code
stringlengths
114
1.05M
path
stringlengths
3
312
quality_prob
float64
0.5
0.99
learning_prob
float64
0.2
1
filename
stringlengths
3
168
kind
stringclasses
1 value
from datetime import timedelta from typing import ( Any, Callable, Dict, Hashable, List, Literal, Optional, Union, ) from pandas._libs.tslibs import BaseOffset from pandas.core.window.indexers import BaseIndexer import pandas as pd import pandas._typing as pdt from sarus_data_spec.dataspec_validator.parameter_kind import DATASPEC from sarus_data_spec.dataspec_validator.signature import ( SarusParameter, SarusSignature, SarusSignatureValue, ) from ..external_op import ExternalOpImplementation GroupBy = Union[ pd.core.groupby.DataFrameGroupBy, pd.core.groupby.SeriesGroupBy, ] class pd_agg_groupby(ExternalOpImplementation): _transform_id = "pandas.PD_AGG_GROUPBY" _signature = SarusSignature( SarusParameter( name="this", annotation=GroupBy, condition=DATASPEC, ), SarusParameter( name="func", annotation=Optional[Union[Callable, Dict, List]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.agg(**kwargs) class pd_count_groupby(ExternalOpImplementation): _transform_id = "pandas.PD_COUNT_GROUPBY" _dp_equivalent_id = "pandas.PD_COUNT_GROUPBY_DP" _signature = SarusSignature( SarusParameter( name="this", annotation=GroupBy, condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.count(**kwargs) class pd_max_groupby(ExternalOpImplementation): _transform_id = "pandas.PD_MAX_GROUPBY" _signature = SarusSignature( SarusParameter( name="this", annotation=GroupBy, condition=DATASPEC, ), SarusParameter( name="numeric_only", annotation=bool, default=False, ), SarusParameter( name="min_count", annotation=int, default=-1, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.max(**kwargs) class pd_mean_groupby(ExternalOpImplementation): _transform_id = "pandas.PD_MEAN_GROUPBY" _dp_equivalent_id = "pandas.PD_MEAN_GROUPBY_DP" _signature = SarusSignature( SarusParameter( name="this", annotation=GroupBy, condition=DATASPEC, ), SarusParameter( name="numeric_only", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.mean(**kwargs) class pd_min_groupby(ExternalOpImplementation): _transform_id = "pandas.PD_MIN_GROUPBY" _signature = SarusSignature( SarusParameter( name="this", annotation=GroupBy, condition=DATASPEC, ), SarusParameter( name="numeric_only", annotation=bool, default=False, ), SarusParameter( name="min_count", annotation=int, default=-1, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.min(**kwargs) class pd_rolling_groupby(ExternalOpImplementation): _transform_id = "pandas.PD_ROLLING_GROUPBY" _signature = SarusSignature( SarusParameter( name="this", annotation=GroupBy, condition=DATASPEC, ), SarusParameter( name="window", annotation=Union[int, timedelta, BaseOffset, BaseIndexer], ), SarusParameter( name="min_periods", annotation=Optional[int], default=None, ), SarusParameter( name="center", annotation=bool, default=False, ), SarusParameter( name="win_type", annotation=Optional[str], default=None, ), SarusParameter( name="on", annotation=Optional[str], default=None, ), SarusParameter( name="axis", annotation=pdt.Axis, default=0, ), SarusParameter( name="closed", annotation=Optional[str], default=None, ), SarusParameter( name="method", annotation=Literal["single", "table"], default="single", ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.rolling(**kwargs) class pd_shift_groupby(ExternalOpImplementation): _transform_id = "pandas.PD_SHIFT_GROUPBY" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="periods", annotation=int, default=1, ), SarusParameter( name="freq", annotation=Optional[pdt.Frequency], default=None, ), SarusParameter( name="axis", annotation=pdt.Axis, default=0, ), SarusParameter( name="fill_value", annotation=Hashable, default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.shift(**kwargs) class pd_groups_groupby(ExternalOpImplementation): _transform_id = "pandas.PD_GROUPS_GROUPBY" _signature = SarusSignature( SarusParameter( name="this", annotation=GroupBy, condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.groups class pd_sum_groupby(ExternalOpImplementation): _transform_id = "pandas.PD_SUM_GROUPBY" _dp_equivalent_id = "pandas.PD_SUM_GROUPBY_DP" _signature = SarusSignature( SarusParameter( name="this", annotation=GroupBy, condition=DATASPEC, ), SarusParameter( name="numeric_only", annotation=bool, default=True, ), SarusParameter( name="min_count", annotation=int, default=0, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.sum(**kwargs) class pd_std_groupby(ExternalOpImplementation): _transform_id = "pandas.PD_STD_GROUPBY" _dp_equivalent_id = "pandas.PD_STD_GROUPBY_DP" _signature = SarusSignature( SarusParameter( name="this", annotation=GroupBy, condition=DATASPEC, ), SarusParameter( name="ddof", annotation=int, default=1, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.std(**kwargs) class pd_median_groupby(ExternalOpImplementation): _transform_id = "pandas.PD_MEDIAN_GROUPBY" _dp_equivalent_id = "pandas.PD_MEDIAN_GROUPBY_DP" _signature = SarusSignature( SarusParameter( name="this", annotation=GroupBy, condition=DATASPEC, ), SarusParameter( name="numeric_only", annotation=bool, default=True, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.median(**kwargs)
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/pandas/groupby.py
0.768516
0.155335
groupby.py
pypi
from datetime import datetime, timedelta from typing import ( Any, Callable, Dict, Hashable, Iterable, List, Literal, Mapping, Optional, Sequence, Tuple, Type, Union, ) import typing as t from pandas._libs import lib from pandas._libs.tslibs import BaseOffset from pandas.core.window.indexers import BaseIndexer import numpy as np import pandas as pd import pandas._typing as pdt from sarus_data_spec.dataspec_validator.parameter_kind import ( DATASPEC, STATIC, TRANSFORM, ) from sarus_data_spec.dataspec_validator.signature import ( SarusBoundSignature, SarusParameter, SarusSignature, SarusSignatureValue, ) from sarus_data_spec.dataspec_validator.typing import PEPKind import sarus_data_spec.typing as st from ..external_op import ExternalOpImplementation # Defined in pandas version > 1.3.5 IgnoreRaise = t.Literal["ignore", "raise"] ValueKeyFunc = Optional[ Callable[[pd.Series], Union[pd.Series, pdt.AnyArrayLike]] ] DropKeep = Literal["first", "last", False] QuantileInterpolation = Literal[ "linear", "lower", "higher", "midpoint", "nearest" ] CorrelationMethod = Union[ Literal["pearson", "kendall", "spearman"], Callable[[np.ndarray, np.ndarray], float], ] MergeHow = Literal["left", "right", "inner", "outer", "cross"] ArrayConvertible = Union[List, Tuple, pdt.AnyArrayLike] DatetimeScalar = Union[pdt.Scalar, datetime] DatetimeScalarOrArrayConvertible = Union[DatetimeScalar, ArrayConvertible] # ------ CONSTRUCTORS ------- class pd_dataframe(ExternalOpImplementation): _transform_id = "pandas.PD_DATAFRAME" _signature = SarusSignature( SarusParameter( name="data", annotation=Optional[ Union[ Sequence[Sequence[Any]], Mapping[Hashable, Sequence[Any]], pd.DataFrame, ] ], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="index", annotation=Optional[pdt.Axes], default=None, ), SarusParameter( name="columns", annotation=Optional[pdt.Axes], default=None, ), SarusParameter( name="dtype", annotation=Optional[pdt.Dtype], default=None, ), SarusParameter( name="copy", annotation=Optional[bool], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return pd.DataFrame(**kwargs) class pd_series(ExternalOpImplementation): _transform_id = "pandas.PD_SERIES" _signature = SarusSignature( SarusParameter( name="data", annotation=Optional[ Union[pdt.ArrayLike, Iterable, Dict, pdt.Scalar] ], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="index", annotation=pd.Index, default=None, ), SarusParameter( name="dtype", annotation=Optional[pdt.Dtype], default=None, ), SarusParameter( name="name", annotation=Optional[str], default=None, ), SarusParameter( name="copy", annotation=bool, default=False, ), SarusParameter( name="fastpath", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return pd.Series(**kwargs) # ------ DataFrame & Series METHODS ------ class pd_loc(ExternalOpImplementation): _transform_id = "pandas.PD_LOC" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="key", annotation=Tuple[Union[str, slice, List[str]], ...], ), ) def call(self, signature: SarusSignatureValue) -> pd.DataFrame: (this, key) = signature.collect_args() return this.loc[key] def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: """Token preserving if the key is a tuple or a slice that selects all the rows (e.g. loc[:, "col"], loc[:]). PEP in the other cases. """ key_arg = bound_signature["key"] if STATIC.isin(key_arg.parameter_kind()): key_value = key_arg.static_value() if isinstance(key_value, tuple) and len(key_value) == 2: row_key, _ = key_value if row_key == slice(None, None, None): return PEPKind.TOKEN_PRESERVING elif isinstance(key_value, slice): if key_value == slice(None, None, None): return PEPKind.TOKEN_PRESERVING elif isinstance(key_value, (int, str)): # a scalar selects a single row return PEPKind.ROW return PEPKind.PEP class pd_set_loc(ExternalOpImplementation): _transform_id = "pandas.PD_SET_LOC" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), SarusParameter( name="key", annotation=Tuple[Union[str, slice, List[str]], ...], condition=DATASPEC | STATIC, ), SarusParameter( name="value", annotation=t.Any, condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this, key, value) = signature.collect_args() this.loc[key] = value return this class pd_iloc(ExternalOpImplementation): _transform_id = "pandas.PD_ILOC" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="key", annotation=Tuple[Union[str, slice, List[str]], ...], ), ) def call(self, signature: SarusSignatureValue) -> pd.DataFrame: (this, key) = signature.collect_args() return this.iloc[key] def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: """Token preserving the alignment if the key is a slice that selects all the rows (e.g. iloc[:]). PEP in the other cases. """ key_arg = bound_signature["key"] if STATIC.isin(key_arg.parameter_kind()): key_value = key_arg.static_value() if isinstance(key_value, slice): if key_value == slice(None, None, None): return PEPKind.TOKEN_PRESERVING elif isinstance(key_value, (int, str)): # a scalar selects a single row return PEPKind.ROW return PEPKind.PEP class pd_set_iloc(ExternalOpImplementation): _transform_id = "pandas.PD_SET_ILOC" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), SarusParameter( name="key", annotation=Tuple[Union[str, slice, List[str]], ...], condition=DATASPEC | STATIC, ), SarusParameter( name="value", annotation=t.Any, condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this, key, value) = signature.collect_args() this.iloc[key] = value return this class pd_head(ExternalOpImplementation): _transform_id = "pandas.PD_HEAD" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="n", annotation=int, default=5, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this, kwargs) = signature.collect_kwargs_method() return this.head(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: return PEPKind.PEP class pd_astype(ExternalOpImplementation): _transform_id = "pandas.PD_ASTYPE" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="dtype", annotation=pdt.Dtype, ), SarusParameter( name="copy", annotation=bool, default=True, ), SarusParameter( name="errors", annotation=IgnoreRaise, default="raise", ), ) def call(self, signature: SarusSignatureValue) -> pd.DataFrame: (this, kwargs) = signature.collect_kwargs_method() return this.astype(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: return PEPKind.TOKEN_PRESERVING class pd_getitem(ExternalOpImplementation): _transform_id = "pandas.PD_GETITEM" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="key", annotation=t.Any, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this, key) = signature.collect_args() return this[key] def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: """PEP in any case. Token preserving if the key is a string or a list of strings.""" if isinstance(bound_signature["key"].static_value(), st.DataSpec): key_type = bound_signature["key"].python_type() return ( PEPKind.TOKEN_PRESERVING if key_type in [str(str)] else PEPKind.PEP ) else: key_value = bound_signature["key"].static_value() if isinstance(key_value, list): # can select columns or rows depending on the type of the list # values all_strings = all([isinstance(x, str) for x in key_value]) return PEPKind.TOKEN_PRESERVING if all_strings else PEPKind.PEP return ( PEPKind.TOKEN_PRESERVING if isinstance(key_value, str) else PEPKind.PEP ) class pd_sum(ExternalOpImplementation): _transform_id = "pandas.PD_SUM" _dp_equivalent_id = "pandas.PD_SUM_DP" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="axis", annotation=t.Optional[pdt.Axis], default=None, ), SarusParameter( name="skipna", annotation=bool, default=True, ), SarusParameter( name="level", annotation=t.Optional[pdt.Level], default=None, ), SarusParameter( name="numeric_only", annotation=t.Optional[bool], default=None, ), SarusParameter( name="min_count", annotation=int, default=0, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this, kwargs) = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["numeric_only"] return this.sum(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: """`axis=1`""" if bound_signature["this"].python_type() == str(pd.Series): return PEPKind.NOT_PEP axis = bound_signature["axis"].static_value() return PEPKind.TOKEN_PRESERVING if axis == 1 else PEPKind.NOT_PEP class pd_mean(ExternalOpImplementation): _transform_id = "pandas.PD_MEAN" _dp_equivalent_id = "pandas.PD_MEAN_DP" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="axis", annotation=int, default=0, ), SarusParameter( name="skipna", annotation=bool, default=True, ), SarusParameter( name="level", annotation=t.Optional[pdt.Level], default=None, ), SarusParameter( name="numeric_only", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this, kwargs) = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["numeric_only"] return this.mean(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: """`axis=1`""" if bound_signature["this"].python_type() == str(pd.Series): return PEPKind.NOT_PEP axis = bound_signature["axis"].static_value() return PEPKind.TOKEN_PRESERVING if axis == 1 else PEPKind.NOT_PEP class pd_std(ExternalOpImplementation): _transform_id = "pandas.PD_STD" _dp_equivalent_id = "pandas.PD_STD_DP" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="axis", annotation=int, default=0, ), SarusParameter( name="skipna", annotation=bool, default=True, ), SarusParameter( name="level", annotation=t.Optional[pdt.Level], default=None, ), SarusParameter( name="ddof", annotation=int, default=1, ), SarusParameter( name="numeric_only", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this, kwargs) = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["numeric_only"] return this.std(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: """`axis=1`""" axis = bound_signature["axis"].static_value() return PEPKind.TOKEN_PRESERVING if axis == 1 else PEPKind.NOT_PEP class pd_median(ExternalOpImplementation): _transform_id = "pandas.PD_MEDIAN" _dp_equivalent_id = "pandas.PD_MEDIAN_DP" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="axis", annotation=int, default=0, ), SarusParameter( name="skipna", annotation=bool, default=True, ), SarusParameter( name="level", annotation=t.Optional[int], default=None, ), SarusParameter( name="numeric_only", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this, kwargs) = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["numeric_only"] return this.median(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: """`axis=1`""" if bound_signature["this"].python_type() == str(pd.Series): return PEPKind.NOT_PEP axis = bound_signature["axis"].static_value() return PEPKind.TOKEN_PRESERVING if axis == 1 else PEPKind.NOT_PEP class pd_abs(ExternalOpImplementation): _transform_id = "pandas.PD_ABS" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ) ) def call(self, signature: SarusSignatureValue) -> Any: this = signature["this"].value return this.abs() def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: return PEPKind.TOKEN_PRESERVING class pd_drop(ExternalOpImplementation): _transform_id = "pandas.PD_DROP" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="labels", annotation=Optional[ Union[str, List[Union[str, Tuple[str, ...]]], Type[pdt.Level]] ], default=None, ), SarusParameter( name="axis", annotation=Union[int, str], default=0, ), SarusParameter( name="index", annotation=Optional[Union[pd.Index, List[Union[str, int]]]], default=None, ), SarusParameter( name="columns", annotation=Optional[Union[pd.Index, List[Union[str, int]]]], default=None, ), SarusParameter( name="level", annotation=Optional[Union[int, str, Tuple[Union[int, str], ...]]], default=None, ), SarusParameter( name="inplace", annotation=bool, default=False, predicate=lambda x: x is False, ), SarusParameter( name="errors", annotation=str, default="raise", ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["axis"] return this.drop(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: axis = bound_signature["axis"].static_value() if axis in [0, 'columns']: return PEPKind.PEP else: return PEPKind.TOKEN_PRESERVING class pd_dropna(ExternalOpImplementation): _transform_id = "pandas.PD_DROPNA" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="axis", annotation=Optional[Union[int, str]], default=0, ), SarusParameter( name="how", annotation=Optional[str], default="any", ), SarusParameter( name="thresh", annotation=Optional[int], default=None, ), SarusParameter( name="subset", annotation=Optional[Union[pd.Index, List[Union[str, int]]]], default=None, ), SarusParameter( name="inplace", annotation=bool, default=False, predicate=lambda x: x is False, ), name=_transform_id, ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["subset"] del kwargs["thresh"] return this.dropna(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: axis = bound_signature["axis"].static_value() if axis in [0, 'columns']: return PEPKind.PEP else: return PEPKind.TOKEN_PRESERVING class pd_fillna(ExternalOpImplementation): _transform_id = "pandas.PD_FILLNA" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="value", annotation=Optional[ t.Union[pdt.Scalar, Mapping, Sequence, pd.DataFrame] ], default=None, ), SarusParameter( name="method", annotation=Optional[str], default=None, ), SarusParameter( name="axis", annotation=Optional[pdt.Axis], default=None, ), SarusParameter( name="inplace", annotation=bool, default=False, predicate=lambda x: x is False, ), SarusParameter( name="limit", annotation=Optional[int], default=None, ), SarusParameter( name="downcast", annotation=Optional[str], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.fillna(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: """`method` is `None`""" method = bound_signature["method"].static_value() if method is None: return PEPKind.TOKEN_PRESERVING else: return PEPKind.NOT_PEP class pd_isin(ExternalOpImplementation): _transform_id = "pandas.PD_ISIN" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="values", annotation=Union[pd.Series, List[Any], Tuple[Any], pd.DataFrame], ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.isin(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: return PEPKind.TOKEN_PRESERVING class pd_isnull(ExternalOpImplementation): _transform_id = "pandas.PD_ISNULL" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, _ = signature.collect_kwargs_method() return this.isnull() def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: return PEPKind.TOKEN_PRESERVING class pd_mask(ExternalOpImplementation): _transform_id = "pandas.PD_MASK" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="cond", annotation=Union[pd.Series, pd.DataFrame, pdt.ArrayLike, Callable], ), SarusParameter( name="other", annotation=Optional[ Union[pd.Series, pd.DataFrame, pdt.Scalar, Callable] ], default=float("nan"), ), SarusParameter( name="inplace", annotation=bool, default=False, predicate=lambda x: x is False, ), SarusParameter( name="axis", annotation=Optional[ Union[int, Literal['index', 'columns', 'rows']] ], default=None, ), SarusParameter( name="level", annotation=Optional[Union[int, str]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.mask(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: """`cond` and `other` are not callable""" cond = bound_signature["cond"].static_value() other = bound_signature["other"].static_value() if callable(cond) or callable(other): return PEPKind.NOT_PEP else: return PEPKind.TOKEN_PRESERVING class pd_notnull(ExternalOpImplementation): _transform_id = "pandas.PD_NOTNULL" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, _ = signature.collect_kwargs_method() return this.notnull() def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: return PEPKind.TOKEN_PRESERVING class pd_rename(ExternalOpImplementation): _transform_id = "pandas.PD_RENAME" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), SarusParameter( name="mapper", annotation=Optional[Union[Dict[str, str], Callable[[str], str]]], default=None, ), SarusParameter( name="index", annotation=Optional[Union[Dict[str, str], Callable[[str], str]]], default=None, ), SarusParameter( name="columns", annotation=Optional[Union[Dict[str, str], Callable[[str], str]]], default=None, ), SarusParameter( name="axis", annotation=Optional[Union[int, str]], default=None, ), SarusParameter( name='copy', annotation=Optional[bool], default=None, ), SarusParameter( name="inplace", annotation=bool, default=False, predicate=lambda x: x is False, ), SarusParameter( name='level', default=None, annotation=Hashable, ), SarusParameter( name="errors", annotation=Literal['ignore', 'raise'], default='ignore', ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.rename(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: """`mapper`, `index` and `columns` are not callable""" mapper = bound_signature["mapper"].static_value() index = bound_signature["index"].static_value() columns = bound_signature["columns"].static_value() if callable(mapper) or callable(index) or callable(columns): return PEPKind.NOT_PEP else: return PEPKind.TOKEN_PRESERVING class pd_replace(ExternalOpImplementation): _transform_id = "pandas.PD_REPLACE" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="to_replace", annotation=Union[pdt.Scalar, Mapping, Sequence], default=None, ), SarusParameter( name="value", annotation=Union[pdt.Scalar, Mapping, Sequence], ), SarusParameter( name="inplace", annotation=bool, default=False, predicate=lambda x: x is False, ), SarusParameter( name="limit", annotation=Optional[int], default=None, ), SarusParameter( name="regex", annotation=bool, default=False, ), SarusParameter( name="method", annotation=Literal['pad', 'ffill', 'bfill'], default=lib.no_default, ), name=_transform_id, ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.replace(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: """`value` is not `None`""" value = bound_signature["value"].static_value() if value is None: return PEPKind.NOT_PEP else: return PEPKind.TOKEN_PRESERVING class pd_round(ExternalOpImplementation): _transform_id = "pandas.PD_ROUND" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="decimals", annotation=Union[int, dict, pd.Series], default=0, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.round(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: return PEPKind.TOKEN_PRESERVING class pd_select_dtypes(ExternalOpImplementation): _transform_id = "pandas.PD_SELECT_DTYPES" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="include", annotation=t.Optional[t.Union[pdt.Scalar, t.List]], default=None, ), SarusParameter( name="exclude", annotation=t.Optional[t.Union[pdt.Scalar, t.List]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this, kwargs) = signature.collect_kwargs_method() return this.select_dtypes(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: return PEPKind.PEP class pd_add(ExternalOpImplementation): _transform_id = "pandas.PD_ADD" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="other", annotation=Union[pd.Series, pd.DataFrame, pd.Index, float, int], ), SarusParameter( name="fill_value", annotation=Optional[Union[float, int]], default=None, ), SarusParameter( name="axis", annotation=Optional[ Union[int, Literal['index', 'columns', 'rows']] ], default='columns', ), SarusParameter( name="level", annotation=Optional[Union[int, str]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["axis"] return this.add(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: return PEPKind.TOKEN_PRESERVING class pd_sub(ExternalOpImplementation): _transform_id = "pandas.PD_SUB" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="other", annotation=Union[pd.Series, pd.DataFrame, pd.Index, float, int], ), SarusParameter( name="fill_value", annotation=Optional[Union[float, int]], default=None, ), SarusParameter( name="axis", annotation=Optional[ Union[int, Literal['index', 'columns', 'rows']] ], default='columns', ), SarusParameter( name="level", annotation=Optional[Union[int, str]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["axis"] return this.sub(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: return PEPKind.TOKEN_PRESERVING class pd_reset_index(ExternalOpImplementation): _transform_id = "pandas.PD_RESET_INDEX" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="level", annotation=pdt.IndexLabel, default=None, ), SarusParameter( name="drop", annotation=bool, default=False, ), SarusParameter( name="inplace", annotation=bool, default=False, predicate=lambda x: x is False, ), SarusParameter( name="col_level", annotation=Hashable, default=0, ), SarusParameter( name="col_fill", annotation=Hashable, default="", ), # > 1.3.5 # SarusParameter( # name="allow_duplicates", # annotation=Union[bool, lib.NoDefault], # default=lib.no_default, # ), # SarusParameter( # name="names", # annotation=Optional[Union[Hashable, Sequence[Hashable]]], # default=None, # ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["col_level"] del kwargs["col_fill"] return this.reset_index(**kwargs) class pd_min(ExternalOpImplementation): _transform_id = "pandas.PD_MIN" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="axis", annotation=Optional[int], default=0, ), SarusParameter( name="skipna", annotation=bool, default=True, ), SarusParameter( name="numeric_only", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.min(**kwargs) class pd_max(ExternalOpImplementation): _transform_id = "pandas.PD_MAX" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="axis", annotation=Optional[int], default=0, ), SarusParameter( name="skipna", annotation=bool, default=True, ), SarusParameter( name="numeric_only", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.max(**kwargs) class pd_shift(ExternalOpImplementation): _transform_id = "pandas.PD_SHIFT" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="periods", annotation=int, default=1, ), SarusParameter( name="freq", annotation=Optional[pdt.Frequency], default=None, ), SarusParameter( name="axis", annotation=pdt.Axis, default=0, ), SarusParameter( name="fill_value", annotation=Hashable, default=lib.no_default, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.shift(**kwargs) class pd_any(ExternalOpImplementation): _transform_id = "pandas.PD_ANY" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="axis", annotation=pdt.Axis, default=0, ), SarusParameter( name="bool_only", annotation=Optional[bool], default=None, ), SarusParameter( name="skipna", annotation=bool, default=True, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.any(**kwargs) class pd_describe(ExternalOpImplementation): _transform_id = "pandas.PD_DESCRIBE" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="percentiles", annotation=Optional[Sequence[float]], default=None, ), SarusParameter( name="include", annotation=Optional[Union[Literal['all'], List[pdt.Dtype]]], default=None, ), SarusParameter( name="exclude", annotation=Optional[List[pdt.Dtype]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.describe(**kwargs) class pd_quantile(ExternalOpImplementation): _transform_id = "pandas.PD_QUANTILE" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="q", annotation=Union[float, pdt.AnyArrayLike, Sequence[float]], default=0.5, ), SarusParameter( name="axis", annotation=pdt.Axis, default=0, ), SarusParameter( name="numeric_only", annotation=bool, default=False, ), SarusParameter( name="interpolation", annotation=QuantileInterpolation, default="linear", ), # > 1.3.5 # SarusParameter( # name="method", # annotation=Literal["single", "table"], # default="single", # ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["axis"] del kwargs["numeric_only"] return this.quantile(**kwargs) class pd_reindex(ExternalOpImplementation): _transform_id = "pandas.PD_REINDEX" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="labels", annotation=Optional[pdt.ArrayLike], default=None, ), SarusParameter( name="index", annotation=Optional[pdt.ArrayLike], default=None, ), SarusParameter( name="columns", annotation=Optional[pdt.ArrayLike], default=None, ), SarusParameter( name="axis", annotation=Optional[pdt.Axis], default=None, ), SarusParameter( name="method", annotation=Optional[ Literal["backfill", "bfill", "pad", "ffill", "nearest"] ], default=None, ), SarusParameter( name="copy", annotation=bool, default=True, ), SarusParameter( name="level", annotation=Optional[pdt.Level], default=None, ), SarusParameter( name="fill_value", annotation=Optional[pdt.Scalar], default=np.nan, ), SarusParameter( name="limit", annotation=Optional[int], default=None, ), SarusParameter( name="tolerance", annotation=Optional[Union[pdt.Scalar, List[pdt.Scalar]]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() # The pandas method is a bit weird and allows only one of # these to be specified at a time for name in ["labels", "index", "columns", "axis"]: if kwargs[name] is None: del kwargs[name] return this.reindex(**kwargs) class pd_count(ExternalOpImplementation): _transform_id = "pandas.PD_COUNT" _dp_equivalent_id = "pandas.PD_COUNT_DP" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="axis", annotation=pdt.Axis, default=0, ), SarusParameter( name="numeric_only", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["axis"] del kwargs["numeric_only"] return this.count(**kwargs) class pd_transpose(ExternalOpImplementation): _transform_id = "pandas.PD_TRANSPOSE" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="copy", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.transpose(**kwargs) class pd_value_counts(ExternalOpImplementation): _transform_id = "pandas.PD_VALUE_COUNTS" _dp_equivalent_id = "pandas.PD_VALUE_COUNTS_DP" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.Series, pd.DataFrame], condition=DATASPEC, ), SarusParameter( name="subset", annotation=Optional[Sequence[Hashable]], default=None, ), SarusParameter( name="normalize", annotation=bool, default=False, ), SarusParameter( name="sort", annotation=bool, default=True, ), SarusParameter( name="ascending", annotation=bool, default=False, ), SarusParameter( name="dropna", annotation=bool, default=True, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["subset"] return this.value_counts(**kwargs) class pd_to_dict(ExternalOpImplementation): _transform_id = "pandas.PD_TO_DICT" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.DataFrame, condition=DATASPEC, ), SarusParameter( name="orient", annotation=Literal[ "dict", "list", "series", "split", "tight", "records", "index" ], default="dict", ), SarusParameter( name="into", annotation=Type[dict], default=dict, ), # > 1.3.5 # SarusParameter( # name="index", # annotation=bool, # default=True, # ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.to_dict(**kwargs) class pd_apply(ExternalOpImplementation): _transform_id = "pandas.PD_APPLY" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), SarusParameter( name="func", annotation=pdt.AggFuncTypeBase, condition=STATIC | TRANSFORM, predicate=lambda x: isinstance(x, str), ), SarusParameter( name="axis", annotation=pdt.Axis, default=0, ), SarusParameter( name="raw", annotation=bool, default=False, ), SarusParameter( name="result_type", annotation=Optional[Literal["expand", "reduce", "broadcast"]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["axis"] del kwargs["result_type"] del kwargs["raw"] return this.apply(**kwargs) class pd_applymap(ExternalOpImplementation): _transform_id = "pandas.PD_APPLYMAP" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.DataFrame, condition=DATASPEC, ), SarusParameter( name="func", annotation=pdt.AggFuncTypeBase, condition=STATIC | TRANSFORM, predicate=lambda x: isinstance(x, str), ), SarusParameter( name="na_action", annotation=Optional[Literal["ignore"]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.applymap(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: return PEPKind.TOKEN_PRESERVING class pd_map(ExternalOpImplementation): _transform_id = "pandas.PD_MAP" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.Series, condition=DATASPEC, ), SarusParameter( name="arg", annotation=pdt.AggFuncTypeBase, condition=STATIC | TRANSFORM, predicate=lambda x: isinstance(x, str), ), SarusParameter( name="na_action", annotation=Optional[Literal["ignore"]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.map(**kwargs) def pep_kind(self, bound_signature: SarusBoundSignature) -> PEPKind: return PEPKind.TOKEN_PRESERVING class pd_skew(ExternalOpImplementation): _transform_id = "pandas.PD_SKEW" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), SarusParameter( name="axis", annotation=Optional[pdt.Axis], default=0, ), SarusParameter( name="skipna", annotation=bool, default=True, ), SarusParameter( name="numeric_only", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.skew(**kwargs) class pd_kurtosis(ExternalOpImplementation): _transform_id = "pandas.PD_KURTOSIS" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), SarusParameter( name="axis", annotation=Optional[pdt.Axis], default=0, ), SarusParameter( name="skipna", annotation=bool, default=True, ), SarusParameter( name="numeric_only", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.kurtosis(**kwargs) class pd_agg(ExternalOpImplementation): _transform_id = "pandas.PD_AGG" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), SarusParameter( name="func", annotation=Optional[pdt.AggFuncTypeBase], default=None, ), SarusParameter( name="axis", annotation=pdt.Axis, default=0, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.agg(**kwargs) class pd_droplevel(ExternalOpImplementation): _transform_id = "pandas.PD_DROPLEVEL" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), SarusParameter( name="level", annotation=pd.Index, ), SarusParameter( name="axis", annotation=pdt.Axis, default=0, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.droplevel(**kwargs) class pd_sort_values(ExternalOpImplementation): _transform_id = "pandas.PD_SORT_VALUES" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.DataFrame, condition=DATASPEC, ), SarusParameter( name="by", annotation=pdt.IndexLabel, ), SarusParameter( name="axis", annotation=pdt.Axis, default=0, ), SarusParameter( name="ascending", annotation=Union[bool, List[bool], Tuple[bool, ...]], default=True, ), SarusParameter( name="inplace", annotation=bool, default=False, predicate=lambda x: x is False, ), SarusParameter( name="kind", annotation=str, default="quicksort", ), SarusParameter( name="na_position", annotation=str, default="last", ), SarusParameter( name="ignore_index", annotation=bool, default=False, ), SarusParameter( name="key", annotation=ValueKeyFunc, default=None, ), name=_transform_id, ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.sort_values(**kwargs) class pd_sort_values_series(ExternalOpImplementation): _transform_id = "pandas.PD_SORT_VALUES_SERIES" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.Series, condition=DATASPEC, ), SarusParameter( name="ascending", annotation=Union[bool, List[bool], Tuple[bool, ...]], default=True, ), SarusParameter( name="inplace", annotation=bool, default=False, predicate=lambda x: x is False, ), SarusParameter( name="kind", annotation=str, default="quicksort", ), SarusParameter( name="na_position", annotation=str, default="last", ), SarusParameter( name="ignore_index", annotation=bool, default=False, ), SarusParameter( name="key", annotation=ValueKeyFunc, default=None, ), name=_transform_id, ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.sort_values(**kwargs) class pd_drop_duplicates(ExternalOpImplementation): _transform_id = "pandas.PD_DROP_DUPLICATES" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), SarusParameter( name="subset", annotation=Optional[Union[Hashable, Sequence[Hashable]]], default=None, ), SarusParameter( name="keep", annotation=DropKeep, default="first", ), SarusParameter( name="inplace", annotation=bool, default=False, predicate=lambda x: x is False, ), SarusParameter( name="ignore_index", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["subset"] del kwargs["ignore_index"] return this.drop_duplicates(**kwargs) class pd_corr(ExternalOpImplementation): _transform_id = "pandas.PD_CORR" _dp_equivalent_id = "pandas.PD_CORR_DP" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.DataFrame, condition=DATASPEC, ), SarusParameter( name="method", annotation=CorrelationMethod, default="pearson", ), SarusParameter( name="min_periods", annotation=int, default=1, ), # > 1.3.5 # SarusParameter( # name="numeric_only", # annotation=bool, # default=False, # ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.corr(**kwargs) class pd_corr_series(ExternalOpImplementation): _transform_id = "pandas.PD_CORR_SERIES" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.Series, ), SarusParameter( name="other", annotation=pd.Series, ), SarusParameter( name="method", annotation=CorrelationMethod, default="pearson", ), SarusParameter( name="min_periods", annotation=int, default=1, ), # > 1.3.5 # SarusParameter( # name="numeric_only", # annotation=bool, # default=False, # ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.corr(**kwargs) # ------ DataFrame & Series PROPERTIES ------ class pd_shape(ExternalOpImplementation): _transform_id = "pandas.PD_SHAPE" _dp_equivalent_id = "pandas.PD_SHAPE_DP" _signature = SarusSignature( SarusParameter( name="this", annotation=t.Union[pd.Series, pd.DataFrame], condition=DATASPEC, ) ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.shape class pd_ndim(ExternalOpImplementation): _transform_id = "pandas.PD_NDIM" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.ndim class pd_name(ExternalOpImplementation): _transform_id = "pandas.PD_NAME" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.Series, condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.name class pd_size(ExternalOpImplementation): _transform_id = "pandas.PD_SIZE" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.size class pd_axes(ExternalOpImplementation): _transform_id = "pandas.PD_AXES" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.DataFrame, condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.axes class pd_columns(ExternalOpImplementation): _transform_id = "pandas.PD_COLUMNS" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.DataFrame, condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.columns class pd_index(ExternalOpImplementation): _transform_id = "pandas.PD_INDEX" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.index class pd_dtype(ExternalOpImplementation): _transform_id = "pandas.PD_DTYPE" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.Series, condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.dtype class pd_dtypes(ExternalOpImplementation): _transform_id = "pandas.PD_DTYPES" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.dtypes class pd_values(ExternalOpImplementation): _transform_id = "pandas.PD_VALUES" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.values class pd_join(ExternalOpImplementation): _transform_id = "pandas.PD_JOIN" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.DataFrame, condition=DATASPEC, ), SarusParameter( name="other", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC | STATIC, ), SarusParameter( name="on", annotation=Optional[pdt.IndexLabel], default=None, ), SarusParameter( name="how", annotation=MergeHow, default="left", ), SarusParameter( name="lsuffix", annotation=str, default="", ), SarusParameter( name="rsuffix", annotation=str, default="", ), SarusParameter( name="sort", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.join(**kwargs) class pd_groupby(ExternalOpImplementation): _transform_id = "pandas.PD_GROUPBY" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.DataFrame, condition=DATASPEC, ), SarusParameter( name="by", annotation=Union[Mapping, Callable, str, List[str], Tuple[str]], default=None, ), SarusParameter( name="axis", annotation=pdt.Axis, default=0, ), SarusParameter( name="level", annotation=Optional[pdt.IndexLabel], default=None, ), SarusParameter( name="as_index", annotation=bool, default=True, ), SarusParameter( name="sort", annotation=bool, default=True, ), SarusParameter( name="group_keys", annotation=bool, default=True, ), SarusParameter( name="observed", annotation=bool, default=False, ), SarusParameter( name="dropna", annotation=bool, default=True, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.groupby(**kwargs) def pep_kind(self, signature: SarusBoundSignature) -> PEPKind: by = signature["axis"].static_value() if callable(by): return PEPKind.NOT_PEP else: return PEPKind.PEP class pd_merge(ExternalOpImplementation): _transform_id = "pandas.PD_MERGE" _signature = SarusSignature( SarusParameter( name="left", annotation=pd.DataFrame, condition=DATASPEC, ), SarusParameter( name="right", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC | STATIC, ), SarusParameter( name="how", annotation=MergeHow, default="inner", ), SarusParameter( name="on", annotation=Optional[Union[pdt.IndexLabel, List[pdt.IndexLabel]]], default=None, ), SarusParameter( name="left_on", annotation=Optional[Union[pdt.IndexLabel, List[pdt.IndexLabel]]], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="right_on", annotation=Optional[Union[pdt.IndexLabel, List[pdt.IndexLabel]]], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="left_index", annotation=bool, default=False, ), SarusParameter( name="right_index", annotation=bool, default=False, ), SarusParameter( name="sort", annotation=bool, default=False, ), SarusParameter( name="suffixes", annotation=Tuple[str, str], default=("_x", "_y"), ), SarusParameter( name="copy", annotation=bool, default=True, ), SarusParameter( name="indicator", annotation=bool, default=False, ), SarusParameter( name="validate", annotation=Optional[str], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.merge(**kwargs) class pd_append(ExternalOpImplementation): _transform_id = "pandas.PD_APPEND" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.DataFrame, condition=DATASPEC, ), SarusParameter( name="other", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC | STATIC, ), SarusParameter( name="ignore_index", annotation=bool, default=False, ), SarusParameter( name="verify_integrity", annotation=bool, default=False, ), SarusParameter( name="sort", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.append(**kwargs) class pd_nunique(ExternalOpImplementation): _transform_id = "pandas.PD_NUNIQUE" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), SarusParameter( name="axis", annotation=pdt.Axis, default=0, ), SarusParameter( name="dropna", annotation=bool, default=True, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() if signature["this"].python_type() == str(pd.Series): del kwargs["axis"] return this.nunique(**kwargs) class pd_rolling(ExternalOpImplementation): _transform_id = "pandas.PD_ROLLING" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), SarusParameter( name="window", annotation=Union[int, timedelta, BaseOffset, BaseIndexer], ), SarusParameter( name="min_periods", annotation=Optional[int], default=None, ), SarusParameter( name="center", annotation=bool, default=False, ), SarusParameter( name="win_type", annotation=Optional[str], default=None, ), SarusParameter( name="on", annotation=Optional[str], default=None, ), SarusParameter( name="axis", annotation=pdt.Axis, default=0, ), SarusParameter( name="closed", annotation=Optional[str], default=None, ), SarusParameter( name="method", annotation=str, default="single", ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.rolling(**kwargs) # ------ FUNCTIONS ------ class pd_eq(ExternalOpImplementation): _transform_id = "pandas.PD_EQ" _signature = SarusSignature( SarusParameter( name="this", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), SarusParameter( name="other", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this, other) = signature.collect_args() return this == other class pd_concat(ExternalOpImplementation): _transform_id = "pandas.PD_CONCAT" _signature = SarusSignature( SarusParameter( name="objs", annotation=Union[ Iterable[pd.core.generic.NDFrame], Mapping[Hashable, pd.core.generic.NDFrame], ], condition=DATASPEC | STATIC, ), SarusParameter( name="axis", annotation=pdt.Axis, default=0, ), SarusParameter( name="join", annotation=str, default="outer", ), SarusParameter( name="ignore_index", annotation=bool, default=False, ), SarusParameter( name="keys", annotation=Optional[Any], default=None, ), SarusParameter( name="levels", annotation=Optional[Any], default=None, ), SarusParameter( name="names", annotation=Optional[Any], default=None, ), SarusParameter( name="verify_integrity", annotation=bool, default=False, ), SarusParameter( name="sort", annotation=bool, default=False, ), SarusParameter( name="copy", annotation=Optional[bool], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return pd.concat(**kwargs) class pd_get_dummies(ExternalOpImplementation): _transform_id = "pandas.PD_GET_DUMMIES" _signature = SarusSignature( SarusParameter( name="data", annotation=Union[pd.DataFrame, pd.Series], condition=DATASPEC, ), SarusParameter( name="prefix", annotation=Optional[Union[str, Iterable[str], Dict[str, str]]], default=None, ), SarusParameter( name="prefix_sep", annotation=Union[str, Iterable[str], Dict[str, str]], default="_", ), SarusParameter( name="dummy_na", annotation=bool, default=False, ), SarusParameter( name="columns", annotation=Optional[List[str]], default=None, ), SarusParameter( name="sparse", annotation=bool, default=False, ), SarusParameter( name="drop_first", annotation=bool, default=False, ), SarusParameter( name="dtype", annotation=Optional[np.dtype], default=None, ), ) def call(self, signature: SarusSignatureValue) -> pd.DataFrame: kwargs = signature.collect_kwargs() return pd.get_dummies(**kwargs) class pd_to_datetime(ExternalOpImplementation): _transform_id = "pandas.TO_DATETIME" _signature = SarusSignature( SarusParameter( name="arg", annotation=DatetimeScalarOrArrayConvertible, condition=DATASPEC, ), SarusParameter( name="errors", annotation=str, default="raise", ), SarusParameter( name="dayfirst", annotation=bool, default=False, ), SarusParameter( name="yearfirst", annotation=bool, default=False, ), SarusParameter( name="utc", annotation=bool, default=False, ), SarusParameter( name="format", annotation=Optional[str], default=None, ), SarusParameter( name="exact", annotation=Union[bool, lib.NoDefault], default=lib.no_default, ), SarusParameter( name="unit", annotation=Optional[str], default=None, ), SarusParameter( name="infer_datetime_format", annotation=Union[bool, lib.NoDefault], default=lib.no_default, ), SarusParameter( name="origin", annotation=str, default="unix", ), SarusParameter( name="cache", annotation=bool, default=True, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return pd.to_datetime(**kwargs) # ------ INDEX METHODS ------ class pd_union(ExternalOpImplementation): _transform_id = "pandas.PD_UNION" _signature = SarusSignature( SarusParameter( name="this", annotation=pd.Index, condition=DATASPEC, ), SarusParameter( name="other", annotation=Union[pd.Index, pdt.ArrayLike], condition=DATASPEC | STATIC, ), SarusParameter( name="sort", annotation=Optional[bool], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.union(**kwargs)
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/pandas/pandas.py
0.830491
0.21766
pandas.py
pypi
from typing import Any, List, Optional, Tuple, Union from numpy import ndarray from pandas import DataFrame import numpy as np import pandas as pd from sarus_data_spec.dataspec_validator.parameter_kind import DATASPEC, STATIC from sarus_data_spec.dataspec_validator.signature import ( SarusParameter, SarusSignature, SarusSignatureValue, ) from ..external_op import ExternalOpImplementation try: from matplotlib.pyplot import Figure from shap import Explanation, summary_plot from shap.Explanation import abs from shap.utils import OpChain import shap except ModuleNotFoundError: Explanation = Any abs = Any Figure = Any OpChain = Any class shap_plots_bar(ExternalOpImplementation): _transform_id = "shap.SHAP_PLOTS_BAR" _signature = SarusSignature( SarusParameter( name="shap_values", annotation=Any, condition=DATASPEC | STATIC, ), SarusParameter( name="max_display", annotation=int, default=10, ), SarusParameter( name="order", annotation=abs, default=None, condition=STATIC, ), SarusParameter( name="clustering", annotation=Optional[Any], default=None, ), SarusParameter( name="clustering_cutoff", annotation=float, default=0.5, ), SarusParameter( name="merge_cohorts", annotation=bool, default=False, ), SarusParameter( name="show_data", annotation=str, default='auto', ), SarusParameter( name="show", annotation=bool, default=True, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() if kwargs["order"] is None: kwargs["order"] = shap.Explanation.abs return shap.plots.bar(**kwargs) class shap_waterfall(ExternalOpImplementation): _transform_id = "shap.SHAP_WATERFALL" _signature = SarusSignature( SarusParameter( name="shap_values", annotation=Explanation, condition=DATASPEC | STATIC, ), SarusParameter( name="max_display", annotation=int, default=10, ), SarusParameter( name="show", annotation=bool, default=True, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.plots.waterfall(**kwargs) class shap_beeswarm(ExternalOpImplementation): _transform_id = "shap.SHAP_BEESWARM" _signature = SarusSignature( SarusParameter( name="shap_values", annotation=Explanation, condition=DATASPEC | STATIC, ), SarusParameter( name="max_display", annotation=int, default=10, ), SarusParameter( name="show", annotation=bool, default=True, ), SarusParameter( name="color_bar", annotation=bool, default=True, ), SarusParameter( name="plot_size", annotation=Union[str, float, Tuple[float, float]], default="auto", ), SarusParameter( name="order", annotation=Optional[OpChain], default=None, ), SarusParameter( name="clustering", annotation=Optional[OpChain], default=None, ), SarusParameter( name="cluster_threshold", annotation=Optional[float], default=0.5, ), SarusParameter( name="color", annotation=Optional[OpChain], default=None, ), SarusParameter( name="axis_color", annotation=Optional[str], default='#333333', ), SarusParameter( name="alpha", annotation=Optional[float], default=1, ), SarusParameter( name="show", annotation=Optional[bool], default=True, ), SarusParameter( name="log_scale", annotation=Optional[bool], default=False, ), SarusParameter( name="color_bar_label", annotation=Optional[str], default='Feature value', ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() if kwargs["order"] is None: kwargs["order"] = shap.Explanation.abs.mean(0) return shap.plots.beeswarm(**kwargs) class shap_heatmap(ExternalOpImplementation): _transform_id = "shap.SHAP_HEATMAP" _signature = SarusSignature( SarusParameter( name="shap_values", annotation=Explanation, condition=DATASPEC | STATIC, ), SarusParameter( name="instance_order", annotation=Union[OpChain, np.ndarray], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="feature_values", annotation=Union[OpChain, np.ndarray], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="feature_order", annotation=Optional[Union[None, OpChain, np.ndarray]], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="max_display", annotation=int, default=10, ), SarusParameter( name="show", annotation=bool, default=True, ), SarusParameter( name="plot_width", annotation=int, default=8, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() if kwargs["instance_order"] is None: del kwargs["instance_order"] if kwargs["feature_values"] is None: del kwargs["feature_values"] return shap.plots.heatmap(**kwargs) class shap_summary_plot(ExternalOpImplementation): _transform_id = "shap.SHAP_SUMMARY_PLOT" _signature = SarusSignature( SarusParameter( name="shap_values", annotation=np.ndarray, condition=DATASPEC | STATIC, ), SarusParameter( name="features", annotation=Optional[Union[np.ndarray, pd.DataFrame, List]], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="feature_names", annotation=Optional[List[str]], default=None, ), SarusParameter( name="max_display", annotation=Optional[int], default=None, ), SarusParameter( name="plot_type", annotation=Optional[str], default=None, ), SarusParameter( name="color", annotation=Optional[Any], default=None, ), SarusParameter( name="axis_color", annotation=str, default='#333333', ), SarusParameter( name="title", annotation=Optional[str], default=None, ), SarusParameter( name="alpha", annotation=float, default=1, ), SarusParameter( name="show", annotation=bool, default=True, ), SarusParameter( name="sort", annotation=bool, default=True, ), SarusParameter( name="color_bar", annotation=bool, default=True, ), SarusParameter( name="plot_size", annotation=Union[str, float, Tuple[float, float]], default='auto', ), SarusParameter( name="layered_violin_max_num_bins", annotation=int, default=20, ), SarusParameter( name="class_names", annotation=Optional[List[str]], default=None, ), SarusParameter( name="class_inds", annotation=Optional[List[int]], default=None, ), SarusParameter( name="color_bar_label", annotation=str, default='Feature value', ), SarusParameter( name="cmap", annotation=Any, # Adjust accordingly default=None, ), SarusParameter( name="auto_size_plot", annotation=Optional[bool], default=None, ), SarusParameter( name="use_log_scale", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return summary_plot(**kwargs) class shap_dependence_plot(ExternalOpImplementation): _transform_id = "shap.SHAP_DEPENDENCE_PLOT" _signature = SarusSignature( SarusParameter( name="ind", annotation=Union[int, str], condition=DATASPEC | STATIC, ), SarusParameter( name="shap_values", annotation=ndarray, condition=DATASPEC | STATIC, ), SarusParameter( name="features", annotation=Union[ndarray, DataFrame], condition=DATASPEC | STATIC, ), SarusParameter( name="feature_names", annotation=Optional[List[str]], default=None, ), SarusParameter( name="display_features", annotation=Optional[Union[ndarray, DataFrame]], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="interaction_index", annotation=Union[str, int], default='auto', ), SarusParameter( name="color", annotation=str, default='#1E88E5', ), SarusParameter( name="axis_color", annotation=str, default='#333333', ), SarusParameter( name="cmap", annotation=Optional[str], default=None, ), SarusParameter( name="dot_size", annotation=int, default=16, ), SarusParameter( name="x_jitter", annotation=float, default=0, ), SarusParameter( name="alpha", annotation=float, default=1, ), SarusParameter( name="title", annotation=Optional[str], default=None, ), SarusParameter( name="xmin", annotation=Optional[Union[float, str]], default=None, ), SarusParameter( name="xmax", annotation=Optional[Union[float, str]], default=None, ), SarusParameter( name="ax", annotation=Optional[Any], # Use proper type for matplotlib axes default=None, ), SarusParameter( name="show", annotation=bool, default=True, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.dependence_plot(**kwargs) class ShapForcePlot(ExternalOpImplementation): _transform_id = "shap.SHAP_FORCE_PLOT" _signature = SarusSignature( SarusParameter( name="base_value", annotation=float, condition=DATASPEC | STATIC, ), SarusParameter( name="shap_values", annotation=Optional[np.ndarray], condition=DATASPEC | STATIC, default=None, ), SarusParameter( name="features", annotation=Optional[np.ndarray], condition=DATASPEC | STATIC, default=None, ), SarusParameter( name="feature_names", annotation=Optional[List[str]], default=None, ), SarusParameter( name="out_names", annotation=Optional[str], default=None, ), SarusParameter( name="link", annotation=str, default='identity', ), SarusParameter( name="plot_cmap", annotation=str, default='RdBu', ), SarusParameter( name="matplotlib", annotation=bool, default=False, ), SarusParameter( name="show", annotation=bool, default=True, ), SarusParameter( name="figsize", annotation=Tuple[float, float], default=(20, 3), ), SarusParameter( name="ordering_keys", annotation=Optional[Any], # Adjust this type based on your needs default=None, ), SarusParameter( name="ordering_keys_time_format", annotation=Optional[str], default=None, ), SarusParameter( name="text_rotation", annotation=float, default=0, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.force_plot(**kwargs)
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/shap/plots.py
0.831964
0.280644
plots.py
pypi
from typing import Any, Callable, Dict, Optional, Union import numpy as np import pandas as pd from sarus_data_spec.dataspec_validator.parameter_kind import DATASPEC, STATIC from sarus_data_spec.dataspec_validator.signature import ( SarusParameter, SarusParameterArray, SarusSignature, SarusSignatureValue, ) from ..external_op import ExternalOpImplementation try: from shap.maskers import ( Composite, Image, Independent, Masker, Partition, Text, ) import shap except ModuleNotFoundError: Independent = Any Partition = Any Text = Any Composite = Any Masker = Any Text = Any Image = Any # ------ CONSTRUCTORS ------- class shap_masker(ExternalOpImplementation): _transform_id = "shap.SHAP_MASKER" _signature = SarusSignature() def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.maskers.Masker(**kwargs) # ------ CONSTRUCTORS ------- class shap_independent(ExternalOpImplementation): _transform_id = "shap.SHAP_INDEPENDENT" _signature = SarusSignature( SarusParameter( name="data", annotation=Union[np.ndarray, pd.DataFrame], condition=DATASPEC | STATIC, ), SarusParameter( name="max_samples", annotation=Optional[int], default=100, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.maskers.Independent(**kwargs) # ------ Independent METHODS ------ class shap_invariants(ExternalOpImplementation): _transform_id = "shap.SHAP_INVARIANTS" _signature = SarusSignature( SarusParameter( name="this", annotation=Independent, condition=DATASPEC | STATIC, ), SarusParameter( name="x", annotation=Union[np.ndarray, pd.DataFrame], condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.invariants(**kwargs) # ------ CONSTRUCTORS ------- class shap_masker_partition(ExternalOpImplementation): _transform_id = "shap.SHAP_MASKER_PARTITION" _signature = SarusSignature( SarusParameter( name="data", annotation=Union[np.ndarray, pd.DataFrame], condition=DATASPEC | STATIC, ), SarusParameter( name="max_samples", annotation=int, default=100, ), SarusParameter( name="clustering", annotation=str, default='correlation', ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.maskers.Partition(**kwargs) # ------ Partition METHODS ------ class shap_partition_invariants(ExternalOpImplementation): _transform_id = "shap.SHAP_PARTITION_INVARIANTS" _signature = SarusSignature( SarusParameter( name="this", annotation=Partition, condition=DATASPEC | STATIC, ), SarusParameter( name="x", annotation=np.ndarray, condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.invariants(**kwargs) # ------ CONSTRUCTORS ------- class shap_impute(ExternalOpImplementation): _transform_id = "shap.SHAP_IMPUTE" _signature = SarusSignature( SarusParameter( name="data", annotation=Union[np.ndarray, pd.DataFrame, Dict[str, np.ndarray]], condition=DATASPEC | STATIC, ), SarusParameter( name="method", annotation=str, default='linear', ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.maskers.Impute(**kwargs) # ------ CONSTRUCTORS ------- class shap_fixed(ExternalOpImplementation): _transform_id = "shap.SHAP_FIXED" _signature = SarusSignature() def call(self, signature: SarusSignatureValue) -> Any: return shap.maskers.Fixed() # ------ FIXED METHODS ------ class shap_mask_shapes(ExternalOpImplementation): _transform_id = "shap.SHAP_FIXED_MASK_SHAPES" _signature = SarusSignature( SarusParameter( name="this", annotation=Text, condition=DATASPEC | STATIC, ), SarusParameter( name="X", annotation=Union[np.ndarray, pd.DataFrame, Dict[str, np.ndarray]], condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, X = signature.collect_args() return this.mask_shapes(X) # ------ CONSTRUCTORS ------- class shap_composite(ExternalOpImplementation): _transform_id = "shap.SHAP_COMPOSITE" _signature = SarusSignature( SarusParameterArray( name="maskers", annotation=Any, ), ) def call(self, signature: SarusSignatureValue) -> Any: maskers = signature.collect_args() return shap.maskers.Composite(*maskers) # ------ Composite METHODS ------ class shap_data_transform(ExternalOpImplementation): _transform_id = "shap.SHAP_DATA_TRANSFORM" _signature = SarusSignature( SarusParameter( name="this", annotation=Composite, condition=DATASPEC | STATIC, ), SarusParameterArray( name="args", annotation=Any, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, args = signature.collect_args() return this.data_transform(*args) # ------ CONSTRUCTORS ------- class shap_fixed_composite(ExternalOpImplementation): _transform_id = "shap.SHAP_FIXED_COMPOSITE" _signature = SarusSignature( SarusParameter( name="masker", annotation=Any, condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.maskers.FixedComposite(**kwargs) # ------ CONSTRUCTORS ------- class shap_output_composite(ExternalOpImplementation): _transform_id = "shap.SHAP_OUTPUT_COMPOSITE" _signature = SarusSignature( SarusParameter( name="masker", annotation=Masker, condition=DATASPEC | STATIC, ), SarusParameter( name="model", annotation=Any, condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.maskers.OutputComposite(**kwargs) # ------- CONSTRUCTORS ------- class shap_text_masker(ExternalOpImplementation): _transform_id = "shap.SHAP_TEXT" _signature = SarusSignature( SarusParameter( name="tokenizer", annotation=Optional[Union[Callable, None]], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="mask_token", annotation=Optional[Union[str, int, None]], default=None, ), SarusParameter( name="collapse_mask_token", annotation=Optional[Union[bool, str]], default='auto', ), SarusParameter( name="output_type", annotation=Optional[str], default='string', ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.maskers.Text(**kwargs) # ------ METHODS ------ class shap_clustering(ExternalOpImplementation): _transform_id = "shap.SHAP_CLUSTERING" _signature = SarusSignature( SarusParameter( name="this", annotation=Text, condition=DATASPEC | STATIC, ), SarusParameter( name="s", annotation=str, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.clustering(**kwargs) class shap_data_text_transform(ExternalOpImplementation): _transform_id = "shap.SHAP_DATA_TEXT_TRANSFORM" _signature = SarusSignature( SarusParameter( name="this", annotation=Text, condition=DATASPEC | STATIC, ), SarusParameter( name="s", annotation=str, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.data_transform(**kwargs) class shap_feature_names(ExternalOpImplementation): _transform_id = "shap.SHAP_FEATURE_NAMES" _signature = SarusSignature( SarusParameter( name="this", annotation=Text, condition=DATASPEC | STATIC, ), SarusParameter( name="s", annotation=str, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.feature_names(**kwargs) class shap_text_invariants(ExternalOpImplementation): _transform_id = "shap.SHAP_TEXT_INVARIANTS" _signature = SarusSignature( SarusParameter( name="this", annotation=Text, condition=DATASPEC | STATIC, ), SarusParameter( name="s", annotation=str, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.invariants(**kwargs) class shap_mask_text_shapes(ExternalOpImplementation): _transform_id = "shap.SHAP_MASK_TEXT_SHAPES" _signature = SarusSignature( SarusParameter( name="this", annotation=Text, condition=DATASPEC | STATIC, ), SarusParameter( name="s", annotation=str, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.mask_shapes(**kwargs) class shap_shape(ExternalOpImplementation): _transform_id = "shap.SHAP_SHAPE" _signature = SarusSignature( SarusParameter( name="this", annotation=Text, condition=DATASPEC | STATIC, ), SarusParameter( name="s", annotation=str, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.shape(**kwargs) class shap_token_segments(ExternalOpImplementation): _transform_id = "shap.SHAP_TOKEN_SEGMENTS" _signature = SarusSignature( SarusParameter( name="this", annotation=Text, condition=DATASPEC | STATIC, ), SarusParameter( name="s", annotation=str, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.token_segments(**kwargs) # ------ CONSTRUCTORS ------- class shap_image(ExternalOpImplementation): _transform_id = "shap.SHAP_IMAGE" _signature = SarusSignature( SarusParameter( name="mask_value", annotation=Union[np.array, str], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="shape", annotation=Optional[tuple], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.maskers.Image(**kwargs) # ------ ImageMasker METHODS ------ class shap_build_partition_tree(ExternalOpImplementation): _transform_id = "shap.SHAP_BUILD_PARTITION_TREE" _signature = SarusSignature( SarusParameter( name="this", annotation=Image, condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.build_partition_tree(**kwargs) class shap_inpaint(ExternalOpImplementation): _transform_id = "shap.SHAP_INPAINT" _signature = SarusSignature( SarusParameter( name="this", annotation=Image, condition=DATASPEC | STATIC, ), SarusParameter( name="x", annotation=Union[pd.Series, pd.DataFrame, np.array], ), SarusParameter( name="mask", annotation=Union[pd.Series, pd.DataFrame, np.array], ), SarusParameter( name="method", annotation=str, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.inpaint(**kwargs)
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/shap/maskers.py
0.744935
0.201165
maskers.py
pypi
from typing import Any, Callable, List, Optional, Tuple, Union from numpy import ndarray from pandas import DataFrame import numpy as np import pandas as pd from sarus_data_spec.dataspec_validator.parameter_kind import DATASPEC, STATIC from sarus_data_spec.dataspec_validator.signature import ( SarusParameter, SarusSignature, SarusSignatureValue, ) from ..external_op import ExternalOpImplementation try: from scipy.sparse import spmatrix from shap import ( Explainer, KernelExplainer, LinearExplainer, SamplingExplainer, ) from shap.maskers import Masker from shap.models import Model from sklearn.base import BaseEstimator import shap except ModuleNotFoundError: Explainer = Any KernelExplainer = Any LinearExplainer = Any SamplingExplainer = Any spmatrix = Any Masker = Any Model = Any BaseEstimator = Any # ------ CONSTRUCTORS ------- class shap_explainer(ExternalOpImplementation): _transform_id = "shap.SHAP_EXPLAINER" _signature = SarusSignature( SarusParameter( name="model", annotation=Union[Callable, BaseEstimator], condition=DATASPEC | STATIC, ), SarusParameter( name="masker", annotation=Optional[Union[Callable, ndarray, DataFrame]], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="link", annotation=Optional[Callable], default=None, ), SarusParameter( name="algorithm", annotation=str, default="auto", ), SarusParameter( name="output_names", annotation=Optional[List[str]], default=None, ), SarusParameter( name="feature_names", annotation=Optional[List[str]], default=None, ), SarusParameter( name="linearize_link", annotation=bool, default=True, ), SarusParameter( name="seed", annotation=Optional[int], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() if kwargs["link"] is None: del kwargs["link"] return shap.Explainer(**kwargs) # ------ SHAP EXPLAINER METHODS ------ class shap_save(ExternalOpImplementation): _transform_id = "shap.SHAP_SAVE" _signature = SarusSignature( SarusParameter( name="this", annotation=Explainer, condition=DATASPEC, ), SarusParameter( name="out_file", annotation=Any, condition=STATIC, ), SarusParameter( name="model_saver", annotation=str, default=".save", ), SarusParameter( name="masker_saver", annotation=str, default=".save", ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.save(**kwargs) class shap_load(ExternalOpImplementation): _transform_id = "shap.SHAP_LOAD" _signature = SarusSignature( SarusParameter( name="in_file", annotation=Any, condition=STATIC, ), SarusParameter( name="model_loader", annotation=Callable, default=Any, condition=STATIC, ), SarusParameter( name="masker_loader", annotation=Callable, default=Any, condition=STATIC, ), SarusParameter( name="instantiate", annotation=bool, default=True, condition=STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.Explainer.load(**kwargs) class SHAP_explain_row(ExternalOpImplementation): _transform_id = "shap.SHAP_EXPLAIN_ROW" _signature = SarusSignature( SarusParameter( name="this", annotation=Explainer, condition=STATIC | DATASPEC, ), SarusParameter( name="row_args", annotation=Any, default=None, ), SarusParameter( name="max_evals", annotation=Any, default=None, ), SarusParameter( name="main_effects", annotation=Any, default=None, ), SarusParameter( name="error_bounds", annotation=Any, default=None, ), SarusParameter( name="batch_size", annotation=Any, default=None, ), SarusParameter( name="outputs", annotation=Any, default=None, ), SarusParameter( name="silent", annotation=bool, default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.explain_row(**kwargs) class shap_shap_values(ExternalOpImplementation): _transform_id = "shap.SHAP_SHAP_VALUES" _signature = SarusSignature( SarusParameter( name="this", annotation=Explainer, condition=DATASPEC | STATIC, ), SarusParameter( name="X", annotation=Union[np.ndarray, pd.DataFrame], condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.shap_values(**kwargs) class shap_call(ExternalOpImplementation): _transform_id = "shap.SHAP_CALL" _signature = SarusSignature( SarusParameter( name="this", annotation=Explainer, condition=DATASPEC | STATIC, ), SarusParameter( name="X", annotation=Union[ndarray, DataFrame], condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this, kwargs) = signature.collect_kwargs_method() return this(kwargs["X"]) # ------ CONSTRUCTORS TREE ------- class shap_tree(ExternalOpImplementation): _transform_id = "shap.SHAP_TREE" _signature = SarusSignature( SarusParameter( name="model", annotation=Any, condition=DATASPEC | STATIC, ), SarusParameter( name="data", annotation=Optional[Union[ndarray, DataFrame]], condition=DATASPEC | STATIC, ), SarusParameter( name="model_output", annotation=str, default='raw', condition=STATIC, ), SarusParameter( name="feature_perturbation", annotation=str, default='interventional', condition=STATIC, ), SarusParameter( name="feature_names", annotation=Optional[List[str]], default=None, condition=STATIC, ), SarusParameter( name="approximate", annotation=bool, default=False, condition=STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.explainers.Tree(**kwargs) # ------ CONSTRUCTORS GPUTREE ------- class shap_gputree(ExternalOpImplementation): _transform_id = "shap.SHAP_GPUTREE" _signature = SarusSignature( SarusParameter( name="model", annotation=Any, condition=DATASPEC | STATIC, ), SarusParameter( name="data", annotation=Optional[Union[np.ndarray, pd.DataFrame]], condition=DATASPEC | STATIC, ), SarusParameter( name="model_output", annotation=str, default='raw', ), SarusParameter( name="feature_perturbation", annotation=str, default='interventional', ), SarusParameter( name="feature_names", annotation=Optional[List[str]], default=None, ), SarusParameter( name="approximate", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.explainers.GPUTree(**kwargs) # ------ SHAP TREE AND GPUTREE METHODS ------ class shap_tree_shap_values(ExternalOpImplementation): _transform_id = "shap.SHAP_TREE_SHAP_VALUES" _signature = SarusSignature( SarusParameter( name="this", annotation=Explainer, condition=DATASPEC | STATIC, ), SarusParameter( name="X", annotation=Union[np.ndarray, pd.DataFrame], condition=DATASPEC | STATIC, ), SarusParameter( name="y", annotation=Optional[np.ndarray], default=None, ), SarusParameter( name="tree_limit", annotation=Optional[int], default=None, ), SarusParameter( name="approximate", annotation=bool, default=False, ), SarusParameter( name="check_additivity", annotation=bool, default=True, ), SarusParameter( name="from_call", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.shap_values(**kwargs) class shap_tree_interaction_values(ExternalOpImplementation): _transform_id = "shap.SHAP_TREE_SHAP_INTERACTION_VALUES" _signature = SarusSignature( SarusParameter( name="this", annotation=Explainer, condition=DATASPEC | STATIC, ), SarusParameter( name="X", annotation=Union[np.ndarray, pd.DataFrame], condition=DATASPEC | STATIC, ), SarusParameter( name="y", annotation=Optional[np.ndarray], default=None, ), SarusParameter( name="tree_limit", annotation=Optional[int], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.shap_interaction_values(**kwargs) # ------ CONSTRUCTORS KERNEL ------- class shap_kernel(ExternalOpImplementation): _transform_id = "shap.SHAP_KERNEL" _signature = SarusSignature( SarusParameter( name="model", annotation=Callable, condition=DATASPEC | STATIC, predicate=lambda x: isinstance(x, str), ), SarusParameter( name="data", annotation=Union[np.ndarray, pd.DataFrame, spmatrix], condition=DATASPEC | STATIC, ), SarusParameter( name="link", annotation=Any, condition=STATIC, default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() if kwargs["link"] is None: del kwargs["link"] return shap.KernelExplainer(**kwargs) # ------ SHAP KERNEL METHODS ------ class shap_run(ExternalOpImplementation): _transform_id = "shap.SHAP_RUN" _signature = SarusSignature( SarusParameter( name="this", annotation=KernelExplainer, condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.run() class shap_allocate(ExternalOpImplementation): _transform_id = "shap.SHAP_ALLOCATE" _signature = SarusSignature( SarusParameter( name="this", annotation=KernelExplainer, condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.allocate() class shap_solve(ExternalOpImplementation): _transform_id = "shap.SHAP_SOLVE" _signature = SarusSignature( SarusParameter( name="this", annotation=KernelExplainer, condition=DATASPEC | STATIC, ), SarusParameter( name="fraction_evaluated", annotation=Any, condition=STATIC, ), SarusParameter( name="dim", annotation=Any, condition=STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.solve(**kwargs) class shap_varying_groups(ExternalOpImplementation): _transform_id = "shap.SHAP_VARYING_GROUPS" _signature = SarusSignature( SarusParameter( name="this", annotation=KernelExplainer, condition=DATASPEC | STATIC, ), SarusParameter( name="X", annotation=Any, condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.varying_groups(**kwargs) class shap_explain(ExternalOpImplementation): _transform_id = "shap.SHAP_EXPLAIN" _signature = SarusSignature( SarusParameter( name="this", annotation=KernelExplainer, condition=DATASPEC | STATIC, ), SarusParameter( name="incoming_instance", annotation=Any, condition=STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.explain(**kwargs) class add_sample(ExternalOpImplementation): _transform_id = "shap.SHAP_ADD_SAMPLE" _signature = SarusSignature( SarusParameter( name="this", annotation=KernelExplainer, condition=STATIC | DATASPEC, ), SarusParameter( name="x", annotation=np.array, ), SarusParameter( name="m", annotation=np.array, ), SarusParameter( name="w", annotation=float, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.addsample(**kwargs) # ------ CONSTRUCTORS LINEAR ------- class shap_linear(ExternalOpImplementation): _transform_id = "shap.SHAP_LINEAR" _signature = SarusSignature( SarusParameter( name="model", annotation=Union[BaseEstimator, Tuple[Any, Any]], condition=DATASPEC | STATIC, ), SarusParameter( name="masker", annotation=Union[ Tuple[Any, Any], np.ndarray, pd.DataFrame, spmatrix ], condition=DATASPEC | STATIC, ), SarusParameter( name="link", annotation=Any, condition=STATIC, default=None, ), SarusParameter( name="nsamples", annotation=int, default=1000, ), SarusParameter( name="feature_perturbation", annotation=Optional[str], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() if kwargs["link"] is None: del kwargs["link"] return shap.explainers.Linear(**kwargs) # ------ CONSTRUCTORS PARTITION ------- class shap_partition(ExternalOpImplementation): _transform_id = "shap.SHAP_PARTITION" _signature = SarusSignature( SarusParameter( name="model", annotation=Union[BaseEstimator, Tuple[Any, Any]], condition=DATASPEC | STATIC, ), SarusParameter( name="masker", annotation=Union[ Tuple[Any, Any], np.ndarray, pd.DataFrame, spmatrix ], condition=DATASPEC | STATIC, ), SarusParameter( name="output_names", annotation=Any, condition=STATIC, default=None, ), SarusParameter( name="link", annotation=Any, condition=STATIC, default=None, ), SarusParameter( name="nsamples", annotation=int, default=1000, ), SarusParameter( name="feature_perturbation", annotation=Optional[str], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() if kwargs["link"] is None: del kwargs["link"] return shap.explainers.Partition(**kwargs) # ------ CONSTRUCTORS PERMUTATION ------- class shap_permutation(ExternalOpImplementation): _transform_id = "shap.SHAP_PERMUTATION" _signature = SarusSignature( SarusParameter( name="model", annotation=Union[BaseEstimator, Tuple[Any, Any]], condition=DATASPEC | STATIC, ), SarusParameter( name="masker", annotation=Union[ Tuple[Any, Any], np.ndarray, pd.DataFrame, spmatrix ], condition=DATASPEC | STATIC, ), SarusParameter( name="output_names", annotation=Optional[List[str]], condition=STATIC, default=None, ), SarusParameter( name="link", annotation=Any, condition=STATIC, default=None, ), SarusParameter( name="linearize_link", annotation=bool, condition=STATIC, default=True, ), SarusParameter( name="feature_names", annotation=Optional[List[str]], condition=STATIC, default=None, ), SarusParameter( name="nsamples", annotation=int, default=1000, ), SarusParameter( name="feature_perturbation", annotation=Optional[str], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() if kwargs["link"] is None: del kwargs["link"] return shap.explainers.Permutation(**kwargs) # ------ SHAP PERMUTATION METHODS ------ class shap_permutation_explainer_shap_values(ExternalOpImplementation): _transform_id = "shap.SHAP_PERMUTATION_SHAP_VALUES" _signature = SarusSignature( SarusParameter( name="this", annotation=LinearExplainer, condition=DATASPEC | STATIC, ), SarusParameter( name="X", annotation=Union[np.ndarray, pd.DataFrame], condition=DATASPEC | STATIC, ), SarusParameter( name="npermutations", annotation=Optional[int], default=10, ), SarusParameter( name="main_effects", annotation=Optional[bool], default=False, ), SarusParameter( name="error_bounds", annotation=Optional[bool], default=False, ), SarusParameter( name="batch_evals", annotation=Optional[bool], default=True, ), SarusParameter( name="silent", annotation=Optional[bool], default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.shap_values(**kwargs) # ------ CONSTRUCTORS SAMPLING ------- class shap_sampling(ExternalOpImplementation): _transform_id = "shap.SHAP_SAMPLING" _signature = SarusSignature( SarusParameter( name="model", annotation=Union[BaseEstimator, Tuple[Any, Any]], condition=DATASPEC | STATIC, ), SarusParameter( name="data", annotation=Union[ Tuple[Any, Any], np.ndarray, pd.DataFrame, spmatrix ], condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.explainers.Sampling(**kwargs) # ------ SHAP SAMPLING METHODS ------ class shap_sampling_estimate(ExternalOpImplementation): _transform_id = "shap.SHAP_SAMPLING_ESTIMATE" _signature = SarusSignature( SarusParameter( name="this", annotation=SamplingExplainer, condition=STATIC | DATASPEC, ), SarusParameter( name="j", annotation=int, ), SarusParameter( name="f", annotation=Callable, ), SarusParameter( name="x", annotation=Union[pd.Series, pd.DataFrame, np.ndarray], ), SarusParameter( name="X", annotation=Union[pd.Series, pd.DataFrame, np.ndarray], ), SarusParameter( name="nsamples", annotation=Optional[int], default=10, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.sampling_estimate(**kwargs) # ------ CONSTRUCTORS EXACT ------- class shap_exact(ExternalOpImplementation): _transform_id = "shap.SHAP_EXACT" _signature = SarusSignature( SarusParameter( name="model", annotation=Union[BaseEstimator, Tuple[Any, Any]], condition=DATASPEC | STATIC, ), SarusParameter( name="masker", annotation=Union[ Tuple[Any, Any], np.ndarray, pd.DataFrame, spmatrix ], condition=DATASPEC | STATIC, ), SarusParameter( name="link", annotation=Any, condition=STATIC, default=None, ), SarusParameter( name="linearize_link", annotation=bool, condition=STATIC, default=True, ), SarusParameter( name="feature_names", annotation=Optional[List[str]], condition=STATIC, default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() if kwargs["link"] is None: del kwargs["link"] return shap.explainers.Exact(**kwargs) # ------ CONSTRUCTORS ADDIDTIVE ------- class shap_additive(ExternalOpImplementation): _transform_id = "shap.SHAP_ADDITIVE" _signature = SarusSignature( SarusParameter( name="model", annotation=Union[BaseEstimator, Tuple[Any, Any]], condition=DATASPEC | STATIC, ), SarusParameter( name="masker", annotation=Union[ Tuple[Any, Any], np.ndarray, pd.DataFrame, spmatrix ], condition=DATASPEC | STATIC, ), SarusParameter( name="link", annotation=Any, condition=STATIC, default=None, ), SarusParameter( name="feature_names", annotation=Optional[List[str]], condition=STATIC, default=None, ), SarusParameter( name="linearize_link", annotation=Optional[bool], condition=STATIC, default=True, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() if kwargs["link"] is None: del kwargs["link"] return shap.explainers.Additive(**kwargs) # ------ CONSTRUCTORS DEEP ------- class shap_deep(ExternalOpImplementation): _transform_id = "shap.SHAP_DEEP" _signature = SarusSignature( SarusParameter( name="model", annotation=Union[BaseEstimator, Tuple[Any, Any]], condition=DATASPEC | STATIC, ), SarusParameter( name="data", annotation=Union[ Tuple[Any, Any], np.ndarray, pd.DataFrame, spmatrix ], condition=DATASPEC | STATIC, ), SarusParameter( name="session", annotation=Any, default=None, ), SarusParameter( name="learning_phase_flags", annotation=Any, default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.explainers.Deep(**kwargs) # ------ CONSTRUCTORS GRADIENT ------- class shap_gradient(ExternalOpImplementation): _transform_id = "shap.SHAP_GRADIENT" _signature = SarusSignature( SarusParameter( name="model", annotation=Union[BaseEstimator, Tuple[Any, Any]], condition=DATASPEC | STATIC, ), SarusParameter( name="data", annotation=Union[ Tuple[Any, Any], np.ndarray, pd.DataFrame, spmatrix ], condition=DATASPEC | STATIC, ), SarusParameter( name="session", annotation=Any, default=None, ), SarusParameter( name="batch_size", annotation=int, default=50, ), SarusParameter( name="local_smoothing", annotation=Optional[float], default=0, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.GradientExplainer(**kwargs)
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/shap/explainer.py
0.859649
0.201912
explainer.py
pypi
from typing import Any, Dict, List, Optional, Union import numpy.typing as npt from sarus_data_spec.dataspec_validator.parameter_kind import DATASPEC, STATIC from sarus_data_spec.dataspec_validator.signature import ( SarusParameter, SarusSignature, SarusSignatureValue, ) from ..external_op import ExternalOpImplementation try: from scipy.sparse import spmatrix from shap import Explanation import shap except ModuleNotFoundError: spmatrix = Any Explanation = Any # ------ CONSTRUCTORS ------- class shap_explanation(ExternalOpImplementation): _transform_id = "shap.SHAP_EXPLANATION" _signature = SarusSignature( SarusParameter( name="values", annotation=Union[npt.ArrayLike, spmatrix], condition=DATASPEC | STATIC, ), SarusParameter( name="base_values", annotation=Optional[Union[npt.ArrayLike, spmatrix]], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="data", annotation=Optional[Union[npt.ArrayLike, spmatrix]], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="display_data", annotation=Optional[Dict[str, npt.ArrayLike]], default=None, ), SarusParameter( name="instance_names", annotation=Optional[List[str]], default=None, ), SarusParameter( name="feature_names", annotation=Optional[List[str]], default=None, ), SarusParameter( name="output_names", annotation=Optional[List[str]], default=None, ), SarusParameter( name="output_indexes", annotation=Optional[List[int]], default=None, ), SarusParameter( name="lower_bounds", annotation=Optional[Union[npt.ArrayLike, spmatrix]], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="upper_bounds", annotation=Optional[Union[npt.ArrayLike, spmatrix]], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="error_std", annotation=Optional[Union[npt.ArrayLike, spmatrix]], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="main_effects", annotation=Optional[Union[npt.ArrayLike, spmatrix]], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="hierarchical_values", annotation=Optional[Union[npt.ArrayLike, spmatrix]], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="clustering", annotation=Optional[Union[npt.ArrayLike, spmatrix]], default=None, ), SarusParameter( name="compute_time", annotation=Optional[float], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.Explanation(**kwargs) # ------ Explanation METHODS ------ class shap_values(ExternalOpImplementation): _transform_id = "shap.SHAP_VALUES" _signature = SarusSignature( SarusParameter( name="this", annotation=Explanation, condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.values class shap_sum(ExternalOpImplementation): _transform_id = "shap.SHAP_SUM" _signature = SarusSignature( SarusParameter( name="this", annotation=Explanation, condition=DATASPEC, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.sum()
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/shap/Explanation.py
0.842507
0.225779
Explanation.py
pypi
from typing import Any, List, Optional import numpy as np from sarus_data_spec.dataspec_validator.parameter_kind import DATASPEC, STATIC from sarus_data_spec.dataspec_validator.signature import ( SarusParameter, SarusSignature, SarusSignatureValue, ) from ..external_op import ExternalOpImplementation try: import shap except ModuleNotFoundError: pass # error message in sarus_data_spec.typing class shap_hclust(ExternalOpImplementation): _transform_id = "shap.SHAP_HCLUST" _signature = SarusSignature( SarusParameter( name="X", annotation=Any, condition=DATASPEC | STATIC, ), SarusParameter( name="y", annotation=Optional[Any], default=None, condition=DATASPEC | STATIC, ), SarusParameter( name="linkage", annotation=str, default="single", ), SarusParameter( name="metric", annotation=str, default="auto", ), SarusParameter( name="random_state", annotation=int, default=0, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.utils.hclust(**kwargs) class shap_hclust_ordering(ExternalOpImplementation): _transform_id = "shap.SHAP_HCLUST_ORDERING" _signature = SarusSignature( SarusParameter( name="X", annotation=Any, condition=DATASPEC | STATIC, ), SarusParameter( name="metric", annotation=str, default='sqeuclidean', ), SarusParameter( name="anchor_first", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.utils.hclust_ordering(**kwargs) class shap_partition_tree(ExternalOpImplementation): _transform_id = "shap.SHAP_PARTITION_TREE" _signature = SarusSignature( SarusParameter( name="X", annotation=Any, condition=DATASPEC | STATIC, ), SarusParameter( name="metric", annotation=str, default='correlation', ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.utils.partition_tree(**kwargs) class shap_partition_tree_shuffle(ExternalOpImplementation): _transform_id = "shap.SHAP_PARTITION_TREE_SHUFFLE" _signature = SarusSignature( SarusParameter( name="indexes", annotation=np.array, ), SarusParameter( name="index_mask", annotation=np.array, ), SarusParameter( name="partition_tree", annotation=np.array, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.utils.partition_tree_shuffle(**kwargs) class shap_delta_minimization_order(ExternalOpImplementation): _transform_id = "shap.SHAP_DELTA_MINIMIZATION_ORDER" _signature = SarusSignature( SarusParameter( name="all_masks", annotation=Any, ), SarusParameter( name="max_swap_size", annotation=int, default=100, ), SarusParameter( name="num_passes", annotation=int, default=2, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.utils.delta_minimization_order(**kwargs) class shap_approximate_interactions(ExternalOpImplementation): _transform_id = "shap.SHAP_APPROXIMATE_INTERACTIONS" _signature = SarusSignature( SarusParameter( name="index", annotation=Any, ), SarusParameter( name="shap_values", annotation=Any, condition=DATASPEC | STATIC, ), SarusParameter( name="X", annotation=Any, condition=DATASPEC | STATIC, ), SarusParameter( name="feature_names", annotation=Optional[List[str]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.utils.approximate_interactions(**kwargs) class shap_potential_interactions(ExternalOpImplementation): _transform_id = "shap.SHAP_POTENTIAL_INTERACTIONS" _signature = SarusSignature( SarusParameter( name="shap_values_column", annotation=Any, condition=STATIC, ), SarusParameter( name="shap_values_matrix", annotation=Any, condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: args = signature.collect_args() return shap.utils.potential_interactions(*args) class shap_sample(ExternalOpImplementation): _transform_id = "shap.SHAP_SAMPLE" _signature = SarusSignature( SarusParameter( name="X", annotation=Any, condition=DATASPEC | STATIC, ), SarusParameter( name="nsamples", annotation=int, default=100, ), SarusParameter( name="random_state", annotation=int, default=0, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return shap.utils.sample(**kwargs) class shap_convert_name(ExternalOpImplementation): _transform_id = "shap.SHAP_CONVERT_NAME" _signature = SarusSignature( SarusParameter( name="ind", annotation=Any, ), SarusParameter( name="shap_values", annotation=Any, condition=DATASPEC | STATIC, ), SarusParameter( name="input_names", annotation=Any, condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: args = signature.collect_args() return shap.utils.convert_name(*args)
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/shap/utils.py
0.831759
0.184143
utils.py
pypi
from typing import ( Any, Callable, Dict, Iterable, List, Literal, Optional, Sequence, Union, ) import numpy as np import numpy.typing as npt import pandas as pd from sarus_data_spec.dataspec_validator.parameter_kind import DATASPEC, STATIC from sarus_data_spec.dataspec_validator.signature import ( SarusParameter, SarusParameterArray, SarusSignature, SarusSignatureValue, ) from ..external_op import ExternalOpImplementation try: from scipy.sparse import spmatrix from sklearn import model_selection from sklearn.base import BaseEstimator from sklearn.model_selection import BaseCrossValidator except ModuleNotFoundError: BaseEstimator = Any BaseCrossValidator = Any spmatrix = Any class sk_kfold(ExternalOpImplementation): _transform_id = "sklearn.SK_KFOLD" _signature = SarusSignature( SarusParameter( name="n_splits", annotation=int, default=5, ), SarusParameter( name="shuffle", annotation=bool, default=False, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return model_selection.KFold(**kwargs) class sk_repeated_stratified_kfold(ExternalOpImplementation): _transform_id = "sklearn.SK_REPEATED_STRATIFIED_KFOLD" _signature = SarusSignature( SarusParameter( name="n_splits", annotation=int, default=5, ), SarusParameter( name="n_repeats", annotation=int, default=10, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return model_selection.RepeatedStratifiedKFold(**kwargs) class sk_cross_val_score(ExternalOpImplementation): _transform_id = "sklearn.SK_CROSS_VAL_SCORE" _signature = SarusSignature( SarusParameter( name="estimator", annotation=BaseEstimator, ), SarusParameter( name="X", annotation=npt.ArrayLike, ), SarusParameter( name="y", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="groups", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="scoring", annotation=Optional[Union[str, Callable]], default=None, ), SarusParameter( name="cv", annotation=Optional[Union[int, BaseCrossValidator, Iterable]], default=None, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, predicate=lambda x: x is None, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="fit_params", annotation=Optional[Dict[str, Any]], default=None, ), SarusParameter( name="pre_dispatch", annotation=Optional[Union[str, int]], default="2*n_jobs", ), SarusParameter( name="error_score", annotation=Union[Literal["raise"], np.number], default=np.nan, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return model_selection.cross_val_score(**kwargs) class sk_train_test_split(ExternalOpImplementation): _transform_id = "sklearn.SK_TRAIN_TEST_SPLIT" _signature = SarusSignature( SarusParameterArray( name="arrays", annotation=Sequence[ Union[List, np.ndarray, spmatrix, pd.DataFrame] ], condition=DATASPEC | STATIC, ), SarusParameter( name="test_size", annotation=Optional[Union[float, int]], default=None, ), SarusParameter( name="train_size", annotation=Optional[Union[float, int]], default=None, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="shuffle", annotation=bool, default=True, ), SarusParameter( name="stratify", annotation=Optional[npt.ArrayLike], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: arrays, kwargs = signature.collect() return model_selection.train_test_split(*arrays, **kwargs) class sk_time_series_split(ExternalOpImplementation): _transform_id = "sklearn.SK_TIME_SERIES_SPLIT" _signature = SarusSignature( SarusParameter( name="n_splits", annotation=int, default=5, ), SarusParameter( name="max_train_size", annotation=Optional[int], default=None, ), SarusParameter( name="test_size", annotation=Optional[int], default=None, ), SarusParameter( name="gap", annotation=int, default=0, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return model_selection.TimeSeriesSplit(**kwargs)
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/sklearn/model_selection.py
0.801237
0.213705
model_selection.py
pypi
from typing import Any, Callable, Dict, List, Literal, Optional, Union import numpy.typing as npt from sarus_data_spec.dataspec_validator.signature import ( SarusParameter, SarusSignature, SarusSignatureValue, ) from ..external_op import ExternalOpImplementation try: from scipy.sparse import spmatrix from sklearn import preprocessing except ModuleNotFoundError: spmatrix = Any class sk_function_transformer(ExternalOpImplementation): _transform_id = "sklearn.SK_FUNCTION_TRANSFORMER" _signature = SarusSignature( SarusParameter( name="func", annotation=Optional[Callable], default=None, ), SarusParameter( name="inverse_func", annotation=Optional[Callable], default=None, ), SarusParameter( name="validate", annotation=bool, default=False, ), SarusParameter( name="accept_sparse", annotation=bool, default=False, ), SarusParameter( name="check_inverse", annotation=bool, default=True, ), SarusParameter( name="feature_names_out", annotation=Optional[Union[Callable, Literal["one-to-one"]]], default=None, ), SarusParameter( name="kw_args", annotation=Optional[Dict], default=None, ), SarusParameter( name="inv_kw_args", annotation=Optional[Dict], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return preprocessing.FunctionTransformer(**kwargs) class sk_onehot(ExternalOpImplementation): _transform_id = "sklearn.SK_ONEHOT" _signature = SarusSignature( SarusParameter( name="categories", annotation=Union[Literal["auto"], List[npt.ArrayLike]], default="auto", ), SarusParameter( name="drop", annotation=Optional[ Union[Literal["first", "if_binary"], npt.ArrayLike] ], default=None, ), SarusParameter( name="sparse", annotation=bool, default=True, ), SarusParameter( name="sparse_output", annotation=bool, default=True, ), SarusParameter( name="dtype", annotation=npt.DTypeLike, default=float, ), SarusParameter( name="handle_unknown", annotation=Literal["error", "ignore", "infrequent_if_exist"], default="error", ), SarusParameter( name="min_frequency", annotation=Optional[Union[int, float]], default=None, ), SarusParameter( name="max_categories", annotation=Optional[int], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return preprocessing.OneHotEncoder(**kwargs) class sk_label_encoder(ExternalOpImplementation): _transform_id = "sklearn.SK_LABEL_ENCODER" _signature = SarusSignature() def call(self, signature: SarusSignatureValue) -> Any: return preprocessing.LabelEncoder() class sk_scale(ExternalOpImplementation): _transform_id = "sklearn.SK_SCALE" _signature = SarusSignature( SarusParameter( name="X", annotation=Union[npt.ArrayLike, spmatrix], ), SarusParameter( name="axis", annotation=int, default=0, ), SarusParameter( name="with_mean", annotation=bool, default=True, ), SarusParameter( name="with_std", annotation=bool, default=True, ), SarusParameter( name="copy", annotation=bool, default=True, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return preprocessing.scale(**kwargs)
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/sklearn/preprocessing.py
0.842118
0.240139
preprocessing.py
pypi
from typing import Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np import numpy.typing as npt import pandas as pd from sarus_data_spec.dataspec_validator.signature import ( SarusParameter, SarusSignature, SarusSignatureValue, ) from ..external_op import ExternalOpImplementation try: from sklearn import inspection from sklearn.base import BaseEstimator except ModuleNotFoundError: BaseEstimator = Any class sk_permutation_importance(ExternalOpImplementation): _transform_id = "sklearn.SK_PERMUTATION_IMPORTANCE" _signature = SarusSignature( SarusParameter( name="estimator", annotation=BaseEstimator, ), SarusParameter( name="X", annotation=Union[np.ndarray, pd.DataFrame], ), SarusParameter( name="y", annotation=Optional[npt.ArrayLike], ), SarusParameter( name="scoring", annotation=Optional[ Union[ str, Callable, List, Tuple, Dict, ] ], default=None, ), SarusParameter( name="n_repeats", annotation=int, default=5, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="sample_weight", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="max_samples", annotation=Union[int, float], default=1.0, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return inspection.permutation_importance(**kwargs)
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/sklearn/inspection.py
0.771499
0.211173
inspection.py
pypi
from typing import Any, List, Literal, Optional, Union import numpy.typing as npt from sarus_data_spec.dataspec_validator.parameter_kind import DATASPEC, STATIC from sarus_data_spec.dataspec_validator.signature import ( SarusParameter, SarusSignature, SarusSignatureValue, ) from ..external_op import ExternalOpImplementation try: from scipy.sparse import spmatrix from sklearn import metrics except ModuleNotFoundError: spmatrix = Any # metrics class sk_accuracy_score(ExternalOpImplementation): _transform_id = "sklearn.SK_ACCURACY_SCORE" _signature = SarusSignature( SarusParameter( name="y_true", annotation=Union[npt.ArrayLike, spmatrix], condition=DATASPEC | STATIC, ), SarusParameter( name="y_pred", annotation=Union[npt.ArrayLike, spmatrix], condition=DATASPEC | STATIC, ), SarusParameter( name="normalize", annotation=bool, default=True, ), SarusParameter( name="sample_weight", annotation=Optional[npt.ArrayLike], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return metrics.accuracy_score(**kwargs) class sk_average_precision_score(ExternalOpImplementation): _transform_id = "sklearn.SK_AVERAGE_PRECISION_SCORE" _signature = SarusSignature( SarusParameter( name="y_true", annotation=npt.ArrayLike, condition=DATASPEC | STATIC, ), SarusParameter( name="y_score", annotation=npt.ArrayLike, condition=DATASPEC | STATIC, ), SarusParameter( name="average", annotation=Optional[ Literal['micro', 'samples', 'weighted', 'macro'] ], default='macro', ), SarusParameter( name="pos_label", annotation=Union[int, str], default=1, ), SarusParameter( name="sample_weight", annotation=Optional[npt.ArrayLike], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return metrics.average_precision_score(**kwargs) class sk_classification_report(ExternalOpImplementation): _transform_id = "sklearn.SK_CLASSIFICATION_REPORT" _signature = SarusSignature( SarusParameter( name="y_true", annotation=Union[npt.ArrayLike, spmatrix], condition=DATASPEC | STATIC, ), SarusParameter( name="y_pred", annotation=Union[npt.ArrayLike, spmatrix], condition=DATASPEC | STATIC, ), SarusParameter( name="labels", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="target_names", annotation=Optional[List[str]], default=None, ), SarusParameter( name="sample_weight", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="digits", annotation=int, default=2, ), SarusParameter( name="output_dict", annotation=bool, default=False, ), SarusParameter( name="zero_division", annotation=Literal["warn", 0, 1], default="warn", ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return metrics.classification_report(**kwargs) class sk_confusion_matrix(ExternalOpImplementation): _transform_id = "sklearn.SK_CONFUSION_MATRIX" _signature = SarusSignature( SarusParameter( name="y_true", annotation=npt.ArrayLike, condition=DATASPEC | STATIC, ), SarusParameter( name="y_pred", annotation=npt.ArrayLike, condition=DATASPEC | STATIC, ), SarusParameter( name="labels", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="sample_weight", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="normalize", annotation=Optional[Literal['true', 'pred', 'all']], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return metrics.confusion_matrix(**kwargs) class sk_f1_score(ExternalOpImplementation): _transform_id = "sklearn.SK_F1_SCORE" _signature = SarusSignature( SarusParameter( name="y_true", annotation=Union[npt.ArrayLike, spmatrix], condition=DATASPEC | STATIC, ), SarusParameter( name="y_pred", annotation=Union[npt.ArrayLike, spmatrix], condition=DATASPEC | STATIC, ), SarusParameter( name="labels", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="pos_label", annotation=Union[int, str], default=1, ), SarusParameter( name="average", annotation=Optional[ Literal['micro', 'macro', 'samples', 'weighted', 'binary'] ], default='binary', ), SarusParameter( name="sample_weight", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="zero_division", annotation=Literal["warn", 0, 1], default="warn", ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return metrics.f1_score(**kwargs) class sk_precision_recall_curve(ExternalOpImplementation): _transform_id = "sklearn.SK_PRECISION_RECALL_CURVE" _signature = SarusSignature( SarusParameter( name="y_true", annotation=npt.ArrayLike, condition=DATASPEC | STATIC, ), SarusParameter( name="probas_pred", annotation=npt.ArrayLike, condition=DATASPEC | STATIC, ), SarusParameter( name="pos_label", annotation=Optional[Union[int, str]], default=None, ), SarusParameter( name="sample_weight", annotation=Optional[npt.ArrayLike], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return metrics.precision_recall_curve(**kwargs) class sk_precision_score(ExternalOpImplementation): _transform_id = "sklearn.SK_PRECISION_SCORE" _signature = SarusSignature( SarusParameter( name="y_true", annotation=Union[npt.ArrayLike, spmatrix], condition=DATASPEC | STATIC, ), SarusParameter( name="y_pred", annotation=Union[npt.ArrayLike, spmatrix], condition=DATASPEC | STATIC, ), SarusParameter( name="labels", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="pos_label", annotation=Union[int, str], default=1, ), SarusParameter( name="average", annotation=Optional[ Literal['micro', 'macro', 'samples', 'weighted', 'binary'] ], default='binary', ), SarusParameter( name="sample_weight", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="zero_division", annotation=Literal['warn', 0, 1], default='warn', ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return metrics.precision_score(**kwargs) class sk_recall_score(ExternalOpImplementation): _transform_id = "sklearn.SK_RECALL_SCORE" _signature = SarusSignature( SarusParameter( name="y_true", annotation=Union[npt.ArrayLike, spmatrix], condition=DATASPEC | STATIC, ), SarusParameter( name="y_pred", annotation=Union[npt.ArrayLike, spmatrix], condition=DATASPEC | STATIC, ), SarusParameter( name="labels", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="pos_label", annotation=Union[str, int], default=1, ), SarusParameter( name="average", annotation=Optional[ Literal['micro', 'macro', 'samples', 'weighted', 'binary'] ], default='binary', ), SarusParameter( name="sample_weight", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="zero_division", annotation=Literal['warn', 0, 1], default='warn', ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return metrics.recall_score(**kwargs) class sk_roc_auc_score(ExternalOpImplementation): _transform_id = "sklearn.SK_ROC_AUC_SCORE" _signature = SarusSignature( SarusParameter( name="y_true", annotation=npt.ArrayLike, condition=DATASPEC | STATIC, ), SarusParameter( name="y_score", annotation=npt.ArrayLike, condition=DATASPEC | STATIC, ), SarusParameter( name="average", annotation=Optional[ Literal['micro', 'macro', 'samples', 'weighted'] ], default='macro', ), SarusParameter( name="sample_weight", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="max_fpr", annotation=Optional[float], default=None, ), SarusParameter( name="multi_class", annotation=Literal["raise", "ovo", "ovr"], default="raise", ), SarusParameter( name="labels", annotation=Optional[npt.ArrayLike], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return metrics.roc_auc_score(**kwargs) class sk_auc(ExternalOpImplementation): _transform_id = "sklearn.SK_AUC" _signature = SarusSignature( SarusParameter( name="x", annotation=npt.ArrayLike, condition=DATASPEC | STATIC, ), SarusParameter( name="y", annotation=npt.ArrayLike, condition=DATASPEC | STATIC, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return metrics.auc(**kwargs) class sk_roc_curve(ExternalOpImplementation): _transform_id = "sklearn.SK_ROC_CURVE" _signature = SarusSignature( SarusParameter( name="y_true", annotation=npt.ArrayLike, condition=DATASPEC | STATIC, ), SarusParameter( name="y_score", annotation=npt.ArrayLike, condition=DATASPEC | STATIC, ), SarusParameter( name="pos_label", annotation=Optional[Union[int, str]], default=None, ), SarusParameter( name="sample_weight", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="drop_intermediate", annotation=bool, default=True, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return metrics.roc_curve(**kwargs)
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/sklearn/metrics.py
0.871639
0.172799
metrics.py
pypi
from typing import Any, Literal, Optional, Union import numpy as np from sarus_data_spec.dataspec_validator.signature import ( SarusParameter, SarusSignature, SarusSignatureValue, ) from ..external_op import ExternalOpImplementation try: from sklearn import svm except ModuleNotFoundError: pass # error message in typing.py class sk_svc(ExternalOpImplementation): _transform_id = "sklearn.SK_SVC" _signature = SarusSignature( SarusParameter( name="C", annotation=float, default=1.0, ), SarusParameter( name="kernel", annotation=Union[ Literal['linear', 'poly', 'rbf', 'sigmoid', 'precomputed'], callable, ], default="rbf", ), SarusParameter( name="degree", annotation=int, default=3, ), SarusParameter( name="gamma", annotation=Union[Literal['scale', 'auto'], float], default="scale", ), SarusParameter( name="coef0", annotation=float, default=0.0, ), SarusParameter( name="shrinking", annotation=bool, default=True, ), SarusParameter( name="probability", annotation=bool, default=False, ), SarusParameter( name="tol", annotation=float, default=1e-3, ), SarusParameter( name="cache_size", annotation=float, default=200, ), SarusParameter( name="class_weight", annotation=Optional[Union[Literal["balanced"], dict]], default=None, ), SarusParameter( name="verbose", annotation=bool, default=False, ), SarusParameter( name="max_iter", annotation=int, default=-1, ), SarusParameter( name="decision_function_shape", annotation=Literal['ovo', 'ovr'], default="ovr", ), SarusParameter( name="break_ties", annotation=bool, default=False, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return svm.SVC(**kwargs)
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/sklearn/svm.py
0.833494
0.191649
svm.py
pypi
from typing import ( Any, Callable, Dict, Iterable, List, Literal, Optional, Sequence, Set, Tuple, Union, ) from numpy.typing import ArrayLike import numpy as np from sarus_data_spec.dataspec_validator.signature import ( SarusParameter, SarusSignature, SarusSignatureValue, ) from ..external_op import ExternalOpImplementation try: from sklearn import ensemble from sklearn.base import BaseEstimator from sklearn.model_selection import BaseCrossValidator except ModuleNotFoundError: BaseEstimator = Any BaseCrossValidator = Any class sk_adaboost_classifier(ExternalOpImplementation): _transform_id = "sklearn.SK_ADABOOST_CLASSIFIER" _signature = SarusSignature( SarusParameter( name="estimator", annotation=Optional[BaseEstimator], default=None, ), SarusParameter( name="n_estimators", annotation=int, default=50, ), SarusParameter( name="learning_rate", annotation=float, default=1.0, ), SarusParameter( name="algorithm", annotation=Literal["SAMME", "SAMME.R"], default="SAMME.R", ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.AdaBoostClassifier(**kwargs) class sk_adaboost_regressor(ExternalOpImplementation): _transform_id = "sklearn.SK_ADABOOST_REGRESSOR" _signature = SarusSignature( SarusParameter( name="estimator", annotation=Optional[BaseEstimator], default=None, ), SarusParameter( name="n_estimators", annotation=int, default=50, ), SarusParameter( name="learning_rate", annotation=float, default=1.0, ), SarusParameter( name="loss", annotation=Literal['linear', 'square', 'exponential'], default="linear", ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="base_estimator", annotation=Optional[BaseEstimator], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.AdaBoostRegressor(**kwargs) class sk_bagging_classifier(ExternalOpImplementation): _transform_id = "sklearn.SK_BAGGING_CLASSIFIER" _signature = SarusSignature( SarusParameter( name="estimator", annotation=Optional[BaseEstimator], default=None, ), SarusParameter( name="n_estimators", annotation=int, default=10, ), SarusParameter( name="max_samples", annotation=Union[int, float], default=1.0, ), SarusParameter( name="max_features", annotation=Union[int, float], default=1.0, ), SarusParameter( name="bootstrap", annotation=bool, default=True, ), SarusParameter( name="bootstrap_features", annotation=bool, default=False, ), SarusParameter( name="oob_score", annotation=bool, default=False, ), SarusParameter( name="warm_start", annotation=bool, default=False, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, predicate=lambda x: x is None, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="base_estimator", annotation=Optional[BaseEstimator], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.BaggingClassifier(**kwargs) class sk_bagging_regressor(ExternalOpImplementation): _transform_id = "sklearn.SK_BAGGING_REGRESSOR" _signature = SarusSignature( SarusParameter( name="estimator", annotation=Optional[BaseEstimator], default=None, ), SarusParameter( name="n_estimators", annotation=int, default=10, ), SarusParameter( name="max_samples", annotation=Union[int, float], default=1.0, ), SarusParameter( name="max_features", annotation=Union[int, float], default=1.0, ), SarusParameter( name="bootstrap", annotation=bool, default=True, ), SarusParameter( name="bootstrap_features", annotation=bool, default=False, ), SarusParameter( name="oob_score", annotation=bool, default=False, ), SarusParameter( name="warm_start", annotation=bool, default=False, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, predicate=lambda x: x is None, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="base_estimator", annotation=Optional[BaseEstimator], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.BaggingRegressor(**kwargs) class sk_extra_trees_classifier(ExternalOpImplementation): _transform_id = "sklearn.SK_EXTRA_TREES_CLASSIFIER" _signature = SarusSignature( SarusParameter( name="n_estimators", annotation=int, default=100, ), SarusParameter( name="criterion", annotation=Literal["gini", "entropy", "log_loss"], default="gini", ), SarusParameter( name="max_depth", annotation=Optional[int], default=None, ), SarusParameter( name="min_samples_split", annotation=Union[int, float], default=2, ), SarusParameter( name="min_samples_leaf", annotation=Union[int, float], default=1, ), SarusParameter( name="min_weight_fraction_leaf", annotation=float, default=0.0, ), SarusParameter( name="max_features", annotation=Union[Literal["sqrt", "log2"], int, float, None], default="sqrt", ), SarusParameter( name="max_leaf_nodes", annotation=Optional[int], default=None, ), SarusParameter( name="min_impurity_decrease", annotation=float, default=0.0, ), SarusParameter( name="bootstrap", annotation=bool, default=False, ), SarusParameter( name="oob_score", annotation=bool, default=False, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, predicate=lambda x: x is None, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="warm_start", annotation=bool, default=False, ), SarusParameter( name="class_weight", annotation=Union[ Literal["balanced", "balanced_subsample"], dict, list ], default=None, ), SarusParameter( name="ccp_alpha", annotation=float, default=0.0, ), SarusParameter( name="max_samples", annotation=Optional[Union[int, float]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.ExtraTreesClassifier(**kwargs) class sk_extra_trees_regressor(ExternalOpImplementation): _transform_id = "sklearn.SK_EXTRA_TREES_REGRESSOR" _signature = SarusSignature( SarusParameter( name="n_estimators", annotation=int, default=100, ), SarusParameter( name="criterion", annotation=Literal[ "squared_error", "absolute_error", "friedman_mse", "poisson" ], default="squared_error", ), SarusParameter( name="max_depth", annotation=Optional[int], default=None, ), SarusParameter( name="min_samples_split", annotation=Union[int, float], default=2, ), SarusParameter( name="min_samples_leaf", annotation=Union[int, float], default=1, ), SarusParameter( name="min_weight_fraction_leaf", annotation=float, default=0.0, ), SarusParameter( name="max_features", annotation=Union[Literal["sqrt", "log2", None], int, float], default=1.0, ), SarusParameter( name="max_leaf_nodes", annotation=Optional[int], default=None, ), SarusParameter( name="min_impurity_decrease", annotation=float, default=0.0, ), SarusParameter( name="bootstrap", annotation=bool, default=False, ), SarusParameter( name="oob_score", annotation=bool, default=False, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, predicate=lambda x: x is None, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="warm_start", annotation=bool, default=False, ), SarusParameter( name="ccp_alpha", annotation=float, default=0.0, ), SarusParameter( name="max_samples", annotation=Optional[Union[int, float]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.ExtraTreesRegressor(**kwargs) class sk_gradient_boosting_classifier(ExternalOpImplementation): _transform_id = "sklearn.SK_GRADIENT_BOOSTING_CLASSIFIER" _signature = SarusSignature( SarusParameter( name="loss", annotation=Literal["deviance", "exponential", "log_loss"], default="log_loss", ), SarusParameter( name="learning_rate", annotation=float, default=0.1, ), SarusParameter( name="n_estimators", annotation=int, default=100, ), SarusParameter( name="subsample", annotation=float, default=1.0, ), SarusParameter( name="criterion", annotation=Literal["friedman_mse", "squared_error"], default="friedman_mse", ), SarusParameter( name="min_samples_split", annotation=Union[int, float], default=2, ), SarusParameter( name="min_samples_leaf", annotation=Union[int, float], default=1, ), SarusParameter( name="min_weight_fraction_leaf", annotation=float, default=0.0, ), SarusParameter( name="max_depth", annotation=Optional[int], default=3, ), SarusParameter( name="min_impurity_decrease", annotation=float, default=0.0, ), SarusParameter( name="init", annotation=Optional[Union[BaseEstimator, Literal["zero"]]], default=None, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="max_features", annotation=Union[ Literal["auto", "sqrt", "log2"], int, float, None ], default=None, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="max_leaf_nodes", annotation=Optional[int], default=None, ), SarusParameter( name="warm_start", annotation=bool, default=False, ), SarusParameter( name="validation_fraction", annotation=float, default=0.1, ), SarusParameter( name="n_iter_no_change", annotation=Optional[int], default=None, ), SarusParameter( name="tol", annotation=float, default=1e-4, ), SarusParameter( name="ccp_alpha", annotation=float, default=0.0, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.GradientBoostingClassifier(**kwargs) class sk_gradient_boosting_regressor(ExternalOpImplementation): _transform_id = "sklearn.SK_GRADIENT_BOOSTING_REGRESSOR" _signature = SarusSignature( SarusParameter( name="loss", annotation=Literal[ "squared_error", "absolute_error", "huber", "quantile", ], default="squared_error", ), SarusParameter( name="learning_rate", annotation=float, default=0.1, ), SarusParameter( name="n_estimators", annotation=int, default=100, ), SarusParameter( name="subsample", annotation=float, default=1.0, ), SarusParameter( name="criterion", annotation=Literal["friedman_mse", "squared_error"], default="friedman_mse", ), SarusParameter( name="min_samples_split", annotation=Union[int, float], default=2, ), SarusParameter( name="min_samples_leaf", annotation=Union[int, float], default=1, ), SarusParameter( name="min_weight_fraction_leaf", annotation=float, default=0.0, ), SarusParameter( name="max_depth", annotation=Optional[int], default=3, ), SarusParameter( name="min_impurity_decrease", annotation=float, default=0.0, ), SarusParameter( name="init", annotation=Optional[Union[BaseEstimator, Literal["zero"]]], default=None, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="max_features", annotation=Optional[ Union[Literal["auto", "sqrt", "log2"], int, float] ], default=None, ), SarusParameter( name="alpha", annotation=float, default=0.9, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="max_leaf_nodes", annotation=Optional[int], default=None, ), SarusParameter( name="warm_start", annotation=bool, default=False, ), SarusParameter( name="validation_fraction", annotation=float, default=0.1, ), SarusParameter( name="n_iter_no_change", annotation=Optional[int], default=None, ), SarusParameter( name="tol", annotation=float, default=1e-4, ), SarusParameter( name="ccp_alpha", annotation=float, default=0.0, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.GradientBoostingRegressor(**kwargs) class sk_isolation_forest(ExternalOpImplementation): _transform_id = "sklearn.SK_ISOLATION_FOREST" _signature = SarusSignature( SarusParameter( name="n_estimators", annotation=int, default=100, ), SarusParameter( name="max_samples", annotation=Union[Literal["auto"], int, float], default="auto", ), SarusParameter( name="contamination", annotation=Union[Literal["auto"], float], default="auto", ), SarusParameter( name="max_features", annotation=Union[int, float], default=1.0, ), SarusParameter( name="bootstrap", annotation=bool, default=False, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="warm_start", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.IsolationForest(**kwargs) class sk_random_forest_classifier(ExternalOpImplementation): _transform_id = "sklearn.SK_RANDOM_FOREST_CLASSIFIER" _signature = SarusSignature( SarusParameter( name="n_estimators", annotation=int, default=100, ), SarusParameter( name="criterion", annotation=Literal["gini", "entropy", "log_loss"], default="gini", ), SarusParameter( name="max_depth", annotation=Optional[int], default=None, ), SarusParameter( name="min_samples_split", annotation=Union[int, float], default=2, ), SarusParameter( name="min_samples_leaf", annotation=Union[int, float], default=1, ), SarusParameter( name="min_weight_fraction_leaf", annotation=float, default=0.0, ), SarusParameter( name="max_features", annotation=Union[Literal["sqrt", "log2", None], int, float], default="sqrt", ), SarusParameter( name="max_leaf_nodes", annotation=Optional[int], default=None, ), SarusParameter( name="min_impurity_decrease", annotation=float, default=0.0, ), SarusParameter( name="bootstrap", annotation=bool, default=True, ), SarusParameter( name="oob_score", annotation=bool, default=False, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="warm_start", annotation=bool, default=False, ), SarusParameter( name="class_weight", annotation=Optional[ Union[ Literal["balanced", "balanced_subsample"], Dict, List[Dict] ] ], default=None, ), SarusParameter( name="ccp_alpha", annotation=float, default=0.0, ), SarusParameter( name="max_samples", annotation=Optional[Union[int, float]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.RandomForestClassifier(**kwargs) class sk_random_forest_regressor(ExternalOpImplementation): _transform_id = "sklearn.SK_RANDOM_FOREST_REGRESSOR" _signature = SarusSignature( SarusParameter( name="n_estimators", annotation=int, default=100, ), SarusParameter( name="criterion", annotation=Literal[ "squared_error", "absolute_error", "friedman_mse", "poisson" ], default="squared_error", ), SarusParameter( name="max_depth", annotation=Optional[int], default=None, ), SarusParameter( name="min_samples_split", annotation=Union[int, float], default=2, ), SarusParameter( name="min_samples_leaf", annotation=Union[int, float], default=1, ), SarusParameter( name="min_weight_fraction_leaf", annotation=float, default=0.0, ), SarusParameter( name="max_features", annotation=Optional[Union[Literal["sqrt", "log2"], int, float]], default=1.0, ), SarusParameter( name="max_leaf_nodes", annotation=Optional[int], default=None, ), SarusParameter( name="min_impurity_decrease", annotation=float, default=0.0, ), SarusParameter( name="bootstrap", annotation=bool, default=True, ), SarusParameter( name="oob_score", annotation=bool, default=False, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="warm_start", annotation=Optional[bool], default=False, ), SarusParameter( name="ccp_alpha", annotation=float, default=0.0, ), SarusParameter( name="max_samples", annotation=Optional[Union[int, float]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.RandomForestRegressor(**kwargs) class sk_random_trees_embedding(ExternalOpImplementation): _transform_id = "sklearn.SK_RANDOM_TREES_EMBEDDING" _signature = SarusSignature( SarusParameter( name="n_estimators", annotation=int, default=100, ), SarusParameter( name="max_depth", annotation=int, default=5, ), SarusParameter( name="min_samples_split", annotation=Union[int, float], default=2, ), SarusParameter( name="min_samples_leaf", annotation=Union[int, float], default=1, ), SarusParameter( name="min_weight_fraction_leaf", annotation=float, default=0.0, ), SarusParameter( name="max_leaf_nodes", annotation=Optional[int], default=None, ), SarusParameter( name="min_impurity_decrease", annotation=float, default=0.0, ), SarusParameter( name="sparse_output", annotation=bool, default=True, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="warm_start", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.RandomTreesEmbedding(**kwargs) class sk_stacking_classifier(ExternalOpImplementation): _transform_id = "sklearn.SK_STACKING_CLASSIFIER" _signature = SarusSignature( SarusParameter( name="estimators", annotation=List[Tuple[str, BaseEstimator]], ), SarusParameter( name="final_estimator", annotation=Optional[BaseEstimator], default=None, ), SarusParameter( name="cv", annotation=Union[ int, BaseCrossValidator, Iterable, Literal["prefit"] ], default=None, ), SarusParameter( name="stack_method", annotation=Literal[ 'auto', 'predict_proba', 'decision_function', 'predict' ], default='auto', ), SarusParameter( name="n_jobs", annotation=int, default=None, predicate=lambda x: x is None, ), SarusParameter( name="passthrough", annotation=bool, default=False, ), SarusParameter( name="verbose", annotation=int, default=0, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.StackingClassifier(**kwargs) class sk_stacking_regressor(ExternalOpImplementation): _transform_id = "sklearn.SK_STACKING_REGRESSOR" _signature = SarusSignature( SarusParameter( name="estimators", annotation=List[Tuple[str, BaseEstimator]], ), SarusParameter( name="final_estimator", annotation=Optional[BaseEstimator], default=None, ), SarusParameter( name="cv", annotation=Optional[Union[int, BaseCrossValidator, Iterable[str]]], default=None, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, predicate=lambda x: x is None, ), SarusParameter( name="passthrough", annotation=bool, default=False, ), SarusParameter( name="verbose", annotation=int, default=0, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.StackingRegressor(**kwargs) class sk_voting_classifier(ExternalOpImplementation): _transform_id = "sklearn.SK_VOTING_CLASSIFIER" _signature = SarusSignature( SarusParameter( name="estimators", annotation=List[Tuple[str, BaseEstimator]], default=None, ), SarusParameter( name="voting", annotation=Literal["hard", "soft"], default="hard", ), SarusParameter( name="weights", annotation=Optional[List[float]], default=None, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, predicate=lambda x: x is None, ), SarusParameter( name="flatten_transform", annotation=bool, default=True, ), SarusParameter( name="verbose", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.VotingClassifier(**kwargs) class sk_voting_regressor(ExternalOpImplementation): _transform_id = "sklearn.SK_VOTING_REGRESSOR" _signature = SarusSignature( SarusParameter( name="estimators", annotation=List[Tuple[str, BaseEstimator]], ), SarusParameter( name="weights", annotation=Optional[List[float]], default=None, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, predicate=lambda x: x is None, ), SarusParameter( name="verbose", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.VotingRegressor(**kwargs) class sk_hist_gradient_boosting_classifier(ExternalOpImplementation): _transform_id = "sklearn.SK_HIST_GRADIENT_BOOSTING_CLASSIFIER" _signature = SarusSignature( SarusParameter( name="loss", annotation=Literal[ "log_loss", "auto", "binary_crossentropy", "categorical_crossentropy", ], default="log_loss", ), SarusParameter( name="learning_rate", annotation=float, default=0.1, ), SarusParameter( name="max_iter", annotation=int, default=100, ), SarusParameter( name="max_leaf_nodes", annotation=Optional[int], default=31, ), SarusParameter( name="max_depth", annotation=Optional[int], default=None, ), SarusParameter( name="min_samples_leaf", annotation=int, default=20, ), SarusParameter( name="l2_regularization", annotation=float, default=0, ), SarusParameter( name="max_bins", annotation=int, default=255, ), SarusParameter( name="categorical_features", annotation=Optional[ArrayLike], default=None, ), SarusParameter( name="monotonic_cst", annotation=Optional[Union[ArrayLike, Dict]], default=None, ), SarusParameter( name="interaction_cst", annotation=Optional[ Union[ Literal["pairwise", "no_interaction"], Sequence[Union[List[int], Tuple[int], Set[int]]], ] ], default=None, ), SarusParameter( name="warm_start", annotation=bool, default=False, ), SarusParameter( name="early_stopping", annotation=Union[Literal["auto"], bool], default="auto", ), SarusParameter( name="scoring", annotation=Optional[Union[str, Callable, None]], default="loss", ), SarusParameter( name="validation_fraction", annotation=Optional[Union[int, float]], default=0.1, ), SarusParameter( name="n_iter_no_change", annotation=int, default=10, ), SarusParameter( name="tol", annotation=float, default=1e-7, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="class_weight", annotation=Optional[Union[str, dict]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.HistGradientBoostingClassifier(**kwargs) class sk_hist_gradient_boosting_regressor(ExternalOpImplementation): _transform_id = "sklearn.SK_HIST_GRADIENT_BOOSTING_REGRESSOR" _signature = SarusSignature( SarusParameter( name="loss", annotation=Literal[ "squared_error", "absolute_error", "poisson", "quantile" ], default="squared_error", ), SarusParameter( name="quantile", annotation=Optional[float], default=None, ), SarusParameter( name="learning_rate", annotation=float, default=0.1, ), SarusParameter( name="max_iter", annotation=int, default=100, ), SarusParameter( name="max_leaf_nodes", annotation=Optional[int], default=31, ), SarusParameter( name="max_depth", annotation=Optional[int], default=None, ), SarusParameter( name="min_samples_leaf", annotation=int, default=20, ), SarusParameter( name="l2_regularization", annotation=float, default=0, ), SarusParameter( name="max_bins", annotation=int, default=255, ), SarusParameter( name="categorical_features", annotation=Optional[ Union[Sequence[Union[bool, int, str]], Sequence[int]] ], default=None, ), SarusParameter( name="monotonic_cst", annotation=Optional[Union[Sequence[int], Dict[int, int]]], default=None, ), SarusParameter( name="interaction_cst", annotation=Optional[ Union[ Literal["pairwise", "no_interaction"], Sequence[Union[List[int], Tuple[int], Set[int]]], ] ], default=None, ), SarusParameter( name="warm_start", annotation=bool, default=False, ), SarusParameter( name="early_stopping", annotation=Union[Literal["auto"], bool], default="auto", ), SarusParameter( name="scoring", annotation=Optional[Union[str, Callable]], default="loss", ), SarusParameter( name="n_iter_no_change", annotation=int, default=10, ), SarusParameter( name="tol", annotation=float, default=1e-7, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return ensemble.HistGradientBoostingRegressor(**kwargs)
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/sklearn/ensemble.py
0.834946
0.216074
ensemble.py
pypi
from typing import Any, Callable, Literal, Optional, Tuple, Union from numpy.typing import ArrayLike import numpy as np from sarus_data_spec.dataspec_validator.signature import ( SarusParameter, SarusSignature, SarusSignatureValue, ) from ..external_op import ExternalOpImplementation try: from sklearn import cluster from sklearn.base import BaseEstimator except ModuleNotFoundError: BaseEstimator = Any class sk_birch(ExternalOpImplementation): _transform_id = "sklearn.SK_BIRCH" _signature = SarusSignature( SarusParameter( name="threshold", annotation=float, default=0.5, ), SarusParameter( name="branching_factor", annotation=int, default=50, ), SarusParameter( name="n_clusters", annotation=Optional[Union[int, BaseEstimator]], default=3, ), SarusParameter( name="compute_labels", annotation=bool, default=True, ), SarusParameter( name="copy", annotation=bool, default=True, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return cluster.Birch(**kwargs) class sk_dbscan(ExternalOpImplementation): _transform_id = "sklearn.SK_DBSCAN" _signature = SarusSignature( SarusParameter( name="eps", annotation=float, default=0.5, ), SarusParameter( name="min_samples", annotation=int, default=5, ), SarusParameter( name="metric", annotation=Union[str, Callable], default='euclidean', ), SarusParameter( name="metric_params", annotation=Optional[dict], default=None, ), SarusParameter( name="algorithm", annotation=Literal['auto', 'ball_tree', 'kd_tree', 'brute'], default='auto', ), SarusParameter( name="leaf_size", annotation=int, default=30, ), SarusParameter( name="p", annotation=Optional[float], default=None, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return cluster.DBSCAN(**kwargs) class sk_feature_agglomeration(ExternalOpImplementation): _transform_id = "sklearn.SK_FEATURE_AGGLOMERATION" _signature = SarusSignature( SarusParameter( name="n_clusters", annotation=Optional[int], default=2, ), SarusParameter( name="affinity", annotation=Union[str, Callable], default="euclidean", ), SarusParameter( name="metric", annotation=Optional[Union[str, Callable]], default=None, ), SarusParameter( name="memory", annotation=Optional[Union[str, Any]], default=None, predicate=lambda x: x is None, ), SarusParameter( name="connectivity", annotation=Optional[Union[ArrayLike, Callable]], default=None, ), SarusParameter( name="compute_full_tree", annotation=Union[Literal["auto"], bool], default="auto", ), SarusParameter( name="linkage", annotation=Literal["ward", "complete", "average", "single"], default="ward", ), SarusParameter( name="pooling_func", annotation=Callable, default=np.mean, ), SarusParameter( name="distance_threshold", annotation=Optional[float], default=None, ), SarusParameter( name="compute_distances", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return cluster.FeatureAgglomeration(**kwargs) class sk_kmeans(ExternalOpImplementation): _transform_id = "sklearn.SK_KMEANS" _signature = SarusSignature( SarusParameter( name="n_clusters", annotation=int, default=8, ), SarusParameter( name="init", annotation=Union[ Literal["k-means++", "random"], Callable, ArrayLike ], default="k-means++", ), SarusParameter( name="n_init", annotation=Union[Literal["auto"], int], default=10, ), SarusParameter( name="max_iter", annotation=int, default=300, ), SarusParameter( name="tol", annotation=float, default=1e-4, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="copy_x", annotation=bool, default=True, ), SarusParameter( name="algorithm", annotation=Literal["lloyd", "elkan", "auto", "full"], default="lloyd", ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return cluster.KMeans(**kwargs) class sk_minibatch_kmeans(ExternalOpImplementation): _transform_id = "sklearn.SK_MINIBATCH_KMEANS" _signature = SarusSignature( SarusParameter( name="n_clusters", annotation=int, default=8, ), SarusParameter( name="init", annotation=Union[ Literal["k-means++", "random"], Callable, ArrayLike ], default="k-means++", ), SarusParameter( name="max_iter", annotation=int, default=100, ), SarusParameter( name="batch_size", annotation=int, default=1024, ), SarusParameter( name="verbose", annotation=int, default=0, ), SarusParameter( name="compute_labels", annotation=bool, default=True, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="tol", annotation=float, default=0.0, ), SarusParameter( name="max_no_improvement", annotation=int, default=10, ), SarusParameter( name="init_size", annotation=Optional[int], default=None, ), SarusParameter( name="n_init", annotation=Union[Literal["auto"], int], default=3, ), SarusParameter( name="reassignment_ratio", annotation=float, default=0.01, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return cluster.MiniBatchKMeans(**kwargs) class sk_mean_shift(ExternalOpImplementation): _transform_id = "sklearn.SK_MEAN_SHIFT" _signature = SarusSignature( SarusParameter( name="bandwidth", annotation=float, default=None, ), SarusParameter( name="seeds", annotation=Optional[ArrayLike], default=None, ), SarusParameter( name="bin_seeding", annotation=bool, default=False, ), SarusParameter( name="min_bin_freq", annotation=int, default=1, ), SarusParameter( name="cluster_all", annotation=bool, default=True, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, predicate=lambda x: x is None, ), SarusParameter( name="max_iter", annotation=int, default=300, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return cluster.MeanShift(**kwargs) class sk_optics(ExternalOpImplementation): _transform_id = "sklearn.SK_OPTICS" _signature = SarusSignature( SarusParameter( name="min_samples", annotation=Union[int, float], default=5, ), SarusParameter( name="max_eps", annotation=float, default=np.inf, ), SarusParameter( name="metric", annotation=Union[ Literal[ 'cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan', 'braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', ], Callable, ], default='minkowski', ), SarusParameter( name="p", annotation=float, default=2, ), SarusParameter( name="metric_params", annotation=Optional[dict], default=None, ), SarusParameter( name="cluster_method", annotation=Literal["xi", "dbscan"], default='xi', ), SarusParameter( name="eps", annotation=Optional[float], default=None, ), SarusParameter( name="xi", annotation=float, default=0.5, ), SarusParameter( name="predecessor_correction", annotation=bool, default=True, ), SarusParameter( name="min_cluster_size", annotation=Optional[Union[float, int]], default=None, ), SarusParameter( name="algorithm", annotation=Literal['auto', 'ball_tree', 'kd_tree', 'brute'], default='auto', ), SarusParameter( name="leaf_size", annotation=int, default=30, ), SarusParameter( name="memory", annotation=Optional[Union[str, Any]], default=None, predicate=lambda x: x is None, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, predicate=lambda x: x is None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return cluster.OPTICS(**kwargs) class sk_spectral_clustering(ExternalOpImplementation): _transform_id = "sklearn.SK_SPECTRAL_CLUSTERING" _signature = SarusSignature( SarusParameter( name="n_clusters", annotation=int, default=8, ), SarusParameter( name="eigen_solver", annotation=Optional[Literal["arpack", "lobpcg", "amg"]], default=None, ), SarusParameter( name="n_components", annotation=Optional[int], default=None, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), SarusParameter( name="n_init", annotation=int, default=10, ), SarusParameter( name="gamma", annotation=float, default=1.0, ), SarusParameter( name="affinity", annotation=Union[ Literal[ "rbf", "nearest_neighbors", "precomputed", "precomputed_nearest_neighbors", ], Callable, ], default="rbf", ), SarusParameter( name="n_neighbors", annotation=int, default=10, ), SarusParameter( name="eigen_tol", annotation=Union[float, Literal["auto"]], default="auto", ), SarusParameter( name="assign_labels", annotation=Literal['kmeans', 'discretize', 'cluster_qr'], default="kmeans", ), SarusParameter( name="degree", annotation=int, default=3, ), SarusParameter( name="coef0", annotation=float, default=1.0, ), SarusParameter( name="kernel_params", annotation=Optional[dict], default=None, ), SarusParameter( name="n_jobs", annotation=Optional[int], default=None, predicate=lambda x: x is None, ), SarusParameter( name="verbose", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return cluster.SpectralClustering(**kwargs) class sk_spectral_biclustering(ExternalOpImplementation): _transform_id = "sklearn.SK_SPECTRAL_BICLUSTERING" _signature = SarusSignature( SarusParameter( name="n_clusters", annotation=Union[int, Tuple[int, int]], default=3, ), SarusParameter( name="method", annotation=Literal['bistochastic', 'scale', 'log'], default='bistochastic', ), SarusParameter( name="n_components", annotation=int, default=6, ), SarusParameter( name="n_best", annotation=int, default=3, ), SarusParameter( name="svd_method", annotation=Literal['randomized', 'arpack'], default='randomized', ), SarusParameter( name="n_svd_vecs", annotation=Optional[int], default=None, ), SarusParameter( name="mini_batch", annotation=bool, default=False, ), SarusParameter( name="init", annotation=Union[Literal['k-means++', 'random'], np.ndarray], default='k-means++', ), SarusParameter( name="n_init", annotation=int, default=10, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return cluster.SpectralBiclustering(**kwargs) class sk_spectral_coclustering(ExternalOpImplementation): _transform_id = "sklearn.SK_SPECTRAL_COCLUSTERING" _signature = SarusSignature( SarusParameter( name="n_clusters", annotation=int, default=3, ), SarusParameter( name="svd_method", annotation=Literal["randomized", "arpack"], default="randomized", ), SarusParameter( name="n_svd_vecs", annotation=Optional[int], default=None, ), SarusParameter( name="mini_batch", annotation=bool, default=False, ), SarusParameter( name="init", annotation=Union[Literal["k-means++", "random"], np.ndarray], default="k-means++", ), SarusParameter( name="n_init", annotation=int, default=10, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return cluster.SpectralCoclustering(**kwargs) class sk_affinity_propagation(ExternalOpImplementation): _transform_id = "sklearn.SK_AFFINITY_PROPAGATION" _signature = SarusSignature( SarusParameter( name="damping", annotation=float, default=0.5, ), SarusParameter( name="max_iter", annotation=int, default=200, ), SarusParameter( name="convergence_iter", annotation=int, default=15, ), SarusParameter( name="copy", annotation=bool, default=True, ), SarusParameter( name="preference", annotation=Optional[Union[ArrayLike, float]], default=None, ), SarusParameter( name="affinity", annotation=Literal['euclidean', 'precomputed'], default="euclidean", ), SarusParameter( name="verbose", annotation=bool, default=False, ), SarusParameter( name="random_state", annotation=Optional[Union[int, np.random.RandomState]], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return cluster.AffinityPropagation(**kwargs) class sk_agglomerative_clustering(ExternalOpImplementation): _transform_id = "sklearn.SK_AGGLOMERATIVE_CLUSTERING" _signature = SarusSignature( SarusParameter( name="n_clusters", annotation=Optional[int], default=2, ), SarusParameter( name="affinity", annotation=Union[Literal['euclidean', 'precomputed'], Callable], default='euclidean', ), SarusParameter( name="metric", annotation=Optional[ Union[ Literal[ "euclidean", "l1", "l2", "manhattan", "cosine", "precomputed", ], Callable, ] ], default=None, ), SarusParameter( name="memory", annotation=Optional[Union[str, Any]], default=None, predicate=lambda x: x is None, ), SarusParameter( name="connectivity", annotation=Optional[Union[ArrayLike, Callable]], default=None, ), SarusParameter( name="compute_full_tree", annotation=Union[Literal["auto"], bool], default='auto', ), SarusParameter( name="linkage", annotation=Literal['ward', 'complete', 'average', 'single'], default='ward', ), SarusParameter( name="distance_threshold", annotation=Optional[float], default=None, ), SarusParameter( name="compute_distances", annotation=bool, default=False, ), ) def call(self, signature: SarusSignatureValue) -> Any: kwargs = signature.collect_kwargs() return cluster.AgglomerativeClustering(**kwargs)
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/sklearn/cluster.py
0.842992
0.207335
cluster.py
pypi
from typing import Any, Optional, Union import numpy.typing as npt from sarus_data_spec.dataspec_validator.signature import ( SarusParameter, SarusSignature, SarusSignatureValue, ) from ..external_op import ExternalOpImplementation try: from scipy.sparse import spmatrix from sklearn.base import BaseEstimator except ModuleNotFoundError: BaseEstimator = Any spmatrix = Any class sk_fit(ExternalOpImplementation): _transform_id = "sklearn.SK_FIT" _signature = SarusSignature( SarusParameter( name="this", annotation=BaseEstimator, ), SarusParameter( name="X", annotation=Union[npt.ArrayLike, spmatrix], ), SarusParameter( name="y", annotation=Optional[Union[npt.ArrayLike, spmatrix]], default=None, ), SarusParameter( name="sample_weight", annotation=Optional[npt.ArrayLike], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() if kwargs["sample_weight"] is None: del kwargs["sample_weight"] fitted_model = this.fit(**kwargs) return fitted_model class sk_fit_y(ExternalOpImplementation): _transform_id = "sklearn.SK_FIT_Y" _signature = SarusSignature( SarusParameter( name="this", annotation=BaseEstimator, ), SarusParameter( name="y", annotation=Union[npt.ArrayLike, spmatrix], ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() fitted_model = this.fit(**kwargs) return fitted_model class sk_predict(ExternalOpImplementation): _transform_id = "sklearn.SK_PREDICT" _signature = SarusSignature( SarusParameter( name="this", annotation=BaseEstimator, ), SarusParameter( name="X", annotation=Union[npt.ArrayLike, spmatrix], ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.predict(**kwargs) class sk_predict_callable(ExternalOpImplementation): _transform_id = "sklearn.SK_PREDICT_CALLABLE" _signature = SarusSignature( SarusParameter( name="this", annotation=BaseEstimator, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.predict class sk_predict_log_proba(ExternalOpImplementation): _transform_id = "sklearn.SK_PREDICT_LOG_PROBA" _signature = SarusSignature( SarusParameter( name="this", annotation=BaseEstimator, ), SarusParameter( name="X", annotation=Union[npt.ArrayLike, spmatrix], ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.predict_log_proba(**kwargs) class sk_predict_log_proba_callable(ExternalOpImplementation): _transform_id = "sklearn.SK_PREDICT_LOG_PROBA_CALLABLE" _signature = SarusSignature( SarusParameter( name="this", annotation=BaseEstimator, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.predict_log_proba class sk_predict_proba(ExternalOpImplementation): _transform_id = "sklearn.SK_PREDICT_PROBA" _signature = SarusSignature( SarusParameter( name="this", annotation=BaseEstimator, ), SarusParameter( name="X", annotation=Union[npt.ArrayLike, spmatrix], ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.predict_proba(**kwargs) class sk_predict_proba_callable(ExternalOpImplementation): _transform_id = "sklearn.SK_PREDICT_PROBA_CALLABLE" _signature = SarusSignature( SarusParameter( name="this", annotation=BaseEstimator, ), ) def call(self, signature: SarusSignatureValue) -> Any: (this,) = signature.collect_args() return this.predict_proba class sk_transform(ExternalOpImplementation): _transform_id = "sklearn.SK_TRANSFORM" _signature = SarusSignature( SarusParameter( name="this", annotation=BaseEstimator, ), SarusParameter( name="X", annotation=Union[npt.ArrayLike, spmatrix], ), ) def call(self, signature: SarusSignatureValue) -> Any: (this, X) = signature.collect_args() return this.transform(X) class sk_inverse_transform(ExternalOpImplementation): _transform_id = "sklearn.SK_INVERSE_TRANSFORM" _signature = SarusSignature( SarusParameter( name="this", annotation=BaseEstimator, ), SarusParameter( name="X", annotation=Union[npt.ArrayLike, spmatrix], ), ) def call(self, signature: SarusSignatureValue) -> Any: this, X = signature.collect_args() return this.inverse_transform(X) class sk_score(ExternalOpImplementation): _transform_id = "sklearn.SK_SCORE" _signature = SarusSignature( SarusParameter( name="this", annotation=BaseEstimator, ), SarusParameter( name="X", annotation=Union[npt.ArrayLike, spmatrix], ), SarusParameter( name="y", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="sample_weight", annotation=Optional[npt.ArrayLike], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.score(**kwargs) class sk_fit_transform(ExternalOpImplementation): _transform_id = "sklearn.SK_LABEL_ENCODER_FIT_TRANSFORM" _signature = SarusSignature( SarusParameter( name="this", annotation=BaseEstimator, ), SarusParameter( name="X", annotation=Union[npt.ArrayLike, spmatrix], ), SarusParameter( name="y", annotation=Optional[npt.ArrayLike], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.fit_transform(**kwargs) class sk_split(ExternalOpImplementation): _transform_id = "sklearn.SK_SPLIT" _signature = SarusSignature( SarusParameter( name="this", annotation=BaseEstimator, ), SarusParameter( name="X", annotation=Union[npt.ArrayLike, spmatrix], ), SarusParameter( name="y", annotation=Optional[npt.ArrayLike], default=None, ), SarusParameter( name="groups", annotation=Optional[npt.ArrayLike], default=None, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.split(**kwargs) class sk_get_n_splits(ExternalOpImplementation): _transform_id = "sklearn.SK_GET_N_SPLITS" _signature = SarusSignature( SarusParameter( name="this", annotation=BaseEstimator, ), ) def call(self, signature: SarusSignatureValue) -> Any: this, kwargs = signature.collect_kwargs_method() return this.get_n_splits(**kwargs)
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/ops/processor/external/sklearn/lib.py
0.849847
0.212457
lib.py
pypi
import logging import time import traceback import typing as t from sarus_data_spec import typing as st from sarus_data_spec.constants import SCHEMA_TASK from sarus_data_spec.dataset import Dataset from sarus_data_spec.manager.computations.local.base import ( LocalComputationWithLRU, ) from sarus_data_spec.schema import Schema from sarus_data_spec.status import DataSpecErrorStatus, error, ready logger = logging.getLogger(__name__) class SchemaComputation(LocalComputationWithLRU[st.Schema]): """Class responsible to compute schemas""" task_name = SCHEMA_TASK async def prepare(self, dataspec: st.DataSpec) -> None: try: logger.debug(f'STARTED SCHEMA {dataspec.uuid()}') start = time.perf_counter() schema = await self.computing_manager().async_schema_op( dataset=t.cast(Dataset, dataspec) ) except DataSpecErrorStatus as exception: error( dataspec=dataspec, manager=self.computing_manager(), task=self.task_name, properties={ "message": traceback.format_exc(), 'relaunch': str(exception.relaunch), }, ) raise except Exception: error( dataspec=dataspec, manager=self.computing_manager(), task=self.task_name, properties={ "message": traceback.format_exc(), 'relaunch': str(False), }, ) raise DataSpecErrorStatus((False, traceback.format_exc())) else: end = time.perf_counter() logger.debug( f'FINISHED SCHEMA {dataspec.uuid()} ({end-start:.2f}s)' ) ready( dataspec=dataspec, manager=self.computing_manager(), task=self.task_name, properties={'uuid': schema.uuid()}, ) async def result_from_stage_properties( self, dataspec: st.DataSpec, properties: t.Mapping[str, str], **kwargs: t.Any, ) -> st.Schema: return t.cast( Schema, dataspec.storage().referrable(properties['uuid']), )
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/manager/computations/local/schema.py
0.49048
0.151655
schema.py
pypi
from __future__ import annotations from enum import Enum from typing import Collection, List, Optional, Protocol import logging from sarus_data_spec.storage.typing import Storage import sarus_data_spec.typing as st logger = logging.getLogger(__name__) class DataspecPrivacyPolicy(Enum): WHITE_LISTED = "Whitelisted" DP = "Differentially-private evaluation" SYNTHETIC = "Evaluated from synthetic data only" PUBLIC = "Public" class PEPKind(Enum): NOT_PEP = 0 PEP = 1 TOKEN_PRESERVING = 2 ROW = 3 class DataspecValidator(Protocol): def storage(self) -> Storage: ... def verifies( self, variant_constraint: st.VariantConstraint, kind: st.ConstraintKind, public_context: Collection[str], privacy_limit: Optional[st.PrivacyLimit], salt: Optional[int] = None, ) -> Optional[bool]: """Check if the constraint attached to a Dataspec meets requirements. This function is useful because comparisons are not straightforwards. For instance, a Dataspec might have the variant constraint SYNTHETIC attached to it. This synthetic dataspec also verifies the DP constraint and the PUBLIC constraint. Args: variant_constraint: VariantConstraint attached to the Dataspec kind: constraint kind to verify compliance with public_context: actual current public context epsilon: current privacy consumed """ ... def verified_constraints( self, dataspec: st.DataSpec ) -> List[st.VariantConstraint]: """Return the list of VariantConstraints attached to a DataSpec. A VariantConstraint attached to a DataSpec means that the DataSpec verifies the constraint. """ ... def pep_token(self, dataspec: st.DataSpec) -> Optional[str]: """Return a token if the dataspec is PEP, otherwise return None. DataSpec.pep_token() returns a PEP token if the dataset is PEP and None otherwise. The PEP token is stored in the properties of the VariantConstraint. It is a hash initialized with a value when the Dataset is protected. If a transform does not preserve the PEID then the token is set to None If a transform preserves the PEID assignment but changes the rows (e.g. sample, shuffle, filter,...) then the token's value is changed If a transform does not change the rows (e.g. selecting a column, adding a scalar,...) then the token is passed without change A Dataspec is PEP if its PEP token is not None. Two PEP Dataspecs are aligned (i.e. they have the same number of rows and all their rows have the same PEID) if their tokens are equal. """ ... def is_public(self, dataspec: st.DataSpec) -> bool: """Return True if the dataspec is public. Some DataSpecs are intrinsically Public, this is the case if they are freely available externally, they can be tagged so and will never be considered otherwise. This function returns True in the following cases: - The dataspec is an ML model - The dataspec is transformed but all its inputs are public This functions creates a VariantConstraint on the DataSpec to cache the PUBLIC constraint. """ ... def is_dp(self, dataspec: st.DataSpec) -> bool: """Return True if the dataspec is the result of a DP transform. This is a simple implementation. This function checks if the dataspec's transform has a privacy budget and a random seed as an argument. """ ... def is_synthetic(self, dataspec: st.DataSpec) -> bool: """Return True if the dataspec is synthetic. This functions creates a VariantConstraint on the DataSpec to cache the SYNTHETIC constraint. """ def private_queries(self, dataspec: st.DataSpec) -> List[st.PrivateQuery]: """Return the list of PrivateQueries used in a Dataspec's transform. It represents the privacy loss associated with the current computation. It can be used by Sarus when a user (Access object) reads a DP dataspec to update its accountant. Note that Private Query objects are generated with a random uuid so that even if they are submitted multiple times to an account, they are only accounted once (ask @cgastaud for more on accounting).""" ...
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/dataspec_validator/typing.py
0.9314
0.512571
typing.py
pypi
from __future__ import annotations from typing import Collection, List, Optional, cast import json import logging from sarus_data_spec.attribute import attach_properties from sarus_data_spec.constants import ( IS_VALID, NO_TOKEN, PEP_TOKEN, PRIVATE_QUERY, PUBLIC, ) from sarus_data_spec.dataspec_validator.privacy_limit import DeltaEpsilonLimit from sarus_data_spec.manager.async_utils import sync from sarus_data_spec.manager.ops.processor import routing from sarus_data_spec.manager.ops.processor.external.external_op import ( external_implementation, ) from sarus_data_spec.protobuf.utilities import dejson from sarus_data_spec.protobuf.utilities import json as proto_to_json from sarus_data_spec.storage.typing import Storage from sarus_data_spec.variant_constraint import ( pep_constraint, public_constraint, syn_constraint, ) import sarus_data_spec.dataspec_validator.simple_rules as verification_rules import sarus_data_spec.protobuf as sp import sarus_data_spec.typing as st try: from sarus_differential_privacy.protobuf.private_query_pb2 import ( PrivateQuery as ProtoPrivateQuery, ) from sarus_differential_privacy.query import BasePrivateQuery except ImportError: # Warning raised in typing.py pass logger = logging.getLogger(__name__) class BaseDataspecValidator: def __init__(self, storage: Storage): self._storage = storage def storage(self) -> Storage: return self._storage def verified_constraints( self, dataspec: st.DataSpec ) -> List[st.VariantConstraint]: """Return the list of VariantConstraints attached to a DataSpec. A VariantConstraint attached to a DataSpec means that the DataSpec verifies the constraint. """ constraints = self.storage().referring( dataspec, type_name=sp.type_name(sp.VariantConstraint) ) return cast(List[st.VariantConstraint], list(constraints)) def verifies( self, variant_constraint: st.VariantConstraint, kind: st.ConstraintKind, public_context: Collection[str], privacy_limit: Optional[st.PrivacyLimit], salt: Optional[int] = None, ) -> Optional[bool]: """Check if the constraint attached to a Dataspec meets requirements. This function is useful because comparisons are not straightforwards. For instance, a Dataspec might have the variant constraint SYNTHETIC attached to it. This synthetic dataspec also verifies the DP constraint and the PUBLIC constraint. Args: variant_constraint: VariantConstraint attached to the Dataspec kind: constraint kind to verify compliance with public_context: actual current public context epsilon: current privacy consumed """ return verification_rules.verifies( variant_constraint=variant_constraint, kind=kind, public_context=public_context, privacy_limit=privacy_limit, salt=salt, ) def is_dp(self, dataspec: st.DataSpec) -> bool: """Return True if the dataspec is the result of a DP transform. This is a simple implementation. This function checks if the dataspec's transform has a privacy budget and a random seed as an argument. """ if not dataspec.is_transformed(): return False parents, kwparents = dataspec.parents() parents = list(parents) + list(kwparents.values()) scalars = [ cast(st.Scalar, parent) for parent in parents if parent.prototype() == sp.Scalar ] has_budget = ( len([scalar for scalar in scalars if scalar.is_privacy_params()]) == 1 ) has_seed = ( len([scalar for scalar in scalars if scalar.is_random_seed()]) == 1 ) return has_budget and has_seed def is_synthetic(self, dataspec: st.DataSpec) -> bool: """Return True if the dataspec is synthetic. This functions creates a VariantConstraint on the DataSpec to cache the SYNTHETIC constraint. """ # TODO fetch real context and epsilon public_context: Collection[str] = [] privacy_limit = None kind = st.ConstraintKind.SYNTHETIC self.is_public(dataspec) for constraint in self.verified_constraints(dataspec): check_constraint = self.verifies( constraint, kind, public_context, privacy_limit ) if check_constraint is not None: return check_constraint # Determine is the Dataspec is synthetic if dataspec.is_transformed(): transform = dataspec.transform() if transform.protobuf().spec.HasField("synthetic"): is_synthetic = True else: # Returns true if the DataSpec derives only from synthetic args_parents, kwargs_parents = dataspec.parents() is_synthetic = all( [ self.is_synthetic(ds) for ds in args_parents if isinstance(ds, st.DataSpec) ] + [ self.is_synthetic(ds) for ds in kwargs_parents.values() if isinstance(ds, st.DataSpec) ] ) else: is_synthetic = False # save variant constraint syn_constraint(dataspec, is_synthetic=is_synthetic) return is_synthetic def is_public(self, dataspec: st.DataSpec) -> bool: """Return True if the dataspec is public. Some DataSpecs are intrinsically Public, this is the case if they are freely available externally, they can be tagged so and will never be considered otherwise. This function returns True in the following cases: - The dataspec is an ML model - The dataspec is transformed but all its inputs are public This functions creates a VariantConstraint on the DataSpec to cache the PUBLIC constraint. """ # TODO fetch real context and epsilon public_context: Collection[str] = [] privacy_limit = DeltaEpsilonLimit({0.0: 0.0}) kind = st.ConstraintKind.PUBLIC for constraint in self.verified_constraints(dataspec): check_constraint = self.verifies( constraint, kind, public_context, privacy_limit ) if check_constraint is not None: return check_constraint # Determine is the Dataspec is public if dataspec.is_transformed(): # Returns true if the DataSpec derives only from public if ( dataspec.transform().is_external() or dataspec.prototype() == sp.Scalar ): args_parents, kwargs_parents = dataspec.parents() is_public = all( [ self.is_public(ds) for ds in args_parents if isinstance(ds, st.DataSpec) ] + [ self.is_public(ds) for ds in kwargs_parents.values() if isinstance(ds, st.DataSpec) ] ) else: assert dataspec.prototype() == sp.Dataset # For a standard transform, all tables must be # public in the schema to have a public dataset dataset = cast(st.Dataset, dataspec) schema = dataset.schema() is_public = schema.data_type().properties()[PUBLIC] == str( True ) elif dataspec.prototype() == sp.Scalar: scalar = cast(st.Scalar, dataspec) assert ( scalar.is_random_seed() or scalar.is_privacy_params() or scalar.is_synthetic_model() ) is_public = True else: is_public = False # save variant constraint public_constraint(dataspec, is_public) return is_public def pep_token(self, dataspec: st.DataSpec) -> Optional[str]: """Return a token if the dataspec is PEP, otherwise return None. DataSpec.pep_token() returns a PEP token if the dataset is PEP and None otherwise. The PEP token is stored in the properties of the VariantConstraint. It is a hash initialized with a value when the Dataset is protected. If a transform does not preserve the PEID then the token is set to None If a transform preserves the PEID assignment but changes the rows (e.g. sample, shuffle, filter,...) then the token's value is changed If a transform does not change the rows (e.g. selecting a column, adding a scalar,...) then the token is passed without change A Dataspec is PEP if its PEP token is not None. Two PEP Dataspecs are aligned (i.e. they have the same number of rows and all their rows have the same PEID) if their tokens are equal. """ if dataspec.prototype() == sp.Scalar: return None dataset = cast(st.Dataset, dataspec) # TODO fetch real context and budget public_context: Collection[str] = [] privacy_limit = DeltaEpsilonLimit({0.0: 0.0}) kind = st.ConstraintKind.PEP for constraint in self.verified_constraints(dataspec): check_constraint = self.verifies( constraint, kind, public_context, privacy_limit ) if check_constraint is not None: if check_constraint: return constraint.properties()[PEP_TOKEN] else: return None # Compute the PEP token if not dataset.is_transformed(): return None transform = dataset.transform() _, StaticChecker = routing.get_dataset_op(transform) pep_token = StaticChecker(dataset).pep_token(public_context) if pep_token is None: pep_token = NO_TOKEN pep_constraint( dataspec=dataset, token=pep_token, required_context=[], privacy_limit=privacy_limit, ) return None if pep_token == NO_TOKEN else pep_token def private_queries(self, dataspec: st.DataSpec) -> List[st.PrivateQuery]: """Return the list of PrivateQueries used in a Dataspec's transform. It represents the privacy loss associated with the current computation. It can be used by Sarus when a user (Access object) reads a DP dataspec to update its accountant. Note that Private Query objects are generated with a random uuid so that even if they are submitted multiple times to an account, they are only accounted once (ask @cgastaud for more on accounting). """ attribute = dataspec.attribute(name=PRIVATE_QUERY) # Already computed if attribute is not None: private_query_str = attribute[PRIVATE_QUERY] protos = [ cast(ProtoPrivateQuery, dejson(q)) for q in json.loads(private_query_str) ] return cast( List[st.PrivateQuery], BasePrivateQuery.from_protobuf(protos), ) # Compute private queries if not dataspec.is_transformed(): private_queries = [] else: if dataspec.prototype() == sp.Dataset: dataset = cast(st.Dataset, dataspec) private_queries = sync( routing.TransformedDataset(dataset).private_queries() ) else: scalar = cast(st.Scalar, dataspec) private_queries = sync( routing.TransformedScalar(scalar).private_queries() ) # Cache in an attribute subqueries = [ proto_to_json(query.protobuf()) for query in private_queries ] attach_properties( dataspec, properties={PRIVATE_QUERY: json.dumps(subqueries)}, name=PRIVATE_QUERY, ) return private_queries def has_valid_transform(self, dataspec: st.DataSpec) -> bool: """Check that the transform of a dataspec is valid with the input parameters. """ if not dataspec.is_transformed(): return True transform = dataspec.transform() # TODO: remove condition is_external when standard # transforms has signature if transform.is_external(): implementation = external_implementation(transform) try: bound_signature = implementation.signature().bind_dataspec( dataspec ) bound_signature.static_validation() return True except (ValueError, TypeError): return False else: return True def is_valid(self, dataspec: st.DataSpec) -> bool: """ Check that the dataspec is validating certain conditions: valid transforms, valid parents, valid sources. This function creates an attributes on the DataSpec to cache the validity of the dataspecs. The source dataspec are validated during the onboarding process. """ # Valid attribute is_valid_att = dataspec.attribute(IS_VALID) if is_valid_att is not None: return is_valid_att[IS_VALID] == str(True) # The unvalidated source is not valid. if not dataspec.is_transformed(): if dataspec.is_public(): is_valid = True else: is_valid = False else: # Valid transform if self.has_valid_transform(dataspec): # Valid parents: parents, kwparents = dataspec.parents() parents = list(parents) + list(kwparents.values()) is_valid = all( self.is_valid(parent) for parent in parents if isinstance(parent, st.DataSpec) ) else: is_valid = False # Only one non-public source max. sources_ds = dataspec.sources(sp.type_name(sp.Dataset)) admin_sources = [ source for source in sources_ds if not source.is_public() ] if len(admin_sources) > 1: is_valid = False attach_properties( dataspec, name=IS_VALID, properties={IS_VALID: str(is_valid)}, ) return is_valid
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/dataspec_validator/base.py
0.886574
0.312921
base.py
pypi
from __future__ import annotations from enum import Enum, auto import itertools as it import typing as t class Operator(Enum): AND = auto() OR = auto() class AcceptanceCondition: """Maintain a Sum Of Product (SOP) form of the condition. The Python representation is a list of sets. """ products: t.List[t.Set[t.Union[AcceptanceCondition, ParameterKind]]] def __init__( self, left: t.Union[AcceptanceCondition, ParameterKind], right: t.Union[AcceptanceCondition, ParameterKind], operator: Operator, ): if isinstance(left, AcceptanceCondition): left_condition = t.cast(AcceptanceCondition, left) left_products = left_condition.products else: left_kind = t.cast(ParameterKind, left) left_products = [{left_kind}] if isinstance(right, AcceptanceCondition): right_condition = t.cast(AcceptanceCondition, right) right_products = right_condition.products else: right_kind = t.cast(ParameterKind, right) right_products = [{right_kind}] if operator == Operator.OR: self.products = left_products + right_products else: self.products = [ set(right) | set(left) for right, left in it.product(right_products, left_products) ] def __repr__(self) -> str: return " ∨ ".join( [ f"({' ∧ '.join([str(p) for p in product])})" for product in self.products ] ) def __and__( self, other: t.Union[AcceptanceCondition, ParameterKind] ) -> AcceptanceCondition: return AcceptanceCondition(self, other, Operator.AND) def __or__( self, other: t.Union[AcceptanceCondition, ParameterKind] ) -> AcceptanceCondition: return AcceptanceCondition(self, other, Operator.OR) def isin(self, other: t.Union[AcceptanceCondition, ParameterKind]) -> bool: return is_accepted(self, other) def is_accepted( accepted_kind: t.Union[AcceptanceCondition, ParameterKind], incoming_kind: t.Union[AcceptanceCondition, ParameterKind], ) -> bool: """Checks if the incoming parameter kind satisfies the acceptance condition. """ if not isinstance(accepted_kind, ParameterKind): accepted_products = accepted_kind.products else: accepted_products = [{accepted_kind}] if not isinstance(incoming_kind, ParameterKind): incoming_products = incoming_kind.products else: incoming_products = [{incoming_kind}] return any( [ accepted_prod.issubset(incoming_prod) for incoming_prod, accepted_prod in it.product( incoming_products, accepted_products ) ] ) class ParameterKind(Enum): DATASET = auto() SCALAR = auto() PEP = auto() PUBLIC = auto() STATIC = auto() TRANSFORM = auto() def __and__( self, other: t.Union[AcceptanceCondition, ParameterKind] ) -> AcceptanceCondition: return AcceptanceCondition(self, other, Operator.AND) def __or__( self, other: t.Union[AcceptanceCondition, ParameterKind] ) -> AcceptanceCondition: return AcceptanceCondition(self, other, Operator.OR) def __repr__(self) -> str: return self.name def __str__(self) -> str: return self.name def isin(self, other: t.Union[AcceptanceCondition, ParameterKind]) -> bool: return is_accepted(self, other) # Aliases ParameterCondition = t.Union[AcceptanceCondition, ParameterKind] DATASET = ParameterKind.DATASET SCALAR = ParameterKind.SCALAR STATIC = ParameterKind.STATIC PEP = ParameterKind.PEP PEP_DATASET = ParameterKind.DATASET & ParameterKind.PEP DATASPEC = ParameterKind.SCALAR | ParameterKind.DATASET TRANSFORM = ParameterKind.TRANSFORM
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/dataspec_validator/parameter_kind.py
0.88819
0.272605
parameter_kind.py
pypi
from __future__ import annotations from enum import Enum, auto import logging import time import typing as t import pyarrow as pa from sarus_data_spec.arrow.admin_utils import ( async_admin_data, validate_admin_data, ) from sarus_data_spec.dataspec_validator.parameter_kind import ( DATASET, DATASPEC, PEP_DATASET, SCALAR, STATIC, TRANSFORM, ParameterCondition, is_accepted, ) from sarus_data_spec.manager.ops.processor.external.utils import ( static_arguments, ) import sarus_data_spec.protobuf as sp import sarus_data_spec.typing as st logger = logging.getLogger(__name__) class DefautValue(Enum): NO_DEFAULT = auto() class SarusParameter: def __init__( self, name: str, annotation: t.Any, default: t.Any = DefautValue.NO_DEFAULT, condition: ParameterCondition = STATIC | DATASPEC, predicate: t.Callable[[t.Any], bool] = lambda _: True, ): self.name = name self.condition = condition self.annotation = annotation self.default = default self.predicate = predicate class SarusParameterArray(SarusParameter): """Class representing a variable number of positional arguments. This is used to represent `*args` in signatures. If used, it must be the first argument to a signature. All positional arguments are captured by it. """ def __init__( self, name: str, annotation: t.Any, condition: ParameterCondition = STATIC | DATASPEC, predicate: t.Callable[[t.Any], bool] = lambda _: True, ): super().__init__( name=name, annotation=annotation, default=DefautValue.NO_DEFAULT, condition=condition, predicate=predicate, ) class SarusParameterMapping(SarusParameter): """Class representing a variable number of named arguments. This is used to represent `**kwargs` in signatures. If used it must be the last argument to a signature. All remaining keyword arguments are captured by it. """ def __init__( self, name: str, annotation: t.Any, condition: ParameterCondition = STATIC | DATASPEC, predicate: t.Callable[[t.Any], bool] = lambda _: True, ): super().__init__( name=name, annotation=annotation, default=DefautValue.NO_DEFAULT, condition=condition, predicate=predicate, ) class SarusSignature: """A Signature is a list of Parameters.""" def __init__(self, *parameters: SarusParameter, name: str = ""): self._parameters = list(parameters) self._parameter_map = {param.name: param for param in parameters} self._name = name def parameters(self) -> t.List[SarusParameter]: return self._parameters def __getitem__(self, name: str) -> SarusParameter: return self._parameter_map[name] def name(self) -> str: return self._name def _bind_external( self, transform: st.Transform, *ds_args: t.Union[st.DataSpec, st.Transform], **ds_kwargs: t.Union[st.DataSpec, st.Transform], ) -> SarusBoundSignature: # Deserialize arguments py_args, py_kwargs, ds_args_pos, ds_types = static_arguments(transform) if len(ds_types) != len(ds_args) + len(ds_kwargs): raise ValueError( "Incorrect number of types specified in the external protobuf." ) pos_values = {pos: val for pos, val in zip(ds_args_pos, ds_args)} pos_args = {**pos_values, **py_args} kwargs = {**py_kwargs, **ds_kwargs} args = [pos_args[i] for i in range(len(pos_args))] args_types = [ds_types.get(pos) for pos in range(len(args))] kwargs_types = {name: ds_types.get(name) for name in kwargs.keys()} # Pair arguments serialized in protobuf with the signature's # parameters if len(self.parameters()) > 0: has_param_array = isinstance( self.parameters()[0], SarusParameterArray ) has_param_mapping = isinstance( self.parameters()[-1], SarusParameterMapping ) else: has_param_array = False has_param_mapping = False if has_param_array: # All positional arguments are captured by the array param_array = self.parameters()[0] bound_args = [ SarusBoundArgument( SarusParameter( name=f"{param_array.name}_{i}", annotation=param_array.annotation, default=param_array.default, condition=param_array.condition, predicate=param_array.predicate, ), arg, args_types[i], positional_only=True, ) for i, arg in enumerate(args) ] else: bound_args = [ SarusBoundArgument(self.parameters()[i], arg, args_types[i]) for i, arg in enumerate(args) ] if not has_param_mapping: bound_kwargs = [ SarusBoundArgument( param, kwargs[param.name], kwargs_types[param.name] ) for param in self.parameters() if param.name in kwargs ] else: # Capture all kwargs described in the signature bound_kwargs = [ SarusBoundArgument( param, kwargs[param.name], kwargs_types[param.name] ) for param in self.parameters()[:-1] if param.name in kwargs ] # Remaining kwargs are bound to the parameter mapping param_mapping = self.parameters()[-1] already_bound_kwargs = [arg.name() for arg in bound_kwargs] bound_kwargs += [ SarusBoundArgument( SarusParameter( name=name, annotation=param_mapping.annotation, condition=param_mapping.condition, predicate=param_mapping.predicate, ), value, kwargs_types[name], ) for name, value in kwargs.items() if name not in already_bound_kwargs ] # Check that all arguments have a unique name bound_arguments = bound_args + bound_kwargs bound_args_names = [bound_arg.name() for bound_arg in bound_arguments] if len(set(bound_args_names)) != len(bound_args_names): raise ValueError( "An argument was specified more than " "once in an external transform." ) # Fill in default arguments default_bound_args = [ SarusBoundArgument(param, param.default) for param in self.parameters() if param.name not in bound_args_names and param.default != DefautValue.NO_DEFAULT ] bound_arguments += default_bound_args # Check number of arguments if ( not has_param_array and not has_param_mapping and len(bound_arguments) != len(self.parameters()) ): raise ValueError( "Invalid number of parameters serialized in external" f" transform. Expected {len(self.parameters())}, " f"got {len(bound_arguments)}." ) # reorder arguments if not has_param_array and not has_param_mapping: arg_map = {arg.name(): arg for arg in bound_arguments} bound_arguments = [ arg_map[param.name] for param in self.parameters() ] return SarusBoundSignature(bound_arguments, name=self.name()) def bind_dataspec(self, dataspec: st.DataSpec) -> SarusBoundSignature: if not dataspec.is_transformed(): raise ValueError("Cannot bind a non transformed dataspec.") transform = dataspec.transform() ds_args, ds_kwargs = dataspec.parents() return self.bind(transform, *ds_args, **ds_kwargs) def bind_composed(self, transform: st.Transform) -> SarusBoundSignature: if not transform.is_composed(): raise ValueError("Cannot bind a non composed transform.") transform_to_apply = transform.transform_to_apply() tr_args, tr_kwargs = transform.composed_parents() return self.bind(transform_to_apply, *tr_args, **tr_kwargs) def bind( self, transform: st.Transform, *ds_args: t.Union[st.DataSpec, st.Transform], **ds_kwargs: t.Union[st.DataSpec, st.Transform], ) -> SarusBoundSignature: """Deserialize protobuf, get parent dataspecs Create bound arguments from the static or dynamic arguments and from the parameters Raise an error if there is a mismatch. """ if not transform.is_external(): raise NotImplementedError( "Binding standard signature not implemented yet." ) else: return self._bind_external(transform, *ds_args, **ds_kwargs) def make_dp(self) -> SarusSignature: """Creates a DP Signature from the current one by adding extra parameters.""" return SarusSignature( *self._parameters, SarusParameter( name="budget", annotation=sp.Scalar.PrivacyParameters, condition=SCALAR, ), SarusParameter( name="seed", annotation=int, condition=SCALAR, ), ) class SarusBoundArgument: """A BoundArgument is a triplet (parameter, value, kind). Args: parameter (SarusParameter): The Sarus parameter describing what is accepted. value (t.Union[st.DataSpec, st.Transform, t.Any]): The value as defined by the computation graph. kind (t.Optional[str]): The Python type a Dataset should be casted to. positional_only (bool): The argument is positional only and the name should be ignored. """ dataset_types = { str(_type): t.cast(t.Type, _type) for _type in t.get_args(st.DatasetCastable) } def __init__( self, parameter: SarusParameter, value: t.Union[st.DataSpec, st.Transform, t.Any], kind: t.Optional[str] = None, positional_only: bool = False, ): self.parameter = parameter self._value = value self.kind = kind self.positional_only = positional_only def name(self) -> str: return self.parameter.name def __repr__(self) -> str: return f"<BoundArgument {self.name()} {repr(self.static_value())}>" def static_value(self) -> t.Any: return self._value def python_type(self) -> t.Optional[str]: return self.kind def parameter_kind(self) -> ParameterCondition: """Return the value type associated with the Parameter.""" if isinstance(self.static_value(), st.DataSpec): dataspec = t.cast(st.DataSpec, self.static_value()) if dataspec.prototype() == sp.Dataset: dataset = t.cast(st.Dataset, dataspec) if dataset.is_pep(): return PEP_DATASET else: return DATASET else: return SCALAR elif isinstance(self.static_value(), st.Transform): return TRANSFORM else: return STATIC def pep_token(self) -> t.Optional[str]: if isinstance(self.static_value(), st.DataSpec): dataspec = t.cast(st.DataSpec, self.static_value()) return dataspec.pep_token() else: return None def is_pep(self) -> bool: return self.pep_token() is not None def is_public(self) -> bool: if isinstance(self.static_value(), st.DataSpec): dataspec = t.cast(st.DataSpec, self.static_value()) return dataspec.is_public() else: return True def static_validation(self) -> None: """Check that the argument is compatible with the parameter""" parameter_kind = self.parameter_kind() if not is_accepted(self.parameter.condition, parameter_kind): raise TypeError( f"Expected parameter {self.name()} to be " f"{str(self.parameter.condition)}, got {str(parameter_kind)}" ) if DATASET.isin(parameter_kind): if self.kind is None: raise ValueError( f"Parameter {self.name()} is a Dataset, but no type " "to cast to is defined." ) if self.kind not in self.dataset_types: raise ValueError( f"Parameter {self.name()} is a Dataset " f"and cannot be casted to type {self.kind}. " f"Expected one of {list(self.dataset_types.keys())}" ) if STATIC.isin(parameter_kind): value = self.static_value() if not self.parameter.predicate(value): raise ValueError( f"Got invalid value `{value}` for " f"parameter `{self.name()}`" ) async def dynamic_validation(self) -> None: ... async def collect(self) -> t.Any: """Evaluate the argument before calling the data function.""" if isinstance(self.static_value(), st.DataSpec): ds = t.cast(st.DataSpec, self.static_value()) if ds.prototype() == sp.Dataset: dataset = t.cast(st.Dataset, self.static_value()) if self.kind is None: raise ValueError( f"Parameter {self.name()} is a Dataset, but no type " "to cast to is defined." ) return await dataset.async_to(self.dataset_types[self.kind]) else: scalar = t.cast(st.Scalar, ds) return await scalar.async_value() elif isinstance(self.static_value(), st.Transform): transform = t.cast(st.Transform, self.static_value()) return transform.composed_callable() else: return self.static_value() def callable(self) -> t.Callable[..., SarusArgumentValue]: """Returns a callable that will compute the argument's value given variables' values.""" if isinstance(self.static_value(), st.Transform): transform = t.cast(st.Transform, self.static_value()) if transform.is_variable(): var_name = transform.protobuf().spec.variable.name var_pos = transform.protobuf().spec.variable.position def arg_callable( *vars: t.Any, **kwvars: t.Any ) -> SarusArgumentValue: if var_name in kwvars: value = kwvars[var_name] else: value = vars[var_pos] return SarusArgumentValue( name=self.name(), value=value, positional_only=self.positional_only, ) else: assert transform.is_composed() previous_callable = transform.composed_callable() def arg_callable( *vars: t.Any, **kwvars: t.Any ) -> SarusArgumentValue: value = previous_callable(*vars, **kwvars) return SarusArgumentValue( name=self.name(), value=value, positional_only=self.positional_only, ) elif isinstance(self.static_value(), st.DataSpec): raise ValueError("Cannot collect a DataSpec in a lambda function.") else: def arg_callable( *vars: t.Any, **kwvars: t.Any ) -> SarusArgumentValue: value = self.static_value() return SarusArgumentValue( name=self.name(), value=value, positional_only=self.positional_only, ) return arg_callable async def admin_data(self) -> t.Optional[pa.Table]: if not self.is_pep(): return None dataset = t.cast(st.Dataset, self.static_value()) admin_data = await async_admin_data(dataset) if admin_data is None: raise ValueError( f"The dataset {dataset.uuid()} was" " inferred PEP but has no admin data." ) return admin_data class SarusBoundSignature: """A BoundSignature is a list of BoundArguments.""" def __init__(self, arguments: t.List[SarusBoundArgument], name: str): self.arguments = arguments self._argument_map = {arg.name(): arg for arg in self.arguments} self._name = name def name(self) -> str: return self._name def __repr__(self) -> str: return ( f"{self.name()}" f"({', '.join([arg.name() for arg in self.arguments])})" ) def is_dp(self) -> bool: return "budget" in self._argument_map and "seed" in self._argument_map def __getitem__(self, name: str) -> SarusBoundArgument: return self._argument_map[name] def static_validation(self) -> None: """Check that the arguments have the correct dataspec type.""" start = time.perf_counter() for arg in self.arguments: arg.static_validation() end = time.perf_counter() logger.debug(f"STATIC VALIDATION {self} ({end-start:.2f}s)") async def dynamic_validation(self) -> None: """Compare the values with the annotations. TODO: Not used yet. Annotations needs to be curated to remove ForwardRefs. """ for arg in self.arguments: await arg.dynamic_validation() def static_kwargs(self) -> t.Dict[str, t.Any]: """Return non evaluated arguments.""" assert not any([arg.positional_only for arg in self.arguments]) return { arg.parameter.name: arg.static_value() for arg in self.arguments } def static_args(self) -> t.List[t.Any]: """Return non evaluated arguments.""" return [arg.static_value() for arg in self.arguments] async def collect_kwargs(self) -> t.Dict[str, t.Any]: """Evaluate arguments for calling the data function.""" assert not any([arg.positional_only for arg in self.arguments]) return { arg.parameter.name: await arg.collect() for arg in self.arguments } async def collect_args(self) -> t.List[t.Any]: """Evaluate arguments for calling the data function.""" return [await arg.collect() for arg in self.arguments] async def collect_kwargs_method( self, ) -> t.Tuple[t.Any, t.Dict[str, t.Any]]: """Evaluate the arguments. Return a tuple (self, kwargs) """ assert not any([arg.positional_only for arg in self.arguments]) first_value = await self.arguments[0].collect() other_values = { arg.parameter.name: await arg.collect() for arg in self.arguments[1:] } return first_value, other_values async def collect_method( self, ) -> t.Tuple[t.Any, t.List[t.Any], t.Dict[str, t.Any]]: """Evaluate the arguments. Return a tuple (self, args, kwargs). """ first_value = await self.arguments[0].collect() positional_values = [ await arg.collect() for arg in self.arguments[1:] if arg.positional_only ] keyword_values = { arg.name(): await arg.collect() for arg in self.arguments[1:] if not arg.positional_only } return first_value, positional_values, keyword_values async def collect( self, ) -> t.Tuple[t.List[t.Any], t.Dict[str, t.Any]]: """Evaluate the arguments. Return a tuple (args, kwargs). """ positional_values = [ await arg.collect() for arg in self.arguments if arg.positional_only ] keyword_values = { arg.name(): await arg.collect() for arg in self.arguments if not arg.positional_only } return positional_values, keyword_values def pep_token(self) -> t.Optional[str]: """Compute the PEP token of the inputs. A PEP token exists if: - all input dataspecs are PEP or PUBLIC - there must be at least one input PEP dataspec - if there are more that one input PEP dataspecs, all PEP inputs must have the same token """ if not all( [arg.is_public() or arg.is_pep() for arg in self.arguments] ): return None pep_args = [arg for arg in self.arguments if arg.is_pep()] if len(pep_args) == 0: return None tokens = [arg.pep_token() for arg in pep_args] unique_tokens = set(tokens) if len(unique_tokens) != 1: return None else: return unique_tokens.pop() async def admin_data(self) -> pa.Table: """Return the admin data of the inputs.""" admin_data = [ await arg.admin_data() for arg in self.arguments if arg.is_pep() ] if len(admin_data) == 0: raise ValueError( "The list of input admin data is empty " f"among arguments {self.arguments}" ) return validate_admin_data(admin_data) def callable( self, ) -> t.Callable[..., SarusSignatureValue]: """Returns a callable that will compute the signature's value given variables' values.""" # Build callables here arg_callables = [arg.callable() for arg in self.arguments] def signature_callable( *vars: t.Any, **kwvars: t.Any ) -> SarusSignatureValue: # Call already built callables here return SarusSignatureValue( arguments=[ arg_callable(*vars, **kwvars) for arg_callable in arg_callables ], name=self.name(), bound_signature=self, ) return signature_callable async def collect_signature_value(self) -> SarusSignatureValue: """Collect the arguments' values and return them in a signature form.""" return SarusSignatureValue( arguments=[ SarusArgumentValue( name=arg.name(), value=await arg.collect(), positional_only=arg.positional_only, ) for arg in self.arguments ], name=self.name(), bound_signature=self, ) class SarusArgumentValue: """Represents an evaluated argument.""" def __init__( self, name: str, value: t.Any, positional_only: bool = False, ): self.name = name self.value = value self.positional_only = positional_only def python_type(self) -> t.Optional[str]: return str(type(self.value)) class SarusSignatureValue: """Similar to a bound signature but only holds arguments' values. As a result it only has sync methods since async computations are not called.""" def __init__( self, arguments: t.List[SarusArgumentValue], name: str, bound_signature: SarusBoundSignature, ): self.arguments = arguments self._argument_map = {arg.name: arg for arg in self.arguments} self._name = name self.bound_signature = bound_signature def __getitem__(self, name: str) -> SarusArgumentValue: return self._argument_map[name] def collect_kwargs(self) -> t.Dict[str, t.Any]: """Evaluate arguments for calling the data function.""" assert not any([arg.positional_only for arg in self.arguments]) return {arg.name: arg.value for arg in self.arguments} def collect_args(self) -> t.List[t.Any]: """Evaluate arguments for calling the data function.""" return [arg.value for arg in self.arguments] def collect_kwargs_method( self, ) -> t.Tuple[t.Any, t.Dict[str, t.Any]]: assert not any([arg.positional_only for arg in self.arguments]) first_value = self.arguments[0].value other_values = {arg.name: arg.value for arg in self.arguments[1:]} return first_value, other_values def collect_method( self, ) -> t.Tuple[t.Any, t.List[t.Any], t.Dict[str, t.Any]]: first_value = self.arguments[0].value positional_values = [ arg.value for arg in self.arguments[1:] if arg.positional_only ] keyword_values = { arg.name: arg.value for arg in self.arguments[1:] if not arg.positional_only } return first_value, positional_values, keyword_values def collect( self, ) -> t.Tuple[t.List[t.Any], t.Dict[str, t.Any]]: positional_values = [ arg.value for arg in self.arguments if arg.positional_only ] keyword_values = { arg.name: arg.value for arg in self.arguments if not arg.positional_only } return positional_values, keyword_values def extended_is_instance(obj: t.Any, kind: t.Type) -> bool: """Extended version of isinstance that also checks composite types.""" if t.get_origin(kind) is None: if isinstance(kind, t.ForwardRef): return False else: return isinstance(obj, kind) elif t.get_origin(kind) == t.Union: return any( extended_is_instance(obj, subkind) for subkind in t.get_args(kind) ) elif t.get_origin(kind) == t.Optional: (subkind,) = t.get_args(kind) return obj is None or extended_is_instance(obj, subkind) elif t.get_origin(kind) in [t.List, list]: return isinstance(obj, list) else: raise NotImplementedError( f"Dynamic type checking not implemented for {kind}." )
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/dataspec_validator/signature.py
0.839043
0.175467
signature.py
pypi
from typing import Collection, List, Optional, Tuple, cast import logging from sarus_data_spec.constants import ( IS_PUBLIC, IS_SYNTHETIC, NO_TOKEN, PEP_TOKEN, SALT, ) import sarus_data_spec.typing as st ArgStruct = Tuple[List[int], List[str]] logger = logging.getLogger(__name__) def verifies( variant_constraint: st.VariantConstraint, kind: st.ConstraintKind, public_context: Collection[str], privacy_limit: Optional[st.PrivacyLimit], salt: Optional[int] = None, ) -> Optional[bool]: if kind == st.ConstraintKind.PUBLIC: return verifies_public(variant_constraint=variant_constraint) elif kind == st.ConstraintKind.SYNTHETIC: return verifies_synthetic(variant_constraint=variant_constraint) elif kind == st.ConstraintKind.MOCK: return verifies_mock(variant_constraint=variant_constraint) elif kind == st.ConstraintKind.DP: return verifies_dp( variant_constraint=variant_constraint, privacy_limit=privacy_limit, salt=salt, ) else: # kind == st.ConstraintKind.PEP: return verifies_pep(variant_constraint=variant_constraint) def verifies_public( variant_constraint: st.VariantConstraint, ) -> Optional[bool]: kind = variant_constraint.constraint_kind() if kind == st.ConstraintKind.PUBLIC: return variant_constraint.properties()[IS_PUBLIC] == str(True) else: return None def verifies_synthetic( variant_constraint: st.VariantConstraint, ) -> Optional[bool]: kind = variant_constraint.constraint_kind() if kind == st.ConstraintKind.SYNTHETIC: return variant_constraint.properties()[IS_SYNTHETIC] == str(True) elif kind == st.ConstraintKind.PUBLIC: if variant_constraint.properties()[IS_PUBLIC] == str(True): return True else: return None else: return None def verifies_mock(variant_constraint: st.VariantConstraint) -> Optional[bool]: kind = variant_constraint.constraint_kind() if kind == st.ConstraintKind.MOCK: return True elif kind == st.ConstraintKind.PUBLIC: if variant_constraint.properties()[IS_PUBLIC] == str(True): return True else: return None else: return None def verifies_pep( variant_constraint: st.VariantConstraint, ) -> Optional[bool]: """If we attached a PEP constraint to a dataspec then it is PEP. NB: for now we don't check the context nor the privacy limit """ kind = variant_constraint.constraint_kind() if kind == st.ConstraintKind.PEP: stored_token = variant_constraint.properties()[PEP_TOKEN] return False if stored_token == NO_TOKEN else True else: return None def verifies_dp( variant_constraint: st.VariantConstraint, privacy_limit: Optional[st.PrivacyLimit], salt: Optional[int] = None, ) -> Optional[bool]: """Check if a variant constraint satisfies a DP profile. For now, return True only for strict equality. """ if privacy_limit is None: raise ValueError( "Input privacy limit required when checking against DP." ) kind = variant_constraint.constraint_kind() if kind != st.ConstraintKind.DP: return None constraint_privacy_limit = variant_constraint.privacy_limit() if constraint_privacy_limit is None: raise ValueError( "Found a DP constraint without a privacy limit " "when checking against DP." ) constraint_salt = variant_constraint.properties().get(SALT) if salt and str(salt) != constraint_salt: return False return cast( bool, privacy_limit.delta_epsilon_dict() == constraint_privacy_limit.delta_epsilon_dict(), )
/sarus_data_spec_public-3.5.16.tar.gz/sarus_data_spec_public-3.5.16/sarus_data_spec/dataspec_validator/simple_rules.py
0.864739
0.244464
simple_rules.py
pypi
from __future__ import annotations import os import urllib.parse from airflow.exceptions import AirflowFailException from airflow.models import BaseOperator from sas_airflow_provider.hooks.sas import SasHook from sas_airflow_provider.util.util import dump_logs class SASJobExecutionOperator(BaseOperator): """ Executes a SAS Job using /SASJobExecution endpoint. Job execution is documented here: https://go.documentation.sas.com/doc/en/pgmsascdc/default/jobexecug/p1ct9uzl5c7omun1t2zy0gxhlqlc.htm The specific endpoint /SASJobExecution is documented here: https://go.documentation.sas.com/doc/en/pgmsascdc/default/jobexecug/n06tcybrt9wdeun1ko9bkjn0ko0b.htm :param connection_name: Name of the SAS Viya connection stored as an Airflow HTTP connection :param job_name: Name of the SAS Job to be run :param parameters Dictionary of all the parameters that should be passed to the SAS Job as SAS Macro variables :param job_exec_log: boolean. whether or not to dump out the log (default is false) :param add_airflow_vars: boolean. whether or not to add airflow environment variables as macro variables (default is false) """ template_fields: Sequence[str] = ("parameters",) def __init__(self, job_name: str, parameters: dict, connection_name: str = None, job_exec_log: bool = False, add_airflow_vars: bool = False, **kwargs) -> None: super().__init__(**kwargs) self.connection_name = connection_name self.job_name = job_name self.parameters = parameters self.job_exec_log = job_exec_log self.add_airflow_vars = add_airflow_vars def _add_airflow_env_vars(self): for x in ['AIRFLOW_CTX_DAG_OWNER', 'AIRFLOW_CTX_DAG_ID', 'AIRFLOW_CTX_TASK_ID', 'AIRFLOW_CTX_EXECUTION_DATE', 'AIRFLOW_CTX_TRY_NUMBER', 'AIRFLOW_CTX_DAG_RUN_ID', ]: v = os.getenv(x) if v: self.parameters[x] = v def execute(self, context): h = SasHook(self.connection_name) session = h.get_conn() if self.add_airflow_vars: print(f"Add Airflow variables as parameters") self._add_airflow_env_vars() print(f"Executing SAS job: {self.job_name}") # url escape the program name program_name = urllib.parse.quote(self.job_name) url_string = "" for key, value in self.parameters.items(): url_string += f"&{key}={urllib.parse.quote(value)}" url = f"/SASJobExecution/?_program={program_name}{url_string}" headers = {"Accept": "application/vnd.sas.job.execution.job+json"} response = session.post(url, headers=headers, verify=False) if response.status_code < 200 or response.status_code >= 300: raise AirflowFailException(f"SAS Job Execution HTTP status code {response.status_code}") error_code = response.headers.get('X-Sas-Jobexec-Error') if error_code: print(response.text) raise AirflowFailException(f"SAS Job Execution failed with code {error_code}") if self.job_exec_log: job_id = response.headers.get('X-Sas-Jobexec-Id') if job_id: job_status_url = f"/jobExecution/jobs/{job_id}" job = session.get(job_status_url, verify=False) if job.status_code >= 200: dump_logs(session, job.json()) else: print(f"Failed to get job status for logs. /jobExecution/jobs returned {job.status_code}") else: print("Failed to get job id for logs. X-Sas-Jobexec-Id not found in response headers") return 1
/sas_airflow_provider-0.0.8-py3-none-any.whl/sas_airflow_provider/operators/sas_jobexecution.py
0.711631
0.162148
sas_jobexecution.py
pypi
from __future__ import annotations from airflow.exceptions import AirflowException from airflow.models import BaseOperator from sas_airflow_provider.hooks.sas import SasHook from sas_airflow_provider.util.util import \ create_or_connect_to_session, find_named_compute_session, end_compute_session class SASComputeDeleteSession(BaseOperator): """ Delete a Compute session. either a session_name or a session_id should be provided. The result is pushed as a True/False xcom named disconnect_succeeded :param connection_name: (optional) name of the connection to use. The connection should be defined as an HTTP connection in Airflow. If not specified then the default is used :param session_name: (optional) name of the session to delete :param session_id: (optiona) id of the session to delete """ ui_color = "#CCE5FF" ui_fgcolor = "black" # template fields are fields which can be templated out in the Airflow task using {{ }} template_fields: Sequence[str] = ("compute_session_id", "compute_session_name") def __init__( self, connection_name=None, compute_session_name="", compute_session_id="", **kwargs, ) -> None: if not compute_session_id and not compute_session_name: raise AirflowException(f"Either session_name or session_id must be provided") super().__init__(**kwargs) self.connection = None self.connection_name = connection_name self.compute_session_name = compute_session_name self.compute_session_id = compute_session_id self.success=False def execute(self, context): try: self.log.info("Authenticate connection") h = SasHook(self.connection_name) self.connection = h.get_conn() self._delete_compute() self.xcom_push(context, 'disconnect_succeeded', self.success) # support retry if API-calls fails for whatever reason except Exception as e: raise AirflowException(f"SASComputeDeleteSession error: {str(e)}") return 1 def _delete_compute(self): if self.compute_session_name: self.log.info(f"Find session named {self.compute_session_name}") sesh = find_named_compute_session(self.connection, self.compute_session_name) if sesh: self.compute_session_id = sesh["id"] else: self.log.info(f"Session named {self.compute_session_name} not found") return self.log.info(f"Delete session with id {self.compute_session_id}") self.success = end_compute_session(self.connection, self.compute_session_id)
/sas_airflow_provider-0.0.8-py3-none-any.whl/sas_airflow_provider/operators/sas_delete_session.py
0.803598
0.229244
sas_delete_session.py
pypi
from __future__ import annotations from airflow.exceptions import AirflowException from airflow.models import BaseOperator from sas_airflow_provider.hooks.sas import SasHook from sas_airflow_provider.util.util import \ create_or_connect_to_session class SASComputeCreateSession(BaseOperator): """ Create a Compute session and push the session id as an XCom named 'compute_session_id'. This can be used as an input for the SASStudioOperator to give finer grained control over sessions :param connection_name: (optional) name of the connection to use. The connection should be defined as an HTTP connection in Airflow. If not specified then the default is used :param compute_context_name: (optional) Name of the Compute context to use. If not provided, a suitable default is used. :param session_name: (optional) name to give the created session. If not provided, a suitable default is used """ ui_color = "#CCE5FF" ui_fgcolor = "black" # template fields are fields which can be templated out in the Airflow task using {{ }} template_fields: Sequence[str] = ("compute_context_name", "session_name") def __init__( self, connection_name=None, compute_context_name="SAS Studio compute context", session_name="Airflow-Session", **kwargs, ) -> None: super().__init__(**kwargs) self.connection = None self.connection_name = connection_name self.compute_context_name = compute_context_name self.session_name = session_name self.compute_session_id="" def execute(self, context): try: self.log.info("Authenticate connection") h = SasHook(self.connection_name) self.connection = h.get_conn() self._connect_compute() self.xcom_push(context, 'compute_session_id', self.compute_session_id) # support retry if API-calls fails for whatever reason except Exception as e: raise AirflowException(f"SASComputeCreateSession error: {str(e)}") return 1 def _connect_compute(self): # connect to compute if we are not connected, and set our compute session id if not self.compute_session_id: self.log.info("Creating or connecting to compute session") sesh = create_or_connect_to_session(self.connection, self.compute_context_name, self.session_name) self.compute_session_id = sesh["id"] self.log.info(f"Created session with id {self.compute_session_id}")
/sas_airflow_provider-0.0.8-py3-none-any.whl/sas_airflow_provider/operators/sas_create_session.py
0.813127
0.286955
sas_create_session.py
pypi
import sys stdout = sys.stdout stderr = sys.stderr import struct import numpy as np from mayavi import mlab import pandas as pd import matplotlib.pylab as plt from cvpy.utils.ImageUtils import ImageUtils sys.stdout = stdout sys.stderr = stderr def __mapping(val): ''' "A simple mapping from int to int. Parameters ---------- val : :class:`int` Specifies value to be mapped. Returns ------- :class:`int` ''' if (val == 0): return 2 elif (val == 2): return 0 else: return val def display_image_slice(images, dims, ress, fmts, poss, oris, scas, perm, image_index, slice_index, rf, imin=-100, imax=400, additive=0): ''' Display an image slice in 3D. Parameters ---------- images : :class:`str` Specifies the images. dims : :class:`pandas.Series` Specifies the dimensions of the image. ress : :class:`pandas.Series` Specifies the resolutions of the image. fmts : :class:`pandas.Series` Specifies the image formats. poss : :class:`pandas.Series` Specifies the positions of the image. oris : :class:`pandas.Series` Specifies the image format orientations of the image. scas : :class:`pandas.Series` Specifies the scaling of the image. perm : :class:`pandas.Series` Specifies the permissions of the image. image_index : :class:`pandas.Series` Specifies the image index. slice_index : :class:`tuple` Specifies the slice_index. imin : :class:`int` Specifies the input minimum. imax : :class:`int` Specifies the input maximum. additive : :class:`int` Specifies the additive. ''' image = ImageUtils.get_image_array(images, dims, ress, fmts, image_index) geo_perm = np.zeros(3, dtype=np.int) for i in range(3): geo_perm[__mapping(i)] = __mapping(perm[i]) image = np.transpose(image, perm) image = image[slice_index, :, :] + additive nr, nc = image.shape[:2] dimension = int(dims[image_index]) pos = np.array(struct.unpack('=%sd' % dimension, poss[image_index])) sca = np.array(struct.unpack('=%sd' % dimension, scas[image_index][0:8 * dimension])) ori = np.array(struct.unpack('=%sd' % (dimension*dimension), oris[image_index][0:8 * dimension * dimension])) xx, yy = np.meshgrid(np.linspace(0, nc, nc), np.linspace(0, nr, nr)) zz = np.zeros((nr, nc)) lc = np.vstack((np.reshape(xx, (1, nc*nr)), np.reshape(yy, (1, nc*nr)), np.reshape(zz, (1, nc*nr)))) ori = np.reshape(ori, (3, 3)) ori = ori[:, geo_perm] sca = sca[geo_perm] pos = pos + slice_index * sca[2] * ori[:, 2] pos = np.reshape(pos, (3, 1)) sca = np.diag(sca) gc = np.matmul(ori, np.matmul(sca, lc)) gc = gc + np.matmul(pos, np.ones((1, nc*nr))) mlab.mesh(np.reshape(gc[0, :], (nr, nc)), np.reshape(gc[1, :], (nr, nc)), np.reshape(gc[2, :], (nr, nc)), scalars = image, colormap='gray', vmin=imin, vmax=imax) if (rf): for i in range(3): clr=((i == 0) * 1, (i == 1) * 1, (i == 2) * 1) mlab.quiver3d(pos[0], pos[1], pos[2], ori[0, i], ori[1, i], ori[2, i], line_width=5, scale_factor=50*sca[i, i], color=clr, mode='arrow') def display_3D_image_slices_from_array(array, hold=False, slice_index_x=0, slice_index_y=0, slice_index_z=0): ''' Display 3D image slices in 3D. Parameters ---------- array : :class:`numpy.ndarray` Specifies the array to be displayed. hold : :class:`bool` When set to True, the display is held. ''' sf = mlab.pipeline.scalar_field(array) mlab.pipeline.image_plane_widget(sf, plane_orientation="x_axes", slice_index=slice_index_x, colormap="gray") mlab.pipeline.image_plane_widget(sf, plane_orientation="y_axes", slice_index=slice_index_y, colormap="gray") mlab.pipeline.image_plane_widget(sf, plane_orientation="z_axes", slice_index=slice_index_z, colormap="gray") if (not hold): mlab.show() def display_3D_image_slices(self, image, hold=False, slice_index_x=0, slice_index_y=0, slice_index_z=0): ''' Display 3D image slices in 3D. Parameters ---------- self : :class:`swat.CAS <swat.cas.connection.CAS>` Specifies the SWAT connection. image : :class:`str` Specifies the image to be displayed. hold : :class:`bool` When set to True, the display is held. slice_index_x : :class:`int` Specifies the slice index to be displayed on the x axis. slice_index_y : :class:`int` Specifies the slice index to be displayed on the y axis. slice_index_z : :class:`int` Specifies the slice index to be displayed on the z axis. ''' rows=self.fetch(table=image, sastypes=False)['Fetch'] dimensions = rows["_dimension_"] formats = rows["_channelType_"] binaries = rows["_image_"] resolutions = rows["_resolution_"] image_array = ImageUtils.get_image_array( binaries, dimensions, resolutions, formats, 0) display_3D_image_slices_from_array(image_array, hold=False, slice_index_x=0, slice_index_y=0, slice_index_z=0) def display_3D_surface(surfaces, vdata, fdata, hold=False, color=(1, 0, 0), op=1): ''' Display the surfaces of an image. Parameters ---------- surfaces : :class:`swat.SASDataFrame <swat.dataframe.SASDataFrame>` Specifies the surfaces to be displayed. vdata : :class:`swat.SASDataFrame <swat.dataframe.SASDataFrame>` Specifies the fetched vertices. fdata : :class:`swat.SASDataFrame <swat.dataframe.SASDataFrame>` Specifies the fetched faces. hold : :class:`bool` When set to True, the display is held. color : :class:`tuple` Specifies color of the surface. op : :class:`float` Specifies the opacity of the surface. ''' sid = surfaces.iloc[0]['Surface Identifier'] fetchv = vdata.query('_surfaceId_='+str(sid)).sort_values('_id_').to_frame() fetchf = fdata.query('_surfaceId_='+str(sid)).to_frame() sx = fetchv.loc[:, ["_x_"]] sy = fetchv.loc[:, ["_y_"]] sz = fetchv.loc[:, ["_z_"]] sflist = fetchf.loc[:, ["_v1_", "_v2_", "_v3_"]] mlab.triangular_mesh(sx, sy, sz, sflist, color=color, opacity=op) if (not hold): mlab.show()
/sas-cvpy-1.1.1.tar.gz/sas-cvpy-1.1.1/cvpy/visualization.py
0.718693
0.592313
visualization.py
pypi
from typing import List import numpy as np import matplotlib.pylab as plt from matplotlib import cm from matplotlib.figure import Figure from cvpy.base.CASServerMode import CASServerMode from cvpy.base.Statistic import Statistic class CASThreadTunerResults(object): ''' Store and present results for the CAS thread optimization tool. Parameters ---------- cas_server_mode: Specifies the CAS server architecture. controller_thread_range: Specifies the range of threads on the controller node. worker_thread_range: Specifies the range of threads on each worker node. objective_measure: Specifies the objective measure of performance over given iterations. controller_optimal_thread_count: Specifies the optimal thread count on the controller node. worker_optimal_thread_count: Specifies the optimal thread count on the worker node. mean_exec_times: Specifies the mean of recorded execution times over the specified iterations. median_exec_times: Specifies the median of recorded execution times over specified iterations. minimum_exec_times: Specifies the minimum of recorded execution times over specified iterations. maximum_exec_times: Specifies the maximum of recorded execution times over specified iterations. stdev_exec_times: Specifies the standard deviation of recorded execution times over specified iterations. ''' def __init__(self, cas_server_mode: CASServerMode = None, controller_thread_range: range = None, worker_thread_range: range = None, objective_measure: Statistic = None, controller_optimal_thread_count: int = None, worker_optimal_thread_count: int = None, mean_exec_times: List[List[int]] = None, median_exec_times: List[List[int]] = None, minimum_exec_times: List[List[int]] = None, maximum_exec_times: List[List[int]] = None, stdev_exec_times: List[List[int]] = None): ''' Constructs the CASThreadTunerResults class ''' self._cas_server_mode = cas_server_mode self._controller_thread_range = controller_thread_range self._worker_thread_range = worker_thread_range self._objective_measure = objective_measure self._controller_optimal_thread_count = controller_optimal_thread_count self._worker_optimal_thread_count = worker_optimal_thread_count self._mean_exec_times = mean_exec_times self._median_exec_times = median_exec_times self._minimum_exec_times = minimum_exec_times self._maximum_exec_times = maximum_exec_times self._stdev_exec_times = stdev_exec_times @property def cas_server_mode(self) -> CASServerMode: return self._cas_server_mode @cas_server_mode.setter def cas_server_mode(self, cas_server_mode) -> None: self._cas_server_mode = cas_server_mode @property def controller_thread_range(self) -> range: return self._controller_thread_range @controller_thread_range.setter def controller_thread_range(self, controller_thread_range) -> None: self._controller_thread_range = controller_thread_range @property def worker_thread_range(self) -> range: return self._worker_thread_range @worker_thread_range.setter def worker_thread_range(self, worker_thread_range) -> None: self._worker_thread_range = worker_thread_range @property def objective_measure(self) -> Statistic: return self._objective_measure @objective_measure.setter def objective_measure(self, objective_measure) -> None: self._objective_measure = objective_measure @property def controller_optimal_thread_count(self) -> int: return self._controller_optimal_thread_count @controller_optimal_thread_count.setter def controller_optimal_thread_count(self, controller_optimal_thread_count) -> None: self._controller_optimal_thread_count = controller_optimal_thread_count @property def worker_optimal_thread_count(self) -> int: return self._worker_optimal_thread_count @worker_optimal_thread_count.setter def worker_optimal_thread_count(self, worker_optimal_thread_count) -> None: self._worker_optimal_thread_count = worker_optimal_thread_count @property def mean_exec_times(self) -> List[List[int]]: return self._mean_exec_times @mean_exec_times.setter def mean_exec_times(self, mean_exec_times) -> None: self._mean_exec_times = mean_exec_times @property def median_exec_times(self) -> List[List[int]]: return self._median_exec_times @median_exec_times.setter def median_exec_times(self, median_exec_times) -> None: self._median_exec_times = median_exec_times @property def minimum_exec_times(self) -> List[List[int]]: return self._minimum_exec_times @minimum_exec_times.setter def minimum_exec_times(self, minimum_exec_times) -> None: self._minimum_exec_times = minimum_exec_times @property def maximum_exec_times(self) -> List[List[int]]: return self._maximum_exec_times @maximum_exec_times.setter def maximum_exec_times(self, maximum_exec_times) -> None: self._maximum_exec_times = maximum_exec_times @property def stdev_exec_times(self) -> List[List[int]]: return self._stdev_exec_times @stdev_exec_times.setter def stdev_exec_times(self, stdev_exec_times) -> None: self._sd_exec_times = stdev_exec_times def plot_exec_times(self, fig_width: float = 8, fig_height: float = 8) -> Figure: ''' Plot performance for given CAS thread tuner results. Parameters ---------- fig_width : :class:'float' Specifies width of the plot. fig_height : :class:'float' Specifies height of the plot. Returns ------- :class: 'matplotlib.figure.Figure' ''' if self.objective_measure == Statistic.MEAN: opt_array = self.mean_exec_times elif self.objective_measure == Statistic.MEDIAN: opt_array = self.median_exec_times elif self.objective_measure == Statistic.MINIMUM: opt_array = self.minimum_exec_times elif self.objective_measure == Statistic.MAXIMUM: opt_array = self.maximum_exec_times else: opt_array = self.stdev_exec_times if self.cas_server_mode == CASServerMode.SMP: # Line plot fig = plt.figure(figsize=(fig_width, fig_height)) x = list(self.controller_thread_range) y = opt_array plt.xlabel('Controller Thread Count') plt.ylabel('Runtime (sec)') plt.title('Performance of loadImages in SMP') plt.plot(x, y) return fig else: # Surface plot fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) fig.set_figheight(fig_height) fig.set_figwidth(fig_width) x, y = np.meshgrid(self.controller_thread_range, self.worker_thread_range) surf = ax.plot_surface(x, y, np.transpose(opt_array), cmap=cm.coolwarm, linewidth=0, antialiased=False) fig.colorbar(surf, shrink=0.5, aspect=5) ax.set_xlabel('Controller Thread Count') ax.set_ylabel('Worker Thread Count') ax.set_zlabel('Runtime (sec)') ax.set_title('Performance of loadImages in MPP') return fig
/sas-cvpy-1.1.1.tar.gz/sas-cvpy-1.1.1/cvpy/base/CASThreadTunerResults.py
0.950157
0.403978
CASThreadTunerResults.py
pypi
from typing import Dict from swat import CASTable, CAS from cvpy.base.ImageType import ImageType from cvpy.utils.RandomNameGenerator import RandomNameGenerator class ImageTable(object): ''' Base class for NaturalImageTable and BiomedImageTable classes. table: Specifies the input table that contains image data. image: Specifies the name of the column that contains image binaries. dimension: Specifies the name of the column that contains dimensions of images. resolution: Specifies the name of the column that contains resolutions of images. imageFormat: Specifies the name of the column that contains formats of image binaries. path: Specifies the name of the column that contains file paths. label: Specifies the name of the column that contains labels of images. id: Specifies the name of the variable that identifies each image. size: Specifies the name of the column that contains byte lengths of image binaries. type: Specifies the name of the column that contains the image type. ''' IMAGE_COL = '_image_' DIMENSION_COL = '_dimension_' RESOLUTION_COL = '_resolution_' FORMAT_COL = '_imageFormat_' PATH_COL = '_path_' LABEL_COL = '_label_' ID_COL = '_id_' SIZE_COL = '_size_' TYPE_COL = '_type_' VARBINARY_TYPE = 'varbinary' VARBINARY_IMAGE_TYPE = 'varbinary(image)' VARCHAR_TYPE = 'varchar' INT64_TYPE = 'int64' CHAR_TYPE = 'char' BIOMED_IMAGE_FORMATS = ['dcm', 'nii', 'nrd'] def __init__(self, table: CASTable, image: str = None, dimension: str = None, resolution: str = None, imageFormat: str = None, path: str = None, label: str = None, id: str = None, size: str = None, type: str = None): # Add _table attribute and set the table property self._table = None self.table = table # Add an attribute for each column and then set the corresponding property self._image = None self.image = image self._dimension = None self.dimension = dimension self._resolution = None self.resolution = resolution self._imageFormat = None self.imageFormat = imageFormat self._path = None self.path = path self._label = None self.label = label self._id = None self.id = id self._size = None self.size = size self._type = None self.type = type self._connection = None if self.table: self.connection = self.table.get_connection() # Function to validate and set column attribute on ImageTable def validate_set_column(self, column, column_name, default_column_name, valid_column_datatypes): if self.table is None: # No validations are possible if table is not set if column_name: # Set the column attribute to user specified column_name setattr(self, f'_{column}', column_name) else: # Set the column attribute to default_column_name setattr(self, f'_{column}', default_column_name) return # Validate presence of the column and its datatype if column_name: # Check if column is present in the table if column_name.lower() not in self._column_dtype_lookup.keys(): raise Exception(f'Column {column_name} is not present in the table.') else: # Check if default column name is present in the table if default_column_name.lower() in self._column_dtype_lookup.keys(): column_name = default_column_name setattr(self, f'_{column}', column_name) # Data type validation if column_name and self._column_dtype_lookup.get(column_name.lower()) not in valid_column_datatypes: if len(valid_column_datatypes) == 1: message = f'Column {column_name} has an unsupported data type. ' \ f'The supported datatype for this column is: {valid_column_datatypes[0]}.' else: message = f'Column {column_name} has an unsupported data type. ' \ f'The supported datatypes for this column are: ({", ".join(valid_column_datatypes)}).' raise Exception(message) @property def table(self) -> CASTable: return self._table @table.setter def table(self, table) -> None: self._column_dtype_lookup = None if table is not None: self._column_dtype_lookup = \ table.columninfo()['ColumnInfo'][['Column', 'Type']].set_index('Column').to_dict()['Type'] # Lowercase keys in _column_dtype_lookup self._column_dtype_lookup = {k.lower(): v.lower() for k, v in self._column_dtype_lookup.items()} self._table = table @property def image(self) -> str: return self._image @image.setter def image(self, image) -> None: self.validate_set_column('image', image, ImageTable.IMAGE_COL, [ImageTable.VARBINARY_IMAGE_TYPE, ImageTable.VARCHAR_TYPE]) @property def dimension(self) -> str: return self._dimension @dimension.setter def dimension(self, dimension) -> None: self.validate_set_column('dimension', dimension, ImageTable.DIMENSION_COL, [ImageTable.INT64_TYPE]) @property def resolution(self) -> str: return self._resolution @resolution.setter def resolution(self, resolution) -> None: self.validate_set_column('resolution', resolution, ImageTable.RESOLUTION_COL, [ImageTable.VARBINARY_TYPE]) @property def imageFormat(self) -> str: return self._imageFormat @imageFormat.setter def imageFormat(self, imageFormat) -> None: self.validate_set_column('imageFormat', imageFormat, ImageTable.FORMAT_COL, [ImageTable.INT64_TYPE]) @property def path(self) -> str: return self._path @path.setter def path(self, path) -> None: self.validate_set_column('path', path, ImageTable.PATH_COL, [ImageTable.VARCHAR_TYPE]) @property def label(self) -> str: return self._label @label.setter def label(self, label) -> None: self.validate_set_column('label', label, ImageTable.LABEL_COL, [ImageTable.VARCHAR_TYPE]) @property def id(self) -> str: return self._id @id.setter def id(self, id) -> None: self.validate_set_column('id', id, ImageTable.ID_COL, [ImageTable.INT64_TYPE]) @property def size(self) -> str: return self._size @size.setter def size(self, size) -> None: self.validate_set_column('size', size, ImageTable.SIZE_COL, [ImageTable.INT64_TYPE]) @property def type(self) -> str: return self._type @type.setter def type(self, type) -> None: self.validate_set_column('type', type, ImageTable.TYPE_COL, [ImageTable.CHAR_TYPE]) @property def connection(self) -> CAS: return self._connection @connection.setter def connection(self, connection) -> None: self._connection = connection def as_dict(self) -> dict: ''' Create a dictionary representation of this object. Returns ------- d: :class:`dict` Contains all of the properties as keys and the property values as values ''' d = {} for k, v in vars(self).items(): if k not in ['_column_dtype_lookup', '_connection']: d[k[1:]] = v return d def has_decoded_images(self) -> bool: ''' Check if this table contains decoded images or encoded images. Returns ------- b: :class:`bool`: Returns True if the table contains decoded images. Otherwise, returns False. ''' return (self.dimension is not None) and (self.resolution is not None) and (self.imageFormat is not None) @staticmethod def load(connection: CAS, path: str, load_parms: Dict[str, str] = None, output_table_parms: Dict[str, str] = None): ''' Loads images in an ImageTable. connection: Specifies the CAS connection. path: Specifies the path on the server containing the images to load. load_parms: Specifies the parameters for the loadimages action call. The list of parameters can be found here: https://go.documentation.sas.com/doc/en/pgmsascdc/default/casactml/cas-image-loadimages.htm output_table_parms: Specifies the parameters for the output table. The list of parameters can be found here: https://go.documentation.sas.com/doc/en/pgmsascdc/default/casactml/compg-casouttable-15param.htm Returns ------- image_table: :class:`NaturalImageTable` or `BiomedImageTable`: Returns an instance of NaturalImageTable or BiomedImageTable based on the image_type. ''' # Imports statements are specified here to prevent circular import issue from cvpy.biomedimage.BiomedImageTable import BiomedImageTable from cvpy.image.NaturalImageTable import NaturalImageTable # If load_parms or output_table_parms are not passed, set them to empty dicts if not load_parms: load_parms = dict() if not output_table_parms: output_table_parms = dict() # Load the image actionset connection.loadactionset('image') # Calculate the table name to use if 'name' not in output_table_parms: output_table_parms['name'] = RandomNameGenerator().generate_name() # Create a cas table cas_table = connection.CASTable(**output_table_parms) # Get user specified image_type image_type = None if 'image_type' in load_parms: image_type = load_parms.get('image_type') # Remove image_type from load_parms since it is used for calling loadimages del load_parms['image_type'] # Load the images r = connection.loadimages(path=path, casout=cas_table, **load_parms) # Calculate the image_type of the table if not specified by the user if not image_type: image_type = ImageTable._get_image_type(cas_table) # Create NaturalImageTable or BiomedImageTable based on the image_type if image_type == ImageType.NATURAL: # Create NaturalImageTable return NaturalImageTable(cas_table) else: # Create BiomedImageTable return BiomedImageTable(cas_table) # Returns the image_type of the images in a CASTable @staticmethod def _get_image_type(cas_table): image_type = ImageType.NATURAL image_count = cas_table.recordcount()['RecordCount'].N.values[0] # Create a query for biomed images as: _type_ = "nii" or _type_ = "nrd", ... query = ' or '.join([f'_type_ = "{x}"' for x in ImageTable.BIOMED_IMAGE_FORMATS]) # Find number of biomed images in the table biomed_image_count = cas_table.query(query).recordcount()['RecordCount'].N.values[0] # If table contains more biomed images than natural images, set image_type as biomed if biomed_image_count > int(image_count / 2): image_type = ImageType.BIOMED return image_type @staticmethod def from_table(cas_table: CASTable, image_type: ImageType = None, image: str = None, dimension: str = None, resolution: str = None, imageFormat: str = None, path: str = None, label: str = None, id: str = None, size: str = None, type: str = None): ''' Creates an ImageTable from a CASTable. cas_table: Specifies the input CAStable that contains image data. image_type: Specifies the type of images, either ImageType.BIOMED or ImageType.NATURAL. image: Specifies the name of the column that contains image binaries. dimension: Specifies the name of the column that contains dimensions of images. resolution: Specifies the name of the column that contains resolutions of images. imageFormat: Specifies the name of the column that contains formats of image binaries. path: Specifies the name of the column that contains file paths. label: Specifies the name of the column that contains labels of images. id: Specifies the name of the variable that identifies each image. size: Specifies the name of the column that contains byte lengths of image binaries. type: Specifies the name of the column that contains the image type. Returns ------- :class:`NaturalImageTable` or `BiomedImageTable`: Returns an instance of NaturalImageTable or BiomedImageTable based on the image_type. ''' # Imports statements are specified here to prevent circular import issue from cvpy.biomedimage.BiomedImageTable import BiomedImageTable from cvpy.image.NaturalImageTable import NaturalImageTable # Calculate the image_type of the table if not image_type: image_type = ImageTable._get_image_type(cas_table) # Create NaturalImageTable or BiomedImageTable based on the image_type if image_type == ImageType.NATURAL: # Create NaturalImageTable return NaturalImageTable(cas_table, image=image, dimension=dimension, resolution=resolution, imageFormat=imageFormat, path=path, label=label, id=id, size=size, type=type) else: # Create BiomedImageTable return BiomedImageTable(cas_table, image=image, dimension=dimension, resolution=resolution, imageFormat=imageFormat, path=path, label=label, id=id, size=size, type=type)
/sas-cvpy-1.1.1.tar.gz/sas-cvpy-1.1.1/cvpy/base/ImageTable.py
0.907611
0.430207
ImageTable.py
pypi
from typing import Dict, List import struct import numpy from swat import CASTable from cvpy.base.ImageTable import ImageTable from cvpy.biomedimage.LabelConnectivity import LabelConnectivity from cvpy.utils.RandomNameGenerator import RandomNameGenerator from cvpy.utils.ImageUtils import ImageUtils class BiomedImageTable(ImageTable): """ Implement biomedical image processing functions. Parameters ---------- table: Specifies the input table that contains image data. image: Specifies the name of the column that contains image binaries. dimension: Specifies the name of the column that contains dimensions of images. resolution: Specifies the name of the column that contains resolutions of images. imageFormat: Specifies the name of the column that contains formats of image binaries. path: Specifies the name of the column that contains file paths. label: Specifies the name of the column that contains labels of images. id: Specifies the name of the variable that identifies each image. size: Specifies the name of the column that contains byte lengths of image binaries. type: Specifies the name of the column that contains the image type. Returns ------- :class:'BiomedImageTable' """ def __init__(self, table: CASTable = None, image: str = None, dimension: str = None, resolution: str = None, imageFormat: str = None, path: str = None, label: str = None, id: str = None, size: str = None, type: str = None) -> None: super().__init__(table=table, image=image, dimension=dimension, resolution=resolution, imageFormat=imageFormat, path=path, label=label, id=id, size=size, type=type) # Load the actionsets if self.connection: self.connection.loadactionset('image') self.connection.loadactionset('biomedimage') self.connection.loadactionset('fedsql') def fetch_image_array(self, n: int = 0, qry: str = None, image: str = '_image_', dim: str = '_dimension_', res: str = '_resolution_', ctype: str = '_channelType_', ccount: int = 1) -> numpy.ndarray: """ Fetch image array from this BiomedImageTable. Parameters ---------- n : :class:`int` Specifies the number of additional images. qry : :class:`str` Specifies the query. image : :class:`str` Specifies the image format. dim : :class:`str` Specifies the image dimension. res : :class:`str` Specifies the image resolution. ctype : :class:`str` Specifies the channel type. ccount : :class:`int` Specifies the number of channels of the image. Returns ------- :class:'numpy.ndarray' """ if qry != '': example_rows = self.table.query(qry).to_frame(to=n + 1) else: example_rows = self.table.to_frame(to=n + 1) medical_dimensions = example_rows[dim] medical_formats = example_rows[ctype] medical_binaries = example_rows[image] medical_resolutions = example_rows[res] return ImageUtils.get_image_array(medical_binaries, medical_dimensions, medical_resolutions, medical_formats, n, ccount) def fetch_geometry_info(self, n: int = 0, qry: str = None, posCol: str = '_position_', oriCol: str = '_orientation_', spaCol: str = '_spacing_', dimCol: str = '_dimension_') -> tuple: """ Fetch geometry information from this BiomedImageTable. Parameters ---------- n : :class:`int` Specifies the number of images. qry : :class:`str` Specifies the query. posCol : :class:`str` Specifies the position column. oriCol : :class:`str` Specifies the orientation column. spaCol : :class:`str` Specifies the spacing column. dimCol : :class:`str` Specifies the dimension column. Returns ------- :class:`tuple`, (position, orientation, spacing) """ # Check if geometry info exists in CAS table query before fetching if not {'_position_', '_spacing_', '_orientation_'}.issubset(self.table.columns): return ((), (), ()) if (qry != ''): example_rows = self.table[[dimCol, posCol, oriCol, spaCol]].query(qry).to_frame(to=n) else: example_rows = self.table[[dimCol, posCol, oriCol, spaCol]].to_frame(to=n) dim = example_rows[dimCol][0] pos = struct.unpack('=%sd' % dim, example_rows[posCol][0][0:dim * 8]) ori = struct.unpack('=%sd' % (dim * dim), example_rows[oriCol][0][0:dim * dim * 8]) spa = struct.unpack('=%sd' % dim, example_rows[spaCol][0][0:dim * 8]) return pos, ori, spa def sphericity(self, use_spacing: bool, input_background: float, label_connectivity: LabelConnectivity, output_table_parms: Dict[str, str] = None) -> CASTable: """ Quantify the sphericity for the given component from this BiomedImageTable. Parameters ---------- use_spacing: :class:'bool' When set to True, use image spacing in the sphericity calculation. input_background: :class:'float' Specifies the background value in input images. label_connectivity: LabelConnectivity.FACE | LabelConnectivity.VERTEX Specifies the level of connectivity for connected components: LabelConnectivity.FACE or LabelConnectivity.VERTEX output_table_parms : :class:'Dict[str,str]' Specifies the parameters in the output image table. Returns ------- :class:'CASTable' Examples -------- >>> # Import classes >>> from swat import CAS >>> from cvpy.biomedimage.BiomedImageTable import BiomedImageTable >>> from cvpy.biomedimage.LabelConnectivity import LabelConnectivity >>> ## Connect to CAS >>> s = CAS("example.com", 5570) >>> # Construct tables that are parameters to the sphericity API >>> image_table = s.CASTable(...) >>> # Construct Biomed object >>> biomed = BiomedImageTable(image_table) >>> # Call the API >>> output_table = biomed.sphericity(use_spacing, ...., label_connectivity) """ # If output_table_parms is not passed, set it as an empty dict if not output_table_parms: output_table_parms = dict() random_name_generator = RandomNameGenerator() # Quantify the volume and perimeter of the given component. self.connection.biomedimage.quantifybiomedimages(images=dict(table=self.table), copyvars=['_path_'], region='COMPONENT', quantities=[ dict(quantityparameters=dict(quantitytype='perimeter')), dict(quantityparameters=dict(quantitytype='content', useSpacing=use_spacing)) ], labelparameters=dict(labelType='basic', connectivity=label_connectivity.name), inputbackground=input_background, casout=dict(name='quantify'), ) if 'name' not in output_table_parms: output_table_parms['name'] = random_name_generator.generate_name() sphericity = self.connection.CASTable(**output_table_parms) # Compute sphericity based on perimeter and volume of the lesion self.connection.fedsql.execdirect(f''' create table "{sphericity.name}" as select _path_,_perimeter_,_content_, (power(pi(), 1.0/3.0) * power(6*_content_, 2.0/3.0))/_perimeter_ as sphericity from quantify ''') # Delete the quantify table self.connection.table.dropTable(name='quantify') return sphericity def morphological_gradient(self, kernel_width: int = 3, kernel_height: int = 3, copy_vars: List[str] = None, output_table_parms: Dict[str, str] = None): """ Compute the morphological gradient for each 3D grayscale image in this BiomedImageTable. Parameters ------------ kernel_width : :class:'int' Specifies the kernel width. kernel_height : :class:'int' Specifies the kernel height. copy_vars : :class:'List[str]' Specifies which columns to copy to the output image table. output_table_parms : :class:'Dict[str,str]' Specifies the parameters in the output image table. Returns ------------ :class:'cvpy.biomedimage.BiomedImageTable' Examples -------- >>> # Import classes >>> from swat import CAS >>> from cvpy.biomedimage.BiomedImageTable import BiomedImageTable >>> from cvpy.biomedimage.LabelConnectivity import LabelConnectivity >>> ## Connect to CAS >>> s = CAS("example.com", 5570) >>> # Construct table to be passed to the morphological_gradient API >>> image_table = s.CASTable(...) >>> # Construct Biomed object >>> biomed = BiomedImageTable(image_table) >>> # Call the API >>> output_table = biomed.morphological_gradient(kernel_width,...) """ # If output_table_parms is not passed, set it as an empty dict if not output_table_parms: output_table_parms = dict() random_name_generator = RandomNameGenerator() if copy_vars is None: copy_vars_with_biomed_vars = ['_biomedid_', '_biomeddimension_', '_sliceindex_'] else: copy_vars_with_biomed_vars = [] copy_vars_with_biomed_vars += copy_vars if '_biomedid_' not in copy_vars_with_biomed_vars: copy_vars_with_biomed_vars.append('_biomedid_') if '_biomeddimension_' not in copy_vars_with_biomed_vars: copy_vars_with_biomed_vars.append('_biomeddimension_') if '_sliceindex_' not in copy_vars_with_biomed_vars: copy_vars_with_biomed_vars.append('_sliceindex_') # Export images from 3d to 2d name_image_2d = random_name_generator.generate_name() image_2d = self.connection.CASTable(name=name_image_2d, replace=True) self.connection.biomedimage.processbiomedimages(images=dict(table=self.table), steps=[dict(stepparameters=dict(steptype='export'))], casout=image_2d, copyvars=copy_vars) # Compute morphological gradient of 2d images name_morph_grad_2d = random_name_generator.generate_name() morph_grad_2d = self.connection.CASTable(name=name_morph_grad_2d, replace=True) self.connection.image.processImages(table=image_2d, steps=[ {'options': { 'functiontype': 'MORPHOLOGY', 'method': 'GRADIENT', 'kernelWidth': kernel_width, 'kernelHeight': kernel_height, }}], casout=morph_grad_2d, copyvars=copy_vars_with_biomed_vars) # Import gradient images from 2d to 3d if 'name' not in output_table_parms: output_table_parms['name'] = random_name_generator.generate_name() morph_grad_3d = self.connection.CASTable(**output_table_parms) self.connection.biomedimage.processbiomedimages(images=dict(table={'name': name_morph_grad_2d}), steps=[dict( stepparameters=dict(steptype='import', targetdimension=3))], casout=morph_grad_3d, copyvars=copy_vars) # Delete our temporary tables self.connection.table.dropTable(image_2d) self.connection.table.dropTable(morph_grad_2d) return BiomedImageTable(morph_grad_3d)
/sas-cvpy-1.1.1.tar.gz/sas-cvpy-1.1.1/cvpy/biomedimage/BiomedImageTable.py
0.934215
0.530784
BiomedImageTable.py
pypi
import sys import struct import numpy as np from warnings import warn from swat.cas import CAS from cvpy.base.ImageDataType import ImageDataType class ImageUtils(object): @staticmethod def __reverse(a, axis=0): ''' Reverses a numpy array along a given axis. Parameters ---------- a : :class:`numpy.ndarray` Specifies the array to be reversed. axis : int Specifies the axis along which the array should be reversed. Returns ------- :class:`numpy.ndarray` ''' idx = [slice(None)] * len(a.shape) idx[axis] = slice(None, None, -1) return a[tuple(idx)] @staticmethod def get_image_array_from_row(image_binary, dimension, resolution, myformat, channel_count=1): """ Get a 3D image from a row. Parameters ---------- image_binary : :class:`bytes` Specifies the image binary. dimension : :class:`int` Specifies the dimension of the image. resolution : :class:`numpy.ndarray` Specifies the resolution of the image. myformat : :class:`str` Specifies the format of the image. channel_count : :class:`int`, optional Specifies the number of channels that the image has. Returns ------- :class:`numpy.ndarray` """ num_cells = np.prod(resolution) if myformat == '32S': image_array = np.array(struct.unpack('=%si' % num_cells, image_binary[0:4 * num_cells])).astype(np.int32) image_array = np.reshape(image_array, resolution) elif myformat == '32F': image_array = np.array(struct.unpack('=%sf' % num_cells, image_binary[0:4 * num_cells])).astype(np.float32) image_array = np.reshape(image_array, resolution) elif myformat == '64F': image_array = np.array(struct.unpack('=%sd' % num_cells, image_binary[0:8 * num_cells])).astype(np.float64) image_array = np.reshape(image_array, resolution) elif myformat == '64U': image_array = np.array(struct.unpack('=%sQ' % num_cells, image_binary[0:8 * num_cells])).astype(np.uint64) image_array = np.reshape(image_array, resolution) elif myformat == '16S': image_array = np.array(struct.unpack('=%sh' % num_cells, image_binary[0:2 * num_cells])).astype(np.int16) image_array = np.reshape(image_array, resolution) elif myformat == '16U': image_array = np.array(struct.unpack('=%sH' % num_cells, image_binary[0:2 * num_cells])).astype(np.uint16) image_array = np.reshape(image_array, resolution) elif myformat == '8U' and channel_count == 3: image_array = np.array(bytearray(image_binary[0:(num_cells * 3)])).astype(np.uint8) image_array = np.reshape(image_array, (resolution[0], resolution[1], 3))[:, :, 0:3] image_array = ImageUtils.__reverse(image_array, 2) elif myformat == '8S': image_array = np.array(struct.unpack('=%sb' % num_cells, image_binary[0:num_cells])).astype(np.int8) image_array = np.reshape(image_array, resolution) elif myformat == '8U': image_array = np.array(struct.unpack('=%sB' % num_cells, image_binary[0:num_cells])).astype(np.uint8) image_array = np.reshape(image_array, resolution) else: image_array = np.array(bytearray(image_binary)).astype(np.uint8) image_array = np.reshape(image_array, (resolution[0], resolution[1], 3)) image_array = ImageUtils.__reverse(image_array, 2) return image_array @staticmethod def get_image_array(image_binaries, dimensions, resolutions, formats, n, channel_count=1): """ Get an image from a fetched array. Parameters ---------- image_binaries : :class:`pandas.Series` Specifies the image binaries dimensions : :class:`pandas.Series` Specifies the dimensions of the images. resolutions : :class:`pandas.Series` Specifies the resolutions of the images. formats : :class:`pandas.Series` Specifies the image formats. n : :class:`int` Specifies the dimension index. channel_count : :class:`int`, optional Specifies the number of channels that the image has. Returns ------- :class:`numpy.ndarray` """ dimension = int(dimensions[n]) resolution = np.array(struct.unpack('=%sq' % dimension, resolutions[n][0:dimension * 8])) resolution = resolution[::-1] myformat = formats[n] return ImageUtils.get_image_array_from_row(image_binaries[n], dimension, resolution, myformat, channel_count) @staticmethod def convert_to_CAS_column(s): """ Convert a string to CAS column name. Parameters ---------- s : :class:`str` Specifies the column name to be converted. Returns ------- :class:`str` """ s = str.replace(str.replace(s, '{', '_'), '}', '_') return '_' + s + '_' @staticmethod def get_image_array_const_ctype(image_binaries, dimensions, resolutions, ctype, n, channel_count=1): """ Get an image array with a constant channel type from a CAS table. Parameters ---------- image_binaries : :class:`pandas.Series` Specifies the image binaries. dimensions : :class:`pandas.Series` Specifies the dimensions of the images. resolutions : :class:`pandas.Series` Specifies the resolutions of the images. ctype : :class:`str` Specifies the channel type of the image. n : :class:`int` Specifies the dimension index. channel_count : :class:`int` Specifies the channel count of the image. Returns ------- :class:`numpy.ndarray` """ dimension = int(dimensions[n]) resolution = np.array(struct.unpack('=%sq' % dimension, resolutions[n][0:dimension * 8])) resolution = resolution[::-1] num_cells = np.prod(resolution) return ImageUtils.get_image_array_from_row(image_binaries[n], dimension, resolution, ctype, channel_count) @staticmethod def convert_wide_to_numpy(wide_image) -> np.ndarray: """ Convert a wide image to a numpy image array. Parameters ---------- wide_image: bytes buffer Specifies the wide image byte buffer Returns ------- numpy.ndarray """ # Get the width and height from the input buffer width = np.frombuffer(wide_image[8:2 * 8], dtype=np.int64)[0] height = np.frombuffer(wide_image[2 * 8:3 * 8], dtype=np.int64)[0] data_type = np.frombuffer(wide_image[3 * 8:4 * 8], dtype=np.int64)[0] # Get the number of channels and the numpy data type if data_type == ImageDataType.CV_8UC1.value: num_channels = 1 np_data_type = np.uint8 elif data_type == ImageDataType.CV_8UC3.value: num_channels = 3 np_data_type = np.uint8 elif data_type == ImageDataType.CV_32FC1.value: num_channels = 1 np_data_type = np.float32 elif data_type == ImageDataType.CV_32FC3.value: num_channels = 3 np_data_type = np.float32 elif data_type == ImageDataType.CV_64FC1.value: num_channels = 1 np_data_type = np.float64 elif data_type == ImageDataType.CV_64FC3.value: num_channels = 3 np_data_type = np.float64 # Return the numpy array return np.frombuffer(wide_image[4 * 8:], dtype=np_data_type).reshape(height, width, num_channels) @staticmethod def convert_numpy_to_wide(numpy_array: np.ndarray) -> bytes: """ Convert a numpy image array to a wide image. Parameters ---------- numpy_array: np.ndarray Specifies the numpy image array. Returns ------- bytes """ # Get the width, height, number of channels, and data type from the numpy image array (width, height, num_channels) = numpy_array.shape np_data_type = numpy_array.dtype # Assign the appropriate ImageDataType if num_channels == 1 and np_data_type == np.dtype(np.uint8): data_type = ImageDataType.CV_8UC1.value elif num_channels == 3 and np_data_type == np.dtype(np.uint8): data_type = ImageDataType.CV_8UC3.value elif num_channels == 1 and np_data_type == np.dtype(np.float32): data_type = ImageDataType.CV_32FC1.value elif num_channels == 3 and np_data_type == np.dtype(np.float32): data_type = ImageDataType.CV_32FC3.value elif num_channels == 1 and np_data_type == np.dtype(np.float64): data_type = ImageDataType.CV_64FC1.value elif num_channels == 3 and np_data_type == np.dtype(np.float64): data_type = ImageDataType.CV_64FC3.value # Create the wide image wide_prefix = np.array([-1, height, width, data_type], dtype=np.int64) return wide_prefix.tobytes() + numpy_array.tobytes()
/sas-cvpy-1.1.1.tar.gz/sas-cvpy-1.1.1/cvpy/utils/ImageUtils.py
0.845145
0.599632
ImageUtils.py
pypi
from typing import Callable import numpy as np from swat.cas import CAS from cvpy.base.CASServerMode import CASServerMode from cvpy.base.Statistic import Statistic from cvpy.base.CASThreadTunerResults import CASThreadTunerResults class CASThreadTuner(object): @staticmethod def tune_thread_count(action_function: Callable[[CAS, np.ndarray, np.ndarray], float], setup_function: Callable[[], CAS], teardown_function: Callable[[CAS], None], iterations: int = 5, controller_thread_range: range = range(4, 65, 4), worker_thread_range: range = range(4, 65, 4), objective_measure: Statistic = Statistic.MEAN) -> CASThreadTunerResults: ''' Compute the optimal thread count for a given image action. Parameters ---------- action_function : :class:'function' Specifies a user-defined function that calls an image action. setup_function : :class:'function' Specifies a user defined function to set up CAS environment teardown_function : :class:'function' Specifies a user defined function to terminate the CAS session. iterations : :class:'int' Specifies the number of iterations to call action_function for each combination of threads. controller_thread_range : :class:'range' Specifies the range of threads on controller node. worker_thread_range : :class:'range' Specifies the range of threads on each worker node. objective_measure : :class:'enum.EnumMeta' Specifies the objective measure for performance over the given iterations - mean, median, minimum, maximum, stdev. Returns ------- :class: '__main__.CASThreadTunerResults' ''' # Setup function s = setup_function() # SMP if s.serverstatus()['server']['nodes'].values[0] == 1: mode = CASServerMode.SMP # Loop over controller thread range perf_array = np.zeros((len(Statistic), len(controller_thread_range))) for c_thread_idx, c_thread_count in enumerate(controller_thread_range): perf_record = np.zeros(iterations) # Loop over given number of iterations for iteration in range(iterations): perf = action_function(s, c_thread_count, c_thread_count) perf_record[iteration] = perf # perf_array stores the performance statistic perf_array[Statistic.MEAN.value, c_thread_idx] = round(float(np.mean(perf_record)), 4) perf_array[Statistic.MEDIAN.value, c_thread_idx] = round(float(np.median(perf_record)), 4) perf_array[Statistic.MINIMUM.value, c_thread_idx] = round(float(np.amin(perf_record)), 4) perf_array[Statistic.MAXIMUM.value, c_thread_idx] = round(float(np.amax(perf_record)), 4) perf_array[Statistic.STDEV.value, c_thread_idx] = round(float(np.std(perf_record)), 4) else: mode = CASServerMode.MPP # Loop over controller thread range perf_array = np.zeros((len(Statistic), len(controller_thread_range), len(worker_thread_range))) for c_thread_idx, c_thread_count in enumerate(controller_thread_range): # Loop over worker thread range for w_thread_idx, w_thread_count in enumerate(worker_thread_range): perf_record = np.zeros(iterations) # Loop over given number of iterations for iteration in range(iterations): perf = action_function(s, c_thread_count, w_thread_count) perf_record[iteration] = perf # perf_array stores the performance statistic perf_array[Statistic.MEAN.value, c_thread_idx, w_thread_idx] = round(float(np.mean(perf_record)), 4) perf_array[Statistic.MEDIAN.value, c_thread_idx, w_thread_idx] = round( float(np.median(perf_record)), 4) perf_array[Statistic.MINIMUM.value, c_thread_idx, w_thread_idx] = round(float(np.amin(perf_record)), 4) perf_array[Statistic.MAXIMUM.value, c_thread_idx, w_thread_idx] = round(float(np.amax(perf_record)), 4) perf_array[Statistic.STDEV.value, c_thread_idx, w_thread_idx] = round(float(np.std(perf_record)), 4) # Teardown function teardown_function(s) opt_array = perf_array[objective_measure.value] opt_index = np.unravel_index(np.argmin(opt_array, axis=None), opt_array.shape) worker_optimal_count = None if mode == CASServerMode.MPP: worker_optimal_count = worker_thread_range[opt_index[1]] # Return results return CASThreadTunerResults(cas_server_mode=mode, controller_thread_range=controller_thread_range, worker_thread_range=worker_thread_range, objective_measure=objective_measure, controller_optimal_thread_count=controller_thread_range[opt_index[0]], worker_optimal_thread_count=worker_optimal_count, mean_exec_times=perf_array[Statistic.MEAN.value], median_exec_times=perf_array[Statistic.MEDIAN.value], minimum_exec_times=perf_array[Statistic.MINIMUM.value], maximum_exec_times=perf_array[Statistic.MAXIMUM.value], stdev_exec_times=perf_array[Statistic.STDEV.value] )
/sas-cvpy-1.1.1.tar.gz/sas-cvpy-1.1.1/cvpy/utils/CASThreadTuner.py
0.851968
0.280704
CASThreadTuner.py
pypi
from cvpy.annotation.base.Project import Project from cvpy.base.ImageTable import ImageTable class Task(object): def __init__(self, image_table: ImageTable = None, project: Project = None) -> None: self._task_id = None self._project = project self._image_table = image_table self._start_image_id = 0 if image_table: self._image_table_name = image_table.table.to_table_name() self._end_image_id = int(image_table.table.tableinfo().TableInfo.Rows.values[0] - 1) else: self._image_table_name = None self._end_image_id = 0 @property def task_id(self) -> str: return self._task_id @task_id.setter def task_id(self, task_id: str) -> None: self._task_id = task_id @property def start_image_id(self) -> int: return self._start_image_id @start_image_id.setter def start_image_id(self, start_image_id: int) -> None: self._start_image_id = start_image_id @property def end_image_id(self) -> int: return self._end_image_id @end_image_id.setter def end_image_id(self, end_image_id: int) -> None: self._end_image_id = end_image_id @property def image_table(self) -> ImageTable: return self._image_table @image_table.setter def image_table(self, image_table: ImageTable) -> None: self._image_table = image_table @property def image_table_name(self) -> str: return self._image_table_name @image_table_name.setter def image_table_name(self, image_table_name: str) -> None: self._image_table_name = image_table_name @property def project(self) -> Project: return self._project @project.setter def project(self, project: Project) -> None: self._project = project def as_dict(self): """ Creates a dictionary representation of this object. Returns ------- d: A dictionary with all of the properties as keys and the property values as values. The CAS connection is not added in the dictionary. """ d = {} for k, v in vars(self).items(): if isinstance(v, ImageTable): image_table_dict = v.as_dict() del image_table_dict['table'] d[k[1:]] = image_table_dict elif isinstance(v, Project): continue else: d[k[1:]] = v return d @staticmethod def from_dict(object_dict): """ Creates a Task object from a dictionary. Parameters ---------- object_dict: A dictionary with all of the properties as keys and the property values as values. Returns ------- task: A Task object with all of the properties set from the specified dictionary. """ task = Task() task.task_id = object_dict.get('task_id') task.image_table_name = object_dict.get('image_table_name') image_table_json = object_dict.get('image_table') image_table = ImageTable(None, image=image_table_json.get('image'), dimension=image_table_json.get('dimension'), resolution=image_table_json.get('resolution'), imageFormat=image_table_json.get('imageFormat'), path=image_table_json.get('path'), label=image_table_json.get('label'), id=image_table_json.get('id'), size=image_table_json.get('size'), type=image_table_json.get('type')) task.image_table = image_table task.start_image_id = object_dict.get('start_image_id') task.end_image_id = object_dict.get('end_image_id') return task
/sas-cvpy-1.1.1.tar.gz/sas-cvpy-1.1.1/cvpy/annotation/base/Task.py
0.860574
0.274476
Task.py
pypi
from __future__ import annotations import json from typing import List from swat.cas import CAS, CASTable from cvpy.annotation.base.AnnotationLabel import AnnotationLabel from cvpy.annotation.base.AnnotationType import AnnotationType from cvpy.annotation.base.Credentials import Credentials from cvpy.base.ImageTable import ImageTable class Project(object): """ Defines a base class to interface with a project in an annotation tool. The :class:`Project` class has several abstract methods that must be implemented by a subclass. Required abstract methods include: get_annotations, post_images, resume, and save. Parameters ---------- cas_connection: Specifies the CAS connection for this project. url: Specifies the url of the CVAT server for calling the REST APIs. credentials: Specifies the login credentials to connect to the CVAT server. project_name: Specifies name of the project. annotation_type: Specifies the type of the annotation project. labels: Specifies a list of AnnotationLabel objects. """ def __init__(self, cas_connection: CAS = None, url: str = None, credentials: Credentials = None, project_name: str = None, annotation_type: AnnotationType = None, labels: List[AnnotationLabel] = None) -> None: self._cas_connection = cas_connection self._url = url self._credentials = credentials self._project_name = project_name self._annotation_type = annotation_type self._labels = labels self._project_id = None self._tasks = [] self._project_version = None @property def cas_connection(self) -> CAS: return self._cas_connection @cas_connection.setter def cas_connection(self, cas_connection) -> None: self._cas_connection = cas_connection @property def url(self) -> str: return self._url @url.setter def url(self, url: str) -> None: self._url = url @property def credentials(self) -> Credentials: return self._credentials @credentials.setter def credentials(self, credentials: Credentials) -> None: self._credentials = credentials @property def project_name(self): return self._project_name @project_name.setter def project_name(self, project_name: str) -> None: self._project_name = project_name @property def annotation_type(self): return self._annotation_type @annotation_type.setter def annotation_type(self, annotation_type: AnnotationType) -> None: self._annotation_type = annotation_type @property def labels(self) -> List[AnnotationLabel]: return self._labels @labels.setter def labels(self, labels: List[AnnotationLabel]): self._labels = labels @property def project_id(self) -> str: return self._project_id @project_id.setter def project_id(self, project_id: str): self._project_id = project_id @property def tasks(self): return self._tasks @tasks.setter def tasks(self, tasks): self._tasks = tasks @property def project_version(self): return self._project_version @project_version.setter def project_version(self, project_version): self._project_version = project_version def add_task(self, task): self._tasks.append(task) def get_tasks(self): return self._tasks def post_images(self, image_table: ImageTable) -> None: """ Create a CVAT task under the project and upload images from a CAS table to that task. Parameters ---------- image_table: Specifies the input CAS table that contains encoded images to be uploaded. """ raise NotImplementedError def get_annotations(self, annotated_table: CASTable, image_table: ImageTable) -> None: """ Fetch annotations from CVAT that correspond to the images in a CAS table. Parameters ---------- annotated_table: Specifies the output CAS table where the images and the corresponding annotations will be stored. image_table: Specifies the input CAS table that contains encoded images that were used in a call to post_images() on this CVATProject object. """ raise NotImplementedError def save(self, caslib: str, relative_path: str, replace: bool = False) -> None: """ Save an annotation session. Parameters ---------- caslib: Specifies the caslib under which the CAS tables are saved. relative_path: Specifies the path relative to the caslib where the project will be saved. replace: When set to True, the CAS tables are replaced if they are already present in the specified path. """ raise NotImplementedError @staticmethod def resume(project_name: str, cas_connection: CAS, caslib: str, relative_path: str): """ Resume an annotation session. Parameters ---------- cas_session: Specifies the CAS session in which the project will be resumed. caslib: Specifies the caslib under which CAS tables were saved. relative_path: Specifies the path relative to caslib where project was saved. credentials: Specifies the credentials to connect to CVAT server. """ raise NotImplementedError def as_dict(self): """ Creates a dictionary representation of this object. Returns ------- d: A dictionary with all of the properties as keys and the property values as values. The CAS connection is not added in the dictionary. """ d = {} for k, v in vars(self).items(): if isinstance(v, CAS): continue elif isinstance(v, AnnotationType): d[k[1:]] = v.value elif isinstance(v, Credentials): d[k[1:]] = v.as_dict() elif isinstance(v, List): d[k[1:]] = [x.as_dict() for x in v] else: d[k[1:]] = v return d def to_json(self): """ Creates a JSON representation for this project. Returns ------- A JSON string. """ return json.dumps(self.as_dict())
/sas-cvpy-1.1.1.tar.gz/sas-cvpy-1.1.1/cvpy/annotation/base/Project.py
0.934739
0.307226
Project.py
pypi
from pathlib import Path class Credentials(object): """ Construct an object that contains authentication information. The auth_file with a token is recommended for a higher level of security. This auth file must not be readable or writable by the group or others. The file should have a single line with either a token, or comma-separated user and password. If auth_file parameter is not provided, this constructor reads the default auth file ~/.annotation_auth. Parameters ---------- username: Specifies the annotation server user name. password: Specifies the annotation server password. auth_file: Specifies the path to a file with comma separated annotation server user name and password. """ DEFAULT_ANNOTATION_AUTH_FILE = '.annotation_auth' def __init__(self, username: str = None, password: str = None, token: str = None, auth_file: str = None) -> None: self._username = username self._password = password self._auth_file = auth_file self._token = token # If (username and password) or token is provided, then don't read auth_file (default or user provided) if (self._username and self._password) or (self._token): return # Create a path object from auth_file if specified if auth_file: auth_file = Path(auth_file) else: # Check if default .annotation_auth file is present if not username and not password and not auth_file: default_auth_file = Path(Path.home(), Credentials.DEFAULT_ANNOTATION_AUTH_FILE) if default_auth_file.exists(): auth_file = default_auth_file if auth_file: # Read the first line with auth_file.open(mode='r') as fh: line = fh.readline() if line: auth_fields = line.split(',') if len(auth_fields) == 1: # Set token self._token = auth_fields[0].strip() elif len(auth_fields) == 2: # # Set username and password self._username = auth_fields[0].strip() self._password = auth_fields[1].strip() else: raise Exception(f'Invalid annotation server auth file: {auth_file}') @property def username(self) -> str: return self._username @username.setter def username(self, username: str): self._username = username @property def password(self) -> str: return self._password @password.setter def password(self, password: str): self._password = password @property def auth_file(self) -> str: return self._auth_file @auth_file.setter def auth_file(self, auth_file: str): self._auth_file = auth_file @property def token(self) -> str: return self._token @token.setter def token(self, token: str): self._token = token def get_auth_header(self) -> dict: if not self.token: raise Exception('Token is not set.') return dict(Authorization=f'token {self.token}') def as_dict(self) -> dict: """ Creates a dictionary representation of this object. Only the auth_file attribute is kept in the dictionary for security reason. Returns ------- A dictionary with all of the properties as keys and the property values as values. """ return {'auth_file': self.auth_file} @staticmethod def from_dict(object_dict): """ Creates a Credentials object from the dictionary representation. Parameters ---------- object_dict: A dictionary with all of the properties as keys and the property values as values. Returns ------- A Credentials object. """ return Credentials(auth_file=object_dict.get('auth_file'))
/sas-cvpy-1.1.1.tar.gz/sas-cvpy-1.1.1/cvpy/annotation/base/Credentials.py
0.891593
0.349838
Credentials.py
pypi
from swat.cas.table import CASTable from .images import ImageTable from .utils import random_name def two_way_split(tbl, test_rate=20, stratify=True, im_table=True, stratify_by='_label_', image_col='_image_', train_name=None, test_name=None, columns=None, **kwargs): ''' Split image data into training and testing sets Parameters ---------- tbl : CASTable The CAS table to split test_rate : double, optional Specifies the proportion of the testing data set, e.g. 20 mean 20% of the data will be in the testing set. stratify : boolean, optional If True stratify the sampling by the stratify_by column name If False do random sampling without stratification im_table : boolean, optional If True outputs are converted to an imageTable If False CASTables are returned with all columns stratify_by : str, optional Specifies the column name to be used while stratifying the input data. image_col : string Name of image column if returning ImageTable train_name : string Specifies the output table name for the training set test_name : string Specifies the output table name for the test set columns : list of column names Specifies the list of columns to be copied over to the resulting tables. **kwargs : keyword arguments, optional Additional keyword arguments to the `sample.stratified` or 'sample.src' actions Returns ------- ( training CASTable, testing CASTable ) ''' if train_name is None: train_tbl_name = random_name('train') elif isinstance(train_name, str): train_tbl_name = train_name else: raise ValueError('train_name must be a string') if test_name is None: test_tbl_name = random_name('test') elif isinstance(test_name, str): test_tbl_name = test_name else: raise ValueError('test_name must be a string') temp_tbl_name = random_name('Temp') tbl._retrieve('loadactionset', actionset='sampling') partind_name = random_name(name='PartInd_', length=2) tbl_columns = tbl.columns.tolist() if stratify: tbl._retrieve('sampling.stratified', output=dict(casout=temp_tbl_name, copyvars='all', partindname=partind_name), samppct=test_rate, samppct2=100 - test_rate, partind=True, table=dict(groupby=stratify_by, **tbl.to_table_params()), **kwargs) else: tbl._retrieve('sampling.srs', output=dict(casout=temp_tbl_name, copyvars='all', partindname=partind_name), samppct=test_rate, samppct2=100 - test_rate, partind=True, table=dict(**tbl.to_table_params()), **kwargs) test = tbl._retrieve('table.partition', table=dict(where='{}=1'.format(partind_name), name=temp_tbl_name, Vars=tbl_columns), casout=dict(name=test_tbl_name, replace=True, blocksize=128))['casTable'] train = tbl._retrieve('table.partition', table=dict(where='{}=2'.format(partind_name), name=temp_tbl_name, Vars=tbl_columns), casout=dict(name=train_tbl_name, replace=True, blocksize=128))['casTable'] tbl._retrieve('table.dropTable', name=temp_tbl_name) if im_table: train_im = ImageTable.from_table(train, label_col=stratify_by, image_col=image_col, columns=columns, casout=dict(name=train.name)) test_im = ImageTable.from_table(test, label_col=stratify_by, image_col=image_col, columns=columns, casout=dict(name=test.name)) return train_im, test_im else: return train, test def three_way_split(tbl, valid_rate=20, test_rate=20, stratify=True, im_table=True, stratify_by='_label_', image_col='_image_', train_name=None, valid_name=None, test_name=None, **kwargs): ''' Split image data into training and testing sets Parameters ---------- tbl : CASTable The CAS table to split valid_rate : double, optional Specifies the proportion of the validation data set, e.g. 20 mean 20% of the images will be in the validation set. test_rate : double, optional Specifies the proportion of the testing data set, e.g. 20 mean 20% of the images will be in the testing set. Note: the total of valid_rate and test_rate cannot be exceed 100 stratify : boolean, optional If True stratify the sampling by the stratify_by column name If False do random sampling without stratification im_table : boolean, optional If True outputs are converted to an imageTable If False CASTables are returned with all columns stratify_by : string, optional The variable to stratify by image_col : string Name of image column if returning ImageTable train_name : string Specifies the output table name for the training set valid_name : string Specifies the output table name for the validation set test_name : string Specifies the output table name for the test set **kwargs : keyword arguments, optional Additional keyword arguments to the `sample.stratified` or 'sample.srs' actions Returns ------- ( train CASTable, valid CASTable, test CASTable ) ''' if train_name is None: train_tbl_name = random_name('train') elif isinstance(train_name, str): train_tbl_name = train_name else: raise ValueError('train_name must be a string') if valid_name is None: valid_tbl_name = random_name('valid') elif isinstance(test_name, str): valid_tbl_name = valid_name else: raise ValueError('test_name must be a string') if test_name is None: test_tbl_name = random_name('test') elif isinstance(test_name, str): test_tbl_name = test_name else: raise ValueError('test_name must be a string') temp_tbl_name = random_name('Temp') tbl._retrieve('loadactionset', actionset='sampling') partind_name = random_name(name='part_ind_', length=2) tbl_columns = tbl.columns.tolist() if stratify: tbl._retrieve('sampling.stratified', output=dict(casout=temp_tbl_name, copyvars='all', partindname=partind_name), samppct=valid_rate, samppct2=test_rate, partind=True, table=dict(groupby=stratify_by, **tbl.to_table_params()), **kwargs) else: tbl._retrieve('sampling.srs', output=dict(casout=temp_tbl_name, copyvars='all', partindname=partind_name), samppct=valid_rate, samppct2=test_rate, partind=True, table=dict(**tbl.to_table_params()), **kwargs) train = tbl._retrieve('table.partition', table=dict(where='{}=0'.format(partind_name), name=temp_tbl_name, Vars=tbl_columns), casout=dict(name=train_tbl_name, replace=True))['casTable'] valid = tbl._retrieve('table.partition', table=dict(where='{}=1'.format(partind_name), name=temp_tbl_name, Vars=tbl_columns), casout=dict(name=valid_tbl_name, replace=True))['casTable'] test = tbl._retrieve('table.partition', table=dict(where='{}=2'.format(partind_name), name=temp_tbl_name, Vars=tbl_columns), casout=dict(name=test_tbl_name, replace=True))['casTable'] tbl._retrieve('table.dropTable', name=temp_tbl_name) if im_table: train_im = ImageTable.from_table(train, label_col=stratify_by, image_col=image_col, casout=dict(name=train.name)) valid_im = ImageTable.from_table(valid, label_col=stratify_by, image_col=image_col, casout=dict(name=valid.name)) test_im = ImageTable.from_table(test, label_col=stratify_by, image_col=image_col, casout=dict(name=test.name)) return train_im, valid_im, test_im else: return train, valid, test
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/splitting.py
0.838349
0.466116
splitting.py
pypi
import math from dlpy.utils import DLPyDict class _LRScheduler(DLPyDict): """ Learning rate scheduler Parameters ---------- learning_rate_policy : string, optional Specifies the learning rate policy for the deep learning algorithm. Valid Values: FIXED, STEP, POLY, INV, MULTISTEP learning_rate : double, optional Specifies the learning rate for the deep learning algorithm. gamma : double, optional Specifies the gamma for the learning rate policy. step_size : int, optional Specifies the step size when the learning rate policy is set to STEP. power : double, optional Specifies the power for the learning rate policy. steps : list-of-ints, optional specifies a list of epoch counts. When the current epoch matches one of the specified steps, the learning rate is multiplied by the value of the gamma parameter. For example, if you specify {5, 9, 13}, then the learning rate is multiplied by gamma after the fifth, ninth, and thirteenth epochs. fcmp_learning_rate : string, optional specifies the FCMP learning rate function. Returns ------- :class:`_LRScheduler` """ def __init__(self, learning_rate_policy=None, learning_rate=None, gamma=None, steps=None, step_size=None, power=None, fcmp_learning_rate=None): super(_LRScheduler, self).__init__(learning_rate_policy=learning_rate_policy, learning_rate=learning_rate, gamma=gamma, steps=steps, step_size=step_size, power=power, fcmp_learning_rate=fcmp_learning_rate) class FCMPLR(_LRScheduler): """ FCMP learning rate scheduler. Customize you own defined learning rate policy. For more details, please check one example at: examples/learning_rate_policy/Define_Learning_Rate_Policy.ipynb. Parameters ---------- conn : CAS Specifies the CAS connection object. fcmp_learning_rate : string specifies the FCMP learning rate function. learning_rate : double, optional Specifies the initial learning rate. gamma : double, optional Specifies the gamma for the learning rate policy. step_size : int, optional Specifies the step size when the learning rate policy is set to STEP. Returns ------- :class:`FCMPLR` """ def __init__(self, conn, fcmp_learning_rate, learning_rate=0.001, gamma=0.1, step_size=10): if not conn.has_actionset('fcmpact'): conn.loadactionset(actionSet='fcmpact', _messagelevel='error') active_caslib_name = conn.caslibinfo(active=True).CASLibInfo.loc[0]['Name'] active_caslib_name = 'CASUSER' if active_caslib_name.startswith('CASUSER(') else active_caslib_name conn.sessionProp.setsessopt(cmplib=active_caslib_name+'.'+fcmp_learning_rate) super(FCMPLR, self).__init__(fcmp_learning_rate=fcmp_learning_rate, learning_rate=learning_rate, gamma=gamma, step_size=step_size) class FixedLR(_LRScheduler): """ Fixed learning rate scheduler Parameters ---------- learning_rate : double, optional Specifies the learning rate for the deep learning algorithm. Returns ------- :class:`FixedLR` """ def __init__(self, learning_rate=0.001): _LRScheduler.__init__(self, learning_rate_policy='FIXED', learning_rate=learning_rate) class StepLR(_LRScheduler): """ Step learning rate scheduler The learning rate is reduced by a factor(gamma) at certain intervals(step_size) Example: # reduce learning rate every 2 epochs lr_scheduler = StepLR(learning_rate=0.0001, gamma=0.1, step_size=2) solver = MomentumSolver(lr_scheduler = lr_scheduler, clip_grad_max = 100, clip_grad_min = -100) Parameters ---------- learning_rate : double, optional Specifies the initial learning rate. gamma : double, optional Specifies the gamma for the learning rate policy. step_size : int, optional Specifies the step size when the learning rate policy is set to STEP. Returns ------- :class:`StepLR` """ def __init__(self, learning_rate=0.001, gamma=0.1, step_size=10): _LRScheduler.__init__(self, learning_rate_policy='STEP', learning_rate=learning_rate, gamma=gamma, step_size=step_size) class MultiStepLR(_LRScheduler): """ Multiple steps learning rate scheduler The initial learning rate is decayed by gamma once the number of epoch reaches one of the steps. Example: # reduce learning rate by 0.1 at 20th, 50th, 80th epochs lr_scheduler = MultiStepLR(learning_rate=0.0001, gamma=0.1, steps=[20, 50, 80]) solver = MomentumSolver(lr_scheduler = lr_scheduler, clip_grad_max = 100, clip_grad_min = -100) Parameters ---------- learning_rate : double, optional Specifies the initial learning rate. gamma : double, optional Specifies the gamma for the learning rate policy. steps : list-of-ints, optional specifies a list of epoch counts. When the current epoch matches one of the specified steps, the learning rate is multiplied by the value of the gamma parameter. For example, if you specify {5, 9, 13}, then the learning rate is multiplied by gamma after the fifth, ninth, and thirteenth epochs. Returns ------- :class:`MultiStepLR` """ def __init__(self, learning_rate, gamma, steps): _LRScheduler.__init__(self, learning_rate_policy='MULTISTEP', learning_rate=learning_rate, gamma=gamma, steps=steps) class PolynomialLR(_LRScheduler): """ Polynomial learning rate scheduler Applies a polynomial decay to the learning rate calculated by: lr = initial_lr * (1 −iter / maxiter ) ^ power Parameters ---------- learning_rate : double, optional Specifies the initial learning rate. power : double, optional Specifies the power for the learning rate policy. Returns ------- :class:`PolynomialLR` """ def __init__(self, learning_rate, power): _LRScheduler.__init__(self, learning_rate_policy='POLY', learning_rate=learning_rate, power=power) class ReduceLROnPlateau(FCMPLR): """ Reduce learning rate on plateau learning rate scheduler Reduce learning rate when loss has stopped improving for a certain number of epochs(patience). Example: lr_scheduler = ReduceLROnPlateau(conn=sess, cool_down_iters=2, gamma=0.1, learning_rate=0.01, patience=3) solver = MomentumSolver(lr_scheduler = lr_scheduler, clip_grad_max = 100, clip_grad_min = -100) Parameters ---------- conn : CAS Specifies the CAS connection object. learning_rate : double, optional Specifies the initial learning rate. gamma : double, optional Specifies the gamma for the learning rate policy. cool_down_iters : int, optional Specifies number of iterations to wait before resuming normal operation after lr has been reduced. patience : int, optional Specifies number of epochs with no improvement after which learning rate will be reduced. Returns ------- :class:`ReduceLROnPlateau` """ def __init__(self, conn, learning_rate, gamma=0.1, cool_down_iters=10, patience=10): super(ReduceLROnPlateau, self).__init__(conn, learning_rate=learning_rate, gamma=gamma, fcmp_learning_rate='reduce_lr_on_plateau') conn.addRoutines( routineCode=''' function reduce_lr_on_plateau(rate, initRate, gamma, loss[*]); len = dim(loss); temp_rate = initRate; cool_down_counter = {0}; best = loss[1]; do i=1 to len; if loss[i] < best then do; best = loss[i]; bad_epoch = 0; end; else bad_epoch = bad_epoch + 1; if cool_down_counter > 0 then do; cool_down_counter = cool_down_counter - 1; bad_epoch = 0; end; if bad_epoch > {1} then do; temp_rate = temp_rate * gamma; cool_down_counter = {0}; bad_epoch = 0; end; end; rate = temp_rate; put rate=; return(rate); endsub; '''.format(cool_down_iters, patience), package='pkg', funcTable=dict(name='reduce_lr_on_plateau', replace=1) ) class CyclicLR(FCMPLR): """ Cyclic learning rate scheduler The policy cycles the learning rate between two boundaries[learning_rate, max_lr] with a constant frequency which can be adjusted by factor. The learning rate changes after every batch. batch_size and data are necessary to determine how many batches an epoch requires. Example: lr_scheduler = CyclicLR(conn=sess, data=my_images, max_lr=0.01, batch_size=1, factor=2, learning_rate=0.0001) solver = MomentumSolver(lr_scheduler = lr_scheduler, clip_grad_max = 100, clip_grad_min = -100) Parameters ---------- conn : CAS Specifies the CAS connection object. data : string or CASTable Specifies the data for training. batch_size : int Specifies the batch size equal to product of mini_batch_size, n_threads and number of workers. factor : int Specifies the number of epochs within one half of a cycle length learning_rate : double Specifies the initial learning rate that is smaller than max_lr. max_lr : double Specifies the highest learning rate. Returns ------- :class:`CyclicLR` References ---------- https://arxiv.org/pdf/1506.01186.pdf """ def __init__(self, conn, data, batch_size, factor, learning_rate, max_lr): super(CyclicLR, self).__init__(conn, learning_rate=learning_rate, fcmp_learning_rate='cyclic_lr') num_batch_per_epoch = math.ceil(conn.numrows(data).numrows / batch_size) step_size = int(num_batch_per_epoch * factor) conn.addRoutines( routineCode=''' function cyclic_lr(rate, iterNum, batch, initRate); batch_cum = {0} * iterNum + batch; cycle = floor(batch_cum / (2 * {1}) + 1); x = abs(batch_cum / {1} - 2 * cycle + 1); rate = initRate + ({2} - initRate) * max(0, 1-x); return(rate); endsub; '''.format(num_batch_per_epoch, step_size, max_lr), package='pkg', funcTable=dict(name='cyclic_lr', replace=1) )
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/lr_scheduler.py
0.919917
0.749706
lr_scheduler.py
pypi
from __future__ import (print_function, division, absolute_import, unicode_literals) from swat.cas.table import CASTable from .utils import random_name, get_cas_host_type, char_to_double, int_to_double from dlpy.utils import DLPyError from swat.cas import datamsghandlers import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings import datetime import numbers import re import swat def plot_timeseries(tbl, timeid, timeseries, figure=None, groupid=None, start_time=None, end_time=None, xlim=None, ylim=None, xlabel=None, ylabel=None, xdate_format=None, title=None, figsize=None, fontsize_spec=None, **kwargs): ''' Create an timeseries line plot from a CASTable or pandas DataFrame Parameters ---------- tbl : :class:`CASTable` or :class:`pandas.DataFrame` or :class:`pandas.Series` The input table for the plot. If it is CASTable, it will be fetched to the client. If it is pandas.Series, the index name will become timeid, the series name will become timeseries. timeid : str The name of the timeid variable. It will be the value to be used in the x-axis. timeseries : str The name of the column contains the timeseries value. It will be the value to be used in the y-axis. figure : two-element-tuple, optional The tuple must be in the form (:class:`matplotlib.figure.Figure`, :class:`matplotlib.axes.Axes`). These are the figure and axes that the user wants to plot on. It can be used to plot new timeseries plot on pre-existing figures. Default: None groupid : dict, optional It is in the format {column1 : value1, column2 : value2, ...}. It is used to plot subset of the data where column1 = value1 and column2 = value2, etc. Default: None, which means do not subset the data. start_time : :class:`datetime.datetime` or :class:`datetime.date`, optional The start time of the plotted timeseries. Default: None, which means the plot starts at the beginning of the timeseries. end_time : :class:`datetime.datetime` or :class:`datetime.date`, optional The end time of the plotted timeseries. Default: None, which means the plot ends at the end of the timeseries. xlim : tuple, optional Set the data limits for the x-axis. Default: None ylim : tuple, optional Set the data limits for the y-axis. Default: None xlabel : string, optional Set the label for the x-axis. ylabel : string, optional Set the label for the y-axis. xdate_format : string, optional If the x-axis represents date or datetime, this is the date or datetime format string. (e.g. '%Y-%m-%d' is the format of 2000-03-10, refer to documentation for :meth:`datetime.datetime.strftime`) Default: None title : string, optional Set the title of the figure. Default: None figsize : tuple, optional The size of the figure. Default: None fontsize_spec : dict, optional It specifies the fontsize for 'xlabel', 'ylabel', 'xtick', 'ytick', 'legend' and 'title'. (e.g. {'xlabel':14, 'ylabel':14}). If None, and figure is specified, then it will take from provided figure object. Otherwise, it will take the default fontsize, which are {'xlabel':16, 'ylabel':16, 'xtick':14, 'ytick':14, 'legend':14, 'title':20} Default: None `**kwargs` : keyword arguments, optional Options to pass to matplotlib plotting method. Returns ------- (:class:`matplotlib.figure.Figure`, :class:`matplotlib.axes.Axes`) ''' default_fontsize_spec = {'xlabel': 16, 'ylabel': 16, 'xtick': 14, 'ytick': 14, 'legend': 14, 'title': 20} if figure is None: fig, ax = plt.subplots(1, 1, figsize=figsize) if fontsize_spec is not None: default_fontsize_spec.update(fontsize_spec) fontsize_spec = default_fontsize_spec else: fig, ax = figure if fontsize_spec is None: fontsize_spec = {} if 'legend' not in fontsize_spec.keys(): fontsize_spec['legend'] = default_fontsize_spec['legend'] if isinstance(tbl, CASTable): if groupid is None: tbl = tbl.to_frame() else: where_clause_list = [] for gid in groupid.keys(): where_clause_list.append(gid + '=' + str(groupid[gid])) where_clause = ' and '.join(where_clause_list) tbl = tbl.query(where_clause) tbl = tbl.to_frame() else: if isinstance(tbl, pd.Series): timeseries = tbl.name tbl = tbl.reset_index() timeid = [colname for colname in tbl.columns if colname != timeseries][0] if groupid is not None: for gid in groupid.keys(): tbl = tbl.loc[tbl[gid] == groupid[gid]] if not (np.issubdtype(tbl[timeid].dtype, np.integer) or np.issubdtype(tbl[timeid].dtype, np.floating)): tbl[timeid] = pd.to_datetime(tbl[timeid]) fig.autofmt_xdate() if xdate_format is not None: import matplotlib.dates as mdates xfmt = mdates.DateFormatter(xdate_format) ax.xaxis.set_major_formatter(xfmt) if start_time is not None: if isinstance(start_time, datetime.date): start_time = pd.Timestamp(start_time) tbl = tbl.loc[tbl[timeid] >= start_time] if end_time is not None: if isinstance(start_time, datetime.date): end_time = pd.Timestamp(end_time) tbl = tbl.loc[tbl[timeid] <= end_time] tbl = tbl.sort_values(timeid) ax.plot(tbl[timeid], tbl[timeseries], **kwargs) if xlabel is not None: if 'xlabel' in fontsize_spec.keys(): ax.set_xlabel(xlabel, fontsize=fontsize_spec['xlabel']) else: ax.set_xlabel(xlabel) elif figure is not None: if 'xlabel' in fontsize_spec.keys(): ax.set_xlabel(ax.get_xlabel(), fontsize=fontsize_spec['xlabel']) else: ax.set_xlabel(timeid, fontsize=fontsize_spec['xlabel']) if ylabel is not None: if 'ylabel' in fontsize_spec.keys(): ax.set_ylabel(ylabel, fontsize=fontsize_spec['ylabel']) else: ax.set_ylabel(ylabel) elif figure is not None: if 'ylabel' in fontsize_spec.keys(): ax.set_ylabel(ax.get_ylabel(), fontsize=fontsize_spec['ylabel']) else: ax.set_ylabel(timeseries, fontsize=fontsize_spec['ylabel']) if xlim is not None: ax.set_xlim(xlim) if ylim is not None: ax.set_ylim(ylim) if title is not None: if 'title' in fontsize_spec.keys(): ax.set_title(title, fontsize=fontsize_spec['title']) else: ax.set_title(title) elif figure is not None: if 'title' in fontsize_spec.keys(): ax.set_title(ax.get_title(), fontsize=fontsize_spec['title']) ax.legend(loc='best', bbox_to_anchor=(1, 1), prop={'size': fontsize_spec['legend']}) if 'xtick' in fontsize_spec.keys(): ax.get_xaxis().set_tick_params(direction='out', labelsize=fontsize_spec['xtick']) else: ax.get_xaxis().set_tick_params(direction='out') if 'ytick' in fontsize_spec.keys(): ax.get_yaxis().set_tick_params(direction='out', labelsize=fontsize_spec['ytick']) else: ax.get_yaxis().set_tick_params(direction='out') return (fig, ax) class TimeseriesTable(CASTable): ''' Table for preprocessing timeseries It creates an instance of :class:`TimeseriesTable` by loading from files on the server side, or files on the client side, or in memory :class:`CASTable`, :class:`pandas.DataFrame` or :class:`pandas.Series. It then performs inplace timeseries formatting, timeseries accumulation, timeseries subsequence generation, and timeseries partitioning to prepare the timeseries into a format that can be followed by subsequent deep learning models. Parameters ---------- name : string, optional Name of the CAS table timeid : string, optional Specifies the column name for the timeid. Default: None groupby_var : string or list-of-strings, optional The groupby variables. Default: None. sequence_opt : dict, optional Dictionary with keys: 'input_length', 'target_length' and 'token_size'. It will be created by the prepare_subsequences method. Default: None inputs_target : dict, optional Dictionary with keys: 'inputs', 'target'. It will be created by the prepare_subsequences method. Default: None Attributes ---------- timeid_type : string Specifies whether the table uses 'date' or 'datetime' format Returns ------- :class:`TimeseriesTable` ''' running_caslib = None def __init__(self, name, timeid=None, groupby_var=None, sequence_opt=None, inputs_target=None, target=None, autoregressive_sequence=None, acc_interval=None, **table_params): CASTable.__init__(self, name, **table_params) self.timeid = timeid self.groupby_var = groupby_var self.sequence_opt = sequence_opt self.inputs_target = inputs_target self.target = target self.autoregressive_sequence = autoregressive_sequence self.acc_interval = acc_interval @classmethod def from_table(cls, tbl, columns=None, casout=None): ''' Create an TimeseriesTable from a CASTable Parameters ---------- tbl : :class:`CASTable` The CASTable object to use as the source. columns : list-of-strings, optional Columns to keep when loading the data. None means it will include all the columns from the source. Empty list means include no column, which will generate empty data. Default: None casout : dict or :class:`CASTable`, optional if it is dict, it specifies the output CASTable parameters. if it is CASTable, it is the CASTable that will be overwritten. None means a new CASTable with random name will be generated. Default: None Returns ------- :class:`TimeseriesTable` ''' input_tbl_params = tbl.to_outtable_params() input_tbl_name = input_tbl_params['name'] conn = tbl.get_connection() if casout is None: casout_params = {} elif isinstance(casout, CASTable): casout_params = casout.to_outtable_params() elif isinstance(casout, dict): casout_params = casout if 'name' not in casout_params: casout_params['name'] = random_name('ts', 4) output_tbl_name = casout_params['name'] if columns is None: keep_col_sascode = ''' data {0}; set {1}; run; '''.format(output_tbl_name, input_tbl_name) conn.retrieve('dataStep.runCode', _messagelevel='error', code=keep_col_sascode) else: if not isinstance(columns, list): columns = [columns] keepcol = ' '.join(columns) keep_col_sascode = ''' data {0}; set {1}; keep {2}; run; '''.format(output_tbl_name, input_tbl_name, keepcol) conn.retrieve('dataStep.runCode', _messagelevel='error', code=keep_col_sascode) out = cls(**casout_params) out.set_connection(conn) return out @classmethod def from_pandas(cls, conn, pandas_df, casout=None): ''' Create an TimeseriesTable from a pandas DataFrame or Series Parameters ---------- conn : CAS The CAS connection object pandas_df : :class:`pandas.DataFrame` or :class:`pandas.Series` The pandas dataframe or series to use as the source. casout : dict or :class:`CASTable`, optional if it is dict, it specifies the output CASTable parameters. if it is CASTable, it is the CASTable that will be overwritten. None means a new CASTable with random name will be generated. Default: None Returns ------- :class:`TimeseriesTable` ''' if isinstance(pandas_df, pd.Series): pandas_df = pandas_df.reset_index() if casout is None: casout_params = {} elif isinstance(casout, CASTable): casout_params = casout.to_outtable_params() elif isinstance(casout, dict): casout_params = casout if 'name' not in casout_params: casout_params['name'] = random_name('ts', 4) output_tbl_name = casout_params['name'] handler = datamsghandlers.PandasDataFrame(pandas_df) conn.addtable(table=output_tbl_name, replace=True, **handler.args.addtable) tbl = conn.CASTable(name=output_tbl_name) return cls.from_table(tbl, columns=None, casout=casout_params) @classmethod def from_localfile(cls, conn, path, columns=None, importoptions=None, casout=None): ''' Create an TimeseriesTable from a file on the client side. Parameters ---------- conn : CAS The CAS connection object path : string The full path to the local file that will be uploaded to the server. columns : list-of-strings, optional Columns to keep when loading the data. None means it will include all the columns from the source. Empty list means to include no column, which will generate empty data. Default: None importoptions : dict, optional Options to import data and upload to the server, such as filetype, delimiter, etc. None means use the default 'auto' method in the importoptions from CAS.upload. Default: None casout : dict or :class:`CASTable`, optional If it is dict, it specifies the output CASTable parameters. If it is CASTable, it is the CASTable that will be overwritten. None means a new CASTable with random name will be generated. Default: None Returns ------- :class:`TimeseriesTable` ''' if casout is None: casout_params = {} elif isinstance(casout, CASTable): casout_params = casout.to_outtable_params() elif isinstance(casout, dict): casout_params = casout if 'name' not in casout_params: casout_params['name'] = random_name('ts', 4) if importoptions is None: importoptions = {} upload_result = conn.upload(path, importoptions=importoptions, casout=casout_params) tbl = conn.CASTable(**casout_params) return cls.from_table(tbl, columns=columns, casout=casout_params) @classmethod def from_serverfile(cls, conn, path, columns=None, caslib=None, importoptions=None, casout=None): ''' Create an TimeseriesTable from a file on the server side Parameters ---------- conn : CAS The CAS connection object path : string The path that the server can access. If the caslib is specified, it is relative path to the file with respect to the caslib. otherwise, it is the full path to the file. columns : list-of-strings, optional columns to keep when loading the data. None means it will include all the columns from the source. Empty list means include no column, which will generate empty data. Default: None caslib : string, optional The name of the caslib which contains the file to be uploaded. Default: None importoptions : dict, optional Options to import data and upload to the server, such as filetype, delimiter, etc. None means use the default 'auto' method in the importoptions from CAS.upload. Default: None casout : dict or :class:`CASTable`, optional If it is dict, it specifies the output CASTable parameters. If it is CASTable, it is the CASTable that will be overwritten. None means a new CASTable with random name will be generated. Default: None Returns ------- :class:`TimeseriesTable` ''' if casout is None: casout_params = {} elif isinstance(casout, CASTable): casout_params = casout.to_outtable_params() elif isinstance(casout, dict): casout_params = casout if 'name' not in casout_params: casout_params['name'] = random_name('ts', 4) if importoptions is None: importoptions = {} if caslib is None: caslib, rest_path = cls.find_file_caslib(conn, path) if caslib is None: server_type = get_cas_host_type(conn).lower() if server_type.startswith("lin") or server_type.startswith("osx"): path_split = path.rsplit("/", 1) else: path_split = path.rsplit("\\", 1) caslib = random_name('Caslib', 6) rt1 = conn.retrieve('addcaslib', _messagelevel='error', name=caslib, path=path_split[0], activeonadd=False, subdirectories=False, datasource={'srctype': 'path'}) if rt1.severity < 2: rt2 = conn.retrieve('table.loadTable', _messagelevel='error', casout=casout_params, caslib=caslib, importoptions=importoptions, path=path_split[1]) if rt2.severity > 1: for msg in rt2.messages: print(msg) raise DLPyError('cannot load files, something is wrong!') else: for msg in rt1.messages: print(msg) raise DLPyError('''cannot create caslib with path:{}, something is wrong!'''.format(path_split[0])) else: rt3 = conn.retrieve('table.loadTable', _messagelevel='error', casout=casout_params, caslib=caslib, importoptions=importoptions, path=rest_path) if rt3.severity > 1: for msg in rt3.messages: print(msg) raise DLPyError('cannot load files, something is wrong!') else: rt4 = conn.retrieve('table.loadTable', _messagelevel='error', casout=casout_params, caslib=caslib, importoptions=importoptions, path=path) if rt4.severity > 1: for msg in rt4.messages: print(msg) raise DLPyError('cannot load files, something is wrong!') tbl = conn.CASTable(**casout_params) return cls.from_table(tbl, columns=columns, casout=casout_params) def timeseries_formatting(self, timeid, timeseries, timeid_informat=None, timeid_format=None, extra_columns=None): ''' Format the TimeseriesTable Format timeid into appropriate format and check and format timeseries columns into numeric columns. Parameters ---------- timeid : string Specifies the column name for the timeid. timeseries : string or list-of-strings Specifies the column name for the timeseries, that will be part of the input or output of the RNN. If str, then it is univariate time series. If list of strings, then it is multivariate timeseries. timeid_informat : string, optional if timeid is in the string format, this is required to parse the timeid column. Default: None timeid_format : string, optional Specifies the SAS format that the timeid column will be stored in after parsing. None means it will be stored in numeric form, not a specific date or datetime format. Default: None extra_columns : string or list-of-strings, optional Specifies the addtional columns to be included. Empty list means to include no extra columns other than timeid and timeseries. if None, all columns are included. Default: None ''' self.timeid = timeid self.timeseries = timeseries self.timeid_format = timeid_format self.timeid_informat = timeid_informat self.extra_columns = extra_columns input_tbl_params = self.to_outtable_params() input_tbl_name = input_tbl_params['name'] conn = self.get_connection() tbl_colinfo = self.columninfo().ColumnInfo if self.timeid_format is None: if self.timeid_informat is None: self.timeid_format = self.timeid_informat elif self.timeid_informat.lower().startswith('anydtdtm'): self.timeid_format = 'DATETIME19.' else: self.timeid_format = self.timeid_informat if (((self.timeid_type not in ['double', 'date', 'datetime']) and (not self.timeid_type.startswith('int'))) and (self.timeid_informat is not None)): fmt_code = ''' data {0}; set {0}(rename=({1}=c_{1})); {1} = input(c_{1},{2}); drop c_{1}; format {1} {3}; run; '''.format(input_tbl_name, self.timeid, self.timeid_informat, self.timeid_format) conn.retrieve('dataStep.runCode', _messagelevel='error', code=fmt_code) elif (((self.timeid_type not in ['double', 'date', 'datetime']) and (not self.timeid_type.startswith('int'))) and (self.timeid_informat is None)): raise ValueError('''timeid variable is not in the numeric format, so timeid_informat is required for parsing the timeid variable. ''') elif (self.timeid_format is not None): fmt_code = ''' data {0}; set {0}; format {1} {2}; run; '''.format(input_tbl_name, self.timeid, self.timeid_format) conn.retrieve('dataStep.runCode', _messagelevel='error', code=fmt_code) else: fmt_code = ''' data {0}; set {0}; run; '''.format(input_tbl_name) conn.retrieve('dataStep.runCode', _messagelevel='error', code=fmt_code) tbl_colinfo = self.columninfo().ColumnInfo if not isinstance(self.timeseries, list): self.timeseries = [self.timeseries] if set(self.timeseries).issubset(tbl_colinfo.Column): char_to_double(conn, tbl_colinfo, input_tbl_name, input_tbl_name, self.timeseries) else: raise ValueError('''One or more variables specified in 'timeseries' do not exist in the input table. ''') if self.extra_columns is not None: if not isinstance(self.extra_columns, list): self.extra_columns = [self.extra_columns] keepcol = [self.timeid] keepcol.extend(self.timeseries + self.extra_columns) keepcol = ' '.join(keepcol) keep_col_sascode = ''' data {0}; set {0}; keep {1}; run; '''.format(input_tbl_name, keepcol) conn.retrieve('dataStep.runCode', _messagelevel='error', code=keep_col_sascode) print('NOTE: Timeseries formatting is completed.') def timeseries_accumlation(self, acc_interval='day', timeid=None, timeseries=None, groupby=None, extra_num_columns=None, default_ts_acc='sum', default_col_acc='avg', acc_method_byvar=None, user_defined_interval=None): ''' Accumulate the TimeseriesTable into regular consecutive intervals Parameters ---------- acc_interval : string, optional The accumulation interval, such as 'year', 'qtr', 'month', 'week', 'day', 'hour', 'minute', 'second'. timeid : string, optional Specifies the column name for the timeid. If None, it will take the timeid specified in timeseries_formatting. Default: None timeseries : string or list-of-strings, optional Specifies the column name for the timeseries, that will be part of the input or output of the RNN. If str, then it is univariate time series. If list of strings, then it is multivariate timeseries. If None, it will take the timeseries specified in timeseries_formatting. Default: None groupby : string or list-of-strings, optional The groupby variables. Default: None extra_num_columns : string or list-of-strings, optional Specifies the addtional numeric columns to be included for accumulation. These columns can include static feature, and might be accumulated differently than the timeseries that will be used in RNN. if None, it means no additional numeric columns will be accumulated for later processing and modeling. Default: None default_ts_acc : string, optional Default accumulation method for timeseries. Default: sum default_col_acc : string, optional Default accumulation method for additional numeric columns Default: avg acc_method_byvar : dict, optional It specifies specific accumulation method for individual columns, if the method is different from the default. It has following structure: {'column1 name': 'accumulation method1', 'column2 name': 'accumulation method2', ...} Default: None user_defined_interval: string, optional Use the user-defined interval to overwrite acc_interval See more details here: https://go.documentation.sas.com/?docsetId=casforecast&docsetTarget=casforecast_tsmodel_syntax04.htm&docsetVersion=8.4 ''' if (timeid is None) and (self.timeid is None): raise DLPyError('''timeid is not specified, consider specifying and formatting it with timeseries_formatting''') elif (timeid is not None) and (timeid != self.timeid): warnings.warn('''timeid has not been formatted by timeseries_formatting, consider reload the data and use timeseries_formatting to format the data, unless the data has already been pre-formatted.''') self.timeid = timeid if timeseries is None: if ((hasattr(self, 'timeseries') and self.timeseries is None) or (not hasattr(self, 'timeseries'))): raise DLPyError('''timeseries is not specified, consider specifying and formatting it with timeseries_formatting''') else: if not isinstance(timeseries, list): timeseries = [timeseries] if ((hasattr(self, 'timeseries') and (self.timeseries is None)) or (not hasattr(self, 'timeseries'))): warnings.warn('''timeseries has not been formatted by timeseries_formatting, consider reload the data and use timeseries_formatting to format the data, unless the data has already been pre-formatted.''') elif not set(timeseries).issubset(self.timeseries): warnings.warn('''timeseries contains variable(s) that has not been formatted by timeseries_formatting, consider reload the data and use timeseries_formatting to format the data, unless the data has already been pre-formatted.''') self.timeseries = timeseries self.groupby_var = groupby self.extra_num_columns = extra_num_columns input_tbl_params = self.to_outtable_params() input_tbl_name = input_tbl_params['name'] conn = self.get_connection() conn.loadactionset('timeData') tbl_colinfo = self.columninfo().ColumnInfo if self.groupby_var is None: self.groupby_var = [] elif not isinstance(self.groupby_var, list): self.groupby_var = [self.groupby_var] if set(self.groupby_var).issubset(tbl_colinfo.Column): int_to_double(conn, tbl_colinfo, input_tbl_name, input_tbl_name, self.groupby_var) else: raise ValueError('''One or more variables specified in 'groupby' do not exist in the input table. ''') tbl_colinfo = self.columninfo().ColumnInfo # Check timeid is in the input columns if self.timeid not in tbl_colinfo.Column.values: raise ValueError('''variable 'timeid' does not exist in input table. ''') # Check timeseries is in the input columns if not isinstance(self.timeseries, list): self.timeseries = [self.timeseries] if not set(self.timeseries).issubset(tbl_colinfo.Column): raise ValueError('''One or more variables specified in 'timeseries' do not exist in the input table. ''') # Check extra_num_columns is in the input columns if self.extra_num_columns is None: self.extra_num_columns = [] elif not isinstance(self.extra_num_columns, list): self.extra_num_columns = [self.extra_num_columns] if not set(self.extra_num_columns).issubset(tbl_colinfo.Column): raise ValueError('''One or more variables specified in 'extra_num_columns' do not exist in the input table. ''') if user_defined_interval: acc_interval = user_defined_interval else: if self.timeid_type == 'datetime': acc_interval = 'dt' + acc_interval elif ((self.timeid_type == 'date') and (acc_interval.lower() in ['hour', 'minute', 'second'])): raise ValueError('''the acc_interval has higher frequency than day, yet the timeid variable is in the date format. ''') self.acc_interval = acc_interval if acc_method_byvar is None: acc_method_byvar = {} serieslist = [] for ts in self.timeseries: if ts in acc_method_byvar.keys(): method_dict = {'acc': acc_method_byvar[ts], 'name': ts} serieslist.append(method_dict) else: method_dict = {'acc': default_ts_acc, 'name': ts} serieslist.append(method_dict) for extra_col in self.extra_num_columns: if extra_col in self.timeseries: warnings.warn(''' columns in extra_num_columns are also found in timeseries, and will be ignored. ''') continue elif extra_col in acc_method_byvar.keys(): method_dict = {'acc': acc_method_byvar[extra_col], 'name': extra_col} serieslist.append(method_dict) else: method_dict = {'acc': default_col_acc, 'name': extra_col} serieslist.append(method_dict) acc_result = conn.retrieve('timedata.timeseries', _messagelevel='error', table={'groupby': self.groupby_var, 'name': input_tbl_name}, series=serieslist, timeid=self.timeid, interval=self.acc_interval, trimid='BOTH', sumout=dict(name=input_tbl_name + '_summary', replace=True), casout=dict(name=input_tbl_name, replace=True)) if self.acc_interval.startswith('dt'): print('NOTE: Timeseries are accumulated to the frequency of {}'.format(self.acc_interval[2:])) else: print('NOTE: Timeseries are accumulated to the frequency of {}'.format(self.acc_interval)) def prepare_subsequences(self, seq_len, target, predictor_timeseries=None, timeid=None, groupby=None, input_length_name='xlen', target_length_name='ylen', missing_handling='drop'): ''' Prepare the subsequences that will be pass into RNN Parameters ---------- seq_len : int subsequence length that will be passed onto RNN. target : string the target variable for RNN. Currenly only support univariate target, so only string is accepted here, not list of strings. predictor_timeseries : string or list-of-strings, optional Timeseries that will be used to predict target. They will be preprocessed into subsequences as well. If None, it will take the target timeseries as the predictor, which corresponds to auto-regressive models. Default: None timeid : string, optional Specifies the column name for the timeid. If None, it will take the timeid specified in timeseries_accumlation. Default: None groupby : string or list-of-strings, optional The groupby variables. if None, it will take the groupby specified in timeseries_accumlation. Default: None input_length_name : string, optional The column name in the CASTable specifying input sequence length. Default: xlen target_length_name : string, optional The column name in the CASTable specifying target sequence length. currently target length only support length 1 for numeric sequence. Default: ylen missing_handling : string, optional How to handle missing value in the subsequences. default: drop ''' tbl_colinfo = self.columninfo().ColumnInfo input_tbl_params = self.to_outtable_params() input_tbl_name = input_tbl_params['name'] conn = self.get_connection() if timeid is not None: self.timeid = timeid elif self.timeid is None: raise ValueError('''timeid is not specified''') if self.timeid not in tbl_colinfo.Column.values: raise ValueError('''timeid does not exist in the input table''') if groupby is not None: self.groupby_var = groupby if self.groupby_var is None: self.groupby_var = [] elif not isinstance(self.groupby_var, list): self.groupby_var = [self.groupby_var] if set(self.groupby_var).issubset(tbl_colinfo.Column): int_to_double(conn, tbl_colinfo, input_tbl_name, input_tbl_name, self.groupby_var) else: raise ValueError('''One or more variables specified in 'groupby' do not exist in the input table. ''') if isinstance(target, list): if len(target) > 1: raise DLPyError('''currently only support univariate target''') else: target = [target] if predictor_timeseries is None: predictor_timeseries = target elif not isinstance(predictor_timeseries, list): predictor_timeseries = [predictor_timeseries] if set(target).issubset(predictor_timeseries): independent_pred = [var for var in predictor_timeseries if var not in target] self.auto_regressive = True else: independent_pred = predictor_timeseries self.auto_regressive = False if not set(target).issubset(tbl_colinfo.Column): raise ValueError('''invalid target variable''') if len(independent_pred) > 0: if not set(independent_pred).issubset(tbl_colinfo.Column): raise ValueError('''columns in predictor_timeseries are absent from the accumulated timeseriest table.''') if self.timeseries is None: warnings.warn('''timeseries has not been formatted by timeseries_formatting, consider reload the data and use timeseries_formatting to format the data, unless the data has already been pre-formatted.''') else: if not set(target).issubset(self.timeseries): warnings.warn('''target is not in pre-formatted timeseries, consider reload the data and use timeseries_formatting to format the data, unless the data has already been pre-formatted.''') if len(independent_pred) > 0: if not set(independent_pred).issubset(self.timeseries): warnings.warn(''' some of predictor_timeseries are not in pre-accumulated timeseries,\n consider reload the data and use timeseries_accumulation to accumulate the data,\n unless the data has already been pre-formatted. ''') self.target = target[0] self.independent_pred = independent_pred self.seq_len = seq_len if self.seq_len < 1: raise ValueError('''RNN sequence length at least need to be 1''') sascode = 'data {0}; set {0}; by {1} {2};'.format( input_tbl_name, ' '.join(self.groupby_var), self.timeid) if self.seq_len > 1: for var in self.independent_pred: sascode += self.create_lags(var, self.seq_len - 1, self.groupby_var) if self.auto_regressive: sascode += self.create_lags(self.target, self.seq_len, self.groupby_var) sascode += '{0} = {1};'.format(input_length_name, self.seq_len) sascode += '{} = 1;'.format(target_length_name) # Currently only support one timestep numeric output. if missing_handling == 'drop': sascode += 'if not cmiss(of _all_) then output {};'.format(input_tbl_name) sascode += 'run;' if len(self.groupby_var) == 0: conn.retrieve('dataStep.runCode', _messagelevel='error', code=sascode, single='Yes') else: conn.retrieve('dataStep.runCode', _messagelevel='error', code=sascode) self.input_vars = [] self.autoregressive_sequence = [] for i in range(self.seq_len): if self.auto_regressive: self.input_vars.append('{0}_lag{1}'.format(self.target, i + 1)) self.autoregressive_sequence.append('{0}_lag{1}'.format(self.target, i + 1)) for var in self.independent_pred: if i == 0: self.input_vars.append(var) else: self.input_vars.append('{0}_lag{1}'.format(var, i)) self.input_vars.reverse() self.autoregressive_sequence.reverse() self.tokensize = len(predictor_timeseries) self.sequence_opt = dict(input_length=input_length_name, target_length=target_length_name, token_size=self.tokensize) self.inputs_target = dict(inputs=self.input_vars, target=self.target) print('NOTE: timeseries subsequences are prepared with subsequence length = {}'.format(seq_len)) @property def timeid_type(self): tbl_colinfo = self.columninfo().ColumnInfo timeid_type = self.identify_coltype(self.timeid, tbl_colinfo) return timeid_type @staticmethod def identify_coltype(col, tbl_colinfo): if col not in tbl_colinfo.Column.values: raise ValueError('''variable {} does not exist in input table. '''.format(col)) if 'Format' in tbl_colinfo.columns: cas_timeid_fmt = tbl_colinfo.Format[tbl_colinfo.Column == col].values[0] else: cas_timeid_fmt = None col_type = tbl_colinfo.Type[tbl_colinfo.Column == col].values[0] if cas_timeid_fmt: for pattern in swat.options.cas.dataset.date_formats: if re.match(r'{}\Z'.format(pattern), cas_timeid_fmt): col_type = 'date' break for pattern in swat.options.cas.dataset.datetime_formats: if re.match(r'{}\Z'.format(pattern), cas_timeid_fmt): if col_type == 'date': raise DLPyError('''{} format in CASTable is ambiguous, and can match both sas date and sas datetime format'''.format(col)) else: col_type = 'datetime' break return col_type def timeseries_partition(self, training_start=None, validation_start=None, testing_start=None, end_time=None, partition_var_name='split_id', traintbl_suffix='train', validtbl_suffix='valid', testtbl_suffix='test'): ''' Split the dataset into training, validation and testing set Parameters ---------- training_start : float or :class:`datetime.datetime` or :class:`datetime.date`, optional The training set starting time stamp. if None, the training set start at the earliest observation record in the table. Default: None validation_start : float or :class:`datetime.datetime` or :class:`datetime.date`, optional The validation set starting time stamp. The training set ends right before it. If None, there is no validation set, and the training set ends right before the start of testing set. Default: None testing_start : float or :class:`datetime.datetime` or :class:`datetime.date`, optional The testing set starting time stamp. The validation set (or training set if validation set is not specified) ends right before it. If None, there is no testing set, and the validation set (or training set if validation set is not set) ends at the end_time. Default: None end_time : float or :class:`datetime.datetime` or :class:`datetime.date`, optional The end time for the table. partition_var_name : string, optional The name of the indicator column that indicates training, testing and validation. Default: 'split_id'. traintbl_suffix : string, optional The suffix name of the CASTable for the training set. Default: 'train' validtbl_suffix : string, optional The suffix name of the CASTable for the validation set. Default: 'valid' testtbl_suffix : string, optional The suffix name of the CASTable for the testing set. Default: 'test' Returns ------- ( training TimeseriesTable, validation TimeseriesTable, testing TimeseriesTable ) ''' self.partition_var_name = partition_var_name conn = self.get_connection() training_start = self.convert_to_sas_time_format(training_start, self.timeid_type) validation_start = self.convert_to_sas_time_format(validation_start, self.timeid_type) testing_start = self.convert_to_sas_time_format(testing_start, self.timeid_type) end_time = self.convert_to_sas_time_format(end_time, self.timeid_type) if testing_start is None: testing_start = end_time test_statement = ';' else: test_statement = self.generate_splitting_code( self.timeid, testing_start, end_time, True, self.partition_var_name, 'test') if validation_start is None: validation_start = testing_start valid_statement = ';' else: if testing_start == end_time: valid_statement = self.generate_splitting_code( self.timeid, validation_start, testing_start, True, self.partition_var_name, 'valid') else: valid_statement = self.generate_splitting_code( self.timeid, validation_start, testing_start, False, self.partition_var_name, 'valid') if validation_start == end_time: train_statement = self.generate_splitting_code( self.timeid, training_start, validation_start, True, self.partition_var_name, 'train') else: train_statement = self.generate_splitting_code( self.timeid, training_start, validation_start, False, self.partition_var_name, 'train') input_tbl_params = self.to_outtable_params() input_tbl_name = input_tbl_params['name'] traintbl_name = '_'.join([input_tbl_name, traintbl_suffix]) validtbl_name = '_'.join([input_tbl_name, validtbl_suffix]) testtbl_name = '_'.join([input_tbl_name, testtbl_suffix]) splitting_code = ''' data {4} {5} {6}; set {0}; {1} {2} {3} if {7} = 'train' then output {4}; if {7} = 'valid' then output {5}; if {7} = 'test' then output {6}; run; '''.format(input_tbl_name, train_statement, valid_statement, test_statement, traintbl_name, validtbl_name, testtbl_name, self.partition_var_name) conn.retrieve('dataStep.runCode', _messagelevel='error', code=splitting_code) train_out = dict(name=traintbl_name, timeid=self.timeid, groupby_var=self.groupby_var, sequence_opt=self.sequence_opt, inputs_target=self.inputs_target, target=self.target, autoregressive_sequence=self.autoregressive_sequence, acc_interval=self.acc_interval) valid_out = dict(name=validtbl_name, timeid=self.timeid, groupby_var=self.groupby_var, sequence_opt=self.sequence_opt, inputs_target=self.inputs_target, target=self.target, autoregressive_sequence=self.autoregressive_sequence, acc_interval=self.acc_interval) test_out = dict(name=testtbl_name, timeid=self.timeid, groupby_var=self.groupby_var, sequence_opt=self.sequence_opt, inputs_target=self.inputs_target, target=self.target, autoregressive_sequence=self.autoregressive_sequence, acc_interval=self.acc_interval) train_out_tbl = TimeseriesTable(**train_out) train_out_tbl.set_connection(conn) valid_out_tbl = TimeseriesTable(**valid_out) valid_out_tbl.set_connection(conn) test_out_tbl = TimeseriesTable(**test_out) test_out_tbl.set_connection(conn) print('NOTE: Training set has {} observations'.format(train_out_tbl.shape[0])) print('NOTE: Validation set has {} observations'.format(valid_out_tbl.shape[0])) print('NOTE: Testing set has {} observations'.format(test_out_tbl.shape[0])) return train_out_tbl, valid_out_tbl, test_out_tbl @staticmethod def generate_splitting_code(timeid, start, end, right_inclusive, partition_var_name, partition_val): if (start is None) and (end is not None): if right_inclusive: statement = '''if {0} <= {1} then {2} = '{3}';'''.format( timeid, end, partition_var_name, partition_val) else: statement = '''if {0} < {1} then {2} = '{3}';'''.format( timeid, end, partition_var_name, partition_val) elif (start is not None) and (end is None): statement = '''if {0} >= {1} then {2} = '{3}';'''.format( timeid, start, partition_var_name, partition_val) elif (start is not None) and (end is not None): if right_inclusive: statement = '''if {0} >= {1} and {0} <= {2} then {3} = '{4}';'''.format( timeid, start, end, partition_var_name, partition_val) else: statement = '''if {0} >= {1} and {0} < {2} then {3} = '{4}';'''.format( timeid, start, end, partition_var_name, partition_val) else: statement = '''{0} = '{1}';'''.format(partition_var_name, partition_val) return statement @staticmethod def convert_to_sas_time_format(python_time, sas_format_type): if sas_format_type == 'date': if isinstance(python_time, datetime.date): sas_time_str = 'mdy({0},{1},{2})'.format(python_time.month, python_time.day, python_time.year) return sas_time_str elif python_time is None: return None else: raise ValueError('''The timeid type is date format, so the input python time variable should be date or datetime format''') elif sas_format_type == 'datetime': if isinstance(python_time, datetime.datetime): sas_time_str = 'dhms(mdy({0},{1},{2}), {3}, {4}, {5})'.format( python_time.month, python_time.day, python_time.year, python_time.hour, python_time.minute, python_time.second) return sas_time_str elif isinstance(python_time, datetime.date): sas_time_str = 'dhms(mdy({0},{1},{2}), 0, 0, 0)'.format( python_time.month, python_time.day, python_time.year) return sas_time_str elif python_time is None: return None else: raise ValueError('''The timeid type is datetime format, so the input python time variable should be date or datetime format''') elif sas_format_type == 'double': if isinstance(python_time, numbers.Real): return python_time elif python_time is None: return None else: raise ValueError('''The timeid type is double, so the input python time variable should be int or float''') else: raise DLPyError('''timeid format in CASTable is wrong, consider reload the table and formatting it with timeseries_formatting''') @staticmethod def create_lags(varname, nlags, byvar): if not isinstance(byvar, list): byvar = [byvar] byvar_strlist = ['first.{}'.format(var) for var in byvar] sascode = '' for i in range(nlags): if i == 0: sascode += '{0}_lag{1} = lag({0});'.format(varname, i + 1) else: sascode += '{0}_lag{1} = lag({0}_lag{2});'.format(varname, i + 1, i) if len(byvar) > 0: sascode += 'if ' + ' or '.join(byvar_strlist) sascode += ' then {0}_lag{1} = .;'.format(varname, i + 1) return sascode @staticmethod def find_file_caslib(conn, path): ''' Check whether the specified path is in the caslibs of the current session Parameters ---------- conn : CAS Specifies the CAS connection object path : string Specifies the name of the path. Returns ------- ( flag, caslib_name ) flag specifies if path exist in session. caslib_name specifies the name of the caslib that contains the path. ''' paths = conn.caslibinfo().CASLibInfo.Path.tolist() caslibs = conn.caslibinfo().CASLibInfo.Name.tolist() subdirs = conn.caslibinfo().CASLibInfo.Subdirs.tolist() server_type = get_cas_host_type(conn).lower() if server_type.startswith("lin") or server_type.startswith("osx"): sep = '/' else: sep = '\\' for i, directory in enumerate(paths): if path.startswith(directory) and (subdirs[i] == 1): rest_path = path[len(directory):] caslibname = caslibs[i] return (caslibname, rest_path) elif path.startswith(directory) and (subdirs[i] == 0): rest_path = path[len(directory):] if sep in rest_path: continue else: caslibname = caslibs[i] return (caslibname, rest_path) return (None, None) def _get_first_obs(tbl, timeid, groupby=None, casout=None): input_tbl_name = tbl.name conn = tbl.get_connection() if casout is None: casout_params = {} elif isinstance(casout, CASTable): casout_params = casout.to_outtable_params() elif isinstance(casout, dict): casout_params = casout if 'name' not in casout_params: casout_params['name'] = random_name(input_tbl_name + '_first', 2) if len(casout_params['name']) >= 32: casout_params['name'] = random_name('tmp_first', 2) output_tbl_name = casout_params['name'] if groupby is None: groupby = [] elif not isinstance(groupby, list): groupby = [groupby] if not groupby: sascode = ''' data {0}; set {1}; by {2}; if _N_=1 then output {0}; run; '''.format(output_tbl_name, input_tbl_name, timeid, output_tbl_name) conn.retrieve('dataStep.runCode', _messagelevel='error', code=sascode, single='Yes') else: groupby_str = ' '.join(groupby) sascode = 'data {}; set {}; by {} {};'.format(output_tbl_name, input_tbl_name, groupby_str, timeid) condition_str = ['first.' + group for group in groupby] condition_str = ' or '.join(condition_str) sascode += 'if {} then output {};'.format(condition_str, output_tbl_name) sascode += 'run;' conn.retrieve('dataStep.runCode', _messagelevel='error', code=sascode) out = conn.CASTable(**casout_params) return out def _get_last_obs(tbl, timeid, groupby=None, casout=None): input_tbl_name = tbl.name conn = tbl.get_connection() if casout is None: casout_params = {} elif isinstance(casout, CASTable): casout_params = casout.to_outtable_params() elif isinstance(casout, dict): casout_params = casout if 'name' not in casout_params: casout_params['name'] = random_name(input_tbl_name + '_last', 2) if len(casout_params['name']) >= 32: casout_params['name'] = random_name('tmp_last', 2) output_tbl_name = casout_params['name'] if groupby is None: groupby = [] elif not isinstance(groupby, list): groupby = [groupby] if not groupby: sascode = ''' data {0}; set {1} end=eof; by {2}; if eof then output {0}; run; '''.format(output_tbl_name, input_tbl_name, timeid, output_tbl_name) conn.retrieve('dataStep.runCode', _messagelevel='error', code=sascode, single='Yes') else: groupby_str = ' '.join(groupby) sascode = 'data {}; set {}; by {} {};'.format(output_tbl_name, input_tbl_name, groupby_str, timeid) condition_str = ['last.' + group for group in groupby] condition_str = ' or '.join(condition_str) sascode += 'if {} then output {};'.format(condition_str, output_tbl_name) sascode += 'run;' conn.retrieve('dataStep.runCode', _messagelevel='error', code=sascode) out = conn.CASTable(**casout_params) return out def _combine_table(tbl1=None, tbl2=None, columns=None, casout=None): conn = tbl1.get_connection() if casout is None: casout_params = {} elif isinstance(casout, CASTable): casout_params = casout.to_outtable_params() elif isinstance(casout, dict): casout_params = casout if 'name' not in casout_params: prefix = '' if tbl1 is not None: prefix += '_{}'.format(tbl1.name) if tbl2 is not None: prefix += '_{}'.format(tbl2.name) prefix = prefix.strip('_') casout_params['name'] = random_name(prefix, 1) if len(casout_params['name']) >= 32: casout_params['name'] = random_name('tmp_combine', 2) output_tbl_name = casout_params['name'] if columns is None: keeps_str = '' else: if not isinstance(columns, list): columns = [columns] keeps_str = '(keep={})'.format(' '.join(columns)) if tbl1 is None: sascode = ''' data {}; set {}{}; run; '''.format(output_tbl_name, tbl2.name, keeps_str) elif tbl2 is None: sascode = ''' data {}; set {}{}; run; '''.format(output_tbl_name, tbl1.name, keeps_str) else: sascode = ''' data {}; set {}{} {}{}; run; '''.format(output_tbl_name, tbl1.name, keeps_str, tbl2.name, keeps_str) conn.retrieve('dataStep.runCode', _messagelevel='error', code=sascode) out = conn.CASTable(**casout_params) return out def _prepare_next_input(tbl, timeid, timeid_interval, autoregressive_series, sequence_opt, covar_tbl=None, groupby=None, casout=None): conn = tbl.get_connection() if casout is None: casout_params = {} elif isinstance(casout, CASTable): casout_params = casout.to_outtable_params() elif isinstance(casout, dict): casout_params = casout if 'name' not in casout_params: casout_params['name'] = random_name('next_input', 6) output_tbl_name = casout_params['name'] if groupby is None: groupby = [] elif not isinstance(groupby, list): groupby = [groupby] keeps_str = groupby + [timeid] + autoregressive_series[:-1] keeps_str += [sequence_opt['input_length'], sequence_opt['target_length']] keeps_str = ' '.join(keeps_str) assignment = [] for i in range(len(autoregressive_series) - 1): assignment += [autoregressive_series[i] + '=' + autoregressive_series[i + 1]] assignment = ';'.join(assignment) sascode = ''' data {}; set {}; {} = intnx('{}', {}, 1); {}; keep {}; run; '''.format(output_tbl_name, tbl.name, timeid, timeid_interval, timeid, assignment, keeps_str) conn.retrieve('dataStep.runCode', _messagelevel='error', code=sascode) if covar_tbl is not None: merge_by = groupby + [timeid] merge_by = ' '.join(merge_by) drops = autoregressive_series[:-1] + [sequence_opt['input_length'], sequence_opt['target_length']] drops = [var for var in drops if var in covar_tbl.columns.tolist()] drops = ' '.join(drops) sascode = ''' data {}; merge {}(drop={} IN=in1) {}(IN=in2); by {}; if in1=1 and in2=1 then output {}; run; '''.format(output_tbl_name, covar_tbl.name, drops, output_tbl_name, merge_by, output_tbl_name) conn.retrieve('dataStep.runCode', _messagelevel='error', code=sascode) out = conn.CASTable(**casout_params) return out
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/timeseries.py
0.78345
0.450299
timeseries.py
pypi
import os import platform import numpy as np import pandas as pd import swat as sw import string import warnings import struct from dlpy.model import DataSpec from dlpy.layers import Layer from dlpy.utils import DLPyError def create_extended_attributes(conn, model_name, layers, data_spec, label_file_name=None): ''' Create/override extended model attributes for given model Update the extended model attributes given data spec(s). The data spec(s) must define all relevant dictionary elements for class :class:`DataSpec` or the resulting attribute table will be inaccurate. Parameters ---------- conn : CAS The CAS connection object model_name : string Specifies the name of the deep learning model layers : list of :class:`Layer` Specifies all the layers in the deep learning model data_spec: list of :class:`DataSpec` data specification for input and output layer(s) label_file_name: string, optional Fully qualified path to CSV file containing user-defined classification labels. If not specified, numeric labels are used. ''' # ensure list of layers if not isinstance(layers,list): raise TypeError('Parameter layers must be a list of Layer objects.') else: if not all(isinstance(x,Layer) for x in layers): raise TypeError('Some elements of the layers list are not Layer objects.') # ensure list of data specs if not isinstance(data_spec,list): raise TypeError('Parameter data_spec must be a list of DataSpec objects.') else: if not all(isinstance(x,DataSpec) for x in data_spec): raise TypeError('Some elements of the data_spec list are not DataSpec objects.') # read user-supplied labels if label_file_name is None: labels = None else: all_label_info = pd.read_csv(label_file_name, skipinitialspace=True, index_col=False) labels = all_label_info['label'].values.tolist() # ensure table action loaded rt = conn.queryactionset('table', _messagelevel = 'error') if not rt: conn.loadactionset('table', _messagelevel = 'error') # parse data spec(s) and create data spec attributes ds_info = create_dataspec_attributes(conn, model_name, layers, data_spec) # update variable list attributes create_varlist_attributes(conn, model_name, layers, ds_info) # update variable information attributes create_varinfo_attributes(conn, model_name, layers, ds_info, labels) # update input parameter attributes create_inputparm_attributes(conn, model_name, layers, ds_info) def create_dataspec_attributes(conn, model_name, layers, data_spec): ''' Create/override extended model attributes for data spec(s) Update the extended model attributes for the data spec(s). The data spec must define all relevant dictionary elements for class :class:`DataSpec` or the resulting attribute table will be inaccurate. Parameters ---------- conn : CAS The CAS connection object model_name : string Specifies the name of the deep learning model layers : list of :class:`Layer` Specifies all the layers in the deep learning model data_spec: list of :class:`DataSpec` data specification for input and output layer(s) Returns ------- dict data spec and variable information ''' # collect dataspec(s) associated with input and task layers input_data_spec = [] task_data_spec = [] ds_layer_type = [] for spec in data_spec: for layer in layers: if spec['layer'] == layer.name: if layer.type == 'input': input_data_spec.append(spec) ds_layer_type.append('input') else: task_data_spec.append(spec) ds_layer_type.append('task') sorted_data_spec = input_data_spec + task_data_spec # character/string attributes layer_names = bytearray() var_names = bytearray() len_var_names = bytearray() # int64_t attributes data_type = bytearray() token_size = bytearray() # int attributes n_vars = bytearray() n_nominal_vars = bytearray() layer_name_lens = bytearray() var_names_lens = bytearray() len_name_lens = bytearray() # double attributes loss_scale_factor = bytearray() # information pertaining to all variables included in all data specs all_vars = {'name':[], 'ds_type':[], 'nominal':[], 'rtype':[], 'rawlen':[], 'fmt_name':[], 'fmt_nfl':[], 'fmt_nfd':[], 'fmt_datalen':[], 'levels':[]} nom_vars = {'name':[]} # input layer(s) followed by task layer(s) n_input_vars = 0 for ii in range(len(sorted_data_spec)): spec = sorted_data_spec[ii] layer_type = ds_layer_type[ii] # loss scale factor loss_scale_factor = loss_scale_factor + struct.pack('@d',1.0) # data type (int64) data_info = sas_var_info(spec.type) data_type = data_type + struct.pack('@q',data_info['ds_type']) # token size (int64) if "numeric_nominal_parms" in spec: if "token_size" in spec["numeric_nominal_parms"]: token_size = token_size + \ struct.pack('@q',spec["numeric_nominal_parms"]["token_size"]) else: token_size = token_size + \ struct.pack('@q',0) else: token_size = token_size + \ struct.pack('@q',0) # number of variables n_vars = n_vars + struct.pack('@i',len(spec['data'])) # number of nominal variables if "nominals" in spec: n_nominal_vars = n_nominal_vars + struct.pack('@i',len(spec['nominals'])) else: n_nominal_vars = n_nominal_vars + struct.pack('@i',0) # layer names barray = bytearray(spec['layer'],encoding = 'utf-8') layer_names = layer_names + barray layer_name_lens = layer_name_lens + struct.pack('@i',len(barray)) # variable names and lengths (only first variable for dataspec) barray = bytearray(spec['data'][0],encoding = 'utf-8') var_names = var_names + barray var_names_lens = var_names_lens + struct.pack('@i',len(barray)) # collect information for all variables for var in spec['data']: all_vars['name'].append(var.encode('utf-8')) all_vars['ds_type'].append(data_info['ds_type']) all_vars['nominal'].append(False) all_vars['rtype'].append(data_info['rtype']) all_vars['rawlen'].append(data_info['rawlen']) all_vars['fmt_name'].append(data_info['fmt_name']) all_vars['fmt_nfl'].append(data_info['fmt_nfl']) all_vars['fmt_nfd'].append(data_info['fmt_nfd']) all_vars['fmt_datalen'].append(data_info['fmt_datalen']) all_vars['levels'].append(0) # update the number of input variables if layer_type == 'input': n_input_vars = n_input_vars + len(spec['data']) # all nominal variable names if "nominals" in spec: for var in spec['nominals']: try: index = all_vars['name'].index(var.encode('utf-8')) all_vars['nominal'][index] = True nom_vars['name'].append(var.encode('utf-8')) except ValueError: raise DLPyError('You specified a nominal variable that does\n' 'not exist in the variable list.') # length variable names (RNN only) if "numeric_nominal_parms" in spec: if "length" in spec["numeric_nominal_parms"]: barray = bytearray(spec["numeric_nominal_parms"]["length"], encoding = 'utf-8') len_var_names = len_var_names + barray len_name_lens = len_name_lens + struct.pack('@i',len(barray)) # add to all variable information # NOTE: length variable is numeric/nominal type numnom_info = sas_var_info('NUMNOM') all_vars['name'].append(spec["numeric_nominal_parms"]["length"].encode('utf-8')) all_vars['ds_type'].append(numnom_info['ds_type']) all_vars['nominal'].append(False) all_vars['rtype'].append(numnom_info['rtype']) all_vars['rawlen'].append(numnom_info['rawlen']) all_vars['fmt_name'].append(numnom_info['fmt_name']) all_vars['fmt_nfl'].append(numnom_info['fmt_nfl']) all_vars['fmt_nfd'].append(numnom_info['fmt_nfd']) all_vars['fmt_datalen'].append(numnom_info['fmt_datalen']) all_vars['levels'].append(0) # update the number of input variables if layer_type == 'input': n_input_vars = n_input_vars + 1 else: barray = bytearray(" ", encoding = 'utf-8') len_var_names = len_var_names + barray len_name_lens = len_name_lens + struct.pack('@i',0) else: barray = bytearray(" ", encoding = 'utf-8') len_var_names = len_var_names + barray len_name_lens = len_name_lens + struct.pack('@i',0) # update parameters for attribute set dl_dataspecs_parms set_name = "dl_dataspecs_parms".encode('utf-8') # number of data specs update_attr(conn, model_name, [len(data_spec)], set_name, "nDataSpecs", "int") # data spec data types update_attr(conn, model_name, data_type, set_name, "dataTypes", "int64") # token sizes update_attr(conn, model_name, token_size, set_name, "tokenSizes", "int64") # number of variables update_attr(conn, model_name, n_vars, set_name, "nVars", "int") # number of nominal variables update_attr(conn, model_name, n_nominal_vars, set_name, "nNominalVars", "int") # layer names update_attr(conn, model_name, layer_names.decode('utf-8'), set_name, "layerNames", "char") # layer name lengths update_attr(conn, model_name, layer_name_lens, set_name, "layerNameLens", "int") # data spec variable names update_attr(conn, model_name, var_names, set_name, "varNames", "binary") # data spec variable name lengths update_attr(conn, model_name, var_names_lens, set_name, "varNamesLens", "int") # data spec length variable names update_attr(conn, model_name, len_var_names.decode('utf-8'), set_name, "lenVarNames", "char") # data spec length variable name lengths update_attr(conn, model_name, len_name_lens, set_name, "lenNameLens", "int") # loss scale factor update_attr(conn, model_name, loss_scale_factor, set_name, "lossScaleFactor", "double") # create dictionary needed by other attribute functions ds_dict = {"all_vars" : all_vars, "nom_vars" : nom_vars, "spec_list" : sorted_data_spec, "n_input_vars" : n_input_vars} return ds_dict def create_varlist_attributes(conn, model_name, layers, ds_info): ''' Create/override extended model attributes for variable(s) Update the extended model attributes for the model variable(s). The data spec attribute(s) must have been created prior to calling this function. Parameters ---------- conn : CAS The CAS connection object model_name : string Specifies the name of the deep learning model layers : list of :class:`Layer` Specifies all the layers in the deep learning model ds_info: dictionary parsed data spec information ''' # update parameters for attribute set dl_dataspecs_parms set_name = "dl_model_varlist".encode('utf-8') # number of model variables update_attr(conn, model_name, [len(ds_info["all_vars"]["name"])], set_name, "var_ntot", "int") # generate variable list attributes var_rtype = bytearray() var_rawlen = bytearray() var_list = bytearray() null_byte = bytearray('\u0000',encoding='utf-8') for ii in range(len(ds_info['all_vars']['name'])): barray = bytearray(ds_info['all_vars']['name'][ii]) var_list = null_byte.join([var_list, barray]) var_rtype = var_rtype + struct.pack('@i',ds_info['all_vars']['rtype'][ii]) var_rawlen = var_rawlen + struct.pack('@i',ds_info['all_vars']['rawlen'][ii]) # finalize variable list var_list = var_list[1:] + null_byte # update parameters for attribute set dl_dataspecs_parms set_name = "dl_model_varlist".encode('utf-8') # variable list update_attr(conn, model_name, var_list, set_name, "var_list", "binary") # variable root type update_attr(conn, model_name, var_rtype, set_name, "var_rtype", "int") # variable root type update_attr(conn, model_name, var_rawlen, set_name, "var_rawlen", "int") def create_varinfo_attributes(conn, model_name, layers, ds_info, labels=None): ''' Create/override extended model attributes for variable information Update the extended model attributes for the variable information. The data spec attribute(s) must have been created prior to calling this function. Parameters ---------- conn : CAS The CAS connection object model_name : string Specifies the name of the deep learning model layers : list of :class:`Layer` Specifies all the layers in the deep learning model ds_info: dictionary parsed data spec information labels: list, optional list of string values representing class labels ''' # update parameters for attribute set dl_dataspecs_parms set_name = "dl_model_varinfo".encode('utf-8') all_vars = ds_info['all_vars'] # format information fmt_name = bytearray() fmt_namelen = bytearray() fmt_nfl = bytearray() fmt_nfd = bytearray() fmt_datalen = bytearray() # set format attributes for all variables null_byte = bytearray('\u0000',encoding='utf-8') for ii in range(len(ds_info['all_vars']['name'])): tmp_name = ds_info['all_vars']['fmt_name'][ii].encode('utf-8') barray = bytearray(tmp_name) fmt_name = null_byte.join([fmt_name, barray]) fmt_namelen = fmt_namelen + struct.pack('@i',len(tmp_name)) fmt_nfl = fmt_nfl + struct.pack('@i',ds_info['all_vars']['fmt_nfl'][ii]) fmt_nfd = fmt_nfd + struct.pack('@i',ds_info['all_vars']['fmt_nfd'][ii]) fmt_datalen = fmt_datalen + struct.pack('@i',ds_info['all_vars']['fmt_datalen'][ii]) # finalize format name list fmt_name = fmt_name[1:] + null_byte # format names update_attr(conn, model_name, fmt_name, set_name, "fmt_name", "binary") # format name length update_attr(conn, model_name, fmt_namelen, set_name, "fmt_namelen", "binary") # format nfl update_attr(conn, model_name, fmt_nfl, set_name, "fmt_nfl", "binary") # format nfd update_attr(conn, model_name, fmt_nfd, set_name, "fmt_nfd", "binary") # format data length update_attr(conn, model_name, fmt_datalen, set_name, "fmt_datalen", "binary") # nominal variable level information level_name = bytearray() level_namelen = bytearray() # set level information for nominal variables for spec in ds_info['spec_list']: # determine layer type for layer in layers: if spec['layer'] == layer.name: break if "nominals" in spec: n_nom_var = len(spec['nominals']) if n_nom_var > 0: if layer.type == 'input': raise DLPyError('Setting attributes for non-numeric input layer variables\n' 'is not supported.\n') elif layer.type == 'output': if layer.config['n'] is None: raise DLPyError('You must specify the number of neurons for the output\n' 'layer variables when setting attributes.\n') n_levels = int(layer.config['n']) task_type = '0x8' # create needed labels for nominal variables ljust_labels = create_class_labels(n_levels, labels) elif layer.type == 'detection': if layer.config['class_number'] is None: raise DLPyError('You must specify the number of classes for the object\n' 'detection when setting attributes.\n') n_levels = int(layer.config['class_number']) task_type = '0x800000' # create needed labels for nominal variables ljust_labels = create_class_labels(n_levels, labels) else: raise DLPyError('Attributes can only be set for variables defined in input,\n' 'output, or detection layers defined in data specifications.\n') # create level names for all nominal variables and all levels for ii in range(n_nom_var): nom_name = spec['nominals'][ii].encode('utf-8') index = all_vars['name'].index(nom_name) all_vars['levels'][index] = n_levels for jj in range(n_levels): level_name = level_name + bytearray(ljust_labels[jj].encode('utf-8')) level_namelen = level_namelen + struct.pack('@i',len(ljust_labels[jj])) else: task_type = '0x10' # update level names/lengths if any nominal variables if len(level_name): # level name update_attr(conn, model_name, level_name, set_name, "level_name", "binary") # level name length update_attr(conn, model_name, level_namelen, set_name, "level_namelen", "int") # number of levels for all variables levels = bytearray() for lval in all_vars['levels']: levels = levels + struct.pack('@q',lval) # levels update_attr(conn, model_name, levels, set_name, "level_info", "int64") # model_task update_attr(conn, model_name, [int(task_type,16)], set_name, "model_task", "int") def create_inputparm_attributes(conn, model_name, layers, ds_info): ''' Create/override extended model attributes for input parameters Update the extended model attributes for the input parameters. The data spec attribute(s) must have been created prior to calling this function. Parameters ---------- conn : CAS The CAS connection object model_name : string Specifies the name of the deep learning model layers : list of :class:`Layer` Specifies all the layers in the deep learning model ds_info: dictionary parsed data spec information ''' # update parameters for attribute set dl_dataspecs_parms set_name = "dl_input_parms".encode('utf-8') # generate target variable list attributes target_var_list = bytearray() null_byte = bytearray('\u0000',encoding='utf-8') for ii in range(ds_info['n_input_vars'],len(ds_info['all_vars']['name'])): barray = bytearray(ds_info['all_vars']['name'][ii]) target_var_list = null_byte.join([target_var_list, barray]) # finalize target variable list target_var_list = target_var_list[1:] + null_byte # target variable list update_attr(conn, model_name, target_var_list, set_name, "target", "binary") # generate nominal variable list attributes if len(ds_info['nom_vars']) > 0: nominal_var_list = bytearray() for ii in range(len(ds_info['nom_vars']['name'])): barray = bytearray(ds_info['nom_vars']['name'][ii]) nominal_var_list = null_byte.join([nominal_var_list, barray]) # finalize nominal variable list nominal_var_list = nominal_var_list[1:] + null_byte # update nominal variable list update_attr(conn, model_name, nominal_var_list, set_name, "nominal", "binary") else: # no nominal variables - drop nominal attribute rt = conn.retrieve('table.attribute', _messagelevel = 'error', name=model_name + '_weights', attributes=[{"key":"nominal"}], set=set_name, task="DROP") if rt.severity > 1: for msg in rt.messages: print(msg) raise DLPyError('Cannot drop attribute, there seems to be a problem.') def sas_var_info(var_type): ''' Returns SAS variable type information Extracts variable information needed to update extended attribute table. Parameters ---------- var_type : string Specifies the type of the input data in the data spec. Valid Values: NUMERICNOMINAL, NUMNOM, TEXT, IMAGE, OBJECTDETECTION Returns ------- dict SAS variable information ''' if var_type.lower() in ["numericnominal", "numnom"]: var_info = {"ds_type" : 1, "rtype" : 1, "rawlen" : 8, "fmt_name" : "BEST", "fmt_nfl" : 12, "fmt_nfd" : 0, "fmt_datalen" : 12} elif var_type.lower() == "text": raise DLPyError('Attribute updating not supported for text variable(s).') elif var_type.lower() == "image": var_info = {"ds_type" : 3, "rtype" : 0, "rawlen" : 1000000, "fmt_name" : "BEST", "fmt_nfl" : 0, "fmt_nfd" : 0, "fmt_datalen" : 1} elif var_type.lower() == "objectdetection": var_info = {"ds_type" : 4, "rtype" : 1, "rawlen" : 8, "fmt_name" : "BEST", "fmt_nfl" : 12, "fmt_nfd" : 0, "fmt_datalen" : 12} else: raise DLPyError('The variable type is invalid. Only NUMERICNOMINAL,\n' 'NUMNOM, TEXT, IMAGE, and OBJECTDETECTION are supported.') return var_info def update_attr(conn, model_name, attr_value, attr_set, attr_key, attr_type): ''' Update individual extended model attributes Key/value pair required to specify extended attributes. Provide correct syntax for calling attribute action. Parameters ---------- conn : CAS The CAS connection object model_name : string Specifies the name of the deep learning model attr_value : list of bytes, int, int64, double, or char Numeric/character representation of attribute attr_set : string Name of attribute set to update attr_key : string Key name of attribute attr_type : string One of double, int64, int, char, or binary ''' if attr_type.lower() in ['double', 'int64', 'int', 'char', 'binary']: if attr_type.lower() == 'char': attr_helper(conn, model_name, attr_set, attr_key, attr_value) else: if len(attr_value) > 1: # create binary blob using SWAT attr_blob = sw.blob(attr_value) # write attribute attr_helper(conn, model_name, attr_set, attr_key, attr_blob) else: attr_helper(conn, model_name, attr_set, attr_key, attr_value[0]) else: raise TypeError('Extended table attributes must be one of :\n' '1. character string;\n' '2. double precision value/list,\n' '3. int64 value/list,\n' '4. int value/list,\n' '5. binary blob.') def attr_helper(conn, model_name, attr_set, attr_key, attr_blob): ''' Call action to update individual extended model attribute Key/value pair required to specify extended attributes. Provide correct syntax for calling attribute action. Parameters ---------- conn : CAS The CAS connection object model_name : string Specifies the name of the deep learning model attr_set : string Name of attribute set to update attr_key : string Key name of attribute attr_blob : double, int64, int, char, or binary blob Representation of attribute ''' # drop existing attribute rt = conn.retrieve('table.attribute', _messagelevel = 'error', name=model_name + '_weights', attributes=[{"key":attr_key}], set=attr_set, task="DROP") # NOTE: ignore errors if attribute or attribute set # doesn't exist # add new attribute rt = conn.retrieve('table.attribute', _messagelevel = 'error', name=model_name + '_weights', attributes=[{"key":attr_key,"value":attr_blob}], set=attr_set, task="ADD") if rt.severity > 1: for msg in rt.messages: print(msg) raise DLPyError('Cannot add attribute, there seems to be a problem.') def export_attr_xml(conn, model_name, file_name): ''' Create XML version of extended attribute table Call action to create XML blob containing model attributes. Write resulting blob to text file. Parameters ---------- conn : CAS The CAS connection object model_name : string Specifies the name of the deep learning model file_name : string Name of XML file ''' rt = conn.retrieve('table.attribute', _messagelevel = 'error', name=model_name + '_weights', task="EXPORT", xml="attr") if rt.severity > 1: for msg in rt.messages: print(msg) raise DLPyError('Cannot export model attributes, there seems to be a problem.') ascii_text = rt['xmlblob'].decode('utf8') with open(file_name, "w") as myfile: myfile.write(ascii_text) myfile.close() def create_class_labels(n_levels, labels=None): ''' Create class labels Create class labels with or without user-defined labels. Parameters ---------- n_levels : integer The number of levels for each classification variable. labels : list of string or None Specifies the class labels Returns ------- list Left-justified class labels. ''' # create needed labels for nominal variables ljust_labels = [] if labels is None: # strictly numeric labels (e.g. 0, 1, ...) for ii in range(n_levels): ljust_labels.append(str(ii).ljust(12)) else: # user-supplied labels if n_levels != len(labels): raise DLPyError('The number of class labels does not match\n' 'the number of class levels for object detection.\n') else: for lval in labels: if len(lval) > 12: ljust_labels.append(lval[:12]) else: ljust_labels.append(lval.ljust(12)) return ljust_labels
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/attribute_utils.py
0.692434
0.441011
attribute_utils.py
pypi
from swat import * import pandas as pd from dlpy.model import * from dlpy.applications import * from dlpy.images import ImageTable import matplotlib.image as mpimg from dlpy.utils import DLPyError import random def get_image_features(conn, model, image_table, dense_layer, target='_filename_0'): ''' Generate CASTable of image features Parameters ---------- conn : CAS Specifies the CAS connection object. model: dlpy Model object Specifies CNN model to use for extracting features image_table: imageTable Specifies name of CASTable that contains images to be used for training dense_layer: string Specifies layer from CNN model to extract features from target: string, optional Specifies the name of the column containing the response variable Default: '_filename_0' Returns ------- :class:`CASTable` ''' width = model.summary['Output Size'][0][1] height = model.summary['Output Size'][0][0] image_table.resize(width=width, height=height) if dense_layer not in list(model.summary['Layer']): raise DLPyError('Specified dense_layer not a layer in model') X, y = model.get_features(data=image_table, dense_layer=dense_layer, target=target) # initialize dictionary with columns table_dict = {} for i in range(len(X[0])): table_dict['f{}'.format(i)] = list() # add filenames to dict table_dict[target] = list() for file in y: table_dict[target].append(file) # add features to dict for var in table_dict[target]: idx = list(y).index(var) X_list = X[idx] for i in range(len(X[0])): table_dict['f{}'.format(i)].append(X_list[i]) features = CASTable.from_dict(conn, table_dict) return features def create_captions_table(conn, captions_file, caption_col_name='Var', delimiter='\t'): ''' Generate CASTable of captions and filenames Parameters ---------- conn : CAS Specifies the CAS connection object. captions_file : string Specifies absolute path to file containing image filenames and captions. This file has to be accessible from the client. caption_col_name : string, optional Specifies base name of columns that contain captions Default : 'Var' delimiter : string, optional Specifies delimiter in the captions_file between captions Default : '\t' Returns ------- :class:`CASTable` ''' captions_dict = dict() line_list = [] # read file lines into large list with open(captions_file, 'r') as readFile: for line in readFile: line_list.append(line) # find number of captions num_captions = len(line_list[0].split(delimiter)) - 1 if num_captions == 0: raise DLPyError('Something went wrong with the captions file -' ' most likely the wrong delimiter was specified or' ' the captions file is incorrectly formatted') # initialize dictionary captions_dict['_filename_0'] = list() for i in range(num_captions): captions_dict['{}{}'.format(caption_col_name, i)] = list() # add filenames and captions to dictionary for line in line_list: items = line.split(delimiter) captions_dict['_filename_0'].append(items[0]) for j in range(num_captions): captions_dict['{}{}'.format(caption_col_name, j)].append(items[j + 1].strip()) captions = CASTable.from_dict(conn, captions_dict) return captions def create_embeddings_from_object_detection(conn, image_table, detection_model, word_embeddings_file, n_threads=None, gpu=None, max_objects=5, word_delimiter='\t'): ''' Builds CASTable with objects detected in images as numeric data Parameters ---------- conn : CAS Specifies the CAS connection object. image_table: imageTable Specifies name of CASTable that contains images to be used for training detection_model : CASTable or string Specifies CASTable containing model parameters for the object detection model word_embeddings_file : string Specifies full path to file containing pre-trained word vectors to be used for text generation This file should be accessible from the client. n_threads : int, optional Specifies the number of threads to use when scoring the table. All cores available used when nothing is set. Default : None gpu : Gpu, optional When specified, specifies which gpu to use when scoring the table. GPU=1 uses all available GPU devices and default parameters. Default : None max_objects : int, optional Specifies max number of objects detected if less than five Default : 5 word_delimiter : string, optional Specifies delimiter used in word_embeddings file Default : '\t' Returns ------- :class:`CASTable` ''' if not os.path.exists(word_embeddings_file): raise DLPyError('word_embeddings_file does not exist') if not isinstance(image_table, ImageTable): raise DLPyError('image_table must be an ImageTable object') conn.loadactionset('deepLearn') conn.loadactionset('textparse') width = detection_model.summary['Output Size'][0][1] height = detection_model.summary['Output Size'][0][0] image_table.resize(width=width, height=height) scoring_error = False try: scored = detection_model.predict(data=image_table, n_threads=n_threads, gpu=gpu) except: scoring_error = True if scoring_error or scored is None: raise DLPyError('Something went wrong while scoring the data.') object_table = detection_model.valid_res_tbl # combine first n objects into single column first_objects = object_table.copy() first_objects['first_objects'] = first_objects['_Object0_'] + "," if max_objects > 5: max_objects = 5 for i in range(1, max_objects): objects = first_objects['_Object{}_'.format(i)] + "," first_objects['first_objects'] = first_objects['first_objects'].add(objects) objects_numeric = numeric_parse_text(conn, first_objects, word_embeddings_file, word_delimiter=word_delimiter) # merge objects table and numeric table df1 = objects_numeric.to_frame() df2 = first_objects.to_frame() objects = pd.merge(df1, df2, left_on='_id_', right_on='_id_', how='left') objects = conn.upload_frame(objects, casout=dict(name='objects', replace=True)) # remove unnecessary columns useful_vars = list(objects_numeric.columns) useful_vars.append('_filename_0') useful_vars.append('first_objects') bad_columns = set(list(objects.columns)) - set(useful_vars) final_objects = objects.drop(bad_columns, axis=1) return final_objects def numeric_parse_text(conn, table, word_embeddings_file, word_delimiter='\t', parse_column='first_objects'): ''' Parses text data into numeric data using a word-embeddings file Parameters ---------- conn : CAS Specifies the CAS connection object. table: CASTable Specifies table containing data to be parsed word_embeddings_file : string Specifies path to file containing word embeddings word_delimiter : string, optional Specifies delimiter used in word embeddings file Default : '\t' parse_column : string, optional Specifies name of column containing text data to be parsed Default : 'first_objects' Returns ------- :class:`CASTable` ''' # parse object text into numeric data conn.upload_file(data=word_embeddings_file, casout=dict(name='word_embeddings', replace=True), importOptions=dict(fileType='delimited', delimiter=word_delimiter, getNames=True, guessRows=2, varChars=True) ) conn.tpParse(table=table, docId='_id_', entities='NONE', text=parse_column, nounGroups=False, offset=dict(name='pos_output', replace=True)) conn.applyWordVector(casout=dict(name='objects_all_numeric', replace=True), modelTable=dict(name='word_embeddings'), table=dict(name='pos_output')) conn.altertable('objects_all_numeric', columns=[dict(name='_Document_', rename='_id_')]) objects_numeric = conn.CASTable('objects_all_numeric') return objects_numeric def reshape_caption_columns(conn, table, caption_col_name='Var', num_captions=5, ): ''' Reshapes table so there is only one caption per row of the table Parameters ---------- conn : CAS Specifies the CAS connection object. table : CASTable or string Specifies name of CASTable containing the merged captions, features, and objects caption_col_name : string, optional Specifies basename of columns that contain captions Default : 'Var' num_captions : int, optional Specifies number of captions per image Default : 5 Returns ------- :class:`CASTable` ''' # convert table to one caption per line columns = list(table.columns) if '{}0'.format(caption_col_name) not in columns: raise DLPyError('caption_col_name {} does not exist in the table'.format(caption_col_name)) capt_idx_start = columns.index('{}0'.format(caption_col_name)) # initialize new_tbl dictionary with columns new_tbl = dict() for c in columns: if caption_col_name not in c: new_tbl[c] = [] new_tbl['caption'] = [] # make list of rows containing only one caption each new_tbl_list = list() rows = (table.values).tolist() try: for row in rows: for i in range(num_captions): new_row = [] for j in range(len(row)): if j not in range(capt_idx_start, capt_idx_start + num_captions): new_row.append(row[j]) new_row.append(row[capt_idx_start + i]) new_tbl_list.append(new_row) except IndexError: raise DLPyError("Wrong number of captions specified") # add values to dictionary for row in new_tbl_list: cnt = 0 for key in new_tbl.keys(): new_tbl[key].append(row[cnt]) cnt += 1 # create CASTable from dictionary rnn_input = CASTable.from_dict(conn, new_tbl) return rnn_input def create_captioning_table(conn, image_table, features_model, captions_file, obj_detect_model=None, word_embeddings_file=None, num_captions=5, dense_layer='fc7', captions_delimiter='\t', caption_col_name='Var', embeddings_delimiter='\t', n_threads=None, gpu=None): ''' Builds CASTable wtih all necessary info to train an image captioning model Parameters ---------- conn : CAS Specifies the CAS connection object. image_table: imageTable Specifies name of CASTable that contains images to be used for training features_model : dlpy Model object Specifies CNN model to use for extracting features captions_file : string Specifies absolute path to file containing image filenames and captions Client should have access to this file. obj_detect_model : CASTable or string, optional Specifies CASTable containing model parameters for the object detection model Default : None word_embeddings_file : string, optional Specifies full path to file containing pre-trained word vectors to be used for text generation. This file should be accessible from the client. Required if obj_detect_model is not None Default : None num_captions : int, optional Specifies number of captions for each image in the captions file Default : 5 dense_layer: string, optional Specifies layer from CNN model to extract features from Default : 'fc7' captions_delimiter : string, optional Specifies delimiter between filenames and captions in the image captions text file Default : '\t' caption_col_name : string, optional Specifies base name for column names for the columns containing captions Default : 'Var' embeddings_delimiter : string, optional Specifies delimiter used in word embeddings file Default : '\t' n_threads : int, optional Specifies the number of threads to use when scoring the table. All cores available used when nothing is set. Default : None gpu : Gpu, optional When specified, specifies which gpu to use when scoring the table. GPU=1 uses all available GPU devices and default parameters. Default : None Returns ------- :class:`CASTable` ''' # get all necessary tables image_features = get_image_features(conn, features_model, image_table, dense_layer) captions_table = create_captions_table(conn, captions_file, delimiter=captions_delimiter, caption_col_name=caption_col_name) # merge features and captions tables df1 = captions_table.to_frame() df2 = image_features.to_frame() captions_features = pd.merge(df1, df2, left_on='_filename_0', right_on='_filename_0', how='left') result = conn.upload_frame(captions_features, casout=dict(name='captions_features', replace=True)) # conn.dljoin(table=captions_table,annotatedTable=image_features, # id='_filename_0',casOut=dict(name='captions_features',replace=True)) # result = conn.CASTable('captions_features') if obj_detect_model is not None: if word_embeddings_file is None: raise DLPyError("word_embeddings_file required for object detection") else: # resize images for object detection scoring detected_objects = create_embeddings_from_object_detection(conn, image_table, obj_detect_model, word_embeddings_file, word_delimiter=embeddings_delimiter, n_threads=n_threads, gpu=gpu) # conn.dljoin(table=dict(name='captions_features'),annotatedTable=detected_objects, # id='_filename_0',casOut=dict(name='obj_capt_feats',replace=True)) df1 = detected_objects.to_frame() df2 = result.to_frame() obj_capt_feat = pd.merge(df1, df2, left_on='_filename_0', right_on='_filename_0', how='left') result = conn.upload_frame(obj_capt_feat, casout=dict(name='full_table', replace=True)) final_table = reshape_caption_columns(conn, result, caption_col_name=caption_col_name, num_captions=num_captions) drop_columns = set(final_table.columns) - set(captions_table.columns) - set(image_features.columns) if obj_detect_model: drop_columns = set(drop_columns) - set(detected_objects.columns) drop_columns.remove('caption') final_table.drop(drop_columns, axis=1, inplace=True) return final_table def ImageCaptioning(conn, model_name='image_captioning', num_blocks=3, neurons=50, rnn_type='LSTM', max_output_len=15): ''' Builds an RNN to be used for image captioning Parameters ---------- conn : CAS Specifies the CAS connection object. model_name : string, optional Specifies output name of the model Default: 'image_captioning' num_blocks : int, optional Specifies number of samelength recurrent layers Default : 3 neurons : int, optional Specifies number of neurons in each layer Default : 50 rnn_type : string, optional Specifies the type of the rnn layer. Possible Values: RNN, LSTM, GRU Default: LSTM max_output_len : int, optional Specifies max number of tokens to generate in the final layer (i.e. max caption length) Default : 15 Returns ------- :class:`CASTable` ''' if num_blocks < 1: raise DLPyError('num_blocks must be greater than 1') model = Sequential(conn, model_table=model_name) model.add(InputLayer(name='input')) print('InputLayer added named "input"') for i in range(num_blocks): model.add(Recurrent(n=neurons, init='msra', rnn_type=rnn_type, output_type='samelength')) model.add(Recurrent(n=neurons, init='msra', rnn_type=rnn_type, output_type='encoding')) model.add(Recurrent(n=neurons, init='msra', rnn_type=rnn_type, output_type='arbitrarylength', max_output_length=max_output_len)) model.add(OutputLayer(name='output')) print('OutputLayer added named "output"') return model def display_predicted_image_captions(conn, result_tbl, npreds=2, ncol=2, img_path=None, figsize=None, filename_col='_filename_0', caption_col='caption', image_col='_image'): ''' Shows caption prediction for random images Parameters ---------- conn : CAS Specifies the CAS connection object. result_tbl : CASResults object Table containing results from scoring the test data npreds : int, optional Specifies number of caption predictions to show Default : 2 ncol : int, optional Specifies number of columns to display images in Default : 2 img_path : string, optional If used, specifies path to wanted_file to show images along with captions and objects. If None, only shows captions and objects Default : None figsize : tuple of ints, optional Specifies size of images to be displayed Default : (16,(16 / ncol*nrow)) filename_col : str, optional Specifies the column name for the filename data. Default = '_filename_0' caption_col : str, optional Specifies the column name for the ground-truth caption data. Default = 'caption' image_col : str, optional Specifies the column name for the image data. Default = '_image_' ''' results = scored_results_to_dict(result_tbl=result_tbl, filename_col=filename_col, caption_col=caption_col) nimages = min(npreds, len(results)) if nimages > ncol: nrow = nimages // ncol + 1 else: nrow = 1 ncol = nimages if figsize is None: figsize = (16, 16 // ncol * nrow) if img_path is None: # check whether display images display_image = False if image_col in result_tbl.columns: display_image = True fig = plt.figure(figsize=figsize) conn.loadactionset('image', _messagelevel='error') for i in range(nimages): # no need display randomly if nimages == len(results): r = i else: r = random.randint(0, len(results) - 1) f_name = list(results.keys())[r] if caption_col in result_tbl.columns: actual_caps = ( conn.CASTable(result_tbl.name, where='''{}="{}"'''.format(filename_col, f_name)).iloc[:, caption_col]).values truth = "\n".join(actual_caps) else: truth = "N/A" rand_row = results[f_name] prediction = rand_row[1] # display ground truth, objects, and prediction if do not display images if 'first_objects' in result_tbl.columns: # when the table contains objects objects = ( conn.CASTable(result_tbl.name, where='''{}="{}"'''.format(filename_col, f_name)).iloc[:, 'first_objects']).values objects = "\n\t".join(objects[0].split(',')) display_objects = True if not display_image: print("Filename: {}\nObjects: {}\nGround Truth: {}\nPredicted: {}\n".format(f_name, objects, truth, prediction)) else: if not display_image: print("Filename: {}\nGround Truth: {}\nPredicted: {}\n".format(f_name, truth, prediction)) display_objects = False # now display images along with captions and objects if display_image: temp_tbl = conn.retrieve('image.fetchimages', to=1, image=image_col, _messagelevel='error', table=dict(name=result_tbl.name, where='''{}="{}"'''.format(filename_col, f_name))) ax = fig.add_subplot(nrow, ncol, i + 1) if display_objects: ax.set_title('Objects: {}\nGround Truth: {}\nPredicted: {}'.format(objects, truth, prediction)) else: ax.set_title('Ground Truth: {}\nPredicted: {}'.format(truth, prediction)) plt.imshow(temp_tbl['Images']['Image'][0]) plt.xticks([]), plt.yticks([]) if display_image: plt.tight_layout() plt.show() else: fig = plt.figure(figsize=figsize) for i in range(nimages): # no need display randomly if nimages == len(results): r = i else: r = random.randint(0, len(results) - 1) f_name = list(results.keys())[r] rand_row = results[f_name] if caption_col in result_tbl.columns: actual_caps = ( conn.CASTable(result_tbl.name, where='''{}="{}"'''.format(filename_col, f_name)).iloc[:, caption_col]).values truth = "\n".join(actual_caps) else: truth = "N/A" objects = ( conn.CASTable(result_tbl.name, where='''{}="{}"'''.format(filename_col, f_name)).iloc[:, 'first_objects']).values objects = objects[0] caption = rand_row[1] if '/' in img_path: image = '{}/{}'.format(img_path, f_name) elif '\\' in img_path: image = '{}\{}'.format(img_path, f_name) else: raise DLPyError('img_path given is not a valid path') image = mpimg.imread(image) ax = fig.add_subplot(nrow, ncol, i + 1) ax.set_title('Objects: {}\nGround Truth: {}\nPredicted: {}'.format(objects, truth, caption)) plt.imshow(image) plt.xticks([]), plt.yticks([]) plt.tight_layout() plt.show() def scored_results_to_dict(result_tbl, filename_col='_filename_0', caption_col='caption'): ''' Converts results in CASResults table to a dictionary of values Parameters ---------- result_tbl : CASResults object Table containing results from scoring the test data filename_col : str, optional Specifies the column name for the filename data. Default = '_filename_0' caption_col : str, optional Specifies the column name for the ground-truth caption data. Default = 'caption' Returns ------- dict ''' exists = True try: result_columns = list(result_tbl.columns) except: exists = False if exists is False: raise DLPyError('Specified result_tbl could not be located in the caslib') filename_idx = result_columns.index(filename_col) caption_idx = None if caption_col in result_tbl.columns: caption_idx = result_columns.index(caption_col) prediction_idx = result_columns.index('_DL_Pred_') result_values = dict() for row in list(result_tbl.values): if caption_idx: tuple1 = [row[caption_idx].strip(), row[prediction_idx].strip()] else: tuple1 = ["N/A", row[prediction_idx].strip()] result_values[row[filename_idx]] = tuple(tuple1) return result_values def get_max_capt_len(captions_file, delimiter='\t'): ''' Finds maximum length of captions from file containing Parameters ---------- captions_file : string Specifies physical path to file containing ground truth image captions. This has to be client accesible. delimiter : string, optional Specifies delimiter between captions and filenames in captions_file Default : '\t' Returns ------- int ''' max_cap_len = 0 with open(captions_file, 'r') as readFile: for line in readFile: captions = line.split(delimiter)[1:] if len(captions) < 1: raise DLPyError("Error with captions file or delimiter") for cap in captions: if len(cap.split()) > max_cap_len: max_cap_len = len(cap.split()) return max_cap_len
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/image_captioning.py
0.81604
0.454291
image_captioning.py
pypi
import matplotlib.pyplot as plt import numpy as np from swat.cas.table import CASTable from .utils import random_name, image_blocksize, caslibify_context, get_server_path_sep, get_cas_host_type from warnings import warn class ImageTable(CASTable): ''' Specialized CASTable for Image Data Parameters ---------- name : string The name of the CAS table **table_params : keyword arguments, optional Parameters to the :class:`CASTable` constructor Attributes ---------- image_summary : pandas.Series The summary of the images contained in the image table. label_freq : pandas.Series The count of images in different categories. channel_means : tuple of double The mean of the image intensities in each channels. uid : pandas.DataFrame The unique ID for each image Returns ------- :class:`ImageTable` ''' running_image_column = '_image_' def __init__(self, name, **table_params): CASTable.__init__(self, name, **table_params) self.patch_level = 0 @classmethod def from_table(cls, tbl, image_col='_image_', label_col='_label_', path_col=None, columns=None, casout=None, label_level=0): ''' Create an ImageTable from a CASTable Parameters ---------- tbl : CASTable The CASTable object to use as the source. image_col : str, optional Specifies the column name for the image data. Default = '_image_' label_col : str, optional Specifies the column name for the labels. Default = '_label_' path_col : str, optional Specifies the column name that stores the path for each image. Default = None, and the unique image ID will be generated from the labels. columns : list of str, optional Specifies the extra columns in the image table. Default = None casout : dict Specifies the output CASTable parameters. Default = None. Note : the options of replace=True, blocksize=32 will be automatically added to the casout option. label_level : optional Specifies which path level should be used to generate the class labels for each image. For instance, label_level = 1 means the first directory and label_level = -2 means the last directory. This internally use the SAS scan function (check https://www.sascrunch.com/scan-function.html for more details). In default, no class labels are generated. If the label column already exists, this option will be ignored. Default: 0 Returns ------- :class:`ImageTable` ''' out = cls(**tbl.params) conn = tbl.get_connection() conn.loadactionset('image', _messagelevel='error') # check whether generating labels do_label_level = False col_list = tbl.columninfo().ColumnInfo.Column.tolist() if label_level != 0: do_label_level = True if '_label_' in col_list or label_col in col_list: do_label_level = False if '_path_' not in col_list: do_label_level = False if casout is None: casout = {} elif isinstance(casout, CASTable): casout = casout.to_outtable_params() if 'name' not in casout: casout['name'] = random_name() #create new vars computedvars = [] code = [] server_type = get_cas_host_type(conn).lower() if server_type.startswith("lin") or server_type.startswith("osx"): fs = "/" else: fs = "\\" if do_label_level: if path_col is None: path_col = '_path_' computedvars.append('_label_') scode = "length _label_ varchar(*); " scode += ("_label_=scan({},{},'{}');".format(path_col, label_level, fs)) code.append(scode) if '_filename_0' not in tbl.columninfo().ColumnInfo.Column.tolist(): computedvars.append('_filename_0') code.append('length _filename_0 varchar(*);') if path_col is not None: code.append(('_loc1 = LENGTH({0}) - ' 'INDEX(REVERSE({0}),"{1}")+2;').format(path_col, fs)) code.append('_filename_0 = SUBSTR({},_loc1);'.format(path_col)) else: code.append('call streaminit(-1);shuffle_id=rand("UNIFORM")*10**10;') code.append(('_filename_0=cats({},"_",put(put(shuffle_id,z10.)' ',$char10.),".jpg");').format(label_col)) if image_col != '_image_': cls.running_image_column = image_col if label_col != '_label_': computedvars.append('_label_') code.append('_label_ = {};'.format(label_col)) code = '\n'.join(code) if computedvars: table_opts = dict(computedvars=computedvars, computedvarsprogram=code, **tbl.params) else: table_opts = dict(**tbl.params) # This will generate the '_image_' and '_label_' columns. conn.retrieve('table.shuffle', _messagelevel='error', table=table_opts, casout=dict(replace=True, blocksize=32, **casout)) # the image table might not contain any label information if '_label_' in tbl.columninfo().ColumnInfo.Column.tolist() or do_label_level: column_names = [cls.running_image_column, '_label_', '_filename_0', '_id_'] else: column_names = [cls.running_image_column, '_filename_0', '_id_'] if columns is not None: if not isinstance(columns, list): columns = list(columns) column_names += columns # Remove the unwanted columns. conn.retrieve('table.partition', _messagelevel='error', table=dict(Vars=column_names, **casout), casout=dict(replace=True, blocksize=32, **casout)) out = cls(**casout) out.set_connection(conn) return out @classmethod def load_files(cls, conn, path, casout=None, columns=None, caslib=None, **kwargs): ''' Create ImageTable from files in `path` Parameters ---------- conn : CAS The CAS connection object path : string The path to the image directory on the server. Path may be absolute, or relative to caslib root if specified. casout : dict, optional The output table specifications columns : list of str, optional Specifies the extra columns in the image table. caslib : string, optional The name of the caslib containing the images. **kwargs : keyword arguments, optional Additional keyword arguments to the `image.loadimages` action Returns ------- :class:`ImageTable` ''' conn.loadactionset('image', _messagelevel='error') if casout is None: casout = dict(name=random_name()) elif isinstance(casout, CASTable): casout = casout.to_outtable_params() if 'name' not in casout: casout['name'] = random_name() with caslibify_context(conn, path, task = 'load') as (caslib_created, path_created): if caslib is None: caslib = caslib_created path = path_created if caslib is None and path is None: print('Cannot create a caslib for the provided path. Please make sure that the path is accessible from' 'the CAS Server. Please also check if there is a subpath that is part of an existing caslib') conn.retrieve('image.loadimages', _messagelevel='error', casout=casout, distribution=dict(type='random'), recurse=True, labellevels=-1, path=path, caslib=caslib, **kwargs) sep_ = get_server_path_sep(conn) code=[] code.append('length _filename_0 varchar(*);') code.append("_loc1 = LENGTH(_path_) - INDEX(REVERSE(_path_),'"+sep_+"')+2;") code.append('_filename_0 = SUBSTR(_path_,_loc1);') code = '\n'.join(code) column_names = ['_image_', '_label_', '_filename_0', '_id_'] if columns is not None: column_names += columns conn.retrieve('table.partition', _messagelevel='error', table=dict(Vars=column_names, computedvars=['_filename_0'], computedvarsprogram=code, **casout), casout=dict(replace=True, blocksize=32, **casout)) out = cls(**casout) out.set_connection(conn) return out def __copy__(self): out = CASTable.__copy__(self) out.patch_level = self.patch_level return out def __deepcopy__(self, memo): out = CASTable.__deepcopy__(self, memo) out.patch_level = self.patch_level return out def to_files(self, path): ''' Save the images in the original format under the specified directory Parameters ---------- path : string Specifies the directory on the server to save the images ''' caslib = random_name('Caslib', 6) self._retrieve('addcaslib', name=caslib, path=path, activeonadd=False) file_name = '_filename_{}'.format(self.patch_level) rt = self._retrieve('image.saveimages', caslib=caslib, images=dict(table=self.to_table_params(), path=file_name, image=self.running_image_column), labellevels=1) self._retrieve('dropcaslib', caslib=caslib) def to_sashdat(self, path=None, name=None, **kwargs): ''' Save the ImageTable to a sashdat file Parameters ---------- path : string Specifies the directory on the server to save the images ''' caslib = random_name('Caslib', 6) self._retrieve('addcaslib', name=caslib, path=path, activeonadd=False, datasource=dict(srcType='DNFS')) if name is None: name = self.to_params()['name'] + '.sashdat' self._retrieve('table.save', caslib=caslib, name=name, table=self.to_params(), **kwargs) self._retrieve('dropcaslib', caslib=caslib) def copy_table(self, casout=None): ''' Create a copy of the ImageTable Parameters ---------- casout : dict, optional Output CAS table parameters Returns ------- :class:`ImageTable` ''' if casout is None: casout = {} casout['name'] = random_name() res = self._retrieve('table.partition', casout=casout, table=self)['casTable'] out = ImageTable.from_table(tbl=res, image_col=self.running_image_column) out.params.update(res.params) return out def show(self, nimages=5, ncol=8, randomize=False, figsize=None, where=None, id=None): ''' Display a grid of images Parameters ---------- nimages : int, optional Specifies the number of images to be displayed. If nimage is greater than the maximum number of images in the table, it will be set to this maximum number. Note: Specifying a large value for nimages can lead to slow performance. ncol : int, optional Specifies the layout of the display, determine the number of columns in the plots. randomize : bool, optional Specifies whether to randomly choose the images for display. figsize : int, optional Specifies the size of the fig that contains the image. where : string, optional Specifies the SAS Where clause for selecting images to be shown. One example is as follows: my_images.show(nimages=2, where='_id_ eq 57') id : string, optional Specifies the identifier column in the image table to be shown. ''' nimages = min(nimages, len(self)) # put where clause to select images self.params['where'] = where # restrict the number of observations to be shown try: # we use numrows to check if where clause is valid max_obs = self.numrows().numrows nimages = min(max_obs, nimages) except AttributeError: self.params['where'] = None warn("Where clause doesn't take effect, because encounter an error while processing where clause. " "Please check your where clause.") if randomize: temp_tbl = self.retrieve('image.fetchimages', _messagelevel='error', table=dict( computedvars=['random_index'], computedvarsprogram='call streaminit(-1);' 'random_index=' 'rand("UNIFORM");', **self.to_table_params()), image=self.running_image_column, sortby='random_index', to=nimages, fetchImagesVars=id) else: temp_tbl = self._retrieve('image.fetchimages', to=nimages, image=self.running_image_column, fetchImagesVars=id) # remove the where clause self.params['where'] = None if nimages > ncol: nrow = nimages // ncol + 1 else: nrow = 1 ncol = nimages if figsize is None: figsize = (16, 16 // ncol * nrow) fig = plt.figure(figsize=figsize) for i in range(nimages): image = temp_tbl['Images']['Image'][i] if 'Label' in temp_tbl['Images'].columns: label = temp_tbl['Images']['Label'][i] else: label = 'N/A' ax = fig.add_subplot(nrow, ncol, i + 1) if id: id_content = temp_tbl['Images'][id][i] ax.set_title('{}\n{}'.format(label, id_content)) else: ax.set_title('{}'.format(label)) if len(image.size) == 2: plt.imshow(np.array(image), cmap='Greys_r') else: plt.imshow(image) plt.xticks([]), plt.yticks([]) plt.show() def crop(self, x=0, y=0, width=None, height=None, inplace=True): ''' Crop the images in the ImageTable Parameters ---------- x : int, optional Specify the x location of the top-left corner of the cropped images. y : int, optional Specify the y location of the top-left corner of the cropped images. width : int, optional Specify the width of the cropped images. height : int, optional Specify the height of the cropped images. If not specified, height will be set to be equal to width. inplace : bool, optional Specifies whether to update the original table, or to create a new one. Returns ------- :class:`ImageTable` If `inplace=False` None If `inplace=True` ''' if (width is None) and (height is None): width = 224 if width is None: width = height if height is None: height = width blocksize = image_blocksize(width, height) column_names = ['_filename_{}'.format(i) for i in range(self.patch_level + 1)] if inplace: self._retrieve('image.processimages', copyvars=column_names, image=self.running_image_column, casout=dict(replace=True, blocksize=blocksize, **self.to_outtable_params()), imagefunctions=[ dict(functionoptions=dict(functiontype='GET_PATCH', x=x, y=y, w=width, h=height))]) else: out = self.copy_table() out.crop(x=x, y=y, width=width, height=height) return out def resize(self, width=None, height=None, inplace=True, columns=None): ''' Resize the images in the ImageTable Parameters ---------- width : int, optional Specify the target width of the resized images. height : int, optional Specify the target height of the resized images. If not specified, height will be set to be equal to width. inplace : bool, optional Specifies whether to update the original table, or to create a new one. columns : list, optional Specifies a list of column names to be copied over to the resulting table. Returns ------- :class:`ImageTable` If `inplace=False` None If `inplace=True` ''' if (width is None) and (height is None): width = 224 if width is None: width = height if height is None: height = width blocksize = image_blocksize(width, height) column_names = ['_filename_{}'.format(i) for i in range(self.patch_level + 1)] if inplace: if columns is not None: set1 = set(column_names) set2 = set(columns) set3 = set2 - set1 r_list = column_names + list(set3) else: r_list = column_names self._retrieve('image.processimages', copyvars=r_list, image=self.running_image_column, casout=dict(replace=True, blocksize=blocksize, **self.to_outtable_params()), imagefunctions=[ dict(functionoptions=dict(functiontype='RESIZE', w=width, h=height))]) else: out = self.copy_table() out.resize(width=width, height=height, columns=columns) return out def as_patches(self, x=0, y=0, width=None, height=None, step_size=None, output_width=None, output_height=None, inplace=True): ''' Generate patches from the images in the ImageTable Parameters ---------- x : int, optional Specify the x location of the top-left corner of the first patches. y : int, optional Specify the y location of the top-left corner of the first patches. width : int, optional Specify the width of the patches. height : int, optional Specify the width of the patches. If not specified, height will be set to be equal to width. step_size : int, optional Specify the step size of the moving windows for extracting the patches. Default : None, meaning step_size=width. output_width : int, optional Specify the output width of the patches. If not equal to width, the patches will be resize to the output width. Default : None, meaning output_width=width. output_height : int, optional Specify the output height of the patches. If not equal to height, the patches will be resize to the output height. Default : None, meaning output_height=height. inplace : bool, optional Specifies whether to update the original table, or create a new one. Returns ------- :class:`ImageTable` If `inplace=False` None If `inplace=True` ''' if (width is None) and (height is None): width = 224 if width is None: width = height if height is None: height = width if step_size is None: step_size = width if output_width is None: output_width = width if output_height is None: output_height = height blocksize = image_blocksize(output_width, output_height) croplist = [dict(sweepimage=True, x=x, y=y, width=width, height=height, stepsize=step_size, outputwidth=output_width, outputheight=output_height)] column_names = ['_filename_{}'.format(i) for i in range(self.patch_level + 1)] if inplace: self._retrieve('image.augmentimages', copyvars=column_names, image=self.running_image_column, casout=dict(replace=True, **self.to_outtable_params()), croplist=croplist) # The following code generate the latest file name according # to the number of patches operations. computedvars = '_filename_{}'.format(self.patch_level + 1) code = [] code.append('length _filename_{1} varchar(*);') code.append('dot_loc = LENGTH(_filename_{0}) - ' 'INDEX(REVERSE(_filename_{0}), \'.\')+1;') code.append('_filename_{1} = SUBSTR(_filename_{0}, 1, dot_loc-1) || ' 'compress(\'_\'||x||\'_\'||y||SUBSTR(_filename_{0},dot_loc));') code = '\n'.join(code) code = code.format(self.patch_level, self.patch_level + 1) self._retrieve('table.shuffle', casout=dict(replace=True, blocksize=blocksize, **self.to_outtable_params()), table=dict(computedvars=computedvars, computedvarsprogram=code, **self.to_table_params())) self.patch_level += 1 else: out = self.copy_table() out.as_patches(x=x, y=y, width=width, height=height, step_size=step_size, output_width=output_width, output_height=output_height) return out def as_random_patches(self, random_ratio=0.5, x=0, y=0, width=None, height=None, step_size=None, output_width=None, output_height=None, inplace=True): ''' Generate random patches from the images in the ImageTable Parameters ---------- random_ratio : double, optional Specifies the proportion of the generated patches to output. x : int, optional Specifies the x location of the top-left corner of the first patches. y : int, optional Specifies the y location of the top-left corner of the first patches. width : int, optional Specifies the width of the patches. height : int, optional Specifies the width of the patches. If not specified, height will be set to be equal to width. step_size : int, optional Specifies the step size of the moving windows for extracting the patches. If not specified, it will be set to be equal to width. output_width : int, optional Specifies the output width of the patches. If not specified, it will be set to be equal to width. output_height : int, optional Specifies the output height of the patches. If not specified, it will be set to be equal to height. inplace : bool, optional Specifies whether to update the original table, or create a new one. Returns ------- :class:`ImageTable` If `inplace=True` None If `inplace=False` ''' if (width is None) and (height is None): width = 224 if width is None: width = height if height is None: height = width if step_size is None: step_size = width if output_width is None: output_width = width if output_height is None: output_height = height blocksize = image_blocksize(output_width, output_height) croplist = [dict(sweepimage=True, x=x, y=y, width=width, height=height, stepsize=step_size, outputwidth=output_width, outputheight=output_height)] column_names = ['_filename_{}'.format(i) for i in range(self.patch_level + 1)] if inplace: self._retrieve('image.augmentimages', copyvars=column_names, image=self.running_image_column, casout=dict(replace=True, **self.to_outtable_params()), croplist=croplist, randomratio=random_ratio, writerandomly=True) # The following code generate the latest file name according # to the number of patches operations. computedvars = '_filename_{}'.format(self.patch_level + 1) code = [] code.append('length _filename_{1} varchar(*);') code.append('dot_loc = LENGTH(_filename_{0}) - ' 'INDEX(REVERSE(_filename_{0}),\'.\')+1;') code.append('_filename_{1} = SUBSTR(_filename_{0},1,dot_loc-1) || ' 'compress(\'_\'||x||\'_\'||y||SUBSTR(_filename_{0},dot_loc));') code = '\n'.join(code) code = code.format(self.patch_level, self.patch_level + 1) self._retrieve('table.shuffle', casout=dict(replace=True, blocksize=blocksize, **self.to_outtable_params()), table=dict(computedvars=computedvars, computedvarsprogram=code, **self.to_table_params())) self.patch_level += 1 else: out = self.copy_table() out.as_random_patches(random_ratio=random_ratio, x=x, y=y, width=width, height=height, step_size=step_size, output_width=output_width, output_height=output_height) return out def random_mutations(self, color_jitter=True, color_shift=True, darken=False, horizontal_flip=True, invert_pixels=False, lighten=False, pyramid_down=False, pyramid_up=False, rotate_left=False, rotate_right=False, sharpen=False, vertical_flip=True, inplace=True, random_ratio=None): ''' Generate random mutations from the images in the ImageTable Parameters ---------- color_jitter : bool, optional Specifies whether to apply color jittering to an input image. color_shift : bool, optional Specifies whether to randomly change pixel intensity values of an input image. darken : bool, optional Specifies whether to darken the input image. horizontal_flip : bool, optional Specifies whether to flip the input image horizontally. invert_pixels : bool, optional Specifies whether to invert all pixels in the input image. lighten : bool, optional Specifies whether to lighten the input image. pyramid_down : bool, optional Specifies whether to downsample and then blur the input image. pyramid_up : bool, optional Specifies whether to upsample and then blur the input image. rotate_left : bool, optional Specifies whether to rotate the input image to the left. rotate_right : bool, optional Specifies whether to rotate the input image to the right. sharpen : bool, optional Specifies whether to sharpen the input image. vertical_flip : bool, optional Specifies whether to vertically flip the input image. inplace : bool, optional Specifies if the input table will be used as the resulting table or not. Default : True random_ratio : double, optional Specifies the ratio of the randomness. The smaller value would yield less number of images in the resulting table. Returns ------- :class:`ImageTable` If `inplace=True` None If `inplace=False` ''' croplist = [{'mutations':dict(colorjittering=color_jitter, colorshifting=color_shift, darken=darken, lighten=lighten, horizontalflip=horizontal_flip, invertpixels=invert_pixels, pyramiddown=pyramid_down, pyramidup=pyramid_up, rotateleft=rotate_left, rotateright=rotate_right, sharpen=sharpen, verticalflip=vertical_flip), 'usewholeimage':True}] column_names = ['_filename_{}'.format(i) for i in range(self.patch_level + 1)] if inplace: self._retrieve('image.augmentimages', copyvars=column_names, image=self.running_image_column, casout=dict(replace=True, **self.to_outtable_params()), croplist=croplist, randomratio=random_ratio, writerandomly=True) # The following code generate the latest file name according # to the number of patches and mutation (_m) operations. computedvars = '_filename_{}'.format(self.patch_level + 1) code = [] code.append('length _filename_{1} varchar(*);') code.append('dot_loc = LENGTH(_filename_{0}) - ' 'INDEX(REVERSE(_filename_{0}),\'.\')+1;') code.append('_filename_{1} = SUBSTR(_filename_{0},1,dot_loc-1) || ' 'compress(\'_\'||\'m{0}\'||SUBSTR(_filename_{0},dot_loc));') code = '\n'.join(code) code = code.format(self.patch_level, self.patch_level + 1) self._retrieve('table.shuffle', casout=dict(replace=True, **self.to_outtable_params()), table=dict(computedvars=computedvars, computedvarsprogram=code, **self.to_table_params())) self.patch_level += 1 else: out = self.copy_table() out.random_mutations(color_jitter=color_jitter, color_shift=color_shift, darken=darken, horizontal_flip=horizontal_flip, invert_pixels=invert_pixels, lighten=lighten, pyramid_down=pyramid_down, pyramid_up=pyramid_up, rotate_left=rotate_left, rotate_right=rotate_right, sharpen=sharpen, vertical_flip=vertical_flip, inplace=True, randomratio=random_ratio) return out @property def image_summary(self): ''' Summarize the images in the ImageTable Returns ------- :class:`pd.Series` ''' out = self._retrieve('image.summarizeimages', image=self.running_image_column)['Summary'] out = out.T.drop(['Column'])[0] out.name = None return out @property def label_freq(self): ''' Summarize the distribution of different classes (labels) in the ImageTable Returns ------- :class:`pd.Series` ''' out = self._retrieve('simple.freq', table=self, inputs=['_label_'])['Frequency'] out = out[['FmtVar', 'Level', 'Frequency']] out = out.set_index('FmtVar') # out.index.name = 'Label' out.index.name = None out = out.astype('int64') return out @property def channel_means(self): ''' A list of the means of the image intensities in each color channel. Returns ------- ( first-channel-mean, second-channel-mean, third-channel-mean ) ''' return self.image_summary[['mean1stChannel', 'mean2ndChannel', 'mean3rdChannel']].tolist() @property def uid(self): ''' A unique ID for each image. Returns ------- ''' file_name = '_filename_{}'.format(self.patch_level) uid = self[['_label_', file_name]].to_frame() # uid = uid.rename(columns={file_name: '_uid_'}) return uid
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/images.py
0.802285
0.405184
images.py
pypi
from .layers import (Conv2d, BN, Res, Concat, Recurrent, InputLayer) from dlpy.utils import DLPyError class ResBlock(object): ''' Base class for the residual blocks. Parameters ---------- kernel_sizes : list-of-ints, optional Specifies the size of the kernels. This assumes the kernels are square. Default: 3 n_filters : list-of-ints, optional Specifies the number of filters. Default: (16, 16) strides : list-of-ints, optional Specifies the stride values for the filters batch_norm_first : bool, optional Set to True, if the batch normalization comes first Default: False conv_short_cut : bool, optional Set to True, if convolution layer has a short cut Default: False Returns ------- :class:`ResBlock` ''' type = 'block' type_desc = 'Residual block' can_be_last_layer = False number_of_instances = 0 # To keep track of the instance counts this will be using later to assing a name if not set number_of_instances = 0 def __init__(self, kernel_sizes=3, n_filters=(16,16), strides=None, batch_norm_first=False, conv_short_cut=False): self.count_instances() if strides is None: self.strides = [1] * len(n_filters) else: if isinstance(strides, int): self.strides = [strides] + [1] * (len(n_filters) - 1) elif isinstance(strides, list) or isinstance(strides, set) or isinstance(strides, tuple): if len(strides) == 1: self.strides = [strides].append([1] * (len(n_filters) - 1)) else: self.strides = strides else: raise DLPyError('The strides parameter needs to be an integer or list of integers.') if len(self.strides) != len(n_filters): raise DLPyError('The length of strides must be equal to the length of n_filters.') self.kernel_sizes = kernel_sizes self.n_filters = n_filters if isinstance(self.kernel_sizes, int): self.kernel_sizes = [self.kernel_sizes] else: self.kernel_sizes = self.kernel_sizes if len(self.kernel_sizes) == 1: self.kernel_sizes = [self.kernel_sizes] * len(self.n_filters) elif len(self.kernel_sizes) != len(self.n_filters): raise DLPyError('The length of kernel_sizes must be equal to the length of n_filters.') self.batch_norm_first = batch_norm_first self.conv_short_cut = conv_short_cut self.layers = [] self.add_layers() @classmethod def count_instances(cls): cls.number_of_instances += 1 @classmethod def get_number_of_instances(cls): return cls.number_of_instances def add_layers(self): ''' Add the layers for the block ''' for n_filter, kernel_size, stride in zip(self.n_filters, self.kernel_sizes, self.strides): self.layers.append(Conv2d(n_filters=n_filter, width=kernel_size, stride=stride)) self.layers.append(Res(act='identity')) def compile(self, src_layer, block_num=None): ''' Convert the block structure into DLPy layer definitions. Parameters ---------- src_layer : Layer The source layer for the whole block. block_num : int, optional The label of the block. (used to name the layers) Returns ------- list A list of keyword-arguments ''' if block_num is None: block_num = self.get_number_of_instances() options = [] conv_num = 1 input_layer = src_layer for layer in self.layers: if layer.type == 'convo': layer.name = 'R{}C{}'.format(block_num, conv_num) conv_num += 1 layer.src_layers = [input_layer] elif layer.type == 'residual': layer.name = 'Res{}'.format(block_num) layer.src_layers = [input_layer, src_layer] input_layer = layer options.append(layer.to_model_params()) return options class ResBlockBN(ResBlock): ''' Residual block for Residual Network with batch normalization. Parameters ---------- kernel_sizes : iter-of-ints, optional Kernel size of the convolution filters. Default: 3 n_filters : iter-of-ints, optional List of numbers of filter in each convolution layers. Default: (16, 16) strides : iter-of-ints, optional List of stride in each convolution layers. batch_norm_first : bool, optional Specify whether to add batch normal layer before conv layer. Default: True Returns ------- :class:`ResBlockBN` ''' type_desc = 'Residual Block with BN' type = 'block' can_be_last_layer = False number_of_instances = 0 def __init__(self, kernel_sizes=3, n_filters=(16, 16), strides=None, batch_norm_first=True): number_of_instances = 0 ResBlock.__init__(self, kernel_sizes, n_filters, strides, batch_norm_first) def add_layers(self): if self.batch_norm_first: for n_filter, kernel_size, stride in zip(self.n_filters, self.kernel_sizes, self.strides): self.layers.append(BN(act='relu')) self.layers.append(Conv2d(n_filters=n_filter, width=kernel_size, act='identity', stride=stride, include_bias=False)) else: for n_filter, kernel_size, stride in zip(self.n_filters, self.kernel_sizes, self.strides): self.layers.append(Conv2d(n_filters=n_filter, width=kernel_size, act='identity', stride=stride, include_bias=False)) self.layers.append(BN(act='relu')) self.layers.append(Res(act='identity')) def compile(self, src_layer, block_num=None): ''' Convert the block structure into DLPy layer definitions. Parameters ---------- src_layer : Layer The source layer for the whole block. block_num : int, optional The label of the block. (used to name the layers) Returns ------- list A list of keyword-arguments ''' if block_num is None: block_num = self.get_number_of_instances() options = [] conv_num = 1 bn_num = 1 input_layer = src_layer for layer in self.layers: if layer.type == 'convo': layer.name = 'R{}C{}'.format(block_num, conv_num) conv_num += 1 layer.src_layers = [input_layer] elif layer.type == 'batchnorm': layer.name = 'R{}B{}'.format(block_num, bn_num) bn_num += 1 layer.src_layers = [input_layer] elif layer.type == 'residual': layer.name = 'Res{}'.format(block_num) layer.src_layers = [input_layer, src_layer] input_layer = layer options.append(layer.to_model_params()) return options class ResBlock_Caffe(ResBlock): ''' Residual block for Residual Network with batch normalization. Parameters ---------- kernel_sizes : iter-of-ints, optional Kernel size of the convolution filters. Default: 3 n_filters : iter-of-ints, optional List of numbers of filter in each convolution layers. Default: (16, 16) strides : iter-of-ints, optional List of stride in each convolution layers. batch_norm_first : bool, optional Specify whether to add batch normal layer before conv layer. Default: False conv_short_cut : bool, optional Set to True, if there is short cut in the convolution layer Default: False Returns ------- :class:`ResBlock_Caffe` ''' type = 'block' type_desc = 'Residual Caffe Block ' can_be_last_layer = False number_of_instances = 0 def __init__(self, kernel_sizes=3, n_filters=(16, 16), strides=None, batch_norm_first=False, conv_short_cut=False): number_of_instances = 0 ResBlock.__init__(self, kernel_sizes, n_filters, strides, batch_norm_first, conv_short_cut) def add_layers(self): if self.batch_norm_first: if self.conv_short_cut: self.layers.append(BN(act='relu')) self.layers.append(Conv2d(n_filters=self.n_filters[-1], width=1, act='identity', stride=self.strides[0], include_bias=False)) self.layers.append(Res(act='identity')) for n_filter, kernel_size, stride in zip(self.n_filters, self.kernel_sizes, self.strides): self.layers.append(BN(act='relu')) self.layers.append(Conv2d(n_filters=n_filter, width=kernel_size, act='identity', stride=stride, include_bias=False)) else: if self.conv_short_cut: self.layers.append( Conv2d(n_filters=self.n_filters[-1], width=1, act='identity', stride=self.strides[0],include_bias=False)) self.layers.append(BN(act='identity')) for n_filter, kernel_size, stride in zip(self.n_filters, self.kernel_sizes, self.strides): self.layers.append(Conv2d(n_filters=n_filter, width=kernel_size, act='identity', stride=stride, include_bias=False)) self.layers.append(BN(act='relu')) self.layers.append(Res(act='relu')) def compile(self, src_layer, block_num=None): ''' Compile the block structure into DLPy layer definitions. Parameters ---------- src_layer : Layer The source layer for the whole block. block_num : int, optional The label of the block. (used to name the layers) Returns ------- list A list of keyword-arguments ''' if block_num is None: block_num = self.get_number_of_instances() options = [] conv_num = 1 bn_num = 1 input_layer = src_layer if self.conv_short_cut: for layer in self.layers[:2]: if layer.type == 'convo': layer.name = 'R{}C{}'.format(block_num, 0) conv_num += 1 layer.src_layers = [input_layer] elif layer.type == 'batchnorm': layer.name = 'R{}B{}'.format(block_num, 0) bn_num += 1 layer.src_layers = [input_layer] input_layer = layer options.append(layer.to_model_params()) short_cut_layer = layer input_layer = src_layer for layer in self.layers[2:]: if layer.type == 'convo': layer.name = 'R{}C{}'.format(block_num, conv_num) conv_num += 1 layer.src_layers = [input_layer] elif layer.type == 'batchnorm': layer.name = 'R{}B{}'.format(block_num, bn_num) bn_num += 1 layer.src_layers = [input_layer] elif layer.type == 'residual': layer.name = 'Res{}'.format(block_num) layer.src_layers = [input_layer, short_cut_layer] input_layer = layer options.append(layer.to_model_params()) else: for layer in self.layers: if layer.type == 'convo': layer.name = 'R{}C{}'.format(block_num, conv_num) conv_num += 1 layer.src_layers = [input_layer] elif layer.type == 'batchnorm': layer.name = 'R{}B{}'.format(block_num, bn_num) bn_num += 1 layer.src_layers = [input_layer] elif layer.type == 'residual': layer.name = 'Res{}'.format(block_num) layer.src_layers = [input_layer, src_layer] input_layer = layer options.append(layer.to_model_params()) return options class DenseNetBlock(object): ''' DenseNet block Parameters ---------- n_cells : int, optional Number of cells Default: 4 kernel_size : int, optional Size of the kernel Default: 3 n_filter : int, optional Number of filters Default: 12 stride : int, optional Size of the stride Default: 1 Returns ------- :class:`DenseNetBlock` ''' type = 'block' type_desc = 'DenseNet Block ' can_be_last_layer = False number_of_instances = 0 def __init__(self, n_cells=4, kernel_size=3, n_filter=12, stride=1): self.count_instances() self.config = dict() self.layers = [] self.n_cells = n_cells self.kernel_size = kernel_size self.n_filter = n_filter self.stride = stride self.add_layers() # To keep track of the instance counts this will be using later to assing a name if not set number_of_instances = 0 @classmethod def count_instances(cls): cls.number_of_instances += 1 @classmethod def get_number_of_instances(cls): return cls.number_of_instances def add_layers(self): ''' Add layers for the block ''' for _ in range(self.n_cells): self.layers.append(BN(act='relu')) self.layers.append(Conv2d(n_filters=self.n_filter, width=self.kernel_size, act='relu', stride=self.stride, include_bias=False)) self.layers.append(Concat(act='identity')) def compile(self, src_layer, block_num=None): ''' Convert the options into DLPy layer definition. Parameters ---------- src_layer : Layer The source layer for the whole block. block_num : int, optional The label of the block. (used to name the layers) Returns ------- dict A dictionary of keyword-arguments ''' if block_num is None: block_num = self.get_number_of_instances() options = [] conv_num = 1 bn_num = 1 concat_num = 1 input_layer = src_layer for layer in self.layers: if layer.type == 'convo': layer.name = 'D{}C{}'.format(block_num, conv_num) conv_num += 1 layer.src_layers = [input_layer] elif layer.type == 'batchnorm': layer.name = 'D{}B{}'.format(block_num, bn_num) bn_num += 1 layer.src_layers = [input_layer] elif layer.type == 'concat': layer.name = 'D{}Concat{}'.format(block_num, concat_num) concat_num += 1 layer.src_layers = [input_layer, src_layer] src_layer = layer input_layer = layer options.append(layer.to_model_params()) return options class Bidirectional(object): ''' Bidirectional RNN layers Parameters ---------- n : int or list of int Specifies the number of neurons in the recurrent layer. If n_blocks=1, then n should be an int. If n_blocks > 1, then n can be an int or a list of ints to indicate the number of neurons in each block. n_blocks : int, optional Specifies the number of bidirectional recurrent layer blocks. Default: 1 rnn_type : string, optional Specifies the type of the rnn layer. Default: GRU Valid Values: RNN, LSTM, GRU output_type : string, optional Specifies the output type of the recurrent layer. Default: SAMELENGTH Valid Values: ENCODING, SAMELENGTH, ARBITRARYLENGTH max_output_length : int, mostly optional Specifies the maximum number of tokens to generate when the outputType parameter is set to ARBITRARYLENGTH. dropout : float, optional Specifies the dropout rate. Default: 0.2 src_layers : list, optional Specifies the list of source layers for the layer. name : string, optional Specifies layer names. If not specified, 'RNN' is used Returns ------- :class:`Bidirectional' ''' type = 'block' def __init__(self, n, n_blocks=1, rnn_type='gru', output_type='samelength', dropout=0.2, max_output_length=None, src_layers=None, name=None): if isinstance(n, int): if n_blocks == 1: self.n = [n] elif n_blocks > 1: self.n = [n] * n_blocks else: raise DLPyError('n_blocks should be larger than 0.') else: if len(n) == n_blocks: self.n = n else: raise DLPyError('the length of the neurons should be equal to the number of blocks') self.n_blocks = n_blocks self.src_layers = src_layers self.max_output_length = max_output_length self.rnn_type = rnn_type self.output_type = output_type self.dropout = dropout self.layers = [] self.name = name self.add_layers() def add_layers(self): ''' Add layers for the block ''' if self.src_layers is None: self.layers.append(InputLayer(name='input_layer_to_bidirectional_rnn')) for i in range(0, self.n_blocks): self.layers.append(Recurrent(n=self.n[i], rnn_type=self.rnn_type, output_type=self.output_type, dropout=self.dropout, reversed_=True, max_output_length=self.max_output_length)) self.layers.append(Recurrent(n=self.n[i], rnn_type=self.rnn_type, output_type=self.output_type, dropout=self.dropout, reversed_=False, max_output_length=self.max_output_length)) def get_last_layers(self): ''' Return last two layers, if they exist ''' if len(self.layers) > 1: return self.layers[-2:] else: return None def compile(self, block_num=1): ''' Convert the options into DLPy layer definition. Parameters ---------- src_layer : Layer The source layer for the whole block. block_num : int, optional The label of the block. (Used to name the layers.) Returns ------- dict A dictionary of keyword-arguments ''' options = [] if self.src_layers is None: input_layer = self.layers[0] i = 1 options.append(input_layer.to_model_params()) else: input_layer = self.src_layers i = 0 local_name = 'RNN' bnum = block_num if self.name is not None: local_name = self.name bnum = 1 while (i+1) < len(self.layers): layer1 = self.layers[i] layer1.name = local_name+'{}B{}'.format(0, bnum) if isinstance(input_layer, list): layer1.src_layers = input_layer else: layer1.src_layers = [input_layer] options.append(layer1.to_model_params()) layer2 = self.layers[i+1] layer2.name = local_name+'{}B{}'.format(1, bnum) if isinstance(input_layer, list): layer2.src_layers = input_layer else: layer2.src_layers = [input_layer] options.append(layer2.to_model_params()) input_layer = [layer1, layer2] bnum += 1 i += 2 return options def get_layers(self): ''' Return list of layers ''' return self.layers
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/blocks.py
0.952031
0.512388
blocks.py
pypi
import random from dlpy.utils import DLPyError, random_name import wave import audioop import os def read_audio(path): """ Read the audio from path into a wave_read object. Parameters ---------- path : string Specifies path of the audio file. Returns ------- wave_reader : class : 'wave.Wave_read' 'wave.Wave_read' Object returned by opening the audio file listed in 'path'. wave_params : class : 'wave._wave_params' Wave parameters (nchannels, sampwidth, framerate, nframes, comptype, compname) obtained by calling getparams() on the 'wave.Wave_read' Object. """ wave_reader = wave.open(path, "rb") wave_params = wave_reader.getparams() return wave_reader, wave_params def check_framerate(params, framerate): """ Check if the input audio has the desired framerate (sampling rate). Parameters ---------- params : class : 'wave._wave_params' Specifies the original parameters of the audio. framerate : int Specifies the desired framerate. Returns ------- Boolean Whether the input audio has the desired framerate (True) or not (False). """ return params.framerate == framerate def check_sampwidth(params, sampwidth): """ Check if the input audio has the desired sampwidth (byte width). Parameters ---------- params : class : 'wave._wave_params' Specifies the original parameters of the audio. sampwidth : int Specifies the desired sampwidth. Returns ------- Boolean Whether the input audio has the desired sampwidth (True) or not (False). """ if params.sampwidth not in {1, 2, 3, 4}: raise DLPyError("invalid wave input! Only byte width values included in {1, 2, 3, 4} are accepted.") if sampwidth not in {1, 2, 3, 4}: raise DLPyError("invalid desired byte width! Only byte width values included in {1, 2, 3, 4} are accepted.") return params.sampwidth == sampwidth def check_stereo(params): """ Check if the input audio has 2 channels (stereo). Parameters ---------- params : class : 'wave._wave_params' Specifies the original parameters of the audio. Returns ------- Boolean Whether the input audio has 2 channels (True) or not (False). """ if params.nchannels not in {1, 2}: raise DLPyError("invalid wave input! Only mono and stereo are supported.") return params.nchannels == 2 def convert_framerate(fragment, width, nchannels, framerate_in, framerate_out): """ Convert framerate (sampling rate) of the input fragment. Parameters ---------- fragment : bytes object Specifies the original fragment. width : int Specifies the fragment's original sampwidth. nchannels : int Specifies the fragment's original nchannels. framerate_in : int Specifies the fragment's original framerate. framerate_out : int Specifies the fragment's desired framerate. Returns ------- bytes Converted audio with the desired framerate 'framerate_out'. """ if framerate_in == framerate_out: return fragment new_fragment, _ = audioop.ratecv(fragment, width, nchannels, framerate_in, framerate_out, None) return new_fragment def convert_sampwidth(fragment, sampwidth_in, sampwidth_out): """ Convert the sampwidth (byte width) of the input fragment between 1-, 2-, 3-, 4-byte formats. Parameters ---------- fragment : bytes object Specifies the original fragment. sampwidth_in : int Specifies the fragment's original sampwidth. sampwidth_out : int Specifies the fragment's desired sampwidth. Returns ------- bytes Converted audio with the desired sampwidth 'sampwidth_out'. """ if sampwidth_in == sampwidth_out: return fragment # In .wav files, 16, 24, and 32 bit samples are signed, 8 bit samples are unsigned. # So when converting from 8 bit wide samples, you need to also subtract 128 from the sample. # Similarly, when converting to 8 bit wide samples, you need to also add 128 to the result. if sampwidth_in == 1: new_fragment = audioop.bias(fragment, 1, -128) else: new_fragment = fragment new_fragment = audioop.lin2lin(new_fragment, sampwidth_in, sampwidth_out) if sampwidth_out == 1: new_fragment = audioop.bias(new_fragment, 1, 128) return new_fragment def convert_stereo_to_mono(fragment, width): """ Convert stereo fragment to mono. Parameters ---------- fragment : bytes object Specifies the original fragment. width : int Specifies the fragment's original sampwidth. Returns ------- bytes Converted audio in mono type. """ new_fragment = audioop.tomono(fragment, width, 0.5, 0.5) return new_fragment def calculate_segment_nframes(path, segment_len): """ Calculate the number of frames of every segment split from the audio input. Parameters ---------- path : string Specifies path of the audio file. segment_len : float Specifies the maximum length of one segment in seconds. Returns ------- list of ints A list of each segment length in frames. """ wave_reader, wave_params = read_audio(path) window_nframes = int(wave_params.framerate * 0.01) # every window last 0.01 second segment_nframes = int(wave_params.framerate * segment_len) # switch every window by 0.01 second # save the frame index of middle of the window to frame_list # save maximum value of the window to max_list frame = 0 frame_list, max_list = [], [] while True: if frame >= wave_params.nframes: break fragment = wave_reader.readframes(window_nframes) frame_list.append(min(int(frame + window_nframes / 2), wave_params.nframes)) max_list.append(audioop.max(fragment, wave_params.sampwidth)) frame += window_nframes wave_reader.close() # calculate the threshold by 30 percentile max_list_sorted = sorted(max_list) threshold = max_list_sorted[int(len(max_list_sorted) * 30. / 100)] # calculate how many previous windows have maximum values smaller than threshold continuous = 0 continuous_list = [] for max_val in max_list: if max_val < threshold: continuous += 1 else: continuous = 0 continuous_list.append(continuous) # find frame numbers of breakpoints breakpoint_frame_list = [] while True: frame_min = frame_list[0] frame_max = frame_min + segment_nframes - window_nframes if frame_list[-1] <= frame_max: break for index, frame in enumerate(frame_list): if frame > frame_max: continuous_max_value = max(continuous_list[:index]) continuous_max_index = continuous_list.index(continuous_max_value) for i in range(continuous_max_index + 1): continuous_list[i] = 0 continuous_max_index = int(continuous_max_index - (continuous_max_value - 1) / 2) breakpoint_frame_list.append(frame_list[continuous_max_index]) frame_list = frame_list[continuous_max_index + 1:] continuous_list = continuous_list[continuous_max_index + 1:] break # remove too close breakpoints i = 1 while True: if len(breakpoint_frame_list) < 2 or i >= len(breakpoint_frame_list): break if i == 1: if breakpoint_frame_list[i] < segment_nframes: del breakpoint_frame_list[0] else: i += 1 else: if breakpoint_frame_list[i] - breakpoint_frame_list[i - 2] < segment_nframes: del breakpoint_frame_list[i - 1] else: i += 1 # calculate nframes_list segment_nframes_list = [] if len(breakpoint_frame_list) > 0: segment_nframes_list.append(breakpoint_frame_list[0]) for i in range(1, len(breakpoint_frame_list)): segment_nframes_list.append(breakpoint_frame_list[i] - breakpoint_frame_list[i - 1]) if len(breakpoint_frame_list) == 0 or breakpoint_frame_list[-1] < wave_params.nframes: segment_nframes_list.append(segment_nframes) return segment_nframes_list def segment_audio(path, local_path, data_path_after_caslib, segment_len, framerate, sampwidth): """ Segment the audio into pieces shorter than segment_len. Parameters ---------- path : string Specifies path of the audio file. local_path : string Specifies the location where temporary segmented audio files are stored (server side). data_path_after_caslib : string Specifies the location where temporary segmented audio files are stored (client side, relative to caslib). Note that local_path and data_path_after_caslib actually point to the same position. segment_len : float Specifies the maximum length of one segment in seconds. framerate : int Specifies the desired framerate. sampwidth : int Specifies the desired sampwidth. Returns ------- listing_path_after_caslib : string Path of the file listing the audio segments on the server side, relative to caslib. listing_path_local : string Path of the file listing the audio segments on the client side. segment_path_after_caslib_list : list of string A list of paths of the audio segments on the server side, relative to caslib. segment_path_local_list : list of string A list of paths of the audio segments on client side. """ if os.path.isfile(path): wave_reader, wave_params = read_audio(path) else: raise DLPyError("Cannot find the audio file.") if segment_len <= 0: raise DLPyError("Incorrect \"segment_len\" value: the segment length maximum can only be positive.") if segment_len > 35: raise DLPyError("Incorrect \"segment_len\" value: the segment length maximum cannot be longer than 35 seconds.") is_framerate_desired = check_framerate(wave_params, framerate) is_sampwidth_desired = check_sampwidth(wave_params, sampwidth) is_stereo = check_stereo(wave_params) # generate the listing file name audio_name = os.path.basename(path) audio_name = os.path.splitext(audio_name)[0] listing_name_no_ext = None listing_name = None while listing_name is None: listing_name_no_ext = random_name(audio_name, 6) listing_name = listing_name_no_ext + ".listing" listing_path_after_caslib = data_path_after_caslib + listing_name listing_path_local = os.path.join(local_path, listing_name) if os.path.exists(listing_path_local): listing_name = None # segmentation segment_nframes_list = calculate_segment_nframes(path, segment_len) print("Note:", str(len(segment_nframes_list)), "temporary audio files are created.") segment_path_after_caslib_list = [] segment_path_local_list = [] with open(listing_path_local, "w") as listing_file: wave_reader.rewind() for i in range(len(segment_nframes_list)): segment_name = listing_name_no_ext + "_" + str(i) + ".wav" segment_path_after_caslib = data_path_after_caslib + segment_name segment_path_local = os.path.join(local_path, segment_name) with wave.open(segment_path_local, "wb") as wave_writer: segment_path_after_caslib_list.append(segment_path_after_caslib) segment_path_local_list.append(segment_path_local) wave_writer.setnchannels(1) wave_writer.setframerate(framerate) wave_writer.setsampwidth(sampwidth) wave_writer.setcomptype(wave_params.comptype, wave_params.compname) fragment = wave_reader.readframes(segment_nframes_list[i]) if is_stereo: fragment = convert_stereo_to_mono(fragment, wave_params.sampwidth) if not is_framerate_desired: fragment = convert_framerate(fragment, wave_params.sampwidth, 1, wave_params.framerate, framerate) if not is_sampwidth_desired: fragment = convert_sampwidth(fragment, wave_params.sampwidth, sampwidth) wave_writer.writeframes(fragment) wave_reader.close() for segment_path_after_caslib in segment_path_after_caslib_list: listing_file.write(segment_path_after_caslib + "\n") # listing_path_after_caslib: to load audio # listing_path_local: to remove listing file # segment_path_after_caslib_list: to concatenate results (add caslib path) # segment_path_local_list: to remove segmented files return listing_path_after_caslib, listing_path_local, segment_path_after_caslib_list, segment_path_local_list def clean_audio(listing_path_local, segment_path_local_list): """ Remove the temporary listing file and the temporary audio files. Parameters ---------- listing_path_local : string Specifies path of the temporary listing file to remove. segment_path_local_list : list of string Specifies paths of the temporary audio files to remove. """ is_removed = False if os.path.exists(listing_path_local): os.remove(listing_path_local) is_removed = True for segment_path_local in segment_path_local_list: if os.path.exists(segment_path_local): os.remove(segment_path_local) is_removed = True if is_removed: print("Note: all temporary files are removed.") def random_file_from_dir(local_audio_file): n=0 random.seed() for r, d, f in os.walk(local_audio_file): for name in f: n=n+1 if random.uniform(0, n) < 1: random_file=os.path.join(r, name) return random_file def play_one_audio_file(local_audio_file): ''' Play a local audio file using soundfile and sounddevice. Parameters ---------- local_audio_file : string Local location to the audio file to be played. When it is a directory, a file will be randomly chosen. Returns ------- None Raises ------ DLPyError If anything goes wrong, it complains and prints the appropriate message. ''' try: import soundfile as sf import sounddevice as sd except (ModuleNotFoundError, ImportError): raise DLPyError('cannot import soundfile or sounddevice') if os.path.isdir(local_audio_file): local_audio_file_real = random_file_from_dir(local_audio_file) else: local_audio_file_real = local_audio_file print('File location: {}'.format(local_audio_file_real)) data, sampling_rate = sf.read(local_audio_file_real) print('Frequency [Hz]: {}'.format(sampling_rate)) print('Duration [s]: {}'.format(data.shape[0]/sampling_rate)) sd.play(data, sampling_rate) sd.wait() def display_spectrogram_for_one_audio_file(local_audio_file): ''' Display spectrogram for a local audio file using soundfile. Parameters ---------- local_audio_file : string Local location to the audio file to be displayed. Returns ------- None Raises ------ DLPyError If anything goes wrong, it complains and prints the appropriate message. ''' try: import soundfile as sf import matplotlib.pylab as plt except (ModuleNotFoundError, ImportError): raise DLPyError('cannot import soundfile') if os.path.isdir(local_audio_file): local_audio_file_real = random_file_from_dir(local_audio_file) else: local_audio_file_real = local_audio_file print('File location: {}'.format(local_audio_file_real)) data, sampling_rate = sf.read(local_audio_file_real) plt.specgram(data, Fs=sampling_rate) # add axis labels plt.ylabel('Frequency [Hz]') plt.xlabel('Time [sec]') def display_raw_data_for_one_audio_file(local_audio_file): ''' Display raw data for a local audio file using soundfile. Parameters ---------- local_audio_file : string Local location to the audio file to be displayed. Returns ------- None Raises ------ DLPyError If anything goes wrong, it complains and prints the appropriate message. ''' try: import soundfile as sf import matplotlib.pylab as plt except (ModuleNotFoundError, ImportError): raise DLPyError('cannot import soundfile') if os.path.isdir(local_audio_file): local_audio_file_real = random_file_from_dir(local_audio_file) else: local_audio_file_real = local_audio_file print('File location: {}'.format(local_audio_file_real)) data, sampling_rate = sf.read(local_audio_file_real) plt.plot(data) def convert_one_audio_file(local_audio_file, converted_local_audio_file): ''' Convert a local audio file into a wav format that only contains 1 channel with 16 bits and 16K HZ. Parameters ---------- local_audio_file : string Local location to the audio file to be converted. converted_local_audio_file : string Local location to store the converted audio file Returns ------- None Raises ------ DLPyError If anything goes wrong, it complains and prints the appropriate message. ''' try: import soundfile as sf except (ModuleNotFoundError, ImportError): raise DLPyError('cannot import soundfile') audio_name = os.path.basename(local_audio_file) output_dir = os.path.dirname(converted_local_audio_file) required_sr = 16000 required_sw = 2 # check whether the audio file is a wave format audio_ext = os.path.splitext(audio_name)[-1] audio_name = os.path.splitext(audio_name)[0] if audio_ext.lower() != '.wav': audio_wav_file = output_dir + random_name(audio_name, 6) + '.wav' data, sampling_rate = sf.read(local_audio_file) sf.write(audio_wav_file, data, sampling_rate) else: audio_wav_file = local_audio_file # convert the wav file to the required format: 1 channel, 16 bits, and 16K HZ wave_reader, wave_params = read_audio(audio_wav_file) is_framerate_desired = check_framerate(wave_params, required_sr) is_sampwidth_desired = check_sampwidth(wave_params, required_sw) is_stereo = check_stereo(wave_params) if converted_local_audio_file == audio_wav_file: real_converted_local_audio_file = converted_local_audio_file + '.tmp' else: real_converted_local_audio_file = converted_local_audio_file with wave.open(real_converted_local_audio_file, "wb") as wave_writer: wave_writer.setnchannels(1) wave_writer.setframerate(required_sr) # 16 bits wave_writer.setsampwidth(2) wave_writer.setcomptype(wave_params.comptype, wave_params.compname) fragment = wave_reader.readframes(wave_params.nframes) # 1 channel if is_stereo: fragment = convert_stereo_to_mono(fragment, wave_params.sampwidth) # 16K HZ if not is_framerate_desired: fragment = convert_framerate(fragment, wave_params.sampwidth, 1, wave_params.framerate, required_sr) # 16 bits if not is_sampwidth_desired: fragment = convert_sampwidth(fragment, wave_params.sampwidth, required_sw) wave_writer.writeframes(fragment) wave_reader.close() # remove the temporary wav file if audio_wav_file != local_audio_file: os.remove(audio_wav_file) # rename the file to the desired one if real_converted_local_audio_file != converted_local_audio_file: os.replace(real_converted_local_audio_file, converted_local_audio_file) def convert_audio_files(local_audio_path, recurse=True): ''' Convert audio files under a local path into wave files that only contains 1 channel with 16 bits and 16K HZ. Parameters ---------- local_audio_path : string Local location to the audio files that will be converted. The new wave files will be stored under this path. Note if the files are already in the wave format, they will be overwritten. recurse : bool, optional Specifies whether to recursively convert all the audio files. Default : True Returns ------- None Raises ------ DLPyError If anything goes wrong, it complains and prints the appropriate message. ''' number_files = 0 if recurse: for r, d, f in os.walk(local_audio_path): number_files = number_files + len(f) else: for f in os.listdir(local_audio_path): local_file = os.path.join(local_audio_path, f) if os.path.isfile(local_file): number_files = number_files + 1 print('File path: {}'.format(local_audio_path)) print('Number of Files: {}'.format(number_files)) print_freq = 1000 number_files = 0 if recurse: for r, d, f in os.walk(local_audio_path): for file in f: local_file = os.path.join(r, file) local_file_wav = os.path.splitext(local_file)[0] + '.wav' try: convert_one_audio_file(local_file, local_file_wav) number_files = number_files + 1 except: print('Cannot convert file {}'.format(local_file)) if number_files % print_freq == 0: print('Number of files processed: {}'.format(number_files)) else: for f in os.listdir(local_audio_path): local_file = os.path.join(local_audio_path, f) if os.path.isfile(local_file): local_file_wav = os.path.join(local_audio_path, os.path.splitext(f)[0] + '.wav') try: convert_one_audio_file(local_file, local_file_wav) number_files = number_files + 1 except: print('Cannot convert file {}'.format(local_file)) if number_files % print_freq == 0: print('Number of files processed: {}'.format(number_files)) print('File conversions are finished.') def convert_one_audio_file_to_specgram(local_audio_file, converted_local_png_file): ''' Convert a local audio file into a png format with spectrogram. Parameters ---------- local_audio_file : string Local location to the audio file to be converted. converted_local_png_file : string Local location to store the converted audio file Returns ------- None Raises ------ DLPyError If anything goes wrong, it complains and prints the appropriate message. ''' try: import soundfile as sf import matplotlib.pylab as plt except (ModuleNotFoundError, ImportError): raise DLPyError('cannot import soundfile') data, sampling_rate = sf.read(local_audio_file) fig, ax = plt.subplots(1) fig.subplots_adjust(left=0, right=1, bottom=0, top=1) ax.axis('off') ax.specgram(x=data, Fs=sampling_rate) ax.axis('off') fig.savefig(converted_local_png_file, dpi=300, frameon='false') # this is the key to avoid mem leaking in notebook plt.ioff() plt.close(fig) def convert_audio_files_to_specgrams(local_audio_path, recurse=True): ''' Convert audio files under a local path into the images (PNG) that contain spectrogram. Parameters ---------- local_audio_path : string Local location to the audio files that will be converted. The new image files will be stored under this path. Note if the files are already in the PNG format, they will be overwritten. recurse : bool, optional Specifies whether to recursively convert all the audio files. Default : True Returns ------- None Raises ------ DLPyError If anything goes wrong, it complains and prints the appropriate message. ''' number_files = 0 if recurse: for r, d, f in os.walk(local_audio_path): number_files = number_files + len(f) else: for f in os.listdir(local_audio_path): local_file = os.path.join(local_audio_path, f) if os.path.isfile(local_file): number_files = number_files + 1 print('File path: {}'.format(local_audio_path)) print('Number of Files: {}'.format(number_files)) print_freq = 1000 number_files = 0 if recurse: for r, d, f in os.walk(local_audio_path): for file in f: local_file = os.path.join(r, file) local_file_png = os.path.splitext(local_file)[0] + '.png' try: convert_one_audio_file_to_specgram(local_file, local_file_png) number_files = number_files + 1 except: print('Cannot convert file {}'.format(local_file)) if number_files % print_freq == 0: print('Number of files processed: {}'.format(number_files)) else: for f in os.listdir(local_audio_path): local_file = os.path.join(local_audio_path, f) if os.path.isfile(local_file): local_file_png = os.path.join(local_audio_path, os.path.splitext(f)[0] + '.png') try: convert_one_audio_file_to_specgram(local_file, local_file_png) number_files = number_files + 1 except: print('Cannot convert file {}'.format(local_file)) if number_files % print_freq == 0: print('Number of files processed: {}'.format(number_files)) print('File conversions are finished.')
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/speech_utils.py
0.889174
0.439086
speech_utils.py
pypi
from dlpy.speech_utils import * from dlpy.audio import AudioTable from dlpy.model import Model from dlpy.utils import get_server_path_sep, get_cas_host_type, caslibify import os import platform class Speech: """ Class to do speech recognition using SAS Viya. Parameters ---------- conn : CAS Connection Specifies the CAS connection object data_path : string Specifies the absolute path of the folder where segmented audio files are stored (server side). The "audio_path" parameter in "transcribe" method is located on the client side. To transcribe the audio, we need to firstly save the .wav file somewhere the CAS server can access. Also, if the audio is really long we may need to segment it into multiple files before copying. Notice that this is the location to store the temporary audio files. The Python client should have both reading and writing permission for this folder, and the CAS server should have at least reading permission for this folder. local_path : string, optional Specifies the path of the folder where segmented audio files are stored (client side). Default = None Notice that "data_path" and "local_path" actually point to the same location, and they should only have the same path if the CAS server and the Python client are on the same machine. acoustic_model_path : string, optional Specifies the absolute server-side path of the acoustic model file. Please make sure the weights file and the weights attribute file are placed under the same directory. Default = None language_model_path : string, optional Specifies the absolute server-side path of the language model file. Default = None """ acoustic_model = None language_model_name = "languageModel" language_model_caslib = None data_path = None local_path = None data_caslib = None data_caslib_path = None data_path_after_caslib = None audio_table = None def __init__(self, conn, data_path, local_path=None, acoustic_model_path=None, language_model_path=None): try: import wave except ImportError: raise DLPyError("wave package was not found. " "Please install this package before using any APIs from dlpy.speech. " "We're using this Python library to help read and write audio files.") try: import audioop except ImportError: raise DLPyError("audioop package was not found. " "Please install this package before using any APIs from dlpy.speech. " "We're using this Python library to help extract audio features and convert audio formats.") self.conn = conn self.server_sep = get_server_path_sep(self.conn) self.data_path = data_path if self.data_path.endswith(self.server_sep): self.data_path = self.data_path[:-1] self.data_path += self.server_sep server_type = get_cas_host_type(self.conn).lower() is_server_unix = server_type.startswith("lin") or server_type.startswith("osx") client_type = platform.system() if (is_server_unix and client_type.startswith("Win")) or not (is_server_unix or client_type.startswith("Win")): if local_path is None: raise DLPyError("the \"local_path\" parameter is not specified. " "The CAS server and the Python client have different OS type (Windows/Linux), " "so please specify the \"local_path\" parameter.") else: self.local_path = local_path else: if local_path is None: self.local_path = self.data_path print("Note: the \"local_path\" parameter is not specified. " "The CAS server and the Python client have the same OS type (Windows/Linux), " "so simply use \"data_path\" as \"local_path\":", self.local_path) else: self.local_path = local_path if not os.path.exists(self.local_path): raise DLPyError("Invalid \"local_path\" value: does not exist.") if not os.access(self.local_path, os.R_OK): raise DLPyError("Invalid \"local_path\" value: does not have reading permission.") if not os.access(self.local_path, os.W_OK): raise DLPyError("Invalid \"local_path\" value: does not have writing permission.") self.conn.loadactionset("audio", _messagelevel="error") self.conn.loadactionset("deepLearn", _messagelevel="error") self.conn.loadactionset("langModel", _messagelevel="error") if acoustic_model_path is not None: self.load_acoustic_model(acoustic_model_path) if language_model_path is not None: self.load_language_model(language_model_path) self.data_caslib, self.data_path_after_caslib, _ = caslibify(self.conn, self.data_path, task="save") self.data_caslib_path = self.conn.caslibinfo(caslib=self.data_caslib).CASLibInfo["Path"][0] if not self.data_caslib_path.endswith(self.server_sep): self.data_caslib_path += self.server_sep def load_acoustic_model(self, acoustic_model_path): """ Load the RNN acoustic model. Parameters ---------- acoustic_model_path : string Specifies the absolute server-side path of the acoustic model file. Please make sure the weights file and the weights attribute file are placed under the same directory. """ self.acoustic_model = Model(self.conn) self.acoustic_model.from_sashdat(self.conn, path=acoustic_model_path) if self.acoustic_model.model_table is None: raise DLPyError("Failed to load the acoustic model.") if self.acoustic_model.model_weights is None: raise DLPyError("Failed to load the acoustic model weights.") def load_language_model(self, language_model_path): """ Load the N-gram language model. Parameters ---------- language_model_path : string Specifies the absolute server-side path of the acoustic model file. """ self.language_model_caslib, path_after_caslib, _ = caslibify(self.conn, language_model_path, task="load") rt = self.conn.retrieve("langModel.lmImport", _messagelevel='error', table=dict(name=path_after_caslib, caslib=self.language_model_caslib), casout=dict(replace=True, name=self.language_model_name, caslib=self.language_model_caslib)) if rt.severity > 1: self.language_model_caslib = None for msg in rt.messages: print(msg) raise DLPyError("Failed to import the language model.") def transcribe(self, audio_path, max_path_size=100, alpha=1.0, beta=0.0, gpu=None): """ Transcribe the audio file into text. Notice that for this API, we are assuming that the speech-to-test models published by SAS Viya 3.4 will be used. Please download the acoustic and language model files from here: https://support.sas.com/documentation/prod-p/vdmml/zip/speech_19w21.zip Parameters ---------- audio_path : string Specifies the location of the audio file (client-side, absolute/relative). max_path_size : int, optional Specifies the maximum number of paths kept as candidates of the final results during the decoding process. Default = 100 alpha : double, optional Specifies the weight of the language model, relative to the acoustic model. Default = 1.0 beta : double, optional Specifies the weight of the sentence length, relative to the acoustic model. Default = 0.0 gpu : class : `dlpy.model.Gpu`, optional When specified, the action uses Graphics Processing Unit hardware. The simplest way to use GPU processing is to specify "gpu=1". In this case, the default values of other GPU parameters are used. Setting gpu=1 enables all available GPU devices for use. Setting gpu=0 disables GPU processing. Returns ------- string Transcribed text from audio file located at 'audio_path'. """ # check if acoustic model is loaded if self.acoustic_model is None: raise DLPyError("acoustic model not found. " "Please load the acoustic model with \"load_acoustic_model\" before calling \"transcribe\".") # check if language model is loaded if self.language_model_caslib is None: raise DLPyError("language model not found. " "Please load the language model with \"load_language_model\" before calling \"transcribe\".") # step 1: preparation and segmentation listing_path_after_caslib, listing_path_local, segment_path_after_caslib_list, segment_path_local_list = \ segment_audio(audio_path, self.local_path, self.data_path_after_caslib, 10, 16000, 2) segment_path_list = [self.data_caslib_path + segment_path_after_caslib for segment_path_after_caslib in segment_path_after_caslib_list] # step 2: load audio try: audio_table = AudioTable.load_audio_files(self.conn, path=listing_path_after_caslib, caslib=self.data_caslib) except DLPyError as err: if "cannot load audio files, something is wrong!" in str(err): clean_audio(listing_path_local, segment_path_local_list) raise DLPyError("Error: Cannot load the audio files. " "Please verify that \"data_path\" and \"local_path\" are pointing to the same position.") raise err # step 3: extract features feature_table = AudioTable.extract_audio_features(self.conn, table=audio_table, n_output_frames=3500, copyvars=["_path_"]) # step 4: score features self.acoustic_model.score(table=feature_table, model="asr", init_weights="asr_weights", copy_vars=["_path_"], gpu=gpu, casout=dict(name="score_table", replace=True)) score_table = self.conn.CASTable(name="score_table") # step 5: decode scores rt = self.conn.retrieve("langModel.lmDecode", _messagelevel='error', table=score_table, casout=dict(name="result_table", replace=True), langModelTable=dict(name=self.language_model_name, caslib=self.language_model_caslib), blankLabel=" ", spaceLabel="&", maxPathSize=max_path_size, alpha=alpha, beta=beta, copyvars=["_path_"]) if rt.severity > 1: for msg in rt.messages: print(msg) raise DLPyError("Failed to decode the scores.") result_table = self.conn.CASTable(name="result_table") # step 6: concatenate results result_dict = dict(zip(list(result_table["_path_"]), list(result_table["_audio_content_"]))) result_list = [result_dict[segment_path] for segment_path in segment_path_list] result_list = [result.strip() for result in result_list] result_list = [result for result in result_list if len(result) > 0] result = " ".join(result_list) # step 7: cleaning clean_audio(listing_path_local, segment_path_local_list) return result
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/speech.py
0.77586
0.260589
speech.py
pypi
from __future__ import print_function from dlpy.model import Model from dlpy.layers import Layer from dlpy.utils import DLPyError from dlpy.blocks import Bidirectional class Sequential(Model): ''' Model for sequentially building of deep learning models Parameters ---------- conn : CAS Specifies the CAS connection object layers : list-of-Layers, optional Specifies the layers of the sequential model. model_table : string or dict or CAS table, optional Specifies the CAS table to store the deep learning model. Default: None Returns ------- :class:`Sequential` ''' def __init__(self, conn, layers=None, model_table=None): super(Sequential, self).__init__(conn=conn, model_table=model_table) self.layers_dict = {} if layers is None: self.layers = [] elif type(layers) is list or type(layers) is set or type(layers) is tuple: self.layers = layers for layer in self.layers: if layer.name is not None: self.layers_dict[layer.name] = layer if len(layers) > 0 and isinstance(layers[-1], Layer) and layers[-1].can_be_last_layer: self.compile() else: raise DLPyError('layers has to be a list of layer(s).') else: raise DLPyError('layers has to be a list of layer(s).') def add(self, layer): ''' Add layer(s) to model Parameters ---------- layer : Layer or list-of-Layers Specifies the layer to be added ''' self.layers.append(layer) if isinstance(layer, Layer): if layer.name is not None: self.layers_dict[layer.name] = layer if layer.type == 'recurrent': self.model_type = 'RNN' print('NOTE: '+layer.type_desc+' added.') if layer.can_be_last_layer: self.compile() if isinstance(layer, Bidirectional): self.model_type = 'RNN' if layer.src_layers is not None: new_src_layers = [] for l in layer.src_layers: if not isinstance(l, Layer): if l in self.layers_dict: new_src_layers.append(self.layers_dict[l]) else: raise DLPyError('cannot find the layer named: '+l) else: new_src_layers.append(l) layer.src_layers = new_src_layers def pop(self, loc=-1): ''' Delete layer(s) from model and return it Parameters ---------- loc : int Specifies the index of the layer in the model Returns ------- :class:`Layer` ''' if len(self.layers) > 0: return self.layers.pop(loc) def switch(self, loc1, loc2): ''' Switch the order of two layers in the model. Parameters ---------- loc1 : int Specifies the index of the first layer loc2 : int Specifies the index of the second layer ''' self.layers[loc1], self.layers[loc2] = self.layers[loc2], self.layers[loc1] def compile(self): ''' Convert the layer objects into CAS action parameters ''' if len(self.layers) == 0: raise DLPyError('There is no layers in the model yet.') if len(self.layers) > 0 and self.layers[0].type != 'block' and self.layers[0].type != 'input': raise DLPyError('The first layer of the model must be an input layer.') rt = self._retrieve_('deeplearn.buildmodel', model=dict( name=self.model_name, replace=True), type=self.model_type) if rt.severity > 1: for msg in rt.messages: print(msg) raise DLPyError('cannot build model, there seems to be a problem.') input_num = 1 conv_num = 1 fc_num = 1 bn_num = 1 concat_num = 1 scale_num = 1 reshape_num = 1 detect_num = 1 output_num = 1 keypoints_num = 1 block_num = 1 compiled_layers = [] layer_count = 0 layer_counts = {} for layer in self.layers: if layer.type == 'block': if isinstance(layer, Bidirectional): output_layer = layer.layers[-2:] options = layer.compile(block_num = block_num) else: options = layer.compile(src_layer = output_layer, block_num = block_num) output_layer = layer.layers[-1] if isinstance(layer, Bidirectional): block_num += layer.n_blocks else: block_num += 1 for item in layer.layers: compiled_layers.append(item) layer_count += 1 for option in options: rt = self._retrieve_('deeplearn.addlayer', model=self.model_name, **option) if rt.severity > 1: if layer.name is not None: raise DLPyError('there seems to be an error while adding the '+layer.name+'.') else: raise DLPyError('there seems to be an error while adding a layer.') else: if isinstance(layer, Layer): layer_counts[layer.type] = layer_counts.get(layer.type, 0) + 1 # Name each layer of the model. if layer.type == 'input': if layer.name is None: layer.format_name(local_count=layer_counts[layer.type]) #layer.format_name(local_count=input_num) #input_num += 1 else: if layer.src_layers is None: if type(output_layer) is list: layer.src_layers = output_layer else: layer.src_layers = [output_layer] '''if layer.type == 'convo': if layer.name is None: layer.format_name(block_num, conv_num) conv_num += 1 elif layer.type == 'pool': if layer.name is None: layer.format_name() block_num += 1 conv_num = 1 bn_num = 1 concat_num = 1 scale_num = 1 reshape_num = 1 elif layer.type == 'fc': if layer.name is None: layer.format_name() fc_num += 1 elif layer.type == 'batchnorm': if layer.name is None: layer.format_name(block_num, bn_num) bn_num += 1 elif layer.type == 'concat': if layer.name is None: layer.format_name(block_num, concat_num) concat_num += 1 elif layer.type == 'scale': if layer.name is None: layer.format_name(block_num, scale_num) scale_num += 1 elif layer.type == 'reshape': if layer.name is None: layer.format_name(block_num, reshape_num) reshape_num += 1 elif layer.type == 'output': if layer.name is None: layer.format_name(local_count=output_num) elif layer.type == 'keypoints': if layer.name is None: layer.format_name(local_count=keypoints_num) keypoints_num += 1 elif layer.type == 'detection': if layer.name is None: layer.format_name(local_count=detect_num) detect_num += 1 else: if layer.name is None: layer.format_name() ''' if layer.name is None: layer.format_name(local_count=layer_counts[layer.type]) else: raise DLPyError(layer+' is not a type of layer.') option = layer.to_model_params() compiled_layers.append(layer) layer_count += 1 output_layer = layer rt = self._retrieve_('deeplearn.addlayer', model=self.model_name, **option) if rt.severity > 1: for m in rt.messages: print(m) raise DLPyError('there seems to be an error while adding the '+layer.name+'.') print('NOTE: Model compiled successfully.') self.layers = compiled_layers self.num_params = self.count_params()
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/sequential.py
0.812867
0.415254
sequential.py
pypi
import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import collections import sys from .utils import image_blocksize, unify_keys, input_table_check, random_name, check_caslib, caslibify from .utils import filter_by_image_id, filter_by_filename, isnotebook from dlpy.timeseries import TimeseriesTable from dlpy.timeseries import _get_first_obs, _get_last_obs, _combine_table, _prepare_next_input from dlpy.utils import DLPyError, Box, DLPyDict from dlpy.lr_scheduler import _LRScheduler, FixedLR, StepLR, FCMPLR from dlpy.network import Network class Model(Network): valid_res = None feature_maps = None valid_conf_mat = None valid_score = None n_epochs = 0 training_history = None model_explain_table = None valid_res_tbl = None model_ever_trained = False train_tbl = None valid_tbl = None score_message_level = 'note' def change_labels(self, label_file, id_column, label_column): ''' Overrides the labels already in the model The label_file should be a csv file that has two columns: 1) id column that contains ids starting from 0 and 2) label column that contains the labels. This file should also have header columns and those should be passed to this function (i.e., id_column and label_column) Parameters ---------- label_file : string Specifies the name of the file that contains the new labels. id_column : string Specifies the name of the id column in label_file. label_column : string Specifies the name of the label column in label file. ''' if self.model_weights is not None: temp_name = random_name('new_label_table', 6) temp_model_name = random_name('new_weights_table', 6) labels = pd.read_csv(label_file, skipinitialspace=True, index_col=False) self.conn.upload_frame(labels, casout=dict(name=temp_name, replace=True), importoptions={'vars':[ {'name': id_column, 'type': 'int64'}, {'name': label_column, 'type': 'char', 'length': 20} ]}) rt = self._retrieve_('deeplearn.dllabeltarget', initWeights=self.model_weights, modelTable=self.model_table, modelWeights=temp_model_name, labelTable=temp_name) if rt.severity == 0: self.model_weights = self.conn.CASTable(temp_model_name) else: for m in rt.messages: print(m) raise DLPyError('Seems like something went well while changing the labels') else: raise DLPyError('We do not have any weights yet') def get_model_info(self): ''' Return the information about the model table Returns ------- :class:`CASResults` ''' return self._retrieve_('deeplearn.modelinfo', modelTable=self.model_table) def fit(self, data, inputs=None, target=None, data_specs=None, mini_batch_size=1, max_epochs=5, log_level=3, lr=0.01, optimizer=None, nominals=None, texts=None, target_sequence=None, sequence=None, text_parms=None, valid_table=None, valid_freq=1, gpu=None, attributes=None, weight=None, seed=0, record_seed=0, missing='mean', target_missing='mean', repeat_weight_table=False, force_equal_padding=None, save_best_weights=False, n_threads=None, target_order='ascending', train_from_scratch=None): """ Fitting a deep learning model. Note that this function surfaces several parameters from other parameters. For example, while learning rate is a parameter of Solver (that is a parameter of Optimizer), it is leveled up so that our users can easily set learning rate without changing the default optimizer and solver. If a non-default solver or optimizer is passed, then these leveled-up parameters will be ignored - even they are set - and the ones coming from the custom solver and custom optimizer will be used. In addition to learning_rate (lr), max_epochs and log_level are another examples of such parameters. Parameters ---------- data : string This is the input data. It might be a string that is the name of a cas table. Alternatively, this might be a cas table. inputs : string or list-of-strings, optional Specifies the input variables to use in the analysis. target : string or list-of-strings, optional Specifies the target sequence variables to use in the analysis. data_specs : :class:`DataSpec`, optional Specifies the parameters for the multiple input cases. mini_batch_size : int, optional Specifies the number of observations per thread in a mini-batch. You can use this parameter to control the number of observations that the action uses on each worker for each thread to compute the gradient prior to updating the weights. Larger values use more memory. When synchronous SGD is used (the default), the total mini-batch size is equal to miniBatchSize * number of threads * number of workers. When asynchronous SGD is used (by specifying the elasticSyncFreq parameter), each worker trains its own local model. In this case, the total mini-batch size for each worker is miniBatchSize * number of threads. max_epochs : int, optional specifies the maximum number of epochs. For SGD with a single-machine server or a session that uses one worker on a distributed server, one epoch is reached when the action passes through the data one time. For a session that uses more than one worker, one epoch is reached when all the workers exchange the weights with the controller one time. The syncFreq parameter specifies the number of times each worker passes through the data before exchanging weights with the controller. For L-BFGS with full batch, each L-BFGS iteration might process more than one epoch, and final number of epochs might exceed the maximum number of epochs. log_level : int, optional Specifies how progress messages are sent to the client. The default value, 0, indicates that no messages are sent. Specify 1 to receive start and end messages. Specify 2 to include the iteration history. lr : double, optional Specifies the learning rate. optimizer : :class:`Optimizer`, optional Specifies the parameters for the optimizer. nominals : string or list-of-strings, optional Specifies the nominal input variables to use in the analysis. texts : string or list-of-strings, optional Specifies the character variables to treat as raw text. These variables must be specified in the inputs parameter. target_sequence : string or list-of-strings, optional Specifies the target sequence variables to use in the analysis. sequence : :class:`Sequence`, optional Specifies the settings for sequence data. text_parms : :class:`TextParms`, optional Specifies the parameters for the text inputs. valid_table : string or CASTable, optional Specifies the table with the validation data. The validation table must have the same columns and data types as the training table. valid_freq : int, optional Specifies the frequency for scoring the validation table. gpu : :class:`Gpu`, optional When specified, the action uses graphical processing unit hardware. The simplest way to use GPU processing is to specify "gpu=1". In this case, the default values of other GPU parameters are used. Setting gpu=1 enables all available GPU devices for use. Setting gpu=0 disables GPU processing. attributes : string or list-of-strings, optional Specifies temporary attributes, such as a format, to apply to input variables. weight : string, optional Specifies the variable/column name in the input table containing the prior weights for the observation. seed : double, optional specifies the random number seed for the random number generator in SGD. The default value, 0, and negative values indicate to use random number streams based on the computer clock. Specify a value that is greater than 0 for a reproducible random number sequence. record_seed : double, optional specifies the random number seed for the random record selection within a worker. The default value 0 disables random record selection. Records are read as they are laid out in memory. Negative values indicate to use random number streams based on the computer clock. missing : string, optional Specifies the policy for replacing missing values with imputed values. Valid Values: MAX, MIN, MEAN, NONE Default: MEAN target_missing : string, optional Specifies the policy for replacing target missing values with imputed values. Valid Values: MAX, MIN, MEAN, NONE Default: MEAN repeat_weight_table : bool, optional Replicates the entire weight table on each worker node when saving weights. Default: False force_equal_padding : bool, optional For convolution or pooling layers, this setting forces left padding to equal right padding, and top padding to equal bottom padding. This setting might result in an output image that is larger than the input image. Default: False save_best_weights : bool, optional When set to True, it keeps the weights that provide the smallest loss error. n_threads : int, optional Specifies the number of threads to use. If nothing is set then all of the cores available in the machine(s) will be used. target_order : string, optional Specifies the order of the labels. It can follow the natural order of the labels or order them in the order they are recieved with training data samples. Valid Values: 'ascending', 'descending', 'hash' Default: 'ascending' train_from_scratch : bool, optional When set to True, it ignores the existing weights and trains the model from the scracth. Returns -------- :class:`CASResults` """ # set reference to the training and validation table self.train_tbl = data self.valid_tbl = valid_table input_tbl_opts = input_table_check(data) input_table = self.conn.CASTable(**input_tbl_opts) if data_specs is None and inputs is None: from dlpy.images import ImageTable if isinstance(input_table, ImageTable): inputs = input_table.running_image_column elif '_image_' in input_table.columns.tolist(): print('NOTE: Inputs=_image_ is used') inputs = '_image_' else: raise DLPyError('either dataspecs or inputs need to be non-None') if optimizer is None: optimizer = Optimizer(algorithm=VanillaSolver(learning_rate=lr), mini_batch_size=mini_batch_size, max_epochs=max_epochs, log_level=log_level) else: if not isinstance(optimizer, Optimizer): raise DLPyError('optimizer should be an Optimizer object') max_epochs = optimizer['maxepochs'] if target is None and '_label_' in input_table.columns.tolist(): target = '_label_' # check whether the field is none or not if self.model_weights is not None and self.model_weights.to_table_params()['name'].upper() in \ list(self._retrieve_('table.tableinfo').TableInfo.Name): if train_from_scratch: print('NOTE: Ignoring the existing weights and training from scratch.') init_weights = None self.n_epochs = 0 else: print('NOTE: Training based on existing weights.') init_weights = self.model_weights else: print('NOTE: Training from scratch.') init_weights = None self.n_epochs = 0 # when model_weights is none, reset it if self.model_weights is None: self.model_weights = self.conn.CASTable('{}_weights'.format(self.model_name)) if save_best_weights and self.best_weights is None: self.best_weights = random_name('model_best_weights', 6) r = self.train(table=input_tbl_opts, inputs=inputs, target=target, data_specs=data_specs, optimizer=optimizer, nominals=nominals, texts=texts, target_sequence=target_sequence, sequence=sequence, text_parms=text_parms, valid_table=valid_table, valid_freq=valid_freq, gpu=gpu, attributes=attributes, weight=weight, seed=seed, record_seed=record_seed, missing=missing, target_missing=target_missing, repeat_weight_table=repeat_weight_table, force_equal_padding=force_equal_padding, init_weights=init_weights, target_order=target_order, best_weights=self.best_weights, model=self.model_table, n_threads=n_threads, model_weights=dict(replace=True, **self.model_weights.to_table_params())) try: temp = r.OptIterHistory temp.Epoch += 1 # Epochs should start from 1 temp.Epoch = temp.Epoch.astype('int64') # Epochs should be integers if self.n_epochs == 0: self.n_epochs = max_epochs self.training_history = temp else: temp.Epoch += self.n_epochs self.training_history = self.training_history.append(temp) self.n_epochs += max_epochs self.training_history.index = range(0, self.n_epochs) except: pass if r.severity < 2: self.target = target return r def fit_and_visualize(self, data, inputs=None, target=None, data_specs=None, mini_batch_size=1, max_epochs=5, lr=0.01, optimizer=None, nominals=None, texts=None, target_sequence=None, sequence=None, text_parms=None, valid_table=None, valid_freq=1, gpu=None, attributes=None, weight=None, seed=0, record_seed=0, missing='mean', target_missing='mean', repeat_weight_table=False, force_equal_padding=None, save_best_weights=False, n_threads=None, target_order='ascending', visualize_freq=100): """ Fitting a deep learning model while visulizing the fit and loss at each iteration. This is exactly the same as the "fit()" function and if called, the training history, fiterror and loss, in the iteration level is visualized with a line chart. This setting overrides the log-level and sets it to 3 as it is the only level with iteration training history. It drops a point to the graph for every visualize_freq (default=100). NOTE THAT this function is experimental only as I did a lot of work-arounds to make it work in Jupyter notebooks. Parameters ---------- data : string This is the input data. It might be a string that is the name of a cas table. Alternatively, this might be a cas table. inputs : string or list-of-strings, optional Specifies the input variables to use in the analysis. target : string or list-of-strings, optional Specifies the target sequence variables to use in the analysis. data_specs : :class:`DataSpec`, optional Specifies the parameters for the multiple input cases. mini_batch_size : int, optional Specifies the number of observations per thread in a mini-batch. You can use this parameter to control the number of observations that the action uses on each worker for each thread to compute the gradient prior to updating the weights. Larger values use more memory. When synchronous SGD is used (the default), the total mini-batch size is equal to miniBatchSize * number of threads * number of workers. When asynchronous SGD is used (by specifying the elasticSyncFreq parameter), each worker trains its own local model. In this case, the total mini-batch size for each worker is miniBatchSize * number of threads. max_epochs : int, optional specifies the maximum number of epochs. For SGD with a single-machine server or a session that uses one worker on a distributed server, one epoch is reached when the action passes through the data one time. For a session that uses more than one worker, one epoch is reached when all the workers exchange the weights with the controller one time. The syncFreq parameter specifies the number of times each worker passes through the data before exchanging weights with the controller. For L-BFGS with full batch, each L-BFGS iteration might process more than one epoch, and final number of epochs might exceed the maximum number of epochs. log_level : int, optional Specifies how progress messages are sent to the client. The default value, 0, indicates that no messages are sent. Specify 1 to receive start and end messages. Specify 2 to include the iteration history. lr : double, optional Specifies the learning rate. optimizer : :class:`Optimizer`, optional Specifies the parameters for the optimizer. nominals : string or list-of-strings, optional Specifies the nominal input variables to use in the analysis. texts : string or list-of-strings, optional Specifies the character variables to treat as raw text. These variables must be specified in the inputs parameter. target_sequence : string or list-of-strings, optional Specifies the target sequence variables to use in the analysis. sequence : :class:`Sequence`, optional Specifies the settings for sequence data. text_parms : :class:`TextParms`, optional Specifies the parameters for the text inputs. valid_table : string or CASTable, optional Specifies the table with the validation data. The validation table must have the same columns and data types as the training table. valid_freq : int, optional Specifies the frequency for scoring the validation table. gpu : :class:`Gpu`, optional When specified, the action uses graphical processing unit hardware. The simplest way to use GPU processing is to specify "gpu=1". In this case, the default values of other GPU parameters are used. Setting gpu=1 enables all available GPU devices for use. Setting gpu=0 disables GPU processing. attributes : string or list-of-strings, optional Specifies temporary attributes, such as a format, to apply to input variables. weight : string, optional Specifies the variable/column name in the input table containing the prior weights for the observation. seed : double, optional specifies the random number seed for the random number generator in SGD. The default value, 0, and negative values indicate to use random number streams based on the computer clock. Specify a value that is greater than 0 for a reproducible random number sequence. record_seed : double, optional specifies the random number seed for the random record selection within a worker. The default value 0 disables random record selection. Records are read as they are laid out in memory. Negative values indicate to use random number streams based on the computer clock. missing : string, optional Specifies the policy for replacing missing values with imputed values. Valid Values: MAX, MIN, MEAN, NONE Default: MEAN target_missing : string, optional Specifies the policy for replacing target missing values with imputed values. Valid Values: MAX, MIN, MEAN, NONE Default: MEAN repeat_weight_table : bool, optional Replicates the entire weight table on each worker node when saving weights. Default: False force_equal_padding : bool, optional For convolution or pooling layers, this setting forces left padding to equal right padding, and top padding to equal bottom padding. This setting might result in an output image that is larger than the input image. Default: False save_best_weights : bool, optional When set to True, it keeps the weights that provide the smallest loss error. n_threads : int, optional Specifies the number of threads to use. If nothing is set then all of the cores available in the machine(s) will be used. target_order : string, optional Specifies the order of the labels. It can follow the natural order of the labels or order them in the order they are recieved with training data samples. Valid Values: 'ascending', 'descending', 'hash' Default: 'ascending' visualize_freq: int, optional Specifies the frequency of the points in the visualization history. Note that the chart will get crowded, and possibly get slower, with more points. Default: 100 Returns -------- :class:`CASResults` """ # set reference to the training and validation table self.train_tbl = data self.valid_tbl = valid_table input_tbl_opts = input_table_check(data) input_table = self.conn.CASTable(**input_tbl_opts) if data_specs is None and inputs is None: from dlpy.images import ImageTable if isinstance(input_table, ImageTable): inputs = input_table.running_image_column elif '_image_' in input_table.columns.tolist(): print('NOTE: Inputs=_image_ is used') inputs = '_image_' else: raise DLPyError('either dataspecs or inputs need to be non-None') if optimizer is None: optimizer = Optimizer(algorithm=VanillaSolver(learning_rate=lr), mini_batch_size=mini_batch_size, max_epochs=max_epochs, log_level=3) else: if not isinstance(optimizer, Optimizer): raise DLPyError('optimizer should be an Optimizer object') max_epochs = optimizer['maxepochs'] if target is None and '_label_' in input_table.columns.tolist(): target = '_label_' if self.model_weights.to_table_params()['name'].upper() in \ list(self._retrieve_('table.tableinfo').TableInfo.Name): print('NOTE: Training based on existing weights.') init_weights = self.model_weights else: print('NOTE: Training from scratch.') init_weights = None if save_best_weights and self.best_weights is None: self.best_weights = random_name('model_best_weights', 6) if isnotebook() is True: # prep work for visualization freq=[] freq.append(visualize_freq) x = [] y = [] y_loss = [] e = [] total_sample_size = [] iter_history = [] status = [] status.append(0) self._train_visualize(table=input_tbl_opts, inputs=inputs, target=target, data_specs=data_specs, optimizer=optimizer, nominals=nominals, texts=texts, target_sequence=target_sequence, sequence=sequence, text_parms=text_parms, valid_table=valid_table, valid_freq=valid_freq, gpu=gpu, attributes=attributes, weight=weight, seed=seed, record_seed=record_seed, missing=missing, target_missing=target_missing, repeat_weight_table=repeat_weight_table, force_equal_padding=force_equal_padding, init_weights=init_weights, target_order=target_order, best_weights=self.best_weights, model=self.model_table, n_threads=n_threads, model_weights=dict(replace=True, **self.model_weights.to_table_params()), x=x, y=y, y_loss=y_loss, total_sample_size=total_sample_size, e=e, iter_history=iter_history, freq=freq, status=status) if status[0] == 0: try: temp = iter_history[0] temp.Epoch += 1 # Epochs should start from 1 temp.Epoch = temp.Epoch.astype('int64') # Epochs should be integers if self.n_epochs == 0: self.n_epochs = max_epochs self.training_history = temp else: temp.Epoch += self.n_epochs self.training_history = self.training_history.append(temp) self.n_epochs += max_epochs self.training_history.index = range(0, self.n_epochs) except: pass else: print('Could not train the model') else: print('DLPy supports training history visualization in only Jupyter notebooks. ' 'We are calling the fit method in anyways') r = self.train(table=input_tbl_opts, inputs=inputs, target=target, data_specs=data_specs, optimizer=optimizer, nominals=nominals, texts=texts, target_sequence=target_sequence, sequence=sequence, text_parms=text_parms, valid_table=valid_table, valid_freq=valid_freq, gpu=gpu, attributes=attributes, weight=weight, seed=seed, record_seed=record_seed, missing=missing, target_missing=target_missing, repeat_weight_table=repeat_weight_table, force_equal_padding=force_equal_padding, init_weights=init_weights, target_order=target_order, best_weights=self.best_weights, model=self.model_table, n_threads=n_threads, model_weights=dict(replace=True, **self.model_weights.to_table_params())) try: temp = r.OptIterHistory temp.Epoch += 1 # Epochs should start from 1 temp.Epoch = temp.Epoch.astype('int64') # Epochs should be integers if self.n_epochs == 0: self.n_epochs = max_epochs self.training_history = temp else: temp.Epoch += self.n_epochs self.training_history = self.training_history.append(temp) self.n_epochs += max_epochs self.training_history.index = range(0, self.n_epochs) except: pass if r.severity < 2: self.target = target return r def train(self, table, attributes=None, inputs=None, nominals=None, texts=None, valid_table=None, valid_freq=1, model=None, init_weights=None, model_weights=None, target=None, target_sequence=None, sequence=None, text_parms=None, weight=None, gpu=None, seed=0, record_seed=None, missing='mean', optimizer=None, target_missing='mean', best_weights=None, repeat_weight_table=False, force_equal_padding=None, data_specs=None, n_threads=None, target_order='ascending'): """ Trains a deep learning model table : string or CASTable Specifies the input data. attributes : string or list-of-strings, optional Specifies temporary attributes, such as a format, to apply to input variables. inputs : string or list-of-strings, optional Specifies the input variables to use in the analysis. nominals : string or list-of-strings Specifies the nominal input variables to use in the analysis. texts : string or list-of-strings, optional Specifies the character variables to treat as raw text. These variables must be specified in the inputs parameter. valid_table : string or CASTable, optional Specifies the table with the validation data. The validation table must have the same columns and data types as the training table. valid_freq : int, optional Specifies the frequency for scoring the validation table. model : string or CASTable, optional Specifies the in-memory table that is the model. init_weights : string or CASTable, optional Specifies an in-memory table that contains the model weights. These weights are used to initialize the model. model_weights : string or CASTable, optional Specifies an in-memory table that is used to store the model weights. target : string or list-of-strings, optional Specifies the target sequence variables to use in the analysis. target_sequence : string or list-of-strings, optional Specifies the target sequence variables to use in the analysis. sequence : string or list-of-strings, optional Specifies the settings for sequence data. text_parms : TextParms, optional Specifies the parameters for the text inputs. weight : string, optional Specifies the variable/column name in the input table containing the prior weights for the observation. gpu : GPU, optional When specified, the action uses graphical processing unit hardware. The simplest way to use GPU processing is to specify "gpu=1". In this case, the default values of other GPU parameters are used. Setting gpu=1 enables all available GPU devices for use. Setting gpu=0 disables GPU processing. seed : double, optional specifies the random number seed for the random number generator in SGD. The default value, 0, and negative values indicate to use random number streams based on the computer clock. Specify a value that is greater than 0 for a reproducible random number sequence. record_seed : double, optional specifies the random number seed for the random record selection within a worker. The default value 0 disables random record selection. Records are read as they are laid out in memory. Negative values indicate to use random number streams based on the computer clock. missing : string, optional Specifies the policy for replacing missing values with imputed values. Valid Values: MAX, MIN, MEAN, NONE Default: MEAN optimizer : Optimizer, optional Specifies the parameters for the optimizer. target_missing : string, optional Specifies the policy for replacing target missing values with imputed values. Valid Values: MAX, MIN, MEAN, NONE Default: MEAN best_weights : string or CASTable, optional Specifies that the weights with the smallest loss error will be saved to a CAS table. repeat_weight_table : bool, optional Replicates the entire weight table on each worker node when saving weights. Default: False force_equal_padding : bool, optional For convolutional or pooling layers, this setting forces left padding to equal right padding, and top padding to equal bottom padding. This setting might result in an output image that is larger than the input image. Default: False data_specs : DataSpec, optional Specifies the parameters for the multiple input cases. n_threads : int, optional Specifies the number of threads to use. If nothing is set then all of the cores available in the machine(s) will be used. target_order : string, optional Specifies the order of the labels. It can follow the natural order of the labels or order them in the order of the process. Valid Values: 'ascending', 'descending', 'hash' Default: 'ascending' Returns ------- :class:`CASResults` """ b_w = None if best_weights is not None: b_w = dict(replace=True, name=best_weights) parameters = DLPyDict(table=table, attributes=attributes, inputs=inputs, nominals=nominals, texts=texts, valid_table=valid_table, valid_freq=valid_freq, model=model, init_weights=init_weights, model_weights=model_weights, target=target, target_sequence=target_sequence, sequence=sequence, text_parms=text_parms, weight=weight, gpu=gpu, seed=seed, record_seed=record_seed, missing=missing, optimizer=optimizer, target_missing=target_missing, best_weights=b_w, repeat_weight_table=repeat_weight_table, force_equal_padding=force_equal_padding, data_specs=data_specs, n_threads=n_threads, target_order=target_order) rt = self._retrieve_('deeplearn.dltrain', message_level='note', **parameters) if rt.severity < 2: self.model_ever_trained = True return rt def tune(self, data, inputs='_image_', target='_label_', **kwargs): ''' Tunes hyper parameters for the deep learning model. Parameters ---------- data : CASTable or string or dict Specifies the CAS table containing the training data for the model inputs : string, optional Specifies the variable name of in the input_tbl, that is the input of the deep learning model. Default : '_image_' target : string, optional Specifies the variable name of in the input_tbl, that is the response of the deep learning model. Default : '_label_' **kwargs : keyword arguments, optional Specifies the optional arguments for the dltune action. Returns ---------- :class:`CASResults` ''' r = self._retrieve_('deeplearn.dltune', message_level='note', model=self.model_table, table=data, inputs=inputs, target=target, **kwargs) return r def plot_training_history(self, items=['Loss', 'FitError'], fig_size=(12, 5), tick_frequency=1): ''' Display the training iteration history. If using in Jupyter, supress return object with semicolon - plot_training_history(); Parameters ---------- items : list, optional Specifies the items to be displayed. Default : ['Loss', 'FitError') fig_size : tuple, optional Specifies the size of the figure. Default : (12, 5) tick_frequency : int, optional Specifies the frequency of the ticks visable on xaxis. Default : 1 Returns ------- :class:`matplotlib.axes.Axes` ''' items_not_in_results = [x for x in items if x not in self.training_history.columns] if items_not_in_results: raise DLPyError('Columns {} are not in results'.format(items_not_in_results)) if self.training_history is not None: if tick_frequency > 1 and tick_frequency <= self.n_epochs: x_ticks = np.array([1] + list(range(tick_frequency, len(self.training_history.Epoch) + 1, tick_frequency))) else: x_ticks = self.training_history.Epoch.values return self.training_history.plot(x='Epoch', y=items, figsize=fig_size, xticks=x_ticks) else: raise DLPyError('model.fit should be run before calling plot_training_history') def evaluate(self, data, text_parms=None, layer_out=None, layers=None, gpu=None, buffer_size=None, mini_batch_buf_size=None, top_probs=None, use_best_weights=False, random_crop='none', random_flip='none', random_mutation='none', model_task=None): """ Evaluate the deep learning model on a specified validation data set After the inference, a confusion matrix is created from the results. This method is good for classification tasks. Parameters ---------- data : string or CASTable, optional Specifies the input data. text_parms : TextParms, optional Specifies the parameters for the text inputs. layer_out : string, optional Specifies the settings for an output table that includes layer output values. By default, all layers are included. You can filter the list with the layers parameter. layers : list of strings Specifies the names of the layers to include in the output layers table. gpu : GPU, optional When specified, the action uses graphical processing unit hardware. The simplest way to use GPU processing is to specify "gpu=1". In this case, the default values of other GPU parameters are used. Setting gpu=1 enables all available GPU devices for use. Setting gpu=0 disables GPU processing. buffer_size : int, optional Specifies the number of observations to score in a single batch. Larger values use more memory. Default: 10 mini_batch_buf_size : int, optional Specifies the size of a buffer that is used to save input data and intermediate calculations. By default, each layer allocates an input buffer that is equal to the number of input channels multiplied by the input feature map size multiplied by the bufferSize value. You can reduce memory usage by specifying a value that is smaller than the bufferSize. The only disadvantage to specifying a small value is that run time can increase because multiple smaller matrices must be multiplied instead of a single large matrix multiply. top_probs : int, optional Specifies to include the predicted probabilities along with the corresponding labels in the results. For example, if you specify 5, then the top 5 predicted probabilities are shown in the results along with the corresponding labels. use_best_weights : bool, optional When set to True, the weights that provides the smallest loss error saved during a previous training is used while scoring input data rather than the final weights from the training. Default: False random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. H stands for horizontal V stands for vertical HW stands for horizontal and vertical Approximately half of the input data is subject to flipping. Default: NONE Valid Values: NONE, H, V, HV random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. UNIQUE: specifies to crop images to the size specified in the height and width parameters. Images that are less than or equal to the size are not modified. For images that are larger, the cropping begins at a random offset for x and y. Default: NONE Valid Values: NONE, UNIQUE random_mutation : string, optional Specifies how to mutate images. Default: NONE Valid Values: NONE, RANDOM model_task : string, optional Specifies the model task type. Valid Values: CLASSIFICATION, REGRESSION Returns ------- :class:`CASResults` """ input_tbl_opts = input_table_check(data) input_table = self.conn.CASTable(**input_tbl_opts) copy_vars = input_table.columns.tolist() if self.valid_res_tbl is None: valid_res_tbl = random_name('Valid_Res') else: valid_res_tbl = self.valid_res_tbl.name lo = None if layer_out is not None: from swat import CASTable if type(layer_out) is CASTable: lo = layer_out else: lo = dict(replace=True, name=layer_out) en = True if self.model_type == 'RNN': en = False # use encoded name when model does classification or regression if model_task and (model_task.upper() == 'CLASSIFICATION' or model_task.upper() == 'REGRESSION'): en = True if use_best_weights and self.best_weights is not None: print('NOTE: Using the weights providing the smallest loss error.') res = self.score(table=input_table, model=self.model_table, init_weights=self.best_weights, copy_vars=copy_vars, casout=dict(replace=True, name=valid_res_tbl), encode_name=en, text_parms=text_parms, layer_out=lo, layers=layers, gpu=gpu, mini_batch_buf_size=mini_batch_buf_size, top_probs=top_probs, buffer_size=buffer_size, random_flip=random_flip, random_crop=random_crop, random_mutation=random_mutation) else: if self.model_weights is None: raise DLPyError('We need some weights to do scoring.') else: res = self.score(table=input_table, model=self.model_table, init_weights=self.model_weights, copy_vars=copy_vars, casout=dict(replace=True, name=valid_res_tbl), encode_name=en, text_parms=text_parms, layer_out=lo, layers=layers, gpu=gpu, mini_batch_buf_size=mini_batch_buf_size, buffer_size=buffer_size, top_probs=top_probs, random_flip=random_flip, random_crop=random_crop, random_mutation=random_mutation) if res.severity > 1: raise DLPyError('something is wrong while scoring the input data with the model.') if res.ScoreInfo is not None: self.valid_score = res.ScoreInfo # TODO work on here to make it more user friendly and remove assumptions if self.target is not None: self.valid_conf_mat = self.conn.crosstab(table=valid_res_tbl, row=self.target, col='I_' + self.target) else: v = self.conn.CASTable(valid_res_tbl) temp_columns = v.columns.tolist() output_names = [name for name in temp_columns if (name.startswith('I_'))] if len(output_names) > 0: self.target = output_names[0][2:] self.valid_conf_mat = self.conn.crosstab(table=valid_res_tbl, row=self.target, col='I_' + self.target) # always set valid_res_tbl self.valid_res_tbl = self.conn.CASTable(valid_res_tbl) if self.model_type == 'CNN': if not self.conn.has_actionset('image'): self.conn.loadactionset(actionSet='image', _messagelevel='error') temp_columns = self.valid_res_tbl.columns.tolist() # the model might not use the image data do_image = False for col in temp_columns: if col.lower() == '_image_': do_image = True break # when do images, fetch some images back to client if do_image: columns = [item for item in temp_columns if item[0:9] == 'P_' + self.target or item == 'I_' + self.target] img_table = self._retrieve_('image.fetchimages', fetchimagesvars=columns, imagetable=self.valid_res_tbl, to=1000) img_table = img_table.Images self.valid_res = img_table else: self.valid_res = res return res def evaluate_object_detection(self, ground_truth, coord_type, detection_data=None, classes=None, iou_thresholds=np.linspace(0.5, 0.95, 10, endpoint=True)): """ Evaluate the deep learning model on a specified validation data set. Parameters ---------- ground_truth : string or CASTable, optional Specifies a ground truth table to evaluate its corresponding prediction results coord_type : string, optional Specifies the format of how ground_truth table to represent bounding boxes. Valid Values: 'yolo', 'coco' detection_data : string or CASTable, optional Perform evaluation on the table. If the parameter is not specified, the function evaluates the last prediction performed by the model. classes : string or list-of-strings, optional The classes are selected to be evaluated. If you never set it, then it will perform on all of classes in ground truth table and detection_data table. iou_thresholds : float or list-of-floats, optional Specifying an iou threshold or a list of iou thresholds that determines what is counted as a model predicted positive detection of the classes defined by classes parameter. Returns ------- list containing calculated results. """ if coord_type.lower() not in ['yolo', 'coco']: raise ValueError('coord_type, {}, is not supported'.format(coord_type)) #self.conn.update(table=dict(name = self.model_name, where='_DLChrVal_ eq "iouThreshold"'), # set=[{'var':'_DLNumVal_', 'value':'0.5'}]) if detection_data is not None: input_tbl_opts = input_table_check(detection_data) det_tbl = self.conn.CASTable(**input_tbl_opts) elif self.valid_res_tbl is not None: det_tbl = self.valid_res_tbl else: raise DLPyError('Specify detection_data option or do predict() before processing the function') det_bb_list = [] if '_image_' in det_tbl.columns.tolist(): det_tbl.drop(['_image_'], axis=1, inplace=1) freq_variable = [] max_num_det = int(det_tbl.max(axis = 1, numeric_only = True)['_nObjects_']) if max_num_det == 0: print('NOTE: Cannot find any object in detection_data or predict() cannot detect any object.') return for i in range(max_num_det): freq_variable.append('_Object{}_'.format(i)) use_all_class = False if classes is None: use_all_class = True classes = set(self.conn.freq(det_tbl, inputs = freq_variable).Frequency['FmtVar']) classes = sorted(classes) classes = [x for x in classes if not (x is '' or x.startswith('NoObject'))] elif isinstance(classes, str): classes = [classes] nrof_classes = len(classes) for idx, row in det_tbl.iterrows(): if coord_type.lower() == 'yolo': [det_bb_list.append(Box(row.loc['_Object{}_x'.format(i)], row.loc['_Object{}_y'.format(i)], row.loc['_Object{}_width'.format(i)], row.loc['_Object{}_height'.format(i)], row.loc['_Object{}_'.format(i)], row.loc['_P_Object{}_'.format(i)], row.loc['idjoin'])) for i in range(int(row.loc['_nObjects_']))] elif coord_type.lower() == 'coco': [det_bb_list.append(Box(row.loc['_Object{}_xmin'.format(i)], row.loc['_Object{}_ymin'.format(i)], row.loc['_Object{}_xmax'.format(i)], row.loc['_Object{}_ymax'.format(i)], row.loc['_Object{}_'.format(i)], row.loc['_P_Object{}_'.format(i)], row.loc['idjoin'], 'xyxy')) for i in range(int(row.loc['_nObjects_']))] input_tbl_opts = input_table_check(ground_truth) gt_tbl = self.conn.CASTable(**input_tbl_opts) gt_bb_list = [] if '_image_' in gt_tbl.columns.tolist(): gt_tbl.drop(['_image_'], axis=1, inplace=1) freq_variable = [] max_num_gt = int(gt_tbl.max(axis = 1, numeric_only = True)['_nObjects_']) if max_num_gt == 0: print('NOTE: Cannot find any object in ground_truth.') return for i in range(int(gt_tbl.max(axis = 1, numeric_only = True)['_nObjects_'])): freq_variable.append('_Object{}_'.format(i)) classes_gt = set(self.conn.freq(gt_tbl, inputs = freq_variable).Frequency['FmtVar']) classes_gt = sorted(classes_gt) classes_gt = [x for x in classes_gt if not (x is '' or x.startswith('NoObject'))] for idx, row in gt_tbl.iterrows(): if coord_type.lower() == 'yolo': [gt_bb_list.append(Box(row.loc['_Object{}_x'.format(i)], row.loc['_Object{}_y'.format(i)], row.loc['_Object{}_width'.format(i)], row.loc['_Object{}_height'.format(i)], row.loc['_Object{}_'.format(i)], 1.0, row.loc['idjoin'])) for i in range(int(row.loc['_nObjects_']))] elif coord_type.lower() == 'coco': [gt_bb_list.append(Box(row.loc['_Object{}_xmin'.format(i)], row.loc['_Object{}_ymin'.format(i)], row.loc['_Object{}_xmax'.format(i)], row.loc['_Object{}_ymax'.format(i)], row.loc['_Object{}_'.format(i)], 1.0, row.loc['idjoin'], 'xyxy')) for i in range(int(row.loc['_nObjects_']))] classes_not_detected = [x for x in classes_gt if x not in classes] if not isinstance(iou_thresholds, collections.Iterable): iou_thresholds = [iou_thresholds] results = [] for iou_threshold in iou_thresholds: results_iou = [] for i, cls in enumerate(classes): if cls not in classes_gt: print('Predictions contain the class, {}, that is not in ground truth'.format(cls)) continue det_bb_cls_list = [] [det_bb_cls_list.append(bb) for bb in det_bb_list if bb.class_type == cls] # all of detections of the class gt_bb_cls_list = [] [gt_bb_cls_list.append(bb) for bb in gt_bb_list if bb.class_type == cls] det_bb_cls_list = sorted(det_bb_cls_list, key=lambda bb: bb.confidence, reverse=True) tp = np.zeros(len(det_bb_cls_list)) # the detections of the class fp = np.zeros(len(det_bb_cls_list)) gt_image_index_list = collections.Counter([bb.image_name for bb in gt_bb_cls_list]) for key, val in gt_image_index_list.items(): gt_image_index_list[key] = np.zeros(val) print("Evaluating class: %s (%d detections)" % (str(cls), len(det_bb_cls_list))) for idx, det_bb in enumerate(det_bb_cls_list): gt_cls_image_list = [bb for bb in gt_bb_cls_list if bb.image_name == det_bb.image_name] iou_max = sys.float_info.min for j, gt_bb in enumerate(gt_cls_image_list): if Box.iou(det_bb, gt_bb) > iou_max: match_idx = j iou_max = Box.iou(det_bb, gt_bb) if iou_max >= iou_threshold: if gt_image_index_list[det_bb.image_name][match_idx] == 0: tp[idx] = 1 gt_image_index_list[det_bb.image_name][match_idx] = 1 else: fp[idx] = 1 acc_tp = np.cumsum(tp) acc_fp = np.cumsum(fp) precision = np.divide(acc_tp, (acc_tp + acc_fp)) recall = np.divide(acc_tp, len(gt_bb_cls_list)) interpolated_precision = [0] [interpolated_precision.append(i) for i in precision] interpolated_precision.append(0) for i in range(len(interpolated_precision) - 1, 0, -1): interpolated_precision[i - 1] = max(interpolated_precision[i - 1], interpolated_precision[i]) interpolated_precision = interpolated_precision[1:-1] recall_level = [i / 10.0 for i in range(10)] interpolated_ap = np.interp([i for i in recall_level if i < recall[-1]], recall, interpolated_precision) ap_cls = np.sum(interpolated_ap) / 11 results_class = { 'class': cls, 'precision': precision, 'recall': recall, 'AP': ap_cls, 'interpolated precision': interpolated_ap, 'interpolated recall': recall_level, 'total positives': len(gt_bb_cls_list), 'total TP': np.sum(tp), 'total FP': np.sum(fp) } results_iou.append(results_class) ap_sum = 0 for i in results_iou: ap_sum += i['AP'] if use_all_class: mean_ap = ap_sum / (nrof_classes + len(classes_not_detected)) else: mean_ap = ap_sum / nrof_classes results.append({'IoU Threshold': iou_threshold, 'Class Evaluation': results_iou, 'AP': mean_ap}) return results def predict(self, data, text_parms=None, layer_out=None, layers=None, gpu=None, buffer_size=10, mini_batch_buf_size=None, top_probs=None, use_best_weights=False, n_threads=None, layer_image_type=None, log_level=0, random_crop='none', random_flip='none', random_mutation='none'): """ Evaluate the deep learning model on a specified validation data set Unlike the `evaluate` function, this function just does the inference and does not do further analysis. This function is good for non-classification tasks. Parameters ---------- data : string or CASTable, optional Specifies the input data. text_parms : :class:`TextParms`, optional Specifies the parameters for the text inputs. layer_out : string, optional Specifies the settings for an output table that includes layer output values. By default, all layers are included. You can filter the list with the layers parameter. layers : list of strings Specifies the names of the layers to include in the output layers table. gpu : :class:`Gpu`, optional When specified, the action uses graphical processing unit hardware. The simplest way to use GPU processing is to specify "gpu=1". In this case, the default values of other GPU parameters are used. Setting gpu=1 enables all available GPU devices for use. Setting gpu=0 disables GPU processing. buffer_size : int, optional Specifies the number of observations to score in a single batch. Larger values use more memory. Default: 10 mini_batch_buf_size : int, optional Specifies the size of a buffer that is used to save input data and intermediate calculations. By default, each layer allocates an input buffer that is equal to the number of input channels multiplied by the input feature map size multiplied by the bufferSize value. You can reduce memory usage by specifying a value that is smaller than the bufferSize. The only disadvantage to specifying a small value is that run time can increase because multiple smaller matrices must be multiplied instead of a single large matrix multiply. top_probs : int, optional Specifies to include the predicted probabilities along with the corresponding labels in the results. For example, if you specify 5, then the top 5 predicted probabilities are shown in the results along with the corresponding labels. use_best_weights : bool, optional When set to True, the weights that provides the smallest loss error saved during a previous training is used while scoring input data rather than the final weights from the training. default: False n_threads : int, optional Specifies the number of threads to use. If nothing is set then all of the cores available in the machine(s) will be used. layer_image_type : string, optional Specifies the image type to store in the output layers table. JPG means a compressed image (e.g, jpg, png, and tiff) WIDE means a pixel per column Default: jpg Valid Values: JPG, WIDE log_level : int, optional specifies the reporting level for progress messages sent to the client. The default level 0 indicates that no messages are sent. Setting the value to 1 sends start and end messages. Setting the value to 2 adds the iteration history to the client messaging. default: 0 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. H stands for horizontal V stands for vertical HW stands for horizontal and vertical Approximately half of the input data is subject to flipping. Default: NONE Valid Values: NONE, H, V, HV random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. UNIQUE: specifies to crop images to the size specified in the height and width parameters. Images that are less than or equal to the size are not modified. For images that are larger, the cropping begins at a random offset for x and y. Default: NONE Valid Values: NONE, UNIQUE random_mutation : string, optional Specifies how to mutate images. Default: NONE Valid Values: NONE, RANDOM Returns ------- :class:`CASResults` """ input_tbl_opts = input_table_check(data) input_table = self.conn.CASTable(**input_tbl_opts) copy_vars = input_table.columns.tolist() copy_vars = [x for x in copy_vars if not (x.startswith('_Object') or x.startswith('_nObject'))] if self.valid_res_tbl is None: valid_res_tbl = random_name('Valid_Res') else: valid_res_tbl = self.valid_res_tbl.name lo = None if layer_out is not None: lo = dict(replace=True, name=layer_out) en = True if self.model_type == 'RNN': en = False if use_best_weights and self.best_weights is not None: print('NOTE: Using the weights providing the smallest loss error.') res = self.score(table=input_table, model=self.model_table, init_weights=self.best_weights, copy_vars=copy_vars, casout=dict(replace=True, name=valid_res_tbl), encode_name=en, text_parms=text_parms, layer_out=lo, layers=layers, gpu=gpu, mini_batch_buf_size=mini_batch_buf_size, top_probs=top_probs, buffer_size=buffer_size, n_threads=n_threads, layer_image_type=layer_image_type, log_level=log_level, random_flip=random_flip, random_crop=random_crop, random_mutation=random_mutation) self.valid_res_tbl = self.conn.CASTable(valid_res_tbl) return res else: res = self.score(table=input_table, model=self.model_table, init_weights=self.model_weights, copy_vars=copy_vars, casout=dict(replace=True, name=valid_res_tbl), encode_name=en, text_parms=text_parms, layer_out=lo, layers=layers, gpu=gpu, mini_batch_buf_size=mini_batch_buf_size, top_probs=top_probs, buffer_size=buffer_size, n_threads=n_threads, layer_image_type=layer_image_type, log_level=log_level, random_flip=random_flip, random_crop=random_crop, random_mutation=random_mutation) self.valid_res_tbl = self.conn.CASTable(valid_res_tbl) return res def forecast(self, test_table=None, horizon=1, train_table=None, layer_out=None, layers=None, gpu=None, buffer_size=10, mini_batch_buf_size=None, use_best_weights=False, n_threads=None, casout=None): """ Make forecasts based on deep learning models trained on `TimeseriesTable`. This method performs either one-step-ahead forecasting or multi-step-ahead forecasting determined by the `horizon` parameter. If the model is autoregressive (the value of the response variable depends on its values at earlier time steps), it performs one-step-ahead forecasting recursively to achieve multi-step-ahead forecasting. More specifically, the predicted value at the previous time step is inserted into the input vector for predicting the next time step. Parameters ---------- test_table : string or :class:`CASTable`, optional Specifies the test table. If `test_table=None`, the model cannot have additional static covariates or predictor timeseries, and can only be a autoregressive model. In this case, the forecast extends the timeseries from the last timestamp found in the training/validation set. If the model contains additional static covariates or predictor timeseries (that are available for predicting the target timeseries), the test table has to be provided, and the forecast starts from the first timestamp in the test data. If the model is autoregressive, and the test data columns do not include all the required preceeding time points of the target series (the lagged target variables), the forecast will be extended from the last time timestamp in training/validation set and only use the static covariates or predictor timeseries information from the test data if they are available for the corresponding time points. Default : `None` horizon : int, optional. Specifies the forecasting horizon. If `horizon=1` and test data is provided, it will make one-step-ahead forecasts for all timestamps in the test data.(given the test data has all the columns required to make prediction.) Otherwise, it will only make one forecasted series per by-group, with the length specified by the `horizon` parameter. Default : 1 train_table : :class:`TimeseriesTable`, optional. If model has been fitted with a TimeseriesTable, this argument is ignored. Otherwise, this argument is required, and reference to the TimeseriesTable used for model training, as it contains information regarding when to extend the forecast from, and sequence length etc. layer_out : string, optional Specifies the settings for an output table that includes layer output values. By default, all layers are included. You can filter the list with the layers parameter. layers : list of strings Specifies the names of the layers to include in the output layers table. gpu : :class:`Gpu`, optional When specified, the action uses graphical processing unit hardware. The simplest way to use GPU processing is to specify "gpu=1". In this case, the default values of other GPU parameters are used. Setting gpu=1 enables all available GPU devices for use. Setting gpu=0 disables GPU processing. buffer_size : int, optional Specifies the number of observations to score in a single batch. Larger values use more memory. Default: 10 mini_batch_buf_size : int, optional Specifies the size of a buffer that is used to save input data and intermediate calculations. By default, each layer allocates an input buffer that is equal to the number of input channels multiplied by the input feature map size multiplied by the bufferSize value. You can reduce memory usage by specifying a value that is smaller than the bufferSize. The only disadvantage to specifying a small value is that run time can increase because multiple smaller matrices must be multiplied instead of a single large matrix multiply. use_best_weights : bool, optional When set to True, the weights that provides the smallest loss error saved during a previous training is used while scoring input data rather than the final weights from the training. default: False n_threads : int, optional Specifies the number of threads to use. If nothing is set then all of the cores available in the machine(s) will be used. casout : dict or :class:`CASTable`, optional If it is dict, it specifies the output CASTable parameters. If it is CASTable, it is the CASTable that will be overwritten. None means a new CASTable with random name will be generated. Default: None Returns ------- :class:`CASTable` """ if horizon > 1: self.score_message_level = 'error' #prevent multiple notes in multistep forecast if self.train_tbl is None: self.train_tbl = train_table if not isinstance(self.train_tbl, TimeseriesTable): raise RuntimeError('If the model is not fitted with a TimeseriesTable ' '(such as being imported from other sources), ' 'please consider use the train_table argument ' 'to pass a reference to the TimeseriesTable used for training, ' 'since model.forecast requires information ' 'including the last timestamp to extend from and subsequence length etc, ' 'which is stored in preprocessed TimeseriesTable. ' 'If this information is not available, consider using model.predict ' 'for non-timeseries prediction.') if test_table is None: print('NOTE: test_table is None, extending forecast from training/validation data') if isinstance(self.valid_tbl, str): self.valid_tbl = self.conn.CASTable(self.valid_tbl) train_valid_tbl = _combine_table(self.train_tbl, self.valid_tbl) cur_results = _get_last_obs(train_valid_tbl, self.train_tbl.timeid, groupby=self.train_tbl.groupby_var) self.conn.retrieve('table.droptable', _messagelevel='error', name=train_valid_tbl.name) for i in range(horizon): if i == 0: autoregressive_series = self.train_tbl.autoregressive_sequence + [self.train_tbl.target] else: autoregressive_series = self.train_tbl.autoregressive_sequence + ['_DL_Pred_'] cur_input = _prepare_next_input(cur_results, timeid=self.train_tbl.timeid, timeid_interval=self.train_tbl.acc_interval, autoregressive_series=autoregressive_series, sequence_opt=self.train_tbl.sequence_opt, groupby=self.train_tbl.groupby_var) if i == 0: self.conn.retrieve('table.droptable', _messagelevel='error', name=cur_results.name) self.predict(cur_input, layer_out=layer_out, layers=layers, gpu=gpu, buffer_size=buffer_size, mini_batch_buf_size=mini_batch_buf_size, use_best_weights=use_best_weights, n_threads=n_threads) self.conn.retrieve('table.droptable', _messagelevel='error', name=cur_input.name) cur_results = self.valid_res_tbl if i == 0: output_tbl = cur_results if casout is None: casout={'name': random_name('forecast_output', 6)} # Use _combine_table here to serve as a renaming output_tbl = _combine_table(output_tbl, casout=casout) else: output_tbl = _combine_table(output_tbl, cur_results, casout=output_tbl) else: if isinstance(test_table, str): test_table = self.conn.CASTable(test_table) if set(self.train_tbl.autoregressive_sequence).issubset(test_table.columns.tolist()): if horizon == 1: self.predict(test_table, layer_out=layer_out, layers=layers, gpu=gpu, buffer_size=buffer_size, mini_batch_buf_size=mini_batch_buf_size, use_best_weights=use_best_weights, n_threads=n_threads) output_tbl = self.valid_res_tbl if casout is None: casout={'name': random_name('forecast_output', 6)} # Use _combine_table here to serve as a renaming output_tbl = _combine_table(output_tbl, casout=casout) else: cur_input = _get_first_obs(test_table, self.train_tbl.timeid, groupby=self.train_tbl.groupby_var) for i in range(horizon): if i > 0: autoregressive_series = self.train_tbl.autoregressive_sequence + ['_DL_Pred_'] cur_input = _prepare_next_input(cur_results, timeid=self.train_tbl.timeid, timeid_interval=self.train_tbl.acc_interval, autoregressive_series=autoregressive_series, sequence_opt=self.train_tbl.sequence_opt, covar_tbl = test_table, groupby=self.train_tbl.groupby_var) self.predict(cur_input, layer_out=layer_out, layers=layers, gpu=gpu, buffer_size=buffer_size, mini_batch_buf_size=mini_batch_buf_size, use_best_weights=use_best_weights, n_threads=n_threads) self.conn.retrieve('table.droptable', _messagelevel='error', name=cur_input.name) cur_results = self.valid_res_tbl if i == 0: output_tbl = cur_results if casout is None: casout={'name': random_name('forecast_output', 6)} # Use _combine_table here to serve as a renaming output_tbl = _combine_table(output_tbl, casout=casout) else: output_tbl = _combine_table(output_tbl, cur_results, casout=output_tbl) else: if isinstance(self.valid_tbl, str): self.valid_tbl = self.conn.CASTable(self.valid_tbl) train_valid_tbl = _combine_table(self.train_tbl, self.valid_tbl) cur_results = _get_last_obs(train_valid_tbl, self.train_tbl.timeid, groupby=self.train_tbl.groupby_var) self.conn.retrieve('table.droptable', _messagelevel='error', name=train_valid_tbl.name) for i in range(horizon): if i == 0: autoregressive_series = self.train_tbl.autoregressive_sequence + [self.train_tbl.target] else: autoregressive_series = self.train_tbl.autoregressive_sequence + ['_DL_Pred_'] cur_input = _prepare_next_input(cur_results, timeid=self.train_tbl.timeid, timeid_interval=self.train_tbl.acc_interval, autoregressive_series=autoregressive_series, sequence_opt=self.train_tbl.sequence_opt, covar_tbl = test_table, groupby=self.train_tbl.groupby_var) if i == 0: self.conn.retrieve('table.droptable', _messagelevel='error', name=cur_results.name) if cur_input.shape[0] == 0: raise RuntimeError('Input test data does not have all the required autoregressive ' + 'lag variables that appeared in the training set. ' + 'In this case, it has to have the timestamp that succeeds ' + 'the last time point in training/validation set.') self.predict(cur_input, layer_out=layer_out, layers=layers, gpu=gpu, buffer_size=buffer_size, mini_batch_buf_size=mini_batch_buf_size, use_best_weights=use_best_weights, n_threads=n_threads) self.conn.retrieve('table.droptable', _messagelevel='error', name=cur_input.name) cur_results = self.valid_res_tbl if i == 0: output_tbl = cur_results if casout is None: casout={'name': random_name('forecast_output', 6)} # Use _combine_table here to serve as a renaming output_tbl = _combine_table(output_tbl, casout=casout) else: output_tbl = _combine_table(output_tbl, cur_results, casout=output_tbl) self.score_message_level = 'note' return output_tbl def score(self, table, model=None, init_weights=None, text_parms=None, layer_out=None, layer_image_type='jpg', layers=None, copy_vars=None, casout=None, gpu=None, buffer_size=10, mini_batch_buf_size=None, encode_name=False, random_flip='none', random_crop='none', top_probs=None, random_mutation='none', n_threads=None, has_output_term_ids=False, init_output_embeddings=None, log_level=None): """ Inference of input data with the trained deep learning model Parameters ---------- table : string or CASTable Specifies the input data. model : string or CASTable, optional Specifies the in-memory table that is the model. init_weights : string or CASTable, optional Specifies an in-memory table that contains the model weights. text_parms : TextParms, optional Specifies the parameters for the text inputs. layer_out : string, optional Specifies the settings for an output table that includes layer output values. By default, all layers are included. You can filter the list with the layers parameter. layer_image_type : string, optional Specifies the image type to store in the output layers table. JPG means a compressed image (e.g, jpg, png, and tiff) WIDE means a pixel per column Default: jpg Valid Values: JPG, WIDE layers : list-of-strings, optional Specifies the names of the layers to include in the output layers table. copy_vars : list-of-strings, optional Specifies the variables to transfer from the input table to the output table. casout :, optional Specifies the name of the output table. gpu : GPU, optional When specified, the action uses graphical processing unit hardware. The simplest way to use GPU processing is to specify "gpu=1". In this case, the default values of other GPU parameters are used. Setting gpu=1 enables all available GPU devices for use. Setting gpu=0 disables GPU processing. buffer_size : int, optional Specifies the number of observations to score in a single batch. Larger values use more memory. Default: 10 mini_batch_buf_size : int, optional Specifies the size of a buffer that is used to save input data and intermediate calculations. By default, each layer allocates an input buffer that is equal to the number of input channels multiplied by the input feature map size multiplied by the bufferSize value. You can reduce memory usage by specifying a value that is smaller than the bufferSize. The only disadvantage to specifying a small value is that run time can increase because multiple smaller matrices must be multiplied instead of a single large matrix multiply. encode_name : bool, optional Specifies whether encoding the variable names in the generated casout table such as the predicted probabilities of each response variable level. Default: False random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. H stands for horizontal V stands for vertical HW stands for horizontal and vertical Approximately half of the input data is subject to flipping. Default: NONE Valid Values: NONE, H, V, HV random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. UNIQUE: specifies to crop images to the size specified in the height and width parameters. Images that are less than or equal to the size are not modified. For images that are larger, the cropping begins at a random offset for x and y. Default: NONE Valid Values: NONE, UNIQUE top_probs : int, optional Specifies to include the predicted probabilities along with the corresponding labels in the results. For example, if you specify 5, then the top 5 predicted probabilities are shown in the results along with the corresponding labels. random_mutation : string, optional Specifies how to mutate images. Default: NONE Valid Values: NONE, RANDOM n_threads : int, optional Specifies the number of threads to use. If nothing is set then all of the cores available in the machine(s) will be used. log_level : int, optional specifies the reporting level for progress messages sent to the client. The default level 0 indicates that no messages are sent. Setting the value to 1 sends start and end messages. Setting the value to 2 adds the iteration history to the client messaging. default: 0 Returns ------- :class:`CASResults` """ if self.model_type == 'CNN': parameters = DLPyDict(table=table, model=model, init_weights=init_weights, text_parms=text_parms, layer_image_type=layer_image_type, layers=layers, copy_vars=copy_vars, casout=casout, gpu=gpu, mini_batch_buf_size=mini_batch_buf_size, buffer_size=buffer_size, layer_out=layer_out, encode_name=encode_name, n_threads=n_threads, random_flip=random_flip, random_crop=random_crop, top_probs=top_probs, random_mutation=random_mutation, log_level=log_level) else: parameters = DLPyDict(table=table, model=model, init_weights=init_weights, text_parms=text_parms, layer_image_type='WIDE', layers=layers, copy_vars=copy_vars, casout=casout, gpu=gpu, mini_batch_buf_size=mini_batch_buf_size, buffer_size=buffer_size, layer_out=layer_out, encode_name=encode_name, n_threads=n_threads, random_flip=random_flip, random_crop=random_crop, top_probs=top_probs, random_mutation=random_mutation, log_level=log_level) return self._retrieve_('deeplearn.dlscore', message_level=self.score_message_level, **parameters) def _train_visualize(self, table, attributes=None, inputs=None, nominals=None, texts=None, valid_table=None, valid_freq=1, model=None, init_weights=None, model_weights=None, target=None, target_sequence=None, sequence=None, text_parms=None, weight=None, gpu=None, seed=0, record_seed=None, missing='mean', optimizer=None, target_missing='mean', best_weights=None, repeat_weight_table=False, force_equal_padding=None, data_specs=None, n_threads=None, target_order='ascending', x=None, y=None, y_loss=None, total_sample_size=None, e=None, iter_history=None, freq=None, status=None): """ Function that calls the training action enriched with training history visualization. This is an internal private function and for documentation, please refer to fit() or train() """ self._train_visualization() b_w = None if best_weights is not None: b_w = dict(replace=True, name=best_weights) if optimizer is not None: optimizer['log_level'] = 3 else: optimizer=Optimizer(log_level=3) parameters = DLPyDict(table=table, attributes=attributes, inputs=inputs, nominals=nominals, texts=texts, valid_table=valid_table, valid_freq=valid_freq, model=model, init_weights=init_weights, model_weights=model_weights, target=target, target_sequence=target_sequence, sequence=sequence, text_parms=text_parms, weight=weight, gpu=gpu, seed=seed, record_seed=record_seed, missing=missing, optimizer=optimizer, target_missing=target_missing, best_weights=b_w, repeat_weight_table=repeat_weight_table, force_equal_padding=force_equal_padding, data_specs=data_specs, n_threads=n_threads, target_order=target_order) import swat from ipykernel.comm import Comm comm = Comm(target_name='%(plot_id)s_comm' % dict(plot_id='foo')) with swat.option_context(print_messages=False): self._retrieve_('deeplearn.dltrain', message_level='note', responsefunc=_pre_parse_results(x, y, y_loss, total_sample_size, e, comm, iter_history, freq, status), **parameters) if status[0] == 0: self.model_ever_trained = True return iter_history[0] else: return None def _train_visualization(self): from IPython.display import display, HTML display(HTML(''' <canvas id='%(plot_id)s_canvas' style='width: %(plot_width)spx; height: %(plot_height)spx'></canvas> <script language='javascript'> <!-- requirejs.config({ paths: { Chart: ['//cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.0/Chart.min'] } }); require(['jquery', 'Chart'], function($, Chart) { var comm = Jupyter.notebook.kernel.comm_manager.new_comm('%(plot_id)s_comm') var ctx = document.getElementById('%(plot_id)s_canvas').getContext('2d'); var chart = new Chart(ctx, { type: 'line', data: { labels: [], datasets: [{ label: 'FitError', borderColor: '#FF0000', backgroundColor: '#FF0000', fill: false, data: [], yAxisID: 'y-axis-1' }, { label: 'Loss', borderColor: '#0000FF', backgroundColor: '#0000FF', fill: false, data: [], yAxisID: 'y-axis-2' }], }, options: { stacked: false, scales: { yAxes: [{ type: 'linear', display: true, position: 'left', id: 'y-axis-1', data: [] }, { type: 'linear', display: true, position: 'right', id: 'y-axis-2', data: [], // grid line settings gridLines: { drawOnChartArea: false, // only want the grid lines for one axis to show up }, }], } } }); Jupyter.notebook.kernel.comm_manager.register_target('%(plot_id)s_comm', function(comm, msg) { comm.on_msg(function(msg) { var data = msg.content.data; chart.data.labels.push(data.label); for ( var i = 0; i < chart.data.datasets.length; i++ ) { chart.data.datasets[i].data.push(data.data[i]); } chart.update(0); }) comm.on_close(function() { comm.send({'command': 'stop'}); }) // Send message when plot is removed $.event.special.destroyed = { remove: function(o) { if (o.handler) { o.handler() } } } $('#%(plot_id)s_canvas').bind('destroyed', function() { comm.send({'command': 'stop'}); }); } ); }); //--> </script>''' % dict(plot_id='foo', plot_width='950', plot_height='400'))) def plot_evaluate_res(self, cas_table=None, img_type='A', image_id=None, filename=None, n_images=5, target='_label_', predicted_class=None, label_class=None, randomize=False, seed=-1): ''' Plot the bar chart of the classification predictions Parameters ---------- cas_table : CASTable, optional If None results from model.evaluate are used Can pass in another table that has the same prediction column names as in model.valid_res_tbl img_type : str, optional Specifies the type of classification results to plot * A - All type of results * C - Correctly classified results * M - Miss classified results image_id : list or int, optional Specifies the image by '_id_' column to be displayed filename : list of strings or string, optional The name of a file in '_filename_0' or '_path_' if not unique returns multiple n_images : int, optional Number of images to evaluate target : string, optional name of column for the correct label predicted_class : string, optional Name of desired prediction class to plot results label_class : string, optional Actual target label of desired class to plot results randomize : bool, optional If true randomize results seed : int, optional Random seed used if randomize is true ''' from .utils import plot_predict_res # create copy of cas_table so can be dropped after filtering if not cas_table: if self.valid_res_tbl: cas_table = self.valid_res_tbl.partition(casout=dict(name='temp_plot', replace=True))['casTable'] else: raise DLPyError("Need to run model.evaluate()") else: cas_table = cas_table.partition(casout=dict(name='temp_plot', replace=True))['casTable'] if target not in cas_table.columns: if 'Label' in cas_table.columns: target = 'Label' else: raise DLPyError("target column {} not found in cas_table {}".format(target, cas_table.name)) if 'I__label_' not in cas_table.columns: raise DLPyError("cas_table must contain prediction column named 'I__lable_'." "i.e. model.valid_res_tbl can be used after running model.evaluate") filtered = None if filename or image_id: if '_id_' not in cas_table.columns.tolist(): print("'_id_' column not in cas_table, processing complete table") else: if filename and image_id: print(" image_id supersedes filename, image_id being used") if image_id: filtered = filter_by_image_id(cas_table, image_id) elif filename: filtered = filter_by_filename(cas_table, filename) if filtered: if filtered.numrows == 0: raise DLPyError(" image_id or filename not found in CASTable {}".format(cas_table.name)) self.conn.droptable(cas_table) cas_table = filtered if img_type == 'A': if cas_table.numrows().numrows == 0: raise DLPyError("No images to plot") elif img_type == 'C': cas_table = cas_table[cas_table[target] == cas_table['I__label_']] cas_table = cas_table.partition(casout=dict(name=cas_table.name, replace=True))['casTable'] if cas_table.numrows().numrows == 0: raise DLPyError("No correct labels to plot") elif img_type == 'M': cas_table = cas_table[cas_table[target] != cas_table['I__label_']] cas_table.partition(casout=dict(name=cas_table.name, replace=True))['casTable'] if cas_table.numrows().numrows == 0: raise DLPyError("No misclassified labels to plot") else: raise DLPyError('img_type must be one of the following:\n' 'A: for all the images\n' 'C: for correctly classified images\n' 'M: for misclassified images\n') if label_class: unique_labels = list(set(cas_table[target].tolist())) cas_table = cas_table[cas_table['_label_'] == label_class] cas_table.partition(casout=dict(name=cas_table.name, replace=True))['casTable'] if cas_table.numrows().numrows == 0: raise DLPyError("There are no labels of {}. The labels consist of {}". \ format(label_class, unique_labels)) if predicted_class: unique_predictions = list(set(cas_table['I__label_'].tolist())) cas_table = cas_table[cas_table['I__label_'] == predicted_class] cas_table.partition(casout=dict(name=cas_table.name, replace=True))['casTable'] if cas_table.numrows().numrows == 0: raise DLPyError("There are no predicted labels of {}. The predicted labels consist of {}". \ format(predicted_class, unique_predictions)) columns_for_pred = [item for item in cas_table.columns if item[0:9] == 'P__label_'] if len(columns_for_pred) == 0: raise DLPyError("Input table has no columns for predictions. " "Run model.predict the predictions are stored " "in the attribute model.valid_res_tbl.") fetch_cols = columns_for_pred + ['_id_'] if randomize: cas_table.append_computedvars(['random_index']) cas_table.append_computedvarsprogram('call streaminit({});' 'random_index=''rand("UNIFORM")'.format(seed)) img_table = cas_table.retrieve('image.fetchimages', _messagelevel='error', table=dict(**cas_table.to_table_params()), fetchVars=fetch_cols, sortby='random_index', to=n_images) else: img_table = cas_table.retrieve('image.fetchimages', fetchVars=fetch_cols, to=n_images, sortBy=[{'name': '_id_', 'order': 'ASCENDING'}]) self.conn.droptable(cas_table) img_table = img_table['Images'] for im_idx in range(len(img_table)): image = img_table['Image'][im_idx] label = 'Correct Label for image {} : {}'.format(img_table['_id_'][im_idx], img_table['Label'][im_idx]) labels = [item[9:].title() for item in columns_for_pred] values = np.asarray(img_table[columns_for_pred].iloc[im_idx]) values, labels = zip(*sorted(zip(values, labels))) values = values[-5:] labels = labels[-5:] labels = [item[:(item.find('__') > 0) * item.find('__') + (item.find('__') < 0) * len(item)] for item in labels] labels = [item.replace('_', '\n') for item in labels] plot_predict_res(image, label, labels, values) def get_feature_maps(self, data, label=None, idx=0, image_id=None, **kwargs): """ Extract the feature maps for a single image Parameters ---------- data : ImageTable Specifies the table containing the image data. label : str, optional Specifies the which class of image to use. Default : None idx : int, optional Specifies which row index to get feature map Default : 1 image_id : list or int, optional Filters data using '_id_' column **kwargs : keyword arguments, optional Specifies the optional arguments for the dlScore action. """ from .images import ImageTable if image_id: filtered = filter_by_image_id(data, image_id) data = ImageTable.from_table(filtered) self.conn.droptable(filtered) try: uid = data.uid except: raise TypeError("The input data should be an ImageTable.") if label is None: label = uid.iloc[0, 0] uid = uid.loc[uid['_label_'] == label] if len(uid) == 0: raise DLPyError('No images were found. Please check input ' 'table or label name.') elif idx >= uid.shape[0]: raise DLPyError('image_id should be an integer between 0' ' and {}.'.format(uid.shape[0] - 1)) uid_value = uid.iloc[idx, 1] uid_name = uid.columns[1] input_tbl = input_table_check(data) feature_maps_tbl = random_name('Feature_Maps') + '_{}'.format(idx) score_options = dict(model=self.model_table, initWeights=self.model_weights, table=dict(where='{}="{}"'.format(uid_name, uid_value), **input_tbl), layerOut=dict(name=feature_maps_tbl), randomflip='none', randomcrop='none', layerImageType='jpg', encodeName=True) score_options.update(kwargs) self._retrieve_('deeplearn.dlscore', **score_options) layer_out_jpg = self.conn.CASTable(feature_maps_tbl) feature_maps_names = [i for i in layer_out_jpg.columninfo().ColumnInfo.Column] feature_maps_structure = dict() for feature_map_name in feature_maps_names: feature_maps_structure[int(feature_map_name.split('_')[2])] = \ int(feature_map_name.split('_')[4]) + 1 self.feature_maps = FeatureMaps(self.conn, feature_maps_tbl, structure=feature_maps_structure) def get_features(self, data, dense_layer, target='_label_', **kwargs): """ Extract linear features for a data table from the layer specified by dense_layer Parameters ---------- data : CASTable or string or dict Specifies the table containing the image data dense_layer : string Specifies the name of the layer that is extracted target : string, optional Specifies the name of the column including the response variable **kwargs : keyword arguments, optional Specifies the optional arguments for the dlScore action. Returns ------- ( nxp-ndarray, n-ndarray ) The first ndarray is of size n by p, where n is the sample size and p is the number of features. The features extracted by the model at the specified dense_layer. The second ndarray is of size n and contains the response variable of the original data. """ input_tbl_opts = input_table_check(data) input_table = self.conn.CASTable(**input_tbl_opts) if target not in input_table.columns.tolist(): raise DLPyError('Column name "{}" not found in the data table.'.format(target)) feature_tbl = random_name('Features') score_options = dict(model=self.model_table, initWeights=self.model_weights, table=dict(**input_tbl_opts), layerOut=dict(name=feature_tbl), layerList=dense_layer, layerImageType='wide', randomflip='none', randomcrop='none', encodeName=True) score_options.update(kwargs) self._retrieve_('deeplearn.dlscore', **score_options) x = self.conn.CASTable(feature_tbl).as_matrix() y = self.conn.CASTable(**input_tbl_opts)[target].as_matrix().ravel() return x, y def heat_map_analysis(self, data=None, mask_width=None, mask_height=None, step_size=None, display=True, img_type='A', image_id=None, filename=None, inputs="_image_", target="_label_", max_display=5, **kwargs): """ Conduct a heat map analysis on table of images Parameters ---------- data : ImageTable, optional If data is None then the results from model.predict are used. data specifies the table containing the image data which must contain the columns '_image_', '_label_', '_id_' and '_filename_0'. mask_width : int, optional Specifies the width of the mask which cover the region of the image. mask_height : int, optional Specifies the height of the mask which cover the region of the image. step_size : int, optional Specifies the step size of the movement of the the mask. display : bool, optional Specifies whether to display the results. img_type : string, optional Can be 'A' for all images, 'C' for only correctly classified images, or 'M' for misclassified images. image_id : list or int, optional A unique image id to get the heatmap. A standard column of ImageTable filename : list of strings or string, optional The name of a file in '_filename_0' if not unique returns multiple inputs : string, optional Name of image column for the input into the model.predict function target : string, optional Name of column for the correct label max_display : int, optional Maximum number of images to display. Heatmap takes a significant amount of time to run so a max of 5 is default. **kwargs : keyword arguments, optional Specifies the optional arguments for the dlScore action. Notes ----- Heat map indicates the important region related with classification. Details of the process can be found at: https://arxiv.org/pdf/1311.2901.pdf. Returns ------- :class:`pandas.DataFrame` Contains Columns: ['I__label_', 'P__label_(for each label)', '_filename_0', '_id_', '_image_', '_label_', 'heat_map'] """ def get_predictions(data=data, inputs=inputs, target=target, kwargs=kwargs): input_tbl_opts = input_table_check(data) input_table = self.conn.CASTable(**input_tbl_opts) if target not in input_table.columns.tolist(): raise DLPyError('Column name "{}" not found in the data table.'.format(target)) if inputs not in input_table.columns.tolist(): raise DLPyError('Column name "{}" not found in the data table.'.format(inputs)) input_table = self.conn.CASTable(**input_tbl_opts) input_table = ImageTable.from_table(input_table) copy_vars = input_table.columns.tolist() valid_res_tbl_com = random_name('Valid_Res_Complete') dlscore_options_com = dict(model=self.model_table, initweights=self.model_weights, table=input_table, copyvars=copy_vars, randomflip='none', randomcrop='none', casout=dict(replace=True, name=valid_res_tbl_com), encodename=True) try: kwargs = unify_keys(kwargs) except: pass dlscore_options_com.update(kwargs) self._retrieve_('deeplearn.dlscore', **dlscore_options_com) return self.conn.CASTable(valid_res_tbl_com) from .images import ImageTable run_predict = True if data is None and self.valid_res_tbl is None: raise ValueError('No input data and model.predict() has not been run') elif data is None: print("Using results from model.predict()") data = self.valid_res_tbl run_predict = False elif data.shape[0] == 0: raise ValueError('Input table is empty.') data = data.partition(casout=dict(name='temp_anotated', replace=True))['casTable'] im_summary = data._retrieve('image.summarizeimages')['Summary'] output_width = int(im_summary.minWidth) output_height = int(im_summary.minHeight) if (int(im_summary.maxWidth) != output_width) or \ (int(im_summary.maxHeight) != output_height): raise ValueError('Input images must have same size.') if (mask_width is None) and (mask_height is None): mask_width = max(int(output_width / 4), 1) mask_height = max(int(output_height / 4), 1) if mask_width is None: mask_width = mask_height if mask_height is None: mask_height = mask_width if step_size is None: step_size = max(int(mask_width / 4), 1) copy_vars = ImageTable.from_table(data).columns.tolist() masked_image_table = random_name('MASKED_IMG') blocksize = image_blocksize(output_width, output_height) filtered = None if filename or image_id: print(" filtering by filename or _id_ ") if '_id_' not in data.columns.tolist(): print("'_id_' column not in cas_table, processing complete table") else: if filename and image_id: print(" image_id supersedes filename, image_id being used") if image_id: filtered = filter_by_image_id(data, image_id) elif filename: filtered = filter_by_filename(data, filename) if filtered: self.conn.droptable(data) data = filtered if run_predict: print("Running prediction ...") data = get_predictions(data) print("... finished running prediction") table_vars = data.columns.tolist() if 'I__label_' in table_vars and img_type == 'C': data_temp = data[data['_label_'] == data['I__label_']] if data_temp.numrows().numrows != 0: data = data_temp else: raise ValueError('No Correct Labels to Heatmap') elif 'I__label_' in table_vars and img_type == 'M': data_temp = data[data['_label_'] != data['I__label_']] if data_temp.numrows().numrows != 0: data = data_temp else: raise ValueError('No Misclassified Data to Heatmap') if data.numrows().numrows > max_display: print('NOTE: The number of images in the table is too large,' ' only {} randomly selected images are used in analysis.'.format(max_display)) te_rate = max_display / data.numrows().numrows * 100 if not self.conn.queryactionset('sampling')['sampling']: self.conn.loadactionset('sampling', _messagelevel='error') sample_tbl = random_name('SAMPLE_TBL') self._retrieve_('sampling.srs', table=data.to_table_params(), output=dict(casout=dict(replace=True, name=sample_tbl, blocksize=blocksize), copyvars='all'), samppct=te_rate) data= self.conn.CASTable(sample_tbl) self._retrieve_('image.augmentimages', table=data.to_table_params(), copyvars=copy_vars, casout=dict(replace=True, name=masked_image_table, blocksize=blocksize), cropList=[dict(sweepImage=True, x=0, y=0, width=mask_width, height=mask_height, stepsize=step_size, outputwidth=output_width, outputheight=output_height, mask=True)]) masked_image_table = self.conn.CASTable(masked_image_table) copy_vars = masked_image_table.columns.tolist() copy_vars.remove('_image_') valid_res_tbl = random_name('Valid_Res') dlscore_options = dict(model=self.model_table, initWeights=self.model_weights, table=masked_image_table, copyVars=copy_vars, randomflip='none', randomcrop='none', casout=dict(replace=True, name=valid_res_tbl), encodeName=True) dlscore_options.update(kwargs) self._retrieve_('deeplearn.dlscore', **dlscore_options) valid_res_tbl = self.conn.CASTable(valid_res_tbl) temp_table = valid_res_tbl.to_frame() image_id_list = temp_table['_parentId_'].unique().tolist() n_masks = len(temp_table['_id_'].unique()) prob_tensor = np.empty((output_height, output_width, n_masks)) prob_tensor[:] = np.nan model_explain_table = dict() count_for_subject = dict() for name in image_id_list: model_explain_table.update({'{}'.format(name): prob_tensor.copy()}) count_for_subject.update({'{}'.format(name): 0}) for row in temp_table.iterrows(): row = row[1] name = str(row['_parentId_']) x = int(row['x']) y = int(row['y']) x_step = int(row['width']) y_step = int(row['height']) true_class = row['_label_'].replace(' ', '_') true_pred_prob_col = 'P__label_' + true_class prob = row[true_pred_prob_col] model_explain_table[name][y:min(y + y_step, output_height), x:min(x + x_step, output_width), count_for_subject[name]] = prob count_for_subject[name] += 1 original_image_table = data.fetchimages(fetchVars=data.columns.tolist(), to=data.numrows().numrows).Images prob_cols = [] for col in data.columns: if 'P__label' in col: prob_cols.append(col) output_table = [] for id_num in model_explain_table.keys(): temp_dict = dict() temp_dict.update({'_id_': id_num}) index = original_image_table['_id_'] == int(id_num) temp_dict.update({ '_filename_0': original_image_table['_filename_0'][index].tolist()[0], '_image_': original_image_table['Image'][index].tolist()[0], '_label_': original_image_table['Label'][index].tolist()[0], 'I__label_': original_image_table['I__label_'][index].tolist()[0], 'heat_map': np.nanmean(model_explain_table[id_num], axis=2) }) index2 = data['_id_'] == id_num for col_name in prob_cols: temp_dict.update({'{}'.format(col_name): data[col_name][index2].tolist()[0]}) output_table.append(temp_dict) self._retrieve_('table.droptable', name=masked_image_table) self._retrieve_('table.droptable', name=valid_res_tbl) output_table = pd.DataFrame(output_table) self.model_explain_table = output_table if display: n_images = output_table.shape[0] if n_images > max_display: print('NOTE: Only the results from the first {} images are displayed.'.format(max_display)) n_images = max_display fig, axs = plt.subplots(ncols=3, nrows=n_images, figsize=(12, 4 * n_images)) if n_images == 1: axs = [axs] for im_idx in range(n_images): label = output_table['_label_'][im_idx] pred_label = output_table['I__label_'][im_idx] id_num = output_table['_id_'][im_idx] filename = output_table['_filename_0'][im_idx] img = output_table['_image_'][im_idx] heat_map = output_table['heat_map'][im_idx] img_size = heat_map.shape extent = [0, img_size[0], 0, img_size[1]] vmin = heat_map.min() vmax = heat_map.max() axs[im_idx][0].imshow(img, extent=extent) axs[im_idx][0].axis('off') axs[im_idx][0].set_title('Original Image: {}'.format(label)) color_bar = axs[im_idx][2].imshow(heat_map, vmax=vmax, vmin=vmin, interpolation='none', extent=extent, cmap='jet_r') axs[im_idx][2].axis('off') axs[im_idx][2].set_title('Heat Map') axs[im_idx][1].imshow(img, extent=extent) axs[im_idx][1].imshow(heat_map, vmax=vmax, vmin=vmin, interpolation='none', alpha=0.5, extent=extent, cmap='jet_r') axs[im_idx][1].axis('off') axs[im_idx][1].set_title('Overlayed Image') box = axs[im_idx][2].get_position() ax3 = fig.add_axes([box.x1 * 1.02, box.y0 + box.height * 0.06, box.width * 0.05, box.height * 0.88]) plt.colorbar(color_bar, cax=ax3) left, width = .0, 1.0 bottom, height = -.14, .2 top = bottom + height output_str = 'Predicted Label: {}'.format(pred_label) output_str += ', filename: {}'.format(filename) output_str += ', image_id: {},'.format(id_num) axs[im_idx][0].text(left, 0.5 * (bottom + top), output_str, horizontalalignment='left', verticalalignment='center', fontsize=14, color='black', transform=axs[im_idx][0].transAxes) plt.show() self.conn.droptable(data) return output_table def plot_heat_map(self, idx=0, alpha=.2): """ Display the heat maps analysis results Displays plot of three images: original, overlayed image and heat map, from left to right. Parameters ---------- idx : int, optional Specifies the image to be displayed, starting from 0. alpha : double, optional Specifies transparent ratio of the heat map in the overlayed image. Must be a numeric between 0 and 1. """ label = self.model_explain_table['_label_'][idx] img = self.model_explain_table['_image_'][idx] heat_map = self.model_explain_table['heat_map'][idx] img_size = heat_map.shape extent = [0, img_size[0], 0, img_size[1]] vmin = heat_map.min() vmax = heat_map.max() fig, (ax0, ax2, ax1) = plt.subplots(ncols=3, figsize=(12, 4)) ax0.imshow(img, extent=extent) ax0.axis('off') ax0.set_title('Original Image: {}'.format(label)) color_bar = ax1.imshow(heat_map, vmax=vmax, vmin=vmin, interpolation='none', extent=extent, cmap='jet_r') ax1.axis('off') ax1.set_title('Heat Map') ax2.imshow(img, extent=extent) ax2.imshow(heat_map, vmax=vmax, vmin=vmin, interpolation='none', alpha=alpha, extent=extent, cmap='jet_r') ax2.axis('off') ax2.set_title('Overlayed Image') box = ax1.get_position() ax3 = fig.add_axes([box.x1 * 1.02, box.y0 + box.height * 0.06, box.width * 0.05, box.height * 0.88]) plt.colorbar(color_bar, cax=ax3) plt.show() class FeatureMaps(object): ''' Feature Maps object Parameters ---------- conn : CAS Specifies the CAS connection object feature_maps_tbl : CAS table Specifies the CAS table to store the feature maps. structure : dict, optional Specifies the structure of the feature maps. Returns ------- :class:`FeatureMaps` ''' def __init__(self, conn, feature_maps_tbl, structure=None): self.conn = conn self.tbl = feature_maps_tbl self.structure = structure def display(self, layer_id, filter_id=None): ''' Display the feature maps Parameters ---------- layer_id : int Specifies the id of the layer to be displayed. filter_id : list-of-ints, optional Specifies the filters to be displayed. Default: None ''' if filter_id is None: n_images = self.structure[layer_id] filter_id = list(range(n_images)) if len(filter_id) > 64: filter_id = filter_id[0:64] print('NOTE: The maximum number of filters to be displayed is 64.\n' 'NOTE: Only the first 64 filters are displayed.') n_images = len(filter_id) n_col = min(n_images, 8) n_row = int(np.ceil(n_images / n_col)) fig = plt.figure(figsize=(16, 16 // n_col * n_row)) title = 'Activation Maps for Layer_{}'.format(layer_id) if layer_id == 0: image = [] for i in range(3): col_name = '_LayerAct_{}_IMG_{}_'.format(layer_id, i) temp = self.conn.retrieve('image.fetchimages', _messagelevel='error', table=self.tbl, image=col_name).Images.Image[0] image.append(np.asarray(temp)) image = np.dstack((image[2], image[1], image[0])) plt.imshow(image) plt.xticks([]), plt.yticks([]) else: for i in range(n_images): filter_num = filter_id[i] col_name = '_LayerAct_{}_IMG_{}_'.format(layer_id, filter_num) image = self.conn.retrieve('image.fetchimages', _messagelevel='error', table=self.tbl, image=col_name).Images.Image[0] image = np.asarray(image) fig.add_subplot(n_row, n_col, i + 1) plt.imshow(image, cmap='gray') plt.xticks([]), plt.yticks([]) plt.title('Filter {}'.format(filter_num)) plt.suptitle(title, fontsize=20) plt.tight_layout(pad=2.5, rect=[0, 0.03, 1, 0.95]) plt.show() class Solver(DLPyDict): ''' Solver object Parameters ---------- learning_rate : double, optional Specifies the learning rate for the deep learning algorithm. learning_rate_policy : string, optional Specifies the learning rate policy for the deep learning algorithm. Valid Values: FIXED, STEP, POLY, INV, MULTISTEP Default: FIXED gamma : double, optional Specifies the gamma for the learning rate policy. step_size : int, optional Specifies the step size when the learning rate policy is set to STEP. power : double, optional Specifies the power for the learning rate policy. use_locking : bool, optional When it is false, the gradients are computed asynchronously with multiple threads. clip_grad_max : double, optional Specifies the maximum gradient value. All gradients that are greater than the specified value are set to the specified value. clip_grad_min : double, optional Specifies the minimum gradient value. All gradients that are less than the specified value are set to the specified value. steps : list-of-ints, optional specifies a list of epoch counts. When the current epoch matches one of the specified steps, the learning rate is multiplied by the value of the gamma parameter. For example, if you specify {5, 9, 13}, then the learning rate is multiplied by gamma after the fifth, ninth, and thirteenth epochs. fcmp_learning_rate : string, optional specifies the FCMP learning rate function. lr_scheduler : LRScheduler, optional Specifies learning rate policy DLPy provides you with some predefined learning rate policies. 1. FixedLR 2. StepLR 3. MultiStepLR 4. PolynomialLR 5. ReduceLROnPlateau 6. CyclicLR Besides, you can also customize your own learning rate policy. You can find more examples at DLPy example folder. Returns ------- :class:`Solver` ''' def __init__(self, learning_rate=0.001, learning_rate_policy='fixed', gamma=0.1, step_size=10, power=0.75, use_locking=True, clip_grad_max=None, clip_grad_min=None, steps=None, fcmp_learning_rate=None, lr_scheduler=None): DLPyDict.__init__(self, learning_rate=learning_rate, learning_rate_policy=learning_rate_policy, gamma=gamma, step_size=step_size, power=power, use_locking=use_locking, clip_grad_max=clip_grad_max, clip_grad_min=clip_grad_min, steps=steps, fcmp_learning_rate=fcmp_learning_rate) # lr_scheduler default as None and if it is specified, it will overwrite lr option in _solver if lr_scheduler is not None: if not isinstance(lr_scheduler, _LRScheduler): raise TypeError('{} is not an LRScheduler'.format(type(lr_scheduler).__name__)) if lr_scheduler.get('fcmp_learning_rate'): self.pop('learning_rate_policy', 0) args_wrapped_in_lr_scheduler = ['learning_rate', 'learning_rate_policy', 'gamma', 'step_size', 'power', 'steps', 'fcmp_learning_rate'] not_none_args = [i for i in args_wrapped_in_lr_scheduler if self.get(i) is not None] if len(not_none_args) > 0: print('The following argument(s) {} are overwritten by the according arguments ' 'specified in lr_scheduler.'.format(', '.join(not_none_args))) for key, value in lr_scheduler.items(): self.__setitem__(key, value) def set_method(self, method): ''' Sets the solver method in the parameters list. Parameters ---------- method : string Specifies the type of the solver method. Possible values: ['vanilla', 'momentum', 'adam', 'lbfg', 'natgrad'] ''' self.add_parameter('method', method) def add_parameter(self, key, value): ''' Adds a parameter to the parameter list of a solver. Parameters --------- key : string Specifies the name of the parameter to be added to the list value : string Specifies the actual values of the parameter to be added to the list ''' self.__setitem__(key, value) def __str__(self): return super().__str__() class VanillaSolver(Solver): ''' Vanilla solver object Parameters ---------- learning_rate : double, optional Specifies the learning rate for the deep learning algorithm. learning_rate_policy : string, optional Specifies the learning rate policy for the deep learning algorithm. Valid Values: FIXED, STEP, POLY, INV, MULTISTEP Default: FIXED gamma : double, optional Specifies the gamma for the learning rate policy. step_size : int, optional Specifies the step size when the learning rate policy is set to STEP. power : double, optional Specifies the power for the learning rate policy. use_locking : bool, optional When it is false, the gradients are computed asynchronously with multiple threads. clip_grad_max : double, optional Specifies the maximum gradient value. All gradients that are greater than the specified value are set to the specified value. clip_grad_min : double, optional Specifies the minimum gradient value. All gradients that are less than the specified value are set to the specified value. steps : list-of-ints, optional specifies a list of epoch counts. When the current epoch matches one of the specified steps, the learning rate is multiplied by the value of the gamma parameter. For example, if you specify {5, 9, 13}, then the learning rate is multiplied by gamma after the fifth, ninth, and thirteenth epochs. fcmp_learning_rate : string, optional specifies the FCMP learning rate function. lr_scheduler : LRScheduler, optional Specifies learning rate policy DLPy provides you with some predefined learning rate policies. 1. FixedLR 2. StepLR 3. MultiStepLR 4. PolynomialLR 5. ReduceLROnPlateau 6. CyclicLR Besides, you can also customize your own learning rate policy. You can find more examples at DLPy example folder. Returns ------- :class:`VanillaSolver` ''' def __init__(self, learning_rate=0.001, learning_rate_policy='fixed', gamma=0.1, step_size=10, power=0.75, use_locking=True, clip_grad_max=None, clip_grad_min=None, steps=None, fcmp_learning_rate=None, lr_scheduler=None): Solver.__init__(self, learning_rate, learning_rate_policy, gamma, step_size, power, use_locking, clip_grad_max, clip_grad_min, steps, fcmp_learning_rate, lr_scheduler) self.set_method('vanilla') class MomentumSolver(Solver): ''' Momentum solver object Parameters ----------- momentum : double, optional Specifies the momentum for stochastic gradient descent. learning_rate : double, optional Specifies the learning rate for the deep learning algorithm. learning_rate_policy : string, optional Specifies the learning rate policy for the deep learning algorithm. Valid Values: FIXED, STEP, POLY, INV, MULTISTEP Default: FIXED gamma : double, optional Specifies the gamma for the learning rate policy. step_size : int, optional Specifies the step size when the learning rate policy is set to STEP. power : double, optional Specifies the power for the learning rate policy. use_locking : bool, optional When it is false, the gradients are computed asynchronously with multiple threads. clip_grad_max : double, optional Specifies the maximum gradient value. All gradients that are greater than the specified value are set to the specified value. clip_grad_min : double, optional Specifies the minimum gradient value. All gradients that are less than the specified value are set to the specified value. steps : list-of-ints, optional specifies a list of epoch counts. When the current epoch matches one of the specified steps, the learning rate is multiplied by the value of the gamma parameter. For example, if you specify {5, 9, 13}, then the learning rate is multiplied by gamma after the fifth, ninth, and thirteenth epochs. fcmp_learning_rate : string, optional specifies the FCMP learning rate function. lr_scheduler : LRScheduler, optional Specifies learning rate policy DLPy provides you with some predefined learning rate policies. 1. FixedLR 2. StepLR 3. MultiStepLR 4. PolynomialLR 5. ReduceLROnPlateau 6. CyclicLR Besides, you can also customize your own learning rate policy. You can find more examples at DLPy example folder. Returns ------- :class:`MomentumSolver` ''' def __init__(self, momentum=0.9, learning_rate=0.001, learning_rate_policy='fixed', gamma=0.1, step_size=10, power=0.75, use_locking=True, clip_grad_max=None, clip_grad_min=None, steps=None, fcmp_learning_rate=None, lr_scheduler=None): Solver.__init__(self, learning_rate, learning_rate_policy, gamma, step_size, power, use_locking, clip_grad_max, clip_grad_min, steps, fcmp_learning_rate, lr_scheduler) self.set_method('momentum') self.add_parameter('momentum', momentum) class AdamSolver(Solver): ''' Adam solver object Parameters ---------- beta1 : double, optional Specifies the exponential decay rate for the first moment in the Adam learning algorithm. beta2 : double, optional Specifies the exponential decay rate for the second moment in the Adam learning algorithm. learning_rate : double, optional Specifies the learning rate for the deep learning algorithm. learning_rate_policy : string, optional Specifies the learning rate policy for the deep learning algorithm. Valid Values: FIXED, STEP, POLY, INV, MULTISTEP Default: FIXED gamma : double, optional Specifies the gamma for the learning rate policy. step_size: int, optional Specifies the step size when the learning rate policy is set to STEP. power : double, optional Specifies the power for the learning rate policy. use_locking : bool, optional When it is false, the gradients are computed asynchronously with multiple threads. clip_grad_max : double, optional Specifies the maximum gradient value. All gradients that are greater than the specified value are set to the specified value. clip_grad_min : double, optional Specifies the minimum gradient value. All gradients that are less than the specified value are set to the specified value. steps : list-of-ints, optional specifies a list of epoch counts. When the current epoch matches one of the specified steps, the learning rate is multiplied by the value of the gamma parameter. For example, if you specify {5, 9, 13}, then the learning rate is multiplied by gamma after the fifth, ninth, and thirteenth epochs. fcmp_learning_rate : string, optional specifies the FCMP learning rate function. lr_scheduler : LRScheduler, optional Specifies learning rate policy DLPy provides you with some predefined learning rate policies. 1. FixedLR 2. StepLR 3. MultiStepLR 4. PolynomialLR 5. ReduceLROnPlateau 6. CyclicLR Besides, you can also customize your own learning rate policy. You can find more examples at DLPy example folder. Returns ------- :class:`AdamSolver` ''' def __init__(self, beta1=0.9, beta2=0.999, learning_rate=0.001, learning_rate_policy='fixed', gamma=0.1, step_size=10, power=0.75, use_locking=True, clip_grad_max=None, clip_grad_min=None, steps=None, fcmp_learning_rate=None, lr_scheduler=None): Solver.__init__(self, learning_rate, learning_rate_policy, gamma, step_size, power, use_locking, clip_grad_max, clip_grad_min, steps, fcmp_learning_rate, lr_scheduler) self.set_method('adam') self.add_parameter('beta1', beta1) self.add_parameter('beta2', beta2) class LBFGSolver(Solver): ''' LBFG solver object Parameters ---------- m : int Specifies the number of corrections used in the L-BFGS update. max_line_search_iters : int Specifies the maximum number of line search iterations for L-BFGS solver. max_iters : int Specifies the maximum number of iterations for the L-BFGS solver. When the miniBatchSize option is not specified, each iteration goes through at least one epoch. When the miniBatchSize option is specified, each L-BFGS iteration processes one mini-batch. The L-BFGS solver stops when the iteration number reaches the value of the maxIters= option or the epoch number reaches the value of the maxEpochs= option. backtrack_ratio : double Specifies the backtrack ratio of line search iterations for L-BFGS solver. learning_rate : double, optional Specifies the learning rate for the deep learning algorithm. learning_rate_policy : string, optional Specifies the learning rate policy for the deep learning algorithm. Valid Values: FIXED, STEP, POLY, INV, MULTISTEP Default: FIXED gamma : double, optional Specifies the gamma for the learning rate policy. step_size : int, optional Specifies the step size when the learning rate policy is set to STEP. power : double, optional Specifies the power for the learning rate policy. use_locking : bool, optional When it is false, the gradients are computed asynchronously with multiple threads. clip_grad_max : double, optional Specifies the maximum gradient value. All gradients that are greater than the specified value are set to the specified value. clip_grad_min : double, optional Specifies the minimum gradient value. All gradients that are less than the specified value are set to the specified value. steps : list-of-ints, optional specifies a list of epoch counts. When the current epoch matches one of the specified steps, the learning rate is multiplied by the value of the gamma parameter. For example, if you specify {5, 9, 13}, then the learning rate is multiplied by gamma after the fifth, ninth, and thirteenth epochs. fcmp_learning_rate : string, optional specifies the FCMP learning rate function. lr_scheduler : LRScheduler, optional Specifies learning rate policy DLPy provides you with some predefined learning rate policies. 1. FixedLR 2. StepLR 3. MultiStepLR 4. PolynomialLR 5. ReduceLROnPlateau 6. CyclicLR Besides, you can also customize your own learning rate policy. You can find more examples at DLPy example folder. Returns ------- :class:`LBFGSolver` ''' def __init__(self, m, max_line_search_iters, max_iters, backtrack_ratio, learning_rate=0.001, learning_rate_policy='fixed', gamma=0.1, step_size=10, power=0.75, use_locking=True, clip_grad_max=None, clip_grad_min=None, steps=None, fcmp_learning_rate=None, lr_scheduler=None): Solver.__init__(self, learning_rate, learning_rate_policy, gamma, step_size, power, use_locking, clip_grad_max, clip_grad_min, steps, fcmp_learning_rate, lr_scheduler) self.set_method('lbfg') self.add_parameters('m', m) self.add_parameters('maxlinesearchiters', max_line_search_iters) self.add_parameters('maxiters', max_iters) self.add_parameters('backtrackratio', backtrack_ratio) class NatGradSolver(Solver): ''' Natural gradient solver object Parameters ---------- approximation_type : int, optional Specifies the approximate natural gradient type. learning_rate : double, optional Specifies the learning rate for the deep learning algorithm. learning_rate_policy : string, optional Specifies the learning rate policy for the deep learning algorithm. Valid Values: FIXED, STEP, POLY, INV, MULTISTEP Default: FIXED gamma : double, optional Specifies the gamma for the learning rate policy. step_size : int, optional Specifies the step size when the learning rate policy is set to STEP. power : double, optional Specifies the power for the learning rate policy. use_locking : bool, optional When it is false, the gradients are computed asynchronously with multiple threads. clip_grad_max : double, optional Specifies the maximum gradient value. All gradients that are greater than the specified value are set to the specified value. clip_grad_min : double, optional Specifies the minimum gradient value. All gradients that are less than the specified value are set to the specified value. steps : list-of-ints, optional specifies a list of epoch counts. When the current epoch matches one of the specified steps, the learning rate is multiplied by the value of the gamma parameter. For example, if you specify {5, 9, 13}, then the learning rate is multiplied by gamma after the fifth, ninth, and thirteenth epochs. fcmp_learning_rate : string, optional specifies the FCMP learning rate function. lr_scheduler : LRScheduler, optional Specifies learning rate policy DLPy provides you with some predefined learning rate policies. 1. FixedLR 2. StepLR 3. MultiStepLR 4. PolynomialLR 5. ReduceLROnPlateau 6. CyclicLR Besides, you can also customize your own learning rate policy. You can find more examples at DLPy example folder. Returns ------- :class:`NatGradSolver` ''' def __init__(self, approximation_type=1, learning_rate=0.001, learning_rate_policy='fixed', gamma=0.1, step_size=10, power=0.75, use_locking=True, clip_grad_max=None, clip_grad_min=None, steps=None, fcmp_learning_rate=None, lr_scheduler=None): Solver.__init__(self, learning_rate, learning_rate_policy, gamma, step_size, power, use_locking, clip_grad_max, clip_grad_min, steps, fcmp_learning_rate, lr_scheduler) self.set_method('natgrad') self.add_parameter('approximationtype', approximation_type) class Optimizer(DLPyDict): ''' Optimizer object Parameters ---------- algorithm : Algorithm, optional Specifies the deep learning algorithm. mini_batch_size : int, optional Specifies the number of observations per thread in a mini-batch. You can use this parameter to control the number of observations that the action uses on each worker for each thread to compute the gradient prior to updating the weights. Larger values use more memory. When synchronous SGD is used (the default), the total mini-batch size is equal to miniBatchSize * number of threads * number of workers. When asynchronous SGD is used (by specifying the elasticSyncFreq parameter), each worker trains its own local model. In this case, the total mini-batch size for each worker is miniBatchSize * number of threads. seed : double, optional Specifies the random number seed for the random number generator in SGD. The default value, 0, and negative values indicate to use random number streams based on the computer clock. Specify a value that is greater than 0 for a reproducible random number sequence. max_epochs : int, optional Specifies the maximum number of epochs. For SGD with a single-machine server or a session that uses one worker on a distributed server, one epoch is reached when the action passes through the data one time. For a session that uses more than one worker, one epoch is reached when all the workers exchange the weights with the controller one time. The syncFreq parameter specifies the number of times each worker passes through the data before exchanging weights with the controller. For L-BFGS with full batch, each L-BFGS iteration might process more than one epoch, and final number of epochs might exceed the maximum number of epochs. reg_l1 : double, optional Specifies the weight for the L1 regularization term. By default, L1 regularization is not performed and a value of 0 also disables the regularization. Begin with small values such as 1e-6. L1 regularization can be combined with L2 regularization. reg_l2 : double, optional Specifies the weight for the L2 regularization term. By default, L2 regularization is not performed and a value of 0 also disables the regularization. Begin with small values such as 1e-3. L1 regularization can be combined with L2 regularization. dropout : double, optional Specifies the probability that the output of a neuron in a fully connected layer will be set to zero during training. The specified probability is recalculated each time an observation is processed. dropout_input : double, optional Specifies the probability that an input variable will be set to zero during training. The specified probability is recalculated each time an observation is processed. dropout_type : string, optional Specifies what type of dropout to use. Valid Values: STANDARD, INVERTED Default: STANDARD stagnation : int, optional Specifies the number of successive iterations without improvement before stopping the optimization early. When the validTable parameter is not specified, the loss error is monitored for stagnation. When the validTable parameter is specified, the validation scores are monitored for stagnation. threshold : double, optional Specifies the threshold that is used to determine whether the loss error or validation score is improving or is stagnating. When abs(current_score - previous_score) <= abs(current_score)*threshold, the current iteration does not improve the optimization and the stagnation counter is incremented. Otherwise, the stagnation counter is set to zero. f_conv : double, optional Specifies the relative function convergence criterion. If the relative loss error abs(previous_loss - current_loss) / abs(previous_loss) does not result in a change in the objective function, then the optimization is stopped. By default, the relative function convergence is not checked. snapshot_freq : int, optional Specifies the frequency for generating snapshots of the neural weights and storing the weights in a weight table during the training process. When asynchronous SGD is used, the action synchronizes all the weights before writing out the weights. log_level : int, optional Specifies how progress messages are sent to the client. The default value, 0, indicates that no messages are sent. Specify 1 to receive start and end messages. Specify 2 to include the iteration history. bn_src_layer_warnings : bool, optional Turns warning on or off, if batch normalization source layer has an atypical type, activation, or include_bias setting. Default: False total_mini_batch_size : int, optional specifies the number of observations in a mini-batch. You can use this parameter to control the number of observations that the action uses to compute the gradient prior to updating the weights. Larger values use more memory. If the specified size cannot be evenly divided by the number of threads (if using asynchronous SGD), or the number of threads * number of workers (if using synchronous SGD), then the action will terminate with an error unless the round parameter was specified to be TRUE, in which case, the total mini-batch size will be rounded up so that it will be evenly divided. flush_weights : bool, optional Specifies whether flush the weight table to the disk. Default: False mini_batch_buf_size : int, optional specifies the size of a buffer that is used to save input data and intermediate calculations. By default, each layer allocates an input buffer that is equal to the number of input channels multiplied by the input feature map size multiplied by the bufferSize value. You can reduce memory usage by specifying a value that is smaller than the bufferSize. The only disadvantage to specifying a small value is that run time can increase because multiple smaller matrices must be multiplied instead of a single large matrix multiply. freeze_layers_to : string Specifies a layer name to freeze this layer and all the layers before this layer. freeze_batch_norm_stats : Boolean When set to True, freezes the statistics of all batch normalization layers. freeze_layers : list of string Specifies a list of layer names whose trainable parameters will be frozen. Returns ------- :class:`Optimizer` ''' def __init__(self, algorithm=VanillaSolver(), mini_batch_size=1, seed=0, max_epochs=1, reg_l1=0, reg_l2=0, dropout=0, dropout_input=0, dropout_type='standard', stagnation=0, threshold=0.00000001, f_conv=0, snapshot_freq=0, log_level=0, bn_src_layer_warnings=True, freeze_layers_to=None, flush_weights=False, total_mini_batch_size=None, mini_batch_buf_size=None, freeze_layers=None, freeze_batch_norm_stats=None): DLPyDict.__init__(self, algorithm=algorithm, mini_batch_size=mini_batch_size, seed=seed, max_epochs=max_epochs, reg_l1=reg_l1, reg_l2=reg_l2, dropout=dropout, dropout_input=dropout_input, dropout_type=dropout_type, stagnation=stagnation, threshold=threshold, f_conv=f_conv, snapshot_freq=snapshot_freq, log_level=log_level, bn_src_layer_warnings=bn_src_layer_warnings, freeze_layers_to=freeze_layers_to, flush_weights=flush_weights, total_mini_batch_size=total_mini_batch_size, mini_batch_buf_size=mini_batch_buf_size, freeze_layers=freeze_layers, freeze_batch_norm_stats=freeze_batch_norm_stats) def add_optimizer_mode(self, solver_mode_type='sync', sync_freq=None, alpha=None, damping=None): ''' Sets the mode of the solver. Parameters ---------- solver_mode_type : string Specifies the mode of the solver. sync_freq : int Specifies the synchronization frequency This parameter has different details for different solver types: For solver_mode_type='sync' and 'downpour' specifies the synchronization frequency for SGD in terms of epochs. Set this value to 0 to use asynchronous SGD. For solver_mode_type='elastic' Specifies the frequency for communication between the workers and controller for exchanging weights. You can exchange weights more often than once each epoch by setting a value that is less than the number of batches in an epoch. If this value is greater than the number of batches in an epoch, then the weights are exchanged once for each epoch. alpha : double This parameter should be set only when solver_mode_type='elastic'. Specifies the significance level that is used for elastic SGD. When each worker exchanges weights with the controller, this value is used to adjust the weights. damping : double This parameter should be set only when solver_mode_type='elastic'. Specifies the damping factor that is used with asynchronous SGD. When each worker exchanges the weights with the controller, the weights are combined with this damping factor. ''' mode = {} if solver_mode_type == 'downpour': mode['type'] = 'downpour' elif solver_mode_type == 'elastic': mode['type'] = 'elastic' if alpha is None: mode['alpha'] = 0 else: mode['alpha'] = alpha if sync_freq is None: mode['syncfreq'] = 0 else: mode['syncfreq'] = sync_freq if damping is None: mode['damping'] = 0.1 else: mode['damping'] = damping else: mode['type'] = 'synchronous' if sync_freq is None: mode['syncfreq'] = 1 else: mode['syncfreq'] = sync_freq self.__setitem__('mode', mode) class TextParms(DLPyDict): ''' Text parameters object Parameters ---------- init_input_embeddings : string or CASTable, optional specifies an in-memory table that contains the word embeddings. By default, the first column is expected to be the terms and the rest of the columns are the embedded content. init_output_embeddings : string or CASTable, optional specifies an in-memory table that contains the word embeddings. By default, the first column is expected to be the terms and the rest of the columns are the embedded content. has_input_term_ids : bool, optional Specifies whether the second column of the initial input embedding table contains term IDs. has_output_term_ids : bool, optional Specifies whether the second column of the initial output embedding table contains term IDs. model_output_embeddings : string or CASTable, optional Specifies the output embeddings model table. language : string, optional Specifies the language for text tokenization. Valid Values: ENGLISH, GERMAN, FRENCH, SPANISH, CHINESE, DUTCH, FINNISH, ITALIAN, KOREAN, PORTUGUESE, RUSSIAN, TURKISH, JAPANESE, POLISH, NORWEGIAN, ARABIC, CZECH, DANISH, INDONESIAN, SWEDISH, GREEK, SLOVAK, HEBREW, THAI, VIETNAMESE, SLOVENE, CROATIAN, TAGALOG, FARSI, HINDI, HUNGARIAN, ROMANIAN default: ENGLISH Returns ------- :class:`TextParms` ''' def __init__(self, init_input_embeddings=None, init_output_embeddings=None, has_input_term_ids=False, has_output_term_ids=False, model_output_embeddings=None, language='english'): DLPyDict.__init__(self, init_input_embeddings=init_input_embeddings, init_output_embeddings=init_output_embeddings, has_input_term_ids=has_input_term_ids, has_output_term_ids=has_output_term_ids, model_output_embeddings=model_output_embeddings, language=language) class Sequence(DLPyDict): ''' Sequence parameters object Parameters ---------- input_length : string, optional This should be a column in the input table. Specifies the variable that stores the input sequence length (number of tokens) of the row. target_length : string, optional This should a column / variable in the input table. Specifies the variable that stores the target sequence length (number of tokens) of the row. token_size : int, optional Specifies the number of variables that compose one token for sequence input data. Returns ------- :class:`Sequence` ''' def __init__(self, input_length=None, target_length=None, token_size=1): DLPyDict.__init__(self, input_length=input_length, target_length=target_length, token_size=token_size) class Gpu(DLPyDict): ''' Gpu parameters object. Parameters ---------- devices : list-of-ints, optional Specifies a list of GPU devices to be used. use_tensor_rt : bool, optional Enables using TensorRT for fast inference. Default: False. precision : string, optional Specifies the experimental option to incorporate lower computational precision in forward-backward computations to potentially engage tensor cores. Valid Values: FP32, FP16 Default: FP32 use_exclusive : bool, optional Specifies exclusive use of GPU devices. Default: False Returns ------- :class:`Gpu` ''' def __init__(self, devices=None, use_tensor_rt=False, precision='fp32', use_exclusive=False): DLPyDict.__init__(self, devices=devices, use_tensor_rt=use_tensor_rt, precision=precision, use_exclusive=use_exclusive) class DataSpecNumNomOpts(DLPyDict): """ Data spec numeric nominal parameters. Parameters ---------- length : string, optional Specifies the variable / column that contains the length of the data spec input. token_size : int, optional If positive, data is treated as sequence, else non-sequence Returns ------- :class:`DataSpecNumNomOpts` """ def __init__(self, length, token_size=0): DLPyDict.__init__(self, length=length, token_size=token_size) class DataSpec(DLPyDict): """ Data spec parameters. Parameters ----------- type_ : string Specifies the type of the input data in the data spec. Valid Values: NUMERICNOMINAL, NUMNOM, TEXT, IMAGE, OBJECTDETECTION layer : string Specifies the name of the layer to data spec. data : list, optional Specifies the name of the columns/variables as the data, this might be input or output based on layer type. data_layer : string, optional Specifies the name of the input layer that binds to the output layer. nominals : list, optional Specifies the nominal input variables to use in the analysis. numeric_nominal_parms : :class:`DataSpecNumNomOpts`, optional Specifies the parameters for the numeric nominal data spec inputs. loss_scale_factor : double, optional Specifies the value to scale the loss for a given task layer. This option only affects the task layers. Returns ------- :class:`DataSpec` A dictionary of data spec parameters. """ def __init__(self, type_, layer, data=None, data_layer=None, nominals=None, numeric_nominal_parms=None, loss_scale_factor=None): DLPyDict.__init__(self, type=type_, layer=layer, data=data, data_layer=data_layer, nominals=nominals, numeric_nominal_parms=numeric_nominal_parms, loss_scale_factor=loss_scale_factor) def _pre_parse_results(x, y, y_loss, total_sample_size, e, comm, iter_history, freq, status): def parse_results(response, connection, userdata): if len(response.messages) == 0: for key, value in response: if key == 'OptIterHistory': iter_history.append(value) elif len(response.messages) == 1: line = response.messages[0].split(" ") numbers=[] for l in line: if len(l.strip()) > 0 and l.strip().replace('.','',1).isdigit(): numbers.append( float(l.strip())) #print(line) if len(numbers) == 5: t = 1 # this is for when epoch history hits #print('geldi') # TODO: do something with epoch values, maybe another graph elif len(numbers) >= 6: batch_id = numbers[0] sample_size = numbers[1] learning_rate = numbers[2] loss = numbers[3] fit_error = numbers[4] le = len(x) if le == 0: y.append( fit_error) y_loss.append( loss) x.append( len(x)) total_sample_size.append( sample_size) else: temp = (y[-1]*total_sample_size[0]) temp += (fit_error * sample_size) temp2 = (y_loss[-1]*total_sample_size[0]) temp2 += (loss * sample_size) total_sample_size[0] += sample_size if total_sample_size[0] > 0: y.append( temp / total_sample_size[0]) y_loss.append( temp2 / total_sample_size[0]) else: y.append( y[-1]) y_loss.append( y_loss[-1]) x.append( len(x)) if le % freq[0] == 0: comm.send({'label': x[-1], 'data': [y[-1], y_loss[-1]]}) if response.disposition.status_code != 0: status[0] = response.disposition.status_code print(response.disposition.status) print(response.disposition.debug) return parse_results
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/model.py
0.702326
0.398875
model.py
pypi
from ..utils import input_table_check def VGG19_Model(s, model_table='VGG19', n_channels=3, width=224, height=224, random_crop=None, offsets=None, random_flip=None, random_mutation=None): ''' VGG19 model definition Parameters ---------- s : CAS Specifies the CAS connection object model_table : string, dict or CAS table, optional Specifies the CAS table to store the model. n_channels : int, optional Specifies the number of the channels of the input layer Default: 3 width : int, optional Specifies the width of the input layer Default: 224 height : int, optional Specifies the height of the input layer Default: 224 random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters.deepLearn. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets.deepLearn. Default: (103.939, 116.779, 123.68) random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' Returns ------- None A CAS table defining the model is created ''' model_table_opts = input_table_check(model_table) if offsets is None: offsets = [103.939, 116.779, 123.68] # instantiate model s.deepLearn.buildModel(model=dict(replace=True, **model_table_opts), type='CNN') # input layer s.deepLearn.addLayer(model=model_table, name='data', layer=dict(type='input', nchannels=n_channels, width=width, height=height, randomcrop=random_crop, offsets=offsets, randomFlip=random_flip, randomMutation=random_mutation)) # conv1_1 layer: 64*3*3 s.deepLearn.addLayer(model=model_table, name='conv1_1', layer=dict(type='convolution', nFilters=64, width=3, height=3, stride=1, act='relu'), srcLayers=['data']) # conv1_2 layer: 64*3*3 s.deepLearn.addLayer(model=model_table, name='conv1_2', layer=dict(type='convolution', nFilters=64, width=3, height=3, stride=1, act='relu'), srcLayers=['conv1_1']) # pool1 layer: 2*2 s.deepLearn.addLayer(model=model_table, name='pool1', layer=dict(type='pooling', width=2, height=2, stride=2, pool='max'), srcLayers=['conv1_2']) # conv2_1 layer: 128*3*3 s.deepLearn.addLayer(model=model_table, name='conv2_1', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, act='relu'), srcLayers=['pool1']) # conv2_2 layer: 128*3*3 s.deepLearn.addLayer(model=model_table, name='conv2_2', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, act='relu'), srcLayers=['conv2_1']) # pool2 layer: 2*2 s.deepLearn.addLayer(model=model_table, name='pool2', layer=dict(type='pooling', width=2, height=2, stride=2, pool='max'), srcLayers=['conv2_2']) # conv3_1 layer: 256*3*3 s.deepLearn.addLayer(model=model_table, name='conv3_1', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, act='relu'), srcLayers=['pool2']) # conv3_2 layer: 256*3*3 s.deepLearn.addLayer(model=model_table, name='conv3_2', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, act='relu'), srcLayers=['conv3_1']) # conv3_3 layer: 256*3*3 s.deepLearn.addLayer(model=model_table, name='conv3_3', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, act='relu'), srcLayers=['conv3_2']) # conv3_4 layer: 256*3*3 s.deepLearn.addLayer(model=model_table, name='conv3_4', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, act='relu'), srcLayers=['conv3_3']) # pool3 layer: 2*2 s.deepLearn.addLayer(model=model_table, name='pool3', layer=dict(type='pooling', width=2, height=2, stride=2, pool='max'), srcLayers=['conv3_4']) # conv4_1 layer: 512*3*3 s.deepLearn.addLayer(model=model_table, name='conv4_1', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, act='relu'), srcLayers=['pool3']) # conv4_2 layer: 512*3*3 s.deepLearn.addLayer(model=model_table, name='conv4_2', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, act='relu'), srcLayers=['conv4_1']) # conv4_3 layer: 512*3*3 s.deepLearn.addLayer(model=model_table, name='conv4_3', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, act='relu'), srcLayers=['conv4_2']) # conv4_4 layer: 512*3*3 */ s.deepLearn.addLayer(model=model_table, name='conv4_4', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, act='relu'), srcLayers=['conv4_3']) # pool4 layer: 2*2 s.deepLearn.addLayer(model=model_table, name='pool4', layer=dict(type='pooling', width=2, height=2, stride=2, pool='max'), srcLayers=['conv4_4']) # conv5_1 layer: 512*3*3 s.deepLearn.addLayer(model=model_table, name='conv5_1', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, act='relu'), srcLayers=['pool4']) # conv5_2 layer: 512*3*3 s.deepLearn.addLayer(model=model_table, name='conv5_2', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, act='relu'), srcLayers=['conv5_1']) # conv5_3 layer: 512*3*3 s.deepLearn.addLayer(model=model_table, name='conv5_3', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, act='relu'), srcLayers=['conv5_2']) # conv5_4 layer: 512*3*3 s.deepLearn.addLayer(model=model_table, name='conv5_4', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, act='relu'), srcLayers=['conv5_3']) # pool5 layer: 2*2 s.deepLearn.addLayer(model=model_table, name='pool5', layer=dict(type='pooling', width=2, height=2, stride=2, pool='max'), srcLayers=['conv5_4']) # fc6 layer: 4096 neurons s.deepLearn.addLayer(model=model_table, name='fc6', layer=dict(type='fullconnect', n=4096, act='relu', dropout=0.5), srcLayers=['pool5']) # fc7 layer: 4096 neurons s.deepLearn.addLayer(model=model_table, name='fc7', layer=dict(type='fullconnect', n=4096, act='relu', dropout=0.5), srcLayers=['fc6']) # fc output layer: 1000 neurons s.deepLearn.addLayer(model=model_table, name='fc8', layer=dict(type='output', n=1000, act='softmax'), srcLayers=['fc7']) return s.CASTable(**model_table_opts)
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/caffe_models/model_vgg19.py
0.884744
0.673366
model_vgg19.py
pypi
from ..utils import input_table_check def ResNet152_Model(s, model_table='RESNET152', n_channels=3, width=224, height=224, random_crop=None, offsets=None, random_flip=None, random_mutation=None, reshape_after_input=None): ''' ResNet152 model definition Parameters ---------- s : CAS Specifies the CAS connection object model_table : string, dict or CAS table, optional Specifies the CAS table to store the model. n_channels : int, optional Specifies the number of the channels of the input layer Default: 3 width : int, optional Specifies the width of the input layer Default: 224 height : int, optional Specifies the height of the input layer Default: 224 random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters.deepLearn. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets.deepLearn. Default: (103.939, 116.779, 123.68) random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : Layer Reshape, optional Specifies whether to add a reshape layer after the input layer. Returns ------- None A CAS table defining the model is created ''' model_table_opts = input_table_check(model_table) # quick error-checking and default setting if offsets is None: offsets = [103.939, 116.779, 123.68] # instantiate model s.deepLearn.buildModel(model=dict(replace=True, **model_table_opts), type='CNN') # input layer s.deepLearn.addLayer(model=model_table_opts, name='data', layer=dict(type='input', nchannels=n_channels, width=width, height=height, randomcrop=random_crop, offsets=offsets, randomFlip=random_flip, randomMutation=random_mutation)) input_data_layer = 'data' if reshape_after_input is not None: input_data_layer = 'reshape1' s.deepLearn.addLayer(model=model_table_opts, name='reshape1', layer=dict(type='reshape', **reshape_after_input.config), srcLayers=['data']) # -------------------- Layer 1 ---------------------- # conv1 layer: 64 channels, 7x7 conv, stride=2; output = 112 x 112 */ s.deepLearn.addLayer(model=model_table_opts, name='conv1', layer=dict(type='convolution', nFilters=64, width=7, height=7, stride=2, act='identity'), srcLayers=[input_data_layer]) # conv1 batch norm layer: 64 channels, output = 112 x 112 */ s.deepLearn.addLayer(model=model_table_opts, name='bn_conv1', layer=dict(type='batchnorm', act='relu'), srcLayers=['conv1']) # pool1 layer: 64 channels, 3x3 pooling, output = 56 x 56 */ s.deepLearn.addLayer(model=model_table_opts, name='pool1', layer=dict(type='pooling', width=3, height=3, stride=2, pool='max'), srcLayers=['bn_conv1']) # ------------------- Residual Layer 2A ----------------------- # res2a_branch1 layer: 256 channels, 1x1 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2a_branch1', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['pool1']) # res2a_branch1 batch norm layer: 256 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2a_branch1', layer=dict(type='batchnorm', act='identity'), srcLayers=['res2a_branch1']) # res2a_branch2a layer: 64 channels, 1x1 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2a_branch2a', layer=dict(type='convolution', nFilters=64, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['pool1']) # res2a_branch2a batch norm layer: 64 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2a_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res2a_branch2a']) # res2a_branch2b layer: 64 channels, 3x3 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2a_branch2b', layer=dict(type='convolution', nFilters=64, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn2a_branch2a']) # res2a_branch2b batch norm layer: 64 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2a_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res2a_branch2b']) # res2a_branch2c layer: 256 channels, 1x1 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2a_branch2c', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn2a_branch2b']) # res2a_branch2c batch norm layer: 256 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2a_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res2a_branch2c']) # res2a residual layer: 256 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2a', layer=dict(type='residual', act='relu'), srcLayers=['bn2a_branch2c', 'bn2a_branch1']) # ------------------- Residual Layer 2B ----------------------- # res2b_branch2a layer: 64 channels, 1x1 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2b_branch2a', layer=dict(type='convolution', nFilters=64, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res2a']) # res2b_branch2a batch norm layer: 64 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2b_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res2b_branch2a']) # res2b_branch2b layer: 64 channels, 3x3 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2b_branch2b', layer=dict(type='convolution', nFilters=64, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn2b_branch2a']) # res2b_branch2b batch norm layer: 64 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2b_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res2b_branch2b']) # res2b_branch2c layer: 256 channels, 1x1 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2b_branch2c', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn2b_branch2b']) # res2b_branch2c batch norm layer: 256 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2b_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res2b_branch2c']) # res2b residual layer: 256 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2b', layer=dict(type='residual', act='relu'), srcLayers=['bn2b_branch2c', 'res2a']) # ------------------- Residual Layer 2C ----------------------- # res2c_branch2a layer: 64 channels, 1x1 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2c_branch2a', layer=dict(type='convolution', nFilters=64, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res2b']) # res2c_branch2a batch norm layer: 64 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2c_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res2c_branch2a']) # res2c_branch2b layer: 64 channels, 3x3 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2c_branch2b', layer=dict(type='convolution', nFilters=64, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn2c_branch2a']) # res2c_branch2b batch norm layer: 64 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2c_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res2c_branch2b']) # res2c_branch2c layer: 256 channels, 1x1 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2c_branch2c', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn2c_branch2b']) # res2c_branch2c batch norm layer: 256 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2c_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res2c_branch2c']) # res2c residual layer: 256 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2c', layer=dict(type='residual', act='relu'), srcLayers=['bn2c_branch2c', 'res2b']) # ------------- Layer 3A -------------------- # res3a_branch1 layer: 512 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3a_branch1', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=2, includebias=False, act='identity'), srcLayers=['res2c']) # res3a_branch1 batch norm layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3a_branch1', layer=dict(type='batchnorm', act='identity'), srcLayers=['res3a_branch1']) # res3a_branch2a layer: 128 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3a_branch2a', layer=dict(type='convolution', nFilters=128, width=1, height=1, stride=2, includebias=False, act='identity'), srcLayers=['res2c']) # res3a_branch2a batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3a_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3a_branch2a']) # res3a_branch2b layer: 128 channels, 3x3 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3a_branch2b', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn3a_branch2a']) # res3a_branch2b batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3a_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3a_branch2b']) # res3a_branch2c layer: 512 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3a_branch2c', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn3a_branch2b']) # res3a_branch2c batch norm layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3a_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res3a_branch2c']) # res3a residual layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3a', layer=dict(type='residual', act='relu'), srcLayers=['bn3a_branch2c', 'bn3a_branch1']) # ------------------- Residual Layer 3B1 ----------------------- # res3b1_branch2a layer: 128 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b1_branch2a', layer=dict(type='convolution', nFilters=128, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res3a']) # res3b1_branch2a batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b1_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b1_branch2a']) # res3b1_branch2b layer: 128 channels, 3x3 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b1_branch2b', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn3b1_branch2a']) # res3b1_branch2b batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b1_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b1_branch2b']) # res3b1_branch2c layer: 512 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b1_branch2c', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn3b1_branch2b']) # res3b1_branch2c batch norm layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b1_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res3b1_branch2c']) # res3b1 residual layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b1', layer=dict(type='residual', act='relu'), srcLayers=['bn3b1_branch2c', 'res3a']) # ------------------- Residual Layer 3B2 ----------------------- # res3b2_branch2a layer: 128 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b2_branch2a', layer=dict(type='convolution', nFilters=128, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res3b1']) # res3b2_branch2a batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b2_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b2_branch2a']) # res3b2_branch2b layer: 128 channels, 3x3 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b2_branch2b', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn3b2_branch2a']) # res3b2_branch2b batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b2_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b2_branch2b']) # res3b2_branch2c layer: 512 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b2_branch2c', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn3b2_branch2b']) # res3b2_branch2c batch norm layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b2_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res3b2_branch2c']) # res3b2 residual layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b2', layer=dict(type='residual', act='relu'), srcLayers=['bn3b2_branch2c', 'res3b1']) # ------------------- Residual Layer 3B3 ----------------------- # res3b3_branch2a layer: 128 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b3_branch2a', layer=dict(type='convolution', nFilters=128, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res3b2']) # res3b3_branch2a batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b3_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b3_branch2a']) # res3b3_branch2b layer: 128 channels, 3x3 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b3_branch2b', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn3b3_branch2a']) # res3b3_branch2b batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b3_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b3_branch2b']) # res3b3_branch2c layer: 512 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b3_branch2c', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn3b3_branch2b']) # res3b3_branch2c batch norm layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b3_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res3b3_branch2c']) # res3b3 residual layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b3', layer=dict(type='residual', act='relu'), srcLayers=['bn3b3_branch2c', 'res3b2']) # ------------------- Residual Layer 3B4 ----------------------- # res3b4_branch2a layer: 128 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b4_branch2a', layer=dict(type='convolution', nFilters=128, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res3b3']) # res3b4_branch2a batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b4_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b4_branch2a']) # res3b4_branch2b layer: 128 channels, 3x3 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b4_branch2b', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn3b4_branch2a']) # res3b4_branch2b batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b4_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b4_branch2b']) # res3b4_branch2c layer: 512 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b4_branch2c', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn3b4_branch2b']) # res3b4_branch2c batch norm layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b4_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res3b4_branch2c']) # res3b4 residual layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b4', layer=dict(type='residual', act='relu'), srcLayers=['bn3b4_branch2c', 'res3b3']) # ------------------- Residual Layer 3B5 ----------------------- # res3b5_branch2a layer: 128 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b5_branch2a', layer=dict(type='convolution', nFilters=128, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res3b4']) # res3b5_branch2a batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b5_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b5_branch2a']) # res3b5_branch2b layer: 128 channels, 3x3 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b5_branch2b', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn3b5_branch2a']) # res3b5_branch2b batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b5_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b5_branch2b']) # res3b5_branch2c layer: 512 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b5_branch2c', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn3b5_branch2b']) # res3b5_branch2c batch norm layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b5_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res3b5_branch2c']) # res3b5 residual layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b5', layer=dict(type='residual', act='relu'), srcLayers=['bn3b5_branch2c', 'res3b4']) # ------------------- Residual Layer 3B6 ----------------------- # res3b6_branch2a layer: 128 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b6_branch2a', layer=dict(type='convolution', nFilters=128, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res3b5']) # res3b6_branch2a batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b6_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b6_branch2a']) # res3b6_branch2b layer: 128 channels, 3x3 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b6_branch2b', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn3b6_branch2a']) # res3b6_branch2b batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b6_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b6_branch2b']) # res3b6_branch2c layer: 512 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b6_branch2c', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn3b6_branch2b']) # res3b6_branch2c batch norm layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b6_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res3b6_branch2c']) # res3b6 residual layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b6', layer=dict(type='residual', act='relu'), srcLayers=['bn3b6_branch2c', 'res3b5']) # ------------------- Residual Layer 3B7 ----------------------- # res3b7_branch2a layer: 128 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b7_branch2a', layer=dict(type='convolution', nFilters=128, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res3b6']) # res3b7_branch2a batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b7_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b7_branch2a']) # res3b7_branch2b layer: 128 channels, 3x3 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b7_branch2b', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn3b7_branch2a']) # res3b7_branch2b batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b7_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b7_branch2b']) # res3b7_branch2c layer: 512 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b7_branch2c', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn3b7_branch2b']) # res3b7_branch2c batch norm layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b7_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res3b7_branch2c']) # res3b7 residual layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b7', layer=dict(type='residual', act='relu'), srcLayers=['bn3b7_branch2c', 'res3b6']) # ------------- Layer 4A -------------------- # res4a_branch1 layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4a_branch1', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=2, includebias=False, act='identity'), srcLayers=['res3b7']) # res4a_branch1 batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4a_branch1', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4a_branch1']) # res4a_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4a_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=2, includebias=False, act='identity'), srcLayers=['res3b7']) # res4a_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4a_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4a_branch2a']) # res4a_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4a_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4a_branch2a']) # res4a_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4a_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4a_branch2b']) # res4a_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4a_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4a_branch2b']) # res4a_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4a_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4a_branch2c']) # res4a residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4a', layer=dict(type='residual', act='relu'), srcLayers=['bn4a_branch2c', 'bn4a_branch1']) # ------------------- Residual Layer 4B1 ----------------------- # res4b1_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b1_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4a']) # res4b1_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b1_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b1_branch2a']) # res4b1_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b1_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b1_branch2a']) # res4b1_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b1_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b1_branch2b']) # res4b1_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b1_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b1_branch2b']) # res4b1_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b1_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b1_branch2c']) # res4b1 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b1', layer=dict(type='residual', act='relu'), srcLayers=['bn4b1_branch2c', 'res4a']) # ------------------- Residual Layer 4B2 ----------------------- # res4b2_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b2_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b1']) # res4b2_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b2_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b2_branch2a']) # res4b2_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b2_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b2_branch2a']) # res4b2_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b2_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b2_branch2b']) # res4b2_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b2_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b2_branch2b']) # res4b2_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b2_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b2_branch2c']) # res4b2 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b2', layer=dict(type='residual', act='relu'), srcLayers=['bn4b2_branch2c', 'res4b1']) # ------------------- Residual Layer 4B3 ----------------------- # res4b3_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b3_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b2']) # res4b3_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b3_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b3_branch2a']) # res4b3_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b3_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b3_branch2a']) # res4b3_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b3_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b3_branch2b']) # res4b3_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b3_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b3_branch2b']) # res4b3_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b3_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b3_branch2c']) # res4b3 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b3', layer=dict(type='residual', act='relu'), srcLayers=['bn4b3_branch2c', 'res4b2']) # ------------------- Residual Layer 4B4 ----------------------- */ # res4b4_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b4_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b3']) # res4b4_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b4_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b4_branch2a']) # res4b4_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b4_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b4_branch2a']) # res4b4_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b4_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b4_branch2b']) # res4b4_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b4_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b4_branch2b']) # res4b4_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b4_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b4_branch2c']) # res4b4 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b4', layer=dict(type='residual', act='relu'), srcLayers=['bn4b4_branch2c', 'res4b3']) # ------------------- Residual Layer 4B5 ----------------------- # res4b5_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b5_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b4']) # res4b5_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b5_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b5_branch2a']) # res4b5_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b5_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b5_branch2a']) # res4b5_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b5_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b5_branch2b']) # res4b5_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b5_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b5_branch2b']) # res4b5_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b5_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b5_branch2c']) # res4b5 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b5', layer=dict(type='residual', act='relu'), srcLayers=['bn4b5_branch2c', 'res4b4']) # ------------------- Residual Layer 4B6 ----------------------- # res4b6_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b6_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b5']) # res4b6_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b6_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b6_branch2a']) # res4b6_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b6_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b6_branch2a']) # res4b6_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b6_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b6_branch2b']) # res4b6_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b6_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b6_branch2b']) # res4b6_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b6_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b6_branch2c']) # res4b6 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b6', layer=dict(type='residual', act='relu'), srcLayers=['bn4b6_branch2c', 'res4b5']) # ------------------- Residual Layer 4B7 ----------------------- # res4b7_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b7_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b6']) # res4b7_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b7_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b7_branch2a']) # res4b7_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b7_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b7_branch2a']) # res4b7_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b7_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b7_branch2b']) # res4b7_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b7_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b7_branch2b']) # res4b7_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b7_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b7_branch2c']) # res4b7 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b7', layer=dict(type='residual', act='relu'), srcLayers=['bn4b7_branch2c', 'res4b6']) # ------------------- Residual Layer 4B8 ----------------------- # res4b8_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b8_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b7']) # res4b8_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b8_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b8_branch2a']) # res4b8_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b8_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b8_branch2a']) # res4b8_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b8_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b8_branch2b']) # res4b8_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b8_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b8_branch2b']) # res4b8_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b8_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b8_branch2c']) # res4b8 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b8', layer=dict(type='residual', act='relu'), srcLayers=['bn4b8_branch2c', 'res4b7']) # ------------------- Residual Layer 4B9 ----------------------- # res4b9_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b9_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b8']) # res4b9_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b9_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b9_branch2a']) # res4b9_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b9_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b9_branch2a']) # res4b9_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b9_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b9_branch2b']) # res4b9_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b9_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b9_branch2b']) # res4b9_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b9_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b9_branch2c']) # res4b9 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b9', layer=dict(type='residual', act='relu'), srcLayers=['bn4b9_branch2c', 'res4b8']) # ------------------- Residual Layer 4B10 ----------------------- # res4b10_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b10_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b9']) # res4b10_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b10_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b10_branch2a']) # res4b10_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b10_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b10_branch2a']) # res4b10_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b10_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b10_branch2b']) # res4b10_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b10_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b10_branch2b']) # res4b10_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b10_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b10_branch2c']) # res4b10 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b10', layer=dict(type='residual', act='relu'), srcLayers=['bn4b10_branch2c', 'res4b9']) # ------------------- Residual Layer 4B11 ----------------------- # res4b11_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b11_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b10']) # res4b11_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b11_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b11_branch2a']) # res4b11_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b11_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b11_branch2a']) # res4b11_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b11_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b11_branch2b']) # res4b11_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b11_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b11_branch2b']) # res4b11_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b11_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b11_branch2c']) # res4b11 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b11', layer=dict(type='residual', act='relu'), srcLayers=['bn4b11_branch2c', 'res4b10']) # ------------------- Residual Layer 4B12 ----------------------- # res4b12_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b12_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b11']) # res4b12_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b12_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b12_branch2a']) # res4b12_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b12_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b12_branch2a']) # res4b12_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b12_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b12_branch2b']) # res4b12_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b12_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b12_branch2b']) # res4b12_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b12_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b12_branch2c']) # res4b12 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b12', layer=dict(type='residual', act='relu'), srcLayers=['bn4b12_branch2c', 'res4b11']) # ------------------- Residual Layer 4B13 ----------------------- # res4b13_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b13_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b12']) # res4b13_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b13_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b13_branch2a']) # res4b13_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b13_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b13_branch2a']) # res4b13_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b13_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b13_branch2b']) # res4b13_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b13_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b13_branch2b']) # res4b13_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b13_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b13_branch2c']) # res4b13 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b13', layer=dict(type='residual', act='relu'), srcLayers=['bn4b13_branch2c', 'res4b12']) # ------------------- Residual Layer 4B14 ----------------------- # res4b14_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b14_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b13']) # res4b14_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b14_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b14_branch2a']) # res4b14_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b14_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b14_branch2a']) # res4b14_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b14_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b14_branch2b']) # res4b14_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b14_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b14_branch2b']) # res4b14_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b14_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b14_branch2c']) # res4b14 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b14', layer=dict(type='residual', act='relu'), srcLayers=['bn4b14_branch2c', 'res4b13']) # ------------------- Residual Layer 4B15 ----------------------- # res4b15_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b15_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b14']) # res4b15_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b15_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b15_branch2a']) # res4b15_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b15_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b15_branch2a']) # res4b15_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b15_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b15_branch2b']) # res4b15_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b15_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b15_branch2b']) # res4b15_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b15_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b15_branch2c']) # res4b15 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b15', layer=dict(type='residual', act='relu'), srcLayers=['bn4b15_branch2c', 'res4b14']) # ------------------- Residual Layer 4B16 ----------------------- # res4b16_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b16_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b15']) # res4b16_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b16_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b16_branch2a']) # res4b16_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b16_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b16_branch2a']) # res4b16_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b16_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b16_branch2b']) # res4b16_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b16_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b16_branch2b']) # res4b16_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b16_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b16_branch2c']) # res4b16 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b16', layer=dict(type='residual', act='relu'), srcLayers=['bn4b16_branch2c', 'res4b15']) # ------------------- Residual Layer 4B17 ----------------------- # res4b17_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b17_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b16']) # res4b17_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b17_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b17_branch2a']) # res4b17_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b17_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b17_branch2a']) # res4b17_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b17_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b17_branch2b']) # res4b17_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b17_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b17_branch2b']) # res4b17_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b17_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b17_branch2c']) # res4b17 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b17', layer=dict(type='residual', act='relu'), srcLayers=['bn4b17_branch2c', 'res4b16']) # ------------------- Residual Layer 4B18 ----------------------- # res4b18_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b18_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b17']) # res4b18_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b18_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b18_branch2a']) # res4b18_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b18_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b18_branch2a']) # res4b18_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b18_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b18_branch2b']) # res4b18_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b18_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b18_branch2b']) # res4b18_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b18_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b18_branch2c']) # res4b18 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b18', layer=dict(type='residual', act='relu'), srcLayers=['bn4b18_branch2c', 'res4b17']) # ------------------- Residual Layer 4B19 ----------------------- # res4b19_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b19_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b18']) # res4b19_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b19_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b19_branch2a']) # res4b19_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b19_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b19_branch2a']) # res4b19_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b19_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b19_branch2b']) # res4b19_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b19_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b19_branch2b']) # res4b19_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b19_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b19_branch2c']) # res4b19 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b19', layer=dict(type='residual', act='relu'), srcLayers=['bn4b19_branch2c', 'res4b18']) # ------------------- Residual Layer 4B20 ----------------------- # res4b20_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b20_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b19']) # res4b20_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b20_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b20_branch2a']) # res4b20_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b20_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b20_branch2a']) # res4b20_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b20_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b20_branch2b']) # res4b20_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b20_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b20_branch2b']) # res4b20_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b20_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b20_branch2c']) # res4b20 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b20', layer=dict(type='residual', act='relu'), srcLayers=['bn4b20_branch2c', 'res4b19']) # ------------------- Residual Layer 4B21 ----------------------- # res4b21_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b21_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b20']) # res4b21_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b21_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b21_branch2a']) # res4b21_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b21_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b21_branch2a']) # res4b21_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b21_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b21_branch2b']) # res4b21_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b21_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b21_branch2b']) # res4b21_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b21_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b21_branch2c']) # res4b21 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b21', layer=dict(type='residual', act='relu'), srcLayers=['bn4b21_branch2c', 'res4b20']) # ------------------- Residual Layer 4B22 ----------------------- # res4b22_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b22_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b21']) # res4b22_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b22_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b22_branch2a']) # res4b22_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b22_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b22_branch2a']) # res4b22_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b22_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b22_branch2b']) # res4b22_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b22_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b22_branch2b']) # res4b22_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b22_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b22_branch2c']) # res4b22 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b22', layer=dict(type='residual', act='relu'), srcLayers=['bn4b22_branch2c', 'res4b21']) # ------------------- Residual Layer 4B23 ----------------------- # res4b23_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b23_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b22']) # res4b23_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b23_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b23_branch2a']) # res4b23_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b23_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b23_branch2a']) # res4b23_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b23_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b23_branch2b']) # res4b23_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b23_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b23_branch2b']) # res4b23_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b23_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b23_branch2c']) # res4b23 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b23', layer=dict(type='residual', act='relu'), srcLayers=['bn4b23_branch2c', 'res4b22']) # ------------------- Residual Layer 4B24 ----------------------- # res4b24_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b24_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b23']) # res4b24_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b24_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b24_branch2a']) # res4b24_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b24_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b24_branch2a']) # res4b24_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b24_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b24_branch2b']) # res4b24_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b24_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b24_branch2b']) # res4b24_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b24_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b24_branch2c']) # res4b24 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b24', layer=dict(type='residual', act='relu'), srcLayers=['bn4b24_branch2c', 'res4b23']) # ------------------- Residual Layer 4B25 ----------------------- # res4b25_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b25_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b24']) # res4b25_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b25_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b25_branch2a']) # res4b25_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b25_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b25_branch2a']) # res4b25_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b25_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b25_branch2b']) # res4b25_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b25_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b25_branch2b']) # res4b25_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b25_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b25_branch2c']) # res4b25 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b25', layer=dict(type='residual', act='relu'), srcLayers=['bn4b25_branch2c', 'res4b24']) # ------------------- Residual Layer 4B26 ----------------------- # res4b26_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b26_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b25']) # res4b26_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b26_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b26_branch2a']) # res4b26_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b26_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b26_branch2a']) # res4b26_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b26_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b26_branch2b']) # res4b26_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b26_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b26_branch2b']) # res4b26_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b26_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b26_branch2c']) # res4b26 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b26', layer=dict(type='residual', act='relu'), srcLayers=['bn4b26_branch2c', 'res4b25']) # ------------------- Residual Layer 4B27 ----------------------- # res4b27_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b27_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b26']) # res4b27_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b27_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b27_branch2a']) # res4b27_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b27_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b27_branch2a']) # res4b27_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b27_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b27_branch2b']) # res4b27_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b27_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b27_branch2b']) # res4b27_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b27_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b27_branch2c']) # res4b27 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b27', layer=dict(type='residual', act='relu'), srcLayers=['bn4b27_branch2c', 'res4b26']) # ------------------- Residual Layer 4B28 ----------------------- # res4b28_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b28_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b27']) # res4b28_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b28_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b28_branch2a']) # res4b28_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b28_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b28_branch2a']) # res4b28_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b28_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b28_branch2b']) # res4b28_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b28_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b28_branch2b']) # res4b28_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b28_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b28_branch2c']) # res4b28 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b28', layer=dict(type='residual', act='relu'), srcLayers=['bn4b28_branch2c', 'res4b27']) # ------------------- Residual Layer 4B29 ----------------------- # res4b29_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b29_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b28']) # res4b29_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b29_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b29_branch2a']) # res4b29_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b29_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b29_branch2a']) # res4b29_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b29_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b29_branch2b']) # res4b29_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b29_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b29_branch2b']) # res4b29_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b29_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b29_branch2c']) # res4b29 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b29', layer=dict(type='residual', act='relu'), srcLayers=['bn4b29_branch2c', 'res4b28']) # ------------------- Residual Layer 4B30 ----------------------- # res4b30_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b30_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b29']) # res4b30_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b30_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b30_branch2a']) # res4b30_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b30_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b30_branch2a']) # res4b30_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b30_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b30_branch2b']) # res4b30_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b30_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b30_branch2b']) # res4b30_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b30_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b30_branch2c']) # res4b30 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b30', layer=dict(type='residual', act='relu'), srcLayers=['bn4b30_branch2c', 'res4b29']) # ------------------- Residual Layer 4B31 ----------------------- # res4b31_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b31_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b30']) # res4b31_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b31_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b31_branch2a']) # res4b31_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b31_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b31_branch2a']) # res4b31_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b31_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b31_branch2b']) # res4b31_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b31_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b31_branch2b']) # res4b31_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b31_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b31_branch2c']) # res4b31 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b31', layer=dict(type='residual', act='relu'), srcLayers=['bn4b31_branch2c', 'res4b30']) # ------------------- Residual Layer 4B32 ----------------------- # res4b32_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b32_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b31']) # res4b32_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b32_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b32_branch2a']) # res4b32_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b32_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b32_branch2a']) # res4b32_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b32_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b32_branch2b']) # res4b32_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b32_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b32_branch2b']) # res4b32_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b32_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b32_branch2c']) # res4b32 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b32', layer=dict(type='residual', act='relu'), srcLayers=['bn4b32_branch2c', 'res4b31']) # ------------------- Residual Layer 4B33 ----------------------- # res4b33_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b33_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b32']) # res4b33_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b33_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b33_branch2a']) # res4b33_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b33_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b33_branch2a']) # res4b33_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b33_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b33_branch2b']) # res4b33_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b33_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b33_branch2b']) # res4b33_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b33_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b33_branch2c']) # res4b33 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b33', layer=dict(type='residual', act='relu'), srcLayers=['bn4b33_branch2c', 'res4b32']) # ------------------- Residual Layer 4B34 ----------------------- # res4b34_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b34_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b33']) # res4b34_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b34_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b34_branch2a']) # res4b34_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b34_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b34_branch2a']) # res4b34_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b34_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b34_branch2b']) # res4b34_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b34_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b34_branch2b']) # res4b34_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b34_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b34_branch2c']) # res4b34 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b34', layer=dict(type='residual', act='relu'), srcLayers=['bn4b34_branch2c', 'res4b33']) # ------------------- Residual Layer 4B35 ----------------------- # res4b35_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b35_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b34']) # res4b35_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b35_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b35_branch2a']) # res4b35_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b35_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b35_branch2a']) # res4b35_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b35_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b35_branch2b']) # res4b35_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b35_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b35_branch2b']) # res4b35_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b35_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b35_branch2c']) # res4b35 residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b35', layer=dict(type='residual', act='relu'), srcLayers=['bn4b35_branch2c', 'res4b34']) # ------------- Layer 5A -------------------- */ # res5a_branch1 layer: 2048 channels, 1x1 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5a_branch1', layer=dict(type='convolution', nFilters=2048, width=1, height=1, stride=2, includebias=False, act='identity'), srcLayers=['res4b35']) # res5a_branch1 batch norm layer: 2048 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5a_branch1', layer=dict(type='batchnorm', act='identity'), srcLayers=['res5a_branch1']) # res5a_branch2a layer: 512 channels, 1x1 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5a_branch2a', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=2, includebias=False, act='identity'), srcLayers=['res4b35']) # res5a_branch2a batch norm layer: 512 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5a_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res5a_branch2a']) # res5a_branch2b layer: 512 channels, 3x3 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5a_branch2b', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn5a_branch2a']) # res5a_branch2b batch norm layer: 512 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5a_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res5a_branch2b']) # res5a_branch2c layer: 2048 channels, 1x1 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5a_branch2c', layer=dict(type='convolution', nFilters=2048, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn5a_branch2b']) # res5a_branch2c batch norm layer: 2048 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5a_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res5a_branch2c']) # res5a residual layer: 2048 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5a', layer=dict(type='residual', act='relu'), srcLayers=['bn5a_branch2c', 'bn5a_branch1']) # ------------------- Residual Layer 5B ----------------------- # res5b_branch2a layer: 512 channels, 1x1 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5b_branch2a', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res5a']) # res5b_branch2a batch norm layer: 512 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5b_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res5b_branch2a']) # res5b_branch2b layer: 512 channels, 3x3 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5b_branch2b', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn5b_branch2a']) # res5b_branch2b batch norm layer: 512 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5b_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res5b_branch2b']) # res5b_branch2c layer: 2048 channels, 1x1 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5b_branch2c', layer=dict(type='convolution', nFilters=2048, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn5b_branch2b']) # res5b_branch2c batch norm layer: 2048 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5b_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res5b_branch2c']) # res5b residual layer: 2048 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5b', layer=dict(type='residual', act='relu'), srcLayers=['bn5b_branch2c', 'res5a']) # ------------------- Residual Layer 5C ----------------------- # res5c_branch2a layer: 512 channels, 1x1 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5c_branch2a', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res5b']) # res5c_branch2a batch norm layer: 512 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5c_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res5c_branch2a']) # res5c_branch2b layer: 512 channels, 3x3 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5c_branch2b', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn5c_branch2a']) # res5c_branch2b batch norm layer: 512 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5c_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res5c_branch2b']) # res5c_branch2c layer: 2048 channels, 1x1 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5c_branch2c', layer=dict(type='convolution', nFilters=2048, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn5c_branch2b']) # res5c_branch2c batch norm layer: 2048 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5c_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res5c_branch2c']) # res5c residual layer: 2048 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5c', layer=dict(type='residual', act='relu'), srcLayers=['bn5c_branch2c', 'res5b']) # ------------------- final layers ---------------------- # pool5 layer: 2048 channels, 7x7 pooling, output = 1 x 1 kernel_width = width // 2 // 2 // 2 // 2 // 2 kernel_height = height // 2 // 2 // 2 // 2 // 2 stride = kernel_width s.deepLearn.addLayer(model=model_table_opts, name='pool5', layer=dict(type='pooling', width=kernel_width, height=kernel_height, stride=stride, pool='mean'), srcLayers=['res5c']) # fc1000 output layer: 1000 neurons */ s.deepLearn.addLayer(model=model_table_opts, name='fc1000', layer=dict(type='output', n=1000, act='softmax'), srcLayers=['pool5']) return s.CASTable(**model_table_opts)
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/caffe_models/model_resnet152.py
0.890526
0.643497
model_resnet152.py
pypi
from ..utils import input_table_check def ResNet50_Model(s, model_table='RESNET50', n_channels=3, width=224, height=224, random_crop=None, offsets=None, random_flip=None, random_mutation=None, reshape_after_input=None): ''' ResNet50 model definition Parameters ---------- s : CAS Specifies the CAS connection object. model_table : string, dict or CAS table, optional Specifies the CAS table to store the model. n_channels : int, optional Specifies the number of the channels of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters.deepLearn. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets.deepLearn. Default: (103.939, 116.779, 123.68) random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : :class:`Reshape`, optional Specifies whether to add a reshape layer after the input layer. Returns ------- None CAS table defining the model is created ''' model_table_opts = input_table_check(model_table) if offsets is None: offsets = [103.939, 116.779, 123.68] # instantiate model s.deepLearn.buildModel(model=dict(replace=True, **model_table_opts), type='CNN') # input layer s.deepLearn.addLayer(model=model_table_opts, name='data', layer=dict(type='input', nchannels=n_channels, width=width, height=height, randomcrop=random_crop, offsets=offsets, randomFlip=random_flip, randomMutation=random_mutation)) input_data_layer = 'data' if reshape_after_input is not None: input_data_layer = 'reshape1' s.deepLearn.addLayer(model=model_table_opts, name='reshape1', layer=dict(type='reshape', **reshape_after_input.config), srcLayers=['data']) # -------------------- Layer 1 ---------------------- # conv1 layer: 64 channels, 7x7 conv, stride=2; output = 112 x 112 */ s.deepLearn.addLayer(model=model_table_opts, name='conv1', layer=dict(type='convolution', nFilters=64, width=7, height=7, stride=2, act='identity'), srcLayers=[input_data_layer]) # conv1 batch norm layer: 64 channels, output = 112 x 112 */ s.deepLearn.addLayer(model=model_table_opts, name='bn_conv1', layer=dict(type='batchnorm', act='relu'), srcLayers=['conv1']) # pool1 layer: 64 channels, 3x3 pooling, output = 56 x 56 */ s.deepLearn.addLayer(model=model_table_opts, name='pool1', layer=dict(type='pooling', width=3, height=3, stride=2, pool='max'), srcLayers=['bn_conv1']) # ------------------- Residual Layer 2A ----------------------- # res2a_branch1 layer: 256 channels, 1x1 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2a_branch1', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['pool1']) # res2a_branch1 batch norm layer: 256 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2a_branch1', layer=dict(type='batchnorm', act='identity'), srcLayers=['res2a_branch1']) # res2a_branch2a layer: 64 channels, 1x1 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2a_branch2a', layer=dict(type='convolution', nFilters=64, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['pool1']) # res2a_branch2a batch norm layer: 64 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2a_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res2a_branch2a']) # res2a_branch2b layer: 64 channels, 3x3 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2a_branch2b', layer=dict(type='convolution', nFilters=64, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn2a_branch2a']) # res2a_branch2b batch norm layer: 64 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2a_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res2a_branch2b']) # res2a_branch2c layer: 256 channels, 1x1 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2a_branch2c', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn2a_branch2b']) # res2a_branch2c batch norm layer: 256 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2a_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res2a_branch2c']) # res2a residual layer: 256 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2a', layer=dict(type='residual', act='relu'), srcLayers=['bn2a_branch2c', 'bn2a_branch1']) # ------------------- Residual Layer 2B ----------------------- # res2b_branch2a layer: 64 channels, 1x1 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2b_branch2a', layer=dict(type='convolution', nFilters=64, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res2a']) # res2b_branch2a batch norm layer: 64 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2b_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res2b_branch2a']) # res2b_branch2b layer: 64 channels, 3x3 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2b_branch2b', layer=dict(type='convolution', nFilters=64, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn2b_branch2a']) # res2b_branch2b batch norm layer: 64 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2b_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res2b_branch2b']) # res2b_branch2c layer: 256 channels, 1x1 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2b_branch2c', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn2b_branch2b']) # res2b_branch2c batch norm layer: 256 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2b_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res2b_branch2c']) # res2b residual layer: 256 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2b', layer=dict(type='residual', act='relu'), srcLayers=['bn2b_branch2c', 'res2a']) # ------------------- Residual Layer 2C ----------------------- # res2c_branch2a layer: 64 channels, 1x1 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2c_branch2a', layer=dict(type='convolution', nFilters=64, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res2b']) # res2c_branch2a batch norm layer: 64 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2c_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res2c_branch2a']) # res2c_branch2b layer: 64 channels, 3x3 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2c_branch2b', layer=dict(type='convolution', nFilters=64, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn2c_branch2a']) # res2c_branch2b batch norm layer: 64 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2c_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res2c_branch2b']) # res2c_branch2c layer: 256 channels, 1x1 conv, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2c_branch2c', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn2c_branch2b']) # res2c_branch2c batch norm layer: 256 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='bn2c_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res2c_branch2c']) # res2c residual layer: 256 channels, output = 56 x 56 s.deepLearn.addLayer(model=model_table_opts, name='res2c', layer=dict(type='residual', act='relu'), srcLayers=['bn2c_branch2c', 'res2b']) # ------------- Layer 3A -------------------- # res3a_branch1 layer: 512 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3a_branch1', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=2, includebias=False, act='identity'), srcLayers=['res2c']) # res3a_branch1 batch norm layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3a_branch1', layer=dict(type='batchnorm', act='identity'), srcLayers=['res3a_branch1']) # res3a_branch2a layer: 128 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3a_branch2a', layer=dict(type='convolution', nFilters=128, width=1, height=1, stride=2, includebias=False, act='identity'), srcLayers=['res2c']) # res3a_branch2a batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3a_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3a_branch2a']) # res3a_branch2b layer: 128 channels, 3x3 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3a_branch2b', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn3a_branch2a']) # res3a_branch2b batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3a_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3a_branch2b']) # res3a_branch2c layer: 512 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3a_branch2c', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn3a_branch2b']) # res3a_branch2c batch norm layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3a_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res3a_branch2c']) # res3a residual layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3a', layer=dict(type='residual', act='relu'), srcLayers=['bn3a_branch2c', 'bn3a_branch1']) # ------------------- Residual Layer 3B ----------------------- # res3b_branch2a layer: 128 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b_branch2a', layer=dict(type='convolution', nFilters=128, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res3a']) # res3b_branch2a batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b_branch2a']) # res3b_branch2b layer: 128 channels, 3x3 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b_branch2b', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn3b_branch2a']) # res3b_branch2b batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3b_branch2b']) # res3b_branch2c layer: 512 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b_branch2c', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn3b_branch2b']) # res3b_branch2c batch norm layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3b_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res3b_branch2c']) # res3b residual layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3b', layer=dict(type='residual', act='relu'), srcLayers=['bn3b_branch2c', 'res3a']) # ------------------- Residual Layer 3C ----------------------- # res3c_branch2a layer: 128 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3c_branch2a', layer=dict(type='convolution', nFilters=128, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res3b']) # res3c_branch2a batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3c_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3c_branch2a']) # res3c_branch2b layer: 128 channels, 3x3 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3c_branch2b', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn3c_branch2a']) # res3c_branch2b batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3c_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3c_branch2b']) # res3c_branch2c layer: 512 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3c_branch2c', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn3c_branch2b']) # res3c_branch2c batch norm layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3c_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res3c_branch2c']) # res3c residual layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3c', layer=dict(type='residual', act='relu'), srcLayers=['bn3c_branch2c', 'res3b']) # ------------------- Residual Layer 3D ----------------------- # res3d_branch2a layer: 128 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3d_branch2a', layer=dict(type='convolution', nFilters=128, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res3c']) # res3d_branch2a batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3d_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3d_branch2a']) # res3d_branch2b layer: 128 channels, 3x3 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3d_branch2b', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn3d_branch2a']) # res3d_branch2b batch norm layer: 128 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3d_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res3d_branch2b']) # res3d_branch2c layer: 512 channels, 1x1 conv, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3d_branch2c', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn3d_branch2b']) # res3d_branch2c batch norm layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='bn3d_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res3d_branch2c']) # res3d residual layer: 512 channels, output = 28 x 28 s.deepLearn.addLayer(model=model_table_opts, name='res3d', layer=dict(type='residual', act='relu'), srcLayers=['bn3d_branch2c', 'res3c']) # ------------- Layer 4A -------------------- # res4a_branch1 layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4a_branch1', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=2, includebias=False, act='identity'), srcLayers=['res3d']) # res4a_branch1 batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4a_branch1', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4a_branch1']) # res4a_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4a_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=2, includebias=False, act='identity'), srcLayers=['res3d']) # res4a_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4a_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4a_branch2a']) # res4a_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4a_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4a_branch2a']) # res4a_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4a_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4a_branch2b']) # res4a_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4a_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4a_branch2b']) # res4a_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4a_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4a_branch2c']) # res4a residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4a', layer=dict(type='residual', act='relu'), srcLayers=['bn4a_branch2c', 'bn4a_branch1']) # ------------------- Residual Layer 4B ----------------------- # res4b_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4a']) # res4b_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b_branch2a']) # res4b_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4b_branch2a']) # res4b_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4b_branch2b']) # res4b_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4b_branch2b']) # res4b_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4b_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4b_branch2c']) # res4b residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4b', layer=dict(type='residual', act='relu'), srcLayers=['bn4b_branch2c', 'res4a']) # ------------------- Residual Layer 4C ----------------------- # res4c_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4c_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4b']) # res4c_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4c_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4c_branch2a']) # res4c_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4c_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4c_branch2a']) # res4c_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4c_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4c_branch2b']) # res4c_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4c_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4c_branch2b']) # res4c_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4c_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4c_branch2c']) # res4c residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4c', layer=dict(type='residual', act='relu'), srcLayers=['bn4c_branch2c', 'res4b']) # ------------------- Residual Layer 4D ----------------------- # res4d_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4d_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4c']) # res4d_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4d_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4d_branch2a']) # res4d_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4d_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4d_branch2a']) # res4d_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4d_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4d_branch2b']) # res4d_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4d_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4d_branch2b']) # res4d_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4d_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4d_branch2c']) # res4d residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4d', layer=dict(type='residual', act='relu'), srcLayers=['bn4d_branch2c', 'res4c']) # ------------------- Residual Layer 4E ----------------------- */ # res4e_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4e_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4d']) # res4e_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4e_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4e_branch2a']) # res4e_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4e_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4e_branch2a']) # res4e_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4e_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4e_branch2b']) # res4e_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4e_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4e_branch2b']) # res4e_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4e_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4e_branch2c']) # res4e residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4e', layer=dict(type='residual', act='relu'), srcLayers=['bn4e_branch2c', 'res4d']) # ------------------- Residual Layer 4F ----------------------- # res4f_branch2a layer: 256 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4f_branch2a', layer=dict(type='convolution', nFilters=256, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res4e']) # res4f_branch2a batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4f_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4f_branch2a']) # res4f_branch2b layer: 256 channels, 3x3 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4f_branch2b', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn4f_branch2a']) # res4f_branch2b batch norm layer: 256 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4f_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res4f_branch2b']) # res4f_branch2c layer: 1024 channels, 1x1 conv, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4f_branch2c', layer=dict(type='convolution', nFilters=1024, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn4f_branch2b']) # res4f_branch2c batch norm layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='bn4f_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res4f_branch2c']) # res4f residual layer: 1024 channels, output = 14 x 14 s.deepLearn.addLayer(model=model_table_opts, name='res4f', layer=dict(type='residual', act='relu'), srcLayers=['bn4f_branch2c', 'res4e']) # ------------- Layer 5A -------------------- */ # res5a_branch1 layer: 2048 channels, 1x1 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5a_branch1', layer=dict(type='convolution', nFilters=2048, width=1, height=1, stride=2, includebias=False, act='identity'), srcLayers=['res4f']) # res5a_branch1 batch norm layer: 2048 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5a_branch1', layer=dict(type='batchnorm', act='identity'), srcLayers=['res5a_branch1']) # res5a_branch2a layer: 512 channels, 1x1 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5a_branch2a', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=2, includebias=False, act='identity'), srcLayers=['res4f']) # res5a_branch2a batch norm layer: 512 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5a_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res5a_branch2a']) # res5a_branch2b layer: 512 channels, 3x3 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5a_branch2b', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn5a_branch2a']) # res5a_branch2b batch norm layer: 512 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5a_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res5a_branch2b']) # res5a_branch2c layer: 2048 channels, 1x1 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5a_branch2c', layer=dict(type='convolution', nFilters=2048, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn5a_branch2b']) # res5a_branch2c batch norm layer: 2048 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5a_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res5a_branch2c']) # res5a residual layer: 2048 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5a', layer=dict(type='residual', act='relu'), srcLayers=['bn5a_branch2c', 'bn5a_branch1']) # ------------------- Residual Layer 5B ----------------------- # res5b_branch2a layer: 512 channels, 1x1 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5b_branch2a', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res5a']) # res5b_branch2a batch norm layer: 512 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5b_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res5b_branch2a']) # res5b_branch2b layer: 512 channels, 3x3 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5b_branch2b', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn5b_branch2a']) # res5b_branch2b batch norm layer: 512 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5b_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res5b_branch2b']) # res5b_branch2c layer: 2048 channels, 1x1 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5b_branch2c', layer=dict(type='convolution', nFilters=2048, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn5b_branch2b']) # res5b_branch2c batch norm layer: 2048 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5b_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res5b_branch2c']) # res5b residual layer: 2048 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5b', layer=dict(type='residual', act='relu'), srcLayers=['bn5b_branch2c', 'res5a']) # ------------------- Residual Layer 5C ----------------------- # res5c_branch2a layer: 512 channels, 1x1 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5c_branch2a', layer=dict(type='convolution', nFilters=512, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['res5b']) # res5c_branch2a batch norm layer: 512 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5c_branch2a', layer=dict(type='batchnorm', act='relu'), srcLayers=['res5c_branch2a']) # res5c_branch2b layer: 512 channels, 3x3 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5c_branch2b', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, includebias=False, act='identity'), srcLayers=['bn5c_branch2a']) # res5c_branch2b batch norm layer: 512 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5c_branch2b', layer=dict(type='batchnorm', act='relu'), srcLayers=['res5c_branch2b']) # res5c_branch2c layer: 2048 channels, 1x1 conv, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5c_branch2c', layer=dict(type='convolution', nFilters=2048, width=1, height=1, stride=1, includebias=False, act='identity'), srcLayers=['bn5c_branch2b']) # res5c_branch2c batch norm layer: 2048 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='bn5c_branch2c', layer=dict(type='batchnorm', act='identity'), srcLayers=['res5c_branch2c']) # res5c residual layer: 2048 channels, output = 7 x 7 s.deepLearn.addLayer(model=model_table_opts, name='res5c', layer=dict(type='residual', act='relu'), srcLayers=['bn5c_branch2c', 'res5b']) # ------------------- final layers ---------------------- # pool5 layer: 2048 channels, 7x7 pooling, output = 1 x 1 kernel_width = width // 2 // 2 // 2 // 2 // 2 kernel_height = height // 2 // 2 // 2 // 2 // 2 stride = kernel_width s.deepLearn.addLayer(model=model_table_opts, name='pool5', layer=dict(type='pooling', width=kernel_width, height=kernel_height, stride=stride, pool='mean'), srcLayers=['res5c']) # fc1000 output layer: 1000 neurons */ s.deepLearn.addLayer(model=model_table_opts, name='fc1000', layer=dict(type='output', n=1000, act='softmax'), srcLayers=['pool5']) return s.CASTable(**model_table_opts)
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/caffe_models/model_resnet50.py
0.898143
0.698747
model_resnet50.py
pypi
from ..utils import input_table_check def VGG16_Model(s, model_table='VGG16', n_channels=3, width=224, height=224, random_crop=None, offsets=None, random_flip=None, random_mutation=None, reshape_after_input=None): ''' VGG16 model definition Parameters ---------- s : CAS Specifies the CAS connection object. model_table : string, dict or CAS table, optional Specifies the CAS table to store the model. n_channels : int, optional Specifies the number of the channels of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters.deepLearn. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets.deepLearn. Default: (103.939, 116.779, 123.68) random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : Layer Reshape, optional Specifies whether to add a reshape layer after the input layer. Returns ------- None A CAS table defining the model is created ''' model_table_opts = input_table_check(model_table) if offsets is None: offsets = [103.939, 116.779, 123.68] # instantiate model s.deepLearn.buildModel(model=dict(replace=True, **model_table_opts), type='CNN') # input layer s.deepLearn.addLayer(model=model_table_opts, name='data', layer=dict(type='input', nchannels=n_channels, width=width, height=height, randomcrop=random_crop, offsets=offsets, randomFlip=random_flip, randomMutation=random_mutation)) # check whether add reshape input_data_layer = 'data' if reshape_after_input is not None: input_data_layer = 'reshape1' s.deepLearn.addLayer(model=model_table_opts, name='reshape1', layer=dict(type='reshape', **reshape_after_input.config), srcLayers=['data']) # conv1_1 layer: 64*3*3 s.deepLearn.addLayer(model=model_table_opts, name='conv1_1', layer=dict(type='convolution', nFilters=64, width=3, height=3, stride=1, act='relu'), srcLayers=[input_data_layer]) # conv1_2 layer: 64*3*3 s.deepLearn.addLayer(model=model_table_opts, name='conv1_2', layer=dict(type='convolution', nFilters=64, width=3, height=3, stride=1, act='relu'), srcLayers=['conv1_1']) # pool1 layer: 2*2 s.deepLearn.addLayer(model=model_table_opts, name='pool1', layer=dict(type='pooling', width=2, height=2, stride=2, pool='max'), srcLayers=['conv1_2']) # conv2_1 layer: 128*3*3 s.deepLearn.addLayer(model=model_table_opts, name='conv2_1', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, act='relu'), srcLayers=['pool1']) # conv2_2 layer: 128*3*3 s.deepLearn.addLayer(model=model_table_opts, name='conv2_2', layer=dict(type='convolution', nFilters=128, width=3, height=3, stride=1, act='relu'), srcLayers=['conv2_1']) # pool2 layer: 2*2 s.deepLearn.addLayer(model=model_table_opts, name='pool2', layer=dict(type='pooling', width=2, height=2, stride=2, pool='max'), srcLayers=['conv2_2']) # conv3_1 layer: 256*3*3 s.deepLearn.addLayer(model=model_table_opts, name='conv3_1', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, act='relu'), srcLayers=['pool2']) # conv3_2 layer: 256*3*3 s.deepLearn.addLayer(model=model_table_opts, name='conv3_2', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, act='relu'), srcLayers=['conv3_1']) # conv3_3 layer: 256*3*3 s.deepLearn.addLayer(model=model_table_opts, name='conv3_3', layer=dict(type='convolution', nFilters=256, width=3, height=3, stride=1, act='relu'), srcLayers=['conv3_2']) # pool3 layer: 2*2 s.deepLearn.addLayer(model=model_table_opts, name='pool3', layer=dict(type='pooling', width=2, height=2, stride=2, pool='max'), srcLayers=['conv3_3']) # conv4_1 layer: 512*3*3 s.deepLearn.addLayer(model=model_table_opts, name='conv4_1', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, act='relu'), srcLayers=['pool3']) # conv4_2 layer: 512*3*3 s.deepLearn.addLayer(model=model_table_opts, name='conv4_2', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, act='relu'), srcLayers=['conv4_1']) # conv4_3 layer: 512*3*3 s.deepLearn.addLayer(model=model_table_opts, name='conv4_3', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, act='relu'), srcLayers=['conv4_2']) # pool4 layer: 2*2 s.deepLearn.addLayer(model=model_table_opts, name='pool4', layer=dict(type='pooling', width=2, height=2, stride=2, pool='max'), srcLayers=['conv4_3']) # conv5_1 layer: 512*3*3 s.deepLearn.addLayer(model=model_table_opts, name='conv5_1', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, act='relu'), srcLayers=['pool4']) # conv5_2 layer: 512*3*3 s.deepLearn.addLayer(model=model_table_opts, name='conv5_2', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, act='relu'), srcLayers=['conv5_1']) # conv5_3 layer: 512*3*3 s.deepLearn.addLayer(model=model_table_opts, name='conv5_3', layer=dict(type='convolution', nFilters=512, width=3, height=3, stride=1, act='relu'), srcLayers=['conv5_2']) # pool5 layer: 2*2 s.deepLearn.addLayer(model=model_table_opts, name='pool5', layer=dict(type='pooling', width=2, height=2, stride=2, pool='max'), srcLayers=['conv5_3']) # fc6 layer: 4096 neurons s.deepLearn.addLayer(model=model_table_opts, name='fc6', layer=dict(type='fullconnect', n=4096, act='relu', dropout=0.5), srcLayers=['pool5']) # fc7 layer: 4096 neurons s.deepLearn.addLayer(model=model_table_opts, name='fc7', layer=dict(type='fullconnect', n=4096, act='relu', dropout=0.5), srcLayers=['fc6']) # fc output layer: 1000 neurons s.deepLearn.addLayer(model=model_table_opts, name='fc8', layer=dict(type='output', n=1000, act='softmax'), srcLayers=['fc7']) return s.CASTable(**model_table_opts)
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/caffe_models/model_vgg16.py
0.868423
0.665954
model_vgg16.py
pypi
def LeNet_Model(s, model_name='LeNet'): ''' LeNet model definition (batch normalization version) Parameters ---------- s : CAS Specifies the CAS connection object model_name : string, optional Specifies the name of CAS table to store the model Returns ------- None A CAS table defining the model is created ''' # instantiate model s.deepLearn.buildModel(model=dict(name=model_name, replace=True), type='CNN') # input layer s.deepLearn.addLayer(model=model_name, name='mnist', layer=dict(type='input', nchannels=1, width=28, height=28, scale=0.00392156862745098039)) # conv1: 5*5*20 s.deepLearn.addLayer(model=model_name, name='conv1', layer=dict(type='convolution', nFilters=20, width=5, height=5, stride=1, act='identity', noBias=True, init='xavier'), srcLayers=['mnist']) # conv1 batch normalization s.deepLearn.addLayer(model=model_name, name='conv1_bn', layer=dict(type='batchnorm', act='relu'), srcLayers=['conv1']) # pool1 2*2*2 s.deepLearn.addLayer(model=model_name, name='pool1', layer=dict(type='pooling', width=2, height=2, stride=2, pool='max'), srcLayers=['conv1_bn']) # conv2: 5*5*50 s.deepLearn.addLayer(model=model_name, name='conv2', layer=dict(type='convolution', nFilters=50, width=5, height=5, stride=1, act='identity', noBias=True, init='xavier'), srcLayers=['pool1']) # conv2 batch normalization s.deepLearn.addLayer(model=model_name, name='conv2_bn', layer=dict(type='batchnorm', act='relu'), srcLayers=['conv2']) # pool2 2*2*2 s.deepLearn.addLayer(model=model_name, name='pool2', layer=dict(type='pooling', width=2, height=2, stride=2, pool='max'), srcLayers=['conv2_bn']) # fully connected layer s.deepLearn.addLayer(model=model_name, name='ip1', layer=dict(type='fullconnect', n=500, init='xavier', act='relu'), srcLayers=['pool2']) # output layer s.deepLearn.addLayer(model=model_name, name='ip2', layer=dict(type='output', n=10, init='xavier', act='softmax'), srcLayers=['ip1'])
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/caffe_models/model_lenet.py
0.908882
0.491761
model_lenet.py
pypi
from dlpy.model import Model from dlpy.sequential import Sequential from dlpy.layers import (Conv2d, Input, Pooling, BN, Conv2DTranspose, Concat, Segmentation) from .application_utils import get_layer_options, input_layer_options def UNet(conn, model_table='UNet', n_classes = 2, n_channels=1, width=256, height=256, scale=1.0/255, norm_stds=None, offsets=None, random_mutation=None, init=None, bn_after_convolutions=False, random_flip=None, random_crop=None): ''' Generates a deep learning model with the U-Net architecture. Parameters ---------- conn : CAS Specifies the connection of the CAS connection. model_table : string, optional Specifies the name of CAS table to store the model. n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 2 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 256 height : int, optional Specifies the height of the input layer. Default: 256 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1.0/255 norm_stds : double or iter-of-doubles, optional Specifies a standard deviation for each channel in the input data. The final input data is normalized with specified means and standard deviations. offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' init : str Specifies the initialization scheme for convolution layers. Valid Values: XAVIER, UNIFORM, NORMAL, CAUCHY, XAVIER1, XAVIER2, MSRA, MSRA1, MSRA2 Default: None bn_after_convolutions : Boolean If set to True, a batch normalization layer is added after each convolution layer. random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1505.04597 ''' parameters = locals() input_parameters = get_layer_options(input_layer_options, parameters) inp = Input(**input_parameters, name = 'data') act_conv = 'relu' bias_conv = True if bn_after_convolutions: act_conv = 'identity' bias_conv = False # The model follows UNet paper architecture. The network down-samples by performing max pooling with stride=2 conv1 = Conv2d(64, 3, act = act_conv, init = init, include_bias = bias_conv)(inp) conv1 = BN(act = 'relu')(conv1) if bn_after_convolutions else conv1 conv1 = Conv2d(64, 3, act = act_conv, init = init, include_bias = bias_conv)(conv1) conv1 = BN(act = 'relu')(conv1) if bn_after_convolutions else conv1 pool1 = Pooling(2)(conv1) conv2 = Conv2d(128, 3, act = act_conv, init = init, include_bias = bias_conv)(pool1) conv2 = BN(act = 'relu')(conv2) if bn_after_convolutions else conv2 conv2 = Conv2d(128, 3, act = act_conv, init = init, include_bias = bias_conv)(conv2) conv2 = BN(act = 'relu')(conv2) if bn_after_convolutions else conv2 pool2 = Pooling(2)(conv2) conv3 = Conv2d(256, 3, act = act_conv, init = init, include_bias = bias_conv)(pool2) conv3 = BN(act = 'relu')(conv3) if bn_after_convolutions else conv3 conv3 = Conv2d(256, 3, act = act_conv, init = init, include_bias = bias_conv)(conv3) conv3 = BN(act = 'relu')(conv3) if bn_after_convolutions else conv3 pool3 = Pooling(2)(conv3) conv4 = Conv2d(512, 3, act = act_conv, init = init, include_bias = bias_conv)(pool3) conv4 = BN(act = 'relu')(conv4) if bn_after_convolutions else conv4 conv4 = Conv2d(512, 3, act = act_conv, init = init, include_bias = bias_conv)(conv4) conv4 = BN(act = 'relu')(conv4) if bn_after_convolutions else conv4 pool4 = Pooling(2)(conv4) conv5 = Conv2d(1024, 3, act = act_conv, init = init, include_bias = bias_conv)(pool4) conv5 = BN(act = 'relu')(conv5) if bn_after_convolutions else conv5 conv5 = Conv2d(1024, 3, act = act_conv, init = init, include_bias = bias_conv)(conv5) conv5 = BN(act = 'relu')(conv5) if bn_after_convolutions else conv5 # the minimum is 1/2^4 of the original image size # Our implementation applies Transpose convolution to upsample feature maps. tconv6 = Conv2DTranspose(512, 3, stride = 2, act = 'relu', padding = 1, output_size = conv4.shape, init = init)(conv5) # 64 # concatenation layers to combine encoder and decoder features merge6 = Concat()([conv4, tconv6]) conv6 = Conv2d(512, 3, act = act_conv, init = init, include_bias = bias_conv)(merge6) conv6 = BN(act = 'relu')(conv6) if bn_after_convolutions else conv6 conv6 = Conv2d(512, 3, act = act_conv, init = init, include_bias = bias_conv)(conv6) conv6 = BN(act = 'relu')(conv6) if bn_after_convolutions else conv6 tconv7 = Conv2DTranspose(256, 3, stride = 2, act = 'relu', padding = 1, output_size = conv3.shape, init = init)(conv6) # 128 merge7 = Concat()([conv3, tconv7]) conv7 = Conv2d(256, 3, act = act_conv, init = init, include_bias = bias_conv)(merge7) conv7 = BN(act = 'relu')(conv7) if bn_after_convolutions else conv7 conv7 = Conv2d(256, 3, act = act_conv, init = init, include_bias = bias_conv)(conv7) conv7 = BN(act = 'relu')(conv7) if bn_after_convolutions else conv7 tconv8 = Conv2DTranspose(128, stride = 2, act = 'relu', padding = 1, output_size = conv2.shape, init = init)(conv7) # 256 merge8 = Concat()([conv2, tconv8]) conv8 = Conv2d(128, 3, act = act_conv, init = init, include_bias = bias_conv)(merge8) conv8 = BN(act = 'relu')(conv8) if bn_after_convolutions else conv8 conv8 = Conv2d(128, 3, act = act_conv, init = init, include_bias = bias_conv)(conv8) conv8 = BN(act = 'relu')(conv8) if bn_after_convolutions else conv8 tconv9 = Conv2DTranspose(64, stride = 2, act = 'relu', padding = 1, output_size = conv1.shape, init = init)(conv8) # 512 merge9 = Concat()([conv1, tconv9]) conv9 = Conv2d(64, 3, act = act_conv, init = init, include_bias = bias_conv)(merge9) conv9 = BN(act = 'relu')(conv9) if bn_after_convolutions else conv9 conv9 = Conv2d(64, 3, act = act_conv, init = init, include_bias = bias_conv)(conv9) conv9 = BN(act = 'relu')(conv9) if bn_after_convolutions else conv9 conv9 = Conv2d(n_classes, 3, act = 'relu', init = init)(conv9) seg1 = Segmentation(name = 'Segmentation_1')(conv9) model = Model(conn, inputs = inp, outputs = seg1, model_table = model_table) model.compile() return model
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/applications/unet.py
0.964246
0.66938
unet.py
pypi
from dlpy.model import Model from dlpy.sequential import Sequential from dlpy.layers import (Conv2d, Input, Pooling, RegionProposal, ROIPooling, Dense, FastRCNN) from .application_utils import get_layer_options, input_layer_options, rpn_layer_options, fast_rcnn_options from dlpy.utils import DLPyError def Faster_RCNN(conn, model_table='Faster_RCNN', n_channels=3, width=1000, height=496, scale=1, norm_stds=None, offsets=(102.9801, 115.9465, 122.7717), random_mutation=None, n_classes=20, anchor_num_to_sample=256, anchor_ratio=[0.5, 1, 2], anchor_scale=[8, 16, 32], base_anchor_size=16, coord_type='coco', max_label_per_image=200, proposed_roi_num_train=2000, proposed_roi_num_score=300, roi_train_sample_num=128, roi_pooling_height=7, roi_pooling_width=7, nms_iou_threshold=0.3, detection_threshold=0.5, max_object_num=50, number_of_neurons_in_fc=4096, backbone='vgg16', random_flip=None, random_crop=None): ''' Generates a deep learning model with the faster RCNN architecture. Parameters ---------- conn : CAS Specifies the connection of the CAS connection. model_table : string, optional Specifies the name of CAS table to store the model. n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 1000 height : int, optional Specifies the height of the input layer. Default: 496 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 norm_stds : double or iter-of-doubles, optional Specifies a standard deviation for each channel in the input data. The final input data is normalized with specified means and standard deviations. offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 20 anchor_num_to_sample : int, optional Specifies the number of anchors to sample for training the region proposal network Default: 256 anchor_ratio : iter-of-float Specifies the anchor height and width ratios (h/w) used. anchor_scale : iter-of-float Specifies the anchor scales used based on base_anchor_size base_anchor_size : int, optional Specifies the basic anchor size in width and height (in pixels) in the original input image dimension Default: 16 coord_type : int, optional Specifies the coordinates format type in the input label and detection result. Valid Values: RECT, COCO, YOLO Default: COCO proposed_roi_num_score: int, optional Specifies the number of ROI (Region of Interest) to propose in the scoring phase Default: 300 proposed_roi_num_train: int, optional Specifies the number of ROI (Region of Interest) to propose used for RPN training, and also the pool to sample from for FastRCNN Training in the training phase Default: 2000 roi_train_sample_num: int, optional Specifies the number of ROIs(Regions of Interests) to sample after NMS(Non-maximum Suppression) is performed in the training phase. Default: 128 roi_pooling_height : int, optional Specifies the output height of the region pooling layer. Default: 7 roi_pooling_width : int, optional Specifies the output width of the region pooling layer. Default: 7 max_label_per_image : int, optional Specifies the maximum number of labels per image in the training. Default: 200 nms_iou_threshold: float, optional Specifies the IOU threshold of maximum suppression in object detection Default: 0.3 detection_threshold : float, optional Specifies the threshold for object detection. Default: 0.5 max_object_num: int, optional Specifies the maximum number of object to detect Default: 50 number_of_neurons_in_fc: int, or list of int, optional Specifies the number of neurons in the last two fully connected layers. If one int is set, then both of the layers will have the same values. If a list is set, then the layers get different number of neurons. Default: 4096 backbone: string, optional Specifies the architecture to be used as the feature extractor. Valid values: vgg16 Default: vgg16, resnet50, resnet18, resnet34, mobilenetv1, mobilenetv2 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' Returns ------- :class:`Sequential` References ---------- https://arxiv.org/abs/1506.01497 ''' # calculate number of anchors that equal to product of length of anchor_ratio and length of anchor_scale num_anchors = len(anchor_ratio) * len(anchor_scale) parameters = locals() # get parameters of input, rpn, fast_rcnn layer input_parameters = get_layer_options(input_layer_options, parameters) rpn_parameters = get_layer_options(rpn_layer_options, parameters) fast_rcnn_parameters = get_layer_options(fast_rcnn_options, parameters) inp = Input(**input_parameters, name='data') if backbone.lower() == 'vgg16': # backbone is VGG16 model conv1_1 = Conv2d(n_filters=64, width=3, height=3, stride=1, name='conv1_1')(inp) conv1_2 = Conv2d(n_filters=64, width=3, height=3, stride=1, name='conv1_2')(conv1_1) pool1 = Pooling(width=2, height=2, stride=2, pool='max', name='pool1')(conv1_2) conv2_1 = Conv2d(n_filters=128, width=3, height=3, stride=1, name='conv2_1')(pool1) conv2_2 = Conv2d(n_filters=128, width=3, height=3, stride=1, name='conv2_2')(conv2_1) pool2 = Pooling(width=2, height=2, stride=2, pool='max')(conv2_2) conv3_1 = Conv2d(n_filters=256, width=3, height=3, stride=1, name='conv3_1')(pool2) conv3_2 = Conv2d(n_filters=256, width=3, height=3, stride=1, name='conv3_2')(conv3_1) conv3_3 = Conv2d(n_filters=256, width=3, height=3, stride=1, name='conv3_3')(conv3_2) pool3 = Pooling(width=2, height=2, stride=2, pool='max')(conv3_3) conv4_1 = Conv2d(n_filters=512, width=3, height=3, stride = 1, name = 'conv4_1')(pool3) conv4_2 = Conv2d(n_filters=512, width=3, height=3, stride = 1, name = 'conv4_2')(conv4_1) conv4_3 = Conv2d(n_filters=512, width=3, height=3, stride=1, name='conv4_3')(conv4_2) pool4 = Pooling(width=2, height=2, stride=2, pool='max')(conv4_3) conv5_1 = Conv2d(n_filters=512, width=3, height=3, stride=1, name='conv5_1')(pool4) conv5_2 = Conv2d(n_filters=512, width=3, height=3, stride=1, name='conv5_2')(conv5_1) # feature of Conv5_3 is used to generate region proposals last_layer_in_backbone = Conv2d(n_filters=512, width=3, height=3, stride=1, name='conv5_3')(conv5_2) # two convolutions build on top of conv5_3 and reduce feature map depth to 6*number_anchors rpn_conv = Conv2d(width=3, n_filters=512, name='rpn_conv_3x3')(last_layer_in_backbone) rpn_score = Conv2d(act='identity', width=1, n_filters=((1 + 1 + 4) * num_anchors), name='rpn_score')(rpn_conv) # propose anchors, NMS, select anchors to train RPN, produce ROIs rp1 = RegionProposal(**rpn_parameters, name='rois')(rpn_score) # given ROIs, crop on conv5_3 and resize the feature to the same size roipool1 = ROIPooling(output_height=roi_pooling_height, output_width=roi_pooling_width, spatial_scale=last_layer_in_backbone.shape[0]/width, name='roi_pooling')([last_layer_in_backbone, rp1]) elif backbone.lower() == 'resnet50': from .resnet import ResNet50_SAS backbone = ResNet50_SAS(conn, width=width, height=height) backbone.layers[-2].src_layers backbone_with_last = backbone.to_functional_model(stop_layers=backbone.layers[-2]) last_layer_in_backbone = backbone_with_last(inp) # two convolutions build on top of f_ex and reduce feature map depth to 6*number_anchors rpn_conv = Conv2d(width=3, n_filters=512, name='rpn_conv_3x3')(last_layer_in_backbone) rpn_score = Conv2d(act='identity', width=1, n_filters=((1 + 1 + 4) * num_anchors), name='rpn_score')(rpn_conv) # propose anchors, NMS, select anchors to train RPN, produce ROIs rp1 = RegionProposal(**rpn_parameters, name='rois')(rpn_score) roipool1 = ROIPooling(output_height=roi_pooling_height, output_width=roi_pooling_width, spatial_scale=last_layer_in_backbone[0].shape.output_size[0]/height, name='roi_pooling')([last_layer_in_backbone[0], rp1]) elif backbone.lower() == 'resnet34': from .resnet import ResNet34_SAS backbone = ResNet34_SAS(conn, width=width, height=height) backbone.layers[-2].src_layers backbone_with_last = backbone.to_functional_model(stop_layers=backbone.layers[-2]) last_layer_in_backbone = backbone_with_last(inp) # two convolutions build on top of f_ex and reduce feature map depth to 6*number_anchors rpn_conv = Conv2d(width=3, n_filters=512, name='rpn_conv_3x3')(last_layer_in_backbone) rpn_score = Conv2d(act='identity', width=1, n_filters=((1 + 1 + 4) * num_anchors), name='rpn_score')(rpn_conv) # propose anchors, NMS, select anchors to train RPN, produce ROIs rp1 = RegionProposal(**rpn_parameters, name='rois')(rpn_score) roipool1 = ROIPooling(output_height=roi_pooling_height, output_width=roi_pooling_width, spatial_scale=last_layer_in_backbone[0].shape.output_size[0]/height, name='roi_pooling')([last_layer_in_backbone[0], rp1]) elif backbone.lower() == 'resnet18': from .resnet import ResNet18_SAS backbone = ResNet18_SAS(conn, width=width, height=height) backbone.layers[-2].src_layers backbone_with_last = backbone.to_functional_model(stop_layers=backbone.layers[-2]) last_layer_in_backbone = backbone_with_last(inp) # two convolutions build on top of f_ex and reduce feature map depth to 6*number_anchors rpn_conv = Conv2d(width=3, n_filters=512, name='rpn_conv_3x3')(last_layer_in_backbone) rpn_score = Conv2d(act='identity', width=1, n_filters=((1 + 1 + 4) * num_anchors), name='rpn_score')(rpn_conv) # propose anchors, NMS, select anchors to train RPN, produce ROIs rp1 = RegionProposal(**rpn_parameters, name='rois')(rpn_score) roipool1 = ROIPooling(output_height=roi_pooling_height, output_width=roi_pooling_width, spatial_scale=last_layer_in_backbone[0].shape.output_size[0]/height, name='roi_pooling')([last_layer_in_backbone[0], rp1]) elif backbone.lower() == 'mobilenetv1': from .mobilenet import MobileNetV1 backbone = MobileNetV1(conn, width=width, height=height) backbone.layers[-2].src_layers backbone_with_last = backbone.to_functional_model(stop_layers=backbone.layers[-2]) last_layer_in_backbone = backbone_with_last(inp) # two convolutions build on top of f_ex and reduce feature map depth to 6*number_anchors rpn_conv = Conv2d(width=3, n_filters=512, name='rpn_conv_3x3')(last_layer_in_backbone) rpn_score = Conv2d(act='identity', width=1, n_filters=((1 + 1 + 4) * num_anchors), name='rpn_score')(rpn_conv) # propose anchors, NMS, select anchors to train RPN, produce ROIs rp1 = RegionProposal(**rpn_parameters, name='rois')(rpn_score) roipool1 = ROIPooling(output_height=roi_pooling_height, output_width=roi_pooling_width, spatial_scale=last_layer_in_backbone[0].shape.output_size[0]/height, name='roi_pooling')([last_layer_in_backbone[0], rp1]) elif backbone.lower() == 'mobilenetv2': from .mobilenet import MobileNetV2 backbone = MobileNetV2(conn, width=width, height=height) backbone.layers[-2].src_layers backbone_with_last = backbone.to_functional_model(stop_layers=backbone.layers[-2]) last_layer_in_backbone = backbone_with_last(inp) # two convolutions build on top of f_ex and reduce feature map depth to 6*number_anchors rpn_conv = Conv2d(width=3, n_filters=512, name='rpn_conv_3x3')(last_layer_in_backbone) rpn_score = Conv2d(act='identity', width=1, n_filters=((1 + 1 + 4) * num_anchors), name='rpn_score')(rpn_conv) # propose anchors, NMS, select anchors to train RPN, produce ROIs rp1 = RegionProposal(**rpn_parameters, name='rois')(rpn_score) roipool1 = ROIPooling(output_height=roi_pooling_height, output_width=roi_pooling_width, spatial_scale=last_layer_in_backbone[0].shape.output_size[0]/height, name='roi_pooling')([last_layer_in_backbone[0], rp1]) else: raise DLPyError('We are not supporting this backbone yet.') # fully connect layer to extract the feature of ROIs if number_of_neurons_in_fc is None: fc6 = Dense(n=4096, act='relu', name='fc6')(roipool1) fc7 = Dense(n=4096, act='relu', name='fc7')(fc6) else: if isinstance(number_of_neurons_in_fc, list): if len(number_of_neurons_in_fc) > 1: fc6 = Dense(n=number_of_neurons_in_fc[0], act='relu', name='fc6')(roipool1) fc7 = Dense(n=number_of_neurons_in_fc[1], act='relu', name='fc7')(fc6) else: fc6 = Dense(n=number_of_neurons_in_fc[0], act='relu', name='fc6')(roipool1) fc7 = Dense(n=number_of_neurons_in_fc[0], act='relu', name='fc7')(fc6) else: fc6 = Dense(n=number_of_neurons_in_fc, act='relu', name='fc6')(roipool1) fc7 = Dense(n=number_of_neurons_in_fc, act='relu', name='fc7')(fc6) # classification tensor cls1 = Dense(n=n_classes+1, act='identity', name='cls_score')(fc7) # regression tensor(second stage bounding box regression) reg1 = Dense(n=(n_classes+1)*4, act='identity', name='bbox_pred')(fc7) # task layer receive cls1, reg1 and rp1(ground truth). Train the second stage. fr1 = FastRCNN(**fast_rcnn_parameters, class_number=n_classes, name='fastrcnn')([cls1, reg1, rp1]) faster_rcnn = Model(conn, inp, fr1, model_table=model_table) faster_rcnn.compile() return faster_rcnn
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/applications/rcnn.py
0.944625
0.659912
rcnn.py
pypi
from dlpy.sequential import Sequential from dlpy.blocks import Bidirectional from dlpy.layers import (InputLayer, Conv2d, Pooling, Dense, OutputLayer, Recurrent) from dlpy.utils import DLPyError def TextClassification(conn, model_table='text_classifier', neurons=10, n_blocks=3, rnn_type='gru'): ''' Generates a text classification model Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string, optional Specifies the name of CAS table to store the model. neurons : int, optional Specifies the number of neurons to be in each layer. Default: 10 n_blocks : int, optional Specifies the number of bidirectional blocks to be added to the model. Default: 3 rnn_type : string, optional Specifies the type of the rnn layer. Default: GRU Valid Values: RNN, LSTM, GRU Returns ------- :class:`Sequential` ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') if n_blocks >= 2: model = Sequential(conn=conn, model_table=model_table) b = Bidirectional(n=neurons, name='bi_'+rnn_type+'_layer_', n_blocks=n_blocks-1, rnn_type=rnn_type) model.add(b) model.add(Bidirectional(n=neurons, output_type='encoding', src_layers=b.get_last_layers(), rnn_type=rnn_type, name='bi_'+rnn_type+'_lastlayer_',)) model.add(OutputLayer()) elif n_blocks == 1: model = Sequential(conn=conn, model_table=model_table) model.add(Bidirectional(n=neurons, output_type='encoding', rnn_type=rnn_type)) model.add(OutputLayer()) else: raise DLPyError('The number of blocks for a text classification model should be at least 1.') return model def TextGeneration(conn, model_table='text_generator', neurons=10, max_output_length=15, n_blocks=3, rnn_type='gru'): ''' Generates a text generation model. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string, optional Specifies the name of CAS table to store the model. neurons : int, optional Specifies the number of neurons to be in each layer. Default: 10 n_blocks : int, optional Specifies the number of bidirectional blocks to be added to the model. Default: 3 max_output_length : int, optional Specifies the maximum number of tokens to generate Default: 15 rnn_type : string, optional Specifies the type of the rnn layer. Default: GRU Valid Values: RNN, LSTM, GRU Returns ------- :class:`Sequential` ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') if n_blocks >= 3: model = Sequential(conn=conn, model_table=model_table) b = Bidirectional(n=neurons, name='bi_'+rnn_type+'_layer_', n_blocks=n_blocks-2, rnn_type=rnn_type) model.add(b) b2 = Bidirectional(n=neurons, output_type='encoding', src_layers=b.get_last_layers(), rnn_type=rnn_type, name='bi_'+rnn_type+'_lastlayer') model.add(b2) model.add(Recurrent(n=neurons, output_type='arbitrarylength', src_layers=b2.get_last_layers(), rnn_type=rnn_type, max_output_length=max_output_length)) model.add(OutputLayer()) elif n_blocks >= 2: model = Sequential(conn=conn, model_table=model_table) b2 = Bidirectional(n=neurons, output_type='encoding', rnn_type=rnn_type, name='bi_'+rnn_type+'_layer_') model.add(b2) model.add(Recurrent(n=neurons, output_type='arbitrarylength', src_layers=b2.get_last_layers(), rnn_type=rnn_type, max_output_length=max_output_length)) model.add(OutputLayer()) else: raise DLPyError('The number of blocks for a text generation model should be at least 2.') return model def SequenceLabeling(conn, model_table='sequence_labeling_model', neurons=10, n_blocks=3, rnn_type='gru'): ''' Generates a sequence labeling model. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string, optional Specifies the name of CAS table to store the model. neurons : int, optional Specifies the number of neurons to be in each layer. Default: 10 n_blocks : int, optional Specifies the number of bidirectional blocks to be added to the model. Default: 3 rnn_type : string, optional Specifies the type of the rnn layer. Default: GRU Valid Values: RNN, LSTM, GRU Returns ------- :class:`Sequential` ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') if n_blocks >= 1: model = Sequential(conn=conn, model_table=model_table) model.add(Bidirectional(n=neurons, n_blocks=n_blocks, rnn_type=rnn_type, name='bi_'+rnn_type+'_layer_')) model.add(OutputLayer()) else: raise DLPyError('The number of blocks for a sequence labeling model should be at least 1.') return model def SpeechRecognition(conn, model_table='acoustic_model', neurons=10, n_blocks=3, rnn_type='gru'): ''' Generates a speech recognition model. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string, optional Specifies the name of CAS table to store the model. neurons : int, optional Specifies the number of neurons to be in each layer. Default: 10 n_blocks : int, optional Specifies the number of bidirectional blocks to be added to the model. Default: 3 rnn_type : string, optional Specifies the type of the rnn layer. Default: GRU Valid Values: RNN, LSTM, GRU Returns ------- :class:`Sequential` ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') if n_blocks >= 1: model = Sequential(conn=conn, model_table=model_table) model.add(Bidirectional(n=neurons, n_blocks=n_blocks, rnn_type=rnn_type, name='bi_'+rnn_type+'_layer_')) model.add(OutputLayer(error='CTC')) else: raise DLPyError('The number of blocks for an acoustic model should be at least 1.') return model def LeNet5(conn, model_table='LENET5', n_classes=10, n_channels=1, width=28, height=28, scale=1.0 / 255, random_flip='none', random_crop='none', offsets=0): ''' Generates a deep learning model with the LeNet5 architecture. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string, optional Specifies the name of CAS table to store the model. n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 10 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 1 width : int, optional Specifies the width of the input layer. Default: 28 height : int, optional Specifies the height of the input layer. Default: 28 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1.0 / 255 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'v', 'hv', 'none' Default: 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' Default: 'none' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: 0 Returns ------- :class:`Sequential` References ---------- http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') model = Sequential(conn=conn, model_table=model_table) model.add(InputLayer(n_channels=n_channels, width=width, height=height, scale=scale, offsets=offsets, random_flip=random_flip, random_crop=random_crop)) model.add(Conv2d(n_filters=6, width=5, height=5, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=16, width=5, height=5, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Dense(n=120)) model.add(Dense(n=84)) model.add(OutputLayer(n=n_classes)) return model
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/applications/applications.py
0.953329
0.591782
applications.py
pypi
from dlpy.sequential import Sequential from dlpy.layers import InputLayer, Conv2d, BN, Pooling, Detection, Dense, Reshape, Concat from dlpy.utils import DLPyError from .application_utils import get_layer_options, input_layer_options, not_supported_feature def YoloV2(conn, anchors, model_table='YoloV2', n_channels=3, width=416, height=416, scale=1.0 / 255, random_mutation=None, act='leaky', act_detection='AUTO', softmax_for_class_prob=True, coord_type='YOLO', max_label_per_image=30, max_boxes=30, n_classes=20, predictions_per_grid=5, do_sqrt=True, grid_number=13, coord_scale=None, object_scale=None, prediction_not_a_object_scale=None, class_scale=None, detection_threshold=None, iou_threshold=None, random_boxes=False, match_anchor_size=None, num_to_force_coord=None, random_flip=None, random_crop=None): ''' Generates a deep learning model with the Yolov2 architecture. Parameters ---------- conn : CAS Specifies the connection of the CAS connection. anchors : list Specifies the anchor box values. model_table : string, optional Specifies the name of CAS table to store the model. n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 416 height : int, optional Specifies the height of the input layer. Default: 416 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1.0 / 255 random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' act : string, optional Specifies the activation function for the batch normalization layers. Default: 'leaky' act_detection : string, optional Specifies the activation function for the detection layer. Valid Values: AUTO, IDENTITY, LOGISTIC, SIGMOID, TANH, RECTIFIER, RELU, SOFPLUS, ELU, LEAKY, FCMP Default: AUTO softmax_for_class_prob : bool, optional Specifies whether to perform Softmax on class probability per predicted object. Default: True coord_type : string, optional Specifies the format of how to represent bounding boxes. For example, a bounding box can be represented with the x and y locations of the top-left point as well as width and height of the rectangle. This format is the 'rect' format. We also support coco and yolo formats. Valid Values: 'rect', 'yolo', 'coco' Default: 'yolo' max_label_per_image : int, optional Specifies the maximum number of labels per image in the training. Default: 30 max_boxes : int, optional Specifies the maximum number of overall predictions allowed in the detection layer. Default: 30 n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 20 predictions_per_grid : int, optional Specifies the amount of predictions will be done per grid. Default: 5 do_sqrt : bool, optional Specifies whether to apply the SQRT function to width and height of the object for the cost function. Default: True grid_number : int, optional Specifies the amount of cells to be analyzed for an image. For example, if the value is 5, then the image will be divided into a 5 x 5 grid. Default: 13 coord_scale : float, optional Specifies the weight for the cost function in the detection layer, when objects exist in the grid. object_scale : float, optional Specifies the weight for object detected for the cost function in the detection layer. prediction_not_a_object_scale : float, optional Specifies the weight for the cost function in the detection layer, when objects do not exist in the grid. class_scale : float, optional Specifies the weight for the class of object detected for the cost function in the detection layer. detection_threshold : float, optional Specifies the threshold for object detection. iou_threshold : float, optional Specifies the IOU Threshold of maximum suppression in object detection. random_boxes : bool, optional Randomizing boxes when loading the bounding box information. Default: False match_anchor_size : bool, optional Whether to force the predicted box match the anchor boxes in sizes for all predictions num_to_force_coord : int, optional The number of leading chunk of images in training when the algorithm forces predicted objects in each grid to be equal to the anchor box sizes, and located at the grid center random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1612.08242.pdf ''' if len(anchors) != 2 * predictions_per_grid: raise DLPyError('The size of the anchor list in the detection layer for YOLOv2 should be equal to ' 'twice the number of predictions_per_grid.') model = Sequential(conn=conn, model_table=model_table) parameters = locals() input_parameters = get_layer_options(input_layer_options, parameters) if input_parameters['width'] != input_parameters['height']: print(not_supported_feature('Non-square yolo model training', 'height=width')) input_parameters['height'] = input_parameters['width'] model.add(InputLayer(**input_parameters)) # conv1 224 416 model.add(Conv2d(32, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv2 112 208 model.add(Conv2d(64, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv3 56 104 model.add(Conv2d(128, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv4 56 104 model.add(Conv2d(64, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv5 56 104 model.add(Conv2d(128, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv6 28 52 model.add(Conv2d(256, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv7 28 52 model.add(Conv2d(128, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv8 28 52 model.add(Conv2d(256, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv9 14 26 model.add(Conv2d(512, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv10 14 26 model.add(Conv2d(256, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv11 14 26 model.add(Conv2d(512, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv12 14 26 model.add(Conv2d(256, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv13 14 26 model.add(Conv2d(512, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv14 7 13 model.add(Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv15 7 13 model.add(Conv2d(512, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv16 7 13 model.add(Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv17 7 13 model.add(Conv2d(512, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv18 7 13 model.add(Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add( Conv2d((n_classes + 5) * predictions_per_grid, width=1, act='identity', include_bias=False, stride=1)) model.add(Detection(act=act_detection, detection_model_type='yolov2', anchors=anchors, softmax_for_class_prob=softmax_for_class_prob, coord_type=coord_type, class_number=n_classes, grid_number=grid_number, predictions_per_grid=predictions_per_grid, do_sqrt=do_sqrt, coord_scale=coord_scale, object_scale=object_scale, prediction_not_a_object_scale=prediction_not_a_object_scale, class_scale=class_scale, detection_threshold=detection_threshold, iou_threshold=iou_threshold, random_boxes=random_boxes, max_label_per_image=max_label_per_image, max_boxes=max_boxes, match_anchor_size=match_anchor_size, num_to_force_coord=num_to_force_coord)) return model def YoloV2_MultiSize(conn, anchors, model_table='YoloV2-MultiSize', n_channels=3, width=416, height=416, scale=1.0 / 255, random_mutation=None, act='leaky', act_detection='AUTO', softmax_for_class_prob=True, coord_type='YOLO', max_label_per_image=30, max_boxes=30, n_classes=20, predictions_per_grid=5, do_sqrt=True, grid_number=13, coord_scale=None, object_scale=None, prediction_not_a_object_scale=None, class_scale=None, detection_threshold=None, iou_threshold=None, random_boxes=False, match_anchor_size=None, num_to_force_coord=None, random_flip=None, random_crop=None): ''' Generates a deep learning model with the Yolov2 architecture. The model is same as Yolov2 proposed in original paper. In addition to Yolov2, the model adds a passthrough layer that brings feature from an earlier layer to lower resolution layer. Parameters ---------- conn : CAS Specifies the connection of the CAS connection. anchors : list Specifies the anchor box values. model_table : string, optional Specifies the name of CAS table to store the model. n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 416 height : int, optional Specifies the height of the input layer. Default: 416 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1.0 / 255 random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' act : string, optional Specifies the activation function for the batch normalization layers. Default: 'leaky' act_detection : string, optional Specifies the activation function for the detection layer. Valid Values: AUTO, IDENTITY, LOGISTIC, SIGMOID, TANH, RECTIFIER, RELU, SOFPLUS, ELU, LEAKY, FCMP Default: AUTO softmax_for_class_prob : bool, optional Specifies whether to perform Softmax on class probability per predicted object. Default: True coord_type : string, optional Specifies the format of how to represent bounding boxes. For example, a bounding box can be represented with the x and y locations of the top-left point as well as width and height of the rectangle. This format is the 'rect' format. We also support coco and yolo formats. Valid Values: 'rect', 'yolo', 'coco' Default: 'yolo' max_label_per_image : int, optional Specifies the maximum number of labels per image in the training. Default: 30 max_boxes : int, optional Specifies the maximum number of overall predictions allowed in the detection layer. Default: 30 n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 20 predictions_per_grid : int, optional Specifies the amount of predictions will be done per grid. Default: 5 do_sqrt : bool, optional Specifies whether to apply the SQRT function to width and height of the object for the cost function. Default: True grid_number : int, optional Specifies the amount of cells to be analyzed for an image. For example, if the value is 5, then the image will be divided into a 5 x 5 grid. Default: 13 coord_scale : float, optional Specifies the weight for the cost function in the detection layer, when objects exist in the grid. object_scale : float, optional Specifies the weight for object detected for the cost function in the detection layer. prediction_not_a_object_scale : float, optional Specifies the weight for the cost function in the detection layer, when objects do not exist in the grid. class_scale : float, optional Specifies the weight for the class of object detected for the cost function in the detection layer. detection_threshold : float, optional Specifies the threshold for object detection. iou_threshold : float, optional Specifies the IOU Threshold of maximum suppression in object detection. random_boxes : bool, optional Randomizing boxes when loading the bounding box information. Default: False match_anchor_size : bool, optional Whether to force the predicted box match the anchor boxes in sizes for all predictions num_to_force_coord : int, optional The number of leading chunk of images in training when the algorithm forces predicted objects in each grid to be equal to the anchor box sizes, and located at the grid center random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1612.08242.pdf ''' model = Sequential(conn=conn, model_table=model_table) parameters = locals() input_parameters = get_layer_options(input_layer_options, parameters) if input_parameters['width'] != input_parameters['height']: print(not_supported_feature('Non-square yolo model training', 'height=width')) input_parameters['height'] = input_parameters['width'] model.add(InputLayer(**input_parameters)) # conv1 224 416 model.add(Conv2d(32, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv2 112 208 model.add(Conv2d(64, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv3 56 104 model.add(Conv2d(128, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv4 56 104 model.add(Conv2d(64, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv5 56 104 model.add(Conv2d(128, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv6 28 52 model.add(Conv2d(256, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv7 28 52 model.add(Conv2d(128, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv8 28 52 model.add(Conv2d(256, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv9 14 26 model.add(Conv2d(512, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv10 14 26 model.add(Conv2d(256, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv11 14 26 model.add(Conv2d(512, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv12 14 26 model.add(Conv2d(256, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv13 14 26 model.add(Conv2d(512, width=3, act='identity', include_bias=False, stride=1)) pointLayer1 = BN(act=act, name='BN5_13') model.add(pointLayer1) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv14 7 13 model.add(Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv15 7 13 model.add(Conv2d(512, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv16 7 13 model.add(Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv17 7 13 model.add(Conv2d(512, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv18 7 13 model.add(Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv19 7 13 model.add(Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act, name='BN6_19')) # conv20 7 13 model.add(Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) pointLayer2 = BN(act=act, name='BN6_20') model.add(pointLayer2) # conv21 7 26 * 26 * 512 -> 26 * 26 * 64 model.add(Conv2d(64, width=1, act='identity', include_bias=False, stride=1, src_layers=[pointLayer1])) model.add(BN(act=act)) # reshape 26 * 26 * 64 -> 13 * 13 * 256 pointLayer3 = Reshape(act='identity', width=grid_number, height=grid_number, depth=256, name='reshape1') model.add(pointLayer3) # concat model.add(Concat(act='identity', src_layers=[pointLayer2, pointLayer3])) # conv22 7 13 model.add(Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add( Conv2d((n_classes + 5) * predictions_per_grid, width=1, act='identity', include_bias=False, stride=1)) model.add(Detection(act=act_detection, detection_model_type='yolov2', anchors=anchors, softmax_for_class_prob=softmax_for_class_prob, coord_type=coord_type, class_number=n_classes, grid_number=grid_number, predictions_per_grid=predictions_per_grid, do_sqrt=do_sqrt, coord_scale=coord_scale, object_scale=object_scale, prediction_not_a_object_scale=prediction_not_a_object_scale, class_scale=class_scale, detection_threshold=detection_threshold, iou_threshold=iou_threshold, random_boxes=random_boxes, max_label_per_image=max_label_per_image, max_boxes=max_boxes, match_anchor_size=match_anchor_size, num_to_force_coord=num_to_force_coord)) return model def Tiny_YoloV2(conn, anchors, model_table='Tiny-Yolov2', n_channels=3, width=416, height=416, scale=1.0 / 255, random_mutation=None, act='leaky', act_detection='AUTO', softmax_for_class_prob=True, coord_type='YOLO', max_label_per_image=30, max_boxes=30, n_classes=20, predictions_per_grid=5, do_sqrt=True, grid_number=13, coord_scale=None, object_scale=None, prediction_not_a_object_scale=None, class_scale=None, detection_threshold=None, iou_threshold=None, random_boxes=False, match_anchor_size=None, num_to_force_coord=None, random_flip=None, random_crop=None): ''' Generate a deep learning model with the Tiny Yolov2 architecture. Tiny Yolov2 is a very small model of Yolov2, so that it includes fewer numbers of convolutional layer and batch normalization layer. Parameters ---------- conn : CAS Specifies the connection of the CAS connection. anchors : list Specifies the anchor box values. model_table : string, optional Specifies the name of CAS table to store the model. n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 416 height : int, optional Specifies the height of the input layer. Default: 416 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1.0 / 255 random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' act : string, optional Specifies the activation function for the batch normalization layers. Default: 'leaky' act_detection : string, optional Specifies the activation function for the detection layer. Valid Values: AUTO, IDENTITY, LOGISTIC, SIGMOID, TANH, RECTIFIER, RELU, SOFPLUS, ELU, LEAKY, FCMP Default: AUTO softmax_for_class_prob : bool, optional Specifies whether to perform Softmax on class probability per predicted object. Default: True coord_type : string, optional Specifies the format of how to represent bounding boxes. For example, a bounding box can be represented with the x and y locations of the top-left point as well as width and height of the rectangle. This format is the 'rect' format. We also support coco and yolo formats. Valid Values: 'rect', 'yolo', 'coco' Default: 'yolo' max_label_per_image : int, optional Specifies the maximum number of labels per image in the training. Default: 30 max_boxes : int, optional Specifies the maximum number of overall predictions allowed in the detection layer. Default: 30 n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 20 predictions_per_grid : int, optional Specifies the amount of predictions will be done per grid. Default: 5 do_sqrt : bool, optional Specifies whether to apply the SQRT function to width and height of the object for the cost function. Default: True grid_number : int, optional Specifies the amount of cells to be analyzed for an image. For example, if the value is 5, then the image will be divided into a 5 x 5 grid. Default: 13 coord_scale : float, optional Specifies the weight for the cost function in the detection layer, when objects exist in the grid. object_scale : float, optional Specifies the weight for object detected for the cost function in the detection layer. prediction_not_a_object_scale : float, optional Specifies the weight for the cost function in the detection layer, when objects do not exist in the grid. class_scale : float, optional Specifies the weight for the class of object detected for the cost function in the detection layer. detection_threshold : float, optional Specifies the threshold for object detection. iou_threshold : float, optional Specifies the IOU Threshold of maximum suppression in object detection. random_boxes : bool, optional Randomizing boxes when loading the bounding box information. Default: False match_anchor_size : bool, optional Whether to force the predicted box match the anchor boxes in sizes for all predictions num_to_force_coord : int, optional The number of leading chunk of images in training when the algorithm forces predicted objects in each grid to be equal to the anchor box sizes, and located at the grid center random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1612.08242.pdf ''' model = Sequential(conn=conn, model_table=model_table) parameters = locals() input_parameters = get_layer_options(input_layer_options, parameters) if input_parameters['width'] != input_parameters['height']: print(not_supported_feature('Non-square yolo model training', 'height=width')) input_parameters['height'] = input_parameters['width'] model.add(InputLayer(**input_parameters)) # conv1 416 448 model.add(Conv2d(n_filters=16, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv2 208 224 model.add(Conv2d(n_filters=32, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv3 104 112 model.add(Conv2d(n_filters=64, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv4 52 56 model.add(Conv2d(n_filters=128, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv5 26 28 model.add(Conv2d(n_filters=256, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv6 13 14 model.add(Conv2d(n_filters=512, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=1, pool='max')) # conv7 13 model.add(Conv2d(n_filters=1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv8 13 model.add(Conv2d(n_filters=512, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Conv2d((n_classes + 5) * predictions_per_grid, width=1, act='identity', include_bias=False, stride=1)) model.add(Detection(act=act_detection, detection_model_type='yolov2', anchors=anchors, softmax_for_class_prob=softmax_for_class_prob, coord_type=coord_type, class_number=n_classes, grid_number=grid_number, predictions_per_grid=predictions_per_grid, do_sqrt=do_sqrt, coord_scale=coord_scale, object_scale=object_scale, prediction_not_a_object_scale=prediction_not_a_object_scale, class_scale=class_scale, detection_threshold=detection_threshold, iou_threshold=iou_threshold, random_boxes=random_boxes, max_label_per_image=max_label_per_image, max_boxes=max_boxes, match_anchor_size=match_anchor_size, num_to_force_coord=num_to_force_coord)) return model def YoloV1(conn, model_table='YoloV1', n_channels=3, width=448, height=448, scale=1.0 / 255, random_mutation=None, act='leaky', dropout=0, act_detection='AUTO', softmax_for_class_prob=True, coord_type='YOLO', max_label_per_image=30, max_boxes=30, n_classes=20, predictions_per_grid=2, do_sqrt=True, grid_number=7, coord_scale=None, object_scale=None, prediction_not_a_object_scale=None, class_scale=None, detection_threshold=None, iou_threshold=None, random_boxes=False, random_flip=None, random_crop=None): ''' Generates a deep learning model with the Yolo V1 architecture. Parameters ---------- conn : CAS Specifies the connection of the CAS connection. model_table : string, optional Specifies the name of CAS table to store the model. n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 448 height : int, optional Specifies the height of the input layer. Default: 448 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1.0 / 255 random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' act: String, optional Specifies the activation function to be used in the convolutional layer layers and the final convolution layer. Default: 'leaky' dropout: double, optional Specifies the drop out rate. Default: 0 act_detection : string, optional Specifies the activation function for the detection layer. Valid Values: AUTO, IDENTITY, LOGISTIC, SIGMOID, TANH, RECTIFIER, RELU, SOFPLUS, ELU, LEAKY, FCMP Default: AUTO softmax_for_class_prob : bool, optional Specifies whether to perform Softmax on class probability per predicted object. Default: True coord_type : string, optional Specifies the format of how to represent bounding boxes. For example, a bounding box can be represented with the x and y locations of the top-left point as well as width and height of the rectangle. This format is the 'rect' format. We also support coco and yolo formats. Valid Values: 'rect', 'yolo', 'coco' Default: 'yolo' max_label_per_image : int, optional Specifies the maximum number of labels per image in the training. Default: 30 max_boxes : int, optional Specifies the maximum number of overall predictions allowed in the detection layer. Default: 30 n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 20 predictions_per_grid : int, optional Specifies the amount of predictions will be done per grid. Default: 2 do_sqrt : bool, optional Specifies whether to apply the SQRT function to width and height of the object for the cost function. Default: True grid_number : int, optional Specifies the amount of cells to be analyzed for an image. For example, if the value is 5, then the image will be divided into a 5 x 5 grid. Default: 7 coord_scale : float, optional Specifies the weight for the cost function in the detection layer, when objects exist in the grid. object_scale : float, optional Specifies the weight for object detected for the cost function in the detection layer. prediction_not_a_object_scale : float, optional Specifies the weight for the cost function in the detection layer, when objects do not exist in the grid. class_scale : float, optional Specifies the weight for the class of object detected for the cost function in the detection layer. detection_threshold : float, optional Specifies the threshold for object detection. iou_threshold : float, optional Specifies the IOU Threshold of maximum suppression in object detection. random_boxes : bool, optional Randomizing boxes when loading the bounding box information. Default: False random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1506.02640.pdf ''' model = Sequential(conn=conn, model_table=model_table) parameters = locals() input_parameters = get_layer_options(input_layer_options, parameters) if input_parameters['width'] != input_parameters['height']: print(not_supported_feature('Non-square yolo model training', 'height=width')) input_parameters['height'] = input_parameters['width'] model.add(InputLayer(**input_parameters)) # conv1 448 model.add(Conv2d(32, width=3, act=act, include_bias=False, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv2 224 model.add(Conv2d(64, width=3, act=act, include_bias=False, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv3 112 model.add(Conv2d(128, width=3, act=act, include_bias=False, stride=1)) # conv4 112 model.add(Conv2d(64, width=1, act=act, include_bias=False, stride=1)) # conv5 112 model.add(Conv2d(128, width=3, act=act, include_bias=False, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv6 56 model.add(Conv2d(256, width=3, act=act, include_bias=False, stride=1)) # conv7 56 model.add(Conv2d(128, width=1, act=act, include_bias=False, stride=1)) # conv8 56 model.add(Conv2d(256, width=3, act=act, include_bias=False, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv9 28 model.add(Conv2d(512, width=3, act=act, include_bias=False, stride=1)) # conv10 28 model.add(Conv2d(256, width=1, act=act, include_bias=False, stride=1)) # conv11 28 model.add(Conv2d(512, width=3, act=act, include_bias=False, stride=1)) # conv12 28 model.add(Conv2d(256, width=1, act=act, include_bias=False, stride=1)) # conv13 28 model.add(Conv2d(512, width=3, act=act, include_bias=False, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv14 14 model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=1)) # conv15 14 model.add(Conv2d(512, width=1, act=act, include_bias=False, stride=1)) # conv16 14 model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=1)) # conv17 14 model.add(Conv2d(512, width=1, act=act, include_bias=False, stride=1)) # conv18 14 model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=1)) # conv19 14 model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=1)) # conv20 7 model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=2)) # conv21 7 model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=1)) # conv22 7 model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=1)) # conv23 7 model.add(Conv2d(256, width=3, act=act, include_bias=False, stride=1, dropout=dropout)) model.add(Dense(n=(n_classes + (5 * predictions_per_grid)) * grid_number * grid_number, act='identity')) model.add(Detection(act = act_detection, detection_model_type = 'yolov1', softmax_for_class_prob = softmax_for_class_prob, coord_type = coord_type, class_number = n_classes, grid_number = grid_number, predictions_per_grid = predictions_per_grid, do_sqrt = do_sqrt, coord_scale = coord_scale, object_scale = object_scale, prediction_not_a_object_scale = prediction_not_a_object_scale, class_scale = class_scale, detection_threshold = detection_threshold, iou_threshold = iou_threshold, random_boxes = random_boxes, max_label_per_image = max_label_per_image, max_boxes = max_boxes)) return model def Tiny_YoloV1(conn, model_table='Tiny-YoloV1', n_channels=3, width=448, height=448, scale=1.0 / 255, random_mutation=None, act='leaky', dropout=0, act_detection='AUTO', softmax_for_class_prob=True, coord_type='YOLO', max_label_per_image=30, max_boxes=30, n_classes=20, predictions_per_grid=2, do_sqrt=True, grid_number=7, coord_scale=None, object_scale=None, prediction_not_a_object_scale=None, class_scale=None, detection_threshold=None, iou_threshold=None, random_boxes=False, random_flip=None, random_crop=None): ''' Generates a deep learning model with the Tiny Yolov1 architecture. Tiny Yolov1 is a very small model of Yolov1, so that it includes fewer numbers of convolutional layer. Parameters ---------- conn : CAS Specifies the connection of the CAS connection. model_table : string, optional Specifies the name of CAS table to store the model. n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 448 height : int, optional Specifies the height of the input layer. Default: 448 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1.0 / 255 random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' act: String, optional Specifies the activation function to be used in the convolutional layer layers and the final convolution layer. Default: 'leaky' dropout: double, optional Specifies the drop out rate. Default: 0 act_detection : string, optional Specifies the activation function for the detection layer. Valid Values: AUTO, IDENTITY, LOGISTIC, SIGMOID, TANH, RECTIFIER, RELU, SOFPLUS, ELU, LEAKY, FCMP Default: AUTO softmax_for_class_prob : bool, optional Specifies whether to perform Softmax on class probability per predicted object. Default: True coord_type : string, optional Specifies the format of how to represent bounding boxes. For example, a bounding box can be represented with the x and y locations of the top-left point as well as width and height of the rectangle. This format is the 'rect' format. We also support coco and yolo formats. Valid Values: 'rect', 'yolo', 'coco' Default: 'yolo' max_label_per_image : int, optional Specifies the maximum number of labels per image in the training. Default: 30 max_boxes : int, optional Specifies the maximum number of overall predictions allowed in the detection layer. Default: 30 n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 20 predictions_per_grid : int, optional Specifies the amount of predictions will be done per grid. Default: 2 do_sqrt : bool, optional Specifies whether to apply the SQRT function to width and height of the object for the cost function. Default: True grid_number : int, optional Specifies the amount of cells to be analyzed for an image. For example, if the value is 5, then the image will be divided into a 5 x 5 grid. Default: 7 coord_scale : float, optional Specifies the weight for the cost function in the detection layer, when objects exist in the grid. object_scale : float, optional Specifies the weight for object detected for the cost function in the detection layer. prediction_not_a_object_scale : float, optional Specifies the weight for the cost function in the detection layer, when objects do not exist in the grid. class_scale : float, optional Specifies the weight for the class of object detected for the cost function in the detection layer. detection_threshold : float, optional Specifies the threshold for object detection. iou_threshold : float, optional Specifies the IOU Threshold of maximum suppression in object detection. random_boxes : bool, optional Randomizing boxes when loading the bounding box information. Default: False random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1506.02640.pdf ''' model = Sequential(conn=conn, model_table=model_table) parameters = locals() input_parameters = get_layer_options(input_layer_options, parameters) if input_parameters['width'] != input_parameters['height']: print(not_supported_feature('Non-square yolo model training', 'height=width')) input_parameters['height'] = input_parameters['width'] model.add(InputLayer(**input_parameters)) model.add(Conv2d(16, width=3, act=act, include_bias=False, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(32, width=3, act=act, include_bias=False, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(64, width=3, act=act, include_bias=False, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(128, width=3, act=act, include_bias=False, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(256, width=3, act=act, include_bias=False, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(512, width=3, act=act, include_bias=False, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(256, width=3, act=act, include_bias=False, stride=1, dropout=dropout)) model.add(Dense(n=(n_classes + (5 * predictions_per_grid)) * grid_number * grid_number, act='identity')) model.add(Detection(act=act_detection, detection_model_type='yolov1', softmax_for_class_prob=softmax_for_class_prob, coord_type=coord_type, class_number=n_classes, grid_number=grid_number, predictions_per_grid=predictions_per_grid, do_sqrt=do_sqrt, coord_scale=coord_scale, object_scale=object_scale, prediction_not_a_object_scale=prediction_not_a_object_scale, class_scale=class_scale, detection_threshold=detection_threshold, iou_threshold=iou_threshold, random_boxes=random_boxes, max_label_per_image=max_label_per_image, max_boxes=max_boxes)) return model
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/applications/yolo.py
0.960851
0.62621
yolo.py
pypi
import os from dlpy.sequential import Sequential from dlpy.layers import InputLayer, Conv2d, BN, Pooling, Concat, OutputLayer, GlobalAveragePooling2D from dlpy.blocks import DenseNetBlock from .application_utils import get_layer_options, input_layer_options from dlpy.model import Model from dlpy.utils import DLPyError from dlpy.network import extract_input_layer, extract_output_layer, extract_conv_layer def DenseNet(conn, model_table='DenseNet', n_classes=None, conv_channel=16, growth_rate=12, n_blocks=4, n_cells=4, n_channels=3, width=32, height=32, scale=1, random_flip=None, random_crop=None, offsets=(85, 111, 139), random_mutation=None): ''' Generates a deep learning model with the DenseNet architecture. Parameters ---------- conn : CAS Specifies the connection of the CAS connection. model_table : string Specifies the name of CAS table to store the model. n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: None conv_channel : int, optional Specifies the number of filters of the first convolution layer. Default: 16 growth_rate : int, optional Specifies the growth rate of convolution layers. Default: 12 n_blocks : int, optional Specifies the number of DenseNet blocks. Default: 4 n_cells : int, optional Specifies the number of dense connection for each DenseNet block. Default: 4 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 32 height : int, optional Specifies the height of the input layer. Default: 32 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (85, 111, 139) random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1608.06993.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # get all the parms passed in parameters = locals() channel_in = conv_channel # number of channel of transition conv layer model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # Top layers model.add(Conv2d(conv_channel, width=3, act='identity', include_bias=False, stride=1)) for i in range(n_blocks): model.add(DenseNetBlock(n_cells=n_cells, kernel_size=3, n_filter=growth_rate, stride=1)) # transition block channel_in += (growth_rate * n_cells) model.add(BN(act='relu')) if i != (n_blocks - 1): model.add(Conv2d(channel_in, width=3, act='identity', include_bias=False, stride=1)) model.add(Pooling(width=2, height=2, pool='mean')) model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model def DenseNet121(conn, model_table='DENSENET121', n_classes=1000, conv_channel=64, growth_rate=32, n_cells=[6, 12, 24, 16], n_channels=3, reduction=0.5, width=224, height=224, scale=1, random_flip=None, random_crop=None, offsets=(103.939, 116.779, 123.68), random_mutation=None): ''' Generates a deep learning model with the DenseNet121 architecture. Parameters ---------- conn : CAS Specifies the connection of the CAS connection. model_table : string Specifies the name of CAS table to store the model. n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 conv_channel : int, optional Specifies the number of filters of the first convolution layer. Default: 64 growth_rate : int, optional Specifies the growth rate of convolution layers. Default: 32 n_cells : int array length=4, optional Specifies the number of dense connection for each DenseNet block. Default: [6, 12, 24, 16] reduction : double, optional Specifies the factor of transition blocks. Default: 0.5 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3. width : int, optional Specifies the width of the input layer. Default: 224. height : int, optional Specifies the height of the input layer. Default: 224. scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1. random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1608.06993.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # get all the parms passed in parameters = locals() n_blocks = len(n_cells) model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # Top layers model.add(Conv2d(conv_channel, width=7, act='identity', include_bias=False, stride=2)) model.add(BN(act='relu')) src_layer = Pooling(width=3, height=3, stride=2, padding=1, pool='max') model.add(src_layer) for i in range(n_blocks): for _ in range(n_cells[i]): model.add(BN(act='relu')) model.add(Conv2d(n_filters=growth_rate * 4, width=1, act='identity', stride=1, include_bias=False)) model.add(BN(act='relu')) src_layer2 = Conv2d(n_filters=growth_rate, width=3, act='identity', stride=1, include_bias=False) model.add(src_layer2) src_layer = Concat(act='identity', src_layers=[src_layer, src_layer2]) model.add(src_layer) conv_channel += growth_rate if i != (n_blocks - 1): # transition block conv_channel = int(conv_channel * reduction) model.add(BN(act='relu')) model.add(Conv2d(n_filters=conv_channel, width=1, act='identity', stride=1, include_bias=False)) src_layer = Pooling(width=2, height=2, stride=2, pool='mean') model.add(src_layer) model.add(BN(act='identity')) # Bottom Layers model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model def DenseNet121_ONNX(conn, model_file, n_classes=1000, width=224, height=224, offsets=(255*0.406, 255*0.456, 255*0.485), norm_stds=(255*0.225, 255*0.224, 255*0.229), random_flip=None, random_crop=None, random_mutation=None, include_top=False): """ Generates a deep learning model with the DenseNet121_ONNX architecture. The model architecture and pre-trained weights is generated from DenseNet121 ONNX trained on ImageNet dataset. The model file and the weights file can be downloaded from https://support.sas.com/documentation/prod-p/vdmml/zip/. To learn more information about the model and pre-processing. Please go to the websites: https://github.com/onnx/models/tree/master/vision/classification/densenet-121. Parameters ---------- conn : CAS Specifies the CAS connection object. model_file : string Specifies the absolute server-side path of the model table file. The model table file can be downloaded from https://support.sas.com/documentation/prod-p/vdmml/zip/. n_classes : int, optional Specifies the number of classes. Default: 1000 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. The channel order is BGR. Default: (255*0.406, 255*0.456, 255*0.485) norm_stds : double or iter-of-doubles, optional Specifies a standard deviation for each channel in the input data. The final input data is normalized with specified means and standard deviations. The channel order is BGR. Default: (255*0.225, 255*0.224, 255*0.229) random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' include_top : bool, optional Specifies whether to include pre-trained weights of the top layers (i.e., the FC layers) Default: False """ parameters = locals() input_parameters = get_layer_options(input_layer_options, parameters) # load model and model weights model = Model.from_sashdat(conn, path = model_file) # check if a user points to a correct model. if model.summary.shape[0] != 307: raise DLPyError("The model file doesn't point to a valid DenseNet121_ONNX model. " "Please check the SASHDAT file.") # extract input layer config model_table_df = conn.CASTable(**model.model_table).to_frame() input_layer_df = model_table_df[model_table_df['_DLLayerID_'] == 0] input_layer = extract_input_layer(input_layer_df) input_layer_config = input_layer.config # update input layer config input_layer_config.update(input_parameters) # update the layer list model.layers[0] = InputLayer(**input_layer_config, name=model.layers[0].name) # warning if model weights doesn't exist if not conn.tableexists(model.model_weights.name).exists: weights_file_path = os.path.join(os.path.dirname(model_file), model.model_name + '_weights.sashdat') print('WARNING: Model weights is not attached ' 'since system cannot find a weights file located at {}'.format(weights_file_path)) if include_top: if n_classes != 1000: raise DLPyError("If include_top is enabled, n_classes has to be 1000.") else: # since the output layer is non fully connected layer, # we need to modify the convolution right before the output. The number of filter is set to n_classes. conv_layer_df = model_table_df[model_table_df['_DLLayerID_'] == 305] conv_layer = extract_conv_layer(conv_layer_df) conv_layer_config = conv_layer.config # update input layer config conv_layer_config.update({'n_filters': n_classes}) # update the layer list model.layers[-2] = Conv2d(**conv_layer_config, name=model.layers[-2].name, src_layers=model.layers[-3]) # overwrite n_classes in output layer out_layer_df = model_table_df[model_table_df['_DLLayerID_'] == 306] out_layer = extract_output_layer(out_layer_df) out_layer_config = out_layer.config # update input layer config out_layer_config.update({'n': n_classes}) # update the layer list model.layers[-1] = OutputLayer(**out_layer_config, name = model.layers[-1].name, src_layers=model.layers[-2]) # remove top weights model.model_weights.append_where('_LayerID_<305') model._retrieve_('table.partition', table=model.model_weights, casout=dict(replace=True, name=model.model_weights.name)) model.set_weights(model.model_weights.name) # recompile the whole network according to the new layer list model.compile() return model
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/applications/densenet.py
0.918576
0.689655
densenet.py
pypi
import warnings from dlpy.sequential import Sequential from dlpy.model import Model from dlpy.layers import InputLayer, Conv2d, BN, Pooling, GlobalAveragePooling2D, OutputLayer, Reshape from dlpy.blocks import ResBlockBN, ResBlock_Caffe from dlpy.utils import DLPyError, check_layer_class from dlpy.caffe_models import (model_resnet50, model_resnet101, model_resnet152) from .application_utils import get_layer_options, input_layer_options def ResNet18_SAS(conn, model_table='RESNET18_SAS', batch_norm_first=True, n_classes=1000, n_channels=3, width=224, height=224, scale=1, random_flip=None, random_crop=None, offsets=(103.939, 116.779, 123.68), random_mutation=None, reshape_after_input=None): ''' Generates a deep learning model with the ResNet18 architecture. Compared to Caffe ResNet18, the model prepends a batch normalization layer to the last global pooling layer. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string, optional Specifies the name of CAS table to store the model. batch_norm_first : bool, optional Specifies whether to have batch normalization layer before the convolution layer in the residual block. For a detailed discussion about this, please refer to this paper: He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. Default: True n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : :class:`Reshape`, optional Specifies whether to add a reshape layer after the input layer. Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1512.03385.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # check the type check_layer_class(reshape_after_input, Reshape) # get all the parms passed in parameters = locals() model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # add reshape when specified if reshape_after_input: model.add(reshape_after_input) # Top layers model.add(Conv2d(64, 7, act='identity', include_bias=False, stride=2)) model.add(BN(act='relu')) model.add(Pooling(width=3, stride=2)) kernel_sizes_list = [(3, 3), (3, 3), (3, 3), (3, 3)] n_filters_list = [(64, 64), (128, 128), (256, 256), (512, 512)] rep_nums_list = [2, 2, 2, 2] for i in range(4): kernel_sizes = kernel_sizes_list[i] n_filters = n_filters_list[i] for rep_num in range(rep_nums_list[i]): if i == 0: strides = 1 else: if rep_num == 0: strides = 2 else: strides = 1 model.add(ResBlockBN(kernel_sizes=kernel_sizes, n_filters=n_filters, strides=strides, batch_norm_first=batch_norm_first)) # Bottom Layers model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model def ResNet18_Caffe(conn, model_table='RESNET18_CAFFE', batch_norm_first=False, n_classes=1000, n_channels=3, width=224, height=224, scale=1, random_flip=None, random_crop=None, offsets=None, random_mutation=None, reshape_after_input=None): ''' Generates a deep learning model with the ResNet18 architecture with convolution shortcut. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string or dict or CAS table, optional Specifies the CAS table to store the deep learning model. batch_norm_first : bool, optional Specifies whether to have batch normalization layer before the convolution layer in the residual block. For a detailed discussion about this, please refer to this paper: He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. Default: False n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : :class:`Reshape`, optional Specifies whether to add a reshape layer after the input layer. Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1512.03385.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # check the type check_layer_class(reshape_after_input, Reshape) # get all the parms passed in parameters = locals() model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # add reshape when specified if reshape_after_input: model.add(reshape_after_input) # Top layers model.add(Conv2d(64, 7, act='identity', include_bias=False, stride=2)) model.add(BN(act='relu')) model.add(Pooling(width=3, stride=2)) kernel_sizes_list = [(3, 3), (3, 3), (3, 3), (3, 3)] n_filters_list = [(64, 64), (128, 128), (256, 256), (512, 512)] rep_nums_list = [2, 2, 2, 2] for i in range(4): kernel_sizes = kernel_sizes_list[i] n_filters = n_filters_list[i] for rep_num in range(rep_nums_list[i]): if rep_num == 0: conv_short_cut = True if i == 0: strides = 1 else: strides = 2 else: conv_short_cut = False strides = 1 model.add(ResBlock_Caffe(kernel_sizes=kernel_sizes, n_filters=n_filters, strides=strides, batch_norm_first=batch_norm_first, conv_short_cut=conv_short_cut)) # Bottom Layers model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model def ResNet34_SAS(conn, model_table='RESNET34_SAS', n_classes=1000, n_channels=3, width=224, height=224, scale=1, batch_norm_first=True, random_flip=None, random_crop=None, offsets=(103.939, 116.779, 123.68), random_mutation=None, reshape_after_input=None): ''' Generates a deep learning model with the ResNet34 architecture. Compared to Caffe ResNet34, the model prepends a batch normalization layer to the last global pooling layer. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string or dict or CAS table, optional Specifies the CAS table to store the deep learning model. batch_norm_first : bool, optional Specifies whether to have batch normalization layer before the convolution layer in the residual block. For a detailed discussion about this, please refer to this paper: He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. Default: True n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : :class:`Reshape`, optional Specifies whether to add a reshape layer after the input layer. Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1512.03385.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # check the type check_layer_class(reshape_after_input, Reshape) # get all the parms passed in parameters = locals() model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # add reshape when specified if reshape_after_input: model.add(reshape_after_input) # Top layers model.add(Conv2d(64, 7, act='identity', include_bias=False, stride=2)) model.add(BN(act='relu')) model.add(Pooling(width=3, stride=2)) kernel_sizes_list = [(3, 3), (3, 3), (3, 3), (3, 3)] n_filters_list = [(64, 64), (128, 128), (256, 256), (512, 512)] rep_nums_list = [3, 4, 6, 3] for i in range(4): kernel_sizes = kernel_sizes_list[i] n_filters = n_filters_list[i] for rep_num in range(rep_nums_list[i]): if i == 0: strides = 1 else: if rep_num == 0: strides = 2 else: strides = 1 model.add(ResBlockBN(kernel_sizes=kernel_sizes, n_filters=n_filters, strides=strides, batch_norm_first=batch_norm_first)) # Bottom Layers model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model def ResNet34_Caffe(conn, model_table='RESNET34_CAFFE', n_classes=1000, n_channels=3, width=224, height=224, scale=1, batch_norm_first=False, random_flip=None, random_crop=None, offsets=None, random_mutation=None, reshape_after_input=None): ''' Generates a deep learning model with the ResNet34 architecture with convolution shortcut. Parameters ---------- conn : CAS Specifies the CAS connection object model_table : string or dict or CAS table, optional Specifies the CAS table to store the deep learning model. batch_norm_first : bool, optional Specifies whether to have batch normalization layer before the convolution layer in the residual block. For a detailed discussion about this, please refer to this paper: He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. Default: False n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: None random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : :class:`Reshape`, optional Specifies whether to add a reshape layer after the input layer. Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1512.03385.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # check the type check_layer_class(reshape_after_input, Reshape) # get all the parms passed in parameters = locals() model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # add reshape when specified if reshape_after_input: model.add(reshape_after_input) # Top layers model.add(Conv2d(64, 7, act='identity', include_bias=False, stride=2)) model.add(BN(act='relu')) model.add(Pooling(width=3, stride=2)) # Configuration of the residual blocks kernel_sizes_list = [(3, 3), (3, 3), (3, 3), (3, 3)] n_filters_list = [(64, 64), (128, 128), (256, 256), (512, 512)] rep_nums_list = [3, 4, 6, 3] for i in range(4): kernel_sizes = kernel_sizes_list[i] n_filters = n_filters_list[i] for rep_num in range(rep_nums_list[i]): if rep_num == 0: conv_short_cut = True if i == 0: strides = 1 else: strides = 2 else: conv_short_cut = False strides = 1 model.add(ResBlock_Caffe(kernel_sizes=kernel_sizes, n_filters=n_filters, strides=strides, batch_norm_first=batch_norm_first, conv_short_cut=conv_short_cut)) # Bottom Layers model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model def ResNet50_SAS(conn, model_table='RESNET50_SAS', n_classes=1000, n_channels=3, width=224, height=224, scale=1, batch_norm_first=True, random_flip=None, random_crop=None, offsets=(103.939, 116.779, 123.68), random_mutation=None, reshape_after_input=None): ''' Generates a deep learning model with the ResNet50 architecture. Compared to Caffe ResNet50, the model prepends a batch normalization layer to the last global pooling layer. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string or dict or CAS table, optional Specifies the CAS table to store the deep learning model. batch_norm_first : bool, optional Specifies whether to have batch normalization layer before the convolution layer in the residual block. For a detailed discussion about this, please refer to this paper: He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. Default: True n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : :class:`Reshape`, optional Specifies whether to add a reshape layer after the input layer. Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1512.03385.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # check the type check_layer_class(reshape_after_input, Reshape) # get all the parms passed in parameters = locals() model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # add reshape when specified if reshape_after_input: model.add(reshape_after_input) # Top layers model.add(Conv2d(64, 7, act='identity', include_bias=False, stride=2)) model.add(BN(act='relu')) model.add(Pooling(width=3, stride=2)) kernel_sizes_list = [(1, 3, 1)] * 4 n_filters_list = [(64, 64, 256), (128, 128, 512), (256, 256, 1024), (512, 512, 2048)] rep_nums_list = [3, 4, 6, 3] for i in range(4): kernel_sizes = kernel_sizes_list[i] n_filters = n_filters_list[i] for rep_num in range(rep_nums_list[i]): if i == 0: strides = 1 else: if rep_num == 0: strides = 2 else: strides = 1 model.add(ResBlockBN(kernel_sizes=kernel_sizes, n_filters=n_filters, strides=strides, batch_norm_first=batch_norm_first)) model.add(BN(act='relu')) # Bottom Layers model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model def ResNet50_Caffe(conn, model_table='RESNET50_CAFFE', n_classes=1000, n_channels=3, width=224, height=224, scale=1, batch_norm_first=False, random_flip=None, random_crop=None, offsets=(103.939, 116.779, 123.68), pre_trained_weights=False, pre_trained_weights_file=None, include_top=False, random_mutation=None, reshape_after_input=None): ''' Generates a deep learning model with the ResNet50 architecture with convolution shortcut. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string or dict or CAS table, optional Specifies the CAS table to store the deep learning model. n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 batch_norm_first : bool, optional Specifies whether to have batch normalization layer before the convolution layer in the residual block. For a detailed discussion about this, please refer to this paper: He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. Default: False n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) pre_trained_weights : bool, optional Specifies whether to use the pre-trained weights trained on the ImageNet data set. Default: False pre_trained_weights_file : string, optional Specifies the file name for the pre-trained weights. This option is required when pre_trained_weights=True. Must be a fully qualified file name of SAS-compatible file (e.g., *.caffemodel.h5) include_top : bool, optional Specifies whether to include pre-trained weights of the top layers (i.e., the last layer for classification). Default: False random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : :class:`Reshape`, optional Specifies whether to add a reshape layer after the input layer. Returns ------- :class:`Sequential` If `pre_trained_weights` is `False` :class:`Model` If `pre_trained_weights` is `True` References ---------- https://arxiv.org/pdf/1512.03385.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # check the type check_layer_class(reshape_after_input, Reshape) # get all the parms passed in parameters = locals() # check the type check_layer_class(reshape_after_input, Reshape) if not pre_trained_weights: model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # when a RNN model is built to consume the input data, it automatically flattens the input tensor # to a one-dimension vector. The reshape layer is required to reshape the tensor to the original definition. # This feature of mixing CNN layers with a RNN model is supported in VDMML 8.5. # This option could be also used to reshape the input tensor. if reshape_after_input: model.add(reshape_after_input) # Top layers model.add(Conv2d(64, 7, act='identity', include_bias=False, stride=2)) model.add(BN(act='relu')) model.add(Pooling(width=3, stride=2)) # Residual block configuration. kernel_sizes_list = [(1, 3, 1)] * 4 n_filters_list = [(64, 64, 256), (128, 128, 512), (256, 256, 1024), (512, 512, 2048)] rep_nums_list = [3, 4, 6, 3] for i in range(4): kernel_sizes = kernel_sizes_list[i] n_filters = n_filters_list[i] for rep_num in range(rep_nums_list[i]): if rep_num == 0: conv_short_cut = True if i == 0: strides = 1 else: strides = 2 else: conv_short_cut = False strides = 1 model.add(ResBlock_Caffe(kernel_sizes=kernel_sizes, n_filters=n_filters, strides=strides, batch_norm_first=batch_norm_first, conv_short_cut=conv_short_cut)) # Bottom Layers model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model else: if pre_trained_weights_file is None: raise DLPyError('\nThe pre-trained weights file is not specified.\n' 'Please follow the steps below to attach the pre-trained weights:\n' '1. Go to the website https://support.sas.com/documentation/prod-p/vdmml/zip/ ' 'and download the associated weight file.\n' '2. Upload the *.h5 file to ' 'a server side directory which the CAS session has access to.\n' '3. Specify the pre_trained_weights_file using the fully qualified server side path.') model_cas = model_resnet50.ResNet50_Model(s=conn, model_table=model_table, n_channels=n_channels, width=width, height=height, random_crop=random_crop, offsets=offsets, random_flip=random_flip, random_mutation=random_mutation, reshape_after_input=reshape_after_input) if include_top: if n_classes != 1000: warnings.warn('If include_top = True, n_classes will be set to 1000.', RuntimeWarning) model = Model.from_table(model_cas) model.load_weights(path=pre_trained_weights_file, labels=True) return model else: model = Model.from_table(model_cas, display_note=False) model.load_weights(path=pre_trained_weights_file) model._retrieve_('deeplearn.removelayer', model=model_table, name='fc1000') model._retrieve_('deeplearn.addlayer', model=model_table, name='output', layer=dict(type='output', n=n_classes, act='softmax'), srcLayers=['pool5']) weight_table_options = model.model_weights.to_table_params() weight_table_options.update(dict(where='_LayerID_<125')) model._retrieve_('table.partition', table=weight_table_options, casout=dict(replace=True, **model.model_weights.to_table_params())) model = Model.from_table(conn.CASTable(model_table)) return model def ResNet101_SAS(conn, model_table='RESNET101_SAS', n_classes=1000, n_channels=3, width=224, height=224, scale=1, batch_norm_first=True, random_flip=None, random_crop=None, offsets=(103.939, 116.779, 123.68), random_mutation=None, reshape_after_input=None): ''' Generates a deep learning model with the ResNet101 architecture. Compared to Caffe ResNet101, the model prepends a batch normalization layer to the last global pooling layer. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string or dict or CAS table, optional Specifies the CAS table to store the deep learning model. batch_norm_first : bool, optional Specifies whether to have batch normalization layer before the convolution layer in the residual block. For a detailed discussion about this, please refer to this paper: He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. Default: True n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : :class:`Reshape`, optional Specifies whether to add a reshape layer after the input layer. Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1512.03385.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # check the type check_layer_class(reshape_after_input, Reshape) # get all the parms passed in parameters = locals() model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # add reshape when specified if reshape_after_input: model.add(reshape_after_input) # Top layers model.add(Conv2d(64, 7, act='identity', include_bias=False, stride=2)) model.add(BN(act='relu')) model.add(Pooling(width=3, stride=2)) kernel_sizes_list = [(1, 3, 1)] * 4 n_filters_list = [(64, 64, 256), (128, 128, 512), (256, 256, 1024), (512, 512, 2048)] rep_nums_list = [3, 4, 23, 3] for i in range(4): kernel_sizes = kernel_sizes_list[i] n_filters = n_filters_list[i] for rep_num in range(rep_nums_list[i]): if i == 0: strides = 1 else: if rep_num == 0: strides = 2 else: strides = 1 model.add(ResBlockBN(kernel_sizes=kernel_sizes, n_filters=n_filters, strides=strides, batch_norm_first=batch_norm_first)) model.add(BN(act='relu')) # Bottom Layers model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model def ResNet101_Caffe(conn, model_table='RESNET101_CAFFE', n_classes=1000, n_channels=3, width=224, height=224, scale=1, batch_norm_first=False, random_flip=None, random_crop=None, offsets=(103.939, 116.779, 123.68), pre_trained_weights=False, pre_trained_weights_file=None, include_top=False, random_mutation=None, reshape_after_input=None): ''' Generates a deep learning model with the ResNet101 architecture with convolution shortcut. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string or dict or CAS table, optional Specifies the CAS table to store the deep learning model. batch_norm_first : bool, optional Specifies whether to have batch normalization layer before the convolution layer in the residual block. For a detailed discussion about this, please refer to this paper: He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. Default: False n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) pre_trained_weights : bool, optional Specifies whether to use the pre-trained weights from ImageNet data set Default: False pre_trained_weights_file : string, optional Specifies the file name for the pre-trained weights. Must be a fully qualified file name of SAS-compatible file (e.g., *.caffemodel.h5) Note: Required when pre_trained_weights=True. include_top : bool, optional Specifies whether to include pre-trained weights of the top layers, i.e. the last layer for classification. Default: False. random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : :class:`Reshape`, optional Specifies whether to add a reshape layer after the input layer. Returns ------- :class:`Sequential` If `pre_trained_weights` is `False` :class:`Model` If `pre_trained_weights` is `True` References ---------- https://arxiv.org/pdf/1512.03385.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # check the type check_layer_class(reshape_after_input, Reshape) # get all the parms passed in parameters = locals() if not pre_trained_weights: model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # add reshape when specified if reshape_after_input: model.add(reshape_after_input) # Top layers model.add(Conv2d(64, 7, act='identity', include_bias=False, stride=2)) model.add(BN(act='relu')) model.add(Pooling(width=3, stride=2)) # Residual block configuration. kernel_sizes_list = [(1, 3, 1)] * 4 n_filters_list = [(64, 64, 256), (128, 128, 512), (256, 256, 1024), (512, 512, 2048)] rep_nums_list = [3, 4, 23, 3] for i in range(4): kernel_sizes = kernel_sizes_list[i] n_filters = n_filters_list[i] for rep_num in range(rep_nums_list[i]): if rep_num == 0: conv_short_cut = True if i == 0: strides = 1 else: strides = 2 else: conv_short_cut = False strides = 1 model.add(ResBlock_Caffe(kernel_sizes=kernel_sizes, n_filters=n_filters, strides=strides, batch_norm_first=batch_norm_first, conv_short_cut=conv_short_cut)) # Bottom Layers model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model else: if pre_trained_weights_file is None: raise DLPyError('\nThe pre-trained weights file is not specified.\n' 'Please follow the steps below to attach the pre-trained weights:\n' '1. Go to the website https://support.sas.com/documentation/prod-p/vdmml/zip/ ' 'and download the associated weight file.\n' '2. Upload the *.h5 file to ' 'a server side directory which the CAS session has access to.\n' '3. Specify the pre_trained_weights_file using the fully qualified server side path.') model_cas = model_resnet101.ResNet101_Model( s=conn, model_table=model_table, n_channels=n_channels, width=width, height=height, random_crop=random_crop, offsets=offsets, random_flip=random_flip, random_mutation=random_mutation, reshape_after_input=reshape_after_input) if include_top: if n_classes != 1000: warnings.warn('If include_top = True, n_classes will be set to 1000.', RuntimeWarning) model = Model.from_table(model_cas) model.load_weights(path=pre_trained_weights_file, labels=True) return model else: model = Model.from_table(conn.CASTable(model_table), display_note=False) model.load_weights(path=pre_trained_weights_file) model._retrieve_('deeplearn.removelayer', model=model_table, name='fc1000') model._retrieve_('deeplearn.addlayer', model=model_table, name='output', layer=dict(type='output', n=n_classes, act='softmax'), srcLayers=['pool5']) weight_table_options = model.model_weights.to_table_params() weight_table_options.update(dict(where='_LayerID_<244')) model._retrieve_('table.partition', table=weight_table_options, casout=dict(replace=True, **model.model_weights.to_table_params())) model = Model.from_table(conn.CASTable(model_table)) return model def ResNet152_SAS(conn, model_table='RESNET152_SAS', n_classes=1000, n_channels=3, width=224, height=224, scale=1, batch_norm_first=True, random_flip=None, random_crop=None, offsets=(103.939, 116.779, 123.68), random_mutation=None, reshape_after_input=None): ''' Generates a deep learning model with the SAS ResNet152 architecture. Compared to Caffe ResNet152, the model prepends a batch normalization layer to the last global pooling layer. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string or dict or CAS table, optional Specifies the CAS table to store the deep learning model. batch_norm_first : bool, optional Specifies whether to have batch normalization layer before the convolution layer in the residual block. For a detailed discussion about this, please refer to this paper: He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. Default: True n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : :class:`Reshape`, optional Specifies whether to add a reshape layer after the input layer. Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1512.03385.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # check the type check_layer_class(reshape_after_input, Reshape) # get all the parms passed in parameters = locals() model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # add reshape when specified if reshape_after_input: model.add(reshape_after_input) # Top layers model.add(Conv2d(64, 7, act='identity', include_bias=False, stride=2)) model.add(BN(act='relu')) model.add(Pooling(width=3, stride=2)) kernel_sizes_list = [(1, 3, 1)] * 4 n_filters_list = [(64, 64, 256), (128, 128, 512), (256, 256, 1024), (512, 512, 2048)] rep_nums_list = [3, 8, 36, 3] for i in range(4): kernel_sizes = kernel_sizes_list[i] n_filters = n_filters_list[i] for rep_num in range(rep_nums_list[i]): if i == 0: strides = 1 else: if rep_num == 0: strides = 2 else: strides = 1 model.add(ResBlockBN(kernel_sizes=kernel_sizes, n_filters=n_filters, strides=strides, batch_norm_first=batch_norm_first)) model.add(BN(act='relu')) # Bottom Layers model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model def ResNet152_Caffe(conn, model_table='RESNET152_CAFFE', n_classes=1000, n_channels=3, width=224, height=224, scale=1, batch_norm_first=False, random_flip=None, random_crop=None, offsets=(103.939, 116.779, 123.68), pre_trained_weights=False, pre_trained_weights_file=None, include_top=False, random_mutation=None, reshape_after_input=None): ''' Generates a deep learning model with the ResNet152 architecture with convolution shortcut Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string or dict or CAS table, optional Specifies the CAS table to store the deep learning model. batch_norm_first : bool, optional Specifies whether to have batch normalization layer before the convolution layer in the residual block. For a detailed discussion about this, please refer to this paper: He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. Default: False n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) pre_trained_weights : bool, optional Specifies whether to use the pre-trained weights trained on the ImageNet data set. Default: False pre_trained_weights_file : string, optional Specifies the file name for the pre-trained weights. Must be a fully qualified file name of SAS-compatible file (e.g., *.caffemodel.h5) Note: Required when pre_trained_weights=True. include_top : bool, optional Specifies whether to include pre-trained weights of the top layers, i.e. the last layer for classification. Default: False random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : :class:`Reshape`, optional Specifies whether to add a reshape layer after the input layer. Returns ------- :class:`Sequential` If `pre_trained_weights` is `False` :class:`Model` If `pre_trained_weights` is `True` References ---------- https://arxiv.org/pdf/1512.03385.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # check the type check_layer_class(reshape_after_input, Reshape) # get all the parms passed in parameters = locals() if not pre_trained_weights: model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # add reshape when specified if reshape_after_input: model.add(reshape_after_input) # Top layers model.add(Conv2d(64, 7, act='identity', include_bias=False, stride=2)) model.add(BN(act='relu')) model.add(Pooling(width=3, stride=2)) # Residual block configuration. kernel_sizes_list = [(1, 3, 1)] * 4 n_filters_list = [(64, 64, 256), (128, 128, 512), (256, 256, 1024), (512, 512, 2048)] rep_nums_list = [3, 8, 36, 3] for i in range(4): kernel_sizes = kernel_sizes_list[i] n_filters = n_filters_list[i] for rep_num in range(rep_nums_list[i]): if rep_num == 0: conv_short_cut = True if i == 0: strides = 1 else: strides = 2 else: conv_short_cut = False strides = 1 model.add(ResBlock_Caffe(kernel_sizes=kernel_sizes, n_filters=n_filters, strides=strides, batch_norm_first=batch_norm_first, conv_short_cut=conv_short_cut)) # Bottom Layers model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model else: if pre_trained_weights_file is None: raise ValueError('\nThe pre-trained weights file is not specified.\n' 'Please follow the steps below to attach the pre-trained weights:\n' '1. Go to the website https://support.sas.com/documentation/prod-p/vdmml/zip/ ' 'and download the associated weight file.\n' '2. Upload the *.h5 file to ' 'a server side directory which the CAS session has access to.\n' '3. Specify the pre_trained_weights_file using the fully qualified server side path.') model_cas = model_resnet152.ResNet152_Model( s=conn, model_table=model_table, n_channels=n_channels, width=width, height=height, random_crop=random_crop, offsets=offsets, random_flip=random_flip, random_mutation=random_mutation, reshape_after_input=reshape_after_input) if include_top: if n_classes != 1000: warnings.warn('If include_top = True, n_classes will be set to 1000.', RuntimeWarning) model = Model.from_table(model_cas) model.load_weights(path=pre_trained_weights_file, labels=True) return model else: model = Model.from_table(conn.CASTable(model_table), display_note=False) model.load_weights(path=pre_trained_weights_file) model._retrieve_('deeplearn.removelayer', model=model_table, name='fc1000') model._retrieve_('deeplearn.addlayer', model=model_table, name='output', layer=dict(type='output', n=n_classes, act='softmax'), srcLayers=['pool5']) weight_table_options = model.model_weights.to_table_params() weight_table_options.update(dict(where='_LayerID_<363')) model._retrieve_('table.partition', table=weight_table_options, casout=dict(replace=True, **model.model_weights.to_table_params())) model = Model.from_table(conn.CASTable(model_table)) return model def ResNet_Wide(conn, model_table='WIDE_RESNET', batch_norm_first=True, number_of_blocks=1, k=4, n_classes=None, n_channels=3, width=32, height=32, scale=1, random_flip=None, random_crop=None, offsets=(103.939, 116.779, 123.68), random_mutation=None, reshape_after_input=None): ''' Generate a deep learning model with Wide ResNet architecture. Wide ResNet is just a ResNet with more feature maps in each convolutional layers. The width of ResNet is controlled by widening factor k. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string or dict or CAS table, optional Specifies the CAS table to store the deep learning model. batch_norm_first : bool, optional Specifies whether to have batch normalization layer before the convolution layer in the residual block. For a detailed discussion about this, please refer to this paper: He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. Default: True number_of_blocks : int Specifies the number of blocks in a residual group. For example, this value is [2, 2, 2, 2] for the ResNet18 architecture and [3, 4, 6, 3] for the ResNet34 architecture. In this case, the number of blocks are the same for each group as in the ResNet18 architecture. Default: 1 k : int Specifies the widening factor. Default: 4 n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: None n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 32 height : int, optional Specifies the height of the input layer. Default: 32 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : :class:`Reshape`, optional Specifies whether to add a reshape layer after the input layer. Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1605.07146.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # check the type check_layer_class(reshape_after_input, Reshape) in_filters = 16 # get all the parms passed in parameters = locals() model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # add reshape when specified if reshape_after_input: model.add(reshape_after_input) # Top layers model.add(Conv2d(in_filters, 3, act='identity', include_bias=False, stride=1)) model.add(BN(act='relu')) # Residual block configuration. n_filters_list = [(16 * k, 16 * k), (32 * k, 32 * k), (64 * k, 64 * k)] kernel_sizes_list = [(3, 3)] * len(n_filters_list) rep_nums_list = [number_of_blocks, number_of_blocks, number_of_blocks] for i in range(len(n_filters_list)): kernel_sizes = kernel_sizes_list[i] n_filters = n_filters_list[i] for rep_num in range(rep_nums_list[i]): if i == 0: strides = 1 else: if rep_num == 0: strides = 2 else: strides = 1 model.add(ResBlockBN(kernel_sizes=kernel_sizes, n_filters=n_filters, strides=strides, batch_norm_first=batch_norm_first)) model.add(BN(act='relu')) # Bottom Layers model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/applications/resnet.py
0.903091
0.63202
resnet.py
pypi
from dlpy.sequential import Sequential from dlpy.layers import InputLayer, Conv2d, BN, Pooling, GlobalAveragePooling2D, OutputLayer from .application_utils import get_layer_options, input_layer_options def Darknet_Reference(conn, model_table='Darknet_Reference', n_classes=1000, act='leaky', n_channels=3, width=224, height=224, scale=1.0 / 255, random_flip='H', random_crop='UNIQUE', random_mutation=None): ''' Generates a deep learning model with the Darknet_Reference architecture. The head of the model except the last convolutional layer is same as the head of Tiny Yolov2. Darknet Reference is pre-trained model for ImageNet classification. Parameters ---------- conn : CAS Specifies the connection of the CAS connection. model_table : string Specifies the name of CAS table to store the model. n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 act : string Specifies the type of the activation function for the batch normalization layers and the final convolution layer. Default: 'leaky' n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3. width : int, optional Specifies the width of the input layer. Default: 224. height : int, optional Specifies the height of the input layer. Default: 224. scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1.0 / 255 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' Default: 'h' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' Default: 'unique' random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' Returns ------- :class:`Sequential` ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # get all the parms passed in parameters = locals() model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # conv1 224 model.add(Conv2d(16, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv2 112 model.add(Conv2d(32, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv3 56 model.add(Conv2d(64, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv4 28 model.add(Conv2d(128, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv5 14 model.add(Conv2d(256, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv6 7 model.add(Conv2d(512, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=1, pool='max')) # conv7 7 model.add(Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv8 7 model.add(Conv2d(1000, width=1, act=act, include_bias=True, stride=1)) model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model def Darknet(conn, model_table='Darknet', n_classes=1000, act='leaky', n_channels=3, width=224, height=224, scale=1.0 / 255, random_flip='H', random_crop='UNIQUE', random_mutation=None): ''' Generate a deep learning model with the Darknet architecture. The head of the model except the last convolutional layer is same as the head of Yolov2. Darknet is pre-trained model for ImageNet classification. Parameters ---------- conn : CAS Specifies the connection of the CAS connection. model_table : string Specifies the name of CAS table to store the model. n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 act : string Specifies the type of the activation function for the batch normalization layers and the final convolution layer. Default: 'leaky' n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3. width : int, optional Specifies the width of the input layer. Default: 224. height : int, optional Specifies the height of the input layer. Default: 224. scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1.0 / 255 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' Default: 'h' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' Default: 'unique' random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' Returns ------- :class:`Sequential` ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # get all the parms passed in parameters = locals() model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) # conv1 224 416 model.add(Conv2d(32, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv2 112 208 model.add(Conv2d(64, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv3 56 104 model.add(Conv2d(128, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv4 56 104 model.add(Conv2d(64, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv5 56 104 model.add(Conv2d(128, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv6 28 52 model.add(Conv2d(256, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv7 28 52 model.add(Conv2d(128, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv8 28 52 model.add(Conv2d(256, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv9 14 26 model.add(Conv2d(512, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv10 14 26 model.add(Conv2d(256, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv11 14 26 model.add(Conv2d(512, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv12 14 26 model.add(Conv2d(256, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv13 14 26 model.add(Conv2d(512, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # route model.add(Pooling(width=2, height=2, stride=2, pool='max')) # conv14 7 13 model.add(Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv15 7 13 model.add(Conv2d(512, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv16 7 13 model.add(Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv17 7 13 model.add(Conv2d(512, width=1, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv18 7 13 model.add(Conv2d(1024, width=3, act='identity', include_bias=False, stride=1)) model.add(BN(act=act)) # conv19 7 13 model.add(Conv2d(1000, width=1, act=act, include_bias=True, stride=1)) # model.add(BN(act = actx)) model.add(GlobalAveragePooling2D()) model.add(OutputLayer(act='softmax', n=n_classes)) return model
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/applications/darknet.py
0.958905
0.693038
darknet.py
pypi
import warnings from dlpy.sequential import Sequential from dlpy.model import Model from dlpy.layers import InputLayer, Conv2d, BN, Pooling, OutputLayer, Dense, Reshape from dlpy.utils import DLPyError, check_layer_class from dlpy.caffe_models import (model_vgg16, model_vgg19) from .application_utils import get_layer_options, input_layer_options def VGG11(conn, model_table='VGG11', n_classes=1000, n_channels=3, width=224, height=224, scale=1, random_flip=None, random_crop=None, offsets=(103.939, 116.779, 123.68), random_mutation=None): ''' Generates a deep learning model with the VGG11 architecture. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string, optional Specifies the name of CAS table to store the model. n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1409.1556.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # get all the parms passed in parameters = locals() model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) model.add(Conv2d(n_filters=64, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=128, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=256, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=256, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Dense(n=4096, dropout=0.5)) model.add(Dense(n=4096, dropout=0.5)) model.add(OutputLayer(n=n_classes)) return model def VGG13(conn, model_table='VGG13', n_classes=1000, n_channels=3, width=224, height=224, scale=1, random_flip=None, random_crop=None, offsets=(103.939, 116.779, 123.68), random_mutation=None): ''' Generates a deep learning model with the VGG13 architecture. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string, optional Specifies the name of CAS table to store the model. n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1409.1556.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # get all the parms passed in parameters = locals() model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) model.add(Conv2d(n_filters=64, width=3, height=3, stride=1, act='identity', include_bias=False)) model.add(BN(act='relu')) model.add(Conv2d(n_filters=64, width=3, height=3, stride=1, act='identity', include_bias=False)) model.add(BN(act='relu')) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=128, width=3, height=3, stride=1, act='identity', include_bias=False)) model.add(BN(act='relu')) model.add(Conv2d(n_filters=128, width=3, height=3, stride=1, act='identity', include_bias=False)) model.add(BN(act='relu')) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=256, width=3, height=3, stride=1, act='identity', include_bias=False)) model.add(BN(act='relu')) model.add(Conv2d(n_filters=256, width=3, height=3, stride=1, act='identity', include_bias=False)) model.add(BN(act='relu')) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1, act='identity', include_bias=False)) model.add(BN(act='relu')) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1, act='identity', include_bias=False)) model.add(BN(act='relu')) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1, act='identity', include_bias=False)) model.add(BN(act='relu')) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1, act='identity', include_bias=False)) model.add(BN(act='relu')) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Dense(n=4096, dropout=0.5)) model.add(Dense(n=4096, dropout=0.5)) model.add(OutputLayer(n=n_classes)) return model def VGG16(conn, model_table='VGG16', n_classes=1000, n_channels=3, width=224, height=224, scale=1, random_flip=None, random_crop=None, offsets=(103.939, 116.779, 123.68), pre_trained_weights=False, pre_trained_weights_file=None, include_top=False, random_mutation=None, reshape_after_input=None): ''' Generates a deep learning model with the VGG16 architecture. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string, optional Specifies the name of CAS table to store the model. n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) pre_trained_weights : bool, optional Specifies whether to use the pre-trained weights trained on the ImageNet data set. Default: False pre_trained_weights_file : string, optional Specifies the file name for the pre-trained weights. Must be a fully qualified file name of SAS-compatible file (e.g., *.caffemodel.h5) Note: Required when pre_trained_weights=True. include_top : bool, optional Specifies whether to include pre-trained weights of the top layers (i.e., the FC layers) Default: False random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' reshape_after_input : :class:`Reshape`, optional Specifies whether to add a reshape layer after the input layer. Returns ------- :class:`Sequential` If `pre_trained_weights` is False :class:`Model` If `pre_trained_weights` is True References ---------- https://arxiv.org/pdf/1409.1556.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # get all the parms passed in parameters = locals() # check the type check_layer_class(reshape_after_input, Reshape) if not pre_trained_weights: model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) if reshape_after_input: model.add(reshape_after_input) model.add(Conv2d(n_filters=64, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=64, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=128, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=128, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=256, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=256, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=256, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Dense(n=4096, dropout=0.5, name='fc6')) model.add(Dense(n=4096, dropout=0.5, name='fc7')) model.add(OutputLayer(n=n_classes, name='fc8')) return model else: # TODO: I need to re-factor loading / downloading pre-trained models. # something like pytorch style if pre_trained_weights_file is None: raise DLPyError('\nThe pre-trained weights file is not specified.\n' 'Please follow the steps below to attach the pre-trained weights:\n' '1. Go to the website https://support.sas.com/documentation/prod-p/vdmml/zip/ ' 'and download the associated weight file.\n' '2. Upload the *.h5 file to ' 'a server side directory which the CAS session has access to.\n' '3. Specify the pre_trained_weights_file using the fully qualified server side path.') model_cas = model_vgg16.VGG16_Model(s=conn, model_table=model_table, n_channels=n_channels, width=width, height=height, random_crop=random_crop, offsets=offsets, random_mutation=random_mutation, reshape_after_input=reshape_after_input) if include_top: if n_classes != 1000: warnings.warn('If include_top = True, n_classes will be set to 1000.', RuntimeWarning) model = Model.from_table(model_cas) model.load_weights(path=pre_trained_weights_file, labels=True) return model else: model = Model.from_table(model_cas, display_note=False) model.load_weights(path=pre_trained_weights_file) weight_table_options = model.model_weights.to_table_params() weight_table_options.update(dict(where='_LayerID_<19')) model._retrieve_('table.partition', table=weight_table_options, casout=dict(replace=True, **model.model_weights.to_table_params())) model._retrieve_('deeplearn.removelayer', model=model_table, name='fc8') model._retrieve_('deeplearn.addlayer', model=model_table, name='fc8', layer=dict(type='output', n=n_classes, act='softmax'), srcLayers=['fc7']) model = Model.from_table(conn.CASTable(model_table)) return model def VGG19(conn, model_table='VGG19', n_classes=1000, n_channels=3, width=224, height=224, scale=1, random_flip=None, random_crop=None, offsets=(103.939, 116.779, 123.68), pre_trained_weights=False, pre_trained_weights_file=None, include_top=False, random_mutation=None): ''' Generates a deep learning model with the VGG19 architecture. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string, optional Specifies the name of CAS table to store the model. n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) pre_trained_weights : bool, optional Specifies whether to use the pre-trained weights trained on the ImageNet data set. Default: False pre_trained_weights_file : string, optional Specifies the file name for the pre-trained weights. Must be a fully qualified file name of SAS-compatible file (e.g., *.caffemodel.h5) Note: Required when pre_trained_weights=True. include_top : bool, optional Specifies whether to include pre-trained weights of the top layers (i.e., the FC layers). Default: False random_mutation : string, optional Specifies how to apply data augmentations/mutations to the data in the input layer. Valid Values: 'none', 'random' Returns ------- :class:`Sequential` If `pre_trained_weights` is False :class:`Model` If `pre_trained_weights` is True References ---------- https://arxiv.org/pdf/1409.1556.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') # get all the parms passed in parameters = locals() if not pre_trained_weights: model = Sequential(conn=conn, model_table=model_table) # get the input parameters input_parameters = get_layer_options(input_layer_options, parameters) model.add(InputLayer(**input_parameters)) model.add(Conv2d(n_filters=64, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=64, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=128, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=128, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=256, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=256, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=256, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=256, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Conv2d(n_filters=512, width=3, height=3, stride=1)) model.add(Pooling(width=2, height=2, stride=2, pool='max')) model.add(Dense(n=4096, dropout=0.5)) model.add(Dense(n=4096, dropout=0.5)) model.add(OutputLayer(n=n_classes)) return model else: if pre_trained_weights_file is None: raise DLPyError('\nThe pre-trained weights file is not specified.\n' 'Please follow the steps below to attach the pre-trained weights:\n' '1. Go to the website https://support.sas.com/documentation/prod-p/vdmml/zip/ ' 'and download the associated weight file.\n' '2. Upload the *.h5 file to ' 'a server side directory which the CAS session has access to.\n' '3. Specify the pre_trained_weights_file using the fully qualified server side path.') model_cas = model_vgg19.VGG19_Model(s=conn, model_table=model_table, n_channels=n_channels, width=width, height=height, random_crop=random_crop, offsets=offsets, random_flip=random_flip, random_mutation=random_mutation) if include_top: if n_classes != 1000: warnings.warn('If include_top = True, n_classes will be set to 1000.', RuntimeWarning) model = Model.from_table(model_cas) model.load_weights(path=pre_trained_weights_file, labels=True) return model else: model = Model.from_table(model_cas, display_note=False) model.load_weights(path=pre_trained_weights_file) weight_table_options = model.model_weights.to_table_params() weight_table_options.update(dict(where='_LayerID_<22')) model._retrieve_('table.partition', table=weight_table_options, casout=dict(replace=True, **model.model_weights.to_table_params())) model._retrieve_('deeplearn.removelayer', model=model_table, name='fc8') model._retrieve_('deeplearn.addlayer', model=model_table, name='fc8', layer=dict(type='output', n=n_classes, act='softmax'), srcLayers=['fc7']) model = Model.from_table(conn.CASTable(model_table)) return model
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/applications/vgg.py
0.926187
0.684837
vgg.py
pypi
# model/input layer definition def write_input_layer(model_name='sas', layer_name='data', channels='-1', width='-1', height='-1', scale='1.0', offsets=None, std=None, model_type='CNN'): ''' Generate Python code defining a SAS deep learning input layer Parameters ---------- model_name : string Name for deep learning model layer_name : string Layer name channels : string number of input channels width : string image width height : string image height scale : string scaling factor to apply to raw image pixel data offsets : list image channel offsets, these values will be subtracted from the pixels of each image channel std : list image channel standardization, the pixels of each image channel will be divided by these values model_type : string Specifies the deep learning model type (either CNN or RNN) Returns ------- string String representing Python code defining a SAS deep learning input layer ''' if offsets is None: str_offset = 'None' else: str_offset = repr(offsets) if std is None: str_std = 'None' else: str_std = repr(std) if model_type == 'CNN': out = [ 'def sas_model_gen(s, input_crop_type=None, input_channel_offset=' + str_offset + ', norm_std = ' + str_std + ', input_image_size=None):', ' # quick check for deeplearn actionset', ' actionset_list = s.actionsetinfo().setinfo.actionset.tolist()', ' actionset_list = [item.lower() for item in actionset_list]', ' if "deeplearn" not in actionset_list:s.loadactionset("deeplearn")', ' ', ' # quick error-checking and default setting', ' if (input_crop_type is None):', ' input_crop_type="NONE"', ' else:', ' if (input_crop_type.upper() != "NONE") and (input_crop_type.upper() != "UNIQUE"):', ' raise ValueError("Parameter input_crop_type can only be NONE or UNIQUE")', '', ' if (input_image_size is not None):', ' channels = input_image_size[0]', ' if (len(input_image_size) == 2):', ' height = width = input_image_size[1]', ' elif (len(inputImageSize) == 3):', ' height,width = input_image_size[1:]', ' else:', ' raise ValueError("Parameter input_image_size must be a tuple with two or three entries")', '', ' # instantiate model', ' s.buildModel(model=dict(name=' + repr(model_name) + ',replace=True),type="CNN")', '', ' # input layer', ' nchannels=' + channels, ' if input_channel_offset is None and nchannels==3:', ' print("INFO: Setting channel mean values to ImageNet means")', ' input_channel_offset = [103.939, 116.779, 123.68]', ' s.addLayer(model=' + repr(model_name) + ', name=' + repr(layer_name) + ',', ' layer=dict( type="input", nchannels=' + channels + ', width=' + width + ', height=' + height + ',', ' scale = ' + scale + ', randomcrop=input_crop_type, offsets=input_channel_offset, offsetStd=norm_std))', ' elif input_channel_offset is not None:', ' s.addLayer(model=' + repr(model_name) + ', name=' + repr(layer_name) + ',', ' layer=dict( type="input", nchannels=' + channels + ', width=' + width + ', height=' + height + ',', ' scale = ' + scale + ', randomcrop=input_crop_type, offsets=input_channel_offset, offsetStd=norm_std))', ' else:', ' s.addLayer(model=' + repr(model_name) + ', name=' + repr(layer_name) + ',', ' layer=dict( type="input", nchannels=' + channels + ', width=' + width + ', height=' + height + ',', ' scale = ' + scale + ', randomcrop=input_crop_type, offsetStd=norm_std))' ] else: out = [ 'def sas_model_gen(s):', ' # quick check for deeplearn actionset', ' actionset_list = s.actionsetinfo().setinfo.actionset.tolist()', ' actionset_list = [item.lower() for item in actionset_list]', ' if "deeplearn" not in actionset_list:s.loadactionset("deeplearn")', ' ', '', ' # instantiate model', ' s.buildModel(model=dict(name=' + repr(model_name) + ',replace=True),type="RNN")', '', ' # input layer', ' s.addLayer(model=' + repr(model_name) + ', name=' + repr(layer_name) + ',', ' layer=dict( type="input", nchannels=' + channels + ', width=' + width + ',', ' height=' + height + '))' ] return '\n'.join(out) # convolution layer definition def write_convolution_layer(model_name='sas', layer_name='conv', nfilters='-1', width='3', height='3', stride='1', nobias='False', activation='identity', dropout='0', src_layer='none', padding='None',pad_height='None',pad_width='None'): ''' Generate Python code defining a SAS deep learning convolution layer Parameters ---------- model_name : string, optional Name for deep learning model layer_name : string, optional Layer name nfilters : string, optional number of output feature maps width : string, optional image width height : string, optional image height stride : string, optional vertical/horizontal step size in pixels nobias : string, optional omit (True) or retain (False) the bias term activation : string, optional activation function dropout : string, optional dropout factor (0 < dropout < 1.0) src_layer : string, optional source layer(s) for the convolution layer padding : string, optional symmetric zero padding value pad_height : string, optional symmetric height zero padding value pad_width : string, optional symmetric width zero padding value Returns ------- string ''' if (pad_height.lower() != 'none') or (pad_width.lower() != 'none'): out = [ ' s.addLayer(model=' + repr(model_name) + ', name=' + repr(layer_name) + ',', ' layer=dict(type="convolution", nfilters=' + nfilters + ', width=' + width + ', height=' + height + ',', ' stride=' + stride + ', nobias=' + nobias + ', act=' + repr( activation) + ', dropout=' + dropout + ', padHeight=' + pad_height + ', padWidth=' + pad_width + '),', ' srcLayers=' + src_layer + ')' ] else: out = [ ' s.addLayer(model=' + repr(model_name) + ', name=' + repr(layer_name) + ',', ' layer=dict(type="convolution", nfilters=' + nfilters + ', width=' + width + ', height=' + height + ',', ' stride=' + stride + ', nobias=' + nobias + ', act=' + repr( activation) + ', dropout=' + dropout + ', pad=' + padding +'),', ' srcLayers=' + src_layer + ')' ] return '\n'.join(out) # batch normalization layer definition def write_batch_norm_layer(model_name='sas', layer_name='bn', activation='identity', src_layer='none'): ''' Generate Python code defining a SAS deep learning batch normalization layer Parameters ---------- model_name : string, optional Name for deep learning model layer_name : string, optional Layer name activation : string, optional activation function src_layer : string, optional source layer(s) for the convolution layer Returns ------- string ''' out = [ ' s.addLayer(model=' + repr(model_name) + ', name=' + repr(layer_name) + ',', ' layer=dict( type="batchnorm", act=' + repr(activation) + '),', ' srcLayers=' + src_layer + ')' ] return '\n'.join(out) # pooling layer definition def write_pooling_layer(model_name='sas', layer_name='pool', width='2', height='2', stride='2', type='max', dropout='0', src_layer='none', padding='None', pad_height='None',pad_width='None'): ''' Generate Python code defining a SAS deep learning pooling layer Parameters ---------- model_name : string, optional Name for deep learning model layer_name : string, optional Layer name width : string, optional image width height : string, optional image height stride : string, optional vertical/horizontal step size in pixels type : string, optional pooling type dropout : string, optional dropout factor (0 < dropout < 1.0) src_layer : string, optional source layer(s) for the convolution layer padding : string, optional symmetric zero padding value pad_height : string, optional symmetric height zero padding value pad_width : string, optional symmetric width zero padding value Returns ------- string ''' if (pad_height.lower() != 'none') or (pad_width.lower() != 'none'): out = [ ' s.addLayer(model=' + repr(model_name) + ', name=' + repr(layer_name) + ',', ' layer=dict(type="pooling", width=' + width + ', height=' + height + ',', ' stride=' + stride + ', pool=' + repr(type) + ', dropout=' + dropout + ',', ' padHeight=' + pad_height + ', padWidth=' + pad_width + '),', ' srcLayers=' + src_layer + ')' ] else: out = [ ' s.addLayer(model=' + repr(model_name) + ', name=' + repr(layer_name) + ',', ' layer=dict(type="pooling", width=' + width + ', height=' + height + ',', ' stride=' + stride + ', pool=' + repr(type) + ', dropout=' + dropout + ',', ' pad=' + padding + '),', ' srcLayers=' + src_layer + ')' ] return '\n'.join(out) # residual layer definition def write_residual_layer(model_name='sas', layer_name='residual', activation='identity', src_layer='none'): ''' Generate Python code defining a SAS deep learning residual layer Parameters ---------- model_name : string, optional Name for deep learning model layer_name : string, optional Layer name activation : string, optional activation function src_layer : string, optional source layer(s) for the convolution layer Returns ------- string ''' out = [ ' s.addLayer(model=' + repr(model_name) + ', name=' + repr(layer_name) + ',', ' layer=dict( type="residual", act="' + activation + '"),', ' srcLayers=' + src_layer + ')' ] return '\n'.join(out) # fully connected layer definition def write_full_connect_layer(model_name='sas', layer_name='fullconnect', nrof_neurons='-1', nobias='true', activation='identity', type='fullconnect', dropout='0', src_layer='none', ctc_loss=False): ''' Generate Python code defining a SAS deep learning fully connected layer Parameters ---------- model_name : string, optional Name for deep learning model layer_name : string, optional Layer name nrof_neurons : string, optional number of output neurons nobias : string, optional omit (True) or retain (False) the bias term activation : string, optional activation function type : string, optional fully connected layer type (fullconnect or output) dropout : string, optional dropout factor (0 < dropout < 1.0) src_layer : string, optional source layer(s) for the convolution layer ctc_loss : boolean, optional specifies whether the CTC loss function is used for an output layer Returns ------- string ''' if (type == 'fullconnect'): out = [ ' s.addLayer(model=' + repr(model_name) + ', name=' + repr(layer_name) + ',', ' layer=dict(type=' + repr(type) + ', n=' + nrof_neurons + ',', ' nobias=' + nobias + ', act=' + repr(activation) + ', dropout=' + dropout + '),', ' srcLayers=' + src_layer + ')' ] else: if ctc_loss: loss_error = 'CTC' else: loss_error = 'AUTO' out = [ ' s.addLayer(model=' + repr(model_name) + ', name=' + repr(layer_name) + ',', ' layer=dict(type=' + repr(type) + ', n=' + nrof_neurons + ',', ' nobias=' + nobias + ', act=' + repr(activation) + ',', ' error = "' + loss_error + '"),', ' srcLayers=' + src_layer + ')' ] return '\n'.join(out) # concat layer definition def write_concatenate_layer(model_name='sas', layer_name='concat', activation='identity', src_layer='none'): ''' Generate Python code defining a SAS deep learning concat layer Parameters ---------- model_name : string, optional Name for deep learning model layer_name : string, optional Layer name activation : string, optional activation function src_layer : string, optional source layer(s) for the concat layer Returns ------- string ''' out = [ ' s.addLayer(model=' + repr(model_name) + ', name=' + repr(layer_name) + ',', ' layer=dict( type="concat", act="' + activation + '"),', ' srcLayers=' + src_layer + ')' ] return '\n'.join(out) # recurrent layer definition def write_recurrent_layer(model_name='sas', layer_name='recurrent', activation='tanh', src_layer = 'none', rnn_type='rnn', seq_output='samelength', direction='forward', rnn_size=1, dropout=0.0): ''' Generate Python code defining a SAS deep learning recurrent layer Parameters ---------- model_name : string, optional Name for deep learning model layer_name : string, optional Layer name activation : string, optional activation function src_layer : string, optional source layer(s) for the concat layer rnn_type : string, optional one of 'rnn', 'lstm', or 'gru' seq_output : string, optional one of 'samelength' or 'encoding' direction : boolean, optional indicates whether sequence processing performed in forward or reverse direction rnn_size : integer size of hidden dimension dropout : float, optional dropout rate, values range from 0.0 to 1.0 Returns ------- string ''' out = [ ' s.addLayer(model=' + repr(model_name) + ', name=' + repr(layer_name) + ',', ' layer=dict(type="recurrent", n=' + str(rnn_size) + ',', ' rnnType="' + rnn_type + '", act=' + repr(activation) + ', dropout=' + str(dropout) + ',', ' outputType = "' + seq_output + '", reversed=' + repr(direction) + '),', ' srcLayers=' + src_layer + ')' ] return '\n'.join(out) # Python __main__ function def write_main_entry(model_name): ''' Generate Python code defining the __main__ Python entry point Parameters ---------- model_name : string Name for deep learning model Returns ------- string ''' return ''
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/model_conversion/write_sas_code.py
0.864625
0.536677
write_sas_code.py
pypi
from onnx import defs from onnx import helper, numpy_helper from onnx import TensorProto import numpy as np class OnnxWriteError(ValueError): ''' Used to indicate an error in parsing ONNX model definition ''' def sas_to_onnx(layers, model_table, model_weights): ''' Convert DLPy model to ONNX Parameters ---------- layers : iter-of-Layers Specifies the layers defining the model. model_table : :class:`CASTable` Specifies the CASTable of the model. model_weights : :class:`pandas.DataFrame` or :class:`CASTable` DataFrame or CASTable containing the model weights. If this is a CASTable, the weights will be fetched from the CAS server. This may take a long time if the model has many weights. Returns ------- Loaded in-memory ModelProto ''' nodes = [] inputs = [] outputs = [] initializer = [] import pandas as pd if isinstance(model_weights, pd.DataFrame): fetch = False else: fetch = True model_name = model_table.query('_DLKey1_ = "modeltype"') \ .fetch()['Fetch']['_DLKey0_'][0] for layer in layers: if layer.type == 'input': H = int(layer.config['height']) W = int(layer.config['width']) C = int(layer.config['n_channels']) value_info = helper.make_tensor_value_info(name=layer.name, elem_type=TensorProto.FLOAT, shape=[1, C, H, W]) inputs.append(value_info) elif layer.type == 'convo' or layer.type == 'groupconvo': H = int(layer.config['height']) W = int(layer.config['width']) M = int(layer.config['n_filters']) # get group group = 1 if 'n_groups' in layer.config: group = layer.config['n_groups'] # set stride S_h, S_w = get_strides(layer) # set padding padding = get_padding(layer) bias = layer.config['include_bias'] if bias is None: bias = True dropout = layer.config['dropout'] act = layer.config['act'] if act in [None, 'AUTO']: act = 'RECTIFIER' # inputs to conv op conv_input = [l.name for l in layer.src_layers] conv_input.append(layer.name + '_w') if bias: conv_input.append(layer.name + '_b') # create names of node input/output if not dropout and act.lower() == 'identity': conv_output = [layer.name] elif not dropout: conv_output = [layer.name + '_conv_out'] act_input = conv_output act_output = [layer.name] elif dropout and act.lower() == 'identity': conv_output = [layer.name + '_conv_out'] dropout_input = conv_output dropout_output = [layer.name] else: conv_output = [layer.name + '_conv_out'] act_input = conv_output act_output = [layer.name + '_act_out'] dropout_input = act_output dropout_output = [layer.name] conv_op = helper.make_node(op_type='Conv', inputs=conv_input, outputs=conv_output, pads=padding, kernel_shape=[H, W], strides=[S_h, S_w], group=group) nodes.append(conv_op) # activation op if act.lower() != 'identity': act_op = make_onnx_activation(act, act_input, act_output) nodes.append(act_op) # dropout op if dropout: dropout_op = helper.make_node(op_type='Dropout', inputs=dropout_input, outputs=dropout_output, ratio=dropout) nodes.append(dropout_op) # create weight tensors layer_id = get_layer_id(model_table, layer.name) if fetch: weights = fetch_weights(model_weights, layer_id) else: weights = get_weights_from_dataframe(model_weights, layer_id) if bias: conv_weights = np.array(weights[:-M], dtype=np.float32) bias_weights = np.array(weights[-M:], dtype=np.float32) else: conv_weights = np.array(weights, dtype=np.float32) conv_weights = np.reshape(conv_weights, (M, -1, H, W)) conv_init = numpy_helper.from_array(conv_weights, name=layer.name+'_w') initializer.append(conv_init) # add value info to graph input inputs.append( helper.make_tensor_value_info(name=layer.name+'_w', elem_type=TensorProto.FLOAT, shape=list(conv_weights.shape))) if bias: bias_init = numpy_helper.from_array(bias_weights, name=layer.name+'_b') initializer.append(bias_init) # add value info to graph input inputs.append( helper.make_tensor_value_info(name=layer.name+'_b', elem_type=TensorProto.FLOAT, shape=list(bias_weights.shape))) elif layer.type == 'fc': n = int(layer.config['n']) bias = layer.config['include_bias'] if bias is None: bias = True dropout = layer.config['dropout'] act = layer.config['act'] if act in [None, 'AUTO']: act = 'TANH' # inputs to flatten op flatten_input = [l.name for l in layer.src_layers] flatten_output = [layer.name + '_flatten_out'] flatten_op = helper.make_node(op_type='Flatten', inputs=flatten_input, outputs=flatten_output, axis=0) nodes.append(flatten_op) # inputs to fc op (gemm if bias, matmul if no bias) fc_input = flatten_output fc_input.append(layer.name + '_w') if bias: fc_input.append(layer.name + '_b') # create names of node input/output if not dropout and act.lower() == 'identity': fc_output = [layer.name] elif not dropout: fc_output = [layer.name + '_fc_out'] act_input = fc_output act_output = [layer.name] elif dropout and act.lower() == 'identity': fc_output = [layer.name + '_fc_out'] dropout_input = fc_output dropout_output = [layer.name] else: fc_output = [layer.name + '_fc_out'] act_input = fc_output act_output = [layer.name + '_act_out'] dropout_input = act_output dropout_output = [layer.name] # create fc op if bias: fc_op = helper.make_node(op_type='Gemm', inputs=fc_input, outputs=fc_output) else: fc_op = helper.make_node(op_type='MatMul', inputs=fc_input, outputs=fc_output) nodes.append(fc_op) # activation op if act.lower() != 'identity': act_op = make_onnx_activation(act, act_input, act_output) nodes.append(act_op) # dropout op if dropout: dropout_op = helper.make_node(op_type='Dropout', inputs=dropout_input, outputs=dropout_output, ratio=dropout) nodes.append(dropout_op) # fc weights layer_id = get_layer_id(model_table, layer.name) if fetch: weights = fetch_weights(model_weights, layer_id) else: weights = get_weights_from_dataframe(model_weights, layer_id) if bias: fc_weights = np.array(weights[:-n], dtype=np.float32) bias_weights = np.array(weights[-n:], dtype=np.float32) else: fc_weights = np.array(weights, dtype=np.float32) fc_weights = np.reshape(fc_weights, (-1, n)) fc_init = numpy_helper.from_array(fc_weights, name=layer.name+'_w') initializer.append(fc_init) # add value info to inputs inputs.append( helper.make_tensor_value_info(name=layer.name+'_w', elem_type=TensorProto.FLOAT, shape=list(fc_weights.shape))) if bias: bias_init = numpy_helper.from_array(bias_weights, name=layer.name+'_b') initializer.append(bias_init) # add value info to inputs inputs.append( helper.make_tensor_value_info(name=layer.name+'_b', elem_type=TensorProto.FLOAT, shape=list(bias_weights.shape))) elif layer.type == 'pool': H = int(layer.config['height']) W = int(layer.config['width']) # set stride S_h, S_w = get_strides(layer) # set padding padding = get_padding(layer) dropout = layer.config['dropout'] pool = layer.config['pool'] # create pooling input and output pooling_input = [l.name for l in layer.src_layers] if dropout: pooling_output = [layer.name+'_pool_out'] dropout_input = pooling_output dropout_output = [layer.name] else: pooling_output = [layer.name] # create pooling op if pool.lower() == 'max': onnx_pool = 'MaxPool' elif pool.lower() == 'average' or pool.lower() == 'mean': onnx_pool = 'AveragePool' else: onnx_pool = 'MaxPool' print('WARNING: Unsupported pool type ' + str(pool) + '. Using MaxPool.') pool_op = helper.make_node(op_type=onnx_pool, inputs=pooling_input, outputs=pooling_output, pads=padding, kernel_shape=[H, W], strides=[S_h, S_w]) nodes.append(pool_op) # dropout op if dropout: dropout_op = helper.make_node(op_type='Dropout', inputs=dropout_input, outputs=dropout_output, ratio=dropout) nodes.append(dropout_op) elif layer.type == 'output': # output layer is a loss layer if layer.config['full_connect'] == False: # get output layer activation act = layer.config['act'] if act in [None, 'AUTO']: act = 'SOFTMAX' # create graph output if act.lower() == 'identity': output_name = nodes[-1].output[0] else: act_input = list(nodes[-1].output) act_output = [layer.name] output_name = layer.name act_op = make_onnx_activation(act, act_input, act_output) nodes.append(act_op) # get output dimensions dim = layer.src_layers[0].output_size if isinstance(dim, int): output_size = [1, dim] else: out_w, out_h, out_c = dim output_size = [1, out_c, out_h, out_w] # add value info to graph output outputs.append( helper.make_tensor_value_info(name=output_name, elem_type=TensorProto.FLOAT, shape=output_size) ) continue n = int(layer.config['n']) bias = layer.config['include_bias'] if bias is None: bias = True act = layer.config['act'] if act in [None, 'AUTO']: act = 'SOFTMAX' # inputs to flatten op flatten_input = [l.name for l in layer.src_layers] flatten_output = [layer.name + '_flatten_out'] flatten_op = helper.make_node(op_type='Flatten', inputs=flatten_input, outputs=flatten_output, axis=0) nodes.append(flatten_op) # inputs to fc op (gemm if bias, matmul if no bias) fc_input = flatten_output fc_input.append(layer.name + '_w') if bias: fc_input.append(layer.name + '_b') # create names of node input/output if act.lower() == 'identity': fc_output = [layer.name] else: fc_output = [layer.name + '_fc_out'] act_input = fc_output act_output = [layer.name] # create fc op if bias: fc_op = helper.make_node(op_type='Gemm', inputs=fc_input, outputs=fc_output) else: fc_op = helper.make_node(op_type='MatMul', inputs=fc_input, outputs=fc_output) nodes.append(fc_op) # activation op if act.lower() != 'identity': act_op = make_onnx_activation(act, act_input, act_output) nodes.append(act_op) # add output outputs.append( helper.make_tensor_value_info(name=layer.name, elem_type=TensorProto.FLOAT, shape=[1, n])) # fc weights layer_id = get_layer_id(model_table, layer.name) if fetch: weights = fetch_weights(model_weights, layer_id) else: weights = get_weights_from_dataframe(model_weights, layer_id) if bias: fc_weights = np.array(weights[:-n], dtype=np.float32) bias_weights = np.array(weights[-n:], dtype=np.float32) else: fc_weights = np.array(weights, dtype=np.float32) fc_weights = np.reshape(fc_weights, (-1, n)) fc_init = numpy_helper.from_array(fc_weights, name=layer.name+'_w') initializer.append(fc_init) # add value info to inputs inputs.append( helper.make_tensor_value_info(name=layer.name+'_w', elem_type=TensorProto.FLOAT, shape=list(fc_weights.shape))) if bias: bias_init = numpy_helper.from_array(bias_weights, name=layer.name+'_b') initializer.append(bias_init) # add value info to inputs inputs.append( helper.make_tensor_value_info(name=layer.name+'_b', elem_type=TensorProto.FLOAT, shape=list(bias_weights.shape))) elif layer.type == 'batchnorm': act = layer.config['act'] if act in [None, 'AUTO']: act = 'IDENTITY' # set input and output bn_input = [l.name for l in layer.src_layers] param_names = ['_scale', '_bias', '_mean', '_variance'] bn_input += list(map(lambda x: layer.name+x, param_names)) if act.lower() != 'identity': bn_output = [layer.name + '_bn_out'] act_input = bn_output act_output = [layer.name] else: bn_output = [layer.name] # get bn input dimension src = layer.src_layers[0] if src.type == 'fc': n = int(src.config.get('n')) else: n = int(src.output_size[2]) # get weights for bn layer_id = get_layer_id(model_table, layer.name) if fetch: weights = fetch_weights(model_weights, layer_id) else: weights = get_weights_from_dataframe(model_weights, layer_id) # [scale, bias, mean, variance] bn_weights = [[weights[i*2] for i in range(n)], [weights[i*2+1] for i in range(n)], [weights[i*2+n*2] for i in range(n)], np.square([weights[i*2+n*2+1] for i in range(n)])] # add weights to initializer # and value info to input for idx, init in enumerate(bn_weights): initializer.append( numpy_helper.from_array(np.array(init, dtype=np.float32), name=bn_input[idx+1])) inputs.append( helper.make_tensor_value_info(name=bn_input[idx+1], elem_type=TensorProto.FLOAT, shape=(n,))) # bn op nodes.append( helper.make_node(op_type='BatchNormalization', inputs=bn_input, outputs=bn_output)) # activation op if act.lower() != 'identity': act_op = make_onnx_activation(act, act_input, act_output) nodes.append(act_op) elif layer.type == 'residual': act = layer.config['act'] if act in [None, 'AUTO']: act = 'IDENTITY' res_input = [l.name for l in layer.src_layers] if act.lower() != 'identity': res_output = [layer.name + '_res_out'] act_input = res_output act_output = [layer.name] else: res_output = [layer.name] # sum op nodes.append( helper.make_node(op_type='Sum', inputs=res_input, outputs=res_output)) # activation op if act.lower() != 'identity': act_op = make_onnx_activation(act, act_input, act_output) nodes.append(act_op) elif layer.type == 'concat': act = layer.config['act'] if act in [None, 'AUTO']: act = 'IDENTITY' # get correct order of concat inputs from model table l_conf = model_table[model_table['_DLKey0_'] == layer.name.lower()] l_conf = l_conf.fetch()['Fetch'] concat_order = [l_conf[l_conf['_DLKey1_'] == 'srclayers.' + str(i)] for i in range(len(layer.src_layers))] concat_order = [row.iloc[0][2] for row in concat_order] # concat_order contains lower case layer names # sort the names of src layer objects according to this order concat_input = [l.name for l in layer.src_layers] concat_input = sorted(concat_input, key=lambda name: concat_order.index(name.lower())) if act.lower() != 'identity': concat_output = [layer.name + '_concat_out'] act_input = concat_output act_output = [layer.name] else: concat_output = [layer.name] # concat op nodes.append( helper.make_node(op_type='Concat', inputs=concat_input, outputs=concat_output, axis=1)) # activation op if act.lower() != 'identity': act_op = make_onnx_activation(act, act_input, act_output) nodes.append(act_op) elif layer.type == 'detection': # get output dimensions out_w, out_h, out_c = layer.src_layers[0].output_size # add value info to graph output outputs.append( helper.make_tensor_value_info(name=nodes[-1].output[0], elem_type=TensorProto.FLOAT, shape=[1, out_c, out_h, out_w]) ) elif layer.type == 'reshape': act = layer.config['act'] if act in [None, 'AUTO']: act = 'IDENTITY' C = int(layer.config.get('depth')) W = int(layer.config.get('width')) H = int(layer.config.get('height')) reshape_input = [l.name for l in layer.src_layers] if act.lower() != 'identity': reshape_output = [layer.name + '_reshape_out'] act_input = reshape_output act_output = [layer.name] else: reshape_output = [layer.name] shape = np.array([-1, C, H, W], dtype=np.int64) shape_name = layer.name + '_shape' shape_init = numpy_helper.from_array(shape, name=shape_name) initializer.append(shape_init) # add value info to inputs inputs.append( helper.make_tensor_value_info(name=shape_name, elem_type=TensorProto.INT64, shape=[4])) nodes.append( helper.make_node(op_type='Reshape', inputs=reshape_input+[shape_name], outputs=reshape_output)) # activation op if act.lower() != 'identity': act_op = make_onnx_activation(act, act_input, act_output) nodes.append(act_op) else: layer_type = layer.type raise OnnxWriteError(str(layer_type) + ' is not supported.') graph_def = helper.make_graph(nodes=nodes, name=model_name, inputs=inputs, outputs=outputs, initializer=initializer) opset = helper.make_opsetid(defs.ONNX_DOMAIN, 8) model_def = helper.make_model(graph_def, producer_name='SAS', opset_imports=[opset]) return model_def def get_layer_id(model_table, layer_name): ''' Get ID of layer from deep learning model Parameters ---------- model_table : :class:`CASTable` CASTable of the deep learning model. layer_name : str Name of the layer. Returns ------- int ID of the layer ''' return int(model_table.query('_DLKey0_ = "{}"'.format(layer_name.lower())) \ .fetch()['Fetch'] \ .iloc[0]['_DLLayerID_']) def fetch_weights(model_weights, layer_id): ''' Get weights of a layer Parameters ---------- model_weights : :class:`CASTable` CASTable of the model weights. layer_id : int ID of the layer. Returns ------- list List of weights of the layer ''' layer_weights = model_weights.query('_LayerID_ = {}'.format(layer_id)) n = layer_weights.numrows()['numrows'] return layer_weights.fetch(maxRows=n, to=n, sortBy='_WeightID_')['Fetch']['_Weight_'] \ .tolist() def get_weights_from_dataframe(model_weights, layer_id): ''' Get weights of a layer Parameters ---------- model_weights : :class:`pandas.DataFrame` DataFrame of the model weights. layer_id : int ID of the layer. Returns ------- list List of weights of the layer ''' layer_weights = model_weights[model_weights['_LayerID_'] == layer_id]['_Weight_'] return layer_weights.tolist() def sas_to_onnx_activation(activation): ''' Convert SAS activation names to ONNX ''' if activation.lower() == 'rectifier' or activation.lower() == 'relu': return 'Relu' elif activation.lower() == 'tanh': return 'Tanh' elif activation.lower() == 'logistic' or activation.lower() == 'sigmoid': return 'Log' elif activation.lower() == 'leaky': return 'LeakyRelu' elif activation.lower() == 'identity': return 'Identity' elif activation.lower() == 'elu': return 'Elu' elif activation.lower() == 'softplus': return 'Softplus' elif activation.lower() == 'softmax': return 'Softmax' else: print('WARNING: Unsupported activation: ' + str(activation) + '. Using identity.') return 'Identity' def make_onnx_activation(activation, act_input, act_output): ''' Make onnx activation op ''' onnx_act = sas_to_onnx_activation(activation) if onnx_act == 'LeakyRelu': return helper.make_node(op_type=onnx_act, inputs=act_input, outputs=act_output, alpha=0.1) else: return helper.make_node(op_type=onnx_act, inputs=act_input, outputs=act_output) def get_padding(layer): ''' Gets the padding along each axis ''' if layer.config.get('padding') is not None: return [int(layer.config['padding'])]*4 elif (layer.config.get('padding_width') is not None and layer.config.get('padding_height') is None): return [int(layer.config['padding_width'])]*4 elif (layer.config.get('padding_height') is not None and layer.config.get('padding_width') is None): return [int(layer.config['padding_height'])]*4 elif (layer.config.get('padding_width') is not None and layer.config.get('padding_height') is not None): P_h = int(layer.config['padding_height']) P_w = int(layer.config['padding_width']) return [P_h, P_w]*2 else: H = int(layer.config['height']) W = int(layer.config['width']) S_h, S_w = get_strides(layer) in_W = layer.src_layers[0].output_size[0] in_H = layer.src_layers[0].output_size[1] if (in_H % S_h == 0): pad_h = max(0, H - S_h) else: pad_h = max(0, H - (in_H % S_h)) if (in_W % S_w == 0): pad_w = max(0, W - S_w) else: pad_w = max(0, W - (in_W % S_w)) if layer.type == 'pool': return [0, 0, pad_h, pad_w] if pad_h % 2 == 0: P_h = P_h_ = pad_h // 2 else: P_h = pad_h // 2 P_h_ = P_h + 1 if pad_w % 2 == 0: P_w = P_w_ = pad_w // 2 else: P_w = pad_w // 2 P_w_ = P_w + 1 return [P_h, P_w, P_h_, P_w_] def get_strides(layer): ''' Gets the strides along each axis ''' if layer.config.get('stride') is not None: return [int(layer.config['stride'])]*2 elif (layer.config.get('stride_horizontal') is not None and layer.config.get('stride_vertical') is None): return [int(layer.config['stride_horizontal'])]*2 elif (layer.config.get('stride_vertical') is not None and layer.config.get('stride_horizontal') is None): return [int(layer.config['stride_vertical'])]*2 elif (layer.config.get('stride_horizontal') is not None and layer.config.get('stride_vertical') is not None): S_h = int(layer.config['stride_vertical']) S_w = int(layer.config['stride_horizontal']) return [S_h, S_w] else: print('WARNING: Stride not specified. ' 'Setting stride to 1') return [1, 1]
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/model_conversion/write_onnx_model.py
0.779448
0.377311
write_onnx_model.py
pypi
import os import caffe import caffe.draw from caffe.proto import caffe_pb2 from caffe.pycaffe import * from google.protobuf import text_format from .write_caffe_model_parm import write_caffe_hdf5 from .write_sas_code import (write_input_layer, write_convolution_layer, write_batch_norm_layer, write_pooling_layer, write_residual_layer, write_full_connect_layer, write_main_entry) caffe_activation_types = ['relu', 'prelu', 'elu', 'sigmoid', 'tanh', 'softmax', 'softmaxwithloss'] common_layers = ['data', 'memorydata', 'convolution', 'batchnorm', 'pooling', 'innerproduct', 'eltwise'] class CaffeParseError(ValueError): ''' Used to indicate an error in parsing Caffe model definition ''' def caffe_to_sas(network_file, model_name, network_param=None, phase=caffe.TEST, verbose=False): ''' Generate a SAS deep learning model from Caffe definition Parameters ---------- network_file : string Fully qualified file name of network definition file (*.prototxt). sas_file : string Fully qualified file name of SAS deep learning Python model definition. model_name : string Name for deep learning model. network_param : string, optional Fully qualified file name of network parameter file (*.caffemodel). phase : int, optional One of {caffe.TRAIN, caffe.TEST, None}. verbose : bool, optional To view all Caffe information messages, set to True. ''' # open output file try: output_code = '' # initialize Caffe logging facility caffe.init_log(0, verbose) # instantiate a model and read network parameters if (network_param is None): model = caffe.Net(network_file, phase) else: model = caffe.Net(network_file, phase, weights=network_param) net = caffe_pb2.NetParameter() text_format.Merge(open(network_file).read(), net) # identify common Caffe/SAS computation layers layer_list = [] for layer in net.layer: include_layer = False if len(layer.include) == 0: include_layer = True else: for layer_phase in layer.include: if caffe.TEST == layer_phase.phase: include_layer = True # exclude layers not implemented (or implemented in a different fashion) if layer.type.lower() not in common_layers: include_layer = False if include_layer: layer_list.append(make_composite_layer(layer)) # associate activations with computation layers for layer in net.layer: layer_type = layer.type.lower() if layer_type in ['relu', 'prelu', 'elu', 'sigmoid', 'tanh']: layer_index = None for ii in range(len(layer_list)): if layer.top[0] == layer_list[ii].layer_parm.top[0]: layer_index = ii if layer_index is not None: layer_list[layer_index].related_layers.append(layer) else: raise CaffeParseError( 'Activation layer ' + layer.name + ' is not associated with any computation layer.') # associate dropout with computation layers for layer in net.layer: layer_type = layer.type.lower() if layer_type == 'dropout': layer_index = None for ii in range(len(layer_list)): if layer.top[0] == layer_list[ii].layer_parm.top[0]: layer_index = ii if layer_index is not None: layer_list[layer_index].related_layers.append(layer) else: raise CaffeParseError( 'Dropout layer ' + layer.name + ' is not associated with any computation layer.') # associate softmax with a fully-connected layer for layer in net.layer: layer_type = layer.type.lower() if layer_type in ['softmax', 'softmaxwithloss']: layer_index = None for ii in range(len(layer_list)): for jj in range(len(layer.bottom)): if layer.bottom[jj] == layer_list[ii].layer_parm.top[0]: layer_index = ii if layer_index is not None: layer_list[layer_index].related_layers.append(layer) else: raise CaffeParseError( 'Softmax layer ' + layer.name + ' is not associated with any fully-connected layer.') # determine source layer(s) for computation layers for ii in range(len(layer_list)): for kk in range(len(layer_list[ii].layer_parm.bottom)): name = None for jj in range(ii): if (layer_list[ii].layer_parm.bottom[kk] == layer_list[jj].layer_parm.top[0]): name = layer_list[jj].layer_parm.name if name: layer_list[ii].source_layer.append(name) # associate scale layer with batchnorm layer for layer in net.layer: if layer.type.lower() == 'scale': bn_found = False for ii in range(len(layer_list)): if ((layer_list[ii].layer_parm.type.lower() == 'batchnorm') and (layer_list[ii].layer_parm.top[0] == layer.top[0])): layer_list[ii].related_layers.append(layer) bn_found = True break if not bn_found: raise CaffeParseError( 'Scale layer ' + layer.name + ' is not associated with a batch normalization layer') # loop over included layers for clayer in layer_list: layer_type = clayer.layer_parm.type.lower() if layer_type == 'pooling': # average/max pooling sas_code = caffe_pooling_layer(clayer, model_name) elif layer_type == 'convolution': # 2D convolution sas_code = caffe_convolution_layer(clayer, model_name) elif layer_type == 'batchnorm': # batch normalization sas_code = caffe_batch_normalization_layer(clayer, model_name) elif layer_type in ['data', 'memorydata']: # input layer sas_code = caffe_input_layer(clayer, model_name) elif layer_type == 'eltwise': # residual sas_code = caffe_residual_layer(clayer, model_name) elif layer_type == 'innerproduct': # fully connected sas_code = caffe_full_connect_layer(clayer, model_name) else: raise CaffeParseError(layer_type + ' is an unsupported layer type') # write SAS code associated with Caffe layer if sas_code: output_code = output_code + sas_code + '\n\n' else: raise CaffeParseError( 'Unable to generate SAS definition for layer ' + clayer.layer_parm.name) # convert from BINARYPROTO to HDF5 if network_param is not None: sas_hdf5 = os.path.join(os.getcwd(), '{}_weights.caffemodel.h5'.format(model_name)) write_caffe_hdf5(model, layer_list, sas_hdf5) print('NOTE: the model weights has been stored in the following file:\n' '{}'.format(sas_hdf5)) return output_code except CaffeParseError as err_msg: print(err_msg) # parse parameters for pooling layer and generate equivalent SAS code def caffe_pooling_layer(clayer, model_name): ''' Extract pooling layer parameters from LayerParameter object Parameters ---------- clayer : CompositeLayer Layer parameters. model_name : string Deep learning model name. Returns ------- String value with SAS deep learning pooling layer definition ''' layer_parm = clayer.layer_parm # list defining PoolingParameter data structure --> keep in sync with caffe.proto dstruct = [{'field': 'pool', 'repeated': False}, {'field': 'pad', 'repeated': False}, {'field': 'pad_h', 'repeated': False}, {'field': 'pad_w', 'repeated': False}, {'field': 'kernel_size', 'repeated': False}, {'field': 'kernel_h', 'repeated': False}, {'field': 'kernel_w', 'repeated': False}, {'field': 'stride', 'repeated': False}, {'field': 'stride_h', 'repeated': False}, {'field': 'stride_w', 'repeated': False}, {'field': 'engine', 'repeated': False}, {'field': 'global_pooling', 'repeated': False}] # read pooling parameters pooling_param = getattr(layer_parm, 'pooling_param', None) parms = {} if (pooling_param is not None): for ii in range(len(dstruct)): if (dstruct[ii]['repeated']): code_str = ('extract_repeated_attr' + '(pooling_param,\'' + dstruct[ii]['field'] + '\')') else: code_str = ('extract_attr' + '(pooling_param,\'' + dstruct[ii]['field'] + '\')') parms[dstruct[ii]['field']] = eval(code_str) else: raise CaffeParseError('No pooling parameters given') # define parameters needed by SAS pooling layer # pooling type if parms['pool'] == 0: pool_type = 'max' elif parms['pool'] == 1: pool_type = 'mean' else: raise CaffeParseError('Invalid pooling type specified for layer = ' + layer_parm.name) # stride (vertical) if parms['stride_h'] > 0: tmp_stride_h = parms['stride_h'] else: if parms['stride'] == 0: tmp_stride_h = 1 else: tmp_stride_h = parms['stride'] # stride (horizontal) if parms['stride_w'] > 0: tmp_stride_w = parms['stride_w'] else: if parms['stride'] == 0: tmp_stride_w = 1 else: tmp_stride_w = parms['stride'] # horizontal/vertical stride must agree if tmp_stride_w != tmp_stride_h: raise CaffeParseError('Horizontal/vertical strides do not agree ' 'for layer = ' + layer_parm.name) else: common_stride = tmp_stride_w # height of kernel if parms['kernel_h'] > 0: height = parms['kernel_h'] else: if parms['kernel_size'] == 0: raise CaffeParseError('Unable to set kernel height for layer = ' + layer_parm.name) else: height = parms['kernel_size'] # width of kernel if parms['kernel_w'] > 0: width = kernel_w else: if parms['kernel_size'] == 0: raise CaffeParseError('Unable to set kernel width for layer = ' + layer_parm.name) else: width = parms['kernel_size'] # determine dropout dropout = extract_dropout(clayer) if dropout is None: dropout = 0 # determine source layer(s) source_layer, num_layers = extract_source_layers(clayer) if num_layers != 1: raise CaffeParseError('Pooling layer requires one input layer, ' + str(num_layers) + ' provided') return write_pooling_layer(model_name=model_name, layer_name=clayer.layer_parm.name, width=str(width), height=str(height), stride=str(common_stride), type=pool_type, dropout=str(dropout), src_layer=source_layer) # parse parameters for convolution layer and generate equivalent SAS code def caffe_convolution_layer(clayer, model_name): ''' Extract convolution layer parameters from LayerParameter object Parameters ---------- clayer : CompositeLayer Layer parameters. model_name : string Deep learning model name. Returns ------- String value with SAS deep learning convolution layer definition ''' layer_parm = clayer.layer_parm # list defining ConvolutionParameter data structure --> keep in sync with caffe.proto dstruct = [{'field': 'num_output', 'repeated': False}, {'field': 'bias_term', 'repeated': False}, {'field': 'pad', 'repeated': True}, {'field': 'kernel_size', 'repeated': True}, {'field': 'stride', 'repeated': True}, {'field': 'dilation', 'repeated': True}, {'field': 'pad_h', 'repeated': False}, {'field': 'pad_w', 'repeated': False}, {'field': 'kernel_h', 'repeated': False}, {'field': 'kernel_w', 'repeated': False}, {'field': 'stride_h', 'repeated': False}, {'field': 'stride_w', 'repeated': False}, {'field': 'group', 'repeated': False}, {'field': 'weight_filler', 'repeated': False}, {'field': 'bias_filler', 'repeated': False}, {'field': 'engine', 'repeated': False}, {'field': 'axis', 'repeated': False}, {'field': 'force_nd_im2col', 'repeated': False}] # read convolution parameters convolution_param = getattr(layer_parm, 'convolution_param', None) parms = {} if convolution_param is not None: for ii in range(len(dstruct)): if (dstruct[ii]['repeated']): code_str = ('extract_repeated_attr' + '(convolution_param,\'' + dstruct[ii]['field'] + '\')') else: code_str = ('extract_attr' + '(convolution_param,\'' + dstruct[ii]['field'] + '\')') parms[dstruct[ii]['field']] = eval(code_str) else: raise CaffeParseError('No convolution parameters given') # define parameters needed by SAS convolution layer # bias if parms['bias_term']: nobias = 'False' else: nobias = 'True' # number of output layers if parms['num_output'] == 0: raise CaffeParseError('num_output not provided for layer = ' + layer_parm.name) else: num_output = parms['num_output'] # stride (vertical) if parms['stride_h'] > 0: tmp_stride_h = parms['stride_h'] else: if parms['stride'] == 0: tmp_stride_h = 1 else: tmp_stride_h = parms['stride'] # stride (horizontal) if parms['stride_w'] > 0: tmp_stride_w = parms['stride_w'] else: if (parms['stride'] == 0): tmp_stride_w = 1 else: tmp_stride_w = parms['stride'] # horizontal/vertical stride must agree if tmp_stride_w != tmp_stride_h: raise CaffeParseError('Horizontal/vertical strides do not ' 'agree for layer = ' + layer_parm.name) else: common_stride = tmp_stride_w # height of kernel if parms['kernel_h'] > 0: height = parms['kernel_h'] else: if parms['kernel_size'] == 0: raise CaffeParseError('Unable to set kernel height for layer = ' + layer_parm.name) else: height = parms['kernel_size'] # width of kernel if parms['kernel_w'] > 0: width = parms['kernel_w'] else: if parms['kernel_size'] == 0: raise CaffeParseError('Unable to set kernel width for layer = ' + layer_parm.name) else: width = parms['kernel_size'] # determine source layer(s) source_layer, num_layers = extract_source_layers(clayer) if num_layers != 1: raise CaffeParseError('Convolution layer requires one input layer, ' + str(num_layers) + ' provided') # determine activation act = extract_activation(clayer, 'convolution') # determine dropout dropout = extract_dropout(clayer) if dropout is None: dropout = 0 return write_convolution_layer(model_name=model_name, layer_name=clayer.layer_parm.name, nfilters=str(num_output), width=str(width), height=str(height), stride=str(common_stride), nobias=nobias, activation=act, dropout=str(dropout), src_layer=source_layer) # parse parameters for batch normalization layer and generate equivalent SAS code def caffe_batch_normalization_layer(clayer, model_name): ''' Extract batch normalization layer parameters from LayerParameter object Parameters ---------- clayer : CompositeLayer Layer parameters. model_name : string Deep learning model name. Returns ------- String value with SAS deep learning batch normalization layer definition ''' # determine source layer(s) source_layer, num_layers = extract_source_layers(clayer) if (num_layers != 1): raise CaffeParseError( 'Batch normalization layer requires one input layer, ' + str(num_layers) + ' provided') # determine activation act = extract_activation(clayer, 'batchnorm') return write_batch_norm_layer(model_name=model_name, layer_name=clayer.layer_parm.name, activation=act, src_layer=source_layer) # parse parameters for input layer and generate equivalent SAS code def caffe_input_layer(clayer, model_name): ''' Extract input layer parameters from LayerParameter object Parameters ---------- clayer : CompositeLayer Layer parameters. model_name : string Deep learning model name. Returns ------- String value with SAS deep learning input layer definition ''' layer_parm = clayer.layer_parm # read scaling parameter transform_param = getattr(layer_parm, 'transform_param', None) if transform_param is not None: scale = getattr(transform_param, 'scale', 1.0) # read image format parameters memory_data_param = getattr(layer_parm, 'memory_data_param', None) if (memory_data_param is not None): channels = getattr(memory_data_param, 'channels', -1) height = getattr(memory_data_param, 'height', -1) width = getattr(memory_data_param, 'width', -1) else: channels = -1 height = -1 width = -1 print('WARNING: unable to provide parameters for image data format') return write_input_layer(model_name=model_name, layer_name=layer_parm.name, channels=str(channels), width=str(width), height=str(height), scale=str(scale)) # parse parameters for residual layer and generate equivalent SAS code def caffe_residual_layer(clayer, model_name): ''' Extract residual layer parameters from LayerParameter object Parameters ---------- clayer : CompositeLayer Layer parameters. model_name : string Deep learning model name. Returns ------- String value with SAS deep learning residual layer definition ''' layer_parm = clayer.layer_parm # list defining EltwiseParameter data structure --> keep in sync with caffe.proto dstruct = [{'field': 'operation', 'repeated': False}, {'field': 'coeff', 'repeated': True}, {'field': 'stable_product_grad', 'repeated': False}] # read eltwise parameters eltwise_param = getattr(layer_parm, 'eltwise_param', None) parms = {} if eltwise_param is not None: for ii in range(len(dstruct)): if (dstruct[ii]['repeated']): code_str = ('extract_repeated_attr' + '(eltwise_param,\'' + dstruct[ii]['field'] + '\')') else: code_str = ('extract_attr' + '(eltwise_param,\'' + dstruct[ii]['field'] + '\')') parms[dstruct[ii]['field']] = eval(code_str) else: raise CaffeParseError('No eltwise parameters given') # determine whether operation specified is valid if parms['operation'] != 1: raise CaffeParseError('Element-wise operation not supported') # determine activation act = extract_activation(clayer, 'residual') # determine source layer(s) source_layer, num_layers = extract_source_layers(clayer) if num_layers < 2: raise CaffeParseError( 'Residual layer requires two or more input layers, ' + str(num_layers) + ' provided') return write_residual_layer(model_name=model_name, layer_name=clayer.layer_parm.name, activation=act, src_layer=source_layer) # parse parameters for fully connected layer and generate equivalent SAS code def caffe_full_connect_layer(clayer, model_name): ''' Extract fully-connected layer parameters from LayerParameter object Parameters ---------- clayer : CompositeLayer Layer parameters. model_name : string Deep learning model name. Returns ------- String value with SAS deep learning fully-connected layer definition ''' layer_parm = clayer.layer_parm # list defining InnerProductParameter data structure --> keep in sync with caffe.proto dstruct = [{'field': 'num_output', 'repeated': False}, {'field': 'bias_term', 'repeated': False}, {'field': 'weight_filler', 'repeated': False}, {'field': 'bias_filler', 'repeated': False}, {'field': 'axis', 'repeated': False}, {'field': 'transpose', 'repeated': False}] # read inner product parameters inner_product_param = getattr(layer_parm, 'inner_product_param', None) parms = {} if inner_product_param is not None: for ii in range(len(dstruct)): if (dstruct[ii]['repeated']): code_str = ('extract_repeated_attr' + '(inner_product_param,\'' + dstruct[ii]['field'] + '\')') else: code_str = ('extract_attr' + '(inner_product_param,\'' + dstruct[ii]['field'] + '\')') parms[dstruct[ii]['field']] = eval(code_str) else: raise CaffeParseError('No inner_product parameters given') # define parameters needed by SAS fully-connected layer # bias if parms['bias_term']: nobias = 'False' else: nobias = 'True' # number of output neurons if parms['num_output'] > 0: num_neurons = parms['num_output'] else: raise CaffeParseError('Number of output neurons not specified ' 'for layer = , ' + layer_parm.name) # check axis setting if parms['axis'] != 1: raise CaffeParseError('axis = , ' + str(parms['axis']) + ' is not supported') # check transpose setting if parms['transpose']: raise CaffeParseError('transpose = , ' + str(parms['transpose']) + ' is not supported') # determine activation act = extract_activation(clayer, 'innerproduct') # determine layer type if act == 'softmax': fc_type = 'output' else: fc_type = 'fullconnect' # determine dropout dropout = extract_dropout(clayer) if (dropout is None): dropout = 0 # determine source layer(s) source_layer, num_layers = extract_source_layers(clayer) if num_layers != 1: raise CaffeParseError('Fully connected layer requires one input layer, ' + str(num_layers) + ' provided') return write_full_connect_layer(model_name=model_name, layer_name=layer_parm.name, nrof_neurons=str(num_neurons), nobias=nobias, activation=act, type=fc_type, dropout=str(dropout), src_layer=source_layer) class CompositeLayer(object): ''' Composite layer A composite layer is one that consists of common SAS/Caffe computation layers along with Caffe layers that share the same top blob as the computation layer. Parameters ---------- layer_parm : LayerParameter object (mirrors Google protobuf definition). ''' def __init__(self, layer_parm): self.source_layer = [] self.layer_parm = layer_parm self.related_layers = [] def make_composite_layer(layer_parm): ''' Generate a CompositeLayer object Parameters ---------- layer_parm : LayerParameter object (mirrors Google protobuf definition). Returns ------- :class:`CompositeLayer` ''' return CompositeLayer(layer_parm) # map Caffe activation layer types to SAS activation types def map_caffe_activation(layer_name, layer_type, act_type): ''' Map Caffe activation function(s) to SAS activation function(s) Parameters ---------- layer_name : string Layer name. layer_type : string Caffe layer type. act_type : string Caffe activation type. Returns ------- SAS activation type ''' # convolution layer if layer_type in ['convolution', 'batchnorm', 'residual']: map_dict = {'elu': 'elu', 'relu': 'relu', 'tanh': 'tanh', 'sigmoid': 'sigmoid'} elif layer_type == 'innerproduct': map_dict = {'softmax': 'softmax', 'elu': 'elu', 'relu': 'relu', 'tanh': 'tanh', 'sigmoid': 'sigmoid', 'softmaxwithloss': 'softmax'} else: raise CaffeParseError('SAS does not support activation functions for layer ' + layer_name) if act_type in map_dict.keys(): act_func = map_dict[act_type] if act_func is None: raise CaffeParseError('Activation function ' + act_type + ' not supported') else: raise CaffeParseError('Unknown Caffe activation function = ' + act_type) return act_func # extract activation from layer definition def extract_activation(clayer, layer_type): ''' Extract Caffe activation function from Caffe layer(s) sharing a common top blob Parameters ---------- clayer : CompositeLayer Layer parameters. layer_type : string Caffe layer type. Returns ------- SAS activation function [default = identity] ''' act = None if len(clayer.related_layers) > 0: for ii in range(len(clayer.related_layers)): act_type = clayer.related_layers[ii].type.lower() if act_type in caffe_activation_types: if (act is None): act = map_caffe_activation(clayer.layer_parm.name, layer_type, act_type) else: raise CaffeParseError('More than one activation associated ' 'with layer = ' + clayer.layer_parm.name) if act is None: act = 'identity' return act # extract dropout parameter def extract_dropout(clayer): ''' Extract dropout parameter from Caffe dropout layer Parameters ---------- clayer : CompositeLayer object Layer parameters. Returns ------- Caffe dropout parameter [default = 0.0] ''' dropout = None dropout_ratio = 0.0 if len(clayer.related_layers) > 0: for ii in range(len(clayer.related_layers)): layer_type = clayer.related_layers[ii].type.lower() if layer_type == 'dropout': if dropout is None: # read dropout parameters --> only one variable in # DropoutParameter message, so no intervening layer_param wrapper dropout_param = getattr(clayer.related_layers[ii], 'dropout_param', None) if dropout_param is not None: # dropout ratio dropout_ratio = getattr(dropout_param, 'dropout_ratio', 0.0) else: raise CaffeParseError('No dropout parameters given') else: raise CaffeParseError( 'More than one dropout layer associated with layer = ' + clayer.related_layers[ii].layer_parm.name) return dropout_ratio # determine source layer(s) for a given computation layer def extract_source_layers(clayer): ''' Construct a string representation of the layer name(s) of all the source layers Parameters ---------- clayer : CompositeLayer Layer parameters. Returns ------- string String representation of Python list ''' source_layer = [] num_layers = len(clayer.source_layer) for ii in range(num_layers): source_layer.append(clayer.source_layer[ii]) return repr(source_layer), num_layers # extract value from repeated container object (only first returned) def extract_repeated_attr(param, field): ''' Extract a particular field defined as a RepeatedContainer Parameters ---------- param : parameter object Various parameter objects defined by Google messages. field : string Parameter field. Notes ----- Only the first value is returned. Returns ------- string or None Field value or None if parameter or field doesn't exist. ''' tmpval = getattr(param, field, None) if tmpval is not None: if isinstance(tmpval, (float, int, bool)): y = tmpval elif len(tmpval) > 0: y = tmpval[0] else: y = None return y else: return None # extract value def extract_attr(param, field): ''' Extract a particular field from a parameter object Parameters ---------- param : parameter object Various parameter objects defined by Google messages. field : string Parameter field. Returns ------- string or None Field value or None if parameter or field doesn't exist. ''' tmpval = getattr(param, field, None) if tmpval is not None: return tmpval else: return None
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/model_conversion/sas_caffe_parse.py
0.521959
0.301619
sas_caffe_parse.py
pypi
import numpy as np import onnx from onnx import helper, numpy_helper, shape_inference, mapping from onnx import AttributeProto, TensorProto, GraphProto from dlpy.model_conversion.onnx_graph import OnnxNode class OpTypePattern(object): ''' A tree pattern of operators to match in an ONNX graph Parameters ---------- op_type : str Specifies the op type. name : str, optional Specifies a name for the node. outputs : list of :class:`OpTypePattern` objects, optional Specifies the output nodes. Returns ------- :class:`OpTypePattern` object ''' def __init__(self, op_type, name=None, outputs=None): self._op_type = op_type self._name = name if outputs is None: outputs = [] self._outputs = [ output_pattern if isinstance(output_pattern, OpTypePattern) else OpTypePattern(output_pattern) for output_pattern in outputs ] @property def op_type(self): return self._op_type @property def outputs(self): return self._outputs @property def name(self): return self._name class Transformer(object): ''' Transforms an OnnxGraph Parameters ---------- pattern : :class:`OpTypePattern` object, optional The pattern to match. Returns ------- :class:`Transformer` object ''' def __init__(self, pattern=None): self.pattern = pattern def match(self, node, pattern=None): ''' Checks if a subgraph rooted at `node` matches pattern. If there is a match, returns True. If not, returns False. Parameters ---------- node : :class:`OnnxNode` object The root node to be checked. pattern : :class:`OpTypePattern` object, optional The pattern to match. If None, defaults to self.pattern. Returns ------- boolean ''' if pattern is None: if self.pattern is None: raise ValueError('No pattern to match.') pattern = self.pattern if node.op_type != pattern.op_type: return False elif pattern.outputs and len(node.children) != len(pattern.outputs): return False else: ret = [] for child, child_pattern in zip(node.children, pattern.outputs): r = self.match(child, child_pattern) ret.append(r) return all(ret) def get_mapping(self, node, pattern=None): ''' Given that `node` is the root of a matched subgraph, returns a dict mapping names of the OpTypePatterns to their matched OnnxNodes Parameters ---------- node : :class:`OnnxNode` object The root node of a matching subgraph. pattern : :class:`OpTypePattern` object, optional The matching pattern. If None, defaults to self.pattern. Returns ------- dict key, value of OpTypePattern name and OnnxNode ''' if pattern is None: if self.pattern is None: raise ValueError('No pattern to match.') pattern = self.pattern mapping_dict = {} def _mapping(node, pattern, mapping_dict): if pattern.name is None: raise ValueError('Cannot generate mapping dict,' ' OpTypePattern name is None.') mapping_dict[pattern.name] = node for child, child_pattern in zip(node.children, pattern.outputs): _mapping(child, child_pattern, mapping_dict) return mapping_dict return _mapping(node, pattern, mapping_dict) def is_eligible(self, graph, node): ''' Checks whether subgraph rooted at node is eligible for the transform. Each subclass should implement this. Parameters ---------- graph : :class:`OnnxGraph` object The graph to be transformed. node : :class:`OnnxNode` object The root node of the subgraph to be transformed. Returns ------- boolean ''' return True def run_transform(self, graph, node): ''' Define the transform for a single subgraph. Implemented by subclass. Parameters ---------- graph : :class:`OnnxGraph` object The graph to be transformed. node : :class:`OnnxNode` object The root node of the subgraph to be transformed. Returns ------- :class:`OnnxGraph` object The transformed graph ''' return graph def __call__(self, graph): ''' Call on `graph` to execute the transform on all eligible subgraphs Parameters ---------- graph : :class:`OnnxGraph` object The graph to be transformed. Returns ------- :class:`OnnxGraph` object The transformed graph ''' matches = filter(lambda x: self.match(x), graph.node) ops = filter(lambda x: self.is_eligible(graph, x), matches) for op in ops: self.run_transform(graph, op) graph.connect_nodes() return graph class ConstToInitializer(Transformer): ''' Remove constant ops and add tensor to initializer''' def __init__(self): pattern = OpTypePattern('Constant') super(ConstToInitializer, self).__init__(pattern) def run_transform(self, graph, node): tensor = numpy_helper.to_array(node.attrs['value']) graph.tensor_dict[node.output[0]] = tensor # remove the constant op graph.remove_node(node.name) return graph class InitReshape(Transformer): ''' Remove reshape ops and add reshaped tensor to initializer''' def __init__(self): pattern = OpTypePattern('Reshape') super(InitReshape, self).__init__(pattern) def is_eligible(self, graph, node): if node.input[0] in graph.tensor_dict: return True return False def _get_shape(self, graph, node): ''' Get reshape op's shape ''' name = node.input[1] shape = [int(x) for x in graph.tensor_dict[name].flatten()] return tuple(shape) def run_transform(self, graph, node): shape = self._get_shape(graph, node) tensor = graph.tensor_dict[node.input[0]] graph.tensor_dict[node.output[0]] = tensor.reshape(shape) # remove reshape op graph.remove_node(node.name) return graph class InitUnsqueeze(Transformer): ''' Remove unsqueeze ops and add unsqueezed tensor to initializer''' def __init__(self): pattern = OpTypePattern('Unsqueeze') super(InitUnsqueeze, self).__init__(pattern) def is_eligible(self, graph, node): if node.input[0] in graph.tensor_dict: return True return False def _unsqueeze(self, tensor, axes): ''' unsqueeze tensor by specifying axes to be inserted ''' _shape = list(tensor.shape) new_dim = len(tensor.shape) + len(axes) unsqueezed_shape = [1] * new_dim for i in range(new_dim): if i not in axes: unsqueezed_shape[i] = _shape.pop(0) return tensor.reshape(tuple(unsqueezed_shape)) def run_transform(self, graph, node): axes = node.attrs['axes'] tensor = graph.tensor_dict[node.input[0]] graph.tensor_dict[node.output[0]] = self._unsqueeze(tensor, axes) # remove unsqueeze op graph.remove_node(node.name) return graph class FuseMulAddBN(Transformer): ''' Fuse Mul + Add into BN ''' def __init__(self): add = OpTypePattern('Add', name='add') mul = OpTypePattern('Mul', name='mul', outputs=[add]) bn = OpTypePattern('BatchNormalization', name='bn', outputs=[mul]) super(FuseMulAddBN, self).__init__(bn) def is_eligible(self, graph, node): mapping = self.get_mapping(node) bn, mul, add = mapping['bn'], mapping['mul'], mapping['add'] # only spatial batchnorm is supported if bn.attrs.get('spatial') is not None and bn.attrs['spatial'] != 1: return False # mul and add must be initialized by some tensor if (mul.input[0] not in graph.tensor_dict and mul.input[1] not in graph.tensor_dict): return False if (add.input[0] not in graph.tensor_dict and add.input[1] not in graph.tensor_dict): return False t = graph.tensor_dict scale = t[bn.input[1]] bias = t[bn.input[2]] _mul_tensor = t.get(mul.input[0], t[mul.input[1]]) mul_tensor = np.squeeze(_mul_tensor) _add_tensor = t.get(add.input[0], t[add.input[1]]) add_tensor = np.squeeze(_add_tensor) # check mul is broadcastable if mul_tensor.shape != scale.shape or mul_tensor.shape != bias.shape: if mul_tensor.shape != (1,) and mul_tensor.shape != (): return False # check add is broadcastable if add_tensor.shape != bias.shape: if add_tensor.shape != (1,) and add_tensor.shape != (): return False return True def run_transform(self, graph, node): mapping = self.get_mapping(node) bn, mul, add = mapping['bn'], mapping['mul'], mapping['add'] t = graph.tensor_dict scale = t[bn.input[1]] bias = t[bn.input[2]] _mul_tensor = t.get(mul.input[0], t[mul.input[1]]) mul_tensor = np.squeeze(_mul_tensor) _add_tensor = t.get(add.input[0], t[add.input[1]]) add_tensor = np.squeeze(_add_tensor) # multiply scale and bias t[bn.input[1]] = np.multiply(scale, mul_tensor) _bias = np.multiply(bias, mul_tensor) t[bn.input[2]] = np.add(_bias, add_tensor) # connect output of bn to output of add bn.output[0] = add.output[0] # remove mul and add nodes graph.remove_node(mul.name) graph.remove_node(add.name) return graph
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/model_conversion/onnx_transforms.py
0.954671
0.478833
onnx_transforms.py
pypi
from dlpy.utils import DLPyError ''' Model conversion utilities ''' def replace_forward_slash(layer_name): ''' Replaces forward slash (/) in layer names with _ Parameters ---------- layer_name : string Layer name Returns ------- string Layer name with / replaced with _ ''' return layer_name.replace('/','_') def query_action_parm(conn, action_name, action_set, parm_name): ''' Check whether action includes given parameter Parameters ---------- conn : CAS The CAS connection object action_name : string The name of the action action_set : string The name of the action set that contains the action parm_name : string The parameter name. Returns ------- boolean Indicates whether action supports parameter list of dictionaries Dictionaries that describe action parameters ''' # check whether action set is loaded parm_valid = False act_parms = [] r = conn.retrieve('queryactionset', _messagelevel='error', actionset=action_set) if r[action_set]: # check whether action part of action set r = conn.retrieve('listactions', _messagelevel='error', actionset=action_set) if action_name in r[action_set]['name'].tolist(): r = conn.retrieve('builtins.reflect', action=action_name, actionset=action_set) # check for parameter act_parms = r[0]['actions'][0]['params'] for pdict in act_parms: if pdict['name'].lower() == parm_name.lower(): parm_valid = True break else: raise DLPyError(action_name + ' is not an action in the ' + action_set + ' action set.') else: raise DLPyError(action_set + ' is not valid or not currently loaded.') return parm_valid, act_parms def check_rnn_import(conn): ''' Check whether importing RNN models is supported Parameters ---------- conn : CAS The CAS connection object Returns ------- boolean Indicates whether importing RNN models is supported ''' rnn_valid, act_parms = query_action_parm(conn, 'dlImportModelWeights', 'deepLearn', 'gpuModel') return rnn_valid def check_normstd(conn): ''' Check whether normStd option for addLayer action supported Parameters ---------- conn : CAS The CAS connection object Returns ------- boolean Indicates whether normStd option is supported ''' dummy, act_parms = query_action_parm(conn, 'addLayer', 'deepLearn', 'layer') norm_std = False for pdict in act_parms: if pdict['name'] == 'layer': for tmp_dict in pdict['alternatives'][0]['parmList']: if tmp_dict['name'].lower() == 'normstds': norm_std = True break return norm_std
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/model_conversion/model_conversion_utils.py
0.853027
0.262616
model_conversion_utils.py
pypi
import h5py class HDF5WriteError(IOError): ''' Used to indicate an error in writing HDF5 file ''' # write Caffe model parameters in HDF5 format def write_caffe_hdf5(net, layer_list, file_name): ''' Generate a SAS deep learning model from Caffe definition Parameters ---------- net : Net Caffe network object - used for obtaining parameters (weights/biases/etc.) layer_list : list-of-CompositeLayer List of layers. Parameter for these layers must be written in HDF5 format file_name : string Fully qualified file name of SAS-compatible HDF5 file (*.caffemodel.h5) ''' # open output file fout = h5py.File(file_name, 'w') # create base group g = fout.create_group('data') try: # write output file params = net.params for name in params.keys(): # associate scale layers with batchnorm layers match = False prop_name = name for clayer in layer_list: # search for scale layer for ii in range(len(clayer.related_layers)): if ((clayer.related_layers[ii].type.lower() == 'scale') and (name == clayer.related_layers[ii].name) and (not match)): prop_name = clayer.layer_parm.name + '_scale' match = True if match: break if not match: prop_name = name # open/create group cur_group = g.create_group(prop_name) # data set indexed by blob number for ii in range(len(params[name])): blob = params[name][ii].data # save parameters in HDF5 format dset = cur_group.create_dataset(str(ii), data=blob) # every layer in layer_list must have a corresponding group in the parameter # file. Add dummy group(s) for layers that don't have parameters for layer in layer_list: if (layer.layer_parm.name not in params.keys()): cur_group = g.create_group(layer.layer_parm.name) except HDF5WriteError as err_str: print(err_str) finally: # close file fout.close()
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/model_conversion/write_caffe_model_parm.py
0.482185
0.301491
write_caffe_model_parm.py
pypi
import keras from keras.layers import LSTM, Bidirectional, GRU from dlpy.utils import DLPyError ''' Keras-specific utilities ''' def remove_layer_wrapper(layer): ''' Determines underlying layer type for wrapped layers Parameters ---------- layer : Layer object Current layer object Returns ------- string class name of wrapped layer list of layer objects unwrapped layer object(s) ''' class_name = layer.__class__.__name__.lower() # check for layer wrappers sublayers = [] if class_name == 'timedistributed': layer_info = layer.get_config()['layer'] layer_info['config']['name'] = layer.name class_name = layer_info['class_name'].lower() if class_name == 'dense': sublayers.append(keras.layers.Dense(**layer_info['config'])) else: raise DLPyError(class_name + ' is an unsupported time distributed ' 'layer type - model conversion failed') elif class_name == 'bidirectional': layer_info = layer.get_config()['layer'] class_name = layer_info['class_name'].lower() # forward direction layer_info['config']['name'] = layer.forward_layer.name layer_info['config']['go_backwards'] = False if class_name == 'lstm': sublayers.append(keras.layers.LSTM(**layer_info['config'])) elif class_name == 'gru': sublayers.append(keras.layers.GRU(**layer_info['config'])) elif class_name == 'simplernn': sublayers.append(keras.layers.SimpleRNN(**layer_info['config'])) elif class_name == 'cudnnlstm': sublayers.append(keras.layers.CuDNNLSTM(**layer_info['config'])) elif class_name == 'cudnngru': sublayers.append(keras.layers.CuDNNGRU(**layer_info['config'])) else: raise DLPyError(class_name + ' is an unsupported time distributed ' 'layer type - model conversion failed') # backward direction layer_info['config']['name'] = layer.backward_layer.name layer_info['config']['go_backwards'] = True if class_name == 'lstm': sublayers.append(keras.layers.LSTM(**layer_info['config'])) elif class_name == 'gru': sublayers.append(keras.layers.GRU(**layer_info['config'])) elif class_name == 'simplernn': sublayers.append(keras.layers.SimpleRNN(**layer_info['config'])) elif class_name == 'cudnnlstm': sublayers.append(keras.layers.CuDNNLSTM(**layer_info['config'])) elif class_name == 'cudnngru': sublayers.append(keras.layers.CuDNNGRU(**layer_info['config'])) else: raise DLPyError(class_name + ' is an unsupported time distributed ' 'layer type - model conversion failed') else: sublayers.append(layer) # Must return sublayers in reverse order if CUDNN is used. # This aligns the Viya layer mapping with the CUDNN layer # mapping. if layer.__class__.__name__.lower() == 'bidirectional': sublayer_info = layer.get_config()['layer'] if sublayer_info['class_name'].lower() in ['cudnnlstm','cudnngru']: sublayers.reverse() #sublayers = [sublayers[1], sublayers[0]] return class_name, sublayers def create_cpu_compatible_layer(layer, model_type='CNN'): ''' Creates a new layer object using parameters from the provided layer Parameters ---------- layer : Layer object Current layer object model_type : string, optional Current model type (one of 'CNN' or 'RNN') Returns ------- Layer object ''' if model_type == 'RNN': # check for the use of CUDNN RNN layers # these layers must be mapped to non-CUDNN layer # format if layer.__class__.__name__ == 'Bidirectional': tlayer = layer.forward_layer config = tlayer.get_config() if tlayer.__class__.__name__ == 'CuDNNLSTM': new_layer = Bidirectional(LSTM(config['units'], return_sequences=config['return_sequences'], return_state=False, unit_forget_bias=config['unit_forget_bias'], stateful=False, activation='tanh', recurrent_activation='sigmoid'), merge_mode='concat') elif tlayer.__class__.__name__ == 'CuDNNGRU': new_layer = Bidirectional(GRU(config['units'], return_sequences=config['return_sequences'], return_state=False, stateful=False, reset_after=True), merge_mode='concat') else: new_layer = layer else: tlayer = layer config = tlayer.get_config() if tlayer.__class__.__name__ == 'CuDNNLSTM': new_layer = LSTM(config['units'], return_sequences=config['return_sequences'], return_state=False, unit_forget_bias=config['unit_forget_bias'], stateful=False, activation='tanh', recurrent_activation='sigmoid') elif tlayer.__class__.__name__ == 'CuDNNGRU': new_layer = GRU(config['units'], return_sequences=config['return_sequences'], return_state=False, stateful=False, reset_after=True) else: new_layer = layer else: new_layer = layer return new_layer
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/model_conversion/keras_utils.py
0.774711
0.183502
keras_utils.py
pypi
import onnx from onnx import helper, numpy_helper, mapping from onnx import NodeProto def _convert_onnx_attribute_proto(attr_proto): ''' Convert ONNX AttributeProto into Python object ''' if attr_proto.HasField('f'): return attr_proto.f elif attr_proto.HasField('i'): return attr_proto.i elif attr_proto.HasField('s'): return str(attr_proto.s, 'utf-8') elif attr_proto.HasField('t'): return attr_proto.t # this is a proto! elif attr_proto.floats: return list(attr_proto.floats) elif attr_proto.ints: return list(attr_proto.ints) elif attr_proto.strings: str_list = list(attr_proto.strings) str_list = list(map(lambda x: str(x, 'utf-8'), str_list)) return str_list else: raise ValueError("Unsupported ONNX attribute: {}".format(attr_proto)) class OnnxNode(object): ''' Reimplementation of NodeProto from ONNX, but in a form more convenient to work with from Python. ''' def __init__(self, node): ''' Create OnnxNode from NodeProto Parameters ---------- node : NodeProto Returns ------- :class:`OnnxNode` object ''' self.name = str(node.name) self.op_type = str(node.op_type) self.domain = str(node.domain) self.attrs = dict([(attr.name, _convert_onnx_attribute_proto(attr)) for attr in node.attribute]) self.input = list(node.input) self.output = list(node.output) self.node_proto = node self.parents = [] self.children = [] self.tensors = {} def add_child(self, child): ''' Add child node Parameters ---------- child : :class:`OnnxNode` object ''' if not isinstance(child, (tuple, list)): child = [child] child = list(filter(lambda x: x not in self.children, child)) self.children.extend(child) for c in child: if self not in c.parents: c.add_parent(self) def add_parent(self, parent): ''' Add OnnxNode parent Parameters ---------- parent : :class:`OnnxNode` object ''' if not isinstance(parent, (tuple, list)): parent = [parent] parent = list(filter(lambda x: x not in self.parents, parent)) self.parents.extend(parent) for p in parent: if self not in p.children: p.add_child(self) class OnnxGraph(object): ''' Helper class for holding ONNX graph Parameters ---------- graph_def : GraphProto Returns ------- :class:`OnnxGraph` object ''' def __init__(self, graph_def): self.name = graph_def.name self.node = [OnnxNode(n) for n in graph_def.node] self.value_info = list(graph_def.value_info) self.input = list(graph_def.input) self.output = list(graph_def.output) self.initializer = list(graph_def.initializer) self.tensor_dict = dict([(init.name, numpy_helper.to_array(init)) for init in graph_def.initializer]) self.uninitialized = [i for i in graph_def.input if i.name not in self.tensor_dict] def get_node(self, name): ''' Get node by name Parameters ---------- name : str Name of the node. Returns ------- :class:`OnnxNode` object if node is in graph, otherwise None ''' for n in self.node: if n.name == name: return n return None def get_node_index(self, name): ''' Get index of node Parameters ---------- name : str Name of the node. Returns ------- int if node is in graph, otherwise None ''' for idx, n in enumerate(self.node): if n.name == name: return idx return None def remove_node(self, name): ''' Remove node from graph Parameters ---------- name : str Name of node to be removed. ''' self.node = list(filter(lambda x: x.name != name, self.node)) self.connect_nodes() def replace_node(self, name, node): ''' Replace node in graph Parameters ---------- name : str Name of node to be replaced. node : :class:`OnnxNode` object The replacement node. ''' idx = self.get_node_index(name) if idx is not None: self.node[idx] = node self.connect_nodes() def insert_node(self, name, node): ''' Insert node in graph after named node Parameters ---------- name : str Name of the node to insert `node` after. node : :class:`OnnxNode` object The node to insert. ''' idx = self.get_node_index(name) if idx is not None: self.node.insert(idx+1, node) self.connect_nodes() def get_input(self, name): ''' Get graph input ValueInfoProto Parameters ---------- name : str Name of the ValueInfoProto. Returns ------- :class:`ValueInfoProto` object, or None if not present. ''' for i in self.input: if i.name == name: return i return None def add_input(self, value_info): ''' Add new graph input ValueInfoProto Parameters ---------- value_info : :class:`ValueInfoProto` object ValueInfoProto to add to graph input. ''' if not isinstance(value_info, (list, tuple)): value_info = [value_info] self.input.extend(value_info) def replace_input(self, name, value_info): ''' Replace a graph input ValueInfoProto Parameters ---------- name : str Name of ValueInfoProto to be replaced. value_info : :class:`ValueInfoProto` object The replacement ValueInfoProto. ''' for idx, proto in enumerate(self.input): if proto.name == name: self.input[idx] = value_info def get_initializer(self, name): ''' Get TensorProto from initializer Parameters ---------- name : str Name of the TensorProto. Returns ------- :class:`TensorProto` object, or None if not present. ''' for i in self.initializer: if i.name == name: return i return None def add_initializer(self, init): ''' Add TensorProto to initializer Parameters ---------- init : :class:`TensorProto` object TensorProto to add to initializer. ''' if not isinstance(init, (list, tuple)): init = [init] self.initializer.extend(init) def replace_initializer(self, name, init): ''' Replace TensorProto in initializer Parameters ---------- name : str Name of TensorProto to be replaced. init : :class:`TensorProto` object The replacement TensorProto. ''' for idx, proto in enumerate(self.initializer): if proto.name == name: self.initializer[idx] = init def clean_init(self): ''' Remove inputs, initializers which are not part of graph ''' all_inputs = [i for n in self.node for i in n.input] self.input = list(filter(lambda x: x.name in all_inputs, self.input)) self.initializer = list(filter(lambda x: x.name in all_inputs, self.initializer)) self.tensor_dict = {k:v for k,v in self.tensor_dict.items() if k in all_inputs} def connect_nodes(self): ''' Add parents and children for each node ''' # mapping from input to nodes input_to_node = {} for node in self.node: # reset any existing links node.parents = [] node.children = [] for input_ in node.input: if input_to_node.get(input_) is None: input_to_node[input_] = [] if node not in input_to_node[input_]: input_to_node[input_].append(node) for node in self.node: for output_ in node.output: if not input_to_node.get(output_): continue node.add_child(input_to_node[output_]) def make_onnx(self): ''' Generate ONNX model from current graph ''' self.clean_init() nodes = [] for node in self.node: n = NodeProto() n.input.extend(node.input) n.output.extend(node.output) n.name = node.name n.op_type = node.op_type n.attribute.extend( helper.make_attribute(key, value) for key, value in sorted(node.attrs.items()) ) nodes.append(n) inputs = [] initializer = [] for k,v in self.tensor_dict.items(): init = numpy_helper.from_array(v, name=k) initializer.append(init) value_info = helper.make_tensor_value_info( name=k, elem_type=mapping.NP_TYPE_TO_TENSOR_TYPE[v.dtype], shape=list(v.shape) ) inputs.append(value_info) graph_ = helper.make_graph( nodes=nodes, name='dlpy_graph', inputs=inputs+self.uninitialized, outputs=self.output, initializer=initializer ) model = helper.make_model(graph_) return model @classmethod def from_onnx(cls, graph): ''' Create a OnnxGraph object from ONNX GraphProto ''' graph_ = cls(graph) # generate names for nodes for idx, node in enumerate(graph_.node): if not node.name: node.name = '{}_{}'.format(node.op_type, idx) elif '/' in node.name: node.name = node.name.replace('/', '_') graph_.connect_nodes() # add initialized tensors to nodes for node in graph_.node: for input_ in node.input: if input_ in graph_.tensor_dict: node.tensors[input_] = graph_.tensor_dict[input_] return graph_
/sas-dlpy-1.2.0.tar.gz/sas-dlpy-1.2.0/dlpy/model_conversion/onnx_graph.py
0.737536
0.190649
onnx_graph.py
pypi
# SAS Event Stream Processing Python Interface The ESPPy package enables you to create [SAS Event Stream Processing (ESP)](https://www.sas.com/en_us/software/event-stream-processing.html) models programmatically in Python. Using ESPPy, you can connect to an ESP server and interact with projects and their components as Python objects. These objects include projects, continuous queries, windows, events, loggers, SAS Micro Analytic Service modules, routers, and analytical algorithms. ESPPy has full integration with [Jupyter](https://jupyter.org/) notebooks including visualizing diagrams of your ESP projects, and support for streaming charts and images. This enables you to easily explore and prototype your ESP projects in a familiar notebook interface. ## Installation To install ESPPy, use `pip`. This installs ESPPy and the Python package dependencies. ``` pip install sas-esppy ``` ### Additional Requirements In addition to the Python package dependencies, you also need the `graphviz` command-line tools to fully take advantage of ESPPy. Download them from http://www.graphviz.org/download/. ### Performance Enhancement ESPPy uses the `ws4py` websocket Python package. In some cases, you can improve performance greatly by installing the `wsaccel` package. This may not be available on all platforms though, and is left up to the user to install. ## The Basics To import the ESPPy package, use the same method as with any other Python package. ``` >>> import esppy ``` To connect to an ESP server, use the `ESP` class. In most cases, the only information that is needed is the hostname and port. ``` >>> esp = esppy.ESP('http://myesp.com:8777') ``` ### Getting Information about the Server After you have connected to the server, you can get information about the server and projects. ``` >>> esp.server_info {'analytics-license': True, 'engine': 'esp', 'http-admin': 8777, 'pubsub': 8778, 'version': 'X.X'} # Currently no projects are loaded >>> esp.get_projects() {} ``` ### Loading a Project To load a project, use the `load_project` method. ``` >>> esp.load_project('project.xml') >>> esp.get_projects() {'project': Project(name='project')} ``` To access continous queries and windows within projects, use the `queries` and `windows` attributes of the `Project` and `ContinuousQuery` objects, respectively. ``` >>> proj = esp.get_project('project') >>> proj.queries {'contquery': ContinuousQuery(name='contquery', project='project')} >>> proj.queries['contquery'].windows {'w_data': CopyWindow(name='w_data', continuous_query='contquery', project='project'), 'w_request': SourceWindow(name='w_request', continuous_query='contquery', project='project'), 'w_calculate': CalculateWindow(name='w_calculate', continuous_query='contquery', project='project')} >>> dataw = proj.queries['contquery'].windows['w_data'] ``` As a shortcut, you can drop the `queries` and `windows` attribute name. Projects and continuous queries act like dictionaries of those components. ``` >>> dataw = proj['contquery']['w_data'] ``` ### Publishing Event Data To publish events to a window, use the `publish_events` method. It accepts a file name, file-like object, DataFrame, or a string of CSV, XML, or JSON data. ``` >>> dataw.publish_events('data.csv') ``` ### Monitoring Events You can subscribe to the events of any window in a project. By default, all event data are cached in the local window object. ``` >>> dataw.subscribe() >>> dataw time x y z id 6 0.15979 -2.30180 0.23155 10.6510 7 0.18982 -1.41650 1.18500 11.0730 8 0.22040 -0.27241 2.22010 11.9860 9 0.24976 -0.61292 2.22010 11.9860 10 0.27972 1.33480 4.24950 11.4140 11 0.31802 3.44590 7.58650 12.5990 ``` To limit the number of cached events, use the `limit` parameter. For example, to only keep the last 20 events, enter the following line: ``` >>> dataw.subscribe(limit=20) ``` You can also limit the amount of time that events are collected using the `horizon` parameter. Use one of the following objects: `datetime`, `date`, `time`, or `timedelta`. ``` >>> dataw.subscribe(horizon=datetime.timedelta(hours=1)) ``` You can also perform any DataFrame operation on your ESP windows. ``` >>> dataw.info() <class 'pandas.core.frame.DataFrame'> Int64Index: 2108 entries, 6 to 2113 Data columns (total 4 columns): time 2108 non-null float64 x 2108 non-null float64 y 2108 non-null float64 z 2108 non-null float64 dtypes: float64(4) memory usage: 82.3 KB >>> dataw.describe() time x y z count 20.000000 20.000000 20.000000 20.000000 mean 69.655050 -4.365320 8.589630 -1.675292 std 0.177469 1.832482 2.688911 2.108300 min 69.370000 -7.436700 4.862500 -5.175700 25% 69.512500 -5.911250 7.007675 -3.061150 50% 69.655000 -4.099700 7.722700 -1.702500 75% 69.797500 -2.945400 9.132350 -0.766110 max 69.940000 -1.566300 14.601000 3.214400 ``` ### Using ESPPy Visualizations with JupyterLab NOTE: These instructions assume you have Anaconda installed. To use jupyterlab visualizations with ESPPy (available in version 6.2 or higher), perform the following steps: 1. Create a new Anaconda environment. For this example, the environment is called esp. ``` $ conda create -n esp python=3.X ``` 2. Activate the new environment. ``` $ conda activate esp ``` 3. Install the following packages: ``` $ pip install jupyter $ pip install jupyterlab $ pip install matplotlib $ pip install ipympl $ pip install pandas $ pip install requests $ pip install image $ pip install ws4py $ pip install plotly $ pip install ipyleaflet $ pip install graphviz ``` 4. Install the following Jupyterlab extensions: ``` $ jupyter labextension install @jupyter-widgets/jupyterlab-manager $ jupyter labextension install plotlywidget $ jupyter labextension install jupyter-leaflet ``` 5. Install the following packages (WINDOWS ONLY): ``` $ conda install -c conda-forge python-graphviz ``` 6. Create and change to a working directory. ``` $ cd $HOME $ mkdir esppy $ cd esppy ``` 7. Install ESPPy. ``` pip install sas-esppy ``` 8. Create a notebooks directory to store your notebooks. ``` $ mkdir notebooks ``` 9. Start the Jupyterlab server. Select an available port. For this example, port 35000 was selected. ``` $ jupyter lab --port 35000 ``` After you complete these steps, you can use the latest ESP graphics in your Jupyter notebooks. ### Documentation To view the full API documentation for ESPPy, see https://sassoftware.github.io/python-esppy/.
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/README.md
0.538983
0.946646
README.md
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import six import weakref from .utils.rest import RESTHelpers def attribute(name, dtype=None, values=None): ''' Create an XML attribute-based property Parameters ---------- name : string The name of the XML attribute dtype : string, optional The data type of the attribute Valid values: int, float, double, string, bool Default: string values : list or dict, optional The valid values of the attribute. If it is a list, the values in the list are used in both the instance attribute and the XML. If a dictionary is specified, the keys are the instance attribute value and the values are the XML values. Returns ------- :class:`Attribute` ''' return Attribute(name, dtype=dtype, values=values) class Attribute(object): ''' XML attribute-based property Parameters ---------- name : string The name of the XML attribute dtype : string, optional The data type of the attribute Valid values: int, float, double, string, bool Default: string values : list or dict, optional The valid values of the attribute. If it is a list, the values in the list are used in both the instance attribute and the XML. If a dictionary is specified, the keys are the instance attribute value and the values are the XML values. Returns ------- :class:`Attribute` ''' def __init__(self, name, dtype=None, values=None): self.name = name self.dtype = dtype or 'string' self.values = values self.value = weakref.WeakKeyDictionary() def get_xml_value(self, instance, owner=None): if instance is None: instance = self value = self.value.get(instance, None) if value is not None: if isinstance(self.values, dict): value = self.values[value] dtype = self.dtype if dtype == 'bool': value = value and 'true' or 'false' else: value = '%s' % value return value def get_value(self, instance, owner=None): if instance is None: instance = self return self.value.get(instance, None) def __get__(self, instance, owner=None): if instance is None: instance = self return self.value.get(instance, None) def __set__(self, instance, value): if instance is None: instance = self dtype = self.dtype if value is None: self.value[instance] = None return if dtype == 'int': value = int(value) elif dtype in ['double', 'float']: value = float(value) elif dtype == 'bool': if isinstance(value, six.string_types): value = (value.lower() == 'true') else: value = bool(value) elif dtype == 'string': value = '%s' % value if self.values: if isinstance(self.values, (tuple, list, set)): if value not in self.values: raise ValueError('%s is not one of %s' % (value, self.values)) elif isinstance(self.values, dict): if value not in self.values: found = False for key, val in self.values.items(): if value == val: value = key found = True break if not found: raise ValueError('%s is not one of %s' % (value, list(self.values.keys()))) self.value[instance] = value def __delete__(self, instance): if instance is None: instance = self self.value[instance] = None class ESPObject(RESTHelpers): ''' Base class for all ESP objects ''' def __init__(self, session=None, attrs=None): RESTHelpers.__init__(self, session=session) self._set_attributes(attrs) def _set_attributes(self, kwargs): kwargs = kwargs or {} xml_map = dict(getattr(type(self), 'xml_map', {})) # Always add these keys xml_map['name'] = 'name' xml_map['contquery'] = 'contquery' xml_map['project'] = 'project' attrs = {} for cls in reversed(type(self).__mro__): for key, value in vars(cls).items(): if isinstance(value, Attribute): attrs[key] = key attrs[value.name] = key for key, value in kwargs.items(): if value is not None and key in attrs: setattr(self, attrs[key], value) elif value is not None and key in xml_map: setattr(self, xml_map[key], value) def _get_attributes(self, use_xml_values=True): xml_map = dict(getattr(type(self), 'xml_map', {})) # Always add these keys xml_map['name'] = 'name' xml_map['contquery'] = 'contquery' xml_map['project'] = 'project' out = {} for cls in reversed(type(self).__mro__): for key, value in vars(cls).items(): if isinstance(value, Attribute): if use_xml_values: val = value.get_xml_value(self) if val is not None: out[value.name] = val else: val = value.get_value(self) if val is not None: out[key] = val for attr_name, xml_name in xml_map.items(): value = getattr(self, attr_name, None) if value is not None: if use_xml_values: if type(value) is bool: out[xml_name] = value and 'true' or 'false' else: out[xml_name] = '%s' % value else: out[attr_name] = value return out def __hash__(self): return id(self) def __eq__(self, other): return hash(other) == hash(self)
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/base.py
0.879432
0.350922
base.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import io import numpy as np import pandas as pd import re import six from PIL import Image def _bgr2rgb(pil_image): return Image.fromarray(np.asarray(pil_image)[:,:,::-1]) def bgr2rgb(data, columns=None): ''' Convert BGR images to RGB Parameters ---------- data : PIL.Image or DataFrame The image data columns : string or list-of-strings, optional If `data` is a DataFrame, this is the list of columns that contain image data. Returns ------- :class:`PIL.Image` If `data` is a :class:`PIL.Image` :class:`pandas.DataFrame` If `data` is a :class:`pandas.DataFrame` ''' if hasattr(data, 'columns'): if len(data): if not columns: columns = list(data.columns) elif isinstance(columns, six.string_types): columns = [columns] for col in columns: if Image.isImageType(data[col].iloc[0]): data[col] = data[col].apply(_bgr2rgb) return data elif Image.isImageType(data): return _bgr2rgb(data) return data def rgb2bgr(data, columns=None): ''' Convert RGB images to BGR Parameters ---------- data : PIL.Image or DataFrame The image data columns : string or list-of-strings, optional If `data` is a DataFrame, this is the list of columns that contain image data. Returns ------- :class:`PIL.Image` If `data` is a :class:`PIL.Image` :class:`pandas.DataFrame` If `data` is a :class:`pandas.DataFrame` ''' return bgr2rgb(data, columns=columns) def _bytes2image(data): return Image.open(io.BytesIO(data)) def bytes2image(data, columns=None): ''' Convert bytes to PIL.Image objects Parameters ---------- data : PIL.Image or DataFrame The image data columns : string or list-of-strings, optional If `data` is a DataFrame, this is the list of columns that contain image data. Returns ------- :class:`PIL.Image` If `data` is a :class:`PIL.Image` :class:`pandas.DataFrame` If `data` is a :class:`pandas.DataFrame` ''' if hasattr(data, 'columns'): if len(data): if not columns: columns = list(data.columns) elif isinstance(columns, six.string_types): columns = [columns] for col in columns: if isinstance(data[col].iloc[0], bytes): data[col] = data[col].apply(_bytes2image) return data elif isinstance(data, six.binary_type): return _bytes2image(data) return data
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/transformers.py
0.903794
0.542863
transformers.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import collections import os import re import requests import six from six.moves import urllib from .base import ESPObject from .utils import xml from .utils.rest import get_params from .utils.data import get_project_data, gen_name class Engine(object): ''' ESP Engine Configuration Parameters ---------- name : string Name of the ESP engine host : string Hostname of the ESP server port : string Port number of the ESP server auth_token : string, optional Auth token auth_token_url : string, optional Auth token URL Attributes ---------- name : string Name of the ESP engine host : string Hostname of the ESP server port : string Port number of the ESP server auth_token : string Auth token auth_token_url : string Auth token URL router : string The name of the router the engine definiton belongs to Returns ------- :class:`Engine` ''' def __init__(self, host, port, name=None, auth_token=None, auth_token_url=None): self.name = name or gen_name(prefix='eng_') self.host = host self.port = int(port) self.auth_token = auth_token self.auth_token_url = auth_token_url self.router = None def to_element(self): eng = xml.new_elem('esp-engine', attrib=dict(name=self.name, host=self.host, port=self.port)) if self.auth_token is not None: xml.add_elem(eng, 'auth_token', self.auth_token) if self.auth_token_url is not None: xml.add_elem(eng, 'auth_token_url', self.auth_token_url) return eng def to_xml(self, pretty=False): return xml.to_xml(self.to_element(), pretty=pretty) class PublishDestination(ESPObject): ''' Router Publish Destination Parameters ---------- target : string The target path in the form "<engine>.<project>.<contquery>.<window>" name : string, optional The name of the destination opcode : string, optional The opcode to apply to each event filter_func : string, optional The function used to filter the events that are published. The function is run for each event. Its Boolean value is evaluated to determine whether to publish the event to the appropriate target Source window. event_fields_init : dict, optional Container for functions to be run in order to initialize variables. These variables can be used in any subsequent functions. event_fields : dict, optional Container for functions to be run in order to add or modify event fields. Attributes ---------- target : string The target path in the form "<engine>.<project>.<contquery>.<window>" name : string The name of the destination opcode : string The opcode to apply to each event filter_func : string The function used to filter the events that are published. The function is run for each event. Its Boolean value is evaluated to determine whether to publish the event to the appropriate target Source window. event_fields_init : dict Container for functions to be run in order to initialize variables. These variables can be used in any subsequent functions. event_fields : dict Container for functions to be run in order to add or modify event fields. engine_func : string Function used to resolve the target engine. It must resolve to the name of one of the engines that are defined in the router context. project_func : string Function used to resolve the target project. It must resolve to the name of a project in the engine that is resolved in engine_func. contquery_func : string Function used to resolve the target continuous query. It must resolve to the name of a continuous query in the project that is resolved in project-func. window_func : string Function used to resolve the target Source window. It must resolve to the name of a source window in the continuous query that is resolved in contquery_func. router : string The name of the router the destination belongs to Returns ------- :class:`PublishDestination` ''' def __init__(self, target, name=None, opcode=None, filter_func=None, event_fields_init=None, event_fields=None): ESPObject.__init__(self) self.name = name or gen_name(prefix='pd_') self.opcode = opcode self.filter_func = filter_func self.event_fields_init = dict(event_fields_init or {}) self.event_fields = dict(event_fields or {}) self.target = target self.router = None @property def target(self): ''' Target path Returns ------- string ''' return '.'.join(['%s' % x for x in [self.engine_func, self.project_func, self.contquery_func, self.window_func]]) @target.setter def target(self, value): ''' Set the target path Parameters ---------- value : string The target path in the form "<engine>.<project>.<contquery>.<window>" ''' if value.count('.') < 3: raise ValueError('Target does not contain enough levels') value = list(value.split('.')) self.engine_func = value[0] self.project_func = value[1] self.contquery_func = value[2] self.window_func = value[3] def initialize(self): ''' Initialize the destination ''' self._put(urllib.parse.urljoin(self.base_url, 'routerDestinations/%s/%s/state' % (self.router, self.name)), params=get_params(value='initialized')) def to_element(self): ''' Convert destination to Element definition Returns ------- :class:`ElementTree.Element` ''' dest = xml.new_elem('publish-destination', attrib=dict(name=self.name, opcode=self.opcode)) if self.filter_func is not None: xml.add_elem(dest, 'filter-func', text_content=self.filter_func) tgt = xml.add_elem(dest, 'publish-target') if self.engine_func is not None: xml.add_elem(tgt, 'engine-func', text_content=self.engine_func) if self.project_func is not None: xml.add_elem(tgt, 'project-func', text_content=self.project_func) if self.contquery_func is not None: xml.add_elem(tgt, 'contquery-func', text_content=self.contquery_func) if self.window_func is not None: xml.add_elem(tgt, 'window-func', text_content=self.window_func) if self.event_fields_init or self.event_fields: efields = xml.add_elem(dest, 'event-fields') if self.event_fields_init: init = xml.add_elem(efields, 'init') for key, value in six.iteritems(self.event_fields_init): xml.add_elem(init, 'value', attrib=dict(name=key), text_content=value) if self.event_fields: flds = xml.add_elem(efields, 'fields') for key, value in six.iteritems(self.event_fields): xml.add_elem(flds, 'field', attrib=dict(name=key), text_content=value) return dest def to_xml(self, pretty=False): ''' Convert destination to XML definition Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class WriterDestination(ESPObject): ''' Route Writer Destination Parameters ---------- file_func : string Function used to resolve the name of the file into which the events are written. format : string Format of event output. Valid values are XML, JSON, and CSV. The default is XML. name : string, optional The name of the destination dateformat : string, optional The format for datetime strings in the data Attributes ---------- file_func : string Function used to resolve the name of the file into which the events are written. format : string Format of event output. Valid values are XML, JSON, and CSV. The default is XML. name : string The name of the destination dateformat : string The format for datetime strings in the data router : string The name of the router the destination belongs to Returns ------- :class:`WriterDestination` ''' def __init__(self, file_func, format, name=None, dateformat='%Y%m%dT%H:%M:%S.%f'): ESPObject.__init__(self) self.name = name or gen_name(prefix='wd_') self.format = format self.dateformat = dateformat self.file_func = file_func self.router = None def initialize(self): ''' Initialize the destination ''' self._put(urllib.parse.urljoin(self.base_url, 'routerDestinations/%s/%s/state' % (self.router, self.name)), params=get_params(value='initialized')) def to_element(self): ''' Convert the destination to an Element definition Returns ------- :class:`WriterDestination` ''' dest = xml.new_elem('writer-destination', attrib=dict(name=self.name, format=self.format, dateformat=self.dateformat)) xml.add_elem(dest, 'file-func', text_content=self.file_func) return dest def to_xml(self, pretty=False): ''' Convert the destination to an XML definition Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- :class:`ElementTree.Element` ''' return xml.to_xml(self.to_element(), pretty=pretty) class Route(object): ''' Route Parameters ---------- route : string The route path in the form "<engine>.<project>.<contquery>.<window>.<type>" where <type> is optional. to : string Comma-separated list of destinations that receive all of the events coming in from the subscriptions contained within the route. name : string, optional The name of the route snapshot : bool, optional Specify a value of true when you want to grab a snapshot of the initial window contents. Attributes ---------- route : string The route path in the form "<engine>.<project>.<contquery>.<window>.<type>" where <type> is optional. to : string Comma-separated list of destinations that receive all of the events coming in from the subscriptions contained within the route. name : string, optional The name of the route snapshot : bool, optional Specify a value of true when you want to grab a snapshot of the initial window contents. engine_expr : string Regular expression used to resolve the engine(s) to which the route should subscribe. If it is not specified, the route subscribes to all engines. project_expr : string Regular expression used to resolve the project(s) to which the route should subscribe. If it is not specified, the route subscribes to all projects. contquery_expr : string Regular expression used to resolve the continuous queries to which the route should subscribe. If it is not specified, the route subscribes to all continuous queries. window_expr : string Regular expression used to resolve the window(s) to which the route should subscribe. If it is not specified, the route subscribes to all windows. type_expr : string Regular expression used to resolve the window type(s) to which the route should subscribe. If it is not specified, the route subscribes to all window types. router : string The name of the router the route belongs to Returns ------- :class:`Route` ''' def __init__(self, route, to, name=None, snapshot=False): self.name = name or gen_name('r_') self.to = to self.snapshot = snapshot self.route = route self.router = None @property def route(self): ''' Route path Returns ------- string ''' route = '.'.join(['%s' % x for x in [self.engine_expr, self.project_expr, self.contquery_expr, self.window_expr, self.type_expr]]) while route.endswith('.None'): route = route[:-5] return route @route.setter def route(self, value): ''' Set route path Parameters ---------- value : string The route path in the form "<engine>.<project>.<contquery>.<window>.<type>" where <type> is optional. ''' if value.count('.') < 3: raise ValueError('Route does not contain enough levels') value = list(value.split('.')) + [None] self.engine_expr = value[0] self.project_expr = value[1] self.contquery_expr = value[2] self.window_expr = value[3] self.type_expr = value[4] def to_element(self): ''' Convert Route to an Element definition Returns ------- :class:`ElementTree.Element` ''' rte = xml.new_elem('esp-route', attrib=dict(name=self.name, to=self.to, snapshot=self.snapshot)) if self.engine_expr is not None: xml.add_elem(rte, 'engine-expr', text_content=self.engine_expr) if self.project_expr is not None: xml.add_elem(rte, 'project-expr', text_content=self.project_expr) if self.contquery_expr is not None: xml.add_elem(rte, 'contquery-expr', text_content=self.contquery_expr) if self.window_expr is not None: xml.add_elem(rte, 'window-expr', text_content=self.window_expr) if self.type_expr is not None: xml.add_elem(rte, 'type-expr', text_content=self.type_expr) return rte def to_xml(self, pretty=False): ''' Convert Route to an XML definition Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class Router(ESPObject): ''' Router definition Parameters ---------- name : string Name of the router Attributes ---------- name : string Name of the router engines : dict-of-Engines The ESP engines in the router definition destinations : dict-of-PublishDestinations/WriterDestinations The destinations for the router routes : dict-of-Routes The routes defined in the Router ''' def __init__(self, name=None): ESPObject.__init__(self) self.name = name or gen_name(prefix='r_') self.engines = {} self.destinations = {} self.routes = {} @classmethod def from_xml(cls, data, session=None): ''' Create router from XML definition Parameters ---------- data : xml-string or ElementTree.Element XML router definition session : requests.Session, optional Session that the router is associated with Returns ------- :class:`Router` ''' out = cls() out.session = session if isinstance(data, six.string_types): data = xml.from_xml(data) if data.tag != 'esp-router': data = data.find('.//esp-router') if data is None: raise ValueError('No router definition was found') out.name = data.attrib['name'] for eng in data.findall('./esp-engines/esp-engine'): args = dict(eng.attrib) for item in eng.findall('./auth_token'): args['auth_token'] = item.text for item in eng.findall('./auth_token_url'): args['auth_token_url'] = item.text eng = Engine(**args) eng.session = session eng.router = out.name out.engines[eng.name] = eng for pdest in data.findall('./esp-destinations/publish-destination'): path = ['None', 'None', 'None', 'None'] for item in pdest.findall('./publish-target/engine-func'): path[0] = item.text for item in pdest.findall('./publish-target/project-func'): path[1] = item.text for item in pdest.findall('./publish-target/contquery-func'): path[2] = item.text for item in pdest.findall('./publish-target/window-func'): path[3] = item.text filter_func = None for item in pdest.findall('./filter-func'): filter_func = item.text einit = {} for evt in data.findall('./event-fields/init/value'): name = evt.attrib.get('name', gen_name(prefix='ei_')) einit[name] = evt.text efields = {} for evt in data.findall('./event-fields/fields/field'): name = evt.attrib.get('name', gen_name(prefix='ef_')) efields[name] = evt.text dst = PublishDestination('.'.join(path), filter_func=filter_func, event_fields_init=einit, event_fields=efields, **pdest.attrib) dst.session = session dst.router = out.name out.destinations[dst.name] = dst for wdest in data.findall('./esp-destinations/writer-destination'): args = dict(wdest.attrib) for func in wdest.findall('./file-func'): args['file_func'] = func.text dst = WriterDestination(**args) dst.session = session dst.router = out.name out.destinations[dst.name] = dst for rte in data.findall('./esp-routes/esp-route'): path = ['None', 'None', 'None', 'None'] for item in rte.findall('./engine-expr'): path[0] = item.text for item in rte.findall('./project-expr'): path[1] = item.text for item in rte.findall('./contquery-expr'): path[2] = item.text for item in rte.findall('./window-expr'): path[3] = item.text for item in rte.findall('./type-expr'): path.append(item.text) path = '.'.join(path) route = Route(path, rte.attrib['to'], name=rte.attrib.get('name'), snapshot=rte.attrib.get('snapshot', 'f').lower().startswith('t')) route.session = session route.router = out.name out.routes[route.name] = route return out from_element = from_xml def to_element(self): ''' Convert Router to Element definition Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('esp-router', attrib=dict(name=self.name)) if self.engines: engs = xml.add_elem(out, 'esp-engines') for item in sorted(self.engines.values(), key=lambda x: x.name): xml.add_elem(engs, item.to_element()) if self.destinations: dests = xml.add_elem(out, 'esp-destinations') for item in sorted(self.destinations.values(), key=lambda x: x.name): xml.add_elem(dests, item.to_element()) if self.routes: routes = xml.add_elem(out, 'esp-routes') for item in sorted(self.routes.values(), key=lambda x: x.name): xml.add_elem(routes, item.to_element()) return out def to_xml(self, pretty=False): ''' Convert Router to XML definition Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) def add_engine(self, host, port, name=None, auth_token=None, auth_token_url=None): ''' Add a new router engine Parameters ---------- name : string Name of the router engine host : string Hostname of the server port : int Port number of the server auth_token : string, optional Auth token auth_token_url : string, optional URL to auth token Returns ------- :class:`Engine` ''' eng = Engine(host, port, name=name, auth_token=auth_token, auth_token_url=auth_token_url) self.engines[eng.name] = eng return eng def add_publish_destination(self, target, name=None, opcode=None, filter_func=None, event_fields_init=None, event_fields=None): ''' Add a new router publish destination Parameters ---------- target : string The target path in the form "<engine>.<project>.<contquery>.<window>" name : string, optional Name of the router destination opcode : string, optional Opcode for each event filter_func : string, optional The function used to filter the events that are published. The function is run for each event. Its Boolean value is evaluated to determine whether to publish the event to the appropriate target Source window. event_fields_init : dict, optional Container for functions to be run in order to initialize variables. These variables can be used in any subsequent functions. event_fields : dict, optional Container for functions to be run in order to add or modify event fields. ''' dst = PublishDestination(target, name=name, opcode=opcode, filter_func=filter_func, event_fields_init=event_fields_init, event_fields=event_fields) dst.session = self.session dst.router = self.name self.destinations[dst.name] = dst def add_writer_destination(self, file_func, format, name=None, dateformat='%Y%m%dT%H:%M:%S.%f'): ''' Add a new router writer destination Parameters ---------- file_func : string Function used to resolve the name of the file into which the events are written. format : string Format of event output. Valid values are XML, JSON, and CSV. The default is XML. name : string, optional Name of the router destination dateformat : string, optional Format of date strings Returns ------- :class:`WriterDestination` ''' dst = WriterDestination(file_func, format, name=name, dateformat=dateformat) dst.session = self.session dst.router = self.name self.destinations[dst.name] = dst return dst def initialize_destination(self, name): ''' Initalize router destination Parameters ---------- name : string Name of the destination to initialize ''' self.destinations[name].initialize() def add_route(self, route, to, name=None, snapshot=False): ''' Add a new route Parameters ---------- route : string The route path in the form "<engine>.<project>.<contquery>.<window>.<type>", where <type> is optional. to : string Comma-separated list of destinations that receive all of the events coming in from the subscriptions contained within the route. name : string, optional Name of the route to create snapshot : bool, optional Specify a value of true when you want to grab a snapshot of the initial window contents. Returns ------- :class:`Route` ''' rte = Route(route, to, name=name, snapshot=snapshot) rte.session = self.session rte.router = self.name self.routes[rte.name] = rte return rte def save(self, overwrite=True): ''' Save the router definition to the server Parameters ---------- overwrite : bool, optional Should an existing router of the same name be overwritten? ''' data=get_project_data(self).encode() self._put(urllib.parse.urljoin(self.base_url, 'routers/%s' % self.name), params=get_params(overwrite=overwrite), data=data) def delete(self): ''' Delete the router ''' self._delete(urllib.parse.urljoin(self.base_url, 'routers/%s' % self.name))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/router.py
0.779783
0.223356
router.py
pypi
import logging import sys import matplotlib from base64 import b16encode, b64encode from esppy.espapi.tools import Options from matplotlib import cm import matplotlib.colors as mcolors import numpy as np class Gradient(Options): def __init__(self,color,**kwargs): Options.__init__(self,**kwargs) c = Colors.getColorFromName(color) if c == None: raise Exception("invalid color: " + str(color)) if len(c) != 7: raise Exception("invalid color: " + str(color)) self._color = c self._levels = self.getOpt("levels",100) minv = self.getOpt("min",0) maxv = self.getOpt("max",100) self._a = [] if maxv > minv: self._a = np.arange(minv,maxv,(maxv - minv) / self._levels) def darken(self,value): s = self._color if len(self._a) > 0: a = np.where(value >= self._a)[0] level = len(a) - 1 rgbHex = [self._color[x:x + 2] for x in [1, 3, 5]] rgb = [int(v, 16) - level for v in rgbHex] rgb = [min([255, max([0,i])]) for i in rgb] s = "#{0:02x}{1:02x}{2:02x}".format(rgb[0],rgb[1],rgb[2]) return(s) def lighten(self,value): s = self._color if len(self._a) > 0: a = np.where(value >= self._a)[0] level = len(a) - 1 rgbHex = [self._color[x:x + 2] for x in [1, 3, 5]] rgb = [int(value, 16) + level for value in rgbHex] rgb = [min([255, max([0,i])]) for i in rgb] s = "#{0:02x}{1:02x}{2:02x}".format(rgb[0],rgb[1],rgb[2]) return(s) @property def color(self): return(self._color) @color.setter def color(self,value): self._color = value class Colors(Options): _sasThemes = { "sas_base":["#00929f", "#f08000", "#90b328", "#3d5aae", "#ffca39", "#a6427c", "#9c2910", "#736519"], "sas_dark":["#90b328", "#9c2910", "#ffca39", "#00929f", "#736519", "#f08000", "#a6427c"], "sas_highcontrast":["#a1d73b", "#ff791d", "#ffd736", "#cb66ff", "#ff5252", "#57b2ff", "#fa96e0", "#33f7b0"], "sas_light":["#3d5aae", "#90b328", "#9c2910", "#ffca39", "#00929f", "#736519", "#f08000", "#a6427c"], "sas_marine":["#00929f", "#f08000", "#90b328", "#3d5aae", "#ffca39", "#a6427c", "#9c2910", "#736519"], "sas_midnight":["#2470ad", "#98863c", "#5954ad", "#985b30", "#238a92", "#84414b", "#17785f", "#985186"], "sas_opal":["#33a3ff", "#ffcc32", "#9471ff", "#ff8224", "#2ad1d1", "#dd5757", "#15b57b", "#ff6fbd"], "sas_sail":["#21b9b7", "#4141e0", "#7db71a", "#8e2f8a", "#d38506", "#0abf85", "#2f90ec", "#db3851"], "sas_snow":["#3d5aae", "#90b328", "#9c2910", "#ffca39", "#00929f", "#736519", "#f08000", "#a6427c"], "sas_umstead":["#00929f", "#f08000", "#90b328", "#3d5aae", "#ffca39", "#a6427c", "#9c2910", "#736519"], "sas_corporate":["#00929f", "#f08000", "#90b328", "#3d5aae", "#ffca39", "#a6427c", "#9c2910", "#736519"], "sas_hcb":["#7cbf00", "#f77107", "#f1d700", "#bd77ff", "#ff6d65", "#4aacff", "#ff6fbd", "#00d692"], "sas_ignite":["#2470ad", "#98863c", "#5954ad", "#985b30", "#238a92", "#84414b", "#17785f", "#985186"], "sas_inspire":["#21b9b7", "#4141e0", "#7db71a", "#8e2f8a", "#d38506", "#0abf85", "#2f90ec", "#db3851"] } @staticmethod def lighten(color,offset): if len(color) != 7: return("#ffffff") rgbHex = [color[x:x + 2] for x in [1, 3, 5]] rgb = [int(value, 16) + offset for value in rgbHex] rgb = [min([255, max([0,i])]) for i in rgb] s = "#{0:02x}{1:02x}{2:02x}".format(rgb[0],rgb[1],rgb[2]) return(s) @staticmethod def darken(color,offset): if len(color) != 7: return("#ffffff") rgbHex = [color[x:x + 2] for x in [1, 3, 5]] rgb = [int(value, 16) - offset for value in rgbHex] rgb = [min([255, max([0,i])]) for i in rgb] s = "#{0:02x}{1:02x}{2:02x}".format(rgb[0],rgb[1],rgb[2]) return(s) @staticmethod def createGradient(**kwargs): return(Gradient(**kwargs)) @staticmethod def createGradientColors(**kwargs): opts = Options(**kwargs) c = Colors.getColorFromName(opts.getOpt("color")) num = opts.getOpt("num",10) end = opts.getOpt("end",False) delta = opts.getOpt("delta",25) colors = [] for i in range(0,num): if end: colors.insert(0,Colors.lighten(c,i * delta)) else: colors.append(Colors.darken(c,i * delta)) return(colors) @staticmethod def convertColormap(name): cmap = matplotlib.cm.get_cmap(name) norm = matplotlib.colors.Normalize(vmin = 0,vmax = 255) rgb = [] for i in range(0, 255): k = matplotlib.colors.colorConverter.to_rgb(cmap(norm(i))) rgb.append(k) entries = 255 h = 1.0 / (entries - 1) colorscale = [] for k in range(entries): C = list(map(np.uint8,np.array(cmap(k * h)[:3]) * 255)) colorscale.append([k * h,"rgb" + str((C[0], C[1], C[2]))]) return(colorscale) @staticmethod def convertColormapToPalette(name): cmap = matplotlib.cm.get_cmap(name) norm = matplotlib.colors.Normalize(vmin = 0,vmax = 255) rgb = [] for i in range(0, 255): k = matplotlib.colors.colorConverter.to_rgb(cmap(norm(i))) rgb.append(k) entries = 255 h = 1.0 / (entries - 1) colorscale = [] prev = None for k in range(entries): c = list(map(np.uint8,np.array(cmap(k * h)[:3]) * 255)) value = (c[0],c[1],c[2]) if value == prev: continue prev = value s = "#" + b16encode(bytes(value)).decode() colorscale.append(s) return(colorscale) @staticmethod def getColorFromName(name): if name.find("#") == 0: return(name) colors = mcolors.get_named_colors_mapping() color = None if name in colors: color = colors[name] return(color) @staticmethod def getLuma(name): luma = None color = Colors.getColorFromName(name) if color != None: r = int(color[1:3],16) g = int(color[3:5],16) b = int(color[5:7],16) luma = 0.2126 * r + 0.7152 * g + 0.0722 * b return(luma) def __init__(self,**kwargs): Options.__init__(self,**kwargs) if self.hasOpt("colormap"): self.createFromColorMap(self.getOpt("colormap")) elif self.hasOpt("colors"): self.createFromColors(self.getOpt("colors")) def createFromColorMap(self,colormap): if "clrs" not in sys.modules: import plotly.colors as clrs colors = [] colorscale = [] luma = [] if colormap != None and len(colormap) > 0: if colormap.find("sas_") == 0: if colormap in Colors._sasThemes: colors.extend(Colors._sasThemes[colormap]) elif colormap in clrs.PLOTLY_SCALES: cmap = clrs.PLOTLY_SCALES[colormap] interval = 1 / (len(cmap) - 1) index = 0 for i,c in enumerate(cmap): s = c[1] if s[0] == '#': colors.append(s) else: i1 = s.index("(") i2 = s.index(")") s = s[i1 + 1:i2] colorscale.append([index,"rgb(" + s + ")"]) a = s.split(",") r = int(a[0]) g = int(a[1]) b = int(a[2]) value = (r,g,b) luma.append(0.2126 * r + 0.7152 * g + 0.0722 * b) s = "#" + b16encode(bytes(value)).decode() colors.append(s) if i == (len(cmap) - 2): index = 1 else: index += interval else: try: cmap = matplotlib.cm.get_cmap(colormap) norm = matplotlib.colors.Normalize(vmin = 0,vmax = 255) rgb = [] for i in range(0, 255): k = matplotlib.colors.colorConverter.to_rgb(cmap(norm(i))) rgb.append(k) entries = 255 h = 1.0 / (entries - 1) prev = None a = [] for i in range(entries): c = list(map(np.uint8,np.array(cmap(i * h)[:3]) * 255)) value = (c[0],c[1],c[2]) if value == prev: continue luma.append(0.2126 * c[0] + 0.7152 * c[1] + 0.0722 * c[2]) prev = value a.append(["#" + b16encode(bytes(value)).decode(),"rgb(" + str(c[0]) + "," + str(c[1]) + "," + str(c[2]) + ")"]) if len(a) > 1: interval = 1 / (len(a) - 1) index = 0 for i,x in enumerate(a): colors.append(x[0]) colorscale.append([index,x[1]]) if i == (len(a) - 2): index = 1 else: index += interval except: pass if len(colors) == 0: interval = 1 / (len(clrs.DEFAULT_PLOTLY_COLORS) - 1) index = 0 for i,c in enumerate(clrs.DEFAULT_PLOTLY_COLORS): i1 = c.index("(") i2 = c.index(")") s = c[i1 + 1:i2] colorscale.append([index,"rgb(" + s + ")"]) a = s.split(",") r = int(a[0]) g = int(a[1]) b = int(a[2]) luma.append(0.2126 * r + 0.7152 * g + 0.0722 * b) value = (r,g,b) colors.append("#" + b16encode(bytes(value)).decode()) if i == (len(clrs.DEFAULT_PLOTLY_COLORS) - 2): index = 1 else: index += interval elif len(colorscale) == 0: interval = 1 / (len(colors) - 1) index = 0 for i,c in enumerate(colors): r = int(c[1:3],16) g = int(c[3:5],16) b = int(c[5:7],16) colorscale.append([index,"rgb(" + str(r) + "," + str(g) + "," + str(b) + ")"]) luma.append(0.2126 * r + 0.7152 * g + 0.0722 * b) if i == (len(colors) - 2): index = 1 else: index += interval self._colors = colors self._colorscale = colorscale self._luma = luma def createFromColors(self,colors): if len(colors) < 2: raise Exception("must have at least 2 colors") colorscale = [] luma = [] interval = 1 / (len(colors) - 1) index = 0 for i,c in enumerate(colors): r = int(c[1:3],16) g = int(c[3:5],16) b = int(c[5:7],16) colorscale.append([index,"rgb(" + str(r) + "," + str(g) + "," + str(b) + ")"]) luma.append(0.2126 * r + 0.7152 * g + 0.0722 * b) if i == (len(colors) - 2): index = 1 else: index += interval self._colors = [] self._colors.extend(colors) self._colorscale = colorscale self._luma = luma def getColor(self,name): if name.find("#") == 0: return(name) colors = mcolors.get_named_colors_mapping() color = None if name in colors: color = colors[name] elif name == "lightest": color = self.lightest elif name == "darkest": color = self.darkest return(color) def getColors(self,num,increment): index = 0 colors = [] for i in range(0,num): colors.append(self._colors[index]) index += increment if index == len(self._colors): index = 0 return(colors) def createColors(self,values,**kwargs): colors = [] if len(values) == 0: return(colors) opts = Options(**kwargs) minValue = min(values) maxValue = max(values) range = opts.getOpt("range") if range == None: range = [minValue,maxValue] if opts.hasOpt("gradient"): gopts = Options(**opts.getOpt("gradient")) c = self.getColor(gopts.getOpt("color","lightest")) levels = opts.getOpt("levels",100) gradient = Colors.createGradient(color=c,levels=levels,min=range[0],ma=range[1]) for value in values: if gopts.getOpt("end",False): value = maxValue - (value - minValue) colors.append(gradient.lighten(value)) else: colors.append(gradient.darken(value)) else: a = self._colors if opts.hasOpt("colors"): a = [] c = opts.getOpt("colors") for cv in c: a.append({"color":cv}) cr = ColorRange(a,range[0],range[1]) for value in values: colors.append(cr.get(value)) return(colors) def getSpread(self,num): delta = int(len(self._colors) / num) return(self.getColors(num,delta)) def getFirst(self,num = 1): colors = [] index = 0 for i in range(0,num): colors.append(self._colors[index]) index += 1 if index == len(self._colors): index = 0 return(colors) def getClosestTo(self,luma): color = None if len(self._colors) > 0: index = -1 diff = sys.maxsize for i,l in enumerate(self._luma): d = abs(luma - l) if d < diff: diff = d index = i if index >= 0: color = self._colors[index] return(color) @property def size(self): return(len(self._colors)) @property def colors(self): return(self._colors) @property def colorscale(self): return(self._colorscale) @property def first(self): color = None if len(self._colors) > 0: color = self._colors[0] return(color) @property def last(self): color = None if len(self._colors) > 0: color = self._colors[len(self._colors) - 1] return(color) @property def lightest(self): color = None if len(self._colors) > 0: maxLuma = 0 index = -1 for i,l in enumerate(self._luma): if l > maxLuma: maxLuma = l index = i if index >= 0: color = self._colors[index] return(color) @property def darkest(self): color = None if len(self._colors) > 0: minLuma = sys.maxsize index = -1 for i,l in enumerate(self._luma): if l < minLuma: minLuma = l index = i if index >= 0: color = self._colors[index] return(color) class ColorRange(object): def __init__(self,colors,minv,maxv): self._colors = colors self._minv = minv self._maxv = maxv self._a = [] if self._maxv > self._minv and len(self._colors.colors) > 0: self._a = np.arange(self._minv,self._maxv,(self._maxv - self._minv) / len(self._colors.colors)) def getColor(self,value): color = None if len(self._a) > 0: index = np.where(value >= self._a)[0] color = self._colors.colors[len(index) - 1] elif len(self._colors.colors) > 0: color = self._colors.colors[0] else: color = "#ffffff" return(color)
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/espapi/colors.py
0.472927
0.396302
colors.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals from .base import Window, attribute from .features import SchemaFeature, PatternsFeature from .utils import get_args class PatternWindow(Window, SchemaFeature, PatternsFeature): ''' Pattern window Parameters ---------- name : string, optional The name of the window schema : Schema, optional The schema of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window output_insert_only : bool, optional When true, prevents the window from passing non-insert events to other windows. collapse_updates : bool, optional When true, multiple update blocks are collapsed into a single update block pulse_interval : string, optional Output a canonical batch of updates at the specified interval. exp_max_string : int, optional Specifies the maximum size of strings that the expression engine uses for the window. Default value is 1024. index_type : string, optional Index type for the window pubsub_index_type : string, optional Publish/subscribe index type. Valid values are the same as for the `index_type` parameter. Attributes ---------- patterns : list-of-Patterns List of Pattern objects Returns ------- :class:`PatternWindow` ''' window_type = 'pattern' is_active = attribute('active', dtype='boolean') def __init__(self, name=None, schema=None, pubsub=None, description=None, output_insert_only=None, collapse_updates=None, pulse_interval=None, exp_max_string=None, index_type=None, pubsub_index_type=None, is_active=None): Window.__init__(self, **get_args(locals()))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/pattern.py
0.884657
0.31127
pattern.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals from .base import Window, attribute from .features import (SchemaFeature, OpcodeFeature, FunctionContextFeature, GenerateFeature, EventLoopFeature) from .utils import get_args class FunctionalWindow(Window, SchemaFeature, OpcodeFeature, FunctionContextFeature, GenerateFeature, EventLoopFeature): ''' Functional window Parameters ---------- name : string, optional The name of the window schema : Schema, optional The schema of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window output_insert_only : bool, optional When true, prevents the window from passing non-insert events to other windows. collapse_updates : bool, optional When true, multiple update blocks are collapsed into a single update block pulse_interval : string, optional Output a canonical batch of updates at the specified interval exp_max_string : int, optional Specifies the maximum size of strings that the expression engine uses for the window. Default value is 1024. index_type : string, optional Index type for the window pubsub_index_type : string, optional Publish/subscribe index type. Valid values are the same as for the `index_type` parameter. produces_only_inserts : bool, optional Set to true when you know that the procedural window always produces inserts opcode : string Specifies the opcode of the output event. The string must be 'insert', 'update', 'delete', or 'upsert'. generate : string Specifies a function to run that determines whether an output event should be generated from an input event. Attributes ---------- function_context : FunctionContext Entities to run functions on event data and generate values in an output event. event_loops : list List of RegexEventLoops, XMLEventLoops, or JSONEventLoops Returns ------- :class:`FunctionalWindow` ''' window_type = 'functional' produces_only_inserts = attribute('produces-only-inserts', dtype='bool') def __init__(self, name=None, schema=None, pubsub=None, description=None, output_insert_only=None, collapse_updates=None, pulse_interval=None, exp_max_string=None, index_type=None, pubsub_index_type=None, produces_only_inserts=None, opcode=None, generate=None): Window.__init__(self, **get_args(locals())) self.opcode = opcode self.generate = generate
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/functional.py
0.897387
0.311257
functional.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals from .base import BaseWindow, attribute, INDEX_TYPES from .features import (ParametersFeature, SchemaFeature, InputMapFeature, OutputMapFeature, MASMapFeature, ConnectorsFeature) from .utils import get_args class CalculateWindow(BaseWindow, SchemaFeature, ParametersFeature, InputMapFeature, OutputMapFeature, MASMapFeature, ConnectorsFeature): ''' Calculation Window Parameters ---------- name : string, optional The name of the window schema : Schema, optional The schema of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window algorithm : string, optional The name of the algorithm input_map : dict, optional Input mappings output_map : dict, optional Output mappings index_type : string, optional Index type for the window produces_only_inserts : bool, optional Set to true when you know that the procedural window always produces inserts **parameters : keyword arguments, optional The parameters to the algorithm Returns ------- :class:`CalculateWindow` ''' window_type = 'calculate' algorithm = attribute('algorithm', dtype='string') index_type = attribute('index', dtype='string', values=INDEX_TYPES) produces_only_inserts = attribute('output-insert-only', dtype='bool') def __init__(self, name=None, schema=None, pubsub=None, description=None, algorithm=None, index_type=None, produces_only_inserts=None, input_map=None, output_map=None, **parameters): BaseWindow.__init__(self, **get_args(locals())) self.set_parameters(**parameters) self.set_inputs(**(input_map or {})) self.set_outputs(**(output_map or {}))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/calculate.py
0.859678
0.206754
calculate.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import copy import re import six from .base import Window, attribute from .features import InitializeExpressionFeature from .utils import get_args, ensure_element, connectors_to_end from ..utils import xml class FieldExpression(object): ''' Join field expression Parameters ---------- name : string Output field for the join expr : string Join expression type : string, optional Type of the output field Returns ------- :class:`FieldExpression` ''' def __init__(self, name, expr, type='double'): self.name = name self.type = type self.expr = expr def copy(self, deep=False): return type(self)(self.name, self.expr, type=self.type) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`FieldExpression` ''' data = ensure_element(data) return cls(data.attrib['name'], data.text, type=data.attrib['type']) from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('field-expr', attrib=dict(name=self.name, type=self.type), text_content=self.expr) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class LeftExpression(object): ''' Join left expression Parameters ---------- names : string or list-of-strings, optional Specify fields from the left input to the Join window to use in output elements. Returns ------- :class:`LeftExpression` ''' def __init__(self, names='*'): if isinstance(names, six.string_types): names = re.split(r'\s*,\s*', names.strip()) self.names = names or [] def copy(self, deep=False): return type(self)(self.names) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`FieldExpression` ''' return cls(ensure_element(data).text) from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('left-expr', text_content=','.join(self.names)) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class RightExpression(object): ''' Join right expression Parameters ---------- names : string or list-of-strings, optional Specify fields from the right input to the Join window to use in output elements. Returns ------- :class:`RightExpression` ''' def __init__(self, names='*'): if isinstance(names, six.string_types): names = re.split(r'\s*,\s*', names.strip()) self.names = names or [] def copy(self, deep=False): return type(self)(self.names) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`FieldExpression` ''' return cls(ensure_element(data).text) from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('right-expr', text_content=','.join(self.names)) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class FieldPlugin(object): ''' Join field plugin Parameters ---------- name : string Name of the output field type : string Type of the output field plugin : string Full path to .so / .dll function : string Function to call in the library Returns ------- :class:`FieldPlugin` ''' def __init__(self, name, type, plugin, function): self.name = name self.type = type self.plugin = plugin self.function = function def copy(self, deep=False): return type(self)(self.name, self.type, self.plugin, self.function) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`FieldPlugin` ''' data = ensure_element(data) return cls(data.attrib['name'], data.attrib['type'], data.attrib['plugin'], data.attrib['function']) from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('field-plug', attrib=dict(name=self.name, type=self.type, plugin=self.plugin, function=self.function)) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class FieldSelection(object): ''' Join field selection Parameters ---------- name : string Name of the field in the join schema source : string Field in the input schema Returns ------- :class:`FieldSelection` ''' def __init__(self, name, source): self.name = name self.source = source def copy(self, deep=False): return type(self)(self.name, self.source) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`FieldSelection` ''' return cls(data.attrib['name'], data.attrib['source']) from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('field-selection', attrib=dict(name=self.name, source=self.source)) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class LeftSelection(object): ''' Join left selection Parameters ---------- names : string or list-of-strings Specify fields from the left input to the Join window to use in output elements. exclude : string or list-of-strings, optional Specifies a comma-separated list of fields to use from the input window. Returns ------- :class:`LeftSelection` ''' def __init__(self, names, exclude=None): if isinstance(names, six.string_types): names = re.split(r'\s*,\s*', names.strip()) if isinstance(exclude, six.string_types): exclude = re.split(r'\s*,\s*', exclude.strip()) self.names = names or [] self.exclude = exclude or [] def copy(self, deep=False): return type(self)(self.names, self.exclude) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`LeftSelection` ''' data = ensure_element(data) return cls(data.text, data.attrib.get('exclude')) from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('left-select', attrib=dict(exclude=','.join(self.exclude) or None), text_content=','.join(self.names)) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class RightSelection(object): ''' Join right selection Parameters ---------- names : string or list-of-strings Specify fields from the left input to the Join window to use in output elements. exclude : string or list-of-strings, optional Specifies a comma-separated list of fields to use from the input window. Returns ------- :class:`RightSelection` ''' def __init__(self, names, exclude=None): if isinstance(names, six.string_types): names = re.split(r'\s*,\s*', names.strip()) if isinstance(exclude, six.string_types): exclude = re.split(r'\s*,\s*', exclude.strip()) self.names = names or [] self.exclude = exclude or [] def copy(self, deep=False): return type(self)(self.names, self.exclude) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`FieldExpression` ''' data = ensure_element(data) return cls(data.text, data.attrib.get('exclude')) from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('right-select', attrib=dict(exclude=','.join(self.exclude) or None), text_content=','.join(self.names)) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class JoinWindow(Window, InitializeExpressionFeature): ''' Join window Parameters ---------- name : string, optional The name of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window output_insert_only : bool, optional When true, prevents the window from passing non-insert events to other windows. collapse_updates : bool, optional When true, multiple update blocks are collapsed into a single update block pulse_interval : string, optional Output a canonical batch of updates at the specified interval exp_max_string : int, optional Specifies the maximum size of strings that the expression engine uses for the window. Default value is 1024. index_type : string, optional Index type for the window pubsub_index_type : string, optional Publish/subscribe index type. Valid values are the same as for the `index_type` parameter. type : string, optional Type of the join use_secondary_index : bool, optional Use a secondary index no_regenerates : bool, optional When true, do not regenerate join changes when the dimension table changes. left_index : string, optional Left index type override right_index : string, optional Right index type override conditions : list-of-tuples, optional One or more equijoin match pairs. Each pair should be a two elemnt tuple: (left-name, right-name). Attributes ---------- expr_initializer : InitializeExpression Initialization expression code block output : list List of FieldPlugins, FieldExpressions, FieldSelections, LeftExpressions, RightExpressions, LeftSelections, and RightSelections. Returns ------- :class:`JoinWindow` ''' window_type = 'join' def __init__(self, name=None, pubsub=None, description=None, output_insert_only=None, collapse_updates=None, pulse_interval=None, exp_max_string=None, index_type=None, pubsub_index_type=None, type='leftouter', use_secondary_index=None, no_regenerates=None, left_index=None, right_index=None, conditions=None): Window.__init__(self, **get_args(locals())) self.type = type self.use_secondary_index = use_secondary_index self.no_regenerates = no_regenerates self.left_index = left_index self.right_index = right_index self.conditions = conditions or [] self.output = [] def copy(self, deep=False): out = Window.copy(self, deep=deep) out.type = self.type out.use_secondary_index = self.use_secondary_index out.no_regenerates = self.no_regenerates out.left_index = self.left_index out.right_index = self.right_index if deep: out.conditions = copy.deepcopy(self.conditions) out.output = [x.copy(deep=deep) for x in self.output] else: out.conditions = list(self.conditions) out.output = list(self.output) return out @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`JoinWindow` ''' out = super(JoinWindow, cls).from_element(data, session=session) for item in data.findall('./join'): for key, value in six.iteritems(item.attrib): key = key.replace('-', '_') if hasattr(out, key): setattr(out, key, value) for cond in item.findall('./conditions/fields'): out.conditions.append((cond.attrib['left'], cond.attrib['right'])) for item in data.findall('./output/field-expr'): out.output.append(FieldExpression.from_element(item, session=session)) for item in data.findall('./output/left-expr'): out.output.append(LeftExpression.from_element(item, session=session)) for item in data.findall('./output/right-expr'): out.output.append(LeftExpression.from_element(item, session=session)) for item in data.findall('./output/field-plug'): out.output.append(FieldPlugin.from_element(item, session=session)) for item in data.findall('./output/field-selection'): out.output.append(FieldSelection.from_element(item, session=session)) for item in data.findall('./output/left-select'): out.output.append(LeftSelection.from_element(item, session=session)) for item in data.findall('./output/right-select'): out.output.append(RightSelection.from_element(item, session=session)) return out from_xml = from_element def to_element(self, query=None): ''' Convert object to Element Parameters ---------- query : string, optional Name of the continuous query Returns ------- :class:`ElementTree.Element` ''' out = Window.to_element(self, query=query) join = xml.add_elem(out, 'join', attrib=dict(type=self.type, use_secondary_index=self.use_secondary_index, no_regenerates=self.no_regenerates, left_index=self.left_index, right_index=self.right_index)) cond = xml.add_elem(join, 'conditions') for left, right in self.conditions: xml.add_elem(cond, 'fields', attrib=dict(left=left, right=right)) output = xml.add_elem(out, 'output') for item in self.output: xml.add_elem(output, item.to_element()) connectors_to_end(out) return out def add_condition(self, left, right): ''' Add a join condition Parameters ---------- left : string Left field for match right : string Right field for match ''' self.conditions.append((left, right)) def add_field_expression(self, name, expr, type='double'): ''' Add a field expression Parameters ---------- name : string, optional Specifies the name of the output field for the join expr : string Specifies an Expression Engine Language (EEL) expression that is assigned to a field. type : string, optional The data type of the expression result. Valid Values: int32, int64, double, string, date, stamp, money, blob ''' self.output.append(FieldExpression(name, expr, type=type)) add_field_expr = add_field_expression def add_expression(self, names, type='left'): ''' Add an expression Parameters ---------- names : string or list-of-strings Specifies fields from the left input or the right input to the Join window to use in output elements. type : string, optional The type of expression. Valid values: left or right ''' if type.lower().startswith('r'): self.output.append(RightExpression(names)) else: self.output.append(LeftExpression(names)) add_expr = add_expression def add_field_selection(self, name, source): ''' Add a field selection Parameters ---------- name : string Selected field in the output schema source : string Takes the following form:l_field_name | rfield_name., where 'l_' indicates that the field comes from the left window and 'r_' indicates that the field comes from the right window. ''' self.output.append(FieldSelection(name, source)) def add_selection(self, selection, type='left', exclude=None): ''' Add a selection Parameters ---------- selection : string or list-of-strings Specifies fields from the left input or the right input to the Join window to use in output elements. exclude : string or list-of-strings, optional Specifies a comma-separated list of fields to use from the input window. type : string, optional Type of selection. Valid values: left or right ''' if type.lower().startswith('r'): self.output.append(RightSelection(selection, exclude=exclude)) else: self.output.append(LeftSelection(selection, exclude=exclude)) def add_field_plugin(self, name, type, plugin, function): ''' Add a field plugin Parameters ---------- name : string Name of the output field type : string Type of the output field plugin : string Full path to .so / .dll function : string Function to call in the library ''' self.output.append(FieldPlugin(name, type, plugin, function))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/join.py
0.897564
0.283533
join.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import collections import copy import re import six import inspect from .utils import ensure_element from ..connectors import Connector from ..connectors.base import get_connector_class from ..schema import Schema from ..utils.data import gen_name from ..utils import xml class InitializeExpression(object): ''' Initialization expression Parameters ---------- expr : string The initializer expression type : string, optional The return type of the initializer funcs : dict, optional User-defined functions to create. The format of the dictionary should be {'func-name:return-type': 'code'}. Returns ------- :class:`InitializeExpression` ''' def __init__(self, expr=None, type=None, funcs=None): self.expr = expr self.type = type if not funcs: self.funcs = {} else: self.funcs = dict(funcs) def copy(self, deep=False): return type(self)(expr=self.expr, type=self.type, funcs=self.funcs) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`InitializeExpression` ''' data = ensure_element(data) init_type = 'double' init_expr = None for init in data.findall('./initializer'): init_type = init.attrib['type'] init_expr = init.text funcs = {} for func in data.findall('./udfs/udf'): funcs['%s:%s' % (func.attrib['name'], func.attrib['type'])] = func.text return cls(expr=init_expr, type=init_type, funcs=funcs) from_xml = from_element def to_element(self): ''' Convert InitializeExpression to Element definition Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('expr-initialize') if self.expr and self.type: xml.add_elem(out, 'initializer', attrib=dict(type=self.type), text_content=self.expr) if self.funcs: udfs = xml.add_elem(out, 'udfs') for key, value in six.iteritems(self.funcs): name, dtype = key.split(':') xml.add_elem(udfs, 'udf', attrib=dict(name=name, type=dtype), text_content=value) return out def to_xml(self, pretty=False): ''' Convert InitializeExpression to XML definition Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class SplitterExpression(object): ''' Add an expression to direct events to one of n different output slots Parameters ---------- expr : string The splitter expression init_expr : string, optional An expression used to initialize variables init_type : string, optional The return type of the initializer init_funcs : dict, optional User-defined functions to create. The format of the dictionary should be {'func-name:return-type': 'code'}. Returns ------- :class:`SplitterExpression` ''' def __init__(self, expr, init_expr=None, init_type=None, init_funcs=None): self.expr = expr if init_expr or init_type or init_funcs: self.initializer = InitializeExpression(expr=init_expr, type=init_type, funcs=init_funcs) else: self.initializer = None def copy(self, deep=False): out = type(self)(self.expr) if self.initializer is not None: out.initializer = self.initializer.copy(deep=deep) return out @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`SplitterExpression` ''' data = ensure_element(data) expr = None for exp in data.findall('./expression'): expr = exp.text init_type = None init_expr = None for init in data.findall('./expr-initialize/initializer'): init_type = init.attrib['type'] init_expr = init.text funcs = {} for func in data.findall('./expr-initialize/udfs/udf'): funcs['%s:%s' % (func.attrib['name'], func.attrib['type'])] = func.text return cls(expr, init_type=init_type, init_expr=init_expr, init_funcs=funcs) from_xml = from_element def to_element(self): ''' Convert the SplitterExpression to an Element definition Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('splitter-expr') if self.initializer is not None: xml.add_elem(out, self.initializer.to_element()) xml.add_elem(out, 'expression', text_content=self.expr) return out def to_xml(self, pretty=False): ''' Convert SplitterExpression to XML definition Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class SplitterPlugin(object): ''' Create a splitter function using a shared library and function name Parameters ---------- name : string Name of the shared library that contains the function function : string Name of the function in the shared library Returns ------- :class:`SplitterPlugin` ''' def __init__(self, name, function): self.name = name self.function = function def copy(self, deep=False): return type(self)(self.name, self.function) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`SplitterPlugin` ''' data = ensure_element(data) return cls(data.attrib['name'], data.attrib['function']) from_xml = from_element def to_element(self): ''' Convert SplitterPlugin to Element definition Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('splitter-plug', attrib=dict(name=self.name, function=self.function)) def to_xml(self, pretty=False): ''' Convert SplitterPlugin to XML definition Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class FinalizedCallback(object): ''' Finalized Callback Parameters ---------- name : string Path to the library with the callback function function : string Name of the callback function Returns ------- :class:`FinalizedCallback` ''' def __init__(self, name, function): self.name = name self.function = function def copy(self, deep=False): return type(self)(self.name, self.function) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`FinalizedCallback` ''' data = ensure_element(data) out = None for item in data.findall('./finalized-callback'): out = cls(item.attrib['name'], item.attrib['function']) return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('finalized-callback', attrib=dict(name=self.name, function=self.function)) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class Retention(object): ''' Retention Parameters ---------- type : string Retention type. Valid Values: bytime_jumping, bytime_jumping_lookback, bytime_sliding, bycount_jumping, bycount_sliding value : string Retention value field : string, optional Specifies the name of a field of type datetime or timestamp unit : string, optional Specifies the unit of the lookback period for bytime_jumping_lookback retention policies. Returns ------- :class:`Retention` ''' def __init__(self, type, value, field=None, unit=None): self.type = type self.value = value self.field = field self.unit = unit @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`Retention` ''' data = ensure_element(data) return cls(data.attrib['type'], data.text, field=data.attrib.get('field'), unit=data.attrib.get('unit')) from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('retention', attrib=dict(type=self.type, field=self.field, unit=self.unit), text_content=self.value) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) def copy(self, deep=False): return type(self)(self.type, self.value, field=self.field, unit=self.unit) class MASWindowMap(object): ''' MAS Window Map Parameters ---------- module : string Module name source : string Input window revision : string, optional Module revision number function : string, optional Function in the module Returns ------- :class:`MASWindowMap` ''' def __init__(self, module, source, revision='0', function=None): self.module = module self.source = source self.revision = revision self.function = function def copy(self, deep=False): return type(self)(self.module, self.source, revision=self.revision, function=self.function) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`FieldExpression` ''' data = ensure_element(data) return cls(data.attrib['module'], data.attrib['source'], revision=data.attrib.get('revision', '0'), function=data.attrib.get('function', None)) from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('window-map', attrib=dict(module=self.module, source=self.source, revision=self.revision, function=self.function)) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class Model(object): ''' Model Parameters ---------- parameters : dict, optional Parameters input_map : dict, optional Input mappings output_map : dict, optional Output mappings Returns ------- :class:`Model` ''' def __init__(self, parameters=None, input_map=None, output_map=None): self.parameters = dict(parameters or {}) self.input_map = dict(input_map or {}) self.output_map = dict(output_map or {}) def __repr__(self): return str(self) def set_inputs(self, **kwargs): ''' Set input map fields Parameters ---------- **kwargs : keyword arguments The key / value pairs of input names and values ''' self.input_map.update({k: v for k, v in kwargs.items() if v is not None}) def set_outputs(self, **kwargs): ''' Set output map fields Parameters ---------- **kwargs : keyword arguments The key / value pairs of input names and values ''' self.output_map.update({k: v for k, v in kwargs.items() if v is not None}) class OnlineModel(Model): ''' Online model Parameters ---------- algorithm : string The name of the algorithm parameters : dict, optional Parameters input_map : dict, optional Input mappings output_map : dict, optional Output mappings Returns ------- :class:`OnlineModel` ''' def __init__(self, algorithm, parameters=None, input_map=None, output_map=None): Model.__init__(self, parameters=parameters, input_map=input_map, output_map=output_map) self.algorithm = algorithm def copy(self, deep=False): return type(self)(self.algorithm, parameters=self.parameters, input_map=self.input_map, output_map=self.output_map) def __str__(self): maps = [] if self.parameters: maps.append('parameters=%s' % self.parameters) if self.input_map: maps.append('input_map=%s' % self.input_map) if self.output_map: maps.append('output_map=%s' % self.output_map) return '%s(%s, %s)' % (type(self).__name__, self.algorithm, ', '.join(maps)) def __repr__(self): return str(self) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`FieldExpression` ''' data = ensure_element(data) out = cls(data.attrib['algorithm']) for prop in data.findall('./parameters/properties/property'): out.parameters[prop.attrib['name']] = prop.text for prop in data.findall('./input-map/properties/property'): out.input_map[prop.attrib['name']] = prop.text for prop in data.findall('./output-map/properties/property'): out.output_map[prop.attrib['name']] = prop.text return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('online', attrib=dict(algorithm=self.algorithm)) if self.parameters != None and len(self.parameters) > 0: parms = xml.add_elem(out,'parameters') xml.add_properties(parms, self.parameters, verbatim=True, bool_as_int=True) if self.input_map: imap = xml.add_elem(out, 'input-map') xml.add_properties(imap, self.input_map, verbatim=True, bool_as_int=True) if self.output_map: omap = xml.add_elem(out, 'output-map') xml.add_properties(omap, self.output_map, verbatim=True, bool_as_int=True) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class OfflineModel(Model): ''' Offline model Parameters ---------- model_type : string, optional Model type parameters : dict, optional Parameters input_map : dict, optional Input mappings output_map : dict, optional Output mappings Returns ------- :class:`OfflineModel` ''' def __init__(self, model_type='astore', parameters=None, input_map=None, output_map=None): Model.__init__(self, parameters=parameters, input_map=input_map, output_map=output_map) self.model_type = model_type def copy(self, deep=False): return type(self)(model_type=self.model_type, parameters=self.parameters, input_map=self.input_map, output_map=self.output_map) def __str__(self): maps = [] if self.parameters: maps.append('parameters=%s' % self.parameters) if self.input_map: maps.append('input_map=%s' % self.input_map) if self.output_map: maps.append('output_map=%s' % self.output_map) return '%s(%s, %s, model_type=%s, %s)' % (type(self).__name__, repr(self.model_type), ', '.join(maps)) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`FieldExpression` ''' data = ensure_element(data) out = cls(model_type=data.attrib['model-type']) for prop in data.findall('./parameters/properties/property'): out.parameters[prop.attrib['name']] = prop.text for prop in data.findall('./input-map/properties/property'): out.input_map[prop.attrib['name']] = prop.text for prop in data.findall('./output-map/properties/property'): out.output_map[prop.attrib['name']] = prop.text return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('offline', attrib=dict(model_type=self.model_type)) if self.parameters != None and len(self.parameters) > 0: parms = xml.add_elem(out,'parameters') xml.add_properties(parms, self.parameters, verbatim=True, bool_as_int=True) if self.input_map: imap = xml.add_elem(out, 'input-map') xml.add_properties(imap, self.input_map, verbatim=True, bool_as_int=True) if self.output_map: omap = xml.add_elem(out, 'output-map') xml.add_properties(omap, self.output_map, verbatim=True, bool_as_int=True) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class Plugin(object): ''' Plugin Parameters ---------- name : string Path to .so / .dll function : string Name of the function in the library context_name : string, optional The shared library that contains the context–generation function. context_function : string, optional The function that, when called, returns a new derived context for the window’s handler routines. Returns ------- :class:`Plugin` ''' def __init__(self, name, function, context_name=None, context_function=None): self.name = name self.function = function self.context_name = context_name self.context_function = context_function def copy(self, deep=False): return type(self)(self.name, self.function, context_name=self.context_name, context_function=self.context_function) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`Plugin` ''' data = ensure_element(data) context_name = None context_function = None for ctxt in data.findall('./context-plugin'): context_name = ctxt.attrib.get('name') context_function = ctxt.attrib.get('function') return cls(data.attrib['name'], data.attrib['function'], context_name=context_name, context_function=context_function) from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('plugin', attrib=dict(name=self.name, function=self.function)) if self.context_name and self.context_function: xml.add_elem(out, 'context-plugin', attrib=dict(name=self.context_name, function=self.context_function)) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class PatternEvent(object): ''' Pattern Event Parameters ---------- source : string Input window name : string Name of the event expr : string Event where clause Returns ------- :class:`PatternEvent` ''' def __init__(self, source, name, expr): self.source = source self.name = name self.expr = expr def copy(self, deep=False): return type(self)(self.source, self.name, self.expr) class PatternFieldExpression(object): ''' Pattern Field Expression Parameters ---------- node : string Name of the event expr : string The expression Returns ------- :class:`PatternFieldExpression` ''' def __init__(self, node, expr): self.expr = expr self.node = node def copy(self, deep=False): return type(self)(self.node, self.expr) class PatternFieldSelection(object): ''' Pattern Field Selection Parameters ---------- node : string Name of the event name : string Field name to select from event Returns ------- :class:`PatternFieldSelection` ''' def __init__(self, node, name): self.node = node self.name = name def copy(self, deep=False): return type(self)(self.node, self.name) class PatternTimeField(object): ''' Pattern Time Field Parameters ---------- field : string Field name to use to derive expiration time source : string Window the time field is in Returns ------- :class:`PatternTimeField` ''' def __init__(self, field, source): self.field = field self.source = source def copy(self, deep=False): return type(self)(self.field, self.source) class Pattern(object): ''' Pattern Parameters ---------- name : string Name for user-interface tracking index : string or list-of-strings, optional Optional index is_active : boolean, optional Is the pattern enabled? ''' def __init__(self, name=None, index=None, is_active=None): self.name = name if index is None: self.index = [] elif isinstance(index, six.string_types): self.index = re.split(r'\s*,\s*', index.strip()) else: self.index = list(index) self.is_active = is_active self.events = [] self.logic = '' self.output = [] self.timefields = [] def copy(self, deep=False): out = type(self)(name=self.name, index=self.index, is_active=self.is_active) out.logic = self.logic if deep: out.events = [x.copy(deep=deep) for x in self.events] out.output = [x.copy(deep=deep) for x in self.output] out.timefields = [x.copy(deep=deep) for x in self.timefields] else: out.events = list(self.events) out.output = list(self.output) out.timefields = list(self.timefields) return out @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`FieldExpression` ''' data = ensure_element(data) out = cls() out.name = data.attrib.get('name') out.index = re.split(r'\s*,\s*', data.attrib.get('index', '').strip()) out.is_active = data.attrib.get('active', None) for event in data.findall('./events/event'): out.add_event(event.attrib.get('source'), event.attrib.get('name'), event.text) for logic in data.findall('./logic'): out.set_logic(logic.text) for field_expr in data.findall('./output/field-expr'): out.add_field_expr(field_expr.text, **field_expr.attrib) for field_selection in data.findall('./output/field-selection'): out.add_field_selection(**field_selection.attrib) for timefield in data.findall('./timefields/timefield'): out.add_timefield(**timefield.attrib) return out from_xml = from_element def add_event(self, source, name, expr): ''' Add a Pattern Event Parameters ---------- source : string Input window name : string Name of the event expr : string Event where clause ''' self.events.append(PatternEvent(source, name, expr)) def add_field_expression(self, expr, node=None): ''' Add a Pattern Field Expression Parameters ---------- node : string Name of the event expr : string The expression ''' self.output.append(PatternFieldExpression(node, expr)) add_field_expr = add_field_expression def set_logic(self, expr): ''' Set logic expression Parameters ---------- expr : string Operator tree as an expression ''' self.logic = expr def add_field_selection(self, node, name): ''' Add a Pattern Field Selection Parameters ---------- node : string Name of the event name : string Field name to select from event ''' self.output.append(PatternFieldSelection(node, name)) def add_timefield(self, field, source): ''' Add a Pattern Time Field Parameters ---------- field : string Field name to use to derive expiration time source : string Window the time field is in ''' self.timefields.append(PatternTimeField(field, source)) def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('pattern', attrib=dict(name=self.name, is_active=self.is_active, index=','.join(self.index) or None)) if self.events: events = xml.add_elem(out, 'events') for item in self.events: xml.add_elem(events, 'event', text_content=item.expr, attrib=dict(source=item.source, name=item.name)) if self.logic: xml.add_elem(out, 'logic', text_content=self.logic) if self.output: output = xml.add_elem(out, 'output') for item in self.output: if isinstance(item, PatternFieldExpression): xml.add_elem(output, 'field-expr', text_content=item.expr, attrib=dict(node=item.node)) elif isinstance(item, PatternFieldSelection): xml.add_elem(output, 'field-selection', attrib=dict(node=item.node, name=item.name)) if self.timefields: timefields = xml.add_elem(out, 'timefields') for item in self.timefields: xml.add_elem(timefields, 'timefield', attrib=dict(field=item.field, source=item.source)) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class CXXPluginContext(object): ''' C++ Plugin Context Parameters ---------- cxx_name : string Path to the .so / .dll that contains the function cxx_function : string Name of the function in the library **proprties : keyword-arguments, optional Property list Returns ------- :class:`CXXPluginContext` ''' def __init__(self, cxx_name, cxx_function, **properties): self.name = cxx_name self.function = cxx_function self.properties = dict(properties) def copy(self, deep=False): return type(self)(self.name, self.function, **self.properties) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`CXXPluginContext` ''' data = ensure_element(data) out = cls(data.attrib['name'], data.attrib['function']) for item in data.findall('./properties/property'): out.properties[item.attrib['name']] = item.text return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('cxx-plugin-context', attrib=dict(name=self.name, function=self.function)) if self.properties: xml.add_properties(out, self.properties, bool_as_int=True) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) def set_properties(self, **properties): ''' Set plugin properties Parameters ---------- **properties : keyword-arguments, optional The properties to set ''' self.properties.update(properties) class CXXPlugin(object): ''' C++ Plugin Parameters ---------- source : string Input window name : string Path to the .so / .dll function : string Function name in the library Returns ------- :class:`CXXPlugin` ''' def __init__(self, source, name, function): self.source = source self.name = name self.function = function def copy(self, deep=False): return type(self)(self.source, self.name, self.function) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`CXXPlugin` ''' data = ensure_element(data) return cls(data.attrib['source'], data.attrib['name'], data.attrib['function']) from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('cxx-plugin', attrib=dict(source=self.source, name=self.name, function=self.function)) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class DS2TableServer(object): ''' DS2 Table Server Parameters ---------- source : string Input window code : string, optional Inline block of code code_file : string, optional File containing code Returns ------- :class:`DS2TableServer` ''' def __init__(self, source, code=None, code_file=None): self.source = source self.code = code self.code_file = code_file def copy(self, deep=False): return type(self)(self.source, code=self.code, code_file=self.code_file) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`FieldExpression` ''' data = ensure_element(data) out = cls(data.attrib['source']) for item in data.findall('./code'): out.code = item.text for item in data.findall('./code_file'): out.code_file = item.text return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('ds2-tableserver', attrib=dict(source=self.source)) if self.code is not None: xml.add_elem(out, 'code', text_content=self.code) elif self.code_file is not None: xml.add_elem(out, 'code-file', text_content=self.code_file) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class DSExternal(object): ''' DS External Parameters ---------- source : string Input window code : string, optional Inline block of code code_file : string, optional File containing code trace : bool, optional Print debugging information connection_timeout : int, optional Time for SAS to answer back max_string_length : int, optional Maximum string ESP will pass Returns ------- :class:`DSExternal` ''' def __init__(self, source, code=None, code_file=None, trace=False, connection_timeout=300, max_string_length=32000): self.source = source self.code = code self.code_file = code_file self.trace = trace self.connection_timeout = connection_timeout self.max_string_length = max_string_length def copy(self, deep=False): return type(self)(self.source, code=self.code, code_file=self.code_file, trace=self.trace, connection_timeout=self.connection_timeout, max_string_length=self.max_string_length) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`FieldExpression` ''' data = ensure_element(data) out = cls(data.attrib['source'], trace=data.attrib.get('trace', False), connection_timeout=int(data.attrib.get('connection_timeout', 300)), max_string_length=int(data.attrib.get('max_string_length', 32000))) for item in data.findall('./code'): out.set_code(item.text) for item in data.findall('./code_file'): out.set_code_file(item.text) return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('ds-external', attrib=dict(trace=self.trace, source=self.source, connection_timeout=self.connection_timeout, max_string_length=self.max_string_length)) if self.code is not None: xml.add_elem(out, 'code', text_content=self.code) elif self.code_file is not None: xml.add_elem(out, 'code-file', text_content=self.code_file) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class WindowFeature(object): ''' Base Window Feature Class ''' def _feature_from_element(self, data): ''' Convert Element to object Parameters ---------- data : string or Element The Element to convert Returns ------- object ''' return def _feature_from_xml(self, data): ''' Convert XML to object Parameters ---------- data : string or Element The XML to convert Returns ------- object ''' return self.from_element(xml.from_xml(data)) def _feature_to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return def _feature_to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' out = self.to_element() if out is not None: out = xml.to_xml(out, pretty=pretty) return out def _copy_feature(self, other, deep=False): raise NotImplementedError class SplitterExpressionFeature(WindowFeature): ''' Splitter Expression Feature ''' def __init__(self): self.splitter = None def _feature_from_element(self, data): for item in data.findall('./splitter-expr'): self.splitter = SplitterExpression.from_element(item, session=self.session) def _feature_to_element(self): if not isinstance(self.splitter, SplitterExpression): return return self.splitter.to_element() def _copy_feature(self, other, deep=False): if isinstance(self.splitter, SplitterExpression): other.splitter = self.splitter.copy() def set_splitter_expr(self, expr, init_type='double', init_expr=None, init_funcs=None): ''' Set expression to direct events to one of n different output slots Parameters ---------- expr : string The expression to be processed init_type : string, optional The data type of the return value of the initializer init_expr : string, optional The initialization expression init_funcs : dict, optional User-defined functions to create. The format of the dictionary should be {'func-name:return-type': 'code'}. ''' self.splitter = SplitterExpression(expr, init_expr=init_expr, init_type=init_type, init_funcs=init_funcs) class SplitterPluginFeature(WindowFeature): ''' Splitter Plugin Feature ''' def __init__(self): self.splitter = None def _feature_from_element(self, data): for item in data.findall('./splitter-plug'): self.splitter = SplitterPlugin.from_element(item, session=self.session) def _feature_to_element(self): if not isinstance(self.splitter, SplitterPlugin): return return self.splitter.to_element() def _copy_feature(self, other, deep=False): if isinstance(self.splitter, SplitterPlugin): other.splitter = self.splitter.copy(deep=deep) def set_splitter_plugin(self, name, function): ''' Set splitter function using a shared library and function name Parameters ---------- name : string Name of the shared library that contains the function function : string Name of the function in the shared library ''' self.splitter = SplitterPlugin(name, function) class FinalizedCallbackFeature(WindowFeature): ''' Finalized Callback Feature ''' def __init__(self): self.finalized_callback = None def _feature_from_element(self, data): self.finalized_callback = FinalizedCallback.from_element(data, session=self.session) def _feature_to_element(self): if self.finalized_callback is not None: return self.finalized_callback.to_element() def _copy_feature(self, other, deep=False): if self.finalized_callback is not None: other.finalized_callback = self.finalized_callback.copy(deep=deep) def set_finalized_callback(self, name, function): ''' Set Finalized Callback Parameters ---------- name : string Path to the library with the callback function function : string Name of the callback function ''' self.finalized_callback = FinalizedCallback(name, function) class RetentionFeature(WindowFeature): ''' Retention Feature ''' def __init__(self): self.retention = None def _feature_from_element(self, data): for item in data.findall('./retention'): self.retention = Retention.from_element(item, session=self.session) def _feature_to_element(self): if self.retention is not None: return self.retention.to_element() def _copy_feature(self, other, deep=False): if self.retention is not None: other.retention = self.retention.copy(deep=deep) def set_retention(self, type, value, field=None, unit=None): ''' Retention Parameters ---------- type : string Retention type. Valid Values: bytime_jumping, bytime_jumping_lookback, bytime_sliding, bycount_jumping, bycount_sliding value : string Retention value field : string, optional Specifies the name of a field of type datetime or timestamp unit : string, optional Specifies the unit of the lookback period for bytime_jumping_lookback retention policies. ''' self.retention = Retention(type, value, field=field, unit=unit) class ConnectorsFeature(WindowFeature): ''' Connections Feature ''' def __init__(self): self.connectors = [] def _feature_from_element(self, data): for item in data.findall('./connectors/connector'): self.connectors.append(Connector.from_xml(item, session=self.session)) def _feature_to_element(self): if not self.connectors: return out = xml.new_elem('connectors') for conn in self.connectors: xml.add_elem(out, conn.to_element()) return out def _copy_feature(self, other, deep=False): if deep: other.connectors = [] for conn in self.connectors: other.connectors.append(conn.copy(deep=deep)) else: other.connectors = list(self.connectors) def add_connector(self, conn_cls, conn_name=None, conn_type=None, is_active=None, properties=None, **kwargs): ''' Add a connector to the window Parameters ---------- conn_cls : string or Connector The connecter class name or Connector instance conn_name : string, optional The name of the connector. See notes. conn_type : string, optional The type of the connector. See notes. is_active : boolean, optional Is the connector enabled? properties : dict, optional Dictionary of connector properties. See notes. **kwargs : keyword-arguments, optional Connector properties (these get merged with properties=). See notes. Notes ----- If the first argument is a Connector object, all other arguments are ignored. ''' if isinstance(conn_cls, Connector): self.connectors.append(conn_cls) else: kwargs = dict(kwargs) if properties: kwargs.update(properties) out = get_connector_class(conn_cls, type=conn_type, properties=kwargs) out = out.from_parameters(conn_cls, name=conn_name, type=conn_type, is_active=is_active, properties=kwargs) self.connectors.append(out) class ParametersFeature(WindowFeature): ''' Parameters Feature ''' def __init__(self): self.parameters = {} def _feature_from_element(self, data): for item in data.findall('./parameters/properties/property'): self.parameters[item.attrib['name']] = item.text def _feature_to_element(self): out = None if self.parameters: out = xml.new_elem('parameters') xml.add_properties(out, self.parameters, bool_as_int=True) return out def _copy_feature(self, other, deep=False): other.parameters = dict(self.parameters) def set_parameters(self, **parameters): ''' Set parameters Parameters ---------- **parameters : keyword-arguments, optional The parameters to set ''' for key, value in six.iteritems(parameters): if value is None: self.parameters.pop(re.sub(r'_$', r'', key), None) else: self.parameters[re.sub(r'_$', r'', key)] = value class InputMapFeature(WindowFeature): ''' Input Map Feature ''' def __init__(self): self.input_map = {} def _feature_from_element(self, data): for item in data.findall('./input-map/properties/property'): self.input_map[item.attrib['name']] = item.text def _feature_to_element(self): out = None def strip_types(value): if isinstance(value, (set, tuple, list)): return [x.split(':')[0].replace('*', '') for x in value] return value.split(':')[0].replace('*', '') if self.input_map: input_map = {k: strip_types(v) for k, v in self.input_map.items() if v is not None} if input_map: out = xml.new_elem('input-map') xml.add_properties(out, input_map, bool_as_int=True) return out def _copy_feature(self, other, deep=False): other.input_map = dict(self.input_map) def set_inputs(self, **kwargs): ''' Set input map fields Parameters ---------- **kwargs : keyword arguments The key / value pairs of input names and values ''' self.input_map.update(kwargs) class OutputMapFeature(WindowFeature): ''' Output Map Feature ''' def __init__(self): self.output_map = {} def _feature_from_element(self, data): for item in data.findall('./output-map/properties/property'): self.output_map[item.attrib['name']] = item.text def _feature_to_element(self): out = None def strip_types(value): if isinstance(value, (set, tuple, list)): return [x.split(':')[0].replace('*', '') for x in value] return value.split(':')[0].replace('*', '') if self.output_map: output_map = {k: strip_types(v) for k, v in self.output_map.items() if v is not None} if output_map: out = xml.new_elem('output-map') xml.add_properties(out, output_map, bool_as_int=True) return out def _copy_feature(self, other, deep=False): other.output_map = dict(self.output_map) def set_outputs(self, **kwargs): ''' Set output map fields Parameters ---------- **kwargs : keyword arguments The key / value pairs of output names and values ''' self.output_map.update(kwargs) class SchemaFeature(WindowFeature): ''' Schema Feature ''' def _feature_to_element(self): out = self.schema.to_element() if not self.schema.fields and not out.attrib: return return out def _copy_feature(self, other, deep=False): other.schema = self.schema.copy(deep=deep) class MASMapFeature(WindowFeature): ''' MAS Map Feature ''' def __init__(self): self.mas_map = {} def _feature_from_element(self, data): for item in data.findall('./mas-map/window-map'): name = ':'.join([x for x in [item.attrib['module'], item.attrib['source'], item.attrib.get('function')] if x is not None]) self.mas_map[name] = MASWindowMap.from_element(item, session=self.session) def _feature_to_element(self): out = None if self.mas_map: out = xml.new_elem('mas-map') for value in six.itervalues(self.mas_map): xml.add_elem(out, value.to_element()) return out def _copy_feature(self, other, deep=False): if deep: other.mas_map = {} for key, value in six.iteritems(self.mas_map): other.mas_map[key] = value.copy(deep=deep) else: other.mas_map = dict(self.mas_map) def add_mas_window_map(self, module, source, revision='0', function=None): ''' Add MAS Window Map Parameters ---------- module : string Module name source : string Input window revision : string, optional Module revision number function : string, optional Function in the module ''' name = ':'.join([x for x in [module, source, revision, function] if x is not None]) self.mas_map[name] = MASWindowMap(module, source, revision=revision, function=function) def update_mas_window_map(self, old_key=None, **kwargs): ''' Update MAS Window Map Parameters ---------- old_key : string The key for mas_map dictionary to update ''' if old_key is None: old_key = next(iter(self.mas_map)) old_mas_module = self.mas_map[old_key] new_kwargs = {} for field in inspect.getfullargspec(MASWindowMap.__init__).args[1:]: new_kwargs[field] = kwargs.get(field) or old_mas_module.__dict__[field] self.add_mas_window_map(new_kwargs['module'], new_kwargs['source'], new_kwargs['revision'], new_kwargs['function']) del self.mas_map[old_key] class ModelsFeature(WindowFeature): ''' Models Feature ''' def __init__(self): self.online_models = [] self.offline_models = [] def _feature_from_element(self, data): data = ensure_element(data) for item in data.findall('./models/online'): self.online_models.append(OnlineModel.from_element(item, session=self.session)) for item in data.findall('./models/offline'): self.offline_models.append(OfflineModel.from_element(item, session=self.session)) def _feature_to_element(self): if not self.online_models and not self.offline_models: return out = xml.new_elem('models') for item in self.online_models: xml.add_elem(out, item.to_element()) for item in self.offline_models: xml.add_elem(out, item.to_element()) return out def _copy_feature(self, other, deep=False): if deep: other.online_models = [] other.offline_models = [] for item in self.online_models: other.online_models.append(item.copy(deep=deep)) for item in self.offline_models: other.offline_models.append(item.copy(deep=deep)) else: other.online_models = list(self.online_models) other.offline_models = list(self.offline_models) def set_outputs(self, model, **kwargs): ''' Set model outputs Parameters ---------- model : string The name / URL of the model **kwargs : keyword-arguments, optional The output mappings ''' kwargs = {k: v for k, v in kwargs.items() if v is not None} for item in self.online_models: if item.algorithm == model: item.output_map.update(kwargs) return for item in self.offline_models: if item.reference == model: item.output_map.update(kwargs) return def set_inputs(self, model, **kwargs): ''' Set model inputs Parameters ---------- model : string The name / URL of the model **kwargs : keyword-arguments, optional The input mappings ''' kwargs = {k: v for k, v in kwargs.items() if v is not None} for item in self.online_models: if item.algorithm == model: item.input_map.update(kwargs) return for item in self.offline_models: if item.reference == model: item.input_map.update(kwargs) return def add_online_model(self, algorithm, parameters=None,input_map=None, output_map=None): ''' Online model Parameters ---------- algorithm : string The name of the algorithm parameters : dict, optional Parameters input_map : dict, optional Input mappings output_map : dict, optional Output mappings ''' self.online_models.append(OnlineModel(algorithm, parameters=parameters, input_map=input_map, output_map=output_map)) def add_offline_model(self, model_type='astore', parameters=None, input_map=None, output_map=None): ''' Offline model Parameters ---------- model_type : string Model type input_map : dict, optional Input mappings output_map : dict, optional Output mappings ''' # Only allow one print("PARMS: " + str(parameters)) self.offline_models[:] = [] self.offline_models.append(OfflineModel(model_type=model_type, parameters=parameters, input_map=input_map, output_map=output_map)) class InitializeExpressionFeature(WindowFeature): ''' Initialize Expression Feature ''' def __init__(self): self.expr_initializer = None def _feature_from_element(self, data): data = ensure_element(data) for item in data.findall('./expr-initialize'): self.expr_initializer = InitializeExpression.from_element(item, session=self.session) def _feature_to_element(self): out = None if self.expr_initializer is not None: out = self.expr_initializer.to_element() return out def _copy_feature(self, other, deep=False): if self.expr_initializer is not None: other.expr_initializer = self.expr_initializer.copy(deep=deep) def set_expression_initializer(self, expr=None, type=None, funcs=None): ''' Set initialization expression Parameters ---------- expr : string, optional The initializer expression type : string, optional The return type of the initializer funcs : dict, optional User-defined functions to create. The format of the dictionary should be {'func-name:return-type': 'code'}. ''' self.expr_initializer = InitializeExpression(expr=expr, type=type, funcs=funcs) set_expr_initializer = set_expression_initializer class ExpressionFeature(WindowFeature): ''' Expression Feature ''' def __init__(self): self.expression = None def _feature_from_element(self, data): data = ensure_element(data) for item in data.findall('./expression'): self.expression = item.text def _feature_to_element(self): out = None if self.expression: out = xml.new_elem('expression', text_content=self.expression) return out def _copy_feature(self, other, deep=False): if self.expression: other.expression = self.expression def set_expression(self, expr): ''' Set the expression Parameters ---------- expr : string The expression value ''' self.expression = expr class PluginFeature(WindowFeature): ''' Plugin Feature ''' def __init__(self): self.plugin = None def _feature_from_element(self, data): data = ensure_element(data) for item in data.findall('./plugin'): self.plugin = Plugin.from_xml(item, session=self.session) def _feature_to_element(self): out = None if self.plugin is not None: out = self.plugin.to_element() return out def _copy_feature(self, other, deep=False): if self.plugin is not None: other.plugin = self.plugin.copy(deep=deep) def set_plugin(self, name, function, context_name=None, context_function=None): ''' Set plugin Parameters ---------- name : string Path to .so / .dll function : string Name of the function in the library context_name : string, optional The shared library that contains the context–generation function. context_function : string, optional The function that, when called, returns a new derived context for the window’s handler routines. ''' self.plugin = Plugin(name, function, context_name=context_name, context_function=context_function) class PatternsFeature(WindowFeature): ''' Patterns Feature ''' def __init__(self): self.patterns = [] def _feature_from_element(self, data): data = ensure_element(data) for item in data.findall('./patterns/pattern'): self.patterns.append(Pattern.from_xml(item, session=self.session)) def _feature_to_element(self): out = None if self.patterns: out = xml.new_elem('patterns') for item in self.patterns: xml.add_elem(out, item.to_element()) return out def _copy_feature(self, other, deep=False): if self.patterns: if deep: other.patterns = [] for item in self.patterns: other.patterns.append(item.copy(deep=deep)) else: other.patterns = list(self.patterns) def create_pattern(self, name=None, index=None, is_active=None): ''' Create Pattern object and add it to the `patterns` list Parameters ---------- name : string Name for user-interface tracking index : string or list-of-strings, optional Optional index is_active : boolean, optional Is the pattern enabled? Returns ------- :class:`Pattern` ''' out = Pattern(name=name, index=index, is_active=is_active) self.patterns.append(out) return out class CXXPluginContextFeature(WindowFeature): ''' C++ Plugin Context Feature ''' def __init__(self): self.cxx_plugin_context = None def _feature_from_element(self, data): data = ensure_element(data) for item in data.findall('./cxx-plugin-context'): self.cxx_plugin_context = CXXPluginContext.from_xml(item, session=self.session) def _feature_to_element(self): out = None if self.cxx_plugin_context is not None: out = self.cxx_plugin_context.to_element() return out def _copy_feature(self, other, deep=False): if self.cxx_plugin_context is not None: other.cxx_plugin_context = self.cxx_plugin_context.copy(deep=deep) def set_cxx_plugin_context(self, cxx_name, cxx_function, **properties): ''' Set C++ Plugin Context Parameters ---------- cxx_name : string Path to the .so / .dll that contains the function cxx_function : string Name of the function in the library **proprties : keyword-arguments, optional Property list ''' self.cxx_plugin_context = CXXPluginContext(cxx_name, cxx_function, **properties) class CXXPluginFeature(WindowFeature): ''' C++ Plugin Feature ''' def __init__(self): self.cxx_plugins = [] def _feature_from_element(self, data): data = ensure_element(data) for item in data.findall('./cxx-plugin'): self.cxx_plugins.append(CXXPlugin.from_xml(item, session=self.session)) def _feature_to_element(self): if not self.cxx_plugins: return out = [] for item in self.cxx_plugins: out.append(item.to_element()) return out def _copy_feature(self, other, deep=False): if self.cxx_plugins: if deep: other.cxx_plugins = [x.copy(deep=deep) for x in self.cxx_plugins] else: other.cxx_plugins = list(self.cxx_plugins) def add_cxx_plugin(self, source, name, function): ''' Add a C++ Plugin Parameters ---------- source : string Input window name : string Path to the .so / .dll function : string or list-of-strings Function name in the library ''' if isinstance(function, six.string_types): function = [function] for item in function: self.cxx_plugins.append(CXXPlugin(source, name, item)) add_cxx_plugins = add_cxx_plugin class DS2TableServerFeature(WindowFeature): ''' DS2 Table Server Feature ''' def __init__(self): self.ds2_tableservers = [] def _feature_from_element(self, data): data = ensure_element(data) for item in data.findall('./ds2-tableserver'): self.ds2_tableservers.append(DS2TableServer.from_element(item, session=self.session)) def _feature_to_element(self): if not self.ds2_tableservers: return out = [] for item in self.ds2_tableservers: out.append(item.to_element()) return out def _copy_feature(self, other, deep=False): if self.ds2_tableservers: if deep: other.ds2_tableservers = [x.copy(deep=deep) for x in self.ds2_tableservers] else: other.ds2_tableservers = list(self.ds2_tableservers) def add_ds2_tableserver(self, name, code=None, code_file=None): ''' Add a DS2 Table Server Parameters ---------- source : string Input window code : string, optional Inline block of code code_file : string, optional File containing code ''' self.ds2_tableservers.append(DS2TableServer(name, code=code, code_file=code_file)) class DSExternalFeature(WindowFeature): ''' DS External Feature ''' def __init__(self): self.ds_externals = [] def _feature_from_element(self, data): data = ensure_element(data) for item in data.findall('./ds-external'): self.ds_externals.append(DSExternal.from_element(item, session=self.session)) def _feature_to_element(self): if not self.ds_externals: return out = [] for item in self.ds_externals: out.append(item.to_element()) return out def _copy_feature(self, other, deep=False): if self.ds_externals: if deep: other.ds_externals = [x.copy(deep=deep) for x in self.ds_externals] else: other.ds_externals = list(self.ds_externals) def add_ds_external(self, source, code=None, code_file=None, trace=False, connection_timeout=300, max_string_length=32000): ''' Add a DS External Parameters ---------- source : string Input window code : string, optional Inline block of code code_file : string, optional File containing code trace : bool, optional Print debugging information connection_timeout : int, optional Time for SAS to answer back max_string_length : int, optional Maximum string ESP will pass ''' self.ds_externals.append(DSExternal(source, code=code, code_file=code_file, trace=trace, connection_timeout=connection_timeout, max_string_length=max_string_length)) class FunctionContextProperties(object): ''' Container for various types of properties Attributes ---------- map : dict-of-strings/dicts Executes the function to generate a map of name-value pairs to be used for value lookups by name. The values can be either strings delimited using the defaults, or dicts using the form {'value': '<value>', 'outer': '<outer-delim>', 'inner': '<inner-delim>'}. set : dict-of-strings/dicts Executes the function to generate a set of strings to be used for value lookups. The values can be either strings delimited using the defaults, or dicts using the form {'value': '<value>', delimiter='<delimiter>'}. list : dict-of-strings/dicts Executes the function to generate a list of strings to be used for value lookups. The values can be either strings delimited using the defaults, or dicts using the form {'value': '<value>', delimiter='<delimiter>'}. xml : dict-of-strings Executes the function to generate an XML object that can be used for XPATH queries. json : dict-of-strings Executes the function to generate a JSON object that can be used for JSON lookups. string : dict-of-strings Executes the function to generate a string for general use in functions. Returns ------- :class:`FunctionContextProperties` ''' def __init__(self): self.map = {} self.xml = {} self.json = {} self.string = {} self.list = {} self.set = {} def copy(self, deep=False): ''' Copy the object Parameters ---------- deep : boolean, optional Should the attributes be deeply copied? Returns ------- :class:`FunctionContextProperties` ''' out = type(self)() if deep: out.map = copy.deepcopy(self.map) out.xml = copy.deepcopy(self.xml) out.json = copy.deepcopy(self.json) out.string = copy.deepcopy(self.string) out.list = copy.deepcopy(self.list) out.set = copy.deepcopy(self.set) else: out.map = dict(self.map) out.xml = dict(self.xml) out.json = dict(self.json) out.string = dict(self.string) out.list = dict(self.list) out.set = dict(self.set) return out class FunctionContext(object): ''' Function Context Parameters ---------- expressions : dict, optional Dictionary of expressions in the form: {'<name>': '<regex>'} functions : dict, optional Dictionary of functions Attributes ---------- properties : FunctionContextProperties Collection of property types Returns ------- :class:`FunctionContext` ''' def __init__(self, expressions=None, functions=None): self.expressions = collections.OrderedDict(expressions or {}) self.functions = collections.OrderedDict(functions or {}) self.properties = FunctionContextProperties() def copy(self, deep=False): ''' Copy the object Parameters ---------- deep : boolean, optional Should the attributes be deeply copied? Returns ------- :class:`FunctionContext` ''' out = type(self)(self.expressions, self.functions) out.properties = self.properties.copy(deep=deep) return out @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`FunctionContext` ''' data = ensure_element(data) out = cls() for item in data.findall('./expressions/expression'): out.expressions[item.attrib['name']] = item.text for item in data.findall('./proprties/property-map'): inner = item.attrib.get('inner', '').strip() outer = item.attrib.get('outer', '').strip() if not inner and not outer: out.properties[item.attrib['name']] = item.text else: value = {k: v for k, v in dict(value=item.text, inner=inner, outer=outer) if v is not None} out.properties.map[item.attrib['name']] = value for item in data.findall('./properties/property-xml'): out.properties.xml[item.attrib['name']] = item.text for item in data.findall('./properties/property-json'): out.properties.json[item.attrib['name']] = item.text for item in data.findall('./properties/property-string'): out.properties.string[item.attrib['name']] = item.text for item in data.findall('./properties/property-list'): out.properties.list[item.attrib['name']] = item.text for item in data.findall('./properties/property-set'): out.properties.set[item.attrib['name']] = dict(value=item.text, delimiter=item.attrib['delimiter']) for item in data.findall('./functions/function'): out.functions[item.attrib['name']] = item.text return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('function-context') if self.expressions: exprs = xml.add_elem(out, 'expressions') for key, value in six.iteritems(self.expressions): xml.add_elem(exprs, 'expression', attrib=dict(name=key), text_content=value) props = None if self.properties.map: if props is None: props = xml.add_elem(out, 'properties') for key, value in six.iteritems(self.properties.map): if isinstance(value, dict): xml.add_elem(props, 'property-map', attrib=dict(name=key, inner=value.get('inner'), outer=value.get('outer')), text_content=value['value']) else: xml.add_elem(props, 'property-map', attrib=dict(name=key), text_content=value) if self.properties.xml: if props is None: props = xml.add_elem(out, 'properties') for key, value in six.iteritems(self.properties.xml): xml.add_elem(props, 'property-xml', attrib=dict(name=key), text_content=value) if self.properties.json: if props is None: props = xml.add_elem(out, 'properties') for key, value in six.iteritems(self.properties.json): xml.add_elem(props, 'property-json', attrib=dict(name=key), text_content=value) if self.properties.string: if props is None: props = xml.add_elem(out, 'properties') for key, value in six.iteritems(self.properties.string): xml.add_elem(props, 'property-string', attrib=dict(name=key), text_content=value) if self.properties.list: if props is None: props = xml.add_elem(out, 'properties') for key, value in six.iteritems(self.properties.list): if isinstance(value, dict): xml.add_elem(props, 'property-list', attrib=dict(name=key, delimiter=value['delimiter']), text_content=value['value']) else: xml.add_elem(props, 'property-list', attrib=dict(name=key), text_content=value) if self.properties.set: if props is None: props = xml.add_elem(out, 'properties') for key, value in six.iteritems(self.properties.set): if isinstance(value, dict): xml.add_elem(props, 'property-set', attrib=dict(name=key, delimiter=value['delimiter']), text_content=value['value']) else: xml.add_elem(props, 'property-set', attrib=dict(name=key), text_content=value) if self.functions: funcs = xml.add_elem(out, 'functions') for key, value in six.iteritems(self.functions): xml.add_elem(funcs, 'function', attrib=dict(name=key), text_content=value) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) def set_expressions(self, **kwargs): ''' Set expressions Parameters ---------- **kwargs : keyword-arguments, optional Expressions in the form: {'<name>': '<regex>'} ''' self.expressions.update(kwargs) def set_properties(self, prop_type, **kwargs): ''' Set properties Parameters ---------- prop_type : string The type of property: map, xml, json, string, list, set delimiter : string, optional The delimiter for list or set properties inner : string, optional The inner delimiter for map properties outer : string, optional The outer delimiter for map properties **kwargs : keyword-arguments, optional Function properties ''' types = ['map', 'xml', 'json', 'string', 'list', 'set'] if prop_type not in types: raise ValueError('Property type must be one of: %s' % ', '.join(types)) if prop_type == 'map': inner = kwargs.pop('inner', None) outer = kwargs.pop('inner', None) for key, value in six.iteritems(kwargs): if inner and outer: self.properties.map[key] = dict(value=value, inner=inner, outer=outer) else: self.properties.map[key] = value elif prop_type == 'xml': for key, value in six.iteritems(kwargs): self.properties.xml[key] = value elif prop_type == 'json': for key, value in six.iteritems(kwargs): self.properties.json[key] = value elif prop_type == 'string': for key, value in six.iteritems(kwargs): self.properties.string[key] = value elif prop_type == 'list': delimiter = kwargs.pop('delimiter', None) for key, value in six.iteritems(kwargs): if delimiter: self.properties.list[key] = dict(value=value, delimiter=delimiter) else: self.properties.list[key] = value elif prop_type == 'set': delimiter = kwargs.pop('delimiter', None) for key, value in six.iteritems(kwargs): if delimiter: self.properties.set[key] = dict(value=value, delimiter=delimiter) else: self.properties.set[key] = value def set_functions(self, **kwargs): ''' Set functions Parameters ---------- **kwargs : keyword-arguments, optional Functions ''' self.functions.update(kwargs) def set_function_context_expressions(self, **kwargs): ''' Set expressions Parameters ---------- **kwargs : keyword-arguments, optional Named expressions, where the keyword parameter is the name and the value is the expression ''' if self.function_context is None: self.function_context = FunctionContext() self.function_context.set_expressions(**kwargs) def set_function_context_properties(self, prop_type, **kwargs): ''' Set properties Parameters ---------- prop_type : string The type of property: map, xml, json, string, list, set delimiter : string, optional The delimiter for list or set properties inner : string, optional The inner delimiter for map properties outer : string, optional The outer delimiter for map properties **kwargs : keyword-arguments, optional Function properties ''' if self.function_context is None: self.function_context = FunctionContext() self.function_context.set_properties(prop_type, **kwargs) def set_function_context_functions(self, **kwargs): ''' Set functions Parameter names are the names of the functions. Parameter values correspond to the function code. Notes ----- Functions are added in a non-deterministic order. If you need the functions to be in a particular order, you will need to call this method multiple times (once for each order-dependent function). Parameters ---------- **kwargs : keyword-arguments, optional Functions ''' if self.function_context is None: self.function_context = FunctionContext() self.function_context.set_functions(**kwargs) class RegexEventLoop(object): ''' Regex Event Loop Parameters ---------- name : string Specifies the loop name use_text : string Specifies the regular expression to use in the event loop regex : string Specifies a regular expression in order to retrieve zero or more entities during an event loop. data : string, optional Name of variable to populate with the current element regex_group : int, optional Group number in regex function_context : FunctionContext, optional Defines entities to run functions on event data and generate values in an output event. Returns ------- :class:`RegexEventLoop` ''' def __init__(self, name, use_text, regex, data=None, regex_group=None, function_context=None): self.name = name self.use_text = use_text self.regex = regex self.data = data self.regex_group = regex_group self.function_context = function_context def copy(self, deep=True): return type(self)(self.name, self.use_text, self.regex, data=self.data, function_context=self.function_context) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`RegexEventLoop` ''' data = ensure_element(data) use_text = None for item in data.findall('./use-text'): use_text = item.text regex = None regex_group = None for item in data.findall('./regex'): regex = item.text if 'regex_group' in item.attrib: regex_group = int(item.attrib['regex_group']) out = cls(data.attrib['name'], use_text, regex, data=data.attrib.get('data', None), regex_group=regex_group) for item in data.findall('./function-context'): out.function_context = FunctionContext.from_xml(item, session=session) return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('event-loop-regex', attrib=dict(name=self.name, data=self.data)) xml.add_elem(out, 'use-text', text_content=self.use_text) xml.add_elem(out, 'regex', text_content=self.regex, group=self.regex_group) if self.function_context is not None: xml.add_elem(out, self.function_context.to_element()) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) set_function_context_expressions = set_function_context_expressions set_function_context_properties = set_function_context_properties set_function_context_functions = set_function_context_functions class XMLEventLoop(object): ''' XML Event Loop Parameters ---------- name : string Specifies the loop name use_xml : string Specifies the XML code to use in the event loop xpath : string Specifies an XML expression in order to retrieve zero or more entities during an event loop. data : string, optional Name of variable to populate with the current element function_context : FunctionContext, optional Defines entities to run functions on event data and generate values in an output event. Returns ------- :class:`XMLEventLoop` ''' def __init__(self, name, use_xml, xpath, data=None, function_context=None): self.name = name self.use_xml = use_xml self.xpath = xpath self.data = data self.function_context = function_context def copy(self, deep=False): return type(self)(self.name, self.use_xml, self.xpath, data=self.data, function_context=self.function_context) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`XMLEventLoop` ''' data = ensure_element(data) use_xml = None for item in data.findall('./use-xml'): use_xml = item.text xpath = None for item in data.findall('./xpath'): xpath = item.text out = cls(data.attrib['name'], use_xml, xpath, data=data.attrib.get('data', None)) for item in data.findall('./function-context'): out.function_context = FunctionContext.from_xml(item, session=session) return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('event-loop-xml', attrib=dict(name=self.name, data=self.data)) xml.add_elem(out, 'use-xml', text_content=self.use_xml) xml.add_elem(out, 'xpath', text_content=self.xpath) if self.function_context is not None: xml.add_elem(out, self.function_context.to_element()) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) set_function_context_expressions = set_function_context_expressions set_function_context_properties = set_function_context_properties set_function_context_functions = set_function_context_functions class JSONEventLoop(object): ''' JSON Event Loop Parameters ---------- name : string Specifies the loop name use_json : string Specifies the JSON code to use in the event loop json : string Specifies the JSON expression in order to retrieve zero or more entities during an event loop. data : string, optional Name of variable to populate with the current element function_context : FunctionContext, optional Defines entities to run functions on event data and generate values in an output event. Returns ------- :class:`JSONEventLoop` ''' def __init__(self, name, use_json, json, data=None, function_context=None): self.name = name self.use_json = use_json self.json = json self.data = data self.function_context = function_context def copy(self, deep=False): return type(self)(self.name, self.use_json, self.json, data=self.data, function_context=self.function_context) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`JSONEventLoop` ''' data = ensure_element(data) use_json = None for item in data.findall('./use-json'): use_json = item.text jsn = None for item in data.findall('./json'): jsn = item.text out = cls(data.attrib['name'], use_json, jsn, data=data.attrib.get('data', None)) for item in data.findall('./function-context'): out.function_context = FunctionContext.from_xml(item, session=session) return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('event-loop-json', attrib=dict(name=self.name, data=self.data)) xml.add_elem(out, 'use-json', text_content=self.use_json) xml.add_elem(out, 'json', text_content=self.json) if self.function_context is not None: xml.add_elem(out, self.function_context.to_element()) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) set_function_context_expressions = set_function_context_expressions set_function_context_properties = set_function_context_properties set_function_context_functions = set_function_context_functions class FunctionContextFeature(WindowFeature): ''' Function Context Feature ''' def __init__(self): self.function_context = None def _feature_from_element(self, data): data = ensure_element(data) for item in data.findall('./function-context'): self.function_context = FunctionContext.from_element(item, session=self.session) def _feature_to_element(self): if self.function_context is None: return return self.function_context.to_element() def _copy_feature(self, other, deep=False): if self.function_context is not None: other.function_context = self.function_context.copy(deep=deep) set_function_context_expressions = set_function_context_expressions set_function_context_properties = set_function_context_properties set_function_context_functions = set_function_context_functions class EventLoopFeature(WindowFeature): ''' Event Loop Feature ''' def __init__(self): self.event_loops = [] def _feature_from_element(self, data): data = ensure_element(data) for item in data.findall('./event-loops/*'): if item.tag == 'event-loop-regex': self.event_loops.append(RegexEventLoop.from_element(item, session=self.session)) elif item.tag == 'event-loop-xml': self.event_loops.append(XMLEventLoop.from_element(item, session=self.session)) elif item.tag == 'event-loop-json': self.event_loops.append(JSONEventLoop.from_element(item, session=self.session)) def _feature_to_element(self): if not self.event_loops: return out = xml.new_elem('event-loops') for item in self.event_loops: xml.add_elem(out, item.to_element()) return out def _copy_feature(self, other, deep=False): if self.event_loops: if deep: other.event_loops = [x.copy(deep=deep) for x in self.event_loops] else: other.event_loops = list(self.event_loops) def create_function_context(self, expressions=None, functions=None): ''' Create a new function context for use in event loops Parameters ---------- expressions : dict, optional Dictionary of expressions in the form: {'<name>': '<regex>'} functions : dict, optional Dictionary of functions Returns ------- :class:`FunctionContext` ''' return FunctionContext(expressions=expressions, functions=functions) def add_regex_event_loop(self, name, use_text, regex, data=None, regex_group=None, function_context=None): ''' Add a Regex Event Loop Parameters ---------- name : string Specifies the loop name use_text : string Specifies the regular expression to use in the event loop regex : string Specifies a regular expression in order to retrieve zero or more entities during an event loop. data : string, optional Name of variable to populate with the current element regex_group : int, optional Group number in regex function_context : FunctionContext, optional Defines entities to run functions on event data and generate values in an output event. ''' self.event_loops.append(RegexEventLoop(name, use_text, regex, data=data, regex_group=regex_group, function_context=function_context)) def add_xml_event_loop(self, name, use_xml, xpath, data=None, function_context=None): ''' Add an XML Event Loop Parameters ---------- name : string Specifies the loop name use_xml : string Specifies the XML code to use in the event loop xpath : string Specifies an XML expression in order to retrieve zero or more entities during an event loop. data : string, optional Name of variable to populate with the current element function_context : FunctionContext, optional Defines entities to run functions on event data and generate values in an output event. ''' self.event_loops.append(XMLEventLoop(name, use_xml, xpath, data=data, function_context=function_context)) def add_json_event_loop(self, name, use_json, json, data=None, function_context=None): ''' JSON Event Loop Parameters ---------- name : string Specifies the loop name use_json : string Specifies the JSON code to use in the event loop json : string Specifies the JSON expression in order to retrieve zero or more entities during an event loop. data : string, optional Name of variable to populate with the current element function_context : FunctionContext, optional Defines entities to run functions on event data and generate values in an output event. ''' self.event_loops.append(JSONEventLoop(name, use_json, json, data=data, function_context=function_context)) class OpcodeFeature(WindowFeature): ''' Opcode Feature ''' def __init__(self): self.opcode = None def _feature_from_element(self, data): data = ensure_element(data) for item in data.findall('./opcode'): self.opcode = item.text def _feature_to_element(self): if self.opcode is None: return return xml.new_elem('opcode', text_content=self.opcode) def _copy_feature(self, other, deep=False): other.opcode = self.opcode class GenerateFeature(WindowFeature): ''' Generate Feature ''' def __init__(self): self.generate = None def _feature_from_element(self, data): data = ensure_element(data) for item in data.findall('./generate'): self.generate = item.text def _feature_to_element(self): if self.generate is None: return return xml.new_elem('generate', text_content=self.generate) def _copy_feature(self, other, deep=False): other.generate = self.generate
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/features.py
0.821044
0.225705
features.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals from .base import Window, attribute from .features import SchemaFeature from .utils import get_args, ensure_element, connectors_to_end from ..utils import xml class FieldPlugin(object): ''' Aggregate field plugin Parameters ---------- plugin : string Name of the shared library. function : string Name of the function in the shared library. additive : bool, optional Specify for Aggregate windows only. Defaults to false. additive_insert_only : bool, optional Specify for Aggregate windows only. Defaults to false. Returns ------- :class:`FieldPlugin` ''' def __init__(self, plugin, function, additive=False, additive_insert_only=False): self.plugin = plugin self.function = function self.additive = additive self.additive_insert_only = additive_insert_only def copy(self, deep=False): return type(self)(self.plugin, self.function, additive=self.additive, additive_insert_only=self.additive_insert_only) class AggregateWindow(Window, SchemaFeature): ''' Aggregate window Parameters ---------- name : string The name of the window schema : Schema The schema of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window output_insert_only : bool, optional When true, prevents the window from passing non-insert events to other windows. collapse_updates : bool, optional When true, multiple update blocks are collapsed into a single update block pulse_interval : string, optional Output a canonical batch of updates at the specified interval. exp_max_string : int, optional Specifies the maximum size of strings that the expression engine uses for the window. Default value is 1024. index_type : string, optional Index type for the window. Valid values: 'rbtree', 'hash', 'ln_hash', 'cl_hash', 'fw_hash', 'empty' pubsub_index_type : int, optional Publish/subscribe index type. Valid values are the same as for the `index_type` parameter. Attributes ---------- field_expressions : list-of-FieldExpressions Specifies Expression Engine Language (EEL) expressions assigned to a field. field_plugins : list-of-FieldPlugins Functions in a shared library whose returned value is assigned to a field. Returns ------- :class:`AggregateWindow` ''' window_type = 'aggregate' def __init__(self, name=None, schema=None, pubsub=None, description=None, output_insert_only=None, collapse_updates=None, pulse_interval=None, exp_max_string=None, index_type=None, pubsub_index_type=None): Window.__init__(self, **get_args(locals())) self.field_expressions = [] self.field_plugins = [] def copy(self, deep=False): out = Window.copy(self, deep=deep) out.field_expressions = list(self.field_expressions) if deep: out.field_plugins = [] for item in self.field_plugins: out.field_plugins.append(item.copy(deep=deep)) else: out.field_plugins = list(self.field_plugins) return out @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`AggregateWindow` ''' out = super(AggregateWindow, cls).from_element(data, session=session) for item in data.findall('./output/field-expr'): out.field_expressions.append(item.text) for item in data.findall('./output/field-plug'): attrs = item.attrib out.field_plugins.append( FieldPlugin(attrs['plugin'], attrs['function'], additive=attrs.get('additive', 'f').startswith('t'), additive_insert_only=attrs.get('additive_insert_only', 'f').startswith('t'))) return out from_xml = from_element def to_element(self, query=None): ''' Convert object to Element Parameters ---------- query : string, optional Name of the continuous query Returns ------- :class:`ElementTree.Element` ''' out = Window.to_element(self, query=None) if self.field_expressions or self.field_plugins: output = xml.add_elem(out, 'output') for item in self.field_expressions: xml.add_elem(output, 'field-expr', text_content=item) for item in self.field_plugins: xml.add_elem(output, 'field-plug', attrib=dict(plugin=item.plugin, function=item.function, additive=item.additive, additive_insert_only=item.additive_insert_only)) connectors_to_end(out) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) def add_field_expressions(self, *expr): ''' Add aggregate field expression Parameters ---------- expr : string The aggregation expression ''' for item in expr: self.field_expressions.append(item) add_field_expr = add_field_expressions add_field_exprs = add_field_expressions add_field_expression = add_field_expressions def add_field_plugin(self, plugin, function, additive=False, additive_insert_only=False): ''' Add aggregate field plugin Parameters ---------- plugin : string Name of the shared library. function : string Name of the function in the shared library. additive : bool, optional Specify for Aggregate windows only. Defaults to false. additive_insert_only : bool, optional Specify for Aggregate windows only. Defaults to false. ''' self.field_plugins.append(FieldPlugin(plugin, function, additive=additive, additive_insert_only=additive_insert_only))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/aggregate.py
0.906627
0.21211
aggregate.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import six from .base import Window, attribute from .utils import ensure_element, get_args, connectors_to_end from ..utils import xml class Geometry(object): ''' Geofence geometry Parameters ---------- desc_fieldname : string, optional Specifies the name of the geometry input window’s field that contains the polygon coordinates data. data_fieldname : string, optional Specifies the name of the geometry input window’s field that contains the geometry description. x_fieldname : string, optional Specifies the name of the geometry input window’s field that contains the location X or longitude coordinate of the circle's center. y_fieldname : string, optional Specifies the name of the geometry input window’s field that contains the location Y or latitude coordinate of the circle's center. radius_fieldname : string, optional Specifies the name of the geometry input window’s field that contains the circle radius distance. radius : int or float, optional Specifies the default circle's radius distance. Default: 1000 data_separator : string, optional Specifies the coordinate delimiter character used in the geometry data field specified by the property data-fieldname. Default: <space> Returns ------- :class:`Geometry` ''' def __init__(self, desc_fieldname=None, data_fieldname=None, x_fieldname=None, y_fieldname=None, radius_fieldname=None, radius=None, data_separator=None): self.desc_fieldname = desc_fieldname self.data_fieldname = data_fieldname self.x_fieldname = x_fieldname self.y_fieldname = y_fieldname self.radius_fieldname = radius_fieldname self.radius = radius self.data_separator = data_separator def copy(self, deep=False): return type(self)(desc_fieldname=self.desc_fieldname, data_fieldname=self.data_fieldname, x_fieldname=self.x_fieldname, y_fieldname=self.y_fieldname, radius_fieldname=self.radius_fieldname, radius=self.radius, data_separator=self.data_separator) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`Geometry` ''' data = ensure_element(data) out = cls() for key, value in six.iteritems(data.attrib): key = key.replace('-', '_') if hasattr(out, key): setattr(out, key, value) return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('geometry', attrib=dict(desc_fieldname=self.desc_fieldname, data_fieldname=self.data_fieldname, x_fieldname=self.x_fieldname, y_fieldname=self.y_fieldname, radius_fieldname=self.radius_fieldname, radius=self.radius, data_separator=self.data_separator)) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class Position(object): ''' Geofence Position Parameters ---------- x_fieldname : string, optional Specifies the name of the position input window’s field that contains the position X or longitude coordinate. y_fieldname : string, optional Specifies the name of the position input window’s field that contains the position Y or latitude coordinate. lookupdistance_fieldname : string, optional Specifies the name of the position input window’s field that contains the position lookup distance. lookupdistance : int or float, optional This distance is in units for Cartesian coordinates and in meters for geographic coordinates. Default: 0. Returns ------- :class:`Position` ''' def __init__(self, x_fieldname=None, y_fieldname=None, lookupdistance_fieldname=None, lookupdistance=None): self.x_fieldname = x_fieldname self.y_fieldname = y_fieldname self.lookupdistance_fieldname = lookupdistance_fieldname self.lookupdistance = lookupdistance def copy(self, deep=False): return type(self)(x_fieldname=self.x_fieldname, y_fieldname=self.y_fieldname, lookupdistance_fieldname=self.lookupdistance_fieldname, lookupdistance=self.lookupdistance) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`Position` ''' data = ensure_element(data) out = cls() for key, value in six.iteritems(data.attrib): key = key.replace('-', '_') if hasattr(out, key): setattr(out, key, value) return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('position', attrib=dict(x_fieldname=self.x_fieldname, y_fieldname=self.y_fieldname, loopupdistance_fieldname=self.lookupdistance_fieldname, lookupdistance=self.lookupdistance)) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class Output(object): ''' Geofence Output Parameters ---------- geotype_fieldname : string, optional Specifies the name of the output schema field that receives the geometry Type. geoid_fieldname : string, optional Specifies the name of the output schema field that receives the geometry ID. geodesc_fieldname : string, optional Specifies the name of the output schema field that receives the geometry description. geodistance_fieldname : string, optional Specifies the name of the output schema field that receives the distance between the position and the geometry (center point for circle geometries and centroid for polygons). eventnumber_fieldname : string, optional Specifies the name of the output schema additional key field that receives the generated event number. Returns ------- :class:`Output` ''' def __init__(self, geotype_fieldname=None, geoid_fieldname=None, geodesc_fieldname=None, geodistance_fieldname=None, eventnumber_fieldname=None): self.geotype_fieldname = geotype_fieldname self.geoid_fieldname = geoid_fieldname self.geodesc_fieldname = geodesc_fieldname self.geodistance_fieldname = geodistance_fieldname self.eventnumber_fieldname = eventnumber_fieldname def copy(self, deep=False): return type(self)(geotype_fieldname=self.geotype_fieldname, geoid_fieldname=self.geoid_fieldname, geodesc_fieldname=self.geodesc_fieldname, geodistance_fieldname=self.geodistance_fieldname, eventnumber_fieldname=self.eventnumber_fieldname) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`Output` ''' data = ensure_element(data) out = cls() for key, value in six.iteritems(data.attrib): key = key.replace('-', '_') if hasattr(out, key): setattr(out, key, value) return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('output', attrib=dict(geotype_fieldname=self.geotype_fieldname, geoid_fieldname=self.geoid_fieldname, geodesc_fieldname=self.geodesc_fieldname, geodistance_fieldname=self.geodistance_fieldname, eventnumber_fieldname=self.eventnumber_fieldname)) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class GeofenceWindow(Window): ''' Geofence window Parameters ---------- name : string, optional The name of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window output_insert_only : bool, optional When true, prevents the window from passing non-insert events to other windows. collapse_updates : bool, optional When true, multiple update blocks are collapsed into a single update block pulse_interval : string, optional Output a canonical batch of updates at the specified interval exp_max_string : int, optional Specifies the maximum size of strings that the expression engine uses for the window. Default value is 1024. index_type : string, optional Index type for the window pubsub_index_type : string, optional Publish/subscribe index type. Valid values are the same as for the `index_type` parameter. pubsub_index_type : string, optional Publish/subscribe index type. Valid values are the same as for the `index_type` parameter. polygon_compute_distance_to : string, optional Specifies whether to compute the distance from the position to the closest segment or to the centroid. proximity_analysis : bool, optional Specifies to return polygons that are within the distance define by the radius property value. Default: false. geofencing_algorithm : string, optional Specifies the geofencing algorithm to use for polygon geometries. Valid Values: crossing or winding coordinate_type : string, optional Coordinate type. Valid Values: cartesian or geographic Default: cartesian autosize_mesh : bool, optional Specifies whether to compute and set the mesh factor automatically meshfactor_x : int, optional Specifies the mesh factor for the X or longitude axis. Default: 0 meshfactor_y : int, optional Specifies the mesh factor for the Y or latitude axis. Default: 0 max_meshcells_per_geometry : int, optional Specifies the maximum allowed mesh cells created per geometries to avoid creating an oversized mesh that would generate useless intensive calculations. Default: 500 output_multiple_results : bool, optional Specifies whether to write a single or multiple geometries, regardless of the number of matching geometries. output_sorted_results : bool, optional When set to true, specifies to sort the output result by increasing distance between the position and the geometry. Default: false log_invalid_geometry : bool, optional Specifies whether to log invalid geometries in the standard output log. Default: false Attributes ---------- geometry : Geometry Geofence window geometry position : Position Geofence window position output : Output Geofence window output Returns ------- :class:`GeofenceWindow` ''' window_type = 'geofence' def __init__(self, name=None, pubsub=None, description=None, output_insert_only=None, collapse_updates=None, pulse_interval=None, exp_max_string=None, index_type=None, pubsub_index_type=None, polygon_compute_distance_to=None, proximity_analysis=None, geofencing_algorithm=None, coordinate_type=None, autosize_mesh=None, meshfactor_x=None, meshfactor_y=None, max_meshcells_per_geometry=None, output_multiple_results=None, output_sorted_results=None, log_invalid_geometry=None): Window.__init__(self, **get_args(locals())) self.polygon_compute_distance_to = polygon_compute_distance_to self.proximity_analysis = proximity_analysis self.geofencing_algorithm = geofencing_algorithm self.coordinate_type = coordinate_type self.autosize_mesh = autosize_mesh self.meshfactor_x = meshfactor_x self.meshfactor_y = meshfactor_y self.max_meshcells_per_geometry = max_meshcells_per_geometry self.output_multiple_results = output_multiple_results self.output_sorted_results = output_sorted_results self.log_invalid_geometry = log_invalid_geometry self.geometry = Geometry() self.position = Position() self.output = Output() def copy(self, deep=False): out = Window.copy(self, deep=deep) out.polygon_compute_distance_to = self.polygon_compute_distance_to out.proximity_analysis = self.proximity_analysis out.geofencing_algorithm = self.geofencing_algorithm out.coordinate_type = self.coordinate_type out.autosize_mesh = self.autosize_mesh out.meshfactor_x = self.meshfactor_x out.meshfactor_y = self.meshfactor_y out.max_meshcells_per_geometry = self.max_meshcells_per_geometry out.output_multiple_results = self.output_multiple_results out.output_sorted_results = self.output_sorted_results out.log_invalid_geometry = self.log_invalid_geometry out.geometry = self.geometry.copy(deep=deep) out.position = self.position.copy(deep=deep) out.output = self.output.copy(deep=deep) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`GeofenceWindow` ''' out = super(GeofenceWindow, cls).from_element(data, session=session) for item in data.findall('./geofence'): for key, value in six.iteritems(item.attrib): key = key.replace('-', '_') if hasattr(out, key): setattr(out, key, value) for item in data.findall('./geometry'): out.geometry = Geometry.from_element(item, session=session) for item in data.findall('./position'): out.position = Position.from_element(item, session=session) for item in data.findall('./output'): out.output = Output.from_element(item, session=session) return out from_xml = from_element def to_element(self, query=None): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = Window.to_element(self, query=query) xml.add_elem(out, 'geofence', attrib=dict(polygon_compute_distance_to=self.polygon_compute_distance_to, proximity_analysis=self.proximity_analysis, geofencing_algorithm=self.geofencing_algorithm, coordinate_type=self.coordinate_type, autosize_mesh=self.autosize_mesh, meshfactor_x=self.meshfactor_x, meshfactor_y=self.meshfactor_y, max_meshcells_per_geometry=self.max_meshcells_per_geometry, output_multiple_results=self.output_multiple_results, output_sorted_results=self.output_sorted_results, log_invalid_geometry=self.log_invalid_geometry)) xml.add_elem(out, self.geometry.to_element()) xml.add_elem(out, self.position.to_element()) xml.add_elem(out, self.output.to_element()) connectors_to_end(out) return out def set_geometry(self, desc_fieldname=None, data_fieldname=None, x_fieldname=None, y_fieldname=None, radius_fieldname=None, radius=None, data_separator=None): ''' Set geometry parameters Parameters ---------- desc_fieldname : string, optional Specifies the name of the geometry input window’s field that contains the polygon coordinates data. data_fieldname : string, optional Specifies the name of the geometry input window’s field that contains the geometry description. x_fieldname : string, optional Specifies the name of the geometry input window’s field that contains the location X or longitude coordinate of the circle's center. y_fieldname : string, optional Specifies the name of the geometry input window’s field that contains the location Y or latitude coordinate of the circle's center. radius_fieldname : string, optional Specifies the name of the geometry input window’s field that contains the circle radius distance. radius : int or float, optional Specifies the default circle's radius distance. Default: 1000 data_separator : string, optional Specifies the coordinate delimiter character used in the geometry data field specified by the property data-fieldname. Default: <space> ''' for key, value in six.iteritems(get_args(locals())): if value is not None: setattr(self.geometry, key, value) def set_position(self, x_fieldname=None, y_fieldname=None, lookupdistance_fieldname=None, lookupdistance=None): ''' Set position parameters Parameters ---------- x_fieldname : string, optional Specifies the name of the position input window’s field that contains the position X or longitude coordinate. y_fieldname : string, optional Specifies the name of the position input window’s field that contains the position Y or latitude coordinate. lookupdistance_fieldname : string, optional Specifies the name of the position input window’s field that contains the position lookup distance. lookupdistance : int or float, optional This distance is in units for Cartesian coordinates and in meters for geographic coordinates. Default: 0. ''' for key, value in six.iteritems(get_args(locals())): if value is not None: setattr(self.position, key, value) def set_output(self, geotype_fieldname=None, geoid_fieldname=None, geodesc_fieldname=None, geodistance_fieldname=None, eventnumber_fieldname=None): ''' Set output parameters Parameters ---------- geotype_fieldname : string, optional Specifies the name of the output schema field that receives the geometry Type. geoid_fieldname : string, optional Specifies the name of the output schema field that receives the geometry ID. geodesc_fieldname : string, optional Specifies the name of the output schema field that receives the geometry description. geodistance_fieldname : string, optional Specifies the name of the output schema field that receives the distance between the position and the geometry (center point for circle geometries and centroid for polygons). eventnumber_fieldname : string, optional Specifies the name of the output schema additional key field that receives the generated event number. ''' for key, value in six.iteritems(get_args(locals())): if value is not None: setattr(self.output, key, value)
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/geofence.py
0.936008
0.455259
geofence.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import collections import copy import csv import datetime import functools import itertools import os import pandas as pd import re import requests import six import sys import threading import types import weakref import xml.etree.ElementTree as ET from ..utils.authorization import Authorization from six.moves import urllib from .utils import verify_window from ..base import ESPObject, attribute from ..config import get_option, CONCAT_OPTIONS from ..exceptions import ESPError from ..schema import Schema from ..utils.keyword import dekeywordify from ..utils import xml from ..utils.notebook import scale_svg from ..utils.rest import get_params from ..utils.data import get_project_data, gen_name, get_server_info from ..utils.events import get_events, get_dataframe, get_schema from ..websocket import createWebSocket class Subscriber(object): ''' Create a subscriber for the given window Attributes ---------- callbacks : dict The dictionary of callback functions filter : string Functional filter to subset events format : string, optional The format of the received data: 'xml', 'json', 'csv', 'properties' interval : int Interval between event sends in milliseconds is_active : bool Is the web socket currently active? mode : string The mode of subscriber: 'updating' or 'streaming' pagesize : int The maximum number of events in a page separator : string, optional The separator to use between events in the 'properties' format schema : bool Should the schema be sent with the first event? sort : string Sort order for the events (updating mode only) window_schema : Schema The schema of the window being subscribed to window_url : string The subscriber URL of the window Parameters ---------- window : Window The window object to create the subscriber for mode : string, optional The mode of subscriber: 'updating' or 'streaming' pagesize : int, optional The maximum number of events in a page filter : string, optional Functional filter to subset events sort : string, optional Sort order for the events (updating mode only) format : string, optional The format of the received data: 'xml', 'json', 'csv', 'properties' separator : string, optional The separator to use between events in the 'properties' format interval : int, optional Interval between event sends in milliseconds precision : int, optional The floating point precision schema : bool, optional Should the schema be sent with the first event? on_event : callable, optional The object to call for events. The argument to this object will be a DataFrame of the events that occurred. on_message : callable, optional The object to call for each websocket message on_error : callable, optional The object to call for each websocket error on_close : callable, optional The object to call when the websocket is opened on_open : callable, optional The object to call when the websocket is closed Examples -------- Create event callback; ``event`` is a DataFrame >>> def on_event(event): ... print(event.columns) Create the subscriber instance >>> sub = Subscriber(window, on_event=on_event) Start event processing (runs a thread in the background) >>> sub.start() Stop event processing (stops background thread) >>> sub.stop() Returns ------- :class:`Subscriber` ''' def __init__(self, window, mode='updating', pagesize=50, filter=None, sort=None, format='xml', separator=None, interval=None, schema=False, on_event=None, on_message=None, on_error=None, on_close=None, on_open=None, precision=6): self._ws = None self.mode = mode self.pagesize = pagesize self.filter = filter self.sort = sort self.format = format self.separator = separator self.interval = interval self.precision = precision self.schema = schema self.server_info = get_server_info(window) self.session = window.session self.window_schema = get_schema(window, window) self.window_url = window.subscriber_url self.window_fullname = window.fullname self.callbacks = {k: v for k, v in dict(on_message=on_message, on_error=on_error, on_event=on_event, on_close=on_close, on_open=on_open).items() if v is not None} @property def url(self): ''' Return the URL of the subscriber Returns ------- string ''' url_params = get_params(**{'mode': self.mode, 'pagesize': self.pagesize, 'filter': self.filter, 'format': self.format, 'separator': self.separator, 'sort': self.sort, 'interval': self.interval, 'precision': self.precision, 'schema': True}) url_params = '&'.join(['%s=%s' % (k, v) for k, v in sorted(url_params.items())]) return self.window_url + '?' + url_params @property def is_active(self): ''' Is the web socket active? Returns ------- bool ''' return self._ws is not None @property def mode(self): ''' The mode of the subscriber: 'updating' or 'streaming' Returns ------- string ''' return self._mode @mode.setter def mode(self, value): ''' Set the mode of the subscriber ''' self._mode = value if self._ws is not None and self._mode is not None: self._ws.send('<properties mode="%s"></properties>' % self._mode) @property def pagesize(self): ''' The maximum number of events in a page Returns ------- int ''' return self._pagesize @pagesize.setter def pagesize(self, value): ''' Set the pagesize ''' self._pagesize = value if self._ws is not None and self._pagesize is not None: self._ws.send('<properties pagesize="%s"></properties>' % self._pagesize) @property def sort(self): ''' Sort order for the events (updating mode only) Returns ------- string ''' return self._sort @sort.setter def sort(self, value): ''' Set the sort order for the events ''' self._sort = value if self._ws is not None and self._sort is not None: self._ws.send('<properties sort="%s"></properties>' % self._sort) @property def interval(self): ''' Interval between event sends in milliseconds Returns ------- int ''' return self._interval @interval.setter def interval(self, value): ''' Set the event interval ''' self._interval = value if self._ws is not None and self._interval is not None: self._ws.send('<properties interval="%s"></properties>' % self._interval) @property def filter(self): ''' Functional filter to subset events Returns ------- string ''' return self._filter @filter.setter def filter(self, value): ''' Set the filter string ''' self._filter = value if self._ws is not None and self._filter is not None: self._ws.send(('<properties><filter><![CDATA[%s]]>' '</filter></properties>') % self._filter) @property def separator(self): ''' Separator to use between events in the 'properties' format Returns ------- string ''' return self._separator @separator.setter def separator(self, value): ''' Set the separator string ''' self._separator = value if self._ws is not None and self._separator is not None: self._ws.send('<properties separator="%s"></properties>' % self._separator) def start(self): ''' Initialize the web socket and start it in its own thread Notes ----- The thread created in the background will continue to run unless explicitly stopped using the :meth:`stop` method. Examples -------- Create subscriber instance >>> sub = Subscriber(window, on_event=on_event) Start processing events >>> sub.start() ''' if self._ws is not None: return if not verify_window(self.window_fullname, session=self.session): raise ESPError('There is no window at %s' % self.window_fullname) state = dict(status=None, schema=None, dataframe=None) def on_message(sock, message): # HTTP status messages if state['status'] is None and re.match(r'^\s*\w+\s*\:\s*\d+\s*\n', message): state['status'] = int(re.match(r'^\s*\w+\s*\:\s*(\d+)', message).group(1)) if state['status'] >= 400: raise ESPError('Subscriber message returned with status: %s' % state['status']) return if state['schema'] is None: if message.startswith('<schema>'): state['schema'] = Schema.from_xml(message) elif re.match(r'^\s*{\s*["\']?schema["\']?\s*:', message): state['schema'] = Schema.from_json(message) else: raise ValueError('Unrecognized schema definition format: %s...' % message[:40]) state['dataframe'] = get_dataframe(state['schema']) if self.schema: return message return if 'on_message' in self.callbacks: self.callbacks['on_message'](sock, message) if 'on_event' in self.callbacks: try: df = get_events(state['schema'], message, single=True, format=self.format, separator=self.separator, server_info=self.server_info) #self.callbacks['on_event'](sock, pd.concat([state['dataframe'], df], **CONCAT_OPTIONS)) self.callbacks['on_event'](sock, pd.concat([state['dataframe'], df])) except: import traceback traceback.print_exc() raise def on_error(sock, error): if 'on_error' in self.callbacks: self.callbacks['on_error'](sock, error) def on_open(sock): if 'on_open' in self.callbacks: self.callbacks['on_open'](sock) def on_close(sock, code, reason=None): if 'on_close' in self.callbacks: self.callbacks['on_close'](sock, code, reason=None) if get_option('debug.requests'): sys.stderr.write('WEBSOCKET %s\n' % self.url) headers = [] auth = Authorization.getInstance(self.session) if auth.isEnabled: headers.append(("Authorization",auth.authorization)); self._ws = createWebSocket(self.url, self.session, on_message=on_message, on_error=on_error, on_open=on_open, on_close=on_close, headers=headers) self._ws.connect() def stop(self): ''' Stop processing events and close the web socket Examples -------- Create subscriber instance >>> sub = Subscriber(window, on_event=on_event) Start processing events >>> sub.start() Stop processing events >>> sub.stop() ''' if self._ws is not None: self._ws.close() self._ws = None close = stop
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/subscriber.py
0.76986
0.179351
subscriber.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals from .base import Window, attribute from .utils import get_args class TextCategoryWindow(Window): ''' Text category window Parameters ---------- name : string, optional The name of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window output_insert_only : bool, optional When true, prevents the window from passing non-insert events to other windows. collapse_updates : bool, optional When true, multiple update blocks are collapsed into a single update block pulse_interval : string, optional Output a canonical batch of updates at the specified interval. exp_max_string : int, optional Specifies the maximum size of strings that the expression engine uses for the window. Default value is 1024. index_type : string, optional Index type for the window pubsub_index_type : string, optional Publish/subscribe index type. Valid values are the same as for the `index_type` parameter. mco_file : string, optional Path to the MCO file. text_field : string, optional Name of the field in the input window that contains the text to analyze. generate_nulls : bool, optional Determines whether to generate a null event when nothing is found for an incoming event. The default value is false. Returns ------- :class:`TextCategoryWindow` ''' window_type = 'textcategory' mco_file = attribute('mco-file', dtype='string') text_field = attribute('text-field', dtype='string') generate_nulls = attribute('generate-nulls', dtype='bool') def __init__(self, name=None, pubsub=None, description=None, output_insert_only=None, collapse_updates=None, pulse_interval=None, exp_max_string=None, index_type=None, pubsub_index_type=None, mco_file=None, text_field=None, generate_nulls=None): Window.__init__(self, **get_args(locals()))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/textcategory.py
0.876105
0.309467
textcategory.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import collections import copy import csv import datetime import functools import itertools import os import pandas as pd import re import requests import six import sys import threading import types import weakref import xml.etree.ElementTree as ET from six.moves import urllib from .utils import verify_window from ..utils.authorization import Authorization from ..base import ESPObject, attribute from ..config import get_option from ..exceptions import ESPError from ..plotting import StreamingChart, StreamingImages, split_chart_params from ..schema import Schema from ..utils.keyword import dekeywordify from ..utils import xml from ..utils.notebook import scale_svg from ..utils.rest import get_params from ..utils.data import get_project_data, gen_name, get_server_info from ..utils.events import get_events, get_dataframe, get_schema from ..websocket import createWebSocket class Publisher(object): ''' Create a publisher for the given window Attributes ---------- blocksize : int Number of events to put into an event block dateformat : string Format for date fields format : string The data format of inputs: 'csv', 'xml', 'json', 'properties' is_active : bool Is the web socket currently active? opcode : string Opcode to use if an input event does not include one: 'insert', 'upsert', 'delete' pause : int Number of milliseconds to pause between each injection of events rate : int Maximum number of events to inject per second separator : string The separator string to use between events in 'properties' format window_schema : Schema The schema of the window that was subscribed to window_url : string The publisher URL of the window Parameters ---------- window : Window The window object to create the subscriber for blocksize : int, optional Number of events to put into an event block rate : int, optional Maximum number of events to inject per second pause : int, optional Number of milliseconds to pause between each injection of events dateformat : string, optional Format for date fields opcode : string, optional Opcode to use if an input event does not include one: 'insert', 'upsert', 'delete' format : string, optional The data format of inputs: 'csv', 'xml', 'json', 'properties' separator : string The separator string to use between events in 'properties' format Examples -------- Create the publisher instance using CSV and an event rate of 200 events per millisecond. >>> pub = Publisher(window, rate=200) Send the CSV data. >>> pub.send('1,2,3') Close the connection. >>> pub.close() Returns ------- :class:`Publisher` ''' def __init__(self, window, blocksize=1, rate=0, pause=0, dateformat='%Y%m%dT%H:%M:%S.%f', opcode='insert', format='csv', separator=None): self.blocksize = int(blocksize) self.rate = int(rate) self.pause = int(pause) self.dateformat = dateformat self.opcode = opcode self.format = format self.separator = separator self.session = window.session self.window_fullname = window.fullname self.window_schema = get_schema(window, window) self.window_url = window.publisher_url if not verify_window(window): raise ESPError('There is no window at %s' % window.fullname) if get_option('debug.requests'): sys.stderr.write('WEBSOCKET %s\n' % self.url) headers = [] auth = Authorization.getInstance(self.session) if auth.isEnabled: headers.append(("Authorization",auth.authorization)); self._ws = createWebSocket(self.url,self.session,headers=headers) self._ws.connect() @property def url(self): ''' Return the URL of the subscriber Returns ------- string ''' url_params = get_params(**{'rate': self.rate, 'blocksize': self.blocksize, 'pause': self.pause, 'format': self.format, 'dateformat': self.dateformat, 'opcode': self.opcode, 'separator': self.separator}) url_params = urllib.parse.urlencode(sorted(url_params.items())) return self.window_url + '?' + url_params.replace('+', '%20') @property def is_active(self): ''' Is the web socket active? Returns ------- bool ''' return self._ws is not None def send(self, data): ''' Send data to the web socket Examples -------- Create the publisher instance using CSV and an event rate of 200 events per millisecond. >>> pub = Publisher(window, rate=200) Send the CSV data. >>> pub.send('1,2,3') Parameters ---------- data : string The data to send ''' if self._ws is None: raise ValueError('The connection is closed') return self._ws.send(data) def close(self): ''' Close the web socket connection Examples -------- Create the publisher instance using CSV and an event rate of 200 events per millisecond. >>> pub = Publisher(window, rate=200) Send the CSV data. >>> pub.send('1,2,3') Close the connection. >>> pub.close() ''' if self._ws is not None: self._ws.close() self._ws = None
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/publisher.py
0.745398
0.180666
publisher.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals from .base import Window, attribute from .features import (ExpressionFeature, InitializeExpressionFeature, PluginFeature) from .utils import get_args class FilterWindow(Window, InitializeExpressionFeature, ExpressionFeature, PluginFeature): ''' Filter window Parameters ---------- name : string, optional The name of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window output_insert_only : bool, optional When true, prevents the window from passing non-insert events to other windows. collapse_updates : bool, optional When true, multiple update blocks are collapsed into a single update block pulse_interval : string, optional Output a canonical batch of updates at the specified interval. exp_max_string : int, optional Specifies the maximum size of strings that the expression engine uses for the window. Default value is 1024. index_type : string, optional Index type for the window pubsub_index_type : string, optional Publish/subscribe index type. Valid values are the same as for the `index_type` parameter. Attributes ---------- expr_initializer : InitializeExpression Initialization expression code block expression : string Expression to be processed plugin : Plugin Shared library of filter functions Returns ------- :class:`FilterWindow` ''' window_type = 'filter' def __init__(self, name=None, pubsub=None, description=None, output_insert_only=None, collapse_updates=None, pulse_interval=None, exp_max_string=None, index_type=None, pubsub_index_type=None): Window.__init__(self, **get_args(locals()))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/filter.py
0.878796
0.267647
filter.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import six from .base import Window, attribute from .features import InitializeExpressionFeature, SchemaFeature from .utils import get_args, ensure_element, connectors_to_end from ..utils import xml class FieldPlugin(object): ''' Compute field plugin Parameters ---------- plugin : string The shared library that contains the specified function function : string The specified function Returns ------- :class:`FieldPlugin` ''' def __init__(self, plugin, function): self.plugin = plugin self.function = function def copy(self, deep=False): return type(self)(self.plugin, self.function) class ContextPlugin(object): ''' Compute context plugin Parameters ---------- name : string The shared library that contains the context–generation function function : string The function that, when called, returns a new derived context for the window’s handler routines. Returns ------- :class:`ContextPlugin` ''' def __init__(self, name, function): self.name = name self.function = function def copy(self, deep=False): return type(self)(self.name, self.function) class ComputeWindow(Window, InitializeExpressionFeature, SchemaFeature): ''' Compute window Parameters ---------- name : string, optional The name of the window schema : Schema The schema of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window output_insert_only : bool, optional When true, prevents the window from passing non-insert events to other windows. collapse_updates : bool, optional When true, multiple update blocks are collapsed into a single update block pulse_interval : string, optional Output a canonical batch of updates at the specified interval exp_max_string : int, optional Specifies the maximum size of strings that the expression engine uses for the window. Default value is 1024. index_type : string, optional Index type for the window pubsub_index_type : string, optional Publish/subscribe index type. Valid values are the same as the `index_type` parameter. Attributes ---------- context_plugin : ContextPlugin Function that returns context for use in plugins field_expressions : list-of-strings Field expressions field_plugins : list-of-FieldPlugins Field plugins Returns ------- :class:`ComputeWindow` ''' window_type = 'compute' def __init__(self, name=None, schema=None, pubsub=None, description=None, output_insert_only=None, collapse_updates=None, pulse_interval=None, exp_max_string=None, index_type=None, pubsub_index_type=None): Window.__init__(self, **get_args(locals())) self.context_plugin = None self.field_expressions = [] self.field_plugins = [] def copy(self, deep=False): out = Window.copy(self, deep=deep) if self.context_plugin is not None: out.context_plugin = self.context_plugin.copy(deep=deep) if deep: out.field_expressions = [x for x in self.field_expressions] out.field_plugins = [x.copy(deep=deep) for x in self.field_plugins] else: out.field_expressions = list(self.field_expressions) out.field_plugins = list(self.field_plugins) return out @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`ComputeWindow` ''' data = ensure_element(data) out = super(ComputeWindow, cls).from_element(data, session=session) for item in data.findall('./context-plugin'): out.context_plugin = ContextPlugin(item.attrib['name'], item.attrib['function']) for item in data.findall('./output/field-expr'): out.field_expressions.append(item.text) for item in data.findall('./output/field-plug'): out.field_plugins.append(FieldPlugin(item.attrib['plugin'], item.attrib['function'])) return out from_xml = from_element def to_element(self, query=None): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = Window.to_element(self, query=query) if self.context_plugin is not None: xml.add_elem(out, 'context-plugin', attrib=dict(name=self.context_plugin.name, function=self.context_plugin.function)) schema = out.find('./schema') if schema is not None: out.remove(schema) out.append(schema) output = xml.add_elem(out, 'output') for item in self.field_expressions: xml.add_elem(output, 'field-expr', text_content=item) for item in self.field_plugins: xml.add_elem(output, 'field-plug', attrib=dict(plugin=item.plugin, function=item.function)) connectors_to_end(out) return out def set_context_plugin(self, name, function): ''' Set a context plugin Parameters ---------- name : string The shared library that contains the context–generation function function : string The function that, when called, returns a new derived context for the window’s handler routines. ''' self.context_plugin = ContextPlugin(name, function) def add_field_expressions(self, *expr): ''' Add new field expressions Parameters ---------- *expr : one-or-more-strings The expressions to add ''' for exp in expr: self.field_expressions.append(exp) add_field_expression = add_field_expressions add_field_expr = add_field_expressions add_field_exprs = add_field_expressions def add_field_plugin(self, plugin, function): ''' Add a field plugin Parameters ---------- plugin : string The name of the plugin function : string or list-of-strings The name(s) of the function ''' if isinstance(function, six.string_types): function = [function] for func in function: self.field_plugins.append(FieldPlugin(plugin, func))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/compute.py
0.863219
0.257491
compute.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals from .utils import get_args import inspect from .base import BaseWindow, attribute, INDEX_TYPES from .features import (ParametersFeature, SchemaFeature, InputMapFeature, OutputMapFeature, MASMapFeature, ConnectorsFeature) from .calculate import CalculateWindow from .helpers import generators import six class PythonHelper(BaseWindow, SchemaFeature, ParametersFeature, InputMapFeature, OutputMapFeature, MASMapFeature, ConnectorsFeature): ''' Python Window Notes ----- This class is basically a CalculateWindow with the algorithm specified to 'MAS'. Parameters ---------- name : string, optional The name of the window schema : Schema, optional The schema of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window algorithm : string, optional The name of the algorithm input_map : dict, optional Input mappings output_map : dict, optional Output mappings index_type : string, optional Index type for the window produces_only_inserts : bool, optional Set to true when you know that the procedural window always produces inserts **parameters : keyword arguments, optional The parameters to the algorithm Returns ------- :class:`PythonHelper` ''' window_type = 'calculate' is_hidden = True algorithm = attribute('algorithm', dtype='string') index_type = attribute('index', dtype='string', values=INDEX_TYPES) produces_only_inserts = attribute('produces-only-inserts', dtype='bool') def __init__(self, name=None, schema=None, pubsub=None, description=None, index_type=None, produces_only_inserts=None, input_map=None, output_map=None, mas_info_list=None, **parameters): algorithm = 'MAS' BaseWindow.__init__(self, **get_args(locals())) self.mas_info_list = [] def _register_to_project(self, project_handle): for mas_info in self.mas_info_list: module_name = mas_info['module_name'] entry_func_name = mas_info['entry_func_name'] source = mas_info['source'] # If the module doesn't already exist if module_name not in [mas_obj.module for mas_obj in project_handle.mas_modules]: code = mas_info['code'] if code is None: raise ValueError('To create a new MAS module, code string or function list must be provided') python_module = project_handle.create_mas_module(language="python", module=module_name, func_names='place_holder', code=code) project_handle.mas_modules.append(python_module) self.add_mas_window_map(module=module_name, source=source, function=entry_func_name) def add_mas_info(self, module_name, entry_func_name, source, funcs=None, code_file=None, inits=None): ''' Add the information needed to create a MAS module and add MAS window map. Notes ----- If code is specified, funcs is ignored. Parameters ---------- module_name : string Name of the MAS module to be created entry_func_name : string Name of the entry function in the MAS module. An entry functions is supposed to consumes the events sent from its source window and returns desired outputs. Any entry function must have a doc string to describe its outputs. source : string Name of the source window funcs : list of callable functions Functions included in MAS module code_file : string Path to the Python code file inits : dict Initialization of global variables if needed Returns ------- :class:`Project` Examples -------- Create a MAS module with multiple functions and global variables >>> win.add_mas_info('foo_module', 'foo_1', 'source_win' funcs=[foo_1, foo_2], inits=dict(gv_1=[], gv_2=0)) Create a MAS module with a code file. The entry function 'foo_1' is defined in the code string. >>> win.add_mas_info('foo_module', 'foo_1', 'source_win' code_file='path/to/code.py') ''' if funcs is None and code_file is None: code = None elif code_file is None: code = '' # extract code string from function list for func in funcs: try: code = code + inspect.getsource(func) + '\n' except NameError: raise ValueError('{} not found.'.format(func.__name__)) else: code = open(code_file, 'r').read() # extract code string from initialization list if inits is not None: inits_str = '\n' for key, value in inits.items(): inits_str += (key + '=' + str(value) + '\n') code = inits_str + code mas_info = {'module_name': module_name, 'entry_func_name': entry_func_name, 'code': code, 'source': source} self.mas_info_list.append(mas_info) class KerasHelper(PythonHelper): ''' Keras Window Parameters ---------- name : string, optional The name of the window schema : Schema, optional The schema of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window algorithm : string, optional The name of the algorithm input_map : dict, optional Input mappings output_map : dict, optional Output mappings index_type : string, optional Index type for the window produces_only_inserts : bool, optional Set to true when you know that the procedural window always produces inserts **parameters : keyword arguments, optional The parameters to the algorithm Returns ------- :class:`KerasHelper` ''' def __init__(self, name=None, schema=None, pubsub=None, description=None, index_type=None, produces_only_inserts=None, input_map=None, output_map=None, **parameters): PythonHelper.__init__(self, **get_args(locals())) def add_model_info(self, model_name, model_file, source, input_name='input', output_name='output', output_class='False'): """ Add the information of a Keras model Parameters ----------- model_name : string User-specified name of the model model_file : string The path to hdf5 file that stores the model structure and parameters. ESP server should be able to find this file. source : string Name of the source window input_name : string Name of input array (features). This name should match the schema of the source window output_name : string Name of output (predictions). output_class : bool If True, the output is the predicted class. If False, the output is an array of pedicted probabilities of each class. Only applicable to classification models. """ code_generator = generators.KS_generator(model_file, input_name, output_name, output_class) code = code_generator.gen_wrap_str() mas_info = {'module_name': model_name, 'entry_func_name': 'ks_score', 'code': code, 'source': source} self.mas_info_list.append(mas_info) class TensorflowHelper(PythonHelper): ''' Tensorflow Window Parameters ---------- name : string, optional The name of the window schema : Schema, optional The schema of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window algorithm : string, optional The name of the algorithm input_map : dict, optional Input mappings output_map : dict, optional Output mappings index_type : string, optional Index type for the window produces_only_inserts : bool, optional Set to true when you know that the procedural window always produces inserts **parameters : keyword arguments, optional The parameters to the algorithm Returns ------- :class:`TensorflowHelper` ''' def __init__(self, name=None, schema=None, pubsub=None, description=None, index_type=None, produces_only_inserts=None, input_map=None, output_map=None, **parameters): PythonHelper.__init__(self, **get_args(locals())) def add_model_info(self, model_name, model_file, input_op, score_op, source, input_name='input', output_name='output', reshape=None): """ Add the information of a Tensorflow model Parameters ----------- model_name : string User-specified name of the model model_file : string the path to meta file that stores the graph structure. The checkpoint files should be within the same directory with the meta file. ESP server should be able to find the files. input_op : string or tuple of strings Name of input operations score_op : string Name of scoring operation source : string Name of the source window input_name : string or tuple of strings Names of input arrays (features). This name should match the schema of the source window output_name : string Name of output (predictions). reshape : tuple of ints Shape of the new array, e.g., ``(2, 3)``. Notes ----- The Tensorflow models are exported in checkpoint files using tf.train.Saver class. The name of input and scoring operations should be specified when creating the model. """ code_generator = generators.TF_generator(model_file, input_op, score_op, input_name, output_name, reshape) if isinstance(input_name + input_op, six.string_types): code = code_generator.gen_wrap_str_singe_input() elif len(input_name) == len(input_op): code = code_generator.gen_wrap_str() else: raise ValueError("input_name and input_op does not match") mas_info = {'module_name': model_name, 'entry_func_name': 'tf_score', 'code': code, 'source': source} self.mas_info_list.append(mas_info) class JMPHelper(PythonHelper): ''' JMP Window Parameters ---------- name : string, optional The name of the window schema : Schema, optional The schema of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window algorithm : string, optional The name of the algorithm input_map : dict, optional Input mappings output_map : dict, optional Output mappings index_type : string, optional Index type for the window produces_only_inserts : bool, optional Set to true when you know that the procedural window always produces inserts copy_vars : string or list of string, optional Add fields to the automatically generated schema **parameters : keyword arguments, optional The parameters to the algorithm Returns ------- :class:`JMPHelper` Notes ----- If no schema is provided users, a schema will be automatically generated based on the outputs of the score function from JMP. ''' def __init__(self, name=None, schema=None, pubsub=None, description=None, index_type=None, produces_only_inserts=None, input_map=None, output_map=None, copy_vars=None, **parameters): PythonHelper.__init__(self, **get_args(locals())) self.copy_vars = copy_vars def add_model_info(self, model_name, model_file, source): """ Add the information of a JMP model Parameters ----------- module_name : string Name of the MAS module to be created score_file : string The path to the Python file exported by JMP source : string Name of the source window """ code_generator = generators.JMP_generator(model_file) code = code_generator.gen_wrap_str() mas_info = {'module_name': model_name, 'entry_func_name': 'jmp_score', 'code': code, 'source': source} self.mas_info_list.append(mas_info) if self._schema.schema_string == '': self.schema = code_generator._gen_schema(self.copy_vars) setattr(CalculateWindow, PythonHelper.__name__, PythonHelper) setattr(CalculateWindow, KerasHelper.__name__, KerasHelper) setattr(CalculateWindow, TensorflowHelper.__name__, TensorflowHelper) setattr(CalculateWindow, JMPHelper.__name__, JMPHelper)
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/pythonmas.py
0.880129
0.287583
pythonmas.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals from .base import Window, attribute from .utils import get_args class TextContextWindow(Window): ''' Text context window Parameters ---------- name : string, optional The name of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window output_insert_only : bool, optional When true, prevents the window from passing non-insert events to other windows. collapse_updates : bool, optional When true, multiple update blocks are collapsed into a single update block pulse_interval : string, optional Output a canonical batch of updates at the specified interval. exp_max_string : int, optional Specifies the maximum size of strings that the expression engine uses for the window. Default value is 1024. index_type : string, optional Index type for the window pubsub_index_type : string, optional Publish/subscribe index type. Valid values are the same as for the `index_type` parameter. liti_files : string, optional Semi-colon-separated list of LITI files. text_field : string, optional Name of the field in the input window that contains the text to analyze. generate_nulls : bool, optional Determines whether to generate a null event when nothing is found for an incoming event. The default value is false. Returns ------- :class:`TextContextWindow` ''' window_type = 'textcontext' liti_files = attribute('liti-files', dtype='string') text_field = attribute('text-field', dtype='string') generate_nulls = attribute('generate-nulls', dtype='bool') def __init__(self, name=None, pubsub=None, description=None, output_insert_only=None, collapse_updates=None, pulse_interval=None, exp_max_string=None, index_type=None, pubsub_index_type=None, liti_files=None, text_field=None, generate_nulls=None): Window.__init__(self, **get_args(locals()))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/textcontext.py
0.86923
0.291217
textcontext.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import re from .base import BaseWindow, attribute from .features import (FinalizedCallbackFeature, SchemaFeature, FunctionContextFeature) from .utils import get_args, ensure_element, listify, connectors_to_end from ..utils import xml class SMTPSettings(object): ''' SMTP server settings Parameters ---------- host : string SMTP host name port : int, optional SMTP port number user : string, optional User name password : string, optional Password Returns ------- :class:`SMTPSettings` ''' def __init__(self, host, port=None, user=None, password=None): self.host = host self.port = port self.user = user self.password = password def copy(self, deep=False): return type(self)(self.host, port=self.port, user=self.user, password=self.password) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`SMTPSettings` ''' data = ensure_element(data) out = cls(data.attrib['host']) out.user = data.attrib.get('user') out.password = data.attrib.get('password') out.port = data.attrib.get('port') if out.port is not None: out.port = int(out.port) return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' return xml.new_elem('smtp', attrib=dict(host=self.host, port=self.port, user=self.user, password=self.password)) def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class EMailMessage(object): ''' EMail notifier Parameters ---------- sender : string The address of the message sender recipients : list-of-strings The addresses of the message recipients subject : string The subject of the message from_ : string, optional The string to display in the From field of the message to : string, optional The string to display in the To field of the message text : string, optional The text of the message html : string, optional The HTML content of the message image : string, optional The image content of the message deliver : string, optional Enclosed text specifies a function to run in order to determine whether a notification should be sent. name : string, optional The name of the notification window unresolved_text : string, optional Specifies the text to use when the token cannot be resolved. throttle_interval : string, optional Specifies a time period in which at most one notification is sent to a recipient. test : boolean, optional Specifies whether to run in test mode. Returns ------- :class:`EMailMessage` ''' def __init__(self, sender, recipients, subject, from_=None, to=None, text=None, html=None, image=None, deliver=True, name=None, unresolved_text=None, throttle_interval=None, test=False): self.sender = sender self.recipients = listify(recipients) or [] self.subject = subject self.from_ = from_ self.to = listify(to) or [] self.text = listify(text) or [] self.html = listify(html) or [] self.image = listify(image) or [] self.deliver = deliver self.name = name self.unresolved_text = unresolved_text self.throttle_interval = throttle_interval self.test = test if self.from_ is None: self.from_ = sender if not self.to: self.to = self.recipients def copy(self, deep=False): return type(self)(self.sender, self.recipients, self.subject, from_=self.from_, to=self.to, text=self.text, html=self.html, image=self.image, deliver=self.deliver, name=self.name, unresolved_text=self.unresolved_text, throttle_interval=self.throttle_interval, test=self.test) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`EMailMessage` ''' data = ensure_element(data) out = cls('', '', '') out.name = data.attrib.get('name') out.unresolved_text = data.attrib.get('unresolved-text') out.throttle_interval = data.attrib.get('throttle-interval') out.test = data.attrib.get('test', False) for item in data.findall('./deliver'): out.deliver = item.text for item in data.findall('./email-info/sender'): out.sender = item.text for item in data.findall('./email-info/recipients'): out.recipients = re.split(r'\s*,\s*', item.text.strip()) for item in data.findall('./email-info/subject'): out.subject = item.text for item in data.findall('./email-info/from'): out.from_ = item.text for item in data.findall('./email-info/to'): out.to = re.split(r'\s*,\s*', item.text.strip()) for item in data.findall('./email-contents/text-content'): out.text.append(item.text) for item in data.findall('./email-contents/html-content'): out.html.append(item.text) for item in data.findall('./email-contents/image-content'): out.image.append(item.text) return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('email', attrib=dict(name=self.name, unresolved_text=self.unresolved_text, throttle_interval=self.throttle_interval, test=self.test)) xml.add_elem(out, 'deliver', text_content=int(self.deliver)) info = xml.add_elem(out, 'email-info') xml.add_elem(info, 'sender', text_content=self.sender) xml.add_elem(info, 'recipients', text_content=','.join(self.recipients)) xml.add_elem(info, 'subject', text_content=self.subject) xml.add_elem(info, 'from', text_content=self.from_) xml.add_elem(info, 'to', text_content=', '.join(self.to)) contents = xml.add_elem(out, 'email-contents') for i, item in enumerate(self.text): xml.add_elem(contents, 'text-content', attrib=dict(name='text_content_%s' % i), text_content=item) for i, item in enumerate(self.html): xml.add_elem(contents, 'html-content', attrib=dict(name='html_content_%s' % i), text_content=item) for i, item in enumerate(self.image): xml.add_elem(contents, 'image-content', attrib=dict(name='image_content_%s' % i), text_content=item) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class SMSMessage(object): ''' SMS notifier Parameters ---------- sender : string The address of the message sender subject : string The subject of the message from_ : string, optional The string to display in the From field of the message gateway : string, optional Specifies the recipient's provider's SMS gateway phone : string, optional The phone number to send message to text : string, optional The text of the message deliver : string, optional Enclosed text specifies a function to run in order to determine whether a notification should be sent. name : string, optional The name of the notification window unresolved_text : string, optional Specifies the text to use when the token cannot be resolved. throttle_interval : string, optional Specifies a time period in which at most one notification is sent to a recipient. test : boolean, optional Specifies whether to run in test mode. Returns ------- :class:`SMSMessage` ''' def __init__(self, sender, subject, from_=None, gateway=None, phone=None, text=None, deliver=None, name=None, unresolved_text=None, throttle_interval=None, test=None): self.sender = sender self.subject = subject self.from_ = from_ self.gateway = gateway self.phone = phone self.text = listify(text) or [] self.deliver = deliver self.name = name self.unresolved_text = unresolved_text self.throttle_interval = throttle_interval self.test = test def copy(self, deep=False): return type(self)(self.sender, self.subject, from_=self.from_, gateway=self.gateway, phone=self.phone, text=self.text, deliver=self.deliver, name=self.name, unresolved_text=self.unresolved_text, throttle_interval=self.throttle_interval, test=self.test) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`SMSMessage` ''' data = ensure_element(data) out = cls('', '') out.name = data.attrib.get('name') out.unresolved_text = data.attrib.get('unresolved-text') out.throttle_interval = data.attrib.get('throttle-interval') out.test = data.attrib.get('test', False) for item in data.findall('./deliver'): out.deliver = item.text for item in data.findall('./sms-info/sender'): out.sender = item.text for item in data.findall('./sms-info/subject'): out.subject = item.text for item in data.findall('./sms-info/from'): out.from_ = item.text for item in data.findall('./sms-info/gateway'): out.gateway = item.text for item in data.findall('./sms-info/phone'): out.phone = item.text for item in data.findall('./sms-contents/text-content'): out.text.append(item.text) return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('sms', attrib=dict(name=self.name, unresolved_text=self.unresolved_text, throttle_interval=self.throttle_interval, test=self.test)) xml.add_elem(out, 'deliver', text_content=int(self.deliver)) info = xml.add_elem(out, 'sms-info') xml.add_elem(info, 'sender', text_content=self.sender) xml.add_elem(info, 'subject', text_content=self.subject) xml.add_elem(info, 'from', text_content=self.from_) xml.add_elem(info, 'gateway', text_content=self.gateway) xml.add_elem(info, 'phone', text_content=self.phone) contents = xml.add_elem(out, 'sms-contents') for i, item in enumerate(self.text): xml.add_elem(contents, 'text-content', attrib=dict(name='text_content_%s' % i), text_content=item) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class MMSMessage(object): ''' Add an SMS notifier Parameters ---------- sender : string The address of the message sender subject : string The subject of the message from_ : string, optional The string to display in the From field of the message gateway : string, optional Specifies the recipient's provider's SMS gateway phone : string, optional The phone number to send message to text : string, optional The text of the message image : string, optional The image content of the message deliver : string, optional Enclosed text specifies a function to run in order to determine whether a notification should be sent. name : string, optional The name of the notification window unresolved_text : string, optional Specifies the text to use when the token cannot be resolved. throttle_interval : string, optional Specifies a time period in which at most one notification is sent to a recipient. test : boolean, optional Specifies whether to run in test mode. ''' def __init__(self, sender, subject, from_=None, gateway=None, phone=None, text=None, image=None, deliver=None, name=None, unresolved_text=None, throttle_interval=None, test=None): self.sender = sender self.subject = subject self.from_ = from_ self.gateway = gateway self.phone = phone self.text = listify(text) or [] self.image = listify(image) or [] self.deliver = deliver self.name = name self.unresolved_text = unresolved_text self.throttle_interval = throttle_interval self.test = test def copy(self, deep=False): return type(self)(self.sender, self.subject, from_=self.from_, gateway=self.gateway, phone=self.phone, text=self.text, image=self.image, deliver=self.deliver, name=self.name, unresolved_text=self.unresolved_text, throttle_interval=self.throttle_interval, test=self.test) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`MMSMessage` ''' data = ensure_element(data) out = cls('', '') out.name = data.attrib.get('name') out.unresolved_text = data.attrib.get('unresolved-text') out.throttle_interval = data.attrib.get('throttle-interval') out.test = data.attrib.get('test', False) for item in data.findall('./deliver'): out.deliver = item.text for item in data.findall('./mms-info/sender'): out.sender = item.text for item in data.findall('./mms-info/subject'): out.subject = item.text for item in data.findall('./mms-info/from'): out.from_ = item.text for item in data.findall('./mms-info/gateway'): out.gateway = item.text for item in data.findall('./mms-info/phone'): out.phone = item.text for item in data.findall('./mms-contents/text-content'): out.text.append(item.text) for item in data.findall('./mms-contents/image-content'): out.image.append(item.text) return out from_xml = from_element def to_element(self): ''' Convert object to Element Returns ------- :class:`ElementTree.Element` ''' out = xml.new_elem('mms', attrib=dict(name=self.name, unresolved_text=self.unresolved_text, throttle_interval=self.throttle_interval, test=self.test)) xml.add_elem(out, 'deliver', text_content=int(self.deliver)) info = xml.add_elem(out, 'mms-info') xml.add_elem(info, 'sender', text_content=self.sender) xml.add_elem(info, 'subject', text_content=self.subject) xml.add_elem(info, 'from', text_content=self.from_) xml.add_elem(info, 'gateway', text_content=self.gateway) xml.add_elem(info, 'phone', text_content=self.phone) contents = xml.add_elem(out, 'mms-contents') for i, item in enumerate(self.text): xml.add_elem(contents, 'text-content', attrib=dict(name='text_content_%s' % i), text_content=item) for i, item in enumerate(self.image): xml.add_elem(contents, 'image-content', attrib=dict(name='image_content_%s' % i), text_content=item) return out def to_xml(self, pretty=False): ''' Convert object to XML Parameters ---------- pretty : bool, optional Should whitespace be added for readability? Returns ------- string ''' return xml.to_xml(self.to_element(), pretty=pretty) class NotificationWindow(BaseWindow, FinalizedCallbackFeature, SchemaFeature, FunctionContextFeature): ''' Notification window Parameters ---------- name : string, optional The name of the window schema : Schema, optional The schema of the window Attributes ---------- smtp : SMTPSettings The SMTP server settings email : list-of-EMailMessages The email messages to send sms : list-of-SMSMessages The SMS messages to send mms : list-of-MMSMessages The MMS messages to send Returns ------- :class:`NotificationWindow` ''' window_type = 'notification' def __init__(self, name=None, schema=None, pubsub=None, description=None): BaseWindow.__init__(self, **get_args(locals())) self.smtp = SMTPSettings('localhost') self.email = [] self.sms = [] self.mms = [] def copy(self, deep=False): out = BaseWindow.copy(self, deep=deep) out.smtp = self.smtp.copy(deep=deep) if deep: out.email = [x.copy(deep=deep) for x in self.email] out.sms = [x.copy(deep=deep) for x in self.sms] out.mms = [x.copy(deep=deep) for x in self.mms] else: out.email = list(self.email) out.sms = list(self.sms) out.mms = list(self.mms) return out def set_smtp_settings(self, host, port=None, user=None, password=None): ''' Set the SMTP server settings Parameters ---------- host : string The hostname of the SMTP server port : int, optional The SMTP server port user : string, optional The user name on the SMTP server password : string, optional The password on the SMTP server ''' self.smtp = SMTPSettings(host, port=port, user=user, password=password) def add_email(self, sender, recipients, subject, from_=None, to=None, text=None, html=None, image=None, deliver=True, name=None, unresolved_text=None, throttle_interval=None, test=False): ''' Add an email notifier Parameters ---------- sender : string The address of the message sender recipients : list-of-strings The addresses of the message recipients subject : string The subject of the message from_ : string, optional The string to display in the From field of the message to : string, optional The string to display in the To field of the message text : string, optional The text of the message html : string, optional The HTML content of the message image : string, optional The image content of the message deliver : string, optional Enclosed text specifies a function to run in order to determine whether a notification should be sent. name : string, optional The name of the notification window unresolved_text : string, optional Specifies the text to use when the token cannot be resolved. throttle_interval : string, optional Specifies a time period in which at most one notification is sent to a recipient. test : boolean, optional Specifies whether to run in test mode. ''' self.email.append( EMailMessage(sender, recipients, subject, from_=from_, to=to, text=text, html=html, image=image, deliver=deliver, name=name, unresolved_text=unresolved_text, throttle_interval=throttle_interval, test=test)) def add_sms(self, sender, subject, from_, gateway, phone, text=None, deliver=True, name=None, unresolved_text=None, throttle_interval=None, test=False): ''' Add an SMS notifier Parameters ---------- sender : string The address of the message sender subject : string The subject of the message from_ : string, optional The string to display in the From field of the message gateway : string, optional Specifies the recipient's provider's SMS gateway phone : string, optional The phone number to send message to text : string, optional The text of the message deliver : string, optional Enclosed text specifies a function to run in order to determine whether a notification should be sent. name : string, optional The name of the notification window unresolved_text : string, optional Specifies the text to use when the token cannot be resolved. throttle_interval : string, optional Specifies a time period in which at most one notification is sent to a recipient. test : boolean, optional Specifies whether to run in test mode. ''' self.sms.append( SMSMessage(sender, subject, from_=from_, gateway=gateway, phone=phone, text=text, deliver=deliver, name=name, unresolved_text=unresolved_text, throttle_interval=throttle_interval, test=test)) def add_mms(self, sender, subject, from_, gateway, phone, text=None, image=None, deliver=True, name=None, unresolved_text=None, throttle_interval=None, test=False): ''' Add an SMS notifier Parameters ---------- sender : string The address of the message sender subject : string The subject of the message from_ : string, optional The string to display in the From field of the message gateway : string, optional Specifies the recipient's provider's SMS gateway phone : string, optional The phone number to send message to text : string, optional The text of the message image : string, optional The image content of the message deliver : string, optional Enclosed text specifies a function to run in order to determine whether a notification should be sent. name : string, optional The name of the notification window unresolved_text : string, optional Specifies the text to use when the token cannot be resolved. throttle_interval : string, optional Specifies a time period in which at most one notification is sent to a recipient. test : boolean, optional Specifies whether to run in test mode. ''' self.mms.append( MMSMessage(sender, subject, from_=from_, gateway=gateway, phone=phone, text=text, image=image, deliver=deliver, name=name, unresolved_text=unresolved_text, throttle_interval=throttle_interval, test=test)) @classmethod def from_element(cls, data, session=None): ''' Convert XML / Element to object Parameters ---------- data : xml-string or Element The element to convert session : Session, optional The requests.Session object Returns ------- :class:`NotificationWindow` ''' data = ensure_element(data) out = super(NotificationWindow, cls).from_element(data, session=session) for item in data.findall('./smtp'): out.smtp = SMTPSettings.from_element(item, session=session) for item in data.findall('./delivery-channels/email'): out.email.append(EMailMessage.from_element(item, session=session)) for item in data.findall('./delivery-channels/sms'): out.sms.append(SMSMessage.from_element(item, session=session)) for item in data.findall('./delivery-channels/mms'): out.mms.append(MMSMessage.from_element(item, session=session)) return out from_xml = from_element def to_element(self, query=None): ''' Convert object to Element Parameters ---------- query : string, optional The name of the continuous query Returns ------- :class:`ElementTree.Element` ''' out = BaseWindow.to_element(self, query=query) xml.add_elem(out, self.smtp.to_element()) channels = xml.add_elem(out, 'delivery-channels') for email in self.email: xml.add_elem(channels, email.to_element()) for sms in self.sms: xml.add_elem(channels, sms.to_element()) for mms in self.mms: xml.add_elem(channels, mms.to_element()) connectors_to_end(out) return out
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/notification.py
0.846514
0.18188
notification.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals from .base import Window, attribute from .features import RetentionFeature, SchemaFeature from .utils import get_args class SourceWindow(Window, SchemaFeature, RetentionFeature): ''' Source Window Parameters ---------- name : string, optional The name of the window schema : Schema, optional The schema of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window output_insert_only : bool, optional When true, prevents the window from passing non-insert events to other windows. collapse_updates : bool, optional When true, multiple update blocks are collapsed into a single update block pulse_interval : string, optional Output a canonical batch of updates at the specified interval exp_max_string : int, optional Specifies the maximum size of strings that the expression engine uses for the window. Default value is 1024. index_type : string, optional Index type for the window pubsub_index_type : string, optional Publish/subscribe index type. Valid values are the same as for the `index_type` parameter. insert_only : bool, optional When true, indicates the window will only receive insert events autogen_key : bool, optional Auto-generate the key. The Source window must be insert-only and have a single INT64 or STRING key. Attributes ---------- retention : Retention Specifies the retention policy and value of the retention object Returns ------- :class:`SourceWindow` ''' window_type = 'source' insert_only = attribute('insert-only', dtype='bool') autogen_key = attribute('autogen-key', dtype='bool') def __init__(self, name=None, schema=None, index_type=None, pubsub=None, pubsub_index_type=None, insert_only=None, output_insert_only=None, collapse_updates=None, autogen_key=None, pulse_interval=None, exp_max_string=None): Window.__init__(self, **get_args(locals()))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/source.py
0.874908
0.347565
source.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals from .base import Window, attribute from .utils import get_args class TextTopicWindow(Window): ''' Text topic window Parameters ---------- name : string, optional The name of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window output_insert_only : bool, optional When true, prevents the window from passing non-insert events to other windows. collapse_updates : bool, optional When true, multiple update blocks are collapsed into a single update block pulse_interval : string, optional Output a canonical batch of updates at the specified interval exp_max_string : int, optional Specifies the maximum size of strings that the expression engine uses for the window. Default value is 1024. index_type : string, optional Index type for the window pubsub_index_type : string, optional Publish/subscribe index type. Valid values are the same as for the `index_type` parameter. astore_file : string, optional Path to analytic store (ASTORE) file ta_path : string, optional Path to text analytics directory text_field : string, optional Name for the string field in the input event to analyze include_topic_name : bool, optional When true, includes the topic name in the event Returns ------- :class:`TextTopicWindow` ''' window_type = 'texttopic' astore_file = attribute('astore-file', dtype='string') ta_path = attribute('ta-path', dtype='string') text_field = attribute('text-field', dtype='string') include_topic_name = attribute('include-topic-name', dtype='bool') def __init__(self, name=None, pubsub=None, description=None, output_insert_only=None, collapse_updates=None, pulse_interval=None, exp_max_string=None, index_type=None, pubsub_index_type=None, astore_file=None, ta_path=None, text_field=None, include_topic_name=None): Window.__init__(self, **get_args(locals()))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/texttopic.py
0.866909
0.283444
texttopic.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals from .base import Window, attribute from .utils import get_args class CounterWindow(Window): ''' Counter window Parameters ---------- name : string, optional The name of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window output_insert_only : bool, optional When true, prevents the window from passing non-insert events to other windows. collapse_updates : bool, optional When true, multiple update blocks are collapsed into a single update block pulse_interval : string, optional Output a canonical batch of updates at the specified interval exp_max_string : int, optional Specifies the maximum size of strings that the expression engine uses for the window. Default value is 1024. index_type : string, optional Index type for the window Valid values: 'rbtree', 'hash', 'ln_hash', 'cl_hash', 'fw_hash', 'empty' pubsub_index_type : string, optional Publish/subscribe index type. Valid values are the same as for the `index_type` parameter. count_interval : string, optional Specifies the interval period at which the Counter window generates events. clear_interval : string, optional Specifies the interval of inactivity after which the values in the Counter window are cleared. Returns ------- :class:`CounterWindow` ''' window_type = 'counter' count_interval = attribute('count-interval', dtype='string') clear_interval = attribute('clear-interval', dtype='string') def __init__(self, name=None, pubsub=None, description=None, output_insert_only=None, collapse_updates=None, pulse_interval=None, exp_max_string=None, index_type=None, pubsub_index_type=None, count_interval=None, clear_interval=None): Window.__init__(self, **get_args(locals()))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/counter.py
0.886654
0.309943
counter.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import copy from .base import Window, attribute from .features import (SchemaFeature, CXXPluginContextFeature, CXXPluginFeature, DS2TableServerFeature, DSExternalFeature, MASMapFeature) from .utils import get_args, ensure_element, connectors_to_end from ..utils import xml class ProceduralWindow(Window, SchemaFeature, CXXPluginContextFeature, CXXPluginFeature, DSExternalFeature): ''' Procedural window Parameters ---------- name : string, optional The name of the window schema : Schema, optional The schema of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window output_insert_only : bool, optional When true, prevents the window from passing non-insert events to other windows. collapse_updates : bool, optional When true, multiple update blocks are collapsed into a single update block pulse_interval : string, optional Output a canonical batch of updates at the specified interval. exp_max_string : int, optional Specifies the maximum size of strings that the expression engine uses for the window. Default value is 1024. index_type : string, optional Index type for the window pubsub_index_type : string, optional Publish/subscribe index type. Valid values are the same as for the `index_type` parameter. produces_only_inserts : bool, optional Set to true when you know that the Procedural window always produces inserts. Attributes ---------- cxx_plugin_context : CXXPluginContext Specifies a shared library and function name. cxx_plugin : CXXPlugin A shared library and function name pair that specifies Procedural window handlers. ds_external : DSExternal Contains a block of DATA step code that is used as an input handler for Procedural windows. Returns ------- :class:`ProceduralWindow` ''' window_type = 'procedural' produces_only_inserts = attribute('produces-only-inserts', dtype='bool') def __init__(self, name=None, schema=None, pubsub=None, description=None, output_insert_only=None, collapse_updates=None, pulse_interval=None, exp_max_string=None, index_type=None, pubsub_index_type=None, produces_only_inserts=None): Window.__init__(self, **get_args(locals()))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/procedural.py
0.825379
0.193204
procedural.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals from .base import Window, attribute from .utils import get_args class TextSentimentWindow(Window): ''' Text sentiment window Parameters ---------- name : string, optional The name of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window output_insert_only : bool, optional When true, prevents the window from passing non-insert events to other windows. collapse_updates : bool, optional When true, multiple update blocks are collapsed into a single update block pulse_interval : string, optional Output a canonical batch of updates at the specified interval. exp_max_string : int, optional Specifies the maximum size of strings that the expression engine uses for the window. Default value is 1024. index_type : string, optional Index type for the window pubsub_index_type : string, optional Publish/subscribe index type. Valid values are the same as for the `index_type` parameter. sam_file : string, optional Specifies the full path to the SAM file. You must have a SAS Text Analytics license for this to run properly. text_field : string, optional Name for the string field in the input event to analyze. Returns ------- :class:`TextSentimentWindow` ''' window_type = 'textsentiment' sam_file = attribute('sam-file', dtype='string') text_field = attribute('text-field', dtype='string') def __init__(self, name=None, pubsub=None, description=None, output_insert_only=None, collapse_updates=None, pulse_interval=None, exp_max_string=None, index_type=None, pubsub_index_type=None, sam_file=None, text_field=None): Window.__init__(self, **get_args(locals()))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/textsentiment.py
0.864639
0.295668
textsentiment.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals from xml.etree import ElementTree as xml from .base import Window, attribute from .features import WindowFeature from .utils import get_args class TrackerFeature(WindowFeature): def __init__(self): pass def set(self,method = "iou",score_sigma_low = 0.5,score_sigma_high = 0.3, iou_sigma = 0.5,iou_sigma2 = 0.3,iou_sigma_dup = 0.0, velocity_vector_frames = 15,max_track_lives = 10, min_track_length = 0,track_retention = 0): self._method = method self._score_sigma_low = score_sigma_low self._score_sigma_high = score_sigma_high self._iou_sigma = iou_sigma self._iou_sigma2 = iou_sigma2 self._iou_sigma_dup = iou_sigma_dup self._velocity_vector_frames = velocity_vector_frames self._max_track_lives = max_track_lives self._min_track_length = min_track_length self._track_retention = track_retention def _feature_to_element(self): e = xml.Element("tracker") e.attrib["method"] = str(self._method) e.attrib["iou-sigma"] = str(self._iou_sigma) e.attrib["iou-sigma2"] = str(self._iou_sigma2) e.attrib["iou-sigma-dup"] = str(self._iou_sigma_dup) e.attrib["score-sigma-low"] = str(self._score_sigma_low) e.attrib["score-sigma-high"] = str(self._score_sigma_high) e.attrib["max-track-lives"] = str(self._max_track_lives) e.attrib["min-track-length"] = str(self._min_track_length) e.attrib["velocity-vector-frames"] = str(self._velocity_vector_frames) e.attrib["track-retention"] = str(self._track_retention) return(e); class OutputFeature(WindowFeature): def __init__(self): pass def set(self,mode = "wide",prefix = "Object", tracks = 0, velocity_vector = False, newborn_tracks = False, scale_x = None, scale_y = None): self._mode = mode self._prefix = prefix self._tracks = tracks self._velocity_vector = velocity_vector self._newborn_tracks = newborn_tracks self._scale_x = scale_x self._scale_y = scale_y def _feature_to_element(self): e = xml.Element("output"); e.attrib["mode"] = str(self._mode) e.attrib["velocity-vector"] = str(self._velocity_vector).lower() e.attrib["tracks"] = str(self._tracks) e.attrib["prefix"] = str(self._prefix) e.attrib["newborn-tracks"] = str(self._velocity_vector).lower() if self._scale_x != None: e.attrib["scale-x"] = str(self._scale_x) if self._scale_y != None: e.attrib["scale-y"] = str(self._scale_y) return(e) class InputFeature(WindowFeature): def __init__(self): pass def set_rect(self,count = None,score = None, label = None, x = None,y = None,width = None,height = None): self._coordType = "rect" self._count = count self._score = score self._label = label self._x = x self._y = y self._width = width self._height = height def set_yolo(self,count = None,score = None, label = None, x = None,y = None,width = None,height = None): self._coordType = "yolo" self._count = count self._score = score self._label = label self._x = x self._y = y self._width = width self._height = height def set_coco(self,count = None,score = None, label = None, xMin = None,yMin = None,xMax = None,yMax = None): self._coordType = "yolo" self._count = count self._score = score self._label = label self._xMin = xMin self._yMin = yMin self._xMax = xMax self._yMax = yMax def _feature_to_element(self): e = xml.Element("input"); e.attrib["count"] = str(self._count) e.attrib["score"] = str(self._score) e.attrib["label"] = str(self._label) e.attrib["coord-type"] = str(self._coordType) if self._coordType == "rect" or self._coordType == "yolo": e.attrib["x"] = str(self._x) e.attrib["y"] = str(self._y) e.attrib["width"] = str(self._width) e.attrib["height"] = str(self._height) elif self._coordType == "coco": e.attrib["x-min"] = str(self._xMin) e.attrib["y-min"] = str(self._yMin) e.attrib["x-max"] = str(self._xMax) e.attrib["y-max"] = str(self._yMax) return(e) class ObjectTrackerWindow(TrackerFeature,OutputFeature,InputFeature,Window): ''' Object Tracker window Parameters ---------- name : string, optional The name of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window Attributes ---------- tracker : Tracker The window tracker output : Output The window output input : Input The window input Returns ------- :class:`ObjectTrackerWindow` ''' window_type = 'object-tracker' def __init__(self, name=None, pubsub=None, description=None): Window.__init__(self, **get_args(locals())) def set_tracker(self,method = "iou",score_sigma_low = 0.5,score_sigma_high = 0.3, iou_sigma = 0.5,iou_sigma2 = 0.3,iou_sigma_dup = 0.0, velocity_vector_frames = 15,max_track_lives = 10, min_track_length = 0,track_retention = 0): TrackerFeature.set(self,method,score_sigma_low,score_sigma_high,iou_sigma,iou_sigma2,iou_sigma_dup,velocity_vector_frames,max_track_lives,min_track_length,track_retention) ''' Set the tracker Parameters ---------- method : string Tracking method score_sigma_low : float Score low detection threshold (σl) score_sigma_high : float Score high detection threshold (σh) iou_sigma : float 1st iou threshold (σiou) iou_sigma2 : float 2nd iou threshold (σiou-2) iou_sigma_dup : float Iou duplicate threshold velocity_vector_frames : float Number of history frames used to calculate the velocity vector max_track_lives : float Life duration of tracks without detection min_track_length : float Minimum track length before allowing a missing frame (tmin) track_retention : float Number of frames the tracks keep the history of positions in memory ''' def set_output(self,mode = "wide",prefix = "Object", tracks = 0, velocity_vector = False, newborn_tracks = False, scale_x = None, scale_y = None): ''' Set the tracker output Parameters ---------- mode : string wide: values --> rows, long: values --> fields prefix : string Prefix name of output fields. tracks : integer Number of tracks to output velocity_vector : boolean Do we output the velocity vector coordinates? newborn_tracks : boolean Whether we output the tracks with length < min-track-length scale_x : string Rescale factor for x dimension. It can be a double or a fractional value (ex '1920/416'). scale_y : string Rescale factor for y dimension. It can be a double or a fractional value (ex '1920/416'). ''' OutputFeature.set(self,mode,prefix,tracks,velocity_vector,newborn_tracks,scale_x,scale_x) def set_input_rect(self,count = None,score = None,label = None,x = None,y = None,width = None,height = None): ''' Set the tracker input Parameters ---------- count : string Input object count field name score : string Input object score field name label : string Input object label field name x : string Input object x field name y : string Input object y field name width : string Input object width field name height : string Input object height field name ''' InputFeature.set_rect(self,count,score,label,x,y,width,height) def set_input_yolo(self,count = None,score = None,label = None,x = None,y = None,width = None,height = None): ''' Set the tracker input Parameters ---------- count : string Input object count field name score : string Input object score field name label : string Input object label field name x : string Input object x field name y : string Input object y field name width : string Input object width field name height : string Input object height field name ''' InputFeature.set_yolo(self,count,score,label,x,y,width,height) def set_input_coco(self,count = None,score = None,label = None,xMin = None,yMin = None,xMax = None,yMax = None): ''' Set the tracker input Parameters ---------- count : string Input object count field name score : string Input object score field name label : string Input object label field name xMin : string Input object x min field name yMin : string Input object y min field name xMax : string Input object x max field name yMax : string Input object y max field name ''' InputFeature.set_yolo(self,count,score,label,xMin,yMin,xMax,yMax)
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/objectTracker.py
0.863823
0.208864
objectTracker.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals from xml.etree import ElementTree as xml from .base import Window, BaseWindow, attribute from .utils import get_args class TransposeWindow(Window): ''' Transpose Window Parameters ---------- name : string, optional The name of the window description : string, optional Description of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. mode : string This is either 'wide' or 'long'. If 'wide', values --> rows If 'long', rows --> values tag_name : string If mode is 'wide', this is the name of input field holding the tag. If mode is 'long', this is the name of output field holding the tag. tag_values : string Name of input field(s) holding value. tags_included : string If mode is 'wide', the name(s) of input field(s) holding value. If mode is 'long', this is the value(s) of tag-name. group_by : string If mode is 'wide', this is a list of input field(s) to group on. clear_timeout : string This value should be 'never' or time, e.g. 10 seconds Returns ------- :class:`TransposeWindow` ''' window_type = 'transpose' mode = attribute('mode',dtype='string') tag_name = attribute('tag-name',dtype='string') tag_values = attribute('tag-values',dtype='string') tags_included = attribute('tags-included',dtype='string') group_by = attribute('group-by',dtype='string') clear_timeout = attribute('clear-timeout',dtype='string') def __init__(self,mode=None,tag_name=None,tag_values=None,tags_included=None,group_by=None,clear_timeout=None, name=None, pubsub=None, description=None, output_insert_only=None, collapse_updates=None, pulse_interval=None, exp_max_string=None, index_type=None, pubsub_index_type=None): Window.__init__(self, **get_args(locals()))
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/transpose.py
0.807916
0.179602
transpose.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import os import pandas as pd import six from .base import BaseWindow, attribute from .features import SchemaFeature, ModelsFeature, ConnectorsFeature from .utils import get_args, ensure_element class ScoreWindow(BaseWindow, SchemaFeature, ModelsFeature, ConnectorsFeature): ''' Score window Parameters ---------- name : string, optional The name of the window schema : Schema, optional The schema of the window pubsub : bool, optional Publish/subscribe mode for the window. When the project-level value of pubsub is manual, true enables publishing and subscribing for the window and false disables it. description : string, optional Description of the window Attributes ---------- online_models : list-of-OnlineModels List of online model objects offline_models : list-of-OfflineModels List of offline model objects Returns ------- :class:`ScoreWindow` ''' window_type = 'score' def __init__(self, name=None, schema=None, pubsub=None, description=None, copyvars=None): BaseWindow.__init__(self, **get_args(locals())) # Set the online model for subclasses if type(self).__name__ != 'ScoreWindow': self.add_online_model(type(self).__name__) def _create_schema_list(self, variables): ''' Extract schema information from DataFrame Parameters ---------- variables : DataFrame The DataFrame containing schema information Returns ------- list ''' labels = [] labels.append('id*:int64') for name, dtype in zip(variables['Name'], variables['Type']): if dtype == 'Num': labels.append(name + ':double') elif dtype == 'Char': labels.append(name + ':string') return labels def import_schema_from_astore_output(self, output_variables_input): ''' Import a schema from the astore CAS action output format Parameters ---------- output_variables_input : DataFrame or list or string The schema definition ''' if isinstance(output_variables_input, six.string_types): if os.path.isfile(output_variables_input): output_variables_input = pd.read_csv(output_variables_input) else: output_variables_input = pd.read_csv(six.StringIO(output_variables_input)) if isinstance(output_variables_input, pd.DataFrame): self.schema = self._create_schema_list(output_variables_input) elif isinstance(output_variables_input, (tuple, list)): self.schema = list(output_variables_input)
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/windows/score.py
0.821188
0.177597
score.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import numbers import re import six from .base import Connector, prop, map_properties from ..utils import xml from ..utils.data import gen_name class TimerPublisher(Connector): ''' Publish events on regular intervals Parameters ---------- basetime : string Specifies the start time in the format defined by the timeformat parameter. interval : float Specifies the interval length in units defined by the unit parameter. unit : string Specifies the unit of the interval parameter. Units include second | minute | hour | day | week | month | year. label : string, optional Specifies the string to be written to the source window 'label' field. The default value is the connector name. timeformat : string, optional Specifies the format of the basetime parameter. The default value is %Y%m-%d %H:%M:%S. transactional : string, optional Sets the event block type to transactional. The default value is normal. configfilesection : string, optional Specifies the name of the section in the connector config file to parse for configuration parameters. Specify the value as [configfilesection]. publishwithupsert : boolean, optional Specifies to build events with opcode = Upsert instead of opcode = Insert. maxevents : int, optional Specifies the maximum number of events to publish. Returns ------- :class:`TimerPublisher` ''' connector_key = dict(cls='timer', type='publish') property_defs = dict( basetime=prop('basetime', dtype='string', required=True), interval=prop('interval', dtype='float', required=True), unit=prop('unit', dtype='sctring', required=True), label=prop('label', dtype='string'), timeformat=prop('timeformat', dtype='string'), transactional=prop('transactional', dtype='string'), configfilesection=prop('configfilesection', dtype='string'), publishwithupsert=prop('publishwithupsert', dtype='boolean'), maxevents=prop('maxevents', dtype='int') ) def __init__(self, basetime=None, interval=None, unit=None, name=None, is_active=None, label=None, timeformat=None, transactional=None, configfilesection=None, publishwithupsert=None, maxevents=None): params = dict(**locals()) params.pop('is_active') params.pop('self') name = params.pop('name') Connector.__init__(self, 'timer', name=name, type='publish', is_active=is_active, properties=params) @classmethod def from_parameters(cls, conncls, type=None, name=None, is_active=None, properties=None): req, properties = map_properties(cls, properties, required=['basetime', 'interval', 'unit'], delete='type') return cls(req[0], req[1], req[2], name=name, is_active=is_active, **properties)
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/connectors/timer.py
0.869313
0.249464
timer.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import numbers import re import six from .base import Connector, prop, map_properties from ..utils import xml from ..utils.data import gen_name class SnifferPublisher(Connector): ''' Publish local area network packet events Parameters ---------- interface : string Specifies the name of the network interface on the local machine from which to capture packets. protocol : string Specifies the port number associated with the protocol type of packets to be captured. You can specify this as a comma-separated list of port numbers. packetfields : string Specifies the packet fields to be extracted from a captured packet and included in the published event. transactional : string, optional Sets the event block type to transactional. The default value is normal. blocksize : int, optional Specifies the number of events to include in a published event block. The default value is 1. addtimestamp : boolean, optional Specifies to append an ESP_TIMESTAMP field to each published event. configfilesection : string, optional Specifies the name of the section in the configuration file to parse for configuration parameters. Specify the value as [configfilesection]. vendorid : string, optional Specifies the vendor-Id field to match when capturing the Attribute-Specific field in a Vendor-Specific attribute in a Radius Accounting-Request packet. vendortype : string, optional Specifies the vendor-Type field to match when capturing the Attribute-Specific field in a Vendor-Specific attribute in a Radius Accounting-Request packet. indexfieldname : string, optional Specifies the name to use instead of index for the index:int64 field in the Source window schema. publishwithupsert : boolean, optional Specifies to build events with opcode = Upsert instead of Insert. pcapfilter : string, optional Specifies a filter expression as defined in the pcap documentation. Passed to the pcap driver to filter packets received by the connector. httpports : string, optional Specifies a comma-separated list of destination ports. All sniffed packets that contain a specified port are parsed for HTTP GET parameters. The default value is 80. ignorenopayloadpackets : boolean, optional Specifies whether to ignore packets with no payload, as calculated by subtracting the TCP or UDP header size from the packet size. The default value is FALSE. maxevents : int, optional Specifies the maximum number of events to publish. Returns ------- :class:`SnifferPublisher` ''' connector_key = dict(cls='sniffer', type='publish') property_defs = dict( interface=prop('interface', dtype='string', required=True), protocol=prop('interface', dtype='string', required=True), packetfields=prop('packetfields', dtype='string', required=True), transactional=prop('transactional', dtype='string'), blocksize=prop('blocksize', dtype='int'), addtimestamp=prop('addtimestamp', dtype='boolean'), configfilesection=prop('configfilesection', dtype='string'), vendorid=prop('vendorid', dtype='string'), vendortype=prop('vendortype', dtype='string'), indexfieldname=prop('indexfieldname', dtype='string'), publishwithupsert=prop('publishwithupsert', dtype='boolean'), pcapfilter=prop('pcapfilter', dtype='string'), httpports=prop('httpports', dtype='string'), ignorenopayloadpackets=prop('ignorenopayloadpackets', dtype='boolean'), maxevents=prop('maxevents', dtype='int') ) def __init__(self, interface=None, protocol=None, packetfields=None, name=None, is_active=None, transactional=None, blocksize=None, addtimestamp=None, configfilesection=None, vendorid=None, vendortype=None, indexfieldname=None, publishwithupsert=None, pcapfilter=None, httpports=None, ignorenopayloadpackets=None, maxevents=None): params = dict(**locals()) params.pop('is_active') params.pop('self') name = params.pop('name') Connector.__init__(self, 'sniffer', name=name, type='publish', is_active=is_active, properties=params) @classmethod def from_parameters(cls, conncls, type=None, name=None, is_active=None, properties=None): req, properties = map_properties(cls, properties, required=['interface', 'protocol', 'packetfields'], delete='type') return cls(req[0], req[1], req[2], name=name, is_active=is_active, **properties)
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/connectors/sniffer.py
0.845624
0.34895
sniffer.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import numbers import re import six from .base import Connector, prop, map_properties from ..utils import xml from ..utils.data import gen_name class NuregoSubscriber(Connector): ''' Subscribe to Nurego metering window Parameters ---------- serviceurl : string Specifies the target Nurego REST service URL certificate : string Specifies the full path and filename of the client certificate that is used to establish the HTTPS connection to the Nurego REST service. username : string Specifies the user name to use in requests to Nurego for a new token password : string Specifies the password to use in requests to Nurego for a new token instanceid : string Specifies the instance ID to use in requests to Nurego for a new token certpassword : string, optional Specifies the password associated with the client certificate that is configured in certificate. collapse : string, optional Enables conversion of UPDATE_BLOCK events to make subscriber output publishable. The default value is disabled. rmretdel : boolean, optional Specifies to remove all delete events from event blocks received by a subscriber that were introduced by a window retention policy. configfilesection : string, optional Specifies the name of the section in the config file to parse for configuration parameters. Specify the value as [configfilesection]. Returns ------- :class:`NuregoSubscriber` ''' connector_key = dict(cls='nurego', type='subscribe') property_defs = dict( serviceurl=prop('serviceurl', dtype='string', required=True), certificate=prop('certificate', dtype='string', required=True), username=prop('username', dtype='string', required=True), password=prop('password', dtype='string', required=True), instanceid=prop('instanceid', dtype='string', required=True), snapshot=prop('snapshot', dtype='boolean', required=True, default=False), certpassword=prop('certpassword', dtype='string'), collapse=prop('collapse', dtype='string'), rmretdel=prop('rmretdel', dtype='boolean'), configfilesection=prop('configfilesection', dtype='string') ) def __init__(self, serviceurl=None, certificate=None, username=None, password=None, instanceid=None, name=None, is_active=None, snapshot=None, certpassword=None, collapse=None, rmretdel=None, configfilesection=None): params = dict(**locals()) params.pop('is_active') params.pop('self') name = params.pop('name') Connector.__init__(self, 'nurego', name=name, type='subscribe', is_active=is_active, properties=params) @classmethod def from_parameters(cls, conncls, type=None, name=None, is_active=None, properties=None): req, properties = map_properties(cls, properties, required=['serviceurl', 'certificate', 'username', 'password', 'instanceid'], delete='type') return cls(req[0], req[1], req[2], req[3], req[4], name=name, is_active=is_active, **properties)
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/connectors/nurego.py
0.784567
0.232539
nurego.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import numbers import re import six from .base import Connector, prop, map_properties from ..utils import xml from ..utils.data import gen_name class BacnetPublisher(Connector): ''' Publish Bacnet events Parameters ---------- bacnetbbmdaddress : string Specifies the IP address of the BBMD bacnetbbmdport : int Specifies the port of the BBMD bacnetconfigfile : string Specifies the JSON configuration file containing Bacnet device and object bacnetipport : int, optional Specifies the local port used by the connector. The default port number is 47808. blocksize : int, optional Specifies the number of events to include in a published event block. The default value is 1. configfilesection : string, optional Specifies the name of the section in the connector config file to parse for configuration parameters. Specify the value as [configfilesection]. ignoretimeouts : string, optional Logs a warning and continues if an attempt to read a property from a Bacnet device results in a timeout. The default is to log an error and stop. publishwithupsert : boolean, optional Builds events with opcode=Upsert instead of Insert. maxevents : int, optional Specifies the maximum number of events to publish. transactional : string, optional Sets the event block type to transactional. The default value is normal. Returns ------- :class:`BacnetPublisher` ''' connector_key = dict(cls='bacnet', type='publish') property_defs = dict( bacnetbbmdaddress=prop('bacnetbbmdaddress', dtype='string', required=True), bacnetbbmdport=prop('bacnetbbmdport', dtype='int', required=True), bacnetconfigfile=prop('bacnetconfigfile', dtype='string', required=True), bacnetipport=prop('bacnetipport', dtype='int'), blocksize=prop('blocksize', dtype='int'), configfilesection=prop('configfilesection', dtype='string'), ignoretimeouts=prop('ignoretimeouts', dtype='boolean'), publishwithupsert=prop('publishwithupsert', dtype='boolean'), maxevents=prop('maxevents', dtype='int'), transactional=prop('transactional', dtype='string') ) def __init__(self, bacnetbbmdaddress=None, bacnetbbmdport=None, bacnetconfigfile=None, name=None, is_active=None, bacnetipport=None, blocksize=None, configfilesection=None, ignoretimeouts=None, publishwithupsert=None, maxevents=None, transactional=None): params = dict(**locals()) params.pop('is_active') params.pop('self') name = params.pop('name') Connector.__init__(self, 'bacnet', name=name, type='publish', is_active=is_active, properties=params) @classmethod def from_parameters(cls, conncls, type=None, name=None, is_active=None, properties=None): req, properties = map_properties(cls, properties, required=['bacnetbbmdaddress', 'bacnetbbmdport', 'bacnetconfigfile'], delete='type') return cls(req[0], req[1], req[2], name=name, is_active=is_active, **properties)
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/connectors/bacnet.py
0.823399
0.221277
bacnet.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import numbers import re import six from .base import Connector, prop, map_properties from ..utils import xml from ..utils.data import gen_name class KafkaSubscriber(Connector): ''' Subscribe to events from a Kafka broker Parameters ---------- kafkahostport : string Specifies one or more Kafka brokers in the following form: 'host:port,host:port,...'. kafkatopic : string Specifies the Kafka topic urlhostport : string Specifies the host:port field in the metadata topic that is subscribed to on start-up. kafkapartition : string, optional Specifies the Kafka partition kafkatype : string, optional Specifies binary, CSV, JSON, or the name of a string field in the subscribed window schema. numbufferedmsgs : int, optional Specifies the maximum number of messages buffered by a standby subscriber connector. name : string, optional The name of the connector object snapshot : bool, optional Specifies whether to send snapshot data collapse : bool, optional Enables conversion of UPDATE_BLOCK events to make subscriber output publishable. rmretdel : bool, optional Specifies to remove all delete events from event blocks received by a subscriber that were introduced by a window retention policy. hotfailover : bool, optional Enables hot failover mode dateformat : string, optional Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in CSV events. protofile : string, optional Specifies the .proto file that contains the Google Protocol Buffers message definition used to convert event blocks to protobuf messages. protomsg : string, optional Specifies the name of a Google Protocol Buffers message in the .proto file that you specified with the protofile parameter. csvincludeschema : string, optional When kafkatype=CSV, specifies when to prepend output CSV data with the window's serialized schema. Valid values: 'never', 'once', and 'pereventblock' useclientmsgid : bool, optional Uses the client-generated message ID instead of the engine-generated message ID when performing a failover operation and extracting a message ID from an event block. configfilesection : string, optional Specifies the name of the section in the connector config file to parse for configuration parameters. zookeeperhostport : string, optional Specifies the Zookeeper server in the form 'host:port' kafkaglobalconfig : string, optional Specifies a semicolon-separated list of 'key=value' strings to configure librdkafka global configuration values. kafkatopicconfig : string, optional Specifies a semicolon-separated list of 'key=value' strings to configure librdkafka topic configuration values. csvmsgperevent : bool, optional For CSV, specifies to send one message per event csvmsgperevent_block : bool, optional For CSV, specifies to send one message per event block avroschemaregistryurl: string, optional Specifies the URL of the Apache Avro schema registry. avroschemadefinition: string, optional Specifies the path to a file that contains an Apache Avro schema definition in JSON format. avroschemaname: string, optional Specifies the name of an Apache Avro schema to copy from the schema registry that is configured in the avroschemaregistryurl parameter. avroschemanoopcode: bool, optional Specifies to not include the event opcode in outbound Apache Avro schema and messages. Returns ------- :class:`KafkaSubscriber` ''' connector_key = dict(cls='kafka', type='subscribe') property_defs = dict( kafkahostport=prop('kafkahostport', dtype='string', required=True, valid_values=re.compile(r'(\w[\w\-\.]*:\d+\s*,?\s*)+')), kafkatopic=prop('kafkatopic', dtype='string', required=True), kafkapartition=prop('kafkapartition', dtype='string', required=True, default=0), kafkatype=prop('kafkatype', dtype='string', required=True, default='csv'), urlhostport=prop('urlhostport', dtype='string', required=True), numbufferedmsgs=prop('numbufferedmsgs', dtype='int', required=True, default=10000, valid_expr='value >= 0'), snapshot=prop('snapshot', dtype='bool', required=True, default=False), collapse=prop('collapse', dtype='bool'), rmretdel=prop('rmretdel', dtype='bool'), hotfailover=prop('hotfailover', dtype='bool'), dateformat=prop('dateformat', dtype='string'), protofile=prop('protofile', dtype='string'), protomsg=prop('protomsg', dtype='string'), csvincludeschema=prop('csvincludeschema', dtype='string', valid_values=['never', 'once', 'pereventblock']), useclientmsgid=prop('useclientmsgid', dtype='bool'), configfilesection=prop('configfilesection', dtype='string'), zookeeperhostport=prop('zookeeperhostport', dtype='string', valid_values=re.compile(r'\w[\w\-\.]*:\d+')), kafkaglobalconfig=prop('kafkaglobalconfig', dtype='string'), kafkatopicconfig=prop('kafkatopicconfig', dtype='string'), csvmsgperevent=prop('csvmsgperevent', dtype='bool'), csvmsgperevent_block=prop('csvmsgpereventblock', dtype='bool'), avroschemaregistryurl=prop('avroschemaregistryurl', dtype='string'), avroschemadefinition=prop('avroschemadefinition', dtype='string'), avroschemaname=prop('avroschemaname', dtype='string'), avroschemanoopcode=prop('avroschemanoopcode', dtype='bool') ) def __init__(self, kafkahostport=None, kafkatopic=None, urlhostport=None, kafkapartition=None, kafkatype=None, numbufferedmsgs=None, name=None, is_active=None, snapshot=None, collapse=None, rmretdel=None, hotfailover=None, dateformat=None, protofile=None, protomsg=None, csvincludeschema=None, useclientmsgid=None, configfilesection=None, zookeeperhostport=None, kafkaglobalconfig=None, kafkatopicconfig=None, csvmsgperevent=None, csvmsgpereventblock=None, avroschemaregistryurl=None, avroschemadefinition=None, avroschemaname=None,avroschemanoopcode=None): params = dict(**locals()) params.pop('is_active') params.pop('self') name = params.pop('name') Connector.__init__(self, 'kafka', name=name, type='subscribe', is_active=is_active, properties=params) @classmethod def from_parameters(cls, conncls, type=None, name=None, is_active=None, properties=None): req, properties = map_properties(cls, properties, required=['kafkahostport', 'kafkatopic', 'urlhostport'], delete='type') return cls(req[0], req[1], req[2], name=name, is_active=is_active, **properties) class KafkaPublisher(Connector): ''' Publish events to a Kafka broker Parameters ---------- kafkahostport : string Specifies one or more Kafka brokers in the following form: 'host:port,host:port,...'. kafkatopic : string Specifies the Kafka topic urlhostport : string Specifies the host:port field in the metadata topic that is subscribed to on start-up. kafkapartition : string, optional Specifies the Kafka partition kafkatype : string, optional Specifies binary, CSV, JSON, or the name of a string field in the subscribed window schema. name : string, optional The name of the connector object transactional : string, optional When kafkatype = CSV, sets the event block type to transactional. The default value is normal. blocksize : int, optional When kafkatype = CSV, specifies the number of events to include in a published event block. The default value is 1. dateformat : string, optional Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in CSV events. ignorecsvparseerrors : boolean, optional Specifies that when a field in an input CSV event cannot be parsed, the event is dropped, an error is logged, and publishing continues. protofile : string, optional Specifies the .proto file that contains the Google Protocol Buffers message definition used to convert event blocks to protobuf messages. When you specify this parameter, you must also specify the protomsg parameter. protomsg : string, optional Specifies the name of a Google Protocol Buffers message in the .proto file that you specified with the protofile parameter. Event blocks are converted into this message. configfilesection : string, optional Specifies the name of the section in the connector config file to parse for configuration parameters. csvfielddelimiter : string, optional Specifies the character delimiter for field data in input CSV events. The default delimiter is the ',' character. noautogenfield : boolean, optional Specifies that input events are missing the key field that is autogenerated by the source window. publishwithupsert : boolean, optional Specifies to build events with opcode=Upsert instead of opcode=Insert. kafkainitialoffset : string or int, optional Specifies the offset from which to begin consuming messages from the Kafka topic and partition. Valid values are "smallest", "largest", or an integer. The default value is "smallest". addcsvopcode : boolean, optional Prepends an opcode and comma to write CSV events. The opcode is Insert unless publish_with_upsert is enabled. addcsvflags : string, optional Specifies the event type to insert into input CSV events (with a comma). Valid values are "normal" and "partialupdate". kafkaglobalconfig : string, optional Specifies a semicolon-separated list of "key=value" strings to configure librdkafka global configuration values. kafkatopicconfig : string, optional Specifies a semicolon-separated list of "key=value" strings to configure librdkafka topic configuration values. useclientmsgid : boolean, optional If the Source window has been restored from a persist to disk, ignore received binary event blocks that contain a message ID less than the greatest message ID in the restored window. maxevents : int, optional Specifies the maximum number of events to publish. kafkaconsumergroupid: string, optional Specifies the group ID for this Kafka container. The default value is a randomly generated string. This parameter is not supported when hot failover is enabled. avroschemaregistryurl: string, optional Specifies the URL of the Apache Avro schema registry. avroschemanoopcode: bool, optional Specifies to not include the event opcode in outbound Apache Avro schema and messages. Returns ------- :class:`KafkaPublisher` ''' connector_key = dict(cls='kafka', type='publish') property_defs = dict( kafkahostport=prop('kafkahostport', dtype='string', required=True, valid_values=re.compile(r'(.+?:.+?\s*,?\s*)+')), kafkatopic=prop('kafkatopic', dtype='string', required=True), kafkapartition=prop('kafkapartition', dtype='string', required=True), kafkatype=prop('kafkatype', dtype='string', required=True), urlhostport=prop('urlhostport', dtype='string', required=True), name=prop('name', dtype='string'), transactional=prop('transactional', dtype='string'), blocksize=prop('blocksize', dtype='int'), dateformat=prop('dateformat', dtype='string'), ignorecsvparseerrors=prop('ignorecsvparseerrors', dtype='boolean'), protofile=prop('protofile', dtype='string'), protomsg=prop('protomsg', dtype='string'), configfilesection=prop('configfilesection', dtype='string'), csvfielddelimiter=prop('csvfielddelimiter', dtype='string'), noautogenfield=prop('noautogenfield', dtype='boolean'), publishwithupsert=prop('publishwithupsert', dtype='boolean'), kafkainitialoffset=prop('kafkainitialoffset', dtype=('string', 'int')), addcsvopcode=prop('addcsvopcode', dtype='boolean'), addcsvflags=prop('addcsvflags', dtype='boolean'), kafkaglobalconfig=prop('kafkaglobalconfig', dtype='string'), kafkatopicconfig=prop('kafkatopicconfig', dtype='string'), useclientmsgid=prop('useclientmsgid', dtype='boolean'), maxevents=prop('maxevents', dtype='int'), kafkaconsumergroupid=prop('kafkaconsumergroupid', dtype='string'), avroschemaregistryurl=prop('avroschemaregistryurl', dtype='string'), avroschemanoopcode=prop('avroschemanoopcode', dtype='bool') ) def __init__(self, kafkahostport=None, kafkatopic=None, urlhostport=None, kafkapartition=None, kafkatype=None, name=None, is_active=None, transactional=None, blocksize=None, dateformat=None, ignorecsvparseerrors=None, protofile=None, protomsg=None, configfilesection=None, csvfielddelimiter=None, noautogenfield=None, publishwithupsert=None, kafkainitialoffset=None, addcsvopcode=None, addcsvflags=None, kafkaglobalconfig=None, kafkatopicconfig=None, useclientmsgid=None, maxevents=None,kafkaconsumergroupid=None, avroschemaregistryurl=None,avroschemanoopcode=None): params = dict(**locals()) params.pop('is_active') params.pop('self') name = params.pop('name') Connector.__init__(self, 'kafka', name=name, type='publish', is_active=is_active, properties=params) @classmethod def from_parameters(cls, conncls, type=None, name=None, is_active=None, properties=None): req, properties = map_properties(cls, properties, required=['kafkahostport', 'kafkatopic', 'urlhostport'], delete='type') return cls(req[0], req[1], req[2], name=name, is_active=is_active, **properties)
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/connectors/kafka.py
0.790288
0.277748
kafka.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import numbers import re import six from .base import Connector, prop, map_properties from ..utils import xml from ..utils.data import gen_name class PISubscriber(Connector): ''' Subscribe to operations from a PI Asset Framework (AF) server Parameters ---------- afelement : string Specifies the AF element or element template name. Wildcards are supported. iselementtemplate : boolean Specifies whether the afelement parameter is an element template name. By default, the afelement parameter specifies an element name. snapshot : boolean, optional Specifies whether to send snapshot data rmretdel : boolean, optional Removes all delete events from event blocks received by the subscriber that were introduced by a window retention policy. pisystem : string, optional Specifies the PI system. The default is the PI system that is configured in the PI AF client. afdatabase : string, optional Specifies the AF database. The default is the AF database that is configured in the PI AF client. afrootelement : string, optional Specifies the root element in the AF hierarchy from which to search for parameter afelement. The default is the top-level element in the AF database. afattribute : string, optional Specifies a specific attribute in the element. The default is all attributes in the element. configfilesection : string, optional Specifies the name of the section in the config file to parse for configuration parameters. Specify the value as [configfilesection]. Returns ------- :class:`PISubscriber` ''' connector_key = dict(cls='pi', type='subscribe') property_defs = dict( afelement=prop('afelement', dtype='string', required=True), iselementtemplate=prop('iselementtemplate', dtype='boolean', required=True), snapshot=prop('snapshot', dtype='boolean', required=True, default=False), rmretdel=prop('rmretdel', dtype='boolear'), pisystem=prop('pisystem', dtype='string'), afdatabase=prop('afdatabase', dtype='string'), afrootelement=prop('afrootelement', dtype='string'), afattribute=prop('afattribute', dtype='string'), configfilesection=prop('configfilesection', dtype='string') ) def __init__(self, afelement=None, iselementtemplate=None, name=None, is_active=None, snapshot=None, rmretdel=None, pisystem=None, afdatabase=None, afrootelement=None, afattribute=None, configfilesection=None): params = dict(**locals()) params.pop('is_active') params.pop('self') name = params.pop('name') Connector.__init__(self, 'pi', name=name, type='subscribe', is_active=is_active, properties=params) @classmethod def from_parameters(cls, conncls, type=None, name=None, is_active=None, properties=None): req, properties = map_properties(cls, properties, required=['afelement', 'iselementtemplate'], delete='type') return cls(req[0], req[1], name=name, is_active=is_active, **properties) class PIPublisher(Connector): ''' Publish operations to a PI Asset Framework (AF) server Parameters ---------- afelement : string Specifies the AF element or element template name. Wildcards are supported. iselementtemplate : boolean Specifies that the afelement parameter is an element template name. By default, the afelement parameter specifies an element name. blocksize : int, optional Specifies the number of events to include in a published event block. The default value is 1. transactional : string, optional Sets the event block type to transactional. The default value is normal pisystem : string, optional Specifies the PI system. The default is the PI system that is configured in the PI AF client. afdatabase : string, optional Specifies the AF database. The default is the AF database that is configured in the PI AF client. afrootelement : string, optional Specifies the root element in the AF hierarchy from which to search for the parameter afelement. The default is the top-level element in the AF database. afattribute : string, optional Specifies a specific attribute in the element. The default is all attributes in the element. archivetimestamp : boolean, optional Specifies that all archived values from the specified timestamp onwards are to be published when connecting to the PI system. The default is to publish only new values. configfilesection : string, optional Specifies the name of the section in the config file to parse for configuration parameters. Specify the value as [configfilesection]. publishwithupsert : boolean, optional Builds events with opcode=Upsert instead of Insert. maxevents : int, optional Specifies the maximum number of events to publish. Returns ------- :class:`PIPublisher` ''' connector_key = dict(cls='pi', type='publish') property_defs = dict( afelement=prop('afelement', dtype='string', required=True), iselementtemplate=prop('iselementtemplate', dtype='boolean', required=True), blocksize=prop('blocksize', dtype='int'), transactional=prop('transactional', dtype='string'), pisystem=prop('pisystem', dtype='string'), afdatabase=prop('afdatabase', dtype='string'), afrootelement=prop('afrootelement', dtype='string'), afattribute=prop('afattribute', dtype='string'), archivetimestamp=prop('archivetimestamp', dtype='boolean'), configfilesection=prop('configfilesection', dtype='string'), publishwithupsert=prop('publishwithupsert', dtype='boolean'), allvaluestostrings=prop('allvaluestostrings', dtype='boolean'), maxevents=prop('maxevents', dtype='int') ) def __init__(self, afelement=None, iselementtemplate=None, name=None, is_active=None, blocksize=None, transactional=None, pisystem=None, afdatabase=None, afrootelement=None, afattribute=None, archivetimestamp=None, configfilesection=None, publishwithupsert=None, allvaluestostrings=None, maxevents=None): params = dict(**locals()) params.pop('is_active') params.pop('self') name = params.pop('name') Connector.__init__(self, 'pi', name=name, type='publish', is_active=is_active, properties=params) @classmethod def from_parameters(cls, conncls, type=None, name=None, is_active=None, properties=None): req, properties = map_properties(cls, properties, required=['afelement', 'iselementtemplate'], delete='type') return cls(req[0], req[1], name=name, is_active=is_active, **properties)
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/connectors/pi.py
0.852368
0.214733
pi.py
pypi
from __future__ import print_function, division, absolute_import, unicode_literals import numbers import re import six from .base import Connector, prop, map_properties from ..utils import xml from ..utils.data import gen_name class SolaceSubscriber(Connector): ''' Subscribe to Solace events Parameters ---------- solhostport : string Specifies the appliance to connect to, in the form 'host:port' solvpn : string Specifies the appliance message VPN to assign the client to which the session connects. soltopic : string Specifies the Solace destination topic to which to publish urlhostport : string Specifies the host:port field in the metadata topic subscribed to on start-up to field metadata requests. numbufferedmsgs : int Specifies the maximum number of messages buffered by a standby subscriber connector. snapshot : boolean, optional Specifies whether to send snapshot data collapse : string, optional Enables conversion of UPDATE_BLOCK events to make subscriber output publishable. The default value is disabled. hotfailover : boolean, optional Enables hot failover mode. buspersistence : string, optional Sets the Solace message delivery mode to Guaranteed Messaging. The default value is Direct Messaging. rmretdel : boolean, optional Specifies to remove all delete events from event blocks received by a subscriber that were introduced by a window retention policy. protofile : string, optional Specifies the .proto file that contains the Google Protocol Buffers message definition used to convert event blocks to protobuf messages. When you specify this parameter, you must also specify the protomsg parameter. protomsg : string, optional Specifies the name of a Google Protocol Buffers message in the .proto file that you specified with the protofile parameter. Event blocks are converted into this message. configfilesection : string, optional Specifies the name of the section in the connector config file to parse for configuration parameters. Specify the value as [configfilesection]. json : boolean, optional Enables transport of event blocks encoded as JSON messages dateformat : string, optional Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in CSV events. The default behavior is these fields are interpreted as an integer number of seconds (ESP_DATETIME) or microseconds (ESP_TIMESTAMP) since epoch. solpasswordencrypted : boolean, optional Specifies that solpassword is encrypted Returns ------- :class:`SolaceSubscriber` ''' connector_key = dict(cls='sol', type='subscribe') property_defs = dict( solhostport=prop('solhostport', dtype='string', required=True), soluserid=prop('soluserid', dtype='string', required=True), solpassword=prop('solpassword', dtype='string', required=True), solvpn=prop('solvpn', dtype='string', required=True), soltopic=prop('soltopic', dtype='string', required=True), urlhostport=prop('urlhostport', dtype='string', required=True), numbufferedmsgs=prop('numbufferedmsgs', dtype='int', required=True), snapshot=prop('snapshot', dtype='boolean', required=True, default=False), collapse=prop('collapse', dtype='string'), hotfailover=prop('hotfailover', dtype='boolean'), buspersistence=prop('buspersistence', dtype='string'), rmretdel=prop('rmretdel', dtype='boolean'), protofile=prop('protofile', dtype='string'), protomsg=prop('protomsg', dtype='string'), configfilesection=prop('configfilesection', dtype='string'), json=prop('json', dtype='boolean'), dateformat=prop('dateformat', dtype='string'), solpasswordencrypted=prop('solpasswordencrypted', dtype='boolean') ) def __init__(self, solhostport=None, soluserid=None, solpassword=None, solvpn=None, soltopic=None, urlhostport=None, name=None, is_active=None, numbufferedmsgs=None, snapshot=None, collapse=None, hotfailover=None, buspersistence=None, rmretdel=None, protofile=None, protomsg=None, configfilesection=None, json=None, dateformat=None, solpasswordencrypted=None): params = dict(**locals()) params.pop('is_active') params.pop('self') name = params.pop('name') Connector.__init__(self, 'sol', name=name, type='subscribe', is_active=is_active, properties=params) @classmethod def from_parameters(cls, conncls, type=None, name=None, is_active=None, properties=None): req, properties = map_properties(cls, properties, required=['solhostport', 'soluserid', 'solpassword', 'solvpn', 'soltopic', 'urlhostport', 'numbufferedmsgs'], delete='type') return cls(req[0], req[1], req[2], req[3], req[4], req[5], name=name, is_active=is_active, **properties) class SolacePublisher(Connector): ''' Publish events to Solace Parameters ---------- solhostport : string Specifies the appliance to connect to, in the form “host:port” soluserid : string Specifies the user name required to authenticate the connector’s session with the appliance. solpassword : string Specifies the password associated with soluserid solvpn : string Specifies the appliance message VPN to assign the client to which the session connects. soltopic : string Specifies the Solace topic to which to subscribe urlhostport : string Specifies the host:port field in the metadata topic subscribed to on start-up to field metadata requests. buspersistence : boolean, optional Creates the Guaranteed message flow to bind to the topic endpoint provisioned on the appliance that the published Guaranteed messages are delivered and spooled to buspersistencequeue : string, optional Specifies the name of the queue to which the Guaranteed message flow binds. protofile : string, optional Specifies the .proto file that contains the Google Protocol Buffers message definition used to convert event blocks to protobuf messages. When you specify this parameter, you must also specify the protomsg parameter. protomsg : string, optional Specifies the name of a Google Protocol Buffers message in the .proto file that you specified with the protofile parameter. Event blocks are converted into this message. configfilesection : string, optional Specifies the name of the section in the connector config file to parse for configuration parameters. Specify the value as [configfilesection]. json : boolean, optional Enables transport of event blocks encoded as JSON messages publishwithupsert : boolean, optional Specifies to build with opcode = Upsert instead of opcode = Insert dateformat : string, optional Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in CSV events. The default behavior is these fields are interpreted as an integer number of seconds (ESP_DATETIME) or microseconds (ESP_TIMESTAMP) since epoch. solpasswordencrypted : boolean, optional Specifies that solpassword is encrypted getmsgfromdestattr : boolean, optional Specifies to extract the payload from the destination attribute instead of the message body. transactional : string, optional When getmsgfromdestattr is enabled, sets the event block type to transactional. The default value is normal. blocksize : int, optional When getmsgfromdestattr is enabled, specifies the number of events to include in a published event block. The default value is 1. maxevents : int, optional Specifies the maximum number of events to publish. Returns ------- :class:`SolacePublisher` ''' connector_key = dict(cls='sol', type='publish') property_defs = dict( solhostport=prop('solhostport', dtype='string', required=True), soluserid=prop('soluserid', dtype='string', required=True), solpassword=prop('solpassword', dtype='string', required=True), solvpn=prop('solvpn', dtype='string', required=True), soltopic=prop('soltopic', dtype='string', required=True), urlhostport=prop('urlhostport', dtype='string', required=True), buspersistence=prop('buspersistence', dtype='boolean'), buspersistencequeue=prop('buspersistencequeue', dtype='string'), protofile=prop('protofile', dtype='string'), protomsg=prop('protomsg', dtype='string'), configfilesection=prop('configfilesection', dtype='string'), json=prop('json', dtype='boolean'), publishwithupsert=prop('publishwithupsert', dtype='boolean'), dateformat=prop('dateformat', dtype='string'), solpasswordencrypted=prop('solpasswordencrypted', dtype='boolean'), getmsgfromdestattr=prop('getmsgfromdestattr', dtype='boolean'), transactional=prop('transactional', dtype='string'), blocksize=prop('blocksize', dtype='int'), maxevents=prop('maxevents', dtype='int') ) def __init__(self, solhostport=None, soluserid=None, solpassword=None, solvpn=None, soltopic=None, urlhostport=None, name=None, is_active=None, buspersistence=None, buspersistencequeue=None, protofile=None, protomsg=None, configfilesection=None, json=None, publishwithupsert=None, dateformat=None, solpasswordencrypted=None, getmsgfromdestattr=None, transactional=None, blocksize=None, maxevents=None): params = dict(**locals()) params.pop('is_active') params.pop('self') name = params.pop('name') Connector.__init__(self, 'sol', name=name, type='publish', is_active=is_active, properties=params) @classmethod def from_parameters(cls, conncls, type=None, name=None, is_active=None, properties=None): req, properties = map_properties(cls, properties, required=['solhostport', 'soluserid', 'solpassword', 'solvpn', 'soltopic', 'urlhostport'], delete='type') return cls(req[0], req[1], req[2], req[3], req[4], req[5], name=name, is_active=is_active, **properties)
/sas-esppy-7.1.16.tar.gz/sas-esppy-7.1.16/esppy/connectors/solace.py
0.846641
0.210584
solace.py
pypi