_steps: break train_iter = train_iter_fct() return total_stats def validate(self, valid_iter, step=0): """ Validate model. valid_iter: validate data iterator Returns: :obj:`nmt.Statistics`: validation loss statistics """ # Set model in validating mode. self.model.eval() stats = Statistics() with torch.no_grad(): for batch in valid_iter: src = batch.src labels = batch.src_sent_labels segs = batch.segs clss = batch.clss mask = batch.mask_src mask_cls = batch.mask_cls sent_scores, mask = self.model(src, segs, clss, mask, mask_cls) loss = self.loss(sent_scores, labels.float()) loss = (loss * mask.float()).sum() batch_stats = Statistics(float(loss.cpu().data.numpy()), len(labels)) stats.update(batch_stats) self._report_step(0, step, valid_stats=stats) return stats def test(self, test_iter, step, cal_lead=False, cal_oracle=False): """ Validate model. valid_iter: validate data iterator Returns: :obj:`nmt.Statistics`: validation loss statistics """ # Set model in validating mode. def _get_ngrams(n, text): ngram_set = set() text_length = len(text) max_index_ngram_start = text_length - n for i in range(max_index_ngram_start + 1): ngram_set.add(tuple(text[i:i + n])) return ngram_set def _block_tri(c, p): tri_c = _get_ngrams(3, c.split()) for s in p: tri_s = _get_ngrams(3, s.split()) if len(tri_c.intersection(tri_s)) > 0: return True return False if (not cal_lead and not cal_oracle): self.model.eval() stats = Statistics() can_path = '%s_step%d.candidate' % (self.args.result_path, step) gold_path = '%s_step%d.gold' % (self.args.result_path, step) ## src_path = '%s_step%d.src' % (self.args.result_path, step) f = open(src_path, 'w') ## sent_no = 0 with open(can_path, 'w') as save_pred: with open(gold_path, 'w') as save_gold: with torch.no_grad(): for batch in test_iter: src = batch.src labels = batch.src_sent_labels segs = batch.segs clss = batch.clss mask = batch.mask_src mask_cls = batch.mask_cls gold = [] pred = [] src_fix = [] if (cal_lead): selected_ids = [list(range(batch.clss.size(1)))] * batch.batch_size elif (cal_oracle): selected_ids = [[j for j in range(batch.clss.size(1)) if labels[i][j] == 1] for i in range(batch.batch_size)] else: sent_scores, mask = self.model(src, segs, clss, mask, mask_cls) if labels.float().size()[1] != 0: loss = self.loss(sent_scores, labels.float()) else: continue loss = (loss * mask.float()).sum() batch_stats = Statistics(float(loss.cpu().data.numpy()), len(labels)) stats.update(batch_stats) sent_scores = sent_scores + mask.float() sent_scores = sent_scores.cpu().data.numpy() selected_ids = np.argsort(-sent_scores, 1) if len(selected_ids[0]) < 7: continue # selected_ids = np.sort(selected_ids,1) for i, idx in enumerate(selected_ids): _pred = [] if (len(batch.src_str[i]) == 0): continue for j in selected_ids[i][:len(batch.src_str[i])]: if (j >= len(batch.src_str[i])): continue candidate = batch.src_str[i][j].strip() if (self.args.block_trigram): if (not _block_tri(candidate, _pred)): _pred.append(candidate) else: _pred.append(candidate) if ((not cal_oracle) and (not self.args.recall_eval) and len(_pred) == 3): break _pred = '<q>'.join(_pred) if (self.args.recall_eval): _pred = ' '.join(_pred.split()[:len(batch.tgt_str[i].split())]) pred.append(_pred) gold.append(batch.tgt_str[i]) src_fix.append(batch.src_str[i]) sent_no += 1 # print(sent_no) # print('gold', gold) # print(gold_path) for i in range(len(gold)): save_gold.write(str(sent_no) + "_" + str(i) + ': ' + gold[i].strip() + '\n') for i in range(len(pred)): save_pred.write(str(sent_no) + "_" + str(i) + ': ' + pred[i].strip() + '\n') for i in range(len(pred)): f.write(str(sent_no) + "_" + str(i) + ': ' + '###'.join(src_fix[i]).strip()+'\n') f.close() if (step != -1 and self.args.report_rouge): rouges = test_rouge(self.args.temp_dir, can_path, gold_path) logger.info('Rouges at step %d \n%s' % (step, rouge_results_to_str(rouges))) self._report_step(0, step, valid_stats=stats) return stats def _gradient_accumulation(self, true_batchs, normalization, total_stats, report_stats): if self.grad_accum_count > 1: self.model.zero_grad() for batch in true_batchs: if self.grad_accum_count == 1: self.model.zero_grad() src = batch.src labels = batch.src_sent_labels segs = batch.segs clss = batch.clss mask = batch.mask_src mask_cls = batch.mask_cls sent_scores, mask = self.model(src, segs, clss, mask, mask_cls) loss = self.loss(sent_scores, labels.float()) loss = (loss * mask.float()).sum() (loss / loss.numel()).backward() # loss.div(float(normalization)).backward() batch_stats = Statistics(float(loss.cpu().data.numpy()), normalization) total_stats.update(batch_stats) report_stats.update(batch_stats) # 4. Update the parameters and statistics. if self.grad_accum_count == 1: # Multi GPU gradient gather if self.n_gpu > 1: grads = [p.grad.data for p in self.model.parameters() if p.requires_grad and p.grad is not None] distributed.all_reduce_and_rescale_tensors( grads, float(1)) self.optim.step() # in case of multi step gradient accumulation, # update only after accum batches if self.grad_accum_count > 1: if self.n_gpu > 1: grads = [p.grad.data for p in self.model.parameters() if p.requires_grad and p.grad is not None] distributed.all_reduce_and_rescale_tensors( grads, float(1)) self.optim.step() def _save(self, step): real_model = self.model # real_generator = (self.generator.module # if isinstance(self.generator, torch.nn.DataParallel) # else self.generator) model_state_dict = real_model.state_dict() # generator_state_dict = real_generator.state_dict() checkpoint = { 'model': model_state_dict, # 'generator': generator_state_dict, 'opt': self.args, 'optims': self.optim, } checkpoint_path = os.path.join(self.args.model_path, 'model_step_%d.pt' % step) logger.info("Saving checkpoint %s" % checkpoint_path) # checkpoint_path = '%s_step_%d.pt' % (FLAGS.model_path, step) if (not os.path.exists(checkpoint_path)): torch.save(checkpoint, checkpoint_path) return checkpoint, checkpoint_path def _start_report_manager(self, start_time=None): """ Simple function to start report manager (if any) """ if self.report_manager is not None: if start_time is None: self.report_manager.start() else: self.report_manager.start_time = start_time def _maybe_gather_stats(self, stat): """ Gather statistics in multi-processes cases Args: stat(:obj:onmt.utils.Statistics): a Statistics object to gather or None (it returns None in this case) Returns: stat: the updated (or unchanged) stat object """ if stat is not None and self.n_gpu > 1: return Statistics.all_gather_stats(stat) return stat def _maybe_report_training(self, step, num_steps, learning_rate, report_stats): """ Simple function to report training stats (if report_manager is set) see `onmt.utils.ReportManagerBase.report_training` for doc """ if self.report_manager is not None: return self.report_manager.report_training( step, num_steps, learning_rate, report_stats, multigpu=self.n_gpu > 1) def _report_step(self, learning_rate, step, train_stats=None, valid_stats=None): """ Simple function to report stats (if report_manager is set) see `onmt.utils.ReportManagerBase.report_step` for doc """ if self.report_manager is not None: return self.report_manager.report_step( learning_rate, step, train_stats=train_stats, valid_stats=valid_stats) def _maybe_save(self, step): """ Save the model if a model saver is set """ if self.model_saver is not None: self.model_saver.maybe_save(step)
[ "torch.no_grad", "torch.save", "torch.nn.BCELoss" ]
1.1.0
Katarina11/PreSumm
616e72f038d512e9e9112af375d66a0b2e3db6cd
0.4
""" Common routines for models in PyTorch. """ __all__ = ['HSwish', 'get_activation_layer', 'conv1x1', 'conv3x3', 'depthwise_conv3x3', 'ConvBlock', 'conv1x1_block', 'conv3x3_block', 'conv7x7_block', 'dwconv3x3_block', 'dwconv5x5_block', 'PreConvBlock', 'pre_conv1x1_block', 'pre_conv3x3_block', 'ChannelShuffle', 'ChannelShuffle2', 'SEBlock', 'IBN', 'Identity', 'DualPathSequential', 'Concurrent', 'ParametricSequential', 'ParametricConcurrent', 'Hourglass', 'SesquialteralHourglass', 'MultiOutputSequential', 'Flatten'] import math from inspect import isfunction import torch import torch.nn as nn import torch.nn.functional as F class Swish(nn.Module): """ Swish activation function from 'Searching for Activation Functions,' https://arxiv.org/abs/1710.05941. """ def forward(self, x): return x * torch.sigmoid(x) class HSigmoid(nn.Module): """ Approximated sigmoid function, so-called hard-version of sigmoid from 'Searching for MobileNetV3,' https://arxiv.org/abs/1905.02244. """ def forward(self, x): return F.relu6(x + 3.0, inplace=True) / 6.0 class HSwish(nn.Module): """ H-Swish activation function from 'Searching for MobileNetV3,' https://arxiv.org/abs/1905.02244. Parameters: ---------- inplace : bool Whether to use inplace version of the module. """ def __init__(self, inplace=False): super(HSwish, self).__init__() self.inplace = inplace def forward(self, x): return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0 def get_activation_layer(activation): """ Create activation layer from string/function. Parameters: ---------- activation : function, or str, or nn.Module Activation function or name of activation function. Returns ------- nn.Module Activation layer. """ assert (activation is not None) if isfunction(activation): return activation() elif isinstance(activation, str): if activation == "relu": return nn.ReLU(inplace=True) elif activation == "relu6": return nn.ReLU6(inplace=True) elif activation == "swish": return Swish() elif activation == "hswish": return HSwish(inplace=True) else: raise NotImplementedError() else: assert (isinstance(activation, nn.Module)) return activation def conv1x1(in_channels, out_channels, stride=1, groups=1, bias=False): """ Convolution 1x1 layer. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. """ return nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, groups=groups, bias=bias) def conv3x3(in_channels, out_channels, stride=1, padding=1, dilation=1, groups=1, bias=False): """ Convolution 3x3 layer. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int or tuple/list of 2 int, default 1 Padding value for convolution layer. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. """ return nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) def depthwise_conv3x3(channels, stride): """ Depthwise convolution 3x3 layer. Parameters: ---------- channels : int Number of input/output channels. strides : int or tuple/list of 2 int Strides of the convolution. """ return nn.Conv2d( in_channels=channels, out_channels=channels, kernel_size=3, stride=stride, padding=1, groups=channels, bias=False) class ConvBlock(nn.Module): """ Standard convolution block with Batch normalization and activation. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. stride : int or tuple/list of 2 int Strides of the convolution. padding : int or tuple/list of 2 int Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. activate : bool, default True Whether activate the convolution block. """ def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, groups=1, bias=False, use_bn=True, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): super(ConvBlock, self).__init__() self.activate = (activation is not None) self.use_bn = use_bn self.conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) if self.use_bn: self.bn = nn.BatchNorm2d( num_features=out_channels, eps=bn_eps) if self.activate: self.activ = get_activation_layer(activation) def forward(self, x): x = self.conv(x) if self.use_bn: x = self.bn(x) if self.activate: x = self.activ(x) return x def conv1x1_block(in_channels, out_channels, stride=1, padding=0, groups=1, bias=False, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): """ 1x1 version of the standard convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int or tuple/list of 2 int, default 0 Padding value for convolution layer. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ return ConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=padding, groups=groups, bias=bias, bn_eps=bn_eps, activation=activation) def conv3x3_block(in_channels, out_channels, stride=1, padding=1, dilation=1, groups=1, bias=False, use_bn=True, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): """ 3x3 version of the standard convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int or tuple/list of 2 int, default 1 Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ return ConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, use_bn=use_bn, bn_eps=bn_eps, activation=activation) def conv5x5_block(in_channels, out_channels, stride=1, padding=2, dilation=1, groups=1, bias=False, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): """ 5x5 version of the standard convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int or tuple/list of 2 int, default 2 Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ return ConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=5, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, bn_eps=bn_eps, activation=activation) def conv7x7_block(in_channels, out_channels, stride=1, padding=3, bias=False, activation=(lambda: nn.ReLU(inplace=True))): """ 7x7 version of the standard convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int or tuple/list of 2 int, default 3 Padding value for convolution layer. bias : bool, default False Whether the layer uses a bias vector. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ return ConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=7, stride=stride, padding=padding, bias=bias, activation=activation) def dwconv3x3_block(in_channels, out_channels, stride=1, padding=1, dilation=1, bias=False, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): """ 3x3 depthwise version of the standard convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int or tuple/list of 2 int, default 1 Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. bias : bool, default False Whether the layer uses a bias vector. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ return conv3x3_block( in_channels=in_channels, out_channels=out_channels, stride=stride, padding=padding, dilation=dilation, groups=out_channels, bias=bias, bn_eps=bn_eps, activation=activation) def dwconv5x5_block(in_channels, out_channels, stride=1, padding=2, dilation=1, bias=False, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): """ 5x5 depthwise version of the standard convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int or tuple/list of 2 int, default 2 Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. bias : bool, default False Whether the layer uses a bias vector. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ return conv5x5_block( in_channels=in_channels, out_channels=out_channels, stride=stride, padding=padding, dilation=dilation, groups=out_channels, bias=bias, bn_eps=bn_eps, activation=activation) class PreConvBlock(nn.Module): """ Convolution block with Batch normalization and ReLU pre-activation. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. stride : int or tuple/list of 2 int Strides of the convolution. padding : int or tuple/list of 2 int Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. bias : bool, default False Whether the layer uses a bias vector. return_preact : bool, default False Whether return pre-activation. It's used by PreResNet. activate : bool, default True Whether activate the convolution block. """ def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, bias=False, return_preact=False, activate=True): super(PreConvBlock, self).__init__() self.return_preact = return_preact self.activate = activate self.bn = nn.BatchNorm2d(num_features=in_channels) if self.activate: self.activ = nn.ReLU(inplace=True) self.conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) def forward(self, x): x = self.bn(x) if self.activate: x = self.activ(x) if self.return_preact: x_pre_activ = x x = self.conv(x) if self.return_preact: return x, x_pre_activ else: return x def pre_conv1x1_block(in_channels, out_channels, stride=1, bias=False, return_preact=False, activate=True): """ 1x1 version of the pre-activated convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. bias : bool, default False Whether the layer uses a bias vector. return_preact : bool, default False Whether return pre-activation. activate : bool, default True Whether activate the convolution block. """ return PreConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=0, bias=bias, return_preact=return_preact, activate=activate) def pre_conv3x3_block(in_channels, out_channels, stride=1, padding=1, dilation=1, return_preact=False, activate=True): """ 3x3 version of the pre-activated convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int or tuple/list of 2 int, default 1 Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. return_preact : bool, default False Whether return pre-activation. activate : bool, default True Whether activate the convolution block. """ return PreConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=padding, dilation=dilation, return_preact=return_preact, activate=activate) def channel_shuffle(x, groups): """ Channel shuffle operation from 'ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,' https://arxiv.org/abs/1707.01083. Parameters: ---------- x : Tensor Input tensor. groups : int Number of groups. Returns ------- Tensor Resulted tensor. """ batch, channels, height, width = x.size() # assert (channels % groups == 0) channels_per_group = channels // groups x = x.view(batch, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() x = x.view(batch, channels, height, width) return x class ChannelShuffle(nn.Module): """ Channel shuffle layer. This is a wrapper over the same operation. It is designed to save the number of groups. Parameters: ---------- channels : int Number of channels. groups : int Number of groups. """ def __init__(self, channels, groups): super(ChannelShuffle, self).__init__() # assert (channels % groups == 0) if channels % groups != 0: raise ValueError('channels must be divisible by groups') self.groups = groups def forward(self, x): return channel_shuffle(x, self.groups) def channel_shuffle2(x, groups): """ Channel shuffle operation from 'ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,' https://arxiv.org/abs/1707.01083. The alternative version. Parameters: ---------- x : Tensor Input tensor. groups : int Number of groups. Returns ------- Tensor Resulted tensor. """ batch, channels, height, width = x.size() # assert (channels % groups == 0) channels_per_group = channels // groups x = x.view(batch, channels_per_group, groups, height, width) x = torch.transpose(x, 1, 2).contiguous() x = x.view(batch, channels, height, width) return x class ChannelShuffle2(nn.Module): """ Channel shuffle layer. This is a wrapper over the same operation. It is designed to save the number of groups. The alternative version. Parameters: ---------- channels : int Number of channels. groups : int Number of groups. """ def __init__(self, channels, groups): super(ChannelShuffle2, self).__init__() # assert (channels % groups == 0) if channels % groups != 0: raise ValueError('channels must be divisible by groups') self.groups = groups def forward(self, x): return channel_shuffle2(x, self.groups) class SEBlock(nn.Module): """ Squeeze-and-Excitation block from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- channels : int Number of channels. reduction : int, default 16 Squeeze reduction value. approx_sigmoid : bool, default False Whether to use approximated sigmoid function. activation : function, or str, or nn.Module Activation function or name of activation function. """ def __init__(self, channels, reduction=16, approx_sigmoid=False, activation=(lambda: nn.ReLU(inplace=True))): super(SEBlock, self).__init__() mid_cannels = channels // reduction self.pool = nn.AdaptiveAvgPool2d(output_size=1) self.conv1 = conv1x1( in_channels=channels, out_channels=mid_cannels, bias=True) self.activ = get_activation_layer(activation) self.conv2 = conv1x1( in_channels=mid_cannels, out_channels=channels, bias=True) self.sigmoid = HSigmoid() if approx_sigmoid else nn.Sigmoid() def forward(self, x): w = self.pool(x) w = self.conv1(w) w = self.activ(w) w = self.conv2(w) w = self.sigmoid(w) x = x * w return x class IBN(nn.Module): """ Instance-Batch Normalization block from 'Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net,' https://arxiv.org/abs/1807.09441. Parameters: ---------- channels : int Number of channels. inst_fraction : float, default 0.5 The first fraction of channels for normalization. inst_first : bool, default True Whether instance normalization be on the first part of channels. """ def __init__(self, channels, first_fraction=0.5, inst_first=True): super(IBN, self).__init__() self.inst_first = inst_first h1_channels = int(math.floor(channels * first_fraction)) h2_channels = channels - h1_channels self.split_sections = [h1_channels, h2_channels] if self.inst_first: self.inst_norm = nn.InstanceNorm2d( num_features=h1_channels, affine=True) self.batch_norm = nn.BatchNorm2d(num_features=h2_channels) else: self.batch_norm = nn.BatchNorm2d(num_features=h1_channels) self.inst_norm = nn.InstanceNorm2d( num_features=h2_channels, affine=True) def forward(self, x): x1, x2 = torch.split(x, split_size_or_sections=self.split_sections, dim=1) if self.inst_first: x1 = self.inst_norm(x1.contiguous()) x2 = self.batch_norm(x2.contiguous()) else: x1 = self.batch_norm(x1.contiguous()) x2 = self.inst_norm(x2.contiguous()) x = torch.cat((x1, x2), dim=1) return x class Identity(nn.Module): """ Identity block. """ def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class DualPathSequential(nn.Sequential): """ A sequential container for modules with dual inputs/outputs. Modules will be executed in the order they are added. Parameters: ---------- return_two : bool, default True Whether to return two output after execution. first_ordinals : int, default 0 Number of the first modules with single input/output. last_ordinals : int, default 0 Number of the final modules with single input/output. dual_path_scheme : function Scheme of dual path response for a module. dual_path_scheme_ordinal : function Scheme of dual path response for an ordinal module. """ def __init__(self, return_two=True, first_ordinals=0, last_ordinals=0, dual_path_scheme=(lambda module, x1, x2: module(x1, x2)), dual_path_scheme_ordinal=(lambda module, x1, x2: (module(x1), x2))): super(DualPathSequential, self).__init__() self.return_two = return_two self.first_ordinals = first_ordinals self.last_ordinals = last_ordinals self.dual_path_scheme = dual_path_scheme self.dual_path_scheme_ordinal = dual_path_scheme_ordinal def forward(self, x1, x2=None): length = len(self._modules.values()) for i, module in enumerate(self._modules.values()): if (i < self.first_ordinals) or (i >= length - self.last_ordinals): x1, x2 = self.dual_path_scheme_ordinal(module, x1, x2) else: x1, x2 = self.dual_path_scheme(module, x1, x2) if self.return_two: return x1, x2 else: return x1 class Concurrent(nn.Sequential): """ A container for concatenation of modules on the base of the sequential container. Parameters: ---------- axis : int, default 1 The axis on which to concatenate the outputs. stack : bool, default False Whether to concatenate tensors along a new dimension. """ def __init__(self, axis=1, stack=False): super(Concurrent, self).__init__() self.axis = axis self.stack = stack def forward(self, x): out = [] for module in self._modules.values(): out.append(module(x)) if self.stack: out = torch.stack(tuple(out), dim=self.axis) else: out = torch.cat(tuple(out), dim=self.axis) return out class ParametricSequential(nn.Sequential): """ A sequential container for modules with parameters. Modules will be executed in the order they are added. """ def __init__(self, *args): super(ParametricSequential, self).__init__(*args) def forward(self, x, **kwargs): for module in self._modules.values(): x = module(x, **kwargs) return x class ParametricConcurrent(nn.Sequential): """ A container for concatenation of modules with parameters. Parameters: ---------- axis : int, default 1 The axis on which to concatenate the outputs. """ def __init__(self, axis=1): super(ParametricConcurrent, self).__init__() self.axis = axis def forward(self, x, **kwargs): out = [] for module in self._modules.values(): out.append(module(x, **kwargs)) out = torch.cat(tuple(out), dim=self.axis) return out class Hourglass(nn.Module): """ A hourglass block. Parameters: ---------- down_seq : nn.Sequential Down modules as sequential. up_seq : nn.Sequential Up modules as sequential. skip_seq : nn.Sequential Skip connection modules as sequential. merge_type : str, default 'add' Type of concatenation of up and skip outputs. return_first_skip : bool, default False Whether return the first skip connection output. Used in ResAttNet. """ def __init__(self, down_seq, up_seq, skip_seq, merge_type="add", return_first_skip=False): super(Hourglass, self).__init__() assert (len(up_seq) == len(down_seq)) assert (len(skip_seq) == len(down_seq)) assert (merge_type in ["add"]) self.merge_type = merge_type self.return_first_skip = return_first_skip self.depth = len(down_seq) self.down_seq = down_seq self.up_seq = up_seq self.skip_seq = skip_seq def forward(self, x, **kwargs): y = None down_outs = [x] for down_module in self.down_seq._modules.values(): x = down_module(x) down_outs.append(x) for i in range(len(down_outs)): if i != 0: y = down_outs[self.depth - i] skip_module = self.skip_seq[self.depth - i] y = skip_module(y) if (y is not None) and (self.merge_type == "add"): x = x + y if i != len(down_outs) - 1: up_module = self.up_seq[self.depth - 1 - i] x = up_module(x) if self.return_first_skip: return x, y else: return x class SesquialteralHourglass(nn.Module): """ A sesquialteral hourglass block. Parameters: ---------- down1_seq : nn.Sequential The first down modules as sequential. skip1_seq : nn.Sequential The first skip connection modules as sequential. up_seq : nn.Sequential Up modules as sequential. skip2_seq : nn.Sequential The second skip connection modules as sequential. down2_seq : nn.Sequential The second down modules as sequential. merge_type : str, default 'con' Type of concatenation of up and skip outputs. """ def __init__(self, down1_seq, skip1_seq, up_seq, skip2_seq, down2_seq, merge_type="cat"): super(SesquialteralHourglass, self).__init__() assert (len(down1_seq) == len(up_seq)) assert (len(down1_seq) == len(down2_seq)) assert (len(skip1_seq) == len(skip2_seq)) assert (len(down1_seq) == len(skip1_seq) - 1) assert (merge_type in ["cat", "add"]) self.merge_type = merge_type self.depth = len(down1_seq) self.down1_seq = down1_seq self.skip1_seq = skip1_seq self.up_seq = up_seq self.skip2_seq = skip2_seq self.down2_seq = down2_seq def _merge(self, x, y): if y is not None: if self.merge_type == "cat": x = torch.cat((x, y), dim=1) elif self.merge_type == "add": x = x + y return x def forward(self, x, **kwargs): y = self.skip1_seq[0](x) skip1_outs = [y] for i in range(self.depth): x = self.down1_seq[i](x) y = self.skip1_seq[i + 1](x) skip1_outs.append(y) x = skip1_outs[self.depth] y = self.skip2_seq[0](x) skip2_outs = [y] for i in range(self.depth): x = self.up_seq[i](x) y = skip1_outs[self.depth - 1 - i] x = self._merge(x, y) y = self.skip2_seq[i + 1](x) skip2_outs.append(y) x = self.skip2_seq[self.depth](x) for i in range(self.depth): x = self.down2_seq[i](x) y = skip2_outs[self.depth - 1 - i] x = self._merge(x, y) return x class MultiOutputSequential(nn.Sequential): """ A sequential container with multiple outputs. Modules will be executed in the order they are added. """ def __init__(self): super(MultiOutputSequential, self).__init__() def forward(self, x): outs = [] for module in self._modules.values(): x = module(x) if hasattr(module, "do_output") and module.do_output: outs.append(x) return [x] + outs class Flatten(nn.Module): """ Simple flatten module. """ def forward(self, x): return x.view(x.size(0), -1)
[ "torch.sigmoid", "torch.cat", "torch.nn.functional.relu6", "torch.nn.Sigmoid", "torch.nn.BatchNorm2d", "torch.split", "torch.transpose", "torch.nn.ReLU", "torch.nn.ReLU6", "torch.nn.Conv2d", "torch.nn.InstanceNorm2d", "torch.nn.AdaptiveAvgPool2d" ]
0.4.0
HyperGAN/imgclsmob
88b9776a5a927dc9a54e85e31978c4a9ec5ecbf3
1.6
###################################### #######ORIGINAL IMPLEMENTATION######## ###################################### # FROM https://github.com/kunhe/FastAP-metric-learning/blob/master/pytorch/FastAP_loss.py # This code is copied directly from the official implementation # so that we can make sure our implementation returns the same result. # It's copied under the MIT license. import torch from torch.autograd import Variable def softBinning(D, mid, Delta): y = 1 - torch.abs(D - mid) / Delta return torch.max(torch.tensor([0], dtype=D.dtype).to(D.device), y) def dSoftBinning(D, mid, Delta): side1 = (D > (mid - Delta)).type(D.dtype) side2 = (D <= mid).type(D.dtype) ind1 = side1 * side2 # .type(torch.uint8) side1 = (D > mid).type(D.dtype) side2 = (D <= (mid + Delta)).type(D.dtype) ind2 = side1 * side2 # .type(torch.uint8) return (ind1 - ind2) / Delta ###################################### #######ORIGINAL IMPLEMENTATION######## ###################################### # FROM https://github.com/kunhe/FastAP-metric-learning/blob/master/pytorch/FastAP_loss.py # This code is copied directly from the official implementation # so that we can make sure our implementation returns the same result. # It's copied under the MIT license. class OriginalImplementationFastAP(torch.autograd.Function): """ FastAP - autograd function definition This class implements the FastAP loss from the following paper: "Deep Metric Learning to Rank", F. Cakir, K. He, X. Xia, B. Kulis, S. Sclaroff. CVPR 2019 NOTE: Given a input batch, FastAP does not sample triplets from it as it's not a triplet-based method. Therefore, FastAP does not take a Sampler as input. Rather, we specify how the input batch is selected. """ @staticmethod def forward(ctx, input, target, num_bins): """ Args: input: torch.Tensor(N x embed_dim), embedding matrix target: torch.Tensor(N x 1), class labels num_bins: int, number of bins in distance histogram """ N = target.size()[0] assert input.size()[0] == N, "Batch size donesn't match!" # 1. get affinity matrix Y = target.unsqueeze(1) Aff = 2 * (Y == Y.t()).type(input.dtype) - 1 Aff.masked_fill_( torch.eye(N, N).bool().to(input.device), 0 ) # set diagonal to 0 I_pos = (Aff > 0).type(input.dtype).to(input.device) I_neg = (Aff < 0).type(input.dtype).to(input.device) N_pos = torch.sum(I_pos, 1) # 2. compute distances from embeddings # squared Euclidean distance with range [0,4] dist2 = 2 - 2 * torch.mm(input, input.t()) # 3. estimate discrete histograms Delta = torch.tensor(4.0 / num_bins).to(input.device) Z = torch.linspace(0.0, 4.0, steps=num_bins + 1).to(input.device) L = Z.size()[0] h_pos = torch.zeros((N, L), dtype=input.dtype).to(input.device) h_neg = torch.zeros((N, L), dtype=input.dtype).to(input.device) for l in range(L): pulse = softBinning(dist2, Z[l], Delta) h_pos[:, l] = torch.sum(pulse * I_pos, 1) h_neg[:, l] = torch.sum(pulse * I_neg, 1) H_pos = torch.cumsum(h_pos, 1) h = h_pos + h_neg H = torch.cumsum(h, 1) # 4. compate FastAP FastAP = h_pos * H_pos / H FastAP[torch.isnan(FastAP) | torch.isinf(FastAP)] = 0 FastAP = torch.sum(FastAP, 1) / N_pos FastAP = FastAP[~torch.isnan(FastAP)] loss = 1 - torch.mean(FastAP) # 6. save for backward ctx.save_for_backward(input, target) ctx.Z = Z ctx.Delta = Delta ctx.dist2 = dist2 ctx.I_pos = I_pos ctx.I_neg = I_neg ctx.h_pos = h_pos ctx.h_neg = h_neg ctx.H_pos = H_pos ctx.N_pos = N_pos ctx.h = h ctx.H = H ctx.L = torch.tensor(L) return loss @staticmethod def backward(ctx, grad_output): input, target = ctx.saved_tensors Z = Variable(ctx.Z, requires_grad=False) Delta = Variable(ctx.Delta, requires_grad=False) dist2 = Variable(ctx.dist2, requires_grad=False) I_pos = Variable(ctx.I_pos, requires_grad=False) I_neg = Variable(ctx.I_neg, requires_grad=False) h = Variable(ctx.h, requires_grad=False) H = Variable(ctx.H, requires_grad=False) h_pos = Variable(ctx.h_pos, requires_grad=False) h_neg = Variable(ctx.h_neg, requires_grad=False) H_pos = Variable(ctx.H_pos, requires_grad=False) N_pos = Variable(ctx.N_pos, requires_grad=False) L = Z.size()[0] H2 = torch.pow(H, 2) H_neg = H - H_pos # 1. d(FastAP)/d(h+) LTM1 = torch.tril(torch.ones(L, L), -1) # lower traingular matrix tmp1 = h_pos * H_neg / H2 tmp1[torch.isnan(tmp1)] = 0 d_AP_h_pos = (H_pos * H + h_pos * H_neg) / H2 d_AP_h_pos = d_AP_h_pos + torch.mm(tmp1, LTM1.cuda()) d_AP_h_pos = d_AP_h_pos / N_pos.repeat(L, 1).t() d_AP_h_pos[torch.isnan(d_AP_h_pos) | torch.isinf(d_AP_h_pos)] = 0 # 2. d(FastAP)/d(h-) LTM0 = torch.tril(torch.ones(L, L), 0) # lower triangular matrix tmp2 = -h_pos * H_pos / H2 tmp2[torch.isnan(tmp2)] = 0 d_AP_h_neg = torch.mm(tmp2, LTM0.cuda()) d_AP_h_neg = d_AP_h_neg / N_pos.repeat(L, 1).t() d_AP_h_neg[torch.isnan(d_AP_h_neg) | torch.isinf(d_AP_h_neg)] = 0 # 3. d(FastAP)/d(embedding) d_AP_x = 0 for l in range(L): dpulse = dSoftBinning(dist2, Z[l], Delta) dpulse[torch.isnan(dpulse) | torch.isinf(dpulse)] = 0 ddp = dpulse * I_pos ddn = dpulse * I_neg alpha_p = torch.diag(d_AP_h_pos[:, l]) # N*N alpha_n = torch.diag(d_AP_h_neg[:, l]) Ap = torch.mm(ddp, alpha_p) + torch.mm(alpha_p, ddp) An = torch.mm(ddn, alpha_n) + torch.mm(alpha_n, ddn) # accumulate gradient d_AP_x = d_AP_x - torch.mm(input.t(), (Ap + An)) grad_input = -d_AP_x return grad_input.t(), None, None ###################################### #######ORIGINAL IMPLEMENTATION######## ###################################### # FROM https://github.com/kunhe/FastAP-metric-learning/blob/master/pytorch/FastAP_loss.py # This code is copied directly from the official implementation # so that we can make sure our implementation returns the same result. # It's copied under the MIT license. class OriginalImplementationFastAPLoss(torch.nn.Module): """ FastAP - loss layer definition This class implements the FastAP loss from the following paper: "Deep Metric Learning to Rank", F. Cakir, K. He, X. Xia, B. Kulis, S. Sclaroff. CVPR 2019 """ def __init__(self, num_bins=10): super(OriginalImplementationFastAPLoss, self).__init__() self.num_bins = num_bins def forward(self, batch, labels): return OriginalImplementationFastAP.apply(batch, labels, self.num_bins) ### Testing this library's implementation ### import unittest from pytorch_metric_learning.losses import FastAPLoss from .. import TEST_DEVICE, TEST_DTYPES from ..zzz_testing_utils.testing_utils import angle_to_coord class TestFastAPLoss(unittest.TestCase): def test_fast_ap_loss(self): num_bins = 5 loss_func = FastAPLoss(num_bins) original_loss_func = OriginalImplementationFastAPLoss(num_bins) ref_emb = torch.randn(32, 32) ref_labels = torch.randint(0, 10, (32,)) for dtype in TEST_DTYPES: embedding_angles = torch.arange(0, 180) embeddings = torch.tensor( [angle_to_coord(a) for a in embedding_angles], requires_grad=True, dtype=dtype, ).to( TEST_DEVICE ) # 2D embeddings labels = torch.randint(low=0, high=10, size=(180,)).to(TEST_DEVICE) loss = loss_func(embeddings, labels) loss.backward() original_loss = original_loss_func( torch.nn.functional.normalize(embeddings), labels ) rtol = 1e-2 if dtype == torch.float16 else 1e-5 self.assertTrue(torch.isclose(loss, original_loss, rtol=rtol)) # fastap doesn't support ref_emb self.assertRaises( ValueError, lambda: loss_func( embeddings, labels, ref_emb=ref_emb, ref_labels=ref_labels ), )
[ "torch.isnan", "torch.ones", "torch.eye", "torch.sum", "torch.autograd.Variable", "torch.abs", "torch.randint", "torch.tensor", "torch.zeros", "torch.linspace", "torch.mm", "torch.randn", "torch.isclose", "torch.isinf", "torch.cumsum", "torch.pow", "torch.nn.functional.normalize", "torch.arange", "torch.diag", "torch.mean" ]
1.6.0
cwkeam/pytorch-metric-learning
63e4ecb781c5735ad714f61a3eecc55f72496905
1.6
import unittest import numpy as np import torch from pytorch_metric_learning.distances import CosineSimilarity, LpDistance from pytorch_metric_learning.miners import BatchHardMiner from .. import TEST_DEVICE, TEST_DTYPES, WITH_COLLECT_STATS from ..zzz_testing_utils.testing_utils import angle_to_coord class TestBatchHardMiner(unittest.TestCase): @classmethod def setUpClass(self): self.dist_miner = BatchHardMiner( distance=LpDistance(normalize_embeddings=False) ) self.normalized_dist_miner = BatchHardMiner( distance=LpDistance(normalize_embeddings=True) ) self.normalized_dist_miner_squared = BatchHardMiner( distance=LpDistance(normalize_embeddings=True, power=2) ) self.sim_miner = BatchHardMiner(distance=CosineSimilarity()) self.labels = torch.LongTensor([0, 0, 1, 1, 0, 2, 1, 1, 1]) self.correct_a = torch.LongTensor([0, 1, 2, 3, 4, 6, 7, 8]).to(TEST_DEVICE) self.correct_p = torch.LongTensor([4, 4, 8, 8, 0, 2, 2, 2]).to(TEST_DEVICE) self.correct_n = [ torch.LongTensor([2, 2, 1, 4, 3, 5, 5, 5]).to(TEST_DEVICE), torch.LongTensor([2, 2, 1, 4, 5, 5, 5, 5]).to(TEST_DEVICE), ] @classmethod def tearDown(self): torch.cuda.empty_cache() def test_dist_mining(self): for dtype in TEST_DTYPES: embeddings = torch.arange(9).type(dtype).unsqueeze(1).to(TEST_DEVICE) a, p, n = self.dist_miner(embeddings, self.labels) self.helper(a, p, n) if WITH_COLLECT_STATS: self.assertTrue(self.dist_miner.hardest_pos_pair == 6) self.assertTrue(self.dist_miner.hardest_neg_pair == 1) def test_normalized_dist_mining(self): for dtype in TEST_DTYPES: angles = [0, 20, 40, 60, 80, 100, 120, 140, 160] embeddings = torch.tensor( [angle_to_coord(a, normalized=True) for a in angles], dtype=dtype ).to(TEST_DEVICE) a, p, n = self.normalized_dist_miner(embeddings, self.labels) self.helper(a, p, n) correct_hardest_pos_pair = torch.sqrt( torch.sum((embeddings[2] - embeddings[8]) ** 2) ).item() correct_hardest_neg_pair = torch.sqrt( torch.sum((embeddings[1] - embeddings[2]) ** 2) ).item() places = 2 if dtype == torch.float16 else 5 if WITH_COLLECT_STATS: self.assertAlmostEqual( self.normalized_dist_miner.hardest_pos_pair, correct_hardest_pos_pair, places=places, ) self.assertAlmostEqual( self.normalized_dist_miner.hardest_neg_pair, correct_hardest_neg_pair, places=places, ) def test_normalized_dist_squared_mining(self): for dtype in TEST_DTYPES: angles = [0, 20, 40, 60, 80, 100, 120, 140, 160] embeddings = torch.tensor( [angle_to_coord(a, normalized=True) for a in angles], dtype=dtype ).to(TEST_DEVICE) a, p, n = self.normalized_dist_miner_squared(embeddings, self.labels) self.helper(a, p, n) correct_hardest_pos_pair = torch.sum( (embeddings[2] - embeddings[8]) ** 2 ).item() correct_hardest_neg_pair = torch.sum( (embeddings[1] - embeddings[2]) ** 2 ).item() places = 2 if dtype == torch.float16 else 5 if WITH_COLLECT_STATS: self.assertAlmostEqual( self.normalized_dist_miner_squared.hardest_pos_pair, correct_hardest_pos_pair, places=places, ) self.assertAlmostEqual( self.normalized_dist_miner_squared.hardest_neg_pair, correct_hardest_neg_pair, places=places, ) def test_sim_mining(self): for dtype in TEST_DTYPES: angles = [0, 20, 40, 60, 80, 100, 120, 140, 160] embeddings = torch.tensor( [angle_to_coord(a, normalized=True) for a in angles], dtype=dtype ).to(TEST_DEVICE) a, p, n = self.sim_miner(embeddings, self.labels) self.helper(a, p, n) places = 2 if dtype == torch.float16 else 5 if WITH_COLLECT_STATS: self.assertAlmostEqual( self.sim_miner.hardest_pos_pair, np.cos(np.radians(120)), places=places, ) self.assertAlmostEqual( self.sim_miner.hardest_neg_pair, np.cos(np.radians(20)), places=places, ) def helper(self, a, p, n): self.assertTrue(torch.equal(a, self.correct_a)) self.assertTrue(torch.equal(p, self.correct_p)) self.assertTrue(any(torch.equal(n, cn) for cn in self.correct_n)) def test_empty_output(self): batch_size = 32 for dtype in TEST_DTYPES: embeddings = torch.randn(batch_size, 64).type(dtype).to(TEST_DEVICE) labels = torch.arange(batch_size) for miner in [ self.dist_miner, self.normalized_dist_miner, self.normalized_dist_miner_squared, self.sim_miner, ]: a, p, n = miner(embeddings, labels) self.assertTrue(len(a) == 0) self.assertTrue(len(p) == 0) self.assertTrue(len(n) == 0) if WITH_COLLECT_STATS: self.assertTrue(miner.hardest_pos_pair == 0) self.assertTrue(miner.hardest_neg_pair == 0) self.assertTrue(miner.hardest_triplet == 0)
[ "torch.arange", "torch.cuda.empty_cache", "torch.LongTensor", "torch.equal", "torch.randn", "torch.sum" ]
1.6.0
cwkeam/pytorch-metric-learning
63e4ecb781c5735ad714f61a3eecc55f72496905
1.6
import math import numpy as np import scipy.special import torch from ..distances import CosineSimilarity from ..utils import common_functions as c_f from ..utils import loss_and_miner_utils as lmu from .base_metric_loss_function import BaseMetricLossFunction from .mixins import WeightRegularizerMixin class LargeMarginSoftmaxLoss(WeightRegularizerMixin, BaseMetricLossFunction): """ Implementation of https://arxiv.org/pdf/1612.02295.pdf """ def __init__(self, num_classes, embedding_size, margin=4, scale=1, **kwargs): super().__init__(**kwargs) c_f.assert_distance_type(self, CosineSimilarity) self.margin = margin self.num_classes = num_classes self.scale = scale self.add_to_recordable_attributes( list_of_names=["num_classes", "margin", "scale"], is_stat=False ) self.add_to_recordable_attributes(name="avg_angle", is_stat=True) self.init_margin() self.W = torch.nn.Parameter(torch.Tensor(embedding_size, num_classes)) self.weight_init_func(self.W) self.cross_entropy = torch.nn.CrossEntropyLoss(reduction="none") def init_margin(self): self.margin = int(self.margin) self.max_n = self.margin // 2 ## For the trigonometric multiple-angle formula ## self.n_range = torch.tensor([n for n in range(0, self.max_n + 1)]) self.margin_choose_n = torch.tensor( [scipy.special.binom(self.margin, 2 * n) for n in self.n_range] ) self.cos_powers = torch.tensor([self.margin - (2 * n) for n in self.n_range]) self.alternating = torch.tensor([(-1) ** n for n in self.n_range]) def get_cos_with_margin(self, cosine): cosine = cosine.unsqueeze(1) for attr in ["n_range", "margin_choose_n", "cos_powers", "alternating"]: setattr(self, attr, c_f.to_device(getattr(self, attr), cosine)) cos_powered = cosine**self.cos_powers sin_powered = (1 - cosine**2) ** self.n_range terms = ( self.alternating * self.margin_choose_n * cos_powered * sin_powered ) # Equation 7 in the paper return torch.sum(terms, dim=1) def get_cosine(self, embeddings): return self.distance(embeddings, self.W.t()) def get_angles(self, cosine_of_target_classes): angles = torch.acos(torch.clamp(cosine_of_target_classes, -1, 1)) if self.collect_stats: with torch.no_grad(): self.avg_angle = np.degrees(torch.mean(angles).item()) return angles def get_target_mask(self, embeddings, labels): batch_size = labels.size(0) mask = torch.zeros( batch_size, self.num_classes, dtype=embeddings.dtype, device=embeddings.device, ) mask[torch.arange(batch_size), labels] = 1 return mask def modify_cosine_of_target_classes(self, cosine_of_target_classes): cos_with_margin = self.get_cos_with_margin(cosine_of_target_classes) angles = self.get_angles(cosine_of_target_classes) with torch.no_grad(): k = ( angles / (math.pi / self.margin) ).floor() # Equation 6: angles needs to be between [k*pi/m and (k+1)*pi/m] return ((-1) ** k) * cos_with_margin - (2 * k) def scale_logits(self, logits, embeddings): embedding_norms = self.distance.get_norm(embeddings) weight_norms = self.distance.get_norm(self.W, dim=0) product_of_magnitudes = weight_norms.unsqueeze(0) * embedding_norms.unsqueeze(1) return logits * product_of_magnitudes * self.scale def cast_types(self, dtype, device): self.W.data = c_f.to_device(self.W.data, device=device, dtype=dtype) self.n_range = c_f.to_device(self.n_range, device=device, dtype=dtype) self.margin_choose_n = c_f.to_device( self.margin_choose_n, device=device, dtype=dtype ) self.cos_powers = c_f.to_device(self.cos_powers, device=device, dtype=dtype) self.alternating = c_f.to_device(self.alternating, device=device, dtype=dtype) def compute_loss(self, embeddings, labels, indices_tuple, ref_emb, ref_labels): c_f.ref_not_supported(embeddings, labels, ref_emb, ref_labels) dtype, device = embeddings.dtype, embeddings.device self.cast_types(dtype, device) miner_weights = lmu.convert_to_weights(indices_tuple, labels, dtype=dtype) mask = self.get_target_mask(embeddings, labels) cosine = self.get_cosine(embeddings) cosine_of_target_classes = cosine[mask == 1] modified_cosine_of_target_classes = self.modify_cosine_of_target_classes( cosine_of_target_classes ) diff = (modified_cosine_of_target_classes - cosine_of_target_classes).unsqueeze( 1 ) logits = cosine + (mask * diff) logits = self.scale_logits(logits, embeddings) unweighted_loss = self.cross_entropy(logits, labels) miner_weighted_loss = unweighted_loss * miner_weights loss_dict = { "loss": { "losses": miner_weighted_loss, "indices": c_f.torch_arange_from_size(embeddings), "reduction_type": "element", } } self.add_weight_regularization_to_loss_dict(loss_dict, self.W.t()) return loss_dict def get_default_distance(self): return CosineSimilarity() def get_logits(self, embeddings): logits = self.get_cosine(embeddings) return self.scale_logits(logits, embeddings)
[ "torch.zeros", "torch.arange", "torch.no_grad", "torch.clamp", "torch.tensor", "torch.mean", "torch.Tensor", "torch.nn.CrossEntropyLoss", "torch.sum" ]
1.6.0
cwkeam/pytorch-metric-learning
63e4ecb781c5735ad714f61a3eecc55f72496905
1.6
import unittest import torch from pytorch_metric_learning.miners import EmbeddingsAlreadyPackagedAsTriplets from pytorch_metric_learning.samplers import FixedSetOfTriplets from pytorch_metric_learning.utils import common_functions as c_f class TestFixedSetOfTriplet(unittest.TestCase): def test_fixed_set_of_triplets_with_batch_size(self): miner = EmbeddingsAlreadyPackagedAsTriplets() for batch_size in [3, 33, 99]: batch_of_fake_embeddings = torch.randn(batch_size, 2) for num_labels in [2, 10, 55]: for num_triplets in [100, 999, 10000]: fake_embeddings = torch.randn(10000, 2) labels = torch.randint(low=0, high=num_labels, size=(10000,)) dataset = c_f.EmbeddingDataset(fake_embeddings, labels) sampler = FixedSetOfTriplets(labels, num_triplets) iterator = iter(sampler) for _ in range(1000): x = [] for _ in range(batch_size): iterator, curr_batch = c_f.try_next_on_generator( iterator, sampler ) x.append(curr_batch) curr_labels = labels[x] a, p, n = miner(batch_of_fake_embeddings, curr_labels) self.assertTrue(len(a) == batch_size // 3) self.assertTrue(torch.all(curr_labels[a] == curr_labels[p])) self.assertTrue(torch.all(curr_labels[a] != curr_labels[n])) dataloader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, sampler=sampler, drop_last=True ) for _ in range(2): for (embeddings, curr_labels) in dataloader: a, p, n = miner(batch_of_fake_embeddings, curr_labels) self.assertTrue(len(a) == batch_size // 3) self.assertTrue(torch.all(curr_labels[a] == curr_labels[p])) self.assertTrue(torch.all(curr_labels[a] != curr_labels[n])) if __name__ == "__main__": unittest.main()
[ "torch.randint", "torch.all", "torch.randn", "torch.utils.data.DataLoader" ]
1.6.0
cwkeam/pytorch-metric-learning
63e4ecb781c5735ad714f61a3eecc55f72496905
1.8
import torch import torch.nn as nn class ImprovedSNL(nn.Module): def __init__(self, in_channels, transfer_channels, stage_num=2): super(ImprovedSNL, self).__init__() self.in_channels = in_channels self.transfer_channels = transfer_channels self.stage_num = stage_num self.transform_t = nn.Conv2d(in_channels, transfer_channels, kernel_size=1, stride=1, bias=False) self.transform_p = nn.Conv2d(in_channels, transfer_channels, kernel_size=1, stride=1, bias=False) self.row_transform = nn.Conv2d(in_channels, transfer_channels, kernel_size=1, stride=1, bias=False) self.column_transform = nn.Conv2d(in_channels, transfer_channels, kernel_size=1, stride=1, bias=False) self.w1 = nn.Conv2d(transfer_channels, in_channels, kernel_size=1, stride=1, bias=False) self.w2 = nn.Conv2d(transfer_channels, in_channels, kernel_size=1, stride=1, bias=False) self.bn = nn.BatchNorm2d(in_channels) self._init_params() def _init_params(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) def getAtt(self, x): t = self.transform_t(x) p = self.transform_p(x) b, c, h, w = t.size() t = t.view(b, c, -1).permute(0, 2, 1) p = p.view(b, c, -1) m = torch.bmm(torch.relu(t), torch.relu(p)) m += m.permute(0, 2, 1) m_hat = m / 2 degree = torch.sum(m_hat, dim=2) degree[degree != 0] = torch.sqrt(1.0 / degree[degree != 0]) affinity_matrix = m_hat * degree.unsqueeze(1) affinity_matrix *= degree.unsqueeze(2) return affinity_matrix def stage(self, x): affinity_matrix = self.getAtt(x) column_features = self.column_transform(x) b, c, h, w = column_features.size() column_features = column_features.view(b, c, -1) column_features = torch.bmm(column_features, affinity_matrix).contiguous().view(b,c,h,w) column_features = self.w1(column_features) row_features = self.row_transform(x) b, c, h, w = row_features.size() row_features = row_features.view(b, c, -1).permute(0, 2, 1) row_features = torch.bmm(affinity_matrix, row_features).permute(0, 2, 1).contiguous().view(b,c,h,w) row_features = self.w2(row_features) output = column_features + row_features output = self.bn(output) output = output + x return output def forward(self, x): for stage in range(self.stage_num): x = self.stage(x) return x
[ "torch.sqrt", "torch.relu", "torch.nn.init.constant_", "torch.nn.BatchNorm2d", "torch.nn.init.kaiming_normal_", "torch.bmm", "torch.nn.Conv2d", "torch.nn.init.normal_", "torch.sum" ]
1.8.1
ustbjdl1021/improved_snl_unet
7f7bf092153e1a535337b80bd1b673eff3ddec52
1.0
from typing import Dict, List import torch import torch.nn.functional as F def compute_loss(states: torch.Tensor, actions: torch.Tensor, next_states: torch.Tensor, log_probs_old: torch.Tensor, ext_returns: torch.Tensor, ext_advantages: torch.Tensor, std_ext_advantages: torch.Tensor, int_returns: torch.Tensor, int_advantages: torch.Tensor, std_int_advantages: torch.Tensor, target_random_features: torch.Tensor, states_mean: torch.Tensor, states_std: torch.Tensor, model: torch.nn.Module, pred_intr_model: torch.nn.Module, intrinsic_reward_ratio: float, ratio_clip: float, entropy_weight: float, value_weight: float, rnd_weight: float, rnd_obs_clip: float, summary_writer: object = None, iteration_count: int = 0, rnn_states: Dict[str, Dict[str, List[torch.Tensor]]] = None) -> torch.Tensor: ''' Computes the loss of an actor critic model using the loss function from equation (9) in the paper: Proximal Policy Optimization Algorithms: https://arxiv.org/abs/1707.06347 :param states: Dimension: batch_size x state_size: States visited by the agent. :param actions: Dimension: batch_size x action_size. Actions which the agent took at every state in :param states: with the same index. :param log_probs_old: Dimension: batch_size x 1. Log probability of taking the action with the same index in :param actions:. Used to compute the policy probability ratio. Refer to original paper equation (6) :param ext_returns: Dimension: batch_size x 1. Empirical returns obtained via calculating the discounted return from the environment's rewards :param ext_advantages: Dimension: batch_size x 1. Estimated advantage function for every state and action in :param states: and :param actions: (respectively) with the same index. :param std_ext_advantages: Dimension: batch_size x 1. Estimated standardized advantage function for every state and action in :param states: and :param actions: (respectively) with the same index. :param int_returns: Dimension: batch_size x 1. Empirical intrinsic returns obtained via calculating the discounted intrinsic return from the intrinsic rewards. :param int_advantages: Dimension: batch_size x 1. Estimated intrisinc advantage function for every state and action in :param states: and :param actions: (respectively) with the same index. :param std_int_advantages: Dimension: batch_size x 1. Estimated standardized intrinsic advantage function for every state and action in :param states: and :param actions: (respectively) with the same index. :param target_random_features: target random features used to compute the intrinsic rewards. :param states_mean: mean over the previous training step's states. :param states_std: standard deviation over the previous training step's states. :param model: torch.nn.Module used to compute the policy probability ratio as specified in equation (6) of original paper. :param predict_intr_model: intrinsic reward prediction model. :param intrinsic_reward_ratio: ratio of intrinsic reward to extrinsic reward. :param ratio_clip: Epsilon value used to clip the policy ratio's value. This parameter acts as the radius of the Trust Region. Refer to original paper equation (7). :param entropy_weight: Coefficient to be used for the entropy bonus for the loss function. Refer to original paper eq (9) :param value_weight: Coefficient to be used for the value loss for the loss function. Refer to original paper eq (9) :param rnd_weight: Coefficient to be used for the rnd loss for the loss function. :param rnn_states: The :param model: can be made up of different submodules. Some of these submodules will feature an LSTM architecture. This parameter is a dictionary which maps recurrent submodule names to a dictionary which contains 2 lists of tensors, each list corresponding to the 'hidden' and 'cell' states of the LSTM submodules. These tensors are used by the :param model: when calculating the policy probability ratio. ''' advantages = ext_advantages + intrinsic_reward_ratio*int_advantages std_advantages = std_ext_advantages + intrinsic_reward_ratio*std_int_advantages prediction = model(states, actions, rnn_states=rnn_states) ratio = torch.exp((prediction['log_pi_a'] - log_probs_old)) obj = ratio * std_advantages obj_clipped = torch.clamp(ratio, 1.0 - ratio_clip, 1.0 + ratio_clip) * std_advantages policy_val = -torch.min(obj, obj_clipped).mean() entropy_val = prediction['ent'].mean() policy_loss = policy_val - entropy_weight * entropy_val # L^{clip} and L^{S} from original paper #policy_loss = -torch.min(obj, obj_clipped).mean() - entropy_weight * prediction['ent'].mean() # L^{clip} and L^{S} from original paper # Random Network Distillation loss: norm_next_states = (next_states-states_mean) / (states_std+1e-8) if rnd_obs_clip > 1e-1: norm_next_states = torch.clamp( norm_next_states, -rnd_obs_clip, rnd_obs_clip) pred_random_features = pred_intr_model(norm_next_states) # Clamping: #pred_random_features = torch.clamp(pred_random_features, -1e20, 1e20) #target_random_features = torch.clamp(target_random_features, -1e20, 1e20) # Softmax: #pred_random_features = F.softmax(pred_random_features) # Losses: #int_reward_loss = torch.nn.functional.smooth_l1_loss(target_random_features.detach(), pred_random_features) int_reward_loss = torch.nn.functional.mse_loss( pred_random_features, target_random_features.detach()) #ext_returns = torch.clamp(ext_returns, -1e10, 1e10) #int_returns = torch.clamp(int_returns, -1e10, 1e10) #prediction['v'] = torch.clamp(prediction['v'], -1e10, 1e10) #prediction['int_v'] = torch.clamp(prediction['int_v'], -1e10, 1e10) #ext_v_loss = torch.nn.functional.smooth_l1_loss(ext_returns, prediction['v']) #int_v_loss = torch.nn.functional.smooth_l1_loss(int_returns, prediction['int_v']) ext_v_loss = torch.nn.functional.mse_loss(input=prediction['v'], target=ext_returns) int_v_loss = torch.nn.functional.mse_loss(input=prediction['int_v'], target=int_returns) value_loss = (ext_v_loss + int_v_loss) #value_loss = ext_v_loss rnd_loss = int_reward_loss total_loss = policy_loss + rnd_weight * rnd_loss + value_weight * value_loss #total_loss = policy_loss + value_weight * value_loss if summary_writer is not None: summary_writer.add_scalar('Training/RatioMean', ratio.mean().cpu().item(), iteration_count) #summary_writer.add_histogram('Training/Ratio', ratio.cpu(), iteration_count) summary_writer.add_scalar('Training/ExtAdvantageMean', ext_advantages.mean().cpu().item(), iteration_count) summary_writer.add_scalar('Training/IntAdvantageMean', int_advantages.mean().cpu().item(), iteration_count) summary_writer.add_scalar('Training/AdvantageMean', advantages.mean().cpu().item(), iteration_count) #summary_writer.add_histogram('Training/ExtAdvantage', ext_advantages.cpu(), iteration_count) #summary_writer.add_histogram('Training/IntAdvantage', int_advantages.cpu(), iteration_count) #summary_writer.add_histogram('Training/Advantage', advantages.cpu(), iteration_count) summary_writer.add_scalar('Training/RNDLoss', int_reward_loss.cpu().item(), iteration_count) summary_writer.add_scalar('Training/ExtVLoss', ext_v_loss.cpu().item(), iteration_count) summary_writer.add_scalar('Training/IntVLoss', int_v_loss.cpu().item(), iteration_count) summary_writer.add_scalar('Training/MeanVValues', prediction['v'].cpu().mean().item(), iteration_count) summary_writer.add_scalar('Training/MeanReturns', ext_returns.cpu().mean().item(), iteration_count) summary_writer.add_scalar('Training/StdVValues', prediction['v'].cpu().std().item(), iteration_count) summary_writer.add_scalar('Training/StdReturns', ext_returns.cpu().std().item(), iteration_count) summary_writer.add_scalar('Training/MeanIntVValues', prediction['int_v'].cpu().mean().item(), iteration_count) summary_writer.add_scalar('Training/MeanIntReturns', int_returns.cpu().mean().item(), iteration_count) summary_writer.add_scalar('Training/StdIntVValues', prediction['int_v'].cpu().std().item(), iteration_count) summary_writer.add_scalar('Training/StdIntReturns', int_returns.cpu().std().item(), iteration_count) summary_writer.add_scalar('Training/ValueLoss', value_loss.cpu().item(), iteration_count) summary_writer.add_scalar('Training/PolicyVal', policy_val.cpu().item(), iteration_count) summary_writer.add_scalar('Training/EntropyVal', entropy_val.cpu().item(), iteration_count) summary_writer.add_scalar('Training/PolicyLoss', policy_loss.cpu().item(), iteration_count) summary_writer.add_scalar('Training/TotalLoss', total_loss.cpu().item(), iteration_count) return total_loss
[ "torch.nn.functional.mse_loss", "torch.exp", "torch.min", "torch.clamp" ]
1.0.1
KnwSondess/Regym
825c7dacf955a3e2f6c658c0ecb879a0ca036c1a
1.0
import regym from regym.rl_algorithms.agents import build_PPO_Agent from regym.rl_loops.singleagent_loops import rl_loop from regym.environments import parse_environment from test_fixtures import ppo_rnd_config_dict_ma from tqdm import tqdm from tensorboardX import SummaryWriter import os import math import copy import random import torch import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as anim import time offset_worker_id = 50 gif_interval = 100 def make_gif(trajectory, episode=0, actor_idx=0, path='./'): fig = plt.figure() imgs = [] for state in trajectory: if state.shape[-1] == 12: # handled Stacked images... per_image_first_channel_indices = range(0,state.shape[-1]+1,3) ims = [ state[...,idx_begin:idx_end] for idx_begin, idx_end in zip(per_image_first_channel_indices,per_image_first_channel_indices[1:])] for img in ims: imgs.append( img) else: imgs.append(state) for idx,img in enumerate(imgs): imgs[idx] = [plt.imshow(img, animated=True)] gif = anim.ArtistAnimation(fig, imgs, interval=200, blit=True, repeat_delay=None) path = os.path.join(path, f'./traj-ep{episode}-actor{actor_idx}.gif') gif.save(path, dpi=None, writer='imagemagick') #plt.show() plt.close(fig) def make_gif_with_graph(trajectory, data, episode=0, actor_idx=0, path='./'): fig = plt.figure() imgs = [] gd = [] for idx, (state, d) in enumerate(zip(trajectory,data)): if state.shape[-1] == 12: # handled Stacked images... per_image_first_channel_indices = range(0,state.shape[-1]+1,3) ims = [ state[...,idx_begin:idx_end] for idx_begin, idx_end in zip(per_image_first_channel_indices,per_image_first_channel_indices[1:])] for img in ims: imgs.append( img) gd.append(d) else: imgs.append(state) gd.append(d) for idx,img in enumerate(imgs): plt.subplot(211) img = plt.imshow(img, animated=True) ax = plt.subplot(212) x = np.arange(0,idx,1) y = np.asarray(gd[:idx]) ax.set_xlim(left=0,right=idx+10) line = ax.plot(x, y, color='blue', marker='o', linestyle='dashed',linewidth=2, markersize=10) imgs[idx] = [img]+line gif = anim.ArtistAnimation(fig, imgs, interval=200, blit=True, repeat_delay=None) path = os.path.join(path, f'./traj-ep{episode}-actor{actor_idx}.gif') gif.save(path, dpi=None, writer='imagemagick') #plt.show() plt.close(fig) def check_path_for_agent(filepath): #filepath = os.path.join(path,filename) agent = None offset_episode_count = 0 if os.path.isfile(filepath): print('==> loading checkpoint {}'.format(filepath)) agent = torch.load(filepath) offset_episode_count = agent.episode_count #setattr(agent, 'episode_count', offset_episode_count) print('==> loaded checkpoint {}'.format(filepath)) return agent, offset_episode_count def update_configs(env_param2range, nbr_actors): env_configs = list() tower_seed = random.choice(env_param2range['tower-seed']) #allowed_floors = random.choice(env_param2range['allowed-floors']) for a_i in range(nbr_actors): env_config = copy.deepcopy(env_param2range) env_config['worker_id'] = a_i+offset_worker_id for k in env_config: if k == 'tower-seed': env_config[k] = tower_seed continue ''' elif k == 'allowed-floors': env_config[k] = allowed_floors continue ''' if isinstance(env_config[k], list): v = random.choice(env_config[k]) env_config[k] = v env_configs.append(env_config) return env_configs def test_train_ppo_rnd(ppo_rnd_config_dict_ma): global gif_interval task = parse_environment('MontezumaRevenge-v0', nbr_parallel_env=ppo_rnd_config_dict_ma['nbr_actor'], nbr_frame_stacking=ppo_rnd_config_dict_ma['nbr_frame_stacking']) #logdir = './test_10floors0_Theme1_LABC-light_gru_ppo_rnd512-InitSqrt2_ObsUP1e5_IntrUP1e5_NonEpisodicGAE_cnn80phi256gru128_a4_b256_h128_1e-4_OTC_frameskip4/' #logdir = './test_10floors0_Theme1_LABC-light_gru_ppo_rnd512-InitSqrt2_ObsUP1e5_IntrUP1e5_NonEpisodicGAE_cnn80phi256gru128_a8_b128_h128_3e-4_OTC_frameskip4/' #logdir = './test_10floors0_Theme1_LABC-light_gru_ppo_rnd512-InitSqrt2_ObsUP1e5_IntrUP1e5_NonEpisodicGAE_NormRetMeanStd_cnn80phi256gru128_a8_b128_h128_3e-4_MZ_frameskip4/' logdir = './test_gru_ppo_rnd512-InitSqrt2_ObsUP1e5_IntrUP1e5_NonEpisodicTrueGAE_NormRetMeanStd_cnn80phi256gru256_ac128_a32_b1024_h128_3e-4_MZ_frameskip4/' #logdir = './test_gif' if not os.path.exists(logdir): os.mkdir(logdir) sum_writer = SummaryWriter(logdir) save_path = os.path.join(logdir,'./ppo_rnd.agent') agent, offset_episode_count = check_path_for_agent(save_path) if agent is None: agent = build_PPO_Agent(config=ppo_rnd_config_dict_ma, task=task, agent_name='PPO_RND_MZ') regym.rl_algorithms.PPO.ppo.summary_writer = sum_writer agent.save_path = save_path nbr_episodes = 1e7 max_episode_length = 1e5 nbr_actors = ppo_rnd_config_dict_ma['nbr_actor'] env_param2range = { 'tower-seed': list(range(-1,101)), #Sets the seed used to generate the tower. -1 corresponds to a random tower on every reset() call. 'starting-floor': 0, #list(range(100)), #Sets the starting floor for the agent on reset(). 'total-floors': 10, #list(range(1, 100)) #Sets the maximum number of possible floors in the tower. 'dense-reward': 0, #(0, 1) #Whether to use the sparse (0) or dense (1) reward function. 'lighting-type': [0, 1, 2], #Whether to use no realtime light (0), a single realtime light with minimal color variations (1), or a realtime light with large color variations (2). 'visual-theme': 0, #[0, 1, 2], #Whether to use only the default-theme (0), the normal ordering or themes (1), or a random theme every floor (2). 'agent-perspective':1, #(0, 1), #Whether to use first-person (0) or third-person (1) perspective for the agent. 'allowed-rooms': 2, #(0, 1, 2), #Whether to use only normal rooms (0), normal and key rooms (1), or normal, key, and puzzle rooms (2). 'allowed-modules': 2, #(0, 1, 2), #Whether to fill rooms with no modules (0), only easy modules (1), or the full range of modules (2). 'allowed-floors': 0, #[0, 1, 2], #Whether to include only straightforward floor layouts (0), layouts that include branching (1), or layouts that include branching and circling (2). 'default-theme': 1 #[0, 1, 2, 3, 4] #Whether to set the default theme to Ancient (0), Moorish (1), Industrial (2), Modern (3), or Future (4). } # PARAMETERS with curriculum since they only include straightforward floors... env_configs = update_configs(env_param2range, nbr_actors) for i in tqdm(range(offset_episode_count, int(nbr_episodes))): trajectory = rl_loop.run_episode_parallel(task.env, agent, training=True, max_episode_length=max_episode_length, )#env_configs=env_configs) total_return = [ sum([ exp[2] for exp in t]) for t in trajectory] mean_total_return = sum( total_return) / len(trajectory) std_ext_return = math.sqrt( sum( [math.pow( r-mean_total_return ,2) for r in total_return]) / len(total_return) ) total_int_return = [ sum([ exp[3] for exp in t]) for t in trajectory] mean_total_int_return = sum( total_int_return) / len(trajectory) std_int_return = math.sqrt( sum( [math.pow( r-mean_total_int_return ,2) for r in total_int_return]) / len(total_int_return) ) for idx, (ext_ret, int_ret) in enumerate(zip(total_return, total_int_return)): sum_writer.add_scalar('Training/TotalReturn', ext_ret, i*len(trajectory)+idx) sum_writer.add_scalar('Training/TotalIntReturn', int_ret, i*len(trajectory)+idx) sum_writer.add_scalar('Training/StdIntReturn', std_int_return, i) sum_writer.add_scalar('Training/StdExtReturn', std_ext_return, i) episode_lengths = [ len(t) for t in trajectory] mean_episode_length = sum( episode_lengths) / len(trajectory) std_episode_length = math.sqrt( sum( [math.pow( l-mean_episode_length ,2) for l in episode_lengths]) / len(trajectory) ) sum_writer.add_scalar('Training/MeanTotalReturn', mean_total_return, i) sum_writer.add_scalar('Training/MeanTotalIntReturn', mean_total_int_return, i) sum_writer.add_scalar('Training/MeanEpisodeLength', mean_episode_length, i) sum_writer.add_scalar('Training/StdEpisodeLength', std_episode_length, i) # Update configs: env_configs = update_configs(env_param2range, nbr_actors) agent.episode_count += 1 if (i+nbr_actors)%gif_interval == 0: for actor_idx in range(nbr_actors): gif_traj = [ exp[0] for exp in trajectory[actor_idx]] gif_data = [ exp[3] for exp in trajectory[actor_idx]] begin = time.time() #make_gif(gif_traj, episode=i, actor_idx=actor_idx, path=logdir) make_gif_with_graph(gif_traj, gif_data, episode=i, actor_idx=actor_idx, path=logdir) end = time.time() eta = end-begin print(f'Time: {eta} sec.') task.env.close() assert trajectory is not None assert isinstance(trajectory, list) if __name__ == '__main__': # https://pytorch.org/docs/master/multiprocessing.html#multiprocessing-cuda-sharing-details torch.multiprocessing.set_start_method('forkserver') test_train_ppo_rnd(ppo_rnd_config_dict_ma())
[ "torch.multiprocessing.set_start_method", "torch.load" ]
1.0.1
KnwSondess/Regym
825c7dacf955a3e2f6c658c0ecb879a0ca036c1a
1.8
import warnings import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule from ..registry import NECKS @NECKS.register_module class FPN(nn.Module): def __init__(self, in_channels, out_channels, num_outs, start_level=0, end_level=-1, add_extra_convs=False, extra_convs_on_inputs=True, relu_before_extra_convs=False, no_norm_on_lateral=False, conv_cfg=None, norm_cfg=None, attention=False, act_cfg=None, upsample_cfg=dict(mode='nearest'), init_cfg=dict(type='Xavier', layer='Conv2d', distribution='uniform'), cfg=None): super(FPN, self).__init__() assert isinstance(in_channels, list) self.in_channels = in_channels self.out_channels = out_channels self.num_ins = len(in_channels) self.num_outs = num_outs self.attention = attention self.relu_before_extra_convs = relu_before_extra_convs self.no_norm_on_lateral = no_norm_on_lateral self.upsample_cfg = upsample_cfg.copy() if end_level == -1: self.backbone_end_level = self.num_ins assert num_outs >= self.num_ins - start_level else: # if end_level < inputs, no extra level is allowed self.backbone_end_level = end_level assert end_level <= len(in_channels) assert num_outs == end_level - start_level self.start_level = start_level self.end_level = end_level self.add_extra_convs = add_extra_convs assert isinstance(add_extra_convs, (str, bool)) if isinstance(add_extra_convs, str): # Extra_convs_source choices: 'on_input', 'on_lateral', 'on_output' assert add_extra_convs in ('on_input', 'on_lateral', 'on_output') elif add_extra_convs: # True if extra_convs_on_inputs: # TODO: deprecate `extra_convs_on_inputs` warnings.simplefilter('once') warnings.warn( '"extra_convs_on_inputs" will be deprecated in v2.9.0,' 'Please use "add_extra_convs"', DeprecationWarning) self.add_extra_convs = 'on_input' else: self.add_extra_convs = 'on_output' self.lateral_convs = nn.ModuleList() self.fpn_convs = nn.ModuleList() for i in range(self.start_level, self.backbone_end_level): l_conv = ConvModule( in_channels[i], out_channels, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg if not self.no_norm_on_lateral else None, act_cfg=act_cfg, inplace=False) fpn_conv = ConvModule(out_channels, out_channels, 3, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, inplace=False) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) # add extra conv layers (e.g., RetinaNet) extra_levels = num_outs - self.backbone_end_level + self.start_level if self.add_extra_convs and extra_levels >= 1: for i in range(extra_levels): if i == 0 and self.add_extra_convs == 'on_input': in_channels = self.in_channels[self.backbone_end_level - 1] else: in_channels = out_channels extra_fpn_conv = ConvModule(in_channels, out_channels, 3, stride=2, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, inplace=False) self.fpn_convs.append(extra_fpn_conv) def forward(self, inputs): """Forward function.""" assert len(inputs) >= len(self.in_channels) if len(inputs) > len(self.in_channels): for _ in range(len(inputs) - len(self.in_channels)): del inputs[0] # build laterals laterals = [ lateral_conv(inputs[i + self.start_level]) for i, lateral_conv in enumerate(self.lateral_convs) ] # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): # In some cases, fixing `scale factor` (e.g. 2) is preferred, but # it cannot co-exist with `size` in `F.interpolate`. if 'scale_factor' in self.upsample_cfg: laterals[i - 1] += F.interpolate(laterals[i], **self.upsample_cfg) else: prev_shape = laterals[i - 1].shape[2:] laterals[i - 1] += F.interpolate(laterals[i], size=prev_shape, **self.upsample_cfg) # build outputs # part 1: from original levels outs = [ self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels) ] # part 2: add extra levels if self.num_outs > len(outs): # use max pool to get more levels on top of outputs # (e.g., Faster R-CNN, Mask R-CNN) if not self.add_extra_convs: for i in range(self.num_outs - used_backbone_levels): outs.append(F.max_pool2d(outs[-1], 1, stride=2)) # add conv layers on top of original feature maps (RetinaNet) else: if self.add_extra_convs == 'on_input': extra_source = inputs[self.backbone_end_level - 1] elif self.add_extra_convs == 'on_lateral': extra_source = laterals[-1] elif self.add_extra_convs == 'on_output': extra_source = outs[-1] else: raise NotImplementedError outs.append(self.fpn_convs[used_backbone_levels](extra_source)) for i in range(used_backbone_levels + 1, self.num_outs): if self.relu_before_extra_convs: outs.append(self.fpn_convs[i](F.relu(outs[-1]))) else: outs.append(self.fpn_convs[i](outs[-1])) return tuple(outs)
[ "torch.nn.functional.relu", "torch.nn.functional.interpolate", "torch.nn.functional.max_pool2d", "torch.nn.ModuleList" ]
1.8.0
Turoad/CLRNet
51e082db12973943bddefd76fd0d431fcb3350ff
1.6
# Copyright (c) Facebook, Inc. and its affiliates. import importlib import logging import os import pickle import re from collections import OrderedDict from copy import deepcopy from dataclasses import asdict, dataclass from enum import Enum from typing import Any import torch import torchvision from mmf.common.registry import registry from mmf.models.frcnn import GeneralizedRCNN from mmf.modules.embeddings import ProjectionEmbedding, TextEmbedding from mmf.modules.hf_layers import BertModelJit from mmf.modules.layers import Identity from mmf.utils.build import build_image_encoder, build_text_encoder from mmf.utils.download import download_pretrained_model from mmf.utils.file_io import PathManager from mmf.utils.general import get_absolute_path from mmf.utils.logger import log_class_usage from omegaconf import MISSING, OmegaConf from torch import nn, Tensor from transformers.configuration_auto import AutoConfig from transformers.modeling_auto import AutoModel try: from detectron2.modeling import build_resnet_backbone, ShapeSpec except ImportError: pass logger = logging.getLogger() class Encoder(nn.Module): @dataclass class Config: name: str = MISSING def __init__(self): super().__init__() log_class_usage("Encoder", self.__class__) @classmethod def from_params(cls, **kwargs): config = OmegaConf.structured(cls.Config(**kwargs)) return cls(config) class EncoderFactory(nn.Module): @dataclass class Config: type: str = MISSING params: Encoder.Config = MISSING class ImageFeatureEncoderTypes(Enum): default = "default" identity = "identity" projection = "projection" frcnn_fc7 = "finetune_faster_rcnn_fpn_fc7" class ImageFeatureEncoder(Encoder): @dataclass class Config(Encoder.Config): in_dim: int = MISSING class ImageFeatureEncoderFactory(EncoderFactory): @dataclass class Config(EncoderFactory.Config): type: ImageFeatureEncoderTypes = MISSING params: ImageFeatureEncoder.Config = MISSING def __init__(self, config: Config, *args, **kwargs): super().__init__() encoder_type = config.type if isinstance(encoder_type, ImageFeatureEncoderTypes): encoder_type = encoder_type.value assert ( "in_dim" in config.params ), "ImageFeatureEncoder require 'in_dim' param in config" params = config.params if encoder_type == "default" or encoder_type == "identity": self.module = Identity() self.module.in_dim = params.in_dim self.module.out_dim = params.in_dim elif encoder_type == "projection": if "module" not in params: params = deepcopy(params) params.module = "linear" self.module = ProjectionEmbedding(**params) elif encoder_type == "finetune_faster_rcnn_fpn_fc7": self.module = FinetuneFasterRcnnFpnFc7(params) else: raise NotImplementedError("Unknown Image Encoder: %s" % encoder_type) self.out_dim = self.module.out_dim def forward(self, *args, **kwargs): return self.module(*args, **kwargs) @registry.register_encoder("finetune_faster_rcnn_fpn_fc7") class FinetuneFasterRcnnFpnFc7(ImageFeatureEncoder): @dataclass class Config(ImageFeatureEncoder.Config): name: str = "finetune_faster_rcnn_fpn_fc7" in_dim: int = MISSING weights_file: str = "fc7_w.pkl" bias_file: str = "fc7_b.pkl" model_data_dir: str = MISSING def __init__(self, config: Config, *args, **kwargs): super().__init__() model_data_dir = get_absolute_path(config.model_data_dir) if not os.path.isabs(config.weights_file): weights_file = os.path.join(model_data_dir, config.weights_file) if not os.path.isabs(config.bias_file): bias_file = os.path.join(model_data_dir, config.bias_file) if not PathManager.exists(bias_file) or not PathManager.exists(weights_file): download_path = download_pretrained_model("detectron.vmb_weights") weights_file = get_absolute_path(os.path.join(download_path, "fc7_w.pkl")) bias_file = get_absolute_path(os.path.join(download_path, "fc7_b.pkl")) with PathManager.open(weights_file, "rb") as w: weights = pickle.load(w) with PathManager.open(bias_file, "rb") as b: bias = pickle.load(b) out_dim = bias.shape[0] self.lc = nn.Linear(config.in_dim, out_dim) self.lc.weight.data.copy_(torch.from_numpy(weights)) self.lc.bias.data.copy_(torch.from_numpy(bias)) self.out_dim = out_dim def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): old_prefix = prefix + "module." for k in list(state_dict.keys()): if k.startswith(old_prefix): new_k = k.replace(old_prefix, prefix) state_dict[new_k] = state_dict.pop(k) super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) def forward(self, image): i2 = self.lc(image) i3 = nn.functional.relu(i2) return i3 @registry.register_encoder("identity") class IdentityEncoder(Encoder): @dataclass class Config(Encoder.Config): name: str = "identity" # Random in_dim if not specified in_dim: int = 100 def __init__(self, config: Config): super().__init__() self.module = nn.Identity() self.in_dim = config.get("in_dim", 100) self.out_dim = self.in_dim def forward(self, x): return self.module(x) class ImageEncoderTypes(Enum): default = "default" identity = "identity" torchvision_resnet = "torchvision_resnet" resnet152 = "resnet152" detectron2_resnet = "detectron2_resnet" class ImageEncoderFactory(EncoderFactory): @dataclass class Config(EncoderFactory.Config): type: ImageEncoderTypes = MISSING def __init__(self, config: Config, *args, **kwargs): super().__init__() self._type = config.type if isinstance(self._type, ImageEncoderTypes): self._type = self._type.value params = config.params if self._type == "default" or self._type == "identity": self.module = nn.Identity() self.module.out_dim = params.in_dim elif self._type == "resnet152": self.module = ResNet152ImageEncoder(params) elif self._type == "torchvision_resnet": self.module = TorchvisionResNetImageEncoder(params) elif self._type == "detectron2_resnet": self.module = Detectron2ResnetImageEncoder(params) elif self._type == "frcnn": self.module = FRCNNImageEncoder(params) else: raise NotImplementedError("Unknown Image Encoder: %s" % self._type) @property def out_dim(self): return self.module.out_dim def forward(self, image): return self.module(image) # Taken from facebookresearch/mmbt with some modifications @registry.register_encoder("resnet152") class ResNet152ImageEncoder(Encoder): @dataclass class Config(Encoder.Config): name: str = "resnet152" pretrained: bool = True # "avg" or "adaptive" pool_type: str = "avg" num_output_features: int = 1 def __init__(self, config: Config, *args, **kwargs): super().__init__() self.config = config model = torchvision.models.resnet152(pretrained=config.get("pretrained", True)) modules = list(model.children())[:-2] self.model = nn.Sequential(*modules) pool_func = ( nn.AdaptiveAvgPool2d if config.pool_type == "avg" else nn.AdaptiveMaxPool2d ) # -1 will keep the original feature size if config.num_output_features == -1: self.pool = nn.Identity() elif config.num_output_features in [1, 2, 3, 5, 7]: self.pool = pool_func((config.num_output_features, 1)) elif config.num_output_features == 4: self.pool = pool_func((2, 2)) elif config.num_output_features == 6: self.pool = pool_func((3, 2)) elif config.num_output_features == 8: self.pool = pool_func((4, 2)) elif config.num_output_features == 9: self.pool = pool_func((3, 3)) self.out_dim = 2048 def forward(self, x): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 out = self.pool(self.model(x)) out = torch.flatten(out, start_dim=2) out = out.transpose(1, 2).contiguous() return out # BxNx2048 @registry.register_encoder("torchvision_resnet") class TorchvisionResNetImageEncoder(Encoder): @dataclass class Config(Encoder.Config): name: str = "resnet50" pretrained: bool = False zero_init_residual: bool = True num_output_features: int = -1 pool_type: str = "avg" def __init__(self, config: Config, *args, **kwargs): super().__init__() self.config = config model = getattr(torchvision.models, config.name)( pretrained=config.pretrained, zero_init_residual=config.zero_init_residual ) # checks if use_avgpool exists to maintain the old logic self.use_avgpool = config.get("use_avgpool", None) if self.use_avgpool: # use_avgpool is True config.num_output_features = 1 config.pool_type = "avg" elif self.use_avgpool is False: # use_avgpool is False config.num_output_features = -1 if config.pretrained: model = self._load_pretrained(model, config) modules = list(model.children())[:-2] self.model = nn.Sequential(*modules) self.pool = self._pool_func(config) self.out_dim = config.get("out_dim", 2048) def _load_pretrained(self, model, config: Config): pretrained_model = config.get("pretrained_model", "supervised") if pretrained_model == "supervised": pass # this is already loaded via torchvision using pretrained=True elif os.path.exists(pretrained_model): model.load_state_dict(torch.load(pretrained_model)) else: try: with PathManager.open(pretrained_model, "rb") as f: model.load_state_dict( torch.load(f, map_location=lambda storage, loc: storage), strict=False, ) except Exception: raise Exception(f"unknown pretrained ResNet model: {pretrained_model}") return model def _pool_func(self, config: Config): pool_func = ( nn.AdaptiveAvgPool2d if config.pool_type == "avg" else nn.AdaptiveMaxPool2d ) # -1 will keep the original feature size if config.num_output_features == -1: pool = nn.Identity() elif config.num_output_features in [1, 2, 3, 5, 7]: pool = pool_func((config.num_output_features, 1)) elif config.num_output_features == 4: pool = pool_func((2, 2)) elif config.num_output_features == 6: pool = pool_func((3, 2)) elif config.num_output_features == 8: pool = pool_func((4, 2)) elif config.num_output_features == 9: pool = pool_func((3, 3)) return pool def forward(self, x): # B x 3 x 224 x 224 -> B x out_dim x 7 x 7 out = self.pool(self.model(x)) if self.use_avgpool is None: out = torch.flatten(out, start_dim=2) out = out.transpose(1, 2).contiguous() # BxNxout_dim else: out = torch.flatten(out, start_dim=1) # BxN*out_dim return out @registry.register_encoder("detectron2_resnet") class Detectron2ResnetImageEncoder(Encoder): @dataclass class Config(Encoder.Config): name: str = "detectron2_resnet" pretrained: bool = True pretrained_path: str = None def __init__(self, config: Config, *args, **kwargs): super().__init__() self.config = config pretrained = config.get("pretrained", False) pretrained_path = config.get("pretrained_path", None) self.resnet = build_resnet_backbone(config, ShapeSpec(channels=3)) if pretrained: state_dict = torch.hub.load_state_dict_from_url( pretrained_path, progress=False ) new_state_dict = OrderedDict() replace_layer = {"backbone.": ""} for key, value in state_dict["model"].items(): new_key = re.sub( r"(backbone\.)", lambda x: replace_layer[x.groups()[0]], key ) new_state_dict[new_key] = value self.resnet.load_state_dict(new_state_dict, strict=False) self.out_dim = 2048 def forward(self, x): x = self.resnet(x) return x["res5"] @registry.register_encoder("frcnn") class FRCNNImageEncoder(Encoder): @dataclass class Config(Encoder.Config): name: str = "frcnn" pretrained: bool = True pretrained_path: str = None def __init__(self, config: Config, *args, **kwargs): super().__init__() self.config = config pretrained = config.get("pretrained", False) pretrained_path = config.get("pretrained_path", None) self.frcnn = GeneralizedRCNN(config) if pretrained: state_dict = torch.load(pretrained_path) self.frcnn.load_state_dict(state_dict) self.frcnn.eval() def forward( self, x: torch.Tensor, sizes: torch.Tensor = None, scales_yx: torch.Tensor = None, padding: torch.Tensor = None, max_detections: int = 0, return_tensors: str = "pt", ): x = self.frcnn( x, sizes, scales_yx=scales_yx, padding=padding, max_detections=max_detections, return_tensors=return_tensors, ) return x class TextEncoderTypes(Enum): identity = "identity" transformer = "transformer" embedding = "embedding" class TextEncoderFactory(EncoderFactory): @dataclass class Config(EncoderFactory.Config): # identity, transformer or embedding as of now type: TextEncoderTypes = MISSING params: Encoder.Config = MISSING def __init__(self, config: Config, *args, **kwargs): super().__init__() self._type = config.type if isinstance(self._type, TextEncoderTypes): self._type = self._type.value if self._type == "identity": self.module = nn.Identity() elif self._type == "transformer": self._module = TransformerEncoder(config.params) self.module = self._module.module elif self._type == "embedding": self.module = TextEmbeddingEncoder(config.params) else: raise NotImplementedError(f"Unknown Text Encoder {self._type}") def forward(self, *args, **kwargs): return self.module(*args, **kwargs) @registry.register_encoder("text_embedding") class TextEmbeddingEncoder(Encoder): @dataclass class Config(Encoder.Config): name: str = "text_embedding" operator: str = MISSING # Keeping this Any for now as this # needs a separate refactor PR. embedding_params: Any = MISSING def __init__(self, config: Config): super().__init__() self._operator = config.operator self._embedding_params = config.embedding_params self.module = TextEmbedding( self._embedding_params.type, **self._embedding_params.params ) def forward(self, x): x = self.module(x) if self._operator == "sum": x = x.sum(dim=1) elif self._operator == "concat": x = torch.cat(x, dim=1) elif self._operator == "mul": x = torch.prod(x, dim=1) return x.squeeze() @registry.register_encoder("transformer") class TransformerEncoder(Encoder): @dataclass class Config(Encoder.Config): name: str = "transformer" num_segments: int = 2 bert_model_name: str = "bert-base-uncased" # Options below can be overridden to update the bert configuration used # to initialize the bert encoder. If some option is missing or # if you are using an encoder different then BERT, add extra parameters # by inheriting and extending this config # Those options will automatically override the options for your transformer # encoder's configuration. For e.g. vocab_size is missing here, just add # vocab_size: x to update the size of the vocabulary with which encoder is # initialized. If you update the default values, the transformer you # will get will be initialized from scratch. hidden_size: int = 768 num_hidden_layers: int = 12 num_attention_heads: int = 12 output_attentions: bool = False output_hidden_states: bool = False random_init: bool = False def __init__(self, config: Config, *args, **kwargs): super().__init__() self.config = config hf_params = {"config": self._build_encoder_config(config)} should_random_init = self.config.get("random_init", False) # For BERT models, initialize using Jit version if self.config.bert_model_name.startswith("bert-"): if should_random_init: self.module = BertModelJit(**hf_params) else: self.module = BertModelJit.from_pretrained( self.config.bert_model_name, **hf_params ) else: if should_random_init: self.module = AutoModel.from_config(**hf_params) else: self.module = AutoModel.from_pretrained( self.config.bert_model_name, **hf_params ) self.embeddings = self.module.embeddings self.original_config = self.config self.config = self.module.config self._init_segment_embeddings() def _init_segment_embeddings(self): if self.original_config.get("num_segments", None): num_segments = self.original_config.num_segments if hasattr(self.embeddings, "token_type_embeddings"): new_embeds = nn.Embedding(num_segments, self.config.hidden_size) new_embeds.weight.data[:2].copy_( self.embeddings.token_type_embeddings.weight ) for idx in range(2, num_segments - 1): new_embeds.weight.data[idx].copy_( self.embeddings.token_type_embeddings.weight.data.mean(dim=0) ) self.embeddings.token_type_embeddings = new_embeds def _build_encoder_config(self, config: Config): return AutoConfig.from_pretrained( config.bert_model_name, **OmegaConf.to_container(config) ) def forward(self, *args, return_sequence=False, **kwargs) -> Tensor: # Only return pooled output output = self.module(*args, **kwargs) return output[0] if return_sequence else output[1] class MultiModalEncoderBase(Encoder): __jit_unused_properties__ = ["encoder_config"] @dataclass class Config(Encoder.Config): # This actually is Union[ImageEncoderConfig, ImageFeatureEncoderConfig] modal_encoder: EncoderFactory.Config = ImageEncoderFactory.Config( type=ImageEncoderTypes.resnet152, params=ResNet152ImageEncoder.Config() ) text_encoder: EncoderFactory.Config = TextEncoderFactory.Config( type=TextEncoderTypes.transformer, params=TransformerEncoder.Config() ) direct_features_input: bool = False modal_hidden_size: int = 2048 text_hidden_size: int = 768 def __init__(self, config: Config, *args, **kwargs): super().__init__() self.config = config self._modal_encoder_config = self.config.get("modal_encoder", None) self._is_direct_features_input = self.config.get("direct_features_input", False) self.build() self.modal_hidden_size = self.config.get("modal_hidden_size", None) self.text_hidden_size = self.config.get("text_hidden_size", None) def build(self): encoders = self._build_encoders(self.config) self.text_encoder, self.modal_encoder = encoders[0], encoders[1] self._encoder_config = None if self.text_encoder: self._encoder_config = self.text_encoder.config @property def encoder_config(self): return self._encoder_config def _build_encoders(self, config): text_encoder = None if config.get("text_encoder", None): text_encoder = build_text_encoder(config.text_encoder) modal_encoder = None if config.get("modal_encoder", None): modal_encoder = self._build_modal_encoder(config.modal_encoder) return (text_encoder, modal_encoder) def _build_modal_encoder(self, config): return build_image_encoder( config, direct_features=self._is_direct_features_input ) class PooledEncoder(Encoder): """ Standard pooled encoder class which takes in an input, encodes it with an encoder implemented and returned from `self.build_encoder` function, pools it based `pool_type` and `num_output_features` specified, flattens it and returns it back as a tensor. """ @dataclass class Config(Encoder.Config): num_output_features: int = 1 # How many output features need to be returned. pool_type: str = "avg" # type of pooling to apply "avg" | "adaptive" out_dim: int = MISSING # size of out dim expected three_d: bool = False # if input requires 3D pooling (for video) def __init__(self, config: Config, *args, **kwargs): super().__init__() self.encoder = self.build_encoder(config) pool_func = ( nn.AdaptiveAvgPool2d if config.pool_type == "avg" else nn.AdaptiveMaxPool2d ) params = (config.num_output_features, 1) if config.three_d: pool_func = ( nn.AdaptiveAvgPool3d if config.pool_type == "avg" else nn.AdaptiveMaxPool3d ) params = (config.num_output_features, 1, 1) # -1 will keep the original feature size if config.num_output_features == -1: self.pool = nn.Identity() else: self.pool = pool_func(params) self.out_dim = config.out_dim def build_encoder(self, config: Config, *args, **kwargs): """Build an encoder on whose output the pooling will be applied. Args: config (Config): Config parameter required to build the encoder. Raises: NotImplementedError: Not implemented by default. """ raise NotImplementedError() def forward(self, x: Tensor) -> Tensor: out = self.encoder(x) out = self.pool(out) out = torch.flatten(out, start_dim=2) out = out.transpose(1, 2).contiguous() return out @registry.register_encoder("pytorchvideo") class PytorchVideoEncoder(Encoder): """A thin wrapper around pytorchvideo models. This class is responsible for integrating pytorchvideo models as encoders. THis class attempts to construct a pytorchvideo model from torch hub. If this fails for a random weight model, and pytorchvideo package is available, build the model with random weights from pytorchvideo.models. Config: name (str): Always 'pytorchvideo' Used for builder_encoder() random_init (bool): Flag to load pretrained weights model_name (str): Name of the pytorchvideo model to use drop_last_n_layers (int): <=0 value for the number of layers to drop off the end pooler_name (str): Name of pooler used on model output Raises: ImportError: The constructor raises an ImportError if pytorchvideo is not installed. """ @dataclass class Config(Encoder.Config): name: str = "pytorchvideo" random_init: bool = False model_name: str = "slowfast_r50" drop_last_n_layers: int = -1 pooler_name: str = "identity" PYTORCHVIDEO_REPO = "facebookresearch/pytorchvideo:main" def __init__(self, config: Config): super().__init__() config = OmegaConf.create({**asdict(self.Config()), **config}) if config.random_init: params = dict(**OmegaConf.to_container(config)) params = { k: v for k, v in params.items() if k not in PytorchVideoEncoder.Config().__dict__ } try: model = torch.hub.load( PytorchVideoEncoder.PYTORCHVIDEO_REPO, model=config.model_name, pretrained=False, **params, ) except BaseException as err: pytorchvideo_spec = importlib.util.find_spec("pytorchvideo") if pytorchvideo_spec is None: raise err import pytorchvideo.models.hub as hub model_create_fn = getattr(hub, config.model_name) model = model_create_fn(pretrained=False, **params) else: # load weights from TorchHub model = torch.hub.load( PytorchVideoEncoder.PYTORCHVIDEO_REPO, model=config.model_name, pretrained=True, ) encoder_list = [] if config.drop_last_n_layers == 0: encoder_list += [model] else: modules_list = list(model.children()) if len(modules_list) == 1: modules_list = list(modules_list[0].children()) modules = modules_list[: config.drop_last_n_layers] encoder_list += modules pooler = registry.get_pool_class(config.pooler_name)() encoder_list += [pooler] self.encoder = nn.Sequential(*encoder_list) def forward(self, *args, **kwargs): # pass along input to model # assumes caller obeys the dynamic model signature return self.encoder(*args, **kwargs) @registry.register_encoder("r2plus1d_18") class R2Plus1D18VideoEncoder(PooledEncoder): """ R2Plus1D based video encoder. Returns back a tensor of dim 2048. By default, pretrained version is used. See https://arxiv.org/abs/1711.11248. """ @dataclass class Config(PooledEncoder.Config): name: str = "r2plus1d_18" out_dim: int = 512 # out dim pretrained: bool = True # if should use pretrained version or not three_d: bool = True def build_encoder(self, config: Config, *args, **kwargs): model = torchvision.models.video.r2plus1d_18( pretrained=config.get("pretrained", True) ) modules = list(model.children())[:-2] return nn.Sequential(*modules) @registry.register_encoder("resnet18_audio") class ResNet18AudioEncoder(PooledEncoder): """ Audio encoder based on ResNet18 used in various audio classification paper as a baseline. By default, not pretrained version is used. """ @dataclass class Config(PooledEncoder.Config): name: str = "resnet18_audio" out_dim: int = 512 pretrained: bool = False def build_encoder(self, config: Config, *args, **kwargs): model = torchvision.models.resnet18(pretrained=config.get("pretrained", False)) model.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) modules = list(model.children())[:-2] return nn.Sequential(*modules) @registry.register_encoder("vit") class ViTEncoder(Encoder): @dataclass class Config(Encoder.Config): name: str = "vit" # See https://huggingface.co/models?filter=vit for available options pretrained_model_name: str = "google/vit-base-patch16-224" random_init: bool = False gradient_checkpointing: bool = False def __init__(self, config: Config, *args, **kwargs): super().__init__() self.config = config self.module, self.hf_config = self._model_class.from_config(config) self.embeddings = self.module.embeddings self.out_dim = self.hf_config.hidden_size @property def _model_class(self): from mmf.modules.vit import ViTModel return ViTModel def forward(self, *args, **kwargs): if "output_hidden_states" not in kwargs: kwargs["output_hidden_states"] = False output = self.module(*args, **kwargs) return output["last_hidden_state"], output.get("hidden_states", None)
[ "torch.nn.Linear", "torch.nn.Identity", "torch.cat", "torch.prod", "torch.flatten", "torch.nn.Sequential", "torch.from_numpy", "torch.nn.Conv2d", "torch.hub.load_state_dict_from_url", "torch.load", "torch.nn.functional.relu", "torch.nn.Embedding", "torch.hub.load" ]
1.6.0
facebookresearch/pythia
079740bee4b357a7b1b866d35e2f1fad6edba8a4
0.4
import logging import os import math from tqdm import tqdm import numpy as np import torch from torch.utils.data import Dataset logger = logging.getLogger(__name__) def isfloat(value): try: float(value) return True except ValueError: return False def seq_collate(data): (obs_seq_list, pred_seq_list, obs_seq_rel_list, pred_seq_rel_list, obs_team_vec_list, obs_pos_vec_list, pred_team_vec_list, pred_pos_vec_list, non_linear_ped_list, loss_mask_list) = zip(*data) _len = [len(seq) for seq in obs_seq_list] cum_start_idx = [0] + np.cumsum(_len).tolist() seq_start_end = [[start, end] for start, end in zip(cum_start_idx, cum_start_idx[1:])] # Data format: batch, input_size, seq_len # LSTM input format: seq_len, batch, input_size obs_traj = torch.cat(obs_seq_list, dim=0).permute(2, 0, 1) pred_traj = torch.cat(pred_seq_list, dim=0).permute(2, 0, 1) obs_traj_rel = torch.cat(obs_seq_rel_list, dim=0).permute(2, 0, 1) pred_traj_rel = torch.cat(pred_seq_rel_list, dim=0).permute(2, 0, 1) obs_team_vec = torch.cat(obs_team_vec_list, dim=0).permute(2, 0, 1) obs_pos_vec = torch.cat(obs_pos_vec_list, dim=0).permute(2, 0, 1) pred_team_vec = torch.cat(pred_team_vec_list, dim=0).permute(2, 0, 1) pred_pos_vec = torch.cat(pred_pos_vec_list, dim=0).permute(2, 0, 1) non_linear_ped = torch.cat(non_linear_ped_list) loss_mask = torch.cat(loss_mask_list, dim=0) seq_start_end = torch.LongTensor(seq_start_end) out = [ obs_traj, pred_traj, obs_traj_rel, pred_traj_rel, obs_team_vec, obs_pos_vec, pred_team_vec, pred_pos_vec, non_linear_ped, loss_mask, seq_start_end ] return tuple(out) def read_file(_path, delim='\t'): lines = [] if delim == 'tab': delim = '\t' elif delim == 'space': delim = ' ' with open(_path, 'r') as f: next(f) for line in f: line = line.strip().split(delim) line = [float(i) if isfloat(i) else i for i in line] lines.append(line) return lines def parse_file(_path, delim='\t'): data = [] if delim == 'tab': delim = '\t' elif delim == 'space': delim = ' ' lines = read_file(_path, delim) team_ids = np.unique([int(line[2]) for line in lines if isfloat(line[2])]).tolist() posi_ids = ["C", "F", "G", "ball"] for line in lines: row = [] team_vector = [0.0] * 3 # 0 1 ball pos_vector = [0.0] * 4 # 0 1 2 ball for col, value in enumerate(line): if col == 2: # team_id if value == "ball": team_vector[2] = 1.0 else: team = team_ids.index(int(value)) team_vector[team] = 1.0 elif col == 3: # player_id if value == "ball": row.append(-1.0) else: row.append(value) # float elif col == 6: # player_position positions = value.strip('"').split(",") for pos in positions: pos_vector[posi_ids.index(pos)] = 1.0 else: row.append(value) # float row += team_vector # team_id row += pos_vector # player_position data.append(row) return np.asarray(data) def poly_fit(traj, traj_len, threshold): """ Input: - traj: Numpy array of shape (2, traj_len) - traj_len: Len of trajectory - threshold: Minimum error to be considered for non linear traj Output: - int: 1 -> Non Linear 0-> Linear """ t = np.linspace(0, traj_len - 1, traj_len) res_x = np.polyfit(t, traj[0, -traj_len:], 2, full=True)[1] res_y = np.polyfit(t, traj[1, -traj_len:], 2, full=True)[1] if res_x + res_y >= threshold: return 1.0 else: return 0.0 class TrajectoryDataset(Dataset): """Dataloder for the Trajectory datasets""" def __init__( self, data_dir, obs_len=8, pred_len=12, skip=1, threshold=0.002, min_ped=1, delim='\t', metric="meter" ): """ Args: - data_dir: Directory containing dataset files in the format <frame_id> <ped_id> <x> <y> - obs_len: Number of time-steps in input trajectories - pred_len: Number of time-steps in output trajectories - skip: Number of frames to skip while making the dataset - threshold: Minimum error to be considered for non linear traj when using a linear predictor - min_ped: Minimum number of pedestrians that should be in a seqeunce - delim: Delimiter in the dataset files columns in csv file: (idx), frame_id,team_id,player_id,pos_x, pos_y, player_position -> data: idx, frame_id,player_id,pos_x, pos_y, team_vector,position_vector """ super(TrajectoryDataset, self).__init__() self.data_dir = data_dir self.obs_len = obs_len self.pred_len = pred_len self.skip = skip self.seq_len = self.obs_len + self.pred_len self.delim = delim if metric=="meter": self.factor=0.3048 # foot to meter else: self.factor=1.0 # foot to foot all_files = os.listdir(self.data_dir) all_files = [os.path.join(self.data_dir, _path) for _path in all_files] num_peds_in_seq = [] seq_list = [] seq_list_rel = [] loss_mask_list = [] non_linear_ped = [] team_vec_list = [] pos_vec_list = [] for path in tqdm(all_files): data = parse_file(path, delim) frames = np.unique(data[:, 0]).tolist() frame_data = [] for frame in frames: frame_data.append(data[frame == data[:, 1], :]) # frame_id num_sequences = int( math.ceil((len(frames) - self.seq_len + 1) / skip)) for idx in range(0, num_sequences * self.skip + 1, skip): curr_seq_data = np.concatenate( frame_data[idx:idx + self.seq_len], axis=0) peds_in_curr_seq = np.unique(curr_seq_data[:, 2]) # player_id curr_seq_rel = np.zeros((len(peds_in_curr_seq), 2, self.seq_len)) curr_seq = np.zeros((len(peds_in_curr_seq), 2, self.seq_len)) curr_loss_mask = np.zeros((len(peds_in_curr_seq), self.seq_len)) # vectors curr_team = np.zeros((len(peds_in_curr_seq), 3, self.seq_len)) # 0 1 ball curr_position = np.zeros((len(peds_in_curr_seq), 4, self.seq_len)) # C F G ball num_peds_considered = 0 _non_linear_ped = [] for _, ped_id in enumerate(peds_in_curr_seq): curr_ped_seq_full = curr_seq_data[curr_seq_data[:, 2] == ped_id, :] # player_id curr_ped_seq_full = np.around(curr_ped_seq_full, decimals=4) pad_front = frames.index(curr_ped_seq_full[0, 1]) - idx # frame_id pad_end = frames.index(curr_ped_seq_full[-1, 1]) - idx + 1 # frame_id if pad_end - pad_front != self.seq_len or curr_ped_seq_full.shape[0] != self.seq_len: continue curr_ped_seq = np.transpose(curr_ped_seq_full[:, 3:5]) # x,y curr_ped_seq = curr_ped_seq * self.factor # conversion # Make coordinates relative rel_curr_ped_seq = np.zeros(curr_ped_seq.shape) rel_curr_ped_seq[:, 1:] = curr_ped_seq[:, 1:] - curr_ped_seq[:, :-1] _idx = num_peds_considered curr_seq[_idx, :, pad_front:pad_end] = curr_ped_seq curr_seq_rel[_idx, :, pad_front:pad_end] = rel_curr_ped_seq # Linear vs Non-Linear Trajectory _non_linear_ped.append( poly_fit(curr_ped_seq, pred_len, threshold)) curr_loss_mask[_idx, pad_front:pad_end] = 1 # Team vector curr_ped_team = np.transpose(curr_ped_seq_full[:, 5:8]) # [ 0 1 ball] curr_team[_idx, :, pad_front:pad_end] = curr_ped_team # Position Vector curr_ped_pos = np.transpose(curr_ped_seq_full[:, 8:]) # [ C F G ball] curr_position[_idx, :, pad_front:pad_end] = curr_ped_pos num_peds_considered += 1 if num_peds_considered > min_ped: non_linear_ped += _non_linear_ped num_peds_in_seq.append(num_peds_considered) loss_mask_list.append(curr_loss_mask[:num_peds_considered]) seq_list.append(curr_seq[:num_peds_considered]) seq_list_rel.append(curr_seq_rel[:num_peds_considered]) team_vec_list.append(curr_team[:num_peds_considered]) # team vector pos_vec_list.append(curr_position[:num_peds_considered]) # pos_vec_list self.num_seq = len(seq_list) seq_list = np.concatenate(seq_list, axis=0) seq_list_rel = np.concatenate(seq_list_rel, axis=0) team_vec_list = np.concatenate(team_vec_list, axis=0) pos_vec_list = np.concatenate(pos_vec_list, axis=0) loss_mask_list = np.concatenate(loss_mask_list, axis=0) non_linear_ped = np.asarray(non_linear_ped) # Convert numpy -> Torch Tensor self.obs_traj = torch.from_numpy( seq_list[:, :, :self.obs_len]).type(torch.float) self.pred_traj = torch.from_numpy( seq_list[:, :, self.obs_len:]).type(torch.float) self.obs_traj_rel = torch.from_numpy( seq_list_rel[:, :, :self.obs_len]).type(torch.float) self.pred_traj_rel = torch.from_numpy( seq_list_rel[:, :, self.obs_len:]).type(torch.float) self.obs_team_vec = torch.from_numpy( team_vec_list[:, :, :self.obs_len]).type(torch.float) self.obs_pos_vec = torch.from_numpy( pos_vec_list[:, :, :self.obs_len]).type(torch.float) self.obs_team_vec_pred = torch.from_numpy( team_vec_list[:, :, self.obs_len:]).type(torch.float) self.obs_pos_vec_pred = torch.from_numpy( pos_vec_list[:, :, self.obs_len:]).type(torch.float) self.loss_mask = torch.from_numpy(loss_mask_list).type(torch.float) self.non_linear_ped = torch.from_numpy(non_linear_ped).type(torch.float) cum_start_idx = [0] + np.cumsum(num_peds_in_seq).tolist() self.seq_start_end = [ (start, end) for start, end in zip(cum_start_idx, cum_start_idx[1:]) ] def __len__(self): return self.num_seq def __getitem__(self, index): start, end = self.seq_start_end[index] out = [ self.obs_traj[start:end, :], self.pred_traj[start:end, :], self.obs_traj_rel[start:end, :], self.pred_traj_rel[start:end, :], self.obs_team_vec[start:end, :], self.obs_pos_vec[start:end, :], self.obs_team_vec_pred[start: end, :], self.obs_pos_vec_pred[start: end, :], self.non_linear_ped[start:end], self.loss_mask[start:end, :] ] return out
[ "torch.cat", "torch.from_numpy", "torch.LongTensor" ]
0.4.1
szhaofelicia/sgan
ead42d4bb3b1278c4c9ffcae8fa9c2dc036a52ff
1.0
#!/usr/bin/env python3 import torch import unittest from gpytorch.lazy import NonLazyTensor, DiagLazyTensor, AddedDiagLazyTensor from test.lazy._lazy_tensor_test_case import LazyTensorTestCase class TestAddedDiagLazyTensor(LazyTensorTestCase, unittest.TestCase): seed = 0 should_test_sample = True def create_lazy_tensor(self): tensor = torch.randn(5, 5) tensor = tensor.transpose(-1, -2).matmul(tensor) tensor.requires_grad_(True) diag = torch.tensor([1.0, 2.0, 4.0, 2.0, 3.0], requires_grad=True) return AddedDiagLazyTensor(NonLazyTensor(tensor), DiagLazyTensor(diag)) def evaluate_lazy_tensor(self, lazy_tensor): diag = lazy_tensor._diag_tensor._diag tensor = lazy_tensor._lazy_tensor.tensor return tensor + diag.diag() class TestAddedDiagLazyTensorBatch(LazyTensorTestCase, unittest.TestCase): seed = 4 should_test_sample = True def create_lazy_tensor(self): tensor = torch.randn(3, 5, 5) tensor = tensor.transpose(-1, -2).matmul(tensor) tensor.requires_grad_(True) diag = torch.tensor( [[1.0, 2.0, 4.0, 2.0, 3.0], [2.0, 1.0, 2.0, 1.0, 4.0], [1.0, 2.0, 2.0, 3.0, 4.0]], requires_grad=True ) return AddedDiagLazyTensor(NonLazyTensor(tensor), DiagLazyTensor(diag)) def evaluate_lazy_tensor(self, lazy_tensor): diag = lazy_tensor._diag_tensor._diag tensor = lazy_tensor._lazy_tensor.tensor return tensor + torch.cat([diag[i].diag().unsqueeze(0) for i in range(3)]) if __name__ == "__main__": unittest.main()
[ "torch.tensor", "torch.randn" ]
1.0.0
cdgreenidge/gpytorch
d4cc610963bd812052e43e3aed84fb8b2ec94aa6
1.1
import os import torch import torch.nn as nn from collections import deque from onmt.utils.logging import logger from copy import deepcopy def build_model_saver(model_opt, opt, model, fields, optim): model_saver = ModelSaver(opt.save_model, model, model_opt, fields, optim, opt.keep_checkpoint) return model_saver class ModelSaverBase(object): """Base class for model saving operations Inherited classes must implement private methods: * `_save` * `_rm_checkpoint """ def __init__(self, base_path, model, model_opt, fields, optim, keep_checkpoint=-1): self.base_path = base_path self.model = model self.model_opt = model_opt self.fields = fields self.optim = optim self.last_saved_step = None self.keep_checkpoint = keep_checkpoint if keep_checkpoint > 0: self.checkpoint_queue = deque([], maxlen=keep_checkpoint) def save(self, step, moving_average=None): """Main entry point for model saver It wraps the `_save` method with checks and apply `keep_checkpoint` related logic """ if self.keep_checkpoint == 0 or step == self.last_saved_step: return if moving_average: save_model = deepcopy(self.model) for avg, param in zip(moving_average, save_model.parameters()): param.data.copy_(avg.data) else: save_model = self.model chkpt, chkpt_name = self._save(step, save_model) self.last_saved_step = step if moving_average: del save_model if self.keep_checkpoint > 0: if len(self.checkpoint_queue) == self.checkpoint_queue.maxlen: todel = self.checkpoint_queue.popleft() self._rm_checkpoint(todel) self.checkpoint_queue.append(chkpt_name) def _save(self, step): """Save a resumable checkpoint. Args: step (int): step number Returns: (object, str): * checkpoint: the saved object * checkpoint_name: name (or path) of the saved checkpoint """ raise NotImplementedError() def _rm_checkpoint(self, name): """Remove a checkpoint Args: name(str): name that indentifies the checkpoint (it may be a filepath) """ raise NotImplementedError() class ModelSaver(ModelSaverBase): """Simple model saver to filesystem""" def _save(self, step, model): real_model = (model.module if isinstance(model, nn.DataParallel) else model) real_generator = (real_model.generator.module if isinstance(real_model.generator, nn.DataParallel) else real_model.generator) model_state_dict = real_model.state_dict() model_state_dict = {k: v for k, v in model_state_dict.items() if 'generator' not in k} generator_state_dict = real_generator.state_dict() # NOTE: We need to trim the vocab to remove any unk tokens that # were not originally here. vocab = deepcopy(self.fields) if hasattr(model.encoder, 'is_graph_encoder'): sides = ["src", "node1", "node2", "tgt"] else: sides = ["src", "tgt"] for side in sides: keys_to_pop = [] if hasattr(vocab[side], "fields"): unk_token = vocab[side].fields[0][1].vocab.itos[0] for key, value in vocab[side].fields[0][1].vocab.stoi.items(): if value == 0 and key != unk_token: keys_to_pop.append(key) for key in keys_to_pop: vocab[side].fields[0][1].vocab.stoi.pop(key, None) checkpoint = { 'model': model_state_dict, 'generator': generator_state_dict, 'vocab': vocab, 'opt': self.model_opt, 'optim': self.optim.state_dict(), } logger.info("Saving checkpoint %s_step_%d.pt" % (self.base_path, step)) checkpoint_path = '%s_step_%d.pt' % (self.base_path, step) torch.save(checkpoint, checkpoint_path) return checkpoint, checkpoint_path def _rm_checkpoint(self, name): os.remove(name)
[ "torch.save" ]
1.1
UKPLab/emnlp2019-dualgraph
0c58fb7f3ad3b9da3b92b2d2841558807fc79fd0
3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from typing import Dict import torch from detectron2.layers import ShapeSpec, cat from detectron2.modeling import ROI_HEADS_REGISTRY from detectron2.modeling.poolers import ROIPooler from detectron2.modeling.roi_heads.fast_rcnn import FastRCNNOutputLayers, FastRCNNOutputs from detectron2.modeling.roi_heads.roi_heads import StandardROIHeads, select_foreground_proposals from pytorch3d.ops import cubify from pytorch3d.structures import Meshes from pytorch3d.utils import ico_sphere from meshrcnn.modeling.roi_heads.mask_head import mask_rcnn_loss from meshrcnn.modeling.roi_heads.mesh_head import ( build_mesh_head, mesh_rcnn_inference, mesh_rcnn_loss, ) from meshrcnn.modeling.roi_heads.voxel_head import ( build_voxel_head, voxel_rcnn_inference, voxel_rcnn_loss, ) from meshrcnn.modeling.roi_heads.z_head import build_z_head, z_rcnn_inference, z_rcnn_loss from meshrcnn.utils import vis as vis_utils @ROI_HEADS_REGISTRY.register() class MeshRCNNROIHeads(StandardROIHeads): """ The ROI specific heads for Mesh R-CNN """ def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]): super().__init__(cfg, input_shape) self._init_z_head(cfg, input_shape) self._init_voxel_head(cfg, input_shape) self._init_mesh_head(cfg, input_shape) # If MODEL.VIS_MINIBATCH is True we store minibatch targets # for visualization purposes self._vis = cfg.MODEL.VIS_MINIBATCH self._misc = {} self._vis_dir = cfg.OUTPUT_DIR def _init_z_head(self, cfg, input_shape): # fmt: off self.zpred_on = cfg.MODEL.ZPRED_ON if not self.zpred_on: return z_pooler_resolution = cfg.MODEL.ROI_Z_HEAD.POOLER_RESOLUTION z_pooler_scales = tuple(1.0 / input_shape[k].stride for k in self.in_features) z_sampling_ratio = cfg.MODEL.ROI_Z_HEAD.POOLER_SAMPLING_RATIO z_pooler_type = cfg.MODEL.ROI_Z_HEAD.POOLER_TYPE # fmt: on self.z_loss_weight = cfg.MODEL.ROI_Z_HEAD.Z_REG_WEIGHT self.z_smooth_l1_beta = cfg.MODEL.ROI_Z_HEAD.SMOOTH_L1_BETA in_channels = [input_shape[f].channels for f in self.in_features][0] self.z_pooler = ROIPooler( output_size=z_pooler_resolution, scales=z_pooler_scales, sampling_ratio=z_sampling_ratio, pooler_type=z_pooler_type, ) shape = ShapeSpec( channels=in_channels, width=z_pooler_resolution, height=z_pooler_resolution ) self.z_head = build_z_head(cfg, shape) def _init_voxel_head(self, cfg, input_shape): # fmt: off self.voxel_on = cfg.MODEL.VOXEL_ON if not self.voxel_on: return voxel_pooler_resolution = cfg.MODEL.ROI_VOXEL_HEAD.POOLER_RESOLUTION voxel_pooler_scales = tuple(1.0 / input_shape[k].stride for k in self.in_features) voxel_sampling_ratio = cfg.MODEL.ROI_VOXEL_HEAD.POOLER_SAMPLING_RATIO voxel_pooler_type = cfg.MODEL.ROI_VOXEL_HEAD.POOLER_TYPE # fmt: on self.voxel_loss_weight = cfg.MODEL.ROI_VOXEL_HEAD.LOSS_WEIGHT self.cls_agnostic_voxel = cfg.MODEL.ROI_VOXEL_HEAD.CLS_AGNOSTIC_VOXEL self.cubify_thresh = cfg.MODEL.ROI_VOXEL_HEAD.CUBIFY_THRESH in_channels = [input_shape[f].channels for f in self.in_features][0] self.voxel_pooler = ROIPooler( output_size=voxel_pooler_resolution, scales=voxel_pooler_scales, sampling_ratio=voxel_sampling_ratio, pooler_type=voxel_pooler_type, ) shape = ShapeSpec( channels=in_channels, width=voxel_pooler_resolution, height=voxel_pooler_resolution ) self.voxel_head = build_voxel_head(cfg, shape) def _init_mesh_head(self, cfg, input_shape): # fmt: off self.mesh_on = cfg.MODEL.MESH_ON if not self.mesh_on: return mesh_pooler_resolution = cfg.MODEL.ROI_MESH_HEAD.POOLER_RESOLUTION mesh_pooler_scales = tuple(1.0 / input_shape[k].stride for k in self.in_features) mesh_sampling_ratio = cfg.MODEL.ROI_MESH_HEAD.POOLER_SAMPLING_RATIO mesh_pooler_type = cfg.MODEL.ROI_MESH_HEAD.POOLER_TYPE # fmt: on self.chamfer_loss_weight = cfg.MODEL.ROI_MESH_HEAD.CHAMFER_LOSS_WEIGHT self.normals_loss_weight = cfg.MODEL.ROI_MESH_HEAD.NORMALS_LOSS_WEIGHT self.edge_loss_weight = cfg.MODEL.ROI_MESH_HEAD.EDGE_LOSS_WEIGHT self.gt_num_samples = cfg.MODEL.ROI_MESH_HEAD.GT_NUM_SAMPLES self.pred_num_samples = cfg.MODEL.ROI_MESH_HEAD.PRED_NUM_SAMPLES self.gt_coord_thresh = cfg.MODEL.ROI_MESH_HEAD.GT_COORD_THRESH self.ico_sphere_level = cfg.MODEL.ROI_MESH_HEAD.ICO_SPHERE_LEVEL in_channels = [input_shape[f].channels for f in self.in_features][0] self.mesh_pooler = ROIPooler( output_size=mesh_pooler_resolution, scales=mesh_pooler_scales, sampling_ratio=mesh_sampling_ratio, pooler_type=mesh_pooler_type, ) self.mesh_head = build_mesh_head( cfg, ShapeSpec( channels=in_channels, height=mesh_pooler_resolution, width=mesh_pooler_resolution ), ) def forward(self, images, features, proposals, targets=None): """ See :class:`ROIHeads.forward`. """ if self._vis: self._misc["images"] = images del images if self.training: proposals = self.label_and_sample_proposals(proposals, targets) del targets if self._vis: self._misc["proposals"] = proposals if self.training: losses = self._forward_box(features, proposals) # During training the proposals used by the box head are # used by the z, mask, voxel & mesh head. losses.update(self._forward_z(features, proposals)) losses.update(self._forward_mask(features, proposals)) losses.update(self._forward_shape(features, proposals)) # print minibatch examples if self._vis: vis_utils.visualize_minibatch(self._misc["images"], self._misc, self._vis_dir, True) return [], losses else: pred_instances = self._forward_box(features, proposals) # During inference cascaded prediction is used: the mask and keypoints heads are only # applied to the top scoring box detections. pred_instances = self.forward_with_given_boxes(features, pred_instances) return pred_instances, {} def forward_with_given_boxes(self, features, instances): """ Use the given boxes in `instances` to produce other (non-box) per-ROI outputs. Args: features: same as in `forward()` instances (list[Instances]): instances to predict other outputs. Expect the keys "pred_boxes" and "pred_classes" to exist. Returns: instances (Instances): the same `Instances` object, with extra fields such as `pred_masks` or `pred_voxels`. """ assert not self.training assert instances[0].has("pred_boxes") and instances[0].has("pred_classes") instances = self._forward_z(features, instances) instances = self._forward_mask(features, instances) instances = self._forward_shape(features, instances) return instances def _forward_z(self, features, instances): """ Forward logic of the z prediction branch. """ if not self.zpred_on: return {} if self.training else instances features = [features[f] for f in self.in_features] if self.training: # The loss is only defined on positive proposals. proposals, _ = select_foreground_proposals(instances, self.num_classes) proposal_boxes = [x.proposal_boxes for x in proposals] z_features = self.z_pooler(features, proposal_boxes) z_pred = self.z_head(z_features) src_boxes = cat([p.tensor for p in proposal_boxes]) loss_z_reg = z_rcnn_loss( z_pred, proposals, src_boxes, loss_weight=self.z_loss_weight, smooth_l1_beta=self.z_smooth_l1_beta, ) return {"loss_z_reg": loss_z_reg} else: pred_boxes = [x.pred_boxes for x in instances] z_features = self.z_pooler(features, pred_boxes) z_pred = self.z_head(z_features) z_rcnn_inference(z_pred, instances) return instances def _forward_mask(self, features, instances): """ Forward logic of the mask prediction branch. Args: features (dict[str,Tensor]): mapping from names to backbone features instances (list[Instances]): the per-image instances to train/predict masks. In training, they can be the proposals. In inference, they can be the predicted boxes. Returns: In training, a dict of losses. In inference, update `instances` with new fields "pred_masks" and return it. """ if not self.mask_on: return {} if self.training else instances features = [features[f] for f in self.in_features] if self.training: # The loss is only defined on positive proposals. proposals, _ = select_foreground_proposals(instances, self.num_classes) proposal_boxes = [x.proposal_boxes for x in proposals] mask_features = self.mask_pooler(features, proposal_boxes) mask_logits = self.mask_head.layers(mask_features) loss_mask, target_masks = mask_rcnn_loss(mask_logits, proposals) if self._vis: self._misc["target_masks"] = target_masks self._misc["fg_proposals"] = proposals return {"loss_mask": loss_mask} else: pred_boxes = [x.pred_boxes for x in instances] mask_features = self.mask_pooler(features, pred_boxes) return self.mask_head(mask_features, instances) def _forward_shape(self, features, instances): """ Forward logic for the voxel and mesh refinement branch. Args: features (list[Tensor]): #level input features for voxel prediction instances (list[Instances]): the per-image instances to train/predict meshes. In training, they can be the proposals. In inference, they can be the predicted boxes. Returns: In training, a dict of losses. In inference, update `instances` with new fields "pred_voxels" & "pred_meshes" and return it. """ if not self.voxel_on and not self.mesh_on: return {} if self.training else instances features = [features[f] for f in self.in_features] if self.training: # The loss is only defined on positive proposals. proposals, _ = select_foreground_proposals(instances, self.num_classes) proposal_boxes = [x.proposal_boxes for x in proposals] losses = {} if self.voxel_on: voxel_features = self.voxel_pooler(features, proposal_boxes) voxel_logits = self.voxel_head(voxel_features) loss_voxel, target_voxels = voxel_rcnn_loss( voxel_logits, proposals, loss_weight=self.voxel_loss_weight ) losses.update({"loss_voxel": loss_voxel}) if self._vis: self._misc["target_voxels"] = target_voxels if self.cls_agnostic_voxel: with torch.no_grad(): vox_in = voxel_logits.sigmoid().squeeze(1) # (N, V, V, V) init_mesh = cubify(vox_in, self.cubify_thresh) # 1 else: raise ValueError("No support for class specific predictions") if self.mesh_on: mesh_features = self.mesh_pooler(features, proposal_boxes) if not self.voxel_on: if mesh_features.shape[0] > 0: init_mesh = ico_sphere(self.ico_sphere_level, mesh_features.device) init_mesh = init_mesh.extend(mesh_features.shape[0]) else: init_mesh = Meshes(verts=[], faces=[]) pred_meshes = self.mesh_head(mesh_features, init_mesh) # loss weights loss_weights = { "chamfer": self.chamfer_loss_weight, "normals": self.normals_loss_weight, "edge": self.edge_loss_weight, } if not pred_meshes[0].isempty(): loss_chamfer, loss_normals, loss_edge, target_meshes = mesh_rcnn_loss( pred_meshes, proposals, loss_weights=loss_weights, gt_num_samples=self.gt_num_samples, pred_num_samples=self.pred_num_samples, gt_coord_thresh=self.gt_coord_thresh, ) if self._vis: self._misc["init_meshes"] = init_mesh self._misc["target_meshes"] = target_meshes else: loss_chamfer = sum(k.sum() for k in self.mesh_head.parameters()) * 0.0 loss_normals = sum(k.sum() for k in self.mesh_head.parameters()) * 0.0 loss_edge = sum(k.sum() for k in self.mesh_head.parameters()) * 0.0 losses.update( { "loss_chamfer": loss_chamfer, "loss_normals": loss_normals, "loss_edge": loss_edge, } ) return losses else: pred_boxes = [x.pred_boxes for x in instances] if self.voxel_on: voxel_features = self.voxel_pooler(features, pred_boxes) voxel_logits = self.voxel_head(voxel_features) voxel_rcnn_inference(voxel_logits, instances) if self.cls_agnostic_voxel: with torch.no_grad(): vox_in = voxel_logits.sigmoid().squeeze(1) # (N, V, V, V) init_mesh = cubify(vox_in, self.cubify_thresh) # 1 else: raise ValueError("No support for class specific predictions") if self.mesh_on: mesh_features = self.mesh_pooler(features, pred_boxes) if not self.voxel_on: if mesh_features.shape[0] > 0: init_mesh = ico_sphere(self.ico_sphere_level, mesh_features.device) init_mesh = init_mesh.extend(mesh_features.shape[0]) else: init_mesh = Meshes(verts=[], faces=[]) pred_meshes = self.mesh_head(mesh_features, init_mesh) mesh_rcnn_inference(pred_meshes[-1], instances) else: assert self.voxel_on mesh_rcnn_inference(init_mesh, instances) return instances
[ "torch.no_grad" ]
3
hsk9767/mesh_rcnn_copy
6dd4d9ea8af33c03a084e34c7d16eeaddfe924ae
1.3
import torch from torch import nn from torch.distributions import Categorical class SoftmaxCategoricalHead(nn.Module): def forward(self, logits): return torch.distributions.Categorical(logits=logits) # class MultiSoftmaxCategoricalHead(nn.Module): # def forward(self, logits): # return Independent(Categorical(logits=logits), reinterpreted_batch_ndims=1) class MultiCategorical(): def __init__(self, dims=None, logits=None): self.dims = dims logits = torch.split(logits, tuple(dims), dim=1) self.dists = [Categorical(logits=logits_dim) for logits_dim in logits] def log_prob(self, actions): actions = torch.unbind(actions, dim=1) logprobs = torch.stack([ dist.log_prob(action) for dist, action in zip(self.dists, actions) ], dim=1) return logprobs.sum(dim=1) def entropy(self): return torch.stack([dist.entropy() for dist in self.dists], dim=1).sum(dim=1) def sample(self): return torch.stack([dist.sample() for dist in self.dists], dim=1) def mode(self): return torch.stack([ torch.argmax(dist.probs, dim=1) for dist in self.dists ], dim=1) class MultiSoftmaxCategoricalHead(nn.Module): def __init__(self, dims=None): self.dims = dims super().__init__() def forward(self, logits): return MultiCategorical(dims=self.dims, logits=logits)
[ "torch.unbind", "torch.distributions.Categorical", "torch.argmax" ]
1.3.0
tkelestemur/pfrl
388855fb30313185d43ae0d0f4b694be647a5c43
1.6
import argparse import os import pandas as pd import numpy as np import torch as t from torch.optim import Adam import pickle5 as pickle import json import random from sample import sample_with_input, sample_with_beam from utils.batch_loader import BatchLoader, clean_str from model.paraphraser import Paraphraser from model.generator import Generator from synonym_paraphraser import SynonymParaphraser def main(): parser = argparse.ArgumentParser(description='Paraphraser') parser.add_argument('--use-cuda', type=bool, default=False, metavar='CUDA', help='use cuda (default: False)') parser.add_argument('--seq-len', default=30, metavar='SL', help='max length of sequence (default: 30)') parser.add_argument('--ml', type=bool, default=True, metavar='ML', help='sample by maximum likelihood') args = parser.parse_args() # Read data if not os.path.exists('datasets/human_test.csv'): source_file = 'datasets/test.csv' source_data = pd.read_csv(source_file)[['question1', 'question2']] sentence_categories = [[] for _ in range(5)] for i in range(len(source_data)): sent = clean_str(source_data['question1'][i]) sent_len = len(sent.split()) if sent_len < 6: j = 0 elif sent_len < 11: j = 1 elif sent_len < 16: j = 2 elif sent_len < 21: j = 3 else: j = 4 sentence_categories[j].append([source_data['question1'][i], source_data['question2'][i]]) sample_data = [] for category in sentence_categories: sample_data += random.sample(category, 20) source_data = pd.DataFrame(sample_data, columns=['question1', 'question2']) source_data.to_csv('datasets/human_test.csv') else: source_data = pd.read_csv('datasets/human_test_1.csv')[['question1', 'question2']] # Sample from Guptas original model batch_loader = BatchLoader() from model.parameters import Parameters parameters = Parameters(batch_loader.max_seq_len, batch_loader.vocab_size) paraphraser = Paraphraser(parameters) paraphraser.load_state_dict(t.load('saved_models/trained_paraphraser_ori_32', map_location=t.device('cpu'))) samples_ori, target, source_ori = sample_with_input(batch_loader, paraphraser, args, decoder_only=True, file_name='datasets/human_test.csv') ref_items = generate_items(source_ori, target, 'ref') ori_items = generate_items(source_ori, samples_ori[0], 'ori') # Sample from Guptas model with two-path-loss batch_loader = BatchLoader() parameters = Parameters(batch_loader.max_seq_len, batch_loader.vocab_size, use_two_path_loss=True) paraphraser = Paraphraser(parameters) paraphraser.load_state_dict(t.load('saved_models/trained_paraphraser_tpl_16_32', map_location=t.device('cpu'))) samples_tpl, target, source_tpl = sample_with_input(batch_loader, paraphraser, args, decoder_only=False, file_name='datasets/human_test.csv') tpl_items = generate_items(source_tpl, samples_tpl[0], 'tpl') # Sample from GAN model batch_loader = BatchLoader() from model.parametersGAN import Parameters parameters = Parameters(batch_loader.max_seq_len, batch_loader.vocab_size) paraphraser = Generator(parameters) paraphraser.load_state_dict(t.load('saved_models/trained_generator_gan_140k', map_location=t.device('cpu'))) samples_gan, target, source_gan = sample_with_input(batch_loader, paraphraser, args, decoder_only=False, file_name='datasets/human_test.csv') gan_items = generate_items(source_gan, samples_gan[0], 'gan') # Sample from synonym model paraphraser = SynonymParaphraser() samples_synonym = paraphraser.generate_paraphrases('datasets/human_test.csv') base_items = generate_items(source_data['question1'], samples_synonym, 'base') all_items = ref_items + ori_items + tpl_items + gan_items + base_items eval_results = {'name' : 'Paraphrase Survey Full Ordered', 'items' : all_items} res = json.dumps(eval_results, ensure_ascii=False) with open('datasets/human_test_ordered.json', 'w') as f: f.write(res) random.shuffle(all_items) eval_results = {'name' : 'Paraphrase Survey Full Shuffled', 'items' : all_items} res = json.dumps(eval_results, ensure_ascii=False) with open('datasets/human_test_shuffled.json', 'w') as f: f.write(res) for i in range(10): eval_results = {'name' : f'Paraphrase Survey Part {i+1}/{10}', 'items' : all_items[i*50:((i+1)*50)-1]} res = json.dumps(eval_results, ensure_ascii=False) with open(f'datasets/human_test_p_{i}_{10}.json', 'w') as f: f.write(res) def generate_items(original, paraphrase, model): items = [] for i in range(len(original)): questions = 'Fråga 1: ' + original[i] + '?<br>Fråga 2: ' + paraphrase[i] + '?' item = { 'question' : questions, 'required' : True, 'extra' : {'model' : model}, 'order': -1, 'answer_sets' : [ { "type": "radio", "name": "Fråga 1 är grammatiskt korrekt: ", "choices": [ "0", "1", "2", "3"] }, { "type": "radio", "name": "Fråga 2 är grammatiskt korrekt: ", "choices": [ "0", "1", "2", "3"] }, { "type": "radio", "name": "Fråga 2 är betyder samma sak som Fråga 1: ", "choices": [ "0", "1", "2", "3"] }] } items.append(item) return items if __name__ == '__main__': main()
[ "torch.device" ]
1.6.0
nlindqv/pytorch_RVAE
d9e58134965f69aad557fb3bd2478500a51210f8
1.4
import sys import os import torch import torch.onnx import torch.distributed as dist import torch.nn as nn import onnxruntime from datetime import datetime from torch.utils.data import DataLoader import torch.multiprocessing as mp from pepper_variant.modules.python.models.dataloader_predict import SequenceDataset from pepper_variant.modules.python.models.ModelHander import ModelHandler from pepper_variant.modules.python.Options import ImageSizeOptions, TrainOptions from pepper_variant.modules.python.DataStorePredict import DataStore def predict(input_filepath, file_chunks, output_filepath, model_path, batch_size, num_workers, threads, thread_id): # session options sess_options = onnxruntime.SessionOptions() sess_options.intra_op_num_threads = threads sess_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL ort_session = onnxruntime.InferenceSession(model_path + ".onnx", sess_options=sess_options) torch.set_num_threads(threads) # create output file output_filename = output_filepath + "pepper_prediction_" + str(thread_id) + ".hdf" prediction_data_file = DataStore(output_filename, mode='w') # data loader input_data = SequenceDataset(input_filepath, file_chunks) data_loader = DataLoader(input_data, batch_size=batch_size, shuffle=False, num_workers=num_workers) batch_completed = 0 total_batches = len(data_loader) with torch.no_grad(): for contig, contig_start, contig_end, chunk_id, images, position, index in data_loader: images = images.type(torch.FloatTensor) hidden = torch.zeros(images.size(0), 2 * TrainOptions.GRU_LAYERS, TrainOptions.HIDDEN_SIZE) prediction_base_tensor = torch.zeros((images.size(0), images.size(1), ImageSizeOptions.TOTAL_LABELS)) for i in range(0, ImageSizeOptions.SEQ_LENGTH, TrainOptions.WINDOW_JUMP): if i + TrainOptions.TRAIN_WINDOW > ImageSizeOptions.SEQ_LENGTH: break chunk_start = i chunk_end = i + TrainOptions.TRAIN_WINDOW # chunk all the data image_chunk = images[:, chunk_start:chunk_end] # run inference on onnx mode, which takes numpy inputs ort_inputs = {ort_session.get_inputs()[0].name: image_chunk.cpu().numpy(), ort_session.get_inputs()[1].name: hidden.cpu().numpy()} output_base, hidden = ort_session.run(None, ort_inputs) output_base = torch.from_numpy(output_base) hidden = torch.from_numpy(hidden) # now calculate how much padding is on the top and bottom of this chunk so we can do a simple # add operation top_zeros = chunk_start bottom_zeros = ImageSizeOptions.SEQ_LENGTH - chunk_end # do softmax and get prediction # we run a softmax a padding to make the output tensor compatible for adding inference_layers = nn.Sequential( nn.Softmax(dim=2), nn.ZeroPad2d((0, 0, top_zeros, bottom_zeros)) ) # run the softmax and padding layers base_prediction = (inference_layers(output_base) * 10).type(torch.IntTensor) # now simply add the tensor to the global counter prediction_base_tensor = torch.add(prediction_base_tensor, base_prediction) # base_values, base_labels = torch.max(prediction_base_tensor, 2) # # predicted_base_labels = base_labels.cpu().numpy() prediction_base_tensor = prediction_base_tensor.cpu().numpy().astype(int) for i in range(images.size(0)): prediction_data_file.write_prediction(contig[i], contig_start[i], contig_end[i], chunk_id[i], position[i], index[i], prediction_base_tensor[i]) batch_completed += 1 if thread_id == 0 and batch_completed % 5 == 0: sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) + "] " + "INFO: BATCHES PROCESSED " + str(batch_completed) + "/" + str(total_batches) + ".\n") sys.stderr.flush() def cleanup(): dist.destroy_process_group() def setup(rank, total_callers, args, all_input_files): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' # initialize the process group dist.init_process_group("gloo", rank=rank, world_size=total_callers) filepath, output_filepath, model_path, batch_size, threads, num_workers = args # Explicitly setting seed to make sure that models created in two processes # start from same random weights and biases. predict(filepath, all_input_files[rank], output_filepath, model_path, batch_size, num_workers, threads, rank) cleanup() def predict_distributed_cpu(filepath, file_chunks, output_filepath, model_path, batch_size, callers, threads, num_workers): """ Create a prediction table/dictionary of an images set using a trained model. :param filepath: Path to image files to predict on :param file_chunks: Path to chunked files :param batch_size: Batch size used for prediction :param model_path: Path to a trained model :param output_filepath: Path to output directory :param callers: Number of callers to start :param threads: Number of threads per caller. :param num_workers: Number of workers to be used by the dataloader :return: Prediction dictionary """ transducer_model, hidden_size, gru_layers, prev_ite = \ ModelHandler.load_simple_model_for_training(model_path, input_channels=ImageSizeOptions.IMAGE_CHANNELS, image_features=ImageSizeOptions.IMAGE_HEIGHT, seq_len=ImageSizeOptions.SEQ_LENGTH, num_classes=ImageSizeOptions.TOTAL_LABELS) transducer_model.eval() sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) + "] INFO: MODEL LOADING TO ONNX\n") x = torch.zeros(1, TrainOptions.TRAIN_WINDOW, ImageSizeOptions.IMAGE_HEIGHT) h = torch.zeros(1, 2 * TrainOptions.GRU_LAYERS, TrainOptions.HIDDEN_SIZE) if not os.path.isfile(model_path + ".onnx"): sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) + "] INFO: SAVING MODEL TO ONNX\n") torch.onnx.export(transducer_model, (x, h), model_path + ".onnx", training=False, opset_version=10, do_constant_folding=True, input_names=['input_image', 'input_hidden'], output_names=['output_pred', 'output_hidden'], dynamic_axes={'input_image': {0: 'batch_size'}, 'input_hidden': {0: 'batch_size'}, 'output_pred': {0: 'batch_size'}, 'output_hidden': {0: 'batch_size'}}) transducer_model.eval() args = (filepath, output_filepath, model_path, batch_size, threads, num_workers) mp.spawn(setup, args=(callers, args, file_chunks), nprocs=callers, join=True)
[ "torch.zeros", "torch.nn.Softmax", "torch.distributed.destroy_process_group", "torch.distributed.init_process_group", "torch.no_grad", "torch.multiprocessing.spawn", "torch.add", "torch.from_numpy", "torch.utils.data.DataLoader", "torch.onnx.export", "torch.nn.ZeroPad2d", "torch.set_num_threads" ]
1.4.0
Samteymoori/pepper
734d226de47a855952e3b58145c1fcfbe221d3b4
1.7
""" Evaluate """ import re import math import datetime import random import torch from torch.nn import functional as F from torch.utils.data import DataLoader import matplotlib.pyplot as plt from loss import iou_loss, HairMattingLoss, acc_loss, F1_loss from utils import create_multi_figure USE_CUDA = torch.cuda.is_available() DEVICE = torch.device("cuda" if USE_CUDA else "cpu") def evalTest(test_data, model, args): testloader = DataLoader(test_data, batch_size=4, shuffle=False) hairmat_loss = HairMattingLoss(args.grad_lambda) total_loss, total_iou, total_acc, total_f1 = 0, 0, 0, 0 for batch in testloader: image, mask = (i.to(DEVICE) for i in batch) pred = model(image) total_loss += hairmat_loss(pred, mask, image).item() iloss = iou_loss(pred, mask).item() total_iou += iloss aloss = acc_loss(pred, mask).item() total_acc += aloss floss = F1_loss(pred, mask).item() total_f1 += floss print("Testing Loss: ", total_loss / len(testloader)) print("Testing IOU: ", total_iou / len(testloader)) print("Testing Acc: ", total_acc / len(testloader)) print("Testing F1: ", total_f1 / len(testloader)) def evaluateOne(img, model, absolute=True): img = img.to(DEVICE).unsqueeze(0) pred = model(img) if absolute: pred[pred > 0.5] = 1.0 pred[pred <= 0.5] = 0.0 else: pred[pred < 0.4] = 0 # pred[pred < .90] = 0 rows = [[img[0], pred[0]]] create_multi_figure(rows, dye=True) plt.savefig("result.jpg") def evaluate(test_data, model, num, absolute=True): rows = [None] * num for i in range(num): idx = random.randint(0, len(test_data) - 1) image, mask = (i.to(DEVICE).unsqueeze(0) for i in test_data[idx]) pred = model(image) if absolute: pred[pred > 0.5] = 1.0 pred[pred <= 0.5] = 0.0 else: pred[pred < 0.4] = 0 rows[i] = [image[0], mask[0], pred[0]] # get batch create_multi_figure(rows, dye=True) plt.savefig("result.jpg")
[ "torch.device", "torch.cuda.is_available", "torch.utils.data.DataLoader" ]
1.7.1
eric91sanchez/hair_seg
4f688daac0ec4ea906ff0462ae51634293e35447
1.6
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle from argparse import ArgumentParser from typing import Any, Dict from unittest import mock from unittest.mock import call, PropertyMock import pytest import torch from pytorch_lightning import LightningDataModule, Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.utilities import AttributeDict from pytorch_lightning.utilities.model_helpers import is_overridden from tests.helpers import BoringDataModule, BoringModel from tests.helpers.datamodules import ClassifDataModule from tests.helpers.runif import RunIf from tests.helpers.simple_models import ClassificationModel from tests.helpers.utils import reset_seed @mock.patch("pytorch_lightning.trainer.trainer.Trainer.node_rank", new_callable=PropertyMock) @mock.patch("pytorch_lightning.trainer.trainer.Trainer.local_rank", new_callable=PropertyMock) def test_can_prepare_data(local_rank, node_rank): model = BoringModel() dm = BoringDataModule() trainer = Trainer() trainer.model = model trainer.datamodule = dm # 1 no DM # prepare_data_per_node = True # local rank = 0 (True) trainer.prepare_data_per_node = True dm.random_full = None dm._has_prepared_data = False local_rank.return_value = 0 assert trainer.local_rank == 0 assert trainer.data_connector.can_prepare_data() trainer.data_connector.prepare_data() assert dm.random_full is not None # local rank = 1 (False) dm.random_full = None dm._has_prepared_data = False local_rank.return_value = 1 assert trainer.local_rank == 1 assert not trainer.data_connector.can_prepare_data() trainer.data_connector.prepare_data() assert dm.random_full is None # prepare_data_per_node = False (prepare across all nodes) # global rank = 0 (True) dm.random_full = None dm._has_prepared_data = False trainer.prepare_data_per_node = False node_rank.return_value = 0 local_rank.return_value = 0 assert trainer.data_connector.can_prepare_data() trainer.data_connector.prepare_data() assert dm.random_full is not None # global rank = 1 (False) dm.random_full = None dm._has_prepared_data = False node_rank.return_value = 1 local_rank.return_value = 0 assert not trainer.data_connector.can_prepare_data() trainer.data_connector.prepare_data() assert dm.random_full is None node_rank.return_value = 0 local_rank.return_value = 1 assert not trainer.data_connector.can_prepare_data() trainer.data_connector.prepare_data() assert dm.random_full is None # 2 dm # prepar per node = True # local rank = 0 (True) trainer.prepare_data_per_node = True local_rank.return_value = 0 # is_overridden prepare data = True # has been called # False dm._has_prepared_data = True assert not trainer.data_connector.can_prepare_data() # has not been called # True dm._has_prepared_data = False assert trainer.data_connector.can_prepare_data() # is_overridden prepare data = False # True dm.prepare_data = None assert trainer.data_connector.can_prepare_data() def test_hooks_no_recursion_error(): # hooks were appended in cascade every tine a new data module was instantiated leading to a recursion error. # See https://github.com/PyTorchLightning/pytorch-lightning/issues/3652 class DummyDM(LightningDataModule): def setup(self, *args, **kwargs): pass def prepare_data(self, *args, **kwargs): pass for i in range(1005): dm = DummyDM() dm.setup() dm.prepare_data() def test_helper_boringdatamodule(): dm = BoringDataModule() dm.prepare_data() dm.setup() def test_helper_boringdatamodule_with_verbose_setup(): dm = BoringDataModule() dm.prepare_data() dm.setup("fit") dm.setup("test") def test_data_hooks_called(): dm = BoringDataModule() assert not dm.has_prepared_data assert not dm.has_setup_fit assert not dm.has_setup_test assert not dm.has_setup_validate assert not dm.has_setup_predict assert not dm.has_teardown_fit assert not dm.has_teardown_test assert not dm.has_teardown_validate assert not dm.has_teardown_predict dm.prepare_data() assert dm.has_prepared_data assert not dm.has_setup_fit assert not dm.has_setup_test assert not dm.has_setup_validate assert not dm.has_setup_predict assert not dm.has_teardown_fit assert not dm.has_teardown_test assert not dm.has_teardown_validate assert not dm.has_teardown_predict dm.setup() assert dm.has_prepared_data assert dm.has_setup_fit assert dm.has_setup_test assert dm.has_setup_validate assert not dm.has_setup_predict assert not dm.has_teardown_fit assert not dm.has_teardown_test assert not dm.has_teardown_validate assert not dm.has_teardown_predict dm.teardown() assert dm.has_prepared_data assert dm.has_setup_fit assert dm.has_setup_test assert dm.has_setup_validate assert not dm.has_setup_predict assert dm.has_teardown_fit assert dm.has_teardown_test assert dm.has_teardown_validate assert not dm.has_teardown_predict @pytest.mark.parametrize("use_kwarg", (False, True)) def test_data_hooks_called_verbose(use_kwarg): dm = BoringDataModule() dm.prepare_data() assert not dm.has_setup_fit assert not dm.has_setup_test assert not dm.has_setup_validate assert not dm.has_setup_predict assert not dm.has_teardown_fit assert not dm.has_teardown_test assert not dm.has_teardown_validate assert not dm.has_teardown_predict dm.setup(stage="fit") if use_kwarg else dm.setup("fit") assert dm.has_setup_fit assert not dm.has_setup_validate assert not dm.has_setup_test assert not dm.has_setup_predict dm.setup(stage="validate") if use_kwarg else dm.setup("validate") assert dm.has_setup_fit assert dm.has_setup_validate assert not dm.has_setup_test assert not dm.has_setup_predict dm.setup(stage="test") if use_kwarg else dm.setup("test") assert dm.has_setup_fit assert dm.has_setup_validate assert dm.has_setup_test assert not dm.has_setup_predict dm.setup(stage="predict") if use_kwarg else dm.setup("predict") assert dm.has_setup_fit assert dm.has_setup_validate assert dm.has_setup_test assert dm.has_setup_predict dm.teardown(stage="fit") if use_kwarg else dm.teardown("fit") assert dm.has_teardown_fit assert not dm.has_teardown_validate assert not dm.has_teardown_test assert not dm.has_teardown_predict dm.teardown(stage="validate") if use_kwarg else dm.teardown("validate") assert dm.has_teardown_fit assert dm.has_teardown_validate assert not dm.has_teardown_test assert not dm.has_teardown_predict dm.teardown(stage="test") if use_kwarg else dm.teardown("test") assert dm.has_teardown_fit assert dm.has_teardown_validate assert dm.has_teardown_test assert not dm.has_teardown_predict dm.teardown(stage="predict") if use_kwarg else dm.teardown("predict") assert dm.has_teardown_fit assert dm.has_teardown_validate assert dm.has_teardown_test assert dm.has_teardown_predict def test_dm_add_argparse_args(tmpdir): parser = ArgumentParser() parser = BoringDataModule.add_argparse_args(parser) args = parser.parse_args(["--data_dir", str(tmpdir)]) assert args.data_dir == str(tmpdir) def test_dm_init_from_argparse_args(tmpdir): parser = ArgumentParser() parser = BoringDataModule.add_argparse_args(parser) args = parser.parse_args(["--data_dir", str(tmpdir)]) dm = BoringDataModule.from_argparse_args(args) dm.prepare_data() dm.setup() assert dm.data_dir == args.data_dir == str(tmpdir) def test_dm_pickle_after_init(): dm = BoringDataModule() pickle.dumps(dm) def test_train_loop_only(tmpdir): reset_seed() dm = ClassifDataModule() model = ClassificationModel() model.validation_step = None model.validation_step_end = None model.validation_epoch_end = None model.test_step = None model.test_step_end = None model.test_epoch_end = None trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, weights_summary=None) # fit model trainer.fit(model, datamodule=dm) assert trainer.state.finished, f"Training failed with {trainer.state}" assert trainer.callback_metrics["train_loss"] < 1.0 def test_train_val_loop_only(tmpdir): reset_seed() dm = ClassifDataModule() model = ClassificationModel() model.validation_step = None model.validation_step_end = None model.validation_epoch_end = None trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, weights_summary=None) # fit model trainer.fit(model, datamodule=dm) assert trainer.state.finished, f"Training failed with {trainer.state}" assert trainer.callback_metrics["train_loss"] < 1.0 def test_dm_checkpoint_save(tmpdir): class CustomBoringModel(BoringModel): def validation_step(self, batch, batch_idx): out = super().validation_step(batch, batch_idx) self.log("early_stop_on", out["x"]) return out class CustomBoringDataModule(BoringDataModule): def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: checkpoint[self.__class__.__name__] = self.__class__.__name__ def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: self.checkpoint_state = checkpoint.get(self.__class__.__name__) reset_seed() dm = CustomBoringDataModule() model = CustomBoringModel() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=2, limit_val_batches=1, weights_summary=None, callbacks=[ModelCheckpoint(dirpath=tmpdir, monitor="early_stop_on")], ) # fit model trainer.fit(model, dm) assert trainer.state.finished, f"Training failed with {trainer.state}" checkpoint_path = list(trainer.checkpoint_callback.best_k_models.keys())[0] checkpoint = torch.load(checkpoint_path) assert dm.__class__.__name__ in checkpoint assert checkpoint[dm.__class__.__name__] == dm.__class__.__name__ def test_full_loop(tmpdir): reset_seed() dm = ClassifDataModule() model = ClassificationModel() trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, weights_summary=None, deterministic=True) # fit model trainer.fit(model, dm) assert trainer.state.finished, f"Training failed with {trainer.state}" assert dm.trainer is not None # validate result = trainer.validate(model, dm) assert dm.trainer is not None assert result[0]["val_acc"] > 0.7 # test result = trainer.test(model, dm) assert dm.trainer is not None assert result[0]["test_acc"] > 0.6 @RunIf(min_gpus=1) @mock.patch("pytorch_lightning.accelerators.accelerator.Accelerator.lightning_module", new_callable=PropertyMock) def test_dm_apply_batch_transfer_handler(get_module_mock): expected_device = torch.device("cuda", 0) class CustomBatch: def __init__(self, data): self.samples = data[0] self.targets = data[1] class CurrentTestDM(LightningDataModule): rank = 0 transfer_batch_to_device_hook_rank = None on_before_batch_transfer_hook_rank = None on_after_batch_transfer_hook_rank = None def on_before_batch_transfer(self, batch, dataloader_idx): assert dataloader_idx == 0 self.on_before_batch_transfer_hook_rank = self.rank self.rank += 1 batch.samples += 1 return batch def on_after_batch_transfer(self, batch, dataloader_idx): assert dataloader_idx == 0 assert batch.samples.device == batch.targets.device == expected_device self.on_after_batch_transfer_hook_rank = self.rank self.rank += 1 batch.targets *= 2 return batch def transfer_batch_to_device(self, batch, device, dataloader_idx): assert dataloader_idx == 0 self.transfer_batch_to_device_hook_rank = self.rank self.rank += 1 batch.samples = batch.samples.to(device) batch.targets = batch.targets.to(device) return batch dm = CurrentTestDM() model = BoringModel() batch = CustomBatch((torch.zeros(5, 32), torch.ones(5, 1, dtype=torch.long))) trainer = Trainer(gpus=1) # running .fit() would require us to implement custom data loaders, we mock the model reference instead get_module_mock.return_value = model if is_overridden("transfer_batch_to_device", dm): model.transfer_batch_to_device = dm.transfer_batch_to_device model.on_before_batch_transfer = dm.on_before_batch_transfer model.transfer_batch_to_device = dm.transfer_batch_to_device model.on_after_batch_transfer = dm.on_after_batch_transfer batch_gpu = trainer.accelerator.batch_to_device(batch, expected_device) assert dm.on_before_batch_transfer_hook_rank == 0 assert dm.transfer_batch_to_device_hook_rank == 1 assert dm.on_after_batch_transfer_hook_rank == 2 assert batch_gpu.samples.device == batch_gpu.targets.device == expected_device assert torch.allclose(batch_gpu.samples.cpu(), torch.ones(5, 32)) assert torch.allclose(batch_gpu.targets.cpu(), torch.ones(5, 1, dtype=torch.long) * 2) def test_dm_reload_dataloaders_every_n_epochs(tmpdir): """ Test datamodule, where trainer argument reload_dataloaders_every_n_epochs is set to a non negative integer """ class CustomBoringDataModule(BoringDataModule): def __init__(self): super().__init__() self._epochs_called_for = [] def train_dataloader(self): assert self.trainer.current_epoch not in self._epochs_called_for self._epochs_called_for.append(self.trainer.current_epoch) return super().train_dataloader() dm = CustomBoringDataModule() model = BoringModel() model.validation_step = None model.validation_step_end = None model.validation_epoch_end = None model.test_step = None model.test_step_end = None model.test_epoch_end = None trainer = Trainer(default_root_dir=tmpdir, max_epochs=3, limit_train_batches=2, reload_dataloaders_every_n_epochs=2) trainer.fit(model, dm) class DummyDS(torch.utils.data.Dataset): def __getitem__(self, index): return 1 def __len__(self): return 100 class DummyIDS(torch.utils.data.IterableDataset): def __iter__(self): yield 1 @pytest.mark.parametrize("iterable", (False, True)) def test_dm_init_from_datasets_dataloaders(iterable): ds = DummyIDS if iterable else DummyDS train_ds = ds() dm = LightningDataModule.from_datasets(train_ds, batch_size=4, num_workers=0) with mock.patch("pytorch_lightning.core.datamodule.DataLoader") as dl_mock: dm.train_dataloader() dl_mock.assert_called_once_with(train_ds, batch_size=4, shuffle=not iterable, num_workers=0, pin_memory=True) assert dm.val_dataloader() is None assert dm.test_dataloader() is None train_ds_sequence = [ds(), ds()] dm = LightningDataModule.from_datasets(train_ds_sequence, batch_size=4, num_workers=0) with mock.patch("pytorch_lightning.core.datamodule.DataLoader") as dl_mock: dm.train_dataloader() dl_mock.assert_has_calls( [ call(train_ds_sequence[0], batch_size=4, shuffle=not iterable, num_workers=0, pin_memory=True), call(train_ds_sequence[1], batch_size=4, shuffle=not iterable, num_workers=0, pin_memory=True), ] ) assert dm.val_dataloader() is None assert dm.test_dataloader() is None valid_ds = ds() test_ds = ds() dm = LightningDataModule.from_datasets(val_dataset=valid_ds, test_dataset=test_ds, batch_size=2, num_workers=0) with mock.patch("pytorch_lightning.core.datamodule.DataLoader") as dl_mock: dm.val_dataloader() dl_mock.assert_called_with(valid_ds, batch_size=2, shuffle=False, num_workers=0, pin_memory=True) dm.test_dataloader() dl_mock.assert_called_with(test_ds, batch_size=2, shuffle=False, num_workers=0, pin_memory=True) assert dm.train_dataloader() is None valid_dss = [ds(), ds()] test_dss = [ds(), ds()] dm = LightningDataModule.from_datasets(train_ds, valid_dss, test_dss, batch_size=4, num_workers=0) with mock.patch("pytorch_lightning.core.datamodule.DataLoader") as dl_mock: dm.val_dataloader() dm.test_dataloader() dl_mock.assert_has_calls( [ call(valid_dss[0], batch_size=4, shuffle=False, num_workers=0, pin_memory=True), call(valid_dss[1], batch_size=4, shuffle=False, num_workers=0, pin_memory=True), call(test_dss[0], batch_size=4, shuffle=False, num_workers=0, pin_memory=True), call(test_dss[1], batch_size=4, shuffle=False, num_workers=0, pin_memory=True), ] ) class DataModuleWithHparams(LightningDataModule): def __init__(self, arg0, arg1, kwarg0=None): super().__init__() self.save_hyperparameters() def test_simple_hyperparameters_saving(): data = DataModuleWithHparams(10, "foo", kwarg0="bar") assert data.hparams == AttributeDict({"arg0": 10, "arg1": "foo", "kwarg0": "bar"})
[ "torch.zeros", "torch.device", "torch.load", "torch.ones" ]
1.6
lsqshr/pytorch-lightning
c6b68883879e38719688865aceac746477f0a9b9
1.2
import torch from torch.utils.data import DataLoader from torch import nn from pytorch_transformers import AdamW, WEIGHTS_NAME, WarmupLinearSchedule import csv import numpy as np import os import logging from fp16 import FP16_Module, FP16_Optimizer from parallel import DataParallelModel, DataParallelCriterion from collections import OrderedDict from utils import * from settings import args, TASK_DICT, init_logging, MODEL_CONFIG, MODEL_CLASS, SPECIAL_TOKENS, CONFIG_CLASS from settings import TOKENIZER, SPECIAL_TOKEN_IDS, FILL_VAL, SAVE_NAME, FINAL_SAVE_NAME, TOKENS_WEIGHT, CONFIG_NAME from scheduler import AnnealingLR from regularizers import REG_TYPES, REG_TYPE_KEYS, Weight_Regularized_AdamW, Weight_Regularized_SGD from torch.nn import CrossEntropyLoss logger = logging.getLogger(__name__) def train(task_ids, model): tasks = [args.tasks[task_id] for task_id in task_ids] logger.info("start to train { task: %s, seq train type: %s }" % (tasks, args.seq_train_type)) model_dir = get_model_dir(tasks) make_dir(model_dir) train_dataset = [TASK_DICT[t]["train"] for t in tasks] train_extra_data = [] if "lll" in args.seq_train_type and task_ids[0] > 0 and not args.skip_tasks: prev_task = args.tasks[task_ids[0]-1] with torch.no_grad(): create_extra_data(tasks[0], prev_task, model, train_extra_data) elif "gem" in args.seq_train_type and task_ids[0] > 0: get_real_data(tasks[0], train_extra_data, accum=False, encode=True) args.memory_data.append(train_extra_data) train_extra_data = [] logger.info('extra training data size: {}'.format(len(train_extra_data))) if not model: # which_model_to_load = model_dir if os.path.isfile(os.path.join(model_dir, FINAL_SAVE_NAME)) else args.model_name model = MODEL_CLASS.from_pretrained(args.model_name).cuda() model.resize_token_embeddings(len(TOKENIZER)) if not args.fp32: model = FP16_Module(model) gen_token = get_gen_token(tasks[0]) TOKENIZER.add_tokens([gen_token]) TOKENIZER.save_pretrained(model_dir) SPECIAL_TOKENS[tasks[0]] = gen_token SPECIAL_TOKEN_IDS[tasks[0]] = TOKENIZER.convert_tokens_to_ids(gen_token) logger.info('gen token = {} , gen token id = {}'.format(gen_token, SPECIAL_TOKEN_IDS[tasks[0]])) MODEL_CONFIG.vocab_size = len(TOKENIZER) MODEL_CONFIG.to_json_file(os.path.join(model_dir,CONFIG_NAME)) global TOKENS_WEIGHT if len(TOKENIZER) != TOKENS_WEIGHT.shape[0]: TOKENS_WEIGHT = torch.cat((TOKENS_WEIGHT, torch.ones([1]).cuda())) if args.skip_tasks and len(tasks) == 1: logger.info("*********** skip task: {} ***********".format(tasks[0])) if tasks[0] in args.skip_tasks: if len(args.skip_tasks) == 1: model_dir = get_model_dir(tasks) model_path = os.path.join(model_dir, FINAL_SAVE_NAME) config_path = os.path.join(model_dir,CONFIG_NAME) model_config = CONFIG_CLASS.from_json_file(config_path) model = MODEL_CLASS(model_config).cuda() state_dict = torch.load(model_path) model.load_state_dict(state_dict) if not args.fp32: model = FP16_Module(model) if args.seq_train_type in REG_TYPE_KEYS: logger.info("calulating reg_params ...") train_qadata = QADataset(train_dataset, "train", SPECIAL_TOKEN_IDS[tasks[0]], train_extra_data) max_train_batch_size = max(len(train_qadata) // args.min_n_steps, args.min_batch_size) train_dataloader = create_dataloader(train_qadata, "train", max_train_batch_size) parallel_model = DataParallelModel(WrapModel(model), args.device_ids) regularizer = REG_TYPES[args.seq_train_type](model, parallel_model, [train_dataloader], tasks[0]) regularizer.task_start_do() regularizer.task_end_do() torch.save(model.state_dict(), os.path.join(model_dir, FINAL_SAVE_NAME)) logger.info("done reg_params!") args.skip_tasks.remove(tasks[0]) return model model.resize_token_embeddings(len(TOKENIZER)) if not args.fp32: # again because resize_token_embeddings makes embedding layer fp32 model = FP16_Module(model) parallel_model = DataParallelModel(WrapModel(model), args.device_ids) train_qadata = QADataset(train_dataset, "train", SPECIAL_TOKEN_IDS[tasks[0]], train_extra_data) max_train_batch_size = max(len(train_qadata) // args.min_n_steps, args.min_batch_size) train_dataloader = create_dataloader(train_qadata, "train", max_train_batch_size) if not args.unbound and args.seq_train_type != "multitask": #n_train_epochs = TASK_DICT[tasks[0]]["n_train_epochs"] n_train_epochs = args.n_train_epochs[tasks[0]] else: n_train_epochs = args.n_train_epochs['_'.join(tasks)] n_train_optimization_steps = len(train_qadata) * n_train_epochs logger.info('len of train dataset: {} , max train batch size {} , num of opt steps: {}'.format( len(train_qadata), max_train_batch_size, n_train_optimization_steps)) param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] if "gem" in args.seq_train_type: model.task_id = task_ids[0] if not hasattr(model, "grad_dims"): model.grad_dims = [] for param in model.parameters(): model.grad_dims.append(param.data.numel()) if not hasattr(model, "grads"): model.grads = torch.zeros(sum(model.grad_dims),len(args.tasks)) model.grads = model.grads.cuda() if args.seq_train_type in REG_TYPE_KEYS: optimizer = Weight_Regularized_AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) else: optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) if not args.fp32: optimizer = FP16_Optimizer(optimizer, static_loss_scale=None, dynamic_loss_scale=True, dynamic_loss_args={'scale_window': 100, 'min_scale': 1, 'delayed_shift': 2}) scheduler = AnnealingLR(optimizer, start_lr=args.learning_rate, warmup_iter=int(args.n_warmup_ratio*len(train_qadata)), num_iters=int(n_train_optimization_steps), decay_style=args.decay_style) train_loss_fct = DataParallelCriterion(CrossEntropyLoss(ignore_index=FILL_VAL, weight=TOKENS_WEIGHT), args.device_ids) if args.seq_train_type in REG_TYPE_KEYS: copy_train_dataloader = create_dataloader(train_qadata, "train", max_train_batch_size) prev_task = args.tasks[task_ids[0]-1] regularizer = REG_TYPES[args.seq_train_type](model, parallel_model, [copy_train_dataloader], tasks[0], prev_task) regularizer.task_start_do() tot_n_steps = 0 train_once = TrainStep(model, optimizer, scheduler) if "gem" in args.seq_train_type and task_ids[0] != 0: gem_step = GEMStep(model, parallel_model, train_loss_fct, optimizer) model.train() for ep in range(n_train_epochs): cum_loss, cum_qa_loss, cum_lm_loss, cur_n_inputs = 0, 0, 0, 0 for n_steps, (_, _, cqa, _, Y, gen_X, gen_Y) in enumerate(train_dataloader): n_inputs = sum(_cqa.shape[0] for _cqa in cqa) for i in range(len(cqa)): cqa[i] = (cqa[i].to(args.device_ids[i]),) Y[i] = Y[i].to(args.device_ids[i]) gen_X[i] = (gen_X[i].to(args.device_ids[i]),) gen_Y[i] = gen_Y[i].to(args.device_ids[i]) losses = get_losses(parallel_model, cqa, Y, gen_X, gen_Y, train_loss_fct) loss = sum(losses) if "gem" in args.seq_train_type and task_ids[0] != 0: gem_step(task_ids[0]) train_once(loss, n_inputs) qa_loss = losses[0].item() * n_inputs lm_loss = losses[1].item() * n_inputs cum_loss += (qa_loss + lm_loss) cum_qa_loss += qa_loss cum_lm_loss += lm_loss cur_n_inputs += n_inputs if (n_steps + 1 ) % args.logging_steps == 0: logger.info('progress {:.3f} , lr {:.1E} , loss {:.3f} , qa loss {:.3f} , lm loss {:.3f} , avg batch size {:.1f}'.format( ep + cur_n_inputs/len(train_qadata), scheduler.get_lr(), cum_loss/cur_n_inputs, cum_qa_loss/cur_n_inputs, cum_lm_loss/cur_n_inputs, cur_n_inputs/(n_steps + 1) )) torch.save(model.state_dict(), os.path.join(model_dir, SAVE_NAME+str(ep+1))) tot_n_steps += (n_steps + 1) logger.info('epoch {}/{} done , tot steps {} , lr {:.1E} , loss {:.2f} , qa loss {:.2f} , lm loss {:.2f} , avg batch size {:.1f}'.format( ep+1, n_train_epochs, tot_n_steps, scheduler.get_lr(), cum_loss/cur_n_inputs, cum_qa_loss/cur_n_inputs, cum_lm_loss/cur_n_inputs, cur_n_inputs/(n_steps+1) )) # task end do for reg if args.seq_train_type in REG_TYPE_KEYS: regularizer.task_end_do() torch.save(model.state_dict(), os.path.join(model_dir, FINAL_SAVE_NAME)) return model if __name__ == '__main__': if not args.debug: logging.getLogger("pytorch_transformers").setLevel(logging.WARNING) logging.getLogger("pytorch_transformers.tokenization_utils").setLevel(logging.CRITICAL) make_dir(args.model_dir_root) init_logging(os.path.join(args.model_dir_root, 'log_train.txt')) logger.info('args = {}'.format(str(args))) model = None if args.seq_train_type == "multitask": model = train(list(range(len(args.tasks))), model) else: if args.unbound: TASK_DICT = lll_unbound_setting(split_size=args.unbound) for task_id in range(len(args.tasks)): model = train([task_id], model)
[ "torch.no_grad", "torch.nn.CrossEntropyLoss", "torch.load", "torch.ones" ]
1.2.0
jojotenya/LAMOL
03c31d9f0c7bf71295bc2d362ddf40a7656956e1
1.4
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager, suppress from copy import copy, deepcopy import numpy as np import torch from pytorch_lightning.callbacks import EarlyStopping from pytorch_lightning.core.memory import ModelSummary from pytorch_lightning.core.optimizer import LightningOptimizer from pytorch_lightning.core.step_result import Result from pytorch_lightning.plugins import ParallelPlugin from pytorch_lightning.trainer.states import RunningStage, TrainerState from pytorch_lightning.trainer.supporters import Accumulator, TensorRunningAccum from pytorch_lightning.utilities import _TPU_AVAILABLE, AMPType, DeviceType, parsing from pytorch_lightning.utilities.distributed import rank_zero_info, rank_zero_warn from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.memory import recursive_detach from pytorch_lightning.utilities.model_helpers import is_overridden from pytorch_lightning.utilities.parsing import AttributeDict from pytorch_lightning.utilities.warnings import WarningCache class TrainLoop: def __init__(self, trainer, multiple_trainloader_mode): self.trainer = trainer self.early_stopping_accumulator = None self.checkpoint_accumulator = None self.accumulated_loss = None self.warning_cache = WarningCache() self._teardown_already_run = False self.running_loss = TensorRunningAccum(window_length=20) self.automatic_optimization = True self._curr_step_result = None self._cur_grad_norm_dict = None self._multiple_trainloader_mode = multiple_trainloader_mode self._skip_backward = False self.trainer._multiple_trainloader_mode = multiple_trainloader_mode def on_trainer_init( self, max_epochs, min_epochs, max_steps, min_steps, num_sanity_val_steps, automatic_optimization, weights_summary, ): self.trainer.global_step = 0 self.trainer.current_epoch = 0 self.trainer.interrupted = False self.trainer.should_stop = False self.trainer._state = TrainerState.INITIALIZING self.trainer.total_batch_idx = 0 self.trainer.batch_idx = 0 self.trainer.num_training_batches = 0 self.trainer.train_dataloader = None self.automatic_optimization = automatic_optimization # If neither max_epochs or max_steps is set, then use existing default of max_epochs = 1000 self.trainer.max_epochs = 1000 if (max_epochs is None and max_steps is None) else max_epochs # If neither min_epochs or min_steps is set, then use existing default of min_epochs = 1 self.trainer.min_epochs = 1 if (min_epochs is None and min_steps is None) else min_epochs self.trainer.max_steps = max_steps self.trainer.min_steps = min_steps if num_sanity_val_steps == -1: self.trainer.num_sanity_val_steps = float("inf") else: self.trainer.num_sanity_val_steps = num_sanity_val_steps self.trainer.weights_summary = weights_summary if weights_summary is not None and weights_summary not in ModelSummary.MODES: raise MisconfigurationException( f"`weights_summary` can be None, {', '.join(ModelSummary.MODES)}, got {weights_summary}" ) @property def num_optimizers(self): num_optimizers = len(self.get_optimizers_iterable()) return num_optimizers def should_skip_training(self): should_by_max_steps = self.trainer.max_steps is not None and self.trainer.global_step >= self.trainer.max_steps should_by_epoch = self.trainer.max_epochs is not None and self.trainer.current_epoch >= self.trainer.max_epochs return should_by_max_steps or should_by_epoch or self.trainer.num_training_batches == 0 def on_train_start(self): # hook self.trainer.call_hook("on_train_start") # provide rank to profiler self.trainer.profile_connector.on_train_start(self.trainer) def setup_fit(self, model, train_dataloader, val_dataloaders, datamodule): # clean hparams if hasattr(model, "hparams"): parsing.clean_namespace(model.hparams) # links data to the trainer self.trainer.data_connector.attach_data(model, train_dataloader, val_dataloaders, datamodule) # check that model is configured correctly self.trainer.config_validator.verify_loop_configurations(model) # attach model log function to callback self.trainer.callback_connector.attach_model_logging_functions(model) def on_train_end(self): if self._teardown_already_run: return self._teardown_already_run = True # trigger checkpoint check. need to temporarily decrease the global step to avoid saving duplicates # when a checkpoint was saved at the last step self.trainer.global_step -= 1 self.check_checkpoint_callback(should_update=True, is_last=True) self.trainer.global_step += 1 # hook self.trainer.call_hook("on_train_end") # todo: TPU 8 cores hangs in flush with TensorBoard. Might do for all loggers. # It might be related to xla tensors blocked when moving the cpu # kill loggers if self.trainer.logger is not None and self.trainer.training_type_plugin.should_finalize: self.trainer.logger.finalize("success") # summarize profile results if self.trainer.global_rank == 0: self.trainer.profiler.describe() # give accelerators a chance to finish self.trainer.accelerator_backend.on_train_end() # clear mem if self.trainer._device_type == DeviceType.GPU: model = self.trainer.get_model() model.cpu() torch.cuda.empty_cache() def check_checkpoint_callback(self, should_update, is_last=False): # TODO bake this logic into the ModelCheckpoint callback if should_update and self.trainer.checkpoint_connector.has_trained: callbacks = self.trainer.checkpoint_callbacks if is_last and any(cb.save_last for cb in callbacks): rank_zero_info("Saving latest checkpoint...") model = self.trainer.get_model() for cb in callbacks: cb.on_validation_end(self.trainer, model) def check_early_stopping_callback(self, should_update): # TODO bake this logic into the EarlyStopping callback if should_update and self.trainer.checkpoint_connector.has_trained: callbacks = [c for c in self.trainer.callbacks if isinstance(c, EarlyStopping)] model = self.trainer.get_model() for cb in callbacks: cb.on_validation_end(self.trainer, model) def on_train_epoch_start(self, epoch): # update training progress in trainer self.trainer.current_epoch = epoch model = self.trainer.get_model() # reset train dataloader if epoch != 0 and self.trainer.reload_dataloaders_every_epoch: self.trainer.reset_train_dataloader(model) # todo: specify the possible exception with suppress(Exception): # set seed for distributed sampler (enables shuffling for each epoch) self.trainer.train_dataloader.sampler.set_epoch(epoch) # changing gradient according accumulation_scheduler self.trainer.accumulation_scheduler.on_epoch_start(self.trainer, self.trainer.get_model()) # stores accumulated grad fractions per batch self.accumulated_loss = TensorRunningAccum(window_length=self.trainer.accumulate_grad_batches) # structured result accumulators for callbacks self.early_stopping_accumulator = Accumulator() self.checkpoint_accumulator = Accumulator() # hook self.trainer.call_hook("on_epoch_start") self.trainer.call_hook("on_train_epoch_start") def on_train_batch_end(self, epoch_output, batch_end_outputs, batch, batch_idx, dataloader_idx): # hook self.trainer.call_hook('on_train_batch_end', batch_end_outputs, batch, batch_idx, dataloader_idx) self.trainer.call_hook('on_batch_end') # figure out what to track for epoch end self.track_epoch_end_reduce_metrics(epoch_output, batch_end_outputs) # reset batch logger internals self.trainer.logger_connector.on_train_batch_end() def reset_train_val_dataloaders(self, model): if self.trainer.train_dataloader is None or not self.trainer.reload_dataloaders_every_epoch: self.trainer.reset_train_dataloader(model) if self.trainer.val_dataloaders is None and not self.trainer.reload_dataloaders_every_epoch: self.trainer.reset_val_dataloader(model) def track_epoch_end_reduce_metrics(self, epoch_output, batch_end_outputs): # track the outputs to reduce at the end of the epoch for opt_idx, opt_outputs in enumerate(batch_end_outputs): sample_output = opt_outputs[-1] # decide if we need to reduce at the end of the epoch automatically auto_reduce_tng_result = isinstance(sample_output, Result) and sample_output.should_reduce_on_epoch_end hook_overridden = ( is_overridden("training_epoch_end", model=self.trainer.get_model()) or is_overridden("on_train_epoch_end", model=self.trainer.get_model()) ) # only track when a) it needs to be autoreduced OR b) the user wants to manually reduce on epoch end if not (hook_overridden or auto_reduce_tng_result): continue # with 1 step (no tbptt) don't use a sequence at epoch end if isinstance(opt_outputs, list) and len(opt_outputs) == 1 and not isinstance(opt_outputs[0], Result): opt_outputs = opt_outputs[0] epoch_output[opt_idx].append(opt_outputs) def get_optimizers_iterable(self): """ Generates an iterable with (idx, optimizer) for each optimizer. """ if not self.trainer.optimizer_frequencies: # call training_step once per optimizer return list(enumerate(self.trainer.optimizers)) optimizer_freq_cumsum = np.cumsum(self.trainer.optimizer_frequencies) optimizers_loop_length = optimizer_freq_cumsum[-1] current_place_in_loop = self.trainer.total_batch_idx % optimizers_loop_length # find optimzier index by looking for the first {item > current_place} in the cumsum list opt_idx = np.argmax(optimizer_freq_cumsum > current_place_in_loop) return [[opt_idx, self.trainer.optimizers[opt_idx]]] def on_after_backward(self, training_step_output, batch_idx, untouched_loss): is_result_obj = isinstance(training_step_output, Result) if is_result_obj: training_step_output.detach() else: training_step_output.batch_loss = training_step_output.batch_loss.detach() # insert after step hook self.trainer.call_hook("on_after_backward") # when in dev debugging track the losses self.trainer.dev_debugger.track_train_loss_history(batch_idx, untouched_loss.detach()) def _check_training_step_output(self, training_step_output): if isinstance(training_step_output, torch.Tensor) and not self.automatic_optimization: if training_step_output.grad_fn is None: # TODO: Find why - RuntimeError: Expected to mark a variable ready only once ... raise MisconfigurationException("In manual optimization, `training_step` should not return a Tensor") def training_step(self, split_batch, batch_idx, opt_idx, hiddens): # give the PL module a result for logging model_ref = self.trainer.get_model() with self.trainer.profiler.profile("model_forward"): args = self.build_train_args(split_batch, batch_idx, opt_idx, hiddens) # manually capture logged metrics model_ref._current_fx_name = 'training_step' model_ref._results = Result() with self.trainer.profiler.profile("training_step"): training_step_output = self.trainer.accelerator_backend.training_step(args) self.trainer.accelerator_backend.post_training_step() self.trainer.logger_connector.cache_logged_metrics() self._check_training_step_output(training_step_output) training_step_output = self.trainer.call_hook("training_step_end", training_step_output) training_step_output_for_epoch_end, training_step_output = self._process_training_step_output( training_step_output, split_batch ) is_result_obj = isinstance(training_step_output, Result) if training_step_output_for_epoch_end is None: return None # enable empty loss when using manual opt closure_loss = None untouched_loss = None if self.trainer.train_loop.automatic_optimization: # accumulate loss # (if accumulate_grad_batches = 1 no effect) if is_result_obj: closure_loss = training_step_output.minimize else: closure_loss = training_step_output.batch_loss closure_loss = closure_loss / self.trainer.accumulate_grad_batches # the loss will get scaled for amp. avoid any modifications to it untouched_loss = closure_loss.detach().clone() # result result = AttributeDict( closure_loss=closure_loss, loss=untouched_loss, training_step_output=training_step_output, training_step_output_for_epoch_end=training_step_output_for_epoch_end, hiddens=training_step_output.hiddens, ) return result def _process_training_step_output(self, training_step_output, split_batch): training_step_output_for_epoch_end = training_step_output # enable validation_step return None if training_step_output_for_epoch_end is None: return None, None # ----------------------------------------- # process result return (DEPRECATE in 1.0) # ----------------------------------------- if isinstance(training_step_output, Result): training_step_output_for_epoch_end = self._process_result(training_step_output, split_batch) return training_step_output_for_epoch_end, training_step_output # ----------------------------------------- # process hybrid (1.0) # ----------------------------------------- # no need for these checks in 1.0.0 # TODO: remove checks in 1.0.0 is_tensor = isinstance(training_step_output_for_epoch_end, torch.Tensor) is_1_0_output = is_tensor or ("log" not in training_step_output and "progress_bar" not in training_step_output) if is_1_0_output: return self._process_training_step_output_1_0(training_step_output, split_batch) # ----------------------------------------- # process old dict (deprecate 1.0) # ----------------------------------------- training_step_output = self.trainer.process_dict_result(training_step_output, train=True) training_step_output = AttributeDict( batch_loss=training_step_output[0], pbar_on_batch_end=training_step_output[1], log_metrics=training_step_output[2], callback_metrics=training_step_output[3], hiddens=training_step_output[4], ) # if the user decides to finally reduce things in epoch_end, save raw output without graphs if isinstance(training_step_output_for_epoch_end, torch.Tensor): training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach() else: training_step_output_for_epoch_end = recursive_detach(training_step_output_for_epoch_end) return training_step_output_for_epoch_end, training_step_output def _process_training_step_output_1_0(self, training_step_output, split_batch): result = self.trainer.get_model()._results loss = None hiddens = None # handle dict return if isinstance(training_step_output, dict): loss = training_step_output.pop("loss", None) hiddens = training_step_output.pop("hiddens", None) result["extra"] = training_step_output # handle scalar return elif isinstance(training_step_output, torch.Tensor): loss = training_step_output result["extra"] = {} # map to results under the hood result.minimize = loss result.hiddens = hiddens # track batch for manual reduction with result result.track_batch_size(len(split_batch)) # track metrics without grads for epoch reduction training_step_output_for_epoch_end = copy(result) training_step_output_for_epoch_end.detach() if self.trainer.move_metrics_to_cpu: training_step_output_for_epoch_end.cpu() # what flows back into the system training_step_output = result return training_step_output_for_epoch_end, training_step_output def _process_result(self, training_step_output, split_batch): training_step_output.track_batch_size(len(split_batch)) m = """ TrainResult and EvalResult were deprecated in 0.9.1 and support will drop in 1.0.0. Use self.log and .write from the LightningModule to log metrics and write predictions. training_step can now only return a scalar (for the loss) or a dictionary with anything you want. Option 1: return loss Option 2: return {'loss': loss, 'anything_else': ...} Option 3: return {'loss': loss, 'hiddens': hiddens, 'anything_else': ...} """ rank_zero_warn(m) training_step_output_for_epoch_end = copy(training_step_output) training_step_output_for_epoch_end.detach() return training_step_output_for_epoch_end def optimizer_step(self, optimizer, opt_idx, batch_idx, train_step_and_backward_closure): model_ref = self.trainer.get_model() is_lbfgs = isinstance(optimizer, torch.optim.LBFGS) using_native_amp = self.trainer.amp_backend == AMPType.NATIVE # native amp + lbfgs is a no go right now if using_native_amp and is_lbfgs: raise MisconfigurationException( 'native PyTorch amp and lbfgs are not compatible.' ' To request, please file a Github issue in PyTorch and tag @mcarilli' ) # wraps into LightningOptimizer only for running step optimizer = LightningOptimizer._to_lightning_optimizer(optimizer, self.trainer, opt_idx) # model hook model_ref.optimizer_step( self.trainer.current_epoch, batch_idx, optimizer, opt_idx, train_step_and_backward_closure, on_tpu=self.trainer._device_type == DeviceType.TPU and _TPU_AVAILABLE, using_native_amp=using_native_amp, using_lbfgs=is_lbfgs, ) def on_before_zero_grad(self, optimizer): self.trainer.call_hook('on_before_zero_grad', optimizer) def optimizer_zero_grad(self, batch_idx, optimizer, opt_idx): self.trainer.accelerator_backend.optimizer_zero_grad(self.trainer.current_epoch, batch_idx, optimizer, opt_idx) def track_and_norm_grad(self, optimizer): # track gradient norms grad_norm_dic = self._track_gradient_norm() # clip gradients self.trainer.accelerator_backend.clip_gradients(optimizer, self.trainer.gradient_clip_val) self._cur_grad_norm_dict = grad_norm_dic def _track_gradient_norm(self): grad_norm_dict = {} if (self.trainer.global_step + 1) % self.trainer.log_every_n_steps == 0: if float(self.trainer.track_grad_norm) > 0: model = self.trainer.get_model() grad_norm_dict = model.grad_norm(self.trainer.track_grad_norm) return grad_norm_dict def process_hiddens(self, opt_closure_result): hiddens = opt_closure_result.hiddens if isinstance(opt_closure_result.training_step_output, Result): opt_closure_result.training_step_output_for_epoch_end.drop_hiddens() return hiddens def tbptt_split_batch(self, batch): splits = [batch] if self.trainer.truncated_bptt_steps is not None: model_ref = self.trainer.get_model() with self.trainer.profiler.profile("tbptt_split_batch"): splits = model_ref.tbptt_split_batch(batch, self.trainer.truncated_bptt_steps) return splits def run_training_epoch(self): # modify dataloader if needed (ddp, etc...) train_dataloader = self.trainer.accelerator_backend.process_dataloader(self.trainer.train_dataloader) # track epoch output epoch_output = [[] for _ in range(self.num_optimizers)] train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(train_dataloader) dataloader_idx = 0 should_check_val = False for batch_idx, (batch, is_last_batch) in train_dataloader: self.trainer.batch_idx = batch_idx # ------------------------------------ # TRAINING_STEP + TRAINING_STEP_END # ------------------------------------ with self.trainer.profiler.profile("run_training_batch"): batch_output = self.run_training_batch(batch, batch_idx, dataloader_idx) # when returning -1 from train_step, we end epoch early if batch_output.signal == -1: break batch_end_outputs = self.process_train_step_outputs( batch_output.training_step_output_for_epoch_end, self.early_stopping_accumulator, self.checkpoint_accumulator, ) # hook # TODO: add outputs to batches self.on_train_batch_end(epoch_output, batch_end_outputs, batch, batch_idx, dataloader_idx) # ----------------------------------------- # SAVE METRICS TO LOGGERS # ----------------------------------------- self.trainer.logger_connector.log_train_step_metrics(batch_output) # ----------------------------------------- # VALIDATE IF NEEDED + CHECKPOINT CALLBACK # ----------------------------------------- should_check_val = self.should_check_val_fx(batch_idx, is_last_batch) if should_check_val: self.trainer.run_evaluation() # reset stage to train self.trainer._set_wide_running_stage(RunningStage.TRAINING) # ----------------------------------------- # SAVE LOGGERS (ie: Tensorboard, etc...) # ----------------------------------------- self.save_loggers_on_train_batch_end() # update LR schedulers monitor_metrics = deepcopy(self.trainer.logger_connector.callback_metrics) self.update_train_loop_lr_schedulers(monitor_metrics=monitor_metrics) self.trainer.checkpoint_connector.has_trained = True # max steps reached, end training if ( self.trainer.max_steps is not None and self.trainer.max_steps == self.trainer.global_step + 1 and self._accumulated_batches_reached() ): break # end epoch early # stop when the flag is changed or we've gone past the amount # requested in the batches if self.trainer.should_stop: break self.trainer.total_batch_idx += 1 # stop epoch if we limited the number of training batches if self._num_training_batches_reached(is_last_batch): break # progress global step according to grads progress self.increment_accumulated_grad_global_step() # epoch end hook self.run_on_epoch_end_hook(epoch_output) # log epoch metrics self.trainer.logger_connector.log_train_epoch_end_metrics( epoch_output, self.checkpoint_accumulator, self.early_stopping_accumulator, self.num_optimizers ) should_check_val = self.should_check_val_fx(batch_idx, is_last_batch, on_epoch=True) if should_check_val: self.trainer.run_evaluation(on_epoch=True) # reset stage to train self.trainer._set_wide_running_stage(RunningStage.TRAINING) should_skip_eval = self.trainer.evaluation_loop.should_skip_evaluation(self.trainer.num_val_batches) should_train_only = self.trainer.disable_validation or should_skip_eval if should_train_only: # update epoch level lr_schedulers self.trainer.optimizer_connector.update_learning_rates(interval='epoch') self.check_checkpoint_callback(True) self.check_early_stopping_callback(True) # increment the global step once # progress global step according to grads progress self.increment_accumulated_grad_global_step() def run_training_batch(self, batch, batch_idx, dataloader_idx): # track grad norms grad_norm_dic = {} # bookkeeping self.trainer.hiddens = None # track all outputs across time and num of optimizers batch_outputs = [[] for _ in range(len(self.get_optimizers_iterable()))] if batch is None: return AttributeDict(signal=0, grad_norm_dic=grad_norm_dic) # hook response = self.trainer.call_hook("on_batch_start") if response == -1: return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic) # hook response = self.trainer.call_hook("on_train_batch_start", batch, batch_idx, dataloader_idx) if response == -1: return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic) # lightning module hook splits = self.tbptt_split_batch(batch) for split_idx, split_batch in enumerate(splits): # create an iterable for optimizers and loop over them for opt_idx, optimizer in self.prepare_optimizers(): # toggle model params + set info to logger_connector self.run_train_split_start(split_idx, split_batch, opt_idx, optimizer) if self.should_accumulate(): # For gradient accumulation # ------------------- # calculate loss (train step + train step end) # ------------------- # automatic_optimization=True: perform dpp sync only when performing optimizer_step # automatic_optimization=False: don't block synchronization here with self.block_ddp_sync_behaviour(): self.training_step_and_backward( split_batch, batch_idx, opt_idx, optimizer, self.trainer.hiddens ) batch_outputs = self._process_closure_result( batch_outputs=batch_outputs, opt_idx=opt_idx, ) # ------------------------------ # BACKWARD PASS # ------------------------------ # gradient update with accumulated gradients else: if self.automatic_optimization: def train_step_and_backward_closure(): result = self.training_step_and_backward( split_batch, batch_idx, opt_idx, optimizer, self.trainer.hiddens ) return None if result is None else result.loss # optimizer step self.optimizer_step(optimizer, opt_idx, batch_idx, train_step_and_backward_closure) else: self._curr_step_result = self.training_step( split_batch, batch_idx, opt_idx, self.trainer.hiddens ) if self._curr_step_result is None: # user decided to skip optimization # make sure to zero grad. continue batch_outputs = self._process_closure_result( batch_outputs=batch_outputs, opt_idx=opt_idx, ) # todo: Properly aggregate grad_norm accros opt_idx and split_idx grad_norm_dic = self._cur_grad_norm_dict self._cur_grad_norm_dict = None # update running loss + reset accumulated loss self.update_running_loss() result = AttributeDict( signal=0, grad_norm_dic=grad_norm_dic, training_step_output_for_epoch_end=batch_outputs, ) return result @contextmanager def block_ddp_sync_behaviour(self, should_block_sync: bool = False): """ automatic_optimization = True Blocks ddp sync gradients behaviour on backwards pass. This is useful for skipping sync when accumulating gradients, reducing communication overhead automatic_optimization = False do not block ddp gradient sync when using manual optimization as gradients are needed within the training step Returns: context manager with sync behaviour off """ if ( isinstance(self.trainer.training_type_plugin, ParallelPlugin) and (self.automatic_optimization or should_block_sync) ): with self.trainer.training_type_plugin.block_backward_sync(): yield None else: yield None def _process_closure_result(self, batch_outputs: list, opt_idx: int) -> list: opt_closure_result = self._curr_step_result if opt_closure_result is not None: # cache metrics self.trainer.logger_connector.cache_training_step_metrics(opt_closure_result) # track hiddens self.trainer.hiddens = self.process_hiddens(opt_closure_result) # check if loss or model weights are nan if self.trainer.terminate_on_nan: self.trainer.detect_nan_tensors(opt_closure_result.loss) # track all the outputs across all steps batch_opt_idx = opt_idx if len(batch_outputs) > 1 else 0 batch_outputs[batch_opt_idx].append(opt_closure_result.training_step_output_for_epoch_end) if self.automatic_optimization: # track total loss for logging (avoid mem leaks) self.accumulated_loss.append(opt_closure_result.loss) self._curr_step_result = None return batch_outputs def training_step_and_backward(self, split_batch, batch_idx, opt_idx, optimizer, hiddens): """ wrap the forward step in a closure so second order methods work """ with self.trainer.profiler.profile("training_step_and_backward"): # lightning module hook result = self.training_step(split_batch, batch_idx, opt_idx, hiddens) self._curr_step_result = result if result is None: if self.automatic_optimization: self.warning_cache.warn("training_step returned None if it was on purpose, ignore this warning...") return None if not self._skip_backward and self.trainer.train_loop.automatic_optimization: # backward pass with self.trainer.profiler.profile("model_backward"): self.backward(result, optimizer, opt_idx) # hook - call this hook only # when gradients have finished to accumulate if not self.should_accumulate(): self.on_after_backward(result.training_step_output, batch_idx, result.loss) # check if loss or model weights are nan if self.trainer.terminate_on_nan: self.trainer.detect_nan_tensors(result.loss) if len(self.trainer.optimizers) > 1: # revert back to previous state self.trainer.get_model().untoggle_optimizer(opt_idx) return result def backward(self, result, optimizer, opt_idx, *args, **kwargs): self.trainer.dev_debugger.track_event("backward_call") should_accumulate = self.should_accumulate() # backward can be called manually in the training loop if isinstance(result, torch.Tensor): self.trainer.accelerator_backend.backward(result, optimizer, opt_idx, should_accumulate, *args, **kwargs) else: result.closure_loss = self.trainer.accelerator_backend.backward( result.closure_loss, optimizer, opt_idx, should_accumulate, *args, **kwargs ) if not self.should_accumulate(): # track gradients self.track_and_norm_grad(optimizer=optimizer) def update_train_loop_lr_schedulers(self, monitor_metrics=None): num_accumulated_batches_reached = self._accumulated_batches_reached() num_training_batches_reached = self._num_training_batches_reached() if num_accumulated_batches_reached or num_training_batches_reached: # update lr self.trainer.optimizer_connector.update_learning_rates(interval="step", monitor_metrics=monitor_metrics) def run_on_epoch_end_hook(self, epoch_output): # inform logger the batch loop has finished self.trainer.logger_connector.on_train_epoch_end() self.trainer.call_hook('on_train_epoch_end', epoch_output) self.trainer.call_hook('on_epoch_end') def increment_accumulated_grad_global_step(self): num_accumulated_batches_reached = self._accumulated_batches_reached() num_training_batches_reached = self._num_training_batches_reached() # progress global step according to grads progress if num_accumulated_batches_reached or num_training_batches_reached: self.trainer.global_step += 1 def _accumulated_batches_reached(self): return (self.trainer.batch_idx + 1) % self.trainer.accumulate_grad_batches == 0 def _num_training_batches_reached(self, is_last_batch=False): return (self.trainer.batch_idx + 1) == self.trainer.num_training_batches or is_last_batch def should_accumulate(self): # checks if backward or backward + optimizer step (via closure) accumulation_done = self._accumulated_batches_reached() is_final_batch = self._num_training_batches_reached() return not (accumulation_done or is_final_batch) def should_check_val_fx(self, batch_idx, is_last_batch, on_epoch=False): # decide if we should run validation is_val_check_batch = (batch_idx + 1) % self.trainer.val_check_batch == 0 is_val_check_epoch = (self.trainer.current_epoch + 1) % self.trainer.check_val_every_n_epoch == 0 can_check_val = self.trainer.enable_validation and is_val_check_epoch is_last_batch_for_infinite_dataset = is_last_batch and self.trainer.val_check_batch == float("inf") epoch_end_val_check = self.trainer.val_check_batch == self.trainer.num_training_batches should_check_val = ((is_val_check_batch and epoch_end_val_check) or self.trainer.should_stop or is_last_batch_for_infinite_dataset ) if on_epoch else (is_val_check_batch and not epoch_end_val_check) return should_check_val and can_check_val def build_train_args(self, batch, batch_idx, opt_idx, hiddens): # enable not needing to add opt_idx to training_step args = [batch, batch_idx] if len(self.trainer.optimizers) > 1: if self.trainer.has_arg("training_step", "optimizer_idx"): args.append(opt_idx) else: num_opts = len(self.trainer.optimizers) raise ValueError( f"Your LightningModule defines {num_opts} optimizers but " f'training_step is missing the "optimizer_idx" argument.' ) # pass hiddens if using tbptt if self.trainer.truncated_bptt_steps is not None: args.append(hiddens) return args def save_loggers_on_train_batch_end(self): # when loggers should save to disk should_flush_logs = self.trainer.logger_connector.should_flush_logs if should_flush_logs and self.trainer.is_global_zero and self.trainer.logger is not None: self.trainer.logger.save() def process_train_step_outputs(self, all_train_step_outputs, early_stopping_accumulator, checkpoint_accumulator): """ Figure out what needs to be tracked/logged at the end of the epoch """ # the training step outputs a list per optimizer. The list contains the outputs at each time step # when no TBPTT is used, then the list has 1 item per batch # when TBPTT IS used, then the list has n items (1 per time step) batch_end_outputs = [] for optimizer_idx_outputs in all_train_step_outputs: # extract one representative sample from each time step (1 if no tbptt) and 0th optimizer if len(optimizer_idx_outputs) == 0: continue sample_output = optimizer_idx_outputs[-1] # pull out callback info if available (ie: Results object) if isinstance(sample_output, dict) and "early_stop_on" in sample_output: early_stopping_accumulator.accumulate(sample_output["early_stop_on"]) if isinstance(sample_output, dict) and "checkpoint_on" in sample_output: checkpoint_accumulator.accumulate(sample_output["checkpoint_on"]) batch_end_outputs.append(optimizer_idx_outputs) return batch_end_outputs def prepare_optimizers(self): # in manual optimization we loop over all optimizers at once optimizers = self.get_optimizers_iterable() if not self.automatic_optimization: optimizers = [optimizers[0]] return optimizers def run_train_split_start(self, split_idx, split_batch, opt_idx, optimizer): # set split_idx to trainer for tracking self.trainer.split_idx = split_idx # make sure only the gradients of the current optimizer's parameters are calculated # in the training step to prevent dangling gradients in multiple-optimizer setup. if self.automatic_optimization and len(self.trainer.optimizers) > 1: model = self.trainer.get_model() model.toggle_optimizer(optimizer, opt_idx) # use to track metrics internally self.trainer.logger_connector.on_train_split_start(split_idx, opt_idx, split_batch) def update_running_loss(self): accumulated_loss = self.accumulated_loss.mean() if accumulated_loss is not None: # calculate running loss for display self.running_loss.append(self.accumulated_loss.mean() * self.trainer.accumulate_grad_batches) # reset for next set of accumulated grads self.accumulated_loss.reset()
[ "torch.cuda.empty_cache" ]
1.4
MasaYan24/pytorch-lightning
046ac714f6955ed14b831657ea1b7b16bc28ac93
0.4
""" Assorted utilities for working with neural networks in AllenNLP. """ # pylint: disable=too-many-lines from collections import defaultdict from typing import Any, Dict, List, Optional, Sequence, Tuple, TypeVar import logging import math import warnings import torch from allennlp.common.checks import ConfigurationError logger = logging.getLogger(__name__) # pylint: disable=invalid-name T = TypeVar('T') def has_tensor(obj) -> bool: """ Given a possibly complex data structure, check if it has any torch.Tensors in it. """ if isinstance(obj, torch.Tensor): return True elif isinstance(obj, dict): return any(has_tensor(value) for value in obj.values()) elif isinstance(obj, (list, tuple)): return any(has_tensor(item) for item in obj) else: return False def move_to_device(obj, cuda_device: int): """ Given a structure (possibly) containing Tensors on the CPU, move all the Tensors to the specified GPU (or do nothing, if they should be on the CPU). """ if cuda_device < 0 or not has_tensor(obj): return obj elif isinstance(obj, torch.Tensor): return obj.cuda(cuda_device) elif isinstance(obj, dict): return {key: move_to_device(value, cuda_device) for key, value in obj.items()} elif isinstance(obj, list): return [move_to_device(item, cuda_device) for item in obj] elif isinstance(obj, tuple): return tuple([move_to_device(item, cuda_device) for item in obj]) else: return obj def batch_tensor_dicts(tensor_dicts: List[Dict[str, torch.Tensor]], remove_trailing_dimension: bool = False) -> Dict[str, torch.Tensor]: """ Takes a list of tensor dictionaries, where each dictionary is assumed to have matching keys, and returns a single dictionary with all tensors with the same key batched together. Parameters ---------- tensor_dicts : ``List[Dict[str, torch.Tensor]]`` The list of tensor dictionaries to batch. remove_trailing_dimension : ``bool`` If ``True``, we will check for a trailing dimension of size 1 on the tensors that are being batched, and remove it if we find it. """ key_to_tensors: Dict[str, List[torch.Tensor]] = defaultdict(list) for tensor_dict in tensor_dicts: for key, tensor in tensor_dict.items(): key_to_tensors[key].append(tensor) batched_tensors = {} for key, tensor_list in key_to_tensors.items(): batched_tensor = torch.stack(tensor_list) if remove_trailing_dimension and all(tensor.size(-1) == 1 for tensor in tensor_list): batched_tensor = batched_tensor.squeeze(-1) batched_tensors[key] = batched_tensor return batched_tensors def get_lengths_from_binary_sequence_mask(mask: torch.Tensor): """ Compute sequence lengths for each batch element in a tensor using a binary mask. Parameters ---------- mask : torch.Tensor, required. A 2D binary mask of shape (batch_size, sequence_length) to calculate the per-batch sequence lengths from. Returns ------- A torch.LongTensor of shape (batch_size,) representing the lengths of the sequences in the batch. """ return mask.long().sum(-1) def get_mask_from_sequence_lengths(sequence_lengths: torch.Tensor, max_length: int) -> torch.Tensor: """ Given a variable of shape ``(batch_size,)`` that represents the sequence lengths of each batch element, this function returns a ``(batch_size, max_length)`` mask variable. For example, if our input was ``[2, 2, 3]``, with a ``max_length`` of 4, we'd return ``[[1, 1, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0]]``. We require ``max_length`` here instead of just computing it from the input ``sequence_lengths`` because it lets us avoid finding the max, then copying that value from the GPU to the CPU so that we can use it to construct a new tensor. """ # (batch_size, max_length) ones = sequence_lengths.new_ones(sequence_lengths.size(0), max_length) range_tensor = ones.cumsum(dim=1) return (sequence_lengths.unsqueeze(1) >= range_tensor).long() def sort_batch_by_length(tensor: torch.Tensor, sequence_lengths: torch.Tensor): """ Sort a batch first tensor by some specified lengths. Parameters ---------- tensor : torch.FloatTensor, required. A batch first Pytorch tensor. sequence_lengths : torch.LongTensor, required. A tensor representing the lengths of some dimension of the tensor which we want to sort by. Returns ------- sorted_tensor : torch.FloatTensor The original tensor sorted along the batch dimension with respect to sequence_lengths. sorted_sequence_lengths : torch.LongTensor The original sequence_lengths sorted by decreasing size. restoration_indices : torch.LongTensor Indices into the sorted_tensor such that ``sorted_tensor.index_select(0, restoration_indices) == original_tensor`` permuation_index : torch.LongTensor The indices used to sort the tensor. This is useful if you want to sort many tensors using the same ordering. """ if not isinstance(tensor, torch.Tensor) or not isinstance(sequence_lengths, torch.Tensor): raise ConfigurationError("Both the tensor and sequence lengths must be torch.Tensors.") sorted_sequence_lengths, permutation_index = sequence_lengths.sort(0, descending=True) sorted_tensor = tensor.index_select(0, permutation_index) index_range = sequence_lengths.new_tensor(torch.arange(0, len(sequence_lengths))) # This is the equivalent of zipping with index, sorting by the original # sequence lengths and returning the now sorted indices. _, reverse_mapping = permutation_index.sort(0, descending=False) restoration_indices = index_range.index_select(0, reverse_mapping) return sorted_tensor, sorted_sequence_lengths, restoration_indices, permutation_index def get_final_encoder_states(encoder_outputs: torch.Tensor, mask: torch.Tensor, bidirectional: bool = False) -> torch.Tensor: """ Given the output from a ``Seq2SeqEncoder``, with shape ``(batch_size, sequence_length, encoding_dim)``, this method returns the final hidden state for each element of the batch, giving a tensor of shape ``(batch_size, encoding_dim)``. This is not as simple as ``encoder_outputs[:, -1]``, because the sequences could have different lengths. We use the mask (which has shape ``(batch_size, sequence_length)``) to find the final state for each batch instance. Additionally, if ``bidirectional`` is ``True``, we will split the final dimension of the ``encoder_outputs`` into two and assume that the first half is for the forward direction of the encoder and the second half is for the backward direction. We will concatenate the last state for each encoder dimension, giving ``encoder_outputs[:, -1, :encoding_dim/2]`` concated with ``encoder_outputs[:, 0, encoding_dim/2:]``. """ # These are the indices of the last words in the sequences (i.e. length sans padding - 1). We # are assuming sequences are right padded. # Shape: (batch_size,) last_word_indices = mask.sum(1).long() - 1 batch_size, _, encoder_output_dim = encoder_outputs.size() expanded_indices = last_word_indices.view(-1, 1, 1).expand(batch_size, 1, encoder_output_dim) # Shape: (batch_size, 1, encoder_output_dim) final_encoder_output = encoder_outputs.gather(1, expanded_indices) final_encoder_output = final_encoder_output.squeeze(1) # (batch_size, encoder_output_dim) if bidirectional: final_forward_output = final_encoder_output[:, :(encoder_output_dim // 2)] final_backward_output = encoder_outputs[:, 0, (encoder_output_dim // 2):] final_encoder_output = torch.cat([final_forward_output, final_backward_output], dim=-1) return final_encoder_output def get_dropout_mask(dropout_probability: float, tensor_for_masking: torch.Tensor): """ Computes and returns an element-wise dropout mask for a given tensor, where each element in the mask is dropped out with probability dropout_probability. Note that the mask is NOT applied to the tensor - the tensor is passed to retain the correct CUDA tensor type for the mask. Parameters ---------- dropout_probability : float, required. Probability of dropping a dimension of the input. tensor_for_masking : torch.Tensor, required. Returns ------- A torch.FloatTensor consisting of the binary mask scaled by 1/ (1 - dropout_probability). This scaling ensures expected values and variances of the output of applying this mask and the original tensor are the same. """ binary_mask = tensor_for_masking.new_tensor(torch.rand(tensor_for_masking.size()) > dropout_probability) # Scale mask by 1/keep_prob to preserve output statistics. dropout_mask = binary_mask.float().div(1.0 - dropout_probability) return dropout_mask def masked_softmax(vector: torch.Tensor, mask: torch.Tensor, dim: int = -1) -> torch.Tensor: """ ``torch.nn.functional.softmax(vector)`` does not work if some elements of ``vector`` should be masked. This performs a softmax on just the non-masked portions of ``vector``. Passing ``None`` in for the mask is also acceptable; you'll just get a regular softmax. ``vector`` can have an arbitrary number of dimensions; the only requirement is that ``mask`` is broadcastable to ``vector's`` shape. If ``mask`` has fewer dimensions than ``vector``, we will unsqueeze on dimension 1 until they match. If you need a different unsqueezing of your mask, do it yourself before passing the mask into this function. In the case that the input vector is completely masked, this function returns an array of ``0.0``. This behavior may cause ``NaN`` if this is used as the last layer of a model that uses categorical cross-entropy loss. """ if mask is None: result = torch.nn.functional.softmax(vector, dim=dim) else: mask = mask.float() while mask.dim() < vector.dim(): mask = mask.unsqueeze(1) # To limit numerical errors from large vector elements outside the mask, we zero these out. result = torch.nn.functional.softmax(vector * mask, dim=dim) result = result * mask result = result / (result.sum(dim=dim, keepdim=True) + 1e-13) return result def masked_log_softmax(vector: torch.Tensor, mask: torch.Tensor, dim: int = -1) -> torch.Tensor: """ ``torch.nn.functional.log_softmax(vector)`` does not work if some elements of ``vector`` should be masked. This performs a log_softmax on just the non-masked portions of ``vector``. Passing ``None`` in for the mask is also acceptable; you'll just get a regular log_softmax. ``vector`` can have an arbitrary number of dimensions; the only requirement is that ``mask`` is broadcastable to ``vector's`` shape. If ``mask`` has fewer dimensions than ``vector``, we will unsqueeze on dimension 1 until they match. If you need a different unsqueezing of your mask, do it yourself before passing the mask into this function. In the case that the input vector is completely masked, the return value of this function is arbitrary, but not ``nan``. You should be masking the result of whatever computation comes out of this in that case, anyway, so the specific values returned shouldn't matter. Also, the way that we deal with this case relies on having single-precision floats; mixing half-precision floats with fully-masked vectors will likely give you ``nans``. If your logits are all extremely negative (i.e., the max value in your logit vector is -50 or lower), the way we handle masking here could mess you up. But if you've got logit values that extreme, you've got bigger problems than this. """ if mask is not None: mask = mask.float() while mask.dim() < vector.dim(): mask = mask.unsqueeze(1) # vector + mask.log() is an easy way to zero out masked elements in logspace, but it # results in nans when the whole vector is masked. We need a very small value instead of a # zero in the mask for these cases. log(1 + 1e-45) is still basically 0, so we can safely # just add 1e-45 before calling mask.log(). We use 1e-45 because 1e-46 is so small it # becomes 0 - this is just the smallest value we can actually use. vector = vector + (mask + 1e-45).log() return torch.nn.functional.log_softmax(vector, dim=dim) def masked_max(vector: torch.Tensor, mask: torch.Tensor, dim: int, keepdim: bool = False, min_val: float = -1e7) -> torch.Tensor: """ To calculate max along certain dimensions on masked values Parameters ---------- vector : ``torch.Tensor`` The vector to calculate max, assume unmasked parts are already zeros mask : ``torch.Tensor`` The mask of the vector. It must be broadcastable with vector. dim : ``int`` The dimension to calculate max keepdim : ``bool`` Whether to keep dimension min_val : ``float`` The minimal value for paddings Returns ------- A ``torch.Tensor`` of including the maximum values. """ one_minus_mask = (1.0 - mask).byte() replaced_vector = vector.masked_fill(one_minus_mask, min_val) max_value, _ = replaced_vector.max(dim=dim, keepdim=keepdim) return max_value def masked_mean(vector: torch.Tensor, mask: torch.Tensor, dim: int, keepdim: bool = False, eps: float = 1e-8) -> torch.Tensor: """ To calculate mean along certain dimensions on masked values Parameters ---------- vector : ``torch.Tensor`` The vector to calculate mean. mask : ``torch.Tensor`` The mask of the vector. It must be broadcastable with vector. dim : ``int`` The dimension to calculate mean keepdim : ``bool`` Whether to keep dimension eps : ``float`` A small value to avoid zero division problem. Returns ------- A ``torch.Tensor`` of including the mean values. """ one_minus_mask = (1.0 - mask).byte() replaced_vector = vector.masked_fill(one_minus_mask, 0.0) value_sum = torch.sum(replaced_vector, dim=dim, keepdim=keepdim) value_count = torch.sum(mask.float(), dim=dim, keepdim=keepdim) return value_sum / value_count.clamp(min=eps) def viterbi_decode(tag_sequence: torch.Tensor, transition_matrix: torch.Tensor, tag_observations: Optional[List[int]] = None): """ Perform Viterbi decoding in log space over a sequence given a transition matrix specifying pairwise (transition) potentials between tags and a matrix of shape (sequence_length, num_tags) specifying unary potentials for possible tags per timestep. Parameters ---------- tag_sequence : torch.Tensor, required. A tensor of shape (sequence_length, num_tags) representing scores for a set of tags over a given sequence. transition_matrix : torch.Tensor, required. A tensor of shape (num_tags, num_tags) representing the binary potentials for transitioning between a given pair of tags. tag_observations : Optional[List[int]], optional, (default = None) A list of length ``sequence_length`` containing the class ids of observed elements in the sequence, with unobserved elements being set to -1. Note that it is possible to provide evidence which results in degenerate labellings if the sequences of tags you provide as evidence cannot transition between each other, or those transitions are extremely unlikely. In this situation we log a warning, but the responsibility for providing self-consistent evidence ultimately lies with the user. Returns ------- viterbi_path : List[int] The tag indices of the maximum likelihood tag sequence. viterbi_score : torch.Tensor The score of the viterbi path. """ sequence_length, num_tags = list(tag_sequence.size()) if tag_observations: if len(tag_observations) != sequence_length: raise ConfigurationError("Observations were provided, but they were not the same length " "as the sequence. Found sequence of length: {} and evidence: {}" .format(sequence_length, tag_observations)) else: tag_observations = [-1 for _ in range(sequence_length)] path_scores = [] path_indices = [] if tag_observations[0] != -1: one_hot = torch.zeros(num_tags) one_hot[tag_observations[0]] = 100000. path_scores.append(one_hot) else: path_scores.append(tag_sequence[0, :]) # Evaluate the scores for all possible paths. for timestep in range(1, sequence_length): # Add pairwise potentials to current scores. summed_potentials = path_scores[timestep - 1].unsqueeze(-1) + transition_matrix scores, paths = torch.max(summed_potentials, 0) # If we have an observation for this timestep, use it # instead of the distribution over tags. observation = tag_observations[timestep] # Warn the user if they have passed # invalid/extremely unlikely evidence. if tag_observations[timestep - 1] != -1: if transition_matrix[tag_observations[timestep - 1], observation] < -10000: logger.warning("The pairwise potential between tags you have passed as " "observations is extremely unlikely. Double check your evidence " "or transition potentials!") if observation != -1: one_hot = torch.zeros(num_tags) one_hot[observation] = 100000. path_scores.append(one_hot) else: path_scores.append(tag_sequence[timestep, :] + scores.squeeze()) path_indices.append(paths.squeeze()) # Construct the most likely sequence backwards. viterbi_score, best_path = torch.max(path_scores[-1], 0) viterbi_path = [int(best_path.numpy())] for backward_timestep in reversed(path_indices): viterbi_path.append(int(backward_timestep[viterbi_path[-1]])) # Reverse the backward path. viterbi_path.reverse() return viterbi_path, viterbi_score def get_text_field_mask(text_field_tensors: Dict[str, torch.Tensor], num_wrapping_dims: int = 0) -> torch.LongTensor: """ Takes the dictionary of tensors produced by a ``TextField`` and returns a mask with 0 where the tokens are padding, and 1 otherwise. We also handle ``TextFields`` wrapped by an arbitrary number of ``ListFields``, where the number of wrapping ``ListFields`` is given by ``num_wrapping_dims``. If ``num_wrapping_dims == 0``, the returned mask has shape ``(batch_size, num_tokens)``. If ``num_wrapping_dims > 0`` then the returned mask has ``num_wrapping_dims`` extra dimensions, so the shape will be ``(batch_size, ..., num_tokens)``. There could be several entries in the tensor dictionary with different shapes (e.g., one for word ids, one for character ids). In order to get a token mask, we use the tensor in the dictionary with the lowest number of dimensions. After subtracting ``num_wrapping_dims``, if this tensor has two dimensions we assume it has shape ``(batch_size, ..., num_tokens)``, and use it for the mask. If instead it has three dimensions, we assume it has shape ``(batch_size, ..., num_tokens, num_features)``, and sum over the last dimension to produce the mask. Most frequently this will be a character id tensor, but it could also be a featurized representation of each token, etc. If the input ``text_field_tensors`` contains the "mask" key, this is returned instead of inferring the mask. TODO(joelgrus): can we change this? NOTE: Our functions for generating masks create torch.LongTensors, because using torch.ByteTensors makes it easy to run into overflow errors when doing mask manipulation, such as summing to get the lengths of sequences - see below. >>> mask = torch.ones([260]).byte() >>> mask.sum() # equals 260. >>> var_mask = torch.autograd.V(mask) >>> var_mask.sum() # equals 4, due to 8 bit precision - the sum overflows. """ if "mask" in text_field_tensors: return text_field_tensors["mask"] tensor_dims = [(tensor.dim(), tensor) for tensor in text_field_tensors.values()] tensor_dims.sort(key=lambda x: x[0]) smallest_dim = tensor_dims[0][0] - num_wrapping_dims if smallest_dim == 2: token_tensor = tensor_dims[0][1] return (token_tensor != 0).long() elif smallest_dim == 3: character_tensor = tensor_dims[0][1] return ((character_tensor > 0).long().sum(dim=-1) > 0).long() else: raise ValueError("Expected a tensor with dimension 2 or 3, found {}".format(smallest_dim)) def last_dim_softmax(tensor: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: """ Takes a tensor with 3 or more dimensions and does a masked softmax over the last dimension. We assume the tensor has shape ``(batch_size, ..., sequence_length)`` and that the mask (if given) has shape ``(batch_size, sequence_length)``. .. deprecated:: 0.6.1 ``last_dim_softmax`` was deprecated in favor of just using ``masked_softmax`` in version 0.6.1. It will be removed in version 0.8. """ warnings.warn("``last_dim_softmax`` was deprecated in favor of just using ``masked_softmax`` " "in version 0.6.1. It will be removed in version 0.8.", DeprecationWarning) return masked_softmax(tensor, mask, dim=-1) def last_dim_log_softmax(tensor: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: """ Takes a tensor with 3 or more dimensions and does a masked log softmax over the last dimension. We assume the tensor has shape ``(batch_size, ..., sequence_length)`` and that the mask (if given) has shape ``(batch_size, sequence_length)``. .. deprecated:: 0.6.1 ``last_dim_log_softmax`` was deprecated in favor of just using ``masked_log_softmax`` in version 0.6.1. It will be removed in version 0.8. """ warnings.warn("``last_dim_log_softmax`` was deprecated in favor of just using " "``masked_log_softmax`` in version 0.6.1. It will be removed in version 0.8.", DeprecationWarning) return masked_log_softmax(tensor, mask, dim=-1) def weighted_sum(matrix: torch.Tensor, attention: torch.Tensor) -> torch.Tensor: """ Takes a matrix of vectors and a set of weights over the rows in the matrix (which we call an "attention" vector), and returns a weighted sum of the rows in the matrix. This is the typical computation performed after an attention mechanism. Note that while we call this a "matrix" of vectors and an attention "vector", we also handle higher-order tensors. We always sum over the second-to-last dimension of the "matrix", and we assume that all dimensions in the "matrix" prior to the last dimension are matched in the "vector". Non-matched dimensions in the "vector" must be `directly after the batch dimension`. For example, say I have a "matrix" with dimensions ``(batch_size, num_queries, num_words, embedding_dim)``. The attention "vector" then must have at least those dimensions, and could have more. Both: - ``(batch_size, num_queries, num_words)`` (distribution over words for each query) - ``(batch_size, num_documents, num_queries, num_words)`` (distribution over words in a query for each document) are valid input "vectors", producing tensors of shape: ``(batch_size, num_queries, embedding_dim)`` and ``(batch_size, num_documents, num_queries, embedding_dim)`` respectively. """ # We'll special-case a few settings here, where there are efficient (but poorly-named) # operations in pytorch that already do the computation we need. if attention.dim() == 2 and matrix.dim() == 3: return attention.unsqueeze(1).bmm(matrix).squeeze(1) if attention.dim() == 3 and matrix.dim() == 3: return attention.bmm(matrix) if matrix.dim() - 1 < attention.dim(): expanded_size = list(matrix.size()) for i in range(attention.dim() - matrix.dim() + 1): matrix = matrix.unsqueeze(1) expanded_size.insert(i + 1, attention.size(i + 1)) matrix = matrix.expand(*expanded_size) intermediate = attention.unsqueeze(-1).expand_as(matrix) * matrix return intermediate.sum(dim=-2) def sequence_cross_entropy_with_logits(logits: torch.FloatTensor, targets: torch.LongTensor, weights: torch.FloatTensor, batch_average: bool = None, average: str = "batch", label_smoothing: float = None) -> torch.FloatTensor: """ Computes the cross entropy loss of a sequence, weighted with respect to some user provided weights. Note that the weighting here is not the same as in the :func:`torch.nn.CrossEntropyLoss()` criterion, which is weighting classes; here we are weighting the loss contribution from particular elements in the sequence. This allows loss computations for models which use padding. Parameters ---------- logits : ``torch.FloatTensor``, required. A ``torch.FloatTensor`` of size (batch_size, sequence_length, num_classes) which contains the unnormalized probability for each class. targets : ``torch.LongTensor``, required. A ``torch.LongTensor`` of size (batch, sequence_length) which contains the index of the true class for each corresponding step. weights : ``torch.FloatTensor``, required. A ``torch.FloatTensor`` of size (batch, sequence_length) batch_average : bool, optional, (default = None). A bool indicating whether the loss should be averaged across the batch, or returned as a vector of losses per batch element. .. deprecated:: 0.6.2 ``batch_average`` was deprecated and replaced with the more general ``average`` in version 0.6.2. It will be removed in version 0.8. average: str, optional (default = "batch") If "batch", average the loss across the batches. If "token", average the loss across each item in the input. If ``None``, return a vector of losses per batch element. label_smoothing : ``float``, optional (default = None) Whether or not to apply label smoothing to the cross-entropy loss. For example, with a label smoothing value of 0.2, a 4 class classifcation target would look like ``[0.05, 0.05, 0.85, 0.05]`` if the 3rd class was the correct label. Returns ------- A torch.FloatTensor representing the cross entropy loss. If ``average=="batch"`` or ``average=="token"``, the returned loss is a scalar. If ``average is None``, the returned loss is a vector of shape (batch_size,). """ if batch_average is not None: # Maintain old behavior if batch_average: warnings.warn("batch_average=True was deprecated and replaced " "with average='batch' in version 0.6.2. It will be " "removed in version 0.8.", DeprecationWarning) average = "batch" else: warnings.warn("batch_average=False was deprecated and replaced " "with average=None in version 0.6.2. It will be " "removed in version 0.8.", DeprecationWarning) average = None if average not in {None, "token", "batch"}: raise ValueError("Got average f{average}, expected one of " "None, 'token', or 'batch'") # shape : (batch * sequence_length, num_classes) logits_flat = logits.view(-1, logits.size(-1)) # shape : (batch * sequence_length, num_classes) log_probs_flat = torch.nn.functional.log_softmax(logits_flat, dim=-1) # shape : (batch * max_len, 1) targets_flat = targets.view(-1, 1).long() if label_smoothing is not None and label_smoothing > 0.0: num_classes = logits.size(-1) smoothing_value = label_smoothing / num_classes # Fill all the correct indices with 1 - smoothing value. one_hot_targets = torch.zeros_like(log_probs_flat).scatter_(-1, targets_flat, 1.0 - label_smoothing) smoothed_targets = one_hot_targets + smoothing_value negative_log_likelihood_flat = - log_probs_flat * smoothed_targets negative_log_likelihood_flat = negative_log_likelihood_flat.sum(-1, keepdim=True) else: # Contribution to the negative log likelihood only comes from the exact indices # of the targets, as the target distributions are one-hot. Here we use torch.gather # to extract the indices of the num_classes dimension which contribute to the loss. # shape : (batch * sequence_length, 1) negative_log_likelihood_flat = - torch.gather(log_probs_flat, dim=1, index=targets_flat) # shape : (batch, sequence_length) negative_log_likelihood = negative_log_likelihood_flat.view(*targets.size()) # shape : (batch, sequence_length) negative_log_likelihood = negative_log_likelihood * weights.float() if average == "batch": # shape : (batch_size,) per_batch_loss = negative_log_likelihood.sum(1) / (weights.sum(1).float() + 1e-13) num_non_empty_sequences = ((weights.sum(1) > 0).float().sum() + 1e-13) return per_batch_loss.sum() / num_non_empty_sequences elif average == "token": return negative_log_likelihood.sum() / (weights.sum().float() + 1e-13) else: # shape : (batch_size,) per_batch_loss = negative_log_likelihood.sum(1) / (weights.sum(1).float() + 1e-13) return per_batch_loss def replace_masked_values(tensor: torch.Tensor, mask: torch.Tensor, replace_with: float) -> torch.Tensor: """ Replaces all masked values in ``tensor`` with ``replace_with``. ``mask`` must be broadcastable to the same shape as ``tensor``. We require that ``tensor.dim() == mask.dim()``, as otherwise we won't know which dimensions of the mask to unsqueeze. This just does ``tensor.masked_fill()``, except the pytorch method fills in things with a mask value of 1, where we want the opposite. You can do this in your own code with ``tensor.masked_fill((1 - mask).byte(), replace_with)``. """ if tensor.dim() != mask.dim(): raise ConfigurationError("tensor.dim() (%d) != mask.dim() (%d)" % (tensor.dim(), mask.dim())) return tensor.masked_fill((1 - mask).byte(), replace_with) def tensors_equal(tensor1: torch.Tensor, tensor2: torch.Tensor, tolerance: float = 1e-12) -> bool: """ A check for tensor equality (by value). We make sure that the tensors have the same shape, then check all of the entries in the tensor for equality. We additionally allow the input tensors to be lists or dictionaries, where we then do the above check on every position in the list / item in the dictionary. If we find objects that aren't tensors as we're doing that, we just defer to their equality check. This is kind of a catch-all method that's designed to make implementing ``__eq__`` methods easier, in a way that's really only intended to be useful for tests. """ # pylint: disable=too-many-return-statements if isinstance(tensor1, (list, tuple)): if not isinstance(tensor2, (list, tuple)) or len(tensor1) != len(tensor2): return False return all([tensors_equal(t1, t2, tolerance) for t1, t2 in zip(tensor1, tensor2)]) elif isinstance(tensor1, dict): if not isinstance(tensor2, dict): return False if tensor1.keys() != tensor2.keys(): return False return all([tensors_equal(tensor1[key], tensor2[key], tolerance) for key in tensor1]) elif isinstance(tensor1, torch.Tensor): if not isinstance(tensor2, torch.Tensor): return False if tensor1.size() != tensor2.size(): return False return ((tensor1 - tensor2).abs().float() < tolerance).all() else: try: return tensor1 == tensor2 except RuntimeError: print(type(tensor1), type(tensor2)) raise def device_mapping(cuda_device: int): """ In order to `torch.load()` a GPU-trained model onto a CPU (or specific GPU), you have to supply a `map_location` function. Call this with the desired `cuda_device` to get the function that `torch.load()` needs. """ def inner_device_mapping(storage: torch.Storage, location) -> torch.Storage: # pylint: disable=unused-argument if cuda_device >= 0: return storage.cuda(cuda_device) else: return storage return inner_device_mapping def combine_tensors(combination: str, tensors: List[torch.Tensor]) -> torch.Tensor: """ Combines a list of tensors using element-wise operations and concatenation, specified by a ``combination`` string. The string refers to (1-indexed) positions in the input tensor list, and looks like ``"1,2,1+2,3-1"``. We allow the following kinds of combinations: ``x``, ``x*y``, ``x+y``, ``x-y``, and ``x/y``, where ``x`` and ``y`` are positive integers less than or equal to ``len(tensors)``. Each of the binary operations is performed elementwise. You can give as many combinations as you want in the ``combination`` string. For example, for the input string ``"1,2,1*2"``, the result would be ``[1;2;1*2]``, as you would expect, where ``[;]`` is concatenation along the last dimension. If you have a fixed, known way to combine tensors that you use in a model, you should probably just use something like ``torch.cat([x_tensor, y_tensor, x_tensor * y_tensor])``. This function adds some complexity that is only necessary if you want the specific combination used to be `configurable`. If you want to do any element-wise operations, the tensors involved in each element-wise operation must have the same shape. This function also accepts ``x`` and ``y`` in place of ``1`` and ``2`` in the combination string. """ if len(tensors) > 9: raise ConfigurationError("Double-digit tensor lists not currently supported") combination = combination.replace('x', '1').replace('y', '2') to_concatenate = [_get_combination(piece, tensors) for piece in combination.split(',')] return torch.cat(to_concatenate, dim=-1) def _rindex(sequence: Sequence[T], obj: T) -> int: """ Return zero-based index in the sequence of the last item whose value is equal to obj. Raises a ValueError if there is no such item. Parameters ---------- sequence : ``Sequence[T]`` obj : ``T`` Returns ------- zero-based index associated to the position of the last item equal to obj """ for i in range(len(sequence) - 1, -1, -1): if sequence[i] == obj: return i raise ValueError(f"Unable to find {obj} in sequence {sequence}.") def _get_combination(combination: str, tensors: List[torch.Tensor]) -> torch.Tensor: if combination.isdigit(): index = int(combination) - 1 return tensors[index] else: if len(combination) != 3: raise ConfigurationError("Invalid combination: " + combination) first_tensor = _get_combination(combination[0], tensors) second_tensor = _get_combination(combination[2], tensors) operation = combination[1] if operation == '*': return first_tensor * second_tensor elif operation == '/': return first_tensor / second_tensor elif operation == '+': return first_tensor + second_tensor elif operation == '-': return first_tensor - second_tensor else: raise ConfigurationError("Invalid operation: " + operation) def combine_tensors_and_multiply(combination: str, tensors: List[torch.Tensor], weights: torch.nn.Parameter) -> torch.Tensor: """ Like :func:`combine_tensors`, but does a weighted (linear) multiplication while combining. This is a separate function from ``combine_tensors`` because we try to avoid instantiating large intermediate tensors during the combination, which is possible because we know that we're going to be multiplying by a weight vector in the end. Parameters ---------- combination : ``str`` Same as in :func:`combine_tensors` tensors : ``List[torch.Tensor]`` A list of tensors to combine, where the integers in the ``combination`` are (1-indexed) positions in this list of tensors. These tensors are all expected to have either three or four dimensions, with the final dimension being an embedding. If there are four dimensions, one of them must have length 1. weights : ``torch.nn.Parameter`` A vector of weights to use for the combinations. This should have shape (combined_dim,), as calculated by :func:`get_combined_dim`. """ if len(tensors) > 9: raise ConfigurationError("Double-digit tensor lists not currently supported") combination = combination.replace('x', '1').replace('y', '2') pieces = combination.split(',') tensor_dims = [tensor.size(-1) for tensor in tensors] combination_dims = [_get_combination_dim(piece, tensor_dims) for piece in pieces] dims_so_far = 0 to_sum = [] for piece, combination_dim in zip(pieces, combination_dims): weight = weights[dims_so_far:(dims_so_far + combination_dim)] dims_so_far += combination_dim to_sum.append(_get_combination_and_multiply(piece, tensors, weight)) result = to_sum[0] for result_piece in to_sum[1:]: result = result + result_piece return result def _get_combination_and_multiply(combination: str, tensors: List[torch.Tensor], weight: torch.nn.Parameter) -> torch.Tensor: if combination.isdigit(): index = int(combination) - 1 return torch.matmul(tensors[index], weight) else: if len(combination) != 3: raise ConfigurationError("Invalid combination: " + combination) first_tensor = _get_combination(combination[0], tensors) second_tensor = _get_combination(combination[2], tensors) operation = combination[1] if operation == '*': if first_tensor.dim() > 4 or second_tensor.dim() > 4: raise ValueError("Tensors with dim > 4 not currently supported") if first_tensor.dim() == 4: expanded_dim = _rindex(first_tensor.size(), 1) first_tensor = first_tensor.squeeze(expanded_dim) if second_tensor.dim() == 4: expanded_dim = _rindex(second_tensor.size(), 1) second_tensor = second_tensor.squeeze(expanded_dim) intermediate = first_tensor * weight return torch.matmul(intermediate, second_tensor.transpose(-1, -2)).squeeze(-1) elif operation == '/': if first_tensor.dim() > 4 or second_tensor.dim() > 4: raise ValueError("Tensors with dim > 4 not currently supported") if first_tensor.dim() == 4: expanded_dim = _rindex(first_tensor.size(), 1) first_tensor = first_tensor.squeeze(expanded_dim) if second_tensor.dim() == 4: expanded_dim = _rindex(second_tensor.size(), 1) second_tensor = second_tensor.squeeze(expanded_dim) intermediate = first_tensor * weight return torch.matmul(intermediate, second_tensor.pow(-1).transpose(-1, -2)).squeeze(-1) elif operation == '+': return torch.matmul(first_tensor, weight) + torch.matmul(second_tensor, weight) elif operation == '-': return torch.matmul(first_tensor, weight) - torch.matmul(second_tensor, weight) else: raise ConfigurationError("Invalid operation: " + operation) def get_combined_dim(combination: str, tensor_dims: List[int]) -> int: """ For use with :func:`combine_tensors`. This function computes the resultant dimension when calling ``combine_tensors(combination, tensors)``, when the tensor dimension is known. This is necessary for knowing the sizes of weight matrices when building models that use ``combine_tensors``. Parameters ---------- combination : ``str`` A comma-separated list of combination pieces, like ``"1,2,1*2"``, specified identically to ``combination`` in :func:`combine_tensors`. tensor_dims : ``List[int]`` A list of tensor dimensions, where each dimension is from the `last axis` of the tensors that will be input to :func:`combine_tensors`. """ if len(tensor_dims) > 9: raise ConfigurationError("Double-digit tensor lists not currently supported") combination = combination.replace('x', '1').replace('y', '2') return sum([_get_combination_dim(piece, tensor_dims) for piece in combination.split(',')]) def _get_combination_dim(combination: str, tensor_dims: List[int]) -> int: if combination.isdigit(): index = int(combination) - 1 return tensor_dims[index] else: if len(combination) != 3: raise ConfigurationError("Invalid combination: " + combination) first_tensor_dim = _get_combination_dim(combination[0], tensor_dims) second_tensor_dim = _get_combination_dim(combination[2], tensor_dims) operation = combination[1] if first_tensor_dim != second_tensor_dim: raise ConfigurationError("Tensor dims must match for operation \"{}\"".format(operation)) return first_tensor_dim def logsumexp(tensor: torch.Tensor, dim: int = -1, keepdim: bool = False) -> torch.Tensor: """ A numerically stable computation of logsumexp. This is mathematically equivalent to `tensor.exp().sum(dim, keep=keepdim).log()`. This function is typically used for summing log probabilities. Parameters ---------- tensor : torch.FloatTensor, required. A tensor of arbitrary size. dim : int, optional (default = -1) The dimension of the tensor to apply the logsumexp to. keepdim: bool, optional (default = False) Whether to retain a dimension of size one at the dimension we reduce over. """ max_score, _ = tensor.max(dim, keepdim=keepdim) if keepdim: stable_vec = tensor - max_score else: stable_vec = tensor - max_score.unsqueeze(dim) return max_score + (stable_vec.exp().sum(dim, keepdim=keepdim)).log() def get_device_of(tensor: torch.Tensor) -> int: """ Returns the device of the tensor. """ if not tensor.is_cuda: return -1 else: return tensor.get_device() def flatten_and_batch_shift_indices(indices: torch.Tensor, sequence_length: int) -> torch.Tensor: """ This is a subroutine for :func:`~batched_index_select`. The given ``indices`` of size ``(batch_size, d_1, ..., d_n)`` indexes into dimension 2 of a target tensor, which has size ``(batch_size, sequence_length, embedding_size)``. This function returns a vector that correctly indexes into the flattened target. The sequence length of the target must be provided to compute the appropriate offsets. .. code-block:: python indices = torch.ones([2,3], dtype=torch.long) # Sequence length of the target tensor. sequence_length = 10 shifted_indices = flatten_and_batch_shift_indices(indices, sequence_length) # Indices into the second element in the batch are correctly shifted # to take into account that the target tensor will be flattened before # the indices are applied. assert shifted_indices == [1, 1, 1, 11, 11, 11] Parameters ---------- indices : ``torch.LongTensor``, required. sequence_length : ``int``, required. The length of the sequence the indices index into. This must be the second dimension of the tensor. Returns ------- offset_indices : ``torch.LongTensor`` """ # Shape: (batch_size) offsets = get_range_vector(indices.size(0), get_device_of(indices)) * sequence_length for _ in range(len(indices.size()) - 1): offsets = offsets.unsqueeze(1) # Shape: (batch_size, d_1, ..., d_n) offset_indices = indices + offsets # Shape: (batch_size * d_1 * ... * d_n) offset_indices = offset_indices.view(-1) return offset_indices def batched_index_select(target: torch.Tensor, indices: torch.LongTensor, flattened_indices: Optional[torch.LongTensor] = None) -> torch.Tensor: """ The given ``indices`` of size ``(batch_size, d_1, ..., d_n)`` indexes into the sequence dimension (dimension 2) of the target, which has size ``(batch_size, sequence_length, embedding_size)``. This function returns selected values in the target with respect to the provided indices, which have size ``(batch_size, d_1, ..., d_n, embedding_size)``. This can use the optionally precomputed :func:`~flattened_indices` with size ``(batch_size * d_1 * ... * d_n)`` if given. An example use case of this function is looking up the start and end indices of spans in a sequence tensor. This is used in the :class:`~allennlp.models.coreference_resolution.CoreferenceResolver`. Model to select contextual word representations corresponding to the start and end indices of mentions. The key reason this can't be done with basic torch functions is that we want to be able to use look-up tensors with an arbitrary number of dimensions (for example, in the coref model, we don't know a-priori how many spans we are looking up). Parameters ---------- target : ``torch.Tensor``, required. A 3 dimensional tensor of shape (batch_size, sequence_length, embedding_size). This is the tensor to be indexed. indices : ``torch.LongTensor`` A tensor of shape (batch_size, ...), where each element is an index into the ``sequence_length`` dimension of the ``target`` tensor. flattened_indices : Optional[torch.Tensor], optional (default = None) An optional tensor representing the result of calling :func:~`flatten_and_batch_shift_indices` on ``indices``. This is helpful in the case that the indices can be flattened once and cached for many batch lookups. Returns ------- selected_targets : ``torch.Tensor`` A tensor with shape [indices.size(), target.size(-1)] representing the embedded indices extracted from the batch flattened target tensor. """ if flattened_indices is None: # Shape: (batch_size * d_1 * ... * d_n) flattened_indices = flatten_and_batch_shift_indices(indices, target.size(1)) # Shape: (batch_size * sequence_length, embedding_size) flattened_target = target.view(-1, target.size(-1)) # Shape: (batch_size * d_1 * ... * d_n, embedding_size) flattened_selected = flattened_target.index_select(0, flattened_indices) selected_shape = list(indices.size()) + [target.size(-1)] # Shape: (batch_size, d_1, ..., d_n, embedding_size) selected_targets = flattened_selected.view(*selected_shape) return selected_targets def flattened_index_select(target: torch.Tensor, indices: torch.LongTensor) -> torch.Tensor: """ The given ``indices`` of size ``(set_size, subset_size)`` specifies subsets of the ``target`` that each of the set_size rows should select. The `target` has size ``(batch_size, sequence_length, embedding_size)``, and the resulting selected tensor has size ``(batch_size, set_size, subset_size, embedding_size)``. Parameters ---------- target : ``torch.Tensor``, required. A Tensor of shape (batch_size, sequence_length, embedding_size). indices : ``torch.LongTensor``, required. A LongTensor of shape (set_size, subset_size). All indices must be < sequence_length as this tensor is an index into the sequence_length dimension of the target. Returns ------- selected : ``torch.Tensor``, required. A Tensor of shape (batch_size, set_size, subset_size, embedding_size). """ if indices.dim() != 2: raise ConfigurationError("Indices passed to flattened_index_select had shape {} but " "only 2 dimensional inputs are supported.".format(indices.size())) # Shape: (batch_size, set_size * subset_size, embedding_size) flattened_selected = target.index_select(1, indices.view(-1)) # Shape: (batch_size, set_size, subset_size, embedding_size) selected = flattened_selected.view(target.size(0), indices.size(0), indices.size(1), -1) return selected def get_range_vector(size: int, device: int) -> torch.Tensor: """ Returns a range vector with the desired size, starting at 0. The CUDA implementation is meant to avoid copy data from CPU to GPU. """ if device > -1: return torch.cuda.LongTensor(size, device=device).fill_(1).cumsum(0) - 1 else: return torch.arange(0, size, dtype=torch.long) def bucket_values(distances: torch.Tensor, num_identity_buckets: int = 4, num_total_buckets: int = 10) -> torch.Tensor: """ Places the given values (designed for distances) into ``num_total_buckets``semi-logscale buckets, with ``num_identity_buckets`` of these capturing single values. The default settings will bucket values into the following buckets: [0, 1, 2, 3, 4, 5-7, 8-15, 16-31, 32-63, 64+]. Parameters ---------- distances : ``torch.Tensor``, required. A Tensor of any size, to be bucketed. num_identity_buckets: int, optional (default = 4). The number of identity buckets (those only holding a single value). num_total_buckets : int, (default = 10) The total number of buckets to bucket values into. Returns ------- A tensor of the same shape as the input, containing the indices of the buckets the values were placed in. """ # Chunk the values into semi-logscale buckets using .floor(). # This is a semi-logscale bucketing because we divide by log(2) after taking the log. # We do this to make the buckets more granular in the initial range, where we expect # most values to fall. We then add (num_identity_buckets - 1) because we want these indices # to start _after_ the fixed number of buckets which we specified would only hold single values. logspace_index = (distances.float().log() / math.log(2)).floor().long() + (num_identity_buckets - 1) # create a mask for values which will go into single number buckets (i.e not a range). use_identity_mask = (distances <= num_identity_buckets).long() use_buckets_mask = 1 + (-1 * use_identity_mask) # Use the original values if they are less than num_identity_buckets, otherwise # use the logspace indices. combined_index = use_identity_mask * distances + use_buckets_mask * logspace_index # Clamp to put anything > num_total_buckets into the final bucket. return combined_index.clamp(0, num_total_buckets - 1) def add_sentence_boundary_token_ids(tensor: torch.Tensor, mask: torch.Tensor, sentence_begin_token: Any, sentence_end_token: Any) -> Tuple[torch.Tensor, torch.Tensor]: """ Add begin/end of sentence tokens to the batch of sentences. Given a batch of sentences with size ``(batch_size, timesteps)`` or ``(batch_size, timesteps, dim)`` this returns a tensor of shape ``(batch_size, timesteps + 2)`` or ``(batch_size, timesteps + 2, dim)`` respectively. Returns both the new tensor and updated mask. Parameters ---------- tensor : ``torch.Tensor`` A tensor of shape ``(batch_size, timesteps)`` or ``(batch_size, timesteps, dim)`` mask : ``torch.Tensor`` A tensor of shape ``(batch_size, timesteps)`` sentence_begin_token: Any (anything that can be broadcast in torch for assignment) For 2D input, a scalar with the <S> id. For 3D input, a tensor with length dim. sentence_end_token: Any (anything that can be broadcast in torch for assignment) For 2D input, a scalar with the </S> id. For 3D input, a tensor with length dim. Returns ------- tensor_with_boundary_tokens : ``torch.Tensor`` The tensor with the appended and prepended boundary tokens. If the input was 2D, it has shape (batch_size, timesteps + 2) and if the input was 3D, it has shape (batch_size, timesteps + 2, dim). new_mask : ``torch.Tensor`` The new mask for the tensor, taking into account the appended tokens marking the beginning and end of the sentence. """ # TODO: matthewp, profile this transfer sequence_lengths = mask.sum(dim=1).detach().cpu().numpy() tensor_shape = list(tensor.data.shape) new_shape = list(tensor_shape) new_shape[1] = tensor_shape[1] + 2 tensor_with_boundary_tokens = tensor.new_zeros(*new_shape) if len(tensor_shape) == 2: tensor_with_boundary_tokens[:, 1:-1] = tensor tensor_with_boundary_tokens[:, 0] = sentence_begin_token for i, j in enumerate(sequence_lengths): tensor_with_boundary_tokens[i, j + 1] = sentence_end_token new_mask = (tensor_with_boundary_tokens != 0).long() elif len(tensor_shape) == 3: tensor_with_boundary_tokens[:, 1:-1, :] = tensor for i, j in enumerate(sequence_lengths): tensor_with_boundary_tokens[i, 0, :] = sentence_begin_token tensor_with_boundary_tokens[i, j + 1, :] = sentence_end_token new_mask = ((tensor_with_boundary_tokens > 0).long().sum(dim=-1) > 0).long() else: raise ValueError("add_sentence_boundary_token_ids only accepts 2D and 3D input") return tensor_with_boundary_tokens, new_mask def remove_sentence_boundaries(tensor: torch.Tensor, mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Remove begin/end of sentence embeddings from the batch of sentences. Given a batch of sentences with size ``(batch_size, timesteps, dim)`` this returns a tensor of shape ``(batch_size, timesteps - 2, dim)`` after removing the beginning and end sentence markers. The sentences are assumed to be padded on the right, with the beginning of each sentence assumed to occur at index 0 (i.e., ``mask[:, 0]`` is assumed to be 1). Returns both the new tensor and updated mask. This function is the inverse of ``add_sentence_boundary_token_ids``. Parameters ---------- tensor : ``torch.Tensor`` A tensor of shape ``(batch_size, timesteps, dim)`` mask : ``torch.Tensor`` A tensor of shape ``(batch_size, timesteps)`` Returns ------- tensor_without_boundary_tokens : ``torch.Tensor`` The tensor after removing the boundary tokens of shape ``(batch_size, timesteps - 2, dim)`` new_mask : ``torch.Tensor`` The new mask for the tensor of shape ``(batch_size, timesteps - 2)``. """ # TODO: matthewp, profile this transfer sequence_lengths = mask.sum(dim=1).detach().cpu().numpy() tensor_shape = list(tensor.data.shape) new_shape = list(tensor_shape) new_shape[1] = tensor_shape[1] - 2 tensor_without_boundary_tokens = tensor.new_zeros(*new_shape) new_mask = tensor.new_zeros((new_shape[0], new_shape[1]), dtype=torch.long) for i, j in enumerate(sequence_lengths): if j > 2: tensor_without_boundary_tokens[i, :(j - 2), :] = tensor[i, 1:(j - 1), :] new_mask[i, :(j - 2)] = 1 return tensor_without_boundary_tokens, new_mask def add_positional_features(tensor: torch.Tensor, min_timescale: float = 1.0, max_timescale: float = 1.0e4): # pylint: disable=line-too-long """ Implements the frequency-based positional encoding described in `Attention is all you Need <https://www.semanticscholar.org/paper/Attention-Is-All-You-Need-Vaswani-Shazeer/0737da0767d77606169cbf4187b83e1ab62f6077>`_ . Adds sinusoids of different frequencies to a ``Tensor``. A sinusoid of a different frequency and phase is added to each dimension of the input ``Tensor``. This allows the attention heads to use absolute and relative positions. The number of timescales is equal to hidden_dim / 2 within the range (min_timescale, max_timescale). For each timescale, the two sinusoidal signals sin(timestep / timescale) and cos(timestep / timescale) are generated and concatenated along the hidden_dim dimension. Parameters ---------- tensor : ``torch.Tensor`` a Tensor with shape (batch_size, timesteps, hidden_dim). min_timescale : ``float``, optional (default = 1.0) The smallest timescale to use. max_timescale : ``float``, optional (default = 1.0e4) The largest timescale to use. Returns ------- The input tensor augmented with the sinusoidal frequencies. """ _, timesteps, hidden_dim = tensor.size() timestep_range = get_range_vector(timesteps, get_device_of(tensor)).data.float() # We're generating both cos and sin frequencies, # so half for each. num_timescales = hidden_dim // 2 timescale_range = get_range_vector(num_timescales, get_device_of(tensor)).data.float() log_timescale_increments = math.log(float(max_timescale) / float(min_timescale)) / float(num_timescales - 1) inverse_timescales = min_timescale * torch.exp(timescale_range * -log_timescale_increments) # Broadcasted multiplication - shape (timesteps, num_timescales) scaled_time = timestep_range.unsqueeze(1) * inverse_timescales.unsqueeze(0) # shape (timesteps, 2 * num_timescales) sinusoids = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 1) if hidden_dim % 2 != 0: # if the number of dimensions is odd, the cos and sin # timescales had size (hidden_dim - 1) / 2, so we need # to add a row of zeros to make up the difference. sinusoids = torch.cat([sinusoids, sinusoids.new_zeros(timesteps, 1)], 1) return tensor + sinusoids.unsqueeze(0)
[ "torch.zeros", "torch.cos", "torch.cat", "torch.stack", "torch.arange", "torch.max", "torch.gather", "torch.sin", "torch.cuda.LongTensor", "torch.nn.functional.log_softmax", "torch.nn.functional.softmax", "torch.zeros_like", "torch.matmul", "torch.exp", "torch.sum" ]
0.4.1
threefoldo/allennlp
9fcc79566cc148cce9f967a7962ac03bc300f011
1.5
# -*- coding: utf-8 -*- # @Author: Wenwen Yu # @Created Time: 7/12/2020 9:50 PM import os import numpy as np from numpy import inf import torch import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from src.utils import inf_loop from src.utils.metrics import MetricTracker, SpanBasedF1MetricTracker from torch.utils.tensorboard import SummaryWriter # from src.logger import TensorboardWriter from src.utils.utils import to_union class Trainer: """ Trainer class """ def __init__(self, model, optimizer, config, data_loader, iob_labels_vocab_cls, valid_data_loader=None, lr_scheduler=None, max_len_step=None): """ :param model: :param optimizer: :param config: :param data_loader: :param iob_labels_vocab_cls :param valid_data_loader: :param lr_scheduler: :param max_len_step: controls number of batches(steps) in each epoch. """ self.config = config self.iob_labels_vocab_cls = iob_labels_vocab_cls self.distributed = config['distributed'] if self.distributed: self.local_master = (config['local_rank'] == 0) self.global_master = (dist.get_rank() == 0) else: self.local_master = True self.global_master = True self.logger = config.get_logger('trainer', config['trainer']['log_verbosity']) if self.local_master else None # setup GPU device if available, move model into configured device self.device, self.device_ids = self._prepare_device(config['local_rank'], config['local_world_size']) self.model = model.to(self.device) self.optimizer = optimizer cfg_trainer = config['trainer'] self.epochs = cfg_trainer['epochs'] self.save_period = cfg_trainer['save_period'] monitor_open = cfg_trainer['monitor_open'] if monitor_open: self.monitor = cfg_trainer.get('monitor', 'off') else: self.monitor = 'off' # configuration to monitor model performance and save best if self.monitor == 'off': self.monitor_mode = 'off' self.monitor_best = 0 else: self.monitor_mode, self.monitor_metric = self.monitor.split() assert self.monitor_mode in ['min', 'max'] self.monitor_best = inf if self.monitor_mode == 'min' else -inf self.early_stop = cfg_trainer.get('early_stop', inf) self.early_stop = inf if self.early_stop == -1 else self.early_stop self.start_epoch = 1 if self.local_master: self.checkpoint_dir = config.save_dir # setup visualization writer instance # self.writer = TensorboardWriter(config.log_dir, self.logger, cfg_trainer['tensorboard']) self.writer = SummaryWriter(config.tensorboard_dir) # load checkpoint for resume training if config.resume is not None: self._resume_checkpoint(config.resume) # load checkpoint following load to multi-gpu, avoid 'module.' prefix if self.config['trainer']['sync_batch_norm'] and self.distributed: self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model) if self.distributed: self.model = DDP(self.model, device_ids=self.device_ids, output_device=self.device_ids[0], find_unused_parameters=True) self.data_loader = data_loader if max_len_step is None: # max length of iteration step of every epoch # epoch-based training self.len_step = len(self.data_loader) else: # iteration-based training self.data_loader = inf_loop(data_loader) self.len_step = max_len_step self.valid_data_loader = valid_data_loader self.do_validation = self.valid_data_loader is not None self.lr_scheduler = lr_scheduler log_step = self.config['trainer']['log_step_interval'] self.log_step = log_step if log_step != -1 and 0 < log_step < self.len_step else int( np.sqrt(data_loader.batch_size)) self.val_epoch_interval = self.config['trainer']['val_epoch_interval'] self.gl_loss_lambda = self.config['trainer']['gl_loss_lambda'] self.train_loss_metrics = MetricTracker('loss', 'gl_loss', 'crf_loss', writer=self.writer if self.local_master else None) self.valid_f1_metrics = SpanBasedF1MetricTracker(iob_labels_vocab_cls) def train(self): """ Full training logic, including train and validation. """ if self.distributed: dist.barrier() # Syncing machines before training not_improved_count = 0 val_result_dict = None if self.config['evaluate_only']: print("------Evaluation only------") val_result_dict = self._valid_epoch(0) val_res = SpanBasedF1MetricTracker.dict2str(val_result_dict) self.logger_info('[Step Validation] Epoch:[{}/{}]] \n{}'. format(0, self.epochs, val_res)) return for epoch in range(self.start_epoch, self.epochs + 1): # ensure distribute worker sample different data, # set different random seed by passing epoch to sampler if self.distributed: self.data_loader.sampler.set_epoch(epoch) result_dict = self._train_epoch(epoch) # print logged information to the screen if self.do_validation: val_result_dict = result_dict['val_result_dict'] val_res = SpanBasedF1MetricTracker.dict2str(val_result_dict) else: val_res = '' # every epoch log information self.logger_info('[Epoch Validation] Epoch:[{}/{}] Total Loss: {:.6f} ' 'GL_Loss: {:.6f} CRF_Loss: {:.6f} \n{}'. format(epoch, self.epochs, result_dict['loss'], result_dict['gl_loss'] * self.gl_loss_lambda, result_dict['crf_loss'], val_res)) # evaluate model performance according to configured metric, check early stop, and # save best checkpoint as model_best best = False if self.monitor_mode != 'off' and self.do_validation: best, not_improved_count = self._is_best_monitor_metric(best, not_improved_count, val_result_dict) if not_improved_count > self.early_stop: self.logger_info("Validation performance didn't improve for {} epochs. " "Training stops.".format(self.early_stop)) break if epoch % self.save_period == 0: self._save_checkpoint(epoch, save_best=best) def _is_best_monitor_metric(self, best, not_improved_count, val_result_dict): """ monitor metric :param best: :param not_improved_count: :param val_result_dict: :return: """ entity_name, metric = self.monitor_metric.split('-') val_monitor_metric_res = val_result_dict[entity_name][metric] try: # check whether model performance improved or not, according to specified metric(monitor_metric) improved = (self.monitor_mode == 'min' and val_monitor_metric_res <= self.monitor_best) or \ (self.monitor_mode == 'max' and val_monitor_metric_res >= self.monitor_best) except KeyError: self.logger_warning("Warning: Metric '{}' is not found. " "Model performance monitoring is disabled.".format(self.monitor_metric)) self.monitor_mode = 'off' improved = False if improved: self.monitor_best = val_monitor_metric_res not_improved_count = 0 best = True else: not_improved_count += 1 return best, not_improved_count def _train_epoch(self, epoch): """ Training logic for an epoch :param epoch: Integer, current training epoch. :return: A log dict that contains average loss and metric in this epoch. """ self.model.train() self.train_loss_metrics.reset() # step iteration start ## for step_idx, input_data_item in enumerate(self.data_loader): step_idx += 1 for key, input_value in input_data_item.items(): if input_value is not None and isinstance(input_value, torch.Tensor): input_data_item[key] = input_value.to(self.device, non_blocking=True) if self.config['trainer']['anomaly_detection']: # This mode will increase the runtime and should only be enabled for debugging with torch.autograd.detect_anomaly(): self.optimizer.zero_grad() # model forward output = self.model(**input_data_item) # calculate loss gl_loss = output['gl_loss'] crf_loss = output['crf_loss'] total_loss = torch.sum(crf_loss) + self.gl_loss_lambda * torch.sum(gl_loss) # backward total_loss.backward() # self.average_gradients(self.model) self.optimizer.step() else: self.optimizer.zero_grad() # model forward output = self.model(**input_data_item) # calculate loss gl_loss = output['gl_loss'] crf_loss = output['crf_loss'] total_loss = torch.sum(crf_loss) + self.gl_loss_lambda * torch.sum(gl_loss) # backward total_loss.backward() # self.average_gradients(self.model) self.optimizer.step() # Use a barrier() to make sure that all process have finished forward and backward if self.distributed: dist.barrier() # obtain the sum of all total_loss at all processes dist.all_reduce(total_loss, op=dist.reduce_op.SUM) size = dist.get_world_size() else: size = 1 gl_loss /= size # averages gl_loss across the whole world crf_loss /= size # averages crf_loss across the whole world # calculate average loss across the batch size avg_gl_loss = torch.mean(gl_loss) avg_crf_loss = torch.mean(crf_loss) avg_loss = avg_crf_loss + self.gl_loss_lambda * avg_gl_loss # update metrics # self.writer.set_step((epoch - 1) * self.len_step + step_idx - 1) if self.local_master else None self.train_loss_metrics.update('loss', avg_loss.item(), epoch) self.train_loss_metrics.update('gl_loss', avg_gl_loss.item() * self.gl_loss_lambda, epoch) self.train_loss_metrics.update('crf_loss', avg_crf_loss.item(), epoch) # log messages if step_idx % self.log_step == 0: self.logger_info('Train Epoch:[{}/{}] Step:[{}/{}] Total Loss: {:.6f} GL_Loss: {:.6f} CRF_Loss: {:.6f}'. format(epoch, self.epochs, step_idx, self.len_step, avg_loss.item(), avg_gl_loss.item() * self.gl_loss_lambda, avg_crf_loss.item())) # decide whether continue iter if step_idx == self.len_step + 1: break # step iteration end ## # do validation after val_step_interval iteration if self.do_validation and epoch % self.val_epoch_interval == 0: val_result_dict = self._valid_epoch(epoch) self.logger_info('[Step Validation] Epoch:[{}/{}]] \n{}'. format(epoch, self.epochs, self.len_step, SpanBasedF1MetricTracker.dict2str(val_result_dict))) # check if best metric, if true, then save as model_best checkpoint. best, not_improved_count = self._is_best_monitor_metric(False, 0, val_result_dict) if best: self._save_checkpoint(epoch, best) # {'loss': avg_loss, 'gl_loss': avg_gl_loss, 'crf_loss': avg_crf_loss} log = self.train_loss_metrics.result() # do validation after training an epoch if self.do_validation: val_result_dict = self._valid_epoch(epoch) log['val_result_dict'] = val_result_dict if self.lr_scheduler is not None: self.lr_scheduler.step() self.model.train() return log def _valid_epoch(self, epoch): """ Validate after training an epoch or regular step, this is a time-consuming procedure if validation data is big. :param epoch: Integer, current training epoch. :return: A dict that contains information about validation """ self.model.eval() self.valid_f1_metrics.reset() with torch.no_grad(): for step_idx, input_data_item in enumerate(self.valid_data_loader): for key, input_value in input_data_item.items(): if input_value is not None and isinstance(input_value, torch.Tensor): input_data_item[key] = input_value.to(self.device, non_blocking=True) output = self.model(**input_data_item) logits = output['logits'] new_mask = output['new_mask'] if hasattr(self.model, 'module'): # List[(List[int], torch.Tensor)] contain the tag indices of the maximum likelihood tag sequence. # and the score of the viterbi path. best_paths = self.model.module.decoder.crf_layer.viterbi_tags(logits, mask=new_mask, logits_batch_first=True) else: best_paths = self.model.decoder.crf_layer.viterbi_tags(logits, mask=new_mask, logits_batch_first=True) predicted_tags = [] for path, score in best_paths: predicted_tags.append(path) # self.writer.set_step((epoch - 1) * len(self.valid_data_loader) + step_idx, 'valid') \ # if self.local_master else None # calculate and update f1 metrics # (B, N*T, out_dim) predicted_tags_hard_prob = logits * 0 for i, instance_tags in enumerate(predicted_tags): for j, tag_id in enumerate(instance_tags): predicted_tags_hard_prob[i, j, tag_id] = 1 golden_tags = input_data_item['iob_tags_label'] mask = input_data_item['mask'] union_iob_tags = to_union(golden_tags, mask, self.iob_labels_vocab_cls) if self.distributed: dist.barrier() # self.valid_f1_metrics.update(predicted_tags_hard_prob.long(), union_iob_tags, new_mask) # add histogram of model parameters to the tensorboard # for name, p in self.model.named_parameters(): # self.writer.add_histogram(name, p, bins='auto') f1_result_dict = self.valid_f1_metrics.result() overall_dict = f1_result_dict['overall'] if self.local_master: for key, value in overall_dict.items(): self.writer.add_scalar(key, value, epoch) return f1_result_dict @staticmethod def average_gradients(model): """ Gradient averaging :param model: :return: """ size = float(dist.get_world_size()) for param in model.parameters(): dist.all_reduce(param.grad.data, op=dist.reduce_op.SUM) param.grad.data /= size def logger_info(self, msg): self.logger.info(msg) if self.local_master else None def logger_warning(self, msg): self.logger.warning(msg) if self.local_master else None def _prepare_device(self, local_rank, local_world_size): """ setup GPU device if available, move model into configured device :param local_rank: :param local_world_size: :return: """ if self.distributed: n_gpu_per_process = torch.cuda.device_count() // local_world_size device_ids = list(range(local_rank * n_gpu_per_process, (local_rank + 1) * n_gpu_per_process)) if torch.cuda.is_available() and local_rank != -1: torch.cuda.set_device(device_ids[0]) # device_ids[0] =local_rank if local_world_size = n_gpu per node device = 'cuda' self.logger_info( f"[Process {os.getpid()}] world_size = {dist.get_world_size()}, " + f"rank = {dist.get_rank()}, n_gpu/process = {n_gpu_per_process}, device_ids = {device_ids}" ) else: self.logger_warning('Training will be using CPU!') device = 'cpu' device = torch.device(device) return device, device_ids else: n_gpu = torch.cuda.device_count() n_gpu_use = local_world_size if n_gpu_use > 0 and n_gpu == 0: self.logger_warning("Warning: There\'s no GPU available on this machine," "training will be performed on CPU.") n_gpu_use = 0 if n_gpu_use > n_gpu: self.logger_warning("Warning: The number of GPU\'s configured to use is {}, but only {} are available " "on this machine.".format(n_gpu_use, n_gpu)) n_gpu_use = n_gpu list_ids = list(range(n_gpu_use)) if n_gpu_use > 0: torch.cuda.set_device(list_ids[0]) # only use first available gpu as devices self.logger_warning(f'Training is using GPU {list_ids[0]}!') device = 'cuda' else: self.logger_warning('Training is using CPU!') device = 'cpu' device = torch.device(device) return device, list_ids def _save_checkpoint(self, epoch, save_best=False): """ Saving checkpoints :param epoch: current epoch number :param save_best: if True, rename the saved checkpoint to 'model_best.pth' :return: """ # only local master process do save model if not self.local_master: return if hasattr(self.model, 'module'): arch = type(self.model.module).__name__ state_dict = self.model.module.state_dict() else: arch = type(self.model).__name__ state_dict = self.model.state_dict() state = { 'arch': arch, 'epoch': epoch, 'state_dict': state_dict, 'optimizer': self.optimizer.state_dict(), 'monitor_best': self.monitor_best, 'config': self.config } if save_best: best_path = str(self.checkpoint_dir / 'model_best.pth') torch.save(state, best_path) self.logger_info("Saving current best: model_best.pth ...") else: filename = str(self.checkpoint_dir / 'checkpoint-epoch{}.pth'.format(epoch)) torch.save(state, filename) self.logger_info("Saving checkpoint: {} ...".format(filename)) def _resume_checkpoint(self, resume_path): """ Resume from saved checkpoints :param resume_path: Checkpoint path to be resumed :return: """ resume_path = str(resume_path) self.logger_info("Loading checkpoint: {} ...".format(resume_path)) # map_location = {'cuda:%d' % 0: 'cuda:%d' % self.config['local_rank']} checkpoint = torch.load(resume_path, map_location=self.device) self.start_epoch = checkpoint['epoch'] + 1 self.monitor_best = checkpoint['monitor_best'] # load architecture params from checkpoint. if checkpoint['config']['model_arch'] != self.config['model_arch']: self.logger_warning("Warning: Architecture configuration given in config file is different from that of " "checkpoint. This may yield an exception while state_dict is being loaded.") self.model.load_state_dict(checkpoint['state_dict']) # load optimizer state from checkpoint only when optimizer type is not changed. if checkpoint['config']['optimizer']['type'] != self.config['optimizer']['type']: self.logger_warning("Warning: Optimizer type given in config file is different from that of checkpoint. " "Optimizer parameters not being resumed.") else: self.optimizer.load_state_dict(checkpoint['optimizer']) self.logger_info("Checkpoint loaded. Resume training from epoch {}".format(self.start_epoch))
[ "torch.distributed.get_world_size", "torch.device", "torch.nn.SyncBatchNorm.convert_sync_batchnorm", "torch.no_grad", "torch.save", "torch.nn.parallel.DistributedDataParallel", "torch.cuda.device_count", "torch.cuda.set_device", "torch.cuda.is_available", "torch.distributed.all_reduce", "torch.load", "torch.autograd.detect_anomaly", "torch.mean", "torch.distributed.get_rank", "torch.distributed.barrier", "torch.utils.tensorboard.SummaryWriter", "torch.sum" ]
1.5.1
minhhoangbui/PICK-pytorch
c74d2d1e5d1f8c7e837ea9776146bc84a7ecf30a
1.1
#!/usr/bin/env python3 import argparse import logging from pathlib import Path import sys from typing import List from typing import Optional from typing import Sequence from typing import Tuple from typing import Union import humanfriendly import numpy as np import torch from tqdm import trange from typeguard import check_argument_types from espnet.utils.cli_utils import get_commandline_args from espnet2.fileio.sound_scp import SoundScpWriter from espnet2.tasks.enh import EnhancementTask from espnet2.torch_utils.device_funcs import to_device from espnet2.torch_utils.set_all_random_seed import set_all_random_seed from espnet2.utils import config_argparse from espnet2.utils.types import str2bool from espnet2.utils.types import str2triple_str from espnet2.utils.types import str_or_none EPS = torch.finfo(torch.get_default_dtype()).eps class SeparateSpeech: """SeparateSpeech class Examples: >>> import soundfile >>> separate_speech = SeparateSpeech("enh_config.yml", "enh.pth") >>> audio, rate = soundfile.read("speech.wav") >>> separate_speech(audio) [separated_audio1, separated_audio2, ...] """ def __init__( self, enh_train_config: Union[Path, str], enh_model_file: Union[Path, str] = None, segment_size: Optional[float] = None, hop_size: Optional[float] = None, normalize_segment_scale: bool = False, show_progressbar: bool = False, ref_channel: Optional[int] = None, normalize_output_wav: bool = False, device: str = "cpu", dtype: str = "float32", ): assert check_argument_types() # 1. Build Enh model enh_model, enh_train_args = EnhancementTask.build_model_from_file( enh_train_config, enh_model_file, device ) enh_model.to(dtype=getattr(torch, dtype)).eval() self.device = device self.dtype = dtype self.enh_train_args = enh_train_args self.enh_model = enh_model # only used when processing long speech, i.e. # segment_size is not None and hop_size is not None self.segment_size = segment_size self.hop_size = hop_size self.normalize_segment_scale = normalize_segment_scale self.normalize_output_wav = normalize_output_wav self.show_progressbar = show_progressbar self.num_spk = enh_model.num_spk task = "enhancement" if self.num_spk == 1 else "separation" # reference channel for processing multi-channel speech if ref_channel is not None: logging.info( "Overwrite enh_model.separator.ref_channel with {}".format(ref_channel) ) enh_model.separator.ref_channel = ref_channel self.ref_channel = ref_channel else: self.ref_channel = enh_model.ref_channel self.segmenting = segment_size is not None and hop_size is not None if self.segmenting: logging.info("Perform segment-wise speech %s" % task) logging.info( "Segment length = {} sec, hop length = {} sec".format( segment_size, hop_size ) ) else: logging.info("Perform direct speech %s on the input" % task) @torch.no_grad() def __call__( self, speech_mix: Union[torch.Tensor, np.ndarray], fs: int = 8000 ) -> List[torch.Tensor]: """Inference Args: speech_mix: Input speech data (Batch, Nsamples [, Channels]) fs: sample rate Returns: [separated_audio1, separated_audio2, ...] """ assert check_argument_types() # Input as audio signal if isinstance(speech_mix, np.ndarray): speech_mix = torch.as_tensor(speech_mix) assert speech_mix.dim() > 1, speech_mix.size() batch_size = speech_mix.size(0) speech_mix = speech_mix.to(getattr(torch, self.dtype)) # lenghts: (B,) lengths = speech_mix.new_full( [batch_size], dtype=torch.long, fill_value=speech_mix.size(1) ) # a. To device speech_mix = to_device(speech_mix, device=self.device) lengths = to_device(lengths, device=self.device) if self.segmenting and lengths[0] > self.segment_size * fs: # Segment-wise speech enhancement/separation overlap_length = int(np.round(fs * (self.segment_size - self.hop_size))) num_segments = int( np.ceil((speech_mix.size(1) - overlap_length) / (self.hop_size * fs)) ) t = T = int(self.segment_size * fs) pad_shape = speech_mix[:, :T].shape enh_waves = [] range_ = trange if self.show_progressbar else range for i in range_(num_segments): st = int(i * self.hop_size * fs) en = st + T if en >= lengths[0]: # en - st < T (last segment) en = lengths[0] speech_seg = speech_mix.new_zeros(pad_shape) t = en - st speech_seg[:, :t] = speech_mix[:, st:en] else: t = T speech_seg = speech_mix[:, st:en] # B x T [x C] lengths_seg = speech_mix.new_full( [batch_size], dtype=torch.long, fill_value=T ) # b. Enhancement/Separation Forward feats, f_lens = self.enh_model.encoder(speech_seg, lengths_seg) feats, _, _ = self.enh_model.separator(feats, f_lens) processed_wav = [ self.enh_model.decoder(f, lengths_seg)[0] for f in feats ] if speech_seg.dim() > 2: # multi-channel speech speech_seg_ = speech_seg[:, self.ref_channel] else: speech_seg_ = speech_seg if self.normalize_segment_scale: # normalize the energy of each separated stream # to match the input energy processed_wav = [ self.normalize_scale(w, speech_seg_) for w in processed_wav ] # List[torch.Tensor(num_spk, B, T)] enh_waves.append(torch.stack(processed_wav, dim=0)) # c. Stitch the enhanced segments together waves = enh_waves[0] for i in range(1, num_segments): # permutation between separated streams in last and current segments perm = self.cal_permumation( waves[:, :, -overlap_length:], enh_waves[i][:, :, :overlap_length], criterion="si_snr", ) # repermute separated streams in current segment for batch in range(batch_size): enh_waves[i][:, batch] = enh_waves[i][perm[batch], batch] if i == num_segments - 1: enh_waves[i][:, :, t:] = 0 enh_waves_res_i = enh_waves[i][:, :, overlap_length:t] else: enh_waves_res_i = enh_waves[i][:, :, overlap_length:] # overlap-and-add (average over the overlapped part) waves[:, :, -overlap_length:] = ( waves[:, :, -overlap_length:] + enh_waves[i][:, :, :overlap_length] ) / 2 # concatenate the residual parts of the later segment waves = torch.cat([waves, enh_waves_res_i], dim=2) # ensure the stitched length is same as input assert waves.size(2) == speech_mix.size(1), (waves.shape, speech_mix.shape) waves = torch.unbind(waves, dim=0) else: # b. Enhancement/Separation Forward feats, f_lens = self.enh_model.encoder(speech_mix, lengths) feats, _, _ = self.enh_model.separator(feats, f_lens) waves = [self.enh_model.decoder(f, lengths)[0] for f in feats] assert len(waves) == self.num_spk, len(waves) == self.num_spk assert len(waves[0]) == batch_size, (len(waves[0]), batch_size) if self.normalize_output_wav: waves = [ (w / abs(w).max(dim=1, keepdim=True)[0] * 0.9).cpu().numpy() for w in waves ] # list[(batch, sample)] else: waves = [w.cpu().numpy() for w in waves] return waves @staticmethod @torch.no_grad() def normalize_scale(enh_wav, ref_ch_wav): """Normalize the energy of enh_wav to match that of ref_ch_wav. Args: enh_wav (torch.Tensor): (B, Nsamples) ref_ch_wav (torch.Tensor): (B, Nsamples) Returns: enh_wav (torch.Tensor): (B, Nsamples) """ ref_energy = torch.sqrt(torch.mean(ref_ch_wav.pow(2), dim=1)) enh_energy = torch.sqrt(torch.mean(enh_wav.pow(2), dim=1)) return enh_wav * (ref_energy / enh_energy)[:, None] @torch.no_grad() def cal_permumation(self, ref_wavs, enh_wavs, criterion="si_snr"): """Calculate the permutation between seaprated streams in two adjacent segments. Args: ref_wavs (List[torch.Tensor]): [(Batch, Nsamples)] enh_wavs (List[torch.Tensor]): [(Batch, Nsamples)] criterion (str): one of ("si_snr", "mse", "corr) Returns: perm (torch.Tensor): permutation for enh_wavs (Batch, num_spk) """ loss_func = { "si_snr": self.enh_model.si_snr_loss, "mse": lambda enh, ref: torch.mean((enh - ref).pow(2), dim=1), "corr": lambda enh, ref: ( (enh * ref).sum(dim=1) / (enh.pow(2).sum(dim=1) * ref.pow(2).sum(dim=1) + EPS) ).clamp(min=EPS, max=1 - EPS), }[criterion] _, perm = self.enh_model._permutation_loss(ref_wavs, enh_wavs, loss_func) return perm def humanfriendly_or_none(value: str): if value in ("none", "None", "NONE"): return None return humanfriendly.parse_size(value) def inference( output_dir: str, batch_size: int, dtype: str, fs: int, ngpu: int, seed: int, num_workers: int, log_level: Union[int, str], data_path_and_name_and_type: Sequence[Tuple[str, str, str]], key_file: Optional[str], enh_train_config: str, enh_model_file: str, allow_variable_data_keys: bool, segment_size: Optional[float], hop_size: Optional[float], normalize_segment_scale: bool, show_progressbar: bool, ref_channel: Optional[int], normalize_output_wav: bool, ): assert check_argument_types() if batch_size > 1: raise NotImplementedError("batch decoding is not implemented") if ngpu > 1: raise NotImplementedError("only single GPU decoding is supported") logging.basicConfig( level=log_level, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) if ngpu >= 1: device = "cuda" else: device = "cpu" # 1. Set random-seed set_all_random_seed(seed) # 2. Build separate_speech separate_speech = SeparateSpeech( enh_train_config=enh_train_config, enh_model_file=enh_model_file, segment_size=segment_size, hop_size=hop_size, normalize_segment_scale=normalize_segment_scale, show_progressbar=show_progressbar, ref_channel=ref_channel, normalize_output_wav=normalize_output_wav, device=device, dtype=dtype, ) # 3. Build data-iterator loader = EnhancementTask.build_streaming_iterator( data_path_and_name_and_type, dtype=dtype, batch_size=batch_size, key_file=key_file, num_workers=num_workers, preprocess_fn=EnhancementTask.build_preprocess_fn( separate_speech.enh_train_args, False ), collate_fn=EnhancementTask.build_collate_fn( separate_speech.enh_train_args, False ), allow_variable_data_keys=allow_variable_data_keys, inference=True, ) # 4. Start for-loop writers = [] for i in range(separate_speech.num_spk): writers.append( SoundScpWriter(f"{output_dir}/wavs/{i + 1}", f"{output_dir}/spk{i + 1}.scp") ) for keys, batch in loader: assert isinstance(batch, dict), type(batch) assert all(isinstance(s, str) for s in keys), keys _bs = len(next(iter(batch.values()))) assert len(keys) == _bs, f"{len(keys)} != {_bs}" batch = {k: v for k, v in batch.items() if not k.endswith("_lengths")} waves = separate_speech(**batch) for (spk, w) in enumerate(waves): for b in range(batch_size): writers[spk][keys[b]] = fs, w[b] print(w[b],file=sys.stderr) for writer in writers: writer.close() def get_parser(): parser = config_argparse.ArgumentParser( description="Frontend inference", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # Note(kamo): Use '_' instead of '-' as separator. # '-' is confusing if written in yaml. parser.add_argument( "--log_level", type=lambda x: x.upper(), default="INFO", choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"), help="The verbose level of logging", ) parser.add_argument("--output_dir", type=str, required=True) parser.add_argument( "--ngpu", type=int, default=0, help="The number of gpus. 0 indicates CPU mode", ) parser.add_argument("--seed", type=int, default=0, help="Random seed") parser.add_argument( "--dtype", default="float32", choices=["float16", "float32", "float64"], help="Data type", ) parser.add_argument( "--fs", type=humanfriendly_or_none, default=8000, help="Sampling rate" ) parser.add_argument( "--num_workers", type=int, default=1, help="The number of workers used for DataLoader", ) group = parser.add_argument_group("Input data related") group.add_argument( "--data_path_and_name_and_type", type=str2triple_str, required=True, action="append", ) group.add_argument("--key_file", type=str_or_none) group.add_argument("--allow_variable_data_keys", type=str2bool, default=False) group = parser.add_argument_group("Output data related") group.add_argument( "--normalize_output_wav", type=str2bool, default=False, help="Whether to normalize the predicted wav to [-1~1]", ) group = parser.add_argument_group("The model configuration related") group.add_argument("--enh_train_config", type=str, required=True) group.add_argument("--enh_model_file", type=str, required=True) group = parser.add_argument_group("Data loading related") group.add_argument( "--batch_size", type=int, default=1, help="The batch size for inference", ) group = parser.add_argument_group("SeparateSpeech related") group.add_argument( "--segment_size", type=float, default=None, help="Segment length in seconds for segment-wise speech enhancement/separation", ) group.add_argument( "--hop_size", type=float, default=None, help="Hop length in seconds for segment-wise speech enhancement/separation", ) group.add_argument( "--normalize_segment_scale", type=str2bool, default=False, help="Whether to normalize the energy of the separated streams in each segment", ) group.add_argument( "--show_progressbar", type=str2bool, default=False, help="Whether to show a progress bar when performing segment-wise speech " "enhancement/separation", ) group.add_argument( "--ref_channel", type=int, default=None, help="If not None, this will overwrite the ref_channel defined in the " "separator module (for multi-channel speech processing)", ) return parser def main(cmd=None): print(get_commandline_args(), file=sys.stderr) parser = get_parser() args = parser.parse_args(cmd) kwargs = vars(args) kwargs.pop("config", None) inference(**kwargs) if __name__ == "__main__": main()
[ "torch.get_default_dtype", "torch.cat", "torch.stack", "torch.unbind", "torch.no_grad", "torch.as_tensor" ]
1.1.0
arceushui/Keyword-Spotting-Alibaba
10e718491075dee8f875c7860385bc4eef22a790
1.4
import time, os, json, time import numpy as np import torch from torch._C import device import torch.distributed as dist from torch.autograd import Variable def test_model(model, test_data, dev): correct, total = 0, 0 model.eval() with torch.no_grad(): for data, target in test_data: data, target = Variable(data).cuda(dev), Variable(target).cuda(dev) output = model(data) # get the index of the max log-probability _, predictions = output.max(1) total += predictions.size(0) correct += torch.sum(predictions == target.data).float() acc = correct / total return acc.item() def update_model(model, global_mu, size, cpu, gpu, args): # all_param = model.state_dict() # receive the parameter variance from workers for param in model.parameters(): tensor = torch.zeros_like(param.data, device=cpu) gather_list = [torch.zeros_like(param.data, device=cpu) for _ in range(size)] dist.gather(tensor=tensor, gather_list=gather_list, dst=0) param.data = torch.zeros_like(param.data, device=gpu) for w in range(size): # Suppose the model received from clients are well processed param.data = param.data + gather_list[w].clone().detach().to(gpu) # receive averaged K from workers avg_k_list = [torch.tensor(0.0) for _ in range(size)] dist.gather(tensor=torch.tensor(0.0), gather_list=avg_k_list, dst=0) avg_k = sum(avg_k_list) print('Averaged K:', avg_k) # send averaged K to workers avg_k_list = [avg_k if args.avg_k==-1 else torch.tensor(float(args.avg_k)) for _ in range(size)] dist.scatter(tensor=avg_k, scatter_list=avg_k_list) # receive the mu from clients for idx, param in enumerate(global_mu): tensor = torch.zeros_like(param.data, device=cpu) gather_list = [torch.zeros_like(param.data, device=cpu) for _ in range(size)] dist.gather(tensor=tensor, gather_list=gather_list, dst=0) global_mu[idx] = torch.zeros_like(param.data, device=gpu) for w in range(size): # Suppose the model received from clients are well processed global_mu[idx] = global_mu[idx] + gather_list[w].clone().detach().to(gpu) # send the parameters to workers for param in model.parameters(): tmp_p = param.clone().detach().to(cpu) scatter_p_list = [tmp_p for _ in range(size)] dist.scatter(tensor=tmp_p, scatter_list=scatter_p_list) if torch.sum(torch.isnan(tmp_p)) > 0: print("NaN occurs. Terminate. ") exit(-1) # send global_mu to workers for param in global_mu: tmp_p = param.clone().detach().to(cpu) scatter_p_list = [tmp_p for _ in range(size)] dist.scatter(tensor=tmp_p, scatter_list=scatter_p_list) # model.load_state_dict(all_param) def run(size, model, args, test_data, f_result, cpu, gpu): # Receive the weights from all clients temp_w = torch.tensor([0.0 for _ in range(args.num_workers+1)]) weights = [torch.tensor([0.0 for _ in range(args.num_workers+1)]) for _ in range(size)] dist.gather(tensor=temp_w, gather_list=weights, dst=0) weights = sum(weights) weights = weights / torch.sum(weights) print('weights:', weights) # send weights to clients weights_list = [weights.clone().detach().to(cpu) for _ in range(size)] dist.scatter(tensor=temp_w, scatter_list=weights_list) start = time.time() model = model.cuda(gpu) for p in model.parameters(): tmp_p = p.clone().detach().to(cpu) scatter_p_list = [tmp_p for _ in range(size)] # dist.scatter(tensor=tmp_p, scatter_list=scatter_p_list, group=group) dist.scatter(tensor=tmp_p, scatter_list=scatter_p_list) global_mu = [torch.zeros_like(param.data, device=gpu) for param in model.parameters()] print('Model has sent to all nodes! ') print('Begin!') np.random.seed(42) for t in range(args.T): model.train() # send participants to all clients participants = np.random.choice(np.arange(len(weights)), size=args.num_part, replace=True, p=weights.numpy()) if args.partial else np.arange(len(weights)) print('Participants list:', list(participants)) participants = torch.tensor(participants).to(cpu) part_list = [participants for _ in range(size)] dist.scatter(tensor=participants, scatter_list=part_list) # receive the list of train loss from workers info_list = [torch.tensor(0.0) for _ in range(size)] # dist.gather(tensor=torch.tensor([0.0]), gather_list=info_list, group=group) dist.gather(tensor=torch.tensor(0.0), gather_list=info_list, dst=0) # info_list = np.concatenate([list(a) for a in info_list]) # train_loss = sum(info_list).item() / args.num_part if args.partial else sum(info_list * weights).item() train_loss = sum(info_list).item() # if args.partial: # update_model_partial(model, size, cpu, gpu, args.num_part) # else: # update_model_full(model, size, cpu, gpu, weights) update_model(model, global_mu, size, cpu, gpu, args) timestamp = time.time() - start test_acc = test_model(model, test_data, gpu) print("Epoch: {}\t\tLoss: {}\t\tAccuracy: {}".format(t, train_loss, test_acc)) f_result.write(str(t) + "\t" + str(timestamp) + "\t" + str(train_loss) + "\t" + str(test_acc) + "\n") f_result.flush() def init_processes(rank, size, model, args, test_data, cpu, gpu, backend='mpi'): if backend == 'mpi': dist.init_process_group(backend) elif backend == 'gloo': os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '29500' dist.init_process_group(backend, rank=rank, world_size=size) if not os.path.exists(args.result): os.makedirs(args.result) result_file = os.path.join(args.result, '{}.txt'.format(len(os.listdir(args.result)))) f_result = open(result_file, 'w') f_result.write(json.dumps(vars(args)) + '\n') run(size, model, args, test_data, f_result, cpu, gpu)
[ "torch.isnan", "torch.distributed.init_process_group", "torch.no_grad", "torch.autograd.Variable", "torch.zeros_like", "torch.distributed.gather", "torch.tensor", "torch.distributed.scatter", "torch.sum" ]
1.4.0
HarliWu/From-Deterioration-to-Acceleration-A-Calibration-Approach-to-Rehabilitating-Step-Asynchronism-in-Fe
3a2f7196a2ca0446ce7ff7c8d15a0fa56a1d91d4
1.0
import torch from torch.utils.data import Dataset, ConcatDataset, Sampler import torch.distributed as dist import math import os import sys import shelve from glob import glob import numpy as np import uuid from termcolor import colored from collections import Counter, OrderedDict import random from .. import util from ..util import TraceMode, PriorInflation from ..concurrency import ConcurrentShelf class Batch(): def __init__(self, traces): self.traces = traces self.size = len(traces) sub_batches = {} total_length_controlled = 0 for trace in traces: tl = trace.length_controlled if tl == 0: raise ValueError('Trace of length zero.') total_length_controlled += tl trace_hash = ''.join([variable.address for variable in trace.variables_controlled]) if trace_hash not in sub_batches: sub_batches[trace_hash] = [] sub_batches[trace_hash].append(trace) self.sub_batches = list(sub_batches.values()) self.mean_length_controlled = total_length_controlled / self.size def __len__(self): return len(self.traces) def __getitem__(self, key): return self.traces[key] def to(self, device): for trace in self.traces: trace.to(device=device) class OnlineDataset(Dataset): def __init__(self, model, length=None, prior_inflation=PriorInflation.DISABLED): self._model = model if length is None: length = int(1e6) self._length = length self._prior_inflation = prior_inflation def __len__(self): return self._length def __getitem__(self, idx): return next(self._model._trace_generator(trace_mode=TraceMode.PRIOR_FOR_INFERENCE_NETWORK, prior_inflation=self._prior_inflation)) @staticmethod def _prune_trace(trace): del(trace.variables) # trace.variables_controlled = [] del(trace.variables_uncontrolled) del(trace.variables_replaced) del(trace.variables_observed) del(trace.variables_observable) del(trace.variables_tagged) del(trace.variables_dict_address) del(trace.variables_dict_address_base) # trace.named_variables = {} del(trace.result) del(trace.log_prob) del(trace.log_prob_observed) # del(trace.log_importance_weight) # trace.length = 0 # trace.length_controlled = 0 del(trace.execution_time_sec) for variable in trace.variables_controlled: # variable.distribution = distribution # if value is None: # variable.value = None # else: # variable.value = util.to_tensor(value) del(variable.address_base) # variable.address = address del(variable.instance) del(variable.log_prob) del(variable.control) del(variable.replace) del(variable.name) del(variable.observable) del(variable.observed) del(variable.reused) del(variable.tagged) for _, variable in trace.named_variables.items(): controlled = False for v in trace.variables_controlled: if variable is v: # Needs to be implemented this way to compare object references instead of object hashes (which change as a result of potentially deleted fields) controlled = True break if not controlled: del(variable.distribution) # if value is None: # variable.value = None # else: # variable.value = util.to_tensor(value) del(variable.address_base) del(variable.address) del(variable.instance) del(variable.log_prob) del(variable.control) del(variable.replace) del(variable.name) del(variable.observable) del(variable.observed) del(variable.reused) del(variable.tagged) def save_dataset(self, dataset_dir, num_traces, num_traces_per_file, *args, **kwargs): num_files = math.ceil(num_traces / num_traces_per_file) util.progress_bar_init('Saving offline dataset, traces:{}, traces per file:{}, files:{}'.format(num_traces, num_traces_per_file, num_files), num_traces, 'Traces') i = 0 while i < num_traces: i += num_traces_per_file file_name = os.path.join(dataset_dir, 'pyprob_traces_{}_{}'.format(num_traces_per_file, str(uuid.uuid4()))) shelf = shelve.open(file_name, flag='c') for j in range(num_traces_per_file): trace = next(self._model._trace_generator(trace_mode=TraceMode.PRIOR, prior_inflation=self._prior_inflation, *args, **kwargs)) self._prune_trace(trace) shelf[str(j)] = trace shelf['__length'] = j + 1 shelf.close() util.progress_bar_update(i) util.progress_bar_end() class OfflineDatasetFile(Dataset): cache = OrderedDict() cache_capacity = 8 def __init__(self, file_name): self._file_name = file_name self._closed = False shelf = self._open() self._length = shelf['__length'] def _open(self): # idea from https://www.kunxi.org/2014/05/lru-cache-in-python try: shelf = OfflineDatasetFile.cache.pop(self._file_name) # it was in the cache, put it back on the front OfflineDatasetFile.cache[self._file_name] = shelf return shelf except KeyError: # not in the cache if len(OfflineDatasetFile.cache) >= OfflineDatasetFile.cache_capacity: # cache is full, delete the last entry n, s = OfflineDatasetFile.cache.popitem(last=False) s.close() shelf = shelve.open(self._file_name, flag='r') OfflineDatasetFile.cache[self._file_name] = shelf return shelf def __len__(self): return self._length def __getitem__(self, idx): shelf = self._open() return shelf[str(idx)] class OfflineDataset(ConcatDataset): def __init__(self, dataset_dir): self._dataset_dir = dataset_dir # files = [name for name in os.listdir(self._dataset_dir)] files = sorted(glob(os.path.join(self._dataset_dir, 'pyprob_traces_sorted_*'))) if len(files) > 0: self._sorted_on_disk = True else: self._sorted_on_disk = False files = sorted(glob(os.path.join(self._dataset_dir, 'pyprob_traces_*'))) if len(files) == 0: raise RuntimeError('Cannot find any data set files at {}'.format(dataset_dir)) datasets = [] for file in files: try: dataset = OfflineDatasetFile(file) datasets.append(dataset) except Exception as e: print(e) print(colored('Warning: dataset file potentially corrupt, omitting: {}'.format(file), 'red', attrs=['bold'])) super().__init__(datasets) print('OfflineDataset at: {}'.format(self._dataset_dir)) print('Num. traces : {:,}'.format(len(self))) print('Sorted on disk : {}'.format(self._sorted_on_disk)) if self._sorted_on_disk: self._sorted_indices = list(range(len(self))) else: file_name = os.path.join(self._dataset_dir, 'pyprob_hashes') try: hashes_file = shelve.open(file_name, 'r') hashes_exist = 'hashes' in hashes_file hashes_file.close() except: hashes_exist = False if hashes_exist: print('Using pre-computed hashes in: {}'.format(file_name)) hashes_file = shelve.open(file_name, 'r') self._hashes = hashes_file['hashes'] self._sorted_indices = hashes_file['sorted_indices'] hashes_file.close() if torch.is_tensor(self._hashes): self._hashes = self._hashes.cpu().numpy() if len(self._sorted_indices) != len(self): raise RuntimeError('Length of pre-computed hashes ({}) and length of offline dataset ({}) do not match. Dataset files have been altered. Delete and re-generate pre-computed hash file: {}'.format(len(self._sorted_indices), len(self), file_name)) else: print('No pre-computed hashes found, generating: {}'.format(file_name)) hashes_file = shelve.open(file_name, 'c') hashes, sorted_indices = self._compute_hashes() hashes_file['hashes'] = hashes hashes_file['sorted_indices'] = sorted_indices hashes_file.close() self._sorted_indices = sorted_indices self._hashes = hashes print('Num. trace types : {:,}'.format(len(set(self._hashes)))) hashes_and_counts = OrderedDict(sorted(Counter(self._hashes).items())) print('Trace hash\tCount') for hash, count in hashes_and_counts.items(): print('{:.8f}\t{}'.format(hash, count)) print() @staticmethod def _trace_hash(trace): h = hash(''.join([variable.address for variable in trace.variables_controlled])) + sys.maxsize + 1 return float('{}.{}'.format(trace.length_controlled, h)) def _compute_hashes(self): hashes = torch.zeros(len(self)) util.progress_bar_init('Hashing offline dataset for sorting', len(self), 'Traces') for i in range(len(self)): hashes[i] = self._trace_hash(self[i]) util.progress_bar_update(i) util.progress_bar_end() print('Sorting offline dataset') _, sorted_indices = torch.sort(hashes) print('Sorting done') return hashes.cpu().numpy(), sorted_indices.cpu().numpy() def save_sorted(self, sorted_dataset_dir, num_traces_per_file=None, num_files=None, begin_file_index=None, end_file_index=None): if num_traces_per_file is not None: if num_files is not None: raise ValueError('Expecting either num_traces_per_file or num_files') else: if num_files is None: raise ValueError('Expecting either num_traces_per_file or num_files') else: num_traces_per_file = math.ceil(len(self) / num_files) if os.path.exists(sorted_dataset_dir): if len(glob(os.path.join(sorted_dataset_dir, '*'))) > 0: print(colored('Warning: target directory is not empty: {})'.format(sorted_dataset_dir), 'red', attrs=['bold'])) util.create_path(sorted_dataset_dir, directory=True) file_indices = list(util.chunks(list(self._sorted_indices), num_traces_per_file)) num_traces = len(self) num_files = len(file_indices) num_files_digits = len(str(num_files)) file_name_template = 'pyprob_traces_sorted_{{:d}}_{{:0{}d}}'.format(num_files_digits) file_names = list(map(lambda x: os.path.join(sorted_dataset_dir, file_name_template.format(num_traces_per_file, x)), range(num_files))) if begin_file_index is None: begin_file_index = 0 if end_file_index is None: end_file_index = num_files if begin_file_index < 0 or begin_file_index > end_file_index or end_file_index > num_files or end_file_index < begin_file_index: raise ValueError('Invalid indexes begin_file_index:{} and end_file_index: {}'.format(begin_file_index, end_file_index)) print('Sorted offline dataset, traces: {}, traces per file: {}, files: {} (overall)'.format(num_traces, num_traces_per_file, num_files)) util.progress_bar_init('Saving sorted files with indices in range [{}, {}) ({} of {} files overall)'.format(begin_file_index, end_file_index, end_file_index - begin_file_index, num_files), end_file_index - begin_file_index + 1, 'Files') j = 0 for i in range(begin_file_index, end_file_index): j += 1 file_name = file_names[i] print(file_name) shelf = ConcurrentShelf(file_name) shelf.lock(write=True) for new_i, old_i in enumerate(file_indices[i]): shelf[str(new_i)] = self[old_i] shelf['__length'] = len(file_indices[i]) shelf.unlock() util.progress_bar_update(j) util.progress_bar_end() class TraceSampler(Sampler): def __init__(self, offline_dataset): if not isinstance(offline_dataset, OfflineDataset): raise TypeError('Expecting an OfflineDataset instance.') self._sorted_indices = offline_dataset._sorted_indices def __iter__(self): return iter(self._sorted_indices) def __len__(self): return len(self._offline_dataset) class TraceBatchSampler(Sampler): def __init__(self, offline_dataset, batch_size, shuffle_batches=True): if not isinstance(offline_dataset, OfflineDataset): raise TypeError('Expecting an OfflineDataset instance.') self._batches = list(util.chunks(offline_dataset._sorted_indices, batch_size)) self._shuffle_batches = shuffle_batches def __iter__(self): if self._shuffle_batches: np.random.shuffle(self._batches) return iter(self._batches) def __len__(self): return len(self._batches) class DistributedTraceBatchSampler(Sampler): def __init__(self, offline_dataset, batch_size, shuffle_batches=True, num_buckets=None, shuffle_buckets=True): if not isinstance(offline_dataset, OfflineDataset): raise TypeError('Expecting an OfflineDataset instance.') if not dist.is_available(): raise RuntimeError('Expecting distributed training.') self._world_size = dist.get_world_size() self._rank = dist.get_rank() # Randomly drop a number of traces so that the number of all minibatches in the whole dataset is an integer multiple of world size num_batches_to_drop = math.floor(len(offline_dataset._sorted_indices) / batch_size) % self._world_size num_traces_to_drop = num_batches_to_drop * batch_size # Ensure all ranks choose the same traces to drop st = random.getstate() random.seed(0) self._batches = list(util.chunks(util.drop_items(list(offline_dataset._sorted_indices), num_traces_to_drop), batch_size)) # List of all minibatches, where each minibatch is a list of trace indices random.setstate(st) # Discard last minibatch if it's smaller than batch_size if len(self._batches[-1]) < batch_size: del(self._batches[-1]) if num_buckets is None: num_buckets = len(self._batches) / self._world_size self._num_buckets = num_buckets self._bucket_size = math.ceil(len(self._batches) / num_buckets) if self._bucket_size < self._world_size: raise RuntimeError('offline_dataset:{}, batch_size:{} and num_buckets:{} imply a bucket_size:{} smaller than world_size:{}'.format(len(offline_dataset), batch_size, num_buckets, self._bucket_size, self._world_size)) # List of buckets, where each bucket is a list of minibatches self._buckets = list(util.chunks(self._batches, self._bucket_size)) # Unify last two buckets if the last bucket is smaller than other buckets if len(self._buckets[-1]) < self._bucket_size: if len(self._buckets) < 2: raise RuntimeError('offline_dataset:{} too small for given batch_size:{} and num_buckets:{}'.format(len(offline_dataset), batch_size, num_buckets)) self._buckets[-2].extend(self._buckets[-1]) del(self._buckets[-1]) self._shuffle_batches = shuffle_batches self._shuffle_buckets = shuffle_buckets self._epoch = 0 self._current_bucket_id = 0 print('DistributedTraceBatchSampler') print('OfflineDataset size : {:,}'.format(len(offline_dataset))) print('World size : {:,}'.format(self._world_size)) print('Batch size : {:,}'.format(batch_size)) print('Num. batches dropped: {:,}'.format(num_batches_to_drop)) print('Num. batches : {:,}'.format(len(self._batches))) print('Bucket size : {:,}'.format(self._bucket_size)) print('Num. buckets : {:,}'.format(self._num_buckets)) def __iter__(self): self._epoch += 1 bucket_ids = list(range(len(self._buckets))) if self._shuffle_buckets: # Shuffle the list of buckets (but not the order of minibatches inside each bucket) at the beginning of each epoch, deterministically based on the epoch number so that all nodes have the same bucket order # Idea from: https://github.com/pytorch/pytorch/blob/a3fb004b1829880547dd7b3e2cd9d16af657b869/torch/utils/data/distributed.py#L44 st = np.random.get_state() np.random.seed(self._epoch) np.random.shuffle(bucket_ids) np.random.set_state(st) for bucket_id in bucket_ids: bucket = self._buckets[bucket_id] self._current_bucket_id = bucket_id # num_batches is needed to ensure that all nodes have the same number of minibatches (iterations) in each bucket, in cases where the bucket size is not divisible by world_size. num_batches = math.floor(len(bucket) / self._world_size) # Select a num_batches-sized subset of the current bucket for the current node # The part not selected by the current node will be selected by other nodes batches = bucket[self._rank:len(bucket):self._world_size][:num_batches] if self._shuffle_batches: # Shuffle the list of minibatches (but not the order trace indices inside each minibatch) selected for the current node np.random.shuffle(batches) for batch in batches: yield batch def __len__(self): return len(self._batches)
[ "torch.distributed.is_available", "torch.distributed.get_world_size", "torch.is_tensor", "torch.distributed.get_rank", "torch.sort" ]
1.0.0
bayesianbrad/pyprob
a426fc51c1d6da13052979c21af447f9c4023642
1.7
import pandas as pd from pymethylprocess.MethylationDataTypes import MethylationArray from sklearn.metrics import mean_absolute_error, r2_score import warnings warnings.filterwarnings("ignore") from pybedtools import BedTool import numpy as np from functools import reduce from torch.utils.data import Dataset, DataLoader import torch from torch import nn from torch.autograd import Variable from torch.nn import functional as F import os import pysnooper import argparse import pickle from sklearn.metrics import classification_report import click import methylcapsnet from methylcapsnet.build_capsules import * from methylcapsnet.methylcaps_data_models import * import sqlite3 import os import glob import dask from dask.diagnostics import ProgressBar from pathos.multiprocessing import Pool import multiprocessing import dask.bag as db from distributed import Client, LocalCluster, get_task_stream RANDOM_SEED=42 np.random.seed(RANDOM_SEED) torch.manual_seed(RANDOM_SEED) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False @pysnooper.snoop('train.log') def model_capsnet_(train_methyl_array='train_val_test_sets/train_methyl_array.pkl', val_methyl_array='train_val_test_sets/val_methyl_array.pkl', interest_col='disease', n_epochs=10, n_bins=0, bin_len=1000000, min_capsule_len=300, primary_caps_out_len=45, caps_out_len=45, hidden_topology='30,80,50', gamma=1e-2, decoder_topology='100,300', learning_rate=1e-2, routing_iterations=3, overlap=0., custom_loss='none', gamma2=1e-2, job=0, capsule_choice=['genomic_binned'], custom_capsule_file='', test_methyl_array='', predict=False, batch_size=16, limited_capsule_names_file='', gsea_superset='', tissue='', number_sets=25, use_set=False, gene_context=False, select_subtypes=[], fit_spw=False, l1_l2='', custom_capsule_file2='', min_capsules=5): capsule_choice=list(capsule_choice) #custom_capsule_file=list(custom_capsule_file) hlt_list=filter(None,hidden_topology.split(',')) if hlt_list: hidden_topology=list(map(int,hlt_list)) else: hidden_topology=[] hlt_list=filter(None,decoder_topology.split(',')) if hlt_list: decoder_topology=list(map(int,hlt_list)) else: decoder_topology=[] hidden_caps_layers=[] include_last=False ma=MethylationArray.from_pickle(train_methyl_array) ma_v=MethylationArray.from_pickle(val_methyl_array) if test_methyl_array and predict: ma_t=MethylationArray.from_pickle(test_methyl_array) try: ma.remove_na_samples(interest_col) ma_v.remove_na_samples(interest_col) if test_methyl_array and predict: ma_t.remove_na_samples(interest_col) except: pass if select_subtypes: print(ma.pheno[interest_col].unique()) ma.pheno=ma.pheno.loc[ma.pheno[interest_col].isin(select_subtypes)] ma.beta=ma.beta.loc[ma.pheno.index] ma_v.pheno=ma_v.pheno.loc[ma_v.pheno[interest_col].isin(select_subtypes)] ma_v.beta=ma_v.beta.loc[ma_v.pheno.index] print(ma.pheno[interest_col].unique()) if test_methyl_array and predict: ma_t.pheno=ma_t.pheno.loc[ma_t.pheno[interest_col].isin(select_subtypes)] ma_t.beta=ma_t.beta.loc[ma_t.pheno.index] if custom_capsule_file2 and os.path.exists(custom_capsule_file2): capsules_dict=torch.load(custom_capsule_file2) final_modules, modulecpgs, module_names=capsules_dict['final_modules'], capsules_dict['modulecpgs'], capsules_dict['module_names'] if min_capsule_len>1: include_capsules=[len(x)>min_capsule_len for x in final_modules] final_modules=[final_modules[i] for i in range(len(final_modules)) if include_capsules[i]] module_names=[module_names[i] for i in range(len(module_names)) if include_capsules[i]] modulecpgs=(reduce(np.union1d,final_modules)).tolist() else: final_modules, modulecpgs, module_names=build_capsules(capsule_choice, overlap, bin_len, ma, include_last, min_capsule_len, custom_capsule_file, gsea_superset, tissue, gene_context, use_set, number_sets, limited_capsule_names_file) if custom_capsule_file2: torch.save(dict(final_modules=final_modules, modulecpgs=modulecpgs, module_names=module_names),custom_capsule_file2) assert len(final_modules) >= min_capsules , "Below the number of allowed capsules." if fit_spw: modulecpgs=list(reduce(lambda x,y:np.hstack((x,y)),final_modules)) if not include_last: # ERROR HAPPENS HERE! ma.beta=ma.beta.loc[:,modulecpgs] ma_v.beta=ma_v.beta.loc[:,modulecpgs] if test_methyl_array and predict: ma_t.beta=ma_t.beta.loc[:,modulecpgs] # https://github.com/higgsfield/Capsule-Network-Tutorial/blob/master/Capsule%20Network.ipynb original_interest_col=interest_col if n_bins: new_interest_col=interest_col+'_binned' ma.pheno.loc[:,new_interest_col],bins=pd.cut(ma.pheno[interest_col],bins=n_bins,retbins=True) ma_v.pheno.loc[:,new_interest_col],_=pd.cut(ma_v.pheno[interest_col],bins=bins,retbins=True) if test_methyl_array and predict: ma_t.pheno.loc[:,new_interest_col],_=pd.cut(ma_t.pheno[interest_col],bins=bins,retbins=True) interest_col=new_interest_col datasets=dict() datasets['train']=MethylationDataset(ma,interest_col,modules=final_modules, module_names=module_names, original_interest_col=original_interest_col, run_spw=fit_spw) print(datasets['train'].X.isnull().sum().sum()) datasets['val']=MethylationDataset(ma_v,interest_col,modules=final_modules, module_names=module_names, original_interest_col=original_interest_col, run_spw=fit_spw) if test_methyl_array and predict: datasets['test']=MethylationDataset(ma_t,interest_col,modules=final_modules, module_names=module_names, original_interest_col=original_interest_col, run_spw=fit_spw) dataloaders=dict() dataloaders['train']=DataLoader(datasets['train'],batch_size=batch_size,shuffle=True,num_workers=8, pin_memory=True, drop_last=True) dataloaders['val']=DataLoader(datasets['val'],batch_size=batch_size,shuffle=False,num_workers=8, pin_memory=True, drop_last=False) n_primary=len(final_modules) if test_methyl_array and predict: dataloaders['test']=DataLoader(datasets['test'],batch_size=batch_size,shuffle=False,num_workers=8, pin_memory=True, drop_last=False) n_inputs=list(map(len,final_modules)) n_out_caps=len(datasets['train'].y_unique) if not fit_spw: print("Not fitting MethylSPWNet") primary_caps = PrimaryCaps(modules=final_modules,hidden_topology=hidden_topology,n_output=primary_caps_out_len) hidden_caps = [] output_caps = CapsLayer(n_out_caps,n_primary,primary_caps_out_len,caps_out_len,routing_iterations=routing_iterations) decoder = Decoder(n_out_caps*caps_out_len,len(list(ma.beta)),decoder_topology) model = CapsNet(primary_caps, hidden_caps, output_caps, decoder, gamma=gamma) if test_methyl_array and predict: model.load_state_dict(torch.load('capsnet_model.pkl')) else: print("Fitting MethylSPWNet") module_lens=[len(x) for x in final_modules] model=MethylSPWNet(module_lens, hidden_topology, dropout_p=0.2, n_output=n_out_caps) if test_methyl_array and predict: model.load_state_dict(torch.load('spwnet_model.pkl')) if torch.cuda.is_available(): model=model.cuda() # extract all c_ij for all layers across all batches, or just last batch if l1_l2 and fit_spw: l1,l2=list(map(float,l1_l2.split(','))) elif fit_spw: l1,l2=0.,0. trainer=Trainer(model=model, validation_dataloader=dataloaders['val'], n_epochs=n_epochs, lr=learning_rate, n_primary=n_primary, custom_loss=custom_loss, gamma2=gamma2, spw_mode=fit_spw, l1=l1 if fit_spw else 0., l2=l2 if fit_spw else 0.) if not predict: try: #assert 1==2 trainer.fit(dataloader=dataloaders['train']) val_loss=min(trainer.val_losses) torch.save(trainer.model.state_dict(),'capsnet_model.pkl' if not fit_spw else 'spwnet_model.pkl') if fit_spw: torch.save(dict(final_modules=final_modules, modulecpgs=modulecpgs, module_names=module_names), 'spwnet_capsules.pkl') torch.save(dict(module_names=module_names,module_lens=module_lens,dropout_p=0.2,hidden_topology=hidden_topology,n_output=n_out_caps),'spwnet_config.pkl') except Exception as e: print(e) val_loss=-2 with sqlite3.connect('jobs.db', check_same_thread=False) as conn: pd.DataFrame([job,val_loss],index=['job','val_loss'],columns=[0]).T.to_sql('val_loss',conn,if_exists='append') else: if test_methyl_array: trainer.weights=1. Y=trainer.predict(dataloaders['test']) pickle.dump(Y,open('predictions.pkl','wb')) val_loss=-1 #print(val_loss) # print([min(trainer.val_losses),n_epochs, # n_bins, # bin_len, # min_capsule_len, # primary_caps_out_len, # caps_out_len, # hidden_topology, # gamma, # decoder_topology, # learning_rate, # routing_iterations]) return val_loss
[ "torch.manual_seed", "torch.cuda.is_available", "torch.utils.data.DataLoader", "torch.load" ]
1.7.0
Christensen-Lab-Dartmouth/MethylCapsNet
17b6b19809c5e1984de804eb34cc7494210f91a6
1.3
import os from unittest.mock import MagicMock, call import pytest import torch from ignite.contrib.handlers.polyaxon_logger import * from ignite.engine import Engine, Events, State os.environ["POLYAXON_NO_OP"] = "1" def test_output_handler_with_wrong_logger_type(): wrapper = OutputHandler("tag", output_transform=lambda x: x) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler 'OutputHandler' works only with PolyaxonLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_output_handler_output_transform(): wrapper = OutputHandler("tag", output_transform=lambda x: x) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.output = 12345 mock_engine.state.iteration = 123 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.log_metrics.assert_called_once_with(step=123, **{"tag/output": 12345}) wrapper = OutputHandler("another_tag", output_transform=lambda x: {"loss": x}) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.log_metrics.assert_called_once_with(step=123, **{"another_tag/loss": 12345}) def test_output_handler_metric_names(): wrapper = OutputHandler("tag", metric_names=["a", "b", "c"]) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45, "c": torch.tensor(10.0)}) mock_engine.state.iteration = 5 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_called_once_with(step=5, **{"tag/a": 12.23, "tag/b": 23.45, "tag/c": 10.0}) wrapper = OutputHandler("tag", metric_names=["a",]) mock_engine = MagicMock() mock_engine.state = State(metrics={"a": torch.Tensor([0.0, 1.0, 2.0, 3.0])}) mock_engine.state.iteration = 5 mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_has_calls( [call(step=5, **{"tag/a/0": 0.0, "tag/a/1": 1.0, "tag/a/2": 2.0, "tag/a/3": 3.0}),], any_order=True ) wrapper = OutputHandler("tag", metric_names=["a", "c"]) mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 55.56, "c": "Some text"}) mock_engine.state.iteration = 7 mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() with pytest.warns(UserWarning): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_has_calls([call(step=7, **{"tag/a": 55.56})], any_order=True) # all metrics wrapper = OutputHandler("tag", metric_names="all") mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45, "c": torch.tensor(10.0)}) mock_engine.state.iteration = 5 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_called_once_with(step=5, **{"tag/a": 12.23, "tag/b": 23.45, "tag/c": 10.0}) def test_output_handler_both(): wrapper = OutputHandler("tag", metric_names=["a", "b"], output_transform=lambda x: {"loss": x}) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45}) mock_engine.state.epoch = 5 mock_engine.state.output = 12345 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_called_once_with(step=5, **{"tag/a": 12.23, "tag/b": 23.45, "tag/loss": 12345}) def test_output_handler_with_wrong_global_step_transform_output(): def global_step_transform(*args, **kwargs): return "a" wrapper = OutputHandler("tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_transform) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 mock_engine.state.output = 12345 with pytest.raises(TypeError, match="global_step must be int"): wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) def test_output_handler_with_global_step_transform(): def global_step_transform(*args, **kwargs): return 10 wrapper = OutputHandler("tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_transform) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 mock_engine.state.output = 12345 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.log_metrics.assert_called_once_with(step=10, **{"tag/loss": 12345}) def test_output_handler_with_global_step_from_engine(): mock_another_engine = MagicMock() mock_another_engine.state = State() mock_another_engine.state.epoch = 10 mock_another_engine.state.output = 12.345 wrapper = OutputHandler( "tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_from_engine(mock_another_engine), ) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 1 mock_engine.state.output = 0.123 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_has_calls( [call(step=mock_another_engine.state.epoch, **{"tag/loss": mock_engine.state.output})] ) mock_another_engine.state.epoch = 11 mock_engine.state.output = 1.123 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.log_metrics.call_count == 2 mock_logger.log_metrics.assert_has_calls( [call(step=mock_another_engine.state.epoch, **{"tag/loss": mock_engine.state.output})] ) def test_optimizer_params_handler_wrong_setup(): with pytest.raises(TypeError): OptimizerParamsHandler(optimizer=None) optimizer = MagicMock(spec=torch.optim.Optimizer) handler = OptimizerParamsHandler(optimizer=optimizer) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler OptimizerParamsHandler works only with PolyaxonLogger"): handler(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_optimizer_params(): optimizer = torch.optim.SGD([torch.Tensor(0)], lr=0.01) wrapper = OptimizerParamsHandler(optimizer=optimizer, param_name="lr") mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.iteration = 123 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.log_metrics.assert_called_once_with(**{"lr/group_0": 0.01, "step": 123}) wrapper = OptimizerParamsHandler(optimizer, param_name="lr", tag="generator") mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.log_metrics.assert_called_once_with(**{"generator/lr/group_0": 0.01, "step": 123}) def test_integration(): n_epochs = 5 data = list(range(50)) losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) trainer = Engine(update_fn) plx_logger = PolyaxonLogger() def dummy_handler(engine, logger, event_name): global_step = engine.state.get_event_attrib_value(event_name) logger.log_metrics(step=global_step, **{"{}".format("test_value"): global_step}) plx_logger.attach(trainer, log_handler=dummy_handler, event_name=Events.EPOCH_COMPLETED) trainer.run(data, max_epochs=n_epochs) def test_integration_as_context_manager(): n_epochs = 5 data = list(range(50)) losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) with PolyaxonLogger() as plx_logger: trainer = Engine(update_fn) def dummy_handler(engine, logger, event_name): global_step = engine.state.get_event_attrib_value(event_name) logger.log_metrics(step=global_step, **{"{}".format("test_value"): global_step}) plx_logger.attach(trainer, log_handler=dummy_handler, event_name=Events.EPOCH_COMPLETED) trainer.run(data, max_epochs=n_epochs) @pytest.fixture def no_site_packages(): import sys polyaxon_client_modules = {} for k in sys.modules: if "polyaxon" in k: polyaxon_client_modules[k] = sys.modules[k] for k in polyaxon_client_modules: del sys.modules[k] prev_path = list(sys.path) sys.path = [p for p in sys.path if "site-packages" not in p] yield "no_site_packages" sys.path = prev_path for k in polyaxon_client_modules: sys.modules[k] = polyaxon_client_modules[k] def test_no_polyaxon_client(no_site_packages): with pytest.raises(RuntimeError, match=r"This contrib module requires polyaxon-client to be installed"): PolyaxonLogger()
[ "torch.Tensor", "torch.tensor" ]
1.3
nzare/ignite
b53c6aeef87754b3cd3638c91172b386dc73af12
1.3
from pathlib import Path from datetime import datetime import fire import torch import torch.nn as nn import torch.optim as optim import ignite import ignite.distributed as idist from ignite.engine import Events, Engine, create_supervised_evaluator from ignite.metrics import Accuracy, Loss from ignite.handlers import Checkpoint, DiskSaver from ignite.utils import manual_seed, setup_logger from ignite.contrib.engines import common from ignite.contrib.handlers import PiecewiseLinear import utils def training(local_rank, config): rank = idist.get_rank() manual_seed(config["seed"] + rank) device = idist.device() logger = setup_logger(name="CIFAR10-Training", distributed_rank=local_rank) log_basic_info(logger, config) output_path = config["output_path"] if rank == 0: if config["stop_iteration"] is None: now = datetime.now().strftime("%Y%m%d-%H%M%S") else: now = "stop-on-{}".format(config["stop_iteration"]) folder_name = "{}_backend-{}-{}_{}".format(config["model"], idist.backend(), idist.get_world_size(), now) output_path = Path(output_path) / folder_name if not output_path.exists(): output_path.mkdir(parents=True) config["output_path"] = output_path.as_posix() logger.info("Output path: {}".format(config["output_path"])) if "cuda" in device.type: config["cuda device name"] = torch.cuda.get_device_name(local_rank) if config["with_trains"]: from trains import Task task = Task.init("CIFAR10-Training", task_name=output_path.stem) task.connect_configuration(config) # Log hyper parameters hyper_params = [ "model", "batch_size", "momentum", "weight_decay", "num_epochs", "learning_rate", "num_warmup_epochs", ] task.connect({k: config[k] for k in hyper_params}) # Setup dataflow, model, optimizer, criterion train_loader, test_loader = get_dataflow(config) config["num_iters_per_epoch"] = len(train_loader) model, optimizer, criterion, lr_scheduler = initialize(config) # Create trainer for current task trainer = create_trainer(model, optimizer, criterion, lr_scheduler, train_loader.sampler, config, logger) # Let's now setup evaluator engine to perform model's validation and compute metrics metrics = { "accuracy": Accuracy(), "loss": Loss(criterion), } # We define two evaluators as they wont have exactly similar roles: # - `evaluator` will save the best model based on validation score evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) def run_validation(engine): epoch = trainer.state.epoch state = train_evaluator.run(train_loader) log_metrics(logger, epoch, state.times["COMPLETED"], "Train", state.metrics) state = evaluator.run(test_loader) log_metrics(logger, epoch, state.times["COMPLETED"], "Test", state.metrics) trainer.add_event_handler(Events.EPOCH_COMPLETED(every=config["validate_every"]) | Events.COMPLETED, run_validation) if rank == 0: # Setup TensorBoard logging on trainer and evaluators. Logged values are: # - Training metrics, e.g. running average loss values # - Learning rate # - Evaluation train/test metrics evaluators = {"training": train_evaluator, "test": evaluator} tb_logger = common.setup_tb_logging(output_path, trainer, optimizer, evaluators=evaluators) # Store 3 best models by validation accuracy: common.gen_save_best_models_by_val_score( save_handler=get_save_handler(config), evaluator=evaluator, models={"model": model}, metric_name="accuracy", n_saved=3, trainer=trainer, tag="test", ) # In order to check training resuming we can stop training on a given iteration if config["stop_iteration"] is not None: @trainer.on(Events.ITERATION_STARTED(once=config["stop_iteration"])) def _(): logger.info("Stop training on {} iteration".format(trainer.state.iteration)) trainer.terminate() try: trainer.run(train_loader, max_epochs=config["num_epochs"]) except Exception as e: import traceback print(traceback.format_exc()) if rank == 0: tb_logger.close() def run( seed=543, data_path="/tmp/cifar10", output_path="/tmp/output-cifar10/", model="resnet18", batch_size=512, momentum=0.9, weight_decay=1e-4, num_workers=12, num_epochs=24, learning_rate=0.4, num_warmup_epochs=4, validate_every=3, checkpoint_every=200, backend=None, resume_from=None, log_every_iters=15, nproc_per_node=None, stop_iteration=None, with_trains=False, **spawn_kwargs ): """Main entry to train an model on CIFAR10 dataset. Args: seed (int): random state seed to set. Default, 543. data_path (str): input dataset path. Default, "/tmp/cifar10". output_path (str): output path. Default, "/tmp/output-cifar10". model (str): model name (from torchvision) to setup model to train. Default, "resnet18". batch_size (int): total batch size. Default, 512. momentum (float): optimizer's momentum. Default, 0.9. weight_decay (float): weight decay. Default, 1e-4. num_workers (int): number of workers in the data loader. Default, 12. num_epochs (int): number of epochs to train the model. Default, 24. learning_rate (float): peak of piecewise linear learning rate scheduler. Default, 0.4. num_warmup_epochs (int): number of warm-up epochs before learning rate decay. Default, 4. validate_every (int): run model's validation every ``validate_every`` epochs. Default, 3. checkpoint_every (int): store training checkpoint every ``checkpoint_every`` iterations. Default, 200. backend (str, optional): backend to use for distributed configuration. Possible values: None, "nccl", "xla-tpu", "gloo" etc. Default, None. nproc_per_node (int, optional): optional argument to setup number of processes per node. It is useful, when main python process is spawning training as child processes. resume_from (str, optional): path to checkpoint to use to resume the training from. Default, None. log_every_iters (int): argument to log batch loss every ``log_every_iters`` iterations. It can be 0 to disable it. Default, 15. stop_iteration (int, optional): iteration to stop the training. Can be used to check resume from checkpoint. with_trains (bool): if True, experiment Trains logger is setup. Default, False. **spawn_kwargs: Other kwargs to spawn run in child processes: master_addr, master_port, node_rank, nnodes """ # catch all local parameters config = locals() config.update(config["spawn_kwargs"]) del config["spawn_kwargs"] spawn_kwargs["nproc_per_node"] = nproc_per_node with idist.Parallel(backend=backend, **spawn_kwargs) as parallel: parallel.run(training, config) def get_dataflow(config): # - Get train/test datasets if idist.get_rank() > 0: # Ensure that only rank 0 download the dataset idist.barrier() train_dataset, test_dataset = utils.get_train_test_datasets(config["data_path"]) if idist.get_rank() == 0: # Ensure that only rank 0 download the dataset idist.barrier() # Setup data loader also adapted to distributed config: nccl, gloo, xla-tpu train_loader = idist.auto_dataloader( train_dataset, batch_size=config["batch_size"], num_workers=config["num_workers"], shuffle=True, drop_last=True, ) test_loader = idist.auto_dataloader( test_dataset, batch_size=2 * config["batch_size"], num_workers=config["num_workers"], shuffle=False, ) return train_loader, test_loader def initialize(config): model = utils.get_model(config["model"]) # Adapt model for distributed settings if configured model = idist.auto_model(model) optimizer = optim.SGD( model.parameters(), lr=config["learning_rate"], momentum=config["momentum"], weight_decay=config["weight_decay"], nesterov=True, ) optimizer = idist.auto_optim(optimizer) criterion = nn.CrossEntropyLoss().to(idist.device()) le = config["num_iters_per_epoch"] milestones_values = [ (0, 0.0), (le * config["num_warmup_epochs"], config["learning_rate"]), (le * config["num_epochs"], 0.0), ] lr_scheduler = PiecewiseLinear(optimizer, param_name="lr", milestones_values=milestones_values) return model, optimizer, criterion, lr_scheduler def log_metrics(logger, epoch, elapsed, tag, metrics): logger.info( "\nEpoch {} - elapsed: {} - {} metrics:\n {}".format( epoch, elapsed, tag, "\n".join(["\t{}: {}".format(k, v) for k, v in metrics.items()]) ) ) def log_basic_info(logger, config): logger.info("Train {} on CIFAR10".format(config["model"])) logger.info("- PyTorch version: {}".format(torch.__version__)) logger.info("- Ignite version: {}".format(ignite.__version__)) logger.info("\n") logger.info("Configuration:") for key, value in config.items(): logger.info("\t{}: {}".format(key, value)) logger.info("\n") if idist.get_world_size() > 1: logger.info("\nDistributed setting:") logger.info("\tbackend: {}".format(idist.backend())) logger.info("\tworld size: {}".format(idist.get_world_size())) logger.info("\n") def create_trainer(model, optimizer, criterion, lr_scheduler, train_sampler, config, logger): device = idist.device() # Setup Ignite trainer: # - let's define training step # - add other common handlers: # - TerminateOnNan, # - handler to setup learning rate scheduling, # - ModelCheckpoint # - RunningAverage` on `train_step` output # - Two progress bars on epochs and optionally on iterations def train_step(engine, batch): x, y = batch[0], batch[1] if x.device != device: x = x.to(device, non_blocking=True) y = y.to(device, non_blocking=True) model.train() # Supervised part y_pred = model(x) loss = criterion(y_pred, y) optimizer.zero_grad() loss.backward() optimizer.step() # This can be helpful for XLA to avoid performance slow down if fetch loss.item() every iteration if config["log_every_iters"] > 0 and (engine.state.iteration - 1) % config["log_every_iters"] == 0: batch_loss = loss.item() engine.state.saved_batch_loss = batch_loss else: batch_loss = engine.state.saved_batch_loss return { "batch loss": batch_loss, } trainer = Engine(train_step) trainer.state.saved_batch_loss = -1.0 trainer.state_dict_user_keys.append("saved_batch_loss") trainer.logger = logger to_save = {"trainer": trainer, "model": model, "optimizer": optimizer, "lr_scheduler": lr_scheduler} metric_names = [ "batch loss", ] common.setup_common_training_handlers( trainer=trainer, train_sampler=train_sampler, to_save=to_save, save_every_iters=config["checkpoint_every"], save_handler=get_save_handler(config), lr_scheduler=lr_scheduler, output_names=metric_names if config["log_every_iters"] > 0 else None, with_pbars=False, clear_cuda_cache=False, ) resume_from = config["resume_from"] if resume_from is not None: checkpoint_fp = Path(resume_from) assert checkpoint_fp.exists(), "Checkpoint '{}' is not found".format(checkpoint_fp.as_posix()) logger.info("Resume from a checkpoint: {}".format(checkpoint_fp.as_posix())) checkpoint = torch.load(checkpoint_fp.as_posix(), map_location="cpu") Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint) return trainer def get_save_handler(config): if config["with_trains"]: from ignite.contrib.handlers.trains_logger import TrainsSaver return TrainsSaver(dirname=config["output_path"]) return DiskSaver(config["output_path"], require_empty=False) if __name__ == "__main__": fire.Fire({"run": run})
[ "torch.cuda.get_device_name", "torch.nn.CrossEntropyLoss" ]
1.3
nzare/ignite
002b595daa8a8345286c5e096c33e278948686a7
1.3
import os import pytest import torch import ignite.distributed as idist from ignite.engine import Engine, Events from ignite.handlers import EarlyStopping def do_nothing_update_fn(engine, batch): pass def test_args_validation(): trainer = Engine(do_nothing_update_fn) with pytest.raises(ValueError, match=r"Argument patience should be positive integer."): EarlyStopping(patience=-1, score_function=lambda engine: 0, trainer=trainer) with pytest.raises(ValueError, match=r"Argument min_delta should not be a negative number."): EarlyStopping(patience=2, min_delta=-0.1, score_function=lambda engine: 0, trainer=trainer) with pytest.raises(TypeError, match=r"Argument score_function should be a function."): EarlyStopping(patience=2, score_function=12345, trainer=trainer) with pytest.raises(TypeError, match=r"Argument trainer should be an instance of Engine."): EarlyStopping(patience=2, score_function=lambda engine: 0, trainer=None) def test_simple_early_stopping(): scores = iter([1.0, 0.8, 0.88]) def score_function(engine): return next(scores) trainer = Engine(do_nothing_update_fn) h = EarlyStopping(patience=2, score_function=score_function, trainer=trainer) # Call 3 times and check if stopped assert not trainer.should_terminate h(None) assert not trainer.should_terminate h(None) assert not trainer.should_terminate h(None) assert trainer.should_terminate def test_state_dict(): scores = iter([1.0, 0.8, 0.88]) def score_function(engine): return next(scores) trainer = Engine(do_nothing_update_fn) h = EarlyStopping(patience=2, score_function=score_function, trainer=trainer) # Call 3 times and check if stopped assert not trainer.should_terminate h(None) assert not trainer.should_terminate # Swap to new object, but maintain state h2 = EarlyStopping(patience=2, score_function=score_function, trainer=trainer) h2.load_state_dict(h.state_dict()) h2(None) assert not trainer.should_terminate h2(None) assert trainer.should_terminate def test_early_stopping_on_delta(): scores = iter([1.0, 2.0, 2.01, 3.0, 3.01, 3.02]) trainer = Engine(do_nothing_update_fn) h = EarlyStopping(patience=2, min_delta=0.1, score_function=lambda _: next(scores), trainer=trainer) assert not trainer.should_terminate h(None) # counter == 0 assert not trainer.should_terminate h(None) # delta == 1.0; counter == 0 assert not trainer.should_terminate h(None) # delta == 0.01; counter == 1 assert not trainer.should_terminate h(None) # delta == 0.99; counter == 0 assert not trainer.should_terminate h(None) # delta == 0.01; counter == 1 assert not trainer.should_terminate h(None) # delta == 0.01; counter == 2 assert trainer.should_terminate def test_early_stopping_on_last_event_delta(): scores = iter([0.0, 0.3, 0.6]) trainer = Engine(do_nothing_update_fn) h = EarlyStopping( patience=2, min_delta=0.4, cumulative_delta=False, score_function=lambda _: next(scores), trainer=trainer ) assert not trainer.should_terminate h(None) # counter == 0 assert not trainer.should_terminate h(None) # delta == 0.3; counter == 1 assert not trainer.should_terminate h(None) # delta == 0.3; counter == 2 assert trainer.should_terminate def test_early_stopping_on_cumulative_delta(): scores = iter([0.0, 0.3, 0.6]) trainer = Engine(do_nothing_update_fn) h = EarlyStopping( patience=2, min_delta=0.4, cumulative_delta=True, score_function=lambda _: next(scores), trainer=trainer ) assert not trainer.should_terminate h(None) # counter == 0 assert not trainer.should_terminate h(None) # delta == 0.3; counter == 1 assert not trainer.should_terminate h(None) # delta == 0.6; counter == 0 assert not trainer.should_terminate def test_simple_early_stopping_on_plateau(): def score_function(engine): return 42 trainer = Engine(do_nothing_update_fn) h = EarlyStopping(patience=1, score_function=score_function, trainer=trainer) # Call 2 times and check if stopped assert not trainer.should_terminate h(None) assert not trainer.should_terminate h(None) assert trainer.should_terminate def test_simple_no_early_stopping(): scores = iter([1.0, 0.8, 1.2]) def score_function(engine): return next(scores) trainer = Engine(do_nothing_update_fn) h = EarlyStopping(patience=2, score_function=score_function, trainer=trainer) # Call 3 times and check if not stopped assert not trainer.should_terminate h(None) h(None) h(None) assert not trainer.should_terminate def test_with_engine_early_stopping(): class Counter(object): def __init__(self, count=0): self.count = count n_epochs_counter = Counter() scores = iter([1.0, 0.8, 1.2, 1.5, 0.9, 1.0, 0.99, 1.1, 0.9]) def score_function(engine): return next(scores) trainer = Engine(do_nothing_update_fn) evaluator = Engine(do_nothing_update_fn) early_stopping = EarlyStopping(patience=3, score_function=score_function, trainer=trainer) @trainer.on(Events.EPOCH_COMPLETED) def evaluation(engine): evaluator.run([0]) n_epochs_counter.count += 1 evaluator.add_event_handler(Events.COMPLETED, early_stopping) trainer.run([0], max_epochs=10) assert n_epochs_counter.count == 7 assert trainer.state.epoch == 7 def test_with_engine_early_stopping_on_plateau(): class Counter(object): def __init__(self, count=0): self.count = count n_epochs_counter = Counter() def score_function(engine): return 0.047 trainer = Engine(do_nothing_update_fn) evaluator = Engine(do_nothing_update_fn) early_stopping = EarlyStopping(patience=4, score_function=score_function, trainer=trainer) @trainer.on(Events.EPOCH_COMPLETED) def evaluation(engine): evaluator.run([0]) n_epochs_counter.count += 1 evaluator.add_event_handler(Events.COMPLETED, early_stopping) trainer.run([0], max_epochs=10) assert n_epochs_counter.count == 5 assert trainer.state.epoch == 5 def test_with_engine_no_early_stopping(): class Counter(object): def __init__(self, count=0): self.count = count n_epochs_counter = Counter() scores = iter([1.0, 0.8, 1.2, 1.23, 0.9, 1.0, 1.1, 1.253, 1.26, 1.2]) def score_function(engine): return next(scores) trainer = Engine(do_nothing_update_fn) evaluator = Engine(do_nothing_update_fn) early_stopping = EarlyStopping(patience=5, score_function=score_function, trainer=trainer) @trainer.on(Events.EPOCH_COMPLETED) def evaluation(engine): evaluator.run([0]) n_epochs_counter.count += 1 evaluator.add_event_handler(Events.COMPLETED, early_stopping) trainer.run([0], max_epochs=10) assert n_epochs_counter.count == 10 assert trainer.state.epoch == 10 def _test_distrib_with_engine_early_stopping(device): import torch.distributed as dist torch.manual_seed(12) class Counter(object): def __init__(self, count=0): self.count = count n_epochs_counter = Counter() scores = torch.tensor([1.0, 0.8, 1.2, 1.5, 0.9, 1.0, 0.99, 1.1, 0.9], requires_grad=False).to(device) def score_function(engine): i = trainer.state.epoch - 1 v = scores[i] dist.all_reduce(v) v /= dist.get_world_size() return v.item() trainer = Engine(do_nothing_update_fn) evaluator = Engine(do_nothing_update_fn) early_stopping = EarlyStopping(patience=3, score_function=score_function, trainer=trainer) @trainer.on(Events.EPOCH_COMPLETED) def evaluation(engine): evaluator.run([0]) n_epochs_counter.count += 1 evaluator.add_event_handler(Events.COMPLETED, early_stopping) trainer.run([0], max_epochs=10) assert trainer.state.epoch == 7 assert n_epochs_counter.count == 7 def _test_distrib_integration_engine_early_stopping(device): import torch.distributed as dist from ignite.metrics import Accuracy rank = dist.get_rank() ws = dist.get_world_size() torch.manual_seed(12) n_epochs = 10 n_iters = 20 y_preds = ( [torch.randint(0, 2, size=(n_iters, ws)).to(device)] + [torch.ones(n_iters, ws).to(device)] + [torch.randint(0, 2, size=(n_iters, ws)).to(device) for _ in range(n_epochs - 2)] ) y_true = ( [torch.randint(0, 2, size=(n_iters, ws)).to(device)] + [torch.ones(n_iters, ws).to(device)] + [torch.randint(0, 2, size=(n_iters, ws)).to(device) for _ in range(n_epochs - 2)] ) def update(engine, _): e = trainer.state.epoch - 1 i = engine.state.iteration - 1 return y_preds[e][i, rank], y_true[e][i, rank] evaluator = Engine(update) acc = Accuracy(device=device) acc.attach(evaluator, "acc") def score_function(engine): return engine.state.metrics["acc"] trainer = Engine(lambda e, b: None) early_stopping = EarlyStopping(patience=3, score_function=score_function, trainer=trainer) @trainer.on(Events.EPOCH_COMPLETED) def evaluation(engine): data = list(range(n_iters)) evaluator.run(data=data) evaluator.add_event_handler(Events.COMPLETED, early_stopping) trainer.run([0], max_epochs=10) assert trainer.state.epoch == 5 @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_gpu(local_rank, distributed_context_single_node_nccl): device = "cuda:{}".format(local_rank) _test_distrib_with_engine_early_stopping(device) _test_distrib_integration_engine_early_stopping(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_cpu(local_rank, distributed_context_single_node_gloo): device = "cpu" _test_distrib_with_engine_early_stopping(device) _test_distrib_integration_engine_early_stopping(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_cpu(distributed_context_multi_node_gloo): device = "cpu" _test_distrib_with_engine_early_stopping(device) _test_distrib_integration_engine_early_stopping(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gpu(distributed_context_multi_node_nccl): device = "cuda:{}".format(distributed_context_multi_node_nccl["local_rank"]) _test_distrib_with_engine_early_stopping(device) _test_distrib_integration_engine_early_stopping(device)
[ "torch.distributed.get_world_size", "torch.cuda.device_count", "torch.manual_seed", "torch.ones", "torch.randint", "torch.tensor", "torch.distributed.all_reduce", "torch.distributed.get_rank" ]
1.3
nzare/ignite
b53c6aeef87754b3cd3638c91172b386dc73af12
1.6
from __future__ import absolute_import import sys import numpy as np import torch from torch import nn import os from collections import OrderedDict from torch.autograd import Variable import itertools from .base_model import BaseModel from scipy.ndimage import zoom import fractions import functools import skimage.transform from tqdm import tqdm from . import networks_basic as networks from . import perceptual_loss class DistModel(BaseModel): def name(self): return self.model_name def initialize(self, model='net-lin', net='alex', colorspace='Lab', pnet_rand=False, pnet_tune=False, model_path=None, use_gpu=True, printNet=False, spatial=False, is_train=False, lr=.0001, beta1=0.5, version='0.1', gpu_ids=[0]): ''' INPUTS model - ['net-lin'] for linearly calibrated network ['net'] for off-the-shelf network ['L2'] for L2 distance in Lab colorspace ['SSIM'] for ssim in RGB colorspace net - ['squeeze','alex','vgg'] model_path - if None, will look in weights/[NET_NAME].pth colorspace - ['Lab','RGB'] colorspace to use for L2 and SSIM use_gpu - bool - whether or not to use a GPU printNet - bool - whether or not to print network architecture out spatial - bool - whether to output an array containing varying distances across spatial dimensions is_train - bool - [True] for training mode lr - float - initial learning rate beta1 - float - initial momentum term for adam version - 0.1 for latest, 0.0 was original (with a bug) gpu_ids - int array - [0] by default, gpus to use ''' BaseModel.initialize(self, use_gpu=use_gpu, gpu_ids=gpu_ids) self.model = model self.net = net self.is_train = is_train self.spatial = spatial self.gpu_ids = gpu_ids self.model_name = '%s [%s]'%(model,net) if(self.model == 'net-lin'): # pretrained net + linear layer self.net = networks.PNetLin(pnet_rand=pnet_rand, pnet_tune=pnet_tune, pnet_type=net, use_dropout=True, spatial=spatial, version=version, lpips=True) kw = {} if not use_gpu: kw['map_location'] = 'cpu' if(model_path is None): import inspect model_path = os.path.abspath(os.path.join(inspect.getfile(self.initialize), '..', 'weights/v%s/%s.pth'%(version,net))) if(not is_train): print('Loading model from: %s'%model_path) self.net.load_state_dict(torch.load(model_path, **kw), strict=False) elif(self.model=='net'): # pretrained network self.net = networks.PNetLin(pnet_rand=pnet_rand, pnet_type=net, lpips=False) elif(self.model in ['L2','l2']): self.net = networks.L2(use_gpu=use_gpu,colorspace=colorspace) # not really a network, only for testing self.model_name = 'L2' elif(self.model in ['DSSIM','dssim','SSIM','ssim']): self.net = networks.DSSIM(use_gpu=use_gpu,colorspace=colorspace) self.model_name = 'SSIM' else: raise ValueError("Model [%s] not recognized." % self.model) self.parameters = list(self.net.parameters()) if self.is_train: # training mode # extra network on top to go from distances (d0,d1) => predicted human judgment (h*) self.rankLoss = networks.BCERankingLoss() self.parameters += list(self.rankLoss.net.parameters()) self.lr = lr self.old_lr = lr self.optimizer_net = torch.optim.Adam(self.parameters, lr=lr, betas=(beta1, 0.999)) else: # test mode self.net.eval() if(use_gpu): self.net.to(gpu_ids[0]) self.net = torch.nn.DataParallel(self.net, device_ids=gpu_ids) if(self.is_train): self.rankLoss = self.rankLoss.to(device=gpu_ids[0]) # just put this on GPU0 if(printNet): print('---------- Networks initialized -------------') networks.print_network(self.net) print('-----------------------------------------------') def forward(self, in0, in1, retPerLayer=False): ''' Function computes the distance between image patches in0 and in1 INPUTS in0, in1 - torch.Tensor object of shape Nx3xXxY - image patch scaled to [-1,1] OUTPUT computed distances between in0 and in1 ''' return self.net.forward(in0, in1, retPerLayer=retPerLayer) # ***** TRAINING FUNCTIONS ***** def optimize_parameters(self): self.forward_train() self.optimizer_net.zero_grad() self.backward_train() self.optimizer_net.step() self.clamp_weights() def clamp_weights(self): for module in self.net.modules(): if(hasattr(module, 'weight') and module.kernel_size==(1,1)): module.weight.data = torch.clamp(module.weight.data,min=0) def set_input(self, data): self.input_ref = data['ref'] self.input_p0 = data['p0'] self.input_p1 = data['p1'] self.input_judge = data['judge'] if(self.use_gpu): self.input_ref = self.input_ref.to(device=self.gpu_ids[0]) self.input_p0 = self.input_p0.to(device=self.gpu_ids[0]) self.input_p1 = self.input_p1.to(device=self.gpu_ids[0]) self.input_judge = self.input_judge.to(device=self.gpu_ids[0]) self.var_ref = Variable(self.input_ref,requires_grad=True) self.var_p0 = Variable(self.input_p0,requires_grad=True) self.var_p1 = Variable(self.input_p1,requires_grad=True) def forward_train(self): # run forward pass # print(self.net.module.scaling_layer.shift) # print(torch.norm(self.net.module.net.slice1[0].weight).item(), torch.norm(self.net.module.lin0.model[1].weight).item()) self.d0 = self.forward(self.var_ref, self.var_p0) self.d1 = self.forward(self.var_ref, self.var_p1) self.acc_r = self.compute_accuracy(self.d0,self.d1,self.input_judge) self.var_judge = Variable(1.*self.input_judge).view(self.d0.size()) self.loss_total = self.rankLoss.forward(self.d0, self.d1, self.var_judge*2.-1.) return self.loss_total def backward_train(self): torch.mean(self.loss_total).backward() def compute_accuracy(self,d0,d1,judge): ''' d0, d1 are Variables, judge is a Tensor ''' d1_lt_d0 = (d1<d0).cpu().data.numpy().flatten() judge_per = judge.cpu().numpy().flatten() return d1_lt_d0*judge_per + (1-d1_lt_d0)*(1-judge_per) def get_current_errors(self): retDict = OrderedDict([('loss_total', self.loss_total.data.cpu().numpy()), ('acc_r', self.acc_r)]) for key in retDict.keys(): retDict[key] = np.mean(retDict[key]) return retDict def get_current_visuals(self): zoom_factor = 256/self.var_ref.data.size()[2] ref_img = util.tensor2im(self.var_ref.data) p0_img = util.tensor2im(self.var_p0.data) p1_img = util.tensor2im(self.var_p1.data) ref_img_vis = zoom(ref_img,[zoom_factor, zoom_factor, 1],order=0) p0_img_vis = zoom(p0_img,[zoom_factor, zoom_factor, 1],order=0) p1_img_vis = zoom(p1_img,[zoom_factor, zoom_factor, 1],order=0) return OrderedDict([('ref', ref_img_vis), ('p0', p0_img_vis), ('p1', p1_img_vis)]) def save(self, path, label): if(self.use_gpu): self.save_network(self.net.module, path, '', label) else: self.save_network(self.net, path, '', label) self.save_network(self.rankLoss.net, path, 'rank', label) def update_learning_rate(self,nepoch_decay): lrd = self.lr / nepoch_decay lr = self.old_lr - lrd for param_group in self.optimizer_net.param_groups: param_group['lr'] = lr print('update lr [%s] decay: %f -> %f' % (type,self.old_lr, lr)) self.old_lr = lr def score_2afc_dataset(data_loader, func, name=''): ''' Function computes Two Alternative Forced Choice (2AFC) score using distance function 'func' in dataset 'data_loader' INPUTS data_loader - CustomDatasetDataLoader object - contains a TwoAFCDataset inside func - callable distance function - calling d=func(in0,in1) should take 2 pytorch tensors with shape Nx3xXxY, and return numpy array of length N OUTPUTS [0] - 2AFC score in [0,1], fraction of time func agrees with human evaluators [1] - dictionary with following elements d0s,d1s - N arrays containing distances between reference patch to perturbed patches gts - N array in [0,1], preferred patch selected by human evaluators (closer to "0" for left patch p0, "1" for right patch p1, "0.6" means 60pct people preferred right patch, 40pct preferred left) scores - N array in [0,1], corresponding to what percentage function agreed with humans CONSTS N - number of test triplets in data_loader ''' d0s = [] d1s = [] gts = [] for data in tqdm(data_loader.load_data(), desc=name): d0s+=func(data['ref'],data['p0']).data.cpu().numpy().flatten().tolist() d1s+=func(data['ref'],data['p1']).data.cpu().numpy().flatten().tolist() gts+=data['judge'].cpu().numpy().flatten().tolist() d0s = np.array(d0s) d1s = np.array(d1s) gts = np.array(gts) scores = (d0s<d1s)*(1.-gts) + (d1s<d0s)*gts + (d1s==d0s)*.5 return(np.mean(scores), dict(d0s=d0s,d1s=d1s,gts=gts,scores=scores)) def score_jnd_dataset(data_loader, func, name=''): ''' Function computes JND score using distance function 'func' in dataset 'data_loader' INPUTS data_loader - CustomDatasetDataLoader object - contains a JNDDataset inside func - callable distance function - calling d=func(in0,in1) should take 2 pytorch tensors with shape Nx3xXxY, and return pytorch array of length N OUTPUTS [0] - JND score in [0,1], mAP score (area under precision-recall curve) [1] - dictionary with following elements ds - N array containing distances between two patches shown to human evaluator sames - N array containing fraction of people who thought the two patches were identical CONSTS N - number of test triplets in data_loader ''' ds = [] gts = [] for data in tqdm(data_loader.load_data(), desc=name): ds+=func(data['p0'],data['p1']).data.cpu().numpy().tolist() gts+=data['same'].cpu().numpy().flatten().tolist() sames = np.array(gts) ds = np.array(ds) sorted_inds = np.argsort(ds) ds_sorted = ds[sorted_inds] sames_sorted = sames[sorted_inds] TPs = np.cumsum(sames_sorted) FPs = np.cumsum(1-sames_sorted) FNs = np.sum(sames_sorted)-TPs precs = TPs/(TPs+FPs) recs = TPs/(TPs+FNs) score = util.voc_ap(recs,precs) return(score, dict(ds=ds,sames=sames))
[ "torch.autograd.Variable", "torch.optim.Adam", "torch.clamp", "torch.load", "torch.mean", "torch.nn.DataParallel" ]
1.6.0
markveillette/high-fidelity-generative-compression
d88b4d7f1212efa8611e91737ff6bf00bbf36670
1.6
import abc import torch import torch.nn as nn import torch.nn.functional as F import numpy as np # Custom from src.helpers import maths MIN_SCALE = 0.11 MIN_LIKELIHOOD = 1e-9 MAX_LIKELIHOOD = 1e4 TAIL_MASS = 2**(-9) PRECISION_P = 16 # Precision of rANS coder # TODO: Unit tests lower_bound_toward = maths.LowerBoundToward.apply class ContinuousEntropyModel(nn.Module, metaclass=abc.ABCMeta): """ Base class for pre-computation of integer probability tables for use in entropy coding. """ def __init__(self, distribution, likelihood_bound=MIN_LIKELIHOOD, tail_mass=TAIL_MASS, precision=PRECISION_P): """ The layer assumes that the input tensor is at least 2D, with a batch dimension at the beginning and a channel dimension, specified by subclassing this layer. The layer trains an independent probability density model for each 'channel', but assumes that across all other dimensions, the inputs are i.i.d. (independent and identically distributed). Parameters: distribution: Distribution with CDF / quantile / likelihood methods Note: The batch dimensions are indexes into independent, non-identical parameterizations of this distribution - [B, n_channels], where B usually = 1. (Dimensions which are not assumed i.i.d.) """ super(ContinuousEntropyModel, self).__init__() self.distribution = distribution self.likelihood_bound = float(likelihood_bound) self.tail_mass = float(tail_mass) self.precision = int(precision) def quantize_st(self, inputs, offsets=None): # Ignore rounding in backward pass values = inputs if offsets is not None: offsets = offsets.to(values) values = values - offsets delta = (torch.floor(values + 0.5) - values).detach() values = values + delta if offsets is not None: values = values + offsets return values def dequantize(self, x, offsets=None): if offsets is not None: values = x.type_as(offsets) values = values + offsets else: values = x.to(torch.float32) return values @abc.abstractmethod def build_tables(self, **kwargs): pass if __name__ == '__main__': print('Hi!')
[ "torch.floor" ]
1.6.0
markveillette/high-fidelity-generative-compression
d88b4d7f1212efa8611e91737ff6bf00bbf36670
1.0
import torch import torch.nn as nn class LayerNorm(nn.Module): """ Layer Normalization. https://arxiv.org/abs/1607.06450 """ def __init__(self, hidden_size, eps=1e-6): super(LayerNorm, self).__init__() self.eps = eps self.gamma = nn.Parameter(torch.ones(hidden_size)) self.beta = nn.Parameter(torch.zeros(hidden_size)) def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) hidden_states = self.gamma * (x-mean) / (std + self.eps) return hidden_states + self.beta class T5LayerNorm(nn.Module): """ Construct a layernorm module in the T5 style No bias and no subtraction of mean. """ def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): # layer norm should always be calculated in float32 variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.type_as(self.weight)
[ "torch.zeros", "torch.rsqrt", "torch.ones" ]
1.0
krevas/ET-BERT
464ce3e7942d4450f55021e267ceb9dd48a36b1f
1.5
#! /usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Multi-objective optimization benchmark problems. References .. [Deb2005dtlz] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, A. Abraham, L. Jain, R. Goldberg. "Scalable test problems for evolutionary multi-objective optimization" in Evolutionary Multiobjective Optimization, London, U.K.: Springer-Verlag, pp. 105-145, 2005. .. [GarridoMerchan2020] E. C. Garrido-Merch ́an and D. Hern ́andez-Lobato. Parallel Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints. arXiv e-prints, arXiv:2004.00601, Apr. 2020. .. [Gelbart2014] Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. 2014. Bayesian optimization with unknown constraints. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI’14). AUAI Press, Arlington, Virginia, USA, 250–259. .. [Oszycka1995] A. Osyczka, S. Kundu. 1995. A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. In Structural Optimization 10. 94–99. .. [Tanabe2020] Ryoji Tanabe, Hisao Ishibuchi, An easy-to-use real-world multi-objective optimization problem suite, Applied Soft Computing,Volume 89, 2020. .. [Yang2019a] K. Yang, M. Emmerich, A. Deutz, and T. Bäck. 2019. "Multi-Objective Bayesian Global Optimization using expected hypervolume improvement gradient" in Swarm and evolutionary computation 44, pp. 945--956, 2019. .. [Zitzler2000] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algorithms: Empirical results,” Evol. Comput., vol. 8, no. 2, pp. 173–195, 2000. """ from __future__ import annotations import math from typing import Optional import torch from botorch.test_functions.base import ( ConstrainedBaseTestProblem, MultiObjectiveTestProblem, ) from botorch.test_functions.synthetic import Branin from botorch.utils.sampling import sample_hypersphere, sample_simplex from botorch.utils.transforms import unnormalize from scipy.special import gamma from torch import Tensor class BraninCurrin(MultiObjectiveTestProblem): r"""Two objective problem composed of the Branin and Currin functions. Branin (rescaled): f(x) = ( 15*x_1 - 5.1 * (15 * x_0 - 5) ** 2 / (4 * pi ** 2) + 5 * (15 * x_0 - 5) / pi - 5 ) ** 2 + (10 - 10 / (8 * pi)) * cos(15 * x_0 - 5)) Currin: f(x) = (1 - exp(-1 / (2 * x_1))) * ( 2300 * x_0 ** 3 + 1900 * x_0 ** 2 + 2092 * x_0 + 60 ) / 100 * x_0 ** 3 + 500 * x_0 ** 2 + 4 * x_0 + 20 """ dim = 2 num_objectives = 2 _bounds = [(0.0, 1.0), (0.0, 1.0)] _ref_point = [18.0, 6.0] _max_hv = 59.36011874867746 # this is approximated using NSGA-II def __init__(self, noise_std: Optional[float] = None, negate: bool = False) -> None: r"""Constructor for Branin-Currin. Args: noise_std: Standard deviation of the observation noise. negate: If True, negate the objectives. """ super().__init__(noise_std=noise_std, negate=negate) self._branin = Branin() def _rescaled_branin(self, X: Tensor) -> Tensor: # return to Branin bounds x_0 = 15 * X[..., 0] - 5 x_1 = 15 * X[..., 1] return self._branin(torch.stack([x_0, x_1], dim=-1)) @staticmethod def _currin(X: Tensor) -> Tensor: x_0 = X[..., 0] x_1 = X[..., 1] factor1 = 1 - torch.exp(-1 / (2 * x_1)) numer = 2300 * x_0.pow(3) + 1900 * x_0.pow(2) + 2092 * x_0 + 60 denom = 100 * x_0.pow(3) + 500 * x_0.pow(2) + 4 * x_0 + 20 return factor1 * numer / denom def evaluate_true(self, X: Tensor) -> Tensor: # branin rescaled with inputsto [0,1]^2 branin = self._rescaled_branin(X=X) currin = self._currin(X=X) return torch.stack([branin, currin], dim=-1) class DTLZ(MultiObjectiveTestProblem): r"""Base class for DTLZ problems. See [Deb2005dtlz]_ for more details on DTLZ. """ def __init__( self, dim: int, num_objectives: int = 2, noise_std: Optional[float] = None, negate: bool = False, ) -> None: if dim <= num_objectives: raise ValueError( f"dim must be > num_objectives, but got {dim} and {num_objectives}" ) self.num_objectives = num_objectives self.dim = dim self.k = self.dim - self.num_objectives + 1 self._bounds = [(0.0, 1.0) for _ in range(self.dim)] self._ref_point = [self._ref_val for _ in range(num_objectives)] super().__init__(noise_std=noise_std, negate=negate) class DTLZ1(DTLZ): r"""DLTZ1 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = 0.5 * x_0 * (1 + g(x)) f_1(x) = 0.5 * (1 - x_0) * (1 + g(x)) g(x) = 100 * \sum_{i=m}^{n-1} ( k + (x_i - 0.5)^2 - cos(20 * pi * (x_i - 0.5)) ) where k = n - m + 1. The pareto front is given by the line (or hyperplane) \sum_i f_i(x) = 0.5. The goal is to minimize both objectives. The reference point comes from [Yang2019]_. """ _ref_val = 400.0 @property def _max_hv(self) -> float: return self._ref_val ** self.num_objectives - 1 / 2 ** self.num_objectives def evaluate_true(self, X: Tensor) -> Tensor: X_m = X[..., -self.k :] X_m_minus_half = X_m - 0.5 sum_term = ( X_m_minus_half.pow(2) - torch.cos(20 * math.pi * X_m_minus_half) ).sum(dim=-1) g_X_m = 100 * (self.k + sum_term) g_X_m_term = 0.5 * (1 + g_X_m) fs = [] for i in range(self.num_objectives): idx = self.num_objectives - 1 - i f_i = g_X_m_term * X[..., :idx].prod(dim=-1) if i > 0: f_i *= 1 - X[..., idx] fs.append(f_i) return torch.stack(fs, dim=-1) def gen_pareto_front(self, n: int) -> Tensor: r"""Generate `n` pareto optimal points. The pareto points randomly sampled from the hyperplane sum_i f(x_i) = 0.5. """ f_X = 0.5 * sample_simplex( n=n, d=self.num_objectives, qmc=True, dtype=self.ref_point.dtype, device=self.ref_point.device, ) if self.negate: f_X *= -1 return f_X class DTLZ2(DTLZ): r"""DLTZ2 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = (1 + g(x)) * cos(x_0 * pi / 2) f_1(x) = (1 + g(x)) * sin(x_0 * pi / 2) g(x) = \sum_{i=m}^{n-1} (x_i - 0.5)^2 The pareto front is given by the unit hypersphere \sum{i} f_i^2 = 1. Note: the pareto front is completely concave. The goal is to minimize both objectives. """ _ref_val = 1.1 @property def _max_hv(self) -> float: # hypercube - volume of hypersphere in R^n such that all coordinates are # positive hypercube_vol = self._ref_val ** self.num_objectives pos_hypersphere_vol = ( math.pi ** (self.num_objectives / 2) / gamma(self.num_objectives / 2 + 1) / 2 ** self.num_objectives ) return hypercube_vol - pos_hypersphere_vol def evaluate_true(self, X: Tensor) -> Tensor: X_m = X[..., -self.k :] g_X = (X_m - 0.5).pow(2).sum(dim=-1) g_X_plus1 = 1 + g_X fs = [] pi_over_2 = math.pi / 2 for i in range(self.num_objectives): idx = self.num_objectives - 1 - i f_i = g_X_plus1.clone() f_i *= torch.cos(X[..., :idx] * pi_over_2).prod(dim=-1) if i > 0: f_i *= torch.sin(X[..., idx] * pi_over_2) fs.append(f_i) return torch.stack(fs, dim=-1) def gen_pareto_front(self, n: int) -> Tensor: r"""Generate `n` pareto optimal points. The pareto points are randomly sampled from the hypersphere's positive section. """ f_X = sample_hypersphere( n=n, d=self.num_objectives, dtype=self.ref_point.dtype, device=self.ref_point.device, qmc=True, ).abs() if self.negate: f_X *= -1 return f_X class VehicleSafety(MultiObjectiveTestProblem): r"""Optimize Vehicle crash-worthiness. See [Tanabe2020]_ for details. The reference point is 1.1 * the nadir point from approximate front provided by [Tanabe2020]_. The maximum hypervolume is computed using the approximate pareto front from [Tanabe2020]_. """ _ref_point = [1864.72022, 11.81993945, 0.2903999384] _max_hv = 246.81607081187002 _bounds = [(1.0, 3.0)] * 5 dim = 5 num_objectives = 3 def evaluate_true(self, X: Tensor) -> Tensor: X1, X2, X3, X4, X5 = torch.split(X, 1, -1) f1 = ( 1640.2823 + 2.3573285 * X1 + 2.3220035 * X2 + 4.5688768 * X3 + 7.7213633 * X4 + 4.4559504 * X5 ) f2 = ( 6.5856 + 1.15 * X1 - 1.0427 * X2 + 0.9738 * X3 + 0.8364 * X4 - 0.3695 * X1 * X4 + 0.0861 * X1 * X5 + 0.3628 * X2 * X4 - 0.1106 * X1.pow(2) - 0.3437 * X3.pow(2) + 0.1764 * X4.pow(2) ) f3 = ( -0.0551 + 0.0181 * X1 + 0.1024 * X2 + 0.0421 * X3 - 0.0073 * X1 * X2 + 0.024 * X2 * X3 - 0.0118 * X2 * X4 - 0.0204 * X3 * X4 - 0.008 * X3 * X5 - 0.0241 * X2.pow(2) + 0.0109 * X4.pow(2) ) f_X = torch.cat([f1, f2, f3], dim=-1) return f_X class ZDT(MultiObjectiveTestProblem): r"""Base class for ZDT problems. See [Zitzler2000]_ for more details on ZDT. """ _ref_point = [11.0, 11.0] def __init__( self, dim: int, num_objectives: int = 2, noise_std: Optional[float] = None, negate: bool = False, ) -> None: if num_objectives != 2: raise NotImplementedError( f"{type(self).__name__} currently only supports 2 objectives." ) if dim < num_objectives: raise ValueError( f"dim must be >= num_objectives, but got {dim} and {num_objectives}" ) self.num_objectives = num_objectives self.dim = dim self._bounds = [(0.0, 1.0) for _ in range(self.dim)] super().__init__(noise_std=noise_std, negate=negate) @staticmethod def _g(X: Tensor) -> Tensor: return 1 + 9 * X[..., 1:].mean(dim=-1) class ZDT1(ZDT): r"""ZDT1 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = x_0 f_1(x) = g(x) * (1 - sqrt(x_0 / g(x)) g(x) = 1 + 9 / (d - 1) * \sum_{i=1}^{d-1} x_i The reference point comes from [Yang2019a]_. The pareto front is convex. """ _max_hv = 120 + 2 / 3 def evaluate_true(self, X: Tensor) -> Tensor: f_0 = X[..., 0] g = self._g(X=X) f_1 = g * (1 - (f_0 / g).sqrt()) return torch.stack([f_0, f_1], dim=-1) def gen_pareto_front(self, n: int) -> Tensor: f_0 = torch.linspace( 0, 1, n, dtype=self.bounds.dtype, device=self.bounds.device ) f_1 = 1 - f_0.sqrt() f_X = torch.stack([f_0, f_1], dim=-1) if self.negate: f_X *= -1 return f_X class ZDT2(ZDT): r"""ZDT2 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = x_0 f_1(x) = g(x) * (1 - (x_0 / g(x))^2) g(x) = 1 + 9 / (d - 1) * \sum_{i=1}^{d-1} x_i The reference point comes from [Yang2019a]_. The pareto front is concave. """ _max_hv = 120 + 1 / 3 def evaluate_true(self, X: Tensor) -> Tensor: f_0 = X[..., 0] g = self._g(X=X) f_1 = g * (1 - (f_0 / g).pow(2)) return torch.stack([f_0, f_1], dim=-1) def gen_pareto_front(self, n: int) -> Tensor: f_0 = torch.linspace( 0, 1, n, dtype=self.bounds.dtype, device=self.bounds.device ) f_1 = 1 - f_0.pow(2) f_X = torch.stack([f_0, f_1], dim=-1) if self.negate: f_X *= -1 return f_X class ZDT3(ZDT): r"""ZDT3 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = x_0 f_1(x) = 1 - sqrt(x_0 / g(x)) - x_0 / g * sin(10 * pi * x_0) g(x) = 1 + 9 / (d - 1) * \sum_{i=1}^{d-1} x_i The reference point comes from [Yang2019a]_. The pareto front consists of several discontinuous convex parts. """ _max_hv = 128.77811613069076060 _parts = [ # this interval includes both end points [0, 0.0830015349], # this interval includes only the right end points [0.1822287280, 0.2577623634], [0.4093136748, 0.4538821041], [0.6183967944, 0.6525117038], [0.8233317983, 0.8518328654], ] # nugget to make sure linspace returns elements within the specified range _eps = 1e-6 def evaluate_true(self, X: Tensor) -> Tensor: f_0 = X[..., 0] g = self._g(X=X) f_1 = 1 - (f_0 / g).sqrt() - f_0 / g * torch.sin(10 * math.pi * f_0) return torch.stack([f_0, f_1], dim=-1) def gen_pareto_front(self, n: int) -> Tensor: n_parts = len(self._parts) n_per_part = torch.full( torch.Size([n_parts]), n // n_parts, dtype=torch.long, device=self.bounds.device, ) left_over = n % n_parts n_per_part[:left_over] += 1 f_0s = [] for i, p in enumerate(self._parts): left, right = p f_0s.append( torch.linspace( left + self._eps, right - self._eps, n_per_part[i], dtype=self.bounds.dtype, device=self.bounds.device, ) ) f_0 = torch.cat(f_0s, dim=0) f_1 = 1 - f_0.sqrt() - f_0 * torch.sin(10 * math.pi * f_0) f_X = torch.stack([f_0, f_1], dim=-1) if self.negate: f_X *= -1 return f_X # ------ Constrained Multi-Objective Test Problems ----- # class BNH(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r"""The constrained BNH problem. See [GarridoMerchan2020]_ for more details on this problem. Note that this is a minimization problem. """ dim = 2 num_objectives = 2 num_constraints = 2 _bounds = [(0.0, 5.0), (0.0, 3.0)] _ref_point = [0.0, 0.0] # TODO: Determine proper reference point def evaluate_true(self, X: Tensor) -> Tensor: return torch.stack( [4.0 * (X ** 2).sum(dim=-1), ((X - 5.0) ** 2).sum(dim=-1)], dim=-1 ) def evaluate_slack_true(self, X: Tensor) -> Tensor: c1 = 25.0 - (X[..., 0] - 5.0) ** 2 - X[..., 1] ** 2 c2 = (X[..., 0] - 8.0) ** 2 + (X[..., 1] + 3.0) ** 2 - 7.7 return torch.stack([c1, c2], dim=-1) class SRN(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r"""The constrained SRN problem. See [GarridoMerchan2020]_ for more details on this problem. Note that this is a minimization problem. """ dim = 2 num_objectives = 2 num_constraints = 2 _bounds = [(-20.0, 20.0), (-20.0, 20.0)] _ref_point = [0.0, 0.0] # TODO: Determine proper reference point def evaluate_true(self, X: Tensor) -> Tensor: obj1 = 2.0 + ((X - 2.0) ** 2).sum(dim=-1) obj2 = 9.0 * X[..., 0] - (X[..., 1] - 1.0) ** 2 return torch.stack([obj1, obj2], dim=-1) def evaluate_slack_true(self, X: Tensor) -> Tensor: c1 = 225.0 - ((X ** 2) ** 2).sum(dim=-1) c2 = -10.0 - X[..., 0] + 3 * X[..., 1] return torch.stack([c1, c2], dim=-1) class CONSTR(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r"""The constrained CONSTR problem. See [GarridoMerchan2020]_ for more details on this problem. Note that this is a minimization problem. """ dim = 2 num_objectives = 2 num_constraints = 2 _bounds = [(0.1, 10.0), (0.0, 5.0)] _ref_point = [10.0, 10.0] def evaluate_true(self, X: Tensor) -> Tensor: obj1 = X[..., 0] obj2 = (1.0 + X[..., 1]) / X[..., 0] return torch.stack([obj1, obj2], dim=-1) def evaluate_slack_true(self, X: Tensor) -> Tensor: c1 = 9.0 * X[..., 0] + X[..., 1] - 6.0 c2 = 9.0 * X[..., 0] - X[..., 1] - 1.0 return torch.stack([c1, c2], dim=-1) class ConstrainedBraninCurrin(BraninCurrin, ConstrainedBaseTestProblem): r"""Constrained Branin Currin Function. This uses the disk constraint from [Gelbart2014]_. """ dim = 2 num_objectives = 2 num_constraints = 1 _bounds = [(0.0, 1.0), (0.0, 1.0)] _con_bounds = [(-5.0, 10.0), (0.0, 15.0)] _ref_point = [80.0, 12.0] _max_hv = 608.4004237022673 # from NSGA-II with 90k evaluations def __init__(self, noise_std: Optional[float] = None, negate: bool = False) -> None: super().__init__(noise_std=noise_std, negate=negate) con_bounds = torch.tensor(self._con_bounds, dtype=torch.float).transpose(-1, -2) self.register_buffer("con_bounds", con_bounds) def evaluate_slack_true(self, X: Tensor) -> Tensor: X_tf = unnormalize(X, self.con_bounds) return 50 - (X_tf[..., 0:1] - 2.5).pow(2) - (X_tf[..., 1:2] - 7.5).pow(2) class C2DTLZ2(DTLZ2, ConstrainedBaseTestProblem): num_constraints = 1 _r = 0.2 # approximate from nsga-ii, TODO: replace with analytic _max_hv = 0.3996406303723544 def evaluate_slack_true(self, X: Tensor) -> Tensor: if X.ndim > 2: raise NotImplementedError("Batch X is not supported.") f_X = self.evaluate_true(X) term1 = (f_X - 1).pow(2) mask = ~(torch.eye(f_X.shape[-1], device=f_X.device).bool()) indices = torch.arange(f_X.shape[1], device=f_X.device).repeat(f_X.shape[1], 1) indexer = indices[mask].view(f_X.shape[1], f_X.shape[-1] - 1) term2_inner = ( f_X.unsqueeze(1) .expand(f_X.shape[0], f_X.shape[-1], f_X.shape[-1]) .gather(dim=-1, index=indexer.repeat(f_X.shape[0], 1, 1)) ) term2 = (term2_inner.pow(2) - self._r ** 2).sum(dim=-1) min1 = (term1 + term2).min(dim=-1).values min2 = ((f_X - 1 / math.sqrt(f_X.shape[-1])).pow(2) - self._r ** 2).sum(dim=-1) return -torch.min(min1, min2).unsqueeze(-1) class OSY(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r""" The OSY test problem from [Oszycka1995]_. Implementation from https://github.com/msu-coinlab/pymoo/blob/master/pymoo/problems/multi/osy.py Note that this implementation assumes minimization, so please choose negate=True. """ dim = 6 num_constraints = 6 num_objectives = 2 _bounds = [ (0.0, 10.0), (0.0, 10.0), (1.0, 5.0), (0.0, 6.0), (1.0, 5.0), (0.0, 10.0), ] _ref_point = [-75.0, 75.0] def evaluate_true(self, X: Tensor) -> Tensor: f1 = -( 25 * (X[..., 0] - 2) ** 2 + (X[..., 1] - 2) ** 2 + (X[..., 2] - 1) ** 2 + (X[..., 3] - 4) ** 2 + (X[..., 4] - 1) ** 2 ) f2 = (X ** 2).sum(-1) return torch.stack([f1, f2], dim=-1) def evaluate_slack_true(self, X: Tensor) -> Tensor: g1 = X[..., 0] + X[..., 1] - 2.0 g2 = 6.0 - X[..., 0] - X[..., 1] g3 = 2.0 - X[..., 1] + X[..., 0] g4 = 2.0 - X[..., 0] + 3.0 * X[..., 1] g5 = 4.0 - (X[..., 2] - 3.0) ** 2 - X[..., 3] g6 = (X[..., 4] - 3.0) ** 2 + X[..., 5] - 4.0 return torch.stack([g1, g2, g3, g4, g5, g6], dim=-1)
[ "torch.Size", "torch.cos", "torch.cat", "torch.stack", "torch.min", "torch.sin", "torch.arange", "torch.split", "torch.linspace", "torch.tensor", "torch.eye", "torch.exp" ]
1.5
NTR0314/botorch
f0310c9a415947f3264dac7f3438744784843323
1.2
import torch import torch.nn as nn from torchvision.transforms import ToTensor, ToPILImage class Generator(nn.Module): def __init__(self): super().__init__() self.conv_block = nn.Sequential( nn.ConvTranspose2d(100, 512, 4, 1, 0), nn.BatchNorm2d(512), nn.ReLU(True), nn.ConvTranspose2d(512, 256, 4, 2, 1), nn.BatchNorm2d(256), nn.ReLU(True), nn.ConvTranspose2d(256, 128, 4, 2, 1), nn.BatchNorm2d(128), nn.ReLU(True), nn.ConvTranspose2d(128, 64, 4, 2, 1), nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, 3, 4, 2, 1), nn.BatchNorm2d(3), nn.ReLU(True), nn.ConvTranspose2d(3, 3, 4, 2, 1), nn.Tanh(), ) def forward(self, x): x = self.conv_block(x) return x if __name__ == '__main__': img = torch.randn(1, 100, 1, 1) gen = Generator() print(gen(img).shape)
[ "torch.nn.Tanh", "torch.nn.BatchNorm2d", "torch.nn.ConvTranspose2d", "torch.nn.ReLU", "torch.randn" ]
1.2.0
y3sar/painter_gan
374fb91927ca584b4ef3fd8ba10922c7b5201780
1.1
#!/usr/bin/env python3 import torch import unittest from gpytorch.kernels import RBFKernelGrad from gpytorch.test.base_kernel_test_case import BaseKernelTestCase class TestRBFKernelGrad(unittest.TestCase, BaseKernelTestCase): def create_kernel_no_ard(self, **kwargs): return RBFKernelGrad(**kwargs) def create_kernel_ard(self, num_dims, **kwargs): return RBFKernelGrad(ard_num_dims=num_dims, **kwargs) def test_kernel(self, cuda=False): a = torch.tensor([[[1, 2], [2, 4]]], dtype=torch.float) b = torch.tensor([[[1, 3], [0, 4]]], dtype=torch.float) actual = torch.tensor( [ [0.35321, 0, -0.73517, 0.0054977, 0.011443, -0.022886], [0, 0.73517, 0, -0.011443, -0.012374, 0.047633], [0.73517, 0, -0.79499, 0.022886, 0.047633, -0.083824], [0.12476, 0.25967, 0.25967, 0.015565, 0.064793, 0], [-0.25967, -0.2808, -0.54047, -0.064793, -0.23732, 0], [-0.25967, -0.54047, -0.2808, 0, 0, 0.032396], ] ) kernel = RBFKernelGrad() if cuda: a = a.cuda() b = b.cuda() actual = actual.cuda() kernel = kernel.cuda() res = kernel(a, b).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) def test_kernel_cuda(self): if torch.cuda.is_available(): self.test_kernel(cuda=True) def test_kernel_batch(self): a = torch.tensor([[[1, 2, 3], [2, 4, 0]], [[-1, 1, 2], [2, 1, 4]]], dtype=torch.float) b = torch.tensor([[[1, 3, 1]], [[2, -1, 0]]], dtype=torch.float).repeat(1, 2, 1) kernel = RBFKernelGrad() res = kernel(a, b).evaluate() # Compute each batch separately actual = torch.zeros(2, 8, 8) actual[0, :, :] = kernel(a[0, :, :].squeeze(), b[0, :, :].squeeze()).evaluate() actual[1, :, :] = kernel(a[1, :, :].squeeze(), b[1, :, :].squeeze()).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) def test_initialize_lengthscale(self): kernel = RBFKernelGrad() kernel.initialize(lengthscale=3.14) actual_value = torch.tensor(3.14).view_as(kernel.lengthscale) self.assertLess(torch.norm(kernel.lengthscale - actual_value), 1e-5) def test_initialize_lengthscale_batch(self): kernel = RBFKernelGrad(batch_shape=torch.Size([2])) ls_init = torch.tensor([3.14, 4.13]) kernel.initialize(lengthscale=ls_init) actual_value = ls_init.view_as(kernel.lengthscale) self.assertLess(torch.norm(kernel.lengthscale - actual_value), 1e-5) if __name__ == "__main__": unittest.main()
[ "torch.zeros", "torch.Size", "torch.norm", "torch.cuda.is_available", "torch.tensor" ]
1.1
techshot25/gpytorch
092d523027a844939ba85d7ea8c8c7b7511843d5
1.1
#!/usr/bin/env python3 import warnings import torch def psd_safe_cholesky(A, upper=False, out=None, jitter=None): """Compute the Cholesky decomposition of A. If A is only p.s.d, add a small jitter to the diagonal. Args: :attr:`A` (Tensor): The tensor to compute the Cholesky decomposition of :attr:`upper` (bool, optional): See torch.cholesky :attr:`out` (Tensor, optional): See torch.cholesky :attr:`jitter` (float, optional): The jitter to add to the diagonal of A in case A is only p.s.d. If omitted, chosen as 1e-6 (float) or 1e-8 (double) """ try: L = torch.cholesky(A, upper=upper, out=out) # TODO: Remove once fixed in pytorch (#16780) if A.dim() > 2 and A.is_cuda: if torch.isnan(L if out is None else out).any(): raise RuntimeError("cholesky_cuda: singular U.") return L except RuntimeError as e: if jitter is None: jitter = 1e-6 if A.dtype == torch.float32 else 1e-8 Aprime = A.clone() jitter_prev = 0 for i in range(3): jitter_new = jitter * (10 ** i) Aprime.diagonal(dim1=-2, dim2=-1).add_(jitter_new - jitter_prev) jitter_prev = jitter_new try: L = torch.cholesky(Aprime, upper=upper, out=out) # TODO: Remove once fixed in pytorch (#16780) if A.dim() > 2 and A.is_cuda: if torch.isnan(L if out is None else out).any(): raise RuntimeError("cholesky_cuda: singular U.") warnings.warn(f"A not p.d., added jitter of {jitter_new} to the diagonal", RuntimeWarning) return L except RuntimeError: continue raise e
[ "torch.cholesky", "torch.isnan" ]
1.1
techshot25/gpytorch
b4aee6f81a3428172d4914e7e0fef0e71cd1f519
1.1
#!/usr/bin/env python3 import torch import unittest from gpytorch.kernels import PolynomialKernel from gpytorch.test.base_kernel_test_case import BaseKernelTestCase class TestPolynomialKernel(unittest.TestCase, BaseKernelTestCase): def create_kernel_no_ard(self, **kwargs): return PolynomialKernel(power=2, **kwargs) def test_computes_quadratic_kernel(self): a = torch.tensor([[4, 1], [2, 2], [8, 0]], dtype=torch.float) b = torch.tensor([[0, 0], [2, 1], [1, 0]], dtype=torch.float) kernel = PolynomialKernel(power=2) kernel.eval() actual = torch.zeros(3, 3) for i in range(3): for j in range(3): actual[i, j] = (a[i].matmul(b[j]) + kernel.offset).pow(kernel.power) res = kernel(a, b).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) # diag res = kernel(a, b).diag() actual = actual.diag() self.assertLess(torch.norm(res - actual), 1e-5) # batch_dims actual = torch.zeros(2, 3, 3) for l in range(2): actual[l] = kernel(a[:, l].unsqueeze(-1), b[:, l].unsqueeze(-1)).evaluate() res = kernel(a, b, last_dim_is_batch=True).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) # batch_dims + diag res = kernel(a, b, last_dim_is_batch=True).diag() actual = torch.cat([actual[i].diag().unsqueeze(0) for i in range(actual.size(0))]) self.assertLess(torch.norm(res - actual), 1e-5) def test_computes_cubic_kernel(self): a = torch.tensor([[4, 1], [2, 2], [8, 0]], dtype=torch.float) b = torch.tensor([[0, 0], [2, 1], [1, 0]], dtype=torch.float) kernel = PolynomialKernel(power=3) kernel.eval() actual = torch.zeros(3, 3) for i in range(3): for j in range(3): actual[i, j] = (a[i].matmul(b[j]) + kernel.offset).pow(kernel.power) res = kernel(a, b).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) # diag res = kernel(a, b).diag() actual = actual.diag() self.assertLess(torch.norm(res - actual), 1e-5) # batch_dims actual = torch.zeros(2, 3, 3) for l in range(2): actual[l] = kernel(a[:, l].unsqueeze(-1), b[:, l].unsqueeze(-1)).evaluate() res = kernel(a, b, last_dim_is_batch=True).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) # batch_dims + diag res = kernel(a, b, last_dim_is_batch=True).diag() actual = torch.cat([actual[i].diag().unsqueeze(0) for i in range(actual.size(0))]) self.assertLess(torch.norm(res - actual), 1e-5) def test_quadratic_kernel_batch(self): a = torch.tensor([[4, 2, 8], [1, 2, 3]], dtype=torch.float).view(2, 3, 1) b = torch.tensor([[0, 2, 1], [-1, 2, 0]], dtype=torch.float).view(2, 3, 1) kernel = PolynomialKernel(power=2, batch_shape=torch.Size([2])).initialize(offset=torch.rand(2, 1)) kernel.eval() actual = torch.zeros(2, 3, 3) for k in range(2): for i in range(3): for j in range(3): actual[k, i, j] = (a[k, i].matmul(b[k, j]) + kernel.offset[k]).pow(kernel.power) res = kernel(a, b).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) def test_cubic_kernel_batch(self): a = torch.tensor([[4, 2, 8], [1, 2, 3]], dtype=torch.float).view(2, 3, 1) b = torch.tensor([[0, 2, 1], [-1, 2, 0]], dtype=torch.float).view(2, 3, 1) kernel = PolynomialKernel(power=3, batch_shape=torch.Size([2])).initialize(offset=torch.rand(2, 1)) kernel.eval() actual = torch.zeros(2, 3, 3) for k in range(2): for i in range(3): for j in range(3): actual[k, i, j] = (a[k, i].matmul(b[k, j]) + kernel.offset[k]).pow(kernel.power) res = kernel(a, b).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) if __name__ == "__main__": unittest.main()
[ "torch.zeros", "torch.rand", "torch.Size", "torch.norm", "torch.tensor" ]
1.1
techshot25/gpytorch
092d523027a844939ba85d7ea8c8c7b7511843d5
1.1
#!/usr/bin/env python3 import torch import warnings from .kernel import Kernel from ..lazy import MatmulLazyTensor, RootLazyTensor from ..constraints import Positive class LinearKernel(Kernel): r""" Computes a covariance matrix based on the Linear kernel between inputs :math:`\mathbf{x_1}` and :math:`\mathbf{x_2}`: .. math:: \begin{equation*} k_\text{Linear}(\mathbf{x_1}, \mathbf{x_2}) = v\mathbf{x_1}^\top \mathbf{x_2}. \end{equation*} where * :math:`v` is a :attr:`variance` parameter. .. note:: To implement this efficiently, we use a :obj:`gpytorch.lazy.RootLazyTensor` during training and a :class:`gpytorch.lazy.MatmulLazyTensor` during test. These lazy tensors represent matrices of the form :math:`K = XX^{\top}` and :math:`K = XZ^{\top}`. This makes inference efficient because a matrix-vector product :math:`Kv` can be computed as :math:`Kv=X(X^{\top}v)`, where the base multiply :math:`Xv` takes only :math:`O(nd)` time and space. Args: :attr:`variance_prior` (:class:`gpytorch.priors.Prior`): Prior over the variance parameter (default `None`). :attr:`variance_constraint` (Constraint, optional): Constraint to place on variance parameter. Default: `Positive`. :attr:`active_dims` (list): List of data dimensions to operate on. `len(active_dims)` should equal `num_dimensions`. """ def __init__( self, num_dimensions=None, offset_prior=None, variance_prior=None, variance_constraint=None, **kwargs ): super(LinearKernel, self).__init__(**kwargs) if variance_constraint is None: variance_constraint = Positive() if num_dimensions is not None: warnings.warn( "The `num_dimensions` argument is deprecated and no longer used.", DeprecationWarning ) self.register_parameter( name="offset", parameter=torch.nn.Parameter(torch.zeros(1, 1, num_dimensions)) ) if offset_prior is not None: warnings.warn( "The `offset_prior` argument is deprecated and no longer used.", DeprecationWarning ) self.register_parameter( name="raw_variance", parameter=torch.nn.Parameter(torch.zeros(*self.batch_shape, 1, 1)) ) if variance_prior is not None: self.register_prior( "variance_prior", variance_prior, lambda: self.variance, lambda v: self._set_variance(v) ) self.register_constraint("raw_variance", variance_constraint) @property def variance(self): return self.raw_variance_constraint.transform(self.raw_variance) @variance.setter def variance(self, value): self._set_variance(value) def _set_variance(self, value): if not torch.is_tensor(value): value = torch.as_tensor(value).to(self.raw_variance) self.initialize(raw_variance=self.raw_variance_constraint.inverse_transform(value)) def forward(self, x1, x2, diag=False, last_dim_is_batch=False, **params): x1_ = x1 * self.variance.sqrt() if last_dim_is_batch: x1_ = x1_.transpose(-1, -2).unsqueeze(-1) if x1.size() == x2.size() and torch.equal(x1, x2): # Use RootLazyTensor when x1 == x2 for efficiency when composing # with other kernels prod = RootLazyTensor(x1_) else: x2_ = x2 * self.variance.sqrt() if last_dim_is_batch: x2_ = x2_.transpose(-1, -2).unsqueeze(-1) prod = MatmulLazyTensor(x1_, x2_.transpose(-2, -1)) if diag: return prod.diag() else: return prod
[ "torch.is_tensor", "torch.as_tensor", "torch.equal", "torch.zeros" ]
1.1
techshot25/gpytorch
092d523027a844939ba85d7ea8c8c7b7511843d5
0.4
# coding: utf-8 import torch from torch import nn import math import numpy as np from torch.nn import functional as F def position_encoding_init(n_position, d_pos_vec, position_rate=1.0, sinusoidal=True): ''' Init the sinusoid position encoding table ''' # keep dim 0 for padding token position encoding zero vector position_enc = np.array([ [position_rate * pos / np.power(10000, 2 * (i // 2) / d_pos_vec) for i in range(d_pos_vec)] if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)]) position_enc = torch.from_numpy(position_enc).float() if sinusoidal: position_enc[1:, 0::2] = torch.sin(position_enc[1:, 0::2]) # dim 2i position_enc[1:, 1::2] = torch.cos(position_enc[1:, 1::2]) # dim 2i+1 return position_enc def sinusoidal_encode(x, w): y = w * x y[1:, 0::2] = torch.sin(y[1:, 0::2].clone()) y[1:, 1::2] = torch.cos(y[1:, 1::2].clone()) return y class SinusoidalEncoding(nn.Embedding): def __init__(self, num_embeddings, embedding_dim, *args, **kwargs): super(SinusoidalEncoding, self).__init__(num_embeddings, embedding_dim, padding_idx=0, *args, **kwargs) self.weight.data = position_encoding_init(num_embeddings, embedding_dim, position_rate=1.0, sinusoidal=False) def forward(self, x, w=1.0): isscaler = np.isscalar(w) assert self.padding_idx is not None if isscaler or w.size(0) == 1: weight = sinusoidal_encode(self.weight, w) return F.embedding( x, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse) else: # TODO: cannot simply apply for batch # better to implement efficient function pe = [] for batch_idx, we in enumerate(w): weight = sinusoidal_encode(self.weight, we) pe.append(F.embedding( x[batch_idx], weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse)) pe = torch.stack(pe) return pe class GradMultiply(torch.autograd.Function): @staticmethod def forward(ctx, x, scale): ctx.scale = scale res = x.new(x) ctx.mark_shared_storage((x, res)) return res @staticmethod def backward(ctx, grad): return grad * ctx.scale, None def Linear(in_features, out_features, dropout=0): """Weight-normalized Linear layer (input: N x T x C)""" m = nn.Linear(in_features, out_features) m.weight.data.normal_(mean=0, std=math.sqrt((1 - dropout) / in_features)) m.bias.data.zero_() return nn.utils.weight_norm(m) def Embedding(num_embeddings, embedding_dim, padding_idx, std=0.01): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) m.weight.data.normal_(0, std) return m def Conv1d(in_channels, out_channels, kernel_size, dropout=0, std_mul=4.0, **kwargs): from .conv import Conv1d m = Conv1d(in_channels, out_channels, kernel_size, **kwargs) std = math.sqrt((std_mul * (1.0 - dropout)) / (m.kernel_size[0] * in_channels)) m.weight.data.normal_(mean=0, std=std) m.bias.data.zero_() return nn.utils.weight_norm(m) def ConvTranspose1d(in_channels, out_channels, kernel_size, dropout=0, std_mul=1.0, **kwargs): m = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, **kwargs) std = math.sqrt((std_mul * (1.0 - dropout)) / (m.kernel_size[0] * in_channels)) m.weight.data.normal_(mean=0, std=std) m.bias.data.zero_() return nn.utils.weight_norm(m) class Conv1dGLU(nn.Module): """(Dilated) Conv1d + Gated linear unit + (optionally) speaker embedding """ def __init__(self, n_speakers, speaker_embed_dim, in_channels, out_channels, kernel_size, dropout, padding=None, dilation=1, causal=False, residual=False, *args, **kwargs): super(Conv1dGLU, self).__init__() self.dropout = dropout self.residual = residual if padding is None: # no future time stamps available if causal: padding = (kernel_size - 1) * dilation else: padding = (kernel_size - 1) // 2 * dilation self.causal = causal self.conv = Conv1d(in_channels, 2 * out_channels, kernel_size, dropout=dropout, padding=padding, dilation=dilation, *args, **kwargs) if n_speakers > 1: self.speaker_proj = Linear(speaker_embed_dim, out_channels) else: self.speaker_proj = None def forward(self, x, speaker_embed=None): return self._forward(x, speaker_embed, False) def incremental_forward(self, x, speaker_embed=None): return self._forward(x, speaker_embed, True) def _forward(self, x, speaker_embed, is_incremental): residual = x x = F.dropout(x, p=self.dropout, training=self.training) if is_incremental: splitdim = -1 x = self.conv.incremental_forward(x) else: splitdim = 1 x = self.conv(x) # remove future time steps x = x[:, :, :residual.size(-1)] if self.causal else x a, b = x.split(x.size(splitdim) // 2, dim=splitdim) if self.speaker_proj is not None: softsign = F.softsign(self.speaker_proj(speaker_embed)) # Since conv layer assumes BCT, we need to transpose softsign = softsign if is_incremental else softsign.transpose(1, 2) a = a + softsign x = a * torch.sigmoid(b) return (x + residual) * math.sqrt(0.5) if self.residual else x def clear_buffer(self): self.conv.clear_buffer() class HighwayConv1d(nn.Module): """Weight normzlized Conv1d + Highway network (support incremental forward) """ def __init__(self, in_channels, out_channels, kernel_size=1, padding=None, dilation=1, causal=False, dropout=0, std_mul=None, glu=False): super(HighwayConv1d, self).__init__() if std_mul is None: std_mul = 4.0 if glu else 1.0 if padding is None: # no future time stamps available if causal: padding = (kernel_size - 1) * dilation else: padding = (kernel_size - 1) // 2 * dilation self.causal = causal self.dropout = dropout self.glu = glu self.conv = Conv1d(in_channels, 2 * out_channels, kernel_size=kernel_size, padding=padding, dilation=dilation, dropout=dropout, std_mul=std_mul) def forward(self, x): return self._forward(x, False) def incremental_forward(self, x): return self._forward(x, True) def _forward(self, x, is_incremental): """Forward Args: x: (B, in_channels, T) returns: (B, out_channels, T) """ residual = x x = F.dropout(x, p=self.dropout, training=self.training) if is_incremental: splitdim = -1 x = self.conv.incremental_forward(x) else: splitdim = 1 x = self.conv(x) # remove future time steps x = x[:, :, :residual.size(-1)] if self.causal else x if self.glu: x = F.glu(x, dim=splitdim) return (x + residual) * math.sqrt(0.5) else: a, b = x.split(x.size(splitdim) // 2, dim=splitdim) T = torch.sigmoid(b) return (T * a + (1 - T) * residual) def clear_buffer(self): self.conv.clear_buffer() def get_mask_from_lengths(memory, memory_lengths): """Get mask tensor from list of length Args: memory: (batch, max_time, dim) memory_lengths: array like """ mask = memory.data.new(memory.size(0), memory.size(1)).byte().zero_() for idx, l in enumerate(memory_lengths): mask[idx][:l] = 1 return ~mask
[ "torch.nn.Linear", "torch.cos", "torch.sigmoid", "torch.nn.functional.glu", "torch.nn.ConvTranspose1d", "torch.stack", "torch.sin", "torch.nn.functional.dropout", "torch.from_numpy", "torch.nn.functional.embedding", "torch.nn.utils.weight_norm", "torch.nn.Embedding" ]
0.4.0
tripzero/deepvoice3_pytorch
90027d27dab2889d856f9db9ffaf39d4f70b3067
0.4
import os import json import argparse import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from collections import OrderedDict from sg2im.utils import timeit, bool_flag, LossManager from sg2im.utils import int_tuple, float_tuple, str_tuple from sg2im.data.vg import SequenceTransformerVgSceneGraphDataset import pytorch_lightning as pl from transformers import ( BertTokenizerFast, BertTokenizer, EncoderDecoderModel, EncoderDecoderConfig, AutoModel, BertForSequenceClassification, ) from pytorch_lightning.plugins import DDPPlugin VG_DIR = os.path.expanduser('datasets/vg') COCO_DIR = os.path.expanduser('datasets/coco') parser = argparse.ArgumentParser() parser.add_argument('--test', action='store_true', default=False) parser.add_argument('--dataset', default='coco', choices=['vg', 'coco']) parser.add_argument('--scene_graphs_json', default='scene_graphs/figure_6_sheep.json') parser.add_argument('--load_checkpoint', default="") # Optimization hyperparameters parser.add_argument('--batch_size', default=32, type=int) parser.add_argument('--num_iterations', default=1000000, type=int) parser.add_argument('--learning_rate', default=1e-5, type=float) parser.add_argument('--gpus', default=1, type=int) # Switch the generator to eval mode after this many iterations parser.add_argument('--eval_mode_after', default=100000, type=int) # Dataset options common to both VG and COCO parser.add_argument('--image_size', default='64,64', type=int_tuple) parser.add_argument('--num_train_samples', default=None, type=int) parser.add_argument('--num_val_samples', default=1024, type=int) parser.add_argument('--shuffle_val', default=True, type=bool_flag) parser.add_argument('--loader_num_workers', default=4, type=int) parser.add_argument('--include_relationships', default=True, type=bool_flag) # VG-specific options parser.add_argument('--vg_image_dir', default=os.path.join(VG_DIR, 'images')) parser.add_argument('--train_h5', default=os.path.join(VG_DIR, 'train.h5')) parser.add_argument('--val_h5', default=os.path.join(VG_DIR, 'val.h5')) parser.add_argument('--vocab_json', default=os.path.join(VG_DIR, 'vocab.json')) parser.add_argument('--max_objects_per_image', default=10, type=int) parser.add_argument('--vg_use_orphaned_objects', default=True, type=bool_flag) # COCO-specific options parser.add_argument('--coco_train_image_dir', default=os.path.join(COCO_DIR, 'images/train2017')) parser.add_argument('--coco_val_image_dir', default=os.path.join(COCO_DIR, 'images/val2017')) parser.add_argument('--coco_train_instances_json', default=os.path.join(COCO_DIR, 'annotations/instances_train2017.json')) parser.add_argument('--coco_train_stuff_json', default=os.path.join(COCO_DIR, 'annotations/stuff_train2017.json')) parser.add_argument('--coco_val_instances_json', default=os.path.join(COCO_DIR, 'annotations/instances_val2017.json')) parser.add_argument('--coco_val_stuff_json', default=os.path.join(COCO_DIR, 'annotations/stuff_val2017.json')) parser.add_argument('--instance_whitelist', default=None, type=str_tuple) parser.add_argument('--stuff_whitelist', default=None, type=str_tuple) parser.add_argument('--coco_include_other', default=False, type=bool_flag) parser.add_argument('--min_object_size', default=0.02, type=float) parser.add_argument('--min_objects_per_image', default=3, type=int) parser.add_argument('--coco_stuff_only', default=True, type=bool_flag) parser.add_argument('--max_lengths_for_image', default=1024, type=int) # Generator options parser.add_argument('--mask_size', default=16, type=int) # Set this to 0 to use no masks parser.add_argument('--embedding_dim', default=128, type=int) parser.add_argument('--gconv_dim', default=128, type=int) parser.add_argument('--gconv_hidden_dim', default=512, type=int) parser.add_argument('--gconv_num_layers', default=5, type=int) parser.add_argument('--mlp_normalization', default='none', type=str) parser.add_argument('--refinement_network_dims', default='1024,512,256,128,64', type=int_tuple) parser.add_argument('--normalization', default='batch') parser.add_argument('--activation', default='leakyrelu-0.2') parser.add_argument('--layout_noise_dim', default=32, type=int) parser.add_argument('--use_boxes_pred_after', default=-1, type=int) # Generator losses parser.add_argument('--mask_loss_weight', default=0, type=float) parser.add_argument('--l1_pixel_loss_weight', default=1.0, type=float) parser.add_argument('--bbox_pred_loss_weight', default=10, type=float) parser.add_argument('--predicate_pred_loss_weight', default=0, type=float) # DEPRECATED # Generic discriminator options parser.add_argument('--discriminator_loss_weight', default=0.01, type=float) parser.add_argument('--gan_loss_type', default='gan') parser.add_argument('--d_clip', default=None, type=float) parser.add_argument('--d_normalization', default='batch') parser.add_argument('--d_padding', default='valid') parser.add_argument('--d_activation', default='leakyrelu-0.2') # Object discriminator parser.add_argument('--d_obj_arch', default='C4-64-2,C4-128-2,C4-256-2') parser.add_argument('--crop_size', default=32, type=int) parser.add_argument('--d_obj_weight', default=1.0, type=float) # multiplied by d_loss_weight parser.add_argument('--ac_loss_weight', default=0.1, type=float) # Image discriminator parser.add_argument('--d_img_arch', default='C4-64-2,C4-128-2,C4-256-2') parser.add_argument('--d_img_weight', default=1.0, type=float) # multiplied by d_loss_weight # Output options parser.add_argument('--print_every', default=10, type=int) parser.add_argument('--timing', default=False, type=bool_flag) parser.add_argument('--checkpoint_every', default=10000, type=int) parser.add_argument('--output_dir', default=os.getcwd()) parser.add_argument('--checkpoint_name', default='checkpoint') parser.add_argument('--checkpoint_start_from', default=None) parser.add_argument('--restore_from_checkpoint', default=False, type=bool_flag) class VGDataModule(pl.LightningDataModule): def __init__(self, args, tokenizer, num_workers=8): super().__init__() self.args = args self.tokenizer = tokenizer self.num_workers = num_workers self.batch_size = args.batch_size def setup(self, stage=None): args = self.args with open(args.vocab_json, 'r') as f: vocab = json.load(f) dset_kwargs = { 'vocab': vocab, 'h5_path': args.train_h5, 'image_dir': args.vg_image_dir, 'image_size': args.image_size, 'max_samples': args.num_train_samples, 'max_objects': args.max_objects_per_image, 'use_orphaned_objects': args.vg_use_orphaned_objects, 'include_relationships': args.include_relationships, 'max_lengths_for_image': args.max_lengths_for_image } train_dset = SequenceTransformerVgSceneGraphDataset( **dset_kwargs, tokenizer=self.tokenizer ) # iter_per_epoch = len(train_dset) // args.batch_size # print('There are %d iterations per epoch' % iter_per_epoch) dset_kwargs['h5_path'] = args.val_h5 del dset_kwargs['max_samples'] val_dset = SequenceTransformerVgSceneGraphDataset( **dset_kwargs, tokenizer=self.tokenizer ) self.train_dset = train_dset self.val_dset = val_dset def train_dataloader(self): return DataLoader( self.train_dset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True ) def val_dataloader(self): return DataLoader(self.val_dset, batch_size=self.batch_size, num_workers=self.num_workers) def test_dataloader(self): return DataLoader(self.val_dset, batch_size=self.batch_size, num_workers=self.num_workers) class Discriminator(nn.Module): def __init__(self, backbone): super().__init__() self.backbone = BertForSequenceClassification.from_pretrained(backbone) def forward(self, *args, **kwargs): outputs = self.backbone(*args, **kwargs) return outputs["loss"] def apply_word_embeddings(self, inputs): """ Because Gumbel softmax outputs cannot directly feed to huggingface model, we have to compute the `input_embed` manually. """ word_embeddings = self.backbone.bert.embeddings.word_embeddings return torch.matmul(inputs, word_embeddings.weight) class Generator(nn.Module): def __init__(self, backbone): super().__init__() self.backbone = EncoderDecoderModel.from_encoder_decoder_pretrained( backbone, backbone, tie_encoder_decoder=True ) def forward(self, *args, **kwargs): return self.backbone(*args, **kwargs) def forward_logits(self, *args, **kwargs): return self.backbone(*args, **kwargs)["logits"] def forward_loss(self, *args, **kwargs): return self.backbone(*args, **kwargs)["loss"] def apply_word_embeddings(self, inputs): """ Because Gumbel softmax outputs cannot directly feed to huggingface model, we have to compute the `input_embed` manually. """ word_embeddings = self.backbone.encoder.embeddings.word_embeddings return torch.matmul(inputs, word_embeddings.weight) class GAN(pl.LightningModule): def __init__( self, args, tokenizer, backbone=None, ): super().__init__() self.args = args self.validation_z = torch.randn(8, 100) self.tokenizer = tokenizer self.discriminator = Discriminator(backbone) self.generator = Generator(backbone) self.graph_special_token = "[graph]" self.image_special_token = "[image]" self.tau = 1 self.image_token_id_list, self.text_token_id_list = self.retrieve_bad_image_text_tokens_ids() def retrieve_bad_image_text_tokens_ids(self): special_tokens_list = ["[CLS]", "[SEP]"] image_tokens_list = [f"[itoken{i}]" for i in range(512)] extra_image_tokens_list = [f"[itoken{i}]" for i in range(512, 32 * 32)] vocab = self.tokenizer.get_vocab() special_tokens_id_list = [vocab[token] for token in special_tokens_list] image_token_id_list = [vocab[token] for token in image_tokens_list] extra_image_tokens_id_list = [vocab[token] for token in extra_image_tokens_list] text_token_id_list = [v for k, v in vocab.items()] text_token_id_list = \ list(set(text_token_id_list) - set(image_token_id_list) - set(extra_image_tokens_id_list)) return image_token_id_list + extra_image_tokens_id_list, text_token_id_list + extra_image_tokens_id_list def adversarial_loss(self, y_hat, y): return F.binary_cross_entropy_with_logits(y_hat, y) def training_step(self, batch, batch_idx, optimizer_idx): # sample noise # z = torch.randn(imgs.shape[0], self.hparams.latent_dim) # z = z.type_as(imgs) generator_batch = { "input_ids": batch["sent_input/input_ids"], "attention_mask": batch["sent_input/attention_mask"], "decoder_input_ids": batch["code_output/input_ids"], "decoder_attention_mask": batch["code_output/attention_mask"], "labels": batch["code_output/input_ids"].clone() } # exlude the loss for padding tokens generator_batch["labels"][generator_batch["labels"] == self.tokenizer.pad_token_id] = -100 # train generator if optimizer_idx == 0: logits = self.generator.forward_logits(**generator_batch) predictions = F.gumbel_softmax(logits, tau=self.tau, hard=True, dim=-1) # log sampled images # sample_imgs = self.generated_imgs[:6] # grid = torchvision.utils.make_grid(sample_imgs) # self.logger.experiment.add_image('generated_images', grid, 0) # ground truth result (ie: all fake) # put on GPU because we created this tensor inside training_loop predictions_embedding = self.generator.apply_word_embeddings(predictions) fake_batch = { "inputs_embeds": predictions_embedding, "attention_mask": batch["code_output/attention_mask"], "decoder_input_ids": batch["sent_output/input_ids"], "decoder_attention_mask": batch["sent_output/attention_mask"], "labels": batch["sent_output/input_ids"].clone() } fake_batch["labels"][fake_batch["labels"] == self.tokenizer.pad_token_id] = -100 ac_loss = self.generator.forward_loss(**fake_batch) predictions_embedding = self.discriminator.apply_word_embeddings(predictions) fake_dis_batch = { "inputs_embeds": predictions_embedding, "attention_mask": batch["code_output/attention_mask"], "labels": torch.ones(predictions_embedding.shape[0]).type_as(predictions_embedding).long() } g_d_loss = self.discriminator(**fake_dis_batch) g_loss = g_d_loss + ac_loss # g_loss = ac_loss self.log('g_ac_loss', ac_loss, prog_bar=True) self.log('g_d_loss', g_d_loss, prog_bar=True) # return {"loss": g_loss} # train discriminator (inverse generator) # if optimizer_idx == 1: # Measure discriminator's ability to classify real from generated samples logits = self.generator.forward_logits(**generator_batch) predictions = F.gumbel_softmax(logits, tau=self.tau, hard=True, dim=-1) # don't compute the gradients of the generator predictions = predictions.detach() predictions_embedding = self.generator.apply_word_embeddings(predictions) fake_batch = { "inputs_embeds": predictions_embedding, "attention_mask": batch["code_output/attention_mask"], "decoder_input_ids": batch["sent_output/input_ids"], "decoder_attention_mask": batch["sent_output/attention_mask"], "labels": batch["sent_output/input_ids"].clone() } fake_batch["labels"][fake_batch["labels"] == self.tokenizer.pad_token_id] = -100 fake_ac_loss = self.generator.forward_loss(**fake_batch) # For real data real_batch = { "input_ids": batch["code_output/input_ids"], "attention_mask": batch["code_output/attention_mask"], "decoder_input_ids": batch["sent_output/input_ids"], "decoder_attention_mask": batch["sent_output/attention_mask"], "labels": batch["sent_output/input_ids"].clone() } real_batch["labels"][real_batch["labels"] == self.tokenizer.pad_token_id] = -100 real_ac_loss = self.generator.forward_loss(**real_batch) ac_loss = (real_ac_loss + fake_ac_loss) / 2 self.log('ac_loss', ac_loss, prog_bar=True) # return {"loss": ac_loss} return g_loss + ac_loss # train discriminator if optimizer_idx == 1: # Measure discriminator's ability to classify real from generated samples logits = self.generator.forward_logits(**generator_batch) # don't compute the gradients of the generator predictions = F.gumbel_softmax(logits, tau=self.tau, hard=True, dim=-1) predictions_embedding = self.discriminator.apply_word_embeddings(predictions) fake_dis_batch = { "inputs_embeds": predictions_embedding, "attention_mask": batch["code_output/attention_mask"], "labels": torch.zeros(predictions.shape[0]).type_as(predictions).long() } fake_loss = self.discriminator(**fake_dis_batch) # fake = torch.zeros(fake_preds.shape) # fake = fake.type_as(fake_preds) # fake_loss = self.adversarial_loss(fake_preds, fake) real_dis_batch = { "input_ids": batch["code_output/input_ids"], "attention_mask": batch["code_output/attention_mask"], "labels": torch.ones(predictions.shape[0]).type_as(predictions).long() } real_loss = self.discriminator(**real_dis_batch) # real = torch.ones(real_preds.shape) # real = real.type_as(real_preds) # real_loss = self.adversarial_loss(real_preds, real) # discriminator loss is the average of these d_loss = (real_loss + fake_loss) / 2 self.log('d_loss', d_loss, prog_bar=True) return d_loss def configure_optimizers(self): lr = self.args.learning_rate opt_g = torch.optim.Adam(self.generator.parameters(), lr=lr, betas=(0.5, 0.999)) opt_d = torch.optim.Adam( self.discriminator.parameters(), lr=lr, betas=(0.5, 0.999) ) return [opt_g, opt_d], [] # def on_epoch_end(self): # z = self.validation_z.type_as(self.generator.model[0].weight) # # log sampled images # sample_imgs = self(z) # grid = torchvision.utils.make_grid(sample_imgs) # self.logger.experiment.add_image('generated_images', grid, self.current_epoch) def test_step(self, batch, batch_idx): pass def inference(self, scene_graphs_json): scene_graphs = self.read_scene_graphs(scene_graphs_json) image_tokens_generation = self.generator.backbone.generate( scene_graphs["input_ids"], max_length=66, # num_beams=5, # no_repeat_ngram_size=2, # early_stopping=True, do_sample=True, top_p=0.92, top_k=0, decoder_start_token_id=self.generator.backbone.config.decoder.pad_token_id, bad_words_ids=[[ids] for ids in self.text_token_id_list], ) print(image_tokens_generation) output = [] for data in image_tokens_generation: output.append(self.tokenizer.decode(data, skip_special_tokens=True)) print(output[-1]) reconstructed_graph = self.generator.backbone.generate( image_tokens_generation, max_length=64, # num_beams=5, # no_repeat_ngram_size=2, # early_stopping=True, do_sample=True, top_p=0.92, top_k=0, decoder_start_token_id=self.generator.backbone.config.decoder.pad_token_id, bad_words_ids=[[ids]for ids in self.image_token_id_list], ) for data in reconstructed_graph: print(self.tokenizer.decode(data, skip_special_tokens=True)) if not os.path.exists(self.args.output_dir): os.makedirs(self.args.output_dir) itokens_output_file = os.path.join(self.args.output_dir, "itokens_output.json") with open(itokens_output_file, "w") as f: json.dump(output, f, indent=2) def read_scene_graphs(self, scene_graphs_json): with open(scene_graphs_json, 'r') as f: scene_graphs = json.load(f) if isinstance(scene_graphs, dict): # We just got a single scene graph, so promote it to a list scene_graphs = [scene_graphs] objs, triples, obj_to_img = [], [], [] obj_offset = 0 sents_list = [] for i, sg in enumerate(scene_graphs): # Insert dummy __image__ object and __in_image__ relationships sents = [] for s, p, o in sg['relationships']: sent = f"{sg['objects'][s]} {p} {sg['objects'][o]}." sents.append(sent) sent = " ".join(sents) sent = f"{self.graph_special_token} {sent} {self.image_special_token}" sents_list.append(sent) print(sent) sent_tensor = self.tokenizer( sents_list, return_tensors="pt", padding="max_length", max_length=64, truncation=True, add_special_tokens=False ) device = next(self.parameters()).device sent_tensor = {k: v.to(device) for k, v in sent_tensor.items()} return sent_tensor def main(args): backbone = "bert-base-uncased-itokens" tokenizer = BertTokenizerFast.from_pretrained(backbone) # encoder_decoder_config = EncoderDecoderConfig.from_pretrained("bert-base-uncased-itokens") # model = EncoderDecoderModel.from_pretrained( # "bert-base-uncased-itokens", config=encoder_decoder_config # ) # model = EncoderDecoderModel.from_encoder_decoder_pretrained( # "bert-base-uncased-itokens", "bert-base-uncased-itokens", tie_encoder_decoder=True # ) # generator = Generator(model) # discriminator = Discriminator( # AutoModel.from_pretrained("bert-base-uncased-itokens") # ) if args.test: model = GAN.load_from_checkpoint( args.load_checkpoint, args=args, tokenizer=tokenizer, backbone=backbone ) model.cuda() model.eval() model.inference(args.scene_graphs_json) return # train if args.gpus > 1: dm = VGDataModule(args, tokenizer, 2) else: dm = VGDataModule(args, tokenizer) if args.load_checkpoint != "": model = GAN.load_from_checkpoint( args.load_checkpoint, args=args, tokenizer=tokenizer, backbone=backbone ) else: model = GAN(args, tokenizer, backbone) training_args = { "gpus": args.gpus, "fast_dev_run": False, "max_steps": args.num_iterations, "precision": 32, "gradient_clip_val": 1, } if args.gpus > 1: additional_args = { "accelerator": "ddp", "plugins": [DDPPlugin(find_unused_parameters=True)] # "plugins": [my_ddp] } training_args.update(additional_args) trainer = pl.Trainer(**training_args) trainer.fit(model, dm) if __name__ == "__main__": args = parser.parse_args() main(args)
[ "torch.nn.functional.binary_cross_entropy_with_logits", "torch.nn.functional.gumbel_softmax", "torch.zeros", "torch.ones", "torch.utils.data.DataLoader", "torch.matmul", "torch.randn" ]
0.4.0
louis2889184/sg2im
6df2095bf58703c7d6d74bf47535a7cf45690bc0
1.5
import copy from dataclasses import dataclass from typing import List, Optional import torch from torch.nn import CrossEntropyLoss, Module from torch.utils.data import DataLoader def federated_averaging(models: List[Module]) -> Module: global_model = copy.deepcopy(models[0]) global_weights = global_model.state_dict() local_weights = [m.state_dict() for m in models] for k in global_weights.keys(): for i in range(1, len(local_weights)): global_weights[k] += local_weights[i][k] global_weights[k] = torch.div(global_weights[k], len(local_weights)) global_model.load_state_dict(global_weights) return global_model class ModelAccumulator: def __init__(self): self.model_counter: int = 0 self.global_model = None self.global_weights = None def update(self, model): local_weights = model.state_dict() if self.global_model is None: self.global_model = model self.global_weights = local_weights self.model_counter += 1 else: for k in self.global_weights.keys(): self.global_weights[k] += local_weights[k] self.model_counter += 1 def get(self): for k in self.global_weights.keys(): self.global_weights[k] = torch.div( self.global_weights[k], self.model_counter ) self.global_model.load_state_dict(self.global_weights) return self.global_model def reset(self): self.global_model = None self.global_weights = None self.model_counter = 0 @dataclass class EdgeDeviceSettings: batch_size: int epochs: int learning_rate: float learning_rate_decay: float device: str @dataclass class TrainingResult: loss: float steps: int learning_rate: float class EdgeDevice: def __init__( self, device_id: int, settings: EdgeDeviceSettings, data_loader: DataLoader ): self.device_id = device_id self._data_loader = data_loader self.setting = copy.deepcopy(settings) self._loss_func = CrossEntropyLoss() self._model: Optional[Module] = None def download(self, model: Module): self._model = copy.deepcopy(model) def upload(self) -> Module: if self._model is not None: return copy.deepcopy(self._model) else: raise ValueError("Model not found on this device!") def train(self) -> TrainingResult: if self._data_loader is None: raise ValueError("Dataset not found on this device!") self._model.train() self.setting.learning_rate = ( self.setting.learning_rate * self.setting.learning_rate_decay ) optimizer = torch.optim.SGD( params=self._model.parameters(), lr=self.setting.learning_rate ) epoch_loss = [] local_steps: int = 0 for _ in range(self.setting.epochs): batch_loss = [] for i_batch, (images, labels) in enumerate(self._data_loader): self._model.zero_grad() images = images.to(self.setting.device) labels = labels.to(self.setting.device) logits = self._model(images) loss = self._loss_func(logits, labels) loss.backward() optimizer.step() local_steps += 1 batch_loss.append(loss.item()) epoch_loss.append(sum(batch_loss) / len(batch_loss)) mean_loss = sum(epoch_loss) / len(epoch_loss) return TrainingResult( loss=mean_loss, steps=local_steps, learning_rate=self.setting.learning_rate )
[ "torch.div", "torch.nn.CrossEntropyLoss" ]
1.5.0
dawidkski/federated-faceid
95b1f4b7da0e8baf1cac35edf3b49528c650c491
0.4
""" This file is for models creation, which consults options and creates each encoder and decoder accordingly. """ import re import torch import torch.nn as nn from torch.nn.init import xavier_uniform_ import onmt.inputters as inputters import onmt.modules from onmt.encoders.rnn_encoder import RNNEncoder from onmt.encoders.transformer import TransformerEncoder from onmt.encoders.cnn_encoder import CNNEncoder from onmt.encoders.mean_encoder import MeanEncoder from onmt.encoders.audio_encoder import AudioEncoder from onmt.encoders.image_encoder import ImageEncoder from onmt.decoders.decoder import InputFeedRNNDecoder, StdRNNDecoder from onmt.decoders.transformer import TransformerDecoder from onmt.decoders.cnn_decoder import CNNDecoder from onmt.modules import Embeddings, CopyGenerator from onmt.utils.misc import use_gpu from onmt.utils.logging import logger def build_embeddings(opt, word_dict, feature_dicts, for_encoder=True): """ Build an Embeddings instance. Args: opt: the option in current environment. word_dict(Vocab): words dictionary. feature_dicts([Vocab], optional): a list of feature dictionary. for_encoder(bool): build Embeddings for encoder or decoder? """ if for_encoder: embedding_dim = opt.src_word_vec_size else: embedding_dim = opt.tgt_word_vec_size word_padding_idx = word_dict.stoi[inputters.PAD_WORD] num_word_embeddings = len(word_dict) feats_padding_idx = [feat_dict.stoi[inputters.PAD_WORD] for feat_dict in feature_dicts] num_feat_embeddings = [len(feat_dict) for feat_dict in feature_dicts] return Embeddings(word_vec_size=embedding_dim, position_encoding=opt.position_encoding, feat_merge=opt.feat_merge, feat_vec_exponent=opt.feat_vec_exponent, feat_vec_size=opt.feat_vec_size, dropout=opt.dropout, word_padding_idx=word_padding_idx, feat_padding_idx=feats_padding_idx, word_vocab_size=num_word_embeddings, feat_vocab_sizes=num_feat_embeddings, sparse=opt.optim == "sparseadam") def build_encoder(opt, embeddings): """ Various encoder dispatcher function. Args: opt: the option in current environment. embeddings (Embeddings): vocab embeddings for this encoder. """ if opt.encoder_type == "transformer": return TransformerEncoder(opt.enc_layers, opt.enc_rnn_size, opt.heads, opt.transformer_ff, opt.dropout, embeddings) elif opt.encoder_type == "cnn": return CNNEncoder(opt.enc_layers, opt.enc_rnn_size, opt.cnn_kernel_width, opt.dropout, embeddings) elif opt.encoder_type == "mean": return MeanEncoder(opt.enc_layers, embeddings) else: # "rnn" or "brnn" return RNNEncoder(opt.rnn_type, opt.brnn, opt.enc_layers, opt.enc_rnn_size, opt.dropout, embeddings, opt.bridge) def build_decoder(opt, embeddings): """ Various decoder dispatcher function. Args: opt: the option in current environment. embeddings (Embeddings): vocab embeddings for this decoder. """ if opt.decoder_type == "transformer": return TransformerDecoder(opt.dec_layers, opt.dec_rnn_size, opt.heads, opt.transformer_ff, opt.global_attention, opt.copy_attn, opt.self_attn_type, opt.dropout, embeddings) elif opt.decoder_type == "cnn": return CNNDecoder(opt.dec_layers, opt.dec_rnn_size, opt.global_attention, opt.copy_attn, opt.cnn_kernel_width, opt.dropout, embeddings) elif opt.input_feed: return InputFeedRNNDecoder(opt.rnn_type, opt.brnn, opt.dec_layers, opt.dec_rnn_size, opt.global_attention, opt.global_attention_function, opt.coverage_attn, opt.context_gate, opt.copy_attn, opt.dropout, embeddings, opt.reuse_copy_attn) else: return StdRNNDecoder(opt.rnn_type, opt.brnn, opt.dec_layers, opt.dec_rnn_size, opt.global_attention, opt.global_attention_function, opt.coverage_attn, opt.context_gate, opt.copy_attn, opt.dropout, embeddings, opt.reuse_copy_attn) def load_test_model(opt, dummy_opt, model_path=None): if model_path is None: model_path = opt.models[0] checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage) fields = inputters.load_fields_from_vocab( checkpoint['vocab'], data_type=opt.data_type) model_opt = checkpoint['opt'] for arg in dummy_opt: if arg not in model_opt: model_opt.__dict__[arg] = dummy_opt[arg] model = build_base_model(model_opt, fields, use_gpu(opt), checkpoint) model.eval() model.generator.eval() return fields, model, model_opt def build_base_model(model_opt, fields, gpu, checkpoint=None): """ Args: model_opt: the option loaded from checkpoint. fields: `Field` objects for the model. gpu(bool): whether to use gpu. checkpoint: the model gnerated by train phase, or a resumed snapshot model from a stopped training. Returns: the NMTModel. """ assert model_opt.model_type in ["text", "img", "audio"], \ ("Unsupported model type %s" % (model_opt.model_type)) # for backward compatibility if model_opt.rnn_size != -1: model_opt.enc_rnn_size = model_opt.rnn_size model_opt.dec_rnn_size = model_opt.rnn_size if model_opt.model_type == 'text' and \ model_opt.enc_rnn_size != model_opt.dec_rnn_size: raise AssertionError("""We do not support different encoder and decoder rnn sizes for translation now.""") # Build encoder. if model_opt.model_type == "text": src_dict = fields["src"].vocab feature_dicts = inputters.collect_feature_vocabs(fields, 'src') src_embeddings = build_embeddings(model_opt, src_dict, feature_dicts) encoder = build_encoder(model_opt, src_embeddings) elif model_opt.model_type == "img": if ("image_channel_size" not in model_opt.__dict__): image_channel_size = 3 else: image_channel_size = model_opt.image_channel_size encoder = ImageEncoder(model_opt.enc_layers, model_opt.brnn, model_opt.enc_rnn_size, model_opt.dropout, image_channel_size) elif model_opt.model_type == "audio": encoder = AudioEncoder(model_opt.rnn_type, model_opt.enc_layers, model_opt.dec_layers, model_opt.brnn, model_opt.enc_rnn_size, model_opt.dec_rnn_size, model_opt.audio_enc_pooling, model_opt.dropout, model_opt.sample_rate, model_opt.window_size) # Build decoder. tgt_dict = fields["tgt"].vocab feature_dicts = inputters.collect_feature_vocabs(fields, 'tgt') tgt_embeddings = build_embeddings(model_opt, tgt_dict, feature_dicts, for_encoder=False) # Share the embedding matrix - preprocess with share_vocab required. if model_opt.share_embeddings: # src/tgt vocab should be the same if `-share_vocab` is specified. if src_dict != tgt_dict: raise AssertionError('The `-share_vocab` should be set during ' 'preprocess if you use share_embeddings!') tgt_embeddings.word_lut.weight = src_embeddings.word_lut.weight decoder = build_decoder(model_opt, tgt_embeddings) # Build NMTModel(= encoder + decoder). device = torch.device("cuda" if gpu else "cpu") model = onmt.models.NMTModel(encoder, decoder) # Build Generator. if not model_opt.copy_attn: if model_opt.generator_function == "sparsemax": gen_func = onmt.modules.sparse_activations.LogSparsemax(dim=-1) else: gen_func = nn.LogSoftmax(dim=-1) generator = nn.Sequential( nn.Linear(model_opt.dec_rnn_size, len(fields["tgt"].vocab)), gen_func ) if model_opt.share_decoder_embeddings: generator[0].weight = decoder.embeddings.word_lut.weight else: generator = CopyGenerator(model_opt.dec_rnn_size, fields["tgt"].vocab) # Load the model states from checkpoint or initialize them. if checkpoint is not None: # This preserves backward-compat for models using customed layernorm def fix_key(s): s = re.sub(r'(.*)\.layer_norm((_\d+)?)\.b_2', r'\1.layer_norm\2.bias', s) s = re.sub(r'(.*)\.layer_norm((_\d+)?)\.a_2', r'\1.layer_norm\2.weight', s) return s checkpoint['model'] = \ {fix_key(k): v for (k, v) in checkpoint['model'].items()} # end of patch for backward compatibility model.load_state_dict(checkpoint['model'], strict=False) generator.load_state_dict(checkpoint['generator'], strict=False) else: if model_opt.param_init != 0.0: for p in model.parameters(): p.data.uniform_(-model_opt.param_init, model_opt.param_init) for p in generator.parameters(): p.data.uniform_(-model_opt.param_init, model_opt.param_init) if model_opt.param_init_glorot: for p in model.parameters(): if p.dim() > 1: xavier_uniform_(p) for p in generator.parameters(): if p.dim() > 1: xavier_uniform_(p) if hasattr(model.encoder, 'embeddings'): model.encoder.embeddings.load_pretrained_vectors( model_opt.pre_word_vecs_enc, model_opt.fix_word_vecs_enc) if hasattr(model.decoder, 'embeddings'): model.decoder.embeddings.load_pretrained_vectors( model_opt.pre_word_vecs_dec, model_opt.fix_word_vecs_dec) # Add generator to model (this registers it as parameter of model). model.generator = generator model.to(device) return model def build_model(model_opt, opt, fields, checkpoint): """ Build the Model """ logger.info('Building model...') model = build_base_model(model_opt, fields, use_gpu(opt), checkpoint) logger.info(model) return model
[ "torch.nn.LogSoftmax", "torch.device", "torch.nn.init.xavier_uniform_", "torch.load" ]
0.4.1
Nazukixv/OpenNMT-py
6265ddbbe9053b018714ac1fb4be9ec8adbaa128
1.4
import os import os.path as osp import numpy as np import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as T from torch.utils.data import DataLoader from tensorboardX import SummaryWriter from data.segmentation import SegmentDataset from model.segmentation.fcn import FCN32 from model.segmentation.unet import UNet, UNetVGG16 __all__ = [ "SegmentAgent" ] class SegmentAgent: """Train Image Segmentation model Requirements: Simple baseline - (15%) validation mIoU > 0.635 - (15%) testing mIoU > 0.625 """ def __init__(self, config): self.config = config # Check environment if torch.cuda.is_available(): self.device = torch.device(config['train']['device']) else: raise RuntimeError("Please train your model with GPU") # Create dataset tr_transform = T.Compose([ T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) te_transform = T.Compose([ T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) train_dataset = SegmentDataset(root=config['dataset']['train']['root'], transform=tr_transform) valid_dataset = SegmentDataset(root=config['dataset']['valid']['root'], transform=te_transform) # Create dataloader self.train_loader = DataLoader(train_dataset, batch_size=config['loader']['batch_size'], num_workers=config['loader']['num_workers'], shuffle=True) self.valid_loader = DataLoader(valid_dataset, batch_size=config['loader']['batch_size'], num_workers=config['loader']['num_workers'], shuffle=False) # Create model if config['train']['model'] == 'fcn': self.model = FCN32(n_classes=7) elif config['train']['model'] == 'unet': self.model = UNetVGG16(n_classes=7) self.model.to(self.device) # Create optimizer self.optimizer = optim.Adam(self.model.parameters(), lr=config['optim']['lr']) # Create loss function self.criterion = nn.CrossEntropyLoss() # Create tensorboard tensorboard_dir = osp.join(config['train']['log_dir'], config['train']['exp_name']) self.writer = SummaryWriter(tensorboard_dir) # Logging self.start_epoch = 0 self.current_epoch = -1 self.current_loss = 10000 # Resume training or not if config['train']['resume']: checkpoint_file = osp.join(config['train']['log_dir'], config['train']['checkpoint_dir'], 'best.pth') checkpoint = torch.load(checkpoint_file) self.model.load_state_dict(checkpoint['model']) self.optimizer.load_state_dict(checkpoint['optimizer']) for param_group in self.optimizer.param_groups: param_group['lr'] = config['optim']['lr'] self.current_epoch = checkpoint['current_epoch'] + 1 self.start_epoch = self.current_epoch + 1 print("Resume training at epoch {}".format(self.start_epoch)) def train(self): for epoch in range(self.start_epoch, self.config['train']['n_epochs']): self.current_epoch = epoch self.train_one_epoch() self.validate() def train_one_epoch(self): running_loss = 0 self.model.train() for i, (imgs, targets) in enumerate(self.train_loader): imgs = imgs.to(self.device) targets = targets.to(self.device) # Forward & Backward self.optimizer.zero_grad() outputs = self.model(imgs) # (n, c, h, w) preds = outputs.transpose(1, 2).transpose(2, 3).contiguous().view(-1, 7) labels = targets.flatten() loss = self.criterion(preds, labels) loss.backward() self.optimizer.step() # Cumulate result running_loss += loss.item() * len(imgs) # Show training information if (i % self.config['train']['interval']) == 0: print("Epoch {}:{}({}%), Loss: {:.2f}".format( self.current_epoch, self.config['train']['n_epochs'], int(i*100/len(self.train_loader)), loss.item())) train_loss = running_loss / len(self.train_loader.dataset) print("Epoch {}:{}, Train Loss: {:.2f}".format( self.current_epoch, self.config['train']['n_epochs'], train_loss)) # Export result to tensorboard self.writer.add_scalar("Train Loss", train_loss, self.current_epoch) def validate(self): running_loss = 0 pred_masks = [] true_masks = [] self.model.eval() with torch.no_grad(): for imgs, targets in self.valid_loader: imgs = imgs.to(self.device) targets = targets.to(self.device) outputs = self.model(imgs) # (n, c, h, w) # Save segmenation mask pred_mask = np.argmax(outputs.detach().cpu().numpy(), axis=1) pred_masks.append(pred_mask) true_masks.append(targets.detach().cpu().numpy()) # Compute loss preds = outputs.transpose(1, 2).transpose(2, 3).contiguous().view(-1, 7) labels = targets.flatten() loss = self.criterion(preds, labels) # Validation Loss running_loss += loss.item() * len(imgs) # Show validation result pred_masks = np.vstack(pred_masks) true_masks = np.vstack(true_masks) miou = self._mean_iou_score(pred_masks, true_masks) valid_loss = running_loss / len(self.valid_loader.dataset) print("Epoch {}:{}, Valid Loss: {:.2f}, mIoU: {:.3f}".format( self.current_epoch, self.config['train']['n_epochs'], valid_loss, miou)) # Save training checkpoints if valid_loss < self.current_loss: self.current_loss = valid_loss self._save_checkpoint() # Export result to tensorboard self.writer.add_scalar("Valid Loss", valid_loss, self.current_epoch) def finalize(self): pass def _save_checkpoint(self): checkpoints = { 'model': self.model.state_dict(), 'optimizer': self.optimizer.state_dict(), 'current_epoch': self.current_epoch, 'current_loss': self.current_loss } checkpoint_file = osp.join(self.config['train']['log_dir'], self.config['train']['checkpoint_dir'], 'best.pth') if not osp.exists(osp.dirname(checkpoint_file)): os.makedirs(osp.dirname(checkpoint_file)) torch.save(checkpoints, checkpoint_file) print("Save checkpoint to '{}'".format(checkpoint_file)) def _mean_iou_score(self, pred_masks, true_masks): """Compute mean IoU score over 6 classes""" mean_iou = 0 for i in range(6): tp_fp = np.sum(pred_masks == i) tp_fn = np.sum(true_masks == i) tp = np.sum((pred_masks == i) * (true_masks == i)) iou = tp / (tp_fp + tp_fn - tp) mean_iou += iou / 6 return mean_iou
[ "torch.device", "torch.save", "torch.no_grad", "torch.cuda.is_available", "torch.utils.data.DataLoader", "torch.load", "torch.nn.CrossEntropyLoss" ]
1.4.0
johnnylord/trytry-segmentation
a88d75571ddba92bd10ac2d7303bee9426188b62
1.6
import argparse from random import choice from pathlib import Path # torch import torch from torch.optim import Adam from torch.nn.utils import clip_grad_norm_ # vision imports from PIL import Image from torchvision import transforms as T from torch.utils.data import DataLoader, Dataset from torchvision.datasets import ImageFolder from torchvision.utils import make_grid, save_image # dalle related classes and utils from dalle_pytorch import OpenAIDiscreteVAE, DiscreteVAE, DALLE from dalle_pytorch.simple_tokenizer import tokenize, tokenizer, VOCAB_SIZE # argument parsing parser = argparse.ArgumentParser() group = parser.add_mutually_exclusive_group(required = False) group.add_argument('--vae_path', type = str, help='path to your trained discrete VAE') group.add_argument('--dalle_path', type = str, help='path to your partially trained DALL-E') parser.add_argument('--image_text_folder', type = str, required = True, help='path to your folder of images and text for learning the DALL-E') args = parser.parse_args() # helpers def exists(val): return val is not None # constants VAE_PATH = args.vae_path DALLE_PATH = args.dalle_path RESUME = exists(DALLE_PATH) EPOCHS = 20 BATCH_SIZE = 4 LEARNING_RATE = 3e-4 GRAD_CLIP_NORM = 0.5 MODEL_DIM = 512 TEXT_SEQ_LEN = 256 DEPTH = 2 HEADS = 4 DIM_HEAD = 64 # reconstitute vae if RESUME: dalle_path = Path(DALLE_PATH) assert dalle_path.exists(), 'DALL-E model file does not exist' loaded_obj = torch.load(str(dalle_path)) dalle_params, vae_params, weights = loaded_obj['hparams'], loaded_obj['vae_params'], loaded_obj['weights'] vae = DiscreteVAE(**vae_params) dalle_params = dict( vae = vae, **dalle_params ) IMAGE_SIZE = vae_params['image_size'] else: if exists(VAE_PATH): vae_path = Path(VAE_PATH) assert vae_path.exists(), 'VAE model file does not exist' loaded_obj = torch.load(str(vae_path)) vae_params, weights = loaded_obj['hparams'], loaded_obj['weights'] vae = DiscreteVAE(**vae_params) vae.load_state_dict(weights) else: print('using OpenAIs pretrained VAE for encoding images to tokens') vae_params = None vae = OpenAIDiscreteVAE() IMAGE_SIZE = vae.image_size dalle_params = dict( vae = vae, num_text_tokens = VOCAB_SIZE, text_seq_len = TEXT_SEQ_LEN, dim = MODEL_DIM, depth = DEPTH, heads = HEADS, dim_head = DIM_HEAD ) # helpers def save_model(path): save_obj = { 'hparams': dalle_params, 'vae_params': vae_params, 'weights': dalle.state_dict() } torch.save(save_obj, path) # dataset loading class TextImageDataset(Dataset): def __init__(self, folder, text_len = 256, image_size = 128): super().__init__() path = Path(folder) text_files = [*path.glob('**/*.txt')] image_files = [ *path.glob('**/*.png'), *path.glob('**/*.jpg'), *path.glob('**/*.jpeg') ] text_files = {t.stem: t for t in text_files} image_files = {i.stem: i for i in image_files} keys = (image_files.keys() & text_files.keys()) self.keys = list(keys) self.text_files = {k: v for k, v in text_files.items() if k in keys} self.image_files = {k: v for k, v in image_files.items() if k in keys} self.image_tranform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.CenterCrop(image_size), T.Resize(image_size), T.ToTensor(), T.Lambda(lambda t: t.expand(3, -1, -1)), T.Normalize((0.5,) * 3, (0.5,) * 3) ]) def __len__(self): return len(self.keys) def __getitem__(self, ind): key = self.keys[ind] text_file = self.text_files[key] image_file = self.image_files[key] image = Image.open(image_file) descriptions = text_file.read_text().split('\n') descriptions = list(filter(lambda t: len(t) > 0, descriptions)) description = choice(descriptions) tokenized_text = tokenize(description).squeeze(0) mask = tokenized_text != 0 image_tensor = self.image_tranform(image) return tokenized_text, image_tensor, mask # create dataset and dataloader ds = TextImageDataset( args.image_text_folder, text_len = TEXT_SEQ_LEN, image_size = IMAGE_SIZE ) assert len(ds) > 0, 'dataset is empty' print(f'{len(ds)} image-text pairs found for training') dl = DataLoader(ds, batch_size = BATCH_SIZE, shuffle = True, drop_last = True) # initialize DALL-E dalle = DALLE(**dalle_params).cuda() if RESUME: dalle.load_state_dict(weights) # optimizer opt = Adam(dalle.parameters(), lr = LEARNING_RATE) # experiment tracker import wandb wandb.config.depth = DEPTH wandb.config.heads = HEADS wandb.config.dim_head = DIM_HEAD wandb.init(project = 'dalle_train_transformer', resume = RESUME) # training for epoch in range(EPOCHS): for i, (text, images, mask) in enumerate(dl): text, images, mask = map(lambda t: t.cuda(), (text, images, mask)) loss = dalle(text, images, mask = mask, return_loss = True) loss.backward() clip_grad_norm_(dalle.parameters(), GRAD_CLIP_NORM) opt.step() opt.zero_grad() log = {} if i % 10 == 0: print(epoch, i, f'loss - {loss.item()}') log = { **log, 'epoch': epoch, 'iter': i, 'loss': loss.item() } if i % 100 == 0: sample_text = text[:1] token_list = sample_text.masked_select(sample_text != 0).tolist() decoded_text = tokenizer.decode(token_list) image = dalle.generate_images( text[:1], mask = mask[:1], filter_thres = 0.9 # topk sampling at 0.9 ) save_model(f'./dalle.pt') wandb.save(f'./dalle.pt') log = { **log, 'image': wandb.Image(image, caption = decoded_text) } wandb.log(log) save_model(f'./dalle-final.pt') wandb.save('./dalle-final.pt') wandb.finish()
[ "torch.save", "torch.utils.data.DataLoader" ]
1.6
Atica57/DALLE-pytorch
4fa108271aeb1972fcb118390ec15b656f2c328a
1.3
import time import random import numpy as np from pathlib import Path from PIL import Image, ImageDraw, ImageFont, ImageFilter import torch from torch.utils.data import Dataset from src import config def draw_grapheme(grapheme, font_path, size=(137, 236)): height, width = size image = Image.new('RGB', (width, height)) draw = ImageDraw.Draw(image) font_size = np.random.randint(70, 110) font = ImageFont.truetype(str(font_path), font_size) w, h = draw.textsize(grapheme, font=font) width_ratio = np.random.uniform(1.5, 2.5) height_ratio = np.random.uniform(2.5, 3.5) fill = np.random.randint(200, 255) draw.text(((width - w) / width_ratio, (height - h) / height_ratio), grapheme, font=font, fill=fill) image = image.filter(ImageFilter.BLUR) return np.array(image)[:, :, 0] def get_draw_data(): graphemes = [] for grapheme_root_idx, grapheme_root in config.class_map['grapheme_root'].items(): for vowel_diacritic_idx, vowel_diacritic in config.class_map['vowel_diacritic'].items(): for consonant_diacritic_idx, consonant_diacritic in config.class_map['consonant_diacritic'].items(): consonant_diacritic, grapheme_root, vowel_diacritic = [c if c != '0' else '' for c in [consonant_diacritic, grapheme_root, vowel_diacritic]] grapheme = consonant_diacritic + grapheme_root + vowel_diacritic graphemes.append({ 'grapheme': grapheme, 'grapheme_root': grapheme_root_idx, 'vowel_diacritic': vowel_diacritic_idx, 'consonant_diacritic': consonant_diacritic_idx }) return graphemes class BengaliDrawDataset(Dataset): def __init__(self, fonts_dir, transform=None, mixer=None): self.fonts_dir = fonts_dir self.transform = transform self.mixer = mixer self.data = get_draw_data() self.font_paths = sorted(Path(fonts_dir).glob('*.ttf')) def __len__(self): return len(self.data) def get_sample(self, idx): sample = self.data[idx] font_path = np.random.choice(self.font_paths) image = draw_grapheme(sample['grapheme'], font_path, size=config.raw_image_shape) grapheme = torch.tensor(sample['grapheme_root'], dtype=torch.int64) vowel = torch.tensor(sample['vowel_diacritic'], dtype=torch.int64) consonant = torch.tensor(sample['consonant_diacritic'], dtype=torch.int64) target = grapheme, vowel, consonant return image, target def _set_random_seed(self, idx): seed = int(time.time() * 1000.0) + idx random.seed(seed) np.random.seed(seed % (2**32 - 1)) @torch.no_grad() def __getitem__(self, idx): self._set_random_seed(idx) image, target = self.get_sample(idx) if self.mixer is not None: image, target = self.mixer(self, image, target) if self.transform is not None: image = self.transform(image) return image, target
[ "torch.no_grad", "torch.tensor" ]
1.3.1
lRomul/argus-bengali-ai
e64374230f5390a17305769126ff4bfc9a2a8644
1.4
import main from common import Task, STOP, GNN_TYPE from attrdict import AttrDict from experiment import Experiment import torch override_params = { 2: {'batch_size': 64, 'eval_every': 1000}, 3: {'batch_size': 64}, 4: {'batch_size': 1024}, 5: {'batch_size': 1024}, 6: {'batch_size': 1024}, 7: {'batch_size': 2048}, 8: {'batch_size': 1024, 'accum_grad': 2}, # effective batch size of 2048, with less GPU memory } class Results: def __init__(self, train_acc, test_acc, epoch): self.train_acc = train_acc self.test_acc = test_acc self.epoch = epoch if __name__ == '__main__': task = Task.DICTIONARY gnn_type = GNN_TYPE.GAT stopping_criterion = STOP.TRAIN min_depth = 2 max_depth = 8 results_all_depths = {} for depth in range(min_depth, max_depth + 1): num_layers = depth + 1 args = main.get_fake_args(task=task, depth=depth, num_layers=num_layers, loader_workers=7, type=gnn_type, stop=stopping_criterion, no_activation=True, no_residual=False) if depth in override_params: for key, value in AttrDict(override_params[depth]).items(): args[key] = value train_acc, test_acc, epoch = Experiment(args).run() torch.cuda.empty_cache() results_all_depths[depth] = Results(train_acc=train_acc, test_acc=test_acc, epoch=epoch) print() print(f'Task: {task}') print('depth, train_acc, test_acc, epoch, train_acc, test_acc, epoch,') for depth in range(min_depth, max_depth + 1): res = results_all_depths[depth] print(f'{depth}, {res.train_acc}, {res.test_acc}, {res.epoch}')
[ "torch.cuda.empty_cache" ]
1.4.0
urialon/bottleneck
481fbb95edc6ae711da40b6305b40c12ce6a6d29
1.0
# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch UniSpeech model.""" import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, Wav2Vec2BaseModelOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import torch_int_div from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_unispeech import UniSpeechConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "UniSpeechConfig" _PROCESSOR_FOR_DOC = "Wav2Vec2Processor" # Base docstring _CHECKPOINT_FOR_DOC = "patrickvonplaten/unispeech-large-1500h-cv-timit" _EXPECTED_OUTPUT_SHAPE = [1, 292, 1024] # CTC docstring _CTC_EXPECTED_OUTPUT = "'mister quilter is the apposl of the midle classes and weare glad to welcom his gosepl'" _CTC_EXPECTED_LOSS = 17.17 # Audio class docstring _FEAT_EXTRACTOR_FOR_DOC = "Wav2Vec2FeatureExtractor" _SEQ_CLASS_CHECKPOINT = "hf-internal-testing/tiny-random-unispeech" _SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'" # TODO(anton) - could you quickly fine-tune a KS WavLM Model _SEQ_CLASS_EXPECTED_LOSS = 0.66 # TODO(anton) - could you quickly fine-tune a KS WavLM Model UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/unispeech-large-1500h-cv", "microsoft/unispeech-large-multi-lingual-1500h-cv", # See all UniSpeech models at https://huggingface.co/models?filter=unispeech ] @dataclass class UniSpeechForPreTrainingOutput(ModelOutput): """ Output type of [`UniSpeechForPreTrainingOutput`], with potential hidden states and attentions. Args: loss (*optional*, returned when model is in train mode, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked projected quantized states. projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive target vectors for contrastive loss. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None projected_states: torch.FloatTensor = None projected_quantized_states: torch.FloatTensor = None codevector_perplexity: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=np.bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->UniSpeech class UniSpeechNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->UniSpeech class UniSpeechLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->UniSpeech class UniSpeechGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->UniSpeech class UniSpeechPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) self.padding = UniSpeechSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->UniSpeech class UniSpeechSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->UniSpeech class UniSpeechFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [UniSpeechGroupNormConvLayer(config, layer_id=0)] + [ UniSpeechNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ UniSpeechLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(conv_layer), hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class UniSpeechFeatureExtractor(UniSpeechFeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->UniSpeech class UniSpeechFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->UniSpeech class UniSpeechAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned aross GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->UniSpeech class UniSpeechFeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->UniSpeech class UniSpeechEncoderLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = UniSpeechAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = UniSpeechFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, output_attentions=False): attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->UniSpeech class UniSpeechEncoderLayerStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.attention = UniSpeechAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = UniSpeechFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, output_attentions=False): attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->UniSpeech class UniSpeechEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([UniSpeechEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 hidden_states[~attention_mask] = 0.0 # extend attention_mask attention_mask = (1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = np.random.uniform(0, 1) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: # create gradient checkpointing function def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer), hidden_states, attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderStableLayerNorm with Wav2Vec2->UniSpeech class UniSpeechEncoderStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList( [UniSpeechEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens are not attended to hidden_states[~attention_mask] = 0 # extend attention_mask attention_mask = (1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = np.random.uniform(0, 1) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication if self.gradient_checkpointing and self.training: # create gradient checkpointing function def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer), hidden_states, attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class UniSpeechGumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. """ def __init__(self, config): super().__init__() self.num_groups = config.num_codevector_groups self.num_vars = config.num_codevectors_per_group if config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {config.codevector_dim} must be divisible by `config.num_codevector_groups`" f" {self.num_groups} for concatenation" ) # storage for codebook variables (codewords) self.codevectors = nn.Parameter( torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) ) self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) # can be decayed for training self.temperature = 2 @staticmethod def _compute_perplexity(probs): marginal_probs = probs.mean(dim=0) perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() return perplexity def forward(self, hidden_states): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) if self.training: # sample code vector probs via gumbel in differentiateable way codevector_probs = nn.functional.gumbel_softmax( hidden_states.float(), tau=self.temperature, hard=True ).type_as(hidden_states) # compute perplexity codevector_soft_dist = torch.softmax( hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(dim=-1) codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_( -1, codevector_idx.view(-1, 1), 1.0 ) codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs) codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) return codevectors, perplexity class UniSpeechPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = UniSpeechConfig base_model_prefix = "unispeech" main_input_name = "input_values" _keys_to_ignore_on_load_missing = [r"position_ids"] supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" # gumbel softmax requires special init if isinstance(module, UniSpeechGumbelVectorQuantizer): module.weight_proj.weight.data.normal_(mean=0.0, std=1) module.weight_proj.bias.data.zero_() nn.init.uniform_(module.codevectors) elif isinstance(module, UniSpeechPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, UniSpeechFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch_int_div(input_length - kernel_size, stride) + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (UniSpeechEncoder, UniSpeechEncoderStableLayerNorm, UniSpeechFeatureEncoder)): module.gradient_checkpointing = value UNISPEECH_START_DOCSTRING = r""" UniSpeech was proposed in [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`UniSpeechConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UNISPEECH_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type *List[float]* or a *numpy.ndarray*, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array into *input_values*, the [`UniSpeechProcessor`] should be used for padding and conversion into a tensor of type *torch.FloatTensor*. See [`UniSpeechProcessor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare UniSpeech Model transformer outputting raw hidden-states without any specific head on top.", UNISPEECH_START_DOCSTRING, ) class UniSpeechModel(UniSpeechPreTrainedModel): def __init__(self, config: UniSpeechConfig): super().__init__(config) self.config = config self.feature_extractor = UniSpeechFeatureEncoder(config) self.feature_projection = UniSpeechFeatureProjection(config) if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: self.encoder = UniSpeechEncoderStableLayerNorm(config) else: self.encoder = UniSpeechEncoder(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( processor_class=_PROCESSOR_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """UniSpeech Model with a vector-quantization module and ctc loss for pre-training.""", UNISPEECH_START_DOCSTRING ) class UniSpeechForPreTraining(UniSpeechPreTrainedModel): def __init__(self, config: UniSpeechConfig): super().__init__(config) self.unispeech = UniSpeechModel(config) self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) self.quantizer = UniSpeechGumbelVectorQuantizer(config) self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) self.project_hid = nn.Linear(config.proj_codevector_dim, config.hidden_size) self.ctc_proj = nn.Linear(config.hidden_size, config.num_ctc_classes) self.dropout = nn.Dropout(config.final_dropout) # Initialize weights and apply final processing self.post_init() def set_gumbel_temperature(self, temperature: int): """ Set the Gumbel softmax temperature to a given value. Only necessary for training """ self.quantizer.temperature = temperature def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech.feature_extractor._freeze_parameters() @staticmethod def compute_contrastive_logits( target_features: torch.FloatTensor, negative_features: torch.FloatTensor, predicted_features: torch.FloatTensor, temperature: int = 1, ): """ Compute logits for contrastive loss based using cosine similarity as the distance measure between `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. """ target_features = torch.cat([target_features, negative_features], dim=0) logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1) logits = logits.type_as(target_features) # apply temperature logits = logits / temperature return logits @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=UniSpeechForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, UniSpeechForPreTrainingOutput]: r""" mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in *config.proj_codevector_dim* space. sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*): Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training. Returns: Example: ```python >>> import torch >>> from transformers import Wav2Vec2FeatureExtractor, UniSpeechForPreTraining >>> from transformers.models.unispeech.modeling_unispeech import _compute_mask_indices >>> feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( ... "hf-internal-testing/tiny-random-unispeech-sat" ... ) >>> model = UniSpeechForPreTraining.from_pretrained("microsoft/unispeech-large-1500h-cv") >>> # TODO: Add full pretraining example ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.unispeech( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) transformer_features = outputs[0] # quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1]) quantized_features, codevector_perplexity = self.quantizer(extract_features) # project quantized features twice quantized_features = self.project_q(quantized_features) quantized_features = self.project_hid(quantized_features) prob_replace_matrix = torch.empty(transformer_features.size(0), transformer_features.size(1)).fill_( self.config.replace_prob ) prob_replace_matrix = prob_replace_matrix.transpose(0, 1) sampled_replace_matrix = torch.bernoulli(prob_replace_matrix).bool().to(transformer_features.device) sampled_replace_matrix = sampled_replace_matrix.transpose(0, 1) sampled_replace_matrix = sampled_replace_matrix.unsqueeze(-1) logits = transformer_features.masked_fill(sampled_replace_matrix, 0.0) + ( quantized_features.masked_fill(~sampled_replace_matrix, 0.0) ) # project to ctc units logits = self.dropout(logits) logits = self.ctc_proj(logits) # TODO(PVP) - add negative sampling & loss computation loss = None if not return_dict: if loss is not None: return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return UniSpeechForPreTrainingOutput( loss=loss, projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """UniSpeech Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", UNISPEECH_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->UniSpeech, wav2vec2->unispeech, WAV_2_VEC_2->UNISPEECH class UniSpeechForCTC(UniSpeechPreTrainedModel): def __init__(self, config): super().__init__(config) self.unispeech = UniSpeechModel(config) self.dropout = nn.Dropout(config.final_dropout) if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `UniSpeechForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech.feature_extractor._freeze_parameters() @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( processor_class=_PROCESSOR_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.unispeech( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ UniSpeech Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, UNISPEECH_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification with Wav2Vec2->UniSpeech, wav2vec2->unispeech, WAV_2_VEC_2->UNISPEECH class UniSpeechForSequenceClassification(UniSpeechPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of UniSpeech adapters (config.add_adapter=True)" ) self.unispeech = UniSpeechModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.unispeech.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( processor_class=_FEAT_EXTRACTOR_FOR_DOC, checkpoint=_SEQ_CLASS_CHECKPOINT, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.unispeech( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
[ "torch.nn.Linear", "torch.cat", "torch.stack", "torch.nn.ModuleList", "torch.nn.init.kaiming_normal_", "torch.bmm", "torch.ones", "torch.nn.CrossEntropyLoss", "torch.nn.functional.ctc_loss", "torch.nn.LayerNorm", "torch.nn.Conv1d", "torch.nn.init.constant_", "torch.FloatTensor", "torch.tensor", "torch.zeros", "torch.nn.functional.dropout", "torch.nn.GroupNorm", "torch.nn.functional.log_softmax", "torch.nn.functional.softmax", "torch.nn.init.uniform_", "torch.nn.utils.weight_norm", "torch.log", "torch.backends.cudnn.flags", "torch.nn.Dropout", "torch.arange", "torch.bernoulli", "torch.ones_like" ]
1.0
bugface/transformers
ba286fe7d51db12ad663effac83bed8199dd7141
1.0
# coding=utf-8 # Copyright Studio Ousia and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch LUKE model.""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN, gelu from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_luke import LukeConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LukeConfig" _TOKENIZER_FOR_DOC = "LukeTokenizer" _CHECKPOINT_FOR_DOC = "studio-ousia/luke-base" LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = [ "studio-ousia/luke-base", "studio-ousia/luke-large", # See all LUKE models at https://huggingface.co/models?filter=luke ] @dataclass class BaseLukeModelOutputWithPooling(BaseModelOutputWithPooling): """ Base class for outputs of the LUKE model. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`): Sequence of entity hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length + entity_length, sequence_length + entity_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ entity_last_hidden_state: torch.FloatTensor = None entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass class BaseLukeModelOutput(BaseModelOutput): """ Base class for model's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`): Sequence of entity hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ entity_last_hidden_state: torch.FloatTensor = None entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass class LukeMaskedLMOutput(ModelOutput): """ Base class for model's outputs, with potential hidden states and attentions. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): The sum of masked language modeling (MLM) loss and entity prediction loss. mlm_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Masked language modeling (MLM) loss. mep_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Masked entity prediction (MEP) loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). entity_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the entity prediction head (scores for each entity vocabulary token before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None mlm_loss: Optional[torch.FloatTensor] = None mep_loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None entity_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class EntityClassificationOutput(ModelOutput): """ Outputs of entity classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class EntityPairClassificationOutput(ModelOutput): """ Outputs of entity pair classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class EntitySpanClassificationOutput(ModelOutput): """ Outputs of entity span classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None class LukeEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) class LukeEntityEmbeddings(nn.Module): def __init__(self, config: LukeConfig): super().__init__() self.config = config self.entity_embeddings = nn.Embedding(config.entity_vocab_size, config.entity_emb_size, padding_idx=0) if config.entity_emb_size != config.hidden_size: self.entity_embedding_dense = nn.Linear(config.entity_emb_size, config.hidden_size, bias=False) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, entity_ids: torch.LongTensor, position_ids: torch.LongTensor, token_type_ids: torch.LongTensor = None ): if token_type_ids is None: token_type_ids = torch.zeros_like(entity_ids) entity_embeddings = self.entity_embeddings(entity_ids) if self.config.entity_emb_size != self.config.hidden_size: entity_embeddings = self.entity_embedding_dense(entity_embeddings) position_embeddings = self.position_embeddings(position_ids.clamp(min=0)) position_embedding_mask = (position_ids != -1).type_as(position_embeddings).unsqueeze(-1) position_embeddings = position_embeddings * position_embedding_mask position_embeddings = torch.sum(position_embeddings, dim=-2) position_embeddings = position_embeddings / position_embedding_mask.sum(dim=-2).clamp(min=1e-7) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = entity_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LukeSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.use_entity_aware_attention = config.use_entity_aware_attention self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) if self.use_entity_aware_attention: self.w2e_query = nn.Linear(config.hidden_size, self.all_head_size) self.e2w_query = nn.Linear(config.hidden_size, self.all_head_size) self.e2e_query = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): word_size = word_hidden_states.size(1) if entity_hidden_states is None: concat_hidden_states = word_hidden_states else: concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1) key_layer = self.transpose_for_scores(self.key(concat_hidden_states)) value_layer = self.transpose_for_scores(self.value(concat_hidden_states)) if self.use_entity_aware_attention and entity_hidden_states is not None: # compute query vectors using word-word (w2w), word-entity (w2e), entity-word (e2w), entity-entity (e2e) # query layers w2w_query_layer = self.transpose_for_scores(self.query(word_hidden_states)) w2e_query_layer = self.transpose_for_scores(self.w2e_query(word_hidden_states)) e2w_query_layer = self.transpose_for_scores(self.e2w_query(entity_hidden_states)) e2e_query_layer = self.transpose_for_scores(self.e2e_query(entity_hidden_states)) # compute w2w, w2e, e2w, and e2e key vectors used with the query vectors computed above w2w_key_layer = key_layer[:, :, :word_size, :] e2w_key_layer = key_layer[:, :, :word_size, :] w2e_key_layer = key_layer[:, :, word_size:, :] e2e_key_layer = key_layer[:, :, word_size:, :] # compute attention scores based on the dot product between the query and key vectors w2w_attention_scores = torch.matmul(w2w_query_layer, w2w_key_layer.transpose(-1, -2)) w2e_attention_scores = torch.matmul(w2e_query_layer, w2e_key_layer.transpose(-1, -2)) e2w_attention_scores = torch.matmul(e2w_query_layer, e2w_key_layer.transpose(-1, -2)) e2e_attention_scores = torch.matmul(e2e_query_layer, e2e_key_layer.transpose(-1, -2)) # combine attention scores to create the final attention score matrix word_attention_scores = torch.cat([w2w_attention_scores, w2e_attention_scores], dim=3) entity_attention_scores = torch.cat([e2w_attention_scores, e2e_attention_scores], dim=3) attention_scores = torch.cat([word_attention_scores, entity_attention_scores], dim=2) else: query_layer = self.transpose_for_scores(self.query(concat_hidden_states)) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in LukeModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) output_word_hidden_states = context_layer[:, :word_size, :] if entity_hidden_states is None: output_entity_hidden_states = None else: output_entity_hidden_states = context_layer[:, word_size:, :] if output_attentions: outputs = (output_word_hidden_states, output_entity_hidden_states, attention_probs) else: outputs = (output_word_hidden_states, output_entity_hidden_states) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class LukeSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LukeAttention(nn.Module): def __init__(self, config): super().__init__() self.self = LukeSelfAttention(config) self.output = LukeSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): raise NotImplementedError("LUKE does not support the pruning of attention heads") def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): word_size = word_hidden_states.size(1) self_outputs = self.self( word_hidden_states, entity_hidden_states, attention_mask, head_mask, output_attentions, ) if entity_hidden_states is None: concat_self_outputs = self_outputs[0] concat_hidden_states = word_hidden_states else: concat_self_outputs = torch.cat(self_outputs[:2], dim=1) concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1) attention_output = self.output(concat_self_outputs, concat_hidden_states) word_attention_output = attention_output[:, :word_size, :] if entity_hidden_states is None: entity_attention_output = None else: entity_attention_output = attention_output[:, word_size:, :] # add attentions if we output them outputs = (word_attention_output, entity_attention_output) + self_outputs[2:] return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class LukeIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class LukeOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LukeLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = LukeAttention(config) self.intermediate = LukeIntermediate(config) self.output = LukeOutput(config) def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): word_size = word_hidden_states.size(1) self_attention_outputs = self.attention( word_hidden_states, entity_hidden_states, attention_mask, head_mask, output_attentions=output_attentions, ) if entity_hidden_states is None: concat_attention_output = self_attention_outputs[0] else: concat_attention_output = torch.cat(self_attention_outputs[:2], dim=1) outputs = self_attention_outputs[2:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, concat_attention_output ) word_layer_output = layer_output[:, :word_size, :] if entity_hidden_states is None: entity_layer_output = None else: entity_layer_output = layer_output[:, word_size:, :] outputs = (word_layer_output, entity_layer_output) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class LukeEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LukeLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_word_hidden_states = () if output_hidden_states else None all_entity_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_word_hidden_states = all_word_hidden_states + (word_hidden_states,) all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), word_hidden_states, entity_hidden_states, attention_mask, layer_head_mask, ) else: layer_outputs = layer_module( word_hidden_states, entity_hidden_states, attention_mask, layer_head_mask, output_attentions, ) word_hidden_states = layer_outputs[0] if entity_hidden_states is not None: entity_hidden_states = layer_outputs[1] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[2],) if output_hidden_states: all_word_hidden_states = all_word_hidden_states + (word_hidden_states,) all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,) if not return_dict: return tuple( v for v in [ word_hidden_states, all_word_hidden_states, all_self_attentions, entity_hidden_states, all_entity_hidden_states, ] if v is not None ) return BaseLukeModelOutput( last_hidden_state=word_hidden_states, hidden_states=all_word_hidden_states, attentions=all_self_attentions, entity_last_hidden_state=entity_hidden_states, entity_hidden_states=all_entity_hidden_states, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class LukePooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class EntityPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.entity_emb_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.entity_emb_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class EntityPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transform = EntityPredictionHeadTransform(config) self.decoder = nn.Linear(config.entity_emb_size, config.entity_vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.entity_vocab_size)) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class LukePreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LukeConfig base_model_prefix = "luke" supports_gradient_checkpointing = True def _init_weights(self, module: nn.Module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): if module.embedding_dim == 1: # embedding for bias parameters module.weight.data.zero_() else: module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, LukeEncoder): module.gradient_checkpointing = value LUKE_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LukeConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LUKE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`LukeTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) entity_ids (`torch.LongTensor` of shape `(batch_size, entity_length)`): Indices of entity tokens in the entity vocabulary. Indices can be obtained using [`LukeTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. entity_attention_mask (`torch.FloatTensor` of shape `(batch_size, entity_length)`, *optional*): Mask to avoid performing attention on padding entity token indices. Mask values selected in `[0, 1]`: - 1 for entity tokens that are **not masked**, - 0 for entity tokens that are **masked**. entity_token_type_ids (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*): Segment token indices to indicate first and second portions of the entity token inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *portion A* entity token, - 1 corresponds to a *portion B* entity token. entity_position_ids (`torch.LongTensor` of shape `(batch_size, entity_length, max_mention_length)`, *optional*): Indices of positions of each input entity in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare LUKE model transformer outputting raw hidden-states for both word tokens and entities without any" " specific head on top.", LUKE_START_DOCSTRING, ) class LukeModel(LukePreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config: LukeConfig, add_pooling_layer: bool = True): super().__init__(config) self.config = config self.embeddings = LukeEmbeddings(config) self.entity_embeddings = LukeEntityEmbeddings(config) self.encoder = LukeEncoder(config) self.pooler = LukePooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def get_entity_embeddings(self): return self.entity_embeddings.entity_embeddings def set_entity_embeddings(self, value): self.entity_embeddings.entity_embeddings = value def _prune_heads(self, heads_to_prune): raise NotImplementedError("LUKE does not support the pruning of attention heads") @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseLukeModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseLukeModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import LukeTokenizer, LukeModel >>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base") >>> model = LukeModel.from_pretrained("studio-ousia/luke-base") # Compute the contextualized entity representation corresponding to the entity mention "Beyoncé" >>> text = "Beyoncé lives in Los Angeles." >>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé" >>> encoding = tokenizer(text, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt") >>> outputs = model(**encoding) >>> word_last_hidden_state = outputs.last_hidden_state >>> entity_last_hidden_state = outputs.entity_last_hidden_state # Input Wikipedia entities to obtain enriched contextualized representations of word tokens >>> text = "Beyoncé lives in Los Angeles." >>> entities = [ ... "Beyoncé", ... "Los Angeles", ... ] # Wikipedia entity titles corresponding to the entity mentions "Beyoncé" and "Los Angeles" >>> entity_spans = [ ... (0, 7), ... (17, 28), ... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" >>> encoding = tokenizer( ... text, entities=entities, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt" ... ) >>> outputs = model(**encoding) >>> word_last_hidden_state = outputs.last_hidden_state >>> entity_last_hidden_state = outputs.entity_last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if entity_ids is not None: entity_seq_length = entity_ids.size(1) if entity_attention_mask is None: entity_attention_mask = torch.ones((batch_size, entity_seq_length), device=device) if entity_token_type_ids is None: entity_token_type_ids = torch.zeros((batch_size, entity_seq_length), dtype=torch.long, device=device) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) # First, compute word embeddings word_embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) # Second, compute extended attention mask extended_attention_mask = self.get_extended_attention_mask(attention_mask, entity_attention_mask) # Third, compute entity embeddings and concatenate with word embeddings if entity_ids is None: entity_embedding_output = None else: entity_embedding_output = self.entity_embeddings(entity_ids, entity_position_ids, entity_token_type_ids) # Fourth, send embeddings through the model encoder_outputs = self.encoder( word_embedding_output, entity_embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # Fifth, get the output. LukeModel outputs the same as BertModel, namely sequence_output of shape (batch_size, seq_len, hidden_size) sequence_output = encoder_outputs[0] # Sixth, we compute the pooled_output, word_sequence_output and entity_sequence_output based on the sequence_output pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseLukeModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, entity_last_hidden_state=encoder_outputs.entity_last_hidden_state, entity_hidden_states=encoder_outputs.entity_hidden_states, ) def get_extended_attention_mask( self, word_attention_mask: torch.LongTensor, entity_attention_mask: Optional[torch.LongTensor] ): """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: word_attention_mask (`torch.LongTensor`): Attention mask for word tokens with ones indicating tokens to attend to, zeros for tokens to ignore. entity_attention_mask (`torch.LongTensor`, *optional*): Attention mask for entity tokens with ones indicating tokens to attend to, zeros for tokens to ignore. Returns: `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. """ attention_mask = word_attention_mask if entity_attention_mask is not None: attention_mask = torch.cat([attention_mask, entity_attention_mask], dim=-1) if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError(f"Wrong shape for attention_mask (shape {attention_mask.shape})") extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def create_position_ids_from_input_ids(input_ids, padding_idx): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask return incremental_indices.long() + padding_idx # Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead class LukeLMHead(nn.Module): """Roberta Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) self.bias = self.decoder.bias @add_start_docstrings( """ The LUKE model with a language modeling head and entity prediction head on top for masked language modeling and masked entity prediction. """, LUKE_START_DOCSTRING, ) class LukeForMaskedLM(LukePreTrainedModel): _keys_to_ignore_on_save = [ r"lm_head.decoder.weight", r"lm_head.decoder.bias", r"entity_predictions.decoder.weight", ] _keys_to_ignore_on_load_missing = [ r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias", r"entity_predictions.decoder.weight", ] def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.lm_head = LukeLMHead(config) self.entity_predictions = EntityPredictionHead(config) self.loss_fn = nn.CrossEntropyLoss(ignore_index=-1) # Initialize weights and apply final processing self.post_init() def tie_weights(self): super().tie_weights() self._tie_or_clone_weights(self.entity_predictions.decoder, self.luke.entity_embeddings.entity_embeddings) def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=LukeMaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.LongTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, entity_labels: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LukeMaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` entity_labels (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) loss = None mlm_loss = None logits = self.lm_head(outputs.last_hidden_state) if labels is not None: mlm_loss = self.loss_fn(logits.view(-1, self.config.vocab_size), labels.view(-1)) if loss is None: loss = mlm_loss mep_loss = None entity_logits = self.entity_predictions(outputs.entity_last_hidden_state) if entity_labels is not None: mep_loss = self.loss_fn(entity_logits.view(-1, self.config.entity_vocab_size), entity_labels.view(-1)) if loss is None: loss = mep_loss else: loss = loss + mep_loss if not return_dict: output = (logits, entity_logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions) if mlm_loss is not None and mep_loss is not None: return (loss, mlm_loss, mep_loss) + output elif mlm_loss is not None: return (loss, mlm_loss) + output elif mep_loss is not None: return (loss, mep_loss) + output else: return output return LukeMaskedLMOutput( loss=loss, mlm_loss=mlm_loss, mep_loss=mep_loss, logits=logits, entity_logits=entity_logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The LUKE model with a classification head on top (a linear layer on top of the hidden state of the first entity token) for entity classification tasks, such as Open Entity. """, LUKE_START_DOCSTRING, ) class LukeForEntityClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.num_labels = config.num_labels self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=EntityClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, EntityClassificationOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*): Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is used for the single-label classification. In this case, labels should contain the indices that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively. Returns: Examples: ```python >>> from transformers import LukeTokenizer, LukeForEntityClassification >>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-open-entity") >>> model = LukeForEntityClassification.from_pretrained("studio-ousia/luke-large-finetuned-open-entity") >>> text = "Beyoncé lives in Los Angeles." >>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé" >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: person ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) feature_vector = outputs.entity_last_hidden_state[:, 0, :] feature_vector = self.dropout(feature_vector) logits = self.classifier(feature_vector) loss = None if labels is not None: # When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary # cross entropy is used otherwise. if labels.ndim == 1: loss = nn.functional.cross_entropy(logits, labels) else: loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) if not return_dict: output = ( logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions, ) return ((loss,) + output) if loss is not None else output return EntityClassificationOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The LUKE model with a classification head on top (a linear layer on top of the hidden states of the two entity tokens) for entity pair classification tasks, such as TACRED. """, LUKE_START_DOCSTRING, ) class LukeForEntityPairClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.num_labels = config.num_labels self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size * 2, config.num_labels, False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=EntityPairClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, EntityPairClassificationOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*): Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is used for the single-label classification. In this case, labels should contain the indices that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively. Returns: Examples: ```python >>> from transformers import LukeTokenizer, LukeForEntityPairClassification >>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-tacred") >>> model = LukeForEntityPairClassification.from_pretrained("studio-ousia/luke-large-finetuned-tacred") >>> text = "Beyoncé lives in Los Angeles." >>> entity_spans = [ ... (0, 7), ... (17, 28), ... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: per:cities_of_residence ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) feature_vector = torch.cat( [outputs.entity_last_hidden_state[:, 0, :], outputs.entity_last_hidden_state[:, 1, :]], dim=1 ) feature_vector = self.dropout(feature_vector) logits = self.classifier(feature_vector) loss = None if labels is not None: # When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary # cross entropy is used otherwise. if labels.ndim == 1: loss = nn.functional.cross_entropy(logits, labels) else: loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) if not return_dict: output = ( logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions, ) return ((loss,) + output) if loss is not None else output return EntityPairClassificationOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The LUKE model with a span classification head on top (a linear layer on top of the hidden states output) for tasks such as named entity recognition. """, LUKE_START_DOCSTRING, ) class LukeForEntitySpanClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.num_labels = config.num_labels self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=EntitySpanClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask=None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.LongTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, entity_start_positions: Optional[torch.LongTensor] = None, entity_end_positions: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, EntitySpanClassificationOutput]: r""" entity_start_positions (`torch.LongTensor`): The start positions of entities in the word token sequence. entity_end_positions (`torch.LongTensor`): The end positions of entities in the word token sequence. labels (`torch.LongTensor` of shape `(batch_size, entity_length)` or `(batch_size, entity_length, num_labels)`, *optional*): Labels for computing the classification loss. If the shape is `(batch_size, entity_length)`, the cross entropy loss is used for the single-label classification. In this case, labels should contain the indices that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, entity_length, num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively. Returns: Examples: ```python >>> from transformers import LukeTokenizer, LukeForEntitySpanClassification >>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") >>> model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") >>> text = "Beyoncé lives in Los Angeles" # List all possible entity spans in the text >>> word_start_positions = [0, 8, 14, 17, 21] # character-based start positions of word tokens >>> word_end_positions = [7, 13, 16, 20, 28] # character-based end positions of word tokens >>> entity_spans = [] >>> for i, start_pos in enumerate(word_start_positions): ... for end_pos in word_end_positions[i:]: ... entity_spans.append((start_pos, end_pos)) >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> predicted_class_indices = logits.argmax(-1).squeeze().tolist() >>> for span, predicted_class_idx in zip(entity_spans, predicted_class_indices): ... if predicted_class_idx != 0: ... print(text[span[0] : span[1]], model.config.id2label[predicted_class_idx]) Beyoncé PER Los Angeles LOC ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) hidden_size = outputs.last_hidden_state.size(-1) entity_start_positions = entity_start_positions.unsqueeze(-1).expand(-1, -1, hidden_size) start_states = torch.gather(outputs.last_hidden_state, -2, entity_start_positions) entity_end_positions = entity_end_positions.unsqueeze(-1).expand(-1, -1, hidden_size) end_states = torch.gather(outputs.last_hidden_state, -2, entity_end_positions) feature_vector = torch.cat([start_states, end_states, outputs.entity_last_hidden_state], dim=2) feature_vector = self.dropout(feature_vector) logits = self.classifier(feature_vector) loss = None if labels is not None: # When the number of dimension of `labels` is 2, cross entropy is used as the loss function. The binary # cross entropy is used otherwise. if labels.ndim == 2: loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1)) else: loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) if not return_dict: output = ( logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions, ) return ((loss,) + output) if loss is not None else output return EntitySpanClassificationOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, )
[ "torch.nn.Linear", "torch.zeros", "torch.nn.Dropout", "torch.nn.LayerNorm", "torch.cat", "torch.arange", "torch.gather", "torch.nn.Tanh", "torch.nn.CrossEntropyLoss", "torch.ones", "torch.nn.functional.cross_entropy", "torch.nn.functional.softmax", "torch.zeros_like", "torch.matmul", "torch.nn.Embedding", "torch.cumsum", "torch.sum" ]
1.0
bugface/transformers
ba286fe7d51db12ad663effac83bed8199dd7141
1.0
#!/usr/bin/env python3 # Copyright 2018 CMU and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Bertology: this script shows how you can explore the internals of the models in the library to: - compute the entropy of the head attentions - compute the importance of each head - prune (remove) the low importance head. Some parts of this script are adapted from the code of Michel et al. (http://arxiv.org/abs/1905.10650) which is available at https://github.com/pmichel31415/are-16-heads-really-better-than-1 """ import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, SequentialSampler, Subset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, GlueDataset, default_data_collator, glue_compute_metrics, glue_output_modes, glue_processors, set_seed, ) from transformers.trainer_utils import is_main_process logger = logging.getLogger(__name__) def entropy(p): """Compute the entropy of a probability distribution""" plogp = p * torch.log(p) plogp[p == 0] = 0 return -plogp.sum(dim=-1) def print_2d_tensor(tensor): """Print a 2D tensor""" logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor)))) for row in range(len(tensor)): if tensor.dtype != torch.long: logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data)) else: logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data)) def compute_heads_importance( args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None, actually_pruned=False ): """This method shows how to compute: - head attention entropy - head importance scores according to http://arxiv.org/abs/1905.10650 """ # Prepare our tensors n_layers, n_heads = model.config.num_hidden_layers, model.config.num_attention_heads head_importance = torch.zeros(n_layers, n_heads).to(args.device) attn_entropy = torch.zeros(n_layers, n_heads).to(args.device) if head_mask is None: head_mask = torch.ones(n_layers, n_heads).to(args.device) head_mask.requires_grad_(requires_grad=True) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: head_mask = None preds = None labels = None tot_tokens = 0.0 for step, inputs in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])): for k, v in inputs.items(): inputs[k] = v.to(args.device) # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) outputs = model(**inputs, head_mask=head_mask) loss, logits, all_attentions = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask if compute_entropy: for layer, attn in enumerate(all_attentions): masked_entropy = entropy(attn.detach()) * inputs["attention_mask"].float().unsqueeze(1) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() # Also store our logits/labels if we want to compute metrics afterwards if preds is None: preds = logits.detach().cpu().numpy() labels = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) labels = np.append(labels, inputs["labels"].detach().cpu().numpy(), axis=0) tot_tokens += inputs["attention_mask"].float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: exponent = 2 norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print/save matrices np.save(os.path.join(args.output_dir, "attn_entropy.npy"), attn_entropy.detach().cpu().numpy()) np.save(os.path.join(args.output_dir, "head_importance.npy"), head_importance.detach().cpu().numpy()) logger.info("Attention entropies") print_2d_tensor(attn_entropy) logger.info("Head importance scores") print_2d_tensor(head_importance) logger.info("Head ranked by importance scores") head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device) head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange( head_importance.numel(), device=args.device ) head_ranks = head_ranks.view_as(head_importance) print_2d_tensor(head_ranks) return attn_entropy, head_importance, preds, labels def mask_heads(args, model, eval_dataloader): """This method shows how to mask head (set some heads to zero), to test the effect on the network, based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650) """ _, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False) preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) original_score = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold) new_head_mask = torch.ones_like(head_importance) num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount)) current_score = original_score while current_score >= original_score * args.masking_threshold: head_mask = new_head_mask.clone() # save current head mask # heads from least important to most - keep only not-masked heads head_importance[head_mask == 0.0] = float("Inf") current_heads_to_mask = head_importance.view(-1).sort()[1] if len(current_heads_to_mask) <= num_to_mask: break # mask heads current_heads_to_mask = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist())) new_head_mask = new_head_mask.view(-1) new_head_mask[current_heads_to_mask] = 0.0 new_head_mask = new_head_mask.view_as(head_mask) new_head_mask = new_head_mask.clone().detach() print_2d_tensor(new_head_mask) # Compute metric and head importance again _, head_importance, preds, labels = compute_heads_importance( args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask ) preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) current_score = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)", current_score, new_head_mask.sum(), new_head_mask.sum() / new_head_mask.numel() * 100, ) logger.info("Final head mask") print_2d_tensor(head_mask) np.save(os.path.join(args.output_dir, "head_mask.npy"), head_mask.detach().cpu().numpy()) return head_mask def prune_heads(args, model, eval_dataloader, head_mask): """This method shows how to prune head (remove heads weights) based on the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650) """ # Try pruning and test time speedup # Pruning is like masking but we actually remove the masked weights before_time = datetime.now() _, _, preds, labels = compute_heads_importance( args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=head_mask ) preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) score_masking = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] original_time = datetime.now() - before_time original_num_params = sum(p.numel() for p in model.parameters()) heads_to_prune = dict( (layer, (1 - head_mask[layer].long()).nonzero().squeeze().tolist()) for layer in range(len(head_mask)) ) assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(heads_to_prune) pruned_num_params = sum(p.numel() for p in model.parameters()) before_time = datetime.now() _, _, preds, labels = compute_heads_importance( args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=None, actually_pruned=True, ) preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) score_pruning = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] new_time = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)", original_num_params, pruned_num_params, pruned_num_params / original_num_params * 100, ) logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning) logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time / new_time * 100) def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(glue_processors.keys()), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name_or_path", ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name_or_path", ) parser.add_argument( "--cache_dir", default=None, type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir", action="store_true", help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer", action="store_true", help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance", action="store_true", help="Don't normalize all importance scores between 0 and 1", ) parser.add_argument( "--try_masking", action="store_true", help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold", default=0.9, type=float, help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).", ) parser.add_argument( "--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.") parser.add_argument( "--max_seq_length", default=128, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ), ) parser.add_argument("--batch_size", default=1, type=int, help="Batch size.") parser.add_argument("--seed", type=int, default=42) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") args = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) args.device = torch.device("cuda", args.local_rank) args.n_gpu = 1 torch.distributed.init_process_group(backend="nccl") # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1))) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set seeds set_seed(args.seed) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in glue_processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = glue_processors[args.task_name]() args.output_mode = glue_output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, output_attentions=True, cache_dir=args.cache_dir, ) tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, cache_dir=args.cache_dir, ) model = AutoModelForSequenceClassification.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir, ) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: model = nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) elif args.n_gpu > 1: model = nn.DataParallel(model) # Print/save training arguments os.makedirs(args.output_dir, exist_ok=True) torch.save(args, os.path.join(args.output_dir, "run_args.bin")) logger.info("Training/evaluation parameters %s", args) # Prepare dataset for the GLUE task eval_dataset = GlueDataset(args, tokenizer=tokenizer, mode="dev") if args.data_subset > 0: eval_dataset = Subset(eval_dataset, list(range(min(args.data_subset, len(eval_dataset))))) eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader( eval_dataset, sampler=eval_sampler, batch_size=args.batch_size, collate_fn=default_data_collator ) # Compute head entropy and importance score compute_heads_importance(args, model, eval_dataloader) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: head_mask = mask_heads(args, model, eval_dataloader) prune_heads(args, model, eval_dataloader, head_mask) if __name__ == "__main__": main()
[ "torch.zeros", "torch.device", "torch.distributed.init_process_group", "torch.utils.data.SequentialSampler", "torch.nn.parallel.DistributedDataParallel", "torch.cuda.device_count", "torch.ones", "torch.cuda.set_device", "torch.cuda.is_available", "torch.utils.data.DataLoader", "torch.ones_like", "torch.utils.data.distributed.DistributedSampler", "torch.log", "torch.nn.DataParallel", "torch.pow" ]
1.0
bugface/transformers
ba286fe7d51db12ad663effac83bed8199dd7141
1.0
# coding=utf-8 # Copyright 2018 Google T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import tempfile import unittest from transformers import T5Config, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_generation_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor if is_torch_available(): import torch from transformers import ByT5Tokenizer, T5EncoderModel, T5ForConditionalGeneration, T5Model, T5Tokenizer from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST class T5ModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, encoder_seq_length=7, decoder_seq_length=9, # For common tests is_training=True, use_attention_mask=True, use_labels=True, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=8, dropout_rate=0.1, initializer_factor=0.002, eos_token_id=1, pad_token_id=0, decoder_start_token_id=0, scope=None, decoder_layers=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.scope = None self.decoder_layers = decoder_layers def get_large_model_config(self): return T5Config.from_pretrained("t5-base") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None decoder_attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = self.get_config() return ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) def get_pipeline_config(self): return T5Config( vocab_size=166, # t5 forces 100 extra tokens d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ) def get_config(self): return T5Config( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ) def check_prepare_lm_labels_via_shift_left( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5Model(config=config) model.to(torch_device) model.eval() # make sure that lm_labels are correctly padded from the right lm_labels.masked_fill_((lm_labels == self.decoder_start_token_id), self.eos_token_id) # add casaul pad token mask triangular_mask = torch.tril(lm_labels.new_ones(lm_labels.shape)).logical_not() lm_labels.masked_fill_(triangular_mask, self.pad_token_id) decoder_input_ids = model._shift_right(lm_labels) for i, (decoder_input_ids_slice, lm_labels_slice) in enumerate(zip(decoder_input_ids, lm_labels)): # first item self.parent.assertEqual(decoder_input_ids_slice[0].item(), self.decoder_start_token_id) if i < decoder_input_ids_slice.shape[-1]: if i < decoder_input_ids.shape[-1] - 1: # items before diagonal self.parent.assertListEqual( decoder_input_ids_slice[1 : i + 1].tolist(), lm_labels_slice[:i].tolist() ) # pad items after diagonal if i < decoder_input_ids.shape[-1] - 2: self.parent.assertListEqual( decoder_input_ids_slice[i + 2 :].tolist(), lm_labels_slice[i + 1 : -1].tolist() ) else: # all items after square self.parent.assertListEqual(decoder_input_ids_slice[1:].tolist(), lm_labels_slice[:-1].tolist()) def create_and_check_model( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5Model(config=config) model.to(torch_device) model.eval() result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) decoder_output = result.last_hidden_state decoder_past = result.past_key_values encoder_output = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(decoder_past), config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]), 4) def create_and_check_with_lm_head( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5ForConditionalGeneration(config=config).to(torch_device).eval() outputs = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, labels=lm_labels, ) self.parent.assertEqual(len(outputs), 4) self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size)) self.parent.assertEqual(outputs["loss"].size(), ()) def create_and_check_decoder_model_past( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5Model(config=config).get_decoder().to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5Model(config=config).get_decoder() model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5Model(config=config).get_decoder().to(torch_device).eval() # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_generate_with_past_key_values( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5ForConditionalGeneration(config=config).to(torch_device).eval() torch.manual_seed(0) output_without_past_cache = model.generate( input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False ) torch.manual_seed(0) output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True) self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache)) def create_and_check_model_fp16_forward( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5Model(config=config).to(torch_device).half().eval() output = model(input_ids, decoder_input_ids=input_ids, attention_mask=attention_mask)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) def create_and_check_encoder_decoder_shared_weights( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): for model_class in [T5Model, T5ForConditionalGeneration]: torch.manual_seed(0) model = model_class(config=config).to(torch_device).eval() # load state dict copies weights but does not tie them model.encoder.load_state_dict(model.decoder.state_dict(), strict=False) torch.manual_seed(0) tied_config = copy.deepcopy(config) tied_config.tie_encoder_decoder = True tied_model = model_class(config=tied_config).to(torch_device).eval() model_result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) tied_model_result = tied_model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) # check that models has less parameters self.parent.assertLess( sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()) ) random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item() # check that outputs are equal self.parent.assertTrue( torch.allclose( model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4 ) ) # check that outputs after saving and loading are equal with tempfile.TemporaryDirectory() as tmpdirname: tied_model.save_pretrained(tmpdirname) tied_model = model_class.from_pretrained(tmpdirname) tied_model.to(torch_device) tied_model.eval() # check that models has less parameters self.parent.assertLess( sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()) ) random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item() tied_model_result = tied_model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) # check that outputs are equal self.parent.assertTrue( torch.allclose( model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4, ) ) def check_resize_embeddings_t5_v1_1( self, config, ): prev_vocab_size = config.vocab_size config.tie_word_embeddings = False model = T5ForConditionalGeneration(config=config).to(torch_device).eval() model.resize_token_embeddings(prev_vocab_size - 10) self.parent.assertEqual(model.get_input_embeddings().weight.shape[0], prev_vocab_size - 10) self.parent.assertEqual(model.get_output_embeddings().weight.shape[0], prev_vocab_size - 10) self.parent.assertEqual(model.config.vocab_size, prev_vocab_size - 10) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "use_cache": False, } return config, inputs_dict @require_torch class T5ModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (T5Model, T5ForConditionalGeneration) if is_torch_available() else () all_generative_model_classes = (T5ForConditionalGeneration,) if is_torch_available() else () all_parallelizable_model_classes = (T5Model, T5ForConditionalGeneration) if is_torch_available() else () fx_compatible = True test_pruning = False test_resize_embeddings = True test_model_parallel = True is_encoder_decoder = True def setUp(self): self.model_tester = T5ModelTester(self) self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37) def test_config(self): self.config_tester.run_common_tests() def test_shift_right(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_prepare_lm_labels_via_shift_left(*config_and_inputs) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_v1_1(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() # check that gated gelu feed forward and different word embeddings work config = config_and_inputs[0] config.tie_word_embeddings = False config.feed_forward_proj = "gated-gelu" self.model_tester.create_and_check_model(config, *config_and_inputs[1:]) def test_with_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_with_lm_head(*config_and_inputs) def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_past_with_attn_mask(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) def test_decoder_model_past_with_3d_attn_mask(self): ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = self.model_tester.prepare_config_and_inputs() attention_mask = ids_tensor( [self.model_tester.batch_size, self.model_tester.encoder_seq_length, self.model_tester.encoder_seq_length], vocab_size=2, ) decoder_attention_mask = ids_tensor( [self.model_tester.batch_size, self.model_tester.decoder_seq_length, self.model_tester.decoder_seq_length], vocab_size=2, ) self.model_tester.create_and_check_decoder_model_attention_mask_past( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_generate_with_past_key_values(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_generate_with_past_key_values(*config_and_inputs) def test_encoder_decoder_shared_weights(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_encoder_decoder_shared_weights(*config_and_inputs) @unittest.skipIf(torch_device == "cpu", "Cant do half precision") def test_model_fp16_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs) def test_v1_1_resize_embeddings(self): config = self.model_tester.prepare_config_and_inputs()[0] self.model_tester.check_resize_embeddings_t5_v1_1(config) @slow def test_model_from_pretrained(self): for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = T5Model.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip("Test has a segmentation fault on torch 1.8.0") def test_export_to_onnx(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() model = T5Model(config_and_inputs[0]).to(torch_device) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( model, (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]), f"{tmpdirname}/t5_test.onnx", export_params=True, opset_version=9, input_names=["input_ids", "decoder_input_ids"], ) def test_generate_with_head_masking(self): attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"] config_and_inputs = self.model_tester.prepare_config_and_inputs() config = config_and_inputs[0] max_length = config_and_inputs[1].shape[-1] + 3 model = T5ForConditionalGeneration(config).eval() model.to(torch_device) head_masking = { "head_mask": torch.zeros(config.num_layers, config.num_heads, device=torch_device), "decoder_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device), } for attn_name, (name, mask) in zip(attention_names, head_masking.items()): head_masks = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": head_masks["decoder_head_mask"] = torch.ones( config.num_decoder_layers, config.num_heads, device=torch_device ) out = model.generate( config_and_inputs[1], num_beams=1, max_length=max_length, output_attentions=True, return_dict_in_generate=True, **head_masks, ) # We check the state of decoder_attentions and cross_attentions just from the last step attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0) class T5EncoderOnlyModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, encoder_seq_length=7, # For common tests use_attention_mask=True, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=8, is_training=False, dropout_rate=0.1, initializer_factor=0.002, is_encoder_decoder=False, eos_token_id=1, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length # For common tests self.seq_length = self.encoder_seq_length self.use_attention_mask = use_attention_mask self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.is_encoder_decoder = is_encoder_decoder self.scope = None self.is_training = is_training def get_large_model_config(self): return T5Config.from_pretrained("t5-base") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) config = T5Config( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, ) def create_and_check_model( self, config, input_ids, attention_mask, ): model = T5EncoderModel(config=config) model.to(torch_device) model.eval() result = model( input_ids=input_ids, attention_mask=attention_mask, ) result = model(input_ids=input_ids) encoder_output = result.last_hidden_state self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size)) def create_and_check_model_fp16_forward( self, config, input_ids, attention_mask, ): model = T5EncoderModel(config=config).to(torch_device).half().eval() output = model(input_ids, attention_mask=attention_mask)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict class T5EncoderOnlyModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (T5EncoderModel,) if is_torch_available() else () test_pruning = False test_resize_embeddings = False test_model_parallel = True all_parallelizable_model_classes = (T5EncoderModel,) if is_torch_available() else () def setUp(self): self.model_tester = T5EncoderOnlyModelTester(self) self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skipIf(torch_device == "cpu", "Cant do half precision") def test_model_fp16_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs) def use_task_specific_params(model, task): model.config.update(model.config.task_specific_params[task]) @require_torch @require_sentencepiece @require_tokenizers class T5ModelIntegrationTests(unittest.TestCase): @cached_property def model(self): return T5ForConditionalGeneration.from_pretrained("t5-base").to(torch_device) @cached_property def tokenizer(self): return T5Tokenizer.from_pretrained("t5-base") @slow def test_small_generation(self): model = T5ForConditionalGeneration.from_pretrained("t5-small").to(torch_device) model.config.max_length = 8 model.config.num_beams = 1 model.config.do_sample = False tokenizer = T5Tokenizer.from_pretrained("t5-small") input_ids = tokenizer("summarize: Hello there", return_tensors="pt").input_ids.to(torch_device) sequences = model.generate(input_ids) output_str = tokenizer.batch_decode(sequences, skip_special_tokens=True)[0] self.assertTrue(output_str == "Hello there!") @slow def test_small_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_t5_checkpoint = '<fill_in>' >>> path_to_mtf_small_spm_model_path = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = T5ForConditionalGeneration.from_pretrained("t5-small").to(torch_device) tokenizer = T5Tokenizer.from_pretrained("t5-small") input_ids = tokenizer("Hello there", return_tensors="pt").input_ids labels = tokenizer("Hi I am", return_tensors="pt").input_ids loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss mtf_score = -(labels.shape[-1] * loss.item()) EXPECTED_SCORE = -19.0845 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_small_v1_1_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_t5_v1_1_checkpoint = '<fill_in>' >>> path_to_mtf_small_spm_model_path = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_v1_1_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = T5ForConditionalGeneration.from_pretrained("google/t5-v1_1-small").to(torch_device) tokenizer = T5Tokenizer.from_pretrained("google/t5-v1_1-small") input_ids = tokenizer("Hello there", return_tensors="pt").input_ids labels = tokenizer("Hi I am", return_tensors="pt").input_ids loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss mtf_score = -(labels.shape[-1] * loss.item()) EXPECTED_SCORE = -59.0293 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_small_byt5_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.9.1 >>> path_to_byt5_small_checkpoint = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_tf_checkpoint, batch_size=1, tpu=None) >>> vocab = t5.data.ByteVocabulary() >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = T5ForConditionalGeneration.from_pretrained("google/byt5-small").to(torch_device) tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small") input_ids = tokenizer("Hello there", return_tensors="pt").input_ids labels = tokenizer("Hi I am", return_tensors="pt").input_ids loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss mtf_score = -(labels.shape[-1] * loss.item()) EXPECTED_SCORE = -60.7397 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_summarization(self): model = self.model tok = self.tokenizer FRANCE_ARTICLE = ( # @noqa "Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings" " Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane." ' Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation."' ' He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s' " comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video" " showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French" " Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a" " phone at the wreckage site. The two publications described the supposed video, but did not post it on" " their websites. The publications said that they watched the video, which was found by a source close to" " the investigation. \"One can hear cries of 'My God' in several languages,\" Paris Match reported." ' "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the' " cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the" ' screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt,' " editor-in-chief of Bild online. An official with France's accident investigation agency, the BEA, said" " the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman" " in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the" ' reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said,' ' but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be' " sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by" " specialized technicians working hand-in-hand with investigators. But none of the cell phones found so" " far have been sent to the institute, Menichini said. Asked whether staff involved in the search could" ' have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin' ' Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match' ' are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered' ' cell phones from the crash site after Bild and Paris Match published their reports. "That is something' " we did not know before. ... Overall we can say many things of the investigation weren't revealed by the" ' investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline' " Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the" " controls of Germanwings Flight 9525, which he's accused of deliberately crashing last week in the" ' French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of' ' severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school' " discovered in an internal investigation, Lufthansa said, included medical documents he submitted in" " connection with resuming his flight training. The announcement indicates that Lufthansa, the parent" " company of Germanwings, knew of Lubitz's battle with depression, allowed him to continue training and" " ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100%" ' fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was' " sharing the information and documents -- including training and medical records -- with public" " prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the" " past week to recover human remains and plane debris scattered across a steep mountainside. He saw the" " crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash" " site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late" " Tuesday that no visible human remains were left at the site but recovery teams would keep searching." " French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all" " the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested." " In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini said." " Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew" " on board. Check out the latest from our correspondents . The details about Lubitz's correspondence with" " the flight school during his training were among several developments as investigators continued to" " delve into what caused the crash and Lubitz's possible motive for downing the jet. A Lufthansa" " spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his" ' examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in' " Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at" " some point before his aviation career and underwent psychotherapy before he got his pilot's license." " Kumpa emphasized there's no evidence suggesting Lubitz was suicidal or acting aggressively before the" " crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to" " lose his pilot's license, a European government official briefed on the investigation told CNN on" ' Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being' " considered. Another source, a law enforcement official briefed on the investigation, also told CNN that" " authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would" " not be allowed to fly because of his medical problems. Lubitz's girlfriend told investigators he had" " seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded" " he had psychological issues, the European government official said. But no matter what details emerge" " about his previous mental health struggles, there's more to the story, said Brian Russell, a forensic" ' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact' " that maybe they weren't going to keep doing their job and they're upset about that and so they're" ' suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to' " also take that rage and turn it outward on 149 other people who had nothing to do with the person's" ' problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight' " 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura" " Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine" " Amiel and Anna-Maja Rappard contributed to this report." ) SHORTER_ARTICLE = ( "(CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The" " formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based." " The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its" ' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East' ' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the' " situation in Palestinian territories, paving the way for possible war crimes investigations against" " Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and" " the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the" " body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a" ' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the' ' world is also a step closer to ending a long era of impunity and injustice," he said, according to an' ' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge' " Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the" ' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine' " acquires all the rights as well as responsibilities that come with being a State Party to the Statute." ' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights' ' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should' " immediately end their pressure, and countries that support universal acceptance of the court's treaty" ' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the' " group. \"What's objectionable is the attempts to undermine international justice, not Palestine's" ' decision to join a treaty to which over 100 countries around the world are members." In January, when' " the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an" ' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"' " disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a" ' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in' ' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We' ' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"' " it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the' " court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou" ' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war' " between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry" " will include alleged war crimes committed since June. The International Criminal Court was set up in" " 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder" " and Faith Karimi contributed to this report." ) IRAN_ARTICLE = ( "(CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran" " in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively" " block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger." " Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli" " Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a" " letter to the Iranian leadership warning them away from a deal. The debate that has already begun since" " the announcement of the new framework will likely result in more heat than light. It will not be helped" " by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: ." " The most misleading assertion, despite universal rejection by experts, is that the negotiations'" " objective at the outset was the total elimination of any nuclear program in Iran. That is the position" " of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it" " had been, there would have been no Iranian team at the negotiating table. Rather, the objective has" " always been to structure an agreement or series of agreements so that Iran could not covertly develop a" " nuclear arsenal before the United States and its allies could respond. The new framework has exceeded" " expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by" " two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another" " dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite" " sharp accusations by some in the United States and its allies, Iran denies having such a program, and" " U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's" " continued cooperation with International Atomic Energy Agency inspections is further evidence on this" " point, and we'll know even more about Iran's program in the coming months and years because of the deal." " In fact, the inspections provisions that are part of this agreement are designed to protect against any" " covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that" " the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter" " warning that a deal might be killed by Congress or a future president). This of course is not the case." " The talks were between Iran and the five permanent members of the U.N. Security Council (United States," " United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has" " played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement" " reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran" " and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement" " contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the" " case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased" " or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes" " Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear" " sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going" " forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such" " a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the" ' agreement should be a formal treaty requiring the Senate to "advise and consent." But the issue is not' " suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New" " START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement" " with Iran will not be so balanced. The restrictions and obligations in the final framework agreement" " will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove" " most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally" " some insist that any agreement must address Iranian missile programs, human rights violations or support" " for Hamas or Hezbollah. As important as these issues are, and they must indeed be addressed, they are" " unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran. To include them in" " the negotiations would be a poison pill. This agreement should be judged on its merits and on how it" " affects the security of our negotiating partners and allies, including Israel. Those judgments should be" " fact-based, not based on questionable assertions or dubious assumptions." ) ARTICLE_SUBWAY = ( "New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A" " year later, she got married again in Westchester County, but to a different man and without divorcing" " her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos" ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married' " once more, this time in the Bronx. In an application for a marriage license, she stated it was her" ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false' ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage' " license application, according to court documents. Prosecutors said the marriages were part of an" " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to" " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was" " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New" " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total," " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All" " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be" " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors" " said the immigration scam involved some of her husbands, who filed for permanent residence status" " shortly after the marriages. Any divorces happened only after such filings were approved. It was" " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District" " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's" ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,' " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his" " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces" " up to four years in prison. Her next court appearance is scheduled for May 18." ) expected_summaries = [ 'prosecutor: "so far no videos were used in the crash investigation" two magazines claim to have found a' " cell phone video of the final seconds . \"one can hear cries of 'My God' in several languages,\" one" " magazine says .", "the formal accession was marked by a ceremony at The Hague, in the Netherlands . the ICC opened a" " preliminary examination into the situation in the occupied Palestinian territory . as members of the" " court, Palestinians may be subject to counter-charges as well .", "the u.s. and its negotiating partners reached a very strong framework agreement with Iran . aaron miller:" " the debate that has already begun since the announcement of the new framework will likely result in more" " heat than light . the deal would reduce Iran's low-enriched uranium stockpile, cut centrifuges and" " implement a rigorous inspection regime .", "prosecutors say the marriages were part of an immigration scam . if convicted, barrientos faces two" ' criminal counts of "offering a false instrument for filing in the first degree" she has been married 10' " times, with nine of her marriages occurring between 1999 and 2002 .", ] use_task_specific_params(model, "summarization") dct = tok( [model.config.prefix + x for x in [FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY]], padding="max_length", truncation=True, return_tensors="pt", ).to(torch_device) self.assertEqual(512, dct["input_ids"].shape[1]) hypotheses_batch = model.generate( **dct, num_beams=4, length_penalty=2.0, max_length=142, min_length=56, no_repeat_ngram_size=3, do_sample=False, early_stopping=True, ) decoded = tok.batch_decode(hypotheses_batch, skip_special_tokens=True, clean_up_tokenization_spaces=False) self.assertListEqual( expected_summaries, decoded, ) @slow def test_translation_en_to_de(self): model = self.model tok = self.tokenizer use_task_specific_params(model, "translation_en_to_de") en_text = '"Luigi often said to me that he never wanted the brothers to end up in court", she wrote.' expected_translation = ( '"Luigi sagte mir oft, dass er nie wollte, dass die Brüder am Gericht sitzen", schrieb sie.' ) input_ids = tok.encode(model.config.prefix + en_text, return_tensors="pt") input_ids = input_ids.to(torch_device) output = model.generate(input_ids) translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) self.assertEqual(translation, expected_translation) @slow def test_translation_en_to_fr(self): model = self.model # t5-base tok = self.tokenizer use_task_specific_params(model, "translation_en_to_fr") en_text = ( ' This image section from an infrared recording by the Spitzer telescope shows a "family portrait" of' " countless generations of stars: the oldest stars are seen as blue dots. " ) input_ids = tok.encode(model.config.prefix + en_text, return_tensors="pt") input_ids = input_ids.to(torch_device) output = model.generate( input_ids=input_ids, num_beams=4, length_penalty=2.0, max_length=100, no_repeat_ngram_size=3, do_sample=False, early_stopping=True, ) translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) new_truncated_translation = ( "Cette section d'images provenant de l'enregistrement infrarouge effectué par le télescope Spitzer montre " "un " "« portrait familial » de générations innombrables d’étoiles : les plus anciennes sont observées " "sous forme " "de points bleus." ) self.assertEqual(translation, new_truncated_translation) @slow def test_translation_en_to_ro(self): model = self.model tok = self.tokenizer use_task_specific_params(model, "translation_en_to_ro") en_text = "Taco Bell said it plans to add 2,000 locations in the US by 2022." expected_translation = "Taco Bell a declarat că intenţionează să adauge 2 000 de locaţii în SUA până în 2022." inputs = tok(model.config.prefix + en_text, return_tensors="pt").to(torch_device) output = model.generate(**inputs) translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) self.assertEqual(translation, expected_translation) @require_torch class TestAsymmetricT5(unittest.TestCase): def build_model_and_check_forward_pass(self, **kwargs): tester = T5ModelTester(self, **kwargs) config, *inputs = tester.prepare_config_and_inputs() ( input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = inputs model = T5ForConditionalGeneration(config=config).to(torch_device).eval() outputs = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, labels=lm_labels, ) # outputs = model(*inputs) assert len(outputs) == 4 assert outputs["logits"].size() == (tester.batch_size, tester.decoder_seq_length, tester.vocab_size) assert outputs["loss"].size() == () return model def test_small_decoder(self): # num_hidden_layers is passed to T5Config as num_layers model = self.build_model_and_check_forward_pass(decoder_layers=1, num_hidden_layers=2) assert len(model.encoder.block) == 2 assert len(model.decoder.block) == 1 def test_defaulting_to_symmetry(self): # num_hidden_layers is passed to T5Config as num_layers model = self.build_model_and_check_forward_pass(num_hidden_layers=2) assert len(model.decoder.block) == len(model.encoder.block) == 2
[ "torch.zeros", "torch.cat", "torch.isnan", "torch.ones", "torch.manual_seed", "torch.all", "torch.onnx.export", "torch.allclose" ]
1.0
bugface/transformers
ba286fe7d51db12ad663effac83bed8199dd7141
0.3
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Tuple import torch import torch.distributions as dist from beanmachine.ppl.inference.proposer.single_site_ancestral_proposer import ( SingleSiteAncestralProposer, ) from beanmachine.ppl.legacy.inference.proposer.newtonian_monte_carlo_utils import ( is_valid, hessian_of_log_prob, ) from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.utils import tensorops from beanmachine.ppl.world import World LOGGER = logging.getLogger("beanmachine") class SingleSiteHalfSpaceNMCProposer(SingleSiteAncestralProposer): """ Single-Site Half Space Newtonian Monte Carlo Proposers. See sec. 3.2 of [1] [1] Arora, Nim, et al. `Newtonian Monte Carlo: single-site MCMC meets second-order gradient methods` """ def __init__(self, node: RVIdentifier): super().__init__(node) self._proposal_distribution = None def compute_alpha_beta( self, world: World ) -> Tuple[bool, torch.Tensor, torch.Tensor]: """ Computes alpha and beta of the Gamma proposal given the node. alpha = 1 - hessian_diag * x^2 beta = -1 * x * hessian_diag - first_grad """ node_val = world[self.node] first_gradient, hessian_diag = hessian_of_log_prob( world, self.node, node_val, tensorops.halfspace_gradients ) if not is_valid(first_gradient) or not is_valid(hessian_diag): LOGGER.warning( "Gradient or Hessian is invalid at node {n}.\n".format(n=str(self.node)) ) return False, torch.tensor(0.0), torch.tensor(0.0) node_val_reshaped = node_val.reshape(-1) predicted_alpha = ( 1 - hessian_diag * (node_val_reshaped * node_val_reshaped) ).t() predicted_beta = -1 * node_val_reshaped * hessian_diag - first_gradient condition = (predicted_alpha > 0) & (predicted_beta > 0) predicted_alpha = torch.where( condition, predicted_alpha, torch.tensor(1.0).to(dtype=predicted_beta.dtype) ) node_var = world.get_variable(self.node) mean = ( node_var.distribution.mean.reshape(-1) if is_valid(node_var.distribution.mean) else torch.ones_like(predicted_beta) ) predicted_beta = torch.where(condition, predicted_beta, mean) predicted_alpha = predicted_alpha.reshape(node_val.shape) predicted_beta = predicted_beta.reshape(node_val.shape) return True, predicted_alpha, predicted_beta def get_proposal_distribution(self, world: World) -> dist.Distribution: """ Returns the proposal distribution of the node. Args: world: the world in which we're proposing a new value for node. Returns: The proposal distribution. """ # if the number of variables in the world is 1 and proposal distribution # has already been computed, we can use the old proposal distribution # and skip re-computing the gradient, since there are no other variable # in the world that may change the gradient and the old one is still # correct. if self._proposal_distribution is not None and len(world.latent_nodes) == 1: return self._proposal_distribution is_valid, alpha, beta = self.compute_alpha_beta(world) if not is_valid: LOGGER.warning( "Node {n} has invalid proposal solution. ".format(n=self.node) + "Proposer falls back to SingleSiteAncestralProposer.\n" ) return super().get_proposal_distribution(world) self._proposal_distribution = dist.Gamma(alpha, beta) return self._proposal_distribution
[ "torch.distributions.Gamma", "torch.tensor", "torch.ones_like", "torch.where" ]
0.3
horizon-blue/beanmachine-1
b13e4e3e28ffb860947eb8046863b0cabb581222
0.3
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm from beanmachine.ppl.inference import BMGInference from torch import tensor from torch.distributions import Bernoulli, Beta, Normal, Uniform, HalfCauchy, StudentT @bm.random_variable def beta(n): return Beta(2.0, 2.0) @bm.random_variable def flip_beta(): return Bernoulli(tensor([beta(0), beta(1)])) @bm.random_variable def beta_2_2(): return Beta(2.0, tensor([3.0, 4.0])) @bm.random_variable def flip_beta_2_2(): return Bernoulli(beta_2_2()) @bm.random_variable def uniform_2_2(): return Uniform(0.0, tensor([1.0, 1.0])) @bm.random_variable def flip_uniform_2_2(): return Bernoulli(uniform_2_2()) @bm.random_variable def flip_logits(): return Bernoulli(logits=tensor([beta(0), beta(1)])) @bm.random_variable def flip_const(): return Bernoulli(tensor([0.25, 0.75])) @bm.random_variable def flip_const_4(): return Bernoulli(tensor([0.25, 0.75, 0.5, 0.5])) @bm.random_variable def flip_const_2_3(): return Bernoulli(tensor([[0.25, 0.75, 0.5], [0.125, 0.875, 0.625]])) @bm.random_variable def normal_2_3(): mus = flip_const_2_3() # 2 x 3 tensor of 0 or 1 sigmas = tensor([2.0, 3.0, 4.0]) return Normal(mus, sigmas) @bm.random_variable def hc_3(): return HalfCauchy(tensor([1.0, 2.0, 3.0])) @bm.random_variable def studentt_2_3(): return StudentT(hc_3(), normal_2_3(), hc_3()) @bm.functional def operators(): # Note that we do NOT devectorize the multiplication; it gets # turned into a MatrixScale. return ((beta_2_2() + tensor([[5.0, 6.0], [7.0, 8.0]])) * 10.0).exp() class FixVectorizedModelsTest(unittest.TestCase): def test_fix_vectorized_models_1(self) -> None: self.maxDiff = None observations = {flip_beta(): tensor([0.0, 1.0])} queries = [flip_beta(), flip_const()] observed = BMGInference().to_dot(queries, observations, after_transform=False) # The model before the rewrite: expected = """ digraph "graph" { N00[label=2.0]; N01[label=Beta]; N02[label=Sample]; N03[label=Sample]; N04[label=Tensor]; N05[label=Bernoulli]; N06[label=Sample]; N07[label="Observation tensor([0., 1.])"]; N08[label=Query]; N09[label="[0.25,0.75]"]; N10[label=Bernoulli]; N11[label=Sample]; N12[label=Query]; N00 -> N01; N00 -> N01; N01 -> N02; N01 -> N03; N02 -> N04; N03 -> N04; N04 -> N05; N05 -> N06; N06 -> N07; N06 -> N08; N09 -> N10; N10 -> N11; N11 -> N12; } """ self.assertEqual(expected.strip(), observed.strip()) # After: observed = BMGInference().to_dot(queries, observations, after_transform=True) expected = """ digraph "graph" { N00[label=2.0]; N01[label=Beta]; N02[label=Sample]; N03[label=Sample]; N04[label=2]; N05[label=1]; N06[label=Bernoulli]; N07[label=Sample]; N08[label=Bernoulli]; N09[label=Sample]; N10[label=ToMatrix]; N11[label=Query]; N12[label=0.25]; N13[label=Bernoulli]; N14[label=Sample]; N15[label=0.75]; N16[label=Bernoulli]; N17[label=Sample]; N18[label=ToMatrix]; N19[label=Query]; N20[label="Observation False"]; N21[label="Observation True"]; N00 -> N01; N00 -> N01; N01 -> N02; N01 -> N03; N02 -> N06; N03 -> N08; N04 -> N10; N04 -> N18; N05 -> N10; N05 -> N18; N06 -> N07; N07 -> N10; N07 -> N20; N08 -> N09; N09 -> N10; N09 -> N21; N10 -> N11; N12 -> N13; N13 -> N14; N14 -> N18; N15 -> N16; N16 -> N17; N17 -> N18; N18 -> N19; } """ self.assertEqual(expected.strip(), observed.strip()) def test_fix_vectorized_models_2(self) -> None: self.maxDiff = None observations = {flip_const_4(): tensor([0.0, 1.0, 0.0, 1.0])} queries = [flip_const_4()] observed = BMGInference().to_dot(queries, observations, after_transform=False) # The model before the rewrite: expected = """ digraph "graph" { N0[label="[0.25,0.75,0.5,0.5]"]; N1[label=Bernoulli]; N2[label=Sample]; N3[label="Observation tensor([0., 1., 0., 1.])"]; N4[label=Query]; N0 -> N1; N1 -> N2; N2 -> N3; N2 -> N4; } """ self.assertEqual(expected.strip(), observed.strip()) # After: # Note that due to the order in which we do the rewriting we # end up with a not-deduplicated Bernoulli(0.5) node here, which # is slightly unfortunate but probably not worth fixing right now. observed = BMGInference().to_dot(queries, observations, after_transform=True) expected = """ digraph "graph" { N00[label=4]; N01[label=1]; N02[label=0.25]; N03[label=Bernoulli]; N04[label=Sample]; N05[label=0.75]; N06[label=Bernoulli]; N07[label=Sample]; N08[label=0.5]; N09[label=Bernoulli]; N10[label=Sample]; N11[label=Bernoulli]; N12[label=Sample]; N13[label=ToMatrix]; N14[label=Query]; N15[label="Observation False"]; N16[label="Observation True"]; N17[label="Observation False"]; N18[label="Observation True"]; N00 -> N13; N01 -> N13; N02 -> N03; N03 -> N04; N04 -> N13; N04 -> N15; N05 -> N06; N06 -> N07; N07 -> N13; N07 -> N16; N08 -> N09; N08 -> N11; N09 -> N10; N10 -> N13; N10 -> N17; N11 -> N12; N12 -> N13; N12 -> N18; N13 -> N14; } """ self.assertEqual(expected.strip(), observed.strip()) def test_fix_vectorized_models_3(self) -> None: self.maxDiff = None observations = {flip_const_2_3(): tensor([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]])} queries = [flip_const_2_3()] observed = BMGInference().to_dot(queries, observations, after_transform=False) # The model before the rewrite: expected = """ digraph "graph" { N0[label="[[0.25,0.75,0.5],\\\\n[0.125,0.875,0.625]]"]; N1[label=Bernoulli]; N2[label=Sample]; N3[label="Observation tensor([[0., 0., 0.],\\n [1., 1., 1.]])"]; N4[label=Query]; N0 -> N1; N1 -> N2; N2 -> N3; N2 -> N4; } """ self.assertEqual(expected.strip(), observed.strip()) # After: observed = BMGInference().to_dot(queries, observations, after_transform=True) expected = """ digraph "graph" { N00[label=3]; N01[label=2]; N02[label=0.25]; N03[label=Bernoulli]; N04[label=Sample]; N05[label=0.75]; N06[label=Bernoulli]; N07[label=Sample]; N08[label=0.5]; N09[label=Bernoulli]; N10[label=Sample]; N11[label=0.125]; N12[label=Bernoulli]; N13[label=Sample]; N14[label=0.875]; N15[label=Bernoulli]; N16[label=Sample]; N17[label=0.625]; N18[label=Bernoulli]; N19[label=Sample]; N20[label=ToMatrix]; N21[label=Query]; N22[label="Observation False"]; N23[label="Observation False"]; N24[label="Observation False"]; N25[label="Observation True"]; N26[label="Observation True"]; N27[label="Observation True"]; N00 -> N20; N01 -> N20; N02 -> N03; N03 -> N04; N04 -> N20; N04 -> N22; N05 -> N06; N06 -> N07; N07 -> N20; N07 -> N23; N08 -> N09; N09 -> N10; N10 -> N20; N10 -> N24; N11 -> N12; N12 -> N13; N13 -> N20; N13 -> N25; N14 -> N15; N15 -> N16; N16 -> N20; N16 -> N26; N17 -> N18; N18 -> N19; N19 -> N20; N19 -> N27; N20 -> N21; } """ self.assertEqual(expected.strip(), observed.strip()) def test_fix_vectorized_models_4(self) -> None: # Demonstrate we can also do devectorizations on logits-style Bernoullis. # (A logits Bernoulli with a beta prior is a likely mistake in a real model, # but it is a convenient test case.) self.maxDiff = None observations = {} queries = [flip_logits()] observed = BMGInference().to_dot(queries, observations, after_transform=False) # The model before the rewrite: expected = """ digraph "graph" { N0[label=2.0]; N1[label=Beta]; N2[label=Sample]; N3[label=Sample]; N4[label=Tensor]; N5[label="Bernoulli(logits)"]; N6[label=Sample]; N7[label=Query]; N0 -> N1; N0 -> N1; N1 -> N2; N1 -> N3; N2 -> N4; N3 -> N4; N4 -> N5; N5 -> N6; N6 -> N7; } """ self.assertEqual(expected.strip(), observed.strip()) # After: observed = BMGInference().to_dot(queries, observations, after_transform=True) expected = """ digraph "graph" { N00[label=2.0]; N01[label=Beta]; N02[label=Sample]; N03[label=Sample]; N04[label=2]; N05[label=1]; N06[label=ToReal]; N07[label="Bernoulli(logits)"]; N08[label=Sample]; N09[label=ToReal]; N10[label="Bernoulli(logits)"]; N11[label=Sample]; N12[label=ToMatrix]; N13[label=Query]; N00 -> N01; N00 -> N01; N01 -> N02; N01 -> N03; N02 -> N06; N03 -> N09; N04 -> N12; N05 -> N12; N06 -> N07; N07 -> N08; N08 -> N12; N09 -> N10; N10 -> N11; N11 -> N12; N12 -> N13; } """ self.assertEqual(expected.strip(), observed.strip()) def test_fix_vectorized_models_5(self) -> None: self.maxDiff = None observations = {} queries = [studentt_2_3()] observed = BMGInference().to_dot(queries, observations, after_transform=False) # The model before the rewrite. Note that we have a size[3] stochastic input and # a size[2, 3] stochastic input to the StudentT, and we broadcast the three # HalfCauchy samples correctly expected = """ digraph "graph" { N00[label="[1.0,2.0,3.0]"]; N01[label=HalfCauchy]; N02[label=Sample]; N03[label="[[0.25,0.75,0.5],\\\\n[0.125,0.875,0.625]]"]; N04[label=Bernoulli]; N05[label=Sample]; N06[label="[2.0,3.0,4.0]"]; N07[label=Normal]; N08[label=Sample]; N09[label=StudentT]; N10[label=Sample]; N11[label=Query]; N00 -> N01; N01 -> N02; N02 -> N09; N02 -> N09; N03 -> N04; N04 -> N05; N05 -> N07; N06 -> N07; N07 -> N08; N08 -> N09; N09 -> N10; N10 -> N11; } """ self.assertEqual(expected.strip(), observed.strip()) # After: observed = BMGInference().to_dot(queries, observations, after_transform=True) expected = """ digraph "graph" { N00[label=3]; N01[label=2]; N02[label=1.0]; N03[label=HalfCauchy]; N04[label=Sample]; N05[label=0.25]; N06[label=Bernoulli]; N07[label=Sample]; N08[label=ToReal]; N09[label=2.0]; N10[label=Normal]; N11[label=Sample]; N12[label=StudentT]; N13[label=Sample]; N14[label=HalfCauchy]; N15[label=Sample]; N16[label=0.75]; N17[label=Bernoulli]; N18[label=Sample]; N19[label=ToReal]; N20[label=3.0]; N21[label=Normal]; N22[label=Sample]; N23[label=StudentT]; N24[label=Sample]; N25[label=HalfCauchy]; N26[label=Sample]; N27[label=0.5]; N28[label=Bernoulli]; N29[label=Sample]; N30[label=ToReal]; N31[label=4.0]; N32[label=Normal]; N33[label=Sample]; N34[label=StudentT]; N35[label=Sample]; N36[label=0.125]; N37[label=Bernoulli]; N38[label=Sample]; N39[label=ToReal]; N40[label=Normal]; N41[label=Sample]; N42[label=StudentT]; N43[label=Sample]; N44[label=0.875]; N45[label=Bernoulli]; N46[label=Sample]; N47[label=ToReal]; N48[label=Normal]; N49[label=Sample]; N50[label=StudentT]; N51[label=Sample]; N52[label=0.625]; N53[label=Bernoulli]; N54[label=Sample]; N55[label=ToReal]; N56[label=Normal]; N57[label=Sample]; N58[label=StudentT]; N59[label=Sample]; N60[label=ToMatrix]; N61[label=Query]; N00 -> N60; N01 -> N60; N02 -> N03; N03 -> N04; N04 -> N12; N04 -> N12; N04 -> N42; N04 -> N42; N05 -> N06; N06 -> N07; N07 -> N08; N08 -> N10; N09 -> N10; N09 -> N14; N09 -> N40; N10 -> N11; N11 -> N12; N12 -> N13; N13 -> N60; N14 -> N15; N15 -> N23; N15 -> N23; N15 -> N50; N15 -> N50; N16 -> N17; N17 -> N18; N18 -> N19; N19 -> N21; N20 -> N21; N20 -> N25; N20 -> N48; N21 -> N22; N22 -> N23; N23 -> N24; N24 -> N60; N25 -> N26; N26 -> N34; N26 -> N34; N26 -> N58; N26 -> N58; N27 -> N28; N28 -> N29; N29 -> N30; N30 -> N32; N31 -> N32; N31 -> N56; N32 -> N33; N33 -> N34; N34 -> N35; N35 -> N60; N36 -> N37; N37 -> N38; N38 -> N39; N39 -> N40; N40 -> N41; N41 -> N42; N42 -> N43; N43 -> N60; N44 -> N45; N45 -> N46; N46 -> N47; N47 -> N48; N48 -> N49; N49 -> N50; N50 -> N51; N51 -> N60; N52 -> N53; N53 -> N54; N54 -> N55; N55 -> N56; N56 -> N57; N57 -> N58; N58 -> N59; N59 -> N60; N60 -> N61; } """ self.assertEqual(expected.strip(), observed.strip()) def test_fix_vectorized_models_6(self) -> None: self.maxDiff = None observations = {} queries = [flip_beta_2_2(), flip_uniform_2_2()] observed = BMGInference().to_dot(queries, observations, after_transform=False) # The model before the rewrite: notice that here torch automatically # broadcast the 2.0 to [2.0, 2.0] for us when the node was accumulated, # and similarly for 0.0. expected = """ digraph "graph" { N00[label="[2.0,2.0]"]; N01[label="[3.0,4.0]"]; N02[label=Beta]; N03[label=Sample]; N04[label=Bernoulli]; N05[label=Sample]; N06[label=Query]; N07[label="[0.0,0.0]"]; N08[label="[1.0,1.0]"]; N09[label=Uniform]; N10[label=Sample]; N11[label=Bernoulli]; N12[label=Sample]; N13[label=Query]; N00 -> N02; N01 -> N02; N02 -> N03; N03 -> N04; N04 -> N05; N05 -> N06; N07 -> N09; N08 -> N09; N09 -> N10; N10 -> N11; N11 -> N12; N12 -> N13; } """ self.assertEqual(expected.strip(), observed.strip()) # After: notice that we correctly generate two samples from a Flat distribution # here. observed = BMGInference().to_dot(queries, observations, after_transform=True) expected = """ digraph "graph" { N00[label=2]; N01[label=1]; N02[label=2.0]; N03[label=3.0]; N04[label=Beta]; N05[label=Sample]; N06[label=Bernoulli]; N07[label=Sample]; N08[label=4.0]; N09[label=Beta]; N10[label=Sample]; N11[label=Bernoulli]; N12[label=Sample]; N13[label=ToMatrix]; N14[label=Query]; N15[label=Flat]; N16[label=Sample]; N17[label=Bernoulli]; N18[label=Sample]; N19[label=Sample]; N20[label=Bernoulli]; N21[label=Sample]; N22[label=ToMatrix]; N23[label=Query]; N00 -> N13; N00 -> N22; N01 -> N13; N01 -> N22; N02 -> N04; N02 -> N09; N03 -> N04; N04 -> N05; N05 -> N06; N06 -> N07; N07 -> N13; N08 -> N09; N09 -> N10; N10 -> N11; N11 -> N12; N12 -> N13; N13 -> N14; N15 -> N16; N15 -> N19; N16 -> N17; N17 -> N18; N18 -> N22; N19 -> N20; N20 -> N21; N21 -> N22; N22 -> N23; } """ self.assertEqual(expected.strip(), observed.strip()) def test_fix_vectorized_models_7(self) -> None: self.maxDiff = None observations = {} queries = [operators()] observed = BMGInference().to_dot(queries, observations, after_transform=False) # The model before the rewrite: expected = """ digraph "graph" { N0[label="[2.0,2.0]"]; N1[label="[3.0,4.0]"]; N2[label=Beta]; N3[label=Sample]; N4[label="[[5.0,6.0],\\\\n[7.0,8.0]]"]; N5[label="+"]; N6[label=10.0]; N7[label="*"]; N8[label=Exp]; N9[label=Query]; N0 -> N2; N1 -> N2; N2 -> N3; N3 -> N5; N4 -> N5; N5 -> N7; N6 -> N7; N7 -> N8; N8 -> N9; } """ self.assertEqual(expected.strip(), observed.strip()) # After: observed = BMGInference().to_dot(queries, observations, after_transform=True) expected = """ digraph "graph" { N00[label=2]; N01[label=10.0]; N02[label=2.0]; N03[label=3.0]; N04[label=Beta]; N05[label=Sample]; N06[label=ToPosReal]; N07[label=5.0]; N08[label="+"]; N09[label=4.0]; N10[label=Beta]; N11[label=Sample]; N12[label=ToPosReal]; N13[label=6.0]; N14[label="+"]; N15[label=7.0]; N16[label="+"]; N17[label=8.0]; N18[label="+"]; N19[label=ToMatrix]; N20[label=MatrixScale]; N21[label=0]; N22[label=ColumnIndex]; N23[label=index]; N24[label=Exp]; N25[label=1]; N26[label=index]; N27[label=Exp]; N28[label=ColumnIndex]; N29[label=index]; N30[label=Exp]; N31[label=index]; N32[label=Exp]; N33[label=ToMatrix]; N34[label=Query]; N00 -> N19; N00 -> N19; N00 -> N33; N00 -> N33; N01 -> N20; N02 -> N04; N02 -> N10; N03 -> N04; N04 -> N05; N05 -> N06; N06 -> N08; N06 -> N16; N07 -> N08; N08 -> N19; N09 -> N10; N10 -> N11; N11 -> N12; N12 -> N14; N12 -> N18; N13 -> N14; N14 -> N19; N15 -> N16; N16 -> N19; N17 -> N18; N18 -> N19; N19 -> N20; N20 -> N22; N20 -> N28; N21 -> N22; N21 -> N23; N21 -> N29; N22 -> N23; N22 -> N26; N23 -> N24; N24 -> N33; N25 -> N26; N25 -> N28; N25 -> N31; N26 -> N27; N27 -> N33; N28 -> N29; N28 -> N31; N29 -> N30; N30 -> N33; N31 -> N32; N32 -> N33; N33 -> N34; } """ self.assertEqual(expected.strip(), observed.strip())
[ "torch.distributions.Normal", "torch.tensor", "torch.distributions.Beta" ]
0.3
horizon-blue/beanmachine-1
b13e4e3e28ffb860947eb8046863b0cabb581222
1.6
# coding=utf-8 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """argparser configuration""" import argparse import os import torch import deepspeed def add_model_config_args(parser): """Model arguments""" group = parser.add_argument_group('model', 'model configuration') group.add_argument('--pretrained-bert', action='store_true', help='use a pretrained bert-large-uncased model instead' 'of initializing from scratch. See ' '--tokenizer-model-type to specify which pretrained ' 'BERT model to use') group.add_argument('--attention-dropout', type=float, default=0.1, help='dropout probability for attention weights') group.add_argument('--num-attention-heads', type=int, default=16, help='num of transformer attention heads') group.add_argument('--hidden-size', type=int, default=1024, help='tansformer hidden size') group.add_argument('--intermediate-size', type=int, default=None, help='transformer embedding dimension for FFN' 'set to 4*`--hidden-size` if it is None') group.add_argument('--num-layers', type=int, default=24, help='num decoder layers') group.add_argument('--layernorm-epsilon', type=float, default=1e-5, help='layer norm epsilon') group.add_argument('--hidden-dropout', type=float, default=0.1, help='dropout probability for hidden state transformer') group.add_argument('--max-position-embeddings', type=int, default=512, help='maximum number of position embeddings to use') group.add_argument('--vocab-size', type=int, default=30522, help='vocab size to use for non-character-level ' 'tokenization. This value will only be used when ' 'creating a tokenizer') group.add_argument('--deep-init', action='store_true', help='initialize bert model similar to gpt2 model.' 'scales initialization of projection layers by a ' 'factor of 1/sqrt(2N). Necessary to train bert ' 'models larger than BERT-Large.') group.add_argument('--make-vocab-size-divisible-by', type=int, default=128, help='Pad the vocab size to be divisible by this value.' 'This is added for computational efficieny reasons.') group.add_argument('--cpu-optimizer', action='store_true', help='Run optimizer on CPU') group.add_argument('--cpu_torch_adam', action='store_true', help='Use Torch Adam as optimizer on CPU.') return parser def add_fp16_config_args(parser): """Mixed precision arguments.""" group = parser.add_argument_group('fp16', 'fp16 configurations') group.add_argument('--fp16', action='store_true', help='Run model in fp16 mode') group.add_argument('--fp32-embedding', action='store_true', help='embedding in fp32') group.add_argument('--fp32-layernorm', action='store_true', help='layer norm in fp32') group.add_argument('--fp32-tokentypes', action='store_true', help='embedding token types in fp32') group.add_argument('--fp32-allreduce', action='store_true', help='all-reduce in fp32') group.add_argument('--hysteresis', type=int, default=2, help='hysteresis for dynamic loss scaling') group.add_argument('--loss-scale', type=float, default=None, help='Static loss scaling, positive power of 2 ' 'values can improve fp16 convergence. If None, dynamic' 'loss scaling is used.') group.add_argument('--loss-scale-window', type=float, default=1000, help='Window over which to raise/lower dynamic scale') group.add_argument('--min-scale', type=float, default=1, help='Minimum loss scale for dynamic loss scale') return parser def add_training_args(parser): """Training arguments.""" group = parser.add_argument_group('train', 'training configurations') group.add_argument('--do_train', action='store_true', help="Do training") group.add_argument('--do_eval', action='store_true', help="Do evaluation") group.add_argument('--zero_shot', action="store_true", help="do zero-shot") group.add_argument('--batch-size', type=int, default=4, help='Data Loader batch size') group.add_argument('--weight-decay', type=float, default=0.01, help='weight decay coefficient for L2 regularization') group.add_argument('--checkpoint-activations', action='store_true', help='checkpoint activation to allow for training ' 'with larger models and sequences') group.add_argument('--checkpoint-num-layers', type=int, default=1, help='chunk size (number of layers) for checkpointing') group.add_argument('--deepspeed-activation-checkpointing', action='store_true', help='uses activation checkpointing from deepspeed') group.add_argument('--clip-grad', type=float, default=1.0, help='gradient clipping') group.add_argument('--epoch', type=int, default=10, help='total number of iterations to train over all training runs') group.add_argument('--log-interval', type=int, default=100, help='report interval') group.add_argument('--exit-interval', type=int, default=None, help='Exit the program after this many new iterations.') group.add_argument('--seed', type=int, default=1234, help='random seed') # Batch prodecuer arguments group.add_argument('--reset-position-ids', action='store_true', help='Reset posistion ids after end-of-document token.') group.add_argument('--reset-attention-mask', action='store_true', help='Reset self attention maske after ' 'end-of-document token.') # Learning rate. group.add_argument('--lr-decay-iters', type=int, default=None, help='number of iterations to decay LR over,' ' If None defaults to `--train-iters`*`--epochs`') group.add_argument('--lr-decay-style', type=str, default='linear', choices=['constant', 'linear', 'cosine', 'exponential'], help='learning rate decay function') group.add_argument('--lr', type=float, default=1.0e-4, help='initial learning rate') group.add_argument('--warmup', type=float, default=0.01, help='percentage of data to warmup on (.01 = 1% of all ' 'training iters). Default 0.01') # model checkpointing group.add_argument('--save', type=str, default=None, help='Output directory to save checkpoints to.') group.add_argument('--save-interval', type=int, default=5000, help='number of iterations between saves') group.add_argument('--no-save-optim', action='store_true', help='Do not save current optimizer.') group.add_argument('--no-save-rng', action='store_true', help='Do not save current rng state.') group.add_argument('--load', type=str, default=None, help='Path to a directory containing a model checkpoint.') group.add_argument('--no-load-optim', action='store_true', help='Do not load optimizer when loading checkpoint.') group.add_argument('--no-load-rng', action='store_true', help='Do not load rng state when loading checkpoint.') group.add_argument('--finetune', action='store_true', help='Load model for finetuning. Do not load optimizer ' 'or rng state from checkpoint and set iteration to 0. ' 'Assumed when loading a release checkpoint.') # distributed training args group.add_argument('--distributed-backend', default='nccl', help='which backend to use for distributed ' 'training. One of [gloo, nccl]') group.add_argument('--local_rank', type=int, default=None, help='local rank passed from distributed launcher.') group.add_argument('--results_dir', type=str, default=None, help='The dir to save the model.') group.add_argument('--model_name', type=str, default="test", help="The name you give to the model.") # eval group.add_argument('--eval_ckpt_path', type=str, default=None, help='The checkpoint path used for evaluation') return parser def add_evaluation_args(parser): """Evaluation arguments.""" group = parser.add_argument_group('validation', 'validation configurations') group.add_argument('--eval-batch-size', type=int, default=None, help='Data Loader batch size for evaluation datasets.' 'Defaults to `--batch-size`') group.add_argument('--eval-iters', type=int, default=100, help='number of iterations to run for evaluation' 'validation/test for') group.add_argument('--eval-interval', type=int, default=1000, help='interval between running evaluation on validation set') group.add_argument('--eval-seq-length', type=int, default=None, help='Maximum sequence length to process for ' 'evaluation. Defaults to `--seq-length`') group.add_argument('--eval-max-preds-per-seq', type=int, default=None, help='Maximum number of predictions to use for ' 'evaluation. Defaults to ' 'math.ceil(`--eval-seq-length`*.15/10)*10') group.add_argument('--overlapping-eval', type=int, default=32, help='sliding window for overlapping eval ') group.add_argument('--cloze-eval', action='store_true', help='Evaluation dataset from `--valid-data` is a cloze task') group.add_argument('--eval-hf', action='store_true', help='perform evaluation with huggingface openai model.' 'use `--load` to specify weights path to be loaded') group.add_argument('--load-openai', action='store_true', help='load openai weights into our model. Use `--load` ' 'to specify weights path to be loaded') return parser def add_text_generate_args(parser): """Text generate arguments.""" group = parser.add_argument_group('Text generation', 'configurations') group.add_argument("--temperature", type=float, default=1.0) group.add_argument("--top_p", type=float, default=0.0) group.add_argument("--top_k", type=int, default=0) group.add_argument("--out-seq-length", type=int, default=256) return parser def add_data_args(parser): """Train/valid/test data arguments.""" group = parser.add_argument_group('data', 'data configurations') group.add_argument('--data_dir', type=str, required=True, help="Training data dir") group.add_argument('--mmap-warmup', action='store_true', help='Warm up mmap files.') group.add_argument('--model-parallel-size', type=int, default=1, help='size of the model parallel.') group.add_argument('--shuffle', action='store_true', help='Shuffle data. Shuffling is deterministic ' 'based on seed and current epoch.') group.add_argument('--use-npy-data-loader', action='store_true', help='Use the numpy data loader. If set, then' 'train-data-path, val-data-path, and test-data-path' 'should also be provided.') group.add_argument('--num-workers', type=int, default=2, help="""Number of workers to use for dataloading""") group.add_argument('--tokenizer-model-type', type=str, default='bert-large-uncased', help="Model type to use for sentencepiece tokenization \ (one of ['bpe', 'char', 'unigram', 'word']) or \ bert vocab to use for BertWordPieceTokenizer (one of \ ['bert-large-uncased', 'bert-large-cased', etc.])") group.add_argument('--tokenizer-path', type=str, default='tokenizer.model', help='path used to save/load sentencepiece tokenization ' 'models') group.add_argument('--tokenizer-type', type=str, default='BertWordPieceTokenizer', choices=['CharacterLevelTokenizer', 'SentencePieceTokenizer', 'BertWordPieceTokenizer', 'GPT2BPETokenizer'], help='what type of tokenizer to use') group.add_argument("--cache-dir", default=None, type=str, help="Where to store pre-trained BERT downloads") group.add_argument('--use-tfrecords', action='store_true', help='load `--train-data`, `--valid-data`, ' '`--test-data` from BERT tf records instead of ' 'normal data pipeline') group.add_argument('--seq-length', type=int, default=512, help="Maximum sequence length to process") group.add_argument('--max-preds-per-seq', type=int, default=None, help='Maximum number of predictions to use per sequence.' 'Defaults to math.ceil(`--seq-length`*.15/10)*10.' 'MUST BE SPECIFIED IF `--use-tfrecords` is True.') return parser def get_args(): """Parse all the args.""" parser = argparse.ArgumentParser(description='PyTorch BERT Model') parser = add_model_config_args(parser) parser = add_fp16_config_args(parser) parser = add_training_args(parser) parser = add_evaluation_args(parser) parser = add_text_generate_args(parser) parser = add_data_args(parser) # Include DeepSpeed configuration arguments parser = deepspeed.add_config_arguments(parser) args = parser.parse_args() if not args.data_dir: print('WARNING: No data specified') args.cuda = torch.cuda.is_available() args.rank = int(os.getenv('RANK', '0')) args.world_size = int(os.getenv("WORLD_SIZE", '1')) if os.getenv('OMPI_COMM_WORLD_LOCAL_RANK'): # We are using (OpenMPI) mpirun for launching distributed data parallel processes local_rank = int(os.getenv('OMPI_COMM_WORLD_LOCAL_RANK')) local_size = int(os.getenv('OMPI_COMM_WORLD_LOCAL_SIZE')) # Possibly running with Slurm num_nodes = int(os.getenv('SLURM_JOB_NUM_NODES', '1')) nodeid = int(os.getenv('SLURM_NODEID', '0')) args.local_rank = local_rank args.rank = nodeid*local_size + local_rank args.world_size = num_nodes*local_size args.model_parallel_size = min(args.model_parallel_size, args.world_size) if args.rank == 0: print('using world size: {} and model-parallel size: {} '.format( args.world_size, args.model_parallel_size)) args.dynamic_loss_scale = False if args.loss_scale is None: args.dynamic_loss_scale = True if args.rank == 0: print(' > using dynamic loss scaling') # The args fp32_* or fp16_* meant to be active when the # args fp16 is set. So the default behaviour should all # be false. if not args.fp16: args.fp32_embedding = False args.fp32_tokentypes = False args.fp32_layernorm = False return args
[ "torch.cuda.is_available" ]
1.6.0
wakafengfan/CPM-1-Finetune
b2c30bd94df31bcd6ee75ba90c347113563d4075
1.5
""" This file handles the details of the loss function during training. This includes: LossComputeBase and the standard NMTLossCompute, and sharded loss compute stuff. """ from __future__ import division from itertools import count import torch import torch.nn as nn import random as rnd import table device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class CopyGeneratorLoss(nn.Module): """Copy generator criterion.""" def __init__(self, vocab_size, force_copy, only_disf_loss, unk_index=0, ignore_index=-100, eps=1e-20): super(CopyGeneratorLoss, self).__init__() self.force_copy = force_copy self.eps = eps self.vocab_size = vocab_size self.ignore_index = ignore_index self.unk_index = unk_index self.only_disf_loss=only_disf_loss def forward(self, scores, tgt): """ Args: scores (FloatTensor): ``(batch_size*tgt_len)`` x dynamic vocab size whose sum along dim 1 is less than or equal to 1, i.e. cols softmaxed. tgt tuple (target, align) align (LongTensor): ``(tgt_len, batch_size)`` target (LongTensor): ``(tgt_len, batch_size)`` tgt_loss_mask (LongTensor): ``(tgt_len, batch_size)`` """ # probabilities assigned by the model to the gold targets align=tgt[1] target=tgt[0] tgt_loss_mask=tgt[2] #print(scores, target) #print(scores.size(), target.size()) target = target.view(-1) align = align.view(-1) tgt_loss_mask = tgt_loss_mask.view(-1) vocab_probs = scores.gather(1, target.unsqueeze(1)).squeeze(1) # probability of tokens copied from source copy_ix = align.unsqueeze(1) + self.vocab_size copy_tok_probs = scores.gather(1, copy_ix).squeeze(1) # Set scores for unk to 0 and add eps copy_tok_probs[align == self.unk_index] = 0 copy_tok_probs += self.eps # to avoid -inf logs # find the indices in which you do not use the copy mechanism non_copy = align == self.unk_index if not self.force_copy: non_copy = non_copy | (target != self.unk_index) probs = torch.where( non_copy, copy_tok_probs + vocab_probs, copy_tok_probs ) loss = - probs.log() # just NLLLoss; can the module be incorporated? # Drop padding. if self.only_disf_loss: loss[tgt_loss_mask == 1] = 0 else: loss[tgt == self.ignore_index] = 0 '''if self.normalize_by_length: # Compute Loss as NLL divided by seq length tgt_lens = batch.tgt[:, :, 0].ne(self.padding_idx).sum(0).float() # Compute Total Loss per sequence in batch loss = loss.view(-1, batch.batch_size).sum(0) # Divide by length of each sequence and sum loss = torch.div(loss, tgt_lens).sum() else:''' loss = loss.sum() return loss class LossCompute(nn.Module): def __init__(self, vocab, opt, fields,unk_index=0, ignore_index=-100,smooth_eps=0): super(LossCompute, self).__init__() self.criterion = {} self.label_weights=torch.ones(len(fields['src_label'].vocab),dtype=torch.float,requires_grad=False,device=device) self.label_weights[fields['src_label'].vocab.stoi[table.IO.BOD_LABEL]]=opt.disf_label_weight self.label_weights[fields['src_label'].vocab.stoi[table.IO.UNK_WORD]] = 0 self.label_weights[fields['src_label'].vocab.stoi[table.IO.PAD_WORD]] = 0 self.criterion['lay'] = nn.NLLLoss( weight=self.label_weights, reduction='sum', ignore_index=ignore_index) if opt.no_attention: self.criterion['tgt'] = nn.NLLLoss( reduction='sum', ignore_index=ignore_index) else: if opt.no_copy: self.criterion['tgt'] = nn.NLLLoss( reduction='sum', ignore_index=ignore_index) else: self.criterion['tgt'] = CopyGeneratorLoss(len(vocab), opt.copy_attn_force, opt.only_disf_loss, unk_index=unk_index, ignore_index=ignore_index) def compute_loss(self, pred, gold): loss_list = [] for loss_name in ('lay', 'tgt'): if loss_name not in gold: continue '''print(loss_name) print(pred[loss_name].size()) print(gold[loss_name].size())''' loss = self.criterion[loss_name](pred[loss_name], gold[loss_name]) loss_list.append(loss) # sum up the loss functions return loss_list, self.label_weights[gold['lay']].sum()#sum(loss_list) class SegLossCompute(nn.Module): def __init__(self, vocab, opt, fields,unk_index=0, ignore_index=-100,smooth_eps=0): super(SegLossCompute, self).__init__() self.criterion= nn.NLLLoss( reduction='sum', ignore_index=ignore_index) def compute_loss(self, pred, gold): loss = self.criterion(pred, gold) return loss
[ "torch.nn.NLLLoss", "torch.cuda.is_available", "torch.where" ]
1.5.0
GT-SALT/Disfluency-Generation-and-Detection
72126172b466aa74277f3cf0f73b915e5dbeefbb
1.0
import os import shutil import pickle import traceback import json import logging import math import time import psutil from time import sleep from copy import deepcopy from multiprocess import Process, Manager, cpu_count from multiprocess.queues import Queue from multiprocess.synchronize import Lock from typing import Union, List, Tuple, Optional, Dict, Iterable, Set from itertools import islice, chain, repeat from datetime import date from tqdm.autonotebook import tqdm, trange from spacy.tokens import Span, Doc, Token from spacy.language import Language from medcat import __version__ from medcat.preprocessing.tokenizers import spacy_split_all from medcat.pipe import Pipe from medcat.preprocessing.taggers import tag_skip_and_punct from medcat.cdb import CDB from medcat.utils.matutils import intersect_nonempty_set from medcat.utils.data_utils import make_mc_train_test, get_false_positives from medcat.utils.normalizers import BasicSpellChecker from medcat.utils.checkpoint import Checkpoint, CheckpointConfig, CheckpointManager from medcat.utils.helpers import tkns_from_doc, get_important_config_parameters from medcat.utils.hasher import Hasher from medcat.ner.vocab_based_ner import NER from medcat.linking.context_based_linker import Linker from medcat.utils.filters import get_project_filters, check_filters from medcat.preprocessing.cleaners import prepare_name from medcat.meta_cat import MetaCAT from medcat.utils.meta_cat.data_utils import json_to_fake_spacy from medcat.config import Config from medcat.vocab import Vocab from medcat.utils.decorators import deprecated from medcat.ner.transformers_ner import TransformersNER class CAT(object): r""" The main MedCAT class used to annotate documents, it is built on top of spaCy and works as a spaCy pipline. Creates an instance of a spaCy pipline that can be used as a spacy nlp model. Args: cdb (medcat.cdb.CDB): The concept database that will be used for NER+L config (medcat.config.Config): Global configuration for medcat vocab (medcat.vocab.Vocab, optional): Vocabulary used for vector embeddings and spelling. Default: None meta_cats (list of medcat.meta_cat.MetaCAT, optional): A list of models that will be applied sequentially on each detected annotation. Attributes (limited): cdb (medcat.cdb.CDB): Concept database used with this CAT instance, please do not assign this value directly. config (medcat.config.Config): The global configuration for medcat. Usually cdb.config will be used for this field. WILL BE REMOVED - TEMPORARY PLACEHOLDER vocab (medcat.utils.vocab.Vocab): The vocabulary object used with this instance, please do not assign this value directly. Examples: >>> cat = CAT(cdb, vocab) >>> spacy_doc = cat("Put some text here") >>> print(spacy_doc.ents) # Detected entites """ # Add file and console handlers log = logging.getLogger(__package__) DEFAULT_MODEL_PACK_NAME = "medcat_model_pack" def __init__(self, cdb: CDB, vocab: Union[Vocab, None] = None, config: Optional[Config] = None, meta_cats: List[MetaCAT] = [], addl_ner: Union[TransformersNER, List[TransformersNER]] = []) -> None: self.cdb = cdb self.vocab = vocab if config is None: # Take config from the cdb self.config = cdb.config else: # Take the new config and assign it to the CDB also self.config = config self.cdb.config = config self._meta_cats = meta_cats self._addl_ner = addl_ner if isinstance(addl_ner, list) else [addl_ner] self._create_pipeline(self.config) def _create_pipeline(self, config): # Set log level self.log.setLevel(config.general['log_level']) # Build the pipeline self.pipe = Pipe(tokenizer=spacy_split_all, config=config) self.pipe.add_tagger(tagger=tag_skip_and_punct, name='skip_and_punct', additional_fields=['is_punct']) if self.vocab is not None: spell_checker = BasicSpellChecker(cdb_vocab=self.cdb.vocab, config=config, data_vocab=self.vocab) self.pipe.add_token_normalizer(spell_checker=spell_checker, config=config) # Add NER self.ner = NER(self.cdb, config) self.pipe.add_ner(self.ner) # Add LINKER self.linker = Linker(self.cdb, self.vocab, config) self.pipe.add_linker(self.linker) # Add addl_ner if they exist for ner in self._addl_ner: self.pipe.add_addl_ner(ner, ner.config.general['name']) # Add meta_annotaiton classes if they exist for meta_cat in self._meta_cats: self.pipe.add_meta_cat(meta_cat, meta_cat.config.general['category_name']) # Set max document length self.pipe.spacy_nlp.max_length = config.preprocessing.get('max_document_length', 1000000) @deprecated(message="Replaced with cat.pipe.spacy_nlp.") def get_spacy_nlp(self) -> Language: """ Returns the spacy pipeline with MedCAT """ return self.pipe.spacy_nlp def get_hash(self): r""" Will not be a deep hash but will try to cactch all the changing parts during training. """ hasher = Hasher() hasher.update(self.cdb.get_hash()) hasher.update(self.config.get_hash()) for mc in self._meta_cats: hasher.update(mc.get_hash()) for trf in self._addl_ner: hasher.update(trf.get_hash()) return hasher.hexdigest() def get_model_card(self, as_dict=False): """ A minimal model card for MedCAT model packs. Args: as_dict: return the model card as a dictionary instead of a str. Returns: By default a str - indented JSON object. """ card = { 'Model ID': self.config.version['id'], 'Last Modified On': self.config.version['last_modified'], 'History (from least to most recent)': self.config.version['history'], 'Description': self.config.version['description'], 'Source Ontology': self.config.version['ontology'], 'Location': self.config.version['location'], 'MetaCAT models': self.config.version['meta_cats'], 'Basic CDB Stats': self.config.version['cdb_info'], 'Performance': self.config.version['performance'], 'Important Parameters (Partial view, all available in cat.config)': get_important_config_parameters(self.config), 'MedCAT Version': self.config.version['medcat_version'] } if as_dict: return card else: return json.dumps(card, indent=2, sort_keys=False) def _versioning(self): # Check version info and do not allow without it if self.config.version['description'] == 'No description': self.log.warning("Please consider populating the version information [description, performance, location, ontology] in cat.config.version") # Fill the stuff automatically that is needed for versioning m = self.get_hash() version = self.config.version if version['id'] is None or m != version['id']: if version['id'] is not None: version['history'].append(version['id']) version['id'] = m version['last_modified'] = date.today().strftime("%d %B %Y") version['cdb_info'] = self.cdb._make_stats() version['meta_cats'] = [meta_cat.get_model_card(as_dict=True) for meta_cat in self._meta_cats] version['medcat_version'] = __version__ self.log.warning("Please consider updating [description, performance, location, ontology] in cat.config.version") def create_model_pack(self, save_dir_path: str, model_pack_name: str = DEFAULT_MODEL_PACK_NAME) -> str: r""" Will crete a .zip file containing all the models in the current running instance of MedCAT. This is not the most efficient way, for sure, but good enough for now. model_pack_name - an id will be appended to this name returns: Model pack name """ # Spacy model always should be just the name, but during loading it can be reset to path self.config.general['spacy_model'] = os.path.basename(self.config.general['spacy_model']) # Versioning self._versioning() model_pack_name += "_{}".format(self.config.version['id']) self.log.warning("This will save all models into a zip file, can take some time and require quite a bit of disk space.") _save_dir_path = save_dir_path save_dir_path = os.path.join(save_dir_path, model_pack_name) # expand user path to make this work with '~' os.makedirs(os.path.expanduser(save_dir_path), exist_ok=True) # Save the used spacy model spacy_path = os.path.join(save_dir_path, self.config.general['spacy_model']) if str(self.pipe.spacy_nlp._path) != spacy_path: # First remove if something is there shutil.rmtree(spacy_path, ignore_errors=True) shutil.copytree(str(self.pipe.spacy_nlp._path), spacy_path) # Save the CDB cdb_path = os.path.join(save_dir_path, "cdb.dat") self.cdb.save(cdb_path) # Save the Vocab vocab_path = os.path.join(save_dir_path, "vocab.dat") if self.vocab is not None: # We will allow creation of modelpacks without vocabs self.vocab.save(vocab_path) # Save addl_ner for comp in self.pipe.spacy_nlp.components: if isinstance(comp[1], TransformersNER): trf_path = os.path.join(save_dir_path, "trf_" + comp[1].config.general['name']) comp[1].save(trf_path) # Save all meta_cats for comp in self.pipe.spacy_nlp.components: if isinstance(comp[1], MetaCAT): name = comp[0] meta_path = os.path.join(save_dir_path, "meta_" + name) comp[1].save(meta_path) # Add a model card also, why not model_card_path = os.path.join(save_dir_path, "model_card.json") json.dump(self.get_model_card(as_dict=True), open(model_card_path, 'w'), indent=2) # Zip everything shutil.make_archive(os.path.join(_save_dir_path, model_pack_name), 'zip', root_dir=save_dir_path) # Log model card and return new name self.log.info(self.get_model_card()) # Print the model card return model_pack_name @classmethod def load_model_pack(cls, zip_path: str, meta_cat_config_dict: Optional[Dict] = None) -> "CAT": r"""Load everything within the 'model pack', i.e. the CDB, config, vocab and any MetaCAT models (if present) Args: zip_path: path to model pack zip. meta_cat_config_dict: A config dict that will overwrite existing configs in meta_cat. e.g. meta_cat_config_dict = {'general': {'device': 'cpu'}} """ from medcat.cdb import CDB from medcat.vocab import Vocab from medcat.meta_cat import MetaCAT base_dir = os.path.dirname(zip_path) filename = os.path.basename(zip_path) foldername = filename.replace(".zip", '') model_pack_path = os.path.join(base_dir, foldername) if os.path.exists(model_pack_path): cls.log.info("Found an existing unziped model pack at: {}, the provided zip will not be touched.".format(model_pack_path)) else: cls.log.info("Unziping the model pack and loading models.") shutil.unpack_archive(zip_path, extract_dir=model_pack_path) # Load the CDB cdb_path = os.path.join(model_pack_path, "cdb.dat") cdb = CDB.load(cdb_path) # TODO load addl_ner # Modify the config to contain full path to spacy model cdb.config.general['spacy_model'] = os.path.join(model_pack_path, os.path.basename(cdb.config.general['spacy_model'])) # Load Vocab vocab_path = os.path.join(model_pack_path, "vocab.dat") if os.path.exists(vocab_path): vocab = Vocab.load(vocab_path) else: vocab = None # Find meta models in the model_pack trf_paths = [os.path.join(model_pack_path, path) for path in os.listdir(model_pack_path) if path.startswith('trf_')] addl_ner = [] for trf_path in trf_paths: trf = TransformersNER.load(save_dir_path=trf_path) trf.cdb = cdb # Set the cat.cdb to be the CDB of the TRF model addl_ner.append(trf) # Find meta models in the model_pack meta_paths = [os.path.join(model_pack_path, path) for path in os.listdir(model_pack_path) if path.startswith('meta_')] meta_cats = [] for meta_path in meta_paths: meta_cats.append(MetaCAT.load(save_dir_path=meta_path, config_dict=meta_cat_config_dict)) cat = cls(cdb=cdb, config=cdb.config, vocab=vocab, meta_cats=meta_cats, addl_ner=addl_ner) cls.log.info(cat.get_model_card()) # Print the model card return cat def __call__(self, text: Optional[str], do_train: bool = False) -> Optional[Doc]: r""" Push the text through the pipeline. Args: text (string): The text to be annotated, if the text length is longer than self.config.preprocessing['max_document_length'] it will be trimmed to that length. do_train (bool, defaults to `False`): This causes so many screwups when not there, so I'll force training to False. To run training it is much better to use the self.train() function but for some special cases I'm leaving it here also. Returns: A single spacy document or multiple spacy documents with the extracted entities """ # Should we train - do not use this for training, unless you know what you are doing. Use the #self.train() function self.config.linking['train'] = do_train if text is None: self.log.error("The input text should be either a string or a sequence of strings but got %s", type(text)) return None else: text = self._get_trimmed_text(str(text)) return self.pipe(text) def __repr__(self): """ Prints the model_card for this CAT instance. Returns: the 'Model Card' for this CAT instance. This includes NER+L config and any MetaCATs """ return self.get_model_card(as_dict=False) def _print_stats(self, data: Dict, epoch: int = 0, use_project_filters: bool = False, use_overlaps: bool = False, use_cui_doc_limit: bool = False, use_groups: bool = False, extra_cui_filter: Optional[Set] = None) -> Tuple: r""" TODO: Refactor and make nice Print metrics on a dataset (F1, P, R), it will also print the concepts that have the most FP,FN,TP. Args: data (list of dict): The json object that we get from MedCATtrainer on export. epoch (int): Used during training, so we know what epoch is it. use_project_filters (boolean): Each project in medcattrainer can have filters, do we want to respect those filters when calculating metrics. use_overlaps (boolean): Allow overlapping entites, nearly always False as it is very difficult to annotate overlapping entites. use_cui_doc_limit (boolean): If True the metrics for a CUI will be only calculated if that CUI appears in a document, in other words if the document was annotated for that CUI. Useful in very specific situations when during the annotation process the set of CUIs changed. use_groups (boolean): If True concepts that have groups will be combined and stats will be reported on groups. extra_cui_filter(Optional[Set]): This filter will be intersected with all other filters, or if all others are not set then only this one will be used. Returns: fps (dict): False positives for each CUI fns (dict): False negatives for each CUI tps (dict): True positives for each CUI cui_prec (dict): Precision for each CUI cui_rec (dict): Recall for each CUI cui_f1 (dict): F1 for each CUI cui_counts (dict): Number of occurrence for each CUI examples (dict): Examples for each of the fp, fn, tp. Format will be examples['fp']['cui'][<list_of_examples>] """ tp = 0 fp = 0 fn = 0 fps: Dict = {} fns: Dict = {} tps: Dict = {} cui_prec: Dict = {} cui_rec: Dict = {} cui_f1: Dict = {} cui_counts: Dict = {} examples: Dict = {'fp': {}, 'fn': {}, 'tp': {}} fp_docs: Set = set() fn_docs: Set = set() # reset and back up filters _filters = deepcopy(self.config.linking['filters']) filters = self.config.linking['filters'] for pind, project in tqdm(enumerate(data['projects']), desc="Stats project", total=len(data['projects']), leave=False): filters['cuis'] = set() # Add extrafilter if set if isinstance(extra_cui_filter, set): filters['cuis'] = extra_cui_filter if use_project_filters: project_filter = get_project_filters(cuis=project.get('cuis', None), type_ids=project.get('tuis', None), cdb=self.cdb, project=project) # Intersect project filter with existing if it has something if project_filter: filters['cuis'] = intersect_nonempty_set(project_filter, filters['cuis']) for dind, doc in tqdm( enumerate(project["documents"]), desc="Stats document", total=len(project["documents"]), leave=False, ): anns = self._get_doc_annotations(doc) # Apply document level filtering, in this case project_filter is ignored while the extra_cui_filter is respected still if use_cui_doc_limit: _cuis = set([ann['cui'] for ann in anns]) if _cuis: filters['cuis'] = intersect_nonempty_set(_cuis, extra_cui_filter) else: filters['cuis'] = {'empty'} spacy_doc: Doc = self(doc['text']) if use_overlaps: p_anns = spacy_doc._.ents else: p_anns = spacy_doc.ents anns_norm = [] anns_norm_neg = [] anns_examples = [] anns_norm_cui = [] for ann in anns: cui = ann['cui'] if check_filters(cui, filters): if use_groups: cui = self.cdb.addl_info['cui2group'].get(cui, cui) if ann.get('validated', True) and (not ann.get('killed', False) and not ann.get('deleted', False)): anns_norm.append((ann['start'], cui)) anns_examples.append({"text": doc['text'][max(0, ann['start']-60):ann['end']+60], "cui": cui, "source value": ann['value'], "acc": 1, "project index": pind, "document inedex": dind}) elif ann.get('validated', True) and (ann.get('killed', False) or ann.get('deleted', False)): anns_norm_neg.append((ann['start'], cui)) if ann.get("validated", True): # This is used to test was someone annotating for this CUI in this document anns_norm_cui.append(cui) cui_counts[cui] = cui_counts.get(cui, 0) + 1 p_anns_norm = [] p_anns_examples = [] for ann in p_anns: cui = ann._.cui if use_groups: cui = self.cdb.addl_info['cui2group'].get(cui, cui) p_anns_norm.append((ann.start_char, cui)) p_anns_examples.append({"text": doc['text'][max(0, ann.start_char-60):ann.end_char+60], "cui": cui, "source value": ann.text, "acc": float(ann._.context_similarity), "project index": pind, "document inedex": dind}) for iann, ann in enumerate(p_anns_norm): cui = ann[1] if ann in anns_norm: tp += 1 tps[cui] = tps.get(cui, 0) + 1 example = p_anns_examples[iann] examples['tp'][cui] = examples['tp'].get(cui, []) + [example] else: fp += 1 fps[cui] = fps.get(cui, 0) + 1 fp_docs.add(doc.get('name', 'unk')) # Add example for this FP prediction example = p_anns_examples[iann] if ann in anns_norm_neg: # Means that it really was annotated as negative example['real_fp'] = True examples['fp'][cui] = examples['fp'].get(cui, []) + [example] for iann, ann in enumerate(anns_norm): if ann not in p_anns_norm: cui = ann[1] fn += 1 fn_docs.add(doc.get('name', 'unk')) fns[cui] = fns.get(cui, 0) + 1 examples['fn'][cui] = examples['fn'].get(cui, []) + [anns_examples[iann]] try: prec = tp / (tp + fp) rec = tp / (tp + fn) f1 = 2*(prec*rec) / (prec + rec) print("Epoch: {}, Prec: {}, Rec: {}, F1: {}\n".format(epoch, prec, rec, f1)) print("Docs with false positives: {}\n".format("; ".join([str(x) for x in list(fp_docs)[0:10]]))) print("Docs with false negatives: {}\n".format("; ".join([str(x) for x in list(fn_docs)[0:10]]))) # Sort fns & prec fps = {k: v for k, v in sorted(fps.items(), key=lambda item: item[1], reverse=True)} fns = {k: v for k, v in sorted(fns.items(), key=lambda item: item[1], reverse=True)} tps = {k: v for k, v in sorted(tps.items(), key=lambda item: item[1], reverse=True)} # F1 per concept for cui in tps.keys(): prec = tps[cui] / (tps.get(cui, 0) + fps.get(cui, 0)) rec = tps[cui] / (tps.get(cui, 0) + fns.get(cui, 0)) f1 = 2*(prec*rec) / (prec + rec) cui_prec[cui] = prec cui_rec[cui] = rec cui_f1[cui] = f1 # Get top 10 pr_fps = [(self.cdb.cui2preferred_name.get(cui, list(self.cdb.cui2names.get(cui, [cui]))[0]), cui, fps[cui]) for cui in list(fps.keys())[0:10]] pr_fns = [(self.cdb.cui2preferred_name.get(cui, list(self.cdb.cui2names.get(cui, [cui]))[0]), cui, fns[cui]) for cui in list(fns.keys())[0:10]] pr_tps = [(self.cdb.cui2preferred_name.get(cui, list(self.cdb.cui2names.get(cui, [cui]))[0]), cui, tps[cui]) for cui in list(tps.keys())[0:10]] print("\n\nFalse Positives\n") for one in pr_fps: print("{:70} - {:20} - {:10}".format(str(one[0])[0:69], str(one[1])[0:19], one[2])) print("\n\nFalse Negatives\n") for one in pr_fns: print("{:70} - {:20} - {:10}".format(str(one[0])[0:69], str(one[1])[0:19], one[2])) print("\n\nTrue Positives\n") for one in pr_tps: print("{:70} - {:20} - {:10}".format(str(one[0])[0:69], str(one[1])[0:19], one[2])) print("*"*110 + "\n") except Exception: traceback.print_exc() # restore filters to original state self.config.linking['filters'] = _filters return fps, fns, tps, cui_prec, cui_rec, cui_f1, cui_counts, examples def _init_ckpts(self, is_resumed, checkpoint): if self.config.general['checkpoint']['steps'] is not None or checkpoint is not None: checkpoint_config = CheckpointConfig(**self.config.general.get('checkpoint', {})) checkpoint_manager = CheckpointManager('cat_train', checkpoint_config) if is_resumed: # TODO: probably remove is_resumed mark and always resume if a checkpoint is provided, #but I'll leave it for now checkpoint = checkpoint or checkpoint_manager.get_latest_checkpoint() self.log.info(f"Resume training on the most recent checkpoint at {checkpoint.dir_path}...") self.cdb = checkpoint.restore_latest_cdb() self.cdb.config.merge_config(self.config.__dict__) self.config = self.cdb.config self._create_pipeline(self.config) else: checkpoint = checkpoint or checkpoint_manager.create_checkpoint() self.log.info(f"Start new training and checkpoints will be saved at {checkpoint.dir_path}...") return checkpoint def train(self, data_iterator: Iterable, nepochs: int = 1, fine_tune: bool = True, progress_print: int = 1000, checkpoint: Optional[Checkpoint] = None, is_resumed: bool = False) -> None: """ Runs training on the data, note that the maximum length of a line or document is 1M characters. Anything longer will be trimmed. Args: data_iterator (Iterable): Simple iterator over sentences/documents, e.g. a open file or an array or anything that we can use in a for loop. nepochs (int): Number of epochs for which to run the training. fine_tune (bool): If False old training will be removed. progress_print (int): Print progress after N lines. checkpoint (Optional[medcat.utils.checkpoint.CheckpointUT]): The MedCAT checkpoint object is_resumed (bool): If True resume the previous training; If False, start a fresh new training. """ if not fine_tune: self.log.info("Removing old training data!") self.cdb.reset_training() checkpoint = self._init_ckpts(is_resumed, checkpoint) latest_trained_step = checkpoint.count if checkpoint is not None else 0 epochal_data_iterator = chain.from_iterable(repeat(data_iterator, nepochs)) for line in islice(epochal_data_iterator, latest_trained_step, None): if line is not None and line: # Convert to string line = str(line).strip() try: _ = self(line, do_train=True) except Exception as e: self.log.warning("LINE: '%s...' \t WAS SKIPPED", line[0:100]) self.log.warning("BECAUSE OF: %s", str(e)) else: self.log.warning("EMPTY LINE WAS DETECTED AND SKIPPED") latest_trained_step += 1 if latest_trained_step % progress_print == 0: self.log.info("DONE: %s", str(latest_trained_step)) if checkpoint is not None and checkpoint.steps is not None and latest_trained_step % checkpoint.steps == 0: checkpoint.save(cdb=self.cdb, count=latest_trained_step) self.config.linking['train'] = False def add_cui_to_group(self, cui: str, group_name: str) -> None: r""" Ads a CUI to a group, will appear in cdb.addl_info['cui2group'] Args: cui (str): The concept to be added group_name (str): The group to whcih the concept will be added Examples: >>> cat.add_cui_to_group("S-17", 'pain') """ # Add group_name self.cdb.addl_info['cui2group'][cui] = group_name def unlink_concept_name(self, cui: str, name: str, preprocessed_name: bool = False) -> None: r""" Unlink a concept name from the CUI (or all CUIs if full_unlink), removes the link from the Concept Database (CDB). As a consequence medcat will never again link the `name` to this CUI - meaning the name will not be detected as a concept in the future. Args: cui (str): The CUI from which the `name` will be removed name (str): The span of text to be removed from the linking dictionary Examples: >>> # To never again link C0020538 to HTN >>> cat.unlink_concept_name('C0020538', 'htn', False) """ cuis = [cui] if preprocessed_name: names = {name: 'nothing'} else: names = prepare_name(name, self.pipe.spacy_nlp, {}, self.config) # If full unlink find all CUIs if self.config.general.get('full_unlink', False): for n in names: cuis.extend(self.cdb.name2cuis.get(n, [])) # Remove name from all CUIs for c in cuis: self.cdb.remove_names(cui=c, names=names) def add_and_train_concept(self, cui: str, name: str, spacy_doc: Optional[Doc] = None, spacy_entity: Optional[Union[List[Token], Span]] = None, ontologies: Set = set(), name_status: str = 'A', type_ids: Set = set(), description: str = '', full_build: bool = True, negative: bool = False, devalue_others: bool = False, do_add_concept: bool = True) -> None: r""" Add a name to an existing concept, or add a new concept, or do not do anything if the name or concept already exists. Perform training if spacy_entity and spacy_doc are set. Args: cui (str): CUI of the concept name (str): Name to be linked to the concept (in the case of MedCATtrainer this is simply the selected value in text, no preprocessing or anything needed). spacy_doc (spacy.tokens.Doc): Spacy represenation of the document that was manually annotated. spacy_entity (Optional[Union[List[Token], Span]]): Given the spacy document, this is the annotated span of text - list of annotated tokens that are marked with this CUI. negative (bool): Is this a negative or positive example. devalue_others: If set, cuis to which this name is assigned and are not `cui` will receive negative training given that negative=False. \*\*other: Refer to medcat.cat.cdb.CDB.add_concept """ names = prepare_name(name, self.pipe.spacy_nlp, {}, self.config) # Only if not negative, otherwise do not add the new name if in fact it should not be detected if do_add_concept and not negative: self.cdb.add_concept(cui=cui, names=names, ontologies=ontologies, name_status=name_status, type_ids=type_ids, description=description, full_build=full_build) if spacy_entity is not None and spacy_doc is not None: # Train Linking self.linker.context_model.train(cui=cui, entity=spacy_entity, doc=spacy_doc, negative=negative, names=names) if not negative and devalue_others: # Find all cuis cuis = set() for n in names: cuis.update(self.cdb.name2cuis.get(n, [])) # Remove the cui for which we just added positive training if cui in cuis: cuis.remove(cui) # Add negative training for all other CUIs that link to these names for _cui in cuis: self.linker.context_model.train(cui=_cui, entity=spacy_entity, doc=spacy_doc, negative=True) def train_supervised(self, data_path: str, reset_cui_count: bool = False, nepochs: int = 1, print_stats: int = 0, use_filters: bool = False, terminate_last: bool = False, use_overlaps: bool = False, use_cui_doc_limit: bool = False, test_size: int = 0, devalue_others: bool = False, use_groups: bool = False, never_terminate: bool = False, train_from_false_positives: bool = False, extra_cui_filter: Optional[Set] = None, checkpoint: Optional[Checkpoint] = None, is_resumed: bool = False) -> Tuple: r""" TODO: Refactor, left from old Run supervised training on a dataset from MedCATtrainer. Please take care that this is more a simulated online training then supervised. Args: data_path (str): The path to the json file that we get from MedCATtrainer on export. reset_cui_count (boolean): Used for training with weight_decay (annealing). Each concept has a count that is there from the beginning of the CDB, that count is used for annealing. Resetting the count will significantly increase the training impact. This will reset the count only for concepts that exist in the the training data. nepochs (int): Number of epochs for which to run the training. print_stats (int): If > 0 it will print stats every print_stats epochs. use_filters (boolean): Each project in medcattrainer can have filters, do we want to respect those filters when calculating metrics. terminate_last (boolean): If true, concept termination will be done after all training. use_overlaps (boolean): Allow overlapping entities, nearly always False as it is very difficult to annotate overlapping entities. use_cui_doc_limit (boolean): If True the metrics for a CUI will be only calculated if that CUI appears in a document, in other words if the document was annotated for that CUI. Useful in very specific situations when during the annotation process the set of CUIs changed. test_size (float): If > 0 the data set will be split into train test based on this ration. Should be between 0 and 1. Usually 0.1 is fine. devalue_others(bool): Check add_name for more details. use_groups (boolean): If True concepts that have groups will be combined and stats will be reported on groups. never_terminate (boolean): If True no termination will be applied train_from_false_positives (boolean): If True it will use false positive examples detected by medcat and train from them as negative examples. extra_cui_filter(Optional[Set]): This filter will be intersected with all other filters, or if all others are not set then only this one will be used. checkpoint (Optional[Optional[medcat.utils.checkpoint.CheckpointST]): The MedCAT CheckpointST object is_resumed (bool): If True resume the previous training; If False, start a fresh new training. Returns: fp (dict): False positives for each CUI fn (dict): False negatives for each CUI tp (dict): True positives for each CUI p (dict): Precision for each CUI r (dict): Recall for each CUI f1 (dict): F1 for each CUI cui_counts (dict): Number of occurrence for each CUI examples (dict): FP/FN examples of sentences for each CUI """ checkpoint = self._init_ckpts(is_resumed, checkpoint) # Backup filters _filters = deepcopy(self.config.linking['filters']) filters = self.config.linking['filters'] fp = fn = tp = p = r = f1 = examples = {} with open(data_path) as f: data = json.load(f) cui_counts = {} if test_size == 0: self.log.info("Running without a test set, or train==test") test_set = data train_set = data else: train_set, test_set, _, _ = make_mc_train_test(data, self.cdb, test_size=test_size) if print_stats > 0: fp, fn, tp, p, r, f1, cui_counts, examples = self._print_stats(test_set, use_project_filters=use_filters, use_cui_doc_limit=use_cui_doc_limit, use_overlaps=use_overlaps, use_groups=use_groups, extra_cui_filter=extra_cui_filter) if reset_cui_count: # Get all CUIs cuis = [] for project in train_set['projects']: for doc in project['documents']: doc_annotations = self._get_doc_annotations(doc) for ann in doc_annotations: cuis.append(ann['cui']) for cui in set(cuis): if cui in self.cdb.cui2count_train: self.cdb.cui2count_train[cui] = 100 # Remove entities that were terminated if not never_terminate: for project in train_set['projects']: for doc in project['documents']: doc_annotations = self._get_doc_annotations(doc) for ann in doc_annotations: if ann.get('killed', False): self.unlink_concept_name(ann['cui'], ann['value']) latest_trained_step = checkpoint.count if checkpoint is not None else 0 current_epoch, current_project, current_document = self._get_training_start(train_set, latest_trained_step) for epoch in trange(current_epoch, nepochs, initial=current_epoch, total=nepochs, desc='Epoch', leave=False): # Print acc before training for idx_project in trange(current_project, len(train_set['projects']), initial=current_project, total=len(train_set['projects']), desc='Project', leave=False): project = train_set['projects'][idx_project] # Set filters in case we are using the train_from_fp filters['cuis'] = set() if isinstance(extra_cui_filter, set): filters['cuis'] = extra_cui_filter if use_filters: project_filter = get_project_filters(cuis=project.get('cuis', None), type_ids=project.get('tuis', None), cdb=self.cdb, project=project) if project_filter: filters['cuis'] = intersect_nonempty_set(project_filter, filters['cuis']) for idx_doc in trange(current_document, len(project['documents']), initial=current_document, total=len(project['documents']), desc='Document', leave=False): doc = project['documents'][idx_doc] spacy_doc: Doc = self(doc['text']) # Compatibility with old output where annotations are a list doc_annotations = self._get_doc_annotations(doc) for ann in doc_annotations: if not ann.get('killed', False): cui = ann['cui'] start = ann['start'] end = ann['end'] spacy_entity = tkns_from_doc(spacy_doc=spacy_doc, start=start, end=end) deleted = ann.get('deleted', False) self.add_and_train_concept(cui=cui, name=ann['value'], spacy_doc=spacy_doc, spacy_entity=spacy_entity, negative=deleted, devalue_others=devalue_others) if train_from_false_positives: fps: List[Span] = get_false_positives(doc, spacy_doc) for fp in fps: fp_: Span = fp self.add_and_train_concept(cui=fp_._.cui, name=fp_.text, spacy_doc=spacy_doc, spacy_entity=fp_, negative=True, do_add_concept=False) latest_trained_step += 1 if checkpoint is not None and checkpoint.steps is not None and latest_trained_step % checkpoint.steps == 0: checkpoint.save(self.cdb, latest_trained_step) if terminate_last and not never_terminate: # Remove entities that were terminated, but after all training is done for project in train_set['projects']: for doc in project['documents']: doc_annotations = self._get_doc_annotations(doc) for ann in doc_annotations: if ann.get('killed', False): self.unlink_concept_name(ann['cui'], ann['value']) if print_stats > 0 and (epoch + 1) % print_stats == 0: fp, fn, tp, p, r, f1, cui_counts, examples = self._print_stats(test_set, epoch=epoch + 1, use_project_filters=use_filters, use_cui_doc_limit=use_cui_doc_limit, use_overlaps=use_overlaps, use_groups=use_groups, extra_cui_filter=extra_cui_filter) # Set the filters again self.config.linking['filters'] = _filters return fp, fn, tp, p, r, f1, cui_counts, examples def get_entities(self, text: str, only_cui: bool = False, addl_info: List[str] = ['cui2icd10', 'cui2ontologies', 'cui2snomed']) -> Dict: doc = self(text) out = self._doc_to_out(doc, only_cui, addl_info) return out def get_entities_multi_texts(self, texts: Union[Iterable[str], Iterable[Tuple]], only_cui: bool = False, addl_info: List[str] = ['cui2icd10', 'cui2ontologies', 'cui2snomed'], n_process: Optional[int] = None, batch_size: Optional[int] = None) -> List[Dict]: r""" Get entities text: text to be annotated return: entities """ out: List[Dict] = [] if n_process is None: texts_ = self._generate_trimmed_texts(texts) for text in texts_: out.append(self._doc_to_out(self(text), only_cui, addl_info)) else: self.pipe.set_error_handler(self._pipe_error_handler) try: texts_ = self._get_trimmed_texts(texts) docs = self.pipe.batch_multi_process(texts_, n_process, batch_size) for doc in tqdm(docs, total=len(texts_)): doc = None if doc.text.strip() == '' else doc out.append(self._doc_to_out(doc, only_cui, addl_info, out_with_text=True)) # Currently spaCy cannot mark which pieces of texts failed within the pipe so be this workaround, # which also assumes texts are different from each others. if len(out) < len(texts_): self.log.warning("Found at least one failed batch and set output for enclosed texts to empty") for i, text in enumerate(texts_): if i == len(out): out.append(self._doc_to_out(None, only_cui, addl_info)) elif out[i].get('text', '') != text: out.insert(i, self._doc_to_out(None, only_cui, addl_info)) cnf_annotation_output = getattr(self.config, 'annotation_output', {}) if not(cnf_annotation_output.get('include_text_in_output', False)): for o in out: if o is not None: o.pop('text', None) finally: self.pipe.reset_error_handler() return out def get_json(self, text: str, only_cui: bool = False, addl_info=['cui2icd10', 'cui2ontologies']) -> str: """ Get output in json format text: text to be annotated return: json with fields {'entities': <>, 'text': text} """ ents = self.get_entities(text, only_cui, addl_info=addl_info)['entities'] out = {'annotations': ents, 'text': text} return json.dumps(out) @staticmethod def _get_training_start(train_set, latest_trained_step): total_steps_per_epoch = sum([1 for project in train_set['projects'] for _ in project['documents']]) if total_steps_per_epoch == 0: raise ValueError("MedCATtrainer export contains no documents") current_epoch, last_step_in_epoch = divmod(latest_trained_step, total_steps_per_epoch) document_count = 0 current_project = 0 current_document = 0 for idx_project, project in enumerate(train_set['projects']): for idx_doc, _ in enumerate(project['documents']): document_count += 1 if document_count == last_step_in_epoch: current_project = idx_project current_document = idx_doc break if current_project > 0: break current_document = 0 return current_epoch, current_project, current_document def _separate_nn_components(self): # Loop though the models and check are there GPU devices nn_components = [] for component in self.pipe.spacy_nlp.components: if isinstance(component[1], MetaCAT) or isinstance(component[1], TransformersNER): self.pipe.spacy_nlp.disable_pipe(component[0]) nn_components.append(component) return nn_components def _run_nn_components(self, docs: Dict, nn_components: List, id2text: Dict) -> None: r""" This will add meta_anns in-place to the docs dict. """ self.log.debug("Running GPU components separately") # First convert the docs into the fake spacy doc format spacy_docs = json_to_fake_spacy(docs, id2text=id2text) # Disable component locks also for name, component in nn_components: component.config.general['disable_component_lock'] = True # For meta_cat compoments for name, component in [c for c in nn_components if isinstance(c[1], MetaCAT)]: spacy_docs = component.pipe(spacy_docs) for spacy_doc in spacy_docs: for ent in spacy_doc.ents: docs[spacy_doc.id]['entities'][ent._.id]['meta_anns'].update(ent._.meta_anns) def _batch_generator(self, data: Iterable, batch_size_chars: int, skip_ids: Set = set()): docs = [] char_count = 0 for doc in data: if doc[0] not in skip_ids: char_count += len(str(doc[1])) docs.append(doc) if char_count < batch_size_chars: continue yield docs docs = [] char_count = 0 if len(docs) > 0: yield docs def _save_docs_to_file(self, docs: Iterable, annotated_ids: List[str], save_dir_path: str, annotated_ids_path: Optional[str], part_counter: int = 0) -> int: path = os.path.join(save_dir_path, 'part_{}.pickle'.format(part_counter)) pickle.dump(docs, open(path, "wb")) self.log.info("Saved part: %s, to: %s", part_counter, path) part_counter = part_counter + 1 # Increase for save, as it should be what is the next part if annotated_ids_path is not None: pickle.dump((annotated_ids, part_counter), open(annotated_ids_path, 'wb')) return part_counter def multiprocessing(self, data: Union[List[Tuple], Iterable[Tuple]], nproc: int = 2, batch_size_chars: int = 5000 * 1000, only_cui: bool = False, addl_info: List[str] = [], separate_nn_components: bool = True, out_split_size_chars: Optional[int] = None, save_dir_path: str = os.path.abspath(os.getcwd()), min_free_memory=0.1) -> Dict: r""" Run multiprocessing for inference, if out_save_path and out_split_size_chars is used this will also continue annotating documents if something is saved in that directory. Args: data: Iterator or array with format: [(id, text), (id, text), ...] nproc (`int`, defaults to 8): Number of processors batch_size_chars (`int`, defaults to 1000000): Size of a batch in number of characters, this should be around: NPROC * average_document_length * 200 separate_nn_components (`bool`, defaults to True): If set the medcat pipe will be broken up into NN and not-NN components and they will be run sequentially. This is useful as the NN components have batching and like to process many docs at once, while the rest of the pipeline runs the documents one by one. out_split_size_chars (`int`, None): If set once more than out_split_size_chars are annotated they will be saved to a file (save_dir_path) and the memory cleared. Recommended value is 20*batch_size_chars. save_dir_path(`str`, defaults to the current working directory): Where to save the annotated documents if splitting. min_free_memory(`float`, defaults to 0.1): If set a process will not start unless there is at least this much RAM memory left, should be a range between [0, 1] meaning how much of the memory has to be free. Helps when annotating very large datasets because spacy is not the best with memory management and multiprocessing. Returns: A dictionary: {id: doc_json, id2: doc_json2, ...}, in case out_split_size_chars is used the last batch will be returned while that and all previous batches will be written to disk (out_save_dir). """ for comp in self.pipe.spacy_nlp.components: if isinstance(comp[1], TransformersNER): raise Exception("Please do not use multiprocessing when running a transformer model for NER, run sequentially.") # Set max document length self.pipe.spacy_nlp.max_length = self.config.preprocessing.get('max_document_length', 1000000) if self._meta_cats and not separate_nn_components: # Hack for torch using multithreading, which is not good if not #separate_nn_components, need for CPU runs only import torch torch.set_num_threads(1) nn_components = [] if separate_nn_components: nn_components = self._separate_nn_components() if save_dir_path is not None: os.makedirs(save_dir_path, exist_ok=True) # "5" looks like a magic number here so better with comment about why the choice was made. internal_batch_size_chars = batch_size_chars // (5 * nproc) annotated_ids_path = os.path.join(save_dir_path, 'annotated_ids.pickle') if save_dir_path is not None else None if annotated_ids_path is not None and os.path.exists(annotated_ids_path): annotated_ids, part_counter = pickle.load(open(annotated_ids_path, 'rb')) else: annotated_ids = [] part_counter = 0 docs = {} _start_time = time.time() _batch_counter = 0 # Used for splitting the output, counts batches inbetween saves for batch in self._batch_generator(data, batch_size_chars, skip_ids=set(annotated_ids)): self.log.info("Annotated until now: %s docs; Current BS: %s docs; Elapsed time: %.2f minutes", len(annotated_ids), len(batch), (time.time() - _start_time)/60) try: _docs = self._multiprocessing_batch(data=batch, nproc=nproc, only_cui=only_cui, batch_size_chars=internal_batch_size_chars, addl_info=addl_info, nn_components=nn_components, min_free_memory=min_free_memory) docs.update(_docs) annotated_ids.extend(_docs.keys()) _batch_counter += 1 del _docs if out_split_size_chars is not None and (_batch_counter * batch_size_chars) > out_split_size_chars: # Save to file and reset the docs part_counter = self._save_docs_to_file(docs=docs, annotated_ids=annotated_ids, save_dir_path=save_dir_path, annotated_ids_path=annotated_ids_path, part_counter=part_counter) del docs docs = {} _batch_counter = 0 except Exception as e: self.log.warning("Failed an outer batch in the multiprocessing script") self.log.warning(e, exc_info=True, stack_info=True) # Save the last batch if out_split_size_chars is not None and len(docs) > 0: # Save to file and reset the docs self._save_docs_to_file(docs=docs, annotated_ids=annotated_ids, save_dir_path=save_dir_path, annotated_ids_path=annotated_ids_path, part_counter=part_counter) # Enable the GPU Components again if separate_nn_components: for name, _ in nn_components: # No need to do anything else as it was already in the pipe self.pipe.spacy_nlp.enable_pipe(name) return docs def _multiprocessing_batch(self, data: Union[List[Tuple], Iterable[Tuple]], nproc: int = 8, batch_size_chars: int = 1000000, only_cui: bool = False, addl_info: List[str] = [], nn_components: List = [], min_free_memory: int = 0) -> Dict: r""" Run multiprocessing on one batch Args: data: Iterator or array with format: [(id, text), (id, text), ...] nproc (`int`, defaults to 8): Number of processors batch_size_chars (`int`, defaults to 1000000): Size of a batch in number of characters Returns: A dictionary: {id: doc_json, id2: doc_json2, ...} """ # Create the input output for MP with Manager() as manager: out_list = manager.list() lock = manager.Lock() in_q = manager.Queue(maxsize=10*nproc) id2text = {} for batch in self._batch_generator(data, batch_size_chars): if nn_components: # We need this for the json_to_fake_spacy id2text.update({k:v for k,v in batch}) in_q.put(batch) # Final data point for workers for _ in range(nproc): in_q.put(None) sleep(2) # Create processes procs = [] for i in range(nproc): p = Process(target=self._mp_cons, kwargs={'in_q': in_q, 'out_list': out_list, 'pid': i, 'only_cui': only_cui, 'addl_info': addl_info, 'min_free_memory': min_free_memory, 'lock': lock}) p.start() procs.append(p) # Join processes for p in procs: p.join() docs = {} # Covnerts a touple into a dict docs.update({k:v for k,v in out_list}) # If we have separate GPU components now we pipe that if nn_components: try: self._run_nn_components(docs, nn_components, id2text=id2text) except Exception as e: self.log.warning(e, exc_info=True, stack_info=True) return docs def multiprocessing_pipe(self, in_data: Union[List[Tuple], Iterable[Tuple]], nproc: Optional[int] = None, batch_size: Optional[int] = None, only_cui: bool = False, addl_info: List[str] = [], return_dict: bool = True, batch_factor: int = 2) -> Union[List[Tuple], Dict]: r""" Run multiprocessing NOT FOR TRAINING in_data: a list with format: [(id, text), (id, text), ...] nproc: the number of processors batch_size: the number of texts to buffer return_dict: a flag for returning either a dict or a list of tuples return: a dict: {id: doc_json, id: doc_json, ...} or if return_dict is False, a list of tuples: [(id, doc_json), (id, doc_json), ...] """ out: Union[Dict, List[Tuple]] if nproc == 0: raise ValueError("nproc cannot be set to zero") in_data = list(in_data) if isinstance(in_data, Iterable) else in_data n_process = nproc if nproc is not None else min(max(cpu_count() - 1, 1), math.ceil(len(in_data) / batch_factor)) batch_size = batch_size if batch_size is not None else math.ceil(len(in_data) / (batch_factor * abs(n_process))) start_method = None try: if self._meta_cats: import torch if torch.multiprocessing.get_start_method() != "spawn": start_method = torch.multiprocessing.get_start_method() torch.multiprocessing.set_start_method("spawn", force=True) entities = self.get_entities_multi_texts(texts=in_data, only_cui=only_cui, addl_info=addl_info, n_process=n_process, batch_size=batch_size) finally: if start_method is not None: import torch torch.multiprocessing.set_start_method(start_method, force=True) if return_dict: out = {} for idx, data in enumerate(in_data): out[data[0]] = entities[idx] else: out = [] for idx, data in enumerate(in_data): out.append((data[0], entities[idx])) return out def _mp_cons(self, in_q: Queue, out_list: List, min_free_memory: int, lock: Lock, pid: int = 0, only_cui: bool = False, addl_info: List = []) -> None: out: List = [] while True: if not in_q.empty(): if psutil.virtual_memory().available / psutil.virtual_memory().total < min_free_memory: with lock: out_list.extend(out) # Stop a process if there is not enough memory left break data = in_q.get() if data is None: with lock: out_list.extend(out) break for i_text, text in data: try: # Annotate document doc = self.get_entities(text=text, only_cui=only_cui, addl_info=addl_info) out.append((i_text, doc)) except Exception as e: self.log.warning("PID: %s failed one document in _mp_cons, running will continue normally. \n" + "Document length in chars: %s, and ID: %s", pid, len(str(text)), i_text) self.log.warning(str(e)) sleep(2) def _doc_to_out(self, doc: Doc, only_cui: bool, addl_info: List[str], out_with_text: bool = False) -> Dict: out: Dict = {'entities': {}, 'tokens': []} cnf_annotation_output = getattr(self.config, 'annotation_output', {}) if doc is not None: out_ent: Dict = {} if self.config.general.get('show_nested_entities', False): _ents = [] for _ent in doc._.ents: entity = Span(doc, _ent['start'], _ent['end'], label=_ent['label']) entity._.cui = _ent['cui'] entity._.detected_name = _ent['detected_name'] entity._.context_similarity = _ent['context_similarity'] entity._.id = _ent['id'] if 'meta_anns' in _ent: entity._.meta_anns = _ent['meta_anns'] _ents.append(entity) else: _ents = doc.ents if cnf_annotation_output.get("lowercase_context", True): doc_tokens = [tkn.text_with_ws.lower() for tkn in list(doc)] else: doc_tokens = [tkn.text_with_ws for tkn in list(doc)] if cnf_annotation_output.get('doc_extended_info', False): # Add tokens if extended info out['tokens'] = doc_tokens context_left = cnf_annotation_output.get('context_left', -1) context_right = cnf_annotation_output.get('context_right', -1) doc_extended_info = cnf_annotation_output.get('doc_extended_info', False) for _, ent in enumerate(_ents): cui = str(ent._.cui) if not only_cui: out_ent['pretty_name'] = self.cdb.get_name(cui) out_ent['cui'] = cui out_ent['type_ids'] = list(self.cdb.cui2type_ids.get(cui, '')) out_ent['types'] = [self.cdb.addl_info['type_id2name'].get(tui, '') for tui in out_ent['type_ids']] out_ent['source_value'] = ent.text out_ent['detected_name'] = str(ent._.detected_name) out_ent['acc'] = float(ent._.context_similarity) out_ent['context_similarity'] = float(ent._.context_similarity) out_ent['start'] = ent.start_char out_ent['end'] = ent.end_char for addl in addl_info: tmp = self.cdb.addl_info.get(addl, {}).get(cui, []) out_ent[addl.split("2")[-1]] = list(tmp) if type(tmp) == set else tmp out_ent['id'] = ent._.id out_ent['meta_anns'] = {} if doc_extended_info: out_ent['start_tkn'] = ent.start out_ent['end_tkn'] = ent.end if context_left > 0 and context_right > 0: out_ent['context_left'] = doc_tokens[max(ent.start - context_left, 0):ent.start] out_ent['context_right'] = doc_tokens[ent.end:min(ent.end + context_right, len(doc_tokens))] out_ent['context_center'] = doc_tokens[ent.start:ent.end] if hasattr(ent._, 'meta_anns') and ent._.meta_anns: out_ent['meta_anns'] = ent._.meta_anns out['entities'][out_ent['id']] = dict(out_ent) else: out['entities'][ent._.id] = cui if cnf_annotation_output.get('include_text_in_output', False) or out_with_text: out['text'] = doc.text return out def _get_trimmed_text(self, text: Optional[str]) -> str: return text[0:self.config.preprocessing.get('max_document_length')] if text is not None and len(text) > 0 else "" def _generate_trimmed_texts(self, texts: Union[Iterable[str], Iterable[Tuple]]) -> Iterable[str]: text_: str for text in texts: text_ = text[1] if isinstance(text, tuple) else text yield self._get_trimmed_text(text_) def _get_trimmed_texts(self, texts: Union[Iterable[str], Iterable[Tuple]]) -> List[str]: trimmed: List = [] text_: str for text in texts: text_ = text[1] if isinstance(text, tuple) else text trimmed.append(self._get_trimmed_text(text_)) return trimmed @staticmethod def _pipe_error_handler(proc_name: str, proc: "Pipe", docs: List[Doc], e: Exception) -> None: CAT.log.warning("Exception raised when applying component %s to a batch of docs.", proc_name) CAT.log.warning(e, exc_info=True, stack_info=True) if docs is not None: CAT.log.warning("Docs contained in the batch:") for doc in docs: if hasattr(doc, "text"): CAT.log.warning("%s...", doc.text[:50]) @staticmethod def _get_doc_annotations(doc: Doc): if type(doc['annotations']) == list: return doc['annotations'] if type(doc['annotations']) == dict: return doc['annotations'].values() return None def destroy_pipe(self): self.pipe.destroy()
[ "torch.multiprocessing.set_start_method", "torch.multiprocessing.get_start_method", "torch.set_num_threads" ]
1.0
CogStack/CAT
5ac04d2676aede13f8e8d0ab408472c3c6d46a86
1.6
import os import re import shutil from subprocess import check_output, run, PIPE import numpy as np import torch import logging logger = logging.getLogger(__name__) def get_gpu_memory_map(): result = check_output( ["nvidia-smi", "--query-gpu=memory.used", "--format=csv,nounits,noheader"] ) return [int(x) for x in result.split()] def least_used_device(): """Get the GPU device with most available memory.""" if not torch.cuda.is_available(): raise RuntimeError("cuda unavailable") if shutil.which("nvidia-smi") is None: raise RuntimeError( "nvidia-smi unavailable: \ cannot select device with most least memory used." ) memory_map = get_gpu_memory_map() device_id = np.argmin(memory_map) logger.info( f"Choosing GPU device: {device_id}, " f"memory used: {memory_map[device_id]}" ) return torch.device("cuda:{}".format(device_id)) def choose_device(preferred_device, default_device="cpu"): if preferred_device == "cuda:best": try: preferred_device = least_used_device() except RuntimeError: logger.info( f"Could not find least used device (nvidia-smi might be missing), use cuda:0 instead" ) if torch.cuda.is_available(): return choose_device("cuda:0") else: return choose_device("cpu") try: torch.zeros((1,), device=preferred_device) # Test availability except (RuntimeError, AssertionError) as e: logger.info( f"Preferred device {preferred_device} unavailable ({e})." f"Switching to default {default_device}" ) return default_device return preferred_device def get_memory(pid=None): if not pid: pid = os.getpid() command = "nvidia-smi" result = run( command, stdout=PIPE, stderr=PIPE, universal_newlines=True, shell=True ).stdout m = re.findall( "\| *[0-9] *" + str(pid) + " *C *.*python.*? +([0-9]+).*\|", result, re.MULTILINE, ) return [int(mem) for mem in m]
[ "torch.zeros", "torch.cuda.is_available" ]
1.6.0
akrouriad/rlberry
dde4e2cbafca05fdef1df07646bb6368059eeadf
1.1
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # Modifications copyright (C) 2020 Zi-Yi Dou # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import random import itertools import os import numpy as np import torch from tqdm import trange from torch.nn.utils.rnn import pad_sequence from torch.utils.data import DataLoader, Dataset, SequentialSampler import modeling from configuration_bert import BertConfig from modeling import BertForMaskedLM from tokenization_bert import BertTokenizer from tokenization_utils import PreTrainedTokenizer from modeling_utils import PreTrainedModel def set_seed(args): if args.seed >= 0: random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) class LineByLineTextDataset(Dataset): def __init__(self, tokenizer: PreTrainedTokenizer, args, file_path): assert os.path.isfile(file_path) print('Loading the dataset...') self.examples = [] with open(file_path, encoding="utf-8") as f: for idx, line in enumerate(f.readlines()): if len(line) == 0 or line.isspace() or not len(line.split(' ||| ')) == 2: raise ValueError(f'Line {idx+1} is not in the correct format!') src, tgt = line.split(' ||| ') if src.rstrip() == '' or tgt.rstrip() == '': raise ValueError(f'Line {idx+1} is not in the correct format!') sent_src, sent_tgt = src.strip().split(), tgt.strip().split() token_src, token_tgt = [tokenizer.tokenize(word) for word in sent_src], [tokenizer.tokenize(word) for word in sent_tgt] wid_src, wid_tgt = [tokenizer.convert_tokens_to_ids(x) for x in token_src], [tokenizer.convert_tokens_to_ids(x) for x in token_tgt] ids_src, ids_tgt = tokenizer.prepare_for_model(list(itertools.chain(*wid_src)), return_tensors='pt', max_length=tokenizer.max_len)['input_ids'], tokenizer.prepare_for_model(list(itertools.chain(*wid_tgt)), return_tensors='pt', max_length=tokenizer.max_len)['input_ids'] bpe2word_map_src = [] for i, word_list in enumerate(token_src): bpe2word_map_src += [i for x in word_list] bpe2word_map_tgt = [] for i, word_list in enumerate(token_tgt): bpe2word_map_tgt += [i for x in word_list] self.examples.append( (ids_src[0], ids_tgt[0], bpe2word_map_src, bpe2word_map_tgt) ) def __len__(self): return len(self.examples) def __getitem__(self, i): return self.examples[i] def word_align(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, output_word_alignments = False): def collate(examples): ids_src, ids_tgt, bpe2word_map_src, bpe2word_map_tgt = zip(*examples) ids_src = pad_sequence(ids_src, batch_first=True, padding_value=tokenizer.pad_token_id) ids_tgt = pad_sequence(ids_tgt, batch_first=True, padding_value=tokenizer.pad_token_id) return ids_src, ids_tgt, bpe2word_map_src, bpe2word_map_tgt dataset = LineByLineTextDataset(tokenizer, args, file_path=args.data_file) sampler = SequentialSampler(dataset) dataloader = DataLoader( dataset, sampler=sampler, batch_size=args.batch_size, collate_fn=collate ) model.to(args.device) model.eval() tqdm_iterator = trange(dataset.__len__(), desc="Extracting") with open(args.output_file, 'w') as writer: for batch in dataloader: with torch.no_grad(): ids_src, ids_tgt, bpe2word_map_src, bpe2word_map_tgt = batch word_aligns_list = model.get_aligned_word(ids_src, ids_tgt, bpe2word_map_src, bpe2word_map_tgt, args.device, 0, 0, align_layer=args.align_layer, extraction=args.extraction, softmax_threshold=args.softmax_threshold, test=True) for word_aligns in word_aligns_list: output_str = [] for word_align in word_aligns: output_str.append(f'{word_align[0]}-{word_align[1]}') writer.write(' '.join(output_str)+'\n') tqdm_iterator.update(len(ids_src)) if output_word_alignments: with open(args.output_file, 'r') as fh: outputf = (fh.read()).split("\n") with open(args.data_file, 'r') as fh: datalines = (fh.read()).split("\n") with open(args.output_file+".outtxt", 'w') as fwriter: for indices, line in zip(outputf, datalines): srcline, tgtline = line.split(' ||| ') indices = indices.split() srcwrds = srcline.split() tgtwrds = tgtline.split() output_wrds = [] for wrd in indices: srcix,tgtix = wrd.split("-") srcix, tgtix = int(srcix), int(tgtix) output_wrds.append(f"{srcwrds[srcix]}-{tgtwrds[tgtix]}") fwriter.write(' '.join(output_wrds)+'\n') def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_file", default=None, type=str, required=True, help="The input data file (a text file)." ) parser.add_argument( "--output_file", type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--align_layer", type=int, default=8, help="layer for alignment extraction") parser.add_argument( "--extraction", default='softmax', type=str, help='softmax or entmax15' ) parser.add_argument( "--softmax_threshold", type=float, default=0.001 ) parser.add_argument( "--model_name_or_path", default=None, type=str, help="The model checkpoint for weights initialization. Leave None if you want to train a model from scratch.", ) parser.add_argument( "--config_name", default=None, type=str, help="Optional pretrained config name or path if not the same as model_name_or_path. If both are None, initialize a new config.", ) parser.add_argument( "--tokenizer_name", default=None, type=str, help="Optional pretrained tokenizer name or path if not the same as model_name_or_path. If both are None, initialize a new tokenizer.", ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--batch_size", default=32, type=int) parser.add_argument( "--cache_dir", default='cache_dir', type=str, help="Optional directory to store the pre-trained models downloaded from s3 (instead of the default one)", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") args = parser.parse_args() device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.device = device # Set seed set_seed(args) config_class, model_class, tokenizer_class = BertConfig, BertForMaskedLM, BertTokenizer if args.config_name: config = config_class.from_pretrained(args.config_name, cache_dir=args.cache_dir) elif args.model_name_or_path: config = config_class.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir) else: config = config_class() if args.tokenizer_name: tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir) elif args.model_name_or_path: tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir) else: raise ValueError( "You are instantiating a new {} tokenizer. This is not supported, but you can do it from another script, save it," "and load it from here, using --tokenizer_name".format(tokenizer_class.__name__) ) modeling.PAD_ID = tokenizer.pad_token_id modeling.CLS_ID = tokenizer.cls_token_id modeling.SEP_ID = tokenizer.sep_token_id if args.model_name_or_path: model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir, ) else: model = model_class(config=config) word_align(args, model, tokenizer) if __name__ == "__main__": main()
[ "torch.cuda.manual_seed_all", "torch.nn.utils.rnn.pad_sequence", "torch.no_grad", "torch.utils.data.SequentialSampler", "torch.manual_seed", "torch.cuda.is_available", "torch.utils.data.DataLoader" ]
1.1.0
gitlost-murali/awesome-align
39fb45ca85a98e005447bddb52c48e65ce7d399b
1.8
import copy import os import pdb import random from typing import Dict, List, Text, TypeVar import torch import torch.nn as nn import torch.nn.functional as F from elvis.modeling.models import build_net from elvis.modeling.models.layers import FC, MLP from elvis.utils.vlp_objectives import optimal_transport_dist from .base import MetaArch from .build import ARCH_REGISTRY Tensor = TypeVar('torch.tensor') __all__ = ['AlignmentVLP', 'build_align_vlp'] class AlignmentVLP(MetaArch): """Meta architecture for Visual Language Pretraining (VLP) based on image-caption alignment """ def __init__(self, model, max_visual, max_tokens, tasks_dict) -> None: super().__init__() self.model = model self.max_visual = max_visual self.max_tokens = max_tokens+2 #take into account [CLS] and [SEP] self.tasks_dict = tasks_dict self.lm_mlp = MLP(in_features=self.model.embed_dim, hidden_dim=self.model.embed_dim, out_features=len(self.model.tokenizer)-1, dropout_p=.1) self.itm_fc = FC(in_features=self.model.embed_dim, out_features=2) def forward(self, vis_in, txt_in, vis_mask, txt_mask, **kwargs) -> Dict: cntx_emb = self.model(vis_in=vis_in, vis_mask=vis_mask, txt_in=txt_in, txt_mask=txt_mask) txt_emb = cntx_emb[:, :self.max_tokens] itm_logits = self.itm_fc(txt_emb[:, 0, :]) #pass everything but use only [CLS]: better parallelization of loss computation lm_logits = self.lm_mlp(txt_emb[:, 1:, :]) #? exclude special tokens from ot computation vis_mask = torch.cat( (torch.ones((vis_mask.shape[0], 1), device=vis_mask.device), vis_mask), dim=-1) #add attention for [IMG] ot_dist = optimal_transport_dist(txt_emb=cntx_emb[:, :self.max_tokens, :].float(), img_emb=cntx_emb[:, self.max_tokens:, :].float(), txt_pad=~txt_mask.bool(), img_pad=~vis_mask.bool() ) return {'lm_logits': lm_logits, 'itm_logits': itm_logits, 'ot_dist': ot_dist} def compute_loss(self, lm_logits, itm_logits, lm_targets, itm_targets, **kwargs) -> Dict: B = lm_logits.shape[0] n_mlm = sum([t == 'MLM' for t in kwargs['tasks']]) n_itm = len(kwargs['tasks']) - n_mlm loss_dict = {} #compute lm loss (compute it also if n_mlm > 0 otherwise the DDP will raise an exception) lm_loss = F.cross_entropy(lm_logits.transpose(1, 2), lm_targets[:, 1:], reduction='sum') if n_mlm > 0: lm_loss /= n_mlm loss_dict['lm_loss'] = lm_loss #compute itm loss (compute it also if n_itm > 0 otherwise the DDP will raise an exception) itm_loss = F.cross_entropy(itm_logits, itm_targets[:, 0], reduction='sum') ot_pos = kwargs['ot_dist'].masked_select(itm_targets[:, 0] == 1) ot_neg = kwargs['ot_dist'].masked_select(itm_targets[:, 0] == 0) #we want to maximize the OT distance for negative pairs and minimize OT distance for positive ones ot_loss = ot_pos.sum() - ot_neg.sum() itm_loss = (itm_loss + 0.1 * ot_loss) if n_itm > 0: itm_loss /= n_itm loss_dict['itm_loss'] = itm_loss loss_dict['loss'] = sum(loss_dict.values()) return loss_dict def save_on_disk(self, path): state_dict = copy.deepcopy(self).cpu().state_dict() ckp_file = os.path.join(path, 'state_dict.pt') torch.save(state_dict, ckp_file) @ARCH_REGISTRY.register() def build_align_vlp(cfg): model, data_interface = build_net(cfg.MODEL, get_interface='vlp') vlp = AlignmentVLP(model, max_visual=cfg.MODEL.MAX_N_VISUAL, max_tokens=cfg.MODEL.MAX_N_TOKENS, tasks_dict=cfg.MODEL.TASKS.get_as_dict()) return vlp, data_interface
[ "torch.nn.functional.cross_entropy", "torch.save", "torch.ones" ]
1.8.1
seo-95/elvis
a89c759acdf6ce64c7e6863aeb68dc0ba3293fed
1.4
import numpy as np import math import functools import torch import torch.nn as nn from torch.nn import init import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter as P import layers from sync_batchnorm import SynchronizedBatchNorm2d as SyncBatchNorm2d # Architectures for G # Attention is passed in in the format '32_64' to mean applying an attention # block at both resolution 32x32 and 64x64. Just '64' will apply at 64x64. def G_arch(ch=64, attention='64', ksize='333333', dilation='111111'): arch = {} arch[512] = {'in_channels' : [ch * item for item in [16, 16, 8, 8, 4, 2, 1]], 'out_channels' : [ch * item for item in [16, 8, 8, 4, 2, 1, 1]], 'upsample' : [True] * 7, 'resolution' : [8, 16, 32, 64, 128, 256, 512], 'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')]) for i in range(3,10)}} arch[256] = {'in_channels' : [ch * item for item in [16, 16, 8, 8, 4, 2]], 'out_channels' : [ch * item for item in [16, 8, 8, 4, 2, 1]], 'upsample' : [True] * 6, 'resolution' : [8, 16, 32, 64, 128, 256], 'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')]) for i in range(3,9)}} arch[128] = {'in_channels' : [ch * item for item in [16, 16, 8, 4, 2]], 'out_channels' : [ch * item for item in [16, 8, 4, 2, 1]], 'upsample' : [True] * 5, 'resolution' : [8, 16, 32, 64, 128], 'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')]) for i in range(3,8)}} arch[64] = {'in_channels' : [ch * item for item in [16, 16, 8, 4]], 'out_channels' : [ch * item for item in [16, 8, 4, 2]], 'upsample' : [True] * 4, 'resolution' : [8, 16, 32, 64], 'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')]) for i in range(3,7)}} arch[32] = {'in_channels' : [ch * item for item in [4, 4, 4]], 'out_channels' : [ch * item for item in [4, 4, 4]], 'upsample' : [True] * 3, 'resolution' : [8, 16, 32], 'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')]) for i in range(3,6)}} return arch class Generator(nn.Module): def __init__(self, G_ch=64, dim_z=128, bottom_width=4, resolution=128, G_kernel_size=3, G_attn='64', n_classes=1000, num_G_SVs=1, num_G_SV_itrs=1, G_shared=True, shared_dim=0, hier=False, cross_replica=False, mybn=False, G_activation=nn.ReLU(inplace=False), G_lr=5e-5, G_B1=0.0, G_B2=0.999, adam_eps=1e-8, BN_eps=1e-5, SN_eps=1e-12, G_mixed_precision=False, G_fp16=False, G_init='ortho', skip_init=False, no_optim=False, G_param='SN', norm_style='bn', **kwargs): super(Generator, self).__init__() # Channel width mulitplier self.ch = G_ch # Dimensionality of the latent space self.dim_z = dim_z # The initial spatial dimensions self.bottom_width = bottom_width # Resolution of the output self.resolution = resolution # Kernel size? self.kernel_size = G_kernel_size # Attention? self.attention = G_attn # number of classes, for use in categorical conditional generation self.n_classes = n_classes # Use shared embeddings? self.G_shared = G_shared # Dimensionality of the shared embedding? Unused if not using G_shared self.shared_dim = shared_dim if shared_dim > 0 else dim_z # Hierarchical latent space? self.hier = hier # Cross replica batchnorm? self.cross_replica = cross_replica # Use my batchnorm? self.mybn = mybn # nonlinearity for residual blocks self.activation = G_activation # Initialization style self.init = G_init # Parameterization style self.G_param = G_param # Normalization style self.norm_style = norm_style # Epsilon for BatchNorm? self.BN_eps = BN_eps # Epsilon for Spectral Norm? self.SN_eps = SN_eps # fp16? self.fp16 = G_fp16 # Architecture dict self.arch = G_arch(self.ch, self.attention)[resolution] # If using hierarchical latents, adjust z if self.hier: # Number of places z slots into self.num_slots = len(self.arch['in_channels']) + 1 self.z_chunk_size = (self.dim_z // self.num_slots) # Recalculate latent dimensionality for even splitting into chunks self.dim_z = self.z_chunk_size * self.num_slots else: self.num_slots = 1 self.z_chunk_size = 0 # Which convs, batchnorms, and linear layers to use if self.G_param == 'SN': self.which_conv = functools.partial(layers.SNConv2d, kernel_size=3, padding=1, num_svs=num_G_SVs, num_itrs=num_G_SV_itrs, eps=self.SN_eps) self.which_linear = functools.partial(layers.SNLinear, num_svs=num_G_SVs, num_itrs=num_G_SV_itrs, eps=self.SN_eps) else: self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1) self.which_linear = nn.Linear # We use a non-spectral-normed embedding here regardless; # For some reason applying SN to G's embedding seems to randomly cripple G self.which_embedding = nn.Embedding # bn_linear = (functools.partial(self.which_linear, bias=False) if self.G_shared # else self.which_embedding) self.which_bn = functools.partial(layers.bn, # which_linear=bn_linear, cross_replica=self.cross_replica, mybn=self.mybn, # input_size=(self.shared_dim + self.z_chunk_size if self.G_shared # else self.n_classes), # norm_style=self.norm_style, eps=self.BN_eps) # Prepare model # If not using shared embeddings, self.shared is just a passthrough self.shared = (self.which_embedding(n_classes, self.shared_dim) if G_shared else layers.identity()) # First linear layer self.linear = self.which_linear(self.dim_z // self.num_slots, self.arch['in_channels'][0] * (self.bottom_width **2)) # self.blocks is a doubly-nested list of modules, the outer loop intended # to be over blocks at a given resolution (resblocks and/or self-attention) # while the inner loop is over a given block self.blocks = [] for index in range(len(self.arch['out_channels'])): self.blocks += [[layers.GBlock(in_channels=self.arch['in_channels'][index], out_channels=self.arch['out_channels'][index], which_conv=self.which_conv, which_bn=self.which_bn, activation=self.activation, upsample=(functools.partial(F.interpolate, scale_factor=2) if self.arch['upsample'][index] else None))]] # If attention on this block, attach it to the end if self.arch['attention'][self.arch['resolution'][index]]: print('Adding attention layer in G at resolution %d' % self.arch['resolution'][index]) self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)] # Turn self.blocks into a ModuleList so that it's all properly registered. self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks]) # output layer: batchnorm-relu-conv. # Consider using a non-spectral conv here self.output_layer = nn.Sequential(layers.bn(self.arch['out_channels'][-1], cross_replica=self.cross_replica, mybn=self.mybn), self.activation, self.which_conv(self.arch['out_channels'][-1], 3)) # Prepare spatial modulation model # If not using shared embeddings, self.shared is just a passthrough self.spatial_modulation_shared = (self.which_embedding(n_classes, self.shared_dim)) # First linear layer self.spatial_modulation_linear = self.which_linear(self.dim_z + self.shared_dim, self.arch['in_channels'][0] * (self.bottom_width **2)) # self.blocks is a doubly-nested list of modules, the outer loop intended # to be over blocks at a given resolution (resblocks and/or self-attention) # while the inner loop is over a given block self.spatial_modulation_blocks = [] for index in range(len(self.arch['out_channels'])): self.spatial_modulation_blocks += [[layers.SpatialModulationGBlock(in_channels=self.arch['in_channels'][index], out_channels=self.arch['out_channels'][index], which_conv=self.which_conv, which_bn=self.which_bn, activation=self.activation, upsample=(functools.partial(F.interpolate, scale_factor=2) if self.arch['upsample'][index] else None))]] # Turn self.blocks into a ModuleList so that it's all properly registered. self.spatial_modulation_blocks = nn.ModuleList([nn.ModuleList(block) for block in self.spatial_modulation_blocks]) # Initialize weights. Optionally skip init for testing. if not skip_init: self.init_weights() # Set up optimizer # If this is an EMA copy, no need for an optim, so just return now if no_optim: return self.lr, self.B1, self.B2, self.adam_eps = G_lr, G_B1, G_B2, adam_eps if G_mixed_precision: print('Using fp16 adam in G...') import utils self.optim = utils.Adam16(params=self.parameters(), lr=self.lr, betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps) else: self.optim = optim.Adam(params=self.parameters(), lr=self.lr, betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps) # LR scheduling, left here for forward compatibility # self.lr_sched = {'itr' : 0}# if self.progressive else {} # self.j = 0 # Initialize def init_weights(self): self.param_count = 0 for module in self.modules(): if (isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear) or isinstance(module, nn.Embedding)): if self.init == 'ortho': init.orthogonal_(module.weight) elif self.init == 'N02': init.normal_(module.weight, 0, 0.02) elif self.init in ['glorot', 'xavier']: init.xavier_uniform_(module.weight) else: print('Init style not recognized...') self.param_count += sum([p.data.nelement() for p in module.parameters()]) print('Param count for G''s initialized parameters: %d' % self.param_count) # Note on this forward function: we pass in a y vector which has # already been passed through G.shared to enable easy class-wise # interpolation later. If we passed in the one-hot and then ran it through # G.shared in this forward function, it would be harder to handle. def forward(self, z, y): # If hierarchical, concatenate zs and ys if self.hier: zs = torch.split(z, self.z_chunk_size, 1) z = zs[0] ys = [torch.cat([y, item], 1) for item in zs[1:]] # Class embedding layer # spatial_c = self.spatial_modulation_shared(y) # Mixing layer spatial_h = self.spatial_modulation_linear(torch.cat([y, z], 1)) # Reshape spatial_h = spatial_h.view(spatial_h.size(0), -1, self.bottom_width, self.bottom_width) else: ys = [y] * len(self.blocks) # Class embedding layer spatial_c = self.spatial_modulation_shared(y) # Mixing layer if len(spatial_c.shape) == 3: spatial_c = torch.squeeze(spatial_c, dim=1) spatial_h = self.spatial_modulation_linear(torch.cat([spatial_c, z], 1)) # Reshape spatial_h = spatial_h.view(spatial_h.size(0), -1, self.bottom_width, self.bottom_width) # First linear layer h = self.linear(z) # Reshape h = h.view(h.size(0), -1, self.bottom_width, self.bottom_width) # Loop over blocks for index, blocklist in enumerate(self.blocks): # Spatial modulation calculation spatial_h, voxelwise_a_mod, voxelwise_b_mod = self.spatial_modulation_blocks[index][0](spatial_h) # Second inner loop in case block has multiple layers for block in blocklist: # Main layer forward h = block(h, ys[index]) # Most coarse modulation # h = (h - torch.mean(h, dim=(2, 3), keepdim=True)) / torch.std(h, dim=(2, 3), keepdim=True) # h = h * (1 + global_a_mod.repeat(1, 1, h.shape[2], h.shape[3])) + global_b_mod.repeat(1, 1, h.shape[2], h.shape[3]) # Most fine modulation h = (h - torch.mean(h, dim=(1, 2, 3), keepdim=True)) / torch.std(h, dim=(1, 2, 3), keepdim=True) h = h * (1 + voxelwise_a_mod) + voxelwise_b_mod # Apply batchnorm-relu-conv-tanh at output return torch.tanh(self.output_layer(h)) # Discriminator architecture, same paradigm as G's above def D_arch(ch=64, attention='64',ksize='333333', dilation='111111'): arch = {} arch[256] = {'in_channels' : [3] + [ch*item for item in [1, 2, 4, 8, 8, 16]], 'out_channels' : [item * ch for item in [1, 2, 4, 8, 8, 16, 16]], 'downsample' : [True] * 6 + [False], 'resolution' : [128, 64, 32, 16, 8, 4, 4 ], 'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')] for i in range(2,8)}} arch[128] = {'in_channels' : [3] + [ch*item for item in [1, 2, 4, 8, 16]], 'out_channels' : [item * ch for item in [1, 2, 4, 8, 16, 16]], 'downsample' : [True] * 5 + [False], 'resolution' : [64, 32, 16, 8, 4, 4], 'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')] for i in range(2,8)}} arch[64] = {'in_channels' : [3] + [ch*item for item in [1, 2, 4, 8]], 'out_channels' : [item * ch for item in [1, 2, 4, 8, 16]], 'downsample' : [True] * 4 + [False], 'resolution' : [32, 16, 8, 4, 4], 'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')] for i in range(2,7)}} arch[32] = {'in_channels' : [3] + [item * ch for item in [4, 4, 4]], 'out_channels' : [item * ch for item in [4, 4, 4, 4]], 'downsample' : [True, True, False, False], 'resolution' : [16, 16, 16, 16], 'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')] for i in range(2,6)}} return arch class Discriminator(nn.Module): def __init__(self, D_ch=64, D_wide=True, resolution=128, D_kernel_size=3, D_attn='64', n_classes=1000, num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False), D_lr=2e-4, D_B1=0.0, D_B2=0.999, adam_eps=1e-8, SN_eps=1e-12, output_dim=1, D_mixed_precision=False, D_fp16=False, D_init='ortho', skip_init=False, D_param='SN', **kwargs): super(Discriminator, self).__init__() # Width multiplier self.ch = D_ch # Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN? self.D_wide = D_wide # Resolution self.resolution = resolution # Kernel size self.kernel_size = D_kernel_size # Attention? self.attention = D_attn # Number of classes self.n_classes = n_classes # Activation self.activation = D_activation # Initialization style self.init = D_init # Parameterization style self.D_param = D_param # Epsilon for Spectral Norm? self.SN_eps = SN_eps # Fp16? self.fp16 = D_fp16 # Architecture self.arch = D_arch(self.ch, self.attention)[resolution] # Which convs, batchnorms, and linear layers to use # No option to turn off SN in D right now if self.D_param == 'SN': self.which_conv = functools.partial(layers.SNConv2d, kernel_size=3, padding=1, num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, eps=self.SN_eps) self.which_linear = functools.partial(layers.SNLinear, num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, eps=self.SN_eps) self.which_embedding = functools.partial(layers.SNEmbedding, num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, eps=self.SN_eps) # Prepare model # self.blocks is a doubly-nested list of modules, the outer loop intended # to be over blocks at a given resolution (resblocks and/or self-attention) self.blocks = [] for index in range(len(self.arch['out_channels'])): self.blocks += [[layers.DBlock(in_channels=self.arch['in_channels'][index], out_channels=self.arch['out_channels'][index], which_conv=self.which_conv, wide=self.D_wide, activation=self.activation, preactivation=(index > 0), downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] else None))]] # If attention on this block, attach it to the end if self.arch['attention'][self.arch['resolution'][index]]: print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index]) self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)] # Turn self.blocks into a ModuleList so that it's all properly registered. self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks]) # Linear output layer. The output dimension is typically 1, but may be # larger if we're e.g. turning this into a VAE with an inference output self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim) # Embedding for projection discrimination self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1]) # Initialize weights if not skip_init: self.init_weights() # Set up optimizer self.lr, self.B1, self.B2, self.adam_eps = D_lr, D_B1, D_B2, adam_eps if D_mixed_precision: print('Using fp16 adam in D...') import utils self.optim = utils.Adam16(params=self.parameters(), lr=self.lr, betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps) else: self.optim = optim.Adam(params=self.parameters(), lr=self.lr, betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps) # LR scheduling, left here for forward compatibility # self.lr_sched = {'itr' : 0}# if self.progressive else {} # self.j = 0 # Initialize def init_weights(self): self.param_count = 0 for module in self.modules(): if (isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear) or isinstance(module, nn.Embedding)): if self.init == 'ortho': init.orthogonal_(module.weight) elif self.init == 'N02': init.normal_(module.weight, 0, 0.02) elif self.init in ['glorot', 'xavier']: init.xavier_uniform_(module.weight) else: print('Init style not recognized...') self.param_count += sum([p.data.nelement() for p in module.parameters()]) print('Param count for D''s initialized parameters: %d' % self.param_count) def forward(self, x, y=None): # Stick x into h for cleaner for loops without flow control h = x # Loop over blocks for index, blocklist in enumerate(self.blocks): for block in blocklist: h = block(h) # Apply global sum pooling as in SN-GAN h = torch.sum(self.activation(h), [2, 3]) # Get initial class-unconditional output out = self.linear(h) # Get projection of final featureset onto class vectors and add to evidence out = out + torch.sum(self.embed(y) * h, 1, keepdim=True) return out # Parallelized G_D to minimize cross-gpu communication # Without this, Generator outputs would get all-gathered and then rebroadcast. class G_D(nn.Module): def __init__(self, G, D): super(G_D, self).__init__() self.G = G self.D = D def forward(self, z, gy, x=None, dy=None, train_G=False, return_G_z=False, split_D=False): # If training G, enable grad tape with torch.set_grad_enabled(train_G): # Get Generator output given noise G_z = self.G(z, self.G.shared(gy)) # Cast as necessary if self.G.fp16 and not self.D.fp16: G_z = G_z.float() if self.D.fp16 and not self.G.fp16: G_z = G_z.half() # Split_D means to run D once with real data and once with fake, # rather than concatenating along the batch dimension. if split_D: D_fake = self.D(G_z, gy) if x is not None: D_real = self.D(x, dy) return D_fake, D_real else: if return_G_z: return D_fake, G_z else: return D_fake # If real data is provided, concatenate it with the Generator's output # along the batch dimension for improved efficiency. else: D_input = torch.cat([G_z, x], 0) if x is not None else G_z D_class = torch.cat([gy, dy], 0) if dy is not None else gy # Get Discriminator output D_out = self.D(D_input, D_class) if x is not None: return torch.split(D_out, [G_z.shape[0], x.shape[0]]) # D_fake, D_real else: if return_G_z: return D_out, G_z else: return D_out
[ "torch.cat", "torch.nn.ModuleList", "torch.nn.AvgPool2d", "torch.split", "torch.std", "torch.nn.init.xavier_uniform_", "torch.nn.ReLU", "torch.mean", "torch.squeeze", "torch.nn.init.normal_", "torch.nn.init.orthogonal_", "torch.set_grad_enabled" ]
1.4
twice154/Spatial-Self-modulation-on-BigGAN
6ca691231bf7e8fd388a08b5ce6b4e30a50dd57b
1.7
from collections import OrderedDict import numpy as np import torch from torch import nn as nn import torch.nn.functional as F import torch.optim as optim import itertools import rlkit.torch.utils.pytorch_util as ptu from rlkit.core.trainer import Trainer from rlkit.core.eval_util import create_stats_ordered_dict class SoftActorCritic(Trainer): """ version that: - uses reparameterization trick - has two Q functions - has auto-tuned alpha """ def __init__( self, policy, qf1, qf2, reward_scale=1.0, discount=0.99, policy_lr=1e-3, qf_lr=1e-3, alpha_lr=3e-4, soft_target_tau=1e-2, alpha=0.2, train_alpha=True, policy_mean_reg_weight=1e-3, policy_std_reg_weight=1e-3, optimizer_class=optim.Adam, beta_1=0.9, **kwargs ): self.policy = policy self.qf1 = qf1 self.qf2 = qf2 self.reward_scale = reward_scale self.discount = discount self.soft_target_tau = soft_target_tau self.policy_mean_reg_weight = policy_mean_reg_weight self.policy_std_reg_weight = policy_std_reg_weight self.train_alpha = train_alpha self.log_alpha = torch.tensor(np.log(alpha), requires_grad=train_alpha) self.alpha = self.log_alpha.detach().exp() assert "env" in kwargs.keys(), "env info should be taken into SAC alpha" self.target_entropy = -np.prod(kwargs["env"].action_space.shape) self.target_qf1 = qf1.copy() self.target_qf2 = qf2.copy() self.eval_statistics = None self.policy_optimizer = optimizer_class( self.policy.parameters(), lr=policy_lr, betas=(beta_1, 0.999) ) self.qf1_optimizer = optimizer_class( self.qf1.parameters(), lr=qf_lr, betas=(beta_1, 0.999) ) self.qf2_optimizer = optimizer_class( self.qf2.parameters(), lr=qf_lr, betas=(beta_1, 0.999) ) self.alpha_optimizer = optimizer_class( [self.log_alpha], lr=alpha_lr, betas=(beta_1, 0.999) ) def train_step(self, batch): # q_params = itertools.chain(self.qf1.parameters(), self.qf2.parameters()) # policy_params = itertools.chain(self.policy.parameters()) rewards = self.reward_scale * batch["rewards"] terminals = batch["terminals"] obs = batch["observations"] actions = batch["actions"] next_obs = batch["next_observations"] """ QF Loss """ # Only unfreeze parameter of Q # for p in itertools.chain(self.qf1.parameters(), self.qf2.parameters()): # p.requires_grad = True # for p in self.policy.parameters(): # p.requires_grad = False self.qf1_optimizer.zero_grad() self.qf2_optimizer.zero_grad() q1_pred = self.qf1(obs, actions) q2_pred = self.qf2(obs, actions) # Make sure policy accounts for squashing functions like tanh correctly! next_policy_outputs = self.policy(next_obs, return_log_prob=True) # in this part, we only need new_actions and log_pi with no grad ( next_new_actions, next_policy_mean, next_policy_log_std, next_log_pi, ) = next_policy_outputs[:4] target_qf1_values = self.target_qf1( next_obs, next_new_actions ) # do not need grad || it's the shared part of two calculation target_qf2_values = self.target_qf2( next_obs, next_new_actions ) # do not need grad || it's the shared part of two calculation min_target_value = torch.min(target_qf1_values, target_qf2_values) q_target = rewards + (1.0 - terminals) * self.discount * ( min_target_value - self.alpha * next_log_pi ) ## original implementation has detach q_target = q_target.detach() qf1_loss = 0.5 * torch.mean((q1_pred - q_target) ** 2) qf2_loss = 0.5 * torch.mean((q2_pred - q_target) ** 2) # freeze parameter of Q # for p in itertools.chain(self.qf1.parameters(), self.qf2.parameters()): # p.requires_grad = False qf1_loss.backward() qf2_loss.backward() self.qf1_optimizer.step() self.qf2_optimizer.step() """ Policy Loss """ # for p in itertools.chain(self.qf1.parameters(), self.qf2.parameters()): # p.requires_grad = False # for p in self.policy.parameters(): # p.requires_grad = True policy_outputs = self.policy(obs, return_log_prob=True) new_actions, policy_mean, policy_log_std, log_pi = policy_outputs[:4] q1_new_acts = self.qf1(obs, new_actions) q2_new_acts = self.qf2(obs, new_actions) ## error q_new_actions = torch.min(q1_new_acts, q2_new_acts) self.policy_optimizer.zero_grad() policy_loss = torch.mean(self.alpha * log_pi - q_new_actions) ## mean_reg_loss = self.policy_mean_reg_weight * (policy_mean ** 2).mean() std_reg_loss = self.policy_std_reg_weight * (policy_log_std ** 2).mean() policy_reg_loss = mean_reg_loss + std_reg_loss policy_loss = policy_loss + policy_reg_loss policy_loss.backward() self.policy_optimizer.step() """ Update alpha """ if self.train_alpha: log_prob = log_pi.detach() + self.target_entropy alpha_loss = -(self.log_alpha * log_prob).mean() self.alpha_optimizer.zero_grad() alpha_loss.backward() self.alpha_optimizer.step() self.alpha = self.log_alpha.detach().exp() """ Update networks """ # unfreeze all -> initial states # for p in itertools.chain(self.qf1.parameters(), self.qf2.parameters()): # p.requires_grad = True # for p in self.policy.parameters(): # p.requires_grad = True # unfreeze parameter of Q # for p in itertools.chain(self.qf1.parameters(), self.qf2.parameters()): # p.requires_grad = True self._update_target_network() """ Save some statistics for eval """ if self.eval_statistics is None: """ Eval should set this to None. This way, these statistics are only computed for one batch. """ self.eval_statistics = OrderedDict() self.eval_statistics["Reward Scale"] = self.reward_scale self.eval_statistics["QF1 Loss"] = np.mean(ptu.get_numpy(qf1_loss)) self.eval_statistics["QF2 Loss"] = np.mean(ptu.get_numpy(qf2_loss)) if self.train_alpha: self.eval_statistics["Alpha Loss"] = np.mean(ptu.get_numpy(alpha_loss)) self.eval_statistics["Policy Loss"] = np.mean(ptu.get_numpy(policy_loss)) self.eval_statistics.update( create_stats_ordered_dict( "Q1 Predictions", ptu.get_numpy(q1_pred), ) ) self.eval_statistics.update( create_stats_ordered_dict( "Q2 Predictions", ptu.get_numpy(q2_pred), ) ) self.eval_statistics.update( create_stats_ordered_dict( "Alpha", [ptu.get_numpy(self.alpha)], ) ) self.eval_statistics.update( create_stats_ordered_dict( "Log Pis", ptu.get_numpy(log_pi), ) ) self.eval_statistics.update( create_stats_ordered_dict( "Policy mu", ptu.get_numpy(policy_mean), ) ) self.eval_statistics.update( create_stats_ordered_dict( "Policy log std", ptu.get_numpy(policy_log_std), ) ) @property def networks(self): return [ self.policy, self.qf1, self.qf2, self.target_qf1, self.target_qf2, ] def _update_target_network(self): ptu.soft_update_from_to(self.qf1, self.target_qf1, self.soft_target_tau) ptu.soft_update_from_to(self.qf2, self.target_qf2, self.soft_target_tau) def get_snapshot(self): return dict( qf1=self.qf1, qf2=self.qf2, policy=self.policy, target_qf1=self.target_qf1, target_qf2=self.target_qf2, log_alpha=self.log_alpha, policy_optimizer=self.policy_optimizer, qf1_optimizer=self.qf1_optimizer, qf2_optimizer=self.qf2_optimizer, alpha_optimizer=self.alpha_optimizer, ) def load_snapshot(self, snapshot): self.qf1 = snapshot["qf1"] self.qf2 = snapshot["qf2"] self.policy = snapshot["policy"] self.target_qf1 = snapshot["target_qf1"] self.target_qf2 = snapshot["target_qf2"] self.log_alpha = snapshot["log_alpha"] self.policy_optimizer = snapshot["policy_optimizer"] self.qf1_optimizer = snapshot["qf1_optimizer"] self.qf2_optimizer = snapshot["qf2_optimizer"] self.alpha_optimizer = snapshot["alpha_optimizer"] def get_eval_statistics(self): return self.eval_statistics def end_epoch(self): self.eval_statistics = None def to(self, device): self.log_alpha.to(device) super.to(device)
[ "torch.mean", "torch.min" ]
1.7.0
Ericonaldo/ILSwiss
efd25d457fd1578005c6fbc45cae29e9ab64a99d
1.0
import argparse import os import os.path as osp import shutil import tempfile import mmcv import torch import torch.distributed as dist from mmcv.runner import load_checkpoint, get_dist_info from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmdet.apis import init_dist from mmdet.core import results2json # , coco_eval, from txt_val import txt_eval from mmdet.core import wrap_fp16_model from mmdet.datasets import build_dataloader, build_dataset from mmdet.models import build_detector from mmdet import datasets def single_gpu_test(model, data_loader, show=False): model.eval() results = [] dataset = data_loader.dataset prog_bar = mmcv.ProgressBar(len(dataset)) for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=not show, **data) results.append(result) if show: model.module.show_result(data, result, dataset.img_norm_cfg) # batch_size = data['img'][0].size(0) batch_size = 1 for _ in range(batch_size): prog_bar.update() return results def multi_gpu_test(model, data_loader, tmpdir=None): model.eval() results = [] dataset = data_loader.dataset rank, world_size = get_dist_info() if rank == 0: prog_bar = mmcv.ProgressBar(len(dataset)) for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) results.append(result) if rank == 0: batch_size = data['img'][0].size(0) for _ in range(batch_size * world_size): prog_bar.update() # collect results from all ranks results = collect_results(results, len(dataset), tmpdir) return results def collect_results(result_part, size, tmpdir=None): rank, world_size = get_dist_info() # create a tmp dir if it is not specified if tmpdir is None: MAX_LEN = 512 # 32 is whitespace dir_tensor = torch.full((MAX_LEN, ), 32, dtype=torch.uint8, device='cuda') if rank == 0: tmpdir = tempfile.mkdtemp() tmpdir = torch.tensor( bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda') dir_tensor[:len(tmpdir)] = tmpdir dist.broadcast(dir_tensor, 0) tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip() else: mmcv.mkdir_or_exist(tmpdir) # dump the part result to the dir mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank))) dist.barrier() # collect all parts if rank != 0: return None else: # load results of all parts from tmp dir part_list = [] for i in range(world_size): part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i)) part_list.append(mmcv.load(part_file)) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] # remove tmp dir shutil.rmtree(tmpdir) return ordered_results def parse_args(): parser = argparse.ArgumentParser(description='MMDet test detector') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument('--out', help='output result file') # parser.add_argument( # '--eval', # type=str, # nargs='+', # choices=['proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'], # help='eval types') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument('--tmpdir', help='tmp dir for writing some results') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--iou_thr', type=float, default=0.5) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): #os.environ["CUDA_VISIBLE_DEVICES"] = "1" args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save or show the results) ' 'with the argument "--out" or "--show"') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = mmcv.Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, imgs_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') # old versions did not save class info in checkpoints, this walkaround is # for backward compatibility if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.show) else: model = MMDistributedDataParallel(model.cuda()) outputs = multi_gpu_test(model, data_loader, args.tmpdir) rank, _ = get_dist_info() if args.out and rank == 0: print('\nwriting results to {}'.format(args.out)) mmcv.dump(outputs, args.out) result_file = args.out # args = parser.parse_args() # cfg = mmcv.Config.fromfile(args.config) # test_dataset = mmcv.runner.obj_from_dict(cfg.data.test, datasets) # txt_eval(args.result, test_dataset, args.iou_thr) txt_eval(result_file, dataset, iou_thr=args.iou_thr) # eval_types = args.eval # if eval_types: # print('Starting evaluate {}'.format(' and '.join(eval_types))) # if eval_types == ['proposal_fast']: # result_file = args.out # coco_eval(result_file, eval_types, dataset.coco) # else: # if not isinstance(outputs[0], dict): # result_files = results2json(dataset, outputs, args.out) # coco_eval(result_files, eval_types, dataset.coco) # else: # for name in outputs[0]: # print('\nEvaluating {}'.format(name)) # outputs_ = [out[name] for out in outputs] # result_file = args.out + '.{}'.format(name) # result_files = results2json(dataset, outputs_, # result_file) # coco_eval(result_files, eval_types, dataset.coco) if __name__ == '__main__': main()
[ "torch.no_grad", "torch.distributed.barrier", "torch.full", "torch.distributed.broadcast" ]
1.0
lizhe960118/CenterNet
d1a0d13974e2316c6d127ca7860866cdd93bcfa7
1.0
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import math from ..registry import LOSSES # def gaussian_radius(det_size, min_overlap=0.7): # height, width = det_size # a1 = 1 # b1 = (height + width) # c1 = width * height * (1 - min_overlap) / (1 + min_overlap) # sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1) # r1 = (b1 + sq1) / 2 # a2 = 4 # b2 = 2 * (height + width) # c2 = (1 - min_overlap) * width * height # sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2) # r2 = (b2 + sq2) / 2 # a3 = 4 * min_overlap # b3 = -2 * min_overlap * (height + width) # c3 = (min_overlap - 1) * width * height # sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3) # r3 = (b3 + sq3) / 2 # return min(r1, r2, r3) # def gaussian2D(shape, sigma=1): # m, n = [(ss - 1.) / 2. for ss in shape] # y, x = np.ogrid[-m:m+1,-n:n+1] # h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) # h[h < np.finfo(h.dtype).eps * h.max()] = 0 # return h # def draw_umich_gaussian(heatmap, center, radius, k=1): # diameter = 2 * radius + 1 # gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6) # x, y = int(center[0]), int(center[1]) # height, width = heatmap.shape[0:2] # left, right = min(x, radius), min(width - x, radius + 1) # top, bottom = min(y, radius), min(height - y, radius + 1) # masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] # masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right] # if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: # TODO debug # np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap) # return heatmap def _neg_loss(pred, gt): ''' Modified focal loss. Exactly the same as CornerNet. Runs faster and costs a little bit more memory Arguments: pred (batch x c x h x w) gt_regr (batch x c x h x w) ''' pos_inds = gt.eq(1).float() neg_inds = gt.lt(1).float() # print(pred) # 几乎全部是0 neg_weights = torch.pow(1 - gt, 4) loss = 0 pos_loss = torch.log(pred) * torch.pow(1 - pred, 2) * pos_inds neg_loss = torch.log(1 - pred) * torch.pow(pred, 2) * neg_weights * neg_inds num_pos = pos_inds.float().sum() pos_loss = pos_loss.sum() neg_loss = neg_loss.sum() # print("num_pos:", num_pos) # print("pos_loss:", pos_loss) # print("neg_loss:", neg_loss) if num_pos == 0: loss = loss - neg_loss else: loss = loss - (pos_loss + neg_loss) / num_pos return loss class FocalLoss(nn.Module): '''nn.Module warpper for focal loss''' def __init__(self): super(FocalLoss, self).__init__() self.neg_loss = _neg_loss def forward(self, out, target): return self.neg_loss(out, target) def _gather_feat(feat, ind, mask=None): dim = feat.size(2) ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim) feat = feat.gather(1, ind) if mask is not None: mask = mask.unsqueeze(2).expand_as(feat) feat = feat[mask] feat = feat.view(-1, dim) return feat def _tranpose_and_gather_feat(feat, ind): feat = feat.permute(0, 2, 3, 1).contiguous() feat = feat.view(feat.size(0), -1, feat.size(3)) feat = _gather_feat(feat, ind) return feat class RegL1Loss(nn.Module): def __init__(self): super(RegL1Loss, self).__init__() def forward(self, output, mask, ind, target): pred = _tranpose_and_gather_feat(output, ind) mask = mask.unsqueeze(2).expand_as(pred).float() # print(target) # import pdb; pdb.set_trace() # loss = F.l1_loss(pred * mask, target * mask, reduction='elementwise_mean') # loss = F.l1_loss(pred * mask, target * mask, size_average=False) loss = F.l1_loss(pred * mask, target * mask, reduction='sum') loss = loss / (mask.sum() + 1e-4) return loss @LOSSES.register_module class CtdetLoss(torch.nn.Module): def __init__(self): super(CtdetLoss, self).__init__() # self.crit = torch.nn.MSELoss() if opt.mse_loss else FocalLoss() # self.crit_reg = RegL1Loss() if opt.reg_loss == 'l1' else \ # RegLoss() if opt.reg_loss == 'sl1' else None # self.crit_wh = torch.nn.L1Loss(reduction='sum') if opt.dense_wh else \ # NormRegL1Loss() if opt.norm_wh else \ # RegWeightedL1Loss() if opt.cat_spec_wh else self.crit_reg self.crit = FocalLoss() self.crit_reg = RegL1Loss() # self.crit_wh = self.crit_reg # self.opt = opt # opts self.num_stacks = 1 self.wh_weight = 0.1 self.off_weight = 1 self.hm_weight = 1 def forward(self, outputs, **kwargs): batch = kwargs hm_loss, wh_loss, off_loss = 0, 0, 0 for s in range(self.num_stacks): output = outputs[s] # for key, value in output.items(): # print(key, value.shape) # if not opt.mse_loss: output['hm'] = torch.clamp(output['hm'].sigmoid_(), min=1e-4, max=1-1e-4) # output['hm'] = output['hm'].sigmoid_() # if opt.eval_oracle_hm: # output['hm'] = batch['hm'] # if opt.eval_oracle_wh: # output['wh'] = torch.from_numpy(gen_oracle_map( # batch['wh'].detach().cpu().numpy(), # batch['ind'].detach().cpu().numpy(), # output['wh'].shape[3], output['wh'].shape[2])).to(opt.device) # if opt.eval_oracle_offset: # output['reg'] = torch.from_numpy(gen_oracle_map( # batch['reg'].detach().cpu().numpy(), # batch['ind'].detach().cpu().numpy(), # output['reg'].shape[3], output['reg'].shape[2])).to(opt.device) hm_loss += self.crit(output['hm'], batch['hm']) / self.num_stacks if self.wh_weight > 0: wh_loss += self.crit_reg( output['wh'], batch['reg_mask'], batch['ind'], batch['wh']) / self.num_stacks if self.off_weight > 0: off_loss += self.crit_reg(output['reg'], batch['reg_mask'], batch['ind'], batch['reg']) / self.num_stacks # loss = self.hm_weight * hm_loss + self.wh_weight * wh_loss + \ # self.off_weight * off_loss losses = {'hm_loss': self.hm_weight * hm_loss, 'wh_loss': self.wh_weight * wh_loss, 'off_loss': self.off_weight * off_loss} # loss_stats = {'loss': loss, 'hm_loss': hm_loss, # 'wh_loss': wh_loss, 'off_loss': off_loss} # return loss, loss_stats return losses
[ "torch.nn.functional.l1_loss", "torch.log", "torch.pow" ]
1.0
lizhe960118/CenterNet
d1a0d13974e2316c6d127ca7860866cdd93bcfa7
1.0
import torch import torch.nn as nn from mmcv.cnn import normal_init import numpy as np import cv2 import math #import torch.nn.functional as F from mmdet.core import multi_apply, multiclass_nms, distance2bbox, force_fp32 from ..builder import build_loss from ..registry import HEADS from ..utils import bias_init_with_prob, Scale, ConvModule INF = 1e8 @HEADS.register_module class WeightCenterHead(nn.Module): def __init__(self, num_classes, # init 80 in_channels, feat_channels=256, stacked_convs=1, strides=(4, 8, 16, 32, 64), regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512), (512, INF)), use_cross = False, loss_hm = dict( type="CenterFocalLoss" ), # 这里实现 CenterFocalLoss loss_wh = dict( type="L1Loss", loss_weight=0.1 ), loss_offset = dict( type="L1Loss", loss_weight=1.0 ), conv_cfg=None, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)): super(WeightCenterHead, self).__init__() self.num_classes = num_classes # self.cls_out_channels = num_classes - 1 self.cls_out_channels = num_classes self.in_channels = in_channels self.feat_channels = feat_channels self.stacked_convs = stacked_convs self.strides = strides self.regress_ranges = regress_ranges self.featmap_sizes = None self.loss_hm = build_loss(loss_hm) self.loss_wh = build_loss(loss_wh) self.loss_offset = build_loss(loss_offset) self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.fp16_enabled = False self.use_cross = use_cross self._init_layers() def _init_layers(self): self.cls_convs = nn.ModuleList() self.wh_convs = nn.ModuleList() self.offset_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.wh_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.offset_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.center_hm = nn.Conv2d(self.feat_channels, self.cls_out_channels, 3, padding=1, bias=True) self.center_wh = nn.Conv2d(self.feat_channels, 2, 3, padding=1, bias=True) self.center_offset = nn.Conv2d(self.feat_channels, 2, 3, padding=1, bias=True) self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) def init_weights(self): # for m in self.cls_convs: # normal_init(m.conv, std=0.01) # for m in self.wh_convs: # normal_init(m.conv, std=0.01) # for m in self.offset_convs: # normal_init(m.conv, std=0.01) #bias_hm = bias_init_with_prob(0.01) # 这里的初始化? #normal_init(self.center_hm, std=0.01, bias=bias_hm) self.center_hm.bias.data.fill_(-2.19) nn.init.constant_(self.center_wh.bias, 0) nn.init.constant_(self.center_offset.bias, 0) # normal_init(self.center_hm, std=0.01) # normal_init(self.center_wh, std=0.01) # normal_init(self.center_offset, std=0.01) def forward(self, feats): return multi_apply(self.forward_single, feats, self.scales) def forward_single(self, x, scale): cls_feat = x wh_feat = x offset_feat = x for cls_layer in self.cls_convs: cls_feat = cls_layer(cls_feat) cls_score = self.center_hm(cls_feat) for wh_layer in self.wh_convs: wh_feat = wh_layer(wh_feat) wh_pred = self.center_wh(wh_feat) for offset_layer in self.offset_convs: offset_feat = offset_layer(offset_feat) offset_pred = self.center_offset(offset_feat) return cls_score, wh_pred, offset_pred @force_fp32(apply_to=('cls_scores', 'wh_preds', 'offset_preds')) def loss(self, cls_scores, wh_preds, offset_preds, gt_bboxes, gt_labels, img_metas, cfg, gt_bboxes_ignore=None): assert len(cls_scores) == len(wh_preds) == len(offset_preds) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] self.featmap_sizes = featmap_sizes all_level_points = self.get_points(featmap_sizes, offset_preds[0].dtype, offset_preds[0].device) #print(img_metas) #self.c = img_metas['c'] #self.s = img_metas['s'] self.tensor_dtype = offset_preds[0].dtype self.tensor_device = offset_preds[0].device heatmaps, wh_targets, offset_targets = self.center_target(gt_bboxes, gt_labels, img_metas, all_level_points) # 所有层的concat的, 每张图对应一个 num_imgs = cls_scores[0].size(0) # batch_size #print(num_imgs) # flatten cls_scores, bbox_preds and centerness flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) for cls_score in cls_scores ] # cls_scores(num_levels, batch_size, 80, h, w) => (num_levels, batch_size * w * h, 80) flatten_wh_preds = [ wh_pred.permute(0, 2, 3, 1).reshape(-1, 2) # batchsize, h, w, 2 => batchsize, h, w, 2 for wh_pred in wh_preds ] flatten_offset_preds = [ offset_pred.permute(0, 2, 3, 1).reshape(-1, 2) for offset_pred in offset_preds ] flatten_cls_scores = torch.cat(flatten_cls_scores) flatten_wh_preds = torch.cat(flatten_wh_preds) flatten_offset_preds = torch.cat(flatten_offset_preds) # targets flatten_heatmaps = torch.cat(heatmaps) flatten_wh_targets = torch.cat(wh_targets) # torch.Size([all_level_points, 2]) flatten_offset_targets = torch.cat(offset_targets) # repeat points to align with bbox_preds # flatten_points = torch.cat( # [points.repeat(num_imgs, 1) for points in all_level_points]) # pos_inds = flatten_labels.nonzero().reshape(-1) #print(flatten_wh_targets.shape) #print(flatten_wh_targets.nonzero()) center_inds = flatten_wh_targets[...,0].nonzero().reshape(-1) #print(center_inds) num_center = len(center_inds) #print(num_center) # what about use the centerness * labels to indict an object # loss_cls = self.loss_cls( # flatten_cls_scores, flatten_labels, # labels gt is small area # avg_factor=num_pos + num_imgs) # avoid num_pos is 0 flatten_cls_scores = torch.clamp(flatten_cls_scores.sigmoid_(), min=1e-4, max=1-1e-4) loss_hm = self.loss_hm(flatten_cls_scores, flatten_heatmaps) pos_wh_targets = flatten_wh_targets[center_inds] #print(pos_wh_targets.shape) pos_wh_preds = flatten_wh_preds[center_inds] pos_offset_preds = flatten_offset_preds[center_inds] pos_offset_targets = flatten_offset_targets[center_inds] if num_center > 0: # TODO: use the iou loss # center_points = flatten_points[center_inds] # center_decoded_bbox_preds = wh_offset2bbox(center_points, pos_wh_preds, pos_offset_preds) # center_decoded_bbox_targets = wh_offset2bbox(center_points, pos_wh_targets, pos_offset_targets) loss_wh = self.loss_wh(pos_wh_preds, pos_wh_targets, avg_factor=num_center + num_imgs) #loss_wh = F.l1_loss(pos_wh_preds, pos_wh_targets, reduction='sum') / (num_center + num_imgs) #loss_wh = 0.1 * loss_wh loss_offset = self.loss_offset(pos_offset_preds, pos_offset_targets, avg_factor=num_center + num_imgs) else: loss_wh = pos_wh_preds.sum() loss_offset = pos_offset_preds.sum() return dict( loss_hm = loss_hm, loss_wh = loss_wh, loss_offset = loss_offset) def get_points(self, featmap_sizes, dtype, device): """Get points according to feature map sizes. Args: featmap_sizes (list[tuple]): Multi-level feature map sizes. dtype (torch.dtype): Type of points. device (torch.device): Device of points. Returns: tuple: points of each image. """ mlvl_points = [] for i in range(len(featmap_sizes)): mlvl_points.append( self.get_points_single(featmap_sizes[i], self.strides[i], dtype, device)) return mlvl_points def get_points_single(self, featmap_size, stride, dtype, device): h, w = featmap_size x_range = torch.arange( 0, w * stride, stride, dtype=dtype, device=device) # 以一定间隔取x的值 y_range = torch.arange( 0, h * stride, stride, dtype=dtype, device=device) y, x = torch.meshgrid(y_range, x_range) # 得到featmap的所有点 points = torch.stack( (x.reshape(-1), y.reshape(-1)), dim=-1) + stride // 2 return points def center_target(self, gt_bboxes_list, gt_labels_list, img_metas, all_level_points): assert len(self.featmap_sizes) == len(self.regress_ranges) # get heatmaps and targets of each image # heatmaps in heatmaps_list: [num_points, 80] # wh_targets: [num_points, 2] => [batch_size, num_points, 2] heatmaps_list, wh_targets_list, offset_targets_list = multi_apply( self.center_target_single, gt_bboxes_list, gt_labels_list, img_metas ) # split to per img, per level num_points = [center.size(0) for center in all_level_points] # 每一层多少个点 all_level_points [[12414, 2], []] heatmaps_list = [heatmaps.split(num_points, 0) for heatmaps in heatmaps_list] wh_targets_list = [wh_targets.split(num_points, 0) for wh_targets in wh_targets_list] offset_targets_list = [offset_targets.split(num_points, 0) for offset_targets in offset_targets_list] # concat per level image, 同一层的concat # [(batch_size,featmap_size[1]), ...) concat_lvl_heatmaps = [] concat_lvl_wh_targets = [] concat_lvl_offset_targets = [] num_levels = len(self.featmap_sizes) for i in range(num_levels): concat_lvl_heatmaps.append( torch.cat([heatmaps[i] for heatmaps in heatmaps_list])) # (num_levels, batch_size * w * h, 80) concat_lvl_wh_targets.append( torch.cat( [wh_targets[i] for wh_targets in wh_targets_list])) concat_lvl_offset_targets.append( torch.cat( [offset_targets[i] for offset_targets in offset_targets_list])) return concat_lvl_heatmaps, concat_lvl_wh_targets, concat_lvl_offset_targets def center_target_single(self, gt_bboxes, gt_labels, img_meta): """ single image gt_bboxes:torch.Size([6, 4]) gt_labels:torch.Size([6]) tensor([34, 34, 34, 34, 34, 34], device='cuda:0') featmap_sizes:(list[tuple]): Multi-level feature map sizes. regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512),(512, INF)) """ # transform the gt_bboxes, gt_labels to numpy gt_bboxes = gt_bboxes.data.cpu().numpy() gt_labels = gt_labels.data.cpu().numpy() #print(gt_bboxes, gt_labels) num_objs = gt_labels.shape[0] #print(num_objs) # heatmaps [level1, level2, level3, level4, level5] num_levels = len(self.featmap_sizes) heatmaps_targets = [] wh_targets = [] offset_targets = [] # get the target shape for each image for i in range(num_levels): h, w = self.featmap_sizes[i] hm = np.zeros((self.cls_out_channels, h, w), dtype=np.float32) heatmaps_targets.append(hm) wh = np.zeros((h, w, 2), dtype=np.float32) wh_targets.append(wh) offset = np.zeros((h, w, 2), dtype=np.float32) offset_targets.append(offset) for k in range(num_objs): bbox = gt_bboxes[k] cls_id = gt_labels[k] if img_meta['flipped']: bbox[[0, 2]] = img_meta['width'] - bbox[[2, 0]] - 1 # condition: in the regress_ranges origin_h, origin_w = bbox[3] - bbox[1], bbox[2] - bbox[0] #max_h_w = max(h, w) / 2 max_h_w = max(origin_h, origin_w) #max_h_w = max(origin_h, origin_w) * 2 # 最长边为32在P2 # 根据max_h_w在哪一层将output设置为当前层的 index_levels = [] #index_level = 0 for i in range(num_levels): min_regress_distance, max_regress_distance = self.regress_ranges[i] if not self.use_cross and (max_h_w > min_regress_distance) and (max_h_w <= max_regress_distance): index_levels.append(i) break if self.use_cross: min_regress_distance = min_regress_distance * 0.8 max_regress_distance = max_regress_distance * 1.3 if (max_h_w > min_regress_distance) and (max_h_w <= max_regress_distance): index_levels.append(i) for index_level in index_levels: output_h, output_w = self.featmap_sizes[index_level] #print(output_h, output_w) hm = heatmaps_targets[index_level] wh = wh_targets[index_level] offset = offset_targets[index_level] # c, s is passed by meta trans_output = get_affine_transform(img_meta['c'], img_meta['s'], 0, [output_w, output_h]) bbox[:2] = affine_transform(bbox[:2], trans_output) bbox[2:] = affine_transform(bbox[2:], trans_output) bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, output_w - 1) #x1, x2 bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, output_h - 1) h, w = bbox[3] - bbox[1], bbox[2] - bbox[0] #print(h, w) # 转换到当层 if h > 0 and w > 0: radius = gaussian_radius((math.ceil(h), math.ceil(w))) radius = max(0, int(radius)) ct = np.array( [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32) #print(ct) ct_int = ct.astype(np.int32) #hm[cls_id, ct_int[1], ct_int[0]] = 1 #if (ct_int[1] - 1) > 0: # hm[cls_id, ct_int[1] - 1, ct_int[0]] = 0.5 #if (ct_int[0] - 1) > 0: # hm[cls_id, ct_int[1], ct_int[0] - 1] = 0.5 #if (ct_int[1] + 1) < output_h: # hm[cls_id, ct_int[1] + 1, ct_int[0]] = 0.5 #if (ct_int[0] + 1) < output_w: # hm[cls_id, ct_int[1], ct_int[0] + 1] = 0.5 draw_umich_gaussian(hm[cls_id], ct_int, radius) h, w = 1. * h, 1. * w offset_count = ct - ct_int # h, w # ct_int即表明在featmap的位置 ct_int[1] * output_w + ct_int[0] # TODO:如果当前位置有物体的中心,现在是直接覆盖 # 这里设置监督信号,第1位表示w,第2位表示h # 这里对featmap进行缩放? # wh[ct_int[1], ct_int[0], 0] = w / output_w# output_h, output_w <= y, x # wh[ct_int[1], ct_int[0], 1] = h / output_h # offset[ct_int[1], ct_int[0], 0] = offset_count[0] / output_w # offset[ct_int[1], ct_int[0], 0] = offset_count[1] / output_h wh[ct_int[1], ct_int[0], 0] = w * (2 ** index_level) # baseline is P2 wh[ct_int[1], ct_int[0], 1] = h * (2 ** index_level) offset[ct_int[1], ct_int[0], 0] = offset_count[0] * (2 ** index_level) offset[ct_int[1], ct_int[0], 0] = offset_count[1] * (2 ** index_level) heatmaps_targets[index_level] = hm wh_targets[index_level] = wh offset_targets[index_level] = offset flatten_heatmaps_targets = [ hm.transpose(1, 2, 0).reshape(-1, self.cls_out_channels) for hm in heatmaps_targets ] #for i in range(len(flatten_heatmaps_targets)): # print(flatten_heatmaps_targets[i].shape) heatmaps_targets = np.concatenate(flatten_heatmaps_targets, axis=0) #print(heatmaps_targets.shape) # (13343, 80) #print(heatmaps_targets) flatten_wh_targets = [ wh.reshape(-1, 2) for wh in wh_targets ] wh_targets = np.concatenate(flatten_wh_targets) flatten_offset_targets = [ offset.reshape(-1, 2) for offset in offset_targets ] offset_targets = np.concatenate(flatten_offset_targets) # transform the heatmaps_targets, wh_targets, offset_targets into tensor heatmaps_targets = torch.from_numpy(np.stack(heatmaps_targets)) heatmaps_targets = torch.tensor(heatmaps_targets.detach(), dtype=self.tensor_dtype, device=self.tensor_device) wh_targets = torch.from_numpy(np.stack(wh_targets)) wh_targets = torch.tensor(wh_targets.detach(), dtype=self.tensor_dtype, device=self.tensor_device) offset_targets = torch.from_numpy(np.stack(offset_targets)) offset_targets = torch.tensor(offset_targets.detach(), dtype=self.tensor_dtype, device=self.tensor_device) return heatmaps_targets, wh_targets, offset_targets # test use @force_fp32(apply_to=('cls_scores', 'wh_preds', 'offset_preds')) def get_bboxes(self, cls_scores, wh_preds, offset_preds, img_metas, cfg): assert len(cls_scores) == len(wh_preds) == len(offset_preds) # cls_scores => [num_levels] => [batch featmap] => [batch, 80, h, w] # wh_preds => [num_levels] => [featmap] => [2, h, w] # offset_preds => [num_levels] => [featmap] => [2, h, w] num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] result_list = [] #print(cls_scores[0].shape) # torch.Size([1, 80, 84, 56]) #print(img_metas) for img_id in range(len(img_metas)): # 每个batch中id cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] # =>[num_levels] => [80, h, w] wh_pred_list = [ wh_preds[i][img_id].detach() for i in range(num_levels) ] offset_pred_list = [ offset_preds[i][img_id].detach() for i in range(num_levels) ] #img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] c = img_metas[img_id]['c'] s = img_metas[img_id]['s'] det_bboxes = self.get_bboxes_single(cls_score_list, wh_pred_list, offset_pred_list, featmap_sizes, c, s, scale_factor, cfg) # 对每一张图像进行解调 result_list.append(det_bboxes) return result_list # [batch_size] def get_bboxes_single(self, cls_scores, wh_preds, offset_preds, featmap_sizes, c, s, scale_factor, cfg): assert len(cls_scores) == len(wh_preds) == len(offset_preds) == len(featmap_sizes) detections = [] for cls_score, wh_pred, offset_pred, featmap_size in zip( cls_scores, wh_preds, offset_preds, featmap_sizes): # 取出每一层的点 assert cls_score.size()[-2:] == wh_pred.size()[-2:] == offset_pred.size()[-2:] == featmap_size output_h, output_w = featmap_size index_level = int((512 / 4) / output_h) - 1 wh_pred = wh_pred / (2 ** index_level) offset_pred = offset_pred / (2 ** index_level) #实际上得到了每一层的hm, wh, offset hm = torch.clamp(cls_score.sigmoid_(), min=1e-4, max=1-1e-4).unsqueeze(0) # 增加一个纬度 #wh_pred[0, :, :] = wh_pred[0, :, :] * output_w #wh_pred[1, :, :] = wh_pred[1, :, :] * output_h # 2, output_h, output_w wh = wh_pred.unsqueeze(0) # 这里需要乘以featuremap的尺度 #offset_pred[0, : ,:] = offset_pred[0, : ,:] * output_w #offset_pred[1, : ,:] = offset_pred[1, : ,:] * output_h reg = offset_pred.unsqueeze(0) dets = ctdet_decode(hm, wh, reg=reg, K=40) dets = post_process(dets, c, s, output_h, output_w, scale=scale_factor, num_classes=self.num_classes) detections.append(dets) results = merge_outputs(detections, self.num_classes) # 单张图的结果 return results #num_classes = 80 def gaussian_radius(det_size, min_overlap=0.7): height, width = det_size a1 = 1 b1 = (height + width) c1 = width * height * (1 - min_overlap) / (1 + min_overlap) sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1) r1 = (b1 + sq1) / 2 a2 = 4 b2 = 2 * (height + width) c2 = (1 - min_overlap) * width * height sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2) r2 = (b2 + sq2) / 2 a3 = 4 * min_overlap b3 = -2 * min_overlap * (height + width) c3 = (min_overlap - 1) * width * height sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3) r3 = (b3 + sq3) / 2 return min(r1, r2, r3) def gaussian_small_radius(det_size, min_overlap=0.7): height, width = det_size a1 = 1 b1 = (height + width) c1 = width * height * (1 - min_overlap) / (1 + min_overlap) sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1) r1 = (b1 - sq1) / (2 * a1) a2 = 4 b2 = 2 * (height + width) c2 = (1 - min_overlap) * width * height sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2) r2 = (b2 - sq2) / (2 * a2) a3 = 4 * min_overlap b3 = -2 * min_overlap * (height + width) c3 = (min_overlap - 1) * width * height sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3) r3 = (b3 + sq3) / (2 * a3) return min(r1, r2, r3) def gaussian2D(shape, sigma=1): m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m+1,-n:n+1] h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 return h def draw_umich_gaussian(heatmap, center, radius, k=1): diameter = 2 * radius + 1 gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6) x, y = int(center[0]), int(center[1]) height, width = heatmap.shape[0:2] left, right = min(x, radius), min(width - x, radius + 1) top, bottom = min(y, radius), min(height - y, radius + 1) masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right] if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: # TODO debug np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap) return heatmap def affine_transform(pt, t): new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32).T new_pt = np.dot(t, new_pt) return new_pt[:2] def get_affine_transform(center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0): if not isinstance(scale, np.ndarray) and not isinstance(scale, list): scale = np.array([scale, scale], dtype=np.float32) scale_tmp = scale src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = get_dir([0, src_w * -0.5], rot_rad) dst_dir = np.array([0, dst_w * -0.5], np.float32) src = np.zeros((3, 2), dtype=np.float32) dst = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5], np.float32) + dst_dir src[2:, :] = get_3rd_point(src[0, :], src[1, :]) dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans def get_dir(src_point, rot_rad): sn, cs = np.sin(rot_rad), np.cos(rot_rad) src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs return src_result def get_3rd_point(a, b): direct = a - b return b + np.array([-direct[1], direct[0]], dtype=np.float32) def ctdet_decode(heat, wh, reg=None, cat_spec_wh=False, K=40): batch, cat, height, width = heat.size() # 1, 80, 128, 128 #print("batch, cat, height, width\n", batch, cat, height, width) if height * width <= K: K = height * width #print("k:", K) heat = _nms(heat) scores, inds, clses, ys, xs = _topk(heat, K=K) if reg is not None: reg = _tranpose_and_gather_feat(reg, inds) reg = reg.view(batch, K, 2) xs = xs.view(batch, K, 1) + reg[:, :, 0:1] ys = ys.view(batch, K, 1) + reg[:, :, 1:2] else: xs = xs.view(batch, K, 1) + 0.5 ys = ys.view(batch, K, 1) + 0.5 wh = _tranpose_and_gather_feat(wh, inds) # inds 对应 h, w的尺度 if cat_spec_wh: wh = wh.view(batch, K, cat, 2) clses_ind = clses.view(batch, K, 1, 1).expand(batch, K, 1, 2).long() wh = wh.gather(2, clses_ind).view(batch, K, 2) else: wh = wh.view(batch, K, 2) clses = clses.view(batch, K, 1).float() scores = scores.view(batch, K, 1) # 0, 1, 2 bboxes = torch.cat([xs - wh[..., 0:1] / 2, ys - wh[..., 1:2] / 2, xs + wh[..., 0:1] / 2, ys + wh[..., 1:2] / 2], dim=2) detections = torch.cat([bboxes, scores, clses], dim=2) return detections def _nms(heat, kernel=3): pad = (kernel - 1) // 2 hmax = nn.functional.max_pool2d( heat, (kernel, kernel), stride=1, padding=pad) keep = (hmax == heat).float() return heat * keep def _gather_feat(feat, ind, mask=None): dim = feat.size(2) ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim) feat = feat.gather(1, ind) if mask is not None: mask = mask.unsqueeze(2).expand_as(feat) feat = feat[mask] feat = feat.view(-1, dim) return feat def _tranpose_and_gather_feat(feat, ind): feat = feat.permute(0, 2, 3, 1).contiguous() feat = feat.view(feat.size(0), -1, feat.size(3)) feat = _gather_feat(feat, ind) return feat def _topk(scores, K=40): batch, cat, height, width = scores.size() # 1, 80,height, width #print("batch, cat, height, width\n", batch, cat, height, width) #print("k:", K) topk_scores, topk_inds = torch.topk(scores.view(batch, cat, -1), K) topk_inds = topk_inds % (height * width) topk_ys = (topk_inds / width).int().float() # y-> h, x-> w topk_xs = (topk_inds % width).int().float() topk_score, topk_ind = torch.topk(topk_scores.view(batch, -1), K) topk_clses = (topk_ind / K).int() topk_inds = _gather_feat( topk_inds.view(batch, -1, 1), topk_ind).view(batch, K) topk_ys = _gather_feat(topk_ys.view(batch, -1, 1), topk_ind).view(batch, K) topk_xs = _gather_feat(topk_xs.view(batch, -1, 1), topk_ind).view(batch, K) return topk_score, topk_inds, topk_clses, topk_ys, topk_xs def post_process(dets, c, s, out_height, out_width, scale, num_classes): dets = dets.detach().cpu().numpy() # print("dets", dets) # (1, 100, 6) dets = dets.reshape(1, -1, dets.shape[2]) # (x1, y1, x2, y2) dets = ctdet_post_process( dets.copy(), [c], [s], out_height, out_width, num_classes) for j in range(1, num_classes + 1): dets[0][j] = np.array(dets[0][j], dtype=np.float32).reshape(-1, 5) dets[0][j][:, :4] /= scale return dets[0] def ctdet_post_process(dets, c, s, h, w, num_classes): ret = [] # print(dets.shape) # (1, 100, 6) # print(c) for i in range(dets.shape[0]): top_preds = {} dets[i, :, :2] = transform_preds( dets[i, :, 0:2], c[i], s[i], (w, h)) dets[i, :, 2:4] = transform_preds( dets[i, :, 2:4], c[i], s[i], (w, h)) classes = dets[i, :, -1] # 类别这里是80 for j in range(num_classes): inds = (classes == j) top_preds[j + 1] = np.concatenate([ dets[i, inds, :4].astype(np.float32), dets[i, inds, 4:5].astype(np.float32)], axis=1).tolist() # 这里将框按照类别进行分类 ret.append(top_preds) return ret def merge_outputs(detections, num_classes): # print(detections) results = {} max_per_image = 100 for j in range(1, num_classes + 1): results[j] = np.concatenate( [detection[j] for detection in detections], axis=0).astype(np.float32) # if len(self.scales) > 1 or self.opt.nms: results[j] = soft_nms(results[j], Nt=0.5, method=2, threshold=0.01) # print(results) scores = np.hstack([results[j][:, 4] for j in range(1, num_classes + 1)]) if len(scores) > max_per_image: kth = len(scores) - max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, num_classes + 1): keep_inds = (results[j][:, 4] >= thresh) results[j] = results[j][keep_inds] # print("after merge out\n", results) return results2coco_boxes(results, num_classes) def results2coco_boxes(results, num_classes): """Convert detection results to a list of numpy arrays. Args: bboxes (Tensor): shape (n, 5) labels (Tensor): shape (n, ) num_classes (int): class number, including background class Returns: list(ndarray): bbox results of each class """ bboxes = [0 for i in range(num_classes)] for j in range(1, num_classes + 1): if len(results[j]) == 0: bboxes[j - 1] = np.zeros((0, 5), dtype=np.float32) continue bboxes[j - 1] = results[j] # print(bboxes) # xyxy return bboxes def soft_nms(boxes, sigma=0.5, Nt=0.3, threshold=0.01, method=0): N = boxes.shape[0] # cdef float iw, ih, box_area # cdef float ua # cdef int pos = 0 # cdef float maxscore = 0 # cdef int maxpos = 0 # cdef float x1,x2,y1,y2,tx1,tx2,ty1,ty2,ts,area,weight,ov for i in range(N): maxscore = boxes[i, 4] maxpos = i tx1 = boxes[i,0] ty1 = boxes[i,1] tx2 = boxes[i,2] ty2 = boxes[i,3] ts = boxes[i,4] pos = i + 1 # get max box while pos < N: if maxscore < boxes[pos, 4]: maxscore = boxes[pos, 4] maxpos = pos pos = pos + 1 # add max box as a detection boxes[i,0] = boxes[maxpos,0] boxes[i,1] = boxes[maxpos,1] boxes[i,2] = boxes[maxpos,2] boxes[i,3] = boxes[maxpos,3] boxes[i,4] = boxes[maxpos,4] # swap ith box with position of max box boxes[maxpos,0] = tx1 boxes[maxpos,1] = ty1 boxes[maxpos,2] = tx2 boxes[maxpos,3] = ty2 boxes[maxpos,4] = ts tx1 = boxes[i,0] ty1 = boxes[i,1] tx2 = boxes[i,2] ty2 = boxes[i,3] ts = boxes[i,4] pos = i + 1 # NMS iterations, note that N changes if detection boxes fall below threshold while pos < N: x1 = boxes[pos, 0] y1 = boxes[pos, 1] x2 = boxes[pos, 2] y2 = boxes[pos, 3] s = boxes[pos, 4] area = (x2 - x1 + 1) * (y2 - y1 + 1) iw = (min(tx2, x2) - max(tx1, x1) + 1) if iw > 0: ih = (min(ty2, y2) - max(ty1, y1) + 1) if ih > 0: ua = float((tx2 - tx1 + 1) * (ty2 - ty1 + 1) + area - iw * ih) ov = iw * ih / ua #iou between max box and detection box if method == 1: # linear if ov > Nt: weight = 1 - ov else: weight = 1 elif method == 2: # gaussian weight = np.exp(-(ov * ov)/sigma) else: # original NMS if ov > Nt: weight = 0 else: weight = 1 boxes[pos, 4] = weight*boxes[pos, 4] # if box score falls below threshold, discard the box by swapping with last box # update N if boxes[pos, 4] < threshold: boxes[pos,0] = boxes[N-1, 0] boxes[pos,1] = boxes[N-1, 1] boxes[pos,2] = boxes[N-1, 2] boxes[pos,3] = boxes[N-1, 3] boxes[pos,4] = boxes[N-1, 4] N = N - 1 pos = pos - 1 pos = pos + 1 keep = [i for i in range(N)] boxes = boxes[keep] return boxes def transform_preds(coords, center, scale, output_size): target_coords = np.zeros(coords.shape) trans = get_affine_transform(center, scale, 0, output_size, inv=1) for p in range(coords.shape[0]): target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans) return target_coords
[ "torch.cat", "torch.nn.ModuleList", "torch.meshgrid", "torch.nn.init.constant_", "torch.nn.Conv2d", "torch.arange", "torch.nn.functional.max_pool2d" ]
1.0
lizhe960118/CenterNet
d1a0d13974e2316c6d127ca7860866cdd93bcfa7
1.0
import torch import torch.nn as nn from mmcv.cnn import normal_init from mmdet.core import multi_apply, multiclass_nms, distance2bbox, force_fp32 from ..builder import build_loss from ..registry import HEADS from ..utils import bias_init_with_prob, Scale, ConvModule INF = 1e8 @HEADS.register_module class FCOSHead(nn.Module): def __init__(self, num_classes, in_channels, feat_channels=256, stacked_convs=4, strides=(4, 8, 16, 32, 64), regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512), (512, INF)), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='IoULoss', loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), conv_cfg=None, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)): super(FCOSHead, self).__init__() self.num_classes = num_classes self.cls_out_channels = num_classes - 1 self.in_channels = in_channels self.feat_channels = feat_channels self.stacked_convs = stacked_convs self.strides = strides self.regress_ranges = regress_ranges self.loss_cls = build_loss(loss_cls) self.loss_bbox = build_loss(loss_bbox) self.loss_centerness = build_loss(loss_centerness) self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.fp16_enabled = False self._init_layers() def _init_layers(self): self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.fcos_cls = nn.Conv2d( self.feat_channels, self.cls_out_channels, 3, padding=1) self.fcos_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) self.fcos_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) def init_weights(self): for m in self.cls_convs: normal_init(m.conv, std=0.01) for m in self.reg_convs: normal_init(m.conv, std=0.01) bias_cls = bias_init_with_prob(0.01) normal_init(self.fcos_cls, std=0.01, bias=bias_cls) normal_init(self.fcos_reg, std=0.01) normal_init(self.fcos_centerness, std=0.01) def forward(self, feats): return multi_apply(self.forward_single, feats, self.scales) def forward_single(self, x, scale): cls_feat = x reg_feat = x for cls_layer in self.cls_convs: cls_feat = cls_layer(cls_feat) cls_score = self.fcos_cls(cls_feat) centerness = self.fcos_centerness(cls_feat) for reg_layer in self.reg_convs: reg_feat = reg_layer(reg_feat) # scale the bbox_pred of different level # float to avoid overflow when enabling FP16 bbox_pred = scale(self.fcos_reg(reg_feat)).float().exp() return cls_score, bbox_pred, centerness @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'centernesses')) def loss(self, cls_scores, bbox_preds, centernesses, gt_bboxes, gt_labels, img_metas, cfg, gt_bboxes_ignore=None): assert len(cls_scores) == len(bbox_preds) == len(centernesses) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] all_level_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) labels, bbox_targets = self.fcos_target(all_level_points, gt_bboxes, gt_labels) num_imgs = cls_scores[0].size(0) # flatten cls_scores, bbox_preds and centerness flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) for cls_score in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) for bbox_pred in bbox_preds ] flatten_centerness = [ centerness.permute(0, 2, 3, 1).reshape(-1) for centerness in centernesses ] flatten_cls_scores = torch.cat(flatten_cls_scores) flatten_bbox_preds = torch.cat(flatten_bbox_preds) flatten_centerness = torch.cat(flatten_centerness) flatten_labels = torch.cat(labels) flatten_bbox_targets = torch.cat(bbox_targets) # repeat points to align with bbox_preds flatten_points = torch.cat( [points.repeat(num_imgs, 1) for points in all_level_points]) pos_inds = flatten_labels.nonzero().reshape(-1) num_pos = len(pos_inds) loss_cls = self.loss_cls( flatten_cls_scores, flatten_labels, avg_factor=num_pos + num_imgs) # avoid num_pos is 0 pos_bbox_preds = flatten_bbox_preds[pos_inds] pos_bbox_targets = flatten_bbox_targets[pos_inds] pos_centerness = flatten_centerness[pos_inds] pos_centerness_targets = self.centerness_target(pos_bbox_targets) if num_pos > 0: pos_points = flatten_points[pos_inds] pos_decoded_bbox_preds = distance2bbox(pos_points, pos_bbox_preds) pos_decoded_target_preds = distance2bbox(pos_points, pos_bbox_targets) # centerness weighted iou loss loss_bbox = self.loss_bbox( pos_decoded_bbox_preds, pos_decoded_target_preds, weight=pos_centerness_targets, avg_factor=pos_centerness_targets.sum()) loss_centerness = self.loss_centerness(pos_centerness, pos_centerness_targets) else: loss_bbox = pos_bbox_preds.sum() loss_centerness = pos_centerness.sum() return dict( loss_cls=loss_cls, loss_bbox=loss_bbox, loss_centerness=loss_centerness) @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'centernesses')) def get_bboxes(self, cls_scores, bbox_preds, centernesses, img_metas, cfg, rescale=None): assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] mlvl_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) result_list = [] for img_id in range(len(img_metas)): cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] bbox_pred_list = [ bbox_preds[i][img_id].detach() for i in range(num_levels) ] centerness_pred_list = [ centernesses[i][img_id].detach() for i in range(num_levels) ] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] det_bboxes = self.get_bboxes_single(cls_score_list, bbox_pred_list, centerness_pred_list, mlvl_points, img_shape, scale_factor, cfg, rescale) result_list.append(det_bboxes) return result_list def get_bboxes_single(self, cls_scores, bbox_preds, centernesses, mlvl_points, img_shape, scale_factor, cfg, rescale=False): assert len(cls_scores) == len(bbox_preds) == len(mlvl_points) mlvl_bboxes = [] mlvl_scores = [] mlvl_centerness = [] for cls_score, bbox_pred, centerness, points in zip( cls_scores, bbox_preds, centernesses, mlvl_points): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] scores = cls_score.permute(1, 2, 0).reshape( -1, self.cls_out_channels).sigmoid() centerness = centerness.permute(1, 2, 0).reshape(-1).sigmoid() bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: max_scores, _ = (scores * centerness[:, None]).max(dim=1) _, topk_inds = max_scores.topk(nms_pre) points = points[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] scores = scores[topk_inds, :] centerness = centerness[topk_inds] bboxes = distance2bbox(points, bbox_pred, max_shape=img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_centerness.append(centerness) mlvl_bboxes = torch.cat(mlvl_bboxes) if rescale: mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) mlvl_scores = torch.cat(mlvl_scores) padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) mlvl_scores = torch.cat([padding, mlvl_scores], dim=1) mlvl_centerness = torch.cat(mlvl_centerness) det_bboxes, det_labels = multiclass_nms( mlvl_bboxes, mlvl_scores, cfg.score_thr, cfg.nms, cfg.max_per_img, score_factors=mlvl_centerness) return det_bboxes, det_labels def get_points(self, featmap_sizes, dtype, device): """Get points according to feature map sizes. Args: featmap_sizes (list[tuple]): Multi-level feature map sizes. dtype (torch.dtype): Type of points. device (torch.device): Device of points. Returns: tuple: points of each image. """ mlvl_points = [] for i in range(len(featmap_sizes)): mlvl_points.append( self.get_points_single(featmap_sizes[i], self.strides[i], dtype, device)) return mlvl_points def get_points_single(self, featmap_size, stride, dtype, device): h, w = featmap_size x_range = torch.arange( 0, w * stride, stride, dtype=dtype, device=device) y_range = torch.arange( 0, h * stride, stride, dtype=dtype, device=device) y, x = torch.meshgrid(y_range, x_range) points = torch.stack( (x.reshape(-1), y.reshape(-1)), dim=-1) + stride // 2 return points def fcos_target(self, points, gt_bboxes_list, gt_labels_list): assert len(points) == len(self.regress_ranges) num_levels = len(points) # expand regress ranges to align with points expanded_regress_ranges = [ points[i].new_tensor(self.regress_ranges[i])[None].expand_as( points[i]) for i in range(num_levels) ] #for i in range(num_levels): # print(i) # print("points.shape:",points[i].shape) # torch.Size([15200, 2]) # print("regress_ranges shape:", self.regress_ranges[i]) # print("expanded_regress_ranges shape", expanded_regress_ranges[i].shape) # concat all levels points and regress ranges concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0) concat_points = torch.cat(points, dim=0) #print("concat_regress_ranges.shape", concat_regress_ranges.shape) #print("concat_points.shape", concat_points.shape) # get labels and bbox_targets of each image labels_list, bbox_targets_list = multi_apply( self.fcos_target_single, gt_bboxes_list, gt_labels_list, points=concat_points, regress_ranges=concat_regress_ranges) # split to per img, per level num_points = [center.size(0) for center in points] labels_list = [labels.split(num_points, 0) for labels in labels_list] bbox_targets_list = [ bbox_targets.split(num_points, 0) for bbox_targets in bbox_targets_list ] # concat per level image concat_lvl_labels = [] concat_lvl_bbox_targets = [] for i in range(num_levels): concat_lvl_labels.append( torch.cat([labels[i] for labels in labels_list])) concat_lvl_bbox_targets.append( torch.cat( [bbox_targets[i] for bbox_targets in bbox_targets_list])) return concat_lvl_labels, concat_lvl_bbox_targets def fcos_target_single(self, gt_bboxes, gt_labels, points, regress_ranges): num_points = points.size(0) num_gts = gt_labels.size(0) print("gt_bboxes", gt_bboxes.shape) print("gt_labels", gt_labels.shape) print("points", points.shape) print(points[:10]) print("regress_ranges", regress_ranges.shape) print(regress_ranges[:10]) areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0] + 1) * ( gt_bboxes[:, 3] - gt_bboxes[:, 1] + 1) # TODO: figure out why these two are different # areas = areas[None].expand(num_points, num_gts) areas = areas[None].repeat(num_points, 1) regress_ranges = regress_ranges[:, None, :].expand( num_points, num_gts, 2) gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4) xs, ys = points[:, 0], points[:, 1] xs = xs[:, None].expand(num_points, num_gts) ys = ys[:, None].expand(num_points, num_gts) left = xs - gt_bboxes[..., 0] right = gt_bboxes[..., 2] - xs top = ys - gt_bboxes[..., 1] bottom = gt_bboxes[..., 3] - ys bbox_targets = torch.stack((left, top, right, bottom), -1) # condition1: inside a gt bbox inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0 # condition2: limit the regression range for each location max_regress_distance = bbox_targets.max(-1)[0] inside_regress_range = ( max_regress_distance >= regress_ranges[..., 0]) & ( max_regress_distance <= regress_ranges[..., 1]) # if there are still more than one objects for a location, # we choose the one with minimal area areas[inside_gt_bbox_mask == 0] = INF areas[inside_regress_range == 0] = INF min_area, min_area_inds = areas.min(dim=1) labels = gt_labels[min_area_inds] labels[min_area == INF] = 0 bbox_targets = bbox_targets[range(num_points), min_area_inds] return labels, bbox_targets def centerness_target(self, pos_bbox_targets): # only calculate pos centerness targets, otherwise there may be nan left_right = pos_bbox_targets[:, [0, 2]] top_bottom = pos_bbox_targets[:, [1, 3]] centerness_targets = ( left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * ( top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]) return torch.sqrt(centerness_targets)
[ "torch.cat", "torch.sqrt", "torch.stack", "torch.arange", "torch.nn.ModuleList", "torch.nn.Conv2d", "torch.meshgrid" ]
1.0
lizhe960118/CenterNet
d1a0d13974e2316c6d127ca7860866cdd93bcfa7
1.0
import torch import torch.nn as nn from ..registry import LOSSES def _neg_loss(pred, gt): ''' Modified focal loss. Exactly the same as CornerNet. Runs faster and costs a little bit more memory Arguments: pred (batch x c x h x w) => (batch, c, num_points) gt_regr (batch x c x h x w) ''' pos_inds = gt.eq(1).float() neg_inds = gt.lt(1).float() neg_weights = torch.pow(1 - gt, 4) loss = 0 pos_loss = torch.log(pred) * torch.pow(1 - pred, 2) * pos_inds neg_loss = torch.log(1 - pred) * torch.pow(pred, 2) * neg_weights * neg_inds num_pos = pos_inds.float().sum() pos_loss = pos_loss.sum() neg_loss = neg_loss.sum() count = int(num_pos.cpu().detach()) if count == 0: loss = loss - neg_loss else: loss = loss - (pos_loss + neg_loss) / num_pos return loss @LOSSES.register_module class CenterFocalLoss(nn.Module): '''nn.Module warpper for focal loss''' def __init__(self): super(CenterFocalLoss, self).__init__() self.neg_loss = _neg_loss def forward(self, out, target): return self.neg_loss(out, target)
[ "torch.log", "torch.pow" ]
1.0
lizhe960118/CenterNet
d1a0d13974e2316c6d127ca7860866cdd93bcfa7
1.0
import torch import torch.nn as nn from mmcv.cnn import normal_init import numpy as np import cv2 import math #import torch.nn.functional as F from mmdet.core import multi_apply, multiclass_nms, distance2bbox, force_fp32 from ..builder import build_loss from ..registry import HEADS from ..utils import bias_init_with_prob, Scale, ConvModule INF = 1e8 @HEADS.register_module class CenterHead(nn.Module): def __init__(self, num_classes, # init 80 in_channels, feat_channels=256, stacked_convs=1, strides=(4, 8, 16, 32, 64), regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512), (512, INF)), use_cross = False, loss_hm = dict( type="CenterFocalLoss" ), # 这里实现 CenterFocalLoss loss_wh = dict( type="L1Loss", loss_weight=0.1 ), loss_offset = dict( type="L1Loss", loss_weight=1.0 ), conv_cfg=None, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)): super(CenterHead, self).__init__() self.num_classes = num_classes # self.cls_out_channels = num_classes - 1 self.cls_out_channels = num_classes self.in_channels = in_channels self.feat_channels = feat_channels self.stacked_convs = stacked_convs self.strides = strides self.regress_ranges = regress_ranges self.featmap_sizes = None self.loss_hm = build_loss(loss_hm) self.loss_wh = build_loss(loss_wh) self.loss_offset = build_loss(loss_offset) self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.fp16_enabled = False self.use_cross = use_cross self._init_layers() def _init_layers(self): self.cls_convs = nn.ModuleList() self.wh_convs = nn.ModuleList() self.offset_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.wh_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.offset_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.center_hm = nn.Conv2d(self.feat_channels, self.cls_out_channels, 3, padding=1, bias=True) self.center_wh = nn.Conv2d(self.feat_channels, 2, 3, padding=1, bias=True) self.center_offset = nn.Conv2d(self.feat_channels, 2, 3, padding=1, bias=True) self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) def init_weights(self): # for m in self.cls_convs: # normal_init(m.conv, std=0.01) # for m in self.wh_convs: # normal_init(m.conv, std=0.01) # for m in self.offset_convs: # normal_init(m.conv, std=0.01) #bias_hm = bias_init_with_prob(0.01) # 这里的初始化? #normal_init(self.center_hm, std=0.01, bias=bias_hm) self.center_hm.bias.data.fill_(-2.19) nn.init.constant_(self.center_wh.bias, 0) nn.init.constant_(self.center_offset.bias, 0) # normal_init(self.center_hm, std=0.01) # normal_init(self.center_wh, std=0.01) # normal_init(self.center_offset, std=0.01) def forward(self, feats): return multi_apply(self.forward_single, feats, self.scales) def forward_single(self, x, scale): cls_feat = x wh_feat = x offset_feat = x for cls_layer in self.cls_convs: cls_feat = cls_layer(cls_feat) cls_score = self.center_hm(cls_feat) for wh_layer in self.wh_convs: wh_feat = wh_layer(wh_feat) wh_pred = self.center_wh(wh_feat) for offset_layer in self.offset_convs: offset_feat = offset_layer(offset_feat) offset_pred = self.center_offset(offset_feat) return cls_score, wh_pred, offset_pred @force_fp32(apply_to=('cls_scores', 'wh_preds', 'offset_preds')) def loss(self, cls_scores, wh_preds, offset_preds, gt_bboxes, gt_labels, img_metas, cfg, gt_bboxes_ignore=None): assert len(cls_scores) == len(wh_preds) == len(offset_preds) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] self.featmap_sizes = featmap_sizes all_level_points = self.get_points(featmap_sizes, offset_preds[0].dtype, offset_preds[0].device) #print(img_metas) #self.c = img_metas['c'] #self.s = img_metas['s'] self.tensor_dtype = offset_preds[0].dtype self.tensor_device = offset_preds[0].device heatmaps, wh_targets, offset_targets = self.center_target(gt_bboxes, gt_labels, img_metas, all_level_points) # 所有层的concat的, 每张图对应一个 num_imgs = cls_scores[0].size(0) # batch_size #print(num_imgs) # flatten cls_scores, bbox_preds and centerness flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) for cls_score in cls_scores ] # cls_scores(num_levels, batch_size, 80, h, w) => (num_levels, batch_size * w * h, 80) flatten_wh_preds = [ wh_pred.permute(0, 2, 3, 1).reshape(-1, 2) # batchsize, h, w, 2 => batchsize, h, w, 2 for wh_pred in wh_preds ] flatten_offset_preds = [ offset_pred.permute(0, 2, 3, 1).reshape(-1, 2) for offset_pred in offset_preds ] flatten_cls_scores = torch.cat(flatten_cls_scores) flatten_wh_preds = torch.cat(flatten_wh_preds) flatten_offset_preds = torch.cat(flatten_offset_preds) # targets flatten_heatmaps = torch.cat(heatmaps) flatten_wh_targets = torch.cat(wh_targets) # torch.Size([all_level_points, 2]) flatten_offset_targets = torch.cat(offset_targets) # repeat points to align with bbox_preds # flatten_points = torch.cat( # [points.repeat(num_imgs, 1) for points in all_level_points]) # pos_inds = flatten_labels.nonzero().reshape(-1) #print(flatten_wh_targets.shape) #print(flatten_wh_targets.nonzero()) center_inds = flatten_wh_targets[...,0].nonzero().reshape(-1) #print(center_inds) num_center = len(center_inds) #print(num_center) # what about use the centerness * labels to indict an object # loss_cls = self.loss_cls( # flatten_cls_scores, flatten_labels, # labels gt is small area # avg_factor=num_pos + num_imgs) # avoid num_pos is 0 flatten_cls_scores = torch.clamp(flatten_cls_scores.sigmoid_(), min=1e-4, max=1-1e-4) loss_hm = self.loss_hm(flatten_cls_scores, flatten_heatmaps) pos_wh_targets = flatten_wh_targets[center_inds] #print(pos_wh_targets.shape) pos_wh_preds = flatten_wh_preds[center_inds] pos_offset_preds = flatten_offset_preds[center_inds] pos_offset_targets = flatten_offset_targets[center_inds] if num_center > 0: # TODO: use the iou loss # center_points = flatten_points[center_inds] # center_decoded_bbox_preds = wh_offset2bbox(center_points, pos_wh_preds, pos_offset_preds) # center_decoded_bbox_targets = wh_offset2bbox(center_points, pos_wh_targets, pos_offset_targets) loss_wh = self.loss_wh(pos_wh_preds, pos_wh_targets, avg_factor=num_center + num_imgs) #loss_wh = F.l1_loss(pos_wh_preds, pos_wh_targets, reduction='sum') / (num_center + num_imgs) #loss_wh = 0.1 * loss_wh loss_offset = self.loss_offset(pos_offset_preds, pos_offset_targets, avg_factor=num_center + num_imgs) else: loss_wh = pos_wh_preds.sum() loss_offset = pos_offset_preds.sum() return dict( loss_hm = loss_hm, loss_wh = loss_wh, loss_offset = loss_offset) def get_points(self, featmap_sizes, dtype, device): """Get points according to feature map sizes. Args: featmap_sizes (list[tuple]): Multi-level feature map sizes. dtype (torch.dtype): Type of points. device (torch.device): Device of points. Returns: tuple: points of each image. """ mlvl_points = [] for i in range(len(featmap_sizes)): mlvl_points.append( self.get_points_single(featmap_sizes[i], self.strides[i], dtype, device)) return mlvl_points def get_points_single(self, featmap_size, stride, dtype, device): h, w = featmap_size x_range = torch.arange( 0, w * stride, stride, dtype=dtype, device=device) # 以一定间隔取x的值 y_range = torch.arange( 0, h * stride, stride, dtype=dtype, device=device) y, x = torch.meshgrid(y_range, x_range) # 得到featmap的所有点 points = torch.stack( (x.reshape(-1), y.reshape(-1)), dim=-1) + stride // 2 return points def center_target(self, gt_bboxes_list, gt_labels_list, img_metas, all_level_points): assert len(self.featmap_sizes) == len(self.regress_ranges) # get heatmaps and targets of each image # heatmaps in heatmaps_list: [num_points, 80] # wh_targets: [num_points, 2] => [batch_size, num_points, 2] heatmaps_list, wh_targets_list, offset_targets_list = multi_apply( self.center_target_single, gt_bboxes_list, gt_labels_list, img_metas ) # split to per img, per level num_points = [center.size(0) for center in all_level_points] # 每一层多少个点 all_level_points [[12414, 2], []] heatmaps_list = [heatmaps.split(num_points, 0) for heatmaps in heatmaps_list] wh_targets_list = [wh_targets.split(num_points, 0) for wh_targets in wh_targets_list] offset_targets_list = [offset_targets.split(num_points, 0) for offset_targets in offset_targets_list] # concat per level image, 同一层的concat # [(batch_size,featmap_size[1]), ...) concat_lvl_heatmaps = [] concat_lvl_wh_targets = [] concat_lvl_offset_targets = [] num_levels = len(self.featmap_sizes) for i in range(num_levels): concat_lvl_heatmaps.append( torch.cat([heatmaps[i] for heatmaps in heatmaps_list])) # (num_levels, batch_size * w * h, 80) concat_lvl_wh_targets.append( torch.cat( [wh_targets[i] for wh_targets in wh_targets_list])) concat_lvl_offset_targets.append( torch.cat( [offset_targets[i] for offset_targets in offset_targets_list])) return concat_lvl_heatmaps, concat_lvl_wh_targets, concat_lvl_offset_targets def center_target_single(self, gt_bboxes, gt_labels, img_meta): """ single image gt_bboxes:torch.Size([6, 4]) gt_labels:torch.Size([6]) tensor([34, 34, 34, 34, 34, 34], device='cuda:0') featmap_sizes:(list[tuple]): Multi-level feature map sizes. regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512),(512, INF)) """ # transform the gt_bboxes, gt_labels to numpy gt_bboxes = gt_bboxes.data.cpu().numpy() gt_labels = gt_labels.data.cpu().numpy() #print(gt_bboxes, gt_labels) num_objs = gt_labels.shape[0] #print(num_objs) # heatmaps [level1, level2, level3, level4, level5] num_levels = len(self.featmap_sizes) heatmaps_targets = [] wh_targets = [] offset_targets = [] # get the target shape for each image for i in range(num_levels): h, w = self.featmap_sizes[i] hm = np.zeros((self.cls_out_channels, h, w), dtype=np.float32) heatmaps_targets.append(hm) wh = np.zeros((h, w, 2), dtype=np.float32) wh_targets.append(wh) offset = np.zeros((h, w, 2), dtype=np.float32) offset_targets.append(offset) for k in range(num_objs): bbox = gt_bboxes[k] cls_id = gt_labels[k] if img_meta['flipped']: bbox[[0, 2]] = img_meta['width'] - bbox[[2, 0]] - 1 # condition: in the regress_ranges origin_h, origin_w = bbox[3] - bbox[1], bbox[2] - bbox[0] #max_h_w = max(h, w) / 2 max_h_w = max(origin_h, origin_w) #max_h_w = max(origin_h, origin_w) * 2 # 最长边为32在P2 # 根据max_h_w在哪一层将output设置为当前层的 index_levels = [] #index_level = 0 for i in range(num_levels): min_regress_distance, max_regress_distance = self.regress_ranges[i] if not self.use_cross and (max_h_w > min_regress_distance) and (max_h_w <= max_regress_distance): index_levels.append(i) break if self.use_cross: min_regress_distance = min_regress_distance * 0.8 max_regress_distance = max_regress_distance * 1.3 if (max_h_w > min_regress_distance) and (max_h_w <= max_regress_distance): index_levels.append(i) for index_level in index_levels: output_h, output_w = self.featmap_sizes[index_level] #print(output_h, output_w) hm = heatmaps_targets[index_level] wh = wh_targets[index_level] offset = offset_targets[index_level] # c, s is passed by meta trans_output = get_affine_transform(img_meta['c'], img_meta['s'], 0, [output_w, output_h]) bbox[:2] = affine_transform(bbox[:2], trans_output) bbox[2:] = affine_transform(bbox[2:], trans_output) bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, output_w - 1) #x1, x2 bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, output_h - 1) h, w = bbox[3] - bbox[1], bbox[2] - bbox[0] #print(h, w) # 转换到当层 if h > 0 and w > 0: radius = gaussian_radius((math.ceil(h), math.ceil(w))) radius = max(0, int(radius)) ct = np.array( [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32) #print(ct) ct_int = ct.astype(np.int32) #hm[cls_id, ct_int[1], ct_int[0]] = 1 #if (ct_int[1] - 1) > 0: # hm[cls_id, ct_int[1] - 1, ct_int[0]] = 0.5 #if (ct_int[0] - 1) > 0: # hm[cls_id, ct_int[1], ct_int[0] - 1] = 0.5 #if (ct_int[1] + 1) < output_h: # hm[cls_id, ct_int[1] + 1, ct_int[0]] = 0.5 #if (ct_int[0] + 1) < output_w: # hm[cls_id, ct_int[1], ct_int[0] + 1] = 0.5 draw_umich_gaussian(hm[cls_id], ct_int, radius) h, w = 1. * h, 1. * w offset_count = ct - ct_int # h, w # ct_int即表明在featmap的位置 ct_int[1] * output_w + ct_int[0] # TODO:如果当前位置有物体的中心,现在是直接覆盖 # 这里设置监督信号,第1位表示w,第2位表示h # 这里对featmap进行缩放? # wh[ct_int[1], ct_int[0], 0] = w / output_w# output_h, output_w <= y, x # wh[ct_int[1], ct_int[0], 1] = h / output_h # offset[ct_int[1], ct_int[0], 0] = offset_count[0] / output_w # offset[ct_int[1], ct_int[0], 0] = offset_count[1] / output_h wh[ct_int[1], ct_int[0], 0] = w wh[ct_int[1], ct_int[0], 1] = h offset[ct_int[1], ct_int[0], 0] = offset_count[0] offset[ct_int[1], ct_int[0], 0] = offset_count[1] heatmaps_targets[index_level] = hm wh_targets[index_level] = wh offset_targets[index_level] = offset flatten_heatmaps_targets = [ hm.transpose(1, 2, 0).reshape(-1, self.cls_out_channels) for hm in heatmaps_targets ] #for i in range(len(flatten_heatmaps_targets)): # print(flatten_heatmaps_targets[i].shape) heatmaps_targets = np.concatenate(flatten_heatmaps_targets, axis=0) #print(heatmaps_targets.shape) # (13343, 80) #print(heatmaps_targets) flatten_wh_targets = [ wh.reshape(-1, 2) for wh in wh_targets ] wh_targets = np.concatenate(flatten_wh_targets) flatten_offset_targets = [ offset.reshape(-1, 2) for offset in offset_targets ] offset_targets = np.concatenate(flatten_offset_targets) # transform the heatmaps_targets, wh_targets, offset_targets into tensor heatmaps_targets = torch.from_numpy(np.stack(heatmaps_targets)) heatmaps_targets = torch.tensor(heatmaps_targets.detach(), dtype=self.tensor_dtype, device=self.tensor_device) wh_targets = torch.from_numpy(np.stack(wh_targets)) wh_targets = torch.tensor(wh_targets.detach(), dtype=self.tensor_dtype, device=self.tensor_device) offset_targets = torch.from_numpy(np.stack(offset_targets)) offset_targets = torch.tensor(offset_targets.detach(), dtype=self.tensor_dtype, device=self.tensor_device) return heatmaps_targets, wh_targets, offset_targets # test use @force_fp32(apply_to=('cls_scores', 'wh_preds', 'offset_preds')) def get_bboxes(self, cls_scores, wh_preds, offset_preds, img_metas, cfg): assert len(cls_scores) == len(wh_preds) == len(offset_preds) # cls_scores => [num_levels] => [batch featmap] => [batch, 80, h, w] # wh_preds => [num_levels] => [featmap] => [2, h, w] # offset_preds => [num_levels] => [featmap] => [2, h, w] num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] result_list = [] #print(cls_scores[0].shape) # torch.Size([1, 80, 84, 56]) #print(img_metas) for img_id in range(len(img_metas)): # 每个batch中id cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] # =>[num_levels] => [80, h, w] wh_pred_list = [ wh_preds[i][img_id].detach() for i in range(num_levels) ] offset_pred_list = [ offset_preds[i][img_id].detach() for i in range(num_levels) ] #img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] c = img_metas[img_id]['c'] s = img_metas[img_id]['s'] det_bboxes = self.get_bboxes_single(cls_score_list, wh_pred_list, offset_pred_list, featmap_sizes, c, s, scale_factor, cfg) # 对每一张图像进行解调 result_list.append(det_bboxes) return result_list # [batch_size] def get_bboxes_single(self, cls_scores, wh_preds, offset_preds, featmap_sizes, c, s, scale_factor, cfg): assert len(cls_scores) == len(wh_preds) == len(offset_preds) == len(featmap_sizes) detections = [] for cls_score, wh_pred, offset_pred, featmap_size in zip( cls_scores, wh_preds, offset_preds, featmap_sizes): # 取出每一层的点 assert cls_score.size()[-2:] == wh_pred.size()[-2:] == offset_pred.size()[-2:] == featmap_size output_h, output_w = featmap_size #实际上得到了每一层的hm, wh, offset hm = torch.clamp(cls_score.sigmoid_(), min=1e-4, max=1-1e-4).unsqueeze(0) # 增加一个纬度 #wh_pred[0, :, :] = wh_pred[0, :, :] * output_w #wh_pred[1, :, :] = wh_pred[1, :, :] * output_h # 2, output_h, output_w wh = wh_pred.unsqueeze(0) # 这里需要乘以featuremap的尺度 #offset_pred[0, : ,:] = offset_pred[0, : ,:] * output_w #offset_pred[1, : ,:] = offset_pred[1, : ,:] * output_h reg = offset_pred.unsqueeze(0) dets = ctdet_decode(hm, wh, reg=reg, K=100) dets = post_process(dets, c, s, output_h, output_w, scale=scale_factor, num_classes=self.num_classes) detections.append(dets) results = merge_outputs(detections, self.num_classes) # 单张图的结果 return results #num_classes = 80 def gaussian_radius(det_size, min_overlap=0.7): height, width = det_size a1 = 1 b1 = (height + width) c1 = width * height * (1 - min_overlap) / (1 + min_overlap) sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1) r1 = (b1 + sq1) / 2 a2 = 4 b2 = 2 * (height + width) c2 = (1 - min_overlap) * width * height sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2) r2 = (b2 + sq2) / 2 a3 = 4 * min_overlap b3 = -2 * min_overlap * (height + width) c3 = (min_overlap - 1) * width * height sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3) r3 = (b3 + sq3) / 2 return min(r1, r2, r3) def gaussian_small_radius(det_size, min_overlap=0.7): height, width = det_size a1 = 1 b1 = (height + width) c1 = width * height * (1 - min_overlap) / (1 + min_overlap) sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1) r1 = (b1 - sq1) / (2 * a1) a2 = 4 b2 = 2 * (height + width) c2 = (1 - min_overlap) * width * height sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2) r2 = (b2 - sq2) / (2 * a2) a3 = 4 * min_overlap b3 = -2 * min_overlap * (height + width) c3 = (min_overlap - 1) * width * height sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3) r3 = (b3 + sq3) / (2 * a3) return min(r1, r2, r3) def gaussian2D(shape, sigma=1): m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m+1,-n:n+1] h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 return h def draw_umich_gaussian(heatmap, center, radius, k=1): diameter = 2 * radius + 1 gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6) x, y = int(center[0]), int(center[1]) height, width = heatmap.shape[0:2] left, right = min(x, radius), min(width - x, radius + 1) top, bottom = min(y, radius), min(height - y, radius + 1) masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right] if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: # TODO debug np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap) return heatmap def affine_transform(pt, t): new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32).T new_pt = np.dot(t, new_pt) return new_pt[:2] def get_affine_transform(center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0): if not isinstance(scale, np.ndarray) and not isinstance(scale, list): scale = np.array([scale, scale], dtype=np.float32) scale_tmp = scale src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = get_dir([0, src_w * -0.5], rot_rad) dst_dir = np.array([0, dst_w * -0.5], np.float32) src = np.zeros((3, 2), dtype=np.float32) dst = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5], np.float32) + dst_dir src[2:, :] = get_3rd_point(src[0, :], src[1, :]) dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans def get_dir(src_point, rot_rad): sn, cs = np.sin(rot_rad), np.cos(rot_rad) src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs return src_result def get_3rd_point(a, b): direct = a - b return b + np.array([-direct[1], direct[0]], dtype=np.float32) def ctdet_decode(heat, wh, reg=None, cat_spec_wh=False, K=40): batch, cat, height, width = heat.size() # 1, 80, 128, 128 #print("batch, cat, height, width\n", batch, cat, height, width) if height * width <= K: K = height * width #print("k:", K) heat = _nms(heat) scores, inds, clses, ys, xs = _topk(heat, K=K) if reg is not None: reg = _tranpose_and_gather_feat(reg, inds) reg = reg.view(batch, K, 2) xs = xs.view(batch, K, 1) + reg[:, :, 0:1] ys = ys.view(batch, K, 1) + reg[:, :, 1:2] else: xs = xs.view(batch, K, 1) + 0.5 ys = ys.view(batch, K, 1) + 0.5 wh = _tranpose_and_gather_feat(wh, inds) # inds 对应 h, w的尺度 if cat_spec_wh: wh = wh.view(batch, K, cat, 2) clses_ind = clses.view(batch, K, 1, 1).expand(batch, K, 1, 2).long() wh = wh.gather(2, clses_ind).view(batch, K, 2) else: wh = wh.view(batch, K, 2) clses = clses.view(batch, K, 1).float() scores = scores.view(batch, K, 1) # 0, 1, 2 bboxes = torch.cat([xs - wh[..., 0:1] / 2, ys - wh[..., 1:2] / 2, xs + wh[..., 0:1] / 2, ys + wh[..., 1:2] / 2], dim=2) detections = torch.cat([bboxes, scores, clses], dim=2) return detections def _nms(heat, kernel=3): pad = (kernel - 1) // 2 hmax = nn.functional.max_pool2d( heat, (kernel, kernel), stride=1, padding=pad) keep = (hmax == heat).float() return heat * keep def _gather_feat(feat, ind, mask=None): dim = feat.size(2) ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim) feat = feat.gather(1, ind) if mask is not None: mask = mask.unsqueeze(2).expand_as(feat) feat = feat[mask] feat = feat.view(-1, dim) return feat def _tranpose_and_gather_feat(feat, ind): feat = feat.permute(0, 2, 3, 1).contiguous() feat = feat.view(feat.size(0), -1, feat.size(3)) feat = _gather_feat(feat, ind) return feat def _topk(scores, K=40): batch, cat, height, width = scores.size() # 1, 80,height, width #print("batch, cat, height, width\n", batch, cat, height, width) #print("k:", K) topk_scores, topk_inds = torch.topk(scores.view(batch, cat, -1), K) topk_inds = topk_inds % (height * width) topk_ys = (topk_inds / width).int().float() # y-> h, x-> w topk_xs = (topk_inds % width).int().float() topk_score, topk_ind = torch.topk(topk_scores.view(batch, -1), K) topk_clses = (topk_ind / K).int() topk_inds = _gather_feat( topk_inds.view(batch, -1, 1), topk_ind).view(batch, K) topk_ys = _gather_feat(topk_ys.view(batch, -1, 1), topk_ind).view(batch, K) topk_xs = _gather_feat(topk_xs.view(batch, -1, 1), topk_ind).view(batch, K) return topk_score, topk_inds, topk_clses, topk_ys, topk_xs def post_process(dets, c, s, out_height, out_width, scale, num_classes): dets = dets.detach().cpu().numpy() # print("dets", dets) # (1, 100, 6) dets = dets.reshape(1, -1, dets.shape[2]) # (x1, y1, x2, y2) dets = ctdet_post_process( dets.copy(), [c], [s], out_height, out_width, num_classes) for j in range(1, num_classes + 1): dets[0][j] = np.array(dets[0][j], dtype=np.float32).reshape(-1, 5) dets[0][j][:, :4] /= scale return dets[0] def ctdet_post_process(dets, c, s, h, w, num_classes): ret = [] # print(dets.shape) # (1, 100, 6) # print(c) for i in range(dets.shape[0]): top_preds = {} dets[i, :, :2] = transform_preds( dets[i, :, 0:2], c[i], s[i], (w, h)) dets[i, :, 2:4] = transform_preds( dets[i, :, 2:4], c[i], s[i], (w, h)) classes = dets[i, :, -1] # 类别这里是80 for j in range(num_classes): inds = (classes == j) top_preds[j + 1] = np.concatenate([ dets[i, inds, :4].astype(np.float32), dets[i, inds, 4:5].astype(np.float32)], axis=1).tolist() # 这里将框按照类别进行分类 ret.append(top_preds) return ret def merge_outputs(detections, num_classes): # print(detections) results = {} max_per_image = 100 for j in range(1, num_classes + 1): results[j] = np.concatenate( [detection[j] for detection in detections], axis=0).astype(np.float32) # if len(self.scales) > 1 or self.opt.nms: results[j] = soft_nms(results[j], Nt=0.5, method=2, threshold=0.01) # print(results) scores = np.hstack([results[j][:, 4] for j in range(1, num_classes + 1)]) if len(scores) > max_per_image: kth = len(scores) - max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, num_classes + 1): keep_inds = (results[j][:, 4] >= thresh) results[j] = results[j][keep_inds] # print("after merge out\n", results) return results2coco_boxes(results, num_classes) def results2coco_boxes(results, num_classes): """Convert detection results to a list of numpy arrays. Args: bboxes (Tensor): shape (n, 5) labels (Tensor): shape (n, ) num_classes (int): class number, including background class Returns: list(ndarray): bbox results of each class """ bboxes = [0 for i in range(num_classes)] for j in range(1, num_classes + 1): if len(results[j]) == 0: bboxes[j - 1] = np.zeros((0, 5), dtype=np.float32) continue bboxes[j - 1] = results[j] # print(bboxes) # xyxy return bboxes def soft_nms(boxes, sigma=0.5, Nt=0.3, threshold=0.01, method=0): N = boxes.shape[0] # cdef float iw, ih, box_area # cdef float ua # cdef int pos = 0 # cdef float maxscore = 0 # cdef int maxpos = 0 # cdef float x1,x2,y1,y2,tx1,tx2,ty1,ty2,ts,area,weight,ov for i in range(N): maxscore = boxes[i, 4] maxpos = i tx1 = boxes[i,0] ty1 = boxes[i,1] tx2 = boxes[i,2] ty2 = boxes[i,3] ts = boxes[i,4] pos = i + 1 # get max box while pos < N: if maxscore < boxes[pos, 4]: maxscore = boxes[pos, 4] maxpos = pos pos = pos + 1 # add max box as a detection boxes[i,0] = boxes[maxpos,0] boxes[i,1] = boxes[maxpos,1] boxes[i,2] = boxes[maxpos,2] boxes[i,3] = boxes[maxpos,3] boxes[i,4] = boxes[maxpos,4] # swap ith box with position of max box boxes[maxpos,0] = tx1 boxes[maxpos,1] = ty1 boxes[maxpos,2] = tx2 boxes[maxpos,3] = ty2 boxes[maxpos,4] = ts tx1 = boxes[i,0] ty1 = boxes[i,1] tx2 = boxes[i,2] ty2 = boxes[i,3] ts = boxes[i,4] pos = i + 1 # NMS iterations, note that N changes if detection boxes fall below threshold while pos < N: x1 = boxes[pos, 0] y1 = boxes[pos, 1] x2 = boxes[pos, 2] y2 = boxes[pos, 3] s = boxes[pos, 4] area = (x2 - x1 + 1) * (y2 - y1 + 1) iw = (min(tx2, x2) - max(tx1, x1) + 1) if iw > 0: ih = (min(ty2, y2) - max(ty1, y1) + 1) if ih > 0: ua = float((tx2 - tx1 + 1) * (ty2 - ty1 + 1) + area - iw * ih) ov = iw * ih / ua #iou between max box and detection box if method == 1: # linear if ov > Nt: weight = 1 - ov else: weight = 1 elif method == 2: # gaussian weight = np.exp(-(ov * ov)/sigma) else: # original NMS if ov > Nt: weight = 0 else: weight = 1 boxes[pos, 4] = weight*boxes[pos, 4] # if box score falls below threshold, discard the box by swapping with last box # update N if boxes[pos, 4] < threshold: boxes[pos,0] = boxes[N-1, 0] boxes[pos,1] = boxes[N-1, 1] boxes[pos,2] = boxes[N-1, 2] boxes[pos,3] = boxes[N-1, 3] boxes[pos,4] = boxes[N-1, 4] N = N - 1 pos = pos - 1 pos = pos + 1 keep = [i for i in range(N)] boxes = boxes[keep] return boxes def transform_preds(coords, center, scale, output_size): target_coords = np.zeros(coords.shape) trans = get_affine_transform(center, scale, 0, output_size, inv=1) for p in range(coords.shape[0]): target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans) return target_coords
[ "torch.cat", "torch.nn.ModuleList", "torch.meshgrid", "torch.nn.init.constant_", "torch.nn.Conv2d", "torch.arange", "torch.nn.functional.max_pool2d" ]
1.0
lizhe960118/CenterNet
d1a0d13974e2316c6d127ca7860866cdd93bcfa7
3
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from common_testing import TestCaseMixin, get_random_cuda_device from pytorch3d.ops import cot_laplacian, laplacian, norm_laplacian from pytorch3d.structures.meshes import Meshes class TestLaplacianMatrices(TestCaseMixin, unittest.TestCase): def setUp(self) -> None: super().setUp() torch.manual_seed(1) def init_mesh(self) -> Meshes: V, F = 32, 64 device = get_random_cuda_device() # random vertices verts = torch.rand((V, 3), dtype=torch.float32, device=device) # random valid faces (no self circles, e.g. (v0, v0, v1)) faces = torch.stack([torch.randperm(V) for f in range(F)], dim=0)[:, :3] faces = faces.to(device=device) return Meshes(verts=[verts], faces=[faces]) def test_laplacian(self): mesh = self.init_mesh() verts = mesh.verts_packed() edges = mesh.edges_packed() V, E = verts.shape[0], edges.shape[0] L = laplacian(verts, edges) Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device) for e in range(E): e0, e1 = edges[e] Lnaive[e0, e1] = 1 # symetric Lnaive[e1, e0] = 1 deg = Lnaive.sum(1).view(-1, 1) deg[deg > 0] = 1.0 / deg[deg > 0] Lnaive = Lnaive * deg diag = torch.eye(V, dtype=torch.float32, device=mesh.device) Lnaive.masked_fill_(diag > 0, -1) self.assertClose(L.to_dense(), Lnaive) def test_cot_laplacian(self): mesh = self.init_mesh() verts = mesh.verts_packed() faces = mesh.faces_packed() V = verts.shape[0] eps = 1e-12 L, inv_areas = cot_laplacian(verts, faces, eps=eps) Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device) inv_areas_naive = torch.zeros((V, 1), dtype=torch.float32, device=verts.device) for f in faces: v0 = verts[f[0], :] v1 = verts[f[1], :] v2 = verts[f[2], :] A = (v1 - v2).norm() B = (v0 - v2).norm() C = (v0 - v1).norm() s = 0.5 * (A + B + C) face_area = (s * (s - A) * (s - B) * (s - C)).clamp_(min=1e-12).sqrt() inv_areas_naive[f[0]] += face_area inv_areas_naive[f[1]] += face_area inv_areas_naive[f[2]] += face_area A2, B2, C2 = A * A, B * B, C * C cota = (B2 + C2 - A2) / face_area / 4.0 cotb = (A2 + C2 - B2) / face_area / 4.0 cotc = (A2 + B2 - C2) / face_area / 4.0 Lnaive[f[1], f[2]] += cota Lnaive[f[2], f[0]] += cotb Lnaive[f[0], f[1]] += cotc # symetric Lnaive[f[2], f[1]] += cota Lnaive[f[0], f[2]] += cotb Lnaive[f[1], f[0]] += cotc idx = inv_areas_naive > 0 inv_areas_naive[idx] = 1.0 / inv_areas_naive[idx] self.assertClose(inv_areas, inv_areas_naive) self.assertClose(L.to_dense(), Lnaive) def test_norm_laplacian(self): mesh = self.init_mesh() verts = mesh.verts_packed() edges = mesh.edges_packed() V, E = verts.shape[0], edges.shape[0] eps = 1e-12 L = norm_laplacian(verts, edges, eps=eps) Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device) for e in range(E): e0, e1 = edges[e] v0 = verts[e0] v1 = verts[e1] w01 = 1.0 / ((v0 - v1).norm() + eps) Lnaive[e0, e1] += w01 Lnaive[e1, e0] += w01 self.assertClose(L.to_dense(), Lnaive)
[ "torch.zeros", "torch.rand", "torch.randperm", "torch.manual_seed", "torch.eye" ]
3
jkxing/pytorch3d
71dbebe8010a0dac3e56be464778aa48fbd3bcd3
3
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import functools import unittest import torch from common_testing import TestCaseMixin, get_random_cuda_device from pytorch3d import _C from pytorch3d.renderer import FoVPerspectiveCameras, look_at_view_transform from pytorch3d.renderer.mesh import MeshRasterizer, RasterizationSettings from pytorch3d.renderer.mesh.rasterize_meshes import ( rasterize_meshes, rasterize_meshes_python, ) from pytorch3d.renderer.mesh.utils import ( _clip_barycentric_coordinates, _interpolate_zbuf, ) from pytorch3d.structures import Meshes from pytorch3d.utils import ico_sphere class TestRasterizeMeshes(TestCaseMixin, unittest.TestCase): def test_simple_python(self): device = torch.device("cpu") self._simple_triangle_raster(rasterize_meshes_python, device, bin_size=-1) self._simple_blurry_raster(rasterize_meshes_python, device, bin_size=-1) self._test_behind_camera(rasterize_meshes_python, device, bin_size=-1) self._test_perspective_correct(rasterize_meshes_python, device, bin_size=-1) self._test_barycentric_clipping(rasterize_meshes_python, device, bin_size=-1) self._test_back_face_culling(rasterize_meshes_python, device, bin_size=-1) def test_simple_cpu_naive(self): device = torch.device("cpu") self._simple_triangle_raster(rasterize_meshes, device, bin_size=0) self._simple_blurry_raster(rasterize_meshes, device, bin_size=0) self._test_behind_camera(rasterize_meshes, device, bin_size=0) self._test_perspective_correct(rasterize_meshes, device, bin_size=0) self._test_back_face_culling(rasterize_meshes, device, bin_size=0) def test_simple_cuda_naive(self): device = get_random_cuda_device() self._simple_triangle_raster(rasterize_meshes, device, bin_size=0) self._simple_blurry_raster(rasterize_meshes, device, bin_size=0) self._test_behind_camera(rasterize_meshes, device, bin_size=0) self._test_perspective_correct(rasterize_meshes, device, bin_size=0) self._test_back_face_culling(rasterize_meshes, device, bin_size=0) def test_simple_cuda_binned(self): device = get_random_cuda_device() self._simple_triangle_raster(rasterize_meshes, device, bin_size=5) self._simple_blurry_raster(rasterize_meshes, device, bin_size=5) self._test_behind_camera(rasterize_meshes, device, bin_size=5) self._test_perspective_correct(rasterize_meshes, device, bin_size=5) self._test_back_face_culling(rasterize_meshes, device, bin_size=5) def test_python_vs_cpu_vs_cuda(self): torch.manual_seed(231) device = torch.device("cpu") image_size = 32 blur_radius = 0.1 ** 2 faces_per_pixel = 3 for d in ["cpu", get_random_cuda_device()]: device = torch.device(d) compare_grads = True # Mesh with a single face. verts1 = torch.tensor( [[0.0, 0.6, 0.1], [-0.7, -0.4, 0.5], [0.7, -0.4, 0.7]], dtype=torch.float32, requires_grad=True, device=device, ) faces1 = torch.tensor([[0, 1, 2]], dtype=torch.int64, device=device) meshes1 = Meshes(verts=[verts1], faces=[faces1]) args1 = (meshes1, image_size, blur_radius, faces_per_pixel) verts2 = verts1.detach().clone() verts2.requires_grad = True meshes2 = Meshes(verts=[verts2], faces=[faces1]) args2 = (meshes2, image_size, blur_radius, faces_per_pixel) self._compare_impls( rasterize_meshes_python, rasterize_meshes, args1, args2, verts1, verts2, compare_grads=compare_grads, ) # Mesh with multiple faces. # fmt: off verts1 = torch.tensor( [ [ -0.5, 0.0, 0.1], # noqa: E241, E201 [ 0.0, 0.6, 0.5], # noqa: E241, E201 [ 0.5, 0.0, 0.7], # noqa: E241, E201 [-0.25, 0.0, 0.9], # noqa: E241, E201 [ 0.26, 0.5, 0.8], # noqa: E241, E201 [ 0.76, 0.0, 0.8], # noqa: E241, E201 [-0.41, 0.0, 0.5], # noqa: E241, E201 [ 0.61, 0.6, 0.6], # noqa: E241, E201 [ 0.41, 0.0, 0.5], # noqa: E241, E201 [ -0.2, 0.0, -0.5], # noqa: E241, E201 [ 0.3, 0.6, -0.5], # noqa: E241, E201 [ 0.4, 0.0, -0.5], # noqa: E241, E201 ], dtype=torch.float32, device=device, requires_grad=True ) faces1 = torch.tensor( [ [ 1, 0, 2], # noqa: E241, E201 [ 4, 3, 5], # noqa: E241, E201 [ 7, 6, 8], # noqa: E241, E201 [10, 9, 11] # noqa: E241, E201 ], dtype=torch.int64, device=device, ) # fmt: on meshes = Meshes(verts=[verts1], faces=[faces1]) args1 = (meshes, image_size, blur_radius, faces_per_pixel) verts2 = verts1.clone().detach() verts2.requires_grad = True meshes2 = Meshes(verts=[verts2], faces=[faces1]) args2 = (meshes2, image_size, blur_radius, faces_per_pixel) self._compare_impls( rasterize_meshes_python, rasterize_meshes, args1, args2, verts1, verts2, compare_grads=compare_grads, ) # Icosphere meshes = ico_sphere(device=device) verts1, faces1 = meshes.get_mesh_verts_faces(0) verts1.requires_grad = True meshes = Meshes(verts=[verts1], faces=[faces1]) args1 = (meshes, image_size, blur_radius, faces_per_pixel) verts2 = verts1.detach().clone() verts2.requires_grad = True meshes2 = Meshes(verts=[verts2], faces=[faces1]) args2 = (meshes2, image_size, blur_radius, faces_per_pixel) self._compare_impls( rasterize_meshes_python, rasterize_meshes, args1, args2, verts1, verts2, compare_grads=compare_grads, ) def test_cpu_vs_cuda_naive(self): """ Compare naive versions of cuda and cpp """ torch.manual_seed(231) image_size = 64 radius = 0.1 ** 2 faces_per_pixel = 3 device = torch.device("cpu") meshes_cpu = ico_sphere(0, device) verts1, faces1 = meshes_cpu.get_mesh_verts_faces(0) verts1.requires_grad = True meshes_cpu = Meshes(verts=[verts1], faces=[faces1]) device = get_random_cuda_device() meshes_cuda = ico_sphere(0, device) verts2, faces2 = meshes_cuda.get_mesh_verts_faces(0) verts2.requires_grad = True meshes_cuda = Meshes(verts=[verts2], faces=[faces2]) barycentric_clip = True args_cpu = ( meshes_cpu, image_size, radius, faces_per_pixel, None, None, False, barycentric_clip, False, ) args_cuda = ( meshes_cuda, image_size, radius, faces_per_pixel, 0, 0, False, barycentric_clip, False, ) self._compare_impls( rasterize_meshes, rasterize_meshes, args_cpu, args_cuda, verts1, verts2, compare_grads=True, ) def test_coarse_cpu(self): return self._test_coarse_rasterize(torch.device("cpu")) def test_coarse_cuda(self): return self._test_coarse_rasterize(get_random_cuda_device()) def test_cpp_vs_cuda_naive_vs_cuda_binned(self): # Make sure that the backward pass runs for all pathways image_size = 64 # test is too slow for very large images. N = 1 radius = 0.1 ** 2 faces_per_pixel = 3 grad_zbuf = torch.randn(N, image_size, image_size, faces_per_pixel) grad_dist = torch.randn(N, image_size, image_size, faces_per_pixel) grad_bary = torch.randn(N, image_size, image_size, faces_per_pixel, 3) device = torch.device("cpu") meshes = ico_sphere(0, device) verts, faces = meshes.get_mesh_verts_faces(0) verts.requires_grad = True meshes = Meshes(verts=[verts], faces=[faces]) # Option I: CPU, naive args = (meshes, image_size, radius, faces_per_pixel) idx1, zbuf1, bary1, dist1 = rasterize_meshes(*args) loss = ( (zbuf1 * grad_zbuf).sum() + (dist1 * grad_dist).sum() + (bary1 * grad_bary).sum() ) loss.backward() idx1 = idx1.data.cpu().clone() zbuf1 = zbuf1.data.cpu().clone() dist1 = dist1.data.cpu().clone() grad1 = verts.grad.data.cpu().clone() # Option II: CUDA, naive device = get_random_cuda_device() meshes = ico_sphere(0, device) verts, faces = meshes.get_mesh_verts_faces(0) verts.requires_grad = True meshes = Meshes(verts=[verts], faces=[faces]) args = (meshes, image_size, radius, faces_per_pixel, 0, 0) idx2, zbuf2, bary2, dist2 = rasterize_meshes(*args) grad_zbuf = grad_zbuf.to(device) grad_dist = grad_dist.to(device) grad_bary = grad_bary.to(device) loss = ( (zbuf2 * grad_zbuf).sum() + (dist2 * grad_dist).sum() + (bary2 * grad_bary).sum() ) loss.backward() idx2 = idx2.data.cpu().clone() zbuf2 = zbuf2.data.cpu().clone() dist2 = dist2.data.cpu().clone() grad2 = verts.grad.data.cpu().clone() # Option III: CUDA, binned meshes = ico_sphere(0, device) verts, faces = meshes.get_mesh_verts_faces(0) verts.requires_grad = True meshes = Meshes(verts=[verts], faces=[faces]) args = (meshes, image_size, radius, faces_per_pixel, 32, 500) idx3, zbuf3, bary3, dist3 = rasterize_meshes(*args) loss = ( (zbuf3 * grad_zbuf).sum() + (dist3 * grad_dist).sum() + (bary3 * grad_bary).sum() ) loss.backward() idx3 = idx3.data.cpu().clone() zbuf3 = zbuf3.data.cpu().clone() dist3 = dist3.data.cpu().clone() grad3 = verts.grad.data.cpu().clone() # Make sure everything was the same self.assertTrue((idx1 == idx2).all().item()) self.assertTrue((idx1 == idx3).all().item()) self.assertClose(zbuf1, zbuf2, atol=1e-6) self.assertClose(zbuf1, zbuf3, atol=1e-6) self.assertClose(dist1, dist2, atol=1e-6) self.assertClose(dist1, dist3, atol=1e-6) self.assertClose(grad1, grad2, rtol=5e-3) # flaky test self.assertClose(grad1, grad3, rtol=5e-3) self.assertClose(grad2, grad3, rtol=5e-3) def test_compare_coarse_cpu_vs_cuda(self): torch.manual_seed(231) N = 1 image_size = (512, 512) blur_radius = 0.0 bin_size = 32 max_faces_per_bin = 20 device = torch.device("cpu") meshes = ico_sphere(2, device) faces = meshes.faces_packed() verts = meshes.verts_packed() faces_verts = verts[faces] num_faces_per_mesh = meshes.num_faces_per_mesh() mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx() bin_faces_cpu = _C._rasterize_meshes_coarse( faces_verts, mesh_to_face_first_idx, num_faces_per_mesh, image_size, blur_radius, bin_size, max_faces_per_bin, ) device = get_random_cuda_device() meshes = meshes.clone().to(device) faces = meshes.faces_packed() verts = meshes.verts_packed() faces_verts = verts[faces] num_faces_per_mesh = meshes.num_faces_per_mesh() mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx() bin_faces_cuda = _C._rasterize_meshes_coarse( faces_verts, mesh_to_face_first_idx, num_faces_per_mesh, image_size, blur_radius, bin_size, max_faces_per_bin, ) # Bin faces might not be the same: CUDA version might write them in # any order. But if we sort the non-(-1) elements of the CUDA output # then they should be the same. for n in range(N): for by in range(bin_faces_cpu.shape[1]): for bx in range(bin_faces_cpu.shape[2]): K = (bin_faces_cuda[n, by, bx] != -1).sum().item() idxs_cpu = bin_faces_cpu[n, by, bx].tolist() idxs_cuda = bin_faces_cuda[n, by, bx].tolist() idxs_cuda[:K] = sorted(idxs_cuda[:K]) self.assertEqual(idxs_cpu, idxs_cuda) def test_python_vs_cpp_bary_clip(self): torch.manual_seed(232) N = 2 V = 10 F = 5 verts1 = torch.randn(N, V, 3, requires_grad=True) verts2 = verts1.detach().clone().requires_grad_(True) faces = torch.randint(V, size=(N, F, 3)) meshes1 = Meshes(verts1, faces) meshes2 = Meshes(verts2, faces) kwargs = {"image_size": 24, "clip_barycentric_coords": True} fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs) fn2 = functools.partial(rasterize_meshes_python, meshes2, **kwargs) args = () self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True) def test_cpp_vs_cuda_bary_clip(self): meshes = ico_sphere(2, device=torch.device("cpu")) verts1, faces1 = meshes.get_mesh_verts_faces(0) verts1.requires_grad = True meshes1 = Meshes(verts=[verts1], faces=[faces1]) device = get_random_cuda_device() verts2 = verts1.detach().to(device).requires_grad_(True) faces2 = faces1.detach().clone().to(device) meshes2 = Meshes(verts=[verts2], faces=[faces2]) kwargs = {"image_size": 64, "clip_barycentric_coords": True} fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs) fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=0, **kwargs) args = () self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True) def test_python_vs_cpp_perspective_correct(self): torch.manual_seed(232) N = 2 V = 10 F = 5 verts1 = torch.randn(N, V, 3, requires_grad=True) verts2 = verts1.detach().clone().requires_grad_(True) faces = torch.randint(V, size=(N, F, 3)) meshes1 = Meshes(verts1, faces) meshes2 = Meshes(verts2, faces) kwargs = {"image_size": 24, "perspective_correct": True} fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs) fn2 = functools.partial(rasterize_meshes_python, meshes2, **kwargs) args = () self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True) def test_cpp_vs_cuda_perspective_correct(self): meshes = ico_sphere(2, device=torch.device("cpu")) verts1, faces1 = meshes.get_mesh_verts_faces(0) verts1.requires_grad = True meshes1 = Meshes(verts=[verts1], faces=[faces1]) device = get_random_cuda_device() verts2 = verts1.detach().to(device).requires_grad_(True) faces2 = faces1.detach().clone().to(device) meshes2 = Meshes(verts=[verts2], faces=[faces2]) kwargs = {"image_size": 64, "perspective_correct": True} fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs) fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=0, **kwargs) args = () self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True) def test_cuda_naive_vs_binned_perspective_correct(self): device = get_random_cuda_device() meshes = ico_sphere(2, device=device) verts1, faces1 = meshes.get_mesh_verts_faces(0) verts1.requires_grad = True meshes1 = Meshes(verts=[verts1], faces=[faces1]) verts2 = verts1.detach().clone().requires_grad_(True) faces2 = faces1.detach().clone() meshes2 = Meshes(verts=[verts2], faces=[faces2]) kwargs = {"image_size": 64, "perspective_correct": True} fn1 = functools.partial(rasterize_meshes, meshes1, bin_size=0, **kwargs) fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=8, **kwargs) args = () self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True) def test_bin_size_error(self): meshes = ico_sphere(2) image_size = 1024 bin_size = 16 with self.assertRaisesRegex(ValueError, "bin_size too small"): rasterize_meshes(meshes, image_size, 0.0, 2, bin_size) def _test_back_face_culling(self, rasterize_meshes_fn, device, bin_size): # Square based pyramid mesh. # fmt: off verts = torch.tensor([ [-0.5, 0.0, 0.5], # noqa: E241 E201 Front right [ 0.5, 0.0, 0.5], # noqa: E241 E201 Front left [ 0.5, 0.0, 1.5], # noqa: E241 E201 Back left [-0.5, 0.0, 1.5], # noqa: E241 E201 Back right [ 0.0, 1.0, 1.0] # noqa: E241 E201 Top point of pyramid ], dtype=torch.float32, device=device) faces = torch.tensor([ [2, 1, 0], # noqa: E241 E201 Square base [3, 2, 0], # noqa: E241 E201 Square base [1, 0, 4], # noqa: E241 E201 Triangle on front [2, 4, 3], # noqa: E241 E201 Triangle on back [3, 4, 0], # noqa: E241 E201 Triangle on left side [1, 4, 2] # noqa: E241 E201 Triangle on right side ], dtype=torch.int64, device=device) # fmt: on mesh = Meshes(verts=[verts], faces=[faces]) kwargs = { "meshes": mesh, "image_size": 10, "faces_per_pixel": 2, "blur_radius": 0.0, "perspective_correct": False, "cull_backfaces": False, } if bin_size != -1: kwargs["bin_size"] = bin_size # fmt: off pix_to_face_frontface = torch.tensor([ [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, -1, 2, 2, -1, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, -1, 2, 2, -1, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, 2, 2, 2, 2, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, 2, 2, 2, 2, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] # noqa: E241 E201 ], dtype=torch.int64, device=device) pix_to_face_backface = torch.tensor([ [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, -1, 3, 3, -1, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, -1, 3, 3, -1, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, 3, 3, 3, 3, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, 3, 3, 3, 3, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241 E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] # noqa: E241 E201 ], dtype=torch.int64, device=device) # fmt: on pix_to_face_padded = -(torch.ones_like(pix_to_face_frontface)) # Run with and without culling # Without culling, for k=0, the front face (i.e. face 2) is # rasterized and for k=1, the back face (i.e. face 3) is # rasterized. idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs) self.assertTrue(torch.all(idx_f[..., 0].squeeze() == pix_to_face_frontface)) self.assertTrue(torch.all(idx_f[..., 1].squeeze() == pix_to_face_backface)) # With culling, for k=0, the front face (i.e. face 2) is # rasterized and for k=1, there are no faces rasterized kwargs["cull_backfaces"] = True idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs) self.assertTrue(torch.all(idx_t[..., 0].squeeze() == pix_to_face_frontface)) self.assertTrue(torch.all(idx_t[..., 1].squeeze() == pix_to_face_padded)) def _compare_impls( self, fn1, fn2, args1, args2, grad_var1=None, grad_var2=None, compare_grads=False, ): idx1, zbuf1, bary1, dist1 = fn1(*args1) idx2, zbuf2, bary2, dist2 = fn2(*args2) self.assertTrue((idx1.cpu() == idx2.cpu()).all().item()) self.assertClose(zbuf1.cpu(), zbuf2.cpu(), rtol=1e-4) self.assertClose(dist1.cpu(), dist2.cpu(), rtol=6e-3) self.assertClose(bary1.cpu(), bary2.cpu(), rtol=1e-3) if not compare_grads: return # Compare gradients. torch.manual_seed(231) grad_zbuf = torch.randn_like(zbuf1) grad_dist = torch.randn_like(dist1) grad_bary = torch.randn_like(bary1) loss1 = ( (dist1 * grad_dist).sum() + (zbuf1 * grad_zbuf).sum() + (bary1 * grad_bary).sum() ) # avoid gradient error if rasterize_meshes_python() culls all triangles loss1 += grad_var1.sum() * 0.0 loss1.backward() grad_verts1 = grad_var1.grad.data.clone().cpu() grad_zbuf = grad_zbuf.to(zbuf2) grad_dist = grad_dist.to(dist2) grad_bary = grad_bary.to(bary2) loss2 = ( (dist2 * grad_dist).sum() + (zbuf2 * grad_zbuf).sum() + (bary2 * grad_bary).sum() ) # avoid gradient error if rasterize_meshes_python() culls all triangles loss2 += grad_var2.sum() * 0.0 grad_var1.grad.data.zero_() loss2.backward() grad_verts2 = grad_var2.grad.data.clone().cpu() self.assertClose(grad_verts1, grad_verts2, rtol=2e-3) def _test_perspective_correct(self, rasterize_meshes_fn, device, bin_size=None): # fmt: off verts = torch.tensor([ [-0.4, -0.4, 10], # noqa: E241, E201 [ 0.4, -0.4, 10], # noqa: E241, E201 [ 0.0, 0.4, 20], # noqa: E241, E201 ], dtype=torch.float32, device=device) # fmt: on faces = torch.tensor([[0, 1, 2]], device=device) meshes = Meshes(verts=[verts], faces=[faces]) kwargs = { "meshes": meshes, "image_size": 11, "faces_per_pixel": 1, "blur_radius": 0.2, "perspective_correct": False, } if bin_size != -1: kwargs["bin_size"] = bin_size # Run with and without perspective correction idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs) kwargs["perspective_correct"] = True idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs) # Expected output tensors in the format with axes +X left, +Y up, +Z in # idx and dists should be the same with or without perspecitve correction # fmt: off idx_expected = torch.tensor([ [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, 0, 0, 0, 0, 0, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, 0, 0, 0, 0, 0, -1, -1, -1], # noqa: E241, E201 [-1, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1], # noqa: E241, E201 [-1, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1], # noqa: E241, E201 [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1], # noqa: E241, E201 [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1], # noqa: E241, E201 [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1], # noqa: E241, E201 [-1, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] # noqa: E241, E201 ], dtype=torch.int64, device=device).view(1, 11, 11, 1) dists_expected = torch.tensor([ [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], # noqa: E241, E201, B950 [-1., -1., -1., -1., 0.1402, 0.1071, 0.1402, -1., -1., -1., -1.], # noqa: E241, E201, B950 [-1., -1., - 1., 0.1523, 0.0542, 0.0212, 0.0542, 0.1523, -1., -1., -1.], # noqa: E241, E201, B950 [-1., -1., -1., 0.0955, 0.0214, -0.0003, 0.0214, 0.0955, -1., -1., -1.], # noqa: E241, E201, B950 [-1., -1., 0.1523, 0.0518, 0.0042, -0.0095, 0.0042, 0.0518, 0.1523, -1., -1.], # noqa: E241, E201, B950 [-1., -1., 0.0955, 0.0214, -0.0003, -0.032, -0.0003, 0.0214, 0.0955, -1., -1.], # noqa: E241, E201, B950 [-1., 0.1523, 0.0518, 0.0042, -0.0095, -0.0476, -0.0095, 0.0042, 0.0518, 0.1523, -1.], # noqa: E241, E201, B950 [-1., 0.1084, 0.0225, -0.0003, -0.0013, -0.0013, -0.0013, -0.0003, 0.0225, 0.1084, -1.], # noqa: E241, E201, B950 [-1., 0.1283, 0.0423, 0.0212, 0.0212, 0.0212, 0.0212, 0.0212, 0.0423, 0.1283, -1.], # noqa: E241, E201, B950 [-1., -1., 0.1283, 0.1071, 0.1071, 0.1071, 0.1071, 0.1071, 0.1283, -1., -1.], # noqa: E241, E201, B950 [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.] # noqa: E241, E201, B950 ], dtype=torch.float32, device=device).view(1, 11, 11, 1) # zbuf and barycentric will be different with perspective correction zbuf_f_expected = torch.tensor([ [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], # noqa: E241, E201, B950 [-1., -1., -1., -1., 24.0909, 24.0909, 24.0909, -1., -1., -1., -1.], # noqa: E241, E201, B950 [-1., -1., -1., 21.8182, 21.8182, 21.8182, 21.8182, 21.8182, -1., -1., -1.], # noqa: E241, E201, B950 [-1., -1., -1., 19.5455, 19.5455, 19.5455, 19.5455, 19.5455, -1., -1., -1.], # noqa: E241, E201, B950 [-1., -1., 17.2727, 17.2727, 17.2727, 17.2727, 17.2727, 17.2727, 17.2727, -1., -1.], # noqa: E241, E201, B950 [-1., -1., 15., 15., 15., 15., 15., 15., 15., -1., -1.], # noqa: E241, E201, B950 [-1., 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, -1.], # noqa: E241, E201, B950 [-1., 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, -1.], # noqa: E241, E201, B950 [-1., 8.1818, 8.1818, 8.1818, 8.1818, 8.1818, 8.1818, 8.1818, 8.1818, 8.1818, -1.], # noqa: E241, E201, B950 [-1., -1., 5.9091, 5.9091, 5.9091, 5.9091, 5.9091, 5.9091, 5.9091, -1., -1.], # noqa: E241, E201, B950 [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], # noqa: E241, E201, B950 ], dtype=torch.float32, device=device).view(1, 11, 11, 1) zbuf_t_expected = torch.tensor([ [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], # noqa: E241, E201, B950 [-1., -1., -1., -1., 33.8461, 33.8462, 33.8462, -1., -1., -1., -1.], # noqa: E241, E201, B950 [-1., -1., -1., 24.4444, 24.4444, 24.4444, 24.4444, 24.4444, -1., -1., -1.], # noqa: E241, E201, B950 [-1., -1., -1., 19.1304, 19.1304, 19.1304, 19.1304, 19.1304, -1., -1., -1.], # noqa: E241, E201, B950 [-1., -1., 15.7143, 15.7143, 15.7143, 15.7143, 15.7143, 15.7143, 15.7143, -1., -1.], # noqa: E241, E201, B950 [-1., -1., 13.3333, 13.3333, 13.3333, 13.3333, 13.3333, 13.3333, 13.3333, -1., -1.], # noqa: E241, E201, B950 [-1., 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, -1.], # noqa: E241, E201, B950 [-1., 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, -1.], # noqa: E241, E201, B950 [-1., 9.1667, 9.1667, 9.1667, 9.1667, 9.1667, 9.1667, 9.1667, 9.1667, 9.1667, -1.], # noqa: E241, E201, B950 [-1., -1., 8.3019, 8.3019, 8.3019, 8.3019, 8.3019, 8.3019, 8.3019, -1., -1.], # noqa: E241, E201, B950 [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.] # noqa: E241, E201, B950 ], dtype=torch.float32, device=device).view(1, 11, 11, 1) # fmt: on self.assertTrue(torch.all(idx_f == idx_expected).item()) self.assertTrue(torch.all(idx_t == idx_expected).item()) dists_t_max_diff = (dists_t - dists_expected).abs().max().item() dists_f_max_diff = (dists_f - dists_expected).abs().max().item() self.assertLess(dists_t_max_diff, 1e-4) self.assertLess(dists_f_max_diff, 1e-4) zbuf_f_max_diff = (zbuf_f - zbuf_f_expected).abs().max().item() zbuf_t_max_diff = (zbuf_t - zbuf_t_expected).abs().max().item() self.assertLess(zbuf_f_max_diff, 1e-4) self.assertLess(zbuf_t_max_diff, 1e-4) # Check barycentrics by using them to re-compute zbuf z0 = verts[0, 2] z1 = verts[1, 2] z2 = verts[2, 2] w0_f, w1_f, w2_f = bary_f.unbind(dim=4) w0_t, w1_t, w2_t = bary_t.unbind(dim=4) zbuf_f_bary = w0_f * z0 + w1_f * z1 + w2_f * z2 zbuf_t_bary = w0_t * z0 + w1_t * z1 + w2_t * z2 mask = idx_expected != -1 zbuf_f_bary_diff = (zbuf_f_bary[mask] - zbuf_f_expected[mask]).abs().max() zbuf_t_bary_diff = (zbuf_t_bary[mask] - zbuf_t_expected[mask]).abs().max() self.assertLess(zbuf_f_bary_diff, 1e-4) self.assertLess(zbuf_t_bary_diff, 1e-4) def _test_barycentric_clipping(self, rasterize_meshes_fn, device, bin_size=None): # fmt: off verts = torch.tensor([ [-0.4, -0.4, 10], # noqa: E241, E201 [ 0.4, -0.4, 10], # noqa: E241, E201 [ 0.0, 0.4, 20], # noqa: E241, E201 ], dtype=torch.float32, device=device) # fmt: on faces = torch.tensor([[0, 1, 2]], device=device) meshes = Meshes(verts=[verts], faces=[faces]) kwargs = { "meshes": meshes, "image_size": 5, "faces_per_pixel": 1, "blur_radius": 0.2, "perspective_correct": False, "clip_barycentric_coords": False, # Initially set this to false } if bin_size != -1: kwargs["bin_size"] = bin_size # Run with and without perspective correction idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs) # fmt: off expected_bary = torch.tensor([ [ [-1.0000, -1.0000, -1.0000], # noqa: E241, E201 [-1.0000, -1.0000, -1.0000], # noqa: E241, E201 [-0.2500, -0.2500, 1.5000], # noqa: E241, E201 [-1.0000, -1.0000, -1.0000], # noqa: E241, E201 [-1.0000, -1.0000, -1.0000] # noqa: E241, E201 ], [ [-1.0000, -1.0000, -1.0000], # noqa: E241, E201 [-0.5000, 0.5000, 1.0000], # noqa: E241, E201 [-0.0000, -0.0000, 1.0000], # noqa: E241, E201 [ 0.5000, -0.5000, 1.0000], # noqa: E241, E201 [-1.0000, -1.0000, -1.0000] # noqa: E241, E201 ], [ [-1.0000, -1.0000, -1.0000], # noqa: E241, E201 [-0.2500, 0.7500, 0.5000], # noqa: E241, E201 [ 0.2500, 0.2500, 0.5000], # noqa: E241, E201 [ 0.7500, -0.2500, 0.5000], # noqa: E241, E201 [-1.0000, -1.0000, -1.0000] # noqa: E241, E201 ], [ [-0.5000, 1.5000, -0.0000], # noqa: E241, E201 [-0.0000, 1.0000, -0.0000], # noqa: E241, E201 [ 0.5000, 0.5000, -0.0000], # noqa: E241, E201 [ 1.0000, -0.0000, -0.0000], # noqa: E241, E201 [ 1.5000, -0.5000, 0.0000] # noqa: E241, E201 ], [ [-1.0000, -1.0000, -1.0000], # noqa: E241, E201 [ 0.2500, 1.2500, -0.5000], # noqa: E241, E201 [ 0.7500, 0.7500, -0.5000], # noqa: E241, E201 [ 1.2500, 0.2500, -0.5000], # noqa: E241, E201 [-1.0000, -1.0000, -1.0000] # noqa: E241, E201 ] ], dtype=torch.float32, device=device).view(1, 5, 5, 1, 3) # fmt: on self.assertClose(expected_bary, bary_f, atol=1e-4) # calculate the expected clipped barycentrics and zbuf expected_bary_clipped = _clip_barycentric_coordinates(expected_bary) expected_z_clipped = _interpolate_zbuf(idx_f, expected_bary_clipped, meshes) kwargs["clip_barycentric_coords"] = True idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs) self.assertClose(expected_bary_clipped, bary_t, atol=1e-4) self.assertClose(expected_z_clipped, zbuf_t, atol=1e-4) def _test_behind_camera(self, rasterize_meshes_fn, device, bin_size=None): """ All verts are behind the camera so nothing should get rasterized. """ N = 1 # fmt: off verts = torch.tensor( [ [ -0.5, 0.0, -0.1], # noqa: E241, E201 [ 0.0, 0.6, -0.1], # noqa: E241, E201 [ 0.5, 0.0, -0.1], # noqa: E241, E201 [-0.25, 0.0, -0.9], # noqa: E241, E201 [ 0.25, 0.5, -0.9], # noqa: E241, E201 [ 0.75, 0.0, -0.9], # noqa: E241, E201 [ -0.4, 0.0, -0.5], # noqa: E241, E201 [ 0.6, 0.6, -0.5], # noqa: E241, E201 [ 0.8, 0.0, -0.5], # noqa: E241, E201 [ -0.2, 0.0, -0.5], # noqa: E241, E201 [ 0.3, 0.6, -0.5], # noqa: E241, E201 [ 0.4, 0.0, -0.5], # noqa: E241, E201 ], dtype=torch.float32, device=device, ) # fmt: on faces = torch.tensor( [[1, 0, 2], [4, 3, 5], [7, 6, 8], [10, 9, 11]], dtype=torch.int64, device=device, ) meshes = Meshes(verts=[verts], faces=[faces]) image_size = 16 faces_per_pixel = 1 radius = 0.2 idx_expected = torch.full( (N, image_size, image_size, faces_per_pixel), fill_value=-1, dtype=torch.int64, device=device, ) bary_expected = torch.full( (N, image_size, image_size, faces_per_pixel, 3), fill_value=-1, dtype=torch.float32, device=device, ) zbuf_expected = torch.full( (N, image_size, image_size, faces_per_pixel), fill_value=-1, dtype=torch.float32, device=device, ) dists_expected = zbuf_expected.clone() if bin_size == -1: # naive python version with no binning idx, zbuf, bary, dists = rasterize_meshes_fn( meshes, image_size, radius, faces_per_pixel ) else: idx, zbuf, bary, dists = rasterize_meshes_fn( meshes, image_size, radius, faces_per_pixel, bin_size ) idx_same = (idx == idx_expected).all().item() zbuf_same = (zbuf == zbuf_expected).all().item() self.assertTrue(idx_same) self.assertTrue(zbuf_same) self.assertClose(bary, bary_expected) self.assertClose(dists, dists_expected) def _simple_triangle_raster(self, raster_fn, device, bin_size=None): image_size = 10 # Mesh with a single non-symmetrical face - this will help # check that the XY directions are correctly oriented. verts0 = torch.tensor( [[-0.3, -0.4, 0.1], [0.0, 0.6, 0.1], [0.9, -0.4, 0.1]], dtype=torch.float32, device=device, ) faces0 = torch.tensor([[1, 0, 2]], dtype=torch.int64, device=device) # Mesh with two overlapping faces. # fmt: off verts1 = torch.tensor( [ [-0.9, -0.2, 0.1], # noqa: E241, E201 [ 0.0, 0.6, 0.1], # noqa: E241, E201 [ 0.7, -0.4, 0.1], # noqa: E241, E201 [-0.7, 0.4, 0.5], # noqa: E241, E201 [ 0.0, -0.6, 0.5], # noqa: E241, E201 [ 0.7, 0.4, 0.5], # noqa: E241, E201 ], dtype=torch.float32, device=device, ) # fmt on faces1 = torch.tensor( [[1, 0, 2], [3, 4, 5]], dtype=torch.int64, device=device ) # Expected output tensors in the format with axes +X left, +Y up, +Z in # k = 0, closest point. # fmt off expected_p2face_k0 = torch.tensor( [ [ [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, 0, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, 0, 0, 0, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, 0, 0, 0, 0, -1, -1, -1, -1], # noqa: E241, E201 [-1, 0, 0, 0, 0, 0, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 ], [ [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, 1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, 2, 2, 1, 1, 1, 2, -1, -1], # noqa: E241, E201 [-1, -1, -1, 1, 1, 1, 1, 1, -1, -1], # noqa: E241, E201 [-1, -1, -1, 1, 1, 1, 1, 1, 1, -1], # noqa: E241, E201 [-1, -1, 1, 1, 1, 2, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 ], ], dtype=torch.int64, device=device, ) expected_zbuf_k0 = torch.tensor( [ [ [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, 0.1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, 0.1, 0.1, 0.1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, 0.1, 0.1, 0.1, 0.1, -1, -1, -1, -1], # noqa: E241, E201 [-1, 0.1, 0.1, 0.1, 0.1, 0.1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] # noqa: E241, E201 ], [ [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, 0.1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, 0.5, 0.5, 0.1, 0.1, 0.1, 0.5, -1, -1], # noqa: E241, E201 [-1, -1, -1, 0.1, 0.1, 0.1, 0.1, 0.1, -1, -1], # noqa: E241, E201 [-1, -1, -1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, -1], # noqa: E241, E201 [-1, -1, 0.1, 0.1, 0.1, 0.5, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] # noqa: E241, E201 ] ], device=device, ) # fmt: on meshes = Meshes(verts=[verts0, verts1], faces=[faces0, faces1]) # k = 1, second closest point. expected_p2face_k1 = expected_p2face_k0.clone() expected_p2face_k1[0, :] = torch.ones_like(expected_p2face_k1[0, :]) * -1 # fmt: off expected_p2face_k1[1, :] = torch.tensor( [ [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, 2, 2, 2, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, 2, 2, 2, 2, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, 2, 2, 2, 2, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, 2, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] # noqa: E241, E201 ], dtype=torch.int64, device=device, ) expected_zbuf_k1 = expected_zbuf_k0.clone() expected_zbuf_k1[0, :] = torch.ones_like(expected_zbuf_k1[0, :]) * -1 expected_zbuf_k1[1, :] = torch.tensor( [ [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], # noqa: E241, E201 [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], # noqa: E241, E201 [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], # noqa: E241, E201 [-1., -1., -1., -1., 0.5, 0.5, 0.5, -1., -1., -1.], # noqa: E241, E201 [-1., -1., -1., 0.5, 0.5, 0.5, 0.5, -1., -1., -1.], # noqa: E241, E201 [-1., -1., -1., 0.5, 0.5, 0.5, 0.5, -1., -1., -1.], # noqa: E241, E201 [-1., -1., -1., -1., 0.5, -1., -1., -1., -1., -1.], # noqa: E241, E201 [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], # noqa: E241, E201 [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], # noqa: E241, E201 [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.] # noqa: E241, E201 ], dtype=torch.float32, device=device, ) # fmt: on # Coordinate conventions +Y up, +Z in, +X left if bin_size == -1: # simple python, no bin_size p2face, zbuf, bary, pix_dists = raster_fn(meshes, image_size, 0.0, 2) else: p2face, zbuf, bary, pix_dists = raster_fn( meshes, image_size, 0.0, 2, bin_size ) self.assertClose(p2face[..., 0], expected_p2face_k0) self.assertClose(zbuf[..., 0], expected_zbuf_k0) self.assertClose(p2face[..., 1], expected_p2face_k1) self.assertClose(zbuf[..., 1], expected_zbuf_k1) def _simple_blurry_raster(self, raster_fn, device, bin_size=None): """ Check that pix_to_face, dist and zbuf values are invariant to the ordering of faces. """ image_size = 10 blur_radius = 0.12 ** 2 faces_per_pixel = 1 # fmt: off verts = torch.tensor( [ [ -0.3, 0.0, 0.1], # noqa: E241, E201 [ 0.0, 0.6, 0.1], # noqa: E241, E201 [ 0.8, 0.0, 0.1], # noqa: E241, E201 [-0.25, 0.0, 0.9], # noqa: E241, E201 [0.25, 0.5, 0.9], # noqa: E241, E201 [0.75, 0.0, 0.9], # noqa: E241, E201 [-0.4, 0.0, 0.5], # noqa: E241, E201 [ 0.6, 0.6, 0.5], # noqa: E241, E201 [ 0.8, 0.0, 0.5], # noqa: E241, E201 [-0.2, 0.0, -0.5], # noqa: E241, E201 face behind the camera [ 0.3, 0.6, -0.5], # noqa: E241, E201 [ 0.4, 0.0, -0.5], # noqa: E241, E201 ], dtype=torch.float32, device=device, ) # Face with index 0 is non symmetric about the X and Y axis to # test that the positive Y and X directions are correct in the output. faces_packed = torch.tensor( [[1, 0, 2], [4, 3, 5], [7, 6, 8], [10, 9, 11]], dtype=torch.int64, device=device, ) expected_p2f = torch.tensor( [ [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, 2, 2, 0, 0, 0, -1, -1, -1, -1], # noqa: E241, E201 [-1, 2, 0, 0, 0, 0, -1, -1, -1, -1], # noqa: E241, E201 [-1, 0, 0, 0, 0, 0, 0, -1, -1, -1], # noqa: E241, E201 [-1, 0, 0, 0, 0, 0, 0, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # noqa: E241, E201 ], dtype=torch.int64, device=device, ) expected_zbuf = torch.tensor( [ [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], # noqa: E241, E201 [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], # noqa: E241, E201 [-1., 0.5, 0.5, 0.1, 0.1, 0.1, -1., -1., -1., -1.], # noqa: E241, E201 [-1., 0.5, 0.1, 0.1, 0.1, 0.1, -1., -1., -1., -1.], # noqa: E241, E201 [-1., 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, -1., -1., -1.], # noqa: E241, E201 [-1., 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, -1., -1., -1.], # noqa: E241, E201 [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], # noqa: E241, E201 [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], # noqa: E241, E201 [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], # noqa: E241, E201 [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.] # noqa: E241, E201 ], dtype=torch.float32, device=device, ) # fmt: on for i, order in enumerate([[0, 1, 2], [1, 2, 0], [2, 0, 1]]): faces = faces_packed[order] # rearrange order of faces. mesh = Meshes(verts=[verts], faces=[faces]) if bin_size == -1: # simple python, no bin size arg pix_to_face, zbuf, bary_coords, dists = raster_fn( mesh, image_size, blur_radius, faces_per_pixel ) else: pix_to_face, zbuf, bary_coords, dists = raster_fn( mesh, image_size, blur_radius, faces_per_pixel, bin_size ) if i == 0: expected_dists = dists p2f = expected_p2f.clone() p2f[expected_p2f == 0] = order.index(0) p2f[expected_p2f == 1] = order.index(1) p2f[expected_p2f == 2] = order.index(2) self.assertClose(pix_to_face.squeeze(), p2f) self.assertClose(zbuf.squeeze(), expected_zbuf, rtol=1e-5) self.assertClose(dists, expected_dists) def _test_coarse_rasterize(self, device): image_size = (16, 16) # No blurring. This test checks that the XY directions are # correctly oriented. blur_radius = 0.0 bin_size = 8 max_faces_per_bin = 3 # fmt: off verts = torch.tensor( [ [-0.5, 0.1, 0.1], # noqa: E241, E201 [-0.3, 0.6, 0.1], # noqa: E241, E201 [-0.1, 0.1, 0.1], # noqa: E241, E201 [-0.3, -0.1, 0.4], # noqa: E241, E201 [ 0.3, 0.5, 0.4], # noqa: E241, E201 [0.75, -0.1, 0.4], # noqa: E241, E201 [ 0.2, -0.3, 0.9], # noqa: E241, E201 [ 0.3, -0.7, 0.9], # noqa: E241, E201 [ 0.6, -0.3, 0.9], # noqa: E241, E201 [-0.4, 0.0, -1.5], # noqa: E241, E201 [ 0.6, 0.6, -1.5], # noqa: E241, E201 [ 0.8, 0.0, -1.5], # noqa: E241, E201 ], device=device, ) # Expected faces using axes convention +Y down, + X right, +Z in # Non symmetrical triangles i.e face 0 and 3 are in one bin only faces = torch.tensor( [ [ 1, 0, 2], # noqa: E241, E201 bin 01 only [ 4, 3, 5], # noqa: E241, E201 all bins [ 7, 6, 8], # noqa: E241, E201 bin 10 only [10, 9, 11], # noqa: E241, E201 negative z, should not appear. ], dtype=torch.int64, device=device, ) # fmt: on meshes = Meshes(verts=[verts], faces=[faces]) faces_verts = verts[faces] num_faces_per_mesh = meshes.num_faces_per_mesh() mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx() # Expected faces using axes convention +Y down, + X right, + Z in bin_faces_expected = ( torch.ones((1, 2, 2, max_faces_per_bin), dtype=torch.int32, device=device) * -1 ) bin_faces_expected[0, 1, 1, 0] = torch.tensor([1]) bin_faces_expected[0, 0, 1, 0:2] = torch.tensor([1, 2]) bin_faces_expected[0, 1, 0, 0:2] = torch.tensor([0, 1]) bin_faces_expected[0, 0, 0, 0] = torch.tensor([1]) # +Y up, +X left, +Z in bin_faces = _C._rasterize_meshes_coarse( faces_verts, mesh_to_face_first_idx, num_faces_per_mesh, image_size, blur_radius, bin_size, max_faces_per_bin, ) bin_faces_same = (bin_faces.squeeze() == bin_faces_expected).all() self.assertTrue(bin_faces_same.item() == 1) def test_order_of_ties(self): # Tied faces are rasterized in index order # We rasterize a mesh with many faces. device = torch.device("cuda:0") verts = -5 * torch.eye(3, dtype=torch.float32, device=device)[None] faces = torch.arange(3, device=device, dtype=torch.int64).expand(1, 100, 3) mesh = Meshes(verts=verts, faces=faces) R, T = look_at_view_transform(2.7, 0.0, 0.0) cameras = FoVPerspectiveCameras(device=device, R=R, T=T) raster_settings = RasterizationSettings( image_size=28, faces_per_pixel=100, bin_size=0 ) rasterizer = MeshRasterizer(raster_settings=raster_settings) out = rasterizer(mesh, cameras=cameras) self.assertClose( out.pix_to_face[0, 14:, :14], torch.arange(100, device=device).expand(14, 14, 100), ) @staticmethod def rasterize_meshes_python_with_init( num_meshes: int, ico_level: int, image_size: int, blur_radius: float, faces_per_pixel: int, ): device = torch.device("cpu") meshes = ico_sphere(ico_level, device) meshes_batch = meshes.extend(num_meshes) def rasterize(): rasterize_meshes_python( meshes_batch, image_size, blur_radius, faces_per_pixel ) return rasterize @staticmethod def rasterize_meshes_cpu_with_init( num_meshes: int, ico_level: int, image_size: int, blur_radius: float, faces_per_pixel: int, ): meshes = ico_sphere(ico_level, torch.device("cpu")) meshes_batch = meshes.extend(num_meshes) def rasterize(): rasterize_meshes( meshes_batch, image_size, blur_radius, faces_per_pixel=faces_per_pixel, bin_size=0, ) return rasterize @staticmethod def rasterize_meshes_cuda_with_init( num_meshes: int, ico_level: int, image_size: int, blur_radius: float, faces_per_pixel: int, ): device = get_random_cuda_device() meshes = ico_sphere(ico_level, device) meshes_batch = meshes.extend(num_meshes) torch.cuda.synchronize(device) def rasterize(): rasterize_meshes(meshes_batch, image_size, blur_radius, faces_per_pixel) torch.cuda.synchronize(device) return rasterize @staticmethod def bm_rasterize_meshes_with_clipping( num_meshes: int, ico_level: int, image_size: int, blur_radius: float, faces_per_pixel: int, dist: float, ): device = get_random_cuda_device() meshes = ico_sphere(ico_level, device) meshes_batch = meshes.extend(num_meshes) settings = RasterizationSettings( image_size=image_size, blur_radius=blur_radius, faces_per_pixel=faces_per_pixel, z_clip_value=1e-2, perspective_correct=True, cull_to_frustum=True, ) # The camera is positioned so that the image plane intersects # the mesh and some faces are partially behind the image plane. R, T = look_at_view_transform(dist, 0, 0) cameras = FoVPerspectiveCameras(device=device, R=R, T=T, fov=90) rasterizer = MeshRasterizer(raster_settings=settings, cameras=cameras) # Transform the meshes to projec them onto the image plane meshes_screen = rasterizer.transform(meshes_batch) torch.cuda.synchronize(device) def rasterize(): # Only measure rasterization speed (including clipping) rasterize_meshes( meshes_screen, image_size, blur_radius, faces_per_pixel, z_clip_value=1e-2, perspective_correct=True, cull_to_frustum=True, ) torch.cuda.synchronize(device) return rasterize
[ "torch.device", "torch.cuda.synchronize", "torch.arange", "torch.ones", "torch.manual_seed", "torch.randint", "torch.randn_like", "torch.tensor", "torch.full", "torch.ones_like", "torch.eye", "torch.all", "torch.randn" ]
3
jkxing/pytorch3d
71dbebe8010a0dac3e56be464778aa48fbd3bcd3
1.9
''' CrossLink Network ''' import torch import torch.nn as nn import torch.nn.functional as F def swish(x): return x * x.sigmoid() def mish(x): return x * torch.tanh(F.softplus(x)) class CrossLinkBlock(nn.Module): '''Cross-Link Block''' def __init__(self, in_channels, out_channels, kernel_size, pool_enable): super(CrossLinkBlock, self).__init__() self.pool_enable = pool_enable self.ReLU = nn.ReLU() # basic blocks self.dconv1_1 = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size[0], stride=1, padding='same', groups=1, bias=False) self.dconv1_2 = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size[1], stride=1, padding='same', groups=1, bias=False) self.bn1 = nn.BatchNorm2d(in_channels) self.bn2 = nn.BatchNorm2d(in_channels) self.pconv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding='same', groups=1, bias=False) self.bn3 = nn.BatchNorm2d(out_channels) self.maxpool = nn.MaxPool2d(2, 2) def forward(self, x): '''add forward here''' out1 = self.dconv1_1(x) out2 = self.dconv1_2(x) out1 = torch.mul(out1, self.ReLU(out1)) out2 = torch.mul(out1, self.ReLU(out2)) out = self.bn1(out1) + self.bn2(out2) out = self.bn3(self.pconv(out)) if self.pool_enable: out = self.maxpool(out) return out class CLNET(nn.Module): def __init__(self, cfg, num_classes=10): super(CLNET, self).__init__() self.cfg = cfg self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(32) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, groups=1, bias=False) self.bn2 = nn.BatchNorm2d(32) self.conv3 = nn.Conv2d(32, 16, kernel_size=1, stride=1, padding=0, bias=False) self.layers = self._make_layers(in_channels=16) self.linear = nn.Linear(cfg['out_channels'][-1], num_classes) def _make_layers(self, in_channels): layers = [] cfg = [self.cfg[k] for k in ['out_channels', 'kernel_size', 'pool_enable']] for out_channels, kernel_size, pool_enable in zip(*cfg): layers.append( CrossLinkBlock(in_channels, out_channels, kernel_size, pool_enable)) in_channels = out_channels return nn.Sequential(*layers) def forward(self, x): out = mish(self.bn1(self.pool1(self.conv1(x)))) # conv block out = self.conv3(swish(self.bn2(self.conv2(out)))) # sep block out = self.layers(out) out = F.adaptive_avg_pool2d(out, 1) out = out.view(out.size(0), -1) dropout_rate = self.cfg['dropout_rate'] if self.training and dropout_rate > 0: out = F.dropout(out, p=dropout_rate) out = self.linear(out) return out def CLNet_V0(num_classes): cfg = { 'out_channels': [24, 40, 80, 112, 160], 'kernel_size': [(5, 3), (3, 5), (3, 3), (5, 5), (3, 3)], 'pool_enable': [True, True, True, True, False], 'dropout_rate': 0.2 } return CLNET(cfg, num_classes=num_classes) import torchinfo def test(): net = CLNet_V0(10) torchinfo.summary(net, (1, 3, 32, 32)) x = torch.randn(3, 3, 32, 32, device='cuda') y = net(x) print(y.shape) if __name__ == '__main__': test()
[ "torch.nn.Linear", "torch.nn.functional.softplus", "torch.nn.MaxPool2d", "torch.nn.Sequential", "torch.nn.BatchNorm2d", "torch.nn.functional.dropout", "torch.nn.functional.adaptive_avg_pool2d", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.randn" ]
1.9.1
angseung/torch_cifar10
3160f749f3bffd941d6c0fb98ddaad63d4e5641d
1.6
import os import torch import numpy as np import unittest import timeit import functools from tinygrad.tensor import Tensor, DEFAULT_DEVICE, Device def helper_test_op(shps, torch_fxn, tinygrad_fxn, atol=1e-6, rtol=1e-3, grad_atol=1e-6, grad_rtol=1e-3, forward_only=False, vals=None, a=-0.5, b=20): torch.manual_seed(0) if shps is None: ts = [torch.tensor(x, requires_grad=True) for x in vals] else: ts = [torch.tensor((np.random.random(size=x).astype(np.float32)+a)*b, requires_grad=True) for x in shps] tst = [Tensor(x.detach().numpy()) for x in ts] out = torch_fxn(*ts) ret = tinygrad_fxn(*tst) np.testing.assert_allclose(ret.cpu().data, out.detach().numpy(), atol=atol, rtol=rtol) if not forward_only: out.mean().backward() ret.mean().backward() for t, tt in zip(ts, tst): np.testing.assert_allclose(t.grad, tt.cpu().grad.data, atol=grad_atol, rtol=grad_rtol) # speed torch_fp = timeit.Timer(functools.partial(torch_fxn, *ts)).timeit(5) * 1000/5 tinygrad_fp = timeit.Timer(functools.partial(tinygrad_fxn, *tst)).timeit(5) * 1000/5 if not forward_only: torch_fbp = timeit.Timer(functools.partial(lambda f,x: f(*x).mean().backward(), torch_fxn, ts)).timeit(5) * 1000/5 tinygrad_fbp = timeit.Timer(functools.partial(lambda f,x: f(*x).mean().backward(), tinygrad_fxn, tst)).timeit(5) * 1000/5 else: torch_fbp, tinygrad_fbp = np.nan, np.nan print("testing %30r torch/tinygrad fp: %.2f / %.2f ms bp: %.2f / %.2f ms" % (shps, torch_fp, tinygrad_fp, torch_fbp-torch_fp, tinygrad_fbp-tinygrad_fp)) class TestOps(unittest.TestCase): def test_add(self): helper_test_op([(45,65), (45,65)], lambda x,y: x+y, Tensor.add) def test_sub(self): helper_test_op([(45,65), (45,65)], lambda x,y: x-y, Tensor.sub) def test_mul(self): helper_test_op([(45,65), (45,65)], lambda x,y: x*y, Tensor.mul) def test_div(self): helper_test_op([(45,65), (45,65)], lambda x,y: x/y, Tensor.div) def test_pow(self): helper_test_op([(45,65), (45,65)], lambda x,y: x**y, Tensor.pow, a=0) def test_sqrt(self): helper_test_op([(45,65)], lambda x: x.sqrt(), Tensor.sqrt, a=0) def test_relu(self): helper_test_op([(45,65)], lambda x: x.relu(), Tensor.relu) def test_leakyrelu(self): helper_test_op([(45,65)], lambda x: torch.nn.functional.leaky_relu(x,0.01), Tensor.leakyrelu) def test_abs(self): helper_test_op([(45,65)], lambda x: torch.abs(x), Tensor.abs) def test_log(self): helper_test_op([(45,65)], lambda x: torch.log(x), Tensor.log) def test_exp(self): helper_test_op([(45,65)], lambda x: torch.exp(x), Tensor.exp) def test_sign(self): helper_test_op([(45,65)], lambda x: torch.sign(x), Tensor.sign) def test_sigmoid(self): helper_test_op([(45,65)], lambda x: x.sigmoid(), Tensor.sigmoid) def test_softplus(self): helper_test_op([(45,65)], lambda x: torch.nn.functional.softplus(x), Tensor.softplus, atol=1e-6, grad_atol=1e-6) def test_relu6(self): helper_test_op([(45,65)], lambda x: torch.nn.functional.relu6(x), Tensor.relu6) def test_hardswish(self): helper_test_op([(45,65)], lambda x: torch.nn.functional.hardswish(x), Tensor.hardswish, atol=1e-6, grad_atol=1e-6) def test_mish(self): def _mish_pytorch(x): return x*torch.tanh(torch.nn.functional.softplus(x)) helper_test_op([(45,65)], _mish_pytorch, Tensor.mish, atol=1e-4) def test_dot(self): helper_test_op([(45,65), (65,100)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4) def test_multidot(self): helper_test_op([(10,45,65), (10,65,45)], lambda x,y: x @ y, Tensor.dot, atol=1e-4) helper_test_op([(3,3,45,65), (3,3,65,45)], lambda x,y: x @ y, Tensor.dot, atol=1e-4) def test_sum(self): helper_test_op([(45,3)], lambda x: x.sum(), Tensor.sum) helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=(1,2)), lambda x: Tensor.sum(x, axis=(1,2))) helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=1), lambda x: Tensor.sum(x, axis=1)) def test_max(self): helper_test_op([(45,3)], lambda x: x.max(), Tensor.max) helper_test_op([(45,3)], lambda x: x.max().mul(0.5), lambda x: Tensor.max(x).mul(0.5)) helper_test_op(None, lambda x: x.max().mul(0.5), lambda x: Tensor.max(x).mul(0.5), vals=[ [[1.0,1.0,0.0,1.0]], ]) helper_test_op([(3,4,5,6)], lambda x: x.max(axis=1)[0], lambda x: Tensor.max(x, axis=1)) def test_mean_axis(self): helper_test_op([(3,4,5,6)], lambda x: x.mean(axis=(1,2)), lambda x: Tensor.mean(x, axis=(1,2))) def test_logsoftmax(self): helper_test_op([(45,65)], lambda x: torch.nn.LogSoftmax(dim=1)(x), Tensor.logsoftmax, atol=1e-7, grad_atol=1e-7) def test_tanh(self): helper_test_op([(45,65)], lambda x: x.tanh(), Tensor.tanh, atol=1e-6, grad_atol=1e-6) def test_topo_sort(self): helper_test_op([(45,65)], lambda x: (x+x)*x, lambda x: x.add(x).mul(x), atol=1e-6, grad_atol=1e-6) def test_scalar_mul(self): helper_test_op([(45,65)], lambda x: x*2, lambda x: x*2) def test_scalar_rmul(self): helper_test_op([(45,65)], lambda x: 2*x, lambda x: 2*x) def test_scalar_sub(self): helper_test_op([(45,65)], lambda x: x-2, lambda x: x-2) def test_scalar_rsub(self): helper_test_op([(45,65)], lambda x: 2-x, lambda x: 2-x) def test_broadcast_full(self): for torch_op, tinygrad_op in [(torch.add, Tensor.add), (torch.sub, Tensor.sub), (torch.mul, Tensor.mul), (torch.div, Tensor.div), (torch.pow, Tensor.pow)]: for shapes in [((5,13,24,16), (5,1,24,1)), ((1,3,1,7,1), (2,1,5,1,8))]: with self.subTest(op=torch_op.__name__, shapes=shapes): helper_test_op(shapes, torch_op, tinygrad_op, a=-0.5 if tinygrad_op != Tensor.pow else 0.0) def test_broadcast_partial(self): for torch_op, tinygrad_op in [(torch.add, Tensor.add), (torch.sub, Tensor.sub), (torch.mul, Tensor.mul), (torch.div, Tensor.div), (torch.pow, Tensor.pow)]: for shapes in [((1,32,32,32), (1,32,1,1)), ((5,13,24,16,2), (1,13,24,1,1)), ((4,1), (4,5)), ((1,4), (5,4))]: with self.subTest(op=torch_op.__name__, shapes=shapes): # NOTE: ANE backwards? helper_test_op(shapes, torch_op, tinygrad_op, a=-0.5 if tinygrad_op != Tensor.pow else 0.0) def test_slice(self): helper_test_op([(3,3,3,3)], lambda x: x[1:2], lambda x: x[1:2]) helper_test_op([(3,3,3,3)], lambda x: x[1:2, 1:2], lambda x: x[1:2, 1:2]) helper_test_op([(3,3,3,3)], lambda x: x[1:2, 1:2, 0:-1], lambda x: x[1:2, 1:2, 0:-1]) def test_pad2d(self): helper_test_op([(3,3,3,3)], lambda x: torch.nn.functional.pad(x, (1,2,3,4)), lambda x: x.pad2d(padding=(1,2,3,4))) def test_transpose(self): helper_test_op([(3,3,3)], lambda x: x.transpose(1,2), lambda x: x.transpose(order=(0,2,1))) # This is failing on GPU because the dim is too large #helper_test_op([(21,22,23,24)], lambda x: x.movedim((3,0,2,1),(0,1,2,3)), lambda x: x.transpose(order=(3,0,2,1))) helper_test_op([(3,4,5,6)], lambda x: x.movedim((3,2,1,0),(0,1,2,3)), lambda x: x.transpose(order=(3,2,1,0))) def test_reshape(self): helper_test_op([(4,3,6,6)], lambda x: torch.reshape(x, (-1,3,6,6)), lambda x: x.reshape(shape=(-1,3,6,6))) helper_test_op([(4,3,6,6)], lambda x: torch.reshape(x, (-1,1,6,6)), lambda x: x.reshape(shape=(-1,1,6,6))) def test_detach(self): helper_test_op([(4,3,6,6)], lambda x: x.detach(), lambda x: x.detach(), forward_only=True) def test_conv2d(self): for bs in [1,8]: for cin in [1,3]: for groups in [1,3] if cin == 3 else [1]: for H in [1,2,5]: for W in [1,2,3,5]: with self.subTest(batch_size=bs, channels=cin, groups=groups, height=H, width=W): helper_test_op([(bs,cin,11,28), (6,cin//groups,H,W)], lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(), lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), atol=1e-4, grad_rtol=1e-5) def test_strided_conv2d(self): bs = 4 cin = 3 H,W = 3,3 with self.subTest(stride := 2): helper_test_op([(bs,cin,11,28), (4,cin,H,W)], lambda x,w: torch.nn.functional.conv2d(x,w,stride=2).relu(), lambda x,w: Tensor.conv2d(x,w,stride=stride).relu(), atol=1e-4) with self.subTest(stride := (2,1)): helper_test_op([(bs,cin,11,28), (4,cin,H,W)], lambda x,w: torch.nn.functional.conv2d(x,w,stride=stride).relu(), lambda x,w: Tensor.conv2d(x,w,stride=(2,1)).relu(), atol=1e-4) def test_maxpool2d(self): for ksz in [(2,2), (3,3), (3,2), (5,5), (5,1)]: with self.subTest(kernel_size=ksz): helper_test_op([(32,2,110,28)], lambda x: torch.nn.functional.max_pool2d(x, kernel_size=ksz), # TODO: why is this tolerance so high? lambda x: Tensor.max_pool2d(x, kernel_size=ksz), grad_atol=1e-4) def test_avgpool2d(self): shape = (32,2,111,28) for ksz in [(2,2), (3,3), (3,2), (5,5), (5,1), shape[2:]]: with self.subTest(kernel_size=ksz): helper_test_op([shape], lambda x: torch.nn.functional.avg_pool2d(x, kernel_size=ksz), lambda x: Tensor.avg_pool2d(x, kernel_size=ksz), rtol=1e-5) def test_upsample2d_nearest(self): for sf in [1, 2, 3, 4, 5]: with self.subTest(scale_factor=sf): helper_test_op([(32,2,110,28)], lambda x: torch.nn.functional.interpolate(x, scale_factor=sf, mode='nearest'), lambda x: Tensor.upsample_nearest2d(x, scale_factor=sf), forward_only=True) if __name__ == '__main__': unittest.main(verbosity=2)
[ "torch.reshape", "torch.nn.LogSoftmax", "torch.nn.functional.relu6", "torch.nn.functional.avg_pool2d", "torch.nn.functional.softplus", "torch.nn.functional.interpolate", "torch.sign", "torch.manual_seed", "torch.abs", "torch.tensor", "torch.nn.functional.hardswish", "torch.nn.functional.pad", "torch.log", "torch.nn.functional.max_pool2d", "torch.exp", "torch.nn.functional.conv2d", "torch.nn.functional.leaky_relu" ]
1.6.0
baheytharwat/tinygrad
acf652c3c524ee3214e9ce58d41113738cb833ae
1.0
#coding:utf-8 import torch from learner_util import get_ner_BIO class Metric(object): def __call__(self, predictions, gold_labels, mask=None): """ metric的抽象类 :params predictions 预测结果的tensor :params gold_labels 实际结果的tensor :mask mask """ raise NotImplementedError def get_metric(self, reset=False): """ 返回metric的指标 """ raise NotImplementedError def reset(self): """ 重置内部状态 """ raise NotImplementedError @staticmethod def unwrap_to_tensors(*tensors): """ 把tensor安全的copy到cpu进行操作,避免gpu的oom """ return (x.detach().cpu() if isinstance(x, torch.Tensor) else x for x in tensors) @classmethod def from_option(cls, conf): return cls(**conf) class F1Measure(Metric): def __init__(self, positive_label): """ 准确率、召回率、F值的评价指标 """ super(F1Measure, self).__init__() self._positive_label = positive_label self._true_positives = 0.0 self._true_negatives = 0.0 self._false_positives = 0.0 self._false_negatives = 0.0 def __call__(self, predictions, gold_labels, mask=None): predictions, gold_labels, mask = self.unwrap_to_tensors(predictions, gold_labels, mask) num_classes = predictions.size(-1) if (gold_labels >= num_classes).any(): raise Exception("A gold label passed to F1Measure contains an id >= {}, " "the number of classes.".format(num_classes)) if mask is None: mask = torch.ones_like(gold_labels) mask = mask.float() gold_labels = gold_labels.float() self.update(predictions, gold_labels, mask) def update(self, predictions, gold_labels, mask): positive_label_mask = gold_labels.eq(self._positive_label).float() negative_label_mask = 1.0 - positive_label_mask argmax_predictions = predictions.max(-1)[1].float().squeeze(-1) # True Negatives: correct non-positive predictions. correct_null_predictions = (argmax_predictions != self._positive_label).float() * negative_label_mask self._true_negatives += (correct_null_predictions.float() * mask).sum() # True Positives: correct positively labeled predictions. correct_non_null_predictions = (argmax_predictions == self._positive_label).float() * positive_label_mask self._true_positives += (correct_non_null_predictions * mask).sum() # False Negatives: incorrect negatively labeled predictions. incorrect_null_predictions = (argmax_predictions != self._positive_label).float() * positive_label_mask self._false_negatives += (incorrect_null_predictions * mask).sum() # False Positives: incorrect positively labeled predictions incorrect_non_null_predictions = (argmax_predictions == self._positive_label).float() * negative_label_mask self._false_positives += (incorrect_non_null_predictions * mask).sum() def get_metric(self, reset=False): """ 返回准确率、召回率、F值评价指标 """ # print('TP',self._true_positives,'TN',self._true_negatives,'FP',self._false_positives,'FN',self._false_negatives) precision = float(self._true_positives) / float(self._true_positives + self._false_positives + 1e-13) recall = float(self._true_positives) / float(self._true_positives + self._false_negatives + 1e-13) f1_measure = 2. * ((precision * recall) / (precision + recall + 1e-13)) if reset: self.reset() return {"precision":precision, "recall": recall, "f1_measure":f1_measure} def reset(self): self._true_positives = 0.0 self._true_negatives = 0.0 self._false_positives = 0.0 self._false_negatives = 0.0 class NerF1Measure(Metric): def __init__(self, label_vocab): self.golden_num = 0.0 self.predict_num = 0.0 self.right_num = 0.0 self.label_vocab = label_vocab def reset(self): """ 重置内部状态 """ self.golden_num = 0.0 self.predict_num = 0.0 self.right_num = 0.0 def get_metric(self, reset=False): """ 返回metric的指标 """ if self.predict_num == 0.0: precision = -1 else: precision = (self.right_num+0.0)/self.predict_num if self.golden_num == 0.0: recall = -1 else: recall = (self.right_num+0.0)/self.golden_num if (precision == -1) or (recall == -1) or (precision+recall) <= 0.: f_measure = -1 else: f_measure = 2*precision*recall/(precision+recall) if reset: self.reset() return {"precision":precision, "recall": recall, "f1_measure":f_measure} def update(self, gold_matrix, pred_matrix): right_ner = list(set(gold_matrix).intersection(set(pred_matrix))) self.golden_num += len(gold_matrix) self.predict_num += len(pred_matrix) self.right_num += len(right_ner) def __call__(self, predictions, gold_labels, mask=None): """ metric的抽象类 :params predictions 预测结果的tensor :params gold_labels 实际结果的tensor :mask mask """ batch_size = gold_labels.size(0) seq_len = gold_labels.size(1) predictions, gold_labels, mask = self.unwrap_to_tensors(predictions, gold_labels, mask) predictions = predictions.tolist() gold_labels = gold_labels.tolist() mask = mask.tolist() for idx in range(batch_size): pred = [self.label_vocab[predictions[idx][idy]] for idy in range(seq_len) if mask[idx][idy] != 0] gold = [self.label_vocab[gold_labels[idx][idy]] for idy in range(seq_len) if mask[idx][idy] != 0] gold_matrix = get_ner_BIO(gold) pred_matrix = get_ner_BIO(pred) self.update(gold_matrix, pred_matrix)
[ "torch.ones_like" ]
1.0.0
waterzxj/UNF
5eda8e7c60116735f595f4b21b24547708b36cf5
1.0
#coding:utf-8 """ Embedding类的抽象 """ import os import sys import torch from torch import nn import torch.nn.functional as F from modules.module_util import init_tensor from modules.base_type import InitType, FAN_MODE, ActivationType class BaseEmbedding(nn.Module): """ Emebdding类的基类 :params dim int类型,embedding的维度大小 :params vocab_size int类型 :params device string or [string1, string2],计算的后端,默认是cpu :params init_type string, 初始化的计算方式 ,默认采用uniform初始化 :params dropout float """ def __init__(self, dim, vocab_size, device=None, dropout=0.0): super(BaseEmbedding, self).__init__() self.dim = dim self.vocab_size = vocab_size self.device = device self.dropout = nn.Dropout(p=dropout) @classmethod def from_dict(cls, params): return cls(**params) def forward(self, input): raise Exception("BaseEmbedding forward method not implemented!") class TokenEmbedding(BaseEmbedding): def __init__(self, dim, vocab_size, device=None, dropout=0.0, init_type=InitType.XAVIER_NORMAL, low=0, high=1, mean=0, std=1, activation_type=ActivationType.NONE, fan_mode=FAN_MODE.FAN_IN, negative_slope=0 ): """ Embedding类的基础类 :params dim int类型,embedding的维度大小 :params vocab_size int类型 :params device string or [string1, string2],计算的后端,默认是cpu :params init_type string, 初始化的计算方式 ,默认采用uniform初始化 :params dropout float """ super(TokenEmbedding, self).__init__(dim, vocab_size, device, dropout) self.embeddings = nn.Embedding(vocab_size, dim) embedding_lookup_table = init_tensor(tensor=torch.empty(vocab_size, dim), init_type=init_type, low=low, high=high, mean=mean, std=std, activation_type=activation_type, fan_mode=fan_mode, negative_slope=negative_slope) self.embeddings.weight.data.copy_(embedding_lookup_table) def forward(self, input): embedding = self.embeddings(input) return self.dropout(embedding) @classmethod def from_pretrained(cls, vectors, vocab_map=None): """ copy从dataloader每个域加载好的预训练的词向量 :params vectors Vector类型 """ if isinstance(path, (str)): raise Exception("Load embedding from path not implemented!") self.embeddings.weight.data.copy_(vectors)
[ "torch.nn.Dropout", "torch.empty", "torch.nn.Embedding" ]
1.0.0
waterzxj/UNF
5eda8e7c60116735f595f4b21b24547708b36cf5
1.0
#coding:utf-8 import os import json import torch from torch import nn import torch.nn.functional as F from models.model_util import Config from models.dpcnn import DpCnn from models.fasttext import FastText from models.leam import LEAM from models.self_attention import SelfAttention from models.textcnn import TextCnn class Predictor(nn.Module): def __init__(self, model_save_path, device=None, model_type=None): super(Predictor, self).__init__() model_conf = os.path.join(model_save_path, "conf.json") vocab_path = os.path.join(model_save_path, "vocab.txt") target_path = os.path.join(model_save_path, "target.txt") self.model_type = model_type self.model = self.model_loader(Config.from_json_file(model_conf)) self.model.load_state_dict(torch.load(os.path.join(model_save_path, "best.th"))) self.model.eval() self.device = device if self.device is not None: self.model.to(device) self.vocab = self.load_vocab(vocab_path) self.target = self.load_vocab(target_path, reverse=True) def model_loader(self, conf): name = self.model_type.lower() if name == "textcnn": model = TextCnn(**conf.__dict__) elif name == "fastext": model = FastText(**conf.__dict__) elif name == "dpcnn": model = DpCnn(**conf.__dict__) elif name == "leam": model = LEAM(**conf.__dict__) elif name == "self-attention": model = SelfAttention(**conf.__dict__) else: raise Exception("name:%s model not implemented!" % (name)) return model def predict(self, input, **kwargs): input = input.split() input_ids = [self.vocab.get(item, 0) for item in input] input_ids = torch.LongTensor(input_ids) if self.device is not None: input_ids = input_ids.to(self.device) mask = (input_ids != 1).long() res = self.model.predict(input_ids, mask) res = res.detach().cpu().tolist()[0] return res def load_vocab(self, path, reverse=False): res = {} tmp = json.load(open(path)) for index, word in enumerate(tmp): if reverse: res[index] = word else: res[word] = index return res
[ "torch.LongTensor" ]
1.0.0
waterzxj/UNF
5eda8e7c60116735f595f4b21b24547708b36cf5
1.3
from functools import partial from typing import List, Union, Callable import torch from pytorch_toolbelt.modules import ABN, ACT_RELU, ACT_SWISH from pytorch_toolbelt.modules import encoders as E from pytorch_toolbelt.modules.decoders import DecoderModule from pytorch_toolbelt.modules.encoders import EncoderModule from torch import nn from torch.nn import functional as F from .common import disaster_type_classifier, damage_types_classifier from ..dataset import OUTPUT_MASK_KEY, DISASTER_TYPE_KEY, DISASTER_TYPES, DAMAGE_TYPE_KEY, DAMAGE_TYPES __all__ = ["UnetV2SegmentationModel"] class ConvBottleneck(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.seq = nn.Sequential(nn.Conv2d(in_channels, out_channels, 3, padding=1), nn.ReLU(inplace=True)) def forward(self, dec, enc): x = torch.cat([dec, enc], dim=1) return self.seq(x) class UnetDecoderBlock(nn.Module): def __init__(self, in_channels, middle_channels, out_channels): super().__init__() self.layer = nn.Sequential( nn.Upsample(scale_factor=2), nn.Conv2d(in_channels, out_channels, 3, padding=1), nn.ReLU(inplace=True) ) def forward(self, x): return self.layer(x) class UNetDecoderV2(DecoderModule): def __init__( self, feature_maps: List[int], decoder_features: List[int], mask_channels: int, last_upsample_filters=None, dropout=0.0, abn_block=ABN, ): super().__init__() if not isinstance(decoder_features, list): decoder_features = [decoder_features * (2 ** i) for i in range(len(feature_maps))] if last_upsample_filters is None: last_upsample_filters = decoder_features[0] self.encoder_features = feature_maps self.decoder_features = decoder_features self.decoder_stages = nn.ModuleList([self.get_decoder(idx) for idx in range(0, len(self.decoder_features))]) self.bottlenecks = nn.ModuleList( [ ConvBottleneck(self.encoder_features[-i - 2] + f, f) for i, f in enumerate(reversed(self.decoder_features[:])) ] ) self.output_filters = decoder_features self.last_upsample = UnetDecoderBlock(decoder_features[0], last_upsample_filters, last_upsample_filters) self.final = nn.Conv2d(last_upsample_filters, mask_channels, kernel_size=1) def get_decoder(self, layer): in_channels = ( self.encoder_features[layer + 1] if layer + 1 == len(self.decoder_features) else self.decoder_features[layer + 1] ) return UnetDecoderBlock(in_channels, self.decoder_features[layer], self.decoder_features[max(layer, 0)]) def forward(self, feature_maps): last_dec_out = feature_maps[-1] x = last_dec_out for idx, bottleneck in enumerate(self.bottlenecks): rev_idx = -(idx + 1) decoder = self.decoder_stages[rev_idx] x = decoder(x) x = bottleneck(x, feature_maps[rev_idx - 1]) x = self.last_upsample(x) f = self.final(x) return f class UnetV2SegmentationModel(nn.Module): def __init__( self, encoder: EncoderModule, num_classes: int, disaster_type_classes: int, damage_type_classes: int, unet_channels: List[int], dropout=0.25, abn_block: Union[ABN, Callable[[int], nn.Module]] = ABN, full_size_mask=True, ): super().__init__() self.encoder = encoder feature_maps = [2 * fm for fm in encoder.output_filters] self.decoder = UNetDecoderV2( feature_maps=feature_maps, decoder_features=unet_channels, mask_channels=num_classes, dropout=dropout, abn_block=abn_block, ) self.full_size_mask = full_size_mask if disaster_type_classes is not None: self.disaster_type_classifier = disaster_type_classifier( feature_maps[-1], disaster_type_classes, dropout=dropout ) else: self.disaster_type_classifier = None if damage_type_classes is not None: self.damage_types_classifier = damage_types_classifier( feature_maps[-1], damage_type_classes, dropout=dropout ) else: self.damage_types_classifier = None def forward(self, x): batch_size = x.size(0) pre, post = x[:, 0:3, ...], x[:, 3:6, ...] if self.training: x = torch.cat([pre, post], dim=0) features = self.encoder(x) features = [torch.cat([f[0:batch_size], f[batch_size : batch_size * 2]], dim=1) for f in features] else: pre_features, post_features = self.encoder(pre), self.encoder(post) features = [torch.cat([pre, post], dim=1) for pre, post in zip(pre_features, post_features)] # Decode mask mask = self.decoder(features) if self.full_size_mask: mask = F.interpolate(mask, size=x.size()[2:], mode="bilinear", align_corners=False) output = {OUTPUT_MASK_KEY: mask} if self.disaster_type_classifier is not None: disaster_type = self.disaster_type_classifier(features[-1]) output[DISASTER_TYPE_KEY] = disaster_type if self.damage_types_classifier is not None: damage_types = self.damage_types_classifier(features[-1]) output[DAMAGE_TYPE_KEY] = damage_types return output def efficientb3_unet_v2(input_channels=6, num_classes=5, dropout=0.0, pretrained=True, classifiers=True): encoder = E.EfficientNetB3Encoder(pretrained=pretrained, layers=[0, 1, 2, 4, 6], abn_params={"activation": ACT_RELU}) return UnetV2SegmentationModel( encoder, num_classes=num_classes, disaster_type_classes=len(DISASTER_TYPES) if classifiers else None, damage_type_classes=len(DAMAGE_TYPES) if classifiers else None, unet_channels=[64, 128, 256, 256], dropout=dropout, abn_block=partial(ABN, activation=ACT_RELU), ) def densenet121_unet_v2(input_channels=6, num_classes=5, dropout=0.0, pretrained=True, classifiers=True): encoder = E.DenseNet121Encoder(pretrained=pretrained, layers=[0, 1, 2, 3, 4]) return UnetV2SegmentationModel( encoder, num_classes=num_classes, disaster_type_classes=len(DISASTER_TYPES) if classifiers else None, damage_type_classes=len(DAMAGE_TYPES) if classifiers else None, unet_channels=[64, 128, 256, 256], dropout=dropout, abn_block=partial(ABN, activation=ACT_RELU), ) def densenet169_unet_v2(input_channels=6, num_classes=5, dropout=0.0, pretrained=True, classifiers=True): encoder = E.DenseNet169Encoder(pretrained=pretrained, layers=[0, 1, 2, 3, 4]) return UnetV2SegmentationModel( encoder, num_classes=num_classes, disaster_type_classes=len(DISASTER_TYPES) if classifiers else None, damage_type_classes=len(DAMAGE_TYPES) if classifiers else None, unet_channels=[128, 128, 256, 256], dropout=dropout, abn_block=partial(ABN, activation=ACT_RELU), ) def resnet18_unet_v2(input_channels=6, num_classes=5, dropout=0.0, pretrained=True, classifiers=True): encoder = E.Resnet18Encoder(pretrained=pretrained, layers=[0, 1, 2, 3, 4]) return UnetV2SegmentationModel( encoder, num_classes=num_classes, disaster_type_classes=len(DISASTER_TYPES) if classifiers else None, damage_type_classes=len(DAMAGE_TYPES) if classifiers else None, unet_channels=[64, 128, 256, 256], dropout=dropout, abn_block=partial(ABN, activation=ACT_RELU), ) def resnet34_unet_v2(input_channels=6, num_classes=5, dropout=0.0, pretrained=True, classifiers=True): encoder = E.Resnet34Encoder(pretrained=pretrained, layers=[0, 1, 2, 3, 4]) return UnetV2SegmentationModel( encoder, num_classes=num_classes, disaster_type_classes=len(DISASTER_TYPES) if classifiers else None, damage_type_classes=len(DAMAGE_TYPES) if classifiers else None, unet_channels=[64, 128, 256, 256], dropout=dropout, abn_block=partial(ABN, activation=ACT_RELU), ) def resnet50_unet_v2(input_channels=6, num_classes=5, dropout=0.0, pretrained=True, classifiers=True): encoder = E.Resnet50Encoder(pretrained=pretrained, layers=[0, 1, 2, 3, 4]) return UnetV2SegmentationModel( encoder, num_classes=num_classes, disaster_type_classes=len(DISASTER_TYPES) if classifiers else None, damage_type_classes=len(DAMAGE_TYPES) if classifiers else None, unet_channels=[96, 128, 256, 256], dropout=dropout, abn_block=partial(ABN, activation=ACT_RELU), ) def resnet101_unet_v2(input_channels=6, num_classes=5, dropout=0.0, pretrained=True, classifiers=True): encoder = E.Resnet101Encoder(pretrained=pretrained, layers=[0, 1, 2, 3, 4]) return UnetV2SegmentationModel( encoder, num_classes=num_classes, disaster_type_classes=len(DISASTER_TYPES) if classifiers else None, damage_type_classes=len(DAMAGE_TYPES) if classifiers else None, unet_channels=[64, 128, 256, 384], dropout=dropout, abn_block=partial(ABN, activation=ACT_RELU), ) def seresnext50_unet_v2(input_channels=6, num_classes=5, dropout=0.0, pretrained=True, classifiers=True): encoder = E.SEResNeXt50Encoder(pretrained=pretrained, layers=[0, 1, 2, 3, 4]) return UnetV2SegmentationModel( encoder, num_classes=num_classes, disaster_type_classes=len(DISASTER_TYPES) if classifiers else None, damage_type_classes=len(DAMAGE_TYPES) if classifiers else None, unet_channels=[64, 128, 256, 256], dropout=dropout, abn_block=partial(ABN, activation=ACT_RELU), ) def seresnext101_unet_v2(input_channels=6, num_classes=5, dropout=0.0, pretrained=True, classifiers=True): encoder = E.SEResNeXt101Encoder(pretrained=pretrained, layers=[0, 1, 2, 3, 4]) return UnetV2SegmentationModel( encoder, num_classes=num_classes, disaster_type_classes=len(DISASTER_TYPES) if classifiers else None, damage_type_classes=len(DAMAGE_TYPES) if classifiers else None, unet_channels=[128, 128, 256, 384], dropout=dropout, abn_block=partial(ABN, activation=ACT_RELU), )
[ "torch.nn.ReLU", "torch.cat", "torch.nn.Upsample", "torch.nn.Conv2d" ]
1.3
mayankj/xView2-Solution
804aa15a3d9f28c7c1d73e50ce0ed0c359a0493e
1.3
from __future__ import absolute_import import argparse import collections import gc import json import os from datetime import datetime import torch from catalyst.dl import SupervisedRunner, OptimizerCallback, SchedulerCallback from catalyst.dl.callbacks import CriterionAggregatorCallback, AccuracyCallback from catalyst.utils import load_checkpoint, unpack_checkpoint from pytorch_toolbelt.optimization.functional import get_lr_decay_parameters from pytorch_toolbelt.utils import fs, torch_utils from pytorch_toolbelt.utils.catalyst import ShowPolarBatchesCallback, ConfusionMatrixCallback from pytorch_toolbelt.utils.random import set_manual_seed from pytorch_toolbelt.utils.torch_utils import count_parameters, transfer_weights, get_optimizable_parameters from torch import nn from torch.optim.lr_scheduler import CyclicLR from torch.utils.data import DataLoader from xview.dataset import ( INPUT_IMAGE_KEY, OUTPUT_MASK_KEY, INPUT_MASK_KEY, get_datasets, OUTPUT_MASK_4_KEY, UNLABELED_SAMPLE, get_pseudolabeling_dataset, DISASTER_TYPE_KEY, UNKNOWN_DISASTER_TYPE_CLASS, DISASTER_TYPES, OUTPUT_EMBEDDING_KEY, DAMAGE_TYPE_KEY, OUTPUT_MASK_8_KEY, OUTPUT_MASK_16_KEY, OUTPUT_MASK_32_KEY) from xview.metric import CompetitionMetricCallback from xview.models import get_model from xview.optim import get_optimizer from xview.pseudo import CEOnlinePseudolabelingCallback2d from xview.scheduler import get_scheduler from xview.train_utils import clean_checkpoint, report_checkpoint, get_criterion_callback from xview.visualization import draw_predictions def main(): parser = argparse.ArgumentParser() parser.add_argument("-acc", "--accumulation-steps", type=int, default=1, help="Number of batches to process") parser.add_argument("--seed", type=int, default=42, help="Random seed") parser.add_argument("-v", "--verbose", action="store_true") parser.add_argument("--fast", action="store_true") parser.add_argument( "-dd", "--data-dir", type=str, required=True, help="Data directory for INRIA sattelite dataset" ) parser.add_argument("-m", "--model", type=str, default="resnet34_fpncat128", help="") parser.add_argument("-b", "--batch-size", type=int, default=8, help="Batch Size during training, e.g. -b 64") parser.add_argument("-e", "--epochs", type=int, default=100, help="Epoch to run") # parser.add_argument('-es', '--early-stopping', type=int, default=None, help='Maximum number of epochs without improvement') # parser.add_argument('-fe', '--freeze-encoder', type=int, default=0, help='Freeze encoder parameters for N epochs') # parser.add_argument('-ft', '--fine-tune', action='store_true') parser.add_argument("-lr", "--learning-rate", type=float, default=1e-3, help="Initial learning rate") parser.add_argument( "--disaster-type-loss", type=str, default=None, # [["ce", 1.0]], action="append", nargs="+", help="Criterion for classifying disaster type", ) parser.add_argument( "--damage-type-loss", type=str, default=None, # [["bce", 1.0]], action="append", nargs="+", help="Criterion for classifying presence of building with particular damage type", ) parser.add_argument("-l", "--criterion", type=str, default=None, action="append", nargs="+", help="Criterion") parser.add_argument("--mask4", type=str, default=None, action="append", nargs="+", help="Criterion for mask with stride 4") parser.add_argument("--mask8", type=str, default=None, action="append", nargs="+", help="Criterion for mask with stride 8") parser.add_argument("--mask16", type=str, default=None, action="append", nargs="+", help="Criterion for mask with stride 16") parser.add_argument("--mask32", type=str, default=None, action="append", nargs="+", help="Criterion for mask with stride 32") parser.add_argument("--embedding", type=str, default=None) parser.add_argument("-o", "--optimizer", default="RAdam", help="Name of the optimizer") parser.add_argument( "-c", "--checkpoint", type=str, default=None, help="Checkpoint filename to use as initial model weights" ) parser.add_argument("-w", "--workers", default=8, type=int, help="Num workers") parser.add_argument("-a", "--augmentations", default="safe", type=str, help="Level of image augmentations") parser.add_argument("--transfer", default=None, type=str, help="") parser.add_argument("--fp16", action="store_true") parser.add_argument("--size", default=512, type=int) parser.add_argument("--fold", default=0, type=int) parser.add_argument("-s", "--scheduler", default="multistep", type=str, help="") parser.add_argument("-x", "--experiment", default=None, type=str, help="") parser.add_argument("-d", "--dropout", default=0.0, type=float, help="Dropout before head layer") parser.add_argument("--opl", action="store_true") parser.add_argument( "--warmup", default=0, type=int, help="Number of warmup epochs with reduced LR on encoder parameters" ) parser.add_argument("-wd", "--weight-decay", default=0, type=float, help="L2 weight decay") parser.add_argument("--show", action="store_true") parser.add_argument("--dsv", action="store_true") parser.add_argument("--balance", action="store_true") parser.add_argument("--only-buildings", action="store_true") parser.add_argument("--freeze-bn", action="store_true") parser.add_argument("--crops", action="store_true", help="Train on random crops") parser.add_argument("--post-transform", action="store_true") args = parser.parse_args() set_manual_seed(args.seed) data_dir = args.data_dir num_workers = args.workers num_epochs = args.epochs learning_rate = args.learning_rate model_name = args.model optimizer_name = args.optimizer image_size = args.size, args.size fast = args.fast augmentations = args.augmentations fp16 = args.fp16 scheduler_name = args.scheduler experiment = args.experiment dropout = args.dropout online_pseudolabeling = args.opl segmentation_losses = args.criterion verbose = args.verbose warmup = args.warmup show = args.show accumulation_steps = args.accumulation_steps weight_decay = args.weight_decay fold = args.fold balance = args.balance only_buildings = args.only_buildings freeze_bn = args.freeze_bn train_on_crops = args.crops enable_post_image_transform = args.post_transform disaster_type_loss = args.disaster_type_loss train_batch_size = args.batch_size embedding_criterion = args.embedding damage_type_loss = args.damage_type_loss # Compute batch size for validaion if train_on_crops: valid_batch_size = max(1, (train_batch_size * (image_size[0] * image_size[1])) // (1024 ** 2)) else: valid_batch_size = train_batch_size run_train = num_epochs > 0 model: nn.Module = get_model(model_name, dropout=dropout).cuda() if args.transfer: transfer_checkpoint = fs.auto_file(args.transfer) print("Transfering weights from model checkpoint", transfer_checkpoint) checkpoint = load_checkpoint(transfer_checkpoint) pretrained_dict = checkpoint["model_state_dict"] transfer_weights(model, pretrained_dict) if args.checkpoint: checkpoint = load_checkpoint(fs.auto_file(args.checkpoint)) unpack_checkpoint(checkpoint, model=model) print("Loaded model weights from:", args.checkpoint) report_checkpoint(checkpoint) if freeze_bn: torch_utils.freeze_bn(model) print("Freezing bn params") runner = SupervisedRunner(input_key=INPUT_IMAGE_KEY, output_key=None) main_metric = "weighted_f1" cmd_args = vars(args) current_time = datetime.now().strftime("%b%d_%H_%M") checkpoint_prefix = f"{current_time}_{args.model}_{args.size}_fold{fold}" if fp16: checkpoint_prefix += "_fp16" if fast: checkpoint_prefix += "_fast" if online_pseudolabeling: checkpoint_prefix += "_opl" if train_on_crops: checkpoint_prefix += "_crops" if experiment is not None: checkpoint_prefix = experiment log_dir = os.path.join("runs", checkpoint_prefix) os.makedirs(log_dir, exist_ok=False) config_fname = os.path.join(log_dir, f"{checkpoint_prefix}.json") with open(config_fname, "w") as f: train_session_args = vars(args) f.write(json.dumps(train_session_args, indent=2)) default_callbacks = [ CompetitionMetricCallback(input_key=INPUT_MASK_KEY, output_key=OUTPUT_MASK_KEY, prefix="weighted_f1"), ConfusionMatrixCallback( input_key=INPUT_MASK_KEY, output_key=OUTPUT_MASK_KEY, class_names=["land", "no_damage", "minor_damage", "major_damage", "destroyed"], ignore_index=UNLABELED_SAMPLE, ), ] if show: default_callbacks += [ ShowPolarBatchesCallback(draw_predictions, metric=main_metric + "_batch", minimize=False) ] train_ds, valid_ds, train_sampler = get_datasets( data_dir=data_dir, image_size=image_size, augmentation=augmentations, fast=fast, fold=fold, balance=balance, only_buildings=only_buildings, train_on_crops=train_on_crops, enable_post_image_transform=enable_post_image_transform, ) # Pretrain/warmup if warmup: callbacks = default_callbacks.copy() criterions_dict = {} losses = [] for criterion in segmentation_losses: if isinstance(criterion, (list, tuple)): loss_name, loss_weight = criterion else: loss_name, loss_weight = criterion, 1.0 cd, criterion, criterion_name = get_criterion_callback( loss_name, input_key=INPUT_MASK_KEY, output_key=OUTPUT_MASK_KEY, loss_weight=float(loss_weight) ) criterions_dict.update(cd) callbacks.append(criterion) losses.append(criterion_name) print("Using loss", loss_name, loss_weight) if args.mask4 is not None: for criterion in args.mask4: if isinstance(criterion, (list, tuple)): loss_name, loss_weight = criterion else: loss_name, loss_weight = criterion, 1.0 cd, criterion, criterion_name = get_criterion_callback( loss_name, input_key=INPUT_MASK_KEY, output_key=OUTPUT_MASK_4_KEY, loss_weight=float(loss_weight) ) criterions_dict.update(cd) callbacks.append(criterion) losses.append(criterion_name) print("Using loss", loss_name, loss_weight) callbacks += [ CriterionAggregatorCallback(prefix="loss", loss_keys=losses), OptimizerCallback(accumulation_steps=accumulation_steps, decouple_weight_decay=False), ] parameters = get_lr_decay_parameters(model.named_parameters(), learning_rate, {"encoder": 0.1}) optimizer = get_optimizer("RAdam", parameters, learning_rate=learning_rate * 0.1) loaders = collections.OrderedDict() loaders["train"] = DataLoader( train_ds, batch_size=train_batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, shuffle=train_sampler is None, sampler=train_sampler, ) loaders["valid"] = DataLoader(valid_ds, batch_size=valid_batch_size, num_workers=num_workers, pin_memory=True) runner.train( fp16=fp16, model=model, criterion=criterions_dict, optimizer=optimizer, scheduler=None, callbacks=callbacks, loaders=loaders, logdir=os.path.join(log_dir, "warmup"), num_epochs=warmup, verbose=verbose, main_metric=main_metric, minimize_metric=False, checkpoint_data={"cmd_args": cmd_args}, ) del optimizer, loaders best_checkpoint = os.path.join(log_dir, "warmup", "checkpoints", "best.pth") model_checkpoint = os.path.join(log_dir, "warmup", "checkpoints", f"{checkpoint_prefix}_warmup.pth") clean_checkpoint(best_checkpoint, model_checkpoint) torch.cuda.empty_cache() gc.collect() if run_train: loaders = collections.OrderedDict() callbacks = default_callbacks.copy() criterions_dict = {} losses = [] if online_pseudolabeling: unlabeled_label = get_pseudolabeling_dataset( data_dir, include_masks=False, image_size=image_size, augmentation=None ) unlabeled_train = get_pseudolabeling_dataset( data_dir, include_masks=True, image_size=image_size, augmentation=augmentations, train_on_crops=train_on_crops, enable_post_image_transform=enable_post_image_transform, ) loaders["label"] = DataLoader( unlabeled_label, batch_size=valid_batch_size, num_workers=num_workers, pin_memory=True ) train_ds = train_ds + unlabeled_train train_sampler = None callbacks += [ CEOnlinePseudolabelingCallback2d( unlabeled_train, pseudolabel_loader="label", prob_threshold=0.75, output_key=OUTPUT_MASK_KEY, unlabeled_class=UNLABELED_SAMPLE, label_frequency=5, ) ] print("Using online pseudolabeling with ", len(unlabeled_label), "samples") loaders["train"] = DataLoader( train_ds, batch_size=train_batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, shuffle=train_sampler is None, sampler=train_sampler, ) loaders["valid"] = DataLoader(valid_ds, batch_size=valid_batch_size, num_workers=num_workers, pin_memory=True) # Create losses for criterion in segmentation_losses: if isinstance(criterion, (list, tuple)) and len(criterion) == 2: loss_name, loss_weight = criterion else: loss_name, loss_weight = criterion[0], 1.0 cd, criterion, criterion_name = get_criterion_callback( loss_name, prefix="segmentation", input_key=INPUT_MASK_KEY, output_key=OUTPUT_MASK_KEY, loss_weight=float(loss_weight), ) criterions_dict.update(cd) callbacks.append(criterion) losses.append(criterion_name) print(INPUT_MASK_KEY, "Using loss", loss_name, loss_weight) if args.mask4 is not None: for criterion in args.mask4: if isinstance(criterion, (list, tuple)): loss_name, loss_weight = criterion else: loss_name, loss_weight = criterion, 1.0 cd, criterion, criterion_name = get_criterion_callback( loss_name, prefix="mask4", input_key=INPUT_MASK_KEY, output_key=OUTPUT_MASK_4_KEY, loss_weight=float(loss_weight), ) criterions_dict.update(cd) callbacks.append(criterion) losses.append(criterion_name) print(OUTPUT_MASK_4_KEY, "Using loss", loss_name, loss_weight) if args.mask8 is not None: for criterion in args.mask8: if isinstance(criterion, (list, tuple)): loss_name, loss_weight = criterion else: loss_name, loss_weight = criterion, 1.0 cd, criterion, criterion_name = get_criterion_callback( loss_name, prefix="mask8", input_key=INPUT_MASK_KEY, output_key=OUTPUT_MASK_8_KEY, loss_weight=float(loss_weight), ) criterions_dict.update(cd) callbacks.append(criterion) losses.append(criterion_name) print(OUTPUT_MASK_8_KEY, "Using loss", loss_name, loss_weight) if args.mask16 is not None: for criterion in args.mask16: if isinstance(criterion, (list, tuple)): loss_name, loss_weight = criterion else: loss_name, loss_weight = criterion, 1.0 cd, criterion, criterion_name = get_criterion_callback( loss_name, prefix="mask16", input_key=INPUT_MASK_KEY, output_key=OUTPUT_MASK_16_KEY, loss_weight=float(loss_weight), ) criterions_dict.update(cd) callbacks.append(criterion) losses.append(criterion_name) print(OUTPUT_MASK_16_KEY, "Using loss", loss_name, loss_weight) if args.mask32 is not None: for criterion in args.mask32: if isinstance(criterion, (list, tuple)): loss_name, loss_weight = criterion else: loss_name, loss_weight = criterion, 1.0 cd, criterion, criterion_name = get_criterion_callback( loss_name, prefix="mask32", input_key=INPUT_MASK_KEY, output_key=OUTPUT_MASK_32_KEY, loss_weight=float(loss_weight), ) criterions_dict.update(cd) callbacks.append(criterion) losses.append(criterion_name) print(OUTPUT_MASK_32_KEY, "Using loss", loss_name, loss_weight) if disaster_type_loss is not None: callbacks += [ ConfusionMatrixCallback( input_key=DISASTER_TYPE_KEY, output_key=DISASTER_TYPE_KEY, class_names=DISASTER_TYPES, ignore_index=UNKNOWN_DISASTER_TYPE_CLASS, prefix=f"{DISASTER_TYPE_KEY}/confusion_matrix", ), AccuracyCallback( input_key=DISASTER_TYPE_KEY, output_key=DISASTER_TYPE_KEY, prefix=f"{DISASTER_TYPE_KEY}/accuracy", activation="Softmax", ), ] for criterion in disaster_type_loss: if isinstance(criterion, (list, tuple)): loss_name, loss_weight = criterion else: loss_name, loss_weight = criterion, 1.0 cd, criterion, criterion_name = get_criterion_callback( loss_name, prefix=DISASTER_TYPE_KEY, input_key=DISASTER_TYPE_KEY, output_key=DISASTER_TYPE_KEY, loss_weight=float(loss_weight), ignore_index=UNKNOWN_DISASTER_TYPE_CLASS, ) criterions_dict.update(cd) callbacks.append(criterion) losses.append(criterion_name) print(DISASTER_TYPE_KEY, "Using loss", loss_name, loss_weight) if damage_type_loss is not None: callbacks += [ # MultilabelConfusionMatrixCallback( # input_key=DAMAGE_TYPE_KEY, # output_key=DAMAGE_TYPE_KEY, # class_names=DAMAGE_TYPES, # prefix=f"{DAMAGE_TYPE_KEY}/confusion_matrix", # ), AccuracyCallback( input_key=DAMAGE_TYPE_KEY, output_key=DAMAGE_TYPE_KEY, prefix=f"{DAMAGE_TYPE_KEY}/accuracy", activation="Sigmoid", threshold=0.5, ) ] for criterion in damage_type_loss: if isinstance(criterion, (list, tuple)): loss_name, loss_weight = criterion else: loss_name, loss_weight = criterion, 1.0 cd, criterion, criterion_name = get_criterion_callback( loss_name, prefix=DAMAGE_TYPE_KEY, input_key=DAMAGE_TYPE_KEY, output_key=DAMAGE_TYPE_KEY, loss_weight=float(loss_weight), ) criterions_dict.update(cd) callbacks.append(criterion) losses.append(criterion_name) print(DAMAGE_TYPE_KEY, "Using loss", loss_name, loss_weight) if embedding_criterion is not None: cd, criterion, criterion_name = get_criterion_callback( embedding_criterion, prefix="embedding", input_key=INPUT_MASK_KEY, output_key=OUTPUT_EMBEDDING_KEY, loss_weight=1.0, ) criterions_dict.update(cd) callbacks.append(criterion) losses.append(criterion_name) print(OUTPUT_EMBEDDING_KEY, "Using loss", embedding_criterion) callbacks += [ CriterionAggregatorCallback(prefix="loss", loss_keys=losses), OptimizerCallback(accumulation_steps=accumulation_steps, decouple_weight_decay=False), ] optimizer = get_optimizer( optimizer_name, get_optimizable_parameters(model), learning_rate, weight_decay=weight_decay ) scheduler = get_scheduler( scheduler_name, optimizer, lr=learning_rate, num_epochs=num_epochs, batches_in_epoch=len(loaders["train"]) ) if isinstance(scheduler, CyclicLR): callbacks += [SchedulerCallback(mode="batch")] print("Train session :", checkpoint_prefix) print(" FP16 mode :", fp16) print(" Fast mode :", args.fast) print(" Epochs :", num_epochs) print(" Workers :", num_workers) print(" Data dir :", data_dir) print(" Log dir :", log_dir) print("Data ") print(" Augmentations :", augmentations) print(" Train size :", len(loaders["train"]), len(train_ds)) print(" Valid size :", len(loaders["valid"]), len(valid_ds)) print(" Image size :", image_size) print(" Train on crops :", train_on_crops) print(" Balance :", balance) print(" Buildings only :", only_buildings) print(" Post transform :", enable_post_image_transform) print("Model :", model_name) print(" Parameters :", count_parameters(model)) print(" Dropout :", dropout) print("Optimizer :", optimizer_name) print(" Learning rate :", learning_rate) print(" Weight decay :", weight_decay) print(" Scheduler :", scheduler_name) print(" Batch sizes :", train_batch_size, valid_batch_size) print(" Criterion :", segmentation_losses) print(" Damage type :", damage_type_loss) print(" Disaster type :", disaster_type_loss) print(" Embedding :", embedding_criterion) # model training runner.train( fp16=fp16, model=model, criterion=criterions_dict, optimizer=optimizer, scheduler=scheduler, callbacks=callbacks, loaders=loaders, logdir=os.path.join(log_dir, "main"), num_epochs=num_epochs, verbose=verbose, main_metric=main_metric, minimize_metric=False, checkpoint_data={"cmd_args": vars(args)}, ) # Training is finished. Let's run predictions using best checkpoint weights best_checkpoint = os.path.join(log_dir, "main", "checkpoints", "best.pth") model_checkpoint = os.path.join(log_dir, "main", "checkpoints", f"{checkpoint_prefix}.pth") clean_checkpoint(best_checkpoint, model_checkpoint) del optimizer, loaders if __name__ == "__main__": main()
[ "torch.cuda.empty_cache", "torch.utils.data.DataLoader" ]
1.3
mayankj/xView2-Solution
804aa15a3d9f28c7c1d73e50ce0ed0c359a0493e
1.10
import torch from torch import cat from torch.nn import Conv2d from torch.nn import Linear from torch.nn import Module from torch.nn import ConvTranspose2d from torch.nn import LeakyReLU from torch.nn import Tanh from torch.nn import MaxPool2d from torch import zeros_like class ConvMPN(Module): def __init__(self): super().__init__() self.conv1 = Conv2d(in_channels=3*16, out_channels=2*16, kernel_size=(3, 3), stride=(1, 1), padding=1) self.conv2 = Conv2d(in_channels=2*16, out_channels=2*16, kernel_size=(3, 3), stride=(1, 1), padding=1) self.conv3 = Conv2d(in_channels=2*16, out_channels=16, kernel_size=(3, 3), stride=(1, 1), padding=1) self.leaky_relu = LeakyReLU(0.1) def get_nodes(self, feature_vectors, edges, include_neighbours=True): device = feature_vectors.device nodes = zeros_like(feature_vectors, device=device) if include_neighbours: index = torch.where(edges[:, 1] > 0) else: index = torch.where(edges[:, 1] < 0) src = torch.cat([edges[index[0], 0], edges[index[0], 2]]).long() dst = torch.cat([edges[index[0], 2], edges[index[0], 0]]).long() src = feature_vectors[src.contiguous()] dst = dst.view(-1, 1, 1, 1).expand_as(src).to(device) return nodes.scatter_add(0, dst, src) def cat_nodes(self, feature_vectors, edges): neighbouring_nodes = self.get_nodes(feature_vectors, edges, include_neighbours=True, ) non_neighbouring_nodes = self.get_nodes(feature_vectors, edges, include_neighbours=False) encoding = torch.cat([feature_vectors, neighbouring_nodes, non_neighbouring_nodes], 1) return encoding def forward(self, x, edges): x = self.cat_nodes(x, edges) x = self.conv1(x) x = self.leaky_relu(x) x = self.conv2(x) x = self.leaky_relu(x) x = self.conv3(x) x = self.leaky_relu(x) return x class Generator(Module): def __init__(self): super().__init__() self.linear_reshape_1 = Linear(138, 1024) self.conv_mpn_1 = ConvMPN() self.upsample_1 = ConvTranspose2d(16, 16, 4, 2, 1) self.conv_mpn_2 = ConvMPN() self.upsample_2 = ConvTranspose2d(16, 16, 4, 2, 1) self.conv_1 = Conv2d(16, 256, 3, 1, 1) self.leaky_relu = LeakyReLU(0.1) self.conv_2 = Conv2d(256, 128, 3, 1, 1) self.conv_3 = Conv2d(128, 1, 3, 1, 1) self.tanh = Tanh() def forward(self, z, t, edges): z = z.view(-1, 128)# t = t.view(-1, 10) # x = cat([z, t], 1) x = self.linear_reshape_1(x) x = x.view(-1, 16, 8, 8) x = self.conv_mpn_1(x, edges).view(-1, *x.shape[1:]) x = self.upsample_1(x) x = self.leaky_relu(x) x = self.conv_mpn_2(x, edges).view(-1, *x.shape[1:]) x = self.upsample_2(x) x = self.leaky_relu(x) x = self.conv_1(x.view(-1, x.shape[1], *x.shape[2:])) x = self.leaky_relu(x) x = self.conv_2(x) x = self.leaky_relu(x) x = self.conv_3(x) x = self.tanh(x) x = x.view(-1, *x.shape[2:]) return x class Discriminator(Module): def __init__(self): super().__init__() self.linear_reshape_1 = Linear(10, 8192) self.leaky_relu = LeakyReLU(0.1) self.conv_1 = Conv2d(9, 16, 3, 1, 1, bias=True) self.conv_2 = Conv2d(16, 16, 3, 1, 1) self.conv_3 = Conv2d(16, 16, 3, 1, 1) self.conv_mpn_1 = ConvMPN() self.downsample_1 = Conv2d(16, 16, 3, 2, 1) self.conv_mpn_2 = ConvMPN() self.downsample_2 = Conv2d(16, 16, 3, 2, 1) self.dec_conv_1 = Conv2d(16, 256, 3, 2, 1) self.dec_conv_2 = Conv2d(256, 128, 3, 2, 1) self.dec_conv_3 = Conv2d(128, 128, 3, 2, 1) self.pool_reshape_linear = Linear(128, 1) def add_pool(self, x, nd_to_sample): dtype, device = x.dtype, x.device batch_size = torch.max(nd_to_sample) + 1 pooled_x = torch.zeros(batch_size, x.shape[-1], device=device).float() pool_to = nd_to_sample.view(-1, 1).expand_as(x).to(device) pooled_x = pooled_x.scatter_add(0, pool_to, x) return pooled_x def forward(self, x, t, edges, nd_to_sample): x = x.view(-1, 1, 32, 32) t = self.linear_reshape_1(t) t = t.view(-1, 8, 32, 32) x = cat([x, t], 1) x = self.conv_1(x) x = self.leaky_relu(x) x = self.conv_2(x) x = self.leaky_relu(x) x = self.conv_3(x) x = self.leaky_relu(x) x = self.conv_mpn_1(x, edges) x = self.downsample_1(x) x = self.leaky_relu(x) x = self.conv_mpn_2(x, edges) x = self.downsample_2(x) x = self.leaky_relu(x) x = self.dec_conv_1(x) x = self.leaky_relu(x) x = self.dec_conv_2(x) x = self.leaky_relu(x) x = self.dec_conv_3(x) x = self.leaky_relu(x) x = x.view(-1, x.shape[1]) x = self.add_pool(x, nd_to_sample) x = self.pool_reshape_linear(x) return x
[ "torch.nn.Linear", "torch.zeros", "torch.cat", "torch.max", "torch.nn.Tanh", "torch.nn.LeakyReLU", "torch.nn.ConvTranspose2d", "torch.nn.Conv2d", "torch.zeros_like", "torch.where" ]
1.10.0
athatheo/House-GANs-Reproduction
00cc807f1e74f88eef5ed81615bfd87a39c52f94
1.5
# ------------------------------------------------------------------------ # Copyright (c) 2021 megvii-model. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR) # Copyright (c) 2020 SenseTime. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ import copy from typing import Optional, List import math import torch import torch.nn.functional as F from torch import nn, Tensor from util.misc import inverse_sigmoid from models.row_column_decoupled_attention import MultiheadRCDA class Transformer(nn.Module): def __init__(self, d_model=256, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0., activation="relu", num_feature_levels=3,num_query_position = 300,num_query_pattern=3, spatial_prior="learned",attention_type="RCDA"): super().__init__() self.d_model = d_model self.nhead = nhead self.attention_type = attention_type encoder_layer = TransformerEncoderLayerSpatial(d_model, dim_feedforward, dropout, activation, nhead , attention_type) encoder_layer_level = TransformerEncoderLayerLevel(d_model, dim_feedforward, dropout, activation, nhead) decoder_layer = TransformerDecoderLayer(d_model, dim_feedforward, dropout, activation, nhead, num_feature_levels, attention_type) if num_feature_levels == 1: self.num_encoder_layers_level = 0 else: self.num_encoder_layers_level = num_encoder_layers // 2 self.num_encoder_layers_spatial = num_encoder_layers - self.num_encoder_layers_level self.encoder_layers = _get_clones(encoder_layer, self.num_encoder_layers_spatial) self.encoder_layers_level = _get_clones(encoder_layer_level, self.num_encoder_layers_level) self.decoder_layers = _get_clones(decoder_layer, num_decoder_layers) self.spatial_prior=spatial_prior if num_feature_levels>1: self.level_embed = nn.Embedding(num_feature_levels, d_model) self.num_pattern = num_query_pattern self.pattern = nn.Embedding(self.num_pattern, d_model) self.num_position = num_query_position if self.spatial_prior == "learned": self.position = nn.Embedding(self.num_position, 2) self.adapt_pos2d = nn.Sequential( nn.Linear(d_model, d_model), nn.ReLU(), nn.Linear(d_model, d_model), ) self.adapt_pos1d = nn.Sequential( nn.Linear(d_model, d_model), nn.ReLU(), nn.Linear(d_model, d_model), ) self.num_layers = num_decoder_layers num_classes = 91 self.class_embed = nn.Linear(d_model, num_classes) self.bbox_embed = MLP(d_model, d_model, 4, 3) self._reset_parameters() def _reset_parameters(self): num_pred = self.num_layers num_classes = 91 prior_prob = 0.01 bias_value = -math.log((1 - prior_prob) / prior_prob) self.class_embed.bias.data = torch.ones(num_classes) * bias_value nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0) nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0) if self.spatial_prior == "learned": nn.init.uniform_(self.position.weight.data, 0, 1) nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0) self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)]) self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)]) def forward(self, srcs, masks): # prepare input for decoder bs, l, c, h, w = srcs.shape if self.spatial_prior == "learned": reference_points = self.position.weight.unsqueeze(0).repeat(bs, self.num_pattern, 1) elif self.spatial_prior == "grid": nx=ny=round(math.sqrt(self.num_position)) self.num_position=nx*ny x = (torch.arange(nx) + 0.5) / nx y = (torch.arange(ny) + 0.5) / ny xy=torch.meshgrid(x,y) reference_points=torch.cat([xy[0].reshape(-1)[...,None],xy[1].reshape(-1)[...,None]],-1).cuda() reference_points = reference_points.unsqueeze(0).repeat(bs, self.num_pattern, 1) else: raise ValueError(f'unknown {self.spatial_prior} spatial prior') tgt = self.pattern.weight.reshape(1, self.num_pattern, 1, c).repeat(bs, 1, self.num_position, 1).reshape( bs, self.num_pattern * self.num_position, c) mask = masks[-1].unsqueeze(1).repeat(1,l,1,1).reshape(bs*l,h,w) pos_col, pos_row = mask2pos(mask) if self.attention_type=="RCDA": posemb_row = self.adapt_pos1d(pos2posemb1d(pos_row)) posemb_col = self.adapt_pos1d(pos2posemb1d(pos_col)) posemb_2d = None else: pos_2d = torch.cat([pos_row.unsqueeze(1).repeat(1, h, 1).unsqueeze(-1), pos_col.unsqueeze(2).repeat(1, 1, w).unsqueeze(-1)],dim=-1) posemb_2d = self.adapt_pos2d(pos2posemb2d(pos_2d)) posemb_row = posemb_col = None outputs = srcs.reshape(bs * l, c, h, w) for idx in range(len(self.encoder_layers)): outputs = self.encoder_layers[idx](outputs, mask, posemb_row, posemb_col,posemb_2d) if idx < self.num_encoder_layers_level: outputs = self.encoder_layers_level[idx](outputs, level_emb=self.level_embed.weight.unsqueeze(1).unsqueeze(0).repeat(bs,1,1,1).reshape(bs*l,1,c)) srcs = outputs.reshape(bs, l, c, h, w) output = tgt outputs_classes = [] outputs_coords = [] for lid, layer in enumerate(self.decoder_layers): output = layer(output, reference_points, srcs, mask, adapt_pos2d=self.adapt_pos2d, adapt_pos1d=self.adapt_pos1d, posemb_row=posemb_row, posemb_col=posemb_col,posemb_2d=posemb_2d) reference = inverse_sigmoid(reference_points) outputs_class = self.class_embed[lid](output) tmp = self.bbox_embed[lid](output) if reference.shape[-1] == 4: tmp += reference else: assert reference.shape[-1] == 2 tmp[..., :2] += reference outputs_coord = tmp.sigmoid() outputs_classes.append(outputs_class[None,]) outputs_coords.append(outputs_coord[None,]) output = torch.cat(outputs_classes, dim=0), torch.cat(outputs_coords, dim=0) return output class TransformerEncoderLayerSpatial(nn.Module): def __init__(self, d_model=256, d_ffn=1024, dropout=0., activation="relu", n_heads=8, attention_type="RCDA"): super().__init__() self.attention_type = attention_type if attention_type=="RCDA": attention_module=MultiheadRCDA elif attention_type == "nn.MultiheadAttention": attention_module=nn.MultiheadAttention else: raise ValueError(f'unknown {attention_type} attention_type') # self attention self.self_attn = attention_module(d_model, n_heads, dropout=dropout) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) # ffn self.ffn = FFN(d_model, d_ffn, dropout, activation) @staticmethod def with_pos_embed(tensor, pos): return tensor if pos is None else tensor + pos def forward(self, src, padding_mask=None, posemb_row=None, posemb_col=None,posemb_2d=None): # self attention bz, c, h, w = src.shape src = src.permute(0, 2, 3, 1) if self.attention_type=="RCDA": posemb_row = posemb_row.unsqueeze(1).repeat(1, h, 1, 1) posemb_col = posemb_col.unsqueeze(2).repeat(1, 1, w, 1) src2 = self.self_attn((src + posemb_row).reshape(bz, h * w, c), (src + posemb_col).reshape(bz, h * w, c), src + posemb_row, src + posemb_col, src, key_padding_mask=padding_mask)[0].transpose(0, 1).reshape(bz, h, w, c) else: src2 = self.self_attn((src + posemb_2d).reshape(bz, h * w, c).transpose(0, 1), (src + posemb_2d).reshape(bz, h * w, c).transpose(0, 1), src.reshape(bz, h * w, c).transpose(0, 1))[0].transpose(0, 1).reshape(bz, h, w, c) src = src + self.dropout1(src2) src = self.norm1(src) # ffn src = self.ffn(src) src = src.permute(0, 3, 1, 2) return src class TransformerEncoderLayerLevel(nn.Module): def __init__(self, d_model=256, d_ffn=1024, dropout=0., activation="relu", n_heads=8): super().__init__() # self attention self.self_attn_level = nn.MultiheadAttention(d_model, n_heads, dropout=dropout) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) # ffn self.ffn = FFN(d_model, d_ffn, dropout, activation) @staticmethod def with_pos_embed(tensor, pos): return tensor if pos is None else tensor + pos def forward(self, src, level_emb=0): # self attention bz, c, h, w = src.shape src = src.permute(0, 2, 3, 1) src2 = self.self_attn_level(src.reshape(bz, h * w, c) + level_emb, src.reshape(bz, h * w, c) + level_emb, src.reshape(bz, h * w, c))[0].reshape(bz, h, w, c) src = src + self.dropout1(src2) src = self.norm1(src) # ffn src = self.ffn(src) src = src.permute(0, 3, 1, 2) return src class TransformerDecoderLayer(nn.Module): def __init__(self, d_model=256, d_ffn=1024, dropout=0., activation="relu", n_heads=8, n_levels=3, attention_type="RCDA"): super().__init__() self.attention_type = attention_type self.attention_type = attention_type if attention_type=="RCDA": attention_module=MultiheadRCDA elif attention_type == "nn.MultiheadAttention": attention_module=nn.MultiheadAttention else: raise ValueError(f'unknown {attention_type} attention_type') # cross attention self.cross_attn = attention_module(d_model, n_heads, dropout=dropout) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) # self attention self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout) self.dropout2 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm(d_model) # level combination if n_levels>1: self.level_fc = nn.Linear(d_model * n_levels, d_model) # ffn self.ffn = FFN(d_model, d_ffn, dropout, activation) @staticmethod def with_pos_embed(tensor, pos): return tensor if pos is None else tensor + pos def forward(self, tgt, reference_points, srcs, src_padding_masks=None, adapt_pos2d=None, adapt_pos1d=None, posemb_row=None, posemb_col=None, posemb_2d=None): tgt_len = tgt.shape[1] query_pos = pos2posemb2d(reference_points.squeeze(2)) query_pos = adapt_pos2d(query_pos) # self attention q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), tgt.transpose(0, 1))[0].transpose(0, 1) tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) bz, l, c, h, w = srcs.shape srcs = srcs.reshape(bz * l, c, h, w).permute(0, 2, 3, 1) if self.attention_type == "RCDA": query_pos_x = adapt_pos1d(pos2posemb1d(reference_points[..., 0])) query_pos_y = adapt_pos1d(pos2posemb1d(reference_points[..., 1])) posemb_row = posemb_row.unsqueeze(1).repeat(1, h, 1, 1) posemb_col = posemb_col.unsqueeze(2).repeat(1, 1, w, 1) src_row = src_col = srcs k_row = src_row + posemb_row k_col = src_col + posemb_col tgt2 = self.cross_attn((tgt + query_pos_x).repeat(l, 1, 1), (tgt + query_pos_y).repeat(l, 1, 1), k_row, k_col, srcs, key_padding_mask=src_padding_masks)[0].transpose(0, 1) else: tgt2 = self.cross_attn((tgt + query_pos).repeat(l, 1, 1).transpose(0, 1), (srcs + posemb_2d).reshape(bz * l, h * w, c).transpose(0,1), srcs.reshape(bz * l, h * w, c).transpose(0, 1))[0].transpose(0,1) if l > 1: tgt2 = self.level_fc(tgt2.reshape(bz, l, tgt_len, c).permute(0, 2, 3, 1).reshape(bz, tgt_len, c * l)) tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) # ffn tgt = self.ffn(tgt) return tgt class FFN(nn.Module): def __init__(self, d_model=256, d_ffn=1024, dropout=0., activation='relu'): super().__init__() self.linear1 = nn.Linear(d_model, d_ffn) self.activation = _get_activation_fn(activation) self.dropout2 = nn.Dropout(dropout) self.linear2 = nn.Linear(d_ffn, d_model) self.dropout3 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm(d_model) def forward(self, src): src2 = self.linear2(self.dropout2(self.activation(self.linear1(src)))) src = src + self.dropout3(src2) src = self.norm2(src) return src class MLP(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(F"activation should be relu/gelu, not {activation}.") def build_transformer(args): return Transformer( d_model=args.hidden_dim, nhead=args.nheads, num_encoder_layers=args.enc_layers, num_decoder_layers=args.dec_layers, dim_feedforward=args.dim_feedforward, dropout=args.dropout, activation="relu", num_feature_levels=args.num_feature_levels, num_query_position=args.num_query_position, num_query_pattern=args.num_query_pattern, spatial_prior=args.spatial_prior, attention_type=args.attention_type, ) def pos2posemb2d(pos, num_pos_feats=128, temperature=10000): scale = 2 * math.pi pos = pos * scale dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos.device) dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats) pos_x = pos[..., 0, None] / dim_t pos_y = pos[..., 1, None] / dim_t pos_x = torch.stack((pos_x[..., 0::2].sin(), pos_x[..., 1::2].cos()), dim=-1).flatten(-2) pos_y = torch.stack((pos_y[..., 0::2].sin(), pos_y[..., 1::2].cos()), dim=-1).flatten(-2) posemb = torch.cat((pos_y, pos_x), dim=-1) return posemb def pos2posemb1d(pos, num_pos_feats=256, temperature=10000): scale = 2 * math.pi pos = pos * scale dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos.device) dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats) pos_x = pos[..., None] / dim_t posemb = torch.stack((pos_x[..., 0::2].sin(), pos_x[..., 1::2].cos()), dim=-1).flatten(-2) return posemb def mask2pos(mask): not_mask = ~mask y_embed = not_mask[:, :, 0].cumsum(1, dtype=torch.float32) x_embed = not_mask[:, 0, :].cumsum(1, dtype=torch.float32) y_embed = (y_embed - 0.5) / y_embed[:, -1:] x_embed = (x_embed - 0.5) / x_embed[:, -1:] return y_embed, x_embed
[ "torch.nn.Linear", "torch.cat", "torch.nn.Dropout", "torch.nn.LayerNorm", "torch.arange", "torch.nn.init.constant_", "torch.ones", "torch.nn.MultiheadAttention", "torch.nn.ReLU", "torch.meshgrid", "torch.nn.init.uniform_", "torch.nn.Embedding" ]
1.5.0
Honghe/AnchorDETR
fc3d45441241cd689b28878d3aa4b0bffb33a8b8
1.3
import logging from pathlib import Path from typing import Any, Optional, Tuple, Union import gym import torch import pickle as pkl from rltoolkit import config, utils from rltoolkit.buffer import Memory from rltoolkit.stats_logger import StatsLogger from rltoolkit.tensorboard_logger import TensorboardWriter logger = logging.getLogger(__name__) class MetaLearner: def __init__( self, env_name: str, use_gpu: bool, debug_mode: bool = config.DEBUG_MODE, tensorboard_dir: Union[str, None] = config.TENSORBOARD_DIR, tensorboard_comment: str = config.TENSORBOARD_COMMENT, ): f"""Class with parameters common for RL and other interactions with environment Args: env_name (str): Name of the gym environment. use_gpu (bool): Use CUDA. debug_mode (bool, optional): Log additional info. Defaults to { config.DEBUG_MODE } tensorboard_dir (Union[str, None], optional): Path to tensorboard logs. Defaults to { config.TENSORBOARD_DIR }. tensorboard_comment (str, optional): Comment for tensorboard files. Defaults to { config.TENSORBOARD_COMMENT }. """ self.env_name = env_name if use_gpu and torch.cuda.is_available(): self.device = torch.device("cuda") else: self.device = torch.device("cpu") self.env = gym.make(self.env_name) self.discrete = isinstance(self.env.action_space, gym.spaces.Discrete) self.ob_dim = self.env.observation_space.shape[0] if self.discrete: self.ac_dim = self.env.action_space.n self.ac_lim = None else: self.ac_dim = self.env.action_space.shape[0] self.ac_lim = torch.tensor(self.env.action_space.high, device=self.device) self.obs_mean = torch.zeros(self.ob_dim, device=self.device) self.obs_std = torch.ones(self.ob_dim, device=self.device) self.iteration = 0 # used in tensorboard self.opt = torch.optim.Adam self.loss = {} self.debug_mode = debug_mode self.tensorboard_writer = None self.tensorboard_comment = ( "_" + tensorboard_comment if tensorboard_comment else "" ) self.tensorboard_dir = tensorboard_dir def run_tensorboard_if_needed(self): if self.tensorboard_writer is None and (self.tensorboard_dir is not None): self.tensorboard_writer = TensorboardWriter( env_name=self.env_name, log_dir=self.tensorboard_dir, filename=self.filename, render=self.render, ) def log_obs_mean_std_tensorboard(self): """ Log mean and std of observations in the tensorboard. """ self.run_tensorboard_if_needed() self.tensorboard_writer.log_obs_mean_std( self.iteration, self.obs_mean, self.obs_std ) def update_obs_mean_std(self, buffer: Memory) -> Memory: """ Update running average of mean and stds based on the buffer. Args: buffer (Memory) Returns: Memory """ buffer.update_obs_mean_std() self.obs_mean = buffer.obs_mean self.obs_std = buffer.obs_std if self.debug_mode and self.tensorboard_dir is not None: self.log_obs_mean_std_tensorboard() return buffer class RL(MetaLearner): def __init__( self, env_name: str = config.ENV_NAME, gamma: float = config.GAMMA, stats_freq: int = config.STATS_FREQ, test_episodes: int = config.TEST_EPISODES, batch_size: int = config.BATCH_SIZE, iterations: int = config.ITERATIONS, max_frames: int = None, return_done: Union[int, None] = config.RETURN_DONE, log_dir: str = config.LOG_DIR, use_gpu: bool = config.USE_GPU, verbose: int = config.VERBOSE, render: bool = config.RENDER, *args, **kwargs, ): f"""Basic parent class for reinforcement learning algorithms. Args: env_name (str, optional): Name of the gym environment. Defaults to { config.ENV_NAME }. gamma (float, optional): Discount factor. Defaults to { config.GAMMA }. stats_freq (int, optional): Frequency of logging the progress. Defaults to { config.STATS_FREQ }. batch_size (int, optional): Number of frames used for one algorithm step (could be higher because batch collection stops when rollout ends). Defaults to { config.BATCH_SIZE }. iterations (int, optional): Number of algorithms iterations. Defaults to { config.ITERATIONS }. max_frames (int, optional): Limit of frames for training. Defaults to { None }. return_done (Union[int, None], optional): target return, which will stop training if reached. Defaults to { config.RETURN_DONE }. log_dir (str, optional): Path for basic logs which includes final model. Defaults to { config.LOG_DIR }. use_gpu (bool, optional): Use CUDA. Defaults to { config.USE_GPU }. verbose (int, optional): Verbose level. Defaults to { config.VERBOSE }. render (bool, optional): Render rollouts to tensorboard. Defaults to { config.RENDER }. debug_mode (bool, optional): Log additional info. Defaults to { config.DEBUG_MODE } tensorboard_dir (Union[str, None], optional): Path to tensorboard logs. Defaults to { config.TENSORBOARD_DIR }. tensorboard_comment (str, optional): Comment for tensorboard files. Defaults to { config.TENSORBOARD_COMMENT }. """ super().__init__(env_name, use_gpu, *args, **kwargs) assert iterations > 0, f"Iteration has to be positive not {iterations}" if max_frames is not None: assert ( max_frames <= iterations * batch_size ), "max_frames should be smaller or equal than iterations * batch_size" self.max_frames = max_frames self.gamma = gamma self.stats_freq = stats_freq self.test_episodes = test_episodes self.batch_size = batch_size self.iterations = iterations self.return_done = return_done if log_dir is not None: self.log_dir = Path(log_dir) self.log_dir.mkdir(parents=True, exist_ok=True) else: self.log_dir = log_dir self.verbose = verbose self.render = render self.max_ep_len = self.env._max_episode_steps self.start_time = utils.get_time() self.hparams = { "hparams/gamma": self.gamma, "hparams/batch_size": self.batch_size, "hparams/type": utils.get_pretty_type_name(self), } self.shortnames = config.SHORTNAMES self.stats_logger = StatsLogger() def train(self, iterations=None): f""" Train RL model Args: iterations ([type], optional): Number of additional training iterations. If None performs number of iterations defined in self.iterations. Otherwise increase global counter by this value to run additional steps. Defaults to { None }. """ self.run_tensorboard_if_needed() if iterations: self.iterations += iterations while self.iteration < self.iterations: buffer, time_diff = self.perform_iteration() self.stats_logger.time_list.append(time_diff) running_return = self.stats_logger.calc_running_return(buffer) if self.return_done is not None and running_return >= self.return_done: break if self.iteration % self.stats_freq == 0: self.logs_after_iteration(buffer) if self.log_dir is not None: self.stats_logger.dump_stats(self.log_path) self.iteration += 1 # used also for logs if ( self.max_frames is not None and self.max_frames < self.stats_logger.frames ): logger.info(f"Reached max_frames at {self.iteration} iteration") # INFO break self.logs_after_iteration(buffer, done=True) if self.log_dir is not None: self.save() def test(self, episodes=None): f"""Test policy Args: episodes (int): Number of episodes. Defaults to { None }. Returns: float: mean episode reward """ mean_reward = None return mean_reward @utils.measure_time def perform_iteration(self): raise NotImplementedError def save_model(self): raise NotImplementedError def check_path(self, path): if self.filename is None and path is None: raise AttributeError elif path is None: path = str(self.log_path) + ".pkl" return path def collect_params_dict(self): params_dict = {} params_dict["actor"] = self.actor.state_dict() params_dict["critic"] = self.critic.state_dict() params_dict["obs_mean"] = self.obs_mean params_dict["obs_std"] = self.obs_std return params_dict def apply_params_dict(self, params_dict): self.actor.load_state_dict(params_dict["actor"]) self.critic.load_state_dict(params_dict["critic"]) self.obs_mean = params_dict["obs_mean"] self.obs_std = params_dict["obs_std"] def save(self, path: str = None): f"""Save RL object Args: path (str): Path to save """ path = self.check_path(path) with open(path, "wb") as f: params_dict = self.collect_params_dict() pkl.dump(params_dict, f) def load(self, path: str): """Load RL object Args: path (str): Path to saved RL object """ path = self.check_path(path) with open(path, "rb") as f: params_dict = pkl.load(f) self.apply_params_dict(params_dict) @property def log_iteration(self): return self.iteration // self.stats_freq @property def filename(self): suffix = self.get_tensorboard_hparams_suffix() suffix += self.tensorboard_comment filename = self.start_time + suffix return filename @property def log_path(self): log_path = Path(self.log_dir) log_path = log_path / self.filename return log_path def logs_after_iteration(self, buffer: Memory, done: bool = False): f"""Logs writer Args: buffer (Memory): Buffer used for tensorboard done (bool, optional): Finalize tensorboard logging due to last iteration. Defaults to { False }. """ if self.test_episodes is not None: self.stats_logger.test_return = self.test() running_return = self.stats_logger.running_return if self.verbose: if done: self.stats_logger.task_done(self.iteration) else: self.stats_logger.log_stats(self.iteration) self.stats_logger.stats.append([self.iteration, running_return]) self.stats_logger.reset_time_list() if self.tensorboard_writer is not None: self.add_tensorboard_logs(buffer, done) def add_tensorboard_logs(self, buffer: Memory, done: bool): self.tensorboard_writer.log_running_return( self.iteration, self.stats_logger.frames, self.stats_logger.rollouts, self.stats_logger.running_return, ) if self.test_episodes: self.tensorboard_writer.log_test_return( self.iteration, self.stats_logger.frames, self.stats_logger.rollouts, self.stats_logger.test_return, ) if (self.log_iteration % 5) == 0 or done: _, rendering_time = self.tensorboard_writer.record_episode( self, self.iteration, done ) self.tensorboard_writer.log_returns(self.iteration, buffer) self.tensorboard_writer.log_actions(self.iteration, buffer) self.tensorboard_writer.log_observations(self.iteration, buffer) self.tensorboard_writer.log_loss(self.iteration, self.loss) def get_tensorboard_hparams_suffix(self): suffix = "" for key, val in self.hparams.items(): if key in self.shortnames.keys(): key = self.shortnames[key] else: key = key.split("/")[1] if isinstance(val, float): val = f"{val:.2}" else: val = str(val) suffix += f"-{key}{val}" return suffix def _get_initial_obs_mean_std( self, obs_norm: Any ) -> Tuple[Optional[torch.tensor], Optional[torch.tensor]]: f""" Check if observations are normalized and if so return initial mean and std, None otherwise. Returns: Tuple[Optional[torch.tensor], Optional[torch.tensor]]: obs mean and std """ if obs_norm: obs_mean = torch.zeros(self.ob_dim, device=self.device) obs_std = torch.ones(self.ob_dim, device=self.device) else: obs_mean = None obs_std = None return obs_mean, obs_std
[ "torch.zeros", "torch.device", "torch.ones", "torch.cuda.is_available", "torch.tensor" ]
1.3.1
raznem/sac_ppo
c18e9bd32a70fcc4bc413565c6b885d7560b8b5a
1.8
#Linear Module to use with ZeRO Stage 3 to allow for parameter memory release #after the module execution during forward #Instead of saving variables using save_for_backward, we save variable ids #Allowing us to retrieve the variable without creating pointer to it #Which allows for underlying tensor to be garbage collected #When partitioned as needed by the Zero Stage 3 optimizer #TODO instead of patching Linear module, we could patch the ctx.save_for_backward #ctx.saved_tensors so that this approach works for all nn modules that are built upon #torch.nn.function. However the issue is that many modules uses C++ implementations #which does not have pytorch implementation. Eg torch.addmm which acts as a functional #when implemented outside of torch.autograd.Function import math import torch from torch import Tensor from torch.nn.parameter import Parameter from torch.nn import init from torch.nn.modules.module import Module from deepspeed.runtime.utils import noop_decorator tensor_map = {} def print_rank_0(message, debug=False, force=False): if torch.distributed.get_rank() == 0 and (debug or force): print(message) try: autocast_custom_fwd = torch.cuda.amp.custom_fwd autocast_custom_bwd = torch.cuda.amp.custom_bwd except (ImportError, AttributeError) as exp: autocast_custom_fwd = noop_decorator autocast_custom_bwd = noop_decorator class LinearFunctionForZeroStage3(torch.autograd.Function): # Note that both forward and backward are @staticmethods @staticmethod @autocast_custom_fwd # bias is an optional argument def forward(ctx, input, weight, bias=None): #print("In ZeRO Linear Function") weight_id = id(weight) bias_id = id(bias) #ctx.save_for_backward(input, weight, bias) ctx.save_for_backward(input, torch.tensor(weight_id), torch.tensor(bias_id)) tensor_map[weight_id] = weight tensor_map[bias_id] = bias if input.dim() == 2 and bias is not None: # fused op is marginally faster ret = torch.addmm(bias, input, weight.t()) else: output = input.matmul(weight.t()) if bias is not None: output += bias ret = output return ret # This function has only a single output, so it gets only one gradient @staticmethod @autocast_custom_bwd def backward(ctx, grad_output): # This is a pattern that is very convenient - at the top of backward # unpack saved_tensors and initialize all gradients w.r.t. inputs to # None. Thanks to the fact that additional trailing Nones are # ignored, the return statement is simple even when the function has # optional inputs. #input, weight, bias = ctx.saved_tensors input, weight_id, bias_id = ctx.saved_tensors weight = tensor_map[weight_id.item()] bias = tensor_map[bias_id.item()] grad_input = grad_weight = grad_bias = None #print(f"backward shaped grad_output {grad_output.shape}, input {input.shape}, weight {weight.shape} and bias {bias.shape if bias is not None else None}") # These needs_input_grad checks are optional and there only to # improve efficiency. If you want to make your code simpler, you can # skip them. Returning gradients for inputs that don't require it is # not an error. if ctx.needs_input_grad[0]: #print(f"Computing grad input weight {weight.shape} grad_output {grad_output.shape}") grad_input = grad_output.matmul(weight) #print(f"Computed grad input {grad_input.shape}") if ctx.needs_input_grad[1]: #print("Computing grad weight") dim = grad_output.dim() if dim > 2: grad_weight = grad_output.reshape(-1, grad_output.shape[-1]).t().matmul( input.reshape(-1, input.shape[-1])) else: grad_weight = grad_output.t().matmul(input) #print(f"Computed grad weight grad_weight {grad_weight.shape}") if bias is not None and ctx.needs_input_grad[2]: #print("Computing grad bias") grad_bias = grad_output.sum(0) #print("Done computing grad bias") #print("needs bias") #print(f"backward shaped grad_input {grad_input.shape}, grad_weight {grad_weight.shape}, grad_bias {grad_bias.shape if grad_bias is not None else None}") return grad_input, grad_weight, grad_bias def zero3_linear_wrap(input, weight, bias=None): if bias is None: return LinearFunctionForZeroStage3.apply(input, weight) else: return LinearFunctionForZeroStage3.apply(input, weight, bias) class LinearModuleForZeroStage3(Module): r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`. The weights are pre-transposed and stored as A^T instead of transposing during each forward. Memory savings proportional to the parameter size. Args: in_features: size of each input sample out_features: size of each output sample bias: If set to ``False``, the layer will not learn an additive bias. Default: ``True`` Shape: - Input: :math:`(N, *, H_{in})` where :math:`*` means any number of additional dimensions and :math:`H_{in} = \text{in\_features}` - Output: :math:`(N, *, H_{out})` where all but the last dimension are the same shape as the input and :math:`H_{out} = \text{out\_features}`. Attributes: weight: the learnable weights of the module of shape :math:`(\text{out\_features}, \text{in\_features})`. The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in\_features}}` bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where :math:`k = \frac{1}{\text{in\_features}}` Examples:: >>> m = nn.Linear(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) """ __constants__ = ['in_features', 'out_features'] in_features: int out_features: int weight: Tensor def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None: super(LinearModuleForZeroStage3, self).__init__() print("Building ZeRO module") self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.Tensor(out_features, in_features)) if bias: self.bias = Parameter(torch.Tensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) -> None: init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) init.uniform_(self.bias, -bound, bound) def forward(self, input: Tensor) -> Tensor: return LinearFunctionForZeroStage3.apply(input, self.weight, self.bias) def extra_repr(self) -> str: return 'in_features={}, out_features={}, bias={}'.format( self.in_features, self.out_features, self.bias is not None)
[ "torch.nn.init._calculate_fan_in_and_fan_out", "torch.tensor", "torch.nn.init.uniform_", "torch.distributed.get_rank", "torch.Tensor" ]
1.8
manuelciosici/DeepSpeed
3da841853ca07abf3a09e7bd325a576c4e642c11
1.8
import copy import torch import deepspeed import deepspeed.ops.transformer as transformer_inference from .replace_policy import HFBertLayerPolicy, HFGPT2LayerPolicy, HFGPTJLayerPolicy from .replace_policy import replace_policies from ..constants import INFERENCE_GENERIC_MODE, INFERENCE_SPECIALIZED_MODE from ..runtime.weight_quantizer import WeightQuantization from torch import nn class LinearAllreduce(nn.Module): def __init__(self, weight, bias=None, mp_group=None): super(LinearAllreduce, self).__init__() self.weight = weight self.bias = bias self.mp_group = mp_group def forward(self, input): output = torch.matmul(input, self.weight) if self.mp_group is not None: torch.distributed.all_reduce(output, group=self.mp_group) if self.bias is not None: output += self.bias return output class LinearLayer(nn.Module): def __init__(self, weight, bias=None): super(LinearLayer, self).__init__() self.weight = weight self.bias = bias def forward(self, input): output = torch.matmul(input, self.weight) if self.bias is not None: output += self.bias return output class ReplaceWithTensorSlicing: def __init__(self, mp_group=None): if mp_group is not None: self.gpu_index = torch.distributed.get_rank(group=mp_group) else: self.gpu_index = 0 def merge_assert(self, dim1, dim2): assert dim1 > dim2, \ 'Merging tensors is not allowed here! Please use deepspeed load_checkpoint\ for merging your checkpoints before replacing the transformer layer with\ inference-kernels' def qkv_copy(self, dst, src): if src is None: return src src_shape = src.shape dst_shape = dst.shape src_split = torch.split(src.data, src.shape[-1] // 3, dim=-1) if (len(src_shape) == 2 and len(dst_shape) == 2): if src_shape[1] == dst_shape[1]: return torch.nn.Parameter(src) self.merge_assert(src_shape[1], dst_shape[1]) qkv_size = dst_shape[1] // 3 qkv_split = [torch.split(src_s, qkv_size, dim=1) for src_s in src_split] weight_split = [ torch.cat([qkv_s[i] for qkv_s in qkv_split], axis=1) for i in range(len(qkv_split[0])) ] dst.data.copy_(weight_split[self.gpu_index].to( torch.cuda.current_device()).contiguous()) else: if src_shape[0] == dst_shape[0]: return torch.nn.Parameter(src) qkv_size = dst_shape[0] // 3 qkv_split = [torch.split(src_s, qkv_size, dim=0) for src_s in src_split] bias_split = [ torch.cat([qkv_s[i] for qkv_s in qkv_split], axis=0) for i in range(len(qkv_split[0])) ] dst.data.copy_(bias_split[self.gpu_index].to( torch.cuda.current_device()).contiguous()) return torch.nn.Parameter(dst) def copy(self, dst, src): if src is None: return src src_shape = src.shape dst_shape = dst.shape if (len(src_shape) == 2 and len(dst_shape) == 2): if src_shape[0] == dst_shape[0] and src_shape[1] == dst_shape[1]: return torch.nn.Parameter(src) if src_shape[0] != dst_shape[0]: self.merge_assert(src_shape[0], dst_shape[0]) weight_split = torch.split(src, dst_shape[0]) else: self.merge_assert(src_shape[1], dst_shape[1]) weight_split = torch.split(src.data, dst_shape[1], dim=1) dst.data.copy_(weight_split[self.gpu_index].to( torch.cuda.current_device()).contiguous()) else: if src_shape[0] == dst_shape[0]: return torch.nn.Parameter(src) bias_split = torch.split(src.data, dst_shape[-1]) dst.data.copy_(bias_split[self.gpu_index].to( torch.cuda.current_device()).contiguous()) return torch.nn.Parameter(dst) def replace_transformer_layer(orig_layer_impl, model, policy=None, micro_batch_size=-1, config=None, seed=-1, hidden_size=-1, num_attention_heads=-1, mp_size=1, training_mp_size=1, mp_group=None, ep_group=None, expert_mp_group=None, preln=True, fp16=True, local_rank=-1, stochastic_mode=True, training=True, quantize=False, quantize_settings=None, triangular_masking=False, return_tuple=True, replace_with_kernel_inject=False, linear_layer_setting=None, moe=False, moe_experts=1, moe_type='standard'): """ Replace bert-style transformer layers with DeepSpeed's transformer layer Arguments: orig_layer_impl (torch.nn.Module): the original transformer layer implementation to look for, e.g., transformers.modeling_bert.BertLayer. model (torch.nn.Module): user's nn.module representing their model policy: shows the policy for mapping from the orig_layer_impl to transformer parameters when replace_with_kernel_inject is set, otherwise, it provides the names of two linear layers as a tuple: (attention_output projection, transformer output projection) micro_batch_size (int): micro batch size per gpu used during training/eval config (dict): model config containing hidden size, attention heads, etc. seed (int): random seed value max_seq_length (int): max sequence length for training hidden_size (int): hidden dimension num_attention_heads (int): number of attention heads mp_size (int): model_parallelism degree mp_group : model_parallel group initialized on the modeling side preln (bool): does the original layer implementation do pre or post layer norm? fp16 (bool): fp16 or fp32 local_rank (int): GPU rank (optional), stochastic_mode (bool): whether to use stochastic mode training (bool): specifying whether kernel-injection is done for training/inference (set to false for inference-mode injection) quantize_settings (tuple): this setting shows how we can quantize a model for running it through the inference kernels. It includes (quantization_scales, merge_count, mlp_extra_grouping, quantize_groups). return_tuple (bool): if set, transformer layer returns a tuple as the output. Note: this flag needs to be set for huggingface models. replace_with_kernel_inject (bool): injection_mode, if true, kernels will be add along with configuring Tensor-Parallelism linear_layer_setting (tuple of modules) [Optional]: shows which two classes are used for linear layers and embedding layers attention_params: (list of strings) [Optional]: shows the parameters in the attention part that needs to be adjusted based on the model-parallelism Returns: Updated nn.module with replaced transformer layers """ def replace_with_policy(child, policy_cls, triangular_masking, inference=False, preln=True, layer_id=0): preln = False if policy_cls is HFBertLayerPolicy else preln if policy_cls is HFBertLayerPolicy: policy = policy_cls(child, inference=inference, preln=preln) else: policy = policy_cls(child, inference=inference) if inference: hidden_size, num_attention_heads = policy.get_hidden_heads() assert num_attention_heads % mp_size == 0,\ "To run the model parallel across the GPUs, the attention_heads require to be divisible by the world_size!" +\ "This is because the attention computation is partitioned evenly among the parallel GPUs." from deepspeed.moe.layer import MoE moe = False if hasattr(child, 'mlp') and isinstance(child.mlp, MoE): num_experts = child.mlp.num_experts moe = True attn_linear_layer, qkvw, qkvb, dense_w, dense_b, scale_attention, megatron_v2 = policy.attention() if not moe or moe_type == 'standard': mlp_linear_layer, _h4h_w, _h4h_b, _4hh_w, _4hh_b = policy.mlp() else: mlp_linear_layer, _h4h_w, _h4h_b, _4hh_w, _4hh_b, \ _res_h4h_w, _res_h4h_b, _res_4hh_w, _res_4hh_b, _res_coef = policy.mlp(moe_type) attn_nw, attn_nb, input_nw, input_nb = policy.layerNorm() if quantize: if policy_cls is not HFBertLayerPolicy: qkvw = qkvw.to(torch.int8) dense_w = dense_w.to(torch.int8) _h4h_w = [moe_w1.to(torch.int8) for moe_w1 in _h4h_w] if moe else _h4h_w.to(torch.int8) _4hh_w = [moe_w1.to(torch.int8) for moe_w1 in _4hh_w] if moe else _4hh_w.to(torch.int8) elif fp16: qkvw = qkvw.half() dense_w = dense_w.half() _h4h_w = [moe_w1.half() for moe_w1 in _h4h_w] if moe else _h4h_w.half() _4hh_w = [moe_w1.half() for moe_w1 in _4hh_w] if moe else _4hh_w.half() if quantize or fp16: qkvb = qkvb if qkvb is None else qkvb.half() dense_b = dense_b if dense_b is None else dense_b.half() _h4h_b = [moe_b1.half() for moe_b1 in _h4h_b] if moe else _h4h_b.half() _4hh_b = [moe_b1.half() for moe_b1 in _4hh_b] if moe else _4hh_b.half() attn_nw = attn_nw if attn_nw is None else attn_nw.half() attn_nb = attn_nb if attn_nb is None else attn_nb.half() input_nw = input_nw.half() input_nb = input_nb.half() if moe and moe_type == 'residual' and fp16: _res_h4h_b = _res_h4h_b.half() _res_4hh_b = _res_4hh_b.half() _res_h4h_w = _res_h4h_w.half() _res_4hh_w = _res_4hh_w.half() _res_coef = _res_coef.half() mp_replace = ReplaceWithTensorSlicing(mp_group=mp_group) #expert_mp_replace = ReplaceWithTensorSlicing(mp_group=expert_mp_group) if inference: if moe: ep_world_size = torch.distributed.get_world_size() local_ep_size = 1 if num_experts < ep_world_size else num_experts // ep_world_size transformer_config = transformer_inference.DeepSpeedMoEInferenceConfig( hidden_size=hidden_size, heads=num_attention_heads, layer_norm_eps=config.layer_norm_eps if hasattr( config, 'layer_norm_eps') else 1e-12, fp16=fp16, pre_layer_norm=preln, mp_size=mp_size, q_int8=quantize, moe_experts=local_ep_size, global_experts=num_experts, mlp_type=moe_type) else: rotary_dim = config.rotary_dim if hasattr(config, 'rotary_dim') else child.attention.rotary_ndims \ if hasattr(child, 'attention') and hasattr(child.attention,'rotary_ndims') else -1 transformer_config = transformer_inference.DeepSpeedInferenceConfig( hidden_size=hidden_size, heads=num_attention_heads, layer_norm_eps=config.layer_norm_eps if hasattr( config, 'layer_norm_eps') else (config.layer_norm_epsilon if hasattr(config, 'layer_norm_epsilon') else config.layernorm_epsilon if hasattr(config, 'layernorm_epsilon') else 1.0e-12), fp16=fp16, pre_layer_norm=preln, mp_size=mp_size, q_int8=quantize, return_tuple=(return_tuple or (policy_cls is HFBertLayerPolicy)), triangular_masking=(policy_cls is not HFBertLayerPolicy), local_attention=((config.attention_layers[layer_id] == "local") if hasattr(config, 'attention_layers') else False), window_size=(config.window_size if hasattr(config, 'window_size') else 1), rotary_dim=rotary_dim, mlp_after_attn=(rotary_dim is None or rotary_dim < 0), training_mp_size=training_mp_size) if quantize and quantize_settings is not None: (quantization_scales, merge_count, mlp_extra_grouping, quantize_groups) = quantize_settings if moe: new_module = transformer_inference.DeepSpeedMoEInference( transformer_config, mp_group=mp_group, ep_group=None if ep_group is None else ep_group[num_experts], expert_mp_group=None if expert_mp_group is None else expert_mp_group[num_experts], quantize_scales=quantization_scales[layer_id], quantize_groups=quantize_groups, merge_count=merge_count, mlp_extra_grouping=mlp_extra_grouping, qkv_merging=(policy_cls is HFBertLayerPolicy)) else: new_module = transformer_inference.DeepSpeedTransformerInference( transformer_config, mp_group=mp_group, quantize_scales=quantization_scales[layer_id], quantize_groups=quantize_groups, merge_count=merge_count, mlp_extra_grouping=mlp_extra_grouping, qkv_merging=(policy_cls is HFBertLayerPolicy)) if quantize and qkvw.dtype != torch.int8: quantize_bits = 8 quantizer = WeightQuantization() if policy_cls is HFBertLayerPolicy: data_quantized, _ = quantizer.quantize_data(qkvw.data, quantize_bits, quantize_groups * 3) else: data_quantized, _ = quantizer.quantize_data(qkvw.data, quantize_bits, quantize_groups) qkvw.data.copy_(data_quantized) qkvw.data = qkvw.data.to(torch.int8) else: if moe: new_module = transformer_inference.DeepSpeedMoEInference( transformer_config, mp_group=mp_group, ep_group=None if ep_group is None else ep_group[num_experts], expert_mp_group=None if expert_mp_group is None else expert_mp_group[num_experts], ) else: new_module = transformer_inference.DeepSpeedTransformerInference( transformer_config, mp_group=mp_group, ) new_module.config.scale_attention = scale_attention # we want the weights in [input, output] shape # linear layer is created with [input, output] shape # transpose it here to reduce inference cost! def transpose(data): data.reshape(-1).copy_(data.transpose(-1, -2).contiguous().reshape(-1)) data = data.reshape(data.shape[-1], data.shape[-2]) return data if attn_linear_layer: qkvw.data = transpose(qkvw.data) dense_w.data = transpose(dense_w.data) if megatron_v2: new_module.config.rotate_half = True new_module.config.rotate_every_two = False def _transpose(x): num_attention_heads_per_partition = transformer_config.heads // transformer_config.mp_size attention_head_size = x.shape[-1] // num_attention_heads_per_partition new_x_shape = x.size()[:-1] + (num_attention_heads_per_partition, attention_head_size) x_1 = x.view(*new_x_shape) (q, k, v) = torch.split(x_1, (x_1.shape[-1] // 3), dim=(x_1.dim() - 1)) if len(q.shape) > 2: return torch.cat((q.reshape(q.shape[0], -1), k.reshape(q.shape[0], -1), v.reshape(q.shape[0], -1)), dim=-1).reshape(x.shape) else: return torch.cat((q.reshape(-1), k.reshape(-1), v.reshape(-1)), dim=-1).reshape(x.shape) qkvw = torch.nn.Parameter(_transpose(qkvw).contiguous()) qkvb = torch.nn.Parameter(_transpose(qkvb).contiguous()) dense_b = dense_b if dense_b is None else dense_b * ( transformer_config.training_mp_size / transformer_config.mp_size) _4hh_b = _4hh_b * (transformer_config.training_mp_size / transformer_config.mp_size) if mlp_linear_layer: _h4h_w = [transpose(moe_w1.data) for moe_w1 in _h4h_w] if moe else transpose(_h4h_w.data) _4hh_w = [transpose(moe_w1.data) for moe_w1 in _4hh_w] if moe else transpose(_4hh_w.data) if moe and moe_type == 'residual': _res_h4h_w.data = transpose(_res_h4h_w.data) _res_4hh_w.data = transpose(_res_4hh_w.data) _res_coef.data = transpose(_res_coef.data) attn_block = new_module.attention attn_block.attn_qkvw = mp_replace.qkv_copy(attn_block.attn_qkvw, qkvw) attn_block.attn_qkvb = mp_replace.qkv_copy(attn_block.attn_qkvb, qkvb) attn_block.attn_ow = mp_replace.copy(attn_block.attn_ow, dense_w) attn_block.attn_ob = mp_replace.copy(attn_block.attn_ob, dense_b) mpl_block = new_module.mlp if moe: gpu_index = torch.distributed.get_rank() gpu_index = 0 for ep_index in range(local_ep_size): mpl_block[ep_index].inter_w.data = _h4h_w[ gpu_index * local_ep_size + ep_index].to( torch.cuda.current_device()) mpl_block[ep_index].inter_b.data = _h4h_b[ gpu_index * local_ep_size + ep_index].to( torch.cuda.current_device()) mpl_block[ep_index].output_w.data = _4hh_w[ gpu_index * local_ep_size + ep_index].to( torch.cuda.current_device()) mpl_block[ep_index].output_b.data = _4hh_b[ gpu_index * local_ep_size + ep_index].to( torch.cuda.current_device()) new_module.attn_nw.data = attn_nw.to(torch.cuda.current_device()) new_module.attn_nb.data = attn_nb.to(torch.cuda.current_device()) if moe_type == 'residual': new_module.res_mlp.inter_w.data = _res_h4h_w.to( torch.cuda.current_device()) new_module.res_mlp.inter_b.data = _res_h4h_b.to( torch.cuda.current_device()) new_module.res_mlp.output_w.data = _res_4hh_w.to( torch.cuda.current_device()) new_module.res_mlp.output_b.data = _res_4hh_b.to( torch.cuda.current_device()) new_module.res_coef.data = _res_coef.to(torch.cuda.current_device()) else: mpl_block.inter_w.data = mp_replace.copy(mpl_block.inter_w, _h4h_w) mpl_block.inter_b.data = mp_replace.copy(mpl_block.inter_b, _h4h_b) mpl_block.output_w.data = mp_replace.copy(mpl_block.output_w, _4hh_w) mpl_block.output_b.data = mp_replace.copy(mpl_block.output_b, _4hh_b) if attn_nw is None: new_module.mlp.attn_nw = attn_nw else: new_module.mlp.attn_nw.data = attn_nw.to(torch.cuda.current_device()) if attn_nb is None: new_module.mlp.attn_nb = attn_nb else: new_module.mlp.attn_nb.data = attn_nb.to(torch.cuda.current_device()) new_module.norm_w.data = input_nw.to(torch.cuda.current_device()) new_module.norm_b.data = input_nb.to(torch.cuda.current_device()) else: transformer_config = deepspeed.DeepSpeedTransformerConfig( batch_size=micro_batch_size, hidden_size=config.hidden_size, heads=config.num_attention_heads, attn_dropout_ratio=config.attention_probs_dropout_prob, hidden_dropout_ratio=config.hidden_dropout_prob, num_hidden_layers=config.num_hidden_layers, initializer_range=config.initializer_range, layer_norm_eps=config.layer_norm_eps if hasattr( config, 'layer_norm_eps') else 1e-12, seed=seed, fp16=fp16, pre_layer_norm=(False if policy_cls is HFBertLayerPolicy else preln), return_tuple=return_tuple, local_rank=local_rank, stochastic_mode=stochastic_mode, normalize_invertible=True, training=training) new_module = deepspeed.DeepSpeedTransformerLayer(transformer_config) new_module.attn_qkvw.data = qkvw new_module.attn_qkvb.data = qkvb new_module.attn_ow.data = dense_w new_module.attn_ob.data = dense_b new_module.attn_nw.data = attn_nw new_module.attn_nb.data = attn_nb new_module.norm_w.data = input_nw new_module.norm_b.data = input_nb new_module.inter_w.data = _h4h_w new_module.inter_b.data = _h4h_b new_module.output_w.data = _4hh_w new_module.output_b.data = _4hh_b return new_module def replace_wo_policy(module, all_reduce_linears): def _replace(child, name, conv_linear_layer): mp_replace = ReplaceWithTensorSlicing(mp_group=mp_group) if name in all_reduce_linears: new_weight = torch.empty( (child.weight.shape[0] if conv_linear_layer else child.weight.shape[1] // mp_size, child.weight.shape[1] if conv_linear_layer else child.weight.shape[0]), device=child.weight.device, dtype=torch.half if fp16 else torch.float) if not conv_linear_layer: child.weight.data.view(-1).copy_( child.weight.data.transpose(-1, -2).contiguous().view(-1)) child.weight.data = child.weight.data.reshape( child.weight.data.shape[-1], child.weight.data.shape[-2]) data = mp_replace.copy(new_weight, child.weight.data).to(torch.cuda.current_device()) return LinearAllreduce(data, child.bias if child.bias is None else \ child.bias.to(torch.cuda.current_device()), mp_group) else: new_weight = torch.empty( (child.weight.shape[0] // mp_size if conv_linear_layer else child.weight.shape[1], child.weight.shape[1] if conv_linear_layer else child.weight.shape[0] // mp_size), device=child.weight.device, dtype=torch.half if fp16 else torch.float) if not conv_linear_layer: child.weight.data.view(-1).copy_( child.weight.data.transpose(-1, -2).contiguous().view(-1)) child.weight.data = child.weight.data.reshape( child.weight.data.shape[-1], child.weight.data.shape[-2]) data = mp_replace.copy(new_weight, child.weight.data) new_bias = torch.empty((child.weight.shape[1] // mp_size), device=child.weight.device, dtype=torch.half if fp16 else torch.float) bias_data = None if child.bias is None else mp_replace.copy( new_bias, child.bias.data).to(torch.cuda.current_device()) return LinearLayer(data.to(torch.cuda.current_device()), bias_data) def _slice_embedding(child, name, conv_linear_layer): mp_replace = ReplaceWithTensorSlicing(mp_group=mp_group) new_weight = torch.empty((child.weight.shape[0], child.weight.shape[1] // mp_size), device=child.weight.device, dtype=child.weight.dtype) data = mp_replace.copy(new_weight, child.weight.data) new_embedding = nn.Embedding(child.weight.shape[0], child.weight.shape[1] // mp_size) new_embedding.weight.data.copy_(data) return new_embedding def update_mp_params(child): if hasattr(child, 'n_heads'): child.n_heads = child.n_heads // mp_size if hasattr(child, 'inner_dim'): child.inner_dim = child.inner_dim // mp_size if hasattr(child, 'num_heads'): child.num_heads = child.num_heads // mp_size if hasattr(child, 'num_attention_heads'): child.num_attention_heads = child.num_attention_heads // mp_size if hasattr(child, 'all_head_size'): child.all_head_size = child.all_head_size // mp_size if hasattr(child, 'embed_dim'): child.embed_dim = child.embed_dim // mp_size conv_linear_layer = False if linear_layer_setting is not None: linear_policies = {linear_layer_setting[0]: _replace} if len(linear_layer_setting) == 2: linear_policies.update({linear_layer_setting[1]: _slice_embedding}) else: if orig_layer_impl is HFGPT2LayerPolicy._orig_layer_class: try: import transformers conv_linear_layer = True linear_policies = {transformers.model_utils.Conv1D: _replace} except ImportError: linear_policies = {nn.Linear: _replace} else: linear_policies = {nn.Linear: _replace, nn.Embedding: _slice_embedding} def _replace_module(r_module, prev_name=''): for name, child in r_module.named_children(): if child.__class__ in linear_policies: setattr( r_module, name, linear_policies[child.__class__](child, prev_name + '.' + name, conv_linear_layer)) else: update_mp_params(child) _replace_module(child, name) return r_module return _replace_module(module) def replace_fn(child, _policy, layer_id=0): if training: # copy relevant state from child -> new module new_module = replace_with_policy(child, _policy, triangular_masking, preln=preln) else: # copy relevant state from child -> new module if replace_with_kernel_inject: new_module = replace_with_policy(child, _policy, triangular_masking, inference=True, preln=(_policy is not HFBertLayerPolicy), layer_id=layer_id) else: new_module = replace_wo_policy(child, _policy) return new_module return replace_module(model=model, orig_class=orig_layer_impl, replace_fn=replace_fn, _replace_policy=policy) def revert_transformer_layer(orig_layer_impl, model, config, preln=False): """ Revert DeepSpeed's transformer layer back to original bert-style transformer layer Arguments: orig_layer_impl (torch.nn.Module): the original transformer layer implementation that was replaced, e.g., transformers.modeling_bert.BertLayer. model (torch.nn.Module): user's nn.module representing their model config (dict): model config containing hidden size, attention heads, etc. Returns: Updated nn.module with original bert-style transformer layers """ def replace_fn(child, _replace_policy, layer_id): #from turing.nvidia_modelingpreln import BertLayer orig_module = orig_layer_impl(config) # copy relevant state from child -> original module qkvw = child.attn_qkvw.data qkvb = child.attn_qkvb.data qw, kw, vw = torch.chunk(qkvw, 3, axis=0) qb, kb, vb = torch.chunk(qkvb, 3, axis=0) orig_module.attention.self.query.weight.data = qw orig_module.attention.self.query.bias.data = qb orig_module.attention.self.key.weight.data = kw orig_module.attention.self.key.bias.data = kb orig_module.attention.self.value.weight.data = vw orig_module.attention.self.value.bias.data = vb orig_module.attention.output.dense.weight.data = child.attn_ow.data orig_module.attention.output.dense.bias.data = child.attn_ob.data attn_ln_w = child.attn_nw.data attn_ln_b = child.attn_nb.data if preln: orig_module.PostAttentionLayerNorm.weight.data = attn_ln_w orig_module.PostAttentionLayerNorm.bias.data = attn_ln_b else: orig_module.attention.output.LayerNorm.weight.data = attn_ln_w orig_module.attention.output.LayerNorm.bias.data = attn_ln_b inter_ff_w = child.inter_w.data inter_ff_b = child.inter_b.data if preln: orig_module.intermediate.dense_act.weight.data = inter_ff_w orig_module.intermediate.dense_act.bias.data = inter_ff_b else: orig_module.intermediate.dense.weight.data = inter_ff_w orig_module.intermediate.dense.bias.data = inter_ff_b orig_module.output.dense.weight.data = child.output_w.data orig_module.output.dense.bias.data = child.output_b.data transformer_ln_w = child.norm_w.data transformer_ln_b = child.norm_b.data if preln: orig_module.PreAttentionLayerNorm.weight.data = transformer_ln_w orig_module.PreAttentionLayerNorm.bias.data = transformer_ln_b else: orig_module.output.LayerNorm.weight.data = transformer_ln_w orig_module.output.LayerNorm.bias.data = transformer_ln_b return orig_module return replace_module(model=model, orig_class=deepspeed.DeepSpeedTransformerLayer, replace_fn=replace_fn, _replace_policy=None) def replace_module(model, orig_class, replace_fn, _replace_policy): """ Scan the model for instances of ``orig_clas:`` to replace using ``replace_fn``. Arguments: model (torch.nn.Module): the model to augment orig_class (torch.nn.Module): the module to search for replace_fn (method): a method to convert instances of ``orig_class`` to the desired type and return a new instance. Returns: A modified ``model``. """ policy = {} if orig_class is not None: policy.update({orig_class: (replace_fn, _replace_policy)}) else: for plcy in replace_policies: # instantiate a throw-away policy in order to populate the _orig_layer_class _ = plcy(None) if isinstance(plcy._orig_layer_class, list): for orig_layer_class in plcy._orig_layer_class: policy.update({orig_layer_class: (replace_fn, plcy)}) elif plcy._orig_layer_class is not None: policy.update({plcy._orig_layer_class: (replace_fn, plcy)}) assert len(policy.items()) > 0,\ "No default policy found! Please specify your policy injection_policy (like {BertLayer:HFBEertLayerPolicy})." +\ "You can find some samples here: https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/module_inject/replace_policy.py" replaced_module, _ = _replace_module(model, policy) return replaced_module from ..pipe import PipelineModule def _replace_module(model, policies, layer_id=0): """ Traverse model's children recursively and apply any transformations in ``policies``. Arguments: model (torch.nn.Module): model to augment policies (dict): Mapping of source class to replacement function. Returns: Modified ``model``. """ for name, child in model.named_children(): if child.__class__ in policies: replaced_module = policies[child.__class__][0](child, policies[child.__class__][-1], layer_id) setattr(model, name, replaced_module) if isinstance(model, PipelineModule): assert hasattr(model, 'forward_funcs'),\ "we require pipe-module to have the list of fwd_functions" model.forward_funcs[model.fwd_map[name]] = replaced_module layer_id += 1 else: _, layer_id = _replace_module(child, policies, layer_id=layer_id) return model, layer_id
[ "torch.distributed.get_world_size", "torch.cat", "torch.split", "torch.nn.Parameter", "torch.cuda.current_device", "torch.distributed.all_reduce", "torch.distributed.get_rank", "torch.empty", "torch.matmul", "torch.nn.Embedding", "torch.chunk" ]
1.8
manuelciosici/DeepSpeed
3da841853ca07abf3a09e7bd325a576c4e642c11
1.1
from __future__ import absolute_import, division, print_function import torch from pyro.distributions.torch import RelaxedOneHotCategorical, RelaxedBernoulli from pyro.distributions.util import copy_docs_from from torch.distributions.utils import clamp_probs @copy_docs_from(RelaxedOneHotCategorical) class RelaxedOneHotCategoricalStraightThrough(RelaxedOneHotCategorical): """ An implementation of :class:`~torch.distributions.relaxed_categorical.RelaxedOneHotCategorical` with a straight-through gradient estimator. This distribution has the following properties: - The samples returned by the :meth:`rsample` method are discrete/quantized. - The :meth:`log_prob` method returns the log probability of the relaxed/unquantized sample using the GumbelSoftmax distribution. - In the backward pass the gradient of the sample with respect to the parameters of the distribution uses the relaxed/unquantized sample. References: [1] The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables, Chris J. Maddison, Andriy Mnih, Yee Whye Teh [2] Categorical Reparameterization with Gumbel-Softmax, Eric Jang, Shixiang Gu, Ben Poole """ def rsample(self, sample_shape=torch.Size()): soft_sample = super(RelaxedOneHotCategoricalStraightThrough, self).rsample(sample_shape) soft_sample = clamp_probs(soft_sample) hard_sample = QuantizeCategorical.apply(soft_sample) return hard_sample def log_prob(self, value): value = getattr(value, '_unquantize', value) return super(RelaxedOneHotCategoricalStraightThrough, self).log_prob(value) class QuantizeCategorical(torch.autograd.Function): @staticmethod def forward(ctx, soft_value): argmax = soft_value.max(-1)[1] hard_value = torch.zeros_like(soft_value) hard_value._unquantize = soft_value if argmax.dim() < hard_value.dim(): argmax = argmax.unsqueeze(-1) return hard_value.scatter_(-1, argmax, 1) @staticmethod def backward(ctx, grad): return grad @copy_docs_from(RelaxedBernoulli) class RelaxedBernoulliStraightThrough(RelaxedBernoulli): """ An implementation of :class:`~torch.distributions.relaxed_bernoulli.RelaxedBernoulli` with a straight-through gradient estimator. This distribution has the following properties: - The samples returned by the :meth:`rsample` method are discrete/quantized. - The :meth:`log_prob` method returns the log probability of the relaxed/unquantized sample using the GumbelSoftmax distribution. - In the backward pass the gradient of the sample with respect to the parameters of the distribution uses the relaxed/unquantized sample. References: [1] The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables, Chris J. Maddison, Andriy Mnih, Yee Whye Teh [2] Categorical Reparameterization with Gumbel-Softmax, Eric Jang, Shixiang Gu, Ben Poole """ def rsample(self, sample_shape=torch.Size()): soft_sample = super(RelaxedBernoulliStraightThrough, self).rsample(sample_shape) soft_sample = clamp_probs(soft_sample) hard_sample = QuantizeBernoulli.apply(soft_sample) return hard_sample def log_prob(self, value): value = getattr(value, '_unquantize', value) return super(RelaxedBernoulliStraightThrough, self).log_prob(value) class QuantizeBernoulli(torch.autograd.Function): @staticmethod def forward(ctx, soft_value): hard_value = soft_value.round() hard_value._unquantize = soft_value return hard_value @staticmethod def backward(ctx, grad): return grad
[ "torch.Size", "torch.distributions.utils.clamp_probs", "torch.zeros_like" ]
1.1.0
ruohoruotsi/pyro
b54a4b42b9474eb3ecee11505e45fde85b1cdc54
1.1
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from . import box_utils from . import center_utils try: from itertools import ifilterfalse except ImportError: # py3k from itertools import filterfalse as ifilterfalse class SigmoidFocalClassificationLoss(nn.Module): """ Sigmoid focal cross entropy loss. """ def __init__(self, gamma: float = 2.0, alpha: float = 0.25): """ Args: gamma: Weighting parameter to balance loss for hard and easy examples. alpha: Weighting parameter to balance loss for positive and negative examples. """ super(SigmoidFocalClassificationLoss, self).__init__() self.alpha = alpha self.gamma = gamma @staticmethod def sigmoid_cross_entropy_with_logits(input: torch.Tensor, target: torch.Tensor): """ PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits: max(x, 0) - x * z + log(1 + exp(-abs(x))) in https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets Returns: loss: (B, #anchors, #classes) float tensor. Sigmoid cross entropy loss without reduction """ loss = torch.clamp(input, min=0) - input * target + \ torch.log1p(torch.exp(-torch.abs(input))) return loss def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor): """ Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets weights: (B, #anchors) float tensor. Anchor-wise weights. Returns: weighted_loss: (B, #anchors, #classes) float tensor after weighting. """ pred_sigmoid = torch.sigmoid(input) alpha_weight = target * self.alpha + (1 - target) * (1 - self.alpha) pt = target * (1.0 - pred_sigmoid) + (1.0 - target) * pred_sigmoid focal_weight = alpha_weight * torch.pow(pt, self.gamma) bce_loss = self.sigmoid_cross_entropy_with_logits(input, target) loss = focal_weight * bce_loss if weights.shape.__len__() == 2 or \ (weights.shape.__len__() == 1 and target.shape.__len__() == 2): weights = weights.unsqueeze(-1) assert weights.shape.__len__() == loss.shape.__len__() return loss * weights class WeightedSmoothL1Loss(nn.Module): """ Code-wise Weighted Smooth L1 Loss modified based on fvcore.nn.smooth_l1_loss https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/smooth_l1_loss.py | 0.5 * x ** 2 / beta if abs(x) < beta smoothl1(x) = | | abs(x) - 0.5 * beta otherwise, where x = input - target. """ def __init__(self, beta: float = 1.0 / 9.0, code_weights: list = None): """ Args: beta: Scalar float. L1 to L2 change point. For beta values < 1e-5, L1 loss is computed. code_weights: (#codes) float list if not None. Code-wise weights. """ super(WeightedSmoothL1Loss, self).__init__() self.beta = beta if code_weights is not None: self.code_weights = np.array(code_weights, dtype=np.float32) self.code_weights = torch.from_numpy(self.code_weights).cuda() @staticmethod def smooth_l1_loss(diff, beta): if beta < 1e-5: loss = torch.abs(diff) else: n = torch.abs(diff) loss = torch.where(n < beta, 0.5 * n ** 2 / beta, n - 0.5 * beta) return loss def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor = None): """ Args: input: (B, #anchors, #codes) float tensor. Ecoded predicted locations of objects. target: (B, #anchors, #codes) float tensor. Regression targets. weights: (B, #anchors) float tensor if not None. Returns: loss: (B, #anchors) float tensor. Weighted smooth l1 loss without reduction. """ target = torch.where(torch.isnan(target), input, target) # ignore nan targets diff = input - target # code-wise weighting if self.code_weights is not None: diff = diff * self.code_weights.view(1, 1, -1) loss = self.smooth_l1_loss(diff, self.beta) # anchor-wise weighting if weights is not None: assert weights.shape[0] == loss.shape[0] and weights.shape[1] == loss.shape[1] loss = loss * weights.unsqueeze(-1) return loss class WeightedL1Loss(nn.Module): def __init__(self, code_weights: list = None): """ Args: code_weights: (#codes) float list if not None. Code-wise weights. """ super(WeightedL1Loss, self).__init__() if code_weights is not None: self.code_weights = np.array(code_weights, dtype=np.float32) self.code_weights = torch.from_numpy(self.code_weights).cuda() def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor = None): """ Args: input: (B, #anchors, #codes) float tensor. Ecoded predicted locations of objects. target: (B, #anchors, #codes) float tensor. Regression targets. weights: (B, #anchors) float tensor if not None. Returns: loss: (B, #anchors) float tensor. Weighted smooth l1 loss without reduction. """ target = torch.where(torch.isnan(target), input, target) # ignore nan targets diff = input - target # code-wise weighting if self.code_weights is not None: diff = diff * self.code_weights.view(1, 1, -1) loss = torch.abs(diff) # anchor-wise weighting if weights is not None: assert weights.shape[0] == loss.shape[0] and weights.shape[1] == loss.shape[1] loss = loss * weights.unsqueeze(-1) return loss class WeightedCrossEntropyLoss(nn.Module): """ Transform input to fit the fomation of PyTorch offical cross entropy loss with anchor-wise weighting. """ def __init__(self): super(WeightedCrossEntropyLoss, self).__init__() def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor): """ Args: input: (B, #anchors, #classes) float tensor. Predited logits for each class. target: (B, #anchors, #classes) float tensor. One-hot classification targets. weights: (B, #anchors) float tensor. Anchor-wise weights. Returns: loss: (B, #anchors) float tensor. Weighted cross entropy loss without reduction """ input = input.permute(0, 2, 1) target = target.argmax(dim=-1) loss = F.cross_entropy(input, target, reduction='none') * weights return loss def get_corner_loss_lidar(pred_bbox3d: torch.Tensor, gt_bbox3d: torch.Tensor): """ Args: pred_bbox3d: (N, 7) float Tensor. gt_bbox3d: (N, 7) float Tensor. Returns: corner_loss: (N) float Tensor. """ assert pred_bbox3d.shape[0] == gt_bbox3d.shape[0] pred_box_corners = box_utils.boxes_to_corners_3d(pred_bbox3d) gt_box_corners = box_utils.boxes_to_corners_3d(gt_bbox3d) # 这里flip的目的应该是忽略朝向,但实际上呢把朝向也纳入整体更好还是说它会造成不稳定呢? gt_bbox3d_flip = gt_bbox3d.clone() gt_bbox3d_flip[:, 6] += np.pi gt_box_corners_flip = box_utils.boxes_to_corners_3d(gt_bbox3d_flip) # (N, 8) corner_dist = torch.min(torch.norm(pred_box_corners - gt_box_corners, dim=2), torch.norm(pred_box_corners - gt_box_corners_flip, dim=2)) # (N, 8) corner_loss = WeightedSmoothL1Loss.smooth_l1_loss(corner_dist, beta=1.0) return corner_loss.mean(dim=1) def get_corner_loss_mse(pred_bbox3d: torch.Tensor, gt_bbox3d: torch.Tensor): """ Args: pred_bbox3d: (N, 7) float Tensor. gt_bbox3d: (N, 7) float Tensor. Returns: corner_loss: (1,) float scaler """ assert pred_bbox3d.shape[0] == gt_bbox3d.shape[0] # (N, 8, 3) pred_box_corners = box_utils.boxes_to_corners_3d(pred_bbox3d) gt_box_corners = box_utils.boxes_to_corners_3d(gt_bbox3d) # print('==> pred_box_corners[0, :, :]') # print(pred_box_corners[0,:,:]) # print('==> gt_box_corners[0, :, :]') # print(gt_box_corners[0,:,:]) # print('==> pred_box_corners[10, :, :]') # print(pred_box_corners[10,:,:]) # print('==> gt_box_corners[10, :, :]') # print(gt_box_corners[10,:,:]) # print('==> pred_box_corners[100, :, :]') # print(pred_box_corners[100,:,:]) # print('==> gt_box_corners[100, :, :]') # print(gt_box_corners[100,:,:]) # for each box, mean by 8 corners. corner_loss_x = F.mse_loss(input=pred_box_corners[:,:,0], target=gt_box_corners[:,:,0]) # (N, 8) -> (N) corner_loss_y = F.mse_loss(input=pred_box_corners[:,:,1], target=gt_box_corners[:,:,1]) # (N, 8) -> (N) corner_loss_z = F.mse_loss(input=pred_box_corners[:,:,2], target=gt_box_corners[:,:,2]) # (N, 8) -> (N) # xyz之间求和 corner_loss = corner_loss_x + corner_loss_y + corner_loss_z return corner_loss def get_iouscore_loss_bce(iou_preds, iou_gts, iou_fg_thresh=0.75, iou_bg_thresh=0.25): """ Args: iou_preds: (N,) iou_gts: (N, ) Returns: loss_iouscore: """ # prepare the labels # now only for car class, 08132020 # iou_preds = iou_preds.view(-1) # iou_gts = iou_gts.view(-1) # print('==> iou_preds.size()') # print(iou_preds.size()) # print(torch.sigmoid(iou_preds)) # print('==> iou_gts.size()') # print(iou_gts.size()) # print(iou_gts) # CLS_FG_THRESH: 0.75 # CLS_BG_THRESH: 0.25 # iou_bg_thresh = self.roi_sampler_cfg.CLS_BG_THRESH # iou_fg_thresh = self.roi_sampler_cfg.CLS_FG_THRESH # iou_bg_thresh = 0.25 # iou_fg_thresh = 0.75 fg_mask = iou_gts > iou_fg_thresh bg_mask = iou_gts < iou_bg_thresh interval_mask = (fg_mask == 0) & (bg_mask == 0) iou_cls_labels = (fg_mask > 0).float() iou_cls_labels[interval_mask] = \ (iou_gts[interval_mask] - iou_bg_thresh) / (iou_fg_thresh - iou_bg_thresh) # print('==> iou_cls_labels') # print(iou_cls_labels.size()) # print(iou_cls_labels[:50]) # 这里CE是计算的整个范围的iou,但是最后求和的时候只计算了iou>=0这部分的。 # 条件 iou_cls_labels >= 0 选出来了那些iou >= 0 的候选框。 loss_ioucls = F.binary_cross_entropy(torch.sigmoid(iou_preds), iou_cls_labels.float(), reduction='none') cls_valid_mask = (iou_cls_labels >= 0).float() loss_iouscore = (loss_ioucls * cls_valid_mask).sum() / torch.clamp(cls_valid_mask.sum(), min=1.0) return loss_iouscore def get_rot_binres_loss(pred_reg, reg_label, num_head_bin, get_ry_fine=False): """ Bin-based 3D bounding boxes regression loss. See https://arxiv.org/abs/1812.04244 for more details. :param pred_reg: (N, C) :param reg_label: (N, 1), ry :param num_head_bin: constant :param get_ry_fine: False :return: """ # print('==> pred_reg.size()') # print(pred_reg.size()) # should be (N, 24) reg_loss_dict = {} # angle loss start_offset = 0 ry_bin_l, ry_bin_r = start_offset, start_offset + num_head_bin ry_res_l, ry_res_r = ry_bin_r, ry_bin_r + num_head_bin start_offset = ry_res_r ry_label = reg_label.squeeze(dim=-1) # print('==> reg_label[] in encode') # print(reg_label.size()) # should be (N, C) # print(reg_label[100:150]) # print('==> ry_label[] in encode') # print(ry_label.size()) # should be (N,) # print(ry_label[100:150]) if get_ry_fine: assert False, "one-stage should not get_ry_fine." # divide pi/2 into several bins angle_per_class = (np.pi / 2) / num_head_bin ry_label = ry_label % (2 * np.pi) # 0 ~ 2pi opposite_flag = (ry_label > np.pi * 0.5) & (ry_label < np.pi * 1.5) ry_label[opposite_flag] = (ry_label[opposite_flag] + np.pi) % (2 * np.pi) # (0 ~ pi/2, 3pi/2 ~ 2pi) shift_angle = (ry_label + np.pi * 0.5) % (2 * np.pi) # (0 ~ pi) shift_angle = torch.clamp(shift_angle - np.pi * 0.25, min=1e-3, max=np.pi * 0.5 - 1e-3) # (0, pi/2) # bin center is (5, 10, 15, ..., 85) ry_bin_label = (shift_angle / angle_per_class).floor().long() ry_res_label = shift_angle - (ry_bin_label.float() * angle_per_class + angle_per_class / 2) ry_res_norm_label = ry_res_label / (angle_per_class / 2) else: # divide 2pi into several bins angle_per_class = (2 * np.pi) / num_head_bin heading_angle = ry_label % (2 * np.pi) # 0 ~ 2pi # print('==> heading_angle[] in encode') # print(heading_angle.size()) # print(heading_angle[100:150]) shift_angle = (heading_angle + angle_per_class / 2) % (2 * np.pi) ry_bin_label = (shift_angle / angle_per_class).floor().long() ry_res_label = shift_angle - (ry_bin_label.float() * angle_per_class + angle_per_class / 2) ry_res_norm_label = ry_res_label / (angle_per_class / 2) # print('==> ry_bin_label in encode') # print(ry_bin_label.size()) # print(ry_bin_label[100:150]) ry_bin_onehot = torch.cuda.FloatTensor(ry_bin_label.size(0), num_head_bin).zero_() ry_bin_onehot.scatter_(1, ry_bin_label.view(-1, 1).long(), 1) loss_ry_bin = F.cross_entropy(pred_reg[:, ry_bin_l:ry_bin_r], ry_bin_label) loss_ry_res = F.smooth_l1_loss((pred_reg[:, ry_res_l: ry_res_r] * ry_bin_onehot).sum(dim=1), ry_res_norm_label) reg_loss_dict['loss_ry_bin'] = loss_ry_bin.item() reg_loss_dict['loss_ry_res'] = loss_ry_res.item() angle_loss = loss_ry_bin + loss_ry_res # Total regression loss reg_loss_dict['loss_angle'] = angle_loss return angle_loss, reg_loss_dict class CenterNetFocalLoss(nn.Module): '''nn.Module warpper for focal loss''' def __init__(self, gamma=4, alpha=2): super(CenterNetFocalLoss, self).__init__() # self.neg_loss = _neg_loss self.gamma = gamma self.alpha = alpha def _sigmoid(self, x): # y = torch.clamp(x.sigmoid_(), min=1e-4, max=1 - 1e-4) # dnnt use the replace version! y = torch.clamp(torch.sigmoid(x), min=1e-4, max=1 - 1e-4) # too small will cause loss nan. # y = torch.clamp(x.sigmoid_(), min=1e-12, max=1 - 1e-12) return y def _neg_loss(self, pred, gt): ''' Modified focal loss. Exactly the same as CornerNet. Runs faster and costs a little bit more memory Arguments: pred: (batch x c x h x w), do some clamp or not?. should be clampped already. gt: (batch x c x h x w) ''' pos_inds = gt.eq(1).float() neg_inds = gt.lt(1).float() # neg_weights = torch.pow(1 - gt, 4) neg_weights = torch.pow(1 - gt, self.gamma) loss = 0 # pos_loss = torch.log(pred) * torch.pow(1 - pred, 2) * pos_inds # neg_loss = torch.log(1 - pred) * torch.pow(pred, 2) * neg_weights * neg_inds pos_loss = torch.log(pred) * torch.pow(1 - pred, self.alpha) * pos_inds neg_loss = torch.log(1 - pred) * torch.pow(pred, self.alpha) * neg_weights * neg_inds num_pos = pos_inds.float().sum() pos_loss = pos_loss.sum() neg_loss = neg_loss.sum() if num_pos == 0: loss = loss - neg_loss else: loss = loss - (pos_loss + neg_loss) / num_pos return loss def forward(self, out, target): out_norm = self._sigmoid(out) return self._neg_loss(out_norm, target) class CenterNetResLoss(nn.Module): def __init__(self, cfg): super(CenterNetResLoss, self).__init__() self.res_func_type = cfg['res_func'] def forward(self, output, mask, ind, target): """ Args: output: torch.Size([B, C, 152, 152]) mask: torch.Size([B, max_objs]) ind: torch.Size([B, max_objs]) target: torch.Size([B, max_objs, C]) Returns: reduced and weighted loss term. """ pred = center_utils._transpose_and_gather_feat(output, ind) # (B, max_objs, C) # print('==> (ind != 0).float().sum(): ', (ind != 0).float().sum() ) # print('==> mask.sum(): ', mask.sum() ) if mask.sum(): # 1. flatten. pred_flat = pred.view(-1, pred.shape[-1]) #(B*max_objs, C) target_flat = target.view(-1, target.shape[-1]) #(B*max_objs, C) mask_flat = mask.view(-1).bool() #(B*max_objs) # 2. valid select pred_valid = pred_flat[mask_flat] #(num_valid, C) target_valid = target_flat[mask_flat] #(num_valid, C) # 3. un-reduced loss term if self.res_func_type == 'smooth-l1': loss = F.smooth_l1_loss(pred_valid, target_valid, reduction='none') elif self.res_func_type == 'l1': loss = F.l1_loss(pred_valid, target_valid, reduction='none') elif self.res_func_type == 'balanced_l1': loss = get_balanced_l1_loss(pred_valid, target_valid) else: raise NotImplementedError # mean for num_obj_dims, sum for channel_dims # (num_valid, C) -> (C) -> () loss = loss.mean(dim=0).sum() else: loss = 0. return loss class CenterNetRotBinResLoss(nn.Module): def __init__(self, cfg): super(CenterNetRotBinResLoss, self).__init__() self.num_head_bin = cfg['num_bins'] def forward(self, output, mask, ind, target): """ Args: output: torch.Size([B, C, 152, 152]) mask: torch.Size([B, max_objs]) ind: torch.Size([B, max_objs]) target: torch.Size([B, max_objs, C]) Returns: reduced and weighted loss term. """ pred = center_utils._transpose_and_gather_feat(output, ind) # torch.Size([1, 500, 2]) if mask.sum(): # 1. flatten pred_flat = pred.view(-1, pred.shape[-1]) # (B*max_objs, C) target_flat = target.view(-1, target.shape[-1]) # (B*max_objs, 1) mask_flat = mask.view(-1).bool() # (B*max_objs) # 2. valid select pred_valid = pred_flat[mask_flat] # (num_valid, C) target_valid = target_flat[mask_flat] # (num_valid, 1) # 3. return the reduced rot loss term. loss, _ = get_rot_binres_loss(pred_valid, target_valid, num_head_bin=self.num_head_bin) else: loss = 0. # print('==> loss in rot') # print(loss) return loss def lovasz_softmax(probas, labels, classes='present', per_image=False, ignore=None): """ Multi-class Lovasz-Softmax loss NOTE probas should be applied with softmax. probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1). Interpreted as binary (sigmoid) output with outputs of size [B, H, W]. labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1) classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average. per_image: compute the loss per image instead of per batch ignore: void class labels """ # print('==> lovasz_softmax, classes: ', classes) # print('==> lovasz_softmax, per_image: ', per_image) # print('==> lovasz_softmax, ignore: ', ignore) if per_image: loss = mean(lovasz_softmax_flat(*flatten_probas(prob.unsqueeze(0), lab.unsqueeze(0), ignore), classes=classes) for prob, lab in zip(probas, labels)) else: loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore), classes=classes) return loss def lovasz_softmax_flat(probas, labels, classes='present'): """ Multi-class Lovasz-Softmax loss probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1) labels: [P] Tensor, ground truth labels (between 0 and C - 1) classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average. """ if probas.numel() == 0: # only void pixels, the gradients should be 0 return probas * 0. C = probas.size(1) losses = [] class_to_sum = list(range(C)) if classes in ['all', 'present'] else classes for c in class_to_sum: fg = (labels == c).float() # foreground for class c if (classes is 'present' and fg.sum() == 0): continue if C == 1: if len(classes) > 1: raise ValueError('Sigmoid output possible only with 1 class') class_pred = probas[:, 0] else: class_pred = probas[:, c] errors = (Variable(fg) - class_pred).abs() errors_sorted, perm = torch.sort(errors, 0, descending=True) perm = perm.data fg_sorted = fg[perm] losses.append(torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted)))) return mean(losses) def lovasz_grad(gt_sorted): """ Computes gradient of the Lovasz extension w.r.t sorted errors See Alg. 1 in paper """ p = len(gt_sorted) gts = gt_sorted.sum() intersection = gts - gt_sorted.float().cumsum(0) union = gts + (1 - gt_sorted).float().cumsum(0) jaccard = 1. - intersection / union if p > 1: # cover 1-pixel case jaccard[1:p] = jaccard[1:p] - jaccard[0:-1] return jaccard def flatten_probas(probas, labels, ignore=None): """ Flattens predictions in the batch """ if probas.dim() == 2: # do nothing, 3D segmentation for sparse tensor pass elif probas.dim() == 3: # assumes output of a sigmoid layer B, H, W = probas.size() probas = probas.view(B, 1, H, W) probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C elif probas.dim() == 5: # 3D segmentation for dense tensor B, C, L, H, W = probas.size() probas = probas.contiguous().view(B, C, L, H*W) probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C labels = labels.view(-1) if ignore is not None: valid = (labels != ignore) # vprobas = probas[valid.nonzero().squeeze()] # for newer pytorch vprobas = probas[torch.nonzero(valid, as_tuple=False).squeeze()] vlabels = labels[valid] return vprobas, vlabels else: return probas, labels # --------------------------- HELPER FUNCTIONS --------------------------- def isnan(x): return x != x def mean(l, ignore_nan=False, empty=0): """ nanmean compatible with generators. """ l = iter(l) if ignore_nan: l = ifilterfalse(isnan, l) try: n = 1 acc = next(l) except StopIteration: if empty == 'raise': raise ValueError('Empty mean') return empty for n, v in enumerate(l, 2): acc += v if n == 1: return acc return acc / n
[ "torch.sigmoid", "torch.nonzero", "torch.nn.functional.smooth_l1_loss", "torch.isnan", "torch.nn.functional.l1_loss", "torch.norm", "torch.autograd.Variable", "torch.clamp", "torch.from_numpy", "torch.nn.functional.mse_loss", "torch.abs", "torch.nn.functional.cross_entropy", "torch.log", "torch.sort", "torch.where", "torch.pow" ]
1.1
jialeli1/From-Voxel-to-Point
b4dba9c4e9cd83e04199d9224f6ec7bf06b71f93
1.3
""" # -*- coding: utf-8 -*- ----------------------------------------------------------------------------------- # Author: Nguyen Mau Dung # DoC: 2020.08.17 # email: [email protected] ----------------------------------------------------------------------------------- # Description: The configurations of the project will be defined here """ import os import argparse import torch from easydict import EasyDict as edict import kitti_config as cnf def parse_train_configs(): parser = argparse.ArgumentParser(description='The Implementation using PyTorch') parser.add_argument('--seed', type=int, default=2020, help='re-produce the results with seed random') parser.add_argument('--saved_fn', type=str, default='fpn_resnet_18', metavar='FN', help='The name using for saving logs, models,...') parser.add_argument('--root-dir', type=str, default='../', metavar='PATH', help='The ROOT working directory') #################################################################### ############## Model configs ######################## #################################################################### parser.add_argument('--arch', type=str, default='fpn_resnet_18', metavar='ARCH', help='The name of the model architecture') parser.add_argument('--pretrained_path', type=str, default=None, metavar='PATH', help='the path of the pretrained checkpoint') #################################################################### ############## Dataloader and Running configs ####### #################################################################### parser.add_argument('--hflip_prob', type=float, default=0.5, help='The probability of horizontal flip') parser.add_argument('--no-val', action='store_true', help='If true, dont evaluate the model on the val set') parser.add_argument('--num_samples', type=int, default=None, help='Take a subset of the dataset to run and debug') parser.add_argument('--num_workers', type=int, default=4, help='Number of threads for loading data') parser.add_argument('--batch_size', type=int, default=16, help='mini-batch size (default: 16), this is the total' 'batch size of all GPUs on the current node when using' 'Data Parallel or Distributed Data Parallel') parser.add_argument('--print_freq', type=int, default=50, metavar='N', help='print frequency (default: 50)') parser.add_argument('--tensorboard_freq', type=int, default=50, metavar='N', help='frequency of saving tensorboard (default: 50)') parser.add_argument('--checkpoint_freq', type=int, default=2, metavar='N', help='frequency of saving checkpoints (default: 5)') #################################################################### ############## Training strategy #################### #################################################################### parser.add_argument('--start_epoch', type=int, default=1, metavar='N', help='the starting epoch') parser.add_argument('--num_epochs', type=int, default=300, metavar='N', help='number of total epochs to run') parser.add_argument('--lr_type', type=str, default='cosin', help='the type of learning rate scheduler (cosin or multi_step or one_cycle)') parser.add_argument('--lr', type=float, default=0.003, metavar='LR', help='initial learning rate') parser.add_argument('--minimum_lr', type=float, default=1e-7, metavar='MIN_LR', help='minimum learning rate during training') parser.add_argument('--momentum', type=float, default=0.949, metavar='M', help='momentum') parser.add_argument('-wd', '--weight_decay', type=float, default=0., metavar='WD', help='weight decay (default: 0.)') parser.add_argument('--optimizer_type', type=str, default='adam', metavar='OPTIMIZER', help='the type of optimizer, it can be sgd or adam') parser.add_argument('--steps', nargs='*', default=[150, 180], help='number of burn in step') #################################################################### ############## Loss weight ########################## #################################################################### #################################################################### ############## Distributed Data Parallel ############ #################################################################### parser.add_argument('--world-size', default=-1, type=int, metavar='N', help='number of nodes for distributed training') parser.add_argument('--rank', default=-1, type=int, metavar='N', help='node rank for distributed training') parser.add_argument('--dist-url', default='tcp://127.0.0.1:29500', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('--gpu_idx', default=0, type=int, help='GPU index to use.') parser.add_argument('--no_cuda', action='store_true', help='If true, cuda is not used.') parser.add_argument('--multiprocessing-distributed', action='store_true', help='Use multi-processing distributed training to launch ' 'N processes per node, which has N GPUs. This is the ' 'fastest way to use PyTorch for either single node or ' 'multi node data parallel training') #################################################################### ############## Evaluation configurations ################### #################################################################### parser.add_argument('--evaluate', action='store_true', help='only evaluate the model, not training') parser.add_argument('--resume_path', type=str, default=None, metavar='PATH', help='the path of the resumed checkpoint') parser.add_argument('--K', type=int, default=50, help='the number of top K') configs = edict(vars(parser.parse_args())) #################################################################### ############## Hardware configurations ############################# #################################################################### configs.device = torch.device('cpu' if configs.no_cuda else 'cuda') configs.ngpus_per_node = torch.cuda.device_count() configs.pin_memory = True configs.input_size = (cnf.BEV_WIDTH, cnf.BEV_HEIGHT) configs.down_ratio = 2 configs.hm_size = (cnf.BEV_WIDTH/configs.down_ratio, cnf.BEV_HEIGHT/configs.down_ratio) configs.max_objects = 50 configs.imagenet_pretrained = True configs.head_conv = 256 configs.num_classes = 1 configs.num_center_offset = 2 configs.num_z = 1 configs.num_dim = 3 configs.num_direction = 2 # sin, cos 8 for bin cos sin configs.voxel_size = [0.16, 0.16, 4] configs.point_cloud_range =[0, -34.56, -2.73, 69.12, 34.56, 1.27] configs.max_number_of_points_per_voxel = 100 configs.heads = { 'hm_cen': configs.num_classes, 'cen_offset': configs.num_center_offset, 'direction': configs.num_direction, 'z_coor': configs.num_z, 'dim': configs.num_dim } configs.num_input_features = 4 #################################################################### ############## Dataset, logs, Checkpoints dir ###################### #################################################################### configs.dataset_dir = '/media/wx/File/data/kittidata' configs.checkpoints_dir = os.path.join(configs.root_dir, 'checkpoints', configs.saved_fn) configs.logs_dir = os.path.join(configs.root_dir, 'logs', configs.saved_fn) if not os.path.isdir(configs.checkpoints_dir): os.makedirs(configs.checkpoints_dir) if not os.path.isdir(configs.logs_dir): os.makedirs(configs.logs_dir) return configs
[ "torch.device", "torch.cuda.device_count" ]
1.3.0
wangx1996/CenterPillarNet
4be3d53265b8ecb1f9572612fa87f7acd8c57669
1.3
""" # -*- coding: utf-8 -*- ----------------------------------------------------------------------------------- # Author: Nguyen Mau Dung # DoC: 2020.08.17 # email: [email protected] ----------------------------------------------------------------------------------- # Description: This script for training # Modified: Wang Xu # email: [email protected] """ import argparse import os import time import numpy as np import sys sys.path.remove('/opt/ros/kinetic/lib/python2.7/dist-packages') import warnings warnings.filterwarnings("ignore", category=UserWarning) from config import kitti_config as cnf import torch import torch.utils.data.distributed from tqdm import tqdm from easydict import EasyDict as edict import cv2 sys.path.append('./') from data_process.kitti_dataloader import create_val_dataloader from models.model_utils import create_model from utils.misc import AverageMeter, ProgressMeter from utils.misc import make_folder, time_synchronized from utils.evaluation_utils import decode, post_processingv2, \ get_batch_statistics_rotated_bbox, ap_per_class, \ load_classes, convert_det_to_real_values_v2 from utils.visualization_utils import project_to_image, compute_box_3d, draw_box_3d from data_process.transformation import lidar_to_camera_box from spconv.utils import VoxelGeneratorV2 from utils.torch_utils import _sigmoid from data_process.kitti_data_utils import Calibration import mayavi.mlab import config.kitti_config as cnf from utils.evaluation_utils import decode, post_processing, draw_predictions, convert_det_to_real_values def inverse_rigid_trans(Tr): ''' Inverse a rigid body transform matrix (3x4 as [R|t]) [R'|-R't; 0|1] ''' inv_Tr = np.zeros_like(Tr) # 3x4 inv_Tr[0:3,0:3] = np.transpose(Tr[0:3,0:3]) inv_Tr[0:3,3] = np.dot(-np.transpose(Tr[0:3,0:3]), Tr[0:3,3]) return inv_Tr V2C= np.array([7.533745000000e-03, -9.999714000000e-01, -6.166020000000e-04, -4.069766000000e-03, 1.480249000000e-02, 7.280733000000e-04, -9.998902000000e-01, -7.631618000000e-02, 9.998621000000e-01, 7.523790000000e-03, 1.480755000000e-02, -2.717806000000e-01]) V2C = np.reshape(V2C, [3, 4]) C2V = inverse_rigid_trans(V2C) R0 = np.array([9.999239000000e-01, 9.837760000000e-03, -7.445048000000e-03, -9.869795000000e-03, 9.999421000000e-01, -4.278459000000e-03, 7.402527000000e-03, 4.351614000000e-03, 9.999631000000e-01]) R0 = np.reshape(R0, [3, 3]) def cart2hom(pts_3d): ''' Input: nx3 points in Cartesian Oupput: nx4 points in Homogeneous by pending 1 ''' n = pts_3d.shape[0] pts_3d_hom = np.hstack((pts_3d, np.ones((n, 1)))) return pts_3d_hom def project_ref_to_velo(pts_3d_ref): pts_3d_ref = cart2hom(pts_3d_ref) # nx4 return np.dot(pts_3d_ref, np.transpose(C2V)) def project_rect_to_ref(pts_3d_rect): ''' Input and Output are nx3 points ''' return np.transpose(np.dot(np.linalg.inv(R0), np.transpose(pts_3d_rect))) def project_rect_to_velo(pts_3d_rect): ''' Input: nx3 points in rect camera coord. Output: nx3 points in velodyne coord. ''' pts_3d_ref = project_rect_to_ref(pts_3d_rect) return project_ref_to_velo(pts_3d_ref) def rotz(t): ''' Rotation about the y-axis. ''' c = np.cos(t) s = np.sin(t) return np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]]) def roty(t): ''' Rotation about the y-axis. ''' c = np.cos(t) s = np.sin(t) return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]]) def draw_gt_boxes3d(gt_boxes3d, score,fig, color=(1,1,1), line_width=1, draw_text=True, text_scale=(1,1,1), color_list=None, ): ''' Draw 3D bounding boxes Args: gt_boxes3d: numpy array (n,8,3) for XYZs of the box corners fig: mayavi figure handler color: RGB value tuple in range (0,1), box line color line_width: box line width draw_text: boolean, if true, write box indices beside boxes text_scale: three number tuple color_list: a list of RGB tuple, if not None, overwrite color. Returns: fig: updated fig ''' num = len(gt_boxes3d) for n in range(num): b = gt_boxes3d[n] if color_list is not None: color = color_list[n] #if draw_text: mayavi.mlab.text3d(b[4,0], b[4,1], b[4,2], 'car'+"{:.2f}".format(float(score)), scale=text_scale, color=(1,1,1), figure=fig) for k in range(0,4): #http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html i,j=k,(k+1)%4 mayavi.mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig) i,j=k+4,(k+1)%4 + 4 mayavi.mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig) i,j=k,k+4 mayavi.mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig) #mlab.show(1) #mlab.view(azimuth=180, elevation=70, focalpoint=[ 12.0909996 , -1.04700089, -2.03249991], distance=62.0, figure=fig) return fig def show3dlidar(pointpaht, detections,V2C, R0, P2): pointcloud = np.fromfile(pointpaht, dtype=np.float32).reshape(-1, 4) x = pointcloud[:, 0] # x position of point xmin = np.amin(x, axis=0) xmax = np.amax(x, axis=0 ) y = pointcloud[:, 1] # y position of point ymin = np.amin(y, axis=0) ymax = np.amax(y, axis=0) z = pointcloud[:, 2] # z position of point zmin = np.amin(z, axis=0) zmax = np.amax(z, axis=0) d = np.sqrt(x ** 2 + y ** 2) # Map Distance from sensor vals = 'height' if vals == "height": col = z else: col = d fig = mayavi.mlab.figure(bgcolor=(0, 0, 0), size=(640, 500)) mayavi.mlab.points3d(x, y, z, col, # Values used for Color mode="point", # 灰度图的伪彩映射 colormap='Blues', # 'bone', 'copper', 'gnuplot' # color=(0, 1, 0), # Used a fixed (r,g,b) instead figure=fig, ) # 绘制原点 mayavi.mlab.points3d(0, 0, 0, color=(1, 1, 1), mode="sphere",scale_factor=0.2) print(detections.shape) detections[:, 1:8] = lidar_to_camera_box(detections[:, 1:8], V2C, R0, P2) for i in range(detections.shape[0]): h = float(detections[i][4]) w = float(detections[i][5]) l = float(detections[i][6]) x = float(detections[i][1]) y = float(detections[i][2]) z = float(detections[i][3]) x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2] ; y_corners = [0, 0, 0, 0, -h, -h, -h, -h] ; z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2]; #print(x_corners) #print(detections[i]) R = roty(float(detections[i][7])) corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners])) # print corners_3d.shape #corners_3d = np.zeros((3,8)) corners_3d[0, :] = corners_3d[0, :] + x; corners_3d[1, :] = corners_3d[1, :] + y; corners_3d[2, :] = corners_3d[2, :] + z; corners_3d = np.transpose(corners_3d) box3d_pts_3d_velo = project_rect_to_velo(corners_3d) #x1, y1, z1 = box3d_pts_3d_velo[0, :] #x2, y2, z2 = box3d_pts_3d_velo[1, :] if detections[i][0] == 1.0: draw_gt_boxes3d([box3d_pts_3d_velo],1,color=(1,0,0), fig=fig) else: draw_gt_boxes3d([box3d_pts_3d_velo], 1, color=(0, 1, 0), fig=fig) # 绘制坐标 '''axes = np.array( [[20.0, 0.0, 0.0, 0.0], [0.0, 20.0, 0.0, 0.0], [0.0, 0.0, 20.0, 0.0]], dtype=np.float64, ) #x轴 mayavi.mlab.plot3d( [0, axes[0, 0]], [0, axes[0, 1]], [0, axes[0, 2]], color=(1, 0, 0), tube_radius=None, figure=fig, ) #y轴 mayavi.mlab.plot3d( [0, axes[1, 0]], [0, axes[1, 1]], [0, axes[1, 2]], color=(0, 1, 0), tube_radius=None, figure=fig, ) #z轴 mayavi.mlab.plot3d( [0, axes[2, 0]], [0, axes[2, 1]], [0, axes[2, 2]], color=(0, 0, 1), tube_radius=None, figure=fig, )''' mayavi.mlab.show() def evaluate_mAP(val_loader, model, configs, logger): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') progress = ProgressMeter(len(val_loader), [batch_time, data_time], prefix="Evaluation phase...") labels = [] sample_metrics = [] # List of tuples (TP, confs, pred) # switch to evaluate mode model.eval() class_id = {0:'Car', 1:'Pedestrian', 2:'Cyclist'} with torch.no_grad(): start_time = time.time() for batch_idx, batch_data in enumerate(tqdm(val_loader)): metadatas, targets= batch_data batch_size = len(metadatas['img_path']) voxelinput = metadatas['voxels'] coorinput = metadatas['coors'] numinput = metadatas['num_points'] dtype = torch.float32 voxelinputr = torch.tensor( voxelinput, dtype=torch.float32, device=configs.device).to(dtype) coorinputr = torch.tensor( coorinput, dtype=torch.int32, device=configs.device) numinputr = torch.tensor( numinput, dtype=torch.int32, device=configs.device) t1 = time_synchronized() outputs = model(voxelinputr, coorinputr, numinputr) outputs = outputs._asdict() outputs['hm_cen'] = _sigmoid(outputs['hm_cen']) outputs['cen_offset'] = _sigmoid(outputs['cen_offset']) # detections size (batch_size, K, 10) img_path = metadatas['img_path'][0] #print(img_path) calib = Calibration(img_path.replace(".png", ".txt").replace("image_2", "calib")) detections = decode(outputs['hm_cen'], outputs['cen_offset'], outputs['direction'], outputs['z_coor'], outputs['dim'], K=configs.K) detections = detections.cpu().numpy().astype(np.float32) detections = post_processing(detections, configs.num_classes, configs.down_ratio, configs.peak_thresh) for i in range(configs.batch_size): detections[i] = convert_det_to_real_values(detections[i]) img_path = metadatas['img_path'][i] #rint(img_path) datap = str.split(img_path,'/') filename = str.split(datap[7],'.') file_write_obj = open('../result/' + filename[0] + '.txt', 'w') lidar_path = '/' + datap[1] + '/' + datap[2] + '/' + datap[3] + '/' + \ datap[4] + '/' + datap[5] + '/' + 'velodyne' + '/' + filename[0] + '.bin' #print(lidar_path) #show3dlidar(lidar_path, detections[i], calib.V2C, calib.R0, calib.P2) dets = detections[i] if len(dets) >0 : dets[:, 1:] = lidar_to_camera_box(dets[:, 1:], calib.V2C, calib.R0, calib.P2) for box_idx, label in enumerate(dets): location, dim, ry = label[1:4], label[4:7], label[7] if ry < -np.pi: ry = 2*np.pi + ry if ry > np.pi: ry = -2*np.pi + ry corners_3d = compute_box_3d(dim, location, ry) corners_2d = project_to_image(corners_3d, calib.P2) minxy = np.min(corners_2d, axis=0) maxxy = np.max(corners_2d, axis=0) bbox = np.concatenate([minxy, maxxy], axis=0) if bbox[0] < 0 or bbox[2]<0: continue if bbox[1] > 1272 or bbox[3] > 375: continue oblist = ['Car',' ','0.0', ' ', '0', ' ', '-10', ' ','%.2f'%bbox[0], ' ', \ '%.2f' %bbox[1], ' ','%.2f'%bbox[2], ' ','%.2f'%bbox[3], ' ','%.2f'%dim[0], ' ','%.2f'%dim[1], ' ','%.2f'%dim[2], ' ', \ '%.2f' %location[0], ' ','%.2f'%location[1], ' ','%.2f'%location[2], ' ', '%.2f'%ry, '\n'] file_write_obj.writelines(oblist) file_write_obj.close() '''for sample_i in range(len(detections)): # print(output.shape) num = targets['count'][sample_i] # print(targets['batch'][sample_i][:num].shape) target = targets['batch'][sample_i][:num] #print(target[:, 8].tolist()) labels += target[:, 8].tolist() sample_metrics += get_batch_statistics_rotated_bbox(detections, targets, iou_threshold=configs.iou_thresh) t2 = time_synchronized() # measure elapsed time # torch.cuda.synchronize() batch_time.update(time.time() - start_time) # Log message if logger is not None: if ((batch_idx + 1) % configs.print_freq) == 0: logger.info(progress.get_message(batch_idx)) start_time = time.time() # Concatenate sample statistics true_positives, pred_scores, pred_labels = [np.concatenate(x, 0) for x in list(zip(*sample_metrics))] precision, recall, AP, f1, ap_class = ap_per_class(true_positives, pred_scores, pred_labels, labels)''' #return precision, recall, AP, f1, ap_class def parse_eval_configs(): parser = argparse.ArgumentParser(description='Testing config for the Implementation') parser.add_argument('--classnames-infor-path', type=str, default='/media/wx/File/kittidatabase/classes_names_pillar.txt', metavar='PATH', help='The class names of objects in the task') parser.add_argument('--saved_fn', type=str, default='fpn_resnet_18', metavar='FN', help='The name using for saving logs, models,...') parser.add_argument('-a', '--arch', type=str, default='fpn_resnet_18', metavar='ARCH', help='The name of the model architecture') parser.add_argument('--pretrained_path', type=str, default='../checkpoints/fpn_resnet_18/fpn_resnet_18_epoch_300.pth', metavar='PATH', help='the path of the pretrained checkpoint') parser.add_argument('--K', type=int, default=50, help='the number of top K') parser.add_argument('--no_cuda', action='store_true', help='If true, cuda is not used.') parser.add_argument('--gpu_idx', default=0, type=int, help='GPU index to use.') parser.add_argument('--num_samples', type=int, default=None, help='Take a subset of the dataset to run and debug') parser.add_argument('--num_workers', type=int, default=1, help='Number of threads for loading data') parser.add_argument('--batch_size', type=int, default=4, help='mini-batch size (default: 4)') parser.add_argument('--peak_thresh', type=float, default=0.3) parser.add_argument('--save_test_output', action='store_true', help='If true, the output image of the testing phase will be saved') parser.add_argument('--output_format', type=str, default='image', metavar='PATH', help='the type of the test output (support image or video)') parser.add_argument('--output_video_fn', type=str, default='out_fpn_resnet_18', metavar='PATH', help='the video filename if the output format is video') parser.add_argument('--output-width', type=int, default=608, help='the width of showing output, the height maybe vary') parser.add_argument('--conf_thresh', type=float, default=0.5, help='for evaluation - the threshold for class conf') parser.add_argument('--nms_thresh', type=float, default=0.5, help='for evaluation - the threshold for nms') parser.add_argument('--iou_thresh', type=float, default=0.5, help='for evaluation - the threshold for IoU') configs = edict(vars(parser.parse_args())) configs.pin_memory = True configs.distributed = False # For testing on 1 GPU only configs.input_size = (432, 432) configs.hm_size = (216, 216) configs.down_ratio = 2 configs.max_objects = 50 configs.imagenet_pretrained = False configs.head_conv = 256 configs.num_classes = 1 configs.num_center_offset = 2 configs.num_z = 1 configs.num_dim = 3 configs.num_direction = 2 # sin, cos configs.voxel_size = [0.16, 0.16, 4] configs.point_cloud_range = [0, -34.56, -2.73, 69.12, 34.56, 1.27] configs.max_number_of_points_per_voxel = 100 configs.heads = { 'hm_cen': configs.num_classes, 'cen_offset': configs.num_center_offset, 'direction': configs.num_direction, 'z_coor': configs.num_z, 'dim': configs.num_dim } configs.num_input_features = 4 #################################################################### ##############Dataset, Checkpoints, and results dir configs######### #################################################################### configs.root_dir = '../' configs.dataset_dir = '/media/wx/File/kittidatabase' if configs.save_test_output: configs.results_dir = os.path.join(configs.root_dir, 'results', configs.saved_fn) make_folder(configs.results_dir) return configs if __name__ == '__main__': configs = parse_eval_configs() configs.distributed = False # For evaluation class_names = load_classes(configs.classnames_infor_path) print(configs.iou_thresh) voxel_generator = VoxelGeneratorV2( voxel_size=list(configs.voxel_size), point_cloud_range = list(configs.point_cloud_range), max_num_points= configs.max_number_of_points_per_voxel, max_voxels=20000 ) model = create_model(configs, voxel_generator) print('\n\n' + '-*=' * 30 + '\n\n') assert os.path.isfile(configs.pretrained_path), "No file at {}".format(configs.pretrained_path) model.load_state_dict(torch.load(configs.pretrained_path, map_location='cpu')) print('Loaded weights from {}\n'.format(configs.pretrained_path)) configs.device = torch.device('cpu' if configs.no_cuda else 'cuda:{}'.format(configs.gpu_idx)) model = model.to(device=configs.device) out_cap = None model.eval() print('Create the validation dataloader') val_dataloader = create_val_dataloader(configs, voxel_generator) print("\nStart computing mAP...\n") evaluate_mAP(val_dataloader, model, configs, None) '''print("\nDone computing mAP...\n") for idx, cls in enumerate(ap_class): print("\t>>>\t Class {} ({}): precision = {:.4f}, recall = {:.4f}, AP = {:.4f}, f1: {:.4f}".format(cls, \ class_names[cls][:3], precision[idx], recall[idx], AP[idx], f1[idx])) print("\nmAP: {}\n".format(AP.mean()))'''
[ "torch.load", "torch.tensor", "torch.no_grad" ]
1.3.0
wangx1996/CenterPillarNet
4be3d53265b8ecb1f9572612fa87f7acd8c57669
1.6
# Copyright 2020 LMNT, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import os import torch import torchaudio from argparse import ArgumentParser from diffwave.params import AttrDict, params as base_params from diffwave.model import DiffWave models = {} def load_model(model_dir, device): global models if os.path.exists(f"{model_dir}/weights.pt"): checkpoint = torch.load(f"{model_dir}/weights.pt", map_location=device) else: checkpoint = torch.load(model_dir, map_location=device) model = DiffWave(AttrDict(base_params)).to(device) model.load_state_dict(checkpoint["model"]) model.eval() models[model_dir] = model def predict(spectrogram, model_dir=None, params=None, device=torch.device("cuda")): global models # Lazy load model. if not model_dir in models: load_model(model_dir, device) model = models[model_dir] model.params.override(params) with torch.no_grad(): beta = np.array(model.params.noise_schedule) alpha = 1 - beta alpha_cum = np.cumprod(alpha) # Expand rank 2 tensors by adding a batch dimension. if len(spectrogram.shape) == 2: spectrogram = spectrogram.unsqueeze(0) spectrogram = spectrogram.to(device) audio = torch.randn( spectrogram.shape[0], model.params.hop_samples * spectrogram.shape[-1], device=device, ) noise_scale = torch.from_numpy(alpha_cum ** 0.5).float().unsqueeze(1).to(device) for n in range(len(alpha) - 1, -1, -1): c1 = 1 / alpha[n] ** 0.5 c2 = beta[n] / (1 - alpha_cum[n]) ** 0.5 audio = c1 * ( audio - c2 * model( audio, spectrogram, torch.tensor([n], device=audio.device) ).squeeze(1) ) if n > 0: noise = torch.randn_like(audio) sigma = ( (1.0 - alpha_cum[n - 1]) / (1.0 - alpha_cum[n]) * beta[n] ) ** 0.5 audio += sigma * noise audio = torch.clamp(audio, -1.0, 1.0) return audio, model.params.sample_rate def main(args): spectrogram = torch.from_numpy(np.load(args.spectrogram_path)) audio, sr = predict(spectrogram, model_dir=args.model_dir) torchaudio.save(args.output, audio.cpu(), sample_rate=sr) if __name__ == "__main__": parser = ArgumentParser( description="runs inference on a spectrogram file generated by diffwave.preprocess" ) parser.add_argument( "model_dir", help="directory containing a trained model (or full path to weights.pt file)", ) parser.add_argument( "spectrogram_path", help="path to a spectrogram file generated by diffwave.preprocess", ) parser.add_argument("--output", "-o", default="output.wav", help="output file name") main(parser.parse_args())
[ "torch.device", "torch.no_grad", "torch.clamp", "torch.from_numpy", "torch.randn_like", "torch.tensor", "torch.load", "torch.randn" ]
1.6.0
egaebel/diffwave
c5d7d8d90b662f208ecdfba616782559146dc116
1.6
import unittest import os import shutil import random import pickle import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import torch.multiprocessing as mp import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel from torch.utils.data.distributed import DistributedSampler from aitoolbox import TrainLoop, TTModel from tests_gpu.test_multi_gpu.ddp_prediction_saver import DDPPredictionSave THIS_DIR = os.path.dirname(os.path.abspath(__file__)) class CNNNet(TTModel): def __init__(self): super(CNNNet, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def get_loss(self, batch_data, criterion, device): data, target = batch_data data, target = data.to(device), target.to(device) output = self(data) loss = criterion(output, target) return loss def get_predictions(self, batch_data, device): data, y_test = batch_data data = data.to(device) output = self(data) y_pred = output.argmax(dim=1, keepdim=False) return y_pred.cpu(), y_test, {} class TestMNISTCNN(unittest.TestCase): def test_trainloop_core_pytorch_compare(self): os.mkdir(f'{THIS_DIR}/ddp_cnn_save') val_loss_tl, y_pred_tl, y_true_tl = self.train_eval_trainloop(num_epochs=5, use_real_train_data=True) val_loss_pt, y_pred_pt, y_true_pt = self.train_eval_core_pytorch(num_epochs=5, use_real_train_data=True) self.assertAlmostEqual(val_loss_tl, val_loss_pt, places=8) self.assertEqual(y_pred_tl, y_pred_pt) self.assertEqual(y_true_tl, y_true_pt) project_path = os.path.join(THIS_DIR, 'ddp_cnn_save') if os.path.exists(project_path): shutil.rmtree(project_path) project_path = os.path.join(THIS_DIR, 'data') if os.path.exists(project_path): shutil.rmtree(project_path) def train_eval_trainloop(self, num_epochs, use_real_train_data=False): self.set_seeds() train_loader = torch.utils.data.DataLoader( datasets.MNIST(os.path.join(THIS_DIR, 'data'), train=use_real_train_data, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=100, shuffle=True) val_loader = torch.utils.data.DataLoader( datasets.MNIST(os.path.join(THIS_DIR, 'data'), train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=100) model = CNNNet() optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999)) criterion = nn.NLLLoss() print('Starting train loop') tl = TrainLoop( model, train_loader, val_loader, None, optimizer, criterion, gpu_mode='ddp' ) self.assertEqual(tl.device.type, "cuda") tl.fit(num_epochs=num_epochs, callbacks=[DDPPredictionSave(dir_path=f'{THIS_DIR}/ddp_cnn_save', file_name='tl_ddp_predictions.p')]) with open(f'{THIS_DIR}/ddp_cnn_save/tl_ddp_predictions.p', 'rb') as f: val_loss, y_pred, y_true = pickle.load(f) return val_loss, y_pred, y_true def train_eval_core_pytorch(self, num_epochs, use_real_train_data=False): self.set_seeds() train_loader = torch.utils.data.DataLoader( datasets.MNIST(os.path.join(THIS_DIR, 'data'), train=use_real_train_data, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=100) val_loader = torch.utils.data.DataLoader( datasets.MNIST(os.path.join(THIS_DIR, 'data'), train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=100) model_pt = CNNNet() optimizer_pt = optim.Adam(model_pt.parameters(), lr=0.001, betas=(0.9, 0.999)) criterion_pt = nn.NLLLoss() os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '8888' print('Starting the manual DDP training') mp.spawn( self.manual_ddp_training, args=(num_epochs, model_pt, optimizer_pt, criterion_pt, train_loader, val_loader), nprocs=torch.cuda.device_count() ) val_loss, y_pred, y_true = [], [], [] for idx in range(torch.cuda.device_count()): with open(f'{THIS_DIR}/ddp_cnn_save/pt_ddp_predictions_{idx}.p', 'rb') as f: val_loss_f, y_pred_f, y_true_f = pickle.load(f) val_loss += val_loss_f y_pred += y_pred_f y_true += y_true_f val_loss = np.mean(val_loss) return val_loss, y_pred, y_true @staticmethod def manual_ddp_training(gpu, num_epochs, model_pt, optimizer_pt, criterion_pt, train_loader, val_loader): rank = gpu dist.init_process_group(backend='nccl', init_method='env://', world_size=torch.cuda.device_count(), rank=rank) torch.manual_seed(0) torch.cuda.set_device(gpu) device = torch.device(f"cuda:{gpu}") train_sampler = DistributedSampler(dataset=train_loader.dataset, shuffle=True, num_replicas=torch.cuda.device_count(), rank=rank) val_sampler = DistributedSampler(dataset=val_loader.dataset, shuffle=False, num_replicas=torch.cuda.device_count(), rank=rank) train_loader_ddp = DataLoader(train_loader.dataset, batch_size=100, sampler=train_sampler) val_loader_ddp = DataLoader(val_loader.dataset, batch_size=100, sampler=val_sampler) model_pt = model_pt.to(device) criterion_pt = criterion_pt.to(device) model_pt = DistributedDataParallel(model_pt, device_ids=[gpu]) model_pt.train() for epoch in range(num_epochs): print(f'Epoch: {epoch}') train_sampler.set_epoch(epoch) for i, (input_data, target) in enumerate(train_loader_ddp): input_data = input_data.to(device) target = target.to(device) predicted = model_pt(input_data) loss = criterion_pt(predicted, target) loss.backward() optimizer_pt.step() optimizer_pt.zero_grad() # Imitate what happens in auto_execute_end_of_epoch() in TrainLoop for _ in train_loader: pass for _ in val_loader: pass print('Evaluating') val_loss, val_pred, val_true = [], [], [] model_pt.eval() with torch.no_grad(): for input_data, target in val_loader_ddp: input_data = input_data.to(device) target = target.to(device) predicted = model_pt(input_data) loss_batch = criterion_pt(predicted, target).cpu().item() val_pred += predicted.argmax(dim=1, keepdim=False).cpu().tolist() val_true += target.cpu().tolist() val_loss.append(loss_batch) with open(f'{THIS_DIR}/ddp_cnn_save/pt_ddp_predictions_{gpu}.p', 'wb') as f: pickle.dump([val_loss, val_pred, val_true], f) @staticmethod def set_seeds(): manual_seed = 0 torch.backends.cudnn.enabled = False torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True np.random.seed(manual_seed) random.seed(manual_seed) torch.manual_seed(manual_seed) # if you are suing GPU torch.cuda.manual_seed(manual_seed) torch.cuda.manual_seed_all(manual_seed)
[ "torch.nn.Linear", "torch.cuda.manual_seed", "torch.manual_seed", "torch.utils.data.DataLoader", "torch.nn.functional.relu", "torch.device", "torch.cuda.manual_seed_all", "torch.nn.parallel.DistributedDataParallel", "torch.nn.functional.log_softmax", "torch.cuda.device_count", "torch.cuda.set_device", "torch.nn.Conv2d", "torch.nn.NLLLoss", "torch.no_grad", "torch.flatten", "torch.nn.functional.max_pool2d", "torch.nn.Dropout2d" ]
1.6.0
mv1388/AIToolbox
1060435e6cbdfd19abcb726c4080b663536b7467
1.2
import torch import torch.nn as nn import torch.nn.functional as F from api.models.utils.distribution import sample_from_discretized_mix_logistic from api.models.utils.display import * from api.models.utils.dsp import * import os import numpy as np from pathlib import Path from typing import Union class ResBlock(nn.Module): def __init__(self, dims): super().__init__() self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) self.batch_norm1 = nn.BatchNorm1d(dims) self.batch_norm2 = nn.BatchNorm1d(dims) def forward(self, x): residual = x x = self.conv1(x) x = self.batch_norm1(x) x = F.relu(x) x = self.conv2(x) x = self.batch_norm2(x) return x + residual class MelResNet(nn.Module): def __init__(self, res_blocks, in_dims, compute_dims, res_out_dims, pad): super().__init__() k_size = pad * 2 + 1 self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False) self.batch_norm = nn.BatchNorm1d(compute_dims) self.layers = nn.ModuleList() for i in range(res_blocks): self.layers.append(ResBlock(compute_dims)) self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1) def forward(self, x): x = self.conv_in(x) x = self.batch_norm(x) x = F.relu(x) for f in self.layers: x = f(x) x = self.conv_out(x) return x class Stretch2d(nn.Module): def __init__(self, x_scale, y_scale): super().__init__() self.x_scale = x_scale self.y_scale = y_scale def forward(self, x): b, c, h, w = x.size() x = x.unsqueeze(-1).unsqueeze(3) x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale) return x.view(b, c, h * self.y_scale, w * self.x_scale) class UpsampleNetwork(nn.Module): def __init__(self, feat_dims, upsample_scales, compute_dims, res_blocks, res_out_dims, pad): super().__init__() total_scale = np.cumproduct(upsample_scales)[-1] self.indent = pad * total_scale self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims, pad) self.resnet_stretch = Stretch2d(total_scale, 1) self.up_layers = nn.ModuleList() for scale in upsample_scales: k_size = (1, scale * 2 + 1) padding = (0, scale) stretch = Stretch2d(scale, 1) conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False) conv.weight.data.fill_(1. / k_size[1]) self.up_layers.append(stretch) self.up_layers.append(conv) def forward(self, m): aux = self.resnet(m).unsqueeze(1) aux = self.resnet_stretch(aux) aux = aux.squeeze(1) m = m.unsqueeze(1) for f in self.up_layers: m = f(m) m = m.squeeze(1)[:, :, self.indent:-self.indent] return m.transpose(1, 2), aux.transpose(1, 2) class WaveRNN(nn.Module): def __init__(self, rnn_dims, fc_dims, bits, pad, upsample_factors, feat_dims, compute_dims, res_out_dims, res_blocks, hop_length, sample_rate, mode='RAW'): super().__init__() self.mode = mode self.pad = pad if self.mode == 'RAW': self.n_classes = 2 ** bits elif self.mode == 'MOL': self.n_classes = 30 else: RuntimeError("Unknown model mode value - ", self.mode) # List of rnns to call `flatten_parameters()` on self._to_flatten = [] self.rnn_dims = rnn_dims self.aux_dims = res_out_dims // 4 self.hop_length = hop_length self.sample_rate = sample_rate self.upsample = UpsampleNetwork(feat_dims, upsample_factors, compute_dims, res_blocks, res_out_dims, pad) self.I = nn.Linear(feat_dims + self.aux_dims + 1, rnn_dims) self.rnn1 = nn.GRU(rnn_dims, rnn_dims, batch_first=True) self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims, batch_first=True) self._to_flatten += [self.rnn1, self.rnn2] self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims) self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims) self.fc3 = nn.Linear(fc_dims, self.n_classes) self.register_buffer('step', torch.zeros(1, dtype=torch.long)) self.num_params() # Avoid fragmentation of RNN parameters and associated warning self._flatten_parameters() def forward(self, x, mels): device = next(self.parameters()).device # use same device as parameters # Although we `_flatten_parameters()` on init, when using DataParallel # the model gets replicated, making it no longer guaranteed that the # weights are contiguous in GPU memory. Hence, we must call it again self._flatten_parameters() if self.training: self.step += 1 bsize = x.size(0) h1 = torch.zeros(1, bsize, self.rnn_dims, device=device) h2 = torch.zeros(1, bsize, self.rnn_dims, device=device) mels, aux = self.upsample(mels) aux_idx = [self.aux_dims * i for i in range(5)] a1 = aux[:, :, aux_idx[0]:aux_idx[1]] a2 = aux[:, :, aux_idx[1]:aux_idx[2]] a3 = aux[:, :, aux_idx[2]:aux_idx[3]] a4 = aux[:, :, aux_idx[3]:aux_idx[4]] x = torch.cat([x.unsqueeze(-1), mels, a1], dim=2) x = self.I(x) res = x x, _ = self.rnn1(x, h1) x = x + res res = x x = torch.cat([x, a2], dim=2) x, _ = self.rnn2(x, h2) x = x + res x = torch.cat([x, a3], dim=2) x = F.relu(self.fc1(x)) x = torch.cat([x, a4], dim=2) x = F.relu(self.fc2(x)) return self.fc3(x) def generate(self, mels, save_path: Union[str, Path, None], batched, target, overlap, mu_law, silent=False): self.eval() device = next(self.parameters()).device # use same device as parameters mu_law = mu_law if self.mode == 'RAW' else False output = [] start = time.time() rnn1 = self.get_gru_cell(self.rnn1) rnn2 = self.get_gru_cell(self.rnn2) with torch.no_grad(): mels = torch.as_tensor(mels, device=device) wave_len = (mels.size(-1) - 1) * self.hop_length mels = self.pad_tensor(mels.transpose(1, 2), pad=self.pad, side='both') mels, aux = self.upsample(mels.transpose(1, 2)) if batched: mels = self.fold_with_overlap(mels, target, overlap) aux = self.fold_with_overlap(aux, target, overlap) b_size, seq_len, _ = mels.size() h1 = torch.zeros(b_size, self.rnn_dims, device=device) h2 = torch.zeros(b_size, self.rnn_dims, device=device) x = torch.zeros(b_size, 1, device=device) d = self.aux_dims aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)] for i in range(seq_len): m_t = mels[:, i, :] a1_t, a2_t, a3_t, a4_t = \ (a[:, i, :] for a in aux_split) x = torch.cat([x, m_t, a1_t], dim=1) x = self.I(x) h1 = rnn1(x, h1) x = x + h1 inp = torch.cat([x, a2_t], dim=1) h2 = rnn2(inp, h2) x = x + h2 x = torch.cat([x, a3_t], dim=1) x = F.relu(self.fc1(x)) x = torch.cat([x, a4_t], dim=1) x = F.relu(self.fc2(x)) logits = self.fc3(x) if self.mode == 'MOL': sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2)) output.append(sample.view(-1)) # x = torch.FloatTensor([[sample]]).cuda() x = sample.transpose(0, 1) elif self.mode == 'RAW': posterior = F.softmax(logits, dim=1) distrib = torch.distributions.Categorical(posterior) sample = 2 * distrib.sample().float() / (self.n_classes - 1.) - 1. output.append(sample) x = sample.unsqueeze(-1) else: raise RuntimeError("Unknown model mode value - ", self.mode) if not silent and i % 100 == 0: self.gen_display(i, seq_len, b_size, start) output = torch.stack(output).transpose(0, 1) output = output.cpu().numpy() output = output.astype(np.float64) if mu_law: output = decode_mu_law(output, self.n_classes, False) if batched: output = self.xfade_and_unfold(output, target, overlap) else: output = output[0] # Fade-out at the end to avoid signal cutting out suddenly fade_out = np.linspace(1, 0, 20 * self.hop_length) output = output[:wave_len] output[-20 * self.hop_length:] *= fade_out if save_path is not None: save_wav(output, save_path) self.train() return output def gen_display(self, i, seq_len, b_size, start): gen_rate = (i + 1) / (time.time() - start) * b_size / 1000 pbar = progbar(i, seq_len) msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | ' stream(msg) def get_gru_cell(self, gru): gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size) gru_cell.weight_hh.data = gru.weight_hh_l0.data gru_cell.weight_ih.data = gru.weight_ih_l0.data gru_cell.bias_hh.data = gru.bias_hh_l0.data gru_cell.bias_ih.data = gru.bias_ih_l0.data return gru_cell def pad_tensor(self, x, pad, side='both'): # NB - this is just a quick method i need right now # i.e., it won't generalise to other shapes/dims b, t, c = x.size() total = t + 2 * pad if side == 'both' else t + pad padded = torch.zeros(b, total, c, device=x.device) if side == 'before' or side == 'both': padded[:, pad:pad + t, :] = x elif side == 'after': padded[:, :t, :] = x return padded def fold_with_overlap(self, x, target, overlap): ''' Fold the tensor with overlap for quick batched inference. Overlap will be used for crossfading in xfade_and_unfold() Args: x (tensor) : Upsampled conditioning features. shape=(1, timesteps, features) target (int) : Target timesteps for each index of batch overlap (int) : Timesteps for both xfade and rnn warmup Return: (tensor) : shape=(num_folds, target + 2 * overlap, features) Details: x = [[h1, h2, ... hn]] Where each h is a vector of conditioning features Eg: target=2, overlap=1 with x.size(1)=10 folded = [[h1, h2, h3, h4], [h4, h5, h6, h7], [h7, h8, h9, h10]] ''' _, total_len, features = x.size() # Calculate variables needed num_folds = (total_len - overlap) // (target + overlap) extended_len = num_folds * (overlap + target) + overlap remaining = total_len - extended_len # Pad if some time steps poking out if remaining != 0: num_folds += 1 padding = target + 2 * overlap - remaining x = self.pad_tensor(x, padding, side='after') folded = torch.zeros(num_folds, target + 2 * overlap, features, device=x.device) # Get the values for the folded tensor for i in range(num_folds): start = i * (target + overlap) end = start + target + 2 * overlap folded[i] = x[:, start:end, :] return folded def xfade_and_unfold(self, y, target, overlap): ''' Applies a crossfade and unfolds into a 1d array. Args: y (ndarry) : Batched sequences of audio samples shape=(num_folds, target + 2 * overlap) dtype=np.float64 overlap (int) : Timesteps for both xfade and rnn warmup Return: (ndarry) : audio samples in a 1d array shape=(total_len) dtype=np.float64 Details: y = [[seq1], [seq2], [seq3]] Apply a gain envelope at both ends of the sequences y = [[seq1_in, seq1_target, seq1_out], [seq2_in, seq2_target, seq2_out], [seq3_in, seq3_target, seq3_out]] Stagger and add up the groups of samples: [seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...] ''' num_folds, length = y.shape target = length - 2 * overlap total_len = num_folds * (target + overlap) + overlap # Need some silence for the rnn warmup silence_len = overlap // 2 fade_len = overlap - silence_len silence = np.zeros((silence_len), dtype=np.float64) linear = np.ones((silence_len), dtype=np.float64) # Equal power crossfade t = np.linspace(-1, 1, fade_len, dtype=np.float64) fade_in = np.sqrt(0.5 * (1 + t)) fade_out = np.sqrt(0.5 * (1 - t)) # Concat the silence to the fades fade_in = np.concatenate([silence, fade_in]) fade_out = np.concatenate([linear, fade_out]) # Apply the gain to the overlap samples y[:, :overlap] *= fade_in y[:, -overlap:] *= fade_out unfolded = np.zeros((total_len), dtype=np.float64) # Loop to add up all the samples for i in range(num_folds): start = i * (target + overlap) end = start + target + 2 * overlap unfolded[start:end] += y[i] return unfolded def get_step(self): return self.step.data.item() def log(self, path, msg): with open(path, 'a') as f: print(msg, file=f) def load(self, path: Union[str, Path]): # Use device of model params as location for loaded state device = next(self.parameters()).device self.load_state_dict(torch.load(path, map_location=device), strict=False) def save(self, path: Union[str, Path]): # No optimizer argument because saving a model should not include data # only relevant in the training process - it should only be properties # of the model itself. Let caller take care of saving optimzier state. torch.save(self.state_dict(), path) def num_params(self, print_out=False): parameters = filter(lambda p: p.requires_grad, self.parameters()) parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 if print_out: print('Trainable Parameters: %.3fM' % parameters) return parameters def _flatten_parameters(self): """Calls `flatten_parameters` on all the rnns used by the WaveRNN. Used to improve efficiency and avoid PyTorch yelling at us.""" [m.flatten_parameters() for m in self._to_flatten]
[ "torch.nn.Linear", "torch.cat", "torch.stack", "torch.nn.GRU", "torch.nn.ModuleList", "torch.distributions.Categorical", "torch.load", "torch.nn.Conv1d", "torch.as_tensor", "torch.nn.functional.relu", "torch.zeros", "torch.nn.Conv2d", "torch.nn.functional.softmax", "torch.nn.GRUCell", "torch.no_grad", "torch.nn.BatchNorm1d" ]
1.2.0
elainevoice/backend
9b5fef59001fd6c2040affc80cd5cb9690c73795
1.8
import torch import numpy as np from tqdm import tqdm from sklearn import cluster #bol_norm True -> Divide by norm of feature def same_score(v_ortho_dict, features, labels, bol_norm=False): features = torch.from_numpy(features).cuda() scores = torch.zeros(features.shape[0]) for indx, feat in enumerate(features): tmp_scores = torch.dot(v_ortho_dict[labels[indx]][0], feat).abs() scores[indx] = (tmp_scores / torch.norm(feat, p=2)) if bol_norm else tmp_scores return scores def same_topk(label_list, scores, p): output = [] for idx in range(len(np.unique(label_list))): num_inst = int(p * np.sum(label_list==idx)) indexs = torch.tensor(range(len(label_list)))[label_list==idx] tmp_sort, tmp_idx = torch.sort(scores[label_list==idx], descending=False) # 못 들어간 애가 필요한거니까 이렇게! output += indexs[tmp_idx[num_inst:]].numpy().tolist() return torch.tensor(output).long() #Classswise kmenas def same_kmeans(label_list, scores, p=None): output = [] for idx in range(len(np.unique(label_list))): indexs = torch.tensor(range(len(scores)))[label_list==idx] kmeans = cluster.KMeans(n_clusters=2, random_state=0).fit(scores[indexs].reshape(-1, 1)) if torch.mean(scores[indexs][kmeans.labels_==0]) < torch.mean(scores[indexs][kmeans.labels_==1]): kmeans.labels_ = 1 - kmeans.labels_ output += indexs[kmeans.labels_ == 0].numpy().tolist() return torch.tensor(output).long() #Total Kmeans def same_kmeans_total(scores, p=None): output = [] indexs = torch.tensor(range(len(scores))) kmeans = cluster.KMeans(n_clusters=2, random_state=0).fit(scores.reshape(-1, 1)) if torch.mean(scores[kmeans.labels_==0]) < torch.mean(scores[kmeans.labels_==1]): kmeans.labels_ = 1 - kmeans.labels_ for idx, value in enumerate(kmeans.labels_): if value == 0: output.append(idx) return torch.tensor(output).long(), None def same_topk_index(orig_label_list, orig_out_list, prev_label_list, prev_out_list, p=None): singular_dict, v_ortho_dict = get_singular_value_vector(prev_label_list, prev_out_list) for key in v_ortho_dict.keys(): v_ortho_dict[key] = v_ortho_dict[key].cuda() scores = same_score(v_ortho_dict, orig_out_list, orig_label_list) output = same_topk(orig_label_list, scores, p) return output.numpy() def same_kmeans_index(orig_label_list, orig_out_list, prev_label_list, prev_out_list, p=None): singular_dict, v_ortho_dict = get_singular_value_vector(prev_label_list, prev_out_list) for key in v_ortho_dict.keys(): v_ortho_dict[key] = v_ortho_dict[key].cuda() scores = same_score(v_ortho_dict, orig_out_list, orig_label_list) output = same_kmeans(orig_label_list, scores, p) return output.numpy() def compute_noisy_ratio(data_loader): isNoisy_list = np.empty((0,)) with tqdm(data_loader) as progress: for _, (_, label, index, label_gt) in enumerate(progress): isNoisy = label == label_gt isNoisy_list = np.concatenate((isNoisy_list, isNoisy.cpu())) print ('#############################') print (isNoisy_list.sum(), isNoisy_list.shape) print('purity in this dataset: {}'.format(isNoisy_list.sum() / isNoisy_list.shape)) def get_loss_list(model, data_loader): loss_list = np.empty((0,)) with tqdm(data_loader) as progress: for batch_idx, (data, label, index, label_gt) in enumerate(progress): data = data.cuda() label, label_gt = label.long().cuda(), label_gt.long().cuda() _, prediction = model(data) loss = torch.nn.CrossEntropyLoss(reduction='none')(prediction, label) loss_list = np.concatenate((loss_list, loss.detach().cpu())) kmeans = cluster.KMeans(n_clusters=2, random_state=0).fit(loss_list.reshape(-1,1)) if np.mean(loss_list[kmeans.labels_==0]) > np.mean(loss_list[kmeans.labels_==1]): clean_label = 1 else: clean_label = 0 output=[] for idx, value in enumerate(kmeans.labels_): if value==clean_label: output.append(idx) return output def iterative_eigen(number, label_list, out_list, teacher_idx=None): sin_lbls = {} for i in range(number): tmp_lbl = torch.zeros(50000) if teacher_idx !=None: for num in (set(range(0,50000)) - set(teacher_idx)): tmp_lbl[num] += 1 print(tmp_lbl.sum().item()) for k in range(i): tmp_lbl += sin_lbls[k] singular_dict, v_ortho_dict = get_singular_value_vector(label_list[tmp_lbl==0], out_list[tmp_lbl==0]) for key in v_ortho_dict.keys(): v_ortho_dict[key] = v_ortho_dict[key].cuda() sing_lbl, sin_score_lbl = singular_label(v_ortho_dict, out_list, label_list) sin_lbls[i]=sing_lbl if i>0 and torch.all(torch.eq(sin_lbls[i], sin_lbls[i-1])): print(i) break if number ==1: output=[] for idx, value in enumerate(sing_lbl): if value==0: output.append(idx) else: kmeans = cluster.KMeans(n_clusters=2, random_state=0).fit(loss_list.reshape(-1,1)) if np.mean(sin_score_lbl[kmeans.labels_==0]) > np.mean(sin_score_lbl[kmeans.labels_==1]): clean_label = 0 else: clean_label = 1 output=[] for idx, value in enumerate(kmeans.labels_): if value==clean_label: output.append(idx) return output def get_out_list(model, data_loader): label_list = np.empty((0,)) model.eval() model.cuda() with tqdm(data_loader) as progress: for batch_idx, (data, label, index, _) in enumerate(progress): data = data.cuda() # label, label_gt = label.long().cuda(), label_gt.long().cuda() label = label.long() output, _ = model(data) label_list = np.concatenate((label_list, label.cpu())) if batch_idx == 0: out_list = output.detach().cpu() else: out_list = np.concatenate((out_list, output.detach().cpu()), axis=0) return label_list, out_list def get_singular_value_vector(label_list, out_list): singular_dict = {} v_ortho_dict = {} for index in np.unique(label_list): u, s, v = np.linalg.svd(out_list[label_list==index]) singular_dict[index] = s[0] / s[1] v_ortho_dict[index] = torch.from_numpy(v[:2]) return singular_dict, v_ortho_dict def singular_label(v_ortho_dict, model_represents, label): model_represents = torch.from_numpy(model_represents).cuda() sing_lbl = torch.zeros(model_represents.shape[0]) sin_score_lbl = torch.zeros(model_represents.shape[0]) for i, data in enumerate(model_represents): sin_score_lbl[i] = torch.dot(v_ortho_dict[label[i]][0], data).abs() - torch.dot(v_ortho_dict[label[i]][1], data).abs() if torch.dot(v_ortho_dict[label[i]][0], data).abs() < torch.dot(v_ortho_dict[label[i]][1], data).abs(): sing_lbl[i] = 1 return sing_lbl, sin_score_lbl def kmean_singular_label(v_ortho_dict, model_represents, label): model_represents = torch.from_numpy(model_represents).cuda() sing_lbl = torch.zeros(model_represents.shape[0]) sin_score_lbl = torch.zeros(model_represents.shape[0]) for i, data in enumerate(model_represents): sin_score_lbl[i] = torch.dot(v_ortho_dict[label[i]][0], data).abs() - torch.dot(v_ortho_dict[label[i]][1], data).abs() kmeans = cluster.KMeans(n_clusters=2, random_state=0).fit(sin_score_lbl.reshape(-1, 1)) if torch.mean(sin_score_lbl[kmeans.labels_==0]) < torch.mean(sin_score_lbl[kmeans.labels_==1]): kmeans.labels_ = 1 - kmeans.labels_ output = [] for idx, value in enumerate(kmeans.labels_): if value == 0: output.append(idx) return output def kmean_singular_label2(v_ortho_dict, model_represents, label): model_represents = torch.from_numpy(model_represents).cuda() sing_lbl = torch.zeros(model_represents.shape[0]) sin_score_lbl = torch.zeros(model_represents.shape[0]) for i, data in enumerate(model_represents): sin_score_lbl[i] = torch.dot(v_ortho_dict[label[i]][0], data).abs() / torch.norm(data, p=2) kmeans = cluster.KMeans(n_clusters=2, random_state=0).fit(sin_score_lbl.reshape(-1, 1)) if torch.mean(sin_score_lbl[kmeans.labels_==0]) < torch.mean(sin_score_lbl[kmeans.labels_==1]): kmeans.labels_ = 1 - kmeans.labels_ output = [] for idx, value in enumerate(kmeans.labels_): if value == 0: output.append(idx) return output def kmean_eigen_out(label_list, out_list, teacher_idx=None): singular_dict, v_ortho_dict = get_singular_value_vector(label_list, out_list) for key in v_ortho_dict.keys(): v_ortho_dict[key] = v_ortho_dict[key].cuda() output = kmean_singular_label(v_ortho_dict, out_list, label_list) return output def topk_eigen_kmean(label_list, out_list, teacher_idx=None): singular_dict, v_ortho_dict = get_singular_value_vector(label_list, out_list) for key in v_ortho_dict.keys(): v_ortho_dict[key] = v_ortho_dict[key].cuda() output = kmean_singular_label2(v_ortho_dict, out_list, label_list) return output def get_anchor(label_list, out_list, teacher_idx=None): label_list = torch.from_numpy(label_list).long().numpy() singular_dict, v_ortho_dict = get_singular_value_vector(label_list, out_list) for key in v_ortho_dict.keys(): v_ortho_dict[key] = v_ortho_dict[key].cuda() model_represents = torch.from_numpy(out_list).cuda() sin_score_lbl = [[] for _ in range(len(np.unique(label_list)))] for i, data in enumerate(model_represents): sin_score_lbl[label_list[i]].append(torch.dot(v_ortho_dict[label_list[i]][0], data).abs()) # classwise topk v_ortho_dict_ = {} for index in np.unique(label_list): cls_score_lbl = sin_score_lbl[index] topk_v, topk_i = torch.topk(torch.tensor(cls_score_lbl), k=50) u, s, v = np.linalg.svd(model_represents[label_list==index][topk_i].cpu().numpy()) v_ortho_dict_[index] = torch.from_numpy(v[0]).unsqueeze(0).cuda() output = kmean_singular_label2(v_ortho_dict_, model_represents.cpu().numpy(), label_list) return output def isNoisy_ratio(data_loader): isNoisy_list = np.empty((0,)) with tqdm(data_loader) as progress: for _, (_, label, index, label_gt) in enumerate(progress): isNoisy = label == label_gt isNoisy_list = np.concatenate((isNoisy_list, isNoisy.cpu())) print ('#############################') print (isNoisy_list.sum(), isNoisy_list.shape) print('purity in this dataset: {}'.format(isNoisy_list.sum() / isNoisy_list.shape)) def extract_teacherIdx(teacher, data_loader, parse): teacher.load_state_dict(torch.load('./checkpoint/' + parse.load_name)['state_dict']) teacher = teacher.cuda() if not parse.reinit: model.load_state_dict(torch.load('./checkpoint/' + parse.load_name)['state_dict']) for params in teacher.parameters(): params.requires_grad = False if parse.distill_mode == 'eigen': tea_label_list, tea_out_list = get_out_list(teacher, data_loader) teacher_idx = iterative_eigen(1,tea_label_list,tea_out_list) elif parse.distill_mode == 'fulleigen': tea_label_list, tea_out_list = get_out_list(teacher, data_loader) teacher_idx = iterative_eigen(100,tea_label_list,tea_out_list) elif parse.distill_mode == 'kmean_eigen': tea_label_list, tea_out_list = get_out_list(teacher, data_loader) teacher_idx = kmean_eigen_out(tea_label_list, tea_out_list) elif parse.distill_mode == 'topk_eigen_kmean': tea_label_list, tea_out_list = get_out_list(teacher, data_loader) teacher_idx = topk_eigen_kmean(tea_label_list, tea_out_list) else: teacher_idx = get_loss_list(teacher, data_loader) print('||||||original||||||') isNoisy_ratio(data_loader) if parse.second_load_name !=None: teacher.load_state_dict(torch.load('./checkpoint/' + parse.second_load_name)['state_dict']) teacher = teacher.cuda() if not parse.reinit: model.load_state_dict(torch.load('./checkpoint/' + parse.second_load_name)['state_dict']) for params in teacher.parameters(): params.requires_grad = False if parse.distill_mode == 'eigen': tea_label_list, tea_out_list = get_out_list(teacher, data_loader) teacher_idx2 = iterative_eigen(1,tea_label_list,tea_out_list,teacher_idx) elif parse.distill_mode == 'fulleigen': tea_label_list, tea_out_list = get_out_list(teacher, data_loader) teacher_idx2 = iterative_eigen(100,tea_label_list,tea_out_list) else: teacher_idx2 = get_loss_list(teacher, data_loader) teacher_idx = list(set(teacher_idx) & set(teacher_idx2)) print('second_distillation') if parse.third_load_name !=None: teacher.load_state_dict(torch.load('./checkpoint/' + parse.third_load_name)['state_dict']) teacher = teacher.cuda() if not parse.reinit: model.load_state_dict(torch.load('./checkpoint/' + parse.third_load_name)['state_dict']) for params in teacher.parameters(): params.requires_grad = False if parse.distill_mode == 'eigen': tea_label_list, tea_out_list = get_out_list(teacher, data_loader) teacher_idx3 = iterative_eigen(1,tea_label_list,tea_out_list, teacher_idx) elif parse.distill_mode == 'fulleigen': tea_label_list, tea_out_list = get_out_list(teacher, data_loader) teacher_idx3 = iterative_eigen(100,tea_label_list,tea_out_list) else: teacher_idx3 = get_loss_list(teacher, data_loader) teacher_idx = list(set(teacher_idx) & set(teacher_idx3)) print('third_ distillation') return teacher_idx # def get_loss_list_2d(model, data_loader, n_clusters=2, c_clusters=1): # loss_list = np.empty((0, 2)) # model.cuda() # with tqdm(data_loader) as progress: # for batch_idx, (data, label, index, label_gt) in enumerate(progress): # data = data.cuda() # label, label_gt = label.long().cuda(), label_gt.long().cuda() # _, pred = model(data) # loss = torch.nn.CrossEntropyLoss(reduction='none')(pred, label) # prob = torch.softmax(pred, dim=-1) # top2_log_pred, top2_ind = torch.topk(torch.log(prob), k=n_clusters, dim=-1) # is_pred_wrong = (top2_ind[:, 0] != label).bool() # is_pred_correct = (top2_ind[:, 0] == label).bool() # label_top1 = torch.stack([loss, -top2_log_pred[:, 0]], dim=1) # for pred wrong # top2_log_pred = -top2_log_pred # top2_log_pred[is_pred_wrong] = label_top1[is_pred_wrong] # loss_list = np.concatenate((loss_list, top2_log_pred.detach().cpu().numpy()), axis=0) # kmeans = cluster.KMeans(n_clusters=n_clusters, random_state=0).fit(loss_list.reshape(50000,2)) # mean_losses = [] # for itr in range(n_clusters): # mean_losses.append(np.mean(loss_list[kmeans.labels_==itr][:, 0])) # _, clean_labels = torch.topk(-torch.tensor(mean_losses), k=c_clusters) # output=[] # for idx, value in enumerate(kmeans.labels_): # if value in clean_labels: # output.append(idx) # return output
[ "torch.zeros", "torch.dot", "torch.eq", "torch.norm", "torch.nn.CrossEntropyLoss", "torch.from_numpy", "torch.sort", "torch.tensor", "torch.load", "torch.mean" ]
1.8.0
Kthyeon/FINE
ae8a24a4a2514feafd9a9ed394af87f397708ccf
1.8
# https://github.com/AlanChou/Truncated-Loss/blob/master/TruncatedLoss.py import torch import torch.nn as nn import torch.nn.functional as F import math import numpy as np __all__=['GCELoss', 'GCE_GTLoss'] class GCELoss(nn.Module): def __init__(self, q=0.7, k=0.5, trainset_size=50000, truncated=False): super().__init__() self.q = q self.k = k self.truncated = truncated self.weight = torch.nn.Parameter(data=torch.ones(trainset_size, 1), requires_grad=False) def forward(self, logits, targets, indexes, mode=None): p = F.softmax(logits, dim=1) Yg = torch.gather(p, 1, torch.unsqueeze(targets, 1)) if self.truncated == True: if mode == 'ce': ce = nn.CrossEntropyLoss(reduction='none') loss = ce(logits, targets) loss = torch.mean(loss) else: loss = ((1-(Yg**self.q))/self.q)*self.weight[indexes] - ((1-(self.k**self.q))/self.q)*self.weight[indexes] loss = torch.mean(loss) else: if mode == 'ce': ce = nn.CrossEntropyLoss(reduction='none') loss = ce(logits, targets) loss = torch.mean(loss) else: loss = (1-(Yg**self.q))/self.q loss = torch.mean(loss) return loss def update_weight(self, logits, targets, indexes): p = F.softmax(logits, dim=1) Yg = torch.gather(p, 1, torch.unsqueeze(targets, 1)) Lq = ((1-(Yg**self.q))/self.q) Lqk = np.repeat(((1-(self.k**self.q))/self.q), targets.size(0)) Lqk = torch.from_numpy(Lqk).type(torch.cuda.FloatTensor) Lqk = torch.unsqueeze(Lqk, 1) condition = torch.gt(Lqk, Lq) self.weight[indexes] = condition.type(torch.cuda.FloatTensor) class GCE_GTLoss(GCELoss): def __init__(self, q=0.7, k=0.5, trainset_size=50000, truncated=False): super().__init__(q, k, trainset_size, truncated) def forward(self, logits, targets, clean_indexs, index=None): # index : redundant variable. This is only used in ELR. p = F.softmax(logits, dim=1) Yg = torch.gather(p, 1, torch.unsqueeze(targets, 1)) size = logits.shape[0] if torch.sum(clean_indexs) == 0 else torch.sum(clean_indexs) # print (torch.mean(((1-(Yg**self.q))/self.q))) loss = (1-(Yg**self.q))/self.q loss = torch.sum(loss[clean_indexs]) / size return loss
[ "torch.gt", "torch.unsqueeze", "torch.ones", "torch.from_numpy", "torch.nn.functional.softmax", "torch.mean", "torch.nn.CrossEntropyLoss", "torch.sum" ]
1.8.0
Kthyeon/FINE
ae8a24a4a2514feafd9a9ed394af87f397708ccf
1.1
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** from math import sqrt import torch from torch.autograd import Variable from torch import nn from torch.nn import functional as F import sys from os.path import abspath, dirname # enabling modules discovery from global entrypoint sys.path.append(abspath(dirname(__file__)+'/../')) from common.layers import ConvNorm, LinearNorm from common.utils import to_gpu, get_mask_from_lengths class LocationLayer(nn.Module): def __init__(self, attention_n_filters, attention_kernel_size, attention_dim): super(LocationLayer, self).__init__() padding = int((attention_kernel_size - 1) / 2) self.location_conv = ConvNorm(2, attention_n_filters, kernel_size=attention_kernel_size, padding=padding, bias=False, stride=1, dilation=1) self.location_dense = LinearNorm(attention_n_filters, attention_dim, bias=False, w_init_gain='tanh') def forward(self, attention_weights_cat): processed_attention = self.location_conv(attention_weights_cat) processed_attention = processed_attention.transpose(1, 2) processed_attention = self.location_dense(processed_attention) return processed_attention class Attention(nn.Module): def __init__(self, attention_rnn_dim, embedding_dim, attention_dim, attention_location_n_filters, attention_location_kernel_size): super(Attention, self).__init__() self.query_layer = LinearNorm(attention_rnn_dim, attention_dim, bias=False, w_init_gain='tanh') self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False, w_init_gain='tanh') self.v = LinearNorm(attention_dim, 1, bias=False) self.location_layer = LocationLayer(attention_location_n_filters, attention_location_kernel_size, attention_dim) self.score_mask_value = -float("inf") def get_alignment_energies(self, query, processed_memory, attention_weights_cat): """ PARAMS ------ query: decoder output (batch, n_mel_channels * n_frames_per_step) processed_memory: processed encoder outputs (B, T_in, attention_dim) attention_weights_cat: cumulative and prev. att weights (B, 2, max_time) RETURNS ------- alignment (batch, max_time) """ processed_query = self.query_layer(query.unsqueeze(1)) processed_attention_weights = self.location_layer(attention_weights_cat) energies = self.v(torch.tanh( processed_query + processed_attention_weights + processed_memory)) energies = energies.squeeze(-1) return energies def forward(self, attention_hidden_state, memory, processed_memory, attention_weights_cat, mask): """ PARAMS ------ attention_hidden_state: attention rnn last output memory: encoder outputs processed_memory: processed encoder outputs attention_weights_cat: previous and cummulative attention weights mask: binary mask for padded data """ alignment = self.get_alignment_energies( attention_hidden_state, processed_memory, attention_weights_cat) if mask is not None: alignment.data.masked_fill_(mask, self.score_mask_value) attention_weights = F.softmax(alignment, dim=1) attention_context = torch.bmm(attention_weights.unsqueeze(1), memory) attention_context = attention_context.squeeze(1) return attention_context, attention_weights class Prenet(nn.Module): def __init__(self, in_dim, sizes): super(Prenet, self).__init__() in_sizes = [in_dim] + sizes[:-1] self.layers = nn.ModuleList( [LinearNorm(in_size, out_size, bias=False) for (in_size, out_size) in zip(in_sizes, sizes)]) def forward(self, x, inference=False): if inference: for linear in self.layers: x = F.relu(linear(x)) x0 = x[0].unsqueeze(0) mask = Variable(torch.bernoulli(x0.data.new(x0.data.size()).fill_(0.5))) mask = mask.expand(x.size(0), x.size(1)) x = x*mask*2 else: for linear in self.layers: x = F.dropout(F.relu(linear(x)), p=0.5, training=True) return x class Postnet(nn.Module): """Postnet - Five 1-d convolution with 512 channels and kernel size 5 """ def __init__(self, n_mel_channels, postnet_embedding_dim, postnet_kernel_size, postnet_n_convolutions): super(Postnet, self).__init__() self.convolutions = nn.ModuleList() self.convolutions.append( nn.Sequential( ConvNorm(n_mel_channels, postnet_embedding_dim, kernel_size=postnet_kernel_size, stride=1, padding=int((postnet_kernel_size - 1) / 2), dilation=1, w_init_gain='tanh'), nn.BatchNorm1d(postnet_embedding_dim)) ) for i in range(1, postnet_n_convolutions - 1): self.convolutions.append( nn.Sequential( ConvNorm(postnet_embedding_dim, postnet_embedding_dim, kernel_size=postnet_kernel_size, stride=1, padding=int((postnet_kernel_size - 1) / 2), dilation=1, w_init_gain='tanh'), nn.BatchNorm1d(postnet_embedding_dim)) ) self.convolutions.append( nn.Sequential( ConvNorm(postnet_embedding_dim, n_mel_channels, kernel_size=postnet_kernel_size, stride=1, padding=int((postnet_kernel_size - 1) / 2), dilation=1, w_init_gain='linear'), nn.BatchNorm1d(n_mel_channels)) ) def forward(self, x): for i in range(len(self.convolutions) - 1): x = F.dropout(torch.tanh(self.convolutions[i](x)), 0.5, self.training) x = F.dropout(self.convolutions[-1](x), 0.5, self.training) return x class Encoder(nn.Module): """Encoder module: - Three 1-d convolution banks - Bidirectional LSTM """ def __init__(self, encoder_n_convolutions, encoder_embedding_dim, encoder_kernel_size): super(Encoder, self).__init__() convolutions = [] for _ in range(encoder_n_convolutions): conv_layer = nn.Sequential( ConvNorm(encoder_embedding_dim, encoder_embedding_dim, kernel_size=encoder_kernel_size, stride=1, padding=int((encoder_kernel_size - 1) / 2), dilation=1, w_init_gain='relu'), nn.BatchNorm1d(encoder_embedding_dim)) convolutions.append(conv_layer) self.convolutions = nn.ModuleList(convolutions) self.lstm = nn.LSTM(encoder_embedding_dim, int(encoder_embedding_dim / 2), 1, batch_first=True, bidirectional=True) def forward(self, x, input_lengths): for conv in self.convolutions: x = F.dropout(F.relu(conv(x)), 0.5, self.training) x = x.transpose(1, 2) # pytorch tensor are not reversible, hence the conversion input_lengths = input_lengths.cpu().numpy() x = nn.utils.rnn.pack_padded_sequence( x, input_lengths, batch_first=True) self.lstm.flatten_parameters() outputs, _ = self.lstm(x) outputs, _ = nn.utils.rnn.pad_packed_sequence( outputs, batch_first=True) return outputs def infer(self, x): for conv in self.convolutions: x = F.dropout(F.relu(conv(x)), 0.5, self.training) x = x.transpose(1, 2) self.lstm.flatten_parameters() outputs, _ = self.lstm(x) return outputs class Decoder(nn.Module): def __init__(self, n_mel_channels, n_frames_per_step, encoder_embedding_dim, attention_dim, attention_location_n_filters, attention_location_kernel_size, attention_rnn_dim, decoder_rnn_dim, prenet_dim, max_decoder_steps, gate_threshold, p_attention_dropout, p_decoder_dropout, early_stopping): super(Decoder, self).__init__() self.n_mel_channels = n_mel_channels self.n_frames_per_step = n_frames_per_step self.encoder_embedding_dim = encoder_embedding_dim self.attention_rnn_dim = attention_rnn_dim self.decoder_rnn_dim = decoder_rnn_dim self.prenet_dim = prenet_dim self.max_decoder_steps = max_decoder_steps self.gate_threshold = gate_threshold self.p_attention_dropout = p_attention_dropout self.p_decoder_dropout = p_decoder_dropout self.early_stopping = early_stopping self.prenet = Prenet( n_mel_channels, [prenet_dim, prenet_dim]) self.attention_rnn = nn.LSTMCell( prenet_dim + encoder_embedding_dim, attention_rnn_dim) self.attention_layer = Attention( attention_rnn_dim, encoder_embedding_dim, attention_dim, attention_location_n_filters, attention_location_kernel_size) self.decoder_rnn = nn.LSTMCell( attention_rnn_dim + encoder_embedding_dim, decoder_rnn_dim, 1) self.linear_projection = LinearNorm( decoder_rnn_dim + encoder_embedding_dim, n_mel_channels * n_frames_per_step) self.gate_layer = LinearNorm( decoder_rnn_dim + encoder_embedding_dim, 1, bias=True, w_init_gain='sigmoid') def get_go_frame(self, memory): """ Gets all zeros frames to use as first decoder input PARAMS ------ memory: decoder outputs RETURNS ------- decoder_input: all zeros frames """ B = memory.size(0) decoder_input = Variable(memory.data.new( B, self.n_mel_channels * self.n_frames_per_step).zero_()) return decoder_input def initialize_decoder_states(self, memory, mask): """ Initializes attention rnn states, decoder rnn states, attention weights, attention cumulative weights, attention context, stores memory and stores processed memory PARAMS ------ memory: Encoder outputs mask: Mask for padded data if training, expects None for inference """ B = memory.size(0) MAX_TIME = memory.size(1) self.attention_hidden = Variable(memory.data.new( B, self.attention_rnn_dim).zero_()) self.attention_cell = Variable(memory.data.new( B, self.attention_rnn_dim).zero_()) self.decoder_hidden = Variable(memory.data.new( B, self.decoder_rnn_dim).zero_()) self.decoder_cell = Variable(memory.data.new( B, self.decoder_rnn_dim).zero_()) self.attention_weights = Variable(memory.data.new( B, MAX_TIME).zero_()) self.attention_weights_cum = Variable(memory.data.new( B, MAX_TIME).zero_()) self.attention_context = Variable(memory.data.new( B, self.encoder_embedding_dim).zero_()) self.memory = memory self.processed_memory = self.attention_layer.memory_layer(memory) self.mask = mask def parse_decoder_inputs(self, decoder_inputs): """ Prepares decoder inputs, i.e. mel outputs PARAMS ------ decoder_inputs: inputs used for teacher-forced training, i.e. mel-specs RETURNS ------- inputs: processed decoder inputs """ # (B, n_mel_channels, T_out) -> (B, T_out, n_mel_channels) decoder_inputs = decoder_inputs.transpose(1, 2).contiguous() decoder_inputs = decoder_inputs.view( decoder_inputs.size(0), int(decoder_inputs.size(1)/self.n_frames_per_step), -1) # (B, T_out, n_mel_channels) -> (T_out, B, n_mel_channels) decoder_inputs = decoder_inputs.transpose(0, 1) return decoder_inputs def parse_decoder_outputs(self, mel_outputs, gate_outputs, alignments): """ Prepares decoder outputs for output PARAMS ------ mel_outputs: gate_outputs: gate output energies alignments: RETURNS ------- mel_outputs: gate_outputs: gate output energies alignments: """ # (T_out, B) -> (B, T_out) alignments = torch.stack(alignments).transpose(0, 1) # (T_out, B) -> (B, T_out) gate_outputs = torch.stack(gate_outputs).transpose(0, 1) gate_outputs = gate_outputs.contiguous() # (T_out, B, n_mel_channels) -> (B, T_out, n_mel_channels) mel_outputs = torch.stack(mel_outputs).transpose(0, 1).contiguous() # decouple frames per step mel_outputs = mel_outputs.view( mel_outputs.size(0), -1, self.n_mel_channels) # (B, T_out, n_mel_channels) -> (B, n_mel_channels, T_out) mel_outputs = mel_outputs.transpose(1, 2) return mel_outputs, gate_outputs, alignments def decode(self, decoder_input): """ Decoder step using stored states, attention and memory PARAMS ------ decoder_input: previous mel output RETURNS ------- mel_output: gate_output: gate output energies attention_weights: """ cell_input = torch.cat((decoder_input, self.attention_context), -1) self.attention_hidden, self.attention_cell = self.attention_rnn( cell_input, (self.attention_hidden, self.attention_cell)) self.attention_hidden = F.dropout( self.attention_hidden, self.p_attention_dropout, self.training) attention_weights_cat = torch.cat( (self.attention_weights.unsqueeze(1), self.attention_weights_cum.unsqueeze(1)), dim=1) self.attention_context, self.attention_weights = self.attention_layer( self.attention_hidden, self.memory, self.processed_memory, attention_weights_cat, self.mask) self.attention_weights_cum += self.attention_weights decoder_input = torch.cat( (self.attention_hidden, self.attention_context), -1) self.decoder_hidden, self.decoder_cell = self.decoder_rnn( decoder_input, (self.decoder_hidden, self.decoder_cell)) self.decoder_hidden = F.dropout( self.decoder_hidden, self.p_decoder_dropout, self.training) decoder_hidden_attention_context = torch.cat( (self.decoder_hidden, self.attention_context), dim=1) decoder_output = self.linear_projection( decoder_hidden_attention_context) gate_prediction = self.gate_layer(decoder_hidden_attention_context) return decoder_output, gate_prediction, self.attention_weights def forward(self, memory, decoder_inputs, memory_lengths): """ Decoder forward pass for training PARAMS ------ memory: Encoder outputs decoder_inputs: Decoder inputs for teacher forcing. i.e. mel-specs memory_lengths: Encoder output lengths for attention masking. RETURNS ------- mel_outputs: mel outputs from the decoder gate_outputs: gate outputs from the decoder alignments: sequence of attention weights from the decoder """ decoder_input = self.get_go_frame(memory).unsqueeze(0) decoder_inputs = self.parse_decoder_inputs(decoder_inputs) decoder_inputs = torch.cat((decoder_input, decoder_inputs), dim=0) decoder_input_frames = [] z = int(decoder_inputs.size(2) / self.n_frames_per_step) for i in range(self.n_frames_per_step): decoder_input_frames.append(self.prenet(decoder_inputs[:, :, i*z:(i+1)*z])) self.initialize_decoder_states( memory, mask=~get_mask_from_lengths(memory_lengths)) mel_outputs, gate_outputs, alignments = [], [], [] while len(mel_outputs) < decoder_input_frames[0].size(0) - 1: for input_frame in decoder_input_frames: decoder_input = input_frame[len(mel_outputs)] mel_output, gate_output, attention_weights = self.decode( decoder_input) gate_outputs += [gate_output.squeeze() if memory.shape[0] > 1 else gate_output] alignments += [attention_weights] mel_outputs += [mel_output.squeeze(1)] mel_outputs, gate_outputs, alignments = self.parse_decoder_outputs( mel_outputs, gate_outputs, alignments) return mel_outputs, gate_outputs, alignments def infer(self, memory): """ Decoder inference PARAMS ------ memory: Encoder outputs RETURNS ------- mel_outputs: mel outputs from the decoder gate_outputs: gate outputs from the decoder alignments: sequence of attention weights from the decoder """ decoder_input = self.get_go_frame(memory) self.initialize_decoder_states(memory, mask=None) mel_lengths = torch.zeros([memory.size(0)], dtype=torch.int32).cuda() not_finished = torch.ones([memory.size(0)], dtype=torch.int32).cuda() mel_outputs, gate_outputs, alignments = [], [], [] z = int(decoder_input.size(1) / self.n_frames_per_step) while True: decoder_input_frames = [] for i in range(self.n_frames_per_step): decoder_input_frames.append(decoder_input[:, i * z:(i + 1) * z]) for input_frame in decoder_input_frames: mel_output, gate_output, alignment = self.decode(self.prenet(input_frame)) gate_outputs += [gate_output] alignments += [alignment] mel_outputs += [mel_output.squeeze(1)] dec = torch.le(torch.sigmoid(gate_output.data), self.gate_threshold).to(torch.int32).squeeze(1) not_finished = not_finished*dec mel_lengths += not_finished if self.early_stopping and torch.sum(not_finished) == 0: break if len(mel_outputs) == self.max_decoder_steps: print("Warning! Reached max decoder steps") break decoder_input = mel_output mel_outputs, gate_outputs, alignments = self.parse_decoder_outputs( mel_outputs, gate_outputs, alignments) return mel_outputs, gate_outputs, alignments class Tacotron2(nn.Module): def __init__(self, mask_padding, n_mel_channels, n_symbols, symbols_embedding_dim, n_speakers, speakers_embedding_dim, use_emotions, n_emotions, emotions_embedding_dim, encoder_kernel_size, encoder_n_convolutions, encoder_embedding_dim, attention_rnn_dim, attention_dim, attention_location_n_filters, attention_location_kernel_size, n_frames_per_step, decoder_rnn_dim, prenet_dim, max_decoder_steps, gate_threshold, p_attention_dropout, p_decoder_dropout, postnet_embedding_dim, postnet_kernel_size, postnet_n_convolutions, decoder_no_early_stopping, **kwargs): super(Tacotron2, self).__init__() self.mask_padding = mask_padding self.n_mel_channels = n_mel_channels self.n_frames_per_step = n_frames_per_step self.symbols_embedding = nn.Embedding( n_symbols, symbols_embedding_dim) std = sqrt(2.0 / (n_symbols + symbols_embedding_dim)) val = sqrt(3.0) * std # uniform bounds for std self.symbols_embedding.weight.data.uniform_(-val, val) self.speakers_embedding = nn.Embedding(n_speakers, speakers_embedding_dim) torch.nn.init.xavier_uniform_(self.speakers_embedding.weight) self.encoder = Encoder(encoder_n_convolutions, encoder_embedding_dim, encoder_kernel_size) encoder_out_embedding_dim = encoder_embedding_dim + speakers_embedding_dim self.use_emotions = use_emotions if self.use_emotions: self.emotions_embedding = nn.Embedding(n_emotions, emotions_embedding_dim) torch.nn.init.xavier_uniform_(self.emotions_embedding.weight) encoder_out_embedding_dim += emotions_embedding_dim self.decoder = Decoder(n_mel_channels, n_frames_per_step, encoder_out_embedding_dim, attention_dim, attention_location_n_filters, attention_location_kernel_size, attention_rnn_dim, decoder_rnn_dim, prenet_dim, max_decoder_steps, gate_threshold, p_attention_dropout, p_decoder_dropout, not decoder_no_early_stopping) self.postnet = Postnet(n_mel_channels, postnet_embedding_dim, postnet_kernel_size, postnet_n_convolutions) def parse_batch(self, batch): text_padded, input_lengths, mel_padded, gate_padded, \ output_lengths, speaker_ids, emotion_ids = batch text_padded = to_gpu(text_padded).long() input_lengths = to_gpu(input_lengths).long() max_len = torch.max(input_lengths.data).item() mel_padded = to_gpu(mel_padded).float() gate_padded = to_gpu(gate_padded).float() output_lengths = to_gpu(output_lengths).long() speaker_ids = to_gpu(speaker_ids).long() emotion_ids = to_gpu(emotion_ids).long() return ((text_padded, input_lengths, mel_padded, max_len, output_lengths, speaker_ids, emotion_ids), (mel_padded, gate_padded)) def parse_output(self, outputs, output_lengths=None): if self.mask_padding and output_lengths is not None: mask = ~get_mask_from_lengths(output_lengths) mask = mask.expand(self.n_mel_channels, mask.size(0), mask.size(1)) mask = mask.permute(1, 0, 2) outputs[0].data.masked_fill_(mask, 0.0) outputs[1].data.masked_fill_(mask, 0.0) outputs[2].data.masked_fill_(mask[:, 0, :], 1e3) # gate energies return outputs def forward(self, inputs): # Parse inputs inputs, input_lengths, targets, max_len, output_lengths, speaker_ids, emotion_ids = inputs input_lengths, output_lengths = input_lengths.data, output_lengths.data # Outputs outputs = [] # Get symbols encoder outputs embedded_inputs = self.symbols_embedding(inputs).transpose(1, 2) encoder_outputs = self.encoder(embedded_inputs, input_lengths) outputs.append(encoder_outputs) # Extract speaker embeddings speaker_ids = speaker_ids.unsqueeze(1) embedded_speakers = self.speakers_embedding(speaker_ids) embedded_speakers = embedded_speakers.expand(-1, max_len, -1) outputs.append(embedded_speakers) # Extract emotion embeddings if self.use_emotions: emotion_ids = emotion_ids.unsqueeze(1) embedded_emotions = self.emotions_embedding(emotion_ids) embedded_emotions = embedded_emotions.expand(-1, max_len, -1) outputs.append(embedded_emotions) # Combine all embeddings embeddings merged_outputs = torch.cat(outputs, -1) mel_outputs, gate_outputs, alignments = self.decoder( merged_outputs, targets, memory_lengths=input_lengths) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet return self.parse_output( [mel_outputs, mel_outputs_postnet, gate_outputs, alignments], output_lengths) def infer(self, input, speaker_id, emotion_id=None): # Outputs outputs = [] # Get symbols encoder output embedded_input = self.symbols_embedding(input).transpose(1, 2) encoder_output = self.encoder.infer(embedded_input) outputs.append(encoder_output) # Get speaker embedding speaker_id = speaker_id.unsqueeze(1) embedded_speaker = self.speakers_embedding(speaker_id) embedded_speaker = embedded_speaker.expand(-1, encoder_output.shape[1], -1) outputs.append(embedded_speaker) # Extract emotion embeddings if self.use_emotions: emotion_id = emotion_id.unsqueeze(1) embedded_emotion = self.emotions_embedding(emotion_id) embedded_emotion = embedded_emotion.expand(-1, encoder_output.shape[1], -1) outputs.append(embedded_emotion) # Merge embeddings merged_outputs = torch.cat(outputs, -1) # Decode mel_outputs, gate_outputs, alignments = self.decoder.infer( merged_outputs) # Post mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet # Parse outputs = self.parse_output( [mel_outputs, mel_outputs_postnet, gate_outputs, alignments]) return outputs
[ "torch.sigmoid", "torch.cat", "torch.nn.LSTMCell", "torch.stack", "torch.nn.ModuleList", "torch.max", "torch.nn.functional.dropout", "torch.nn.init.xavier_uniform_", "torch.nn.utils.rnn.pad_packed_sequence", "torch.nn.BatchNorm1d", "torch.nn.utils.rnn.pack_padded_sequence", "torch.nn.functional.softmax", "torch.tanh", "torch.nn.Embedding", "torch.sum" ]
1.1.0
HudsonHuang/tacotron2
fa55a0b633abe358e1258e1dc3b40d85e17b3450