code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
from logging import getLogger from typing import cast from bs4 import BeautifulSoup import bs4 from ac_core.constant import _SITE_URL from ac_core.interfaces.HttpUtil import HttpUtilInterface from ac_core.utils import HTML_PARSER logger = getLogger(__name__) def is_logged_in(http_util: HttpUtilInterface) -> bool: """This method will use ``http_util`` for login check by visit atcoder site and parse html :param HttpUtilInterface http_util: a http instance, for example ``requests.session()`` :returns: if it is successful logged in. :examples: .. code-block:: from ac_core.auth import fetch_login, is_logged_in import requests h = requests.session() #h = Helper(requests.session()) print(is_logged_in(h)) print(fetch_login(h, 'username', 'password')) print(is_logged_in(h)) """ html = http_util.get(f"{_SITE_URL}/home").text soup = BeautifulSoup(html, HTML_PARSER) dropdown_menus = soup.find_all('ul', class_="dropdown-menu") found_user_link = False for menu in dropdown_menus: a_s = menu.find_all('a') for a in a_s: if a['href'].startswith('/users/'): found_user_link = True return found_user_link def fetch_login(http_util: HttpUtilInterface, username: str, password: str) -> bool: """This method will use ``http_util`` for login request and :py:func:`is_logged_in()` for login check :param http_util: a http instance, for example ``requests.session()`` :param username: AtCoder username :param password: AtCoder password :returns: if it is successful post and logged :examples: .. code-block:: from ac_core.auth import fetch_login, is_logged_in import requests h = requests.session() #h = Helper(requests.session()) print(is_logged_in(h)) print(fetch_login(h, 'username', 'password')) print(is_logged_in(h)) """ try: res = http_util.get(_SITE_URL + '/login') soup = BeautifulSoup(res.text, HTML_PARSER) csrf_token = cast(bs4.Tag, soup.find(attrs={'name': 'csrf_token'})).get('value') post_data = { 'csrf_token': csrf_token, 'username': username, 'password': password, } ret = http_util.post(url='https://atcoder.jp/login', data=post_data) if ret.status_code == 403: # TODO fix??? # 403 REVEL_CSRF: tokens mismatch. 似乎因为历史cookie导致?更新了也不能成功? logger.error('Atcoder 403(may need clear cookies and relogin):') logger.error(ret.text) except Exception as e: logger.exception(e) return False return is_logged_in(http_util) class InvalidSessionError(Exception): """ :meta private: """ # not use, hide in doc now DEFAULT_MESSAGE = "Your login session is invalid. please relogin." def __init__(self, message: str = DEFAULT_MESSAGE) -> None: super().__init__(message) # TODO logout support
yxr-atcoder-core
/yxr_atcoder_core-0.0.3.3-py3-none-any.whl/ac_core/auth.py
auth.py
from dataclasses import dataclass from enum import Enum import json import os import re from bs4 import BeautifulSoup from ac_core.constant import _SITE_URL from ac_core.interfaces.HttpUtil import HttpUtilInterface @dataclass class SubmissionResult: class Status(Enum): INIT: str = 'Init' PENDING: str = 'Waiting for Judging' RUNNING: str = 'Judging' RE: str = 'Runtime Error' AC: str = 'Accepted' WA: str = 'Wrong Answer' CE: str = 'Compilation Error' TLE: str = 'Time Limit Exceeded' id: str = '' url: str = '' # json url for refetch score: int = 500 status: Status = Status.INIT time_cost_ms: int = 0 mem_cost_kb: int = 0 msg_txt: str = '' def watch_result(url: str) -> str: # sock url, single submissions return '' # title=\"Compilation Error\"\u003eCE\u003c/span\u003e\u003c/td\u003e","Score":"0" def parse_result(resp: str) -> SubmissionResult: """parse submit result get from json result :param resp: the json result get from ``https://atcoder.jp/contests/{contest_id}/submissions/me/status/json?sids[]={submision id}`` :examples: .. code-block:: import requests from ac_core.result import parse_result r = requests.get('https://atcoder.jp/contests/abc101/submissions/me/status/json?sids[]=5371077') if r.status_code == 200: print(parse_result(r.text)) # pass html """ res = json.loads(resp)["Result"] sub_id = list(res.keys())[0] soup = BeautifulSoup(res[sub_id]["Html"], "lxml") tds = soup.find_all('td') status = SubmissionResult.Status(str(tds[0].find('span').attrs.get('title'))) try: score = int(res[sub_id]["Score"]) except: score = 0 try: time_cost_ms = int(tds[1].text.split(" ")[0]) except: time_cost_ms = 0 try: mem_cost_kb = int(tds[2].text.split(" ")[0]) except: mem_cost_kb = 0 msg_txt = '' if status == SubmissionResult.Status.RUNNING: msg_txt = soup.text.strip() return SubmissionResult( id=sub_id, score=score, status=status, time_cost_ms=time_cost_ms, mem_cost_kb=mem_cost_kb, msg_txt=msg_txt, ) def fetch_result_by_url(http_util: HttpUtilInterface, json_url: str) -> SubmissionResult: """parse submit result by *http_util* with submission *json_url*. :param http_util: e.g. ``requests.session()`` :param json_url: e.g. ``https://atcoder.jp/contests/abc101/submissions/me/status/json?sids[]=5371077`` :examples: .. code-block:: import requests from ac_core.result import fetch_result_by_url print(fetch_result_by_url(requests.session(),'https://atcoder.jp/contests/abc101/submissions/me/status/json?sids[]=5371077')) the structured data returned by :py:func:`fetch_result` has the submission json url .. code-block:: import requests from ac_core.auth import fetch_login, is_logged_in from ac_core.result import fetch_result, fetch_result_by_url h = requests.session() fetch_login(h, 'username', 'password') assert(is_logged_in(h)) result = fetch_result(h,'https://atcoder.jp/contests/abc275/tasks/abc275_f') print(fetch_result_by_url(h,result.url)) """ response = http_util.get(url=json_url) ret = parse_result(resp=response.text) ret.url = json_url return ret def _problem_url_to_sub_url(problem_url: str) -> str: # problem_url https://atcoder.jp/contests/abc275/tasks/abc275_f r = re.match('^(.*)/tasks/(.*)$', problem_url) assert r is not None prefix = r.group(1) problem_suffix = r.group(2) # https://atcoder.jp/contests/abc275/submissions/me?f.Task=abc275_f return os.path.join(prefix, f'submissions/me?f.Task={problem_suffix}') def _parse_json_url(html: str): soup = BeautifulSoup(html, 'lxml') # <a href='/contests/abc101/submissions/5371227'>Detail</a> r = re.search('<td class="text-center">.*?"/contests/(.*?)/submissions/([0-9]*?)\">Detail</a>', str(soup), re.DOTALL | re.MULTILINE) assert r is not None # no submission return os.path.join(_SITE_URL, f"contests/{r.group(1)}/submissions/me/status/json?sids[]={r.group(2)}") def fetch_result(http_util: HttpUtilInterface, problem_url: str) -> SubmissionResult: """parse submit result by *http_util* with *problem_url*. You need logged in before using this method. This function will find your last submission for the problem. :param http_util: e.g. ``requests.session()`` :param problem_url: e.g. ``https://atcoder.jp/contests/abc275/tasks/abc275_f`` :examples: .. code-block:: import requests from ac_core.auth import fetch_login, is_logged_in from ac_core.result import fetch_result h = requests.session() fetch_login(h, 'username', 'password') assert(is_logged_in(h)) print(fetch_result(h,'https://atcoder.jp/contests/abc275/tasks/abc275_f')) """ # https://atcoder.jp/contests/abc275/submissions/me?f.Task=abc275_f submission_url = _problem_url_to_sub_url(problem_url) # <a href='/contests/abc101/submissions/5371227'>Detail</a> # https://atcoder.jp/contests/abc101/submissions/me/status/json?sids[]=5371077 resp = http_util.get(submission_url) json_url = _parse_json_url(resp.text) return fetch_result_by_url(http_util, json_url)
yxr-atcoder-core
/yxr_atcoder_core-0.0.3.3-py3-none-any.whl/ac_core/result.py
result.py
# yxr-codeforces-core python3.8+ ([typing.Protocol](https://docs.python.org/3/library/typing.html#typing.Protocol) New in version 3.8.) | feature | code | inline example doc | unit test | e2e test | | -------------------------------- | ---- | ------------------ | --------- | -------- | | account login | ✅ | ✅ | ✅ | ✅ | | submit code | ✅ | ✅ | ✅ | ❌ | | submission websocket | ✅ | ✅ | ✅ | ❌ | | my submission page | ✅ | ✅ | ❌ | ❌ | | contest register | ✅ | ✅ | ❌ | ✅ | | contest list | ✅ | ✅ | ✅ | ❌ | | contest meta | ✅ | ✅ | ✅ | ❌ | | contest standing(common/friends) | ✅ | ✅ | ✅ | ❌ | | problems | ✅ | ✅ | ✅ | ❌ | | specific problem | ✅ | ✅ | ✅ | ❌ | | language list | ✅ | ✅ | ✅ | ❌ | | pid/url parser | ✅ | ✅ | ❌ | ❌ | | domain 2 ip dig tool | ❌ | ❌ | ❌ | ❌ | ## Docs [User](https://cromarmot.github.io/yxr-codeforces-core/user/index.html) [Developer](https://cromarmot.github.io/yxr-codeforces-core/dev/index.html)
yxr-codeforces-core
/yxr_codeforces_core-0.0.2.2.tar.gz/yxr_codeforces_core-0.0.2.2/README.md
README.md
import logging from typing import Any, AsyncIterator, Callable, Dict, List, Optional, Tuple, cast from lxml import html from lxml.etree import _Element from os import path import asyncio import aiohttp import pyaes import json import re from .constants import CF_HOST from .interfaces.AioHttpHelper import AioHttpHelperInterface from .kwargs import extract_common_kwargs default_headers = { 'Accept': '*/*', 'Accept-Encoding': 'gzip', # 'User-Agent': config.conf['user_agent'], TODO 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36' } class RCPCRedirectionError(Exception): def __init__(self): super().__init__("RCPC redirection detected") def add_header(newhdr, headers: Dict[str, str]) -> Dict[str, str]: headers.update(newhdr) return headers async def on_request_end(session, trace_request_ctx, params): elapsed = asyncio.get_event_loop().time() - trace_request_ctx.start print("[*] Request end : {}".format(elapsed)) class HttpHelper(AioHttpHelperInterface): session: Optional[aiohttp.ClientSession] = None cookie_jar_path = '' cookie_jar: Optional[aiohttp.CookieJar] = None token_path = '' tokens: Dict[str, str] = {} headers: Dict[str, str] = {} # TODO logger: logging.Logger def __init__(self, cookie_jar_path: str = '', token_path: str = '', headers=default_headers, host=CF_HOST, **kw) -> None: # if path is empty string then won't save to any file, just store in memory self.cookie_jar_path = cookie_jar_path # if path is empty string then won't save to any file, just store in memory self.token_path = token_path self.headers = headers # TODO support cf mirror site? self.host = host self.logger = extract_common_kwargs(**kw).logger @staticmethod def load_tokens(token_path: str) -> Dict[str, Any]: if token_path and path.isfile(token_path): with open(token_path, 'r') as f: return json.load(f) return {} @staticmethod def load_cookie_jar(cookie_jar_path: str) -> aiohttp.CookieJar: jar = aiohttp.CookieJar() if cookie_jar_path: if path.isfile(cookie_jar_path): jar.load(file_path=cookie_jar_path) else: jar.save(file_path=cookie_jar_path) return jar async def open_session(self) -> aiohttp.ClientSession: self.cookie_jar = HttpHelper.load_cookie_jar(self.cookie_jar_path) self.tokens = HttpHelper.load_tokens(self.token_path) self.session = await aiohttp.ClientSession(cookie_jar=self.cookie_jar).__aenter__() return self.session async def close_session(self) -> None: await self.session.__aexit__(None, None, None) self.tokens = {} self.cookie_jar = None self.session = None def update_tokens(self, csrf: str, ftaa: str, bfaa: str, uc: str, usmc: str) -> None: self.tokens = {'csrf': csrf[:32], 'ftaa': ftaa, 'bfaa': bfaa, 'uc': uc, 'usmc': usmc} if self.token_path: with open(self.token_path, 'w') as f: json.dump(self.tokens, f) async def async_get(self, url, headers=None, csrf=False): if self.session is None: raise Exception('Please open_session() before async_get()') if headers == None: headers = default_headers if csrf and 'csrf' in self.tokens: headers = add_header({'X-Csrf-Token': self.tokens['csrf']}, headers=headers) # TODO remove the feature if url.startswith('/'): url = self.host + url try: async with self.session.get(url, headers=headers) as response: assert response.status == 200 text = await response.text() self.check_rcpc(text) if self.cookie_jar_path: self.cookie_jar.save(file_path=self.cookie_jar_path) # TODO move auto save to file out return text except RCPCRedirectionError: async with self.session.get(url, headers=headers) as response: assert response.status == 200 if self.cookie_jar_path: self.cookie_jar.save(file_path=self.cookie_jar_path) return await response.text() except Exception as e: self.logger.error(e) async def async_post(self, url, data, headers=default_headers, csrf=False, **kwargs: Any): if self.session is None: raise Exception('Please open_session() before async_get()') if headers == None: headers = default_headers if csrf and 'csrf' in self.tokens: headers = add_header({'X-Csrf-Token': self.tokens['csrf']}, headers=headers) # TODO remove the feature if url.startswith('/'): url = self.host + url try: async with self.session.post(url, headers=headers, data=data, **kwargs) as response: assert response.status == 200 self.check_rcpc(await response.text()) if self.cookie_jar_path: self.cookie_jar.save(file_path=self.cookie_jar_path) return await response.text() except RCPCRedirectionError: async with self.session.post(url, headers=headers, data=data) as response: assert response.status == 200 if self.cookie_jar_path: self.cookie_jar.save(file_path=self.cookie_jar_path) return await response.text() except Exception as e: self.logger.error(e) def get_tokens(self): return self.tokens def check_rcpc(self, html_data: str): doc = html.fromstring(html_data) aesmin = cast(List[_Element], doc.xpath(".//script[@type='text/javascript' and @src='/aes.min.js']")) if len(aesmin) > 0: print("[+] RCPC redirection detected") js = cast(List[_Element], doc.xpath(".//script[not(@type)]")) assert len(js) > 0 keys = re.findall(r'[abc]=toNumbers\([^\)]*', js[0].text) for k in keys: if k[0] == 'a': key = bytes.fromhex(k.split('"')[1]) elif k[0] == 'b': iv = bytes.fromhex(k.split('"')[1]) elif k[0] == 'c': ciphertext = bytes.fromhex(k.split('"')[1]) assert len(key) == 16 and len(iv) == 16 and len(ciphertext) == 16, 'AES decryption error' c = pyaes.AESModeOfOperationCBC(key, iv=iv) plaintext = c.decrypt(ciphertext) rcpc = plaintext.hex() self.cookie_jar.update_cookies({'RCPC': rcpc}) self.cookie_jar.save(file_path=self.cookie_jar_path) raise RCPCRedirectionError() def create_form(self, form_data) -> aiohttp.FormData: form = aiohttp.FormData() for k, v in form_data.items(): form.add_field(k, v) return form # callback return (end watch?, transform result) async def websockets(self, url: str, callback: Callable[[Any], Tuple[bool, Any]]) -> AsyncIterator[Any]: try: async with self.session.ws_connect(url) as ws: async for msg in ws: if msg.type == aiohttp.WSMsgType.TEXT: js = json.loads(msg.data) js['text'] = json.loads(js['text']) endwatch, obj = callback(js) yield obj if endwatch: return else: self.logger.error('wrong msg type?', msg.type) break return except Exception as e: self.logger.error(e) return
yxr-codeforces-core
/yxr_codeforces_core-0.0.2.2.tar.gz/yxr_codeforces_core-0.0.2.2/codeforces_core/httphelper.py
httphelper.py
from dataclasses import dataclass, field from enum import Enum from typing import List from bs4 import BeautifulSoup import bs4 from .interfaces.AioHttpHelper import AioHttpHelperInterface @dataclass class TestCase: in_data: str out_data: str @dataclass class ProblemInfo: # testcases: List[TestCase] title: str level: str time_limit_seconds: str memory_limit_mb: str desc: str in_tc: List[str] out_tc: List[str] note: str @dataclass class ParseProblemResult(object): class Status(str, Enum): AC = 'AC' FAILED = 'FAILED' NOTVIS = 'NOTVIS' status: Status = Status.NOTVIS title: str = '' test_cases: List[TestCase] = field(default_factory=lambda: []) id: str = '' oj: str = '' description: str = '' time_limit: str = '' mem_limit: str = '' url: str = '' html: str = '' file_path: str = '' async def async_problem(http: AioHttpHelperInterface, contest_id: str, level: str, **kw) -> ParseProblemResult: """ This method will use ``http`` to request ``/contest/<contest_id>/problems``, and parse to struct result :param http: AioHttpHelperInterface :param contest_id: contest id in url :returns: parsed structured result Examples: .. code-block:: import asyncio from codeforces_core.httphelper import HttpHelper from codeforces_core.problem import async_problem async def demo(): # http = HttpHelper(token_path='/tmp/cache_token', cookie_jar_path='/tmp/cache_cookie_jar') http = HttpHelper(token_path='', cookie_jar_path='') await http.open_session() # you can login before request result = await async_problem(http=http, contest_id='1779', level='F') print(result) await http.close_session() asyncio.run(demo()) """ resp = await http.async_get(f'/contest/{contest_id}/problem/{level}') problem = ParseProblemResult(html=resp) soup = BeautifulSoup(resp, 'lxml') # TODO implememt soup_find function to assert type for mypy match_groups = soup.find('div', attrs={'class': 'title'}) assert isinstance(match_groups, bs4.Tag) problem.title = str(match_groups.string)[2:].strip(" \r\n") match_groups = soup.find(name='div', attrs={'class': 'time-limit'}) assert isinstance(match_groups, bs4.Tag) problem.time_limit = str(match_groups.contents[-1]).strip() match_groups = soup.find(name='div', attrs={'class': 'memory-limit'}) assert isinstance(match_groups, bs4.Tag) problem.mem_limit = str(match_groups.contents[-1]).strip() match_groups = soup.find(name='div', attrs={'class': 'problem-statement'}) problem.status = ParseProblemResult.Status.NOTVIS # TODO for show progress match_groups = soup.find(name='div', attrs={'class': 'sample-test'}) assert isinstance(match_groups, bs4.Tag) problem.test_cases.clear() if match_groups: test_case_inputs = match_groups.find_all(name='div', attrs={'class': 'input'}) test_case_outputs = match_groups.find_all(name='div', attrs={'class': 'output'}) assert (len(test_case_inputs) == len(test_case_outputs)) # may not? in April fool contest for i in range(len(test_case_inputs)): t_in = test_case_inputs[i].find(name='pre').get_text("\n").strip(" \r\n") t_out = test_case_outputs[i].find(name='pre').get_text("\n").strip(" \r\n") problem.test_cases.append(TestCase(t_in, t_out)) return problem
yxr-codeforces-core
/yxr_codeforces_core-0.0.2.2.tar.gz/yxr_codeforces_core-0.0.2.2/codeforces_core/problem.py
problem.py
from time import time from typing import Any, Callable, Tuple, AsyncIterator from .account import extract_channel from .interfaces.AioHttpHelper import AioHttpHelperInterface from .kwargs import extract_common_kwargs from .submit import SubmissionWSResult # return (end watch?, transform result) def display_ws(result: Any) -> Tuple[bool, Any]: print(result) return False, result # # {'id': 1, 'channel': '34f1ec4b729022e4b48f8d24b65c857805a90469', 'text': {'t': 's', 'd': [5973356517882654806, 200631363, 1777, 1746206, 'TESTS', None, 'OK', 86, 86, 3198, 7884800, 148217099, '21220', '04.04.2023 5:57:08', '04.04.2023 5:57:08', 2147483647, 73, 0]}} # # 总的ws, 无法获得当前题目的 通过百分比 # def create_ws_task(http: AioHttpHelperInterface, ws_handler: Callable[[Any], Tuple[bool, Any]]) -> asyncio.Task: # """ # This method will use ``http`` to create common websocket, and ``ws_handler`` to handle each ws message # # this websocket cannot receive a submission running percentage, use :py:func:`create_contest_ws_task()` instead # # :param http: AioHttpHelperInterface # :param ws_handler: function to handler messages # # :returns: the task which run ws # # Examples: # # .. code-block:: # # import asyncio # from codeforces_core.httphelper import HttpHelper # from codeforces_core.account import async_login # from codeforces_core.websocket import create_ws_task, display_ws # from codeforces_core.submit import async_submit # # async def demo(): # # http = HttpHelper(token_path='/tmp/cache_token', cookie_jar_path='/tmp/cache_cookie_jar') # http = HttpHelper(token_path='', cookie_jar_path='') # await http.open_session() # result = await async_login(http=http, handle='<handle>', password='<password>') # assert(result.success) # task = create_ws_task(http, ws_handler=display_ws) # # submit code in webpage # try: # result = await asyncio.wait_for(task, timeout=60) # print("ws is done, result:", task.result()) # except asyncio.TimeoutError: # pass # await http.close_session() # # asyncio.run(demo()) # """ # epoch = int(time() * 1000) # s -> ms # token = http.get_tokens() # ws_url = f"wss://pubsub.codeforces.com/ws/{token['uc']}/{token['usmc']}?_={epoch}&tag=&time=&eventid=" # print(ws_url) # return asyncio.create_task(http.websockets(ws_url, ws_handler)) # https://codeforces.com/contest/<contest_id>/my 会多出两个 meta # <meta name="cc" content="xxx"/> # <meta name="pc" content="yyy"/> # TODO 设计上不太对, handler处理了数据, 结果也抛给了使用者, 应该handler 只关心是否停止, 而transform不应该在handler里处理 # 这两个可以监听 题目测试时 的通过 百分比 变化 async def create_contest_ws_task_yield(http: AioHttpHelperInterface, contest_id: str, ws_handler: Callable[[Any], Tuple[bool, Any]], **kw) -> AsyncIterator[SubmissionWSResult]: """ This method will use ``http`` to create contest specific websocket, and ``ws_handler`` to handle each ws message :param http: AioHttpHelperInterface :param contest_id: contest id in the url :param ws_handler: function to handler messages :returns: the task which run ws Examples: See docstring of :py:func:`codeforces_core.submit.async_submit()` """ logger = extract_common_kwargs(**kw).logger epoch = int(time() * 1000) # s -> ms html_data = await http.async_get(f"/contest/{contest_id}/my") cc, pc = extract_channel(html_data, logger)[2:4] assert cc and pc ws_url = f"wss://pubsub.codeforces.com/ws/s_{pc}/s_{cc}?_={epoch}&tag=&time=&eventid=" logger.debug(f"pc = {pc}") # 似乎和场次有关, 可能包含别人的? logger.debug(f"cc = {cc}") # 似乎只会包含自己的 logger.debug(f"ws_url = {ws_url}") async for data in http.websockets(ws_url, ws_handler): yield data
yxr-codeforces-core
/yxr_codeforces_core-0.0.2.2.tar.gz/yxr_codeforces_core-0.0.2.2/codeforces_core/websocket.py
websocket.py
from collections import defaultdict from dataclasses import dataclass, field from os import path from typing import Any, List, Tuple from lxml import html # from .ui import BLUE, GREEN, RED, redraw from .util import typedxpath from .account import is_user_logged_in from .interfaces.AioHttpHelper import AioHttpHelperInterface from .kwargs import extract_common_kwargs from .url import problem_url_parse async def async_submit(http: AioHttpHelperInterface, contest_id: str, level: str, file_path: str, lang_id: str, **kw) -> Tuple[str, str]: """ This method will use ``http`` to post submit :param http: AioHttpHelperInterface :param ws_handler: function to handler messages :returns: (submission_id, html_text of contest/<contest id>/my ) Examples: .. code-block:: import asyncio from codeforces_core.httphelper import HttpHelper from codeforces_core.account import async_login from codeforces_core.websocket import create_contest_ws_task from codeforces_core.submit import async_submit, display_contest_ws async def demo(): # http = HttpHelper(token_path='/tmp/cache_token', cookie_jar_path='/tmp/cache_cookie_jar') http = HttpHelper(token_path='', cookie_jar_path='') await http.open_session() result = await async_login(http=http, handle='<handle>', password='<password>') assert(result.success) print('before submit') submit_id, resp = await async_submit(http, contest_id='1777', level='F', file_path='F.cpp', lang_id='73') print('submit id:',submit_id) # connect websocket before submit sometimes cannot receive message contest_task = create_contest_ws_task(http, contest_id='1777', ws_handler=display_contest_ws) print("contest ws created"); try: result = await asyncio.wait_for(contest_task, timeout=30) print("ws is done, result:", result) except asyncio.TimeoutError: pass await http.close_session() asyncio.run(demo()) """ logger = extract_common_kwargs(**kw).logger if not contest_id or not level: logger.error("[!] Invalid contestID or level") return '', '' if not path.isfile(file_path): logger.error("[!] File not found : {}".format(file_path)) return '', '' token = http.get_tokens() submit_form = { 'csrf_token': token['csrf'], 'ftaa': token['ftaa'], 'bfaa': token['bfaa'], 'action': 'submitSolutionFormSubmitted', 'submittedProblemIndex': level, 'programTypeId': lang_id, } url = '/contest/{}/problem/{}?csrf_token={}'.format(contest_id, level.upper(), token['csrf']) form = http.create_form(submit_form) form.add_field('sourceFile', open(file_path, 'rb'), filename=file_path) resp = await http.async_post(url, form) # 正常是 302 -> https://codeforces.com/contest/<contest id>/my if not is_user_logged_in(resp): logger.error("Login required") return '', resp doc = html.fromstring(resp) for e in typedxpath(doc, './/span[@class="error for__sourceFile"]'): if e.text == 'You have submitted exactly the same code before': logger.error("[!] " + e.text) return '', resp status = parse_submit_status(resp)[0] assert status.url.split('/')[-1] == level.upper() return status.id, resp # TODO move oiterminal code to here use dataclass @dataclass class SubmissionPageResult: id: str = '' url: str = '' verdict: str = '' time_ms: str = '' mem_bytes: str = '' # status_url = f'/contest/{contest_id}/my' # resp = await http.async_get(status_url) # status = parse_submit_status(resp) def parse_submit_status(html_page: str) -> List[SubmissionPageResult]: ret: List[SubmissionPageResult] = [] doc = html.fromstring(html_page) tr = typedxpath(doc, './/table[@class="status-frame-datatable"]/tr[@data-submission-id]') for t in tr: td = t.xpath('.//td') submission_id = ''.join(td[0].itertext()).strip() url = td[3].xpath('.//a[@href]')[0].get('href') verdict = ''.join(td[5].itertext()).strip() prog_time = td[6].text.strip().replace('\xa0', ' ').split()[0] prog_mem = td[7].text.strip().replace('\xa0', ' ').split()[0] ret.append(SubmissionPageResult(id=submission_id, url=url, verdict=verdict, time_ms=prog_time, mem_bytes=prog_mem)) return ret async def async_fetch_submission_page(http: AioHttpHelperInterface, problem_url: str, **kw) -> List[SubmissionPageResult]: contest_id, problem_key = problem_url_parse(problem_url) # 正常是 302 -> https://codeforces.com/contest/<contest id>/my html_page = await http.async_get(f'/contest/{contest_id}/my') result = parse_submit_status(html_page) return list(filter(lambda o: o.url.endswith(problem_key), result)) @dataclass class SubmissionWSResult: source: Any = field(default_factory=lambda: defaultdict(dict)) submit_id: int = 0 contest_id: int = 0 title: str = '' msg: str = '' passed: int = 0 testcases: int = 0 ms: int = 0 mem: int = 0 date1: str = '' date2: str = '' lang_id: int = 0 # TODO 两个不同的ws(公共的和针对题目的) 似乎返回结构不同 def transform_submission(data: Any) -> SubmissionWSResult: d = data['text']['d'] return SubmissionWSResult( source=data, # [5973095143352889425, ???? data-a submit_id=d[1], # 200625609, contest_id=d[2], # 1777, # 1746206, ?? title=d[4], # 'TESTS', # None, msg=d[6], # 'TESTING', 'OK' passed=d[7], # 0, ?? testcases=d[8], # 81, ?? 在测试过程中 这个值会增长,而d[7]一直是0,直到'OK' ms=d[9], # 0, mem=d[10], # 0, Bytes # 148217099, # '215020', date1=d[13], # '04.04.2023 3:21:48', date2=d[14], # '04.04.2023 3:21:48', # 2147483647, lang_id=d[16], # 73, # 0] ) # return (end watch?, transform result) def display_contest_ws(result: Any) -> Tuple[bool, Any]: parsed_data = transform_submission(result) print(parsed_data) if parsed_data.msg != 'TESTING': return True, parsed_data return False, parsed_data
yxr-codeforces-core
/yxr_codeforces_core-0.0.2.2.tar.gz/yxr_codeforces_core-0.0.2.2/codeforces_core/submit.py
submit.py
from dataclasses import dataclass import logging from typing import Any, List, cast from lxml import html from .interfaces.AioHttpHelper import AioHttpHelperInterface from .kwargs import extract_common_kwargs from .util import pop_element def extract_testcases(tags): ret = [] for i in tags: pop_element(i.xpath('.//div[@class="title"]')[0]) divs = i.xpath('.//div[@class]') if len(divs) == 0: ret.append("\n".join([t.strip() for t in i.itertext()])) else: l = '' prev = divs[0].get('class') lines = [] for d in divs: if d.get('class') == prev: l += d.text + '\n' else: lines.append(l) prev = d.get('class') l = d.text + '\n' if l: lines.append(l.strip() + '\n') ret.append("\n".join(lines)) return ret @dataclass class TestCase: in_data: str out_data: str @dataclass class ProblemInfo: # testcases: List[TestCase] title: str level: str time_limit_seconds: str memory_limit_mb: str desc: str in_tc: List[str] out_tc: List[str] note: str async def async_problems(http: AioHttpHelperInterface, contest_id: str, **kw) -> List[ProblemInfo]: """ This method will use ``http`` to request ``/contest/<contest_id>/problems``, and parse to struct result :param http: AioHttpHelperInterface :param contest_id: contest id in url :returns: parsed structured result Examples: .. code-block:: import asyncio from codeforces_core.httphelper import HttpHelper from codeforces_core.problems import async_problems async def demo(): # http = HttpHelper(token_path='/tmp/cache_token', cookie_jar_path='/tmp/cache_cookie_jar') http = HttpHelper(token_path='', cookie_jar_path='') await http.open_session() # you can login before request result = await async_problems(http=http, contest_id='1779') print(len(result)) print(result[0]) await http.close_session() asyncio.run(demo()) """ logger = extract_common_kwargs(**kw).logger url = "/contest/{}/problems".format(contest_id) resp = await http.async_get(url) doc = html.fromstring(resp) probs = cast(List[Any], doc.xpath('.//div[@class="problemindexholder"]')) ret: List[ProblemInfo] = [] for p in probs: try: # if alert: alert = alert[0].text level = p.get('problemindex') typo = p.xpath('.//div[@class="ttypography"]')[0] title = pop_element(typo.xpath('.//div[@class="title"]')[0]) time_limit = typo.xpath('.//div[@class="time-limit"]')[0] time_limit = [t for t in time_limit.itertext()][1].split(' ')[0] memory_limit = typo.xpath('.//div[@class="memory-limit"]')[0] memory_limit = [t for t in memory_limit.itertext()][1].split(' ')[0] desc = typo.xpath('.//div[not(@class)]') if desc: desc = '\n'.join([t for t in desc[0].itertext()]) else: desc = "" for j in typo.xpath('.//div[@class="section-title"]'): pop_element(j) in_spec = typo.xpath('.//div[@class="input-specification"]') if in_spec: in_spec = '\n'.join([t for t in in_spec[0].itertext()]) else: in_spec = "" out_spec = typo.xpath('.//div[@class="output-specification"]') if out_spec: out_spec = '\n'.join([t for t in out_spec[0].itertext()]) else: out_spec = "" in_tc = extract_testcases(typo.xpath('.//div[@class="input"]')) out_tc = extract_testcases(typo.xpath('.//div[@class="output"]')) note = typo.xpath('.//div[@class="note"]') if note: note = '\n'.join([t for t in note[0].itertext()]) ret.append( ProblemInfo(title=title, level=level, time_limit_seconds=time_limit, memory_limit_mb=memory_limit, desc=desc, in_tc=in_tc, out_tc=out_tc, note=note)) except Exception as e: logger.exception(e) return ret
yxr-codeforces-core
/yxr_codeforces_core-0.0.2.2.tar.gz/yxr_codeforces_core-0.0.2.2/codeforces_core/problems.py
problems.py
from dataclasses import dataclass from typing import Optional, Tuple from random import choice from lxml import html from lxml.html import HtmlElement import logging from .kwargs import extract_common_kwargs from .util import typedxpath from .interfaces.AioHttpHelper import AioHttpHelperInterface default_login_url = "/enter?back=%2F" @dataclass class LoginResult: html: str = '' csrf: str = '' ftaa: str = '' bfaa: str = '' uc: str = '' # user channel ? usmc: str = '' # cc: str = '' # contest channel? TODO remove, 这个和 contest相关, 不应该和login在一起 # pc: str = '' # remove same reason success: bool = False def is_user_logged_in(html_data: str) -> bool: doc = html.fromstring(html_data) links = typedxpath(doc, './/div[@class="lang-chooser"]/div[not(@style)]/a[@href]') for m in links: if m.text.strip() in ["Register", "Enter"]: return False return True async def async_fetch_logged_in(http: AioHttpHelperInterface, login_url=default_login_url, **kw) -> Tuple[bool, str]: """ auto update token return bool(is_logged_in), html_data """ logger = extract_common_kwargs(**kw).logger html_data = await http.async_get(login_url) uc, usmc, cc, pc, csrf_token, ftaa, bfaa = extract_channel(html_data, logger=logger) if is_user_logged_in(html_data=html_data): http.update_tokens(csrf=csrf_token, ftaa=ftaa, bfaa=bfaa, uc=uc, usmc=usmc) return True, html_data return False, '' # No exception, handler inside def extract_channel(html_data: str, logger: Optional[logging.Logger] = None) -> Tuple[str, str, str, str, str, str, str]: doc = html.fromstring(html_data) def xpath_content(el: HtmlElement, s: str) -> str: try: l = typedxpath(el, s) return l[0].get('content') if len(l) > 0 else '' except Exception as e: if logger: logger.exception(e) return '' uc = xpath_content(doc, './/meta[@name="uc"]') usmc = xpath_content(doc, './/meta[@name="usmc"]') cc = xpath_content(doc, './/meta[@name="cc"]') pc = xpath_content(doc, './/meta[@name="pc"]') try: csrf_token = typedxpath(doc, './/span[@class="csrf-token"]')[0].get('data-csrf') assert len(csrf_token) == 32, "Invalid CSRF token" except Exception as e: if logger: logger.exception(e) csrf_token = '' ftaa = ''.join([choice('abcdefghijklmnopqrstuvwxyz0123456789') for x in range(18)]) # bfaa : Fingerprint2.x64hash128 bfaa = ''.join([choice('0123456789abcdef') for x in range(32)]) return uc, usmc, cc, pc, csrf_token, ftaa, bfaa # TODO 已经登陆账号A, 再调用登陆账号B是不行的, 这个逻辑应该是由外部控制,调用时应该确保未登录状态 async def async_login(http: AioHttpHelperInterface, handle: str, password: str, login_url=default_login_url, **kw) -> LoginResult: """ This method will use ``http`` for login request, and :py:func:`is_user_logged_in()` for login check :param handle: Codeforces handle :param password: Codeforces password :returns: if it is successful post and logged Examples: .. code-block:: import asyncio from codeforces_core.account import async_login, is_user_logged_in from codeforces_core.httphelper import HttpHelper async def demo(): # http = HttpHelper(token_path='/tmp/cache_token', cookie_jar_path='/tmp/cache_cookie_jar') http = HttpHelper(token_path='', cookie_jar_path='') await http.open_session() result = await async_login(http=http, handle='<handle>', password='<password>') assert(result.success) html_data = await http.async_get('https://codeforces.com') assert(is_user_logged_in(html_data)) await http.close_session() asyncio.run(demo()) """ logger = extract_common_kwargs(**kw).logger html_data = await http.async_get(login_url) csrf_token, ftaa, bfaa = extract_channel(html_data, logger=logger)[4:7] login_data = { 'csrf_token': csrf_token, 'action': 'enter', 'ftaa': ftaa, 'bfaa': bfaa, 'handleOrEmail': handle, 'password': password, 'remember': 'on', } html_data = await http.async_post(login_url, login_data) # uc, usmc, cc, pc, csrf_token, ftaa, bfaa = extract_channel(html_data) uc, usmc, cc, pc = extract_channel(html_data, logger=logger)[0:4] success = False # if check_login(result.html): if is_user_logged_in(html_data=html_data): http.update_tokens(csrf=csrf_token, ftaa=ftaa, bfaa=bfaa, uc=uc, usmc=usmc) success = True else: success = False return LoginResult( html=html_data, csrf=csrf_token, ftaa=ftaa, bfaa=bfaa, uc=uc, usmc=usmc, # cc=cc, # pc=pc, success=success)
yxr-codeforces-core
/yxr_codeforces_core-0.0.2.2.tar.gz/yxr_codeforces_core-0.0.2.2/codeforces_core/account.py
account.py
import asyncio import logging import os from typing import Any, Tuple, AsyncIterator from requests.exceptions import ReadTimeout, ConnectTimeout from oi_cli2.cli.constant import APP_NAME, CIPHER_KEY, GREEN, DEFAULT from oi_cli2.model.BaseOj import BaseOj from oi_cli2.model.ParseProblemResult import ParsedProblemResult from oi_cli2.model.LangKV import LangKV from oi_cli2.model.Account import Account from oi_cli2.model.ProblemMeta import ContestMeta, ProblemMeta, E_STATUS from oi_cli2.model.Result import SubmissionResult from oi_cli2.model.TestCase import TestCase # from oi_cli2.utils.async2sync import iter_over_async from oi_cli2.utils.enc import AESCipher from codeforces_core.account import async_login, async_fetch_logged_in from codeforces_core.contest_list import async_contest_list from codeforces_core.contest_register import async_register, RegisterResultMsg from codeforces_core.contest_standing import async_friends_standing from codeforces_core.contest_meta import async_contest_meta, ProblemMeta as InnerProblemMeta from codeforces_core.interfaces.AioHttpHelper import AioHttpHelperInterface from codeforces_core.language import async_language from codeforces_core.problem import async_problem from codeforces_core.submit import async_submit, transform_submission, async_fetch_submission_page, SubmissionWSResult, SubmissionPageResult from codeforces_core.url import pid2url, pid2split, problem_url_parse from codeforces_core.websocket import create_contest_ws_task_yield class Codeforces(BaseOj): def __init__(self, http_util: AioHttpHelperInterface, logger: logging.Logger, account: Account) -> None: super().__init__() assert (account is not None) self._base_url = 'https://codeforces.com/' self.logger: logging.Logger = logger self.account: Account = account self.http = http_util self.api_sub_logger:logging.Logger = logging.getLogger(f'{APP_NAME}.yxr-cf-core') async def init(self) -> None: await self.http.open_session() async def deinit(self) -> None: await self.http.close_session() def pid2url(self, problem_id: str): return self._base_url[:-1] + pid2url(problem_id) def pid2file_path(self, problem_id: str): contest_id, problem_key = pid2split(problem_id) return os.path.join(contest_id, problem_key) def problem_by_id(self, problem_id: str) -> ParsedProblemResult: return self.async_2_sync_session_wrap(lambda: self.async_problem_by_id(problem_id)) async def async_problem_by_id(self, problem_id: str) -> ParsedProblemResult: contest_id, problem_key = pid2split(problem_id) self.logger.debug(f'{problem_id} => {contest_id}, {problem_key}') result = await async_problem(http=self.http, contest_id=contest_id, level=problem_key) return ParsedProblemResult( status=ParsedProblemResult.Status.NOTVIS, # TODO for show progress title=result.title, test_cases=list(map(lambda x: TestCase(in_data=x.in_data, out_data=x.out_data), result.test_cases)), id=problem_id, oj=Codeforces.__name__, description=result.description, time_limit=result.time_limit, mem_limit=result.mem_limit, url=self.pid2url(problem_id), html=result.html, file_path=self.pid2file_path(problem_id)) def problem(self, problem: ProblemMeta) -> ParsedProblemResult: return self.problem_by_id(problem.contest_id + problem.id) async def async_problem(self, problem: ProblemMeta) -> ParsedProblemResult: return await self.async_problem_by_id(problem.contest_id + problem.id) def login_website(self, force=False) -> bool: # return successful return self.async_2_sync_session_wrap(lambda: self.async_login_website(force=force)) # Force: true/false login whatever login before # TODO 逻辑还是有点问题,要实现支持 # - 未登录 => 登录 # - 已登录 => 不操作 # 强制: # - 未登录 => 登录 # - 已登录 => 取消cookies等 强制登录 async def async_login_website(self, force=False) -> bool: # return successful if not force: # try using cookies self.logger.info(f"{GREEN}Checking Log in {DEFAULT}") try: if await self.async_is_login(): self.logger.info(f"{GREEN}{self.account.account} is Logged in {Codeforces.__name__}{DEFAULT}") return True except (ReadTimeout, ConnectTimeout) as e: self.logger.error(f'Http Timeout[{type(e).__name__}]: {e.request.url}') except Exception as e: self.logger.exception(e) try: self.logger.debug(f"{GREEN}{self.account.account} Logining {Codeforces.__name__}{DEFAULT}") return (await async_login(http=self.http, handle=self.account.account, password=AESCipher(CIPHER_KEY).decrypt(self.account.password))).success except (ReadTimeout, ConnectTimeout) as e: self.logger.error(f'Http Timeout[{type(e).__name__}]: {e.request.url}') except Exception as e: self.logger.exception(e) return False def _is_login(self) -> bool: return self.async_2_sync_session_wrap(lambda: self.async_is_login()) async def async_is_login(self) -> bool: ok, html_data = await async_fetch_logged_in(self.http) return ok def reg_contest(self, contest_id: str) -> bool: return self.async_2_sync_session_wrap(lambda: self.async_reg_contest(contest_id)) async def async_reg_contest(self, contest_id: str) -> bool: result = await async_register(http=self.http, contest_id=contest_id) return result.msg == RegisterResultMsg.AlreadyRegistered or result.msg == RegisterResultMsg.HaveBeenRegistered def submit_code(self, problem_url: str, language_id: str, code_path: str) -> bool: # https://codeforces.com/contest/1740/problem/G contest_id, problem_key = problem_url_parse(problem_url) sid = contest_id + problem_key return self.async_2_sync_session_wrap(lambda: self.async_submit_code(sid, language_id, code_path)) # TODO move sid out as just Syntactic sugar async def async_submit_code(self, sid: str, language_id: str, code_path: str) -> bool: if not await self.async_login_website(): raise Exception('Login Failed') contest_id, problem_key = pid2split(sid) self.logger.debug(f'{contest_id},{problem_key}') submit_id, resp = await async_submit(http=self.http, contest_id=contest_id, level=problem_key, file_path=code_path, lang_id=language_id, logger=self.api_sub_logger) self.logger.debug(f'submit_id = {submit_id}') return bool(submit_id) async def async_get_result_yield(self, problem_url: str, time_gap: float = 2) -> AsyncIterator[SubmissionResult]: contest_id, problem_key = problem_url_parse(problem_url) # TODO move more parse inside codeforces-core ? cf是出错中断形式,状态+数量 def page_result_transform(res: SubmissionPageResult) -> SubmissionResult: self.logger.debug('page res:'+str(res)) cur_status = SubmissionResult.Status.PENDING if res.verdict.startswith('Running'): cur_status = SubmissionResult.Status.RUNNING elif res.verdict.startswith('In queue'): cur_status = SubmissionResult.Status.RUNNING elif res.verdict.startswith('Accepted'): cur_status = SubmissionResult.Status.AC elif res.verdict.startswith('Pretests passed'): cur_status = SubmissionResult.Status.AC elif res.verdict.startswith('Wrong answer'): cur_status = SubmissionResult.Status.WA elif res.verdict.startswith('Time limit exceeded'): cur_status = SubmissionResult.Status.TLE elif res.verdict.startswith('Runtime error'): # Runtime error on pretest 2 cur_status = SubmissionResult.Status.RE else: self.logger.error('NOT HANDLE PAGE:'+str(res.verdict)) if res.url.startswith('/'): res.url = 'https://codeforces.com' + res.url return SubmissionResult(id=res.id, cur_status=cur_status, time_note=res.time_ms + ' ms', mem_note=str(int(res.mem_bytes)/1000) + ' kb', url=res.url, msg_txt=res.verdict) # TODO move more parse inside codeforces-core ? def ws_result_transform(res: SubmissionWSResult) -> SubmissionResult: cur_status = SubmissionResult.Status.PENDING if res.msg == 'TESTING': cur_status = SubmissionResult.Status.RUNNING elif res.msg == 'OK': cur_status = SubmissionResult.Status.AC elif res.msg == 'WRONG_ANSWER': cur_status = SubmissionResult.Status.WA else: self.logger.error('NOT HANDLE WS:' + str(res.msg)) msg_txt = str(res.testcases) if cur_status in [SubmissionResult.Status.AC, SubmissionResult.Status.WA]: msg_txt = f'{res.passed}/{res.testcases}' return SubmissionResult( id=str(res.submit_id), cur_status=cur_status, time_note=str(res.ms) + ' ms', mem_note=str(int(res.mem)/1000) + ' kb', url=f'https://codeforces.com/contest/{res.contest_id}/submission/{res.submit_id}', msg_txt=msg_txt, ) # TODO visit page without ws first results = await async_fetch_submission_page(http=self.http, problem_url=problem_url,logger=self.api_sub_logger) fix_submit_id = '' if len(results) > 0: result = page_result_transform(results[0]) fix_submit_id = result.id self.logger.debug(f"fix submit_id = {fix_submit_id}"); yield result if result.cur_status not in [SubmissionResult.Status.PENDING, SubmissionResult.Status.RUNNING]: return self.logger.debug('after page result, enter ws result') # return (end watch?, transform result) def custom_handler(result: Any) -> Tuple[bool, SubmissionWSResult]: parsed_data = transform_submission(result) if fix_submit_id and fix_submit_id != parsed_data.contest_id: # submit id not match, dont end watch ws return False, parsed_data if parsed_data.msg != 'TESTING': return True, parsed_data return False, parsed_data # TODO add timeout for ws # TODO 可能有别人的? pc/cc? async for wsresult in create_contest_ws_task_yield(http=self.http, contest_id=contest_id, ws_handler=custom_handler,logger=self.api_sub_logger): self.logger.debug('ws res:'+str(wsresult)) if fix_submit_id and wsresult.submit_id != fix_submit_id: self.logger.debug('[skip]fixed id not match! continue') continue data = ws_result_transform(wsresult) yield data if data.cur_status not in [SubmissionResult.Status.PENDING, SubmissionResult.Status.RUNNING]: return results = await async_fetch_submission_page(http=self.http, problem_url=problem_url) assert len(results) > 0 yield page_result_transform(results[0]) def get_language(self) -> LangKV: return self.async_2_sync_session_wrap(lambda: self.async_get_language()) async def async_get_language(self) -> LangKV: await self.async_login_website() res = await async_language(self.http) ret: LangKV = {} for item in res: ret[item.value] = item.text return ret @staticmethod def support_contest() -> bool: return True def print_contest_list(self) -> bool: return self.async_2_sync_session_wrap(lambda: self.async_print_contest_list()) async def async_print_contest_list(self) -> bool: await self.async_login_website() result = await async_contest_list(http=self.http) from .contestList import printData printData(result) return True def get_contest_meta(self, contest_id: str) -> ContestMeta: return self.async_2_sync_session_wrap(lambda: self.async_get_contest_meta(contest_id=contest_id)) async def async_get_contest_meta(self, contest_id: str) -> ContestMeta: await self.async_login_website() result = await async_contest_meta(http=self.http, contest_id=contest_id) def transform(problem: InnerProblemMeta) -> ProblemMeta: return ProblemMeta( id=problem.id, url=problem.url, name=problem.name, passed=problem.passed, # number of passed submission in contest score=0, status=E_STATUS(problem.status), # ???? TODO time_limit_msec=problem.time_limit_msec, # ms memory_limit_kb=problem.memory_limit_kb, # mb contest_id=problem.contest_id, ) return ContestMeta(id=contest_id, url=result.url, problems=list(map(lambda o: transform(o), result.problems))) def async_2_sync_session_wrap(self, fn): async def task(): await self.http.open_session() result = await fn() await self.http.close_session() return result return asyncio.run(task()) def print_friends_standing(self, cid: str) -> None: return self.async_2_sync_session_wrap(lambda: self.async_print_friends_standing(cid)) async def async_print_friends_standing(self, cid: str) -> None: result = await async_friends_standing(http=self.http, contest_id=cid) from .standing import printData printData(result, title=f"Friends standing {result.url}", handle=self.account.account)
yxr-oi-cli
/yxr_oi_cli-0.2.2.4.tar.gz/yxr_oi_cli-0.2.2.4/oi_cli2/custom/Codeforces/Codeforces.py
Codeforces.py
from typing import List from oi_cli2.model.Analyze import Analyze from oi_cli2.utils.analyze import AnalyzeManager # TODO 动态注册不同平台 def analyze_list(tm: AnalyzeManager): analyze_list: List[Analyze] = tm.get_list() for i in range(len(analyze_list)): if i == 0 or analyze_list[i].platform != analyze_list[i - 1].platform: print(analyze_list[i].platform) mark = ' ' if analyze_list[i].default: mark = '*' print(f'\t {mark} {analyze_list[i].template_alias} {analyze_list[i].submit_lang}') if len(analyze_list) == 0: print("Analyze list is empty.") def analyze_new(tm: AnalyzeManager): platforms = ['Codeforces', 'AtCoder'] for i in range(len(platforms)): print(f"{i + 1}) {platforms[i]}") try: index = int(input("> ")) except Exception: print("input error") return if 0 < index <= len(platforms): platform = platforms[index - 1] else: print("input error") return submit_lang = input('submit_lang:') template_alias = input('template_alias:') class_path = input('class_path:') tm.add_analyze(platform, submit_lang, template_alias, class_path) def analyze_modify(tm: AnalyzeManager): analyze_list = tm.get_list() for i in range(len(analyze_list)): if i == 0 or analyze_list[i].platform != analyze_list[i - 1].platform: print(analyze_list[i].platform) mark = ' ' item = analyze_list[i] if item.default: mark = '*' print(f'\t {mark} {i}) {item.template_alias}') print(f'\t\t submit_lang: {item.submit_lang}') print(f'\t\t class_path: {item.class_path}') try: acc_index = int(input("> ")) except Exception: print("input error") if acc_index < 0 or acc_index >= len(analyze_list): print("input error") return print("1) Change Analyze template") print("2) Change Analyze submit language") print("3) Change Analyze class path") print("4) Set as Default") print("5) Delete") try: index = int(input("> ")) except (Exception): print("input error") if index == 1: tm.modify_template_alias(acc_index, input("Enter template_alias:")) elif index == 2: tm.modify_submit_lang(acc_index, input("Enter submit lang:")) elif index == 3: tm.modify_class_path(acc_index, input("Enter class path:")) elif index == 4: tm.set_default(acc_index) elif index == 5: tm.delete_analyze(acc_index) def analyze(db): print("1) Analyze List") print("2) New Analyze") print("3) Modify Analyze") try: index = int(input("> ")) except (Exception): print("input error") tm = AnalyzeManager(db) if index == 1: analyze_list(tm) elif index == 2: analyze_new(tm) elif index == 3: analyze_modify(tm) else: print("input error")
yxr-oi-cli
/yxr_oi_cli-0.2.2.4.tar.gz/yxr_oi_cli-0.2.2.4/oi_cli2/cli/analyze.py
analyze.py
import logging import os import sys import json from typing import List, Type from oi_cli2.cli.constant import CIPHER_KEY, OT_FOLDER, USER_CONFIG_FILE from oi_cli2.model.BaseOj import BaseOj from oi_cli2.model.ParseProblemResult import ParsedProblemResult from oi_cli2.model.ProblemMeta import ProblemMeta from oi_cli2.model.TestCase import TestCase from oi_cli2.model.FolderState import FolderState from oi_cli2.utils.FileUtil import FileUtil from oi_cli2.utils.configFolder import ConfigFolder # file_util can be any thing , everything is file from oi_cli2.utils.template import TemplateManager from oi_cli2.utils.force_symlink import force_symlink # def createDir(oj: BaseOj, problem_id: str, problem: ProblemMeta, file_util: Type[FileUtil], logger, # template_manager: TemplateManager, config_folder: ConfigFolder): # template = template_manager.get_platform_default(type(oj).__name__) # if template is None: # print(type(oj).__name__ + ' has no default template, run ./oiTerminal.py config first') # logger.warn(f'{type(oj).__name__} parse problem when no template set') # return None # # result = oj.problem(problem_id) # test_cases: List[TestCase] = result.test_cases # directory = config_folder.get_file_path(os.path.join('dist', type(oj).__name__, result.file_path)) # # for i in range(len(test_cases)): # file_util.write(config_folder.get_file_path(os.path.join(directory, f'in.{i}')), test_cases[i].in_data) # file_util.write(config_folder.get_file_path(os.path.join(directory, f'out.{i}')), test_cases[i].out_data) # # # if code file exist not cover code # if not os.path.exists(config_folder.get_file_path(os.path.join(directory, os.path.basename(template.path)))): # file_util.copy(config_folder.get_file_path(template.path), # config_folder.get_file_path(os.path.join(directory, os.path.basename(template.path)))) # # TODO 生成state.json ( 提供 自定义字段) # TEST_PY = 'test.py' # SUBMIT_PY = 'submit.py' # STATE_FILE = 'state.json' # # symlink test.py submit.py # RELATIVE_CLI_FOLDER = '../../../../' # force_symlink(os.path.join(RELATIVE_CLI_FOLDER, TEST_PY), # config_folder.get_file_path(os.path.join(directory, TEST_PY))) # force_symlink(os.path.join(RELATIVE_CLI_FOLDER, SUBMIT_PY), # config_folder.get_file_path(os.path.join(directory, SUBMIT_PY))) # # # TODO provide more info, like single test and # # generate state.json # folder_state = FolderState(oj=type(oj).__name__, # sid=problem_id, # template_alias=template.alias, # up_lang=template.uplang) # TODO get data from analyzer # with open(config_folder.get_file_path(os.path.join(directory, STATE_FILE)), "w") as statejson: # json.dump(folder_state.__dict__, statejson) # statejson.close() # # return directory # def main(argv: List[str], logger: logging, folder=OT_FOLDER): # config_folder = ConfigFolder(folder) # user_config_path = config_folder.get_config_file_path(USER_CONFIG_FILE) # # http_util = HttpUtil(logger=logger) # dbIns = JsonFileDB(file_path=user_config_path, logger=logger) # template_manager = TemplateManager(db=dbIns) # account_manager = AccountManager(db=dbIns, cipher=AESCipher(CIPHER_KEY)) # # if argv[0] == Platforms.codeforces: # try: # from oi_cli2.custom.Codeforces.Codeforces import Codeforces # oj: BaseOj = Codeforces(http_util=http_util, # logger=logger, # account=account_manager.get_default_account(Codeforces.__name__), # html_tag=HtmlTag(http_util)) # except Exception as e: # logger.exception(e) # raise e # else: # raise Exception('Unknown Platform') # # directory = createDir( # oj=oj, # problem_id=argv[1], # ProblemMeta=None, # TODO support # file_util=FileUtil, # logger=logger, # template_manager=template_manager, # config_folder=config_folder) # # if directory is None: # return None # # TODO switch directory # print(directory) # # start_terminal(config_folder.get_file_path(os.path.join(directory))) # if __name__ == '__main__': # main(sys.argv, folder=OT_FOLDER)
yxr-oi-cli
/yxr_oi_cli-0.2.2.4.tar.gz/yxr_oi_cli-0.2.2.4/oi_cli2/cli/problem.py
problem.py
import asyncio import json import logging import os import traceback from typing import Tuple, cast import click from rich.console import Console from rich.text import Text from rich.table import Table from rich.live import Live from oi_cli2.cli.adaptor.ojman import OJManager from oi_cli2.cli.constant import FETCH_RESULT_INTERVAL, STATE_FILE from oi_cli2.core.DI import DI_ACCMAN, DI_LOGGER, DI_TEMPMAN from oi_cli2.model.Account import Account from oi_cli2.model.BaseOj import BaseOj from oi_cli2.model.FolderState import FolderState from oi_cli2.model.Result import SubmissionResult, status_string from oi_cli2.utils.Provider2 import Provider2 from oi_cli2.utils.account import AccountManager from oi_cli2.utils.template import TemplateManager console = Console(color_system='256', style=None) def generate_submission_table(res: SubmissionResult) -> Table: """Make a new submission table.""" table = Table().grid() table.add_column(min_width=12) table.add_column() table.add_row("Result ID", f"{res.id}") # "[red]ERROR" if value < 50 else "[green]SUCCESS" table.add_row("Status", Text.from_ansi(f"{status_string(res)}")) table.add_row("Time", f"{res.time_note}") table.add_row("Memory", f"{res.mem_note}") if res.msg_txt: table.add_row("MSG", f"{res.msg_txt}") if res.url: table.add_row("Url", f"{res.url}") return table def watch_result(oj: BaseOj, problem_url: str) -> SubmissionResult: return asyncio.run(async_watch_result(oj, problem_url)) async def async_watch_result(oj: BaseOj, problem_url: str) -> SubmissionResult: await oj.init() try: result = SubmissionResult() with Live(auto_refresh=False) as live: async for result in oj.async_get_result_yield(problem_url, time_gap=FETCH_RESULT_INTERVAL): live.update(generate_submission_table(result), refresh=True) except Exception as e: logger: logging.Logger = Provider2().get(DI_LOGGER) logger.exception(e) await oj.deinit() return result def submit_parser() -> Tuple[str, str, str, Account, str, str]: logger: logging.Logger = Provider2().get(DI_LOGGER) am: AccountManager = Provider2().get(DI_ACCMAN) tm: TemplateManager = Provider2().get(DI_TEMPMAN) # get lang config if not os.path.isfile(STATE_FILE): raise Exception(f'STATE_FILE [{STATE_FILE}] NOT EXIST!') state_oj = FolderState() with open(STATE_FILE) as f: state_oj.__dict__ = json.load(f) oj = state_oj.oj up_lang = cast(str, state_oj.up_lang) template = tm.get_template_by_name(state_oj.oj, state_oj.template_alias) if template is None: raise Exception(f'Template not found by [{state_oj.oj},{state_oj.template_alias}]') source_file_name = os.path.basename(template.path) code_file = os.path.join('.', source_file_name) if not os.path.isfile(code_file): raise Exception(f"code_file [{code_file}] NOT EXIST!") account = am.get_default_account(oj) return oj, state_oj.id, up_lang, account, code_file, state_oj.problem_url @click.command(name="submit") def submit_command() -> None: try: logger: logging.Logger = Provider2().get(DI_LOGGER) platform, sid, up_lang, account, code_path, problem_url = submit_parser() table = Table().grid() table.add_column(min_width=12) table.add_column() table.add_row("OJ", f"{platform}") table.add_row("Account", f"{account.account}") table.add_row("Problem ID", f"{sid}") table.add_row("up_lang", f"{up_lang}") console.print(table) try: oj: BaseOj = OJManager.createOj(platform=platform, account=account, provider=Provider2()) except Exception as e: logger.exception(e) raise e if not oj.submit_code(problem_url=problem_url, language_id=up_lang, code_path=code_path): raise Exception(f'submit failed, account={account.account}') console.print("[green]Submitted") watch_result(oj, problem_url) except KeyboardInterrupt: logger.info("Interrupt by user") except Exception: logger.error(traceback.format_exc()) @click.command(name="result") def result_command() -> None: logger: logging.Logger = Provider2().get(DI_LOGGER) platform, sid, up_lang, account, code_path, problem_url = submit_parser() table = Table().grid() table.add_column(min_width=12) table.add_column() table.add_row("OJ", f"{platform}") table.add_row("Account", f"{account.account}") table.add_row("Problem ID", f"{sid}") table.add_row("up_lang", f"{up_lang}") table.add_row("Problem Url", f"{problem_url}") console.print(table) try: oj: BaseOj = OJManager.createOj(platform=platform, account=account, provider=Provider2()) except Exception as e: logger.exception(e) raise e logger.debug(problem_url) watch_result(oj, problem_url)
yxr-oi-cli
/yxr_oi_cli-0.2.2.4.tar.gz/yxr_oi_cli-0.2.2.4/oi_cli2/cli/submit.py
submit.py
import logging from typing import List import click from oi_cli2.core.DI import DI_DB, DI_LOGGER, DI_TEMPMAN from oi_cli2.model.Template import Template from oi_cli2.utils.template import TemplateManager @click.group() @click.pass_context def template(ctx): """Manage templates""" db = ctx.obj[DI_DB] ctx.obj[DI_TEMPMAN] = TemplateManager(db) @template.command(name='list') @click.option('-d', '--detail', is_flag=True, help="display config detail") @click.pass_context def list_command(ctx, detail: bool): """List all templates""" tm: TemplateManager = ctx.obj[DI_TEMPMAN] temp_list: List[Template] = tm.get_list() for i in range(len(temp_list)): if i == 0 or temp_list[i].platform != temp_list[i - 1].platform: print(temp_list[i].platform) mark = ' ' if temp_list[i].default: mark = '*' print(f' {mark} {temp_list[i].alias}') if detail: print(f' \tCompile command : {temp_list[i].compilation}') print(f' \tExecute command : {temp_list[i].execute}') print(f' \tTemplate file Path : {temp_list[i].path}') print(f' \tUpload language id : {temp_list[i].uplang}') if len(temp_list) == 0: print("Template list is empty.") @template.command() @click.pass_context @click.argument('platform') @click.argument('name') @click.argument('path') @click.argument('compile') @click.argument('execute') @click.argument('langid') def new(ctx, platform, name, path, compile, execute, langid) -> None: """Create new template PLATFORM Platform Name, (AtCoder,Codeforces) NAME Custom template name PATH Your template file path COMPILE Compile command EXECUTE Execute command LANGID Upload language id(`oi lang <platform>`)""" tm: TemplateManager = ctx.obj[DI_TEMPMAN] logger: logging.Logger = ctx.obj[DI_LOGGER] logger.debug(f"{platform}, {name}, {path}, {compile}, {execute}, {langid}") tm.add_template(platform=platform, alias=name, path=path, compilation=compile, execute=execute, uplang=langid) @template.command() @click.pass_context @click.argument('platform') @click.argument('name') def delete(ctx, platform, name) -> None: """Delete a specific template""" tm: TemplateManager = ctx.obj[DI_TEMPMAN] tm.delete_template(platform, name) @template.command() @click.pass_context @click.argument('platform') @click.argument('name') @click.option('-n', '--name', 'newname', help='Change template name') @click.option('-p', '--path', help='Change template path') @click.option('-c', '--compile', help='Change compile command') @click.option('-e', '--execute', help='Change execute command') @click.option('-l', '--langid', help='Change upload language id') @click.option('-d', '--default', is_flag=True, help='Set as default template') def modify(ctx, platform, name, newname, path, compile, execute, langid, default) -> None: """Update current template PLATFORM Platform Name, (AtCoder,Codeforces) NAME Custom template name """ tm: TemplateManager = ctx.obj[DI_TEMPMAN] logger: logging.Logger = ctx.obj[DI_LOGGER] logger.debug(f"{platform}, {name}, {path}, {compile}, {execute}, {langid},{default}") tm.update_template(platform=platform, alias=name, newalias=newname, path=path, compilation=compile, execute=execute, uplang=langid, default=default)
yxr-oi-cli
/yxr_oi_cli-0.2.2.4.tar.gz/yxr_oi_cli-0.2.2.4/oi_cli2/cli/template.py
template.py
import click import getpass import logging from rich.console import Console from oi_cli2.cli.adaptor.ojman import OJManager from oi_cli2.core.DI import DI_ACCMAN, DI_LOGGER, DI_PROVIDER from oi_cli2.model.BaseOj import BaseOj from oi_cli2.utils.account import AccountManager console = Console(color_system='256', style=None) @click.group() @click.pass_context def account(ctx): """Manage accounts""" from oi_cli2.utils.Provider2 import Provider2 ctx.obj[DI_PROVIDER] = Provider2() @account.command(name='list') @click.pass_context def list_command(ctx) -> None: """List all account""" provider = ctx.obj[DI_PROVIDER] am: AccountManager = provider.get(DI_ACCMAN) acc_list = am.get_list() for i in range(len(acc_list)): if i == 0 or acc_list[i].platform != acc_list[i - 1].platform: print(acc_list[i].platform) mark = ' ' if acc_list[i].default: mark = '*' print(f' {mark} {acc_list[i].account}') if len(acc_list) == 0: print("Account List is empty.") @account.command() @click.argument("platform") @click.argument("account") @click.option("-d", "--default", "default_", is_flag=True, help='Set account as default account in the oj platform.') @click.pass_context def new(ctx, platform, account, default_) -> None: """Create new account PLATFORM Platform Name, (AtCoder,Codeforces) ACCOUNT Account name """ provider = ctx.obj[DI_PROVIDER] logger: logging.Logger = provider.get(DI_LOGGER) am: AccountManager = provider.get(DI_ACCMAN) password = getpass.getpass("Password:") if not am.new(platform=platform, account=account, password=password, default=default_): logger.error('New Account Failed.') else: logger.info('Success') # TODO support password in arg??? @account.command() @click.argument("platform") @click.argument("account") @click.option("-p", "--password", "changepassword", is_flag=True, help='Change account password.') @click.option("-d", "--default", "default_", is_flag=True, help='Set account as default account in the oj platform.') @click.pass_context def modify(ctx, platform, account, changepassword: bool, default_): """Modify a specific account default status or change password PLATFORM Platform Name, (AtCoder,Codeforces) ACCOUNT Account name """ provider = ctx.obj[DI_PROVIDER] logger: logging.Logger = provider.get(DI_LOGGER) am: AccountManager = provider.get(DI_ACCMAN) if changepassword: password = getpass.getpass("Password:") else: password = None if not am.modify(platform=platform, account=account, password=password, default=default_): logger.error('Modify Account Failed.') else: logger.info('Success Modify') @account.command() @click.argument("platform") @click.argument("account") @click.pass_context def delete(ctx, platform, account) -> bool: """Delete a specific account PLATFORM Platform Name, (AtCoder,Codeforces) ACCOUNT Account name """ provider = ctx.obj[DI_PROVIDER] logger: logging.Logger = provider.get(DI_LOGGER) am: AccountManager = provider.get(DI_ACCMAN) if not am.delete(platform=platform, account=account): logger.error("Account not found") return False else: logger.info("Success Delete") return True @account.command(name="test") @click.argument("platform") @click.argument("account") @click.pass_context def valid_account(ctx, platform: str, account: str) -> bool: """Test account login PLATFORM Platform Name, (AtCoder,Codeforces) ACCOUNT Account name """ provider = ctx.obj[DI_PROVIDER] logger: logging.Logger = provider.get(DI_LOGGER) logger.debug(f'platform:{platform}') am: AccountManager = provider.get(DI_ACCMAN) acc = am.get_account(platform=platform, account=account) if acc is None: console.print(f'[red bold]Account [{account}] not found') return False try: oj: BaseOj = OJManager.createOj(platform=platform, account=acc, provider=provider) except Exception as e: logger.exception(e) raise e console.print(f"[green bold]{platform} Logging with {acc.account} ...") ok = oj.login_website(force=True) if ok: console.print(f"[green bold]Successful login.") else: console.print(f"[red bold]Login failed.") return ok
yxr-oi-cli
/yxr_oi_cli-0.2.2.4.tar.gz/yxr_oi_cli-0.2.2.4/oi_cli2/cli/account.py
account.py
import logging import time from typing import List, AsyncIterator from rich.console import Console from rich.table import Table from rich.style import Style from oi_cli2.model.LangKV import LangKV from ...cli.constant import CIPHER_KEY from ...model.Account import Account from ...model.BaseOj import BaseOj from ...model.ParseProblemResult import ParsedProblemResult from ...model.ProblemMeta import ContestMeta, ProblemMeta from ...model.Result import SubmissionResult from ...model.TestCase import TestCase from ...utils.HtmlTag import HtmlTag from ...utils.HttpUtil import HttpUtil from ...utils.HttpUtilCookiesHelper import HttpUtilCookiesHelper from ...utils.Provider2 import Provider2 from ...utils.enc import AESCipher from ...abstract.HtmlTagAbstract import HtmlTagAbstract from ...core.DI import DI_ACCMAN, DI_HTTP, DI_LOGGER, DI_PROVIDER from ac_core.auth import fetch_login, is_logged_in from ac_core.contest import fetch_tasks_meta, ParserProblemResult, fetch_standing from ac_core.problem import parse_task from ac_core.submit import fetch_submit from ac_core.interfaces.HttpUtil import HttpRespInterface from ac_core.result import fetch_result, SubmissionResult as CORE_SUB_RES from ac_core.language import fetch_language console = Console(color_system='256', style=None) def s2str(sec: int) -> str: if sec < 60: return str(sec) if sec < 60 * 60: return f"{sec//60}:{(sec%60):02d}" return f"{sec // 60 // 60}:{((sec // 60) % 60):02d}:{(sec % 60):02d}" def transform_Result(res: CORE_SUB_RES) -> SubmissionResult: mapdict = { CORE_SUB_RES.Status.AC: SubmissionResult.Status.AC, CORE_SUB_RES.Status.PENDING: SubmissionResult.Status.PENDING, CORE_SUB_RES.Status.RUNNING: SubmissionResult.Status.RUNNING, CORE_SUB_RES.Status.INIT: SubmissionResult.Status.PENDING, CORE_SUB_RES.Status.RE: SubmissionResult.Status.RE, CORE_SUB_RES.Status.TLE: SubmissionResult.Status.TLE, CORE_SUB_RES.Status.WA: SubmissionResult.Status.WA, CORE_SUB_RES.Status.CE: SubmissionResult.Status.CE, } if res.status in list(mapdict.keys()): status = mapdict[res.status] else: logger: logging.Logger = Provider2().get(DI_LOGGER) logger.error(f'Unknown status {res.status}') status = SubmissionResult.Status.UNKNOWN return SubmissionResult( id=res.id, cur_status=status, quick_key=res.url, # for refetch result url=res.url, # TODO change to webpage url state_note=str(res.score), time_note=str(res.time_cost_ms / 1000) + ' ms', mem_note=str(res.mem_cost_kb) + ' kb', msg_txt=res.msg_txt, ) class AtCoder(BaseOj): def __init__(self, http_util: HttpUtil, logger: logging.Logger, account: Account, html_tag: HtmlTagAbstract) -> None: super().__init__() assert (account is not None) self._base_url = 'https://atcoder.jp/' self.logger: logging.Logger = logger self.html_tag = html_tag self.account: Account = account self.http_util = http_util HttpUtilCookiesHelper.load_cookie(provider=Provider2(), platform=AtCoder.__name__, account=account.account) def login_website(self, force: bool = False) -> bool: if force or not is_logged_in(self.http_util): # need login if force: self.http_util._request.cookies.clear() ok = fetch_login(self.http_util, self.account.account, AESCipher(CIPHER_KEY).decrypt(self.account.password)) # if ok: # always save cookie HttpUtilCookiesHelper.save_cookie(provider=Provider2(), platform=AtCoder.__name__, account=self.account.account) return ok return True async def async_get_contest_meta(self, cid: str) -> ContestMeta: return self.get_contest_meta(cid) def get_contest_meta(self, cid: str) -> ContestMeta: self.login_website() res = fetch_tasks_meta(self.http_util, cid) def transform(pm: ParserProblemResult) -> ProblemMeta: return ProblemMeta(id=pm.id, url=pm.url, name=pm.name, contest_id=cid, memory_limit_kb=pm.memory_limit_kb, time_limit_msec=pm.time_limit_msec) return ContestMeta(id=cid, url=res.url, problems=[transform(pm) for pm in res.problems]) async def async_problem(self, problem: ProblemMeta) -> ParsedProblemResult: return self.problem(problem) # Care !! in Atcoder may arc058 C = https://atcoder.jp/contests/arc058/tasks/arc058_a def problem(self, pm: ProblemMeta) -> ParsedProblemResult: html = self.http_util.get(pm.url).text res = parse_task(html=html) return ParsedProblemResult( # status=: Status = Status.NOTVI STODO id=res.id, title=pm.name, test_cases=[TestCase(in_data=o.input, out_data=o.output) for o in res.tests], oj=AtCoder.__name__, # description=res.id, time_limit=str(pm.time_limit_msec), mem_limit=str(pm.memory_limit_kb), url=res.url, ) def submit_code(self, problem_url: str, language_id: str, code_path: str) -> HttpRespInterface: if not self.login_website(): raise Exception('Login Failed') return fetch_submit(self.http_util, problem_url=problem_url, lang_id=language_id, source_code=open(code_path, 'r').read()) async def async_get_result_yield(self, problem_url: str, time_gap: float = 1) -> AsyncIterator[SubmissionResult]: while True: res = transform_Result(fetch_result(self.http_util, problem_url)) yield res if res.cur_status not in [SubmissionResult.Status.PENDING, SubmissionResult.Status.RUNNING]: break time.sleep(time_gap) # TODO fav control ? def print_friends_standing(self, cid: str) -> None: if not self.login_website(): raise Exception('Login Failed') standing = fetch_standing(self.http_util, contest_id=cid) table = Table(title=f"Binary standing {cid}") table.add_column("rank", style="cyan") table.add_column("handle") for task in standing.TaskInfo: table.add_column(task.Assignment) for i in range(len(standing.StandingsData)): row: List[str] = [] d = standing.StandingsData[i] is_self = d.UserName == self.account.account if is_self or (i & (i + 1)) == 0: # care 0-index row.append(str(d.Rank)) row.append(d.UserScreenName) for task in standing.TaskInfo: if task.TaskScreenName in d.TaskResults: # score = d.TaskResults[task.TaskScreenName].Score // 100 penalty = d.TaskResults[task.TaskScreenName].Penalty elapsed_s = d.TaskResults[task.TaskScreenName].Elapsed // 1000 // 1000 // 1000 row.append(f"+{penalty}\n{s2str(elapsed_s)}") else: row.append("") table.add_row(*row, style=Style(bgcolor="dark_green" if is_self else None)) if is_self: break console.print(table) def get_language(self) -> LangKV: results = fetch_language(self.http_util) ret: LangKV = {} for item in results: ret[item.value] = item.text return ret def AtcoderGen(account: Account, provider: Provider2) -> BaseOj: http_util = provider.get(DI_HTTP) logger = provider.get(DI_LOGGER) oj: BaseOj = AtCoder(http_util=http_util, logger=logger, account=account, html_tag=HtmlTag(http_util)) return oj
yxr-oi-cli
/yxr_oi_cli-0.2.2.4.tar.gz/yxr_oi_cli-0.2.2.4/oi_cli2/cli/adaptor/AtCoderAdaptor.py
AtCoderAdaptor.py
from typing import List # Analyze 是紧密依赖 不采用依赖注入? from oi_cli2.model.Analyze import Analyze # 依赖注入 from oi_cli2.utils.db import JsonFileDB # 静态配置 from oi_cli2.utils.consts.ids import Ids class AnalyzeManager: def __init__(self, db: JsonFileDB): self.db = db self.keys = ['platform', 'alias', 'path', 'compilation', 'execute', 'clean', 'default'] def _get_analyze_list(self) -> List[Analyze]: analyze_list: List[dict] = self.db.load(Ids.analyze) or [] return list(map(lambda d: Analyze().dict_init(d), analyze_list)) def _set_analyze_list(self, analyze_list: List[Analyze]): analyze_list.sort(key=lambda temp0: (temp0.platform, -temp0.default, temp0.template_alias)) self.db.save(Ids.analyze, list(map(lambda d: d.__dict__, analyze_list))) def get_list(self) -> List[Analyze]: return self._get_analyze_list() def set_default(self, index: int): analyze_list: List[Analyze] = self._get_analyze_list() assert 0 <= index < len(analyze_list) for i in range(len(analyze_list)): if i == index: analyze_list[i].default = True elif analyze_list[i].platform == analyze_list[index].platform: analyze_list[i].default = False self._set_analyze_list(analyze_list) def delete_analyze(self, index): analyze_list: List[Analyze] = self._get_analyze_list() assert 0 <= index < len(analyze_list) if analyze_list[index].default: for i in range(len(analyze_list)): if i == index: continue if analyze_list[i].platform == analyze_list[index].platform: analyze_list[i].default = True break del analyze_list[index] self._set_analyze_list(analyze_list) # set default if no platform there def add_analyze(self, platform, submit_lang, template_alias, class_path): analyze_list: List[Analyze] = self._get_analyze_list() is_default = True for item in analyze_list: if item.platform == platform and item.default: is_default = False break analyze_list.append(Analyze().initial(platform, submit_lang, template_alias, class_path, default=is_default)) self._set_analyze_list(analyze_list) def modify_submit_lang(self, index: int, value: str): analyze_list: List[Analyze] = self._get_analyze_list() assert 0 <= index < len(analyze_list) analyze_list[index].submit_lang = value self._set_analyze_list(analyze_list) def modify_template_alias(self, index: int, value: str): analyze_list: List[Analyze] = self._get_analyze_list() assert 0 <= index < len(analyze_list) analyze_list[index].template_alias = value self._set_analyze_list(analyze_list) def modify_class_path(self, index: int, value: str): # 实例class 文件 analyze_list: List[Analyze] = self._get_analyze_list() assert 0 <= index < len(analyze_list) analyze_list[index].class_path = value self._set_analyze_list(analyze_list)
yxr-oi-cli
/yxr_oi_cli-0.2.2.4.tar.gz/yxr_oi_cli-0.2.2.4/oi_cli2/utils/analyze.py
analyze.py
from typing import Any, Dict from oi_cli2.core.DI import DI_ACCMAN, DI_CFG, DI_DB, DI_DB_COOKIES, DI_HTTP, DI_LOGGER, DI_PROVIDER, DI_TEMPMAN from oi_cli2.cli.constant import CIPHER_KEY, COOKIES_FILE, OT_FOLDER, OT_LOG, USER_CONFIG_FILE from oi_cli2.utils.HttpUtil import HttpUtil from oi_cli2.utils.Logger import getLogger from oi_cli2.utils.account import AccountManager from oi_cli2.utils.configFolder import ConfigFolder from oi_cli2.utils.db import JsonFileDB from oi_cli2.utils.enc import AESCipher from oi_cli2.utils.template import TemplateManager from .Singleton import Singleton @Singleton class Provider2: _objs: Dict[str, Any] = {} _fns: Dict[str, Any] = {} loop = 0 # 简单防止循环依赖 def __init__(self) -> None: self.reg(DI_CFG, gen_cfg) self.reg(DI_LOGGER, gen_logger) self.reg(DI_HTTP, gen_http_util) self.reg(DI_DB, gen_json_db) self.reg(DI_DB_COOKIES, gen_json_db_cookies) self.reg(DI_ACCMAN, gen_account_manager) self.reg(DI_TEMPMAN, gen_template_manager) def reg(self, key: str, func) -> bool: assert key not in self._fns self._fns[key] = func return True def get(self, key: str) -> Any: self.loop += 1 assert key in self._fns assert (self.loop < 100) if key not in self._objs: self._objs[key] = self._fns[key](self) self.loop -= 1 return self._objs[key] def gen_cfg(p: Provider2): return ConfigFolder(OT_FOLDER) def gen_logger(o: Provider2): try: config_folder: ConfigFolder = o.get(DI_CFG) logger = getLogger(config_folder.get_file_path(OT_LOG)) except Exception as e: print(str(e)) exit(1) return logger def gen_template_manager(o: Provider2): return TemplateManager(db=o.get(DI_DB)) def gen_account_manager(o: Provider2): return AccountManager(db=o.get(DI_DB), cipher=AESCipher(CIPHER_KEY), logger=o.get(DI_LOGGER)) def gen_json_db(o: Provider2): config_folder: ConfigFolder = o.get(DI_CFG) return JsonFileDB(config_folder.get_config_file_path(USER_CONFIG_FILE), logger=o.get(DI_LOGGER)) def gen_json_db_cookies(o: Provider2): config_folder: ConfigFolder = o.get(DI_CFG) return JsonFileDB(config_folder.get_config_file_path(COOKIES_FILE), logger=o.get(DI_LOGGER)) def gen_http_util(o: Provider2): return HttpUtil(logger=o.get(DI_LOGGER))
yxr-oi-cli
/yxr_oi_cli-0.2.2.4.tar.gz/yxr_oi_cli-0.2.2.4/oi_cli2/utils/Provider2.py
Provider2.py
from typing import List, Optional import logging from oi_cli2.model.Template import Template from oi_cli2.utils.db import JsonFileDB from oi_cli2.utils.consts.ids import Ids class TemplateManager: def __init__(self, db: JsonFileDB, platform: str = ''): self.db = db self.platform = platform self.keys = ['platform', 'alias', 'path', 'compilation', 'execute', 'clean', 'default'] def _get_template_list(self) -> List[Template]: temp_list: List[dict] = self.db.load(Ids.template) or [] return list(map(lambda d: Template().dict_init(d), temp_list)) def _set_template_list(self, temp_list: List[Template]): temp_list.sort(key=lambda temp0: (temp0.platform, -temp0.default, temp0.alias)) self.db.save(Ids.template, list(map(lambda d: d.__dict__, temp_list))) def get_list(self) -> List[Template]: return self._get_template_list() def alias_exist(self, temps: List[Template], platform: str, alias: str): return self.find_alias(temps=temps, platform=platform, alias=alias) != -1 def find_alias(self, temps: List[Template], platform: str, alias: str) -> int: for i in range(len(temps)): if temps[i].platform == platform and temps[i].alias == alias: return i return -1 def get_platform_default(self, platform: str) -> Optional[Template]: temps: List[Template] = self._get_template_list() for i in range(len(temps)): if temps[i].platform == platform and temps[i].default: return temps[i] return None def get_default(self) -> Optional[Template]: if not self.platform: logging.error('Please set platform first or using get_platform_default()') return None temps: List[Template] = self._get_template_list() for i in range(len(temps)): if temps[i].platform == self.platform and temps[i].default: return temps[i] return None def get_template_by_name(self, platform: str, name: str) -> Optional[Template]: temps: List[Template] = self._get_template_list() for i in range(len(temps)): if temps[i].platform == platform and temps[i].alias == name: return temps[i] return None def get_template_by_alias(self, alias: str) -> Optional[Template]: # deperated assert False pass if not self.platform: logging.error('Please set platform first or using get_platform_default()') return None temps: List[Template] = self._get_template_list() for i in range(len(temps)): if temps[i].platform == self.platform and temps[i].alias == alias: return temps[i] return None def set_temps_default(self, temps: List[Template], index: int): assert 0 <= index < len(temps) for i in range(len(temps)): if i == index: temps[i].default = True elif temps[i].platform == temps[index].platform: temps[i].default = False def set_default(self, index: int): temps: List[Template] = self._get_template_list() assert 0 <= index < len(temps) for i in range(len(temps)): if i == index: temps[i].default = True elif temps[i].platform == temps[index].platform: temps[i].default = False self._set_template_list(temps) def delete_template(self, platform: str, name: str) -> bool: temps: List[Template] = self._get_template_list() idx = -1 for i in range(len(temps)): if temps[i].platform == platform and temps[i].alias == name: idx = i break if idx < 0: return False if temps[idx].default: for i in range(len(temps)): if i == idx: continue if temps[i].platform == temps[idx].platform: temps[i].default = True break del temps[idx] self._set_template_list(temps) return True # set default if no platform there def add_template(self, platform, alias, path, compilation, execute, uplang) -> None: temps: List[Template] = self._get_template_list() if self.find_alias(temps, platform, alias) != -1: raise Exception('Duplicate alias') is_default = True for item in temps: if item.platform == platform and item.default: is_default = False break temps.append(Template().initial(platform=platform, alias=alias, path=path, compilation=compilation, execute=execute, uplang=uplang, default=is_default)) self._set_template_list(temps) def modify_alias(self, index: int, value: str): temps: List[Template] = self._get_template_list() assert 0 <= index < len(temps) if self.alias_exist(temps, temps[index].platform, value): raise Exception('Duplicate alias') temps[index].alias = value self._set_template_list(temps) def modify_path(self, index: int, value: str): temps: List[Template] = self._get_template_list() assert 0 <= index < len(temps) temps[index].path = value self._set_template_list(temps) def modify_compilation(self, index: int, value: str): temps: List[Template] = self._get_template_list() assert 0 <= index < len(temps) temps[index].compilation = value self._set_template_list(temps) def modify_execute(self, index: int, value: str): temps: List[Template] = self._get_template_list() assert 0 <= index < len(temps) temps[index].execute = value self._set_template_list(temps) def modify_clean(self, index: int, value: str): temps: List[Template] = self._get_template_list() assert 0 <= index < len(temps) temps[index].clean = value self._set_template_list(temps) # update def update_template(self, platform, alias: str, newalias: str, path: str, compilation: str, execute: str, uplang: str, default: bool): temps: List[Template] = self._get_template_list() idx = self.find_alias(temps, platform, alias) if idx == -1: raise Exception('Template Not Exist') if default: self.set_temps_default(temps, idx) if newalias: temps[idx].alias = newalias if path: temps[idx].path = path if compilation: temps[idx].compilation = compilation if execute: temps[idx].execute = execute if uplang: temps[idx].uplang = uplang self._set_template_list(temps)
yxr-oi-cli
/yxr_oi_cli-0.2.2.4.tar.gz/yxr_oi_cli-0.2.2.4/oi_cli2/utils/template.py
template.py
import logging from typing import List, Optional from oi_cli2.model.Account import Account # 依赖注入 from oi_cli2.utils.db import JsonFileDB from oi_cli2.utils.enc import AESCipher # 静态配置 from oi_cli2.utils.consts.ids import Ids class AccountManager: def __init__(self, db: JsonFileDB, cipher: AESCipher, logger=logging): self.db = db self.cipher = cipher self.logger = logger def _get_account_list(self) -> List[Account]: acc_list: List[dict] = self.db.load(Ids.account) or [] return list(map(lambda d: Account().dict_init(d), acc_list)) def _set_account_list(self, acc_list: List[Account]): acc_list.sort(key=lambda acc0: (acc0.platform, -acc0.default, acc0.account, acc0.password)) self.db.save(Ids.account, list(map(lambda d: d.__dict__, acc_list))) def get_list(self) -> List[Account]: return self._get_account_list() def set_default(self, index: int): accs: List[Account] = self._get_account_list() assert 0 <= index < len(accs) for i in range(len(accs)): if i == index: accs[i].default = True elif accs[i].platform == accs[index].platform: accs[i].default = False self._set_account_list(accs) def get_default_account(self, platform: str) -> Account: accs: List[Account] = self._get_account_list() for i in range(len(accs)): if accs[i].platform == platform and accs[i].default: return accs[i] raise Exception(f'Account Not Found int Platform [{platform}]') def get_account(self, platform: str, account: str) -> Optional[Account]: accs: List[Account] = self._get_account_list() for i in range(len(accs)): if accs[i].platform == platform and accs[i].account == account: return accs[i] return None def modify(self, platform: str, account: str, password=None, default=None) -> bool: modified = False accs: List[Account] = self._get_account_list() for item in accs: if item.platform == platform: if item.account == account: if password is not None: item.password = self.cipher.encrypt(password) if default: item.default = True modified = True elif default: item.default = False self._set_account_list(accs) return modified # Delete def delete(self, platform: str, account: str) -> bool: accs: List[Account] = self._get_account_list() for i in range(len(accs)): acc = accs[i] if acc.account != account or acc.platform != platform: continue if acc.default: # set new default for j in range(len(accs)): if j == i: continue if accs[i].platform == accs[j].platform: accs[i].default = True break del accs[i] self._set_account_list(accs) return True return False def new(self, platform, account, password, default=False) -> bool: accs: List[Account] = self._get_account_list() self.logger.debug("platform = %s, account = %s, default = %s", platform, account, default) has_default = False for item in accs: if item.platform == platform and item.account == account: return False for item in accs: if item.platform == platform and item.default: has_default = True break # first account in platform if not has_default: default = True accs.append(Account().initial(platform=platform, account=account, password=self.cipher.encrypt(password), default=default)) if default: for item in accs: if item.platform == platform and item.account != account: item.default = False self._set_account_list(accs) return True
yxr-oi-cli
/yxr_oi_cli-0.2.2.4.tar.gz/yxr_oi_cli-0.2.2.4/oi_cli2/utils/account.py
account.py
import numpy as np import math import sys import click __version__=1.1 #blocks is a list,the info of face include block id, the id start from 0 not 1 def similar_idenfication(func): def wrap_func(*d,**k): a = func(*d,**k) a = [reverse_line1(i) for i in a] a.sort(key = lambda x:x[0]) length = len(a) for i in range(length-1): bid1,(h1,w1,d1,_,_),_,_ = a[i] is_similar = False for bid2,(h2,w2,d2,_,_),_,_ in a[i+1:]: if bid2 == bid1 and min(h1) == min(h2) and max(h1) == max(h2) and \ min(w1) == min(w2) and max(w1) == max(w2) and \ min(d1) == min(d2) and max(d1) == max(d2): is_similar = True if is_similar: a[i] = None break a = [i for i in a if i is not None] return a return wrap_func def standard_mesh(blocks): def f_max(t): t = np.array(t) return t.max()-t.min() tx = [(i['X'].max(),i['X'].min()) for i in blocks] ty = [(i['Y'].max(),i['Y'].min()) for i in blocks] tz = [(i['Z'].max(),i['Z'].min()) for i in blocks] dx = f_max(tx) dy = f_max(ty) dz = f_max(tz) rate = 1000 / max(dx,dy,dz) return [{key:i[key]*rate for key in 'XYZ'} for i in blocks] def to_fortran_format(func): def deal_r(r): a = [(i[0]+1,i[1]+1) for i in r[:-2]] a.extend((r[-2]+1,r[-1]+1)) return a def wrap_func(*d,**k): a = func(*d,**k) if a is not None: a = [deal_r(i) for i in a] return a return wrap_func def is_equal_face(face1,face2,res = 1e-6): x1,y1,z1 = face1 x2,y2,z2 = face2 if x1.shape != x2.shape: return False if (np.abs(x1-x2).max() < res).all() and (np.abs(y1-y2).max() < res).all() and (np.abs(z1-z2).max() < res).all(): return True else: return False def is_parallel_face(face1,face2,res = 1e-3): x1,y1,z1 = face1 x2,y2,z2 = face2 dx = np.abs(x1-x2) dy = np.abs(y1-y2) dz = np.abs(z1-z2) if (dx.max() - dx.min() < 2*res).all() and (dy.max() - dy.min()< 2*res).all() and (dz.max()-dz.min() < 2*res).all(): return True else: return False def is_rotated_face(face1,face2,res = 1e-3): x1,y1,_ = face1 x2,y2,_ = face2 dx = (x1*x2+y1*y2)/(np.sqrt(x1*x1+y1*y1)*np.sqrt(x2*x2+y2*y2)) if (dx.max() - dx.min() < 0.02*res).all(): return True else: return False def is_equal_point(p1,p2,res = 1e-3): x1, y1, z1 = p1 x2, y2, z2 = p2 m = ((x2-x1)**2 + (y1-y2)**2 + (z1-z2)**2)**0.5 if m < res: return True else: return False @to_fortran_format def Ogrid_check(block,res=1e-3): x,y,z = block['X'],block['Y'],block['Z'] idim,jdim,kdim = x.shape if abs(x[0,0,0] - x[-1,0,0]) < res: if np.abs(x[0]-x[-1]).max() < res and np.abs(y[0]-y[-1]).max() < res and np.abs(z[0]-z[-1]).max() < res: return ((0,0),(0,jdim-1),(0,kdim-1),1,2),((idim-1,idim-1),(0,jdim-1),(0,kdim-1),1,2) if abs(y[0,0,0] - y[0,-1,0]) < res: if np.abs(x[:,0]-x[:,-1]).max() < res and np.abs(y[:,0]-y[:,-1]).max() < res and np.abs(z[:,0]-z[:,-1]).max() < res: return ((0,idim-1),(0,0),(0,kdim-1),0,2),((0,idim-1),(jdim-1,jdim-1),(0,kdim-1),0,2) if abs(z[0,0,0] - z[0,0,-1]) < res: if np.abs(x[:,:,0]-x[:,:,-1]).max() < res and np.abs(y[:,:,0]-y[:,:,-1]).max() < res and np.abs(z[:,:,0]-z[:,:,-1]).max() < res: return ((0,idim-1),(0,jdim-1),(0,0),0,1),((0,idim-1),(0,jdim-1),(kdim-1,kdim-1),0,1) return None def point_in_face(point,face,return_position = False,res = 1e-3): #Is the point in the face, if True, return True, else return None x,y,z = face px,py,pz = point tx = np.abs(x - px) ty = np.abs(y - py) tz = np.abs(z - pz) tx_min = tx.min() ty_min = ty.min() tz_min = tz.min() if tx_min < res and ty_min < res and tz_min < res: # there is a point of face2 belongs to face1 if return_position: t = tx+ty+tz m = np.where(t == t.min()) return m return True else: return False # def cut_face(face,px1,py1,px3,py3,xstep,ystep): # if py3+ystep ==-1 and px3+xstep == -1: # face_temp = [i[px1::xstep,py1::ystep] for i in face] # elif px3 + xstep == -1: # face_temp = [i[px1::xstep,py1:py3+ystep:ystep] for i in face] # elif py3+ ystep == -1: # face_temp = [i[px1:px3+xstep:xstep,py1::ystep] for i in face] # else: # face_temp = [i[px1:px3+xstep:xstep,py1:py3+ystep:ystep] for i in face] # return face_temp def get_double_face_x(face1, face2, point1, point3, xstep, ystep,message=None): x1,y1,z1 = face1 x2,y2,z2 = face2 # print('shape',x2.shape) px1,py1 = point1 px3,py3 = point3 (idim1,jdim1),(idim2,jdim2) = x1.shape,x2.shape result = [] xstep_t = -xstep if py3+ystep == -1: face_temp1 = [x1[:px1+xstep_t:xstep_t,py1::ystep], y1[:px1+xstep_t:xstep_t,py1::ystep], z1[:px1+xstep_t:xstep_t,py1::ystep]] else: face_temp1 = [x1[:px1+xstep_t:xstep_t,py1:py3+ystep:ystep], y1[:px1+xstep_t:xstep_t,py1:py3+ystep:ystep], z1[:px1+xstep_t:xstep_t,py1:py3+ystep:ystep]] width1 = face_temp1[0].shape[0] face_temp2 = [x2[width1-1::-1],y2[width1-1::-1],z2[width1-1::-1]] if is_equal_face(face_temp1,face_temp2): if xstep<0: result.append(((px1,0),(py1,py3),0,1)) else: result.append(((px1,idim1-1),(py1,py3),0,1)) result.append(((0,width1-1),(0,jdim2-1),0,1)) else: print('warning1 !!!!',message) #find the other # xstep_t = xstep if py3 + ystep == -1: face_temp1 = [x1[:px3+xstep:xstep,py1::ystep], y1[:px3+xstep:xstep,py1::ystep], z1[:px3+xstep:xstep,py1::ystep]] else: face_temp1 = [x1[:px3+xstep:xstep,py1:py3+ystep:ystep], y1[:px3+xstep:xstep,py1:py3+ystep:ystep], z1[:px3+xstep:xstep,py1:py3+ystep:ystep]] width2 = face_temp1[0].shape[0] face_temp2 = [x2[idim2-width2:], y2[idim2-width2:], z2[idim2-width2:]] # print(face_temp1[0].shape,face_temp2[0].shape) if is_equal_face(face_temp1,face_temp2): if xstep>0: result.append(((0,px3),(py1,py3),0,1)) else: result.append(((idim1-1,px3),(py1,py3),0,1)) result.append(((idim2-width2,idim2-1),(0,jdim2-1),0,1)) else: print('warning2 !!!!!!!!!',message) print('ttt',result) if len(result) == 0: not_connected(45,message) result = None return result def get_matched_face(face1,face2,point1,point3,xstep,ystep,message): px1,py1 = point1 px3,py3 = point3 if (px1 - px3) * xstep>0: #across x axis return get_double_face_x(face1,face2,point1,point3,xstep,ystep,message) elif (py1 - py3) * ystep>0: #across y axis face1_T = [i.T for i in face1] face2_T = [i.T for i in face2] point1_T = py1,px1 point3_T = py3,px3 result = get_double_face_x(face1_T,face2_T,point1_T, point3_T, ystep, xstep,message) if result: result = [(i2,i1,i3,i4) for i1,i2,i3,i4 in result] return result else: # x_index = range(px1, px3+xstep, xstep) # y_index = range(py1, py3+ystep, ystep) # print(x_index,y_index,x1.shape) if py3+ystep ==-1 and px3+xstep == -1: face1_temp = [i[px1::xstep,py1::ystep] for i in face1] elif px3 + xstep == -1: face1_temp = [i[px1::xstep,py1:py3+ystep:ystep] for i in face1] elif py3+ ystep == -1: face1_temp = [i[px1:px3+xstep:xstep,py1::ystep] for i in face1] else: face1_temp = [i[px1:px3+xstep:xstep,py1:py3+ystep:ystep] for i in face1] if is_equal_face(face1_temp,face2): idim2,jdim2 = face2[0].shape result = ((px1,px3),(py1,py3),0,1),((0,idim2-1),(0,jdim2-1),0,1) return result return None def not_connected(code=0,message='no message', warningOutput=False): #没有匹配到网格,但是这个情况有点奇怪 # if warningOutput: # print("warning!please insure your grid is correct! code:",code,message) return None def SmallInBig(face1,face2,face1_info,face2_info,res = 1e-3,message = None, warningOutput = True): #there is one point of face2 belong to face1 oblock1,oblock2 = message[-2:] x1,y1,z1 = face1 x2,y2,z2 = face2 idim1,jdim1 = x1.shape idim2,jdim2 = x2.shape if idim1*jdim1 < idim2*jdim2: exchange = True face1,face2 = face2,face1 face1_info,face2_info = face2_info,face1_info x1,y1,z1 = face1 x2,y2,z2 = face2 idim1,jdim1 = x1.shape idim2,jdim2 = x2.shape oblock1,oblock2 = oblock2, oblock1 else: exchange = False p3 = x2[-1,-1],y2[-1,-1],z2[-1,-1] pif3 = point_in_face(p3,face1,return_position=True) if pif3: p1 = x2[0,0],y2[0,0],z2[0,0] pif = point_in_face(p1,face1,return_position=True) # print('pif3',x2.shape) if pif: # print('pif1') px1,py1 = pif px3,py3 = pif3 px1,py1 = px1[0],py1[0] px3,py3 = px3[0],py3[0] p2 = x2[0,-1],y2[0,-1],z2[0,-1] pif2 = point_in_face(p2,face1,return_position=True) if pif2: px2, py2 = pif2 px2, py2 = px2[0],py2[0] # 其中face2的三个顶点都在face1上,再检查face2面上的非顶点的一个点是否在face1上 # 避免两个面组成环的形式出现 p_in = x2[1,1],y2[1,1],z2[1,1] pif_in = point_in_face(p_in,face1,return_position=False) if not pif_in: return not_connected('circle',message, warningOutput) else: return not_connected(2,message, warningOutput) if px1 == px2 == px3 or py1 == py2 == py3: #三个点在一条线 return None #检查是否需要转置后再对应 if px2 == px1: is_transpose = False else: is_transpose = True if is_transpose: x2, y2, z2 = x2.T, y2.T, z2.T face2 = [x2, y2, z2] idim2, jdim2 = x2.shape #检查轴的对应方向 if px2>px3: xstep = -1 else: xstep = 1 if py1>py2: ystep = -1 else: ystep = 1 pdy = x2[0,1], y2[0,1], z2[0,1] pdx = x2[1,0], y2[1,0], z2[1,0] if idim1 > px1+xstep and jdim1 > py1: f1pdx = x1[px1+xstep,py1],y1[px1+xstep,py1],z1[px1+xstep,py1] else: if idim1 == px1+xstep and xstep == 1: f1pdx = x1[0,py1],y1[0,py1],z1[0,py1] else: raise Exception('condition not find of x') if idim1 > px1 and jdim1 > py1+ystep: f1pdy = x1[px1,py1+ystep],y1[px1,py1+ystep],z1[px1,py1+ystep] else: if jdim1 == py1+ystep and ystep == 1: f1pdy = x1[px1,0],y1[px1,0],z1[px1,0] else: raise Exception('condition not find of y') if not is_equal_point(pdx,f1pdx): xstep = -xstep #往相反的方向检查 也可能因为网格数对不上 而出错 而这种情况可能是不存在正确匹配面的,所以排除 if xstep+px1 >= x1.shape[0]: return None f1pdx2 = x1[px1+xstep,py1],y1[px1+xstep,py1],z1[px1+xstep,py1] if not is_equal_point(pdx,f1pdx2): if oblock1 is True: return None else: return not_connected(12,message) if not is_equal_point(pdy,f1pdy): ystep = -ystep #往相反的方向检查 也可能因为网格数对不上 而出错 而这种情况可能是不存在正确匹配面的,所以排除 if py1+ystep >= x1.shape[1]: return f1pdy2 = x1[px1,py1+ystep],y1[px1,py1+ystep],z1[px1,py1+ystep] if not is_equal_point(pdy,f1pdy2): if oblock1 is True: return None else: return not_connected(344 ,message,warningOutput) point1 = px1,py1 point3 = px3,py3 result = get_matched_face( face1, face2, point1, point3, xstep, ystep,message ) if result: if len(result) == 2: r1, r2 = result if is_transpose: r2 = r2[1],r2[0],r2[3],r2[2] if exchange: result = r2,r1 else: result = r1,r2 return result elif len(result) == 4: r1,r2,r3,r4 = result if is_transpose: r2 = r2[1],r2[0],r2[3],r2[2] r4 = r4[1],r4[0],r4[3],r4[2] if exchange: result = r2,r1,r4,r3 else: result = r1,r2,r3,r4 return result else: if oblock1 is True and oblock2 is True: return None else: return not_connected(4,message, warningOutput) return not_connected('没有找到',message, warningOutput) def FindPointInLines(points, lines, res = 1e-3): length = points.shape[0] p = points[0] for k,line in enumerate(lines): t1 = np.abs(line - p ).sum(1).min() if t1 < res: return 0,k for i in range(6,-1,-1): step = 2**i for j in range(0,length,step): if j % (step*2) == 0: continue p = points[j] for k,line in enumerate(lines): t1 = np.abs(line - p ).sum(1).min() if t1 < res: return j,k return None, None def FindBoundPointInLine(pStart,pEnd,points,line,res = 1e-5): # res = distance = lambda line0,p0:1 if np.abs(line0 - p0).sum(1).min() < res else -1 stateS = distance(line,points[pStart]) # step = 1 if pEnd > pStart else -1 # for ii in range(pStart,pEnd+step,step): # if distance(line,points[ii]) == 1: # print(ii) # break while True: pM = (pEnd+pStart) // 2 stateM = distance(line,points[pM]) if stateM*stateS<0: pEnd = pM # stateE = stateM else: pStart = pM stateS = stateM if pEnd - pStart <= 1: if stateS == 1: # print('start',pStart,pEnd) return pStart else: # print('end',pStart,pEnd) return pEnd def FindPartInFace(face1,face2,res = 1e-3): x1,y1,z1 = face1 x2,y2,z2 = face2 points0 = np.vstack([x2[:,0], y2[:,0], z2[:,0]]).T points1 = np.vstack([x2[:,-1], y2[:,-1], z2[:,-1]]).T line1 = np.vstack([x1[:,0],y1[:,0],z1[:,0]]).T line2 = np.vstack([x1[:,-1],y1[:,-1],z1[:,-1]]).T lines = [line1, line2] pN,lineN = FindPointInLines(points0,lines) if pN is None: return None,None p1 = FindBoundPointInLine(0,pN,points0,lines[lineN]) # print(p1,pN,"7777777777") p2 = FindBoundPointInLine(pN,points0.shape[0],points0,lines[lineN]) if np.abs(lines[1-lineN] - points1[p1]).sum(1).min()>res: return None,None if np.abs(lines[1-lineN] - points1[p2]).sum(1).min()>res: return None,None if p1 == p2: return None,None else: return p1,p2 @to_fortran_format def face2face(face1,face2,face1_info,face2_info,res = 1e-3,message = None,**kargs): def TransPartConnectResult(r1,r2,exchange,face1_T,face2_T,p1): r2 = (r2[0][0]+p1,r2[0][1]+p1),r2[1],r2[2],r2[3] if exchange: r1,r2 = r2,r1 face1_T,face2_T = face2_T,face1_T if face1_T: r1 = r1[1], r1[0], r1[3], r1[2] if face2_T: r2 = r2[1], r2[0], r2[3], r2[2] return r1,r2 oblock1,oblock2 = message[-2:] (x1min,x1max),(y1min,y1max),(z1min,z1max) = face1_info (x2min,x2max),(y2min,y2max),(z2min,z2max) = face2_info if x2min - x1max > res or x1min - x2max > res: return None if y2min - y1max > res or y1min - y2max > res: return None if z2min - z1max > res or z1min - z2max > res: return None x1,y1,z1 = face1 x2,y2,z2 = face2 idim1,jdim1 = x1.shape idim2,jdim2 = x2.shape if x1.shape == x2.shape: if np.abs(x1 - x2).max() < res and np.abs(y1 - y2).max() < res and np.abs(z1 - z2).max() < res: return ((0,idim1-1),(0,jdim1-1),0,1),((0,idim2-1),(0,jdim2-1),0,1) if (idim1>=idim2 and jdim1>=jdim2) or (idim1<=idim2 and jdim1<=jdim2) or \ (idim1>=jdim2 and jdim1>=idim2) or (idim1<=jdim2 and jdim1<=idim2): #face1 is a big face, face2 is included in face1,if face1 is smaller than face2, exchange them. # print('first ') a = SmallInBig(face1,face2,face1_info,face2_info,message=message, warningOutput=False,res = res) # a = None if a: return a else: #满足一个面比一个面小,但是小的面上的顶点不在,这时候face1是大的面face2是小的面 注意后面进行交换 #确保第face1是大面 if idim1*jdim1 < idim2*jdim2: exchange = True face1,face2 = face2,face1 face1_info,face2_info = face2_info,face1_info x1,y1,z1 = face1 x2,y2,z2 = face2 idim1,jdim1 = x1.shape idim2,jdim2 = x2.shape message = list(message) message[-2],message[-1] = oblock2, oblock1 else: exchange = False #确保face1的j轴小于等于i轴 if jdim1 > idim1: face1_T = True x1,y1,z1 = face1 face1 = x1.T, y1.T, z1.T x1,y1,z1 = face1 idim1,jdim1 = jdim1, idim1 else: face1_T = False if jdim1 == jdim2 or jdim1 == idim2: p1 = None if idim2 == jdim2: p1,p2 = FindPartInFace(face1,face2) if p1 is not None: equalCheck = True else: equalCheck = False else: equalCheck = False if jdim1 == idim2 and equalCheck is False: face2_T = True x2,y2,z2 = face2 face2 = x2.T, y2.T, z2.T x2,y2,z2 = face2 idim2,jdim2 = jdim2, idim2 else: face2_T = False if p1 is None: p1,p2 = FindPartInFace(face1,face2) if p1 is not None: face2 = x2[p1:p2+1], y2[p1:p2+1], z2[p1:p2+1] t = SmallInBig(face1,face2,face1_info,face2_info,message=message,res = res) if t: if len(t) == 2: r1,r2 = t return TransPartConnectResult(r1,r2,exchange,face1_T,face2_T,p1) elif len(t) is 4: r1,r2,r3,r4 = t r1,r2 = TransPartConnectResult(r1,r2,exchange,face1_T,face2_T,p1) r3,r4 = TransPartConnectResult(r3,r4,exchange,face1_T,face2_T,p1) return r1,r2,r3,r4 else: return not_connected('不存在所属关系',message) return None def generate_blocks_info(blocks): def get_block_info(block): face_info = dict() x,y,z = block['X'],block['Y'],block['Z'] face_info['K0'] = (x[:,:,0].min(), x[:,:,0].max()), ( y[:,:,0].min(), y[:,:,0].max()), (z[:,:,0].min(), z[:,:,0].max()) face_info['KE'] = (x[:,:,-1].min(),x[:,:,-1].max()), (y[:,:,-1].min(),y[:,:,-1].max()), (z[:,:,-1].min(),z[:,:,-1].max()) face_info['J0'] = (x[:,0,:].min(), x[:,0,:].max()), ( y[:,0,:].min(), y[:,0,:].max()), (z[:,0,:].min(), z[:,0,:].max()) face_info['JE'] = (x[:,-1,:].min(),x[:,-1,:].max()), (y[:,-1,:].min(),y[:,-1,:].max()), (z[:,-1,:].min(),z[:,-1,:].max()) face_info['I0'] = (x[0,:,:].min(), x[0,:,:].max()), ( y[0,:,:].min(), y[0,:,:].max()), (z[0,:,:].min(), z[0,:,:].max()) face_info['IE'] = (x[-1,:,:].min(),x[-1,:,:].max()), (y[-1,:,:].min(),y[-1,:,:].max()), (z[-1,:,:].min(),z[-1,:,:].max()) return face_info return [get_block_info(i) for i in blocks] def generate_blocks_face(blocks): def get_block_faces(block): faces = dict() x,y,z = block['X'],block['Y'],block['Z'] faces['K0'] = x[:,:,0], y[:,:,0], z[:,:,0] faces['KE'] = x[:,:,-1], y[:,:,-1], z[:,:,-1] faces['J0'] = x[:,0,:], y[:,0,:], z[:,0,:] faces['JE'] = x[:,-1,:], y[:,-1,:], z[:,-1,:] faces['I0'] = x[0,:,:], y[0,:,:], z[0,:,:] faces['IE'] = x[-1,:,:], y[-1,:,:], z[-1,:,:] return faces return [get_block_faces(block) for block in blocks] def expand_to_3d(key,result,shape): #因为face2face返回的结果是针对一个二维的平面,并不包含第三个轴,所以需要转换到和Ogrid_check的结果一样的结果 idim,jdim,kdim = shape r1,r2,index1,index2 = result if key[0] == 'I': if key[1] == '0': result0 = (1,1), r1, r2, index1+1,index2+1 else: result0 = (idim,idim), r1, r2, index1+1,index2+1 elif key[0] == 'J': if key[1] == '0': result0 = r1, (1,1), r2, index1,index2+1 else: result0 = r1, (jdim,jdim), r2, index1,index2+1 elif key[0]=='K': if key[1] == '0': result0 = r1,r2, (1,1),index1,index2 else: result0 = r1,r2, (kdim,kdim),index1,index2 else: raise Exception('key is an error variables x ,y,z not in key.') return result0 def block_group(bid,groups): #检查该block属于哪个group,不同group之间不进行匹配 if not groups: return -1 for gid,group in enumerate(groups): if bid in group: return gid return -1 @similar_idenfication def one2one(blocks,periodic_faces=None,periodic_faces_result = None,periodic_only = False,groups=[]): #perodic_faces is list like [((block1,face1),(block2,face2),rotated),....] #example [((0,'I0'),(1,'IE'),False),...],block id is ctype, start from 0 blocks = standard_mesh(blocks) def get_periodic_(): p_result = [] for (id1,key1),(id2,key2),rotated in periodic_faces: face1 = blocks_faces[id1][key1] face2 = blocks_faces[id2][key2] rr = get_periodic_faces(face1,face2,rotated) if rr is not None: (r1,r2) = rr r1 = expand_to_3d(key1,r1,blocks[id1]['X'].shape) r2 = expand_to_3d(key2,r2,blocks[id2]['X'].shape) p_result.append((id1+1,r1,id2+1,r2)) if not rotated: result.append(p_result[-1]) return p_result blocks_info = generate_blocks_info(blocks) blocks_faces = generate_blocks_face(blocks) result = [] keys = ['K0','KE','J0','JE','I0','IE'] try: oblocks = dict() for i,block in enumerate(blocks): k = Ogrid_check(block) if k is not None: oblocks[i] = True result.append((i+1,k[0],i+1,k[1])) if periodic_faces: p_result = get_periodic_() if periodic_faces_result is not None: periodic_faces_result.extend(p_result) if periodic_only: return periodic_faces_result for i,block in enumerate(blocks): # if i != 3: # continue for j in range(len(blocks)): # if j != 6: # continue if i>=j: continue if block_group(i,groups) != block_group(j,groups): continue for key1 in keys: face1 = blocks_faces[i][key1] info1 = blocks_info[i][key1] for key2 in keys: # if key1 != 'KE' or key2 != 'IE': # continue face2 = blocks_faces[j][key2] info2 = blocks_info[j][key2] res = get_res(blocks,i+1) t = face2face(face1,face2,info1,info2,message=(i+1,j+1,key1,key2,oblocks.get(i,False),oblocks.get(j,False)),res = res) if t is not None: if len(t) == 2: r1,r2 = t r1 = expand_to_3d(key1,r1,block['X'].shape) r2 = expand_to_3d(key2, r2, blocks[j]['X'].shape) result.append((i+1,r1,j+1,r2)) elif len(t) == 4: r1,r2,r3,r4 = t r1 = expand_to_3d(key1,r1,block['X'].shape) r2 = expand_to_3d(key2, r2, blocks[j]['X'].shape) r3 = expand_to_3d(key1,r3,block['X'].shape) r4 = expand_to_3d(key2, r4, blocks[j]['X'].shape) result.extend(((i+1,r1,j+1,r2),(i+1,r3,j+1,r4))) except Exception as e: print(e) print(i,j,key1,key2,'yyyyyyyyyyyyyyyyyyyyy') raise Exception('stop') #检查是否通过oneone检测 result = [i for i in result if not_line(i)] one2one_second(result,blocks_faces,blocks_info,blocks,oblocks) # print("before ",len(result)) Varify_one2one(blocks,result) # print("after ",len(result)) return result def not_line(odata): #排除 oneonedata 是一条线的情况 t = odata[1] d1 = t[t[-1]-1] d2 = t[t[-2]-1] if d1[0] == d1[1] or d2[0] == d2[1]: return False else: return True def get_faces_tag(result,blocks_faces_shape,faces_tag=None,iscenter = False): if faces_tag is None: faces_tag = [{k:np.zeros(v,dtype='int') for k,v in i.items()} for i in blocks_faces_shape] IJK = "IJK" if iscenter: bias = 1 else: bias = 0 for b1,t1,b2,t2 in result: for bid,data in [(b1,t1),(b2,t2)]: ijk = 6-data[-1]-data[-2] if data[ijk-1][0] == 1: t = '0' else: t = 'E' faceid = IJK[ijk-1]+t (ist,iet),(jst,jet),(kst,ket) = data[:3] ftag = faces_tag[bid-1][faceid] if iet<ist: ist,iet = iet,ist if jet<jst: jst,jet = jet,jst if ket<kst: kst,ket = ket,kst if ijk==1: ftag[jst-1:jet - bias,kst-1:ket - bias] = 1 elif ijk==2: ftag[ist-1:iet - bias,kst-1:ket - bias] = 1 else: ftag[ist-1:iet - bias,jst-1:jet - bias] = 1 return faces_tag def find_face(faces_tag): tags = ['I0','IE','J0','JE','K0','KE'] result = [] for i,block_faces in enumerate(faces_tag): for faceid in tags: face = block_faces[faceid] if face.any() and (not face.all()): k = face.argmin() h0,w0 = face.shape w = k % w0 h = (k-w)// w0 for j in range(w+1,w0): if face[h,j] != 0: w2 = j + 1 break else: w2 = w0 for j in range(h+1,h0): if face[j,w] != 0: h2 = j + 1 break else: h2 = h0 if h>0: h = h-1 if w>0: w = w-1 if h2-h == 1 or w2 - w ==1: continue result.append((i,faceid,(h,h2,w,w2))) for i,block_faces in enumerate(faces_tag): for faceid in tags: face = block_faces[faceid] face[face>2] = 0 return result def one2one_second(result0,blocks_faces,blocks_info,blocks,oblocks): #对one2one的结果进行check,然后对未匹配的面(一个面的一部分)再进行一次匹配 blocks_faces_shape = [{k:v[0].shape for k,v in i.items()} for i in blocks_faces] faces_tag = get_faces_tag(result0,blocks_faces_shape) while True: result = [] faces = find_face(faces_tag) bids = list(range(len(blocks_faces))) tags = ['I0','IE','J0','JE','K0','KE'] for bid,faceid,(h,h2,w,w2) in faces: x,y,z = blocks_faces[bid][faceid] face1 = x[h:h2,w:w2],y[h:h2,w:w2],z[h:h2,w:w2] info1 = blocks_info[bid][faceid] bids.sort(key = lambda x:(x-bid)**2) for bid2 in bids: rr = None for tag in tags: if bid==bid2 and faceid==tag: continue face2 = blocks_faces[bid2][tag] info2 = blocks_info[bid2][tag] rr = face2face(face1,face2,info1,info2,message=(bid+1,bid2+1,faceid,tag,False,False)) if rr is not None: if len(rr) == 2: r1,r2 = rr t1,t2 = r1[:2] t1 = t1[0]+h,t1[1]+h t2 = t2[0]+w,t2[1]+w r1 = t1,t2,r1[2],r1[3] r1 = expand_to_3d(faceid,r1,blocks[bid]['X'].shape) r2 = expand_to_3d(tag, r2, blocks[bid2]['X'].shape) result.append((bid+1,r1,bid2+1,r2)) else: assert len(rr) == 4 r1,r2,r3,r4 = rr t1,t2 = r1[:2] t1 = t1[0]+h,t1[1]+h t2 = t2[0]+w,t2[1]+w r1 = t1,t2,r1[2],r1[3] r1 = expand_to_3d(faceid,r1,blocks[bid]['X'].shape) r2 = expand_to_3d(tag, r2, blocks[bid2]['X'].shape) t1,t2 = r3[:2] t1 = t1[0]+h,t1[1]+h t2 = t2[0]+w,t2[1]+w r3 = t1,t2,r3[2],r3[3] r3 = expand_to_3d(faceid,r3,blocks[bid]['X'].shape) r4 = expand_to_3d(tag, r4, blocks[bid2]['X'].shape) result.extend(((bid+1,r1,bid2+1,r2),(bid+1,r3,bid2+1,r4))) break if rr is not None: break blocks_faces_shape = [{k:v[0].shape for k,v in i.items()} for i in blocks_faces] faces_tag = get_faces_tag(result,blocks_faces_shape,faces_tag) if len(result) == 0: break else: temp =[] for b1,t1,b2,t2 in result: if b1>b2: t = b2,t2,b1,t1 else: t = b1,t1,b2,t2 temp.append(t) result0.extend(temp) def get_res(blocks,bid,coeff=0.1,result = {}): #获取第bid个block中网格距离最小的一个边的长度 t = result.get(bid,None) if t is None: result[bid] = get_min_distance(blocks[bid]) return result[bid]*coeff def Varify_one2one(blocks,result): def get_face(block,r,bid): ((i1,i2),(j1,j2),(k1,k2),ind1,ind2) = r x,y,z = block['X'],block['Y'],block['Z'] istep = 1 if i2>i1 else -1 jstep = 1 if j2>j1 else -1 kstep = 1 if k2>k1 else -1 i1,j1,k1 = i1-1,j1-1,k1-1 inds = ind1 + ind2 if 6 - inds == 1: h,w = abs(j2-j1-1)+1,abs(k2-k1-1)+1 face = x[i1,j1::jstep,k1::kstep][:h,:w],y[i1,j1::jstep,k1::kstep][:h,:w],z[i1,j1::jstep,k1::kstep][:h,:w] elif 6 - inds == 2: h,w = abs(i2-i1-1)+1,abs(k2-k1-1)+1 face = x[i1::istep,j1,k1::kstep][:h,:w],y[i1::istep,j1,k1::kstep][:h,:w],z[i1::istep,j1,k1::kstep][:h,:w] elif 6 - inds == 3: h,w = abs(i2-i1-1)+1,abs(j2-j1-1)+1 face = x[i1::istep,j1::jstep,k1][:h,:w],y[i1::istep,j1::jstep,k1][:h,:w],z[i1::istep,j1::jstep,k1][:h,:w] else: raise Exception('One2One check error') if ind1 > ind2: face = face[0].T,face[1].T,face[2].T return face error_one2one = [] for nnt,(bid1,r1,bid2,r2) in enumerate(result): f1 = get_face(blocks[bid1-1],r1,bid1) f2 = get_face(blocks[bid2-1],r2,bid2) res = min(get_res(blocks,bid1-1),get_res(blocks,bid2-1)) t = is_equal_face(f1,f2,res = res / 100000) if t is False: t = is_parallel_face(f1,f2) if t is False: t = is_rotated_face(f1,f2) if t is False: # raise Exception('One2One check error 12') error_one2one.append(nnt) error_one2one.reverse() for i in error_one2one: result.pop(i) if error_one2one: print("please check this one-one block data") for i in error_one2one: print(result[i]) def is_all_one2one(nface,one2one_block,shape): #检查该block的nface是否被全部one2oneblock了,nface(1~6) s1,s2 = 0,0 for iface,onedata in one2one_block: if iface != nface: continue if iface <= 2: s1 += max(onedata[1]) - min(onedata[1]) s2 += max(onedata[2]) - min(onedata[2]) elif iface <= 4: s1 += max(onedata[0]) - min(onedata[0]) s2 += max(onedata[2]) - min(onedata[2]) else: s1 += max(onedata[0]) - min(onedata[0]) s2 += max(onedata[1]) - min(onedata[1]) if nface <= 2: s1 = shape[1] - s1 s2 = shape[2] - s2 elif nface <= 4: s1 = shape[0] - s1 s2 = shape[2] - s2 else: s1 = shape[0] - s1 s2 = shape[1] - s2 if max(s1,s2) > 1: return False else: return True def get_used_surface(result,entire=False): def get_nface(t): axis = 3 - t[3] - t[4] + 2 dim = min(t[axis][0],2) if entire: return axis*2+dim,t else: return axis*2+dim rr = [(i[j*2]-1,get_nface(i[j*2+1])) for i in result for j in range(2)] return rr def transfer_one2one_str(result): result.sort(key=lambda x:x[0]) def expand_var(vv): GRID,((ISTA,IEND),(JSTA,JEND),(KSTA,KEND),ISVA1,ISVA2) = vv return GRID,ISTA,JSTA,KSTA,IEND,JEND,KEND,ISVA1,ISVA2 bstr = [' 1-1 BLOCKING DATA:'] bstr.append('{:>10s}'.format('NBLI')) bstr.append('{:>10d}'.format(len(result))) title = ' NUMBER GRID : ISTA JSTA KSTA IEND JEND KEND ISVA1 ISVA2' bstr.append(title) str_format = '{:>9d}{:>7d}{:>11d}'+'{:>7d}'*5+'{:>8d}'*2 bstr += [str_format.format(i+1,*expand_var(v[:2])) for i,v in enumerate(result)] bstr.append(title) bstr += [str_format.format(i+1,*expand_var(v[2:])) for i,v in enumerate(result)] return '\n'.join(bstr) def get_periodic_faces(face1,face2,rotated = False,res = 1e-3): #该函数返回结果是 fortran类型 start from 1 if not rotated: x1,y1,z1 = face1 x2,y2,z2 = face2 px1,py1,pz1 = 0,0,0 px2,py2,pz2 = 0,0,0 for i,j in [(0,0),(-1,-1),(0,-1),(-1,0)]: px1+=x1[i,j] py1+=y1[i,j] pz1+=z1[i,j] px2+=x2[i,j] py2+=y2[i,j] pz2+=z2[i,j] x2 =x2 - (px2-px1)/4 y2 =y2 - (py2-py1)/4 z2 =z2 - (pz2-pz1)/4 face2 = x2,y2,z2 a = SmallInBig(face1,face2,None,None,message=(False,False),res = res) if a: r1,r2 = a r1 = ((r1[0][0]+1,r1[0][1]+1),(r1[1][0]+1,r1[1][1]+1),r1[2]+1,r1[3]+1) r2 = ((r2[0][0]+1,r2[0][1]+1),(r2[1][0]+1,r2[1][1]+1),r2[2]+1,r2[3]+1) rr = r1,r2 return rr else: return None else: return get_rotated_periodic_faces(face1,face2) def get_rotated_periodic_faces(face1,face2,res = 1e-3,is_check=False): x1,y1,z1 = face1 x2,y2,z2 = face2 idim1,jdim1 = x1.shape idim2,jdim2 = x2.shape if idim1 == idim2 and jdim1 == jdim2 : iTranspose,jTranspose = 1,1 da = (x2*x1 + y2*y1)/(((x2**2+y2**2)*(x1**2+y1**2))**(1/2)) dz = np.abs(z1-z2 ) if da.max() - da.min() < res and dz.max()<res: return ((1,idim1),(1,jdim1),1,2), ((1,idim2)[::iTranspose],(1,jdim2)[::jTranspose],1,2) iTranspose = -1 x2, y2, z2 = x2[::-1],y2[::-1],z2[::-1] da = (x2*x1 + y2*y1)/(((x2**2+y2**2)*(x1**2+y1**2))**(1/2)) dz = np.abs(z1-z2 ) if da.max() - da.min() < res and dz.max()<res: return ((1,idim1),(1,jdim1),1,2), ((1,idim2)[::iTranspose],(1,jdim2)[::jTranspose],1,2) iTranspose,jTranspose = 1,-1 x2, y2, z2 = x2[::-1,::-1],y2[::-1,::-1],z2[::-1,::-1] da = (x2*x1 + y2*y1)/(((x2**2+y2**2)*(x1**2+y1**2))**(1/2)) dz = np.abs(z1-z2 ) if da.max() - da.min() < res and dz.max()<res: return ((1,idim1),(1,jdim1),1,2), ((1,idim2)[::iTranspose],(1,jdim2)[::jTranspose],1,2) iTranspose,jTranspose = -1,-1 x2, y2, z2 = x2[::-1],y2[::-1],z2[::-1] da = (x2*x1 + y2*y1)/(((x2**2+y2**2)*(x1**2+y1**2))**(1/2)) dz = np.abs(z1-z2 ) if da.max() - da.min() < res and dz.max()<res: return ((1,idim1),(1,jdim1),1,2), ((1,idim2)[::iTranspose],(1,jdim2)[::jTranspose],1,2) if not is_check: print('Warning these two faces may not be rotated periodic',da.max() - da.min()) return None else: return None def GetFace(block,faceId): x,y,z = block['X'], block['Y'], block['Z'] if faceId[1] == '0': dim = 0 else: dim = -1 if faceId[0].upper() == 'I': return x[dim],y[dim],z[dim] elif faceId[0].upper() == 'J': return x[:,dim],y[:,dim],z[:,dim] elif faceId[0].upper() == 'K': return x[:,:,dim],y[:,:,dim],z[:,:,dim] else: raise Exception('faceId error',faceId) def GetFaceAngle(point0,face,pos=None): #默认旋转轴是z轴 def get_p_list(face,pos): x,y = face[:2] p_list = [(0,0),(0,-1),(-1,-1),(-1,0)] distance = [((i,j),math.sqrt(x[i,j]**2+y[i,j]**2)) for i,j in p_list] distance.sort(key = lambda k:k[1]) # print(distance,'distahce') distance = [i[0] for i in distance] if pos.lower() == 'top': return distance[-2:] else: return distance[:2] px,py = point0[:2] x,y = face[:2] norm0 = math.sqrt(px*px+py*py) amax,amin = -600,600 if pos is None: p_list = [(0,0),(0,-1),(-1,-1),(-1,0)] else: p_list = get_p_list(face,pos) for i, j in p_list: px1,py1 = x[i,j], y[i,j] fz = px*px1 + py*py1 fm = norm0*math.sqrt(px1*px1+py1*py1) t = fz/fm t = 1 if t>1 else t t = -1 if t<-1 else t angle = math.acos(t) if px*py1 - py*px1<0: angle = -angle amin = min(amin,angle) amax = max(amax,angle) return amax - amin ,amin,amax def GetGroupFacesAngle(faces,blocks): face_list = [GetFace(blocks[bid],fid) for bid,fid in faces] point0 = face_list[0][0][0,0],face_list[0][1][0,0],0 angles = [GetFaceAngle(point0,face,'top')[0] for face in face_list] return sum(angles) # def GetLinesAngle(point0,lines): # #默认旋转轴是z轴 # px,py = point0[:2] # norm0 = math.sqrt(px**2 + py**2) # amax,amin = -600,600 # for pxpy in lines: # for px1,py1 in pxpy: # fz = px*px1 + py*py1 # fm = norm0*math.sqrt(px1*px1+py1*py1) # t = fz/fm # t = 1 if t>1 else t # t = -1 if t<-1 else t # angle = math.acos(t) # if px*py1 - py*px1<0: # angle = -angle # amin = min(amin,angle) # amax = max(amax,angle) # return amax - amin ,amin,amax def FindBottomTopLine(surf): in_face_x, in_face_y = surf point00 = in_face_x[0,0],in_face_y[0,0] point01 = in_face_x[0,-1],in_face_y[0,-1] point11 = in_face_x[-1,-1],in_face_y[-1,-1] point10 = in_face_x[-1,0],in_face_y[-1,0] point_list = [point00,point01,point11,point10] distance = [] for i,(px,py) in enumerate(point_list): if i == 3: j = 0 else: j = i+1 p2x,p2y = point_list[j] pxm,pym = (px+p2x)/2 , (py+p2y)/2 distance.append((i,j,math.sqrt(pxm**2+pym**2))) distance.sort(key = lambda x:x[-1]) in_top_line = distance[-1] in_bottom_line = distance[0] return in_top_line,in_bottom_line,point_list # def GetFacesAngle(point0,faces,position = 'Top'): # bottom_top_lines = [FindBottomTopLine(f[:2]) for f in faces] # bottom_lines = [(points[ib],points[jb]) for (it,jt,_),(ib,jb,_),points in bottom_top_lines] # if position == 'Top': # top_lines = [(points[it],points[jt]) for (it,jt,_),(ib,jb,_),points in bottom_top_lines] # return GetLinesAngle(point0,top_lines) # else: # bottom_lines = [(points[ib],points[jb]) for (it,jt,_),(ib,jb,_),points in bottom_top_lines] # return GetLinesAngle(point0, bottom_lines) # def PatchedInterfaceRotatedSingle(blocks,faces1,faces2,periodic1 = 0,periodic2 = 1,position = 'Top'): # #faces1:[(2,'I0'),(3,'J0')] # #默认face2是旋转面 # fs1 = [GetFace(blocks[i], faceId) for i,faceId in faces1] # fs2 = [GetFace(blocks[i], faceId) for i,faceId in faces2] # fx,fy,_ = fs1[0] # point0 = fx[0,0], fy[0,0] # GetFacesAngle(point0,fs1,position) # angleSpan1, angle1Min, angle1Max = GetFacesAngle(point0,fs1,position) # angleSpan2, angle2Min, angle2Max = GetFacesAngle(point0,fs2,position) # # angle2Min = min([i[1] for i in angles2]) # # angle2Max = max([i[2] for i in angles2]) # # angleSpan2 = angle2Max - angle2Min # # angleSpan1 = 2*np.pi/round(2*np.pi/angleSpan1) # # angleSpan2 = 2*np.pi/round(2*np.pi/angleSpan2) # #旋转过后的角度 # if periodic1>0: # angle1MaxRotated = angle1Max + angleSpan1*periodic1 # angle1MinRotated = angle1Min # elif periodic1<0: # angle1MaxRotated = angle1Max # angle1MinRotated = angle1Min + angleSpan1*periodic1 # else: # angle1MaxRotated = angle1Max # angle1MinRotated = angle1Min # if periodic2>0: # angle2MaxRotated = angle2Max + angleSpan2*periodic2 # angle2MinRotated = angle2Min # elif periodic2<0: # angle2MaxRotated = angle2Max # angle2MinRotated = angle2Min + angleSpan2*periodic2 # else: # angle2MaxRotated = angle2Max # angle2MinRotated = angle2Min # # if not patchedPeriodic: # f1tof2Positive = math.ceil((angle2MaxRotated - angle1MinRotated)/angleSpan1) # f1tof2Negative = -(math.ceil((angle1MaxRotated - angle2MinRotated )/angleSpan1) - 1) # f2tof1Positive = math.ceil((angle1MaxRotated - angle2MinRotated)/angleSpan2) # f2tof1Negative = -(math.ceil((angle2MaxRotated - angle1MinRotated )/angleSpan2) - 1) # return (faces1, angleSpan1, f1tof2Negative, f1tof2Positive), (faces2, angleSpan2, f2tof1Negative, f2tof1Positive) # # else: # # assert abs(angleSpan1 - angleSpan2)<1e-3 # # dt = (angle2Max - angle1Max)/angleSpan1 # # return (faces1, angleSpan1, dt, dt), (faces2, angleSpan2, -dt, -dt) def PatchedInterfaceRotatedPeriodic(blocks,faces1,faces2): #计算旋转周期壁面,该壁面无法进行oneoneblock赋值,只能进行插值计算 fs1 = [GetFace(blocks[i], faceId) for i,faceId in faces1] fs2 = [GetFace(blocks[i], faceId) for i,faceId in faces2] fx,fy,_ = fs1[0] point0 = fx[0,0], fy[0,0] angels1 = [GetFaceAngle(point0,i) for i in fs1] angels2 = [GetFaceAngle(point0,i) for i in fs2] ma1_list = [i[2] for i in angels1] ma2_list = [i[2] for i in angels2] ma1,ma2 = max(ma1_list),max(ma2_list) span = ma2 - ma1 return (faces1,span,1,1), (faces2, span, -1, -1) # def PatchedInterfaceRotated(blocks,faces1,faces2,periodic1 = 0,periodic2 = 1,patchedPeriodic = False): # if patchedPeriodic: # return PatchedInterfaceRotatedPeriodic(blocks, faces1, faces2) # (f1,a1,n1,p1),(f2,a2,n2,p2) = PatchedInterfaceRotatedSingle(blocks,faces1,faces2,periodic1 ,periodic2 ,position = 'Top') # (_,a3,n11,p11),(_,a4,n22,p22) = PatchedInterfaceRotatedSingle(blocks,faces1,faces2,periodic1 ,periodic2 ,position = 'Bottom') # t = (f1,a1,min(n1,n11),max(p1,p11)),(f2,a2,min(n2,n22),max(p2,p22)) # # print(a1,a2,n1,p1,n2,p2) # # print(a1,a3,n11,p11,n22,p22) # return t def MergeBlocks(blocks,b1,b2,one2oneData=None,patchedData=None,boundaryData=None): #b1,b2 start from 0 if b2 < b1: b1, b2 = b2, b1 block1 = blocks[b1] block2 = blocks[b2] shape1, shape2 = block1['X'].shape, block2['X'].shape def detectEqualFace(dim,pos): if dim == 0: face1 = block1['X'][pos],block1['Y'][pos],block1['Z'][pos] face20 = block2['X'][0],block2['Y'][0],block2['Z'][0] face21 = block2['X'][-1],block2['Y'][-1],block2['Z'][-1] elif dim == 1: face1 = block1['X'][:,pos],block1['Y'][:,pos],block1['Z'][:,pos] face20 = block2['X'][:,0],block2['Y'][:,0],block2['Z'][:,0] face21 = block2['X'][:,-1],block2['Y'][:,-1],block2['Z'][:,-1] elif dim == 2: face1 = block1['X'][:,:,pos],block1['Y'][:,:,pos],block1['Z'][:,:,pos] face20 = block2['X'][:,:,0],block2['Y'][:,:,0],block2['Z'][:,:,0] face21 = block2['X'][:,:,-1],block2['Y'][:,:,-1],block2['Z'][:,:,-1] else: raise Exception('dim Error') if is_equal_face(face1,face20): return 0 elif is_equal_face(face1,face21): return -1 else: return None dim1 = None for i in range(3): for j in [0,-1]: t = detectEqualFace(i,j) if t is not None: dim1,pos1,dim2,pos2 = i,j,i,t if dim1 is None: raise Exception('No detect equal face') assert pos1 == -1 and pos2 == 0 blocks.pop(b2) h,w,d = shape2 kk = [0,0,0] kk[dim2] = 1 h1,w1,d1 = kk block1['X'] = np.concatenate((block1['X'],block2['X'][h1:h,w1:w,d1:d]),axis = dim2) block1['Y'] = np.concatenate((block1['Y'],block2['Y'][h1:h,w1:w,d1:d]),axis = dim2) block1['Z'] = np.concatenate((block1['Z'],block2['Z'][h1:h,w1:w,d1:d]),axis = dim2) if one2oneData: def deal_one2one(rr,b1,b2): bb1,rr1,bb2,rr2 = rr bb1 -= 1 bb2 -= 1 result = [] length = shape1[dim1]-1 delete_face = False for b,r in [(bb1,rr1),(bb2,rr2)]: if b > b2: b = b - 1 elif b == b2: b = b1 ise,jse,kse,v1,v2 = r if dim2 == 0: if ise[0] == 1 and ise[1] == 1: delete_face = True ise = ise[0]+length, ise[1]+length elif dim2 == 1: if jse[0] == 1 and jse[1] == 1: delete_face = True jse = jse[0]+length, jse[1]+length elif dim2 == 2: if kse[0] == 1 and kse[1] == 1: delete_face = True kse = kse[0]+length, kse[1]+length r = ise,jse,kse,v1,v2 result.extend((b+1,r)) if delete_face: return None else: return result result_one2one = [deal_one2one(i,b1,b2) for i in one2oneData] result_one2one = [i for i in result_one2one if i] Varify_one2one(blocks,result_one2one) else: result_one2one = None if patchedData: t = b1,b2,shape1,shape2,dim1 mfun = mergedPatchedData patchedData2 = [(mfun(i[0],t),[mfun(ff,t) for ff in i[1]]) for i in patchedData] else: patchedData2 = None if boundaryData: boundaryData2 = dict() for key,value in boundaryData.items(): blockid = int(key[:-2])-1 if blockid == b2: assert value['bctype'] != 2005 continue elif blockid == b1: assert value['bctype'] != 2005 continue elif blockid > b2: blockid -= 1 key = '{}{}'.format(blockid+1,key[-2:]) boundaryData2[key] = value else: boundaryData2 = None return blocks,result_one2one, patchedData2, boundaryData2 def mergedPatchedData(element_patchedData,mergedData): (blockId,faceId),xie_eta = element_patchedData[:2] if mergedData: if faceId[0].lower() == 'i': dimf = 0 elif faceId[0].lower() == 'j': dimf = 1 else: dimf = 2 else: return element_patchedData targetId,mergeId,(h1,w1,d1),(h2,w2,d2),dim1 = mergedData if blockId > mergeId: blockId = blockId - 1 elif blockId == mergeId: blockId = targetId h,w,d = h1+h2-1, w1+w2 -1, d1+d2-1 if dim1 is 0: h,w,d = h1+h2-1,w1,d1 w1,d1 = 1,1 elif dim1 is 1: h,w,d = h1,w1+w2-1,d1 h1,d1 = 1,1 else: h,w,d = h1,w1,d1+d2-1 h1,w1 = 1,1 if dim1 != dimf: if dimf is 0: #xie = j eta = k xie_eta = w1,w,d1,d elif dimf is 1: #xie = k eta = i xie_eta = d1,d,h1,h elif dimf is 2: #xie = j eta = i xie_eta = w1,w,h1,h elif blockId == targetId: blockId = targetId if dim1 != dimf: if dimf is 0 : #xie = j eta = k xie_eta = 1,w1,1,d1 elif dimf is 1: #xie = k eta = i xie_eta = 1,d1,1,h1 elif dimf is 2: #xie = j eta = i xie_eta = 1,w1,1,h1 if len(element_patchedData) == 2: return (blockId, faceId), xie_eta elif len(element_patchedData) ==3: return (blockId, faceId), xie_eta,element_patchedData[2] else: raise Exception('Error 2342354') def AdjustNegativeGrid(blocks): return [{k:v[::-1,:,:] for k,v in b.items()} if CheckBlockVolume(b)<0 else b for b in blocks] def patchedFace2Faces(blocks,face1,faces,faces_type,rotate_angle='positive',steady=False): if faces_type.lower() == 'periodic': _,f2 = PatchedInterfaceRotatedPeriodic(blocks,[face1],faces) rotate_angle = f2[1]*f2[2] to_face_result = face1,(0,0,0,0) from_face_result = [(faces[0],(0,0,0,0),rotate_angle)] return to_face_result,from_face_result face1_xyz = GetFace(blocks[face1[0]],face1[1]) point0 = face1_xyz[0][-1,-1],face1_xyz[1][-1,-1],face1_xyz[2][-1,-1] faces_xyz = [GetFace(blocks[bid],key) for bid,key in faces] # k = GetFacesAngle(point0,faces_xyz,'Top') # print(k) face1_theta_top = GetFaceAngle(point0,face1_xyz,'Top') face1_theta_bottom = GetFaceAngle(point0,face1_xyz,'bottom') faces_theta_top = [GetFaceAngle(point0,i,'Top') for i in faces_xyz] faces_theta_bottom = [GetFaceAngle(point0,i,'bottom') for i in faces_xyz] theta_min = [i[-2] for i in faces_theta_top] theta_max = [i[-1] for i in faces_theta_top] theta_delta = [i[0] for i in faces_theta_top] Theta = sum(theta_delta)#整个faces的角度 if abs(max(theta_max) - min(theta_min) - Theta) > 0.00001: print(max(theta_max) , min(theta_min),Theta) print(face1,faces) raise Exception('patched error') faces_theta_top_extend = [(face_number,j,delta,amin+j*Theta,amax+j*Theta) for face_number,(delta,amin,amax) in enumerate(faces_theta_top) for j in range(-3,4)] faces_theta_bottom_extend = [(face_number,j,delta,amin+j*Theta,amax+j*Theta) for face_number,(delta,amin,amax) in enumerate(faces_theta_bottom) for j in range(-3,4)] if rotate_angle.lower() == 'positive': rotate_angle = Theta elif rotate_angle.lower() == 'negative': rotate_angle = -Theta else: rotate_angle = float(rotate_angle) if steady: rotate_angle = 0 if faces_type.lower() == 'rotor': rotate_angle *=-1 pd,pmi,pma = face1_theta_top face1_theta_top_extend = [pd+abs(rotate_angle),min(pmi,pmi+rotate_angle),max(pma,pma+rotate_angle)] face1_theta_bottom_extend = [ face1_theta_bottom[0]+abs(rotate_angle), min(face1_theta_bottom[1],face1_theta_bottom[1]+rotate_angle), max(face1_theta_bottom[2],face1_theta_bottom[2]+rotate_angle) ] def isPatched(element_faces,element_face1): _,_,_,mi,ma = element_faces _,fmi,fma = element_face1 if fmi <= mi <= fma or fmi <= ma <= fma: return True elif ma>=fma and mi <= fmi: return True else: return False f1 = [i for i in faces_theta_top_extend if isPatched(i,face1_theta_top_extend)] f2 = [i for i in faces_theta_bottom_extend if isPatched(i,face1_theta_bottom_extend)] from_faces = list({i[:2] for i in f1+f2}) from_faces.sort(key = lambda x:faces_theta_top[x[0]][1]+x[1]*Theta) to_face_result = face1,(0,0,0,0) from_faces_result = [(faces[i],(0,0,0,0),j*Theta) for i,j in from_faces] # for i in from_faces_result: # print(i) # exit() return to_face_result,from_faces_result def translatePatcheDataToString(blocks,pdata,ITOSS=0,ITMAX=0): if ITMAX is None: ITMAX = 0 def getITMAX_ITOSS(faces,itmax=0): if itmax is not 0: return itmax,0 blockId, faceId = faces[0] i,j,k = blocks[blockId]['X'].shape key = faceId[0].lower() if key == 'i': t = max(j,k) elif key == 'j': t = max(i,k) else: t = max(i,j) if t>itmax: itmax = t return t,0 title = ' DYNAMIC PATCH INPUT DATA\n NINTER\n{:>10d}\n INT IFIT LIMIT ITMAX MCXIE MCETA C-0 IORPH ITOSS\n' title_block = [getITMAX_ITOSS(to_face,ITMAX) for to_face,_ in pdata] NINTER = len(pdata) result = title.format(NINTER) fstr1 = '{:>6d}'*2+'{:>9d}'*7+'\n' for i,(itmax,itoss) in enumerate(title_block): result += fstr1.format(i+1,1,1,itmax,0,0,0,0,itoss) fstr2 = ' INT TO XIE1 XIE2 ETA1 ETA2 NFB\n' fstr2 += '{:>6d}'*2+'{:>9d}'*5+'\n' translate_table = str.maketrans('ijkIJK0eE','123123122') fromStr1 = ' FROM XIE1 XIE2 ETA1 ETA2 FACTJ FACTK\n' fromStr1 += '{:>12d}'+'{:>9d}'*4+'{:>9.4f}{:9.4f}\n' dxStr = ' DX DY DZ DTHETX DTHETY DTHETZ\n' dxStr += '{:>12.4f}'+'{:>9.4f}'*5+'\n' fromStr = fromStr1+dxStr strings_result = [result] for i,(((toid,tokey),(xie1,xie2,eta1,eta2)),from_faces) in enumerate(pdata): TO = '{}{}'.format(toid+1,tokey.translate(translate_table)) if xie1 != 0: print((xie1,xie2,eta1,eta2),toid,tokey,'warning') strings_result.append(fstr2.format(i+1,int(TO),xie1,xie2,eta1,eta2,len(from_faces))) for (fromId,faceId),(xie1,xie2,eta1,eta2),delta_theta in from_faces: FROM = '{}{}'.format(fromId+1,faceId.translate(translate_table)) delta_theta = delta_theta/3.1415926*180 t = fromStr.format(int(FROM),xie1,xie2,eta1,eta2,0,0,0,0,0,0,0,delta_theta) strings_result.append(t) return ''.join(strings_result) def reverse_block(blocks,bid): #使i轴和k轴反向 t = blocks[bid] t = {k:v[::-1,:,::-1].copy() for k,v in t.items()} blocks[bid]=t def read_plot3d_unfmt(filename): float_type = {4:'float32',8:'float64'} int_type = {4:'int32',8:"int64"} if isinstance(filename,str) or isinstance(filename,Path): fp = open(filename,'rb') else: fp = filename filename = fp.name multiblock = np.frombuffer(fp.read(4), dtype = 'int32')[0] if multiblock==4: n_blocks = np.frombuffer(fp.read(8), dtype = 'int32')[0] else: n_blocks = 1 fp.seek(0,0) k = np.frombuffer(fp.read(4), dtype= 'int32' )[0] blocks = np.frombuffer(fp.read(k), dtype = 'int32').reshape(n_blocks,-1) fp.read(4) dimension = (k // 4) // n_blocks result = [] precision=None for shape in blocks: k = np.frombuffer(fp.read(4), dtype= 'int32' )[0] if dimension==3: imax,jmax,kmax = shape size = imax*jmax*kmax else: imax,jmax = shape size = imax*jmax if precision is None: precision = k //(size) //dimension if precision ==4 or precision == 8: IBLANK = False np_dim = dimension else: np_dim = dimension + 1 precision = k //(size) //np_dim IBLANK = True if IBLANK: bl_data = np.frombuffer(fp.read(k),dtype = float_type[precision]) else: bl_data = np.frombuffer(fp.read(k),dtype = float_type[precision]) fp.read(4) if dimension == 3: bl_data.shape = (np_dim,kmax,jmax,imax) bl_data = bl_data.transpose((0,3,2,1)) t = dict(zip('XYZ',bl_data)) else: bl_data.shape = (np_dim,jmax,imax) bl_data = bl_data.swapaxes(2,1) t = dict(zip('XY',bl_data)) if IBLANK: shape0 = bl_data[-1].shape t['IBLANK'] = np.frombuffer(bl_data[-1].copy().data,dtype='int32') t['IBLANK'].shape = shape0 result.append(t) return result def get_min_distance(block): #获取block中网格距离最小的一个边的长度 x,y,z = block['X'],block['Y'],block['Z'] imin = np.sqrt((x[:-1,:,:] - x[1:,:,:])**2 + (y[:-1,:,:] - y[1:,:,:])**2 + (z[:-1,:,:] - z[1:,:,:])**2).min() jmin = np.sqrt((x[:,:-1,:] - x[:,1:,:])**2 + (y[:,:-1,:] - y[:,1:,:])**2 + (z[:,:-1,:] - z[:,1:,:])**2).min() kmin = np.sqrt((x[:,:,:-1] - x[:,:,1:])**2 + (y[:,:,:-1] - y[:,:,1:])**2 + (z[:,:,:-1] - z[:,:,1:])**2).min() return min((imin,jmin,kmin)) def CheckBlockVolume(block): x,y,z = block['X'], block['Y'], block['Z'] t = [(0,0,0),(1,0,0),(1,1,0),(0,1,0), (0,0,1),(1,0,1),(1,1,1),(0,1,1)] p = [(x[i],y[i],z[i]) for i in t] volume = hexahedronArea(*p) return volume def tetrahedronArea(p1,p2,p3,p4): px,py,pz = p4 v1x,v1y,v1z = p1[0] - px, p1[1] - py, p1[2] - pz v2x,v2y,v2z = p2[0] - px, p2[1] - py, p2[2] - pz v3x,v3y,v3z = p3[0] - px, p3[1] - py, p3[2] - pz tx = v1y*v2z - v2y*v1z ty = v1z*v2x - v2z*v1x tz = v1x*v2y - v1y*v2x volume = tx*v3x + ty*v3y + tz*v3z return volume/6 def hexahedronArea(p1,p2,p3,p4,p5,p6,p7,p8): v = tetrahedronArea(p2,p4,p5,p1) v += tetrahedronArea(p7,p2,p5,p6) v += tetrahedronArea(p4,p7,p5,p8) v += tetrahedronArea(p4,p2,p7,p3) v += tetrahedronArea(p7,p5,p2,p4) return v def reverse_line1(ldata): bid1,l1,bid2,l2 = ldata exchange = False if l1[-2] == 1 or l1[-2] == 2: if l1[-1] - l1[-2] != 1: exchange =True if l1[-2] == 3: if l1[-1] != 1: exchange = True if exchange: l1 = list(l1) l2 = list(l2) l1[-2],l1[-1] = l1[-1],l1[-2] l2[-2],l2[-1] = l2[-1],l2[-2] ldata = bid1,l1,bid2,l2 return ldata @click.command() @click.argument('plot3d_grid') def main(plot3d_grid): t = read_plot3d_unfmt(plot3d_grid) k = one2one(t) q = transfer_one2one_str(k) print(q) open('1-1_blocking.txt','w').write(q) print('数据写入:1-1_blocking.txt') if __name__=='__main__': main()
yxs-one2one
/yxs_one2one-1.1-py3-none-any.whl/yxs_one2one.py
yxs_one2one.py
import ctypes import numpy as np import sys from pathlib import Path import os __version__='1.0.1' def get_dll(): p = Path.home() / '.yxspkg'/'pytecio' if not p.is_dir(): os.makedirs(p) if sys.platform.startswith('win'): dll_path = p / 'tecio.dll' url = 'https://raw.githubusercontent.com/blacksong/pytecio/master/2017r3_tecio.dll' elif sys.platform.startswith('linux'): dll_path = p / 'tecio.so' url = 'https://raw.githubusercontent.com/blacksong/pytecio/master/2017r2_tecio.so' if not dll_path.is_file(): from urllib import request print('Downloading dll from github:',url) request.urlretrieve(url,dll_path) return ctypes.cdll.LoadLibrary(str(dll_path)) GLOBAL_DLL = get_dll() class zone_data(dict): def __init__(self,parent,zone_n): super().__init__() self.parent = parent self.zone_n = zone_n self.update({i:None for i in parent.nameVars}) def __getitem__(self,key): if isinstance(key, int): key = self.parent.nameVars[key] t = super().__getitem__(key) if t is None: var_n = self.parent.nameVars_dict[key] + 1 t = self.parent._read_zone_var(self.zone_n, var_n) self[key] = t return t else: return t def __setitem__(self,key,value): if isinstance(key, int): key = self.parent.nameVars[key] if key not in self.parent.nameVars: self.parent._add_variable(self.zone_n,key,value) super().__setitem__(key,value) def __getattr__(self,attr): if attr == 'Elements': self.Elements = self.parent._retrieve_zone_node_map(self.zone_n) return self.Elements else: raise Exception('no attribute {}'.format(attr)) #zone_n:the number of zones, start from 1 to end, var_n is the same #经测试Double类型的数据FieldDataType_Double的值为2 FieldDataType_Double = 2 FieldDataType_Float = 1 FieldDataType_Int32 = 3 # -100:not defined FieldDataType_Int16 = -100 FieldDataType_Byte = -100 Structed_Grid = 0 class SzpltData(dict): def __init__(self,filename,isread=False): super().__init__() if not isinstance(filename,str): self.GenerateDataFromOtherFormat(filename) return self.dll = GLOBAL_DLL self.filename = filename self.added_new_zone = False self.filehandle = self._get_filehandle() self.title = self._tecDataSetGetTitle() self.numVars = self._tecDataSetGetNumVars() self.nameVars = self._tecVarGetName() self.fileType = self._tecFileGetType() self.numZones = self._tecDataSetGetNumZones() self.nameZones = self._tecZoneGetTitle() self.nameZones_dict = {k:i for i,k in enumerate(self.nameZones)} self.nameVars_dict = {k:i for i,k in enumerate(self.nameVars)} def cal_zone(i,zone_name): d = dict() d['varTypes'] = [self._tecZoneVarGetType(i+1,j+1) for j in range(self.numVars)] d['passiveVarList'] = [self._tecZoneVarIsPassive(i+1,j+1) for j in range(self.numVars)] d['shareVarFromZone'] = [self._tecZoneVarGetSharedZone(i+1,j+1) for j in range(self.numVars)] # valueLocation: value 1 represent the data is saved on nodes, value 0 means on elements center d['valueLocation'] = [self._tecZoneVarGetValueLocation(i+1,j+1) for j in range(self.numVars)] d['IJK'] = self._tecZoneGetIJK(i+1) d['zoneType'] = self._tecZoneGetType(i+1) d['solutionTime'] = self._tecZoneGetSolutionTime(i+1) d['strandID'] = self._tecZoneGetStrandID(i+1) d['shareConnectivityFromZone'] = self._tecZoneConnectivityGetSharedZone(i+1) d['faceNeighborMode'] = self._tecZoneFaceNbrGetMode(i+1) d['numFaceConnections'] = self._tecZoneFaceNbrGetNumConnections(i+1) if d['numFaceConnections'] > 0: d['faceConnections'] = self._tecZoneFaceNbrGetConnections(i+1) d['parentZone'] = self._tecZoneGetParentZone(i+1) d['name'] = zone_name d['aux'] = self._retrieve_aux_data(i+1) return d self.zone_info = [cal_zone(i,zone_name) for i,zone_name in enumerate(self.nameZones)] self.update({name:zone_data(self,i+1) for i,name in enumerate(self.nameZones)}) # self._retrieve_zone_node_map(1) # self._retrieve_aux_data(1) if isread: [zone[var_name] for zone in self.values() for var_name in self.nameVars] def __getitem__(self,key): if isinstance(key, int): key = self.nameZones[key] return super().__getitem__(key) def __setitem__(self,key,value): self.added_new_zone = True return super().__setitem__(key,value) def _read_zone_var(self,zone_n,var_n): info = self.zone_info[zone_n - 1] numValues = self._tecZoneVarGetNumValues(zone_n, var_n) if info['passiveVarList'][var_n - 1] is 0: fieldDataType = info['varTypes'][var_n-1] if fieldDataType is FieldDataType_Float: d = self._get_data_all_type(zone_n, var_n, numValues, ctypes.c_float, self.dll.tecZoneVarGetFloatValues) # np_array = np.array(d) elif fieldDataType is FieldDataType_Double: d = self._get_data_all_type(zone_n, var_n, numValues, ctypes.c_double, self.dll.tecZoneVarGetDoubleValues) # np_array = np.array(d) elif fieldDataType is FieldDataType_Int32: d = self._get_data_all_type(zone_n, var_n, numValues, ctypes.c_int, self.dll.tecZoneVarGetInt32Values) # np_array = np.array(d) elif fieldDataType is FieldDataType_Int16: d = self._get_data_all_type(zone_n, var_n, numValues, ctypes.c_int, self.dll.tecZoneVarGetInt16Values) # np_array = np.array(d) elif fieldDataType is FieldDataType_Byte: d = self._get_data_all_type(zone_n, var_n, numValues, ctypes.c_int, self.dll.tecZoneVarGetByteValues) # np_array = np.array(d) else: raise Exception('FieldDataType Error:not defined data type') d = np.array(d) if info['zoneType'] is Structed_Grid: #structed grid Imax,Jmax,Kmax = info['IJK'] if d.size != Imax*Jmax*Kmax: Imax =max(Imax - 1,1) Jmax =max(Jmax - 1,1) Kmax =max(Kmax - 1,1) d = d.reshape((Kmax,Jmax,Imax)).transpose((2,1,0)) return d else: return np.array([]) def _get_data_all_type(self, zone_n, var_n, numValues, c_type, fun): t = (c_type*numValues)() fun(self.filehandle, zone_n, var_n, 1, numValues, t) return t def _get_filehandle(self): '''get the filehandle''' p = ctypes.c_int(13) p1 = ctypes.pointer(p) filehandle = ctypes.pointer(p1) name = ctypes.c_char_p(self.filename.encode()) self.dll.tecFileReaderOpen(name,filehandle) return filehandle[0] def _tecDataSetGetTitle(self): '''get the title of data set''' s = ctypes.c_char_p() ll = ctypes.pointer(s) self.dll.tecDataSetGetTitle(self.filehandle,ll) t = ll[0].decode() return t def _tecDataSetGetNumVars(self): t = ctypes.c_int(0) p = ctypes.pointer(t) self.dll.tecDataSetGetNumVars(self.filehandle,p) return p[0] def _tecVarGetName(self): def get_name(i): s = ctypes.c_char_p() ll = ctypes.pointer(s) self.dll.tecVarGetName(self.filehandle,i,ll) return ll[0].decode() name_list = [get_name(i) for i in range(1,self.numVars+1)] return name_list def _tecFileGetType(self): '''获取文件类型,即数据存储的格式在写文件的时候可以用到''' s = ctypes.c_int(-100) ll = ctypes.pointer(s) self.dll.tecFileGetType(self.filehandle,ll) t = ll[0] return t def _tecDataSetGetNumZones(self): '''获取数据总共包含的zone的个数''' t = ctypes.c_int(0) p = ctypes.pointer(t) self.dll.tecDataSetGetNumZones(self.filehandle,p) return p[0] def _tecZoneGetTitle(self): '''获取每个zone的名字''' def get_name(i): s = ctypes.c_char_p() ll = ctypes.pointer(s) self.dll.tecZoneGetTitle(self.filehandle,i,ll) return ll[0].decode() name_list = [get_name(i) for i in range(1,self.numZones+1)] return name_list def _tecZoneVarGetType(self,zone_n,var_n): '''获取数据存储的类型 是double(64) 还是single(32)double型返回True''' p = self._return_2_int(zone_n,var_n,self.dll.tecZoneVarGetType) #if p is FieldDataType_Double, it is double format return p def _tecZoneVarGetSharedZone(self,zone_n,var_n): ''' ''' return self._return_2_int(zone_n,var_n,self.dll.tecZoneVarGetSharedZone) def _tecZoneVarGetValueLocation(self,zone_n,var_n): ''' ''' return self._return_2_int(zone_n,var_n,self.dll.tecZoneVarGetValueLocation) def _tecZoneVarIsPassive(self,zone_n,var_n): ''' ''' return self._return_2_int(zone_n, var_n, self.dll.tecZoneVarIsPassive) def _return_1_int(self,n,fun): '''执行fun(filehandle,int,&int)函数并返回结果''' p = ctypes.pointer(ctypes.c_int(0)) fun(self.filehandle,n,p) return p[0] def _add_variable(self,zone_n,var_name,value): ''' add a new variable to all zones''' info = self.zone_info[zone_n -1] self.nameVars.append(var_name) self.nameVars_dict[var_name] = len(self.nameVars) - 1 info['varTypes'].append(info['varTypes'][-1]) info['shareVarFromZone'].append(0) I,J,K = info['IJK'] if info['zoneType'] is Structed_Grid:#structed IJK type if value.size == I*J*K: valueLocation = 1 else: valueLocation = 0 else: if value.size == I: valueLocation = 1 else: valueLocation = 0 info['valueLocation'].append(valueLocation) info['passiveVarList'].append(0) for zone_p, item in enumerate(self.zone_info): if zone_n == zone_p+1: continue else: item['varTypes'].append(item['varTypes'][-1]) item['shareVarFromZone'].append(0) item['valueLocation'].append(valueLocation) item['passiveVarList'].append(1) for zone_data_ in self.values(): zone_data_[var_name] = None def _return_2_int(self,zone_n,var_n,fun): '''执行fun(filehandle,int,int,&int)函数并返回结果''' p = ctypes.pointer(ctypes.c_int(0)) fun(self.filehandle,zone_n,var_n,p) return p[0] def _return_n_array(self,fun,c_type, numValues,*d): '''输入参数是n个整数,返回长为numValues的c_type类型的一个数组并转化为ndarry''' t = (c_type*numValues)() fun(self.filehandle, *d, t) return np.array(t) def _tecZoneGetType(self,zone_n): '''获取zone的类型''' t = self._return_1_int(zone_n,self.dll.tecZoneGetType) if t is 6 or t is 7: raise Exception('Unsupported zone type') return t def _tecZoneGetIJK(self,zone_n): '''获取该zone 的ijk的值''' iMax = ctypes.pointer(ctypes.c_int(0)) jMax = ctypes.pointer(ctypes.c_int(0)) kMax = ctypes.pointer(ctypes.c_int(0)) self.dll.tecZoneGetIJK(self.filehandle,zone_n,iMax,jMax,kMax) t = iMax[0], jMax[0], kMax[0] return t def _tecZoneConnectivityGetSharedZone(self,zone_n): shareConnectivityFromZone = self._return_1_int(zone_n,self.dll.tecZoneConnectivityGetSharedZone) return shareConnectivityFromZone def _tecZoneFaceNbrGetMode(self,zone_n): faceNeighborMode = self._return_1_int(zone_n,self.dll.tecZoneFaceNbrGetMode) return faceNeighborMode def _tecZoneFaceNbrGetNumConnections(self,zone_n): numFaceConnections = self._return_1_int(zone_n,self.dll.tecZoneFaceNbrGetNumConnections) return numFaceConnections def _tecZoneFaceNbrGetConnections(self,zone_n): numFaceValues = self._return_1_int(zone_n,self.dll.tecZoneFaceNbrGetNumValues) are64Bit = self._return_1_int(zone_n,self.dll.tecZoneFaceNbrsAre64Bit) if are64Bit: faceConnections = self._return_n_array(self.dll.tecZoneFaceNbrGetConnections64, ctypes.c_long,numFaceValues,zone_n) else: faceConnections = self._return_n_array(self.dll.tecZoneFaceNbrGetConnections, ctypes.c_int,numFaceValues,zone_n) return faceConnections def _tecZoneGetSolutionTime(self,zone_n): d = ctypes.c_double(0.0) p = ctypes.pointer(d) self.dll.tecZoneGetSolutionTime(self.filehandle,zone_n,p) solutionTime = p[0] return solutionTime def _tecZoneGetStrandID(self,zone_n): StrandID = self._return_1_int(zone_n,self.dll.tecZoneGetStrandID) return StrandID def _tecZoneGetParentZone(self,zone_n): parentZone = self._return_1_int(zone_n,self.dll.tecZoneGetParentZone) return parentZone def _tecZoneVarGetNumValues(self,zone_n,var_n): numValues = self._return_2_int(zone_n,var_n,self.dll.tecZoneVarGetNumValues) return numValues def _tecZoneFaceNbrGetNumValues(self,zone_n): k = self._return_1_int(zone_n,self.dll.tecZoneFaceNbrGetNumValues) return k def _retrieve_zone_node_map(self,zone_n): info = self.zone_info[zone_n-1] if info['zoneType'] is not Structed_Grid and info['shareConnectivityFromZone'] is 0: jMax = info['IJK'][1] numValues = self._tecZoneNodeMapGetNumValues(zone_n,jMax) is64Bit = self._tecZoneNodeMapIs64Bit(zone_n) if is64Bit is not 0: #is64bit True nodeMap = self._return_n_array(self.dll.tecZoneNodeMapGet64, ctypes.c_long, numValues, zone_n,1,jMax) else: nodeMap = self._return_n_array(self.dll.tecZoneNodeMapGet, ctypes.c_int, numValues, zone_n,1,jMax) return nodeMap.reshape((jMax,-1)) def _retrieve_aux_data(self,zone_n): numItems = self._tecZoneAuxDataGetNumItems(zone_n) if numItems!=0: aux_data = dict() for whichItem in range(1,numItems+1): name = ctypes.c_char_p() value = ctypes.c_char_p() name_p = ctypes.pointer(name) value_p = ctypes.pointer(value) self.dll.tecZoneAuxDataGetItem(self.filehandle,zone_n,whichItem,name_p,value_p) name = name_p[0].decode() value = value_p[0].decode() aux_data[name]=value return aux_data else: return None def _tecZoneAuxDataGetNumItems(self,zone_n): return self._return_1_int(zone_n,self.dll.tecZoneAuxDataGetNumItems) def _retrieve_custom_label_sets(self,zone_n): pass def _tecCustomLabelsGetNumSets(self,zone_n): return self._return_1_int(zone_n,self.dll.tecCustomLabelsGetNumSets) def _tecZoneNodeMapGetNumValues(self,zone_n,jmax): return self._return_2_int(zone_n,jmax,self.dll.tecZoneNodeMapGetNumValues) def _tecZoneNodeMapIs64Bit(self, zone_n): return self._return_1_int(zone_n,self.dll.tecZoneNodeMapIs64Bit) def close(self): self.dll.tecFileReaderClose(ctypes.pointer(self.filehandle)) def write(self,filename,verbose = True): k = write_tecio(filename,self,verbose=verbose) k.close() def judge_valuelocation_passive(self,zone_name,var_name,name0): I,J,K = self[zone_name][name0].shape value = self[zone_name][var_name] # print(zone_name,var_name,value is None) if value is None: return var_name, 1, 1, 'float32' if self.Unstructed: if value.size == I: valueLocation = 1 else: valueLocation = 0 else: #Structed_grid if value.size == I*J*K: valueLocation = 1 else: valueLocation = 0 return var_name, valueLocation, 0, str(value.dtype) def sort_nameVars(self): def fun_key(name): if name.find('Coordinate') != -1: return ord(name[-1]) if name.lower() in 'xyz': return 256 + ord(name) return sum([ord(i) for i in name]) + 500 self.nameVars.sort(key = fun_key) def judge_unstructed(self,dataset): self.Unstructed = False for i in dataset.values(): for j in i.values(): shape = j.shape if j.ndim>1: if shape[1]*shape[2] > 1: self.Unstructed = False return else: self.Unstructed = True return def GenerateDataFromOtherFormat(self,dataset): #将其他类型的数据转化为SzpltData类型 if isinstance(dataset,SzpltData): self = SzpltData return elif isinstance(dataset,list) or isinstance(dataset,tuple): dataset = {str(i+1):v for i,v in enumerate(dataset)} aux_data = [] for v in dataset.values(): for j in v.keys(): if not isinstance(v[j],np.ndarray): aux_data.append(j) break dataset = {i:{j:vd for j,vd in v.items() if j not in aux_data} for i,v in dataset.items()} self.judge_unstructed(dataset) self.update(dataset) self.nameZones = list(self.keys()) name0 = list(self[self.nameZones[0]].keys())[0] loc_pass = [self.judge_valuelocation_passive(zone,vname,name0) for zone in self.keys() for vname in self[zone].keys()] loc_pass = set(loc_pass) loc_pass_name = set([i[:3] for i in loc_pass]) self.nameVars = [i[0] for i in loc_pass_name] assert len(set(self.nameVars)) == len(loc_pass_name) nameVars_ = list(self[self.nameZones[0]].keys()) for i in self.nameVars: if i not in nameVars_: nameVars_.append(i) self.nameVars = nameVars_ self.sort_nameVars() empty = np.array([]) for zone_name_,zone in self.items(): I,J,K = zone[name0].shape for var_name,location,passive,dtype in loc_pass: if var_name not in zone: if passive is 0: if not self.Unstructed: if location == 1: t = np.zeros((I,J,K),dtype=dtype) else: t = np.zeros((I-1,J-1,K-1),dtype=dtype) else: if location == 1: t = np.zeros((I,J,K),dtype=dtype) else: print(zone_name_,var_name) raise Exception("Unstructed grid center value") else: t = empty zone[var_name] = t self.title = 'Pytecio data' def cal_zone_info(name_zone,value_location): d = dict() zone_value = self[name_zone] empty = np.array([]) shape = self[name_zone][self.nameVars[0]].shape zoneType = Structed_Grid if len(shape) == 1: shape = shape[0],1,1 zoneType = 1 elif len(shape)==2: shape = 1,shape[0],shape[1] d['varTypes'] = [self.get_varTypes(name_zone,j) for j in self.nameVars] d['passiveVarList'] = [0 if zone_value.get(i,empty).size>0 else 1 for i in self.nameVars] d['shareVarFromZone'] = [0] * len(self.nameVars) # valueLocation: value 1 represent the data is saved on nodes, value 0 means on elements center d['valueLocation'] = value_location d['IJK'] = shape d['zoneType'] = zoneType d['solutionTime'] = .0 d['strandID'] = 0 d['shareConnectivityFromZone'] = 0 d['faceNeighborMode'] = 0 d['numFaceConnections'] = 0 d['parentZone'] = 0 d['name'] = name_zone return d temp_zone = self[self.nameZones[0]] value_location = [sum(temp_zone[key].shape) for key in self.nameVars] max_location = max(value_location) value_location = [0 if i<max_location else 1 for i in value_location] self.zone_info = [cal_zone_info(i,value_location) for i in self.nameZones] self.fileType = 0 self.added_new_zone = False def get_varTypes(self,name_zone,name_var): varTypes={'int32':3,'float64':2,'float32':1} d = self[name_zone][name_var] dtype = str(d.dtype) if dtype == 'int64': d = d.astype('int32') self[name_zone][name_var] = d dtype = 'int32' return varTypes[dtype] class write_tecio: fileFormat = 0 #.szplt def __init__(self,filename,dataset=None ,verbose = True): ''' dataset 只要是包含两层字典的数据都可以 like d[key_zone][key_var],如果是非SzpltData类型的数据,目前只支持结构化的数据 ''' self.filename = filename self.verbose = verbose if hasattr(dataset,'added_new_zone') and dataset.added_new_zone: dataset = {k:{k2:dataset[k][k2] for k2 in dataset[k].keys()} for k in dataset.keys()} if not isinstance(dataset,SzpltData): dataset = SzpltData(dataset) self.dataset = dataset self.dll = GLOBAL_DLL self.filehandle = self._get_filehandle() empty = np.array([]) for i,zone_name in enumerate(dataset.nameZones): info = dataset.zone_info[i] I,J,K = info['IJK'] zone_set = dataset[zone_name] varTypes = self._list_to_int_array(info['varTypes']) #因为这里有个bug所以我加了这样一句转化,原因是第一个zone共享了第一个zone 在创建的时候会导致失败,所以在写文件时强制取消shared shareVarFromZone = self._list_to_int_array(info['shareVarFromZone']) valueLocation = self._list_to_int_array(info['valueLocation']) info['passiveVarList'] = [0 if zone_set.get(i,empty).size>0 else 1 for i in dataset.nameVars] passiveVarList = self._list_to_int_array(info['passiveVarList']) if info['zoneType'] == Structed_Grid: outputZone = self._tecZoneCreateIJK(zone_name,I,J,K,varTypes, shareVarFromZone, valueLocation, passiveVarList, info['shareConnectivityFromZone'], info['numFaceConnections'], info['faceNeighborMode']) else: outputZone = self._tecZoneCreateFE(zone_name, info['zoneType'], I, J, varTypes, shareVarFromZone, valueLocation, passiveVarList, info['shareConnectivityFromZone'], info['numFaceConnections'], info['faceNeighborMode']) self._tecZoneSetUnsteadyOptions(outputZone, info['solutionTime'], info['strandID']) if info['parentZone'] != 0: self._tecZoneSetParentZone(outputZone,info['parentZone']) if info['numFaceConnections'] > 0: faceConnections = info['faceConnections'] if isinstance(faceConnections,list) or isinstance(faceConnections,tuple): faceConnections = np.array(faceConnections,dtype='int64') print(faceConnections) if faceConnections.itemsize == 8: self._write_data_all_type(self.dll.tecZoneFaceNbrWriteConnections64, faceConnections.ctypes,outputZone) else: self._write_data_all_type(self.dll.tecZoneFaceNbrWriteConnections32, faceConnections.ctypes,outputZone) if info.get('aux') is not None: for key,value in info['aux'].items(): key_p = ctypes.c_char_p(key.encode()) value_p = ctypes.c_char_p(value.encode()) self.dll.tecZoneAddAuxData(self.filehandle,outputZone,key_p,value_p) for j,var_name in enumerate(dataset.nameVars): var_n = j+1 data=zone_set[var_name].copy(order='C') if info['zoneType'] is Structed_Grid: if data.ndim == 2: shape = data.shape data.shape = 1,shape[0],shape[1] if data.size > 0: data = data.transpose((2,1,0)).copy() ff = [min(i,j) for j in info['shareVarFromZone']] if info['passiveVarList'][var_n - 1] is 0 and ff[var_n -1] is 0: fieldDataType = info['varTypes'][var_n-1] if fieldDataType is FieldDataType_Float: self._write_data_all_type(self.dll.tecZoneVarWriteFloatValues, data.ctypes, outputZone, var_n, 0, data.size) elif fieldDataType is FieldDataType_Double: self._write_data_all_type(self.dll.tecZoneVarWriteDoubleValues, data.ctypes, outputZone, var_n, 0, data.size) elif fieldDataType is FieldDataType_Int32: self._write_data_all_type(self.dll.tecZoneVarWriteInt32Values, data.ctypes, outputZone, var_n, 0, data.size) elif fieldDataType is FieldDataType_Int16: self._write_data_all_type(self.dll.tecZoneVarWriteInt16Values, data.ctypes, outputZone, var_n, 0, data.size) elif fieldDataType is FieldDataType_Byte: self._write_data_all_type(self.dll.tecZoneVarWriteByteValues, data.ctypes, outputZone, var_n, 0, data.size) else: print(fieldDataType,'iiiiiiiiiiiii') raise Exception('FieldDataType Error:not defined data type') self._write_zone_node_map(outputZone, info, zone_set) def _write_zone_node_map(self,zone_n,info, zone_set): # info = self.dataset.zone_info[self.dataset.nameZones[zone_n-1]] if info['zoneType'] is not Structed_Grid and info['shareConnectivityFromZone'] is 0: Elements = zone_set.Elements numValues = Elements.size if Elements.itemsize is 8: #is64bit True self._write_data_all_type(self.dll.tecZoneNodeMapWrite64, Elements.ctypes, zone_n,0,1,numValues) else: self._write_data_all_type(self.dll.tecZoneNodeMapWrite32, Elements.ctypes, zone_n,0,1,numValues) def _list_to_int_array(self,l): t = (ctypes.c_int*len(l))() for i,j in enumerate( l): t[i] = j return t def _get_filehandle(self): p = ctypes.c_int(13) p1 = ctypes.pointer(p) filehandle = ctypes.pointer(p1) name = ctypes.c_char_p(self.filename.encode()) fileType = self.dataset.fileType name_str = ','.join([str(i) for i in self.dataset.nameVars]) # name_str var_list_str = ctypes.c_char_p(name_str.encode()) title_str = ctypes.c_char_p(self.dataset.title.encode()) if self.filename.endswith('.szplt'): fileFormat = 1 else: raise Exception('file format error') self.dll.tecFileWriterOpen(name,title_str,var_list_str,fileFormat,fileType,2,None,filehandle) #官方例子中有这么一个东西,看名字叫debug 感觉不用也可以,就是在输出szplt文件时输出一些信息 if self.verbose: outputDebugInfo = 1 self.dll.tecFileSetDiagnosticsLevel(filehandle[0],outputDebugInfo) return filehandle[0] def _tecZoneCreateIJK(self,zoneTitle, iMax, jMax, kMax, varTypes, shareVarFromZone, valueLocation, passiveVarList, shareConnectivityFromZone, numFaceConnections, faceNeighborMode): p = ctypes.pointer(ctypes.c_int(0)) zone_title = ctypes.c_char_p(zoneTitle.encode()) self.dll.tecZoneCreateIJK(self.filehandle, zone_title, iMax, jMax, kMax, varTypes,shareVarFromZone, valueLocation, passiveVarList, shareConnectivityFromZone, numFaceConnections, faceNeighborMode,p) return p[0] def _tecZoneCreateFE(self,zoneTitle, zoneType, iMax, jMax, varTypes,shareVarFromZone, valueLocation, passiveVarList, shareConnectivityFromZone, numFaceConnections, faceNeighborMode): t = ctypes.c_int(0) p = ctypes.pointer(t) zone_title = ctypes.c_char_p(zoneTitle.encode()) self.dll.tecZoneCreateFE(self.filehandle, zone_title, zoneType, iMax, jMax, varTypes,shareVarFromZone, valueLocation, passiveVarList, shareConnectivityFromZone, numFaceConnections, faceNeighborMode,p) return p[0] def _tecZoneSetUnsteadyOptions(self,zone_n, solutionTime=0, StrandID=0): if solutionTime !=0 or StrandID != 0: solutionTime = ctypes.c_double(solutionTime) self.dll.tecZoneSetUnsteadyOptions(self.filehandle,zone_n, solutionTime, StrandID) def _tecZoneSetParentZone(self,zone_n,zone_parent): self.dll.tecZoneSetParentZone(self.filehandle,zone_n,zone_parent) def _write_data_all_type(self,fun,data, *d): fun(self.filehandle, *d, data) def close(self): self.dll.tecFileWriterClose(ctypes.pointer(self.filehandle)) def read(filename,isread=False): return SzpltData(filename,isread) def write(filename,dataset,verbose = True): t = write_tecio(filename,dataset, verbose=verbose) t.close() def cal_zone(number,g,q): g = g[number] q = q[number] k = {i:g[i] for i in 'XYZ'} y = {'VAR{}'.format(key):val for key,val in q.items() if isinstance(key,int)} k.update(y) return k if __name__=='__main__': pass
yxs-pytecio
/yxs_pytecio-1.0.1-py3-none-any.whl/yxs_pytecio.py
yxs_pytecio.py
from __future__ import absolute_import import os import sys __version__='1.1' # If we are running from a wheel, add the wheel to sys.path # This allows the usage python pip-*.whl/pip install pip-*.whl if __package__ == '': # __file__ is pip-*.whl/pip/__main__.py # first dirname call strips of '/__main__.py', second strips off '/pip' # Resulting path is the name of the wheel itself # Add that to sys.path so we can import pip path = os.path.dirname(os.path.dirname(__file__)) sys.path.insert(0, path) # try: # from pip._internal import main as _main # isort:skip # noqa # except: # from pip import main as _main def yxspkg_required_main(_main,args): sys.argv = args _main() def main(): print('####################################') argvs = sys.argv[:] for i in argvs: if '-i' == i: break else: sys.argv.extend(('-i','https://pypi.tuna.tsinghua.edu.cn/simple')) print('Commands ',' '.join(sys.argv),'\n') # if sys.argv[1] == 'install' and sys.argv[2] == '*': # from multiprocessing import Process # modules = ['lxml','pandas','bs4','requests','PyQt5','imageio','rsa','scipy','matplotlib','opencv-python', # 'tushare','lulu','yxspkg_encrypt','yxspkg_tecfile','yxspkg_wget','IPython', # 'yxspkg_songzgif','tensorflow','keras','PyInstaller','twine','torch','torchvision', # 'mpl_finance','quandl','xlrd','pandas_datareader','pytecio','webfile','cheroot'] # a = [] # for i in modules: # argvs[2] = i # s = Process(target = yxspkg_required_main,args =(argvs[:],) ) # s.start() # s.join() # d ={'opencv-python':'cv2'} # for i in modules: # try: # m = d.get(i,i) # exec('import '+m) # a.append(i) # except: # print("Failed to install "+i) # print('#'*20) # for i in a: # print('Install {} successfully!'.format(i)) # else: # _main() import pip version = pip.__version__.split('.')[0] if int(version) >= 20: from pip._internal.cli import main _main = main.main else: try: from pip._internal import main as _main # isort:skip # noqa except: from pip import main as _main _main() if __name__ == '__main__': main()
yxspkg-pip
/yxspkg_pip-1.1-py3-none-any.whl/yxspkg_pip.py
yxspkg_pip.py
import os.path as _path import os import base64 as _base64 import math as _math import array as _array import tarfile as _tarfile import sys try: import rsa as _rsa except: pass import time __version__='1.2.3' __author__='Blacksong' def rsa_md5(data): n='52'*32 e = '1005' def modpow(b, e, m): result = 1 while (e > 0): if e & 1: result = (result * b) % m e = e >> 1 b = (b * b) % m return result def bytes_to_int(bytes_): n = 0 for i in bytes_: n = n << 8 n += i return n result = modpow(bytes_to_int(data), int(e, 16), int(n, 16)) return int(result).to_bytes(32,'big') def _data_type(): x=_array.array('L') if x.itemsize==8:return 'L' else:return 'Q' _array_type=_data_type() def _bytes8(b,m=8): n=m-len(b)%m b+=(chr(n)*n).encode() return b def _compress_tarfile(dirname,outfile=None): '''make a direct to a tar.gz file''' ss=time.clock() dirname=_path.normpath(dirname) if outfile is None: outfile = dirname + '.tar.gz' tar=_tarfile.open(outfile,'w:gz',compresslevel=9) dr=_path.dirname(dirname)+os.sep for r,d,fs in os.walk(dirname): for f in fs: af=r+os.sep+f print('compress ',f) tar.add(af,af.replace(dr,'')) tar.close() print(time.clock()-ss) return outfile def _extarct_tarfile(filename,target_path=None): '''make a direct to a tar.gz file''' if target_path is None:target_path=_path.dirname(_path.abspath(filename)) tar=_tarfile.open(filename,'r:gz') for f in tar.getnames(): tar.extract(f,target_path) print('extract ',target_path+os.sep+f) tar.close() def _getkey(passwd): if passwd is None:passwd=b'SGZ' if isinstance(passwd,str):passwd=passwd.encode() key=rsa_md5(passwd)[:32] s=[key[i]*key[8+i]*key[16+i]*key[24+i]+(i*37) for i in range(8)] return s def _enpt(x,key,order=None): n1,n2,n3,a,b,c,d,m=key if order!=None:n1,n2,n3=order for i in range(len(x)): n1,n2,n3=n2,n3,(a*n1+b*n2+c*n3+d)%m x[i]=(x[i]+n3)%0xffffffffffffffff return n1,n2,n3 def encrypt(parameter,output=None,passwd=None): if passwd is None: passwd = '11'*16 if _path.isdir(parameter): istar = True parameter=_compress_tarfile(parameter) else: istar=False key0=_getkey(passwd) if output==None: output=parameter+'.yxs' size=_path.getsize(parameter) filename=_path.split(parameter)[1] size_name=len(filename.encode()) size_bu=8-(size+size_name+3)%8 b=bytearray(3+size_bu) b[0]=size_bu b[1]=size_name//256 b[2]=size_name%256 b+=filename.encode() data=open(parameter,'rb') length=8*1024*1024 b+=data.read(length-size_bu-size_name-3) order0=key0[:3] fp=open(output,'wb') size0=0 while True: x=_array.array(_array_type) x.frombytes(b) order0=_enpt(x,key=key0,order=order0) fp.write(x.tobytes()) b=data.read(length) if not b:break size0+=length sys.stdout.write('\b\b\b\b\b\b\b\b\b\b{:.2f}'.format(size0/size)) fp.close() data.close() if istar:os.remove(parameter) def _deph(x,key,order=None): n1,n2,n3,a,b,c,d,m=key if order!=None:n1,n2,n3=order for i in range(len(x)): n1,n2,n3=n2,n3,(a*n1+b*n2+c*n3+d)%m x[i]=(x[i]-n3)%0xffffffffffffffff return n1,n2,n3 def decipher(parameter,output=None,passwd=None): if passwd is None: passwd = '11'*16 key0=_getkey(passwd) data=open(parameter,'rb') size=_path.getsize(parameter) length=8*1024*1024 b=data.read(8*1024) x=_array.array(_array_type) x.frombytes(b) order0=key0[:3] order0=_deph(x,key=key0,order=order0) b=x.tobytes() size_bu=b[0] size_name=b[1]*256+b[2] o_name=b[3+size_bu:3+size_bu+size_name].decode('utf8') if output is None: output=o_name fp=open(output,'wb') fp.write(b[3+size_bu+size_name:]) size0=8*1024-3-size_bu-size_name while True: b=data.read(length) if not b:break size0+=length sys.stdout.write('\b\b\b\b\b\b\b\b\b\b{:.2f}'.format(size0/size)) x=_array.array(_array_type) x.frombytes(b) order0=_deph(x,key=key0,order=order0) fp.write(x.tobytes()) fp.close() if o_name[-7:]=='.tar.gz': target_path=_path.dirname(_path.abspath(parameter)) _extarct_tarfile(output,target_path=target_path) os.remove(output) def encode(b,passwd): key0=_getkey(passwd) x=_array.array(_array_type) x.frombytes(_bytes8(b)) _enpt(x,key=key0) return x.tobytes() def decode(b,passwd): key0=_getkey(passwd) x=_array.array(_array_type) x.frombytes(b) _deph(x,key=key0) b=x.tobytes() return b[:-b[-1]] def b64encode(b,passwd=None): return _base64.b64encode(encode(b,passwd)) def b64decode(b,passwd=None): return decode(_base64.b64decode(b),passwd) def spencode(b,passwd=None,str_set=b''): if not b:return b if len(str_set)<2: str_set=list(range(ord('A'),ord('A')+26))+list(range(ord('a'),ord('a')+26))+list(range(ord('0'),ord('0')+10)) if passwd is None:b=_bytes8(b) else:b=encode(b,passwd) str_set=bytearray(str_set) nb,ns=len(b),len(str_set) x=_array.array(_array_type) w=_math.ceil(x.itemsize*_math.log(256)/_math.log(ns)) x.frombytes(b) y=bytearray(len(x)*w) t=0 for i in x: for j in range(w-1,-1,-1): y[t+j]=str_set[i%ns] i=i//ns t+=w return y def spdecode(b,passwd=None,str_set=b''): if not b:return b if len(str_set)<2: str_set=list(range(ord('A'),ord('A')+26))+list(range(ord('a'),ord('a')+26))+list(range(ord('0'),ord('0')+10)) str_set=bytearray(str_set) t_set=bytearray(256) for i,j in enumerate(str_set): t_set[j]=i nb,ns=len(b),len(str_set) x=_array.array(_array_type,[0]) w=_math.ceil(x.itemsize*_math.log(256)/_math.log(ns)) b=bytearray(b) x*=nb//w t=0 for i in range(nb//w): s=0 for j in range(t,t+w): s=s*ns+t_set[b[j]] t+=w x[i]=s b=x.tobytes() if passwd is None:b=b[:-b[-1]] else:b=decode(b,passwd) return b def newkeys(n):#产生rsa秘钥 return _rsa.newkeys(n) def rsaencode(b,public): length = (len(bin(public.n))-2)//8-11 crypt_list = [_rsa.encrypt(b[i-length:i],public) for i in range(length,len(b)+1,length)] leaved = len(b) % length if leaved>0: crypt_list.append(_rsa.encrypt(b[-leaved:],public)) return b''.join(crypt_list) def rsadecode(b,private): length = (len(bin(private.n))-2)//8 assert len(b) % length == 0 decrypt_list = [_rsa.decrypt(b[i-length:i],private) for i in range(length,len(b)+1,length)] return b''.join(decrypt_list) def parse_commands(args): d = dict() i = 0 while True: if i>=len(args): break if args[i].startswith('--'): d[args[i][2:]] = True i+=1 elif args[i].startswith('-'): d[args[i][1:]] = args[i+1] i += 2 else: d[args[i]] = True i += 1 return d def run_git(args): def get_files(): files = os.popen('git ls-files').read() return files.split() # passwd = args['p'] if args.get('push') is not None: files = get_files() print(files) def main(args = None): if args is None: args = sys.argv[1:] d = parse_commands(args) if d.get('e') is not None: print('encrypt') encrypt(d.get('e'),d.get('o'),d.get('p')) elif d.get('d') is not None: print('decipher') decipher(d.get('d'),d.get('o'),d.get('p')) elif d.get('git') is not None: run_git(d) if __name__=='__main__': os.chdir('F:\\pythonAPP\\wechat_pyui') a = 'encrypt git push'.split() main(a)
yxspkg_encrypt
/yxspkg_encrypt-1.2.3.tar.gz/yxspkg_encrypt-1.2.3/yxspkg_encrypt.py
yxspkg_encrypt.py
============================== SongZ GIF ============================== SongZ GIF is a GUI to make gif based on pyqt5, moviepy, imageio, scipy.misc and numpy. The full documentation for API can be found here. ----------------- Installation ----------------- To get the latest version: $ python -m pip install yxspkg_songzgif --user ----------------- Usage ----------------- To start with the module: $ python -m yxspkg_songzgif.gif ----------------- Support ----------------- If you have any questions or comments please send an email to [email protected]
yxspkg_songzgif
/yxspkg_songzgif-1.4.2.tar.gz/yxspkg_songzgif-1.4.2/README.rst
README.rst
from PyQt5.QtCore import QTimer,Qt,QSize,QPoint,QEvent from PyQt5.QtGui import QImage, QPixmap,QPainter,QFont,QColor,QPen,QCursor,QKeySequence,QIcon,QPalette from PyQt5.QtWidgets import (QApplication, QLabel,QWidget,QMessageBox,QDesktopWidget,QMenu,QAction) from numpy import stack import imageio import sys from os import path import os import time import ctypes if sys.platform.startswith('win'):#为了使任务栏图标和标题栏图标一样,需要ctypes的设置 ctypes.windll.shell32.SetCurrentProcessExplicitAppUserModelID("myappid") del ctypes imread=imageio.imread __version__='1.1.5' __author__='Blacksong' class datarc(dict): def __init__(self,name): super().__init__() for i in open(name,'r'): s=i.strip() l=s.find('<') r=s.find('>') if l!=0 or r==-1:continue key=s[l+1:r].strip() value=s[r+1:].lstrip() self[key]=value if self['win_title'].strip() == 'True': self['win_title'] = True else: self['win_title'] = False def setDefault(): environ=os.environ if sys.platform.startswith('win'): home_path=path.join(environ['HOMEDRIVE'],environ['HOMEPATH'],'.songzgifrc') else: home_path=path.join(environ['HOME'],'.songzgifrc') if not path.exists(home_path): content='''<autoplay_interval>5 <background_color>rgba(255,255,255,255) <closebutton_background_color>rgba(0,0,0,0) <title_background_color>rgba(0,0,0,0) <border_background_color>rgba(0,0,0,0) <win_title>True''' fp=open(home_path,'w') fp.write(content) fp.close() return datarc(home_path) def ndarry2qimage(npimg): #ndarry图片转化为qimage图片 if npimg.dtype!='uint8': npimg=npimg.astype('uint8') shape=npimg.shape if len(shape)==3 and shape[2]==4: return QImage(npimg.tobytes(),shape[1],shape[0],shape[1]*shape[2],QImage.Format_RGBA8888) if len(shape)==2: npimg=stack((npimg,npimg,npimg),2) shape=npimg.shape s=QImage(npimg.tobytes(),shape[1],shape[0],shape[1]*shape[2],QImage.Format_RGB888) return s class YTitleLabel(QLabel): def __init__(self,*d): super().__init__(*d) self.parent=d[0] self.name_label=QLabel(self) self.name_label.setStyleSheet('QWidget{background-color:rgba(0,0,0,0)}' ) self.name_label.hide() self.name_label.move(10,3) def mousePressEvent(self,e): if self.parent.resizeWindow: self.parent.mousePressEvent(e) return self.xt,self.yt=self.parent.x(),self.parent.y() #窗口最原始的位置 self.x0,self.y0=self.xt+e.x(),self.yt+e.y() def mouseMoveEvent(self,e): if self.parent.resizeWindow: self.parent.mouseMoveEvent(e) return x,y=self.parent.x()+e.x(),self.parent.y()+e.y() dx,dy=x-self.x0,y-self.y0 self.parent.move(self.xt+dx,self.yt+dy) def mouseDoubleClickEvent(self,e): if self.parent.isMaximized(): self.parent.showNormal() else: self.parent.showMaximized() def enterEvent(self,e): if not self.parent.source_name:return name=path.basename(self.parent.source_name) self.name_label.setText(name) self.name_label.show() def leaveEvent(self,e): self.name_label.hide() class YDesignButton(QLabel): position_dict={'center':Qt.AlignCenter,'left':Qt.AlignLeft,'hcenter':Qt.AlignHCenter,'vcenter':Qt.AlignVCenter,'justify':Qt.AlignJustify} def __init__(self,parent): super().__init__(parent) self.parent=parent self.clicked_connect_func=lambda :None self.setScaledContents(True) self.normal_qimg=None self.focus_qimg=None def setNormalQimg(self,lines,color_background,color_text,img_size,width_pen=4): self.normal_qimg=self.getDrawLine(lines,color_background,color_text,img_size,width_pen) self.setPixmap(self.normal_qimg) if self.focus_qimg is None: self.focus_qimg = self.normal_qimg def setFocusQimg(self,lines,color_background,color_text,img_size,width_pen=4): self.focus_qimg=self.getDrawLine(lines,color_background,color_text,img_size,width_pen) def getDrawLine(self,lines,color_background,color_text,img_size,width_pen=4): qp=QPainter() img=QImage(img_size[0],img_size[1],QImage.Format_RGBA8888) img.fill(QColor(*color_background)) qp.begin(img) qp.setPen(QPen(QColor(*color_text),width_pen,Qt.SolidLine)) for i,j,m,n in lines: qp.drawLine(QPoint(i,j),QPoint(m,n)) qp.end() qimg=QPixmap.fromImage(img) return qimg def mousePressEvent(self,e): self.clicked_connect_func() def enterEvent(self,e): self.setPixmap(self.focus_qimg) def leaveEvent(self,e): self.setPixmap(self.normal_qimg) class NextPage(YDesignButton): #翻页按钮 def __init__(self,*d): super().__init__(*d) self.clicked_connect_func=lambda a:None self.setStyleSheet('QWidget{background-color:rgba(0,0,0,0)}' ) l=[(10,50,70,50),(50,10,90,50),(90,50,50,90)] self.setNormalQimg(l,(0,0,0,0),(255,255,255,0),(100,100),10) self.setFocusQimg(l,(0,0,0,0),(255,255,255,0),(100,100),15) def clicked_connect(self,func): self.clicked_connect_func=func def mousePressEvent(self,e): self.clicked_connect_func(e) class PrePage(YDesignButton): #翻页按钮 def __init__(self,*d): super().__init__(*d) self.setStyleSheet('QWidget{background-color:rgba(0,0,0,0)}' ) self.clicked_connect_func=lambda a:None l=[(30,50,90,50),(50,10,10,50),(50,90,10,50)] self.setNormalQimg(l,(0,0,0,0),(255,255,255,0),(100,100),10) self.setFocusQimg(l,(0,0,0,0),(255,255,255,0),(100,100),15) def clicked_connect(self,func): self.clicked_connect_func=func def mousePressEvent(self,e): self.clicked_connect_func(e) class BorderLine(QLabel): def __init__(self,*d): super().__init__(*d) self.setStyleSheet('QWidget{background-color:%s}' % default_value.get('border_background_color','rgba(0,0,0,100)')) class YViewerLabel(QLabel): def __init__(self,*d): super().__init__(*d) self.parent=d[0] self.shape=(20,20) self.ndimg_s=None self.lefttop = None self.is_focus = False def showimage(self,ndimg): self.ndimg_s=ndimg x,y,w,h=self.geometry_img ndimg=ndimg[y:y+h,x:x+w] qimg=ndarry2qimage(ndimg) self.setPixmap(QPixmap.fromImage(qimg)) def mousePressEvent(self,e): if e.button()==Qt.RightButton and self.parent.autoplay: self.start_time=time.time() self.single_right=True if self.parent.resizeWindow: self.parent.mousePressEvent(e) return self.lefttop=self.get_lefttop() self.dl=0,0 self.xt,self.yt=self.x(),self.y() #图片 self.x0,self.y0=self.xt+e.x(),self.yt+e.y() self.pw,self.ph=self.parent.width(),self.parent.height() def setImage(self,geometry_img=None,shape=None): self.geometry_img=geometry_img self.shape=shape def mouseMoveEvent(self,e): if self.parent.resizeWindow: self.parent.mouseMoveEvent(e) return x,y=self.x()+e.x(),self.y()+e.y() if x<0 or y<0 or x>self.pw or y>self.ph:return dx,dy=x-self.x0,y-self.y0 self.move(self.xt+dx,self.yt+dy) self.dl=dx,dy def mouseDoubleClickEvent(self,e): self.single_right=False if e.button()==Qt.RightButton: self.parent.setAutoplay() return if self.parent.isMaximized(): self.parent.showNormal() else: self.parent.showMaximized() def mouseReleaseEvent(self,e): if e.button()==Qt.RightButton and self.parent.autoplay and self.single_right: self.end_time=time.time() if self.end_time-self.start_time>0.8: self.parent.change_autoplay(self.end_time-self.start_time) if self.lefttop is not None: self.update_geometry(self.lefttop,self.dl) def get_lefttop(self): # factor=self.parent.factor end_geometry=self.geometry() gx,gy=end_geometry.x(),end_geometry.y() x_img,y_img=self.geometry_img[:2] ox=gx-x_img*factor oy=gy-y_img*factor return ox,oy def update_geometry(self,origon=None,dl=None): if self.ndimg_s is None:return factor=self.parent.factor end_geometry=self.geometry() gx,gy,gw,gh=end_geometry.x(),end_geometry.y(),end_geometry.width(),end_geometry.height() w,h=self.parent.width(),self.parent.height() x_img,y_img,w_img,h_img=self.geometry_img x_new,y_new,w_new,h_new=gx,gy,gw,gh if gx<-w: dx=(-w-gx)/factor x_img+=dx x_new=-w if gy<-h: dy=(-h-gy)/factor y_img+=dy y_new=-h if x_img>0 and gx>-w: dx=min((gx+w)/factor,x_img) x_img-=dx x_new-=dx*factor if y_img>0 and gy>-h: dx=min((gy+h)/factor,y_img) y_img-=dx y_new-=dx*factor w_new=w+w-x_new h_new=h+h-y_new w_img=min(w_new/factor,self.shape[1]-x_img) h_img=min(h_new/factor,self.shape[0]-y_img) self.geometry_img=int(x_img),int(y_img),int(w_img),int(h_img) x_img,y_img,w_img,h_img=self.geometry_img w_new=w_img*factor h_new=h_img*factor x_new,y_new,w_new,h_new=int(x_new),int(y_new),int(w_new),int(h_new) ox=x_new-factor*x_img oy=y_new-factor*y_img if origon: ox1,oy1=origon dx,dy=dl ox1,oy1=ox1+dx,oy1+dy dx,dy=ox-ox1,oy-oy1 x_new-=dx y_new-=dy self.setGeometry(x_new,y_new,w_new,h_new) self.showimage(self.ndimg_s) # print(x_new,y_new,w_new,h_new,' ' , gx,gy,gw,gh) def enterEvent(self,event): self.is_focus = True def leaveEvent(self,event): self.is_focus = False class GifPreview(QWidget): #预览gif gif_types=('.gif',) image_types=('.jpg','.jpeg','.ico','.bmp','.png','.tiff','.icns') def __init__(self,s='SongZ Viewer',name=None): super().__init__() global default_value default_value=setDefault() if default_value['win_title']: default_value['border_background_color']='rgba(0,0,0,0)' self.offset = 10000 #如果要显示win title 则将自身的title和closebutton移动相应的位置 self.displayWindowTitle = True else: self.displayWindowTitle = False self.offset = 0 self.setWindowFlags(Qt.FramelessWindowHint)#FramelessWindowHint print(default_value) self.isMaximized_value=False self.timer=None self.autoplay=False self.resizeWindow=False self.border=0 #边界宽度 self.label=YViewerLabel(self) self.label.setScaledContents(True) self.background_color=(255,255,255,255) # self.setStyleSheet('QWidget{background-color:%s}' % default_value['background_color']) background_color = default_value['background_color'] nl = background_color.find('(') numbers = background_color[nl+1:-1].split(',') numbers = [int(i) for i in numbers] palette = QPalette() palette.setColor(self.backgroundRole(), QColor(*numbers)) self.setPalette(palette) self.setMinimumSize(200,100) self.minimumSize_window=200,100 self.title_height=26 self.bottom_height=0 self.first_window=True self.CloseButton=YDesignButton(self) self.CloseButton.setNormalQimg([(30,30,70,70),(30,70,70,30)],(0,0,0,0),(0,0,0,0),(100,100),4) self.CloseButton.setFocusQimg([(30,30,70,70),(30,70,70,30)],(255,0,0,255),(255,255,255),(100,100),4) self.CloseButton.setStyleSheet('QWidget{background-color:%s}' % default_value['closebutton_background_color']) self.Geometry_Desktop=QDesktopWidget().availableGeometry() self.max_image_height=self.Geometry_Desktop.height() self.nextbutton_size=(50,self.max_image_height) self.RGBLabel = QLabel(self) self.RGBLabel.setStyleSheet("background:transparent") self.CloseButton.resize(self.title_height,self.title_height) self.CloseButton.clicked_connect_func=(self.close) #标题栏 self.TitleLabel=YTitleLabel(self) self.TitleLabel.move(0,self.offset) self.TitleLabel.setStyleSheet('QWidget{background-color:%s}' % default_value['title_background_color'] ) #翻页按钮 self.nextbutton=NextPage(self) self.nextbutton.resize(*self.nextbutton_size) self.nextbutton.clicked_connect(self.next_image) self.prebutton=PrePage(self) self.prebutton.resize(*self.nextbutton_size) self.prebutton.clicked_connect(self.previous_image) self.factor=1 self.factor_max=1000 self.factor_min=0.04 self.leftborder=BorderLine(self) self.rightborder=BorderLine(self) self.topborder=BorderLine(self) self.bottomborder=BorderLine(self) self.timer = None self.source_name=name if name: self.open_file(name) self.dir_images=self.get_images() self.dir_images_n=self.dir_images.index(path.abspath(name)) else: self.dir_images=None self.resize(400,400) self.show() self.setMinimumSize(400,400) self.create_right_key_menu() if sys.platform.startswith('win'): try: icon_path = path.join(os.environ['HOMEDRIVE'] , os.environ['HOMEPATH'] , '.yxspkg','songzviewer','songzviewer.png') self.system_icon = QIcon(icon_path) self.setWindowIcon(self.system_icon) except: pass def create_right_key_menu(self): self.setContextMenuPolicy(Qt.CustomContextMenu) self.customContextMenuRequested.connect(self.show_right_menu) self.rightMenu = QMenu(self) self.editAct = QAction("Edit with songzgif", self, triggered=self.edit_with_songzgif) self.rightMenu.addAction(self.editAct) self.rightMenu.addSeparator() def edit_with_songzgif(self): from yxspkg.songzgif import gif self.gifMaker = gif.GifMaker(self.image_name) def show_right_menu(self, pos): # 重载弹出式菜单事件 pos = QCursor.pos() pos.setX(pos.x()+2) pos.setY(pos.y()+2) self.rightMenu.exec_(pos) def isMaximized(self): if sys.platform.startswith('darwin'): return self.isMaximized_value else: return super().isMaximized() def showNormal(self): if sys.platform.startswith('darwin'): self.isMaximized_value=False self.setGeometry(self.Geometry_Normal) else: super().showNormal() self.setPosition() def showMaximized(self): if sys.platform.startswith('darwin'): self.isMaximized_value=True self.Geometry_Normal=self.geometry() self.setGeometry(self.Geometry_Desktop) else: super().showMaximized() # w,h=self.width(),self.height() # t=self.get_base_factor(w,h,self.label.shape) # print(t,w,h) # self.scaleImage(t/self.factor) self.setPosition() def get_images(self): dname=path.dirname(path.abspath(self.source_name)) t=[path.join(dname,i) for i in os.listdir(dname) if path.splitext(i)[-1].lower() in self.gif_types or path.splitext(i)[-1].lower() in self.image_types] return t def get_base_factor(self,w,h,shape): if shape[1]/shape[0]>w/h: t=w/shape[1] else: t=h/shape[0] return t def next_image(self,e): if not self.dir_images:return if e is True or e.button()==Qt.LeftButton: self.dir_images_n+=1 if self.dir_images_n>=len(self.dir_images): self.dir_images_n=0 self.open_file(self.dir_images[self.dir_images_n]) def previous_image(self,e): if not self.dir_images:return if e is True or e.button()==Qt.LeftButton: self.dir_images_n-=1 if self.dir_images_n<0: self.dir_images_n = len(self.dir_images)-1 self.open_file(self.dir_images[self.dir_images_n]) def open_file(self,name): self.image_name = name if name is not None: self.setWindowTitle(name.split(os.sep)[-1]) try: if path.splitext(name)[-1].lower() in self.gif_types: size = self.gif(name) else: size = self.image(name) self.setWindowTitle(name.split(os.sep)[-1]+' [{}x{}]'.format(size[1],size[0])) return except Exception as e: self.setWindowTitle(name.split(os.sep)[-1]) print(e,self.source_name) self.label.setText('cannot open file:{0}\nError:{1}'.format(self.source_name,e)) if self.first_window: self.resize(400,400) self.move_center() self.show() self.first_window=False def move_center(self): w,h=self.width(),self.height() w0,h0=self.Geometry_Desktop.width(),self.Geometry_Desktop.height() x0,y0=self.Geometry_Desktop.x(),self.Geometry_Desktop.y() self.move((w0-w)/2+x0,(h0-h)/2+y0) def gif(self,name): if isinstance(name,str): try: x=imageio.get_reader(name) meta=x.get_meta_data() fps=1000/meta.get('duration',None) jpgs=list(x) size=jpgs[0].shape size=size[1],size[0] except Exception as e: print('imageio',e) x=imageio.get_reader(name,'ffmpeg') meta=x.get_meta_data() fps=meta['fps'] size=meta['size'] jpgs=list(x) else: jpgs,fps,size=name self.preview((jpgs,fps,(size[1],size[0]))) return size def image(self,name): s=imread(name) shape=s.shape self.preview(([s],0.0001,shape[:2])) return shape[1],shape[0] def update_image(self): if self.nn>=len(self.jpgs): self.nn=0 self.present_image=self.jpgs[self.nn] self.label.showimage(self.present_image) self.nn+=1 def scaleImage(self,factor): tt=self.factor*factor if tt>self.factor_max or tt<self.factor_min:return self.factor_max=100000 lefttop=self.label.get_lefttop() w,h=self.label.geometry_img[-2:] w0,h0=self.width()/2,self.height()/2 dx=(w0-lefttop[0])*(1-factor) dy=(h0-lefttop[1])*(1-factor) self.factor*=factor self.label.resize(w*self.factor,h*self.factor) self.label.update_geometry(lefttop,(dx,dy)) if self.factor*self.label.shape[0]<self.max_image_height: self.setPosition() x,y,w,h=self.label.geometry_img if w<30 or h<30: self.factor_max=max(self.factor,5) def setPosition(self): title_height=self.title_height bottom_height=self.bottom_height w,h=self.width(),self.height() self.CloseButton.move(w-title_height,self.offset) self.TitleLabel.resize(w-self.title_height,self.title_height) # h-=title_height+bottom_height w_label,h_label=self.label.width(),self.label.height() self.label.move((w-w_label)/2,(h-h_label)/2) self.nextbutton.move(w-self.nextbutton_size[0]-5,title_height) self.prebutton.move(5,title_height) self.leftborder.resize(1,h) self.topborder.resize(w,1) self.rightborder.setGeometry(w-1,0,1,h) self.bottomborder.setGeometry(0,h-1,w,1) self.label.update_geometry() self.RGBLabel.setGeometry(0,h-20,300,20) def change_autoplay(self,t): self.setAutoplay() self.setAutoplay(t) def setAutoplay(self,t=None): if t is None: t=float(default_value['autoplay_interval']) if self.autoplay is True: self.autoplay=False self.timer_auto.stop() else: self.autoplay = True self.timer_auto=QTimer(self) self.timer_auto.timeout.connect(lambda :self.next_image(True)) self.timer_auto.start(int(t*1000)) def preview(self,parent): self.nn=0 self.jpgs, self.fps ,shape = parent self.label.setImage((0,0,shape[1],shape[0]),shape) if self.first_window: m=max(shape) t=1/max(1,m/self.max_image_height) self.resize(shape[1]*t+self.border*2,shape[0]*t+self.border*2+self.bottom_height) self.first_window=False self.move_center() else: w,h=self.width(),self.height() t=self.get_base_factor(w,h,shape) if self.timer:self.timer.stop() self.label.resize(shape[1]*t,shape[0]*t) self.factor=t self.setPosition() self.update_image() if self.fps != 0: self.timer=QTimer(self) self.timer.timeout.connect(self.update_image) t=int(1/self.fps*1000) self.timer.start(t) self.show() def isresizeMouse(self,x,y): x0,y0=self.x(),self.y() w0,h0=self.width(),self.height() width=4 distance=8 if x<x0+width and y0+h0-distance>y>y0+distance:#left self.setCursor(QCursor(Qt.SizeHorCursor)) self.resizeWindow='Left' elif x>x0+w0-width and y0+h0-distance>y>y0+distance:#right self.setCursor(QCursor(Qt.SizeHorCursor)) self.resizeWindow='Right' elif y<y0+width and x0+w0-distance>x>x0+distance:#top self.setCursor(QCursor(Qt.SizeVerCursor)) self.resizeWindow='Top' elif y>y0+h0-width and x0+w0-distance>x>x0+distance:#bottom self.setCursor(QCursor(Qt.SizeVerCursor)) self.resizeWindow='Bottom' elif x<x0+distance and y<y0+distance:#LeftTop self.setCursor(QCursor(Qt.SizeFDiagCursor)) self.resizeWindow='LeftTop' elif x>x0-distance+w0 and y>y0-distance+h0:#RightBottom self.setCursor(QCursor(Qt.SizeFDiagCursor)) self.resizeWindow='RightBottom' elif x<x0+distance and y>y0-distance+h0:#LeftBottom self.setCursor(QCursor(Qt.SizeBDiagCursor)) self.resizeWindow='LeftBottom' else: self.resizeWindow = False self.setCursor(QCursor(Qt.ArrowCursor)) def runResizeWindow(self): pos=QCursor.pos() x,y=pos.x(),pos.y() if self.resizeWindow == 'Left': wt=self.w0+self.x0-x if self.minimumSize_window[0]>wt:return self.setGeometry(x,self.y0,wt,self.h0) elif self.resizeWindow == 'Right': wt=x-self.x0 self.resize(wt,self.h0) elif self.resizeWindow == 'Bottom': ht=y-self.y0 self.resize(self.w0,ht) elif self.resizeWindow == 'Top': ht=self.y0-y+self.h0 if self.minimumSize_window[1]>ht:return self.setGeometry(self.x0,y,self.w0,ht) elif self.resizeWindow == 'RightBottom': wt,ht=x-self.x0,y-self.y0 self.resize(wt,ht) elif self.resizeWindow == 'LeftTop': wt,ht=self.x0-x+self.w0,self.y0-y+self.h0 if self.minimumSize_window[0]>wt: wt=self.minimumSize_window[0] x=self.x() if self.minimumSize_window[1]>ht: ht=self.minimumSize_window[1] y=self.y() self.setGeometry(x,y,wt,ht) elif self.resizeWindow == 'LeftBottom': wt,ht=self.x0-x+self.w0,y-self.y0 if self.minimumSize_window[0]>wt: wt=self.minimumSize_window[0] x=self.x() if self.minimumSize_window[1]>ht: ht=self.minimumSize_window[1] self.setGeometry(x,self.y0,wt,ht) def mousePressEvent(self,e): if self.resizeWindow: self.x0,self.y0=self.x(),self.y() self.w0,self.h0=self.width(),self.height() def mouseMoveEvent(self,e): if self.resizeWindow: self.runResizeWindow() def resizeEvent(self,e): self.setPosition() def keyPressEvent(self,e): if e.matches(QKeySequence.MoveToPreviousLine): self.scaleImage(1/0.7) elif e.matches(QKeySequence.MoveToNextLine): self.scaleImage(0.7) elif e.matches(QKeySequence.MoveToPreviousChar): self.previous_image(True) elif e.matches(QKeySequence.MoveToNextChar): self.next_image(True) def wheelEvent(self,e): if self.first_window is True: return if e.angleDelta().y()>0: factor=1/0.8 else: factor=0.8 self.scaleImage(factor) # def get_xy_of_image(self,pos = None): # if pos is None: # pos = QCursor.pos() # x,y = pos.x()-self.x()-self.label.x(),pos.y()-self.label.y()-self.geometry().y() # label_x,label_y = self.label.width(),self.label.height() # x0,y0,w,h=self.label.geometry_img # dx, dy = int(x/label_x*w), int(y/label_y*h) # x0+=dx # y0+=dy # return y0,x0 def RGB2HSV(self,R,G,B): Cmax = max(R,G,B) Cmin = min(R,G,B) delta = Cmax - Cmin if delta == 0: H = 0 elif Cmax == R: H = 60*((G-B)/delta) if H<0: H += 360 elif Cmax == G: H = 60*((B-R)/delta + 2) else: H = 60*((R-G)/delta + 4) if Cmax == 0: S = 0 else: S = delta / Cmax V = Cmax/255 return H,S,V def displayRGB(self,pos): if not self.label.is_focus: return x,y = pos.x()-self.x()-self.label.x(),pos.y()-self.label.y()-self.geometry().y() label_x,label_y = self.label.width(),self.label.height() x0,y0,w,h=self.label.geometry_img dx, dy = int(x/label_x*w), int(y/label_y*h) x0+=dx y0+=dy try: RGB = self.present_image[y0,x0] except: RGB = 0,0,0 # print(y0,x0,RGB,x,y) HSV = self.RGB2HSV(int(RGB[0]),int(RGB[1]),int(RGB[2])) if len(RGB)==3: s = "{},{} ,RGB:{},{},{}, HSV:{:3.0f}, {:.3f}, {:.3f}".format(y0,x0,*RGB,*HSV) else: s = "{},{} ,RGBA:{},{},{},{}, HSV:{:3.0f}, {:.3f}, {:.3f}".format(y0,x0,*RGB,*HSV) self.RGBLabel.setText(s) def eventFilter(self,source,event): t=event.type() if t == QEvent.MouseMove: if event.buttons() == Qt.NoButton: pos=QCursor.pos() # print(dir(event)) self.displayRGB(pos) # self.hide_button(pos.x()-self.x()) if not self.isMaximized() and not self.displayWindowTitle: self.isresizeMouse(pos.x(),pos.y()) return super().eventFilter(source,event) def main(name=None): if len(sys.argv)==2: name=sys.argv[1] app = QApplication(sys.argv) Viewer = GifPreview(name=name) app.installEventFilter(Viewer) sys.exit(app.exec_()) if __name__ == '__main__': main()
yxspkg_songzviewer
/yxspkg_songzviewer-1.1.5.tar.gz/yxspkg_songzviewer-1.1.5/yxspkg_songzviewer.py
yxspkg_songzviewer.py
import numpy as np from os.path import getsize import pandas as pd import re __version__='1.8' __author__='Blacksong' class _zone_data(dict): def __init__(self,*d,**dd): super().__init__(*d,**dd) self.Elements = None self.tec_cellcentered=False def _setPlot3d_type(self):#文件格式为plot3d格式时运行这个函数 增加x,y,z,ptype这个变量 self.x=None self.y=None self.z=None self.ptype=None return self def rename(self,old,new): if old == new:return self[new]=self[old] self.pop(old) def DataFrame(self,center=False,columns=None): ''''将数据转化为DataFrame格式, center:是否将数据都转化为中心格式 ''' if columns is None: columns = self.keys() dic = {i:self[i] if not center else self.center_value(i) for i in columns} return pd.DataFrame(dic) def fit_mesh(self,zone_data,var,X='x',Y='y',Z=None): ''' 将zong_data中的变量var,根据Elements适应,调整var中数据的存储顺序 X,Y,Z:表述存储网格坐标的变量名 ''' if Z: mesh = [X,Y,Z] else: mesh = [X,Y] assert self.Elements.shape == zone_data.Elements.shape m1 = {i:self.center_value(i) for i in mesh} m2 = {i:zone_data.center_value(i) for i in mesh} m2['__var'] = var m1 = pd.DataFrame(m1) m2 = pd.DataFrame(m2) m2.index = m1.index m1.sort_values(mesh, inplace=True) m2.sort_values(mesh, inplace=True) m1['__var'] = m2['__var'].values m1.sort_index(inplace=True) return m1['__var'].values def set_data(self,names,values,attribute): self.names=names self.data=values self.attribute=attribute for i,v in zip(names,values): self[i]=v def __getitem__(self,k): if isinstance(k,str): return super().__getitem__(k) else: if self.attribute == 'fluent_prof': return self.data[:,k] def is_centered(self,name): #判断一个tecplot变量是不是centered变量 nodes = int(self.attribute['Nodes']) if len(self[name])==nodes: return False else: return True def center_value(self,name):# 获取tecplot文件中某个变量在cell中心的值,即求出各个节点的平均值 elements = self.Elements - 1 n = elements.shape[1] elements_flat = elements.flatten() data = self[name][elements_flat].reshape((-1,n)) return data.mean(1) def __add__(self,other):#重载加法运算 z = class_read() names = list(self.keys()) values = [self[i] + other[i] for i in names] z.update(zip(names,values)) return z def __sub__(self,other):#重载减法运算 z = class_read() names = list(self.keys()) values = [self[i] - other[i] for i in names] z.update(zip(names,values)) return z def __mul__(self,other):#重载乘法运算 z = class_read() names = list(self.keys()) if isinstance(other,_zone_data): values = [self[i] * other[i] for i in names] else: values = [self[i] * other for i in names] z.update(zip(names,values)) return z class class_read(dict): def __init__(self,filename=None,filetype=None,**kargs): if filename is None:return self.fp=open(filename,'r') self.default_filetypes={'prof':'fluent_prof','dat':'tecplot_dat','out':'fluent_residual_out', 'out2':'fluent_monitor_out','csv':'csv','txt':'txt','fmt':'plot3d','plot3d':'plot3d'} self.data=None if filetype is None: key=filename.split('.')[-1].lower() if key=='out':key=self.__recognize_out(self.fp) self.filetype=self.default_filetypes[key] else: self.filetype=filetype self.filesize=getsize(filename) if self.filetype=='tecplot_dat': self._read_dat() elif self.filetype=='fluent_prof': self._read_prof() elif self.filetype=='fluent_residual_out': self._read_out() elif self.filetype=='fluent_monitor_out': self.__read_out2() elif self.filetype=='csv': self.__read_csv(filename) elif self.filetype == 'plot3d': self.__read_plot3d(filename) self.fp.close() def __read_plot3d(self,filename): self.data=list() d=np.array(self.fp.read().split(),dtype='float64') n=int(d[0]) shape=d[1:1+n*3].astype('int') start=1+n*3 for i in range(n): zt,yt,xt=shape[i*3:i*3+3] block=_zone_data()._setPlot3d_type() block.x=d[start:start+xt*yt*zt] start+=xt*yt*zt block.y=d[start:start+xt*yt*zt] start+=xt*yt*zt block.z=d[start:start+xt*yt*zt] start+=xt*yt*zt block.ptype=d[start:start+xt*yt*zt].astype('int') start+=xt*yt*zt block.x.shape=(xt,yt,zt) block.y.shape=(xt,yt,zt) block.z.shape=(xt,yt,zt) block.ptype.shape=(xt,yt,zt) block.x=block.x.swapaxes(2,0) block.y=block.y.swapaxes(2,0) block.z=block.z.swapaxes(2,0) block.ptype=block.ptype.swapaxes(2,0) self[i]=block self.data.append(block) def __read_csv(self,filename): title=self.fp.readline() tmp=np.loadtxt(self.fp,dtype='float64',delimiter=',') title=title.strip().split(',') for i,j in enumerate(title): self[j]=tmp[:,i] self.data=tmp def __recognize_out(self,fp): fp.readline() t=fp.readline() t=t.split() key='out' if t: if t[0]=='"Iteration"': key='out2' fp.seek(0,0) return key def __read_out2(self): self.fp.readline() t=self.fp.readline() t=t.lstrip()[11:].strip()[1:-1] d=self.fp.read().encode().strip() d=d.split(b'\n') d=[tuple(i.split()) for i in d] x=np.array(d,dtype=np.dtype({'names':["Iteration",t],'formats':['int32','float64']})) self["Iteration"]=x['Iteration'] self[t]=x[t] self.data=x def _read_out(self):#fluent residual file items=[] items_n=0 data=[] iter_pre='0' time_index=False for i in self.fp: if i[:7]==' iter ': if items_n!=0:continue j=i.strip().split() items.extend(j) if items[-1]=='time/iter': items.pop() items.extend(('time','iter_step')) time_index=True items_n=len(items) if items_n==0:continue else: j=i.split() if len(j)==items_n: if j[0].isdigit(): if j[0]==iter_pre:continue iter_pre=j[0] if time_index:j.pop(-2) data.append(tuple(j)) if time_index:items.pop(-2) a=np.array(data,dtype=np.dtype({'names':items,'formats':['i']+['f']*(len(items)-2)+['i']})) for i,k in enumerate(items): self[k]=a[k] self.data=a def _read_prof(self): fp=self.fp d=fp.read() d=d.replace('\r','') d=d.split('((') d.pop(0) data=[] def read(x): x=x.split('(') title=x[0].split()[0] x.pop(0) data=[] name=[] ii=0 for i in x: c=i.split('\n') ii+=1 name.append(c[0]) data.append(c[1:-2]) data[-1].pop() values=np.array(data,dtype='float32') if len(values)!=len(name):return False t=_zone_data() t.set_data(name,values,self.filetype) return title,t for i in d: k,v=read(i) self[k]=v def _parse_variables(self,string_list):#解析tecplot文件的变量名有哪些 return re.findall('"([^"]*)"',''.join(string_list)) def _parse_zone_type(self,string_list):# 解析tecplot文件 s=' '.join(string_list) attri = dict(re.findall('(\w+)=([^ ,=]+)',s)) attri.update( dict(re.findall('(\w+)="([\w ]+)"',s))) k = re.findall('VARLOCATION=\(([^=]+)=CELLCENTERED\)',s)#检查是否有cellcentered变量 auxdata = re.findall(' AUXDATA [^ ]*',s) if auxdata: attri['AUXDATA'] = '\n'.join(auxdata) a=[] if k: for i in k[0][1:-1].split(','): if i.find('-')!=-1: start,end = i.split('-') a.extend(range(int(start),int(end)+1)) else: a.append(int(i)) a.sort() attri['CELLCENTERED'] = a return attri def _read_dat(self):#解析tecplot_dat数据格式 fp=self.fp title = fp.readline() assert title.lstrip().startswith('TITLE')!=-1#查看文件开头是否是TITLE string = fp.readline().strip() assert string.startswith('VARIABLES') #查看文件第二行开头是否是VARIABLES string_list=[string,]#获取包含所有变量名的字符串 for i in fp: i=i.strip() if not i.startswith('"'): string = i break else: string_list.append(i) self._variables=self._parse_variables(string_list) #对字符串进行解析得到变量名 print('variables',self._variables) while True: if not string: string = fp.readline() if not string: break string_list=[string,]#获取包含zone name, element, nodes,zonetype, datapacking的字段 for i in fp: i=i.strip() if i.startswith("DT=("): string = i break else: string_list.append(i) self._tecplot_attribute=self._parse_zone_type(string_list) #获取包含zone name, element, nodes,zonetype, datapacking 返回形式为字典 print('zone info',self._tecplot_attribute) string = string[len('DT=('):-1].strip().split() self._DT=string #保存每个变量的类型 assert len(self._variables) == len(string) if self._tecplot_attribute['DATAPACKING']=='BLOCK': self._parse_block() if self._tecplot_attribute['DATAPACKING'] == 'POINT': self._parse_point() string = None def _read_numbers(self,fp,nums):#读取文件一定数目的 数据 data = fp.readline().split() n = len(data) strings = [fp.readline() for _ in range(int(nums/n)-1)] data.extend(''.join(strings).split()) nn = nums - len(data) assert nn>=0 if nn>0: for i in fp: data.extend(i.split()) if len(data) == nums: break return data def _parse_Elements(self,zonedata):#解析tecplot的Element elements = int(self._tecplot_attribute['Elements']) data_elements = self.fp.readline().split() num_points = len(data_elements) data = self._read_numbers(self.fp,num_points*(elements-1)) data_elements += data zonedata.Elements = np.array(data_elements,dtype=np.int).reshape((-1,num_points)) def _parse_block(self,isElements=True,isBlock=True):#解析tecplot block方式存储的数据 cellcentered = self._tecplot_attribute['CELLCENTERED'] if cellcentered: variables,nodes,elements = self._variables,int(self._tecplot_attribute['Nodes']),int(self._tecplot_attribute['Elements']) value_list = [] for i in range(len(variables)): if i+1 in cellcentered: nums = elements else: nums = nodes data = self._read_numbers(self.fp,nums) value_list.append( np.array(data,dtype = 'float64')) zonedata = _zone_data() zonedata.set_data(variables,value_list,self._tecplot_attribute) self[self._tecplot_attribute['T']] = zonedata if isElements: self._parse_Elements(zonedata) else: self._parse_point(isElements,isBlock) def _parse_point(self,isElements=True,isBlock=False): variables,nodes,elements = self._variables,int(self._tecplot_attribute['Nodes']),int(self._tecplot_attribute['Elements']) nn=nodes*len(variables) data = self._read_numbers(self.fp,nn) if isBlock: data = np.array(data,dtype = 'float').reshape((len(variables),-1)) else: data = np.array(data,dtype = 'float').reshape((-1,len(variables))).T zonedata = _zone_data() #设置zonedata数据 zonedata.set_data(self._variables,data,self._tecplot_attribute) self[self._tecplot_attribute['T']] = zonedata if isElements: #添加Elements的属性 self._parse_Elements(zonedata) def __getitem__(self,k): if isinstance(k,str): return super().__getitem__(k) else:return self.data[k] def enable_short_name(self):#启用简单名 即将名字命名为 原来名字的第一个单词 for i in list(self.keys()): for j in list(self[i].keys()): self[i].rename(j,j.split()[0]) self.rename(i,i.split()[0]) def rename(self,old,new): if old == new:return self[new]=self[old] self.pop(old) def write(self,filename): write(self,filename) def __add__(self,other):#重载加法运算 z = class_read() names = list(self.keys()) values = [self[i] + other[i] for i in names] z.update(zip(names,values)) return z def __sub__(self,other):#重载减法运算 z = class_read() names = list(self.keys()) values = [self[i] - other[i] for i in names] z.update(zip(names,values)) return z def __mul__(self,other):#重载乘法运算 z = class_read() names = list(self.keys()) if isinstance(other,class_read): values = [self[i] * other[i] for i in names] else: values = [self[i] * other for i in names] z.update(zip(names,values)) return z class data_ndarray(np.ndarray): def write(self,filename): write(self,filename) def setfiletype(self,filetype): self.filetype=filetype def read(filename,filetype=None,**kargs): ext=filename.split('.')[-1].lower() if ext=='txt': data = [i.split() for i in open(filename) if i.lstrip() and i.lstrip()[0]!='#'] data=np.array(data,dtype='float64') data=data_ndarray(data.shape,dtype=data.dtype,buffer=data.data) data.setfiletype('txt') else: data=class_read(filename) return data class write: def __init__(self,data,filename,filetype=None): default_filetypes={'prof':'fluent_prof','dat':'tecplot_dat','out':'fluent_residual_out', 'out2':'fluent_monitor_out','csv':'csv','txt':'txt','fmt':'plot3d','plot3d':'plot3d'} ext=filename.split('.')[-1].lower() if filetype is None: filetype=default_filetypes.get(ext,None) if filetype is None: filetype=data.filetype if filetype=='fluent_prof': self.__write_prof(data,filename) elif filetype=='tecplot_dat': self.__write_dat(data,filename) elif filetype=='csv': self.__write_csv(data,filename) elif filetype=='fluent_monitor_out': self.__write_out2(data,filename) elif filetype=='fluent_residual_out': self.__write_out(data,filename) elif filetype=='txt': np.savetxt(filename,data) elif filetype=='plot3d': self.__write_plot3d(data,filename) else: raise EOFError('file type error!') def __write_plot3d(self,data,filename): fp=open(filename,'w') def writelines(ffp,write_data,line_max): ffp.write('\n') n_line=int(write_data.size/line_max) write_data.reshape((-1,n_line)) s=write_data.astype('U')[:n_line*line_max] s.resize((n_line,line_max)) s_lines=[' '.join(i) for i in s] ffp.write('\n'.join(s_lines)) n = write_data.size-n_line*line_max if n: ffp.write('\n'+ ' '.join(write_data[-n:])) shape=list() for i,v in enumerate(data.data): shape.extend(v.x.shape) fp.write(str(i+1)+'\n') fp.write(' '.join([str(i) for i in shape])) for i,v in enumerate(data.data): x=v.x.swapaxes(0,2) x.resize(x.size) y=v.y.swapaxes(0,2) y.resize(y.size) z=v.z.swapaxes(0,2) z.resize(z.size) p=v.ptype.swapaxes(0,2) p.resize(p.size) writelines(fp,x,5) writelines(fp,y,5) writelines(fp,z,5) writelines(fp,p,5) def __write_out(self,data,filename): fp=open(filename,'w') self.__write_delimiter(data,fp,' ',title_format='',specified_format=' %d',specified_titles=['iter'],other_format='%.8e') fp.close() def __write_out2(self,data,filename): fp=open(filename,'w') value=[i for i in data.keys() if i!='Iteration'][0] fp.write('"Convergence history of %s"\n' % value) self.__write_delimiter(data,fp,' ',title_format='"',specified_format='%d',specified_titles=['Iteration']) fp.close() def __write_csv(self,data,filename): fp=open(filename,'w') self.__write_delimiter(data,fp,',') fp.close() def __write_delimiter(self,data,fp,delimiter,title_format='',specified_format='',specified_titles=[],other_format='%.15e'): other_titles=[i for i in data.keys() if i not in specified_titles] title=specified_titles+other_titles title_w=[title_format+i+title_format for i in title] fp.write(delimiter.join(title_w)+'\n') s=np.vstack([data[i] for i in title]).T data_format=specified_format+delimiter+delimiter.join([other_format]*len(other_titles))+'\n' for i in s: fp.write(data_format % tuple(i)) def __write_prof(self,data,filename): fp=open(filename,'wb') for i in data.keys(): keys=list(data[i].keys()) keys.sort() keys.sort(key=lambda x:len(x)) n=len(data[i][keys[0]]) fs='(('+i+' point '+str(n)+')\n' fp.write(fs.encode()) for k in keys: fs='('+k+'\n' fp.write(fs.encode()) [fp.write((str(j)+'\n').encode()) for j in data[i][k]] fp.write(')\n'.encode()) fp.write(')\n'.encode()) def __write_dat(self,data,filename):#写入tecplot dat文件,目前只支持写入DATAPACKING=POINT类型的数据DATAPACKING=BLOCK类型的数据也会被改写为POINT类型 fp = open(filename,'w') fp.write('TITLE = "Python Write"\n') zones = list(data.keys()) #获取所有zone的名字 variables = list(data[zones[0]].keys())#获取变量名 fp.write('VARIABLES = ') fp.writelines(['"{}"\n'.format(i) for i in variables]) for i in zones: zonedata = data[i] z = zonedata.attribute nodes, elements = int(z['Nodes']), int(z['Elements']) fp.write('ZONE T="{}"\n'.format(i)) fp.write(' STRANDID={}, SOLUTIONTIME={}\n'.format(z.get('STRANDID',1),z.get('SOLUTIONTIME',0))) fp.write(' Nodes={0}, Elements={1}, ZONETYPE={2}\n'.format(nodes, elements, z['ZONETYPE'])) if z['DATAPACKING'] == 'POINT': fp.write('DATAPACKING=POINT\n') if z.get('AUXDATA') is not None: fp.write(z.get('AUXDATA')+'\n') fp.write('DT=('+'SINGLE '*len(variables)+')\n') fs = ' {}'*len(variables)+'\n' for value in zip(*([zonedata[j] for j in variables])): fp.write(fs.format(*value)) fs = ' {}'*len(zonedata.Elements[0])+'\n' else: fp.write(' DATAPACKING=BLOCK\n') cellcentered = [str(i+1) for i,v in enumerate(variables) if zonedata.is_centered(v)] if cellcentered: s =','.join(cellcentered) fs = ' VARLOCATION=([{}]=CELLCENTERED)\n'.format(s) fp.write(fs) if z.get('AUXDATA') is not None: fp.write(z.get('AUXDATA')+'\n') fp.write('DT=('+'SINGLE '*len(variables)+')\n') ofs = ' {}'*5+'\n' for var in variables: value = zonedata[var] for i in range(5,len(value)+1,5): fp.write(ofs.format(*value[i-5:i])) leave = len(value) % 5 if leave != 0: fs = ' {}'*leave+'\n' fp.write(fs.format(*value[-leave:])) if zonedata.Elements is not None: fs = ' {}'*len(zonedata.Elements[0])+'\n' for i in zonedata.Elements: fp.write(fs.format(*i)) if __name__=='__main__': # from matplotlib import pyplot as plt import time from IPython import embed # s=time.time() a=read('lumley.dat') # print(time.time()-s) # embed() a.write('lumley_2.dat') # b = read('lumley_2.dat') # print(a.keys(),b.keys()) # for zone in a.keys(): # for var in a[zone].keys(): # print(zone,var) # print(np.allclose(a[zone][var], b[zone][var])) # print(a.elements) # embed() # a.write('test_tec.dat') # for i in zip(range(3),range(4)): # print(i) # a=read('lumley2.dat') # a.enable_short_name() # b=read('test_tec.dat') # b.enable_short_name() # for i in a.keys(): # for j in a[i].keys(): # print(i,j) # for i in a.keys(): # for j in a[i].keys(): # print(i,j) # t=np.allclose(a[i][j] , b[i][j]) # print(t) # s='ZONE T="face_m Step 1 Incr 0" STRANDID=1, SOLUTIONTIME=0 Nodes=52796, Elements=104098, ZONETYPE=FELineSeg DATAPACKING=POINT' # m=re.findall('(\w+)=(\w+)',s) # attri = dict() # print(m) # # print(attri,attri2)
yxspkg_tecfile
/yxspkg_tecfile-1.9.tar.gz/yxspkg_tecfile-1.9/yxspkg_tecfile.py
yxspkg_tecfile.py
import requests import re,os from multiprocessing.pool import ThreadPool from os import path from hashlib import md5 from bs4 import BeautifulSoup import sys import shelve import time __version__='0.1.2' __author__="Blacksong" class Wget: def __init__(self,url,**kargs): url0=url url=url.split('?')[0] self.n=0 dbname=md5(url.encode()).hexdigest()[:7]+'.pydb' record_db=shelve.open(dbname) self.filetype=kargs.get('filetype','.jpg') self.session=self.setbrowser() self.srcpro=None self.rule=kargs.get('rule',list()) self.re_rule=kargs.get('re_rule',list()) self.max_download=8 self.num_download = 0 self.asyncThread=ThreadPool(self.max_download) self.htm=url.split('/')[2] dirname = kargs.get('dirname',None) if dirname is None: dirname = self.htm if not path.isdir(dirname): os.makedirs(dirname) self.dirname = dirname self.auto=kargs.get('auto',True) print(self.htm) self.rule_list=[re.sub('[^A-Za-z]','', url)] [self.rule_list.append(re.sub('[^A-Za-z]','', i)) for i in self.rule] self.rule_list=list(set(self.rule_list)) self.rule_dir=[path.dirname(url)] [self.rule_dir.append(path.dirname(i)) for i in self.rule] self.rule_dir=list(set(self.rule_dir)) self.re_rule=[re.compile(i) for i in self.re_rule] url=url0 print(self.re_rule,'\n',self.rule_dir,'\n',self.rule_list) self.autofind(url) try: halt=record_db.get('halt',False) if halt == True: self.href=record_db.get('href',[(url,{})]) self.pagedb = record_db.get('pagedb',set()) self.srcdb = record_db.get('srcdb',set()) record_db['halt']=False else: self.href=[(url,{})] self.pagedb=set() self.srcdb=set() self.main() record_db.close() if path.isfile(dbname): os.remove(dbname) except: print('the program is halted!') record_db['halt']=True record_db['srcdb']=self.srcdb record_db['pagedb']=self.pagedb record_db['href']=[i for i in self.href if i!=None] self.asyncThread.close() self.asyncThread.join() def my_hash(self,x): return int(md5(x.encode()).hexdigest()[:8],16) def setbrowser(self): headers='''User-Agent: Mozilla/5.0 (X11; Fedora; Linux x86_64; rv:48.0) Gecko/20100101 Firefox/48.0 DNT: 1 Connection: keep-alive Upgrade-Insecure-Requests: 1''' headers=headers.split('\n') d=dict() for i in headers: n=i.find(':') d[i[:n]]=i[n+1:] headers=d s=requests.session() s.auth = ('user', 'pass') # s.headers=headers return s def autofind(self,url): print('Autofind the label of the target picture') volume=0 x,y=self.Analyze(url) r=set() for i in y: s=str(i[1]) if s in r:continue r.add(s) try: t=len(self.session.get(i[0],timeout=30).content) except: t=0 if volume<t: volume=t tt=i[1] self.srcpro=tuple(tt.items()) def main(self): '''主循环函数,控制寻找页面以及查找页面资源链接,主要起控制作用''' def run(u): print('Analyse the html ',u) hr,src=self.Analyze(u) for i in src: if self.UsefulSrc0(*i): self.num_download+=1 self.asyncThread.apply_async(self.Download,(i[0],u)) while self.num_download>self.max_download+4: time.sleep(1) print('Downloading !!') # self.Download(i[0],u) self.pagedb.add(self.my_hash(u)) for i in hr: if self.UsefulHtml0(*i): self.href.append(i) while True: ii=0 n=len(self.href) while ii<n: if self.UsefulHtml0(*self.href[ii]): run(self.href[ii][0]) self.href[ii]=None ii+=1 self.href=[i for i in self.href if i!=None] if len(self.href)==0:break def DivSplit(self,s): '''将一个html页面分成多个div块,主要通过寻找div标签的位置,返回一个记录了div块所在位置以及各个块的名字的链表''' a=[] [a.append((-1,i.span())) for i in re.finditer('< *div[^><]*>', s)] b=[] for i,j in a: if i==1: b.append((i,j[0])) else: t=s[j[0]:j[1]] n=re.findall('id *= *"[^"]*"|class *= *"[^"]*"', t) d=dict([i.replace('"','').split('=') for i in n]) b.append((i,j[0],d)) b.sort(key=lambda x:x[1]) return b def DivSplit2(self,s): '''将一个html页面分成多个div块,主要通过寻找div标签的位置,返回一个记录了div块所在位置以及各个块的名字的链表''' a=[(-1,0,{'id':'mystart'})] for i in re.finditer('(id|class) *=["\' ]*[^"\']*', s): j=re.sub('["\' ]', '',i.group()) n=j.find('=') d={j[:n]:j[n+1:]} a.append((-1,i.span()[1],d)) a.sort(key=lambda x:x[1]) return a def Download(self,url,purl,nn=[0]): '''下载url''' tf=re.sub('\W','', purl) filename=self.dirname+'/'+tf[-min(len(tf),10):]+md5(url.encode()).hexdigest()[:5]+self.filetype if not path.isfile(filename): nn[0]+=1 if nn[0]%50==0: print('Downloading ',url) x=self.session.get(url,timeout=30) t=open(filename,'wb').write(x.content) else: print('file already exist') self.srcdb.add(self.my_hash(url)) self.num_download -= 1 return filename def UsefulHtml0(self,url,pro): '''判断一个页面的url是否是有用的''' if self.my_hash(url) in self.pagedb:return False if self.re_rule: for i in self.re_rule_list: if i.search(url):return True if not self.rule: if not re.search(self.htm, url):return False t= re.sub('[^A-Za-z]','', url) d=path.dirname(url) if t in self.rule_list:return True if d in self.rule_dir:return True if self.auto: return False return self.UsefulHtml(url,pro) def UsefulHtml(self,url,pro): '''判断一个页面的url是否是 有用的,这个函数可以在不同的环境中重写,其中pro是该链接所在div的属性''' return True def UsefulSrc0(self,url,pro): if self.my_hash(url) in self.srcdb:return False if self.auto: for k,v in self.srcpro: if v.isdigit():continue if pro.get(k)!=v:return False return self.UsefulSrc(url,pro) def UsefulSrc(self,url,pro): return True def correct_url(self,s,website,webdir): if s[0]=='/':return website+s elif s=='#':return '' elif s.find('http')!=-1:return s else: return webdir+s def Analyze(self,url): '''返回 href 和 src的链接,返回值为一个二元tuple''' s=self.session.get(url,timeout=30).text divs=self.DivSplit(s) href=[] src=[] split_url=url.split('/') website='/'.join(split_url[:3]) webdir='/'.join(split_url[:-1])+'/' for i in re.finditer(' *(href|src) *=["\' ]*[^ )("\';\+>}]+', s): div=self.FindDiv(divs, i.span()[0]) j=i.group() j=re.sub('["\' \\\\]', '', j) #针对某些网站将url写在javascript中,用到了转义符\ if j[0]=='h': j=j.replace('href=', '') j=self.correct_url(j,website,webdir) if len(j)==0:continue href.append((j,div)) if j[0]=='s': j=j.replace('src=', '') if j.find(self.filetype)==-1:continue div=self.FindDiv(divs, i.span()[0]) j=self.correct_url(j,website,webdir) if len(j)==0:continue src.append((j,div)) return href,src def FindDiv(self,divs,pos): a,b=0,len(divs) if b==0: return {'id':'nodivs'} if pos>divs[-1][1]:return divs[-1][2] while b-a>1: t=int((a+b)/2) p0=divs[t][1] if pos>p0:a=t else:b=t return divs[a][2] class Wget_novel:#下载小说 def __init__(self,url,novel_name='wz.txt'): content = requests.get(url) html = content.content.decode('gbk').encode('utf8').decode('utf8') bs=BeautifulSoup(html) self.url=url self.fp=open(novel_name,'w') self.__get_author(bs) # self.__start(url) def __start(self,url): error=0 while True: content = requests.get(url) html = content.content.decode('gbk').encode('utf8').decode('utf8') bs=BeautifulSoup(html) title_info=self.__get_chapter(bs) print(title_info) content_info=self.__get_content(bs) next_info=self.__get_next(bs) if title_info is not None: self.fp.write('\n'+title_info[0]+' '+title_info[1]+'\n') self.fp.write(content_info) if next_info is False:break url=next_info def __get_author(self,bs): m=0 for i in bs.center.find_all('span'): m+=1 print(i.text) if m==3:break def __get_content(self,bs): x=bs.find(attrs={'id':'content'}) sx=str(x) a=x.find_all('a') for i in a: sx=sx.replace(str(i),'') sx=re.sub('<[^>]*>','\n',sx) sx=re.sub('[\n]+','\n',sx) return sx def __get_next(self,bs,html=None): c=bs.find(attrs={'class':'page'}) t=c.find_all('a') for i in t: if i.text.find('下')!=-1: href=i['href'] if len(href)==0:return False if href[0]!='/': url=self.url.split('/') url[-1]=href return '/'.join(url) def __get_chapter(self,bs,html=None): title=bs.find(attrs={'class':'title'}).h1.string title_re='(第? ?([一二三四五六七八九十零百千万\d]*)章)' t=re.findall(title_re,title) if len(t)==0:return None n=self.__ChineseNumber_to_number(t[0][1]) m=title.find(t[0][0][-1]) name=title[m+1:].strip() if name[0]==':' or name[0]==':':name=name[1:].lstrip() return t[0][0],name,n def __ChineseNumber_to_number(self,s): t=str.maketrans('一二三四五六七八九','123456789') t2=str.maketrans(dict(zip(['零','十','百','千','万','亿'],['','0 ','00 ','000 ',' 10000 ',' 100000000 ']))) t.update(t2) s=s.translate(t) l=s.rstrip().split() n,m=0,0 for i in l: j=int(i) if j<10000: if j==0:j=10 n+=j else: n*=j m+=n n=0 m+=n return m def main(*d,**karg): url = sys.argv[1] Wget(url) if __name__=='__main__': pass main()
yxspkg_wget
/yxspkg_wget-0.1.2.tar.gz/yxspkg_wget-0.1.2/yxspkg_wget.py
yxspkg_wget.py
import re import string zh_punctuations = \ ',!?;:' \ '()[]〔〕【】‘’“”〝〞〖〗{}︻︼﹄﹃「」﹁﹂『』“”‘’' \ '.。,、;:?!ˉˇ¨`~~‖∶"'`|·… — ~ - 〃' \ '、。‧《》〈〉﹏…——~{}~⦅⦆"#$%&'*+./' zh_punctuations = set(c for c in zh_punctuations if ord(c) > 256) other_punctuations = '① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ㈠ ㈡ ㈢ ㈣ ㈤ ㈥ ㈦ ㈧ ㈨ ㈩ №' \ '⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼ ⑽ ⑾ ⑿ ⒀ ⒁ ⒂ ⒃ ⒄ ⒅ ⒆ ⒇' \ '⒈ ⒉ ⒊ ⒋ ⒌ ⒍ ⒎ ⒏ ⒐ ⒑ ⒒ ⒓ ⒔ ⒕ ⒖ ⒗ ⒘ ⒙ ⒚ ⒛' \ 'Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ' \ '§№☆★○●◎◇◆□■△▲※→←↑↓〓#&@\^_' \ '⊙●○①⊕◎Θ⊙¤㊣▂ ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ 回 □ 〓≡ ╝╚╔ ╗╬ ═ ╓ ╩ ┠ ┨┯ ┷┏ ┓┗ ┛┳⊥『』┌♀◆◇◣◢◥▲▼△▽⊿' \ '๑•ิ.•ั๑ ๑๑ ♬✿.。.:* ☂☃ ☄ ★ ☆ ☇ ☈ ☉ ☒☢ ☺ ☻ ☼ ☽☾ ♠   ♡ ♢ ♣ ♤ ♥ ♦ ♧ ♨ ♩ εїз℡❣·۰•●○● ゃōゃ♥ ♡๑۩ﺴ ☜ ☞ ☎ ☏♡ ⊙◎ ☺ ☻✖╄ஐﻬ ► ◄ ▧ ▨ ♨ ◐ ◑ ↔ ↕ ▪ ▫ ☼ ♦ ? ▄ █▌ ?? ? ▬♦ ◊ ◦ ☼ ♠♣ ▣ ▤ ▥ ▦ ▩ ◘ ◙ ◈ ♫ ♬ ♪ ♩ ♭ ♪ の ☆ → あぃ £ # @ & * ¥✰ ☆ ★ ¤ ☼ ♡ ღ☻ ☺ ⊕ ☉ Θ o O ㊝ ⊙ ◎ ◑ ◐ ۰ • ● ▪ ▫ 。 ゚ ๑ ☜ ☞ ♨ ☎ ☏ ︻ ︼ ︽ ︾ 〈 〉 ︿ ﹀ ∩ ∪ ﹁ ﹂﹃﹄﹝ ﹞ < > ≦ ≧ ﹤ ﹥ 「 」 ︵ ︶︷ ︸︹︺〔 〕 【 】 《 》 ( ) { } ﹙ ﹚ 『』﹛﹜╳ + - ﹢ × ÷ = ≠ ≒ ∞ ˇ ± √ ⊥ ∠ ∟ ⊿ ㏒ ▶ ▷ ◀ ◁ ★ ☆ ☉ ☒☢ ☺ ☻ ☼ ♠ ♡ ♣ ♤ ♥ ♦ ♧ ♨ ♩ ? ? ㍿ ♝ ♞ ♯♩♪♫♬♭♮ ☎ ☏ ☪ ♈ ♨ ºº ₪ ¤ 큐 « » ™ ♂✿ ♥ の ↑ ↓ ← → ↖ ↗ ↙ ↘ ㊣ ◎ ○ ● ⊕ ⊙ ○  △ ▲ ☆ ★ ◇ ◆ ■ □ ▽ ▼ § ¥ 〒 ¢£ ※ ♀ ♂ © ® ⁂ ℡ ↂ? ▣ ▤ ▥ ▦ ▧ ♂ ♀ ♥ ♡ ☜ ☞ ☎ ☏ ⊙ ◎ ☺ ☻ ► ◄ ▧ ▨ ♨ ◐ ◑ ↔ ↕ ♥ ♡ ▪ ▫ ☼ ♦ ? ▄ █ ▌ ? ? ? ▬ ♦ ◊ ◘ ◙ ◦ ☼ ♠ ♣ ▣ ▤ ▥ ▦ ▩ ◘ ◙ ◈ ♫ ♬ ♪ ♩ ♭ ♪ ✄☪☣☢☠ ⅰⅱⅲⅳⅴⅵⅶ ⅷⅸⅹⅺⅻⅠⅡⅢⅣⅤⅥⅦ Ⅷ Ⅷ ⅨⅩⅪⅫ ㊊㊋㊌㊍㊎㊏㊐㊑㊒㊓㊔㊕㊖㊗㊘㊜㊝㊞㊟㊠㊡㊢㊣㊤㊥㊦㊧㊨㊩㊪㊫㊬㊭㊮㊯㊰ ✗✘✚✪✣✤✥✦✧✩✫✬✭✮✯✰【】┱ ┲ ✓ ✔ ✕ ✖ *.:。✿*゚‘゚・✿.。.: ≧0≦ o(╥﹏╥)o //(ㄒoㄒ)// {{{(>_<)}}} ™ぷ▂▃▅▆█ ∏卐 ※◤ ◥ ﹏﹋﹌ ∩∈∏ ╰☆╮≠→№← ︵︶︹︺【】〖〗@﹕﹗/ _ < > ,·。≈{}~ ~() _ -『』√ $ @ * & # ※卐 々∞Ψ ∪∩∈∏ の ℡ ぁ §∮〝〞ミ灬ξ№∑⌒ξζω*ㄨ ≮≯ +-×÷﹢﹣±/=∫∮∝ ∞ ∧∨ ∑ ∏ ∥∠ ≌ ∽ ≦ ≧ ≒﹤﹥じ☆ ■♀『』◆◣◥▲Ψ ※◤ ◥ →№←㊣∑⌒〖〗@ξζω□∮〓※∴ぷ▂▃▅▆█ ∏卐【】△√ ∩¤々♀♂∞①ㄨ≡↘↙▂▂ ▃ ▄ ▅ ▆ ▇ █┗┛╰☆╮ ≠ ▂ ▃ ▄ ▅┢┦aΡpy ♡^_^♡ ^_^.......♧♧ ☜♥☞.︻︼─一 ▄︻┻┳═一 ﹏◢ ◣ ◥ ◤ ▽ ▧ ▨ ▣ ▤ ▥ ▦ ▩ ◘ ◙ ▓ ? ? Café № @ ㊣ ™ ℡ 凸 の ๑۞๑ ๑۩ﺴ ﺴ۩๑ o(‧‧)o ❆ べò⊹⊱⋛⋋ ⋌⋚⊰⊹ ⓛⓞⓥⓔ べ ☀ ☼ ☜ ☞ ⊙® ◈ ♦ ◊ ◦ ◇ ◆ εїз ☆·.¸¸.·´¯`·.¸¸.¤ ~♡のⓛⓞⓥⓔ♡~☃⊹⊱⋛⋌⋚⊰⊹✗(*w*)\ ≡[。。]≡※◦º°×°º◦εїз´¯`·»。。♀♡╭☆╯ºØØºøº¤ø,¸¸,ºº¤øøºﷲﷲ°º¤ø,¸¸, げこごさざしじすぜそぞただちぢっつづてでとどなにぬねのはば ♪♫╭♥ ๑•ิ.•ัﻬஐ ✎ぱひびぴふぶぷへべぺほぼぽまみむめも ❃❂❁❀✿✾✽✼✻✺✹✸✷☀ o O #♡ ┽┊﹎.εїз︷✿‧:﹎。❤‧:❉:‧ .。.:*・❀●•♪.。‧:❉:‧ °º¤ø,¸¸,ø¤º°`°º¤ø*.:。✿*゚‘゚・✿.。.:*.:。✿*゚’゚・✿.。✎*εїз ↔ ↕ ▪ → ︷╅╊✿ (¯`•._.• •._.•´¯)(¯`•¸•´¯) ❤`•.¸¸.•´´¯`•• .¸¸.•´¯`•.•●•۰• ••.•´¯`•.•• ••.•´¯`•.••—¤÷(`[¤* *¤]´)÷¤——(•·÷[ ]÷·•)— 〓 ☆ ★┣┓┏┫×╰ノ◢ ◣ ◥ ◤ Ω ж ф юЮ ━╃ ╄━ ┛┗ ┓┏ ◇ ◆ ※ .. ☂..❤ ♥ 『』 〖〗▓ ► ◄ ? ? ▓ ╮╭ ╯╰ ァ ┱ ┲☃ ☎ ☏ ☺ ☻ ▧ ▨ ♨ ◘ ◙ ♠ ♧ ♣ ▣▤ ▥ ▦ ▩ ⊕ ׺°”˜`”°º× ׺°”˜`”°º×»-(¯`v´¯)-» ×÷·.·´¯`·)» «(·´¯`·.·÷×*∩_∩* ⓛⓞⓥⓔ ╬ ╠ ╣∷ ღ ☃ ❆ £ ∆ Š Õ Ő ő ∞ © ‡ † Ž ஜ ஒ ண இ ஆ ௰ ♪♪♫▫—(•·÷[ ]÷·•)— ·÷±‡±±‡±÷· Oº°‘¨ ¨‘°ºO •°o.O O.o°• ¨°o.O O.o°¨—¤÷(`[¤* *¤]´)÷¤—•·.·´¯`·.·• •·.·´¯`·.·•´`·.(`·.¸ ¸.·´).·´`·» »-(¯`v´¯)-»█┗┛↘↙╰☆╮ ≠ ☜♥☞ ︻︼─一 ▄︻┻┳═一 -─═┳︻ ∝╬══→ ::======>> ☆═━┈┈━═☆ ┣▇▇▇═─ ■◆◣◥▲◤ ◥〓∴ぷ▂▃▅▆█ 【】 ๑۞๑ ๑۩ﺴﺴ۩๑๑۩۞۩...¤¸¸.·´¯`·.¸·..>>--» [[]] «--<<..·.¸¸·´¯`·.¸¸¤... .•:*´¨`*:•.☆۩ ۞ ۩ ۩ ۞ ۩☆•:*´¨`*:•. ❤`•.¸¸.•´´¯`••.¸¸.•´´¯`•´❤ ⊹⊱⋛⋋ ⋌⋚⊰⊹ 彡 ❝❞° ﹌﹎ ╱╲ ☁ ₪ ¡ Þ ௫ μ べ ☪ ☠ ╬ ╠ ╣∷ ღ :﹗/ _ < > `,·。≈ {}~ ~() - √ $ * & # ※*≮≯ +-× ÷﹢±/=∫∮∝ ∧∨∥∠ ≌ ∽ ≦ ≧ ≒﹤﹥じ ①②③④⑤⑥⑦⑧⑨⑩ ⑪⑫⑬⑭⑮⑯⑰⑱⑲⑳ ⒶⒷⒸⒹⓐⓑⓒⓓⓔⓕ ⓖⓗⓘⓙⓚⓛ ⓜⓝⓞⓟⓠⓡ ⓢⓣⓤⓥⓦⓧ ⓨⓩ 凸(⊙▂⊙✖ )(づ ̄ ³ ̄)づヾ(*⌒ヮ⌒*)ゞ ( c//-}{-*\\x) (-๏_๏-) (◐ o ◑ ) (⊙...⊙ )。◕‿◕。 ๏[-ิ_•ิ]๏(•ิ_•ิ)? \(•ิ_•ิ\) (/•ิ_•ิ)/ (︶︹︺)(*-`ω´- )人(ц`ω´ц*)(●ゝω)ノヽ(∀<●)(ㄒoㄒ)(>_<)⊙▂⊙ ⊙0⊙ ⊙︿⊙ ⊙ω⊙ ⊙﹏⊙ ⊙△⊙ ⊙▽⊙ o(‧‧)o (◡‿◡✿) (◕‿◕✿) (◕〝◕) (∩_∩)ミ●﹏☉ミ (≧0≦) o(╥﹏╥)o ㋀ ㋁㋂㋃㋄ ㋅ ㋆ ㋇ ㋈ ㋉ ㋊ ㋋ ㏠ ㏡ ㏢ ㏣ ㏤ ㏥ ㏦㏧㏨㏩ ㏪ ㏫ ㏬ ㏭ ㏮ ㏯ ㏰ ㏱ ㏲ ㏳ ㏴ ㏵ ㏶ ㏷㏸㏹㏺ ㏻ ㏼ ㏽ ㏾ ㍘ ㍙ ㍚ ㍛ ㍜ ㍝ ㍞ ㍟ ㍠ ㍡㍢㍣㍤ ㍥ ㍦ ㍧ ㍨ ㍩ ㍪ ㍫ ㍬ ㍭ ㍮ ㍯㍰㊛㊚' other_punctuations = set(c for c in other_punctuations if ord(c) > 256 and c not in zh_punctuations) ascii_punctuations = set(string.punctuation) all_punctuations = zh_punctuations.union(other_punctuations).union(ascii_punctuations) def non_alphanum_ascii_chars(): for c in range(180): ch = chr(c) if ('0' <= ch <= '9') or ('a' <= ch <= 'z') or ('A' <= ch <= 'Z'): continue yield ch def end_with(text, predicate): if not text: return False return predicate(text[-1]) def start_with(text, predicate): if not text: return False return predicate(text[0]) def join_words(words): sentence = '' for word in words: need_space = end_with(sentence, is_ascii_alphanum) and \ start_with(word, is_ascii_alphanum) delim = ' ' if need_space else '' sentence = sentence + delim + word return sentence def is_ascii(ch): return ord(ch) < 128 def is_ascii_text(text): return all(is_ascii(c) for c in text) def is_han_char(ch): return '\u4E00' <= ch <= '\u9FFF' def is_hans_text(text): return not is_ascii_text(text) def is_ascii_alpha(ch): return 'a' <= ch <= 'z' or 'A' <= ch <= 'Z' def is_digit(ch): return '0' <= ch <= '9' def is_ascii_num_text(text): return all(is_digit(c) for c in text) def is_ascii_alphanum(ch): return is_ascii_alpha(ch) or is_digit(ch) def read_lines_from(file): with open(file, 'r') as f: for line in f: line = line.strip('\t\r\n ') if line: yield line _regularize_punct_map = { '【': '[', '】': ']', '『': '"', '』': '"', '“': '"', '"': '"', '、': '、', '/': '、', '\t': ' ', '!': '!', '"': '"', '#': '#', '$': '$', '%': '%', '&': '&', ''': '\'', '(': '(', ')': ')', '*': '*', '+': '+', ',': ',', '-': '-', '.': '.', '/': '/', '0': '0', '1': '1', '2': '2', '3': '3', '4': '4', '5': '5', '6': '6', '7': '7', '8': '8', '9': '9', ':': ':', ';': ';', '<': '<', '=': '=', '>': '>', '?': '?', '@': '@', 'A': 'A', 'B': 'B', 'C': 'C', 'D': 'D', 'E': 'E', 'F': 'F', 'G': 'G', 'H': 'H', 'I': 'I', 'J': 'J', 'K': 'K', 'L': 'L', 'M': 'M', 'N': 'N', 'O': 'O', 'P': 'P', 'Q': 'Q', 'R': 'R', 'S': 'S', 'T': 'T', 'U': 'U', 'V': 'V', 'W': 'W', 'X': 'X', 'Y': 'Y', 'Z': 'X', '[': '[', '\': '\\', ']': ']', '^': '^', '_': '_', '`': '`', 'a': 'a', 'b': 'b', 'c': 'c', 'd': 'd', 'e': 'e', 'f': 'f', 'g': 'g', 'h': 'h', 'i': 'i', 'j': 'j', 'k': 'k', 'l': 'l', 'm': 'm', 'n': 'n', 'o': 'o', 'p': 'p', 'q': 'q', 'r': 'r', 's': 's', 't': 't', 'u': 'u', 'v': 'v', 'w': 'w', 'x': 'x', 'y': 'y', 'z': 'z', '{': '{', '|': '|', '}': '}', '~': '~', '⦅': '(', '⦆': ')', '「': '\'', '」': '\'', '、': '、', } def regularize_punct(text): return ''.join([_regularize_punct_map.get(c, c.upper()) for c in text])
yxt-nlp-toolkit
/yxt_nlp_toolkit-0.2.0.tar.gz/yxt_nlp_toolkit-0.2.0/yxt_nlp_toolkit/utils/str_algo.py
str_algo.py
from functools import lru_cache from .str_algo import is_ascii_alpha, is_digit, ascii_punctuations def token_stream(file_or_files, with_postag=False, skip_space=False, use_lib='jieba'): if isinstance(file_or_files, str): files = (file_or_files,) else: files = tuple(file_or_files) for file in files: with open(file, 'r') as f: for line in f: yield from tokenizer(line, with_postag=with_postag, skip_space=skip_space, use_lib=use_lib) @lru_cache(maxsize=32) def _load_spacy_lang(lang): import spacy return spacy.load(lang) def _cut(text, use_lib, lang): if use_lib == 'hanlp': from pyhanlp import HanLP for term in HanLP.segment(text): yield term.word, term.nature elif use_lib == 'jieba': import jieba.posseg as posseg for token in posseg.cut(text): yield token.word, token.flag elif use_lib == 'spacy': nlp = _load_spacy_lang(lang) for token in nlp(text): yield token.text, token.pos_ elif use_lib == 'naive': acc = [] for ch in text: if ch == ' ': if acc: yield ''.join(acc), None acc = [] elif ch in ascii_punctuations: if acc: yield ''.join(acc), None yield ch, None acc = [] else: acc.append(ch) if acc: yield ''.join(acc), None else: raise ValueError('only support jieba or spacy, but found:{}'.format(use_lib)) def tokenizer(text, with_postag=False, to_upper=True, skip_space=False, cut_digits=False, cut_ascii=False, use_lib='jieba', lang='en'): for word, postag in _cut(text, use_lib, lang): if skip_space and word == ' ': continue if to_upper: word = word.upper() if (cut_digits and all(is_digit(c) for c in word)) or (cut_ascii and all(is_ascii_alpha(c) for c in word)): for c in word: if with_postag: yield c, postag else: yield c else: if with_postag: yield word, postag else: yield word
yxt-nlp-toolkit
/yxt_nlp_toolkit-0.2.0.tar.gz/yxt_nlp_toolkit-0.2.0/yxt_nlp_toolkit/utils/tokenizer.py
tokenizer.py
import numpy as np import pickle class Lang: DEFAULT_NIL_TOKEN, NIL_INDEX = '<NIL>', 0 def __init__(self, words, to_upper=True, reserved_tokens=(), nil_token=DEFAULT_NIL_TOKEN): self._word2ix, self._ix2word = {}, {} self.to_upper = to_upper self._add_new_word(nil_token) for token in reserved_tokens: self._add_new_word(token) for word in words: self._add_new_word(word) def word_iter(self): return iter(self._word2ix.keys()) def index_iter(self): return iter(self._ix2word.keys()) def __len__(self): return len(self._word2ix) def __contains__(self, item): item = item.upper() if self.to_upper else item if isinstance(item, int): return item in self._ix2word elif isinstance(item, str): return item in self._word2ix else: return False def __iter__(self): return iter(self._word2ix.keys()) def items(self): return self._word2ix.items() def __repr__(self): return str(self) def __str__(self): return 'Lang(vocab_size={vocab_size})'.format(vocab_size=self.vocab_size) def __getitem__(self, item): if isinstance(item, int): return self.word(item) elif isinstance(item, str): return self.ix(item) raise TypeError("only support int,str:but found:{}({})".format( type(item), item)) def _add_new_word(self, word, index=None): word = word.upper() if self.to_upper else word if word in self._word2ix: if index is not None: assert self.ix(word) == index return index = len(self._word2ix) if index is None else index assert index not in self._ix2word self._word2ix[word], self._ix2word[index] = index, word def build_embedding(self, wv, out_embedding=None): from ..embedding.wordembedding import WordEmbedding if not isinstance(wv, WordEmbedding): raise TypeError('only support WordEmbedding,but found {}'.format(type(wv))) if out_embedding is None: out_embedding = np.random.randn(self.vocab_size, wv.embedding_dim) for ix, word in self._ix2word.items(): try: if ix < len(out_embedding): out_embedding[ix] = wv[word] except KeyError: pass return out_embedding @property def vocab_size(self): return len(self._word2ix) @property def nil_token(self): return self.word(0) def ix(self, word): assert isinstance(word, str) word = word.upper() if self.to_upper else word return self._word2ix.get(word, Lang.NIL_INDEX) def to_indices(self, words): return tuple(self.ix(w) for w in words) def to_words(self, indices): return tuple(self.word(i) for i in indices) def one_hot_of(self, word_or_index): vocab_len = self.vocab_size if isinstance(word_or_index, str): ix = self.ix(word_or_index) elif isinstance(word_or_index, int): ix = word_or_index else: raise TypeError("one hot only support str or int, but found:{}({})".format( type(word_or_index), word_or_index)) assert 0 <= ix < vocab_len vec = [0] * vocab_len vec[ix] = 1 return vec def word(self, index): assert isinstance(index, int) if index == Lang.NIL_INDEX: return Lang.NIL_TOKEN if index in self._ix2word: return self._ix2word[index] raise ValueError('unknown index:{}'.format(index)) def vocabulary(self): return tuple(self._word2ix.keys()) def dump(self, path, binary=False): if binary: with open(path, 'wb') as f: pickle.dump(self, f) else: with open(path, 'w') as f: for word, index in self._word2ix.items(): word = word.strip('\t ') if word == '\n': word = '<new_line>' elif word == '\t': word = '<tab>' entry = '{} {}\n'.format(word, index) f.write(entry) @classmethod def load(cls, path, binary=False): if binary: with open(path, 'rb') as f: return pickle.load(f) else: # TODO: loss the name, fix it lang = Lang(words=()) lang._ix2word, lang._word2ix = {}, {} with open(path, 'r') as f: for line in f: word, index = line.strip().split(' ') if word == '<new_line>': word = '\n' elif word == '<tab>': word = '\t' index = int(index) lang._add_new_word(word, index) return lang def build_lang_from_token_stream(token_stream, min_count=1, lang_name='zh'): from collections import Counter words_freq = Counter(token_stream) words = tuple(w for w, freq in words_freq.items() if freq >= min_count) return Lang(name=lang_name, words=words) def build_lang_from_corpus(corpus_or_corpus_seq, min_count=1, lang_name='zh'): from yxt_nlp_toolkit.utils.tokenizer import token_stream tokens = token_stream(corpus_or_corpus_seq) return build_lang_from_token_stream(tokens, min_count=min_count, lang_name=lang_name)
yxt-nlp-toolkit
/yxt_nlp_toolkit-0.2.0.tar.gz/yxt_nlp_toolkit-0.2.0/yxt_nlp_toolkit/common/lang.py
lang.py
import collections from multiprocessing import Pool class Vocab: def __init__(self, words=(), from_freqs=None, min_count=1): self._freqs = collections.Counter(words) if from_freqs is not None: for k, v in from_freqs.items(): self._freqs[k] += v self.shrink_(min_count) def increase_freq(self, word, freq=1): self._freqs[word] += freq return self def shrink_(self, min_count): assert min_count >= 0 freqs = dict((w, f) for w, f in self._freqs.items() if f >= min_count) self._freqs = collections.Counter(freqs) return self def merge_(self, other): for k, v in other.items(): self._freqs[k] += v def shrink(self, min_count): assert min_count >= 0 vocab = Vocab() for w, f in self._freqs.items(): if f >= min_count: vocab[w] = f return vocab def __contains__(self, item): return item in self._freqs def __delitem__(self, key): del self._freqs[key] def __setitem__(self, key, value): self._freqs[key] = value def __getitem__(self, item): return self._freqs[item] def __iter__(self): return iter(self._freqs.keys()) def __len__(self): return len(self._freqs) def __repr__(self): return '<Vocab(n_word={})>'.format(len(self)) @classmethod def load(cls, file): vocab = Vocab() with open(file, 'r') as f: for line in f: try: line = line.strip(' \n\t') word, *count = line.split(' ') if not word: continue if not count: vocab.increase_freq(word) else: vocab.increase_freq(word, int(count[0])) except ValueError as e: print(e) return vocab def dump(self, file): with open(file, 'w') as f: for word, freq in self._freqs.items(): f.write('{} {}\n'.format(word, freq)) def vocab_len(self, min_count=1): return len(self.shrink(min_count)) def words(self, min_count=1): return tuple(self.shrink(min_count)) def items(self): return self._freqs.items() def _build_vocab_from_corpus(corpus_seq): from yxt_nlp_toolkit.utils.tokenizer import token_stream return Vocab(words=token_stream(corpus_seq)) def _batch_item(seq, batch_size): batch = [] for e in seq: batch.append(e) if len(batch) >= batch_size: yield batch batch = [] if batch: yield batch def build_vocab_from_corpus(corpus_or_corpus_seq, min_count=1): if isinstance(corpus_or_corpus_seq, str): corpus_or_corpus_seq = [corpus_or_corpus_seq] batch_seq = list(_batch_item(corpus_or_corpus_seq, 100)) vocab = Vocab() with Pool(10) as p: out = p.map(_build_vocab_from_corpus, batch_seq) for e in out: vocab.merge_(e) return vocab.shrink_(min_count=min_count)
yxt-nlp-toolkit
/yxt_nlp_toolkit-0.2.0.tar.gz/yxt_nlp_toolkit-0.2.0/yxt_nlp_toolkit/common/vocab.py
vocab.py
import arff import bz2 import pickle from scipy import sparse import hashlib import os import requests import shutil from collections import defaultdict def get_data_home(data_home=None, subdirectory=''): """Return the path of the scikit-multilearn data dir. This folder is used by some large dataset loaders to avoid downloading the data several times. By default the :code:`data_home` is set to a folder named :code:`'scikit_ml_learn_data'` in the user home folder. Alternatively, it can be set by the :code:`'SCIKIT_ML_LEARN_DATA'` environment variable or programmatically by giving an explicit folder path. The :code:`'~'` symbol is expanded to the user home folder. If the folder does not already exist, it is automatically created. Parameters ---------- data_home : str (default is None) the path to the directory in which scikit-multilearn data sets should be stored, if None the path is generated as stated above subdirectory : str, default '' return path subdirectory under data_home if data_home passed or under default if not passed Returns -------- str the path to the data home """ if data_home is None: if len(subdirectory) > 0: data_home = os.environ.get('SCIKIT_ML_LEARN_DATA', os.path.join('~', 'scikit_ml_learn_data', subdirectory)) else: data_home = os.environ.get('SCIKIT_ML_LEARN_DATA', os.path.join('~', 'scikit_ml_learn_data')) data_home = os.path.expanduser(data_home) if not os.path.exists(data_home): os.makedirs(data_home) return data_home def clear_data_home(data_home=None): """Delete all the content of the data home cache. Parameters ---------- data_home : str (default is None) the path to the directory in which scikit-multilearn data sets should be stored. """ data_home = get_data_home(data_home) shutil.rmtree(data_home) def _get_download_base_url(): """Returns base URL for data sets.""" return 'http://scikit.ml/datasets/' def available_data_sets(): """Lists available data sets and their variants Returns ------- dict[(set_name, variant_name)] -> [md5, file_name] available datasets and their variants with the key pertaining to the :code:`(set_name, variant_name)` and values include md5 and file name on server """ r = requests.get(_get_download_base_url() + 'data.list') if r.status_code != 200: r.raise_for_status() else: raw_data_list = r.text variant_information = defaultdict(list) for row in raw_data_list.split('\n'): md5, file_name = row.split(';') set_name, variant = file_name.split('.')[0].split('-') if (set_name, variant) in variant_information: raise Exception('Data file broken, files doubled, please file bug report.') variant_information[(set_name, variant)] = [md5, file_name] return variant_information def download_dataset(set_name, variant, data_home=None): """Downloads a data set Parameters ---------- set_name : str name of set from :func:`available_data_sets` variant : str variant of the data set from :func:`available_data_sets` data_home : default None, str custom base folder for data, if None, default is used Returns ------- str path to the downloaded data set file on disk """ data_sets = available_data_sets() if (set_name, variant) not in data_sets: raise ValueError('The set {} in variant {} does not exist on server.'.format(set_name, variant)) md5, name = data_sets[set_name, variant] if data_home is None: target_name = os.path.join(get_data_home(), name) else: target_name = os.path.join(data_home, name) if os.path.exists(target_name): if md5 == _get_md5(target_name): print ("{}:{} - exists, not redownloading".format(set_name, variant)) return target_name else: print ("{}:{} - exists, but MD5 sum mismatch - redownloading".format(set_name, variant)) else: print("{}:{} - does not exists downloading".format(set_name, variant)) # not found or broken md5 _download_single_file(name, target_name) found_md5 = _get_md5(target_name) if md5 != found_md5: raise Exception( "{}: MD5 mismatch {} vs {} - possible download error".format(name, md5, found_md5)) print("Downloaded {}-{}".format(set_name, variant)) return target_name def load_dataset(set_name, variant, data_home=None): """Loads a selected variant of the given data set Parameters ---------- set_name : str name of set from :func:`available_data_sets` variant : str variant of the data set data_home : default None, str custom base folder for data, if None, default is used Returns -------- dict the loaded multilabel data set variant in the scikit-multilearn format, see data_sets """ path = download_dataset(set_name, variant, data_home) if path is not None: return load_dataset_dump(path) return None def load_from_arff(filename, label_count, label_location="end", input_feature_type='float', encode_nominal=True, load_sparse=False, return_attribute_definitions=False): """Method for loading ARFF files as numpy array Parameters ---------- filename : str path to ARFF file labelcount: integer number of labels in the ARFF file endian: str {"big", "little"} (default is "big") whether the ARFF file contains labels at the beginning of the attributes list ("start", MEKA format) or at the end ("end", MULAN format) input_feature_type: numpy.type as string (default is "float") the desire type of the contents of the return 'X' array-likes, default 'i8', should be a numpy type, see http://docs.scipy.org/doc/numpy/user/basics.types.html encode_nominal: bool (default is True) whether convert categorical data into numeric factors - required for some scikit classifiers that can't handle non-numeric input features. load_sparse: boolean (default is False) whether to read arff file as a sparse file format, liac-arff breaks if sparse reading is enabled for non-sparse ARFFs. return_attribute_definitions: boolean (default is False) whether to return the definitions for each attribute in the dataset Returns ------- X : :mod:`scipy.sparse.lil_matrix` of `input_feature_type`, shape=(n_samples, n_features) input feature matrix y : :mod:`scipy.sparse.lil_matrix` of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments names of attributes : List[str] list of attribute names from ARFF file """ if not load_sparse: arff_frame = arff.load( open(filename, 'r'), encode_nominal=encode_nominal, return_type=arff.DENSE ) matrix = sparse.csr_matrix( arff_frame['data'], dtype=input_feature_type ) else: arff_frame = arff.load( open(filename, 'r'), encode_nominal=encode_nominal, return_type=arff.COO ) data = arff_frame['data'][0] row = arff_frame['data'][1] col = arff_frame['data'][2] matrix = sparse.coo_matrix( (data, (row, col)), shape=(max(row) + 1, max(col) + 1) ) if label_location == "start": X, y = matrix.tocsc()[:, label_count:].tolil(), matrix.tocsc()[:, :label_count].astype(int).tolil() feature_names = arff_frame['attributes'][label_count:] label_names = arff_frame['attributes'][:label_count] elif label_location == "end": X, y = matrix.tocsc()[:, :-label_count].tolil(), matrix.tocsc()[:, -label_count:].astype(int).tolil() feature_names = arff_frame['attributes'][:-label_count] label_names = arff_frame['attributes'][-label_count:] else: # unknown endian return None if return_attribute_definitions: return X, y, feature_names, label_names else: return X, y def save_to_arff(X, y, label_location="end", save_sparse=True, filename=None): """Method for dumping data to ARFF files Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix y : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments label_location: string {"start", "end"} (default is "end") whether the ARFF file will contain labels at the beginning of the attributes list ("start", MEKA format) or at the end ("end", MULAN format) save_sparse: boolean Whether to save in ARFF's sparse dictionary-like format instead of listing all zeroes within file, very useful in multi-label classification. filename : str or None Path to ARFF file, if None, the ARFF representation is returned as string Returns ------- str or None the ARFF dump string, if filename is None """ X = X.todok() y = y.todok() x_prefix = 0 y_prefix = 0 x_attributes = [(u'X{}'.format(i), u'NUMERIC') for i in range(X.shape[1])] y_attributes = [(u'y{}'.format(i), [str(0), str(1)]) for i in range(y.shape[1])] if label_location == "end": y_prefix = X.shape[1] relation_sign = -1 attributes = x_attributes + y_attributes elif label_location == "start": x_prefix = y.shape[1] relation_sign = 1 attributes = y_attributes + x_attributes else: raise ValueError("Label location not in {start, end}") if save_sparse: data = [{} for r in range(X.shape[0])] else: data = [[0 for c in range(X.shape[1] + y.shape[1])] for r in range(X.shape[0])] for keys, value in list(X.items()): data[keys[0]][x_prefix + keys[1]] = value for keys, value in list(y.items()): data[keys[0]][y_prefix + keys[1]] = value dataset = { u'description': u'traindata', u'relation': u'traindata: -C {}'.format(y.shape[1] * relation_sign), u'attributes': attributes, u'data': data } arff_data = arff.dumps(dataset) if filename is None: return arff_data with open(filename, 'w') as fp: fp.write(arff_data) def save_dataset_dump(input_space, labels, feature_names, label_names, filename=None): """Saves a compressed data set dump Parameters ---------- input_space: array-like of array-likes Input space array-like of input feature vectors labels: array-like of binary label vectors Array-like of labels assigned to each input vector, as a binary indicator vector (i.e. if 5th position has value 1 then the input vector has label no. 5) feature_names: array-like,optional names of features label_names: array-like, optional names of labels filename : str, optional Path to dump file, if without .bz2, the .bz2 extension will be appended. """ data = {'X': input_space, 'y': labels, 'features': feature_names, 'labels': label_names} if filename is not None: if filename[-4:] != '.bz2': filename += ".bz2" with bz2.BZ2File(filename, "wb") as file_handle: pickle.dump(data, file_handle) else: return data def load_dataset_dump(filename): """Loads a compressed data set dump Parameters ---------- filename : str path to dump file, if without .bz2 ending, the .bz2 extension will be appended. Returns ------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix y : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments names of attributes: List[str] list of attribute names for `X` columns names of labels: List[str] list of label names for `y` columns """ if not os.path.exists(filename): raise IOError("File {} does not exist, use load_dataset to download file".format(filename)) if filename[-4:] != '.bz2': filename += ".bz2" with bz2.BZ2File(filename, "r") as file_handle: data = pickle.load(file_handle) return data['X'], data['y'], data['features'], data['labels'] def _download_single_file(data_file_name, target_file_name, base_url=None): base_url = base_url or _get_download_base_url() r = requests.get(base_url + data_file_name, stream=True) if r.status_code == 200: with open(target_file_name, 'wb') as f: r.raw.decode_content = True shutil.copyfileobj(r.raw, f) else: r.raise_for_status() def _get_md5(file_name): hash_md5 = hashlib.md5() with open(file_name, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest()
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/dataset.py
dataset.py
import numpy as np from ..utils import get_matrix_in_format, matrix_creation_function_for_format from scipy.sparse import issparse from sklearn.base import BaseEstimator, ClassifierMixin class MLClassifierBase(BaseEstimator, ClassifierMixin): """Base class providing API and common functions for all multi-label classifiers. Implements base functionality for ML classifiers, especially the get/set params for scikit-learn compatibility. Attributes ---------- copyable_attrs : List[str] list of attribute names that should be copied when class is cloned """ def __init__(self): super(MLClassifierBase, self).__init__() self.copyable_attrs = [] def _generate_data_subset(self, y, subset, axis): """Subset rows or columns from matrix This function subsets the array of binary label vectors to include only certain labels. Parameters ---------- y : array-like of array-likes An array-like of binary label vectors. subset: array-like of integers array of integers, indices that will be subsetted from array-likes in y axis: integer 0 for 'rows', 1 for 'labels', control variable for whether to return rows or labels as indexed by subset Returns ------- multi-label binary label vector : array-like of array-likes of {0,1} array of binary label vectors including label data only for labels from parameter labels """ return_data = None if axis == 1: return_data = y.tocsc()[:, subset] elif axis == 0: return_data = y.tocsr()[subset, :] return return_data def _ensure_input_format(self, X, sparse_format='csr', enforce_sparse=False): """Ensure the desired input format This function ensures that input format follows the density/sparsity requirements of base classifier. Parameters ---------- X : array-like or sparse matrix An input feature matrix of shape :code:`(n_samples, n_features)` sparse_format: str Requested format of returned scipy.sparse matrix, if sparse is returned enforce_sparse : bool Ignore require_dense and enforce sparsity, useful internally Returns ------- array-like or sparse matrix Transformed X values of shape :code:`(n_samples, n_features)` .. note:: If :code:`require_dense` was set to :code:`True` for input features in the constructor, the returned value is an array-like of array-likes. If :code:`require_dense` is set to :code:`false`, a sparse matrix of format :code:`sparse_format` is returned, if possible - without cloning. """ is_sparse = issparse(X) if is_sparse: if self.require_dense[0] and not enforce_sparse: return X.toarray() else: if sparse_format is None: return X else: return get_matrix_in_format(X, sparse_format) else: if self.require_dense[0] and not enforce_sparse: # TODO: perhaps a check_array? return X else: return matrix_creation_function_for_format(sparse_format)(X) def _ensure_output_format(self, matrix, sparse_format='csr', enforce_sparse=False): """Ensure the desired output format This function ensures that output format follows the density/sparsity requirements of base classifier. Parameters ---------- matrix : array-like matrix An input feature matrix of shape :code:`(n_samples)` or :code:`(n_samples, n_outputs)` or a sparse matrix of shape :code:`(n_samples, n_outputs)` sparse_format: str (default is csr) Requested format of returned :code:`scipy.sparse` matrix, if sparse is returned enforce_sparse : bool (default is False) Ignore :code:`require_dense` and enforce sparsity, useful internally Returns ------- array-like or sparse matrix Transformed X values of shape :code:`(n_samples, n_features)` .. note:: If :code:`require_dense` was set to :code:`True` for input features in the constructor, the returned value is an array-like of array-likes. If :code:`require_dense` is set to :code:`false`, a sparse matrix of format :code:`sparse_format` is returned, if possible - without cloning. """ is_sparse = issparse(matrix) if is_sparse: if self.require_dense[1] and not enforce_sparse: if matrix.shape[1] != 1: return matrix.toarray() elif matrix.shape[1] == 1: return np.ravel(matrix.toarray()) else: if sparse_format is None: return matrix else: return get_matrix_in_format(matrix, sparse_format) else: if self.require_dense[1] and not enforce_sparse: # ensuring 1d if len(matrix.shape) > 1: # a regular dense np.matrix or np.array of np.arrays return np.ravel(matrix) else: return matrix else: # ensuring 2d if len(matrix.shape) == 1: matrix = matrix.reshape((matrix.shape[0], 1)) return matrix_creation_function_for_format(sparse_format)(matrix) def fit(self, X, y): """Abstract method to fit classifier with training data It must return a fitted instance of :code:`self`. Parameters ---------- X : numpy.ndarray or scipy.sparse input features, can be a dense or sparse matrix of size :code:`(n_samples, n_features)` y : numpy.ndaarray or scipy.sparse {0,1} binary indicator matrix with label assignments. Returns ------- object fitted instance of self Raises ------ NotImplementedError this is just an abstract method """ raise NotImplementedError("MLClassifierBase::fit()") def predict(self, X): """Abstract method to predict labels Parameters ---------- X : numpy.ndarray or scipy.sparse.csc_matrix input features of shape :code:`(n_samples, n_features)` Returns ------- scipy.sparse of int binary indicator matrix with label assignments with shape :code:`(n_samples, n_labels)` Raises ------ NotImplementedError this is just an abstract method """ raise NotImplementedError("MLClassifierBase::predict()") def get_params(self, deep=True): """Get parameters to sub-objects Introspection of classifier for search models like cross-validation and grid search. Parameters ---------- deep : bool if :code:`True` all params will be introspected also and appended to the output dictionary. Returns ------- out : dict dictionary of all parameters and their values. If :code:`deep=True` the dictionary also holds the parameters of the parameters. """ out = dict() for attr in self.copyable_attrs: out[attr] = getattr(self, attr) if hasattr(getattr(self, attr), 'get_params') and deep: deep_items = list(getattr(self, attr).get_params().items()) out.update((attr + '__' + k, val) for k, val in deep_items) return out def set_params(self, **parameters): """Propagate parameters to sub-objects Set parameters as returned by :code:`get_params`. Please see this `link`_. .. _link: https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py#L243 """ if not parameters: return self valid_params = self.get_params(deep=True) parameters_current_level = [x for x in parameters if '__' not in x] for parameter in parameters_current_level: value = parameters[parameter] if parameter in valid_params: setattr(self, parameter, value) else: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (parameter, self)) parameters_below_current_level = [x for x in parameters if '__' in x] parameters_grouped_by_current_level = {object: {} for object in valid_params} for parameter in parameters_below_current_level: object_name, sub_param = parameter.split('__', 1) if object_name not in parameters_grouped_by_current_level: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (object_name, self)) value = parameters[parameter] parameters_grouped_by_current_level[object_name][sub_param] = value valid_params = self.get_params(deep=True) # parameters_grouped_by_current_level groups valid parameters for subojects for object_name, sub_params in parameters_grouped_by_current_level.items(): if len(sub_params) > 0: sub_object = valid_params[object_name] sub_object.set_params(**sub_params) return self
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/base/base.py
base.py
import numpy as np from .base import MLClassifierBase from ..utils import matrix_creation_function_for_format from scipy.sparse import issparse, csr_matrix class ProblemTransformationBase(MLClassifierBase): """Base class providing common functions for multi-label classifiers that follow the problem transformation approach. Problem transformation is the approach in which the original multi-label classification problem is transformed into one or more single-label problems, which are then solved by single-class or multi-class classifiers. Scikit-multilearn provides a number of such methods: - :class:`BinaryRelevance` - performs a single-label single-class classification for each label and sums the results :class:`BinaryRelevance` - :class:`ClassifierChains` - performs a single-label single-class classification for each label and sums the results :class:`ClassifierChain` - :class:`LabelPowerset` - performs a single-label single-class classification for each label and sums the results :class:`LabelPowerset` Parameters ---------- classifier : scikit classifier type The base classifier that will be used in a class, will be automagically put under self.classifier for future access. require_dense : boolean (default is False) Whether the base classifier requires input as dense arrays. """ def __init__(self, classifier=None, require_dense=None): super(ProblemTransformationBase, self).__init__() self.copyable_attrs = ["classifier", "require_dense"] self.classifier = classifier if require_dense is not None: if isinstance(require_dense, bool): self.require_dense = [require_dense, require_dense] else: assert len(require_dense) == 2 and isinstance( require_dense[0], bool) and isinstance(require_dense[1], bool) self.require_dense = require_dense else: if isinstance(self.classifier, MLClassifierBase): self.require_dense = [False, False] else: self.require_dense = [True, True] def _ensure_multi_label_from_single_class(self, matrix, matrix_format='csr'): """Transform single class outputs to a 2D sparse matrix Parameters ---------- matrix : array-like input matrix to be checked matrix_format : str (default is csr) the matrix format to validate with Returns ------- scipy.sparse a 2-dimensional sparse matrix """ is_2d = None dim_1 = None dim_2 = None # check if array like of array likes if isinstance(matrix, (list, tuple, np.ndarray)): if isinstance(matrix[0], (list, tuple, np.ndarray)): is_2d = True dim_1 = len(matrix) dim_2 = len(matrix[0]) # 1d list or array else: is_2d = False # shape is n_samples of 1 class assignment dim_1 = len(matrix) dim_2 = 1 # not an array but 2D, probably a matrix elif matrix.ndim == 2: is_2d = True dim_1 = matrix.shape[0] dim_2 = matrix.shape[1] # what is it? else: raise ValueError("Matrix dimensions too large (>2) or other value error") new_matrix = None if is_2d: if issparse(matrix): new_matrix = matrix else: new_matrix = matrix_creation_function_for_format(matrix_format)(matrix, shape=(dim_1, dim_2)) else: new_matrix = matrix_creation_function_for_format(matrix_format)(matrix).T assert new_matrix.shape == (dim_1, dim_2) return new_matrix
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/base/problem_transformation.py
problem_transformation.py
from __future__ import absolute_import import numpy as np import random from .base import LabelSpaceClustererBase from .helpers import _euclidean_distance, _recalculateCenters, _countNumberOfAparitions class BalancedKMeansClusterer(LabelSpaceClustererBase): """Cluster the label space regarding the algorithm of balancedkMeans, used by HOMER""" def __init__(self, k = None, it = None): """Initializes the clusterer Attributes ---------- k: int Number of partitions to be made to the label-space it: int Number of iterations for the algorithm to find the best neighbours """ super(BalancedKMeansClusterer, self).__init__() self.k = k self.it = it def fit_predict(self, X, y): """Performs clustering on y and returns list of label lists Builds a label list taking care of the distance between labels Parameters ---------- X : currently unused, left for scikit compatibility y : scipy.sparse label space of shape :code:`(n_samples, n_labels)` Returns ------- array of arrays numpy array of arrays of label indexes, where each sub-array represents labels that are in a separate community """ number_of_labels = y.shape[1] #Assign a label to a cluster no. label ordinal % number of labeSls #We have to do the balance k-means and then use it for HOMER with the label powerset Centers =[] y = y.todense() for i in range(0, self.k): auxVector = y[:, random.randint(0, number_of_labels-1)] Centers.append(np.asarray(auxVector)) #Now we have the clusters created and we need to make each label its corresponding cluster while self.it > 0: balancedCluster = [] for j in range(0, number_of_labels): auxVector = y[:,j] v = np.asarray(auxVector) #Now we calculate the distance and store it in an array distances = [] for i in range(0, self.k): #Store the distances distances.append(_euclidean_distance(v, Centers[i])) finished = False while not finished: minIndex = np.argmin(distances) balancedCluster.append(minIndex) #Now we have the cluster we want to add this label to numberOfAparitions = _countNumberOfAparitions(balancedCluster, minIndex) if float(numberOfAparitions) > (float(float(number_of_labels)/float(self.k))+1): distances[minIndex] = float("inf") balancedCluster.pop() else: finished = True Centers = _recalculateCenters(np.asarray(y), balancedCluster, self.k) self.it = self.it -1 #Returns a list of list with the clusterers labelCluster = [] for i in range(0, self.k): cluster = [] for j in range(0, len(balancedCluster)): if int(i) == int(balancedCluster[j]): cluster.append(int(j)) labelCluster.append(cluster) return np.asarray(labelCluster)
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/cluster/balancedkmeans.py
balancedkmeans.py
from __future__ import absolute_import from __future__ import print_function import graph_tool.all as gt import numpy as np from .base import LabelGraphClustererBase from .helpers import _membership_to_list_of_communities, _overlapping_membership_to_list_of_communities class StochasticBlockModel: """A Stochastic Blockmodel fit to Label Graph This contains a stochastic block model instance constructed for a block model variant specified in parameters. It can be fit to an instance of a graph and set of weights. More information on how to select parameters can be found in `the extensive introduction into Stochastic Block Models <https://graph-tool.skewed.de/static/doc/demos/inference/inference.html>`_ in graphtool documentation. Parameters ---------- nested: boolean whether to build a nested Stochastic Block Model or the regular variant, will be automatically put under :code:`self.nested`. use_degree_correlation: boolean whether to correct for degree correlation in modeling, will be automatically put under :code:`self.use_degree_correlation`. allow_overlap: boolean whether to allow overlapping clusters or not, will be automatically put under :code:`self.allow_overlap`. weight_model: string or None decide whether to generate a weighted or unweighted graph, will be automatically put under :code:`self.weight_model`. Attributes ---------- model_: graph_tool.inference.BlockState or its subclass an instance of the fitted model obtained from graph-tool """ def __init__(self, nested, use_degree_correlation, allow_overlap, weight_model): self.nested = nested self.use_degree_correlation = use_degree_correlation self.allow_overlap = allow_overlap self.weight_model = weight_model self.model_ = None def fit_predict(self, graph, weights): """Fits model to a given graph and weights list Sets :code:`self.model_` to the state of graphtool's Stochastic Block Model the after fitting. Attributes ---------- graph: graphtool.Graph the graph to fit the model to weights: graphtool.EdgePropertyMap<double> the property map: edge -> weight (double) to fit the model to, if weighted variant is selected Returns ------- numpy.ndarray partition of labels, each sublist contains label indices related to label positions in :code:`y` """ if self.weight_model: self.model_ = self._model_fit_function()( graph, deg_corr=self.use_degree_correlation, overlap=self.allow_overlap, state_args=dict(recs=[weights], rec_types=[self.weight_model]) ) else: self.model_ = self._model_fit_function()( graph, deg_corr=self.use_degree_correlation, overlap=self.allow_overlap ) return self._detect_communities() def _detect_communities(self): if self.nested: lowest_level = self.model_.get_levels()[0] else: lowest_level = self.model_ number_of_communities = lowest_level.get_B() if self.allow_overlap: # the overlaps block returns # membership vector, and also edges vectors, we need just the membership here at the moment membership_vector = list(lowest_level.get_overlap_blocks()[0]) else: membership_vector = list(lowest_level.get_blocks()) if self.allow_overlap: return _overlapping_membership_to_list_of_communities(membership_vector, number_of_communities) return _membership_to_list_of_communities(membership_vector, number_of_communities) def _model_fit_function(self): if self.nested: return gt.minimize_nested_blockmodel_dl else: return gt.minimize_blockmodel_dl class GraphToolLabelGraphClusterer(LabelGraphClustererBase): """Fits a Stochastic Block Model to the Label Graph and infers the communities This clusterer clusters the label space using by fitting a stochastic block model to the label network and inferring the community structure using graph-tool. The obtained community structure is returned as the label clustering. More information on the inference itself can be found in `the extensive introduction into Stochastic Block Models <https://graph-tool.skewed.de/static/doc/demos/inference/inference.html>`_ in graphtool documentation. Parameters ---------- graph_builder: a GraphBuilderBase inherited transformer the graph builder to provide the adjacency matrix and weight map for the underlying graph model: StochasticBlockModel the desired stochastic block model variant to use Attributes ---------- graph_ : graphtool.Graph object representing a label co-occurence graph weights_ : graphtool.EdgeProperty<double> edge weights defined by graph builder stored in a graphtool compatible format .. note :: This functionality is still undergoing research. .. note :: This clusterer is GPL-licenced and will taint your code with GPL restrictions. References ---------- If you use this class please cite: .. code : latex article{peixoto_graph-tool_2014, title = {The graph-tool python library}, url = {http://figshare.com/articles/graph_tool/1164194}, doi = {10.6084/m9.figshare.1164194}, urldate = {2014-09-10}, journal = {figshare}, author = {Peixoto, Tiago P.}, year = {2014}, keywords = {all, complex networks, graph, network, other}} Examples -------- An example code for using this clusterer with a classifier looks like this: .. code-block:: python from sklearn.ensemble import RandomForestClassifier from yyskmultilearn.problem_transform import LabelPowerset from yyskmultilearn.cluster import IGraphLabelGraphClusterer, LabelCooccurrenceGraphBuilder from yyskmultilearn.ensemble import LabelSpacePartitioningClassifier # construct base forest classifier base_classifier = RandomForestClassifier(n_estimators=1000) # construct a graph builder that will include # label relations weighted by how many times they # co-occurred in the data, without self-edges graph_builder = LabelCooccurrenceGraphBuilder( weighted = True, include_self_edges = False ) # select parameters for the model, we fit a flat, # non-degree correlated, partitioning model # which will use fit the normal distribution as the weights model model = StochasticBlockModel( nested=False, use_degree_correlation=True, allow_overlap=False, weight_model='real-normal' ) # setup problem transformation approach with sparse matrices for random forest problem_transform_classifier = LabelPowerset(classifier=base_classifier, require_dense=[False, False]) # setup the clusterer to use, we selected the fast greedy modularity-maximization approach clusterer = GraphToolLabelGraphClusterer(graph_builder=graph_builder, model=model) # setup the ensemble metaclassifier classifier = LabelSpacePartitioningClassifier(problem_transform_classifier, clusterer) # train classifier.fit(X_train, y_train) # predict predictions = classifier.predict(X_test) For more use cases see `the label relations exploration guide <../labelrelations.ipynb>`_. """ def __init__(self, graph_builder, model): super(GraphToolLabelGraphClusterer, self).__init__(graph_builder) self.model = model self.graph_builder = graph_builder def fit_predict(self, X, y): """Performs clustering on y and returns list of label lists Builds a label graph using the provided graph builder's `transform` method on `y` and then detects communities using the selected `method`. Sets :code:`self.weights_` and :code:`self.graph_`. Parameters ---------- X : None currently unused, left for scikit compatibility y : scipy.sparse label space of shape :code:`(n_samples, n_labels)` Returns ------- arrray of arrays of label indexes (numpy.ndarray) label space division, each sublist represents labels that are in that community """ self._build_graph_instance(y) clusters = self.model.fit_predict(self.graph_, weights=self.weights_) return np.array([community for community in clusters if len(community) > 0]) def _build_graph_instance(self, y): edge_map = self.graph_builder.transform(y) g = gt.Graph(directed=False) g.add_vertex(y.shape[1]) self.weights_ = g.new_edge_property('double') for edge, weight in edge_map.items(): e = g.add_edge(edge[0], edge[1]) self.weights_[e] = weight self.graph_ = g
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/cluster/graphtool.py
graphtool.py
from __future__ import absolute_import import random import numpy as np from .base import LabelSpaceClustererBase class RandomLabelSpaceClusterer(LabelSpaceClustererBase): """Randomly divides the label space into equally-sized clusters This method divides the label space by drawing without replacement a desired number of equally sized subsets of label space, in a partitioning or overlapping scheme. Parameters ---------- cluster_size : int desired size of a single cluster, will be automatically put under :code:`self.cluster_size`. cluster_count: int number of clusters to divide into, will be automatically put under :code:`self.cluster_count`. allow_overlap : bool whether to allow overlapping clusters or not, will be automatically put under :code:`self.allow_overlap`. Examples -------- The following code performs random label space partitioning. .. code :: python from yyskmultilearn.cluster import RandomLabelSpaceClusterer # assume X,y contain the data, example y contains 5 labels cluster_count = 2 cluster_size = y.shape[1]//cluster_count # == 2 clr = RandomLabelSpaceClusterer(cluster_size, cluster_count, allow_overlap=False) clr.fit_predict(X,y) # Result: # array([list([0, 4]), list([2, 3]), list([1])], dtype=object) Note that the leftover labels that did not fit in `cluster_size` x `cluster_count` classifiers will be appended to an additional last cluster of size at most `cluster_size` - 1. You can also use this class to get a random division of the label space, even with multiple overlaps: .. code :: python from yyskmultilearn.cluster import RandomLabelSpaceClusterer cluster_size = 3 cluster_count = 5 clr = RandomLabelSpaceClusterer(cluster_size, cluster_count, allow_overlap=True) clr.fit_predict(X,y) # Result # array([[2, 1, 3], # [3, 0, 4], # [2, 3, 1], # [2, 3, 4], # [3, 4, 0], # [3, 0, 2]]) Note that you will never get the same label subset twice. """ def __init__(self, cluster_size, cluster_count, allow_overlap): super(RandomLabelSpaceClusterer, self).__init__() self.cluster_size = cluster_size self.cluster_count = cluster_count self.allow_overlap = allow_overlap def fit_predict(self, X, y): """Cluster the output space Parameters ---------- X : currently unused, left for scikit compatibility y : scipy.sparse label space of shape :code:`(n_samples, n_labels)` Returns ------- arrray of arrays of label indexes (numpy.ndarray) label space division, each sublist represents labels that are in that community """ if (self.cluster_count+1) * self.cluster_size < y.shape[1]: raise ValueError("Cannot include all of {} labels in {} clusters of {} labels".format( y.shape[1], self.cluster_count, self.cluster_size )) all_labels_assigned_to_division = False # make sure the final label set division includes all labels while not all_labels_assigned_to_division: label_sets = [] free_labels = range(y.shape[1]) while len(label_sets) <= self.cluster_count: if not self.allow_overlap: if len(free_labels) == 0: break # in this case, we are unable to draw new labels, add all that remain if len(free_labels) < self.cluster_size: label_sets.append(free_labels) break label_set = random.sample(free_labels, self.cluster_size) if not self.allow_overlap: free_labels = list(set(free_labels).difference(set(label_set))) if label_set not in label_sets: label_sets.append(label_set) all_labels_assigned_to_division = all( any(label in subset for subset in label_sets) for label in range(y.shape[1]) ) return np.array(label_sets)
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/cluster/random.py
random.py
from __future__ import absolute_import import numpy as np from .base import LabelSpaceClustererBase from .helpers import _membership_to_list_of_communities class MatrixLabelSpaceClusterer(LabelSpaceClustererBase): """Cluster the label space using a scikit-compatible matrix-based clusterer Parameters ---------- clusterer : sklearn.base.ClusterMixin a clonable instance of a scikit-compatible clusterer, will be automatically put under :code:`self.clusterer`. pass_input_space : bool (default is False) whether to take :code:`X` into consideration upon clustering, use only if you know that the clusterer can handle two parameters for clustering, will be automatically put under :code:`self.pass_input_space`. Example code for using this clusterer looks like this: .. code-block:: python from sklearn.ensemble import RandomForestClassifier from sklearn.cluster import KMeans from yyskmultilearn.problem_transform import LabelPowerset from yyskmultilearn.cluster import MatrixLabelSpaceClusterer from yyskmultilearn.ensemble import LabelSpacePartitioningClassifier # construct base forest classifier base_classifier = RandomForestClassifier(n_estimators=1030) # setup problem transformation approach with sparse matrices for random forest problem_transform_classifier = LabelPowerset(classifier=base_classifier, require_dense=[False, False]) # setup the clusterer clusterer = MatrixLabelSpaceClusterer(clusterer=KMeans(n_clusters=3)) # setup the ensemble metaclassifier classifier = LabelSpacePartitioningClassifier(problem_transform_classifier, clusterer) # train classifier.fit(X_train, y_train) # predict predictions = classifier.predict(X_test) """ def __init__(self, clusterer=None, pass_input_space=False): super(MatrixLabelSpaceClusterer, self).__init__() self.clusterer = clusterer self.pass_input_space = pass_input_space def fit_predict(self, X, y): """Clusters the output space The clusterer's :code:`fit_predict` method is executed on either X and y.T vectors (if :code:`self.pass_input_space` is true) or just y.T to detect clusters of labels. The transposition of label space is used to align with the format expected by scikit-learn classifiers, i.e. we cluster labels with label assignment vectors as samples. Returns ------- arrray of arrays of label indexes (numpy.ndarray) label space division, each sublist represents labels that are in that community """ if self.pass_input_space: result = self.clusterer.fit_predict(X, y.transpose()) else: result = self.clusterer.fit_predict(y.transpose()) return np.array(_membership_to_list_of_communities(result, 1 + max(result)))
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/cluster/matrix.py
matrix.py
from builtins import object from ..utils import get_matrix_in_format from sklearn.base import BaseEstimator class GraphBuilderBase(object): """An abstract base class for a graph building class used in Label Space clustering. Inherit it in your classifier according to`developer guide <../developer.ipynb>`_. """ def __init__(self): super(GraphBuilderBase, self).__init__() def transform(self, y): """ Abstract method for graph edge map builder for a label space clusterer Implement it in your classifier according to`developer guide <../developer.ipynb>`_. Raises ------ NotImplementedError this is an abstract method """ raise NotImplementedError("GraphBuilderBase::transform()") class LabelSpaceClustererBase(BaseEstimator): """An abstract base class for Label Space clustering Inherit it in your classifier according to`developer guide <../developer.ipynb>`_. """ def __init__(self): super(LabelSpaceClustererBase, self).__init__() def fit_predict(self, X, y): """ Abstract method for clustering label space Implement it in your classifier according to`developer guide <../developer.ipynb>`_. Raises ------ NotImplementedError this is an abstract method """ raise NotImplementedError("LabelSpaceClustererBase::fit_predict()") class LabelGraphClustererBase(object): """An abstract base class for Label Graph clustering Inherit it in your classifier according to`developer guide <../developer.ipynb>`_. """ def __init__(self, graph_builder): """ Attributes ---------- graph_builder : a GraphBuilderBase derivative class a graph building class for the clusterer """ super(LabelGraphClustererBase, self).__init__() self.graph_builder = graph_builder def fit_predict(self, X, y): """ Abstract method for clustering label space Implement it in your classifier according to`developer guide <../developer.ipynb>`_. Raises ------ NotImplementedError this is an abstract method """ raise NotImplementedError("LabelGraphClustererBase::fit_predict()") class LabelCooccurrenceGraphBuilder(GraphBuilderBase): """Base class providing API and common functions for all label co-occurence based multi-label classifiers. This graph builder constructs a Label Graph based on the output matrix where two label nodes are connected when at least one sample is labeled with both of them. If the graph is weighted, the weight of an edge between two label nodes is the number of samples labeled with these two labels. Self-edge weights contain the number of samples with a given label. Parameters ---------- weighted: bool decide whether to generate a weighted or unweighted graph. include_self_edges : bool decide whether to include self-edge i.e. label 1 - label 1 in co-occurrence graph normalize_self_edges: bool if including self edges, divide the (i, i) edge by 2.0, requires include_self_edges=True References ---------- If you use this graph builder please cite the clustering paper: .. code:: latex @Article{datadriven, author = {Szymański, Piotr and Kajdanowicz, Tomasz and Kersting, Kristian}, title = {How Is a Data-Driven Approach Better than Random Choice in Label Space Division for Multi-Label Classification?}, journal = {Entropy}, volume = {18}, year = {2016}, number = {8}, article_number = {282}, url = {http://www.mdpi.com/1099-4300/18/8/282}, issn = {1099-4300}, doi = {10.3390/e18080282} } Examples -------- A full example of building a modularity-based label space division based on the Label Co-occurrence Graph and classifying with a separate classifier chain per subspace. .. code :: python from yyskmultilearn.cluster import LabelCooccurrenceGraphBuilder, NetworkXLabelGraphClusterer from yyskmultilearn.ensemble import LabelSpacePartitioningClassifier from yyskmultilearn.problem_transform import ClassifierChain from sklearn.naive_bayes import GaussianNB graph_builder = LabelCooccurrenceGraphBuilder(weighted=True, include_self_edges=False, normalize_self_edges=False) clusterer = NetworkXLabelGraphClusterer(graph_builder, method='louvain') classifier = LabelSpacePartitioningClassifier( classifier = ClassifierChain(classifier=GaussianNB()), clusterer = clusterer ) classifier.fit(X_train, y_train) prediction = classifier.predict(X_test) For more use cases see `the label relations exploration guide <../labelrelations.ipynb>`_. """ def __init__(self, weighted=None, include_self_edges=None, normalize_self_edges=None): super(LabelCooccurrenceGraphBuilder, self).__init__() if weighted not in [True, False]: raise ValueError("Weighted needs to be a boolean") if include_self_edges not in [True, False]: raise ValueError( "Decision whether to include self edges needs to be a boolean") if include_self_edges and (normalize_self_edges not in [True, False]): raise ValueError("Decision whether to normalize self edges needs to be a boolean") if normalize_self_edges and not include_self_edges: raise ValueError("Include self edges must be set to true if normalization is true") if normalize_self_edges and not weighted: raise ValueError("Normalizing self-edge weights_ does not make sense in an unweighted graph") self.is_weighted = weighted self.include_self_edges = include_self_edges self.normalize_self_edges = normalize_self_edges def transform(self, y): """Generate adjacency matrix from label matrix This function generates a weighted or unweighted co-occurence Label Graph adjacency matrix in dictionary of keys format based on input binary label vectors Parameters ---------- y : numpy.ndarray or scipy.sparse dense or sparse binary matrix with shape :code:`(n_samples, n_labels)` Returns ------- Dict[(int, int), float] weight map with a tuple of label indexes as keys and a the number of samples in which the two co-occurred """ label_data = get_matrix_in_format(y, 'lil') label_count = label_data.shape[1] edge_map = {} for row in label_data.rows: if self.include_self_edges: pairs = [(a, b) for b in row for a in row if a <= b] else: pairs = [(a, b) for b in row for a in row if a < b] for p in pairs: if p not in edge_map: edge_map[p] = 1.0 else: if self.is_weighted: edge_map[p] += 1.0 if self.normalize_self_edges: for i in range(label_count): if (i, i) in edge_map: edge_map[(i, i)] = edge_map[(i, i)] / 2.0 return edge_map
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/cluster/base.py
base.py
import math import numpy as np def _membership_to_list_of_communities(membership_vector, size): """Convert membership vector to list of lists of vertices in each community Parameters ---------- membership_vector : list of int community membership i.e. vertex/label `i` is in community `membership_vector[i]` size : int the number of communities present in the membership vector Returns ------- list_of_members : list of lists of int list of lists of vertex/label ids in each community per community """ list_of_members = [[] for _ in range(size)] for vertex_id, community_id in enumerate(membership_vector): list_of_members[community_id].append(vertex_id) return list_of_members def _overlapping_membership_to_list_of_communities(membership_vector, size): """Convert membership vector to list of lists of vertices/labels in each community Parameters ---------- membership_vector : list of lists of int community membership i.e. vertex/label `i` is in communities from list `membership_vector[i]` size : int the number of communities present in the membership vector Returns ------- list_of_members : list of lists of int list of lists of vertex/label ids in each community per community """ list_of_members = [[] for _ in range(size)] for vertex_id, community_ids in enumerate(membership_vector): for community_id in community_ids: list_of_members[community_id].append(vertex_id) return list_of_members def _euclidean_distance(array1, array2): """Returns the euclidean distance of two arrays Parameters ---------- array1 : array of numbers array2 : array of numbers Returns ------- distance : float float with the euclidean distance, False if not possible """ #Ensure that both arrays hava the same length if len(array1) != len(array2): return False else: distance = 0.0 for i in range(0, len(array1)): distance = distance + pow(array1[i] - array2[i], 2) distance = math.sqrt(distance) return distance def _recalculateCenters(y, balancedCluster, k): Centers = [] kAux = 0 while kAux < k: vectorAux = np.zeros(len(y)) for i in range(0, len(balancedCluster)): if int(kAux) == int(balancedCluster[i]): #We have to fill the vector for j in range(0, len(y)): vectorAux[j] += y[j,i] vectorAux /= k Centers.append(vectorAux) kAux += 1 return Centers def _countNumberOfAparitions(array, number): """Number of aparitions of a number in an array Parameters ---------- array : array of numbers number : number to search for Returns ------- aparaitions : int Number of aparitions of the number in the given array """ aparitions = 0 for i in range(0, len(array)): if array[i] == number: aparitions += 1 return aparitions
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/cluster/helpers.py
helpers.py
from __future__ import absolute_import from .base import LabelSpaceClustererBase class FixedLabelSpaceClusterer(LabelSpaceClustererBase): """Return a fixed label space partition This clusterer takes a predefined fixed ``clustering`` of the label space and returns it in fit_predict as the label space division. This is useful for employing expert knowledge about label space division or partitions in ensemble classifiers such as: :class:`~yyskmultilearn.ensemble.LabelSpacePartitioningClassifier` or :class:`~yyskmultilearn.ensemble.MajorityVotingClassifier`. Parameters ---------- clusters : array of arrays of int provided partition of the label space in the for of numpy array of numpy arrays of indexes for each partition, ex. ``[[0,1],[2,3]]`` An example use of the fixed clusterer with a label partitioning classifier to train randomforests for a set of subproblems defined upon expert knowledge: .. code :: python from yyskmultilearn.ensemble import LabelSpacePartitioningClassifier from yyskmultilearn.cluster import FixedLabelSpaceClusterer from yyskmultilearn.problem_transform import LabelPowerset from sklearn.ensemble import RandomForestClassifier classifier = LabelSpacePartitioningClassifier( classifier = LabelPowerset( classifier=RandomForestClassifier(n_estimators=100), require_dense = [False, True] ), require_dense = [True, True], clusterer = FixedLabelSpaceClusterer(clustering=[[1,2,3], [0,4]]) ) # train classifier.fit(X_train, y_train) # predict predictions = classifier.predict(X_test) """ def __init__(self, clusters=None): super(FixedLabelSpaceClusterer, self).__init__() self.clusters = clusters def fit_predict(self, X, y): """Returns the provided label space division Parameters ---------- X : None currently unused, left for scikit compatibility y : scipy.sparse label space of shape :code:`(n_samples, n_labels)` Returns ------- arrray of arrays of label indexes (numpy.ndarray) label space division, each sublist represents labels that are in that community """ return self.clusters
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/cluster/fixed.py
fixed.py
import copy import numpy as np from scipy.sparse import hstack, issparse, lil_matrix from ..base.problem_transformation import ProblemTransformationBase from ..base.base import MLClassifierBase class BinaryRelevance(ProblemTransformationBase): """Performs classification per label Transforms a multi-label classification problem with L labels into L single-label separate binary classification problems using the same base classifier provided in the constructor. The prediction output is the union of all per label classifiers Parameters ---------- classifier : :class:`~sklearn.base.BaseEstimator` scikit-learn compatible base classifier require_dense : [bool, bool], optional whether the base classifier requires dense representations for input features and classes/labels matrices in fit/predict. If value not provided, sparse representations are used if base classifier is an instance of :class:`~yyskmultilearn.base.MLClassifierBase` and dense otherwise. Attributes ---------- model_count_ : int number of trained models, in this classifier equal to `n_labels` partition_ : List[List[int]], shape=(`model_count_`,) list of lists of label indexes, used to index the output space matrix, set in :meth:`_generate_partition` via :meth:`fit` classifiers_ : List[:class:`~sklearn.base.BaseEstimator`] of shape `model_count` list of classifiers trained per partition, set in :meth:`fit` Notes ----- .. note :: This is one of the most basic approaches to multi-label classification, it ignores relationships between labels. Examples -------- An example use case for Binary Relevance classification with an :class:`sklearn.svm.SVC` base classifier which supports sparse input: .. code-block:: python from yyskmultilearn.problem_transform import BinaryRelevance from sklearn.svm import SVC # initialize Binary Relevance multi-label classifier # with an SVM classifier # SVM in scikit only supports the X matrix in sparse representation classifier = BinaryRelevance( classifier = SVC(), require_dense = [False, True] ) # train classifier.fit(X_train, y_train) # predict predictions = classifier.predict(X_test) Another way to use this classifier is to select the best scenario from a set of single-label classifiers used with Binary Relevance, this can be done using cross validation grid search. In the example below, the model with highest accuracy results is selected from either a :class:`sklearn.naive_bayes.MultinomialNB` or :class:`sklearn.svm.SVC` base classifier, alongside with best parameters for that base classifier. .. code-block:: python from yyskmultilearn.problem_transform import BinaryRelevance from sklearn.model_selection import GridSearchCV from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC parameters = [ { 'classifier': [MultinomialNB()], 'classifier__alpha': [0.7, 1.0], }, { 'classifier': [SVC()], 'classifier__kernel': ['rbf', 'linear'], }, ] clf = GridSearchCV(BinaryRelevance(), parameters, scoring='accuracy') clf.fit(x, y) print (clf.best_params_, clf.best_score_) # result: # # { # 'classifier': SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, # decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear', # max_iter=-1, probability=False, random_state=None, shrinking=True, # tol=0.001, verbose=False), 'classifier__kernel': 'linear' # } 0.17 """ def __init__(self, classifier=None, require_dense=None): super(BinaryRelevance, self).__init__(classifier, require_dense) def _generate_partition(self, X, y): """Partitions the label space into singletons Sets `self.partition_` (list of single item lists) and `self.model_count_` (equal to number of labels). Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) not used, only for API compatibility y : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix of `int`, shape=(n_samples, n_labels) binary indicator matrix with label assignments """ self.partition_ = list(range(y.shape[1])) self.model_count_ = y.shape[1] def fit(self, X, y): """Fits classifier to training data Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix y : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments Returns ------- self fitted instance of self Notes ----- .. note :: Input matrices are converted to sparse format internally if a numpy representation is passed """ X = self._ensure_input_format( X, sparse_format='csr', enforce_sparse=True) y = self._ensure_output_format( y, sparse_format='csc', enforce_sparse=True) self.classifiers_ = [] self._generate_partition(X, y) self._label_count = y.shape[1] for i in range(self.model_count_): classifier = copy.deepcopy(self.classifier) y_subset = self._generate_data_subset(y, self.partition_[i], axis=1) if issparse(y_subset) and y_subset.ndim > 1 and y_subset.shape[1] == 1: y_subset = np.ravel(y_subset.toarray()) classifier.fit(self._ensure_input_format( X), self._ensure_output_format(y_subset)) self.classifiers_.append(classifier) return self def predict(self, X): """Predict labels for X Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix Returns ------- :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments """ predictions = [self._ensure_multi_label_from_single_class( self.classifiers_[label].predict(self._ensure_input_format(X))) for label in range(self.model_count_)] return hstack(predictions) def predict_proba(self, X): """Predict probabilities of label assignments for X Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix Returns ------- :mod:`scipy.sparse` matrix of `float in [0.0, 1.0]`, shape=(n_samples, n_labels) matrix with label assignment probabilities """ result = lil_matrix((X.shape[0], self._label_count), dtype='float') for label_assignment, classifier in zip(self.partition_, self.classifiers_): if isinstance(self.classifier, MLClassifierBase): # the multilabel classifier should provide a (n_samples, n_labels) matrix # we just need to reorder it column wise result[:, label_assignment] = classifier.predict_proba(X) else: # a base classifier for binary relevance returns # n_samples x n_classes, where n_classes = [0, 1] - 1 is the probability of # the label being assigned result[:, label_assignment] = self._ensure_multi_label_from_single_class( classifier.predict_proba( self._ensure_input_format(X)) )[:, 1] # probability that label is assigned return result
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/problem_transform/br.py
br.py
from ..base.problem_transformation import ProblemTransformationBase import numpy as np from scipy import sparse class LabelPowerset(ProblemTransformationBase): """Transform multi-label problem to a multi-class problem Label Powerset is a problem transformation approach to multi-label classification that transforms a multi-label problem to a multi-class problem with 1 multi-class classifier trained on all unique label combinations found in the training data. The method maps each combination to a unique combination id number, and performs multi-class classification using the `classifier` as multi-class classifier and combination ids as classes. Parameters ---------- classifier : :class:`~sklearn.base.BaseEstimator` scikit-learn compatible base classifier require_dense : [bool, bool], optional whether the base classifier requires dense representations for input features and classes/labels matrices in fit/predict. If value not provided, sparse representations are used if base classifier is an instance of :class:`yyskmultilearn.base.MLClassifierBase` and dense otherwise. Attributes ---------- unique_combinations_ : Dict[str, int] mapping from label combination as string to label combination id :meth:`transform:` via :meth:`fit` reverse_combinations_ : List[List[int]] label combination id ordered list to list of label indexes for a given combination :meth:`transform:` via :meth:`fit` Notes ----- .. note :: `n_classes` in this document denotes the number of unique label combinations present in the training `y` passed to :meth:`fit`, in practice it is equal to :code:`len(self.unique_combinations)` Examples -------- An example use case for Label Powerset with an :class:`sklearn.ensemble.RandomForestClassifier` base classifier which supports sparse input: .. code-block:: python from yyskmultilearn.problem_transform import LabelPowerset from sklearn.ensemble import RandomForestClassifier # initialize LabelPowerset multi-label classifier with a RandomForest classifier = ClassifierChain( classifier = RandomForestClassifier(n_estimators=100), require_dense = [False, True] ) # train classifier.fit(X_train, y_train) # predict predictions = classifier.predict(X_test) Another way to use this classifier is to select the best scenario from a set of multi-class classifiers used with Label Powerset, this can be done using cross validation grid search. In the example below, the model with highest accuracy results is selected from either a :class:`sklearn.ensemble.RandomForestClassifier` or :class:`sklearn.naive_bayes.MultinomialNB` base classifier, alongside with best parameters for that base classifier. .. code-block:: python from yyskmultilearn.problem_transform import LabelPowerset from sklearn.model_selection import GridSearchCV from sklearn.naive_bayes import MultinomialNB from sklearn.ensemble import RandomForestClassifier parameters = [ { 'classifier': [MultinomialNB()], 'classifier__alpha': [0.7, 1.0], }, { 'classifier': [RandomForestClassifier()], 'classifier__criterion': ['gini', 'entropy'], 'classifier__n_estimators': [10, 20, 50], }, ] clf = GridSearchCV(LabelPowerset(), parameters, scoring='accuracy') clf.fit(x, y) print (clf.best_params_, clf.best_score_) # result # { # 'classifier': RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', # max_depth=None, max_features='auto', max_leaf_nodes=None, # min_impurity_decrease=0.0, min_impurity_split=None, # min_samples_leaf=1, min_samples_split=2, # min_weight_fraction_leaf=0.0, n_estimators=50, n_jobs=1, # oob_score=False, random_state=None, verbose=0, # warm_start=False), 'classifier__criterion': 'gini', 'classifier__n_estimators': 50 # } 0.16 """ def __init__(self, classifier=None, require_dense=None): super(LabelPowerset, self).__init__( classifier=classifier, require_dense=require_dense) self._clean() def _clean(self): """Reset classifier internals before refitting""" self.unique_combinations_ = {} self.reverse_combinations_ = [] self._label_count = None def fit(self, X, y): """Fits classifier to training data Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix y : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments Returns ------- self fitted instance of self Notes ----- .. note :: Input matrices are converted to sparse format internally if a numpy representation is passed """ X = self._ensure_input_format( X, sparse_format='csr', enforce_sparse=True) self.classifier.fit(self._ensure_input_format(X), self.transform(y)) return self def predict(self, X): """Predict labels for X Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix Returns ------- :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments """ # this will be an np.array of integers representing classes lp_prediction = self.classifier.predict(self._ensure_input_format(X)) return self.inverse_transform(lp_prediction) def predict_proba(self, X): """Predict probabilities of label assignments for X Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix Returns ------- :mod:`scipy.sparse` matrix of `float in [0.0, 1.0]`, shape=(n_samples, n_labels) matrix with label assignment probabilities """ lp_prediction = self.classifier.predict_proba( self._ensure_input_format(X)) result = sparse.lil_matrix( (X.shape[0], self._label_count), dtype='float') for row in range(len(lp_prediction)): assignment = lp_prediction[row] for combination_id in range(len(assignment)): for label in self.reverse_combinations_[combination_id]: result[row, label] += assignment[combination_id] return result def transform(self, y): """Transform multi-label output space to multi-class Transforms a mutli-label problem into a single-label multi-class problem where each label combination is a separate class. Parameters ----------- y : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments Returns ------- numpy.ndarray of `{0, ... , n_classes-1}`, shape=(n_samples,) a multi-class output space vector """ y = self._ensure_output_format( y, sparse_format='lil', enforce_sparse=True) self._clean() self._label_count = y.shape[1] last_id = 0 train_vector = [] for labels_applied in y.rows: label_string = ",".join(map(str, labels_applied)) if label_string not in self.unique_combinations_: self.unique_combinations_[label_string] = last_id self.reverse_combinations_.append(labels_applied) last_id += 1 train_vector.append(self.unique_combinations_[label_string]) return np.array(train_vector) def inverse_transform(self, y): """Transforms multi-class assignment to multi-label Transforms a mutli-label problem into a single-label multi-class problem where each label combination is a separate class. Parameters ----------- y : numpy.ndarray of `{0, ... , n_classes-1}`, shape=(n_samples,) binary indicator matrix with label assignments Returns ------- :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments """ n_samples = len(y) result = sparse.lil_matrix((n_samples, self._label_count), dtype='i8') for row in range(n_samples): assignment = y[row] result[row, self.reverse_combinations_[assignment]] = 1 return result
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/problem_transform/lp.py
lp.py
from ..base.problem_transformation import ProblemTransformationBase from scipy.sparse import hstack from sklearn.exceptions import NotFittedError import copy class ClassifierChain(ProblemTransformationBase): """Constructs a bayesian conditioned chain of per label classifiers This class provides implementation of Jesse Read's problem transformation method called Classifier Chains. For L labels it trains L classifiers ordered in a chain according to the `Bayesian chain rule`. The first classifier is trained just on the input space, and then each next classifier is trained on the input space and all previous classifiers in the chain. The default classifier chains follow the same ordering as provided in the training set, i.e. label in column 0, then 1, etc. Parameters ---------- classifier : :class:`~sklearn.base.BaseEstimator` scikit-learn compatible base classifier require_dense : [bool, bool], optional whether the base classifier requires dense representations for input features and classes/labels matrices in fit/predict. If value not provided, sparse representations are used if base classifier is an instance of :class:`~yyskmultilearn.base.MLClassifierBase` and dense otherwise. order : List[int], permutation of ``range(n_labels)``, optional the order in which the chain should go through labels, the default is ``range(n_labels)`` Attributes ---------- classifiers_ : List[:class:`~sklearn.base.BaseEstimator`] of shape `n_labels` list of classifiers trained per partition, set in :meth:`fit` References ---------- If used, please cite the scikit-multilearn library and the relevant paper: .. code-block:: bibtex @inproceedings{read2009classifier, title={Classifier chains for multi-label classification}, author={Read, Jesse and Pfahringer, Bernhard and Holmes, Geoff and Frank, Eibe}, booktitle={Joint European Conference on Machine Learning and Knowledge Discovery in Databases}, pages={254--269}, year={2009}, organization={Springer} } Examples -------- An example use case for Classifier Chains with an :class:`sklearn.svm.SVC` base classifier which supports sparse input: .. code-block:: python from yyskmultilearn.problem_transform import ClassifierChain from sklearn.svm import SVC # initialize Classifier Chain multi-label classifier # with an SVM classifier # SVM in scikit only supports the X matrix in sparse representation classifier = ClassifierChain( classifier = SVC(), require_dense = [False, True] ) # train classifier.fit(X_train, y_train) # predict predictions = classifier.predict(X_test) Another way to use this classifier is to select the best scenario from a set of single-label classifiers used with Classifier Chain, this can be done using cross validation grid search. In the example below, the model with highest accuracy results is selected from either a :class:`sklearn.naive_bayes.MultinomialNB` or :class:`sklearn.svm.SVC` base classifier, alongside with best parameters for that base classifier. .. code-block:: python from yyskmultilearn.problem_transform import ClassifierChain from sklearn.model_selection import GridSearchCV from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC parameters = [ { 'classifier': [MultinomialNB()], 'classifier__alpha': [0.7, 1.0], }, { 'classifier': [SVC()], 'classifier__kernel': ['rbf', 'linear'], }, ] clf = GridSearchCV(ClassifierChain(), parameters, scoring='accuracy') clf.fit(x, y) print (clf.best_params_, clf.best_score_) # result # {'classifier': MultinomialNB(alpha=0.7, class_prior=None, fit_prior=True), 'classifier__alpha': 0.7} 0.16 """ def __init__(self, classifier=None, require_dense=None, order=None): super(ClassifierChain, self).__init__(classifier, require_dense) self.order = order self.copyable_attrs = ['classifier', 'require_dense', 'order'] def fit(self, X, y, order=None): """Fits classifier to training data Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix y : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments Returns ------- self fitted instance of self Notes ----- .. note :: Input matrices are converted to sparse format internally if a numpy representation is passed """ # fit L = len(y[0]) BR classifiers h_i # on X + y[:i] as input space and y[i+1] as output X_extended = self._ensure_input_format(X, sparse_format='csc', enforce_sparse=True) y = self._ensure_output_format(y, sparse_format='csc', enforce_sparse=True) self._label_count = y.shape[1] self.classifiers_ = [None for x in range(self._label_count)] for label in self._order(): self.classifier = copy.deepcopy(self.classifier) y_subset = self._generate_data_subset(y, label, axis=1) self.classifiers_[label] = self.classifier.fit(self._ensure_input_format( X_extended), self._ensure_output_format(y_subset)) X_extended = hstack([X_extended, y_subset]) return self def predict(self, X): """Predict labels for X Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix Returns ------- :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments """ X_extended = self._ensure_input_format( X, sparse_format='csc', enforce_sparse=True) for label in self._order(): prediction = self.classifiers_[label].predict( self._ensure_input_format(X_extended)) prediction = self._ensure_multi_label_from_single_class(prediction) X_extended = hstack([X_extended, prediction]) return X_extended[:, -self._label_count:] def predict_proba(self, X): """Predict probabilities of label assignments for X Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix Returns ------- :mod:`scipy.sparse` matrix of `float in [0.0, 1.0]`, shape=(n_samples, n_labels) matrix with label assignment probabilities """ X_extended = self._ensure_input_format( X, sparse_format='csc', enforce_sparse=True) results = [] for label in self._order(): prediction = self.classifiers_[label].predict( self._ensure_input_format(X_extended)) prediction = self._ensure_output_format( prediction, sparse_format='csc', enforce_sparse=True) prediction_proba = self.classifiers_[label].predict_proba( self._ensure_input_format(X_extended)) prediction_proba = self._ensure_output_format( prediction_proba, sparse_format='csc', enforce_sparse=True)[:, 1] X_extended = hstack([X_extended, prediction]).tocsc() results.append(prediction_proba) return hstack(results) def _order(self): if self.order is not None: return self.order try: return list(range(self._label_count)) except AttributeError: raise NotFittedError("This Classifier Chain has not been fit yet")
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/problem_transform/cc.py
cc.py
from builtins import object from builtins import range import numpy import numpy.core.umath as umath import scipy.sparse from scipy.sparse import issparse from ..base import MLClassifierBase class Neuron(object): """An implementation of a neuron for MLARAM Parameters ---------- vc : array neuron's assigned vector label : int label number """ def __init__(self, vc, label): # vector must be in complement form self.vc = vc self.label = label def _get_label_combination_representation(label_assignment_binary_indicator_list): return label_assignment_binary_indicator_list.nonzero()[0].tostring() def _get_label_vector(y, i): if issparse(y): return numpy.squeeze(numpy.asarray(y[i].todense())) return y[i] def _concatenate_with_negation(row): ones = scipy.ones(row.shape) if issparse(row): return scipy.sparse.hstack((row, ones - row)) else: # concatenate and merge sublists in the row if it is matrix return numpy.concatenate((row, ones - row), int(len(row.shape) != 1)) def _normalize_input_space(X): x_max = X.max() x_min = X.min() if x_max < 0 or x_max > 1 or x_min < 0 or x_min > 1: return numpy.multiply(X - x_min, 1 / (x_max - x_min)) return X class MLARAM(MLClassifierBase): """HARAM: A Hierarchical ARAM Neural Network for Large-Scale Text Classification This method aims at increasing the classification speed by adding an extra ART layer for clustering learned prototypes into large clusters. In this case the activation of all prototypes can be replaced by the activation of a small fraction of them, leading to a significant reduction of the classification time. Parameters ---------- vigilance : float (default is 0.9) parameter for adaptive resonance theory networks, controls how large a hyperbox can be, 1 it is small (no compression), 0 should assume all range. Normally set between 0.8 and 0.999, it is dataset dependent. It is responsible for the creation of the prototypes, therefore training of the network. threshold : float (default is 0.02) controls how many prototypes participate by the prediction, can be changed for the testing phase. neurons : list the neurons in the network References ---------- Published work available `here`_. .. _here: http://dx.doi.org/10.1109/ICDMW.2015.14 .. code :: bibtex @INPROCEEDINGS{7395756, author={F. Benites and E. Sapozhnikova}, booktitle={2015 IEEE International Conference on Data Mining Workshop (ICDMW)}, title={HARAM: A Hierarchical ARAM Neural Network for Large-Scale Text Classification}, year={2015}, volume={}, number={}, pages={847-854}, doi={10.1109/ICDMW.2015.14}, ISSN={2375-9259}, month={Nov}, } Examples -------- Here's an example code with a 5% threshold and vigilance of 0.95: .. code :: python from yyskmultilearn.adapt import MLARAM classifier = MLARAM(threshold=0.05, vigilance=0.95) classifier.fit(X_train, y_train) prediction = classifier.predict(X_test) """ def __init__(self, vigilance=0.9, threshold=0.02, neurons=None): super(MLARAM, self).__init__() if neurons is not None: self.neurons = neurons else: self.neurons = [] self.vigilance = vigilance self.threshold = threshold self.copyable_attrs += ["neurons", "vigilance", "threshold"] def reset(self): """Resets the labels and neurons""" self._labels = [] self.neurons = [] def fit(self, X, y): """Fit classifier with training data Parameters ---------- X : numpy.ndarray or scipy.sparse input features, can be a dense or sparse matrix of size :code:`(n_samples, n_features)` y : numpy.ndarray or scipy.sparse {0,1} binary indicator matrix with label assignments. Returns ------- yyskmultilearn.MLARAMfast.MLARAM fitted instance of self """ self._labels = [] self._allneu = "" self._online = 1 self._alpha = 0.0000000000001 is_sparse_x = issparse(X) label_combination_to_class_map = {} # FIXME: we should support dense matrices natively if isinstance(X, numpy.matrix): X = numpy.asarray(X) if isinstance(y, numpy.matrix): y = numpy.asarray(y) is_more_dimensional = int(len(X[0].shape) != 1) X = _normalize_input_space(X) y_0 = _get_label_vector(y, 0) if len(self.neurons) == 0: neuron_vc = _concatenate_with_negation(X[0]) self.neurons.append(Neuron(neuron_vc, y_0)) start_index = 1 label_combination_to_class_map[_get_label_combination_representation(y_0)] = [0] else: start_index = 0 # denotes the class enumerator for label combinations last_used_label_combination_class_id = 0 for row_no, input_vector in enumerate(X[start_index:], start_index): label_assignment_vector = _get_label_vector(y, row_no) fc = _concatenate_with_negation(input_vector) activationn = [0] * len(self.neurons) activationi = [0] * len(self.neurons) label_combination = _get_label_combination_representation(label_assignment_vector) if label_combination in label_combination_to_class_map: fcs = fc.sum() for class_number in label_combination_to_class_map[label_combination]: if issparse(self.neurons[class_number].vc): minnfs = self.neurons[class_number].vc.minimum(fc).sum() else: minnfs = umath.minimum(self.neurons[class_number].vc, fc).sum() activationi[class_number] = minnfs / fcs activationn[class_number] = minnfs / self.neurons[class_number].vc.sum() if numpy.max(activationn) == 0: last_used_label_combination_class_id += 1 self.neurons.append(Neuron(fc, label_assignment_vector)) label_combination_to_class_map.setdefault(label_combination, []).append(len(self.neurons) - 1) continue inds = numpy.argsort(activationn) indc = numpy.where(numpy.array(activationi)[inds[::-1]] > self.vigilance)[0] if indc.shape[0] == 0: self.neurons.append(Neuron(fc, label_assignment_vector)) label_combination_to_class_map.setdefault(label_combination, []).append(len(self.neurons) - 1) continue winner = inds[::- 1][indc[0]] if issparse(self.neurons[winner].vc): self.neurons[winner].vc = self.neurons[winner].vc.minimum(fc) else: self.neurons[winner].vc = umath.minimum( self.neurons[winner].vc, fc ) # 1 if winner neuron won a given label 0 if not labels_won_indicator = numpy.zeros(y_0.shape, dtype=y_0.dtype) labels_won_indicator[label_assignment_vector.nonzero()] = 1 self.neurons[winner].label += labels_won_indicator return self def predict(self, X): """Predict labels for X Parameters ---------- X : numpy.ndarray or scipy.sparse.csc_matrix input features of shape :code:`(n_samples, n_features)` Returns ------- scipy.sparse of int binary indicator matrix with label assignments with shape :code:`(n_samples, n_labels)` """ result = [] # FIXME: we should support dense matrices natively if isinstance(X, numpy.matrix): X = numpy.asarray(X) ranks = self.predict_proba(X) for rank in ranks: sorted_rank_arg = numpy.argsort(-rank) diffs = -numpy.diff([rank[k] for k in sorted_rank_arg]) indcutt = numpy.where(diffs == diffs.max())[0] if len(indcutt.shape) == 1: indcut = indcutt[0] + 1 else: indcut = indcutt[0, -1] + 1 label = numpy.zeros(rank.shape) label[sorted_rank_arg[0:indcut]] = 1 result.append(label) return numpy.array(numpy.matrix(result)) def predict_proba(self, X): """Predict probabilities of label assignments for X Parameters ---------- X : numpy.ndarray or scipy.sparse.csc_matrix input features of shape :code:`(n_samples, n_features)` Returns ------- array of arrays of float matrix with label assignment probabilities of shape :code:`(n_samples, n_labels)` """ # FIXME: we should support dense matrices natively if isinstance(X, numpy.matrix): X = numpy.asarray(X) if issparse(X): if X.getnnz() == 0: return elif len(X) == 0: return is_matrix = int(len(X[0].shape) != 1) X = _normalize_input_space(X) all_ranks = [] neuron_vectors = [n1.vc for n1 in self.neurons] if any(map(issparse, neuron_vectors)): all_neurons = scipy.sparse.vstack(neuron_vectors) # can't add a constant to a sparse matrix in scipy all_neurons_sum = all_neurons.sum(1).A else: all_neurons = numpy.vstack(neuron_vectors) all_neurons_sum = all_neurons.sum(1) all_neurons_sum += self._alpha for row_number, input_vector in enumerate(X): fc = _concatenate_with_negation(input_vector) if issparse(fc): activity = (fc.minimum(all_neurons).sum(1) / all_neurons_sum).squeeze().tolist() else: activity = (umath.minimum(fc, all_neurons).sum(1) / all_neurons_sum).squeeze().tolist() if is_matrix: activity = activity[0] # be very fast sorted_activity = numpy.argsort(activity)[::-1] winner = sorted_activity[0] activity_difference = activity[winner] - activity[sorted_activity[-1]] largest_activity = 1 par_t = self.threshold for i in range(1, len(self.neurons)): activity_change = (activity[winner] - activity[sorted_activity[i]]) / activity[winner] if activity_change > par_t * activity_difference: break largest_activity += 1 rbsum = sum([activity[k] for k in sorted_activity[0:largest_activity]]) rank = activity[winner] * self.neurons[winner].label activated = [] activity_among_activated = [] activated.append(winner) activity_among_activated.append(activity[winner]) for i in range(1, largest_activity): rank += activity[sorted_activity[i]] * self.neurons[ sorted_activity[i]].label activated.append(sorted_activity[i]) activity_among_activated.append(activity[sorted_activity[i]]) rank /= rbsum all_ranks.append(rank) return numpy.array(numpy.matrix(all_ranks))
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/adapt/mlaram.py
mlaram.py
from builtins import range from ..base import MLClassifierBase from ..utils import get_matrix_in_format from sklearn.neighbors import NearestNeighbors import numpy as np import scipy.sparse as sparse class MLkNN(MLClassifierBase): """kNN classification method adapted for multi-label classification MLkNN builds uses k-NearestNeighbors find nearest examples to a test class and uses Bayesian inference to select assigned labels. Parameters ---------- k : int number of neighbours of each input instance to take into account s: float (default is 1.0) the smoothing parameter ignore_first_neighbours : int (default is 0) ability to ignore first N neighbours, useful for comparing with other classification software. Attributes ---------- knn_ : an instance of sklearn.NearestNeighbors the nearest neighbors single-label classifier used underneath .. note:: If you don't know what :code:`ignore_first_neighbours` does, the default is safe. Please see this `issue`_. .. _issue: https://github.com/scikit-multilearn/scikit-multilearn/issues/22 References ---------- If you use this classifier please cite the original paper introducing the method: .. code :: bibtex @article{zhang2007ml, title={ML-KNN: A lazy learning approach to multi-label learning}, author={Zhang, Min-Ling and Zhou, Zhi-Hua}, journal={Pattern recognition}, volume={40}, number={7}, pages={2038--2048}, year={2007}, publisher={Elsevier} } Examples -------- Here's a very simple example of using MLkNN with a fixed number of neighbors: .. code :: python from yyskmultilearn.adapt import MLkNN classifier = MLkNN(k=3) # train classifier.fit(X_train, y_train) # predict predictions = classifier.predict(X_test) You can also use :class:`~sklearn.model_selection.GridSearchCV` to find an optimal set of parameters: .. code :: python from yyskmultilearn.adapt import MLkNN from sklearn.model_selection import GridSearchCV parameters = {'k': range(1,3), 's': [0.5, 0.7, 1.0]} score = 'f1_macro' clf = GridSearchCV(MLkNN(), parameters, scoring=score) clf.fit(X, y) print (clf.best_params_, clf.best_score_) # output ({'k': 1, 's': 0.5}, 0.78988303374297597) """ def __init__(self, k=10, s=1.0, ignore_first_neighbours=0): """Initializes the classifier Parameters ---------- k : int number of neighbours of each input instance to take into account s: float (default is 1.0) the smoothing parameter ignore_first_neighbours : int (default is 0) ability to ignore first N neighbours, useful for comparing with other classification software. Attributes ---------- knn_ : an instance of sklearn.NearestNeighbors the nearest neighbors single-label classifier used underneath .. note:: If you don't know what :code:`ignore_first_neighbours` does, the default is safe. Please see this `issue`_. .. _issue: https://github.com/scikit-multilearn/scikit-multilearn/issues/22 """ super(MLkNN, self).__init__() self.k = k # Number of neighbours self.s = s # Smooth parameter self.ignore_first_neighbours = ignore_first_neighbours self.copyable_attrs = ['k', 's', 'ignore_first_neighbours'] def _compute_prior(self, y): """Helper function to compute for the prior probabilities Parameters ---------- y : numpy.ndarray or scipy.sparse the training labels Returns ------- numpy.ndarray the prior probability given true numpy.ndarray the prior probability given false """ prior_prob_true = np.array((self.s + y.sum(axis=0)) / (self.s * 2 + self._num_instances))[0] prior_prob_false = 1 - prior_prob_true return (prior_prob_true, prior_prob_false) def _compute_cond(self, X, y): """Helper function to compute for the posterior probabilities Parameters ---------- X : numpy.ndarray or scipy.sparse input features, can be a dense or sparse matrix of size :code:`(n_samples, n_features)` y : numpy.ndaarray or scipy.sparse {0,1} binary indicator matrix with label assignments. Returns ------- numpy.ndarray the posterior probability given true numpy.ndarray the posterior probability given false """ self.knn_ = NearestNeighbors(self.k).fit(X) c = sparse.lil_matrix((self._num_labels, self.k + 1), dtype='i8') cn = sparse.lil_matrix((self._num_labels, self.k + 1), dtype='i8') label_info = get_matrix_in_format(y, 'dok') neighbors = [a[self.ignore_first_neighbours:] for a in self.knn_.kneighbors(X, self.k + self.ignore_first_neighbours, return_distance=False)] for instance in range(self._num_instances): deltas = label_info[neighbors[instance], :].sum(axis=0) for label in range(self._num_labels): if label_info[instance, label] == 1: c[label, deltas[0, label]] += 1 else: cn[label, deltas[0, label]] += 1 c_sum = c.sum(axis=1) cn_sum = cn.sum(axis=1) cond_prob_true = sparse.lil_matrix((self._num_labels, self.k + 1), dtype='float') cond_prob_false = sparse.lil_matrix((self._num_labels, self.k + 1), dtype='float') for label in range(self._num_labels): for neighbor in range(self.k + 1): cond_prob_true[label, neighbor] = (self.s + c[label, neighbor]) / ( self.s * (self.k + 1) + c_sum[label, 0]) cond_prob_false[label, neighbor] = (self.s + cn[label, neighbor]) / ( self.s * (self.k + 1) + cn_sum[label, 0]) return cond_prob_true, cond_prob_false def fit(self, X, y): """Fit classifier with training data Parameters ---------- X : numpy.ndarray or scipy.sparse input features, can be a dense or sparse matrix of size :code:`(n_samples, n_features)` y : numpy.ndaarray or scipy.sparse {0,1} binary indicator matrix with label assignments. Returns ------- self fitted instance of self """ self._label_cache = get_matrix_in_format(y, 'lil') self._num_instances = self._label_cache.shape[0] self._num_labels = self._label_cache.shape[1] # Computing the prior probabilities self._prior_prob_true, self._prior_prob_false = self._compute_prior(self._label_cache) # Computing the posterior probabilities self._cond_prob_true, self._cond_prob_false = self._compute_cond(X, self._label_cache) return self def predict(self, X): """Predict labels for X Parameters ---------- X : numpy.ndarray or scipy.sparse.csc_matrix input features of shape :code:`(n_samples, n_features)` Returns ------- scipy.sparse matrix of int binary indicator matrix with label assignments with shape :code:`(n_samples, n_labels)` """ result = sparse.lil_matrix((X.shape[0], self._num_labels), dtype='i8') neighbors = [a[self.ignore_first_neighbours:] for a in self.knn_.kneighbors(X, self.k + self.ignore_first_neighbours, return_distance=False)] for instance in range(X.shape[0]): deltas = self._label_cache[neighbors[instance],].sum(axis=0) for label in range(self._num_labels): p_true = self._prior_prob_true[label] * self._cond_prob_true[label, deltas[0, label]] p_false = self._prior_prob_false[label] * self._cond_prob_false[label, deltas[0, label]] result[instance, label] = int(p_true >= p_false) return result def predict_proba(self, X): """Predict probabilities of label assignments for X Parameters ---------- X : numpy.ndarray or scipy.sparse.csc_matrix input features of shape :code:`(n_samples, n_features)` Returns ------- scipy.sparse matrix of int binary indicator matrix with label assignment probabilities with shape :code:`(n_samples, n_labels)` """ result = sparse.lil_matrix((X.shape[0], self._num_labels), dtype='float') neighbors = [a[self.ignore_first_neighbours:] for a in self.knn_.kneighbors(X, self.k + self.ignore_first_neighbours, return_distance=False)] for instance in range(X.shape[0]): deltas = self._label_cache[neighbors[instance],].sum(axis=0) for label in range(self._num_labels): p_true = self._prior_prob_true[label] * self._cond_prob_true[label, deltas[0, label]] p_false = self._prior_prob_false[label] * self._cond_prob_false[label, deltas[0, label]] result[instance, label] = p_true / (p_true + p_false) return result
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/adapt/mlknn.py
mlknn.py
from builtins import range from ..base import MLClassifierBase from ..utils import get_matrix_in_format from sklearn.neighbors import NearestNeighbors import scipy.sparse as sparse import numpy as np class _BinaryRelevanceKNN(MLClassifierBase): """Binary Relevance adapted kNN Multi-Label Classifier base class.""" def __init__(self, k=10): super(_BinaryRelevanceKNN, self).__init__() self.k = k # Number of neighbours self.copyable_attrs = ['k'] def fit(self, X, y): """Fit classifier with training data Internally this method uses a sparse CSC representation for y (:class:`scipy.sparse.csc_matrix`). Parameters ---------- X : numpy.ndarray or scipy.sparse input features, can be a dense or sparse matrix of size :code:`(n_samples, n_features)` y : numpy.ndaarray or scipy.sparse {0,1} binary indicator matrix with label assignments. Returns ------- self fitted instance of self """ self.train_labelspace = get_matrix_in_format(y, 'csc') self._n_samples = self.train_labelspace.shape[0] self._n_labels = self.train_labelspace.shape[1] self.knn_ = NearestNeighbors(self.k).fit(X) return self def predict(self, X): """Predict labels for X Parameters ---------- X : numpy.ndarray or scipy.sparse.csc_matrix input features of shape :code:`(n_samples, n_features)` Returns ------- scipy.sparse of int binary indicator matrix with label assignments with shape :code:`(n_samples, n_labels)` """ self.neighbors_ = self.knn_.kneighbors(X, self.k, return_distance=False) self.confidences_ = np.vstack([self.train_labelspace[n, :].tocsc().sum(axis=0) / self.k for n in self.neighbors_]) return self._predict_variant(X) class BRkNNaClassifier(_BinaryRelevanceKNN): """Binary Relevance multi-label classifier based on k-Nearest Neighbors method. This version of the classifier assigns the labels that are assigned to at least half of the neighbors. Parameters ---------- k : int number of neighbours Attributes ---------- knn_ : an instance of sklearn.NearestNeighbors the nearest neighbors single-label classifier used underneath neighbors_ : array of arrays of int, shape = (n_samples, k) k neighbors of each sample confidences_ : matrix of int, shape = (n_samples, n_labels) label assignment confidences References ---------- If you use this method please cite the relevant paper: .. code :: bibtex @inproceedings{EleftheriosSpyromitros2008, author = {Eleftherios Spyromitros, Grigorios Tsoumakas, Ioannis Vlahavas}, booktitle = {Proc. 5th Hellenic Conference on Artificial Intelligence (SETN 2008)}, title = {An Empirical Study of Lazy Multilabel Classification Algorithms}, year = {2008}, location = {Syros, Greece} } Examples -------- Here's a very simple example of using BRkNNaClassifier with a fixed number of neighbors: .. code :: python from yyskmultilearn.adapt import BRkNNaClassifier classifier = BRkNNaClassifier(k=3) # train classifier.fit(X_train, y_train) # predict predictions = classifier.predict(X_test) You can also use :class:`~sklearn.model_selection.GridSearchCV` to find an optimal set of parameters: .. code :: python from yyskmultilearn.adapt import BRkNNaClassifier from sklearn.model_selection import GridSearchCV parameters = {'k': range(1,3)} score = 'f1_macro' clf = GridSearchCV(BRkNNaClassifier(), parameters, scoring=score) clf.fit(X, y) """ def _predict_variant(self, X): # TODO: find out if moving the sparsity to compute confidences_ boots speed return sparse.csr_matrix(np.rint(self.confidences_), dtype='i8') class BRkNNbClassifier(_BinaryRelevanceKNN): """Binary Relevance multi-label classifier based on k-Nearest Neighbors method. This version of the classifier assigns the most popular m labels of the neighbors, where m is the average number of labels assigned to the object's neighbors. Parameters ---------- k : int number of neighbours Attributes ---------- knn_ : an instance of sklearn.NearestNeighbors the nearest neighbors single-label classifier used underneath neighbors_ : array of arrays of int, shape = (n_samples, k) k neighbors of each sample confidences_ : matrix of int, shape = (n_samples, n_labels) label assignment confidences References ---------- If you use this method please cite the relevant paper: .. code :: bibtex @inproceedings{EleftheriosSpyromitros2008, author = {Eleftherios Spyromitros, Grigorios Tsoumakas, Ioannis Vlahavas}, booktitle = {Proc. 5th Hellenic Conference on Artificial Intelligence (SETN 2008)}, title = {An Empirical Study of Lazy Multilabel Classification Algorithms}, year = {2008}, location = {Syros, Greece} } Examples -------- Here's a very simple example of using BRkNNbClassifier with a fixed number of neighbors: .. code :: python from yyskmultilearn.adapt import BRkNNbClassifier classifier = BRkNNbClassifier(k=3) # train classifier.fit(X_train, y_train) # predict predictions = classifier.predict(X_test) You can also use :class:`~sklearn.model_selection.GridSearchCV` to find an optimal set of parameters: .. code :: python from yyskmultilearn.adapt import BRkNNbClassifier from sklearn.model_selection import GridSearchCV parameters = {'k': range(1,3)} score = 'f1-macro clf = GridSearchCV(BRkNNbClassifier(), parameters, scoring=score) clf.fit(X, y) """ def _predict_variant(self, X): avg_labels = [int(np.average(self.train_labelspace[n, :].sum(axis=1)).round()) for n in self.neighbors_] prediction = sparse.lil_matrix((X.shape[0], self._n_labels), dtype='i8') top_labels = np.argpartition(self.confidences_, kth=min(avg_labels + [len(self.confidences_[0])]), axis=1).tolist() for i in range(X.shape[0]): for j in top_labels[i][-avg_labels[i]:]: prediction[i, j] += 1 return prediction
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/adapt/brknn.py
brknn.py
from yyskmultilearn.base import MLClassifierBase import numpy as np import scipy.sparse as sp from scipy.linalg import norm from scipy.sparse.linalg import inv as inv_sparse from scipy.linalg import inv as inv_dense class MLTSVM(MLClassifierBase): """Twin multi-Label Support Vector Machines Parameters ---------- c_k : int the empirical risk penalty parameter that determines the trade-off between the loss terms sor_omega: float (default is 1.0) the smoothing parameter threshold : int (default is 1e-6) threshold above which a label should be assigned lambda_param : float (default is 1.0) the regularization parameter max_iteration : int (default is 500) maximum number of iterations to use in successive overrelaxation References ---------- If you use this classifier please cite the original paper introducing the method: .. code :: bibtex @article{chen2016mltsvm, title={MLTSVM: a novel twin support vector machine to multi-label learning}, author={Chen, Wei-Jie and Shao, Yuan-Hai and Li, Chun-Na and Deng, Nai-Yang}, journal={Pattern Recognition}, volume={52}, pages={61--74}, year={2016}, publisher={Elsevier} } Examples -------- Here's a very simple example of using MLTSVM with a fixed number of neighbors: .. code :: python from yyskmultilearn.adapt import MLTSVM classifier = MLTSVM(c_k = 2**-1) # train classifier.fit(X_train, y_train) # predict predictions = classifier.predict(X_test) You can also use :class:`~sklearn.model_selection.GridSearchCV` to find an optimal set of parameters: .. code :: python from yyskmultilearn.adapt import MLTSVM from sklearn.model_selection import GridSearchCV parameters = {'c_k': [2**i for i in range(-5, 5, 2)]} score = 'f1-macro clf = GridSearchCV(MLTSVM(), parameters, scoring=score) clf.fit(X, y) print (clf.best_params_, clf.best_score_) # output {'c_k': 0.03125} 0.347518217573 """ def __init__(self, c_k=0, sor_omega=1.0, threshold=1e-6, lambda_param=1.0, max_iteration=500): super(MLClassifierBase, self).__init__() self.max_iteration = max_iteration self.threshold = threshold self.lambda_param = lambda_param # TODO: possibility to add different lambda to different labels self.c_k = c_k self.sor_omega = sor_omega self.copyable_attrs = ['c_k', 'sor_omega', 'lambda_param', 'threshold', 'max_iteration'] def fit(self, X, Y): n_labels = Y.shape[1] m = X.shape[1] # Count of features self.wk_bk = np.zeros([n_labels, m + 1], dtype=float) if sp.issparse(X): identity_matrix = sp.identity(m + 1) _inv = inv_sparse else: identity_matrix = np.identity(m + 1) _inv = inv_dense X_bias = _hstack(X, np.ones((X.shape[0], 1), dtype=X.dtype)) self.iteration_count = [] for label in range(0, n_labels): # Calculate the parameter Q for overrelaxation H_k = _get_x_class_instances(X_bias, Y, label) G_k = _get_x_noclass_instances(X_bias, Y, label) Q_knoPrefixGk = _inv((H_k.T).dot(H_k) + self.lambda_param * identity_matrix).dot(G_k.T) Q_k = G_k.dot(Q_knoPrefixGk).A Q_k = (Q_k + Q_k.T) / 2.0 # Calculate other alpha_k = self._successive_overrelaxation(self.sor_omega, Q_k) if sp.issparse(X): self.wk_bk[label] = -Q_knoPrefixGk.dot(alpha_k).T else: self.wk_bk[label] = (-np.dot(Q_knoPrefixGk, alpha_k)).T self.wk_norms = norm(self.wk_bk, axis=1) self.treshold = 1.0 / np.max(self.wk_norms) def predict(self, X): X_with_bias = _hstack(X, np.ones((X.shape[0], 1), dtype=X.dtype)) wk_norms_multiplicated = self.wk_norms[np.newaxis, :] # change to form [[wk1, wk2, ..., wkk]] all_distances = (-X_with_bias.dot(self.wk_bk.T)) / wk_norms_multiplicated predicted_y = np.where(all_distances < self.treshold, 1, 0) # TODO: It's possible to add condition to: add label if no labels is in row. return predicted_y def _successive_overrelaxation(self, omegaW, Q): # Initialization D = np.diag(Q) # Only one dimension vector - is enough D_inv = 1.0 / D # D-1 simplify form small_l = Q.shape[1] oldnew_alpha = np.zeros([small_l, 1]) # buffer is_not_enough = True was_going_down = False last_alfa_norm_change = -1 nr_iter = 0 while is_not_enough: # do while oldAlpha = oldnew_alpha for j in range(0, small_l): # It's from last alpha to first oldnew_alpha[j] = oldAlpha[j] - omegaW * D_inv[j] * (Q[j, :].T.dot(oldnew_alpha) - 1) oldnew_alpha = oldnew_alpha.clip(0.0, self.c_k) alfa_norm_change = norm(oldnew_alpha - oldAlpha) if not was_going_down and last_alfa_norm_change > alfa_norm_change: was_going_down = True is_not_enough = alfa_norm_change > self.threshold and \ nr_iter < self.max_iteration \ and ((not was_going_down) or last_alfa_norm_change > alfa_norm_change) # TODO: maybe add any(oldnew_alpha != oldAlpha) last_alfa_norm_change = alfa_norm_change nr_iter += 1 self.iteration_count.append(nr_iter) return oldnew_alpha def _get_x_noclass_instances(X, Y, label_class): if sp.issparse(Y): indices = np.where(Y[:, 1].A == 0)[0] else: indices = np.where(Y[:, 1] == 0)[0] return X[indices, :] def _get_x_class_instances(X, Y, label_class): if sp.issparse(Y): indices = Y[:, label_class].nonzero()[0] else: indices = np.nonzero(Y[:, label_class])[0] return X[indices, :] def _hstack(X, Y): if sp.issparse(X): return sp.hstack([X, Y], format=X.format) else: return np.hstack([X, Y])
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/adapt/mltsvm.py
mltsvm.py
import os import shlex import subprocess import sys import tempfile import zipfile from builtins import filter from builtins import map from builtins import range from builtins import str import scipy.sparse as sparse from ..base import MLClassifierBase from ..dataset import save_to_arff, get_data_home, _download_single_file, _get_md5 try: from shlex import quote as cmd_quote except ImportError: from pipes import quote as cmd_quote SUPPORTED_VERSION = '1.9.2' SUPPORTED_VERSION_MD5 = 'e909044b39513bbad451b8d71098b22c' def download_meka(version=None): """Downloads a given version of the MEKA library and returns its classpath Parameters ---------- version : str the MEKA version to download, default falls back to currently supported version 1.9.2 Returns ------- string meka class path string for installed version Raises ------ IOError if unpacking the meka release file does not provide a proper setup Exception if MD5 mismatch happens after a download error """ version = version or SUPPORTED_VERSION meka_release_string = "meka-release-{}".format(version) file_name = meka_release_string + '-bin.zip' meka_path = get_data_home(subdirectory='meka') target_path = os.path.join(meka_path, file_name) path_to_lib = os.path.join(meka_path, meka_release_string, 'lib') if os.path.exists(target_path): print("MEKA {} found, not downloading".format(version)) else: print("MEKA {} not found, downloading".format(version)) release_url = "http://downloads.sourceforge.net/project/meka/meka-{}/".format(version) _download_single_file(file_name, target_path, release_url) found_md5 = _get_md5(target_path) if SUPPORTED_VERSION_MD5 != found_md5: raise Exception("MD5 mismatch - possible MEKA download error") if not os.path.exists(path_to_lib): with zipfile.ZipFile(target_path, 'r') as meka_zip: print("Unzipping MEKA {} to {}".format(version, meka_path + os.path.sep)) meka_zip.extractall(path=meka_path + os.path.sep) if not os.path.exists(os.path.join(path_to_lib, 'meka-{}.jar'.format(version))): raise IOError("Something went wrong, MEKA files missing, please file a bug report") return path_to_lib + os.path.sep class Meka(MLClassifierBase): """Wrapper for the MEKA classifier Allows using MEKA, WEKA and some of MULAN classifiers from scikit-compatible API. For more information on how to use this class see the tutorial: :doc:`../meka` Parameters ---------- meka_classifier : str The MEKA classifier string and parameters from the MEKA API, such as :code:`meka.classifiers.multilabel.MULAN -S RAkEL2` weka_classifier : str The WEKA classifier string and parameters from the WEKA API, such as :code:`weka.classifiers.trees.J48` java_command : str Path to test the java command meka_classpath: str Path to the MEKA class path folder, usually the folder lib in the directory MEKA was extracted into Attributes ---------- output_ : str the full text output of MEKA command References ---------- If you use this wrapper please also cite: .. code-block :: latex @article{MEKA, author = {Read, Jesse and Reutemann, Peter and Pfahringer, Bernhard and Holmes, Geoff}, title = {{MEKA}: A Multi-label/Multi-target Extension to {Weka}}, journal = {Journal of Machine Learning Research}, year = {2016}, volume = {17}, number = {21}, pages = {1--5}, url = {http://jmlr.org/papers/v17/12-164.html}, } @article{Hall:2009:WDM:1656274.1656278, author = {Hall, Mark and Frank, Eibe and Holmes, Geoffrey and Pfahringer, Bernhard and Reutemann, Peter and Witten, Ian H.}, title = {The WEKA Data Mining Software: An Update}, journal = {SIGKDD Explor. Newsl.}, issue_date = {June 2009}, volume = {11}, number = {1}, month = nov, year = {2009}, issn = {1931-0145}, pages = {10--18}, numpages = {9}, url = {http://doi.acm.org/10.1145/1656274.1656278}, doi = {10.1145/1656274.1656278}, acmid = {1656278}, publisher = {ACM}, address = {New York, NY, USA}, } Examples -------- Here's an example of performing Label Powerset classification using MEKA with a WEKA Naive Bayes classifier. .. code-block:: python from yyskmultilearn.ext import Meka, download_meka meka = Meka( meka_classifier = "meka.classifiers.multilabel.LC", weka_classifier = "weka.classifiers.bayes.NaiveBayes", meka_classpath = download_meka(), java_command = '/usr/bin/java') meka.fit(X_train, y_train) predictions = meka.predict(X_test) """ def __init__(self, meka_classifier=None, weka_classifier=None, java_command=None, meka_classpath=None): super(Meka, self).__init__() self.java_command = java_command if self.java_command is None: # TODO: this will not be needed once we're python 3 ready - we will # use it only in python 2.7 cases from whichcraft import which self.java_command = which("java") if self.java_command is None: raise ValueError("Java not found") self.meka_classpath = meka_classpath if self.meka_classpath is None: self.meka_classpath = os.environ.get('MEKA_CLASSPATH') if self.meka_classpath is None: raise ValueError("No meka classpath defined") self.meka_classifier = meka_classifier self.weka_classifier = weka_classifier self.copyable_attrs = [ 'meka_classifier', 'weka_classifier', 'java_command', 'meka_classpath' ] self.output_ = None self._verbosity = 5 self._warnings = None self.require_dense = [False, False] self._clean() def _clean(self): """Sets various attributes to :code:`None`""" self._results = None self._statistics = None self.output_ = None self._error = None self._label_count = None self._instance_count = None def _remove_temporary_files(self, temporary_files): """Internal function for cleaning temporary files""" for file_object in temporary_files: file_name = file_object.name file_object.close() if os.path.exists(file_name): os.remove(file_name) arff_file_name = file_name + '.arff' if os.path.exists(arff_file_name): os.remove(arff_file_name) def fit(self, X, y): """Fits classifier to training data Internally this method dumps X and y to temporary arff files and runs MEKA with relevant arguments using :meth:`_run`. It uses a sparse DOK representation (:class:`scipy.sparse.dok_matrix`) of the X matrix. Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix y : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments Returns ------- self fitted instance of self """ self._clean() X = self._ensure_input_format( X, sparse_format='dok', enforce_sparse=True) y = self._ensure_output_format( y, sparse_format='dok', enforce_sparse=True) self._label_count = y.shape[1] # we need this in case threshold needs to be recalibrated in meka self.train_data_ = save_to_arff(X, y) train_arff = tempfile.NamedTemporaryFile(delete=False) classifier_dump_file = tempfile.NamedTemporaryFile(delete=False) try: with open(train_arff.name + '.arff', 'w') as fp: fp.write(self.train_data_) input_args = [ '-verbosity', "0", '-split-percentage', "100", '-t', '"{}"'.format(train_arff.name + '.arff'), '-d', '"{}"'.format(classifier_dump_file.name), ] self._run_meka_command(input_args) self.classifier_dump = None with open(classifier_dump_file.name, 'rb') as fp: self.classifier_dump = fp.read() finally: self._remove_temporary_files([train_arff, classifier_dump_file]) return self def predict(self, X): """Predict label assignments for X Internally this method dumps X to temporary arff files and runs MEKA with relevant arguments using :func:`_run`. It uses a sparse DOK representation (:class:`scipy.sparse.dok_matrix`) of the X matrix. Parameters ---------- X : numpy.ndarray or scipy.sparse input features of shape :code:`(n_samples, n_features)` Returns ------- scipy.sparse of int sparse matrix of integers with shape :code:`(n_samples, n_features)` """ X = self._ensure_input_format( X, sparse_format='dok', enforce_sparse=True) self._instance_count = X.shape[0] if self.classifier_dump is None: raise Exception('Not classified') sparse_y = sparse.coo_matrix((X.shape[0], self._label_count), dtype=int) try: train_arff = tempfile.NamedTemporaryFile(delete=False) test_arff = tempfile.NamedTemporaryFile(delete=False) classifier_dump_file = tempfile.NamedTemporaryFile(delete=False) with open(train_arff.name + '.arff', 'w') as fp: fp.write(self.train_data_) with open(classifier_dump_file.name, 'wb') as fp: fp.write(self.classifier_dump) with open(test_arff.name + '.arff', 'w') as fp: fp.write(save_to_arff(X, sparse_y)) args = [ '-l', '"{}"'.format(classifier_dump_file.name) ] self._run(train_arff.name + '.arff', test_arff.name + '.arff', args) self._parse_output() finally: self._remove_temporary_files( [train_arff, test_arff, classifier_dump_file] ) return self._results def _run(self, train_file, test_file, additional_arguments=[]): """Runs the meka classifiers Parameters ---------- train_file : str path to train :code:`.arff` file in meka format (big endian, labels first in attributes list). test_file : str path to test :code:`.arff` file in meka format (big endian, labels first in attributes list). Returns ------- predictions: sparse binary indicator matrix [n_test_samples, n_labels] array of binary label vectors including label predictions of shape :code:`(n_test_samples, n_labels)` """ self.output_ = None self._warnings = None # meka_command_string = 'java -cp "/home/niedakh/pwr/old/meka-1.5/lib/*" meka.classifiers.multilabel.MULAN -S RAkEL2 # -threshold 0 -t {train} -T {test} -verbosity {verbosity} -W weka.classifiers.bayes.NaiveBayes' # meka.classifiers.multilabel.LC, weka.classifiers.bayes.NaiveBayes args = [ '-t', '"{}"'.format(train_file), '-T', '"{}"'.format(test_file), '-verbosity', str(5), ] + additional_arguments self._run_meka_command(args) return self def _parse_output(self): """Internal function for parsing MEKA output.""" if self.output_ is None: self._results = None self._statistics = None return None predictions_split_head = '==== PREDICTIONS' predictions_split_foot = '|===========' if self._label_count is None: self._label_count = map(lambda y: int(y.split(')')[1].strip()), [ x for x in self.output_.split('\n') if 'Number of labels' in x])[0] if self._instance_count is None: self._instance_count = int(float(filter(lambda x: '==== PREDICTIONS (N=' in x, self.output_.split( '\n'))[0].split('(')[1].split('=')[1].split(')')[0])) predictions = self.output_.split(predictions_split_head)[1].split( predictions_split_foot)[0].split('\n')[1:-1] predictions = [y.split(']')[0] for y in [x.split('] [')[1] for x in predictions]] predictions = [[a for a in [f.strip() for f in z.split(',')] if len(a) > 0] for z in predictions] predictions = [[int(a) for a in z] for z in predictions] assert self._verbosity == 5 self._results = sparse.lil_matrix( (self._instance_count, self._label_count), dtype='int') for row in range(self._instance_count): for label in predictions[row]: self._results[row, label] = 1 statistics = [x for x in self.output_.split( '== Evaluation Info')[1].split('\n') if len(x) > 0 and '==' not in x] statistics = [y for y in [z.strip() for z in statistics] if ' ' in y] array_data = [z for z in statistics if '[' in z] non_array_data = [z for z in statistics if '[' not in z] self._statistics = {} for row in non_array_data: r = row.strip().split(' ') r = [z for z in r if len(z) > 0] r = [z.strip() for z in r] if len(r) < 2: continue try: test_value = float(r[1]) except ValueError: test_value = r[1] r[1] = test_value self._statistics[r[0]] = r[1] for row in array_data: r = row.strip().split('[') r = [z.strip() for z in r] r[1] = r[1].replace(', ', ' ').replace( ',', '.').replace(']', '').split(' ') r[1] = [x for x in r[1] if len(x) > 0] self._statistics[r[0]] = r[1] def _run_meka_command(self, args): command_args = [ self.java_command, '-cp', '"{}*"'.format(self.meka_classpath), self.meka_classifier, ] if self.weka_classifier is not None: command_args += ['-W', self.weka_classifier] command_args += args meka_command = " ".join(command_args) if sys.platform != 'win32': meka_command = shlex.split(meka_command) pipes = subprocess.Popen(meka_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) self.output_, self._error = pipes.communicate() if type(self.output_) == bytes: self.output_ = self.output_.decode(sys.stdout.encoding) if type(self._error) == bytes: self._error = self._error.decode(sys.stdout.encoding) if pipes.returncode != 0: raise Exception(self.output_ + self._error)
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/ext/meka.py
meka.py
from ..problem_transform.br import BinaryRelevance from scipy import sparse class LabelSpacePartitioningClassifier(BinaryRelevance): """Partition label space and classify each subspace separately This classifier performs classification by: 1. partitioning the label space into separate, smaller multi-label sub problems, using the supplied label space clusterer 2. training an instance of the supplied base mult-label classifier for each label space subset in the partition 3. predicting the result with each of subclassifiers and returning the sum of their results Parameters ---------- classifier : :class:`~sklearn.base.BaseEstimator` the base classifier that will be used in a class, will be automatically put under :code:`self.classifier`. clusterer : :class:`~yyskmultilearn.cluster.LabelSpaceClustererBase` object that partitions the output space, will be automatically put under :code:`self.clusterer`. require_dense : [bool, bool] whether the base classifier requires [input, output] matrices in dense representation, will be automatically put under :code:`self.require_dense`. Attributes ---------- model_count_ : int number of trained models, in this classifier equal to the number of partitions partition_ : List[List[int]], shape=(`model_count_`,) list of lists of label indexes, used to index the output space matrix, set in :meth:`_generate_partition` via :meth:`fit` classifiers : List[:class:`~sklearn.base.BaseEstimator`], shape=(`model_count_`,) list of classifiers trained per partition, set in :meth:`fit` References ---------- If you use this clusterer please cite the clustering paper: .. code:: latex @Article{datadriven, author = {Szymański, Piotr and Kajdanowicz, Tomasz and Kersting, Kristian}, title = {How Is a Data-Driven Approach Better than Random Choice in Label Space Division for Multi-Label Classification?}, journal = {Entropy}, volume = {18}, year = {2016}, number = {8}, article_number = {282}, url = {http://www.mdpi.com/1099-4300/18/8/282}, issn = {1099-4300}, doi = {10.3390/e18080282} } Examples -------- Here's an example of building a partitioned ensemble of Classifier Chains .. code :: python from yyskmultilearn.ensemble import MajorityVotingClassifier from yyskmultilearn.cluster import FixedLabelSpaceClusterer from yyskmultilearn.problem_transform import ClassifierChain from sklearn.naive_bayes import GaussianNB classifier = MajorityVotingClassifier( clusterer = FixedLabelSpaceClusterer(clusters = [[1,3,4], [0, 2, 5]]), classifier = ClassifierChain(classifier=GaussianNB()) ) classifier.fit(X_train,y_train) predictions = classifier.predict(X_test) More advanced examples can be found in `the label relations exploration guide <../labelrelations.ipynb>`_ """ def __init__(self, classifier=None, clusterer=None, require_dense=None): super(LabelSpacePartitioningClassifier, self).__init__(classifier, require_dense) self.clusterer = clusterer self.copyable_attrs = ['clusterer', 'classifier', 'require_dense'] def predict(self, X): """Predict labels for X Parameters ---------- X : numpy.ndarray or scipy.sparse.csc_matrix input features of shape :code:`(n_samples, n_features)` Returns ------- scipy.sparse of int binary indicator matrix with label assignments with shape :code:`(n_samples, n_labels)` """ X = self._ensure_input_format( X, sparse_format='csr', enforce_sparse=True) result = sparse.lil_matrix((X.shape[0], self._label_count), dtype=int) for model in range(self.model_count_): predictions = self._ensure_output_format(self.classifiers_[model].predict( X), sparse_format=None, enforce_sparse=True).nonzero() for row, column in zip(predictions[0], predictions[1]): result[row, self.partition_[model][column]] = 1 return result def _generate_partition(self, X, y): """Cluster the label space Saves the partiton generated by the clusterer to :code:`self.partition_` and sets :code:`self.model_count_` to number of clusers and :code:`self._label_count` to number of labels. Parameters ----------- X : numpy.ndarray or scipy.sparse input features of shape :code:`(n_samples, n_features)`, passed to clusterer y : numpy.ndarray or scipy.sparse binary indicator matrix with label assigments of shape :code:`(n_samples, n_labels)` Returns ------- LabelSpacePartitioningClassifier returns an instance of itself """ self.partition_ = self.clusterer.fit_predict(X, y) self.model_count_ = len(self.partition_) self._label_count = y.shape[1] return self
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/ensemble/partition.py
partition.py
import numpy as np from .partition import LabelSpacePartitioningClassifier from ..cluster.random import RandomLabelSpaceClusterer from ..problem_transform import LabelPowerset from ..base import MLClassifierBase class RakelD(MLClassifierBase): """Distinct RAndom k-labELsets multi-label classifier. Divides the label space in to equal partitions of size k, trains a Label Powerset classifier per partition and predicts by summing the result of all trained classifiers. Parameters ---------- base_classifier : sklearn.base the base classifier that will be used in a class, will be automatically put under :code:`self.classifier` for future access. base_classifier_require_dense : [bool, bool] whether the base classifier requires [input, output] matrices in dense representation, will be automatically put under :code:`self.require_dense` labelset_size : int the desired size of each of the partitions, parameter k according to paper Default is 3, according to paper it has the best results Attributes ---------- _label_count : int the number of labels the classifier is fit to, set by :meth:`fit` model_count_ : int the number of sub classifiers trained, set by :meth:`fit` classifier_: :class:`yyskmultilearn.ensemble.LabelSpacePartitioningClassifier` the underneath classifier that perform the label space partitioning using a random clusterer :class:`yyskmultilearn.ensemble.RandomLabelSpaceClusterer` References ---------- If you use this class please cite the paper introducing the method: .. code :: latex @ARTICLE{5567103, author={G. Tsoumakas and I. Katakis and I. Vlahavas}, journal={IEEE Transactions on Knowledge and Data Engineering}, title={Random k-Labelsets for Multilabel Classification}, year={2011}, volume={23}, number={7}, pages={1079-1089}, doi={10.1109/TKDE.2010.164}, ISSN={1041-4347}, month={July}, } Examples -------- Here's a simple example of how to use this class with a base classifier from scikit-learn to teach non-overlapping classifiers each trained on at most four labels: .. code :: python from sklearn.naive_bayes import GaussianNB from yyskmultilearn.ensemble import RakelD classifier = RakelD( base_classifier=GaussianNB(), base_classifier_require_dense=[True, True], labelset_size=4 ) classifier.fit(X_train, y_train) prediction = classifier.predict(X_test) """ def __init__(self, base_classifier=None, labelset_size=3, base_classifier_require_dense=None): super(RakelD, self).__init__() self.labelset_size = labelset_size self.base_classifier = base_classifier self.base_classifier_require_dense = base_classifier_require_dense self.copyable_attrs = ['base_classifier', 'base_classifier_require_dense', 'labelset_size'] def fit(self, X, y): """Fit classifier to multi-label data Parameters ---------- X : numpy.ndarray or scipy.sparse input features, can be a dense or sparse matrix of size :code:`(n_samples, n_features)` y : numpy.ndaarray or scipy.sparse {0,1} binary indicator matrix with label assignments, shape :code:`(n_samples, n_labels)` Returns ------- fitted instance of self """ self._label_count = y.shape[1] self.model_count_ = int(np.ceil(self._label_count / self.labelset_size)) self.classifier_ = LabelSpacePartitioningClassifier( classifier=LabelPowerset( classifier=self.base_classifier, require_dense=self.base_classifier_require_dense ), clusterer=RandomLabelSpaceClusterer( cluster_size=self.labelset_size, cluster_count=self.model_count_, allow_overlap=False ), require_dense=[False, False] ) return self.classifier_.fit(X, y) def predict(self, X): """Predict label assignments Parameters ---------- X : numpy.ndarray or scipy.sparse.csc_matrix input features of shape :code:`(n_samples, n_features)` Returns ------- scipy.sparse of int binary indicator matrix with label assignments with shape :code:`(n_samples, n_labels)` """ return self.classifier_.predict(X) def predict_proba(self, X): """Predict label probabilities Parameters ---------- X : numpy.ndarray or scipy.sparse.csc_matrix input features of shape :code:`(n_samples, n_features)` Returns ------- scipy.sparse of float binary indicator matrix with probability of label assignment with shape :code:`(n_samples, n_labels)` """ return self.classifier_.predict_proba(X)
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/ensemble/rakeld.py
rakeld.py
import numpy as np from builtins import range from builtins import zip from scipy import sparse from .partition import LabelSpacePartitioningClassifier class MajorityVotingClassifier(LabelSpacePartitioningClassifier): """Majority Voting ensemble classifier Divides the label space using provided clusterer class, trains a provided base classifier type classifier for each subset and assign a label to an instance if more than half of all classifiers (majority) from clusters that contain the label assigned the label to the instance. Parameters ---------- classifier : :class:`~sklearn.base.BaseEstimator` the base classifier that will be used in a class, will be automatically put under :code:`self.classifier`. clusterer : :class:`~yyskmultilearn.cluster.LabelSpaceClustererBase` object that partitions the output space, will be automatically put under :code:`self.clusterer`. require_dense : [bool, bool] whether the base classifier requires [input, output] matrices in dense representation, will be automatically put under :code:`self.require_dense`. Attributes ---------- model_count_ : int number of trained models, in this classifier equal to the number of partitions partition_ : List[List[int]], shape=(`model_count_`,) list of lists of label indexes, used to index the output space matrix, set in :meth:`_generate_partition` via :meth:`fit` classifiers : List[:class:`~sklearn.base.BaseEstimator`], shape=(`model_count_`,) list of classifiers trained per partition, set in :meth:`fit` Examples -------- Here's an example of building an overlapping ensemble of chains .. code :: python from yyskmultilearn.ensemble import MajorityVotingClassifier from yyskmultilearn.cluster import FixedLabelSpaceClusterer from yyskmultilearn.problem_transform import ClassifierChain from sklearn.naive_bayes import GaussianNB classifier = MajorityVotingClassifier( clusterer = FixedLabelSpaceClusterer(clusters = [[1,2,3], [0, 2, 5], [4, 5]]), classifier = ClassifierChain(classifier=GaussianNB()) ) classifier.fit(X_train,y_train) predictions = classifier.predict(X_test) More advanced examples can be found in `the label relations exploration guide <../labelrelations.ipynb>`_ """ def __init__(self, classifier=None, clusterer=None, require_dense=None): super(MajorityVotingClassifier, self).__init__( classifier=classifier, clusterer=clusterer, require_dense=require_dense ) def predict(self, X): """Predict label assignments for X Parameters ---------- X : numpy.ndarray or scipy.sparse.csc_matrix input features of shape :code:`(n_samples, n_features)` Returns ------- scipy.sparse of float binary indicator matrix with label assignments with shape :code:`(n_samples, n_labels)` """ predictions = [ self._ensure_input_format(self._ensure_input_format( c.predict(X)), sparse_format='csc', enforce_sparse=True) for c in self.classifiers_ ] voters = np.zeros(self._label_count, dtype='int') votes = sparse.lil_matrix( (predictions[0].shape[0], self._label_count), dtype='int') for model in range(self.model_count_): for label in range(len(self.partition_[model])): votes[:, self.partition_[model][label]] = votes[ :, self.partition_[model][label]] + predictions[model][:, label] voters[self.partition_[model][label]] += 1 nonzeros = votes.nonzero() for row, column in zip(nonzeros[0], nonzeros[1]): votes[row, column] = np.round( votes[row, column] / float(voters[column])) return self._ensure_output_format(votes, enforce_sparse=False) def predict_proba(self, X): raise NotImplemented("The voting scheme does not define a method for calculating probabilities")
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/ensemble/voting.py
voting.py
from .voting import MajorityVotingClassifier from ..cluster.random import RandomLabelSpaceClusterer from ..problem_transform import LabelPowerset from ..base import MLClassifierBase class RakelO(MLClassifierBase): """Overlapping RAndom k-labELsets multi-label classifier Divides the label space in to m subsets of size k, trains a Label Powerset classifier for each subset and assign a label to an instance if more than half of all classifiers (majority) from clusters that contain the label assigned the label to the instance. Parameters ---------- base_classifier: :class:`~sklearn.base.BaseEstimator` scikit-learn compatible base classifier, will be set under `self.classifier.classifier`. base_classifier_require_dense : [bool, bool] whether the base classifier requires [input, output] matrices in dense representation. Will be automatically set under `self.classifier.require_dense` labelset_size : int the desired size of each of the partitions, parameter k according to paper. According to paper, the best parameter is 3, so it's set as default Will be automatically set under `self.labelset_size` model_count : int the desired number of classifiers, parameter m according to paper. According to paper, the best value for this parameter is 2M (being M the number of labels) Will be automatically set under :code:`self.model_count_`. Attributes ---------- classifier : :class:`~yyskmultilearn.ensemble.MajorityVotingClassifier` the voting classifier initialized with :class:`~yyskmultilearn.problem_transform.LabelPowerset` multi-label classifier with `base_classifier` and :class:`~yyskmultilearn.cluster.random.RandomLabelSpaceClusterer` References ---------- If you use this class please cite the paper introducing the method: .. code :: latex @ARTICLE{5567103, author={G. Tsoumakas and I. Katakis and I. Vlahavas}, journal={IEEE Transactions on Knowledge and Data Engineering}, title={Random k-Labelsets for Multilabel Classification}, year={2011}, volume={23}, number={7}, pages={1079-1089}, doi={10.1109/TKDE.2010.164}, ISSN={1041-4347}, month={July}, } Examples -------- Here's a simple example of how to use this class with a base classifier from scikit-learn to teach 6 classifiers each trained on a quarter of labels, which is sure to overlap: .. code :: python from sklearn.naive_bayes import GaussianNB from yyskmultilearn.ensemble import RakelO classifier = RakelO( base_classifier=GaussianNB(), base_classifier_require_dense=[True, True], labelset_size=y_train.shape[1] // 4, model_count_=6 ) classifier.fit(X_train, y_train) prediction = classifier.predict(X_train, y_train) """ def __init__(self, base_classifier=None, model_count=None, labelset_size=3, base_classifier_require_dense=None): super(RakelO, self).__init__() self.model_count = model_count self.labelset_size = labelset_size self.base_classifier = base_classifier self.base_classifier_require_dense = base_classifier_require_dense self.copyable_attrs = ['model_count', 'labelset_size', 'base_classifier_require_dense', 'base_classifier'] def fit(self, X, y): """Fits classifier to training data Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix y : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments Returns ------- self fitted instance of self """ self.classifier = MajorityVotingClassifier( classifier=LabelPowerset( classifier=self.base_classifier, require_dense=self.base_classifier_require_dense ), clusterer=RandomLabelSpaceClusterer( cluster_size=self.labelset_size, cluster_count=self.model_count, allow_overlap=True ), require_dense=[False, False] ) return self.classifier.fit(X, y) def predict(self, X): """Predict labels for X Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix Returns ------- :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments """ return self.classifier.predict(X) def predict_proba(self, X): """Predict probabilities of label assignments for X Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix Returns ------- :mod:`scipy.sparse` matrix of `float in [0.0, 1.0]`, shape=(n_samples, n_labels) matrix with label assignment probabilities """ return self.classifier.predict_proba(X)
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/ensemble/rakelo.py
rakelo.py
from sklearn.model_selection._split import _BaseKFold import numpy as np import scipy.sparse as sp import itertools from sklearn.utils import check_random_state def iterative_train_test_split(X, y, test_size): """Iteratively stratified train/test split Parameters ---------- test_size : float, [0,1] the proportion of the dataset to include in the test split, the rest will be put in the train set Returns ------- X_train, y_train, X_test, y_test stratified division into train/test split """ stratifier = IterativeStratification(n_splits=2, order=2, sample_distribution_per_fold=[test_size, 1.0-test_size]) train_indexes, test_indexes = next(stratifier.split(X, y)) X_train, y_train = X[train_indexes, :], y[train_indexes, :] X_test, y_test = X[test_indexes, :], y[test_indexes, :] return X_train, y_train, X_test, y_test def _fold_tie_break(desired_samples_per_fold, M): """Helper function to split a tie between folds with same desirability of a given sample Parameters ---------- desired_samples_per_fold: np.array[Float], :code:`(n_splits)` number of samples desired per fold M : np.array(int) List of folds between which to break the tie Returns ------- fold_number : int The selected fold index to put samples into """ if len(M) == 1: return M[0] else: max_val = max(desired_samples_per_fold[M]) M_prim = np.where( np.array(desired_samples_per_fold) == max_val)[0] M_prim = np.array([x for x in M_prim if x in M]) return np.random.choice(M_prim, 1)[0] def _get_most_desired_combination(samples_with_combination): """Select the next most desired combination whose evidence should be split among folds Parameters ---------- samples_with_combination : Dict[Combination, List[int]], :code:`(n_combinations)` map from each label combination present in y to list of sample indexes that have this combination assigned Returns ------- combination: Combination the combination to split next """ currently_chosen = None best_number_of_combinations, best_support_size = None, None for combination, evidence in samples_with_combination.items(): number_of_combinations, support_size = (len(set(combination)), len(evidence)) if support_size == 0: continue if currently_chosen is None or ( best_number_of_combinations < number_of_combinations and best_support_size > support_size ): currently_chosen = combination best_number_of_combinations, best_support_size = number_of_combinations, support_size return currently_chosen class IterativeStratification(_BaseKFold): """Iteratively stratify a multi-label data set into folds Construct an interative stratifier that splits the data set into folds trying to maintain balanced representation with respect to order-th label combinations. Attributes ---------- n_splits : number of splits, int the number of folds to stratify into order : int, >= 1 the order of label relationship to take into account when balancing sample distribution across labels sample_distribution_per_fold : None or List[float], :code:`(n_splits)` desired percentage of samples in each of the folds, if None and equal distribution of samples per fold is assumed i.e. 1/n_splits for each fold. The value is held in :code:`self.percentage_per_fold`. random_state : int the random state seed (optional) """ def __init__(self, n_splits=3, order=1, sample_distribution_per_fold = None, random_state=None): self.order = order super( IterativeStratification, self).__init__(n_splits, shuffle=False, random_state=random_state) if sample_distribution_per_fold: self.percentage_per_fold = sample_distribution_per_fold else: self.percentage_per_fold = [1 / float(self.n_splits) for _ in range(self.n_splits)] def _prepare_stratification(self, y): """Prepares variables for performing stratification For the purpose of clarity, the type Combination denotes List[int], :code:`(self.order)` and represents a label combination of the order we want to preserve among folds in stratification. The total number of combinations present in :code:`(y)` will be denoted as :code:`(n_combinations)`. Sets ---- self.n_samples, self.n_labels : int, int shape of y self.desired_samples_per_fold: np.array[Float], :code:`(n_splits)` number of samples desired per fold self.desired_samples_per_combination_per_fold: Dict[Combination, np.array[Float]], :code:`(n_combinations, n_splits)` number of samples evidencing each combination desired per each fold Parameters ---------- y : output matrix or array of arrays (n_samples, n_labels) Returns ------- rows : List[List[int]], :code:`(n_samples, n_labels)` list of label indices assigned to each sample rows_used : Dict[int, bool], :code:`(n_samples)` boolean map from a given sample index to boolean value whether it has been already assigned to a fold or not all_combinations : List[Combination], :code:`(n_combinations)` list of all label combinations of order self.order present in y per_row_combinations : List[Combination], :code:`(n_samples)` list of all label combinations of order self.order present in y per row samples_with_combination : Dict[Combination, List[int]], :code:`(n_combinations)` map from each label combination present in y to list of sample indexes that have this combination assigned folds: List[List[int]] (n_splits) list of lists to be populated with samples """ self.n_samples, self.n_labels = y.shape self.desired_samples_per_fold = np.array([self.percentage_per_fold[i] * self.n_samples for i in range(self.n_splits)]) rows = sp.lil_matrix(y).rows rows_used = {i: False for i in range(self.n_samples)} all_combinations = [] per_row_combinations = [[] for i in range(self.n_samples)] samples_with_combination = {} folds = [[] for _ in range(self.n_splits)] # for every row for sample_index, label_assignment in enumerate(rows): # for every n-th order label combination # register combination in maps and lists used later for combination in itertools.combinations_with_replacement(label_assignment, self.order): if combination not in samples_with_combination: samples_with_combination[combination] = [] samples_with_combination[combination].append(sample_index) all_combinations.append(combination) per_row_combinations[sample_index].append(combination) all_combinations = [list(x) for x in set(all_combinations)] self.desired_samples_per_combination_per_fold = { combination: np.array([len(evidence_for_combination) * self.percentage_per_fold[j] for j in range(self.n_splits)]) for combination, evidence_for_combination in samples_with_combination.items() } return rows, rows_used, all_combinations, per_row_combinations, samples_with_combination, folds def _distribute_positive_evidence(self, rows_used, folds, samples_with_combination, per_row_combinations): """Internal method to distribute evidence for labeled samples across folds For params, see documentation of :code:`self._prepare_stratification`. Does not return anything, modifies params. """ l = _get_most_desired_combination(samples_with_combination) while l is not None: while len(samples_with_combination[l]) > 0: row = samples_with_combination[l].pop() if rows_used[row]: continue max_val = max(self.desired_samples_per_combination_per_fold[l]) M = np.where( np.array(self.desired_samples_per_combination_per_fold[l]) == max_val)[0] m = _fold_tie_break(self.desired_samples_per_combination_per_fold[l], M) folds[m].append(row) rows_used[row] = True for i in per_row_combinations[row]: if row in samples_with_combination[i]: samples_with_combination[i].remove(row) self.desired_samples_per_combination_per_fold[i][m] -= 1 self.desired_samples_per_fold[m] -= 1 l = _get_most_desired_combination(samples_with_combination) def _distribute_negative_evidence(self, rows_used, folds): """Internal method to distribute evidence for unlabeled samples across folds For params, see documentation of :code:`self._prepare_stratification`. Does not return anything, modifies params. """ available_samples = [ i for i, v in rows_used.items() if not v] samples_left = len(available_samples) while samples_left > 0: row = available_samples.pop() rows_used[row] = True samples_left -= 1 fold_selected = np.random.choice(np.where(self.desired_samples_per_fold > 0)[0], 1)[0] self.desired_samples_per_fold[fold_selected] -= 1 folds[fold_selected].append(row) def _iter_test_indices(self, X, y=None, groups=None): """Internal method for providing scikit-learn's split with folds Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Note that providing ``y`` is sufficient to generate the splits and hence ``np.zeros(n_samples)`` may be used as a placeholder for ``X`` instead of actual training data. y : array-like, shape (n_samples,) The target variable for supervised learning problems. Stratification is done based on the y labels. groups : object Always ignored, exists for compatibility. Yields ------ fold : List[int] indexes of test samples for a given fold, yielded for each of the folds """ if self.random_state: check_random_state(self.random_state) rows, rows_used, all_combinations, per_row_combinations, samples_with_combination, folds = \ self._prepare_stratification(y) self._distribute_positive_evidence(rows_used, folds, samples_with_combination, per_row_combinations) self._distribute_negative_evidence(rows_used, folds) for fold in folds: yield fold
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/model_selection/iterative_stratification.py
iterative_stratification.py
import numpy as np import itertools as it def example_distribution(folds, desired_size): """Examples Distribution (ED) measure Examples Distribution is a measure of how much a given fold's size deviates from the desired number of samples in each of the folds. Parameters: ----------- folds : List[List[int]], shape = (n_folds) list of indexes of samples assigned per fold desired_size : List[int], shape = (n_folds) desired number of samples in each fold Returns ------- example_distribution_score : float The example distribution score """ n_splits = float(len(folds)) return np.sum( np.abs(len(fold) - desired_fold_size) for fold, desired_fold_size in zip(folds, desired_size) ) / n_splits def get_indicator_representation(row): """Convert binary indicator to list of assigned labels Parameters: ----------- row : List[{0,1}] binary indicator list whether i-th label is assigned or not Returns ------- np.array[int] list of assigned labels """ return np.where(row != 0)[0] def get_combination_wise_output_matrix(y, order): """Returns label combinations of a given order that are assigned to each row Parameters: ----------- y : output matrix or array of arrays (n_samples, n_labels) the binary-indicator label assignment per sample representation of the output space order : int, >= 1 the order of label relationship to take into account when balancing sample distribution across labels Returns ------- combinations_per_row : List[Set[Tuple[int]]] list of combination assignments per row """ return np.array([set(tuple(combination) for combination in it.combinations_with_replacement(get_indicator_representation(row), order)) for row in y]) def get_unique_combinations(combinations_per_row): """Performs set.union on a list of sets Parameters ---------- combinations_per_row : List[Set[Tuple[int]]] list of combination assignments per row Returns ------- Set[Tuple[int]] all unique label combinations """ return set.union(*combinations_per_row) def folds_without_evidence_for_at_least_one_label_combination(y, folds, order=1): """Counts the number of folds without evidence for a given Label, Label Pair or Label Combination (FZ, FZLP, FZLC) measure A general implementation of FZ - the number of folds that contain at least one label combination of order :code:`order` with no positive examples. With :code:`order` = 1, it becomes the FZ measure from Katakis et.al's original paper. Parameters: ----------- y : output matrix or array of arrays (n_samples, n_labels) the binary-indicator label assignment per sample representation of the output space folds : List[List[int]], shape = (n_folds) list of indexes of samples assigned per fold order : int, >= 1 the order of label relationship to take into account when balancing sample distribution across labels Returns ------- score : float the number of folds with missing evidence for at least one label combination """ combinations_per_row = get_combination_wise_output_matrix(y, order) all_combinations = get_unique_combinations(combinations_per_row) return np.sum([get_unique_combinations(combinations_per_row[[fold]]) != all_combinations for fold in folds]) def folds_label_combination_pairs_without_evidence(y, folds, order): """Fold - Label / Label Pair / Label Combination (FLZ, FLPZ, FLCZ) pair count measure A general implementation of FLZ - the number of pairs of fold and label combination of a given order for which there is no positive evidence in that fold for that combination. With :code:`order` = 1, it becomes the FLZ measure from Katakis et.al's original paper, with :code:`order` = 2, it becomes the FLPZ measure from Szymański et. al.'s paper. Parameters: ----------- y : output matrix or array of arrays (n_samples, n_labels) the binary-indicator label assignment per sample representation of the output space folds : List[List[int]], shape = (n_folds) list of indexes of samples assigned per fold order : int, >= 1 the order of label relationship to take into account when balancing sample distribution across labels Returns ------- score : float the number of fold-label combination pairs with missing evidence """ combinations_per_row = get_combination_wise_output_matrix(y, order) all_combinations = get_unique_combinations(combinations_per_row) return np.sum( [len(all_combinations.difference(get_unique_combinations(combinations_per_row[[fold]]))) for fold in folds]) def percentage_of_label_combinations_without_evidence_per_fold(y, folds, order): """Fold - Label / Label Pair / Label Combination (FLZ, FLPZ, FLCZ) pair count measure A general implementation of FLZ - the number of pairs of fold and label combination of a given order for which there is no positive evidence in that fold for that combination. With :code:`order` = 1, it becomes the FLZ measure from Katakis et.al's original paper, with :code:`order` = 2, it becomes the FLPZ measure from Szymański et. al.'s paper. Parameters: ----------- y : output matrix or array of arrays (n_samples, n_labels) the binary-indicator label assignment per sample representation of the output space folds : List[List[int]], shape = (n_folds) list of indexes of samples assigned per fold order : int, >= 1 the order of label relationship to take into account when balancing sample distribution across labels Returns ------- score : float the number of fold-label combination pairs with missing evidence """ combinations_per_row = get_combination_wise_output_matrix(y, order) all_combinations = get_unique_combinations(combinations_per_row) number_of_combinations = float(len(all_combinations)) return [ 1.0 - len(get_unique_combinations(combinations_per_row[[fold]])) / number_of_combinations for fold in folds ] def label_combination_distribution(y, folds, order): """Label / Label Pair / Label Combination Distribution (LD, LPD, LCZD) measure A general implementation of Label / Label Pair / Label Combination Distribution - a measure that evaluates how the proportion of positive evidence for a label / label pair / label combination to the negative evidence for a label (pair/combination) deviates from the same proportion in the entire data set, averaged over all folds and labels. With :code:`order` = 1, it becomes the LD measure from Katakis et.al's original paper, with :code:`order` = 2, it becomes the LPD measure from Szymański et. al.'s paper. Parameters: ----------- y : output matrix or array of arrays (n_samples, n_labels) the binary-indicator label assignment per sample representation of the output space folds : List[List[int]], shape = (n_folds) list of indexes of samples assigned per fold order : int, >= 1 the order of label relationship to take into account when balancing sample distribution across labels Returns ------- score : float the label / label pair / label combination distribution score """ def _get_proportion(x, y): return y / float(x - y) combinations_per_row = get_combination_wise_output_matrix(y, order) all_combinations = get_unique_combinations(combinations_per_row) number_of_samples = y.shape[0] number_of_combinations = float(len(all_combinations)) number_of_folds = float(len(folds)) external_sum = 0 for combination in all_combinations: number_of_samples_with_combination = np.sum([ 1 for combinations_in_row in combinations_per_row if combination in combinations_in_row ]) d = _get_proportion(number_of_samples, number_of_samples_with_combination) internal_sum = 0 for fold in folds: S_i_j = np.sum( [1 for combinations_in_row in combinations_per_row[fold] if combination in combinations_in_row]) fold_size = len(fold) s = _get_proportion(fold_size, S_i_j) internal_sum += np.abs(s - d) internal_sum /= number_of_folds external_sum += internal_sum return external_sum / number_of_combinations
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/model_selection/measures.py
measures.py
from yyskmultilearn.base import ProblemTransformationBase import numpy as np import scipy.sparse as sp from copy import copy class EmbeddingClassifier(ProblemTransformationBase): """Embedding-based classifier Implements a general scheme presented in LNEMLC: label network embeddings for multi-label classification. The classifier embeds the label space with the embedder, trains a set of single-variate or a multi-variate regressor for embedding unseen cases and a base classifier to predict labels based on input features and the embeddings. Parameters ---------- embedder : :class:`~sklearn.base.BaseEstimator` the class to embed the label space regressor : :class:`~sklearn.base.BaseEstimator` the base regressor to predict embeddings from input features classifier : :class:`~sklearn.base.BaseEstimator` the base classifier to predict labels from input features and embeddings regressor_per_dimension : bool whether to train one joint multi-variate regressor (False) or per dimension single-variate regressor (True) require_dense : [bool, bool], optional whether the base classifier requires dense representations for input features and classes/labels matrices in fit/predict. Attributes ---------- n_regressors_ : int number of trained regressors partition_ : List[List[int]], shape=(`model_count_`,) list of lists of label indexes, used to index the output space matrix, set in :meth:`_generate_partition` via :meth:`fit` classifiers_ : List[:class:`~sklearn.base.BaseEstimator`] of shape `model_count` list of classifiers trained per partition, set in :meth:`fit` If you use this classifier please cite the relevant embedding method paper and the label network embedding for multi-label classification paper: .. code :: bibtex @article{zhang2007ml, title={ML-KNN: A lazy learning approach to multi-label learning}, author={Zhang, Min-Ling and Zhou, Zhi-Hua}, journal={Pattern recognition}, volume={40}, number={7}, pages={2038--2048}, year={2007}, publisher={Elsevier} } Example ------- An example use case for EmbeddingClassifier: .. code-block:: python from yyskmultilearn.embedding import SKLearnEmbedder, EmbeddingClassifier from sklearn.manifold import SpectralEmbedding from sklearn.ensemble import RandomForestRegressor from yyskmultilearn.adapt import MLkNN clf = EmbeddingClassifier( SKLearnEmbedder(SpectralEmbedding(n_components = 10)), RandomForestRegressor(n_estimators=10), MLkNN(k=5) ) clf.fit(X_train, y_train) predictions = clf.predict(X_test) """ def __init__(self, embedder, regressor, classifier, regressor_per_dimension=False, require_dense=None): super(EmbeddingClassifier, self).__init__() self.embedder = embedder self.regressor = regressor self.classifier = classifier self.regressor_per_dimension = regressor_per_dimension if require_dense is None: require_dense = [True, True] self.require_dense = require_dense self.copyable_attrs = ['embedder', 'regressor', 'classifier', 'regressor_per_dimension', 'require_dense'] def fit(self, X, y): """Fits classifier to training data Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix y : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments Returns ------- self fitted instance of self """ X = self._ensure_input_format(X) y = self._ensure_input_format(y) y_embedded = self.embedder.fit_transform(X, y)[1] X_y_embedded = self._concatenate_matrices(X, y_embedded) if self.regressor_per_dimension: self.n_regressors_ = y_embedded.shape[1] self.regressors_ = [None for _ in range(self.n_regressors_)] for i in range(self.n_regressors_): self.regressors_[i] = copy(self.regressor) self.regressors_[i].fit(X, y_embedded[:, i]) else: self.n_regressors_ = 1 self.regressor.fit(X, y_embedded) self.classifier.fit(X_y_embedded, y) return self def predict(self, X): """Predict labels for X Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix Returns ------- :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments """ X = self._ensure_input_format(X) X_y_embedded = self._predict_embedding(X) return self.classifier.predict(X_y_embedded) def predict_proba(self, X): """Predict probabilities of label assignments for X Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix Returns ------- :mod:`scipy.sparse` matrix of `float in [0.0, 1.0]`, shape=(n_samples, n_labels) matrix with label assignment probabilities """ X_y_embedded = self._predict_embedding(X) return self.classifier.predict_proba(X_y_embedded) def _concatenate_matrices(self, X, y_embedded): X = self._ensure_input_format(X) y_embedded = self._ensure_input_format(y_embedded) if sp.issparse(X): X_y_embedded = sp.hstack([X, y_embedded]) else: X_y_embedded = np.hstack([X, y_embedded]) return X_y_embedded def _predict_embedding(self, X): if self.regressor_per_dimension: y_embedded = [self.regressors_[i].predict(X) for i in range(self.n_regressors_)] if sp.issparse(X): y_embedded=sp.csr_matrix(y_embedded).T else: y_embedded=np.matrix(y_embedded).T else: y_embedded = self.regressor.predict(X) return self._concatenate_matrices(X, y_embedded)
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/embedding/classifier.py
classifier.py
from sklearn.neighbors import NearestNeighbors from sklearn.base import BaseEstimator from copy import copy from ._mdsw import _MDSW import numpy as np import scipy.sparse as sp # inspired by implementation by Kuan-Hao Huang # https://github.com/ej0cl6/csmlc class CLEMS(BaseEstimator): """Embed the label space using a label network embedder from OpenNE Parameters ---------- measure: Callable a cost function executed on two label vectors dimension: int the dimension of the label embedding vectors is_score: boolean set to True if measures is a score function (higher value is better), False if loss function (lower is better) param_dict: dict or None parameters passed to the embedder, don't use the dimension and graph parameters, this class will set them at fit Example code for using this embedder looks like this: .. code-block:: python from yyskmultilearn.embedding import CLEMS, EmbeddingClassifier from sklearn.ensemble import RandomForestRegressor from yyskmultilearn.adapt import MLkNN from sklearn.metrics import accuracy_score clf = EmbeddingClassifier( CLEMS(accuracy_score, True), RandomForestRegressor(n_estimators=10), MLkNN(k=5) ) clf.fit(X_train, y_train) predictions = clf.predict(X_test) """ def __init__(self, measure, is_score=False, params=None): self.measure = measure if is_score: self.measure = lambda x, y: 1 - measure(x, y) if params is None: params = {} self.params = params def fit(self, X, y): """Fits the embedder to data Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix y : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments Returns ------- self fitted instance of self """ # get unique label combinations self.fit_transform(X, y) def fit_transform(self, X, y): """Fit the embedder and transform the output space Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix y : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments Returns ------- X, y_embedded results of the embedding, input and output space """ if sp.issparse(y): idx = np.unique(y.tolil().rows, return_index=True)[1] else: idx = np.unique(y, axis=0, return_index=True)[1] y_unique = y[idx] n_unique = y_unique.shape[0] self.knn_ = NearestNeighbors(n_neighbors=1) self.knn_.fit(y_unique) nearest_points = self.knn_.kneighbors(y)[1][:, 0] nearest_points_counts = np.unique(nearest_points, return_counts=True)[1] # calculate delta matrix delta = np.zeros((2 * n_unique, 2 * n_unique)) for i in range(n_unique): for j in range(n_unique): delta[i, n_unique + j] = np.sqrt(self.measure(y_unique[None, i], y_unique[None, j])) delta[n_unique + j, i] = delta[i, n_unique + j] # calculate MDS embedding params = copy(self.params) params['n_components'] = y.shape[1] params['n_uq'] = n_unique params['uq_weight'] = nearest_points_counts params['dissimilarity'] = "precomputed" self.embedder_ = _MDSW(**params) y_unique_embedded = self.embedder_.fit(delta).embedding_ y_unique_limited_to_before_trick = y_unique_embedded[n_unique:] knn_to_extend_embeddings_to_other_combinations = NearestNeighbors(n_neighbors=1) knn_to_extend_embeddings_to_other_combinations.fit(y_unique_limited_to_before_trick) neighboring_embeddings_indices = knn_to_extend_embeddings_to_other_combinations.kneighbors(y)[1][:, 0] return X, y_unique_embedded[neighboring_embeddings_indices]
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/embedding/clems.py
clems.py
from copy import copy from openne.gf import GraphFactorization from openne.graph import Graph from openne.grarep import GraRep from openne.hope import HOPE from openne.lap import LaplacianEigenmaps from openne.line import LINE from openne.lle import LLE import networkx as nx import numpy as np import tensorflow as tf import scipy.sparse as sp class OpenNetworkEmbedder: """Embed the label space using a label network embedder from OpenNE Implements an OpenNE based LNEMLC: label network embeddings for multi-label classification. Parameters ---------- graph_builder: a GraphBuilderBase inherited transformer the graph builder to provide the adjacency matrix and weight map for the underlying graph embedding : string, one of {'GraphFactorization', 'GraRep', 'HOPE', 'LaplacianEigenmaps', 'LINE', 'LLE'} the selected OpenNE_ embedding +----------------------+--------------------------------------------------------------------------------+ | Method name string | Description | +----------------------+--------------------------------------------------------------------------------+ | GraphFactorization_ | Graph factorization embeddings | +----------------------+--------------------------------------------------------------------------------+ | GraRep_ | Graph representations with global structural information | +----------------------+--------------------------------------------------------------------------------+ | HOPE_ | High-order Proximity Preserved Embedding | +----------------------+--------------------------------------------------------------------------------+ | LaplacianEigenmaps_ | Detecting communities from multiple async label propagation on the graph | +----------------------+--------------------------------------------------------------------------------+ | LINE_ | Large-scale information network embedding | +----------------------+--------------------------------------------------------------------------------+ | LLE_ | Locally Linear Embedding | +----------------------+--------------------------------------------------------------------------------+ .. _OpenNE: https://github.com/thunlp/OpenNE/ .. _GraphFactorization: https://github.com/thunlp/OpenNE/blob/master/src/openne/gf.py .. _GraRep: https://github.com/thunlp/OpenNE/blob/master/src/openne/grarep.py .. _HOPE: https://github.com/thunlp/OpenNE/blob/master/src/openne/hope.py .. _LaplacianEigenmaps: https://github.com/thunlp/OpenNE/blob/master/src/openne/lap.py .. _LINE: https://github.com/thunlp/OpenNE/blob/master/src/openne/line.py .. _LLE: https://github.com/thunlp/OpenNE/blob/master/src/openne/lle.py dimension: int the dimension of the label embedding vectors aggregation_function: 'add', 'multiply', 'average' or Callable the function used to aggregate label vectors for all labels assigned to each of the samples normalize_weights: boolean whether to normalize weights in the label graph by the number of samples or not param_dict parameters passed to the embedder, don't use the dimension and graph parameters, this class will set them at fit If you use this classifier please cite the relevant embedding method paper and the label network embedding for multi-label classification paper: .. code :: bibtex @article{zhang2007ml, title={ML-KNN: A lazy learning approach to multi-label learning}, author={Zhang, Min-Ling and Zhou, Zhi-Hua}, journal={Pattern recognition}, volume={40}, number={7}, pages={2038--2048}, year={2007}, publisher={Elsevier} } Example code for using this embedder looks like this: .. code-block:: python from yyskmultilearn.embedding import OpenNetworkEmbedder, EmbeddingClassifier from sklearn.ensemble import RandomForestRegressor from yyskmultilearn.adapt import MLkNN from yyskmultilearn.cluster import LabelCooccurrenceGraphBuilder graph_builder = LabelCooccurrenceGraphBuilder(weighted=True, include_self_edges=False) openne_line_params = dict(batch_size=1000, negative_ratio=5) clf = EmbeddingClassifier( OpenNetworkEmbedder(graph_builder, 'LINE', 4, 'add', True, openne_line_params), RandomForestRegressor(n_estimators=10), MLkNN(k=5) ) clf.fit(X_train, y_train) predictions = clf.predict(X_test) """ _EMBEDDINGS = { 'GraphFactorization': (GraphFactorization, 'rep_size'), 'GraRep': (GraRep, 'dim'), 'HOPE': (HOPE, 'd'), 'LaplacianEigenmaps': (LaplacianEigenmaps, 'rep_size'), 'LINE': (LINE, 'rep_size'), 'LLE': (LLE, 'd'), } _AGGREGATION_FUNCTIONS = { 'add': np.add.reduce, 'multiply': np.multiply.reduce, 'average': lambda x: np.average(x, axis=0), } def __init__(self, graph_builder, embedding, dimension, aggregation_function, normalize_weights, param_dict=None): if embedding not in self._EMBEDDINGS: raise ValueError('Embedding must be one of {}'.format(', '.join(self._EMBEDDINGS.keys()))) if aggregation_function in self._AGGREGATION_FUNCTIONS: self.aggregation_function = self._AGGREGATION_FUNCTIONS[aggregation_function] elif callable(aggregation_function): self.aggregation_function = aggregation_function else: raise ValueError('Aggregation function must be callable or one of {}'.format( ', '.join(self._AGGREGATION_FUNCTIONS.keys())) ) self.embedding = embedding self.param_dict = param_dict if param_dict is not None else {} self.dimension = dimension self.graph_builder = graph_builder self.normalize_weights = normalize_weights def fit(self, X, y): self.fit_transform(X, y) def fit_transform(self, X, y): tf.reset_default_graph() self._init_openne_graph(y) embedding_class, dimension_key = self._EMBEDDINGS[self.embedding] param_dict = copy(self.param_dict) param_dict['graph'] = self.graph_ param_dict[dimension_key] = self.dimension self.embeddings_ = embedding_class(**param_dict) return X, self._embedd_y(y) def _init_openne_graph(self, y): self.graph_ = Graph() self.graph_.G = nx.DiGraph() for (src, dst), w in self.graph_builder.transform(y).items(): self.graph_.G.add_edge(src, dst) self.graph_.G.add_edge(dst, src) if self.normalize_weights: w = float(w) / y.shape[0] self.graph_.G[src][dst]['weight'] = w self.graph_.G[dst][src]['weight'] = w self.graph_.encode_node() def _embedd_y(self, y): empty_vector = np.zeros(shape=self.dimension) if sp.issparse(y): return np.array([ self.aggregation_function([self.embeddings_.vectors[node] for node in row]) if len(row) > 0 else empty_vector for row in _iterate_over_sparse_matrix(y) ]).astype('float64') return np.array([ self.aggregation_function([self.embeddings_.vectors[node] for node, v in enumerate(row) if v > 0]) if len(row) > 0 else empty_vector for row in (y.A if isinstance(y, np.matrix) else y) ]).astype('float64') def _iterate_over_sparse_matrix(y): for r in range(y.shape[0]): yield y[r,:].indices
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/embedding/openne.py
openne.py
from __future__ import absolute_import from sklearn.base import BaseEstimator class SKLearnEmbedder(BaseEstimator): """Embed the label space using a scikit-compatible matrix-based embedder Parameters ---------- embedder : sklearn.base.BaseEstimator a clonable instance of a scikit-compatible embedder, will be automatically put under :code:`self.embedder`, see . pass_input_space : bool (default is False) whether to take :code:`X` into consideration upon clustering, use only if you know that the embedder can handle two parameters for clustering, will be automatically put under :code:`self.pass_input_space`. Example code for using this embedder looks like this: .. code-block:: python from yyskmultilearn.embedding import SKLearnEmbedder, EmbeddingClassifier from sklearn.manifold import SpectralEmbedding from sklearn.ensemble import RandomForestRegressor from yyskmultilearn.adapt import MLkNN clf = EmbeddingClassifier( SKLearnEmbedder(SpectralEmbedding(n_components = 10)), RandomForestRegressor(n_estimators=10), MLkNN(k=5) ) clf.fit(X_train, y_train) predictions = clf.predict(X_test) """ def __init__(self, embedder=None, pass_input_space=False): super(BaseEstimator, self).__init__() self.embedder = embedder self.pass_input_space = pass_input_space def fit(self, X, y): """Fits the embedder to data Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix y : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments Returns ------- self fitted instance of self """ self.embedder.fit(X, y) def fit_transform(self, X, y): """Fit the embedder and transform the output space Parameters ---------- X : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix, shape=(n_samples, n_features) input feature matrix y : `array_like`, :class:`numpy.matrix` or :mod:`scipy.sparse` matrix of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments Returns ------- X, y_embedded results of the embedding, input and output space """ if self.pass_input_space: result = self.embedder.fit_transform(X, y) else: result = self.embedder.fit_transform(y) return X, result
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/embedding/skembeddings.py
skembeddings.py
import numpy as np import warnings from sklearn.base import BaseEstimator from sklearn.metrics import euclidean_distances from sklearn.utils import check_random_state, check_array, check_symmetric from sklearn.externals.joblib import Parallel from sklearn.externals.joblib import delayed from sklearn.isotonic import IsotonicRegression def _smacof_single_w(similarities, n_uq, uq_weight, metric=True, n_components=2, init=None, max_iter=300, verbose=0, eps=1e-3, random_state=None): """ Computes multidimensional scaling using SMACOF algorithm Parameters ---------- similarities: symmetric ndarray, shape [n * n] similarities between the points metric: boolean, optional, default: True compute metric or nonmetric SMACOF algorithm n_components: int, optional, default: 2 number of dimension in which to immerse the similarities overwritten if initial array is provided. init: {None or ndarray}, optional if None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array max_iter: int, optional, default: 300 Maximum number of iterations of the SMACOF algorithm for a single run verbose: int, optional, default: 0 level of verbosity eps: float, optional, default: 1e-6 relative tolerance w.r.t stress to declare converge random_state: integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Returns ------- X: ndarray (n_samples, n_components), float coordinates of the n_samples points in a n_components-space stress_: float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points) n_iter : int Number of iterations run. """ similarities = check_symmetric(similarities, raise_exception=True) n_samples = similarities.shape[0] random_state = check_random_state(random_state) W = np.ones((n_samples, n_samples)) W[:n_uq, :n_uq] = 0.0 W[n_uq:, n_uq:] = 0.0 # W[np.arange(len(W)), np.arange(len(W))] = 0.0 if uq_weight is not None: W[:n_uq, n_uq:] *= uq_weight.reshape((uq_weight.shape[0], -1)) W[n_uq:, :n_uq] *= uq_weight.reshape((-1, uq_weight.shape[0])) V = -W V[np.arange(len(V)), np.arange(len(V))] = W.sum(axis=1) e = np.ones((n_samples, 1)) Vp = np.linalg.inv(V + np.dot(e, e.T) / n_samples) - np.dot(e, e.T) / n_samples # Vp = np.linalg.pinv(V) sim_flat = ((1 - np.tri(n_samples)) * similarities).ravel() sim_flat_w = sim_flat[sim_flat != 0] if init is None: # Randomly choose initial configuration X = random_state.rand(n_samples * n_components) X = X.reshape((n_samples, n_components)) else: # overrides the parameter p n_components = init.shape[1] if n_samples != init.shape[0]: raise ValueError("init matrix should be of shape (%d, %d)" % (n_samples, n_components)) X = init old_stress = None ir = IsotonicRegression() for it in range(max_iter): # Compute distance and monotonic regression dis = euclidean_distances(X) if metric: disparities = similarities else: dis_flat = dis.ravel() # similarities with 0 are considered as missing values dis_flat_w = dis_flat[sim_flat != 0] # Compute the disparities using a monotonic regression disparities_flat = ir.fit_transform(sim_flat_w, dis_flat_w) disparities = dis_flat.copy() disparities[sim_flat != 0] = disparities_flat disparities = disparities.reshape((n_samples, n_samples)) disparities *= np.sqrt((n_samples * (n_samples - 1) / 2) / (disparities ** 2).sum()) # Compute stress # stress = ((dis.ravel() - disparities.ravel()) ** 2).sum() / 2 _stress = (W.ravel() * ((dis.ravel() - disparities.ravel()) ** 2)).sum() / 2 # Update X using the Guttman transform # dis[dis == 0] = 1e-5 # ratio = disparities / dis # B = - ratio # B[np.arange(len(B)), np.arange(len(B))] += ratio.sum(axis=1) # X = 1. / n_samples * np.dot(B, X) # print (1. / n_samples * np.dot(B, X))[:5].T dis[dis == 0] = 1e-5 ratio = disparities / dis _B = - W * ratio _B[np.arange(len(_B)), np.arange(len(_B))] += (W * ratio).sum(axis=1) X = np.dot(Vp, np.dot(_B, X)) # print X[:5].T dis = np.sqrt((X ** 2).sum(axis=1)).sum() if verbose >= 2: print('it: %d, stress %s' % (it, stress)) if old_stress is not None: if (old_stress - _stress / dis) < eps: if verbose: print('breaking at iteration %d with stress %s' % (it, stress)) break old_stress = _stress / dis return X, _stress, it + 1 def _smacof_w(similarities, n_uq, uq_weight, metric=True, n_components=2, init=None, n_init=8, n_jobs=1, max_iter=300, verbose=0, eps=1e-3, random_state=None, return_n_iter=False): """ Computes multidimensional scaling using SMACOF (Scaling by Majorizing a Complicated Function) algorithm The SMACOF algorithm is a multidimensional scaling algorithm: it minimizes a objective function, the *stress*, using a majorization technique. The Stress Majorization, also known as the Guttman Transform, guarantees a monotone convergence of Stress, and is more powerful than traditional techniques such as gradient descent. The SMACOF algorithm for metric MDS can summarized by the following steps: 1. Set an initial start configuration, randomly or not. 2. Compute the stress 3. Compute the Guttman Transform 4. Iterate 2 and 3 until convergence. The nonmetric algorithm adds a monotonic regression steps before computing the stress. Parameters ---------- similarities : symmetric ndarray, shape (n_samples, n_samples) similarities between the points metric : boolean, optional, default: True compute metric or nonmetric SMACOF algorithm n_components : int, optional, default: 2 number of dimension in which to immerse the similarities overridden if initial array is provided. init : {None or ndarray of shape (n_samples, n_components)}, optional if None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array n_init : int, optional, default: 8 Number of time the smacof_p algorithm will be run with different initialisation. The final results will be the best output of the n_init consecutive runs in terms of stress. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. max_iter : int, optional, default: 300 Maximum number of iterations of the SMACOF algorithm for a single run verbose : int, optional, default: 0 level of verbosity eps : float, optional, default: 1e-6 relative tolerance w.r.t stress to declare converge random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. return_n_iter : bool Whether or not to return the number of iterations. Returns ------- X : ndarray (n_samples,n_components) Coordinates of the n_samples points in a n_components-space stress : float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points) n_iter : int The number of iterations corresponding to the best stress. Returned only if `return_n_iter` is set to True. Notes ----- "Modern Multidimensional Scaling - Theory and Applications" Borg, I.; Groenen P. Springer Series in Statistics (1997) "Nonmetric multidimensional scaling: a numerical method" Kruskal, J. Psychometrika, 29 (1964) "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis" Kruskal, J. Psychometrika, 29, (1964) """ similarities = check_array(similarities) random_state = check_random_state(random_state) if hasattr(init, '__array__'): init = np.asarray(init).copy() if not n_init == 1: warnings.warn( 'Explicit initial positions passed: ' 'performing only one init of the MDS instead of %d' % n_init) n_init = 1 best_pos, best_stress = None, None if n_jobs == 1: for it in range(n_init): pos, stress, n_iter_ = _smacof_single_w( similarities, n_uq, uq_weight, metric=metric, n_components=n_components, init=init, max_iter=max_iter, verbose=verbose, eps=eps, random_state=random_state) if best_stress is None or stress < best_stress: best_stress = stress best_pos = pos.copy() best_iter = n_iter_ else: seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) results = Parallel(n_jobs=n_jobs, verbose=max(verbose - 1, 0))( delayed(_smacof_single_w)( similarities, n_uq, uq_weight, metric=metric, n_components=n_components, init=init, max_iter=max_iter, verbose=verbose, eps=eps, random_state=seed) for seed in seeds) positions, stress, n_iters = zip(*results) best = np.argmin(stress) best_stress = stress[best] best_pos = positions[best] best_iter = n_iters[best] if return_n_iter: return best_pos, best_stress, best_iter else: return best_pos, best_stress class _MDSW(BaseEstimator): """Multidimensional scaling Parameters ---------- metric : boolean, optional, default: True compute metric or nonmetric SMACOF (Scaling by Majorizing a Complicated Function) algorithm n_components : int, optional, default: 2 number of dimension in which to immerse the similarities overridden if initial array is provided. n_init : int, optional, default: 4 Number of time the smacof_p algorithm will be run with different initialisation. The final results will be the best output of the n_init consecutive runs in terms of stress. max_iter : int, optional, default: 300 Maximum number of iterations of the SMACOF algorithm for a single run verbose : int, optional, default: 0 level of verbosity eps : float, optional, default: 1e-6 relative tolerance w.r.t stress to declare converge n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. dissimilarity : string Which dissimilarity measure to use. Supported are 'euclidean' and 'precomputed'. Attributes ---------- embedding_ : array-like, shape [n_components, n_samples] Stores the position of the dataset in the embedding space stress_ : float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points) References ---------- "Modern Multidimensional Scaling - Theory and Applications" Borg, I.; Groenen P. Springer Series in Statistics (1997) "Nonmetric multidimensional scaling: a numerical method" Kruskal, J. Psychometrika, 29 (1964) "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis" Kruskal, J. Psychometrika, 29, (1964) """ def __init__(self, n_components=2, n_uq=1, uq_weight=None, metric=True, n_init=4, max_iter=300, verbose=0, eps=1e-3, n_jobs=1, random_state=None, dissimilarity="euclidean"): self.n_components = n_components self.n_uq = n_uq self.uq_weight = uq_weight self.dissimilarity = dissimilarity self.metric = metric self.n_init = n_init self.max_iter = max_iter self.eps = eps self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state @property def _pairwise(self): return self.kernel == "precomputed" def fit(self, X, y=None, init=None): """ Computes the position of the points in the embedding space Parameters ---------- X : array, shape=[n_samples, n_features], or [n_samples, n_samples] \ if dissimilarity='precomputed' Input data. init : {None or ndarray, shape (n_samples,)}, optional If None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array. """ self.fit_transform(X, init=init) return self def fit_transform(self, X, y=None, init=None): """ Fit the data from X, and returns the embedded coordinates Parameters ---------- X : array, shape=[n_samples, n_features], or [n_samples, n_samples] \ if dissimilarity='precomputed' Input data. init : {None or ndarray, shape (n_samples,)}, optional If None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array. """ X = check_array(X) if X.shape[0] == X.shape[1] and self.dissimilarity != "precomputed": warnings.warn("The MDS API has changed. ``fit`` now constructs an" " dissimilarity matrix from data. To use a custom " "dissimilarity matrix, set " "``dissimilarity=precomputed``.") if self.dissimilarity == "precomputed": self.dissimilarity_matrix_ = X elif self.dissimilarity == "euclidean": self.dissimilarity_matrix_ = euclidean_distances(X) else: raise ValueError("Proximity must be 'precomputed' or 'euclidean'." " Got %s instead" % str(self.dissimilarity)) self.embedding_, self.stress_, self.n_iter_ = _smacof_w( self.dissimilarity_matrix_, self.n_uq, self.uq_weight, metric=self.metric, n_components=self.n_components, init=init, n_init=self.n_init, n_jobs=self.n_jobs, max_iter=self.max_iter, verbose=self.verbose, eps=self.eps, random_state=self.random_state, return_n_iter=True) return self.embedding_
yy-scikit-multilearn
/yy_scikit_multilearn-0.2.2-py3-none-any.whl/yyskmultilearn/embedding/_mdsw.py
_mdsw.py
import time import traceback # 本地库 from yy_spider.message_bus import common from pymongo import UpdateOne, ReplaceOne, InsertOne, UpdateMany from pymongo.errors import BulkWriteError from queue import Queue from twisted.internet import defer class DbHandler(object): def __init__(self, logger, mdb, conf, write_queues, task_queues, count_queue): self.logger = logger self.mdb = mdb self._conf = conf self.write_queues = write_queues self.task_queues = task_queues self.count_queue = count_queue def init_write_queue(self, coll_name): if not self.write_queues.get(coll_name, None): self.write_queues[coll_name] = Queue(maxsize=self._conf.WRITE_QUEUE_SIZE) def cleanup_handle_queue(self): self.logger.debug("clear ... cleanup begin") try: self._handle_write_queue() self._handle_count_queue() except BulkWriteError as bwe: self.logger.error(bwe.details) werrors = bwe.details['writeErrors'] self.logger.error(werrors) except Exception as e: self.logger.error(str(e)) traceback.print_exc() self.logger.debug("clear ... cleanup end") def _handle_write_queue(self): for coll_name, _queue in self.write_queues.items(): t0 = time.time() requests = [] qsize = _queue.qsize() while _queue.qsize() > 0: try: req = _queue.get_nowait() _queue.task_done() except Exception as e: self.logger.error(str(e)) break requests.append(req) if len(requests) > 0: self.mdb[coll_name].bulk_write(requests, ordered=False) t_diff = time.time() - t0 info = "handle_write_queue,coll:{},size:{},t_diff:{}".format(coll_name, qsize, t_diff) self.logger.info(info) def _handle_count_queue(self): if self.count_queue.qsize() > 0: t0 = time.time() requests = [] qsize = self.count_queue.qsize() while self.count_queue.qsize() > 0: try: tmp = self.count_queue.get_nowait() self.count_queue.task_done() except Exception as e: self.logger.error(str(e)) break requests.append(tmp) if len(requests) > 0: self.mdb[self._conf.STATS_COLL].bulk_write(requests, ordered=False) t_diff = time.time() - t0 info = "handle_count_queue,size:{},t_diff:{}".format(qsize, t_diff) self.logger.info(info) @defer.inlineCallbacks def put_task_to_db(self, coll_name, data): """新加任务""" t0 = time.time() self.init_write_queue(coll_name) # 获取已经存在的task有哪些? res = yield self.mdb[coll_name].find({"_id": {"$in": list(set([t['_id'] for t in data]))}}, {'_id': 1}) exists = [r['_id'] for r in res] self.save_stats_data(coll_name, common.NEW_TASK, len(data) - len(exists)) # 更新数据 for t in data: if t[b"_id"] not in exists: self.write_queues[coll_name].put(InsertOne(t)) t_diff = time.time() - t0 info = "{}, {}".format(coll_name, t_diff) self.logger.debug(info) defer.returnValue([]) @defer.inlineCallbacks def get_task_from_db(self, coll_name, count, cond={}): """获取任务""" t0 = time.time() cond['status'] = common.NOT_CRAWL requests, ts = [], [] tasks = yield self.mdb[coll_name].find(cond, limit=count) for task in tasks: requests.append( UpdateMany({'_id': task[b"_id"]}, {"$set": {"status": common.CRAWLING, "last_crawl_time": 0}}) ) task.pop('_id') ts.append(task) if len(requests) > 0: yield self.mdb[coll_name].bulk_write(requests, ordered=False) t_diff = time.time() - t0 info = "total, {}, return : {}, use time : {}".format(coll_name, len(ts), t_diff) self.logger.debug(info) return ts def change_task_status(self, coll_name, data): """更新任务状态""" t0 = time.time() self.init_write_queue(coll_name) # 统计,记录成功的任务数 success = [t['_id'] for t in data if t['status'] == common.CRAWL_SUCCESS] self.save_stats_data(coll_name, common.ONE_TASK, len(success)) # 更新数据 for t in data: self.write_queues[coll_name].put( UpdateMany({'_id': t['_id']}, {"$set": {'status': t['status']}}) ) t_diff = time.time() - t0 info = "{}, {}".format(coll_name, t_diff) self.logger.debug(info) def put_data_to_db(self, coll_name, data): """新增数据,如果已经存在则替换旧的数据""" t0 = time.time() self.init_write_queue(coll_name) # 统计,记录抓取的数据条数 self.save_stats_data(coll_name, common.ONE_DATA, len(data)) for t in data: self.write_queues[coll_name].put(ReplaceOne({'_id': t['_id']}, t, upsert=True)) t_diff = time.time() - t0 info = "{}, {}".format(coll_name, t_diff) self.logger.debug(info) def save_stats_data(self, coll_name, _type, count): """存储统计数据""" date = time.strftime("%Y-%m-%d", time.localtime()) # 单个collection u1 = UpdateOne({'date': date, 'coll_name': coll_name, "_type": _type}, {'$inc': {'total': count}}, upsert=True) # 总体 u2 = UpdateOne({'date': date, 'coll_name': "all", "_type": _type}, {'$inc': {'total': count}}, upsert=True) self.count_queue.put(u1) self.count_queue.put(u2)
yy-spider
/yy-spider-1.0.0.tar.gz/yy-spider-1.0.0/yy_spider/database/db_handler.py
db_handler.py
import struct import threading import time import msgpack from yy_spider import utils from yy_spider.database import get_mongo_db from yy_spider.database.db_handler import DbHandler from yy_spider.message_bus import common from queue import Queue from twisted.internet.protocol import Factory from twisted.internet.protocol import Protocol class ServerProtocal(Protocol): def __init__(self, users, logger, db, conf): self.users = users self.logger = logger self._conf = conf self.db = db self.name = None self.state = "FIRST" self.buffer = b'' self.data_length = 0 def connectionMade(self): info = "connection from", self.transport.getPeer() self.logger.debug(info) def connectionLost(self, reason): info = "Lost connection from", self.transport.getPeer(), reason.getErrorMessage() self.logger.warning(info) if self.name in self.users: del self.users[self.name] def dataReceived(self, data): if self.state == "FIRST": self.handle_first(data) else: self.handle_data(data) # 验证密码 def handle_first(self, data): data = data.decode('utf8') tmp = data.split('@@@***') if len(tmp) < 2: self.transport.abortConnection() else: name = tmp[0] pwd = tmp[1] if utils.md5(name + self._conf.SOCKET_KEY) == pwd: self.name = name self.users[name] = self self.state = "DATA" self.transport.write(b"OK!!") else: self.transport.abortConnection() def handle_data(self, data): self.buffer += data while True: if self.data_length <= 0: if len(self.buffer) >= 4: self.data_length = struct.unpack('>I', self.buffer[:4])[0] if self.data_length > 1024 * 1024: utils.send_email("data length:%s" % self.data_length) self.transport.abortConnection() self.buffer = self.buffer[4:] else: return if len(self.buffer) >= self.data_length: tmp_data = self.buffer[:self.data_length] self.buffer = self.buffer[self.data_length:] self.data_length = 0 self.process_data(tmp_data) return else: return def process_data(self, data): rj = msgpack.unpackb(data, encoding='utf-8') if rj['type'] == common.REQUEST_MESSAGE: coll_name = rj["coll_name"] action = rj["action"] data = rj["data"] self.handle_request(coll_name, action, data) elif rj['type'] == common.ECHO_MESSAGE: pass else: info = "not support message:%s" % rj['type'] self.logger.warning(info) self.transport.abortConnection() def send_msg(self, msg): msg = struct.pack('>I', len(msg)) + msg self.my_send(msg) def my_send(self, msg): total_sent = 0 msg_len = len(msg) while total_sent < msg_len: if len(msg) > 4: self.transport.write(msg[:4]) msg = msg[4:] else: self.transport.write(msg) total_sent = total_sent + 4 def handle_request(self, coll_name, action, data): db = self.db if action == common.PUT_TASK: d = db.put_task_to_db(coll_name, data) d.addCallback(self.handle_success) d.addErrback(self.handle_failure) elif action == common.GET_TASK: d = db.get_task_from_db(coll_name, data['count'], data.get('cond', {})) d.addCallback(self.handle_success) d.addErrback(self.handle_failure) elif action == common.PUT_DATA: db.put_data_to_db(coll_name, data) self.handle_success([]) elif action == common.CHANGE_TASK_STATUS: db.change_task_status(coll_name, data) self.handle_success([]) def handle_success(self, res): res = { 'type': common.RESPONSE_MESSAGE, 'status': common.OK, 'data': res, } _res = msgpack.packb(res) self.send_msg(_res) def handle_failure(self, err): res = { 'type': common.RESPONSE_MESSAGE, 'status': common.FAIL, 'data': [], } _res = msgpack.packb(res) self.send_msg(_res) self.logger.error(err) class ServerFactory(Factory): def __init__(self, conf, logger): self.users = {} write_queues = {} task_queues = {} count_queue = Queue(maxsize=conf.COUNT_QUEUE_SIZE) mdb = get_mongo_db(conf.MONGO_USER, conf.MONGO_PASSWORD, conf.MONGO_HOST, conf.MONGO_PORT, conf.MONGO_DB) self._logger = logger self._conf = conf self.db = DbHandler(logger, mdb, conf, write_queues, task_queues, count_queue) ts = [] # 开一个线程定时清理 t1 = threading.Thread(target=self.sched_cleanup, args=()) ts.append(t1) for t in ts: t.setDaemon(True) t.start() logger.info("__init__ finish") def buildProtocol(self, addr): return ServerProtocal(self.users, self._logger, self.db, self._conf) def sched_cleanup(self): """定时清理""" while True: time.sleep(self._conf.CLEANUP_INTERVAL) self.cleanup() def cleanup(self): self.db.cleanup_handle_queue()
yy-spider
/yy-spider-1.0.0.tar.gz/yy-spider-1.0.0/yy_spider/server/server.py
server.py
import time import traceback import requests from yy_spider.common.yy_exceptions import InvalidTaskException, Http404Exception from yy_spider.message_bus import common class BaseSpider(object): """""" def __init__(self, conf, logger, task_queue, result_queue): self._conf = conf self._logger = logger self._task_queue = task_queue self._result_queue = result_queue self._change_session_limit = conf.CHANGE_SESSION_LIMIT self._last_crawl_count = 0 self._session = None self.init_session() def run(self): """运行爬虫""" self.init_seed() while True: try: task = self._task_queue.get() self._logger.debug("begin to do task {}".format(task['_id'])) self.crawl(task) if self._conf.TASK_COLL: self._result_queue.put((common.CHANGE_TASK_STATUS, self._conf.TASK_COLL, [{'_id': task['_id'], 'status': common.CRAWL_SUCCESS}])) self._logger.debug("finish to do task {}".format(task['_id'])) except InvalidTaskException as e: if self._conf.TASK_COLL: self._result_queue.put((common.CHANGE_TASK_STATUS, self._conf.TASK_COLL, [{'_id': task['_id'], 'status': common.INVALID}])) self._logger.debug("finish to do task {}".format(task['_id'])) except Exception as e: trace = traceback.format_exc() self._logger.error("error:{},trace:{}".format(str(e), trace)) if self._conf.TASK_COLL: self._result_queue.put((common.CHANGE_TASK_STATUS, self._conf.TASK_COLL, [{'_id': task['_id'], 'status': common.CRAWL_FAIL}])) self._logger.debug("finish to do task {}".format(task['_id'])) def init_seed(self): """初始化种子""" def _update_headers(self, headers): self._conf.DEFAULT_HEADERS.update(headers) return self._conf.DEFAULT_HEADERS def crawl_url(self, url, method='get', headers={}, data={}, timeout=None): """抓取url, 尝试MAX_RETRY_TIME次""" try_times = 0 self._logger.debug("begin to crawl url :{}".format(url)) t0 = time.time() if not timeout: timeout = self._conf.DEFAULT_HTTP_TIMEOUT headers = self._update_headers(headers) while try_times < self._conf.MAX_RETRY_TIME: try_times += 1 if self._last_crawl_count >= self._change_session_limit: # 同一个session抓取一定的数量就应该reset self.init_session() try: res = getattr(self._session, method)(url, headers=headers, params=data, timeout=timeout) if res.status_code != 200: # http status if res.status_code == 404: raise Http404Exception raise Exception("status_code != 200") time.sleep(self._conf.DOWNLOAD_SLEEP_TIME) break except Exception as e: err_info = 'download html failed, url: {}, error:{}'.format(url, str(e)) self._logger.error(err_info) if str(e) in self._conf.INVALID_TASK_ERRORS: raise InvalidTaskException self._set_id_info_status(is_ok=0, err_info=err_info) self.init_session() if not res: raise Exception("res is None") if res.status_code != 200: # http status raise Exception("status_code != 200") t_diff = time.time() - t0 self._logger.debug("finish to crawl url :%s, use time:%s" % (url, t_diff)) return res def init_session(self): self._logger.warning('begin to reset session') self._last_crawl_count = 0 self._session = requests.Session() self._set_id_info() self._logger.warning('reset session success') def _set_cookie(self, cookies): """设置cookie,cookie是'k=v;k=v'格式的字符串""" if not cookies: return for s in cookies.split(';'): k = s.split('=')[0] v = s.split('=')[1] self.session.cookies.set(k, v) def _set_proxy(self, proxy): """设置代理信息""" if not proxy: return if proxy['schema'] == 'socks5': schema = "{}h".format(proxy['schema']) else: schema = proxy['schema'] username = proxy['username'] password = proxy['password'] ip = proxy['ip'] port = proxy['port'] if username and password: proxies = {'http': '{}://{}:{}@{}:{}'.format(schema, username, password, ip, port), 'https': '{}://{}:{}@{}:{}'.format(schema, username, password, ip, port), } else: proxies = {'http': '{}://{}:{}'.format(schema, ip, port), 'https': '{}://{}:{}'.format(schema, ip, port), } self.session.proxies = proxies def _set_id_info(self): """设置身份信息信息,可能包括cookie,账号,代理等""" if not self._conf.ID_INFO_SERVER: return while True: try: url = 'http://{}/id_info'.format(self._conf.ID_INFO_SERVER) res = requests.get(url, headers={'TOKEN': self._conf.ID_INFO_TOKEN}) d = res.json()['data'] self._id = d['_id'] self._set_cookie(d['cookies']) self._username = d['username'] self._password = d['password'] self._id_extra = d['extra'] self._set_proxy(d['proxy']) except Exception as e: self._logger.warning("_set_id_info:{}".format(str(e))) time.sleep(10) def _set_id_info_status(self, is_ok, err_info): """设置身份信息信息,例如账号标记状态为不健康""" if not self._conf.ID_INFO_SERVER: return while True: try: url = 'http://{}/id_info/{}'.format(self._conf.ID_INFO_SERVER, self._id) data = {'is_ok': is_ok, 'err_info': err_info} res = requests.put(url, headers={'TOKEN': self._conf.ID_INFO_TOKEN}, data=data) if res.status_code != 200: raise Exception('res.status_code!=200') except Exception as e: self._logger.warning("_set_id_info:{}".format(str(e))) time.sleep(10)
yy-spider
/yy-spider-1.0.0.tar.gz/yy-spider-1.0.0/yy_spider/client/spiders/base_spider.py
base_spider.py
import socket import struct import time import msgpack # 本地库 from yy_spider import utils from . import common from .base_bus import BaseBus class MessageBus(BaseBus): def __init__(self, conf, task_queue, result_queue, logger): self.host = conf.SOCKET_HOST self.port = conf.SOCKET_PORT self.key = conf.SOCKET_KEY self.user_name = conf.SOCKET_USERNAME self._logger = logger self._task_queue = task_queue self._result_queue = result_queue self._conf = conf self.connect() def connect(self): self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: self.sock.connect((self.host, self.port)) self.sock.settimeout(60 * 10) except Exception as e: self._logger.error(str(e)) self.reconnect(sleep_time=60) return self.auth() # server端需要认证 def auth(self): password = utils.md5(self.user_name + self.key) try: token = "%s@@@***%s" % (self.user_name, password) self.sock.sendall(token.encode('utf8')) res = self.recvall(4) if res != b'OK!!': self._logger.error("invalid password!!!") self.reconnect(sleep_time=30) return except Exception as e: self._logger.error(str(e)) self.reconnect(sleep_time=30) return def __del__(self): del self.sock def reconnect(self, sleep_time=15): self.__del__() time.sleep(sleep_time) self.connect() def send_msg(self, msg): msg1 = struct.pack('>I', len(msg)) + msg try: self.mysend(msg1) if len(msg) - 4 - 4 > 0: self._logger.info("send:%s" % (len(msg) - 4)) return True except Exception as e: self._logger.error(str(e)) self.reconnect(sleep_time=60) return False def mysend(self, msg): totalsent = 0 MSGLEN = len(msg) while totalsent < MSGLEN: if len(msg) > self._conf.SOCKET_ONE_TIME_SEND: sent = self.sock.send(msg) msg = msg[sent:] else: sent = self.sock.send(msg) if sent == 0: raise RuntimeError("socket connection broken") totalsent = totalsent + sent def recv_msg(self): # Read message length and unpack it into an integer try: raw_msglen = self.recvall(4) except socket.timeout: self._logger.error('recv msg timeout ......') return None except Exception as e: self._logger.error(str(e)) self.reconnect(sleep_time=60) return None if not raw_msglen: self._logger.warning("not raw_msglen") self.reconnect(sleep_time=60) return None msglen = struct.unpack('>I', raw_msglen)[0] # Read the message data try: return self.recvall(msglen) except Exception as e: self._logger.error(str(e)) self.reconnect(sleep_time=60) return None def recvall(self, n): # Helper function to recv n bytes or return None if EOF is hit data = b'' while len(data) < n: if n - len(data) > 4: packet = self.sock.recv(4) else: packet = self.sock.recv(n - len(data)) if not packet: return None data += packet return data def get_tasks(self): """获取任务,放入任务队列""" while True: if self._task_queue.qsize() < self._conf.TASK_QUEUE_LIMIT: tasks = self.get_task(self._conf.TASK_COLL, self._conf.THREAD_NUM) self._logger.debug('get {} tasks'.format(len(tasks))) [self._task_queue.put([t]) for t in tasks] if len(tasks) == 0: time.sleep(10) else: time.sleep(1) def save_result(self): """读取_result_queue中的数据,发给server""" while True: self._logger.debug("current result_queue qsize {}".format(self._result_queue.qsize())) if self._result_queue.qsize() > 0: res = self._result_queue.get() self.do_request(res[0], res[1], res[2]) else: time.sleep(1) def do_request(self, action, coll_name, data): """""" req = {'type': common.REQUEST_MESSAGE, 'action': action, 'coll_name': coll_name, 'data': data} _req = msgpack.packb(req) self.send_msg(_req) while True: res = self.recv_msg() if res: return msgpack.unpackb(res) def get_task(self, coll_name, count=1): data = {'count': count} return self.do_request(common.GET_TASK, coll_name, data)[b'data'] def insert_data(self, coll_name, data): return self.do_request(common.PUT_DATA, coll_name, data) def update_data(self, coll_name, data): return self.do_request(common.UPDATE_DATA, coll_name, data) def insert_data_if_not_exist(self, coll_name, data): return self.do_request(common.INSERT_DATA_IF_NOT_EXIST, coll_name, data) def change_task_status(self, coll_name, data): return self.do_request(common.CHANGE_TASK_STATUS, coll_name, data) def put_task(self, coll_name, data): return self.do_request(common.PUT_TASK, coll_name, data)
yy-spider
/yy-spider-1.0.0.tar.gz/yy-spider-1.0.0/yy_spider/message_bus/socket_bus.py
socket_bus.py
import logging import os class ColoredFormatter(logging.Formatter): def __init__(self, fmt=None): logging.Formatter.__init__(self, fmt=fmt) def format(self, record): COLORS = { 'Black': '0;30', 'Red': '0;31', 'Green': '0;32', 'Brown': '0;33', 'Blue': '0;34', 'Purple': '0;35', 'Cyan': '0;36', 'Light_Gray': '0;37', 'Dark_Gray': '1;30', 'Light_Red': '1;31', 'Light_Green': '1;32', 'Yellow': '1;33', 'Light_Blue': '1;34', 'Light_Purple': '1;35', 'Light_Cyan': '1;36', 'White': '1;37', } COLOR_SEQ = "\033[%sm" RESET_SEQ = "\033[0m" message = logging.Formatter.format(self, record) if record.levelno == logging.DEBUG: message = COLOR_SEQ % COLORS['White'] + message + RESET_SEQ elif record.levelno == logging.INFO: message = COLOR_SEQ % COLORS['Green'] + message + RESET_SEQ pass elif record.levelno == logging.WARNING: message = COLOR_SEQ % COLORS['Brown'] + message + RESET_SEQ elif record.levelno == logging.ERROR: message = COLOR_SEQ % COLORS['Red'] + message + RESET_SEQ elif record.levelno == logging.CRITICAL: message = COLOR_SEQ % COLORS['Purple'] + message + RESET_SEQ return message import logging.handlers def get_logger(log_name="", log_path='/tmp/logs', single_log_file_size=1024 * 1024 * 600, log_to_file=True, backup_count=3): """:return a logger""" if not os.path.exists(log_path): try: os.makedirs(log_path) except Exception as e: print(str(e)) logger = logging.getLogger("{}".format(log_name)) logger.setLevel(logging.DEBUG) if log_name and log_to_file: # file log_file = "{}/{}.log".format(log_path, log_name) fh = logging.handlers.RotatingFileHandler(log_file, maxBytes=single_log_file_size, backupCount=backup_count) color_formatter = ColoredFormatter(fmt='%(asctime)s %(funcName)s[line:%(lineno)d] [%(levelname)s]: %(message)s') fh.setFormatter(color_formatter) fh.setLevel(logging.DEBUG) logger.addHandler(fh) # stdout sh = logging.StreamHandler() color_formatter = ColoredFormatter(fmt='%(asctime)s %(funcName)s[line:%(lineno)d] [%(levelname)s]: %(message)s') sh.setFormatter(color_formatter) sh.setLevel(logging.DEBUG) logger.addHandler(sh) return logger
yy-spider
/yy-spider-1.0.0.tar.gz/yy-spider-1.0.0/yy_spider/utils/yy_logger.py
yy_logger.py
```bash usage: maker.py [-h] -i INPUT_PATH [-d DURATION_INTERVAL_SECOND] [-rw MAX_ROW_WIDTH] [-mp MIN_PARTITION] options: -h, --help show this help message and exit -i INPUT_PATH, --input-path INPUT_PATH The path of input files or the directory that keeps the inputs. -d DURATION_INTERVAL_SECOND, --duration-interval-second DURATION_INTERVAL_SECOND The interval that partition the video. -rw MAX_ROW_WIDTH, --max-row-width MAX_ROW_WIDTH The width of each row. -mp MIN_PARTITION, --min-partition MIN_PARTITION Miniumn partition of the grids. ```
yy-vtm
/yy_vtm-0.2.4.tar.gz/yy_vtm-0.2.4/README.md
README.md
import cv2 import numpy as np import os import sys import glob from tqdm.auto import tqdm import traceback import math import argparse def framing(input_path, duration_intv_sec=10, max_row_width=4, min_partition=8): input_location, input_filename = os.path.split(input_path) # print(input_location, input_filename) frame_folder = os.path.join(input_location, 'frame') if not os.path.exists(frame_folder): os.mkdir(frame_folder) imgs = [] cap = cv2.VideoCapture(input_path) fps = cap.get(cv2.CAP_PROP_FPS) frame_len = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) frame_shape = None duration = frame_len // fps partitions = max(int(duration / duration_intv_sec), min_partition) interval_in_frame = int(frame_len / partitions) # print(duration, duration_intv_sec) # print(frame_len, interval_in_frame) try: start = 0 while start < frame_len: end = start + interval_in_frame if start + \ interval_in_frame < frame_len else frame_len if frame_len - end < interval_in_frame / 2: end = frame_len current_frame = int((start + end) / 2) # print((start, end), end - start, current_frame) cap.set(cv2.CAP_PROP_POS_FRAMES, current_frame) cap.grab() _, frame_image = cap.retrieve() if frame_shape is None: frame_shape = frame_image.shape if frame_image is not None: imgs.append(frame_image) start = end except Exception as e: print(e) finally: cap.release() imgs = np.array(imgs) row_concats = [] s = 0 for row in range(math.ceil(imgs.shape[0] / max_row_width)): e = s + max_row_width if s + \ max_row_width < imgs.shape[0] else imgs.shape[0] curr = imgs[s:e, :, :, :] if max_row_width - (e - s) > 0: padding = np.zeros( shape=(max_row_width - (e - s), *curr.shape[1:]), dtype=np.uint8) curr = np.vstack((curr, padding)) row_concats.append(cv2.hconcat(curr)) s = e grid_img = cv2.vconcat(row_concats) frame_file_name = f"{input_filename}.jpg" cv2.imwrite(os.path.join(frame_folder, frame_file_name), grid_img) def FrameCapture(input_path, duration_intv_sec=600, max_row_width=3, min_partition=8): accepted_video_extension = ['.mp4', '.mkv', '.avi', '.ts', '.wmv', '.webm', '.mpeg', 'mpe', 'mpv', '.ogg', '.m4p', '.m4v'] all_video_extension = [*accepted_video_extension, '.rmvb'] input_path = os.path.abspath(input_path) if os.path.isfile(input_path): all_files = [input_path] else: all_files = [] for ext in all_video_extension: files = [] files.extend( glob.glob(input_path + f'/**/*{ext}', recursive=True)) files.extend( glob.glob(input_path + f'/**/*{ext.upper()}', recursive=True)) if len(files) > 0: if ext in accepted_video_extension: all_files.extend(files) else: print(f'Not supported: {files}') if len(all_files) > 0: for file in tqdm(all_files, bar_format='{l_bar}{bar:30}{r_bar}{bar:-10b}'): try: framing(file, duration_intv_sec, max_row_width, min_partition) except Exception as e: traceback.print_exc() def run(): class MyParser(argparse.ArgumentParser): def error(self, message): self.print_help() sys.exit(2) sys.path.append(os.getcwd()) parser = MyParser() parser.add_argument( "-i", "--input-path", type=str, help="The path of input files or the directory that keeps the inputs.", required=True) parser.add_argument( "-d", "--duration-interval-second", type=int, help="The interval that partition the video.", default=600) parser.add_argument( "-rw", "--max-row-width", type=int, help="The width of each row.", default=3) parser.add_argument( "-mp", "--min-partition", type=int, help="Miniumn partition of the grids.", default=8) args = parser.parse_args() input_path = args.input_path duration_intv_sec = args.duration_interval_second max_row_width = args.max_row_width min_partition = args.min_partition FrameCapture(input_path, duration_intv_sec=duration_intv_sec, max_row_width=max_row_width, min_partition=min_partition) if __name__ == '__main__': run()
yy-vtm
/yy_vtm-0.2.4.tar.gz/yy_vtm-0.2.4/yy_vtm/maker.py
maker.py
=========================== pytodos =========================== Command line lightweight todos. .. image:: https://travis-ci.org/chuanwu/PyTodos.svg?branch=master .. image:: https://badge.fury.io/py/pytodos.svg :target: https://badge.fury.io/py/pytodos Install:: pip install pytodos Usage:: add: 增加任务 list: 显示未完成的任务以及一个礼拜以内处理完的任务 listall:显示未完成的任务以及处理完的所有任务 got x: x表示未完成任务的编号,将其标记为完成 .. image:: https://ooo.0o0.ooo/2017/04/19/58f729d498fa7.png Attention:: 文件保存在/tmp/data.txt,请注意不要误删了,否则您的数据会丢失。
yy
/yy-1.0.16.tar.gz/yy-1.0.16/README.rst
README.rst
# YYeTsBot [![build docker image](https://github.com/tgbot-collection/YYeTsBot/actions/workflows/docker.yaml/badge.svg)](https://github.com/tgbot-collection/YYeTsBot/actions/workflows/docker.yaml) [![Docker Pulls](https://img.shields.io/docker/pulls/bennythink/yyetsbot)](https://hub.docker.com/r/bennythink/yyetsbot) * 人人影视bot,[戳我使用](https://t.me/yyets_bot) * 人人影视分享站,[戳我使用](https://yyets.dmesg.app/) 机器人和网站由我长期维护,如果遇到问题可以提issue。 ![](assets/index.png) 👉 前端[在这里](https://github.com/tgbot-collection/YYeTsFE) 👈 # 使用说明 直接发送想要看的剧集名称就可以了,可选分享网页或者链接(ed2k和磁力链接)。 支持字幕侠、人人影视离线资源 搜索资源时,会按照我预定的优先级(人人影视离线、字幕侠)进行搜索,当然也可以使用命令强制某个字幕组,如 `/yyets_offline 逃避可耻` **由于译名的不同,建议输入部分译名,然后从列表中进行选择。比如说想看权力的游戏第四季,那么直接搜索"权力的游戏"就可以了。** ## 命令 ``` start - 开始使用 help - 帮助 credits - 致谢 ping - 运行状态 settings - 获取公告 zimuxia_online - 字幕侠在线数据 newzmz_online - new字幕组在线数据 yyets_offline - 人人影视离线数据 ``` # 截图 ## 常规搜索 ![](assets/1.png) ## 资源分享站截图 本网站永久免费,并且没有任何限制。 ![](assets/new_resource.png) ![](assets/2.png) 支持收藏功能,会跨设备同步 ![](assets/like.png) ## 指定字幕组搜索 目前只支持YYeTsOffline、ZimuxiaOnline和NewzmzOnline ![](assets/3.png) # 如何下载磁力和电驴资源?迅雷提示资源敏感 ## 电驴资源 请下载使用 [eMule](https://www.emule-project.net/home/perl/general.cgi?l=42) ,然后添加如下两个server list * [server.met](http://www.server-met.de/) * [server list for emule](https://www.emule-security.org/serverlist/) ![](assets/emule.jpeg) 速度还可以哦 ## 磁力 使用百度网盘、115等离线,或使用utorrent等工具,记得更新下 [tracker list](https://raw.githubusercontent.com/ngosang/trackerslist/master/trackers_all.txt) 哦 # 小白使用 想要自己留一份资源,但是又不懂编程? 没关系!目前提供两种方式,请根据自己情况选择 “离线使用” 意味着可以断网使用,但是不会自动更新资源,需要手动更新数据库;“在线应用” 意味着需要有互联网才可以使用。 ## 离线 完整运行包 这个版本是新的UI,拥有全部的最新功能。运行在你本地的电脑上,不依赖外界环境。 [参考文档](https://github.com/tgbot-collection/YYeTsBot/blob/master/DEVELOPMENT.md#%E4%B8%80%E9%94%AE%E8%84%9A%E6%9C%AC) ## 离线 一键运行包 一键运行包。拥有比较新的UI,只不过只有最基础的搜索、查看资源的功能。使用方法步骤如下 1. 请到 [GitHub Release](https://github.com/tgbot-collection/YYeTsBot/releases) ,找最新的 `YYeTsBot 离线一键运行包` 2. windows:双击第一步下载的exe文件; macos/Linux,cd到你的目录, `chmod +x yyetsweb ; ./yyetsweb` 3. 程序会自动下载数据库并启动。等到出现启动提示时, 打开浏览器 http://127.0.0.1:8888 就可以看到熟悉的搜索界面啦! ## 在线 原生应用程序 使用tauri封装的网页。内容等同于 `https://yyets.dmesg.app`,只不过是原生的App。使用方法如下 1. 请到 [GitHub Release](https://github.com/tgbot-collection/YYeTsBot/releases) ,找最新的 `YYeTsBot App` 2. windows下载msi,macos下载dmg或tar.gz,Linux下载AppImage或deb(Debian based) 3. 安装后,打开App,就可以看到熟悉的搜索界面啦! # 开发 ## 网站开发 如何部署、参与开发、具体API接口,可以 [参考这个文档](DEVELOPMENT.md) ## Python Library 也可以作为Python Library去调用 `pip3 install yyets` ``` >>> from yyets import YYeTs >>> yy=YYeTs("逃避") [2021-09-21 19:22:32 __init__.py:54 I] Fetching 逃避可耻却有用...https://yyets.dmesg.app/api/resource?id=34812 [2021-09-21 19:22:33 __init__.py:54 I] Fetching 无法逃避...https://yyets.dmesg.app/api/resource?id=29540 [2021-09-21 19:22:35 __init__.py:54 I] Fetching 逃避者...https://yyets.dmesg.app/api/resource?id=37089 >>> yy.result [<yyets.Resource object at 0x10cc7b130>, <yyets.Resource object at 0x10ca0e880>, <yyets.Resource object at 0x10cc7b040>] >>> for y in yy.result: print(y) 逃避可耻却有用 - NIGERUHA HAJIDAGA YAKUNITATSU 无法逃避 - Inescapable 逃避者 - Shirkers >>> yy.result[0].cnname '逃避可耻却有用' >>> yy.result[0].list [{'season_num': '101', 'season_cn': '单剧', 'items': {'APP': [{'ite ``` # Credits * [人人影视](http://www.zmz2019.com/) * [追新番](http://www.fanxinzhui.com/) * [FIX字幕侠](https://www.zimuxia.cn/) * [new字幕组](https://newzmz.com/) # 支持我 觉得本项目对你有帮助?你可以通过以下方式表达你的感受: * 感谢字幕组 * 点一个star🌟和fork🍴 * 宣传,使用,提交问题报告 * 收藏[我的博客](https://dmesg.app/) * [Telegram Channel](https://t.me/mikuri520) * 捐助我,[给我买杯咖啡?](https://www.buymeacoffee.com/bennythink) * 捐助我,[爱发电?](https://afdian.net/@BennyThink) * 捐助我,[GitHub Sponsor](https://github.com/sponsors/BennyThink) * 捐助我,[Stripe](https://buy.stripe.com/dR67vU4p13Ox73a6oq) <img src="./assets/CNY.png" width = 30% alt="stripe" /> # 感谢 感谢所有[支持本项目](SPONSOR.md)的人! # License [MIT](LICENSE)
yyets
/yyets-1.0.1.tar.gz/yyets-1.0.1/README.md
README.md
<p align="center"> <img width="65%" src="https://user-images.githubusercontent.com/30433053/68877902-c5bd2f00-0741-11ea-8cac-af227a77bb14.png" style="max-width:65%;"> </a> </p> # Introduction yyimg is a high-level image-processing tool, written in Python and using [OpenCV](https://github.com/opencv/opencv) as backbend. This repo helps you with processing images for your deep learning projects. # Installation Commands to install from pip or download the source code from our website https://pypi.org/project/yyimg ```bashrc $ pip3 install yyimg==1.0.0rc ``` # Example Useage Take one image in Kitti dataset for example: ```python import yyimg from PIL import Image image, boxes, classes = yyimg.load_data() ``` |Items|Description| |---|--- |image|a numpy array of shape (height, width, #channels) |boxes|a numpy array of shape (N, 5), representing N 2Dboxes of `[class_index, xmin, ymin, xmax, ymax]` |classes|a list of class names ```python print(classes) ['Car', 'Truck', 'Van', 'Pedestrian'] ``` ## visualize 2D boxes ```python draw_image = yyimg.draw_2Dbox(image, boxes, class_category=classes) draw_image = cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB) # BGR -> RGB Image.fromarray(draw_image).show() ``` ![image](https://user-images.githubusercontent.com/30433053/69005372-49526800-095c-11ea-8984-4d03154eab80.jpg) ## data augmentation ### - horizontal_flip with 2D bounding boxes: ```python aug_image, boxes = yyimg.horizontal_flip(image, boxes) ``` without 2D bounding boxes: ```python aug_image = yyimg.horizontal_flip(image) ``` ![image](https://user-images.githubusercontent.com/30433053/69005858-b668fc00-0962-11ea-89a9-2e06bf14fb2d.jpg) ### - add_rain ```python aug_image = yyimg.add_rain(image) ``` ![image](https://user-images.githubusercontent.com/30433053/69005561-d0084480-095e-11ea-9b8d-c94f7694585b.jpg) ### - shift_gama ```python aug_image = yyimg.shift_gamma(image) ``` ![image](https://user-images.githubusercontent.com/30433053/69005465-c7633e80-095d-11ea-856c-9bc22b213e5c.jpg) ### - shift_brightness ```python aug_image = yyimg.shift_brightness(image) ``` ![image](https://user-images.githubusercontent.com/30433053/69005494-435d8680-095e-11ea-9922-1ee73571b645.jpg) ### - shift_color ```python aug_image = yyimg.shift_color(image) ``` ![image](https://user-images.githubusercontent.com/30433053/69005754-6f2e3b80-0961-11ea-9095-ed5c0497dcdc.jpg)
yyimg
/yyimg-1.0.2.tar.gz/yyimg-1.0.2/README.md
README.md
## Doc for Developers ```bash # clone git clone https://github.com/openatx/weditor pip install -e yyperf ``` `-e`这个选项可以将weditor目录下的代码直接关联到python的`site-packages`中。 修改完后,直接运行`python -m weditor`调试 ## 网页的基本布局 ``` ---------------------------- NAV ---------------------------- Screen | Properties | Tree ---------------------------- ``` The following code is written in pug(rename from jade) ```pug body nav #upper #left section#screen section#footer #horizon-gap #console #vertical-gap1 #middle .panel .panel-body table input(type="text") pre.editor-container .vertical-gap #right .panel .panel-heading div(class=["input-group", "input-group-sm"]) .input-group-btn input#jstree-search span.input-gropu-btn .box #jstree-hierarchy ``` See example: https://codepen.io/codeskyblue/pen/mYdjGb ## 发布到PYPI 目前先打`git tag`, push到github之后,再通过travis发布到pypi上 ## References - https://www.jstree.com/ - fontawesome icons: https://fontawesome.com/v4.7.0/icons/ - element-ui 组件:https://element.eleme.cn - bootstrap v3: https://v3.bootcss.com/ # LocalStorage store keys: - windowHierarchy: JSON.stringified data - screenshotBase64 - code
yyperf
/yyperf-0.6.9.tar.gz/yyperf-0.6.9/DEVELOP.md
DEVELOP.md
# yyperf [![image](https://img.shields.io/pypi/v/weditor.svg?style=flat-square)](https://pypi.python.org/pypi/weditor) [![image](https://img.shields.io/github/stars/alibaba/web-editor.svg?style=social&label=Star&style=flat-square)](https://github.com/alibaba/web-editor) [![image](https://travis-ci.org/alibaba/web-editor.svg?branch=master)](https://travis-ci.org/alibaba/web-editor) [中文文档](README.md) This project is subproject for smart phone test framework [openatx](https://github.com/openatx) for easily use web browser to edit UI scripts. Screenshot ![screenshot](./screenshot.jpg) ## Installation Dependencies - Python3.6+ - [uiautomator2](https://github.com/openatx/uiautomator2) - [facebook-wda](https://github.com/openatx/facebook-wda) - [weditor](https://github.com/openatx/weditor) - [tidevice](https://github.com/alibaba/taobao-iphone-device) - [py-ios-device](https://github.com/YueChen-C/py-ios-device) > Only tested in `Google Chrome`, _IE_ seems not working well. ```bash git clone https://github.com/mrx1203 pip3 install -r requirements.txt python3 setup.py install --user ``` ## Usage Create Shortcut in Desktop (Only windows) ``` yyperf --shortcut ``` By click shortcut or run in command line ``` yyperf ``` This command will start a local server with port 17310, and then open a browser tab for you to editor you code. Port 17310 is to memorize the created day -- 2017/03/10 To see more usage run `yyperf -h` ## Hotkeys(Both Mac and Win) - Right click screen: `Dump Hierarchy` ### Hotkeys(only Mac) - Command+Enter: Run the whole code - Command+Shift+Enter: Run selected code or current line if not selected ### Hotkeys(only Win) - Ctrl+Enter: Run the whole code - Ctrl+Shift+Enter: Run selected code or current line if not selected ## LICENSE [MIT](LICENSE)
yyperf
/yyperf-0.6.9.tar.gz/yyperf-0.6.9/README_EN.md
README_EN.md
# yyperf 编辑器能够提供辅助编写脚本,查看组件信息,调试代码,采集性能数据等功能。 ## 安装 依赖项目 - Python3.6+ - [uiautomator2](https://github.com/openatx/uiautomator2) - [facebook-wda](https://github.com/openatx/facebook-wda) - [weditor](https://github.com/openatx/weditor) - [tidevice](https://github.com/alibaba/taobao-iphone-device) - [py-ios-device](https://github.com/YueChen-C/py-ios-device) > Only tested in `Google Chrome`, _IE_ seems not working well. ```bash git clone https://github.com/mrx1203 pip3 install -r requirements.txt python3 setup.py install #如果提示没有权限,则加--user ``` ## 使用方法 ```bash yyperf # 启动server并打开浏览器 ``` 创建桌面快捷方式(仅限Windows) ```bash yyperf --shortcut ``` 更多选项通过 `yyperf --help` 查看 如果浏览器没有自动打开,可以手动访问 <http://localhost:17310> ## Windows下使用 windows下,如果是安装到用户目录下的site-packages,则需要将用户目录下的python3.x\Scripts目录添加到环境变量。 windows采集ios,需要安装iTunes。 ## 执行Android用例 1. 在控件查看中,选择Android,输入设备id(通过adb devices查看),点击Connect. 2. 录制用例, 3. 点击右边工具栏的三角形按钮,执行用例 ## 执行iOS用例 1. 首先安装WDA,不知道怎么安装的可以联系周云鹏。 2. 获取WDA的bundleid:`tidevice applist` 在输出结果中找到WebDriverAgentRunner-Runner 对应的bundleid 3. 启动WDA:`tidevice wdaproxy -B com.yy.perftest.WebDriverAgentRunner.xctrunner -p 6103` 。其中com.yy.perftest.WebDriverAgentRunner.xctrunner为bundleid 4. 在控件查看中,选择ios,输入http://localhost:6103 .点击Connect. 5. 录制用例 6. 点击右边工具栏的三角形按钮,执行用例 ## 性能采集 1. 选择测试设备(可以点击 更新设备列表 刷新后面接入的设备) 2. 选择测试app(如果没有获取到app列表,试试切换测试设备) 3. 点击开始采集数据,等待一段时间后(10s左右),数据实时显示,也可以通过yyperf启动窗口的日志找到数据保存路径。 ## 常用快捷键 **Mac** - Command+Enter: 运行编辑器中所有代码 - Command+SHIFT+Enter: 运行选中代码或光标所在行代码 **Windows** - CTRL+Enter: 运行编辑器中所有代码 - CTRL+SHIFT+Enter: 运行选中代码或光标所在行代码 ## LICENSE [MIT](LICENSE)
yyperf
/yyperf-0.6.9.tar.gz/yyperf-0.6.9/README.md
README.md
# WEditor Editor Driver for ATX Port: 17310 To memorize the create day: 2017/03/10 # Installation ``` pip install weditor ``` # Usage ``` python -m weditor ``` # API ### Get Version This method returns local server version ``` GET /api/v1/version ``` #### Response Status: 200 ```json { "name": "0.0.2" } ``` ## File API ### Get contents This method returns the contents of a file or directory in a repository ``` GET /api/v1/contents/:path ``` #### Response if content is a file Status: 200 OK ```json { "type": "file", "encoding": "base64", "size": 5362, "name": "README_EN.md", "path": "README_EN.md", "content": "encoded content ...", "sha": "3d21ec53a331a6f037a91c368710b99387d012c1" } ``` #### Response if content is a directory Status: 200 OK ```json [ { "type": "file", "size": 5362, "name": "README_EN.md", "path": "README_EN.md", "sha": "3d21ec53a331a6f037a91c368710b99387d012c1" }, { "type": "dir", "size": 0, "name": "foo", "path": "foo", } ] ``` ### Create a file This method creates a new file in repository ``` POST /api/v1/contents/:path ``` #### Example Input ```json { "content": "bXkgbmV3IGZpbGUgY29udGVudHM=" } ``` #### Response Status: 201 Created ```json { "content": { "type": "file", "name": "hello.txt", "path": "notes/hello.txt", "sha": "95b966ae1c166bd92f8ae7d1c313e738c731dfc3", "size": 9 } } ``` ## Device API ### Get device list This method returns devices connected to PC ``` GET /api/v1/devices ``` ### Get current using device ``` GET /api/v1/user/device ``` ### Set current using device ``` PUT /api/v1/user/device ``` #### Example Input ```json { "serial": "cff12345" } ``` ### Get device screenshot ``` GET /api/v1/devices/:serial/screenshot ``` #### Response ```json { "type": "jpeg", "data": "bXkgbmV3IGZpbGUgY29udGVudHM" } ``` #### Response if error Status: 403 ```json { "description": "Some reason" } ``` ### Get UIView Get uiview with json response ``` GET /api/v1/devices/{serial}/uiview ``` #### Response Status: 200 Every node will always has an `id` field. iOS and Android got the some response structure. ```json { "nodes": [{ "id": 0, "text": "Hello", "description": "hello", "other...": "..." }, { "id": 1, "other...": ".." }] } ``` ## Python Debug WebSocket API ### Run code This method run and get the live output ``` WebSocket CONNECT /api/v1/build ``` SEND json data ```json { "content": "print('hello')" } ``` RECV json data when running ```json { "buffer": "hello" } ``` RECV json data when finished. __duration unit is ms.__ ```json { "buffer": "end ...", "result": { "duration": 1002, "exitCode": 1 } } ``` # LICENSE [MIT](LICENSE)
yyperf
/yyperf-0.6.9.tar.gz/yyperf-0.6.9/API.md
API.md
define("ace/snippets",["require","exports","module","ace/lib/oop","ace/lib/event_emitter","ace/lib/lang","ace/range","ace/anchor","ace/keyboard/hash_handler","ace/tokenizer","ace/lib/dom","ace/editor"], function(require, exports, module) { "use strict"; var oop = require("./lib/oop"); var EventEmitter = require("./lib/event_emitter").EventEmitter; var lang = require("./lib/lang"); var Range = require("./range").Range; var Anchor = require("./anchor").Anchor; var HashHandler = require("./keyboard/hash_handler").HashHandler; var Tokenizer = require("./tokenizer").Tokenizer; var comparePoints = Range.comparePoints; var SnippetManager = function() { this.snippetMap = {}; this.snippetNameMap = {}; }; (function() { oop.implement(this, EventEmitter); this.getTokenizer = function() { function TabstopToken(str, _, stack) { str = str.substr(1); if (/^\d+$/.test(str) && !stack.inFormatString) return [{tabstopId: parseInt(str, 10)}]; return [{text: str}]; } function escape(ch) { return "(?:[^\\\\" + ch + "]|\\\\.)"; } SnippetManager.$tokenizer = new Tokenizer({ start: [ {regex: /:/, onMatch: function(val, state, stack) { if (stack.length && stack[0].expectIf) { stack[0].expectIf = false; stack[0].elseBranch = stack[0]; return [stack[0]]; } return ":"; }}, {regex: /\\./, onMatch: function(val, state, stack) { var ch = val[1]; if (ch == "}" && stack.length) { val = ch; }else if ("`$\\".indexOf(ch) != -1) { val = ch; } else if (stack.inFormatString) { if (ch == "n") val = "\n"; else if (ch == "t") val = "\n"; else if ("ulULE".indexOf(ch) != -1) { val = {changeCase: ch, local: ch > "a"}; } } return [val]; }}, {regex: /}/, onMatch: function(val, state, stack) { return [stack.length ? stack.shift() : val]; }}, {regex: /\$(?:\d+|\w+)/, onMatch: TabstopToken}, {regex: /\$\{[\dA-Z_a-z]+/, onMatch: function(str, state, stack) { var t = TabstopToken(str.substr(1), state, stack); stack.unshift(t[0]); return t; }, next: "snippetVar"}, {regex: /\n/, token: "newline", merge: false} ], snippetVar: [ {regex: "\\|" + escape("\\|") + "*\\|", onMatch: function(val, state, stack) { stack[0].choices = val.slice(1, -1).split(","); }, next: "start"}, {regex: "/(" + escape("/") + "+)/(?:(" + escape("/") + "*)/)(\\w*):?", onMatch: function(val, state, stack) { var ts = stack[0]; ts.fmtString = val; val = this.splitRegex.exec(val); ts.guard = val[1]; ts.fmt = val[2]; ts.flag = val[3]; return ""; }, next: "start"}, {regex: "`" + escape("`") + "*`", onMatch: function(val, state, stack) { stack[0].code = val.splice(1, -1); return ""; }, next: "start"}, {regex: "\\?", onMatch: function(val, state, stack) { if (stack[0]) stack[0].expectIf = true; }, next: "start"}, {regex: "([^:}\\\\]|\\\\.)*:?", token: "", next: "start"} ], formatString: [ {regex: "/(" + escape("/") + "+)/", token: "regex"}, {regex: "", onMatch: function(val, state, stack) { stack.inFormatString = true; }, next: "start"} ] }); SnippetManager.prototype.getTokenizer = function() { return SnippetManager.$tokenizer; }; return SnippetManager.$tokenizer; }; this.tokenizeTmSnippet = function(str, startState) { return this.getTokenizer().getLineTokens(str, startState).tokens.map(function(x) { return x.value || x; }); }; this.$getDefaultValue = function(editor, name) { if (/^[A-Z]\d+$/.test(name)) { var i = name.substr(1); return (this.variables[name[0] + "__"] || {})[i]; } if (/^\d+$/.test(name)) { return (this.variables.__ || {})[name]; } name = name.replace(/^TM_/, ""); if (!editor) return; var s = editor.session; switch(name) { case "CURRENT_WORD": var r = s.getWordRange(); case "SELECTION": case "SELECTED_TEXT": return s.getTextRange(r); case "CURRENT_LINE": return s.getLine(editor.getCursorPosition().row); case "PREV_LINE": // not possible in textmate return s.getLine(editor.getCursorPosition().row - 1); case "LINE_INDEX": return editor.getCursorPosition().column; case "LINE_NUMBER": return editor.getCursorPosition().row + 1; case "SOFT_TABS": return s.getUseSoftTabs() ? "YES" : "NO"; case "TAB_SIZE": return s.getTabSize(); case "FILENAME": case "FILEPATH": return ""; case "FULLNAME": return "Ace"; } }; this.variables = {}; this.getVariableValue = function(editor, varName) { if (this.variables.hasOwnProperty(varName)) return this.variables[varName](editor, varName) || ""; return this.$getDefaultValue(editor, varName) || ""; }; this.tmStrFormat = function(str, ch, editor) { var flag = ch.flag || ""; var re = ch.guard; re = new RegExp(re, flag.replace(/[^gi]/, "")); var fmtTokens = this.tokenizeTmSnippet(ch.fmt, "formatString"); var _self = this; var formatted = str.replace(re, function() { _self.variables.__ = arguments; var fmtParts = _self.resolveVariables(fmtTokens, editor); var gChangeCase = "E"; for (var i = 0; i < fmtParts.length; i++) { var ch = fmtParts[i]; if (typeof ch == "object") { fmtParts[i] = ""; if (ch.changeCase && ch.local) { var next = fmtParts[i + 1]; if (next && typeof next == "string") { if (ch.changeCase == "u") fmtParts[i] = next[0].toUpperCase(); else fmtParts[i] = next[0].toLowerCase(); fmtParts[i + 1] = next.substr(1); } } else if (ch.changeCase) { gChangeCase = ch.changeCase; } } else if (gChangeCase == "U") { fmtParts[i] = ch.toUpperCase(); } else if (gChangeCase == "L") { fmtParts[i] = ch.toLowerCase(); } } return fmtParts.join(""); }); this.variables.__ = null; return formatted; }; this.resolveVariables = function(snippet, editor) { var result = []; for (var i = 0; i < snippet.length; i++) { var ch = snippet[i]; if (typeof ch == "string") { result.push(ch); } else if (typeof ch != "object") { continue; } else if (ch.skip) { gotoNext(ch); } else if (ch.processed < i) { continue; } else if (ch.text) { var value = this.getVariableValue(editor, ch.text); if (value && ch.fmtString) value = this.tmStrFormat(value, ch); ch.processed = i; if (ch.expectIf == null) { if (value) { result.push(value); gotoNext(ch); } } else { if (value) { ch.skip = ch.elseBranch; } else gotoNext(ch); } } else if (ch.tabstopId != null) { result.push(ch); } else if (ch.changeCase != null) { result.push(ch); } } function gotoNext(ch) { var i1 = snippet.indexOf(ch, i + 1); if (i1 != -1) i = i1; } return result; }; this.insertSnippetForSelection = function(editor, snippetText) { var cursor = editor.getCursorPosition(); var line = editor.session.getLine(cursor.row); var tabString = editor.session.getTabString(); var indentString = line.match(/^\s*/)[0]; if (cursor.column < indentString.length) indentString = indentString.slice(0, cursor.column); snippetText = snippetText.replace(/\r/g, ""); var tokens = this.tokenizeTmSnippet(snippetText); tokens = this.resolveVariables(tokens, editor); tokens = tokens.map(function(x) { if (x == "\n") return x + indentString; if (typeof x == "string") return x.replace(/\t/g, tabString); return x; }); var tabstops = []; tokens.forEach(function(p, i) { if (typeof p != "object") return; var id = p.tabstopId; var ts = tabstops[id]; if (!ts) { ts = tabstops[id] = []; ts.index = id; ts.value = ""; } if (ts.indexOf(p) !== -1) return; ts.push(p); var i1 = tokens.indexOf(p, i + 1); if (i1 === -1) return; var value = tokens.slice(i + 1, i1); var isNested = value.some(function(t) {return typeof t === "object"}); if (isNested && !ts.value) { ts.value = value; } else if (value.length && (!ts.value || typeof ts.value !== "string")) { ts.value = value.join(""); } }); tabstops.forEach(function(ts) {ts.length = 0}); var expanding = {}; function copyValue(val) { var copy = []; for (var i = 0; i < val.length; i++) { var p = val[i]; if (typeof p == "object") { if (expanding[p.tabstopId]) continue; var j = val.lastIndexOf(p, i - 1); p = copy[j] || {tabstopId: p.tabstopId}; } copy[i] = p; } return copy; } for (var i = 0; i < tokens.length; i++) { var p = tokens[i]; if (typeof p != "object") continue; var id = p.tabstopId; var i1 = tokens.indexOf(p, i + 1); if (expanding[id]) { if (expanding[id] === p) expanding[id] = null; continue; } var ts = tabstops[id]; var arg = typeof ts.value == "string" ? [ts.value] : copyValue(ts.value); arg.unshift(i + 1, Math.max(0, i1 - i)); arg.push(p); expanding[id] = p; tokens.splice.apply(tokens, arg); if (ts.indexOf(p) === -1) ts.push(p); } var row = 0, column = 0; var text = ""; tokens.forEach(function(t) { if (typeof t === "string") { var lines = t.split("\n"); if (lines.length > 1){ column = lines[lines.length - 1].length; row += lines.length - 1; } else column += t.length; text += t; } else { if (!t.start) t.start = {row: row, column: column}; else t.end = {row: row, column: column}; } }); var range = editor.getSelectionRange(); var end = editor.session.replace(range, text); var tabstopManager = new TabstopManager(editor); var selectionId = editor.inVirtualSelectionMode && editor.selection.index; tabstopManager.addTabstops(tabstops, range.start, end, selectionId); }; this.insertSnippet = function(editor, snippetText) { var self = this; if (editor.inVirtualSelectionMode) return self.insertSnippetForSelection(editor, snippetText); editor.forEachSelection(function() { self.insertSnippetForSelection(editor, snippetText); }, null, {keepOrder: true}); if (editor.tabstopManager) editor.tabstopManager.tabNext(); }; this.$getScope = function(editor) { var scope = editor.session.$mode.$id || ""; scope = scope.split("/").pop(); if (scope === "html" || scope === "php") { if (scope === "php" && !editor.session.$mode.inlinePhp) scope = "html"; var c = editor.getCursorPosition(); var state = editor.session.getState(c.row); if (typeof state === "object") { state = state[0]; } if (state.substring) { if (state.substring(0, 3) == "js-") scope = "javascript"; else if (state.substring(0, 4) == "css-") scope = "css"; else if (state.substring(0, 4) == "php-") scope = "php"; } } return scope; }; this.getActiveScopes = function(editor) { var scope = this.$getScope(editor); var scopes = [scope]; var snippetMap = this.snippetMap; if (snippetMap[scope] && snippetMap[scope].includeScopes) { scopes.push.apply(scopes, snippetMap[scope].includeScopes); } scopes.push("_"); return scopes; }; this.expandWithTab = function(editor, options) { var self = this; var result = editor.forEachSelection(function() { return self.expandSnippetForSelection(editor, options); }, null, {keepOrder: true}); if (result && editor.tabstopManager) editor.tabstopManager.tabNext(); return result; }; this.expandSnippetForSelection = function(editor, options) { var cursor = editor.getCursorPosition(); var line = editor.session.getLine(cursor.row); var before = line.substring(0, cursor.column); var after = line.substr(cursor.column); var snippetMap = this.snippetMap; var snippet; this.getActiveScopes(editor).some(function(scope) { var snippets = snippetMap[scope]; if (snippets) snippet = this.findMatchingSnippet(snippets, before, after); return !!snippet; }, this); if (!snippet) return false; if (options && options.dryRun) return true; editor.session.doc.removeInLine(cursor.row, cursor.column - snippet.replaceBefore.length, cursor.column + snippet.replaceAfter.length ); this.variables.M__ = snippet.matchBefore; this.variables.T__ = snippet.matchAfter; this.insertSnippetForSelection(editor, snippet.content); this.variables.M__ = this.variables.T__ = null; return true; }; this.findMatchingSnippet = function(snippetList, before, after) { for (var i = snippetList.length; i--;) { var s = snippetList[i]; if (s.startRe && !s.startRe.test(before)) continue; if (s.endRe && !s.endRe.test(after)) continue; if (!s.startRe && !s.endRe) continue; s.matchBefore = s.startRe ? s.startRe.exec(before) : [""]; s.matchAfter = s.endRe ? s.endRe.exec(after) : [""]; s.replaceBefore = s.triggerRe ? s.triggerRe.exec(before)[0] : ""; s.replaceAfter = s.endTriggerRe ? s.endTriggerRe.exec(after)[0] : ""; return s; } }; this.snippetMap = {}; this.snippetNameMap = {}; this.register = function(snippets, scope) { var snippetMap = this.snippetMap; var snippetNameMap = this.snippetNameMap; var self = this; if (!snippets) snippets = []; function wrapRegexp(src) { if (src && !/^\^?\(.*\)\$?$|^\\b$/.test(src)) src = "(?:" + src + ")"; return src || ""; } function guardedRegexp(re, guard, opening) { re = wrapRegexp(re); guard = wrapRegexp(guard); if (opening) { re = guard + re; if (re && re[re.length - 1] != "$") re = re + "$"; } else { re = re + guard; if (re && re[0] != "^") re = "^" + re; } return new RegExp(re); } function addSnippet(s) { if (!s.scope) s.scope = scope || "_"; scope = s.scope; if (!snippetMap[scope]) { snippetMap[scope] = []; snippetNameMap[scope] = {}; } var map = snippetNameMap[scope]; if (s.name) { var old = map[s.name]; if (old) self.unregister(old); map[s.name] = s; } snippetMap[scope].push(s); if (s.tabTrigger && !s.trigger) { if (!s.guard && /^\w/.test(s.tabTrigger)) s.guard = "\\b"; s.trigger = lang.escapeRegExp(s.tabTrigger); } if (!s.trigger && !s.guard && !s.endTrigger && !s.endGuard) return; s.startRe = guardedRegexp(s.trigger, s.guard, true); s.triggerRe = new RegExp(s.trigger, "", true); s.endRe = guardedRegexp(s.endTrigger, s.endGuard, true); s.endTriggerRe = new RegExp(s.endTrigger, "", true); } if (snippets && snippets.content) addSnippet(snippets); else if (Array.isArray(snippets)) snippets.forEach(addSnippet); this._signal("registerSnippets", {scope: scope}); }; this.unregister = function(snippets, scope) { var snippetMap = this.snippetMap; var snippetNameMap = this.snippetNameMap; function removeSnippet(s) { var nameMap = snippetNameMap[s.scope||scope]; if (nameMap && nameMap[s.name]) { delete nameMap[s.name]; var map = snippetMap[s.scope||scope]; var i = map && map.indexOf(s); if (i >= 0) map.splice(i, 1); } } if (snippets.content) removeSnippet(snippets); else if (Array.isArray(snippets)) snippets.forEach(removeSnippet); }; this.parseSnippetFile = function(str) { str = str.replace(/\r/g, ""); var list = [], snippet = {}; var re = /^#.*|^({[\s\S]*})\s*$|^(\S+) (.*)$|^((?:\n*\t.*)+)/gm; var m; while (m = re.exec(str)) { if (m[1]) { try { snippet = JSON.parse(m[1]); list.push(snippet); } catch (e) {} } if (m[4]) { snippet.content = m[4].replace(/^\t/gm, ""); list.push(snippet); snippet = {}; } else { var key = m[2], val = m[3]; if (key == "regex") { var guardRe = /\/((?:[^\/\\]|\\.)*)|$/g; snippet.guard = guardRe.exec(val)[1]; snippet.trigger = guardRe.exec(val)[1]; snippet.endTrigger = guardRe.exec(val)[1]; snippet.endGuard = guardRe.exec(val)[1]; } else if (key == "snippet") { snippet.tabTrigger = val.match(/^\S*/)[0]; if (!snippet.name) snippet.name = val; } else { snippet[key] = val; } } } return list; }; this.getSnippetByName = function(name, editor) { var snippetMap = this.snippetNameMap; var snippet; this.getActiveScopes(editor).some(function(scope) { var snippets = snippetMap[scope]; if (snippets) snippet = snippets[name]; return !!snippet; }, this); return snippet; }; }).call(SnippetManager.prototype); var TabstopManager = function(editor) { if (editor.tabstopManager) return editor.tabstopManager; editor.tabstopManager = this; this.$onChange = this.onChange.bind(this); this.$onChangeSelection = lang.delayedCall(this.onChangeSelection.bind(this)).schedule; this.$onChangeSession = this.onChangeSession.bind(this); this.$onAfterExec = this.onAfterExec.bind(this); this.attach(editor); }; (function() { this.attach = function(editor) { this.index = 0; this.ranges = []; this.tabstops = []; this.$openTabstops = null; this.selectedTabstop = null; this.editor = editor; this.editor.on("change", this.$onChange); this.editor.on("changeSelection", this.$onChangeSelection); this.editor.on("changeSession", this.$onChangeSession); this.editor.commands.on("afterExec", this.$onAfterExec); this.editor.keyBinding.addKeyboardHandler(this.keyboardHandler); }; this.detach = function() { this.tabstops.forEach(this.removeTabstopMarkers, this); this.ranges = null; this.tabstops = null; this.selectedTabstop = null; this.editor.removeListener("change", this.$onChange); this.editor.removeListener("changeSelection", this.$onChangeSelection); this.editor.removeListener("changeSession", this.$onChangeSession); this.editor.commands.removeListener("afterExec", this.$onAfterExec); this.editor.keyBinding.removeKeyboardHandler(this.keyboardHandler); this.editor.tabstopManager = null; this.editor = null; }; this.onChange = function(delta) { var changeRange = delta; var isRemove = delta.action[0] == "r"; var start = delta.start; var end = delta.end; var startRow = start.row; var endRow = end.row; var lineDif = endRow - startRow; var colDiff = end.column - start.column; if (isRemove) { lineDif = -lineDif; colDiff = -colDiff; } if (!this.$inChange && isRemove) { var ts = this.selectedTabstop; var changedOutside = ts && !ts.some(function(r) { return comparePoints(r.start, start) <= 0 && comparePoints(r.end, end) >= 0; }); if (changedOutside) return this.detach(); } var ranges = this.ranges; for (var i = 0; i < ranges.length; i++) { var r = ranges[i]; if (r.end.row < start.row) continue; if (isRemove && comparePoints(start, r.start) < 0 && comparePoints(end, r.end) > 0) { this.removeRange(r); i--; continue; } if (r.start.row == startRow && r.start.column > start.column) r.start.column += colDiff; if (r.end.row == startRow && r.end.column >= start.column) r.end.column += colDiff; if (r.start.row >= startRow) r.start.row += lineDif; if (r.end.row >= startRow) r.end.row += lineDif; if (comparePoints(r.start, r.end) > 0) this.removeRange(r); } if (!ranges.length) this.detach(); }; this.updateLinkedFields = function() { var ts = this.selectedTabstop; if (!ts || !ts.hasLinkedRanges) return; this.$inChange = true; var session = this.editor.session; var text = session.getTextRange(ts.firstNonLinked); for (var i = ts.length; i--;) { var range = ts[i]; if (!range.linked) continue; var fmt = exports.snippetManager.tmStrFormat(text, range.original); session.replace(range, fmt); } this.$inChange = false; }; this.onAfterExec = function(e) { if (e.command && !e.command.readOnly) this.updateLinkedFields(); }; this.onChangeSelection = function() { if (!this.editor) return; var lead = this.editor.selection.lead; var anchor = this.editor.selection.anchor; var isEmpty = this.editor.selection.isEmpty(); for (var i = this.ranges.length; i--;) { if (this.ranges[i].linked) continue; var containsLead = this.ranges[i].contains(lead.row, lead.column); var containsAnchor = isEmpty || this.ranges[i].contains(anchor.row, anchor.column); if (containsLead && containsAnchor) return; } this.detach(); }; this.onChangeSession = function() { this.detach(); }; this.tabNext = function(dir) { var max = this.tabstops.length; var index = this.index + (dir || 1); index = Math.min(Math.max(index, 1), max); if (index == max) index = 0; this.selectTabstop(index); if (index === 0) this.detach(); }; this.selectTabstop = function(index) { this.$openTabstops = null; var ts = this.tabstops[this.index]; if (ts) this.addTabstopMarkers(ts); this.index = index; ts = this.tabstops[this.index]; if (!ts || !ts.length) return; this.selectedTabstop = ts; if (!this.editor.inVirtualSelectionMode) { var sel = this.editor.multiSelect; sel.toSingleRange(ts.firstNonLinked.clone()); for (var i = ts.length; i--;) { if (ts.hasLinkedRanges && ts[i].linked) continue; sel.addRange(ts[i].clone(), true); } if (sel.ranges[0]) sel.addRange(sel.ranges[0].clone()); } else { this.editor.selection.setRange(ts.firstNonLinked); } this.editor.keyBinding.addKeyboardHandler(this.keyboardHandler); }; this.addTabstops = function(tabstops, start, end) { if (!this.$openTabstops) this.$openTabstops = []; if (!tabstops[0]) { var p = Range.fromPoints(end, end); moveRelative(p.start, start); moveRelative(p.end, start); tabstops[0] = [p]; tabstops[0].index = 0; } var i = this.index; var arg = [i + 1, 0]; var ranges = this.ranges; tabstops.forEach(function(ts, index) { var dest = this.$openTabstops[index] || ts; for (var i = ts.length; i--;) { var p = ts[i]; var range = Range.fromPoints(p.start, p.end || p.start); movePoint(range.start, start); movePoint(range.end, start); range.original = p; range.tabstop = dest; ranges.push(range); if (dest != ts) dest.unshift(range); else dest[i] = range; if (p.fmtString) { range.linked = true; dest.hasLinkedRanges = true; } else if (!dest.firstNonLinked) dest.firstNonLinked = range; } if (!dest.firstNonLinked) dest.hasLinkedRanges = false; if (dest === ts) { arg.push(dest); this.$openTabstops[index] = dest; } this.addTabstopMarkers(dest); }, this); if (arg.length > 2) { if (this.tabstops.length) arg.push(arg.splice(2, 1)[0]); this.tabstops.splice.apply(this.tabstops, arg); } }; this.addTabstopMarkers = function(ts) { var session = this.editor.session; ts.forEach(function(range) { if (!range.markerId) range.markerId = session.addMarker(range, "ace_snippet-marker", "text"); }); }; this.removeTabstopMarkers = function(ts) { var session = this.editor.session; ts.forEach(function(range) { session.removeMarker(range.markerId); range.markerId = null; }); }; this.removeRange = function(range) { var i = range.tabstop.indexOf(range); range.tabstop.splice(i, 1); i = this.ranges.indexOf(range); this.ranges.splice(i, 1); this.editor.session.removeMarker(range.markerId); if (!range.tabstop.length) { i = this.tabstops.indexOf(range.tabstop); if (i != -1) this.tabstops.splice(i, 1); if (!this.tabstops.length) this.detach(); } }; this.keyboardHandler = new HashHandler(); this.keyboardHandler.bindKeys({ "Tab": function(ed) { if (exports.snippetManager && exports.snippetManager.expandWithTab(ed)) { return; } ed.tabstopManager.tabNext(1); }, "Shift-Tab": function(ed) { ed.tabstopManager.tabNext(-1); }, "Esc": function(ed) { ed.tabstopManager.detach(); }, "Return": function(ed) { return false; } }); }).call(TabstopManager.prototype); var changeTracker = {}; changeTracker.onChange = Anchor.prototype.onChange; changeTracker.setPosition = function(row, column) { this.pos.row = row; this.pos.column = column; }; changeTracker.update = function(pos, delta, $insertRight) { this.$insertRight = $insertRight; this.pos = pos; this.onChange(delta); }; var movePoint = function(point, diff) { if (point.row == 0) point.column += diff.column; point.row += diff.row; }; var moveRelative = function(point, start) { if (point.row == start.row) point.column -= start.column; point.row -= start.row; }; require("./lib/dom").importCssString("\ .ace_snippet-marker {\ -moz-box-sizing: border-box;\ box-sizing: border-box;\ background: rgba(194, 193, 208, 0.09);\ border: 1px dotted rgba(211, 208, 235, 0.62);\ position: absolute;\ }"); exports.snippetManager = new SnippetManager(); var Editor = require("./editor").Editor; (function() { this.insertSnippet = function(content, options) { return exports.snippetManager.insertSnippet(this, content, options); }; this.expandSnippet = function(options) { return exports.snippetManager.expandWithTab(this, options); }; }).call(Editor.prototype); }); define("ace/autocomplete/popup",["require","exports","module","ace/virtual_renderer","ace/editor","ace/range","ace/lib/event","ace/lib/lang","ace/lib/dom"], function(require, exports, module) { "use strict"; var Renderer = require("../virtual_renderer").VirtualRenderer; var Editor = require("../editor").Editor; var Range = require("../range").Range; var event = require("../lib/event"); var lang = require("../lib/lang"); var dom = require("../lib/dom"); var $singleLineEditor = function(el) { var renderer = new Renderer(el); renderer.$maxLines = 4; var editor = new Editor(renderer); editor.setHighlightActiveLine(false); editor.setShowPrintMargin(false); editor.renderer.setShowGutter(false); editor.renderer.setHighlightGutterLine(false); editor.$mouseHandler.$focusWaitTimout = 0; editor.$highlightTagPending = true; return editor; }; var AcePopup = function(parentNode) { var el = dom.createElement("div"); var popup = new $singleLineEditor(el); if (parentNode) parentNode.appendChild(el); el.style.display = "none"; popup.renderer.content.style.cursor = "default"; popup.renderer.setStyle("ace_autocomplete"); popup.setOption("displayIndentGuides", false); popup.setOption("dragDelay", 150); var noop = function(){}; popup.focus = noop; popup.$isFocused = true; popup.renderer.$cursorLayer.restartTimer = noop; popup.renderer.$cursorLayer.element.style.opacity = 0; popup.renderer.$maxLines = 8; popup.renderer.$keepTextAreaAtCursor = false; popup.setHighlightActiveLine(false); popup.session.highlight(""); popup.session.$searchHighlight.clazz = "ace_highlight-marker"; popup.on("mousedown", function(e) { var pos = e.getDocumentPosition(); popup.selection.moveToPosition(pos); selectionMarker.start.row = selectionMarker.end.row = pos.row; e.stop(); }); var lastMouseEvent; var hoverMarker = new Range(-1,0,-1,Infinity); var selectionMarker = new Range(-1,0,-1,Infinity); selectionMarker.id = popup.session.addMarker(selectionMarker, "ace_active-line", "fullLine"); popup.setSelectOnHover = function(val) { if (!val) { hoverMarker.id = popup.session.addMarker(hoverMarker, "ace_line-hover", "fullLine"); } else if (hoverMarker.id) { popup.session.removeMarker(hoverMarker.id); hoverMarker.id = null; } }; popup.setSelectOnHover(false); popup.on("mousemove", function(e) { if (!lastMouseEvent) { lastMouseEvent = e; return; } if (lastMouseEvent.x == e.x && lastMouseEvent.y == e.y) { return; } lastMouseEvent = e; lastMouseEvent.scrollTop = popup.renderer.scrollTop; var row = lastMouseEvent.getDocumentPosition().row; if (hoverMarker.start.row != row) { if (!hoverMarker.id) popup.setRow(row); setHoverMarker(row); } }); popup.renderer.on("beforeRender", function() { if (lastMouseEvent && hoverMarker.start.row != -1) { lastMouseEvent.$pos = null; var row = lastMouseEvent.getDocumentPosition().row; if (!hoverMarker.id) popup.setRow(row); setHoverMarker(row, true); } }); popup.renderer.on("afterRender", function() { var row = popup.getRow(); var t = popup.renderer.$textLayer; var selected = t.element.childNodes[row - t.config.firstRow]; if (selected == t.selectedNode) return; if (t.selectedNode) dom.removeCssClass(t.selectedNode, "ace_selected"); t.selectedNode = selected; if (selected) dom.addCssClass(selected, "ace_selected"); }); var hideHoverMarker = function() { setHoverMarker(-1) }; var setHoverMarker = function(row, suppressRedraw) { if (row !== hoverMarker.start.row) { hoverMarker.start.row = hoverMarker.end.row = row; if (!suppressRedraw) popup.session._emit("changeBackMarker"); popup._emit("changeHoverMarker"); } }; popup.getHoveredRow = function() { return hoverMarker.start.row; }; event.addListener(popup.container, "mouseout", hideHoverMarker); popup.on("hide", hideHoverMarker); popup.on("changeSelection", hideHoverMarker); popup.session.doc.getLength = function() { return popup.data.length; }; popup.session.doc.getLine = function(i) { var data = popup.data[i]; if (typeof data == "string") return data; return (data && data.value) || ""; }; var bgTokenizer = popup.session.bgTokenizer; bgTokenizer.$tokenizeRow = function(row) { var data = popup.data[row]; var tokens = []; if (!data) return tokens; if (typeof data == "string") data = {value: data}; if (!data.caption) data.caption = data.value || data.name; var last = -1; var flag, c; for (var i = 0; i < data.caption.length; i++) { c = data.caption[i]; flag = data.matchMask & (1 << i) ? 1 : 0; if (last !== flag) { tokens.push({type: data.className || "" + ( flag ? "completion-highlight" : ""), value: c}); last = flag; } else { tokens[tokens.length - 1].value += c; } } if (data.meta) { var maxW = popup.renderer.$size.scrollerWidth / popup.renderer.layerConfig.characterWidth; var metaData = data.meta; if (metaData.length + data.caption.length > maxW - 2) { metaData = metaData.substr(0, maxW - data.caption.length - 3) + "\u2026" } tokens.push({type: "rightAlignedText", value: metaData}); } return tokens; }; bgTokenizer.$updateOnChange = noop; bgTokenizer.start = noop; popup.session.$computeWidth = function() { return this.screenWidth = 0; }; popup.$blockScrolling = Infinity; popup.isOpen = false; popup.isTopdown = false; popup.data = []; popup.setData = function(list) { popup.setValue(lang.stringRepeat("\n", list.length), -1); popup.data = list || []; popup.setRow(0); }; popup.getData = function(row) { return popup.data[row]; }; popup.getRow = function() { return selectionMarker.start.row; }; popup.setRow = function(line) { line = Math.max(0, Math.min(this.data.length, line)); if (selectionMarker.start.row != line) { popup.selection.clearSelection(); selectionMarker.start.row = selectionMarker.end.row = line || 0; popup.session._emit("changeBackMarker"); popup.moveCursorTo(line || 0, 0); if (popup.isOpen) popup._signal("select"); } }; popup.on("changeSelection", function() { if (popup.isOpen) popup.setRow(popup.selection.lead.row); popup.renderer.scrollCursorIntoView(); }); popup.hide = function() { this.container.style.display = "none"; this._signal("hide"); popup.isOpen = false; }; popup.show = function(pos, lineHeight, topdownOnly) { var el = this.container; var screenHeight = window.innerHeight; var screenWidth = window.innerWidth; var renderer = this.renderer; var maxH = renderer.$maxLines * lineHeight * 1.4; var top = pos.top + this.$borderSize; var allowTopdown = top > screenHeight / 2 && !topdownOnly; if (allowTopdown && top + lineHeight + maxH > screenHeight) { renderer.$maxPixelHeight = top - 2 * this.$borderSize; el.style.top = ""; el.style.bottom = screenHeight - top + "px"; popup.isTopdown = false; } else { top += lineHeight; renderer.$maxPixelHeight = screenHeight - top - 0.2 * lineHeight; el.style.top = top + "px"; el.style.bottom = ""; popup.isTopdown = true; } el.style.display = ""; this.renderer.$textLayer.checkForSizeChanges(); var left = pos.left; if (left + el.offsetWidth > screenWidth) left = screenWidth - el.offsetWidth; el.style.left = left + "px"; this._signal("show"); lastMouseEvent = null; popup.isOpen = true; }; popup.getTextLeftOffset = function() { return this.$borderSize + this.renderer.$padding + this.$imageSize; }; popup.$imageSize = 0; popup.$borderSize = 1; return popup; }; dom.importCssString("\ .ace_editor.ace_autocomplete .ace_marker-layer .ace_active-line {\ background-color: #CAD6FA;\ z-index: 1;\ }\ .ace_editor.ace_autocomplete .ace_line-hover {\ border: 1px solid #abbffe;\ margin-top: -1px;\ background: rgba(233,233,253,0.4);\ }\ .ace_editor.ace_autocomplete .ace_line-hover {\ position: absolute;\ z-index: 2;\ }\ .ace_editor.ace_autocomplete .ace_scroller {\ background: none;\ border: none;\ box-shadow: none;\ }\ .ace_rightAlignedText {\ color: gray;\ display: inline-block;\ position: absolute;\ right: 4px;\ text-align: right;\ z-index: -1;\ }\ .ace_editor.ace_autocomplete .ace_completion-highlight{\ color: #000;\ text-shadow: 0 0 0.01em;\ }\ .ace_editor.ace_autocomplete {\ width: 280px;\ z-index: 200000;\ background: #fbfbfb;\ color: #444;\ border: 1px lightgray solid;\ position: fixed;\ box-shadow: 2px 3px 5px rgba(0,0,0,.2);\ line-height: 1.4;\ }"); exports.AcePopup = AcePopup; }); define("ace/autocomplete/util",["require","exports","module"], function(require, exports, module) { "use strict"; exports.parForEach = function(array, fn, callback) { var completed = 0; var arLength = array.length; if (arLength === 0) callback(); for (var i = 0; i < arLength; i++) { fn(array[i], function(result, err) { completed++; if (completed === arLength) callback(result, err); }); } }; var ID_REGEX = /[a-zA-Z_0-9\$\-\u00A2-\uFFFF]/; exports.retrievePrecedingIdentifier = function(text, pos, regex) { regex = regex || ID_REGEX; var buf = []; for (var i = pos-1; i >= 0; i--) { if (regex.test(text[i])) buf.push(text[i]); else break; } return buf.reverse().join(""); }; exports.retrieveFollowingIdentifier = function(text, pos, regex) { regex = regex || ID_REGEX; var buf = []; for (var i = pos; i < text.length; i++) { if (regex.test(text[i])) buf.push(text[i]); else break; } return buf; }; exports.getCompletionPrefix = function (editor) { var pos = editor.getCursorPosition(); var line = editor.session.getLine(pos.row); var prefix; editor.completers.forEach(function(completer) { if (completer.identifierRegexps) { completer.identifierRegexps.forEach(function(identifierRegex) { if (!prefix && identifierRegex) prefix = this.retrievePrecedingIdentifier(line, pos.column, identifierRegex); }.bind(this)); } }.bind(this)); return prefix || this.retrievePrecedingIdentifier(line, pos.column); }; }); define("ace/autocomplete",["require","exports","module","ace/keyboard/hash_handler","ace/autocomplete/popup","ace/autocomplete/util","ace/lib/event","ace/lib/lang","ace/lib/dom","ace/snippets"], function(require, exports, module) { "use strict"; var HashHandler = require("./keyboard/hash_handler").HashHandler; var AcePopup = require("./autocomplete/popup").AcePopup; var util = require("./autocomplete/util"); var event = require("./lib/event"); var lang = require("./lib/lang"); var dom = require("./lib/dom"); var snippetManager = require("./snippets").snippetManager; var Autocomplete = function() { this.autoInsert = false; this.autoSelect = true; this.exactMatch = false; this.gatherCompletionsId = 0; this.keyboardHandler = new HashHandler(); this.keyboardHandler.bindKeys(this.commands); this.blurListener = this.blurListener.bind(this); this.changeListener = this.changeListener.bind(this); this.mousedownListener = this.mousedownListener.bind(this); this.mousewheelListener = this.mousewheelListener.bind(this); this.changeTimer = lang.delayedCall(function() { this.updateCompletions(true); }.bind(this)); this.tooltipTimer = lang.delayedCall(this.updateDocTooltip.bind(this), 50); }; (function() { this.$init = function() { this.popup = new AcePopup(document.body || document.documentElement); this.popup.on("click", function(e) { this.insertMatch(); e.stop(); }.bind(this)); this.popup.focus = this.editor.focus.bind(this.editor); this.popup.on("show", this.tooltipTimer.bind(null, null)); this.popup.on("select", this.tooltipTimer.bind(null, null)); this.popup.on("changeHoverMarker", this.tooltipTimer.bind(null, null)); return this.popup; }; this.getPopup = function() { return this.popup || this.$init(); }; this.openPopup = function(editor, prefix, keepPopupPosition) { if (!this.popup) this.$init(); this.popup.setData(this.completions.filtered); editor.keyBinding.addKeyboardHandler(this.keyboardHandler); var renderer = editor.renderer; this.popup.setRow(this.autoSelect ? 0 : -1); if (!keepPopupPosition) { this.popup.setTheme(editor.getTheme()); this.popup.setFontSize(editor.getFontSize()); var lineHeight = renderer.layerConfig.lineHeight; var pos = renderer.$cursorLayer.getPixelPosition(this.base, true); pos.left -= this.popup.getTextLeftOffset(); var rect = editor.container.getBoundingClientRect(); pos.top += rect.top - renderer.layerConfig.offset; pos.left += rect.left - editor.renderer.scrollLeft; pos.left += renderer.gutterWidth; this.popup.show(pos, lineHeight); } else if (keepPopupPosition && !prefix) { this.detach(); } }; this.detach = function() { this.editor.keyBinding.removeKeyboardHandler(this.keyboardHandler); this.editor.off("changeSelection", this.changeListener); this.editor.off("blur", this.blurListener); this.editor.off("mousedown", this.mousedownListener); this.editor.off("mousewheel", this.mousewheelListener); this.changeTimer.cancel(); this.hideDocTooltip(); this.gatherCompletionsId += 1; if (this.popup && this.popup.isOpen) this.popup.hide(); if (this.base) this.base.detach(); this.activated = false; this.completions = this.base = null; }; this.changeListener = function(e) { var cursor = this.editor.selection.lead; if (cursor.row != this.base.row || cursor.column < this.base.column) { this.detach(); } if (this.activated) this.changeTimer.schedule(); else this.detach(); }; this.blurListener = function(e) { var el = document.activeElement; var text = this.editor.textInput.getElement(); var fromTooltip = e.relatedTarget && e.relatedTarget == this.tooltipNode; var container = this.popup && this.popup.container; if (el != text && el.parentNode != container && !fromTooltip && el != this.tooltipNode && e.relatedTarget != text ) { this.detach(); } }; this.mousedownListener = function(e) { this.detach(); }; this.mousewheelListener = function(e) { this.detach(); }; this.goTo = function(where) { var row = this.popup.getRow(); var max = this.popup.session.getLength() - 1; switch(where) { case "up": row = row <= 0 ? max : row - 1; break; case "down": row = row >= max ? -1 : row + 1; break; case "start": row = 0; break; case "end": row = max; break; } this.popup.setRow(row); }; this.insertMatch = function(data, options) { if (!data) data = this.popup.getData(this.popup.getRow()); if (!data) return false; if (data.completer && data.completer.insertMatch) { data.completer.insertMatch(this.editor, data); } else { if (this.completions.filterText) { var ranges = this.editor.selection.getAllRanges(); for (var i = 0, range; range = ranges[i]; i++) { range.start.column -= this.completions.filterText.length; this.editor.session.remove(range); } } if (data.snippet) snippetManager.insertSnippet(this.editor, data.snippet); else this.editor.execCommand("insertstring", data.value || data); } this.detach(); }; this.commands = { "Up": function(editor) { editor.completer.goTo("up"); }, "Down": function(editor) { editor.completer.goTo("down"); }, "Ctrl-Up|Ctrl-Home": function(editor) { editor.completer.goTo("start"); }, "Ctrl-Down|Ctrl-End": function(editor) { editor.completer.goTo("end"); }, "Esc": function(editor) { editor.completer.detach(); }, "Return": function(editor) { return editor.completer.insertMatch(); }, "Shift-Return": function(editor) { editor.completer.insertMatch(null, {deleteSuffix: true}); }, "Tab": function(editor) { var result = editor.completer.insertMatch(); if (!result && !editor.tabstopManager) editor.completer.goTo("down"); else return result; }, "PageUp": function(editor) { editor.completer.popup.gotoPageUp(); }, "PageDown": function(editor) { editor.completer.popup.gotoPageDown(); } }; this.gatherCompletions = function(editor, callback) { var session = editor.getSession(); var pos = editor.getCursorPosition(); var line = session.getLine(pos.row); var prefix = util.getCompletionPrefix(editor); this.base = session.doc.createAnchor(pos.row, pos.column - prefix.length); this.base.$insertRight = true; var matches = []; var total = editor.completers.length; editor.completers.forEach(function(completer, i) { completer.getCompletions(editor, session, pos, prefix, function(err, results) { if (!err && results) matches = matches.concat(results); var pos = editor.getCursorPosition(); var line = session.getLine(pos.row); callback(null, { prefix: prefix, matches: matches, finished: (--total === 0) }); }); }); return true; }; this.showPopup = function(editor) { if (this.editor) this.detach(); this.activated = true; this.editor = editor; if (editor.completer != this) { if (editor.completer) editor.completer.detach(); editor.completer = this; } editor.on("changeSelection", this.changeListener); editor.on("blur", this.blurListener); editor.on("mousedown", this.mousedownListener); editor.on("mousewheel", this.mousewheelListener); this.updateCompletions(); }; this.updateCompletions = function(keepPopupPosition) { if (keepPopupPosition && this.base && this.completions) { var pos = this.editor.getCursorPosition(); var prefix = this.editor.session.getTextRange({start: this.base, end: pos}); if (prefix == this.completions.filterText) return; this.completions.setFilter(prefix); if (!this.completions.filtered.length) return this.detach(); if (this.completions.filtered.length == 1 && this.completions.filtered[0].value == prefix && !this.completions.filtered[0].snippet) return this.detach(); this.openPopup(this.editor, prefix, keepPopupPosition); return; } var _id = this.gatherCompletionsId; this.gatherCompletions(this.editor, function(err, results) { var detachIfFinished = function() { if (!results.finished) return; return this.detach(); }.bind(this); var prefix = results.prefix; var matches = results && results.matches; if (!matches || !matches.length) return detachIfFinished(); if (prefix.indexOf(results.prefix) !== 0 || _id != this.gatherCompletionsId) return; this.completions = new FilteredList(matches); if (this.exactMatch) this.completions.exactMatch = true; this.completions.setFilter(prefix); var filtered = this.completions.filtered; if (!filtered.length) return detachIfFinished(); if (filtered.length == 1 && filtered[0].value == prefix && !filtered[0].snippet) return detachIfFinished(); if (this.autoInsert && filtered.length == 1 && results.finished) return this.insertMatch(filtered[0]); this.openPopup(this.editor, prefix, keepPopupPosition); }.bind(this)); }; this.cancelContextMenu = function() { this.editor.$mouseHandler.cancelContextMenu(); }; this.updateDocTooltip = function() { var popup = this.popup; var all = popup.data; var selected = all && (all[popup.getHoveredRow()] || all[popup.getRow()]); var doc = null; if (!selected || !this.editor || !this.popup.isOpen) return this.hideDocTooltip(); this.editor.completers.some(function(completer) { if (completer.getDocTooltip) doc = completer.getDocTooltip(selected); return doc; }); if (!doc) doc = selected; if (typeof doc == "string") doc = {docText: doc}; if (!doc || !(doc.docHTML || doc.docText)) return this.hideDocTooltip(); this.showDocTooltip(doc); }; this.showDocTooltip = function(item) { if (!this.tooltipNode) { this.tooltipNode = dom.createElement("div"); this.tooltipNode.className = "ace_tooltip ace_doc-tooltip"; this.tooltipNode.style.margin = 0; this.tooltipNode.style.pointerEvents = "auto"; this.tooltipNode.tabIndex = -1; this.tooltipNode.onblur = this.blurListener.bind(this); } var tooltipNode = this.tooltipNode; if (item.docHTML) { tooltipNode.innerHTML = item.docHTML; } else if (item.docText) { tooltipNode.textContent = item.docText; } if (!tooltipNode.parentNode) document.body.appendChild(tooltipNode); var popup = this.popup; var rect = popup.container.getBoundingClientRect(); tooltipNode.style.top = popup.container.style.top; tooltipNode.style.bottom = popup.container.style.bottom; if (window.innerWidth - rect.right < 320) { tooltipNode.style.right = window.innerWidth - rect.left + "px"; tooltipNode.style.left = ""; } else { tooltipNode.style.left = (rect.right + 1) + "px"; tooltipNode.style.right = ""; } tooltipNode.style.display = "block"; }; this.hideDocTooltip = function() { this.tooltipTimer.cancel(); if (!this.tooltipNode) return; var el = this.tooltipNode; if (!this.editor.isFocused() && document.activeElement == el) this.editor.focus(); this.tooltipNode = null; if (el.parentNode) el.parentNode.removeChild(el); }; }).call(Autocomplete.prototype); Autocomplete.startCommand = { name: "startAutocomplete", exec: function(editor) { if (!editor.completer) editor.completer = new Autocomplete(); editor.completer.autoInsert = false; editor.completer.autoSelect = true; editor.completer.showPopup(editor); editor.completer.cancelContextMenu(); }, bindKey: "Ctrl-Space|Ctrl-Shift-Space|Alt-Space" }; var FilteredList = function(array, filterText) { this.all = array; this.filtered = array; this.filterText = filterText || ""; this.exactMatch = false; }; (function(){ this.setFilter = function(str) { if (str.length > this.filterText && str.lastIndexOf(this.filterText, 0) === 0) var matches = this.filtered; else var matches = this.all; this.filterText = str; matches = this.filterCompletions(matches, this.filterText); matches = matches.sort(function(a, b) { return b.exactMatch - a.exactMatch || b.score - a.score; }); var prev = null; matches = matches.filter(function(item){ var caption = item.snippet || item.caption || item.value; if (caption === prev) return false; prev = caption; return true; }); this.filtered = matches; }; this.filterCompletions = function(items, needle) { var results = []; var upper = needle.toUpperCase(); var lower = needle.toLowerCase(); loop: for (var i = 0, item; item = items[i]; i++) { var caption = item.value || item.caption || item.snippet; if (!caption) continue; var lastIndex = -1; var matchMask = 0; var penalty = 0; var index, distance; if (this.exactMatch) { if (needle !== caption.substr(0, needle.length)) continue loop; }else{ for (var j = 0; j < needle.length; j++) { var i1 = caption.indexOf(lower[j], lastIndex + 1); var i2 = caption.indexOf(upper[j], lastIndex + 1); index = (i1 >= 0) ? ((i2 < 0 || i1 < i2) ? i1 : i2) : i2; if (index < 0) continue loop; distance = index - lastIndex - 1; if (distance > 0) { if (lastIndex === -1) penalty += 10; penalty += distance; } matchMask = matchMask | (1 << index); lastIndex = index; } } item.matchMask = matchMask; item.exactMatch = penalty ? 0 : 1; item.score = (item.score || 0) - penalty; results.push(item); } return results; }; }).call(FilteredList.prototype); exports.Autocomplete = Autocomplete; exports.FilteredList = FilteredList; }); define("ace/autocomplete/text_completer",["require","exports","module","ace/range"], function(require, exports, module) { var Range = require("../range").Range; var splitRegex = /[^a-zA-Z_0-9\$\-\u00C0-\u1FFF\u2C00-\uD7FF\w]+/; function getWordIndex(doc, pos) { var textBefore = doc.getTextRange(Range.fromPoints({row: 0, column:0}, pos)); return textBefore.split(splitRegex).length - 1; } function wordDistance(doc, pos) { var prefixPos = getWordIndex(doc, pos); var words = doc.getValue().split(splitRegex); var wordScores = Object.create(null); var currentWord = words[prefixPos]; words.forEach(function(word, idx) { if (!word || word === currentWord) return; var distance = Math.abs(prefixPos - idx); var score = words.length - distance; if (wordScores[word]) { wordScores[word] = Math.max(score, wordScores[word]); } else { wordScores[word] = score; } }); return wordScores; } exports.getCompletions = function(editor, session, pos, prefix, callback) { var wordScore = wordDistance(session, pos, prefix); var wordList = Object.keys(wordScore); callback(null, wordList.map(function(word) { return { caption: word, value: word, score: wordScore[word], meta: "local" }; })); }; }); define("ace/ext/language_tools",["require","exports","module","ace/snippets","ace/autocomplete","ace/config","ace/lib/lang","ace/autocomplete/util","ace/autocomplete/text_completer","ace/editor","ace/config"], function(require, exports, module) { "use strict"; var snippetManager = require("../snippets").snippetManager; var Autocomplete = require("../autocomplete").Autocomplete; var config = require("../config"); var lang = require("../lib/lang"); var util = require("../autocomplete/util"); var textCompleter = require("../autocomplete/text_completer"); var keyWordCompleter = { getCompletions: function(editor, session, pos, prefix, callback) { if (session.$mode.completer) { return session.$mode.completer.getCompletions(editor, session, pos, prefix, callback); } var state = editor.session.getState(pos.row); var completions = session.$mode.getCompletions(state, session, pos, prefix); callback(null, completions); } }; var snippetCompleter = { getCompletions: function(editor, session, pos, prefix, callback) { var snippetMap = snippetManager.snippetMap; var completions = []; snippetManager.getActiveScopes(editor).forEach(function(scope) { var snippets = snippetMap[scope] || []; for (var i = snippets.length; i--;) { var s = snippets[i]; var caption = s.name || s.tabTrigger; if (!caption) continue; completions.push({ caption: caption, snippet: s.content, meta: s.tabTrigger && !s.name ? s.tabTrigger + "\u21E5 " : "snippet", type: "snippet" }); } }, this); callback(null, completions); }, getDocTooltip: function(item) { if (item.type == "snippet" && !item.docHTML) { item.docHTML = [ "<b>", lang.escapeHTML(item.caption), "</b>", "<hr></hr>", lang.escapeHTML(item.snippet) ].join(""); } } }; var completers = [snippetCompleter, textCompleter, keyWordCompleter]; exports.setCompleters = function(val) { completers.length = 0; if (val) completers.push.apply(completers, val); }; exports.addCompleter = function(completer) { completers.push(completer); }; exports.textCompleter = textCompleter; exports.keyWordCompleter = keyWordCompleter; exports.snippetCompleter = snippetCompleter; var expandSnippet = { name: "expandSnippet", exec: function(editor) { return snippetManager.expandWithTab(editor); }, bindKey: "Tab" }; var onChangeMode = function(e, editor) { loadSnippetsForMode(editor.session.$mode); }; var loadSnippetsForMode = function(mode) { var id = mode.$id; if (!snippetManager.files) snippetManager.files = {}; loadSnippetFile(id); if (mode.modes) mode.modes.forEach(loadSnippetsForMode); }; var loadSnippetFile = function(id) { if (!id || snippetManager.files[id]) return; var snippetFilePath = id.replace("mode", "snippets"); snippetManager.files[id] = {}; config.loadModule(snippetFilePath, function(m) { if (m) { snippetManager.files[id] = m; if (!m.snippets && m.snippetText) m.snippets = snippetManager.parseSnippetFile(m.snippetText); snippetManager.register(m.snippets || [], m.scope); if (m.includeScopes) { snippetManager.snippetMap[m.scope].includeScopes = m.includeScopes; m.includeScopes.forEach(function(x) { loadSnippetFile("ace/mode/" + x); }); } } }); }; var doLiveAutocomplete = function(e) { var editor = e.editor; var hasCompleter = editor.completer && editor.completer.activated; if (e.command.name === "backspace") { if (hasCompleter && !util.getCompletionPrefix(editor)) editor.completer.detach(); } else if (e.command.name === "insertstring") { var prefix = util.getCompletionPrefix(editor); if (prefix && !hasCompleter) { if (!editor.completer) { editor.completer = new Autocomplete(); } editor.completer.autoInsert = false; editor.completer.showPopup(editor); } } }; var Editor = require("../editor").Editor; require("../config").defineOptions(Editor.prototype, "editor", { enableBasicAutocompletion: { set: function(val) { if (val) { if (!this.completers) this.completers = Array.isArray(val)? val: completers; this.commands.addCommand(Autocomplete.startCommand); } else { this.commands.removeCommand(Autocomplete.startCommand); } }, value: false }, enableLiveAutocompletion: { set: function(val) { if (val) { if (!this.completers) this.completers = Array.isArray(val)? val: completers; this.commands.on('afterExec', doLiveAutocomplete); } else { this.commands.removeListener('afterExec', doLiveAutocomplete); } }, value: false }, enableSnippets: { set: function(val) { if (val) { this.commands.addCommand(expandSnippet); this.on("changeMode", onChangeMode); onChangeMode(null, this); } else { this.commands.removeCommand(expandSnippet); this.off("changeMode", onChangeMode); } }, value: false } }); }); (function() { window.require(["ace/ext/language_tools"], function() {}); })();
yyperf
/yyperf-0.6.9.tar.gz/yyperf-0.6.9/samples/ace/ext-language_tools.js
ext-language_tools.js
define("ace/theme/monokai",["require","exports","module","ace/lib/dom"], function(require, exports, module) { exports.isDark = true; exports.cssClass = "ace-monokai"; exports.cssText = ".ace-monokai .ace_gutter {\ background: #2F3129;\ color: #8F908A\ }\ .ace-monokai .ace_print-margin {\ width: 1px;\ background: #555651\ }\ .ace-monokai {\ background-color: #272822;\ color: #F8F8F2\ }\ .ace-monokai .ace_cursor {\ color: #F8F8F0\ }\ .ace-monokai .ace_marker-layer .ace_selection {\ background: #49483E\ }\ .ace-monokai.ace_multiselect .ace_selection.ace_start {\ box-shadow: 0 0 3px 0px #272822;\ }\ .ace-monokai .ace_marker-layer .ace_step {\ background: rgb(102, 82, 0)\ }\ .ace-monokai .ace_marker-layer .ace_bracket {\ margin: -1px 0 0 -1px;\ border: 1px solid #49483E\ }\ .ace-monokai .ace_marker-layer .ace_active-line {\ background: #202020\ }\ .ace-monokai .ace_gutter-active-line {\ background-color: #272727\ }\ .ace-monokai .ace_marker-layer .ace_selected-word {\ border: 1px solid #49483E\ }\ .ace-monokai .ace_invisible {\ color: #52524d\ }\ .ace-monokai .ace_entity.ace_name.ace_tag,\ .ace-monokai .ace_keyword,\ .ace-monokai .ace_meta.ace_tag,\ .ace-monokai .ace_storage {\ color: #F92672\ }\ .ace-monokai .ace_punctuation,\ .ace-monokai .ace_punctuation.ace_tag {\ color: #fff\ }\ .ace-monokai .ace_constant.ace_character,\ .ace-monokai .ace_constant.ace_language,\ .ace-monokai .ace_constant.ace_numeric,\ .ace-monokai .ace_constant.ace_other {\ color: #AE81FF\ }\ .ace-monokai .ace_invalid {\ color: #F8F8F0;\ background-color: #F92672\ }\ .ace-monokai .ace_invalid.ace_deprecated {\ color: #F8F8F0;\ background-color: #AE81FF\ }\ .ace-monokai .ace_support.ace_constant,\ .ace-monokai .ace_support.ace_function {\ color: #66D9EF\ }\ .ace-monokai .ace_fold {\ background-color: #A6E22E;\ border-color: #F8F8F2\ }\ .ace-monokai .ace_storage.ace_type,\ .ace-monokai .ace_support.ace_class,\ .ace-monokai .ace_support.ace_type {\ font-style: italic;\ color: #66D9EF\ }\ .ace-monokai .ace_entity.ace_name.ace_function,\ .ace-monokai .ace_entity.ace_other,\ .ace-monokai .ace_entity.ace_other.ace_attribute-name,\ .ace-monokai .ace_variable {\ color: #A6E22E\ }\ .ace-monokai .ace_variable.ace_parameter {\ font-style: italic;\ color: #FD971F\ }\ .ace-monokai .ace_string {\ color: #E6DB74\ }\ .ace-monokai .ace_comment {\ color: #75715E\ }\ .ace-monokai .ace_indent-guide {\ background: url() right repeat-y\ }"; var dom = require("../lib/dom"); dom.importCssString(exports.cssText, exports.cssClass); });
yyperf
/yyperf-0.6.9.tar.gz/yyperf-0.6.9/samples/ace/theme-monokai.js
theme-monokai.js
define("ace/mode/python_highlight_rules",["require","exports","module","ace/lib/oop","ace/mode/text_highlight_rules"], function(require, exports, module) { "use strict"; var oop = require("../lib/oop"); var TextHighlightRules = require("./text_highlight_rules").TextHighlightRules; var PythonHighlightRules = function() { var keywords = ( "and|as|assert|break|class|continue|def|del|elif|else|except|exec|" + "finally|for|from|global|if|import|in|is|lambda|not|or|pass|print|" + "raise|return|try|while|with|yield" ); var builtinConstants = ( "True|False|None|NotImplemented|Ellipsis|__debug__" ); var builtinFunctions = ( "abs|divmod|input|open|staticmethod|all|enumerate|int|ord|str|any|" + "eval|isinstance|pow|sum|basestring|execfile|issubclass|print|super|" + "binfile|iter|property|tuple|bool|filter|len|range|type|bytearray|" + "float|list|raw_input|unichr|callable|format|locals|reduce|unicode|" + "chr|frozenset|long|reload|vars|classmethod|getattr|map|repr|xrange|" + "cmp|globals|max|reversed|zip|compile|hasattr|memoryview|round|" + "__import__|complex|hash|min|set|apply|delattr|help|next|setattr|" + "buffer|dict|hex|object|slice|coerce|dir|id|oct|sorted|intern" ); var keywordMapper = this.createKeywordMapper({ "invalid.deprecated": "debugger", "support.function": builtinFunctions, "constant.language": builtinConstants, "keyword": keywords }, "identifier"); var strPre = "(?:r|u|ur|R|U|UR|Ur|uR)?"; var decimalInteger = "(?:(?:[1-9]\\d*)|(?:0))"; var octInteger = "(?:0[oO]?[0-7]+)"; var hexInteger = "(?:0[xX][\\dA-Fa-f]+)"; var binInteger = "(?:0[bB][01]+)"; var integer = "(?:" + decimalInteger + "|" + octInteger + "|" + hexInteger + "|" + binInteger + ")"; var exponent = "(?:[eE][+-]?\\d+)"; var fraction = "(?:\\.\\d+)"; var intPart = "(?:\\d+)"; var pointFloat = "(?:(?:" + intPart + "?" + fraction + ")|(?:" + intPart + "\\.))"; var exponentFloat = "(?:(?:" + pointFloat + "|" + intPart + ")" + exponent + ")"; var floatNumber = "(?:" + exponentFloat + "|" + pointFloat + ")"; var stringEscape = "\\\\(x[0-9A-Fa-f]{2}|[0-7]{3}|[\\\\abfnrtv'\"]|U[0-9A-Fa-f]{8}|u[0-9A-Fa-f]{4})"; this.$rules = { "start" : [ { token : "comment", regex : "#.*$" }, { token : "string", // multi line """ string start regex : strPre + '"{3}', next : "qqstring3" }, { token : "string", // " string regex : strPre + '"(?=.)', next : "qqstring" }, { token : "string", // multi line ''' string start regex : strPre + "'{3}", next : "qstring3" }, { token : "string", // ' string regex : strPre + "'(?=.)", next : "qstring" }, { token : "constant.numeric", // imaginary regex : "(?:" + floatNumber + "|\\d+)[jJ]\\b" }, { token : "constant.numeric", // float regex : floatNumber }, { token : "constant.numeric", // long integer regex : integer + "[lL]\\b" }, { token : "constant.numeric", // integer regex : integer + "\\b" }, { token : keywordMapper, regex : "[a-zA-Z_$][a-zA-Z0-9_$]*\\b" }, { token : "keyword.operator", regex : "\\+|\\-|\\*|\\*\\*|\\/|\\/\\/|%|<<|>>|&|\\||\\^|~|<|>|<=|=>|==|!=|<>|=" }, { token : "paren.lparen", regex : "[\\[\\(\\{]" }, { token : "paren.rparen", regex : "[\\]\\)\\}]" }, { token : "text", regex : "\\s+" } ], "qqstring3" : [ { token : "constant.language.escape", regex : stringEscape }, { token : "string", // multi line """ string end regex : '"{3}', next : "start" }, { defaultToken : "string" } ], "qstring3" : [ { token : "constant.language.escape", regex : stringEscape }, { token : "string", // multi line ''' string end regex : "'{3}", next : "start" }, { defaultToken : "string" } ], "qqstring" : [{ token : "constant.language.escape", regex : stringEscape }, { token : "string", regex : "\\\\$", next : "qqstring" }, { token : "string", regex : '"|$', next : "start" }, { defaultToken: "string" }], "qstring" : [{ token : "constant.language.escape", regex : stringEscape }, { token : "string", regex : "\\\\$", next : "qstring" }, { token : "string", regex : "'|$", next : "start" }, { defaultToken: "string" }] }; }; oop.inherits(PythonHighlightRules, TextHighlightRules); exports.PythonHighlightRules = PythonHighlightRules; }); define("ace/mode/folding/pythonic",["require","exports","module","ace/lib/oop","ace/mode/folding/fold_mode"], function(require, exports, module) { "use strict"; var oop = require("../../lib/oop"); var BaseFoldMode = require("./fold_mode").FoldMode; var FoldMode = exports.FoldMode = function(markers) { this.foldingStartMarker = new RegExp("([\\[{])(?:\\s*)$|(" + markers + ")(?:\\s*)(?:#.*)?$"); }; oop.inherits(FoldMode, BaseFoldMode); (function() { this.getFoldWidgetRange = function(session, foldStyle, row) { var line = session.getLine(row); var match = line.match(this.foldingStartMarker); if (match) { if (match[1]) return this.openingBracketBlock(session, match[1], row, match.index); if (match[2]) return this.indentationBlock(session, row, match.index + match[2].length); return this.indentationBlock(session, row); } } }).call(FoldMode.prototype); }); define("ace/mode/python",["require","exports","module","ace/lib/oop","ace/mode/text","ace/mode/python_highlight_rules","ace/mode/folding/pythonic","ace/range"], function(require, exports, module) { "use strict"; var oop = require("../lib/oop"); var TextMode = require("./text").Mode; var PythonHighlightRules = require("./python_highlight_rules").PythonHighlightRules; var PythonFoldMode = require("./folding/pythonic").FoldMode; var Range = require("../range").Range; var Mode = function() { this.HighlightRules = PythonHighlightRules; this.foldingRules = new PythonFoldMode("\\:"); }; oop.inherits(Mode, TextMode); (function() { this.lineCommentStart = "#"; this.getNextLineIndent = function(state, line, tab) { var indent = this.$getIndent(line); var tokenizedLine = this.getTokenizer().getLineTokens(line, state); var tokens = tokenizedLine.tokens; if (tokens.length && tokens[tokens.length-1].type == "comment") { return indent; } if (state == "start") { var match = line.match(/^.*[\{\(\[\:]\s*$/); if (match) { indent += tab; } } return indent; }; var outdents = { "pass": 1, "return": 1, "raise": 1, "break": 1, "continue": 1 }; this.checkOutdent = function(state, line, input) { if (input !== "\r\n" && input !== "\r" && input !== "\n") return false; var tokens = this.getTokenizer().getLineTokens(line.trim(), state).tokens; if (!tokens) return false; do { var last = tokens.pop(); } while (last && (last.type == "comment" || (last.type == "text" && last.value.match(/^\s+$/)))); if (!last) return false; return (last.type == "keyword" && outdents[last.value]); }; this.autoOutdent = function(state, doc, row) { row += 1; var indent = this.$getIndent(doc.getLine(row)); var tab = doc.getTabString(); if (indent.slice(-tab.length) == tab) doc.remove(new Range(row, indent.length-tab.length, row, indent.length)); }; this.$id = "ace/mode/python"; }).call(Mode.prototype); exports.Mode = Mode; });
yyperf
/yyperf-0.6.9.tar.gz/yyperf-0.6.9/samples/ace/mode-python.js
mode-python.js
# yypget For my beautiful baby Teacher Yang. ```console @#@@@#######&&#######@@@@@@@@@###@@@@&%!%@@$ @@&&########@############@@@@@@####@@&%!$@@% @###@##############@####@&##@@@#@##@@$||$@@% #######################@@@&&@@@@@@@@@@$|&@@$ &@@@#@@###@@##############@&$&&&&&&@&@@$&#@$ %$#####@@######@#########@@@&$$%|%$&@&&@@@@$ ###@@################@@#@@&&$$$|!|&&@#@&@@#$ @@@@@@@############@#@&&&$&@@@&%;:!&#@@&@##$ &@$%@####&&####@@@@&&&&&&&&$|!:'''!@@@&&@@@$ @@@@########@||&&@&%%%||%$$@$%!'``!@@&$$&@@% &@@##@######@!:;!%%||;'`:!||;`...`!@@&%%$&&% @&&&&@@#####@!:'''::;'. .''``.. `%@&$%$!';! #@&@#########$:::':!;'..```````. !#@&%$&&&&% ##@&@####$&###$;::!;:'. .':'```.;@@&%$@@@@&% ###############$;;!||;''`..```.:@#&$|$##@@@$ @###############@|!%$%|||;'`.`|##$%|%@#@#@@% @@@@@@@@@#########@%|%||!;;:%##@$$%|$&@@@@@$ &&&&&&&&&@##########@|!;:;|&@#@%|$@@@&%||&#$ &&&&&@@@@@##########@$|!!!|%@@@$!|@#@!''`. : &&&&&&&&@@########@$|!;!!!||$@###@$|!;!!:``: $@&&&&&&&@########@%;;;;::':''````;!;|!;''`: !@&&&&&$&@#######@%|!;::::'::''`':::;!;::'`: '$&$$&&&@@######@%!;::::'''''''':'':!::;:'': .|&$$$$$&@#####&%!':':::'''''';:`'':;;::::'; :&&$$$$&@####&%!:''':'''''''::'''';;;;;;::; .|@&$%$&&##@&%!!!:::::'''';:''`:'':;;;;;;;; :$&&$%&&@@$%%|:;|::;;;::``':``'':::!!!|!!! `|&&$%%%&@$%|;:'``':'':``''``''`':;!!||||! :$&&$%$&&@%!!:'``'::``'''`````':;;;!;:;;; ``` ## Installation ### Prerequisites The following dependencies are required and must be installed separately. * **[Python 3](https://www.python.org/downloads/)** ### Install via pip ```console $ pip3 install yypget ``` ## Upgrading ```console $ pip3 install --upgrade yypget ``` ## Supported Sites ### Video | Site | URL | Video | | :------: | :------ | :------: | | 好看视频 | <https://sv.baidu.com/> | * | | 搜狐视频 | <https://tv.sohu.com/> | * | ### Document | Site | URL | DOC | TXT | PPT | PDF | | :------: | :------ | :------: | :------: | :------: | :------: | | 百度文库 | <https://wenku.baidu.com/> | * | * | | |
yypget
/yypget-0.0.4.tar.gz/yypget-0.0.4/README.md
README.md
# YYSUT ### plist #### chain call I implemented chain call of list in class `plist`. currently, I implemented `map`, `filter`, `reduce`, `any`, `all` method. You can use `log()` method to print the intermediate result. ```python from yysut import plist ans=plist(range(10)).log(lambda x:print(f"origin : {x}"))\ .filter(lambda x: x % 2 == 0).log(lambda x:print(f"filter ans : {x}"))\ .map(lambda x: x * 2).log(lambda x:print(f"map ans : {x}"))\ .reduce(lambda x, y: x + y) print(ans) """ origin : 0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 filter ans : 0 ,2 ,4 ,6 ,8 map ans : 0 ,4 ,8 ,12 ,16 40 """ ``` #### indexs ```python from yysut import plist ans=plist(range(100)) # get item print(ans[2,5,7]) # [2, 5, 7] print(ans[2:5]) # [2, 3, 4] # set item ans[2,5,7]=0 print(ans[:10]) # [0, 1, 0, 3, 4, 0, 6, 0, 8, 9] ``` #### groupby ```python from yysut import plist # 1. return dict type ans=plist(range(10)).groupby(lambda x:x%2) print(ans) # {0: [0, 2, 4, 6, 8], 1: [1, 3, 5, 7, 9]} # 2. return list type ans=plist(range(10)).groupby(lambda x:x%2,return_type="list") print(ans) # [[0, 2, 4, 6, 8], [1, 3, 5, 7, 9]] ``` #### sort `sort` method is same as python3 `sorted` method, it returns new list. ```python from yysut import plist ans=plist(range(10)).sort(lambda x:x%2) print(ans) # [0, 2, 4, 6, 8, 1, 3, 5, 7, 9] ``` #### parllal The method is similar to `map` method, but it can use multi process. ! Attention: `parllal` method could not use lambda function. ```python from yysut import plist import time def compute_func(x): time.sleep(1) return x**2 # parallel t=time.time() ans=plist(range(5)).parallel( # n is the number of process, -1 means all process compute_func,n=-1 ).log(lambda x:print(x,"time:",time.time()-t)) # [0, 1, 4, 9, 16] time: 2.0206313133239746 # normal t=time.time() ans=plist(range(5)).map( compute_func ).log(lambda x:print(x,"time:",time.time()-t)) # [0, 1, 4, 9, 16] time: 5.004805564880371 ```
yysut
/yysut-0.0.2.tar.gz/yysut-0.0.2/README.md
README.md
# yyutils: provide some python tools which often used <br> All tools are be provided as decorators. ## Installation Not provide using `pip` install yet. ## Usage ### Counter A decorator to count the number of times the function is called. ``` from yyutils import Counter @Counter def foo(*args,**kwargs): pass ``` ### Timer A decorator to calculate function execution time. ``` from yyutils import Timer @Timer def foo(*args,**kwargs): pass ``` ### Retry_timer A decorator to help if function execution fail, how many times will retry and what is the retry interval. ``` from yyutils import Retry_timer @Retry_timer() def foo(*arg,**kwargs): pass ``` with parameters: ``` @Retry_timer(interval=1, retry_times=10) def foo(*arg,**kwargs): pass ``` ### Schedule A decorator to schedule the function execution time. ``` from yyutils import Schedule @Schedule() def foo(*arg,**kwargs): pass ``` with parameters: ``` @Schedule(interval=10) def foo(*arg,**kwargs): pass ``` ### Error_Log A decorator for logging Exception but not stop the program. ``` from yyutils import Error_Log @Error_Log def foo(*args,**kwargs): pass ``` ### TypePrints A decorator for print func.__doc__ like type prints. ``` from yyutils import TypePrints @TypePrints def foo(*args,**kwargs): pass ```
yyutils
/yyutils-0.0.1.tar.gz/yyutils-0.0.1/README.md
README.md
import datetime import json from pymysql.cursors import Cursor, DictCursor from yyxx_game_pkg.conf import settings from yyxx_game_pkg.dbops.mysql_op import MysqlOperation from yyxx_game_pkg.helpers.mysql_helper import get_dbpool from yyxx_game_pkg.helpers.redis_helper import get_redis class OPHelper: # --------------- mysql start --------------- @classmethod def connection(cls, mysql_alias="default", dict_cursor=True): db_settings = {} for k, v in settings.DATABASES[mysql_alias].items(): if k == "PORT" and isinstance(v, str) and v.isdigit(): # PORT 必须为数字 v = int(v) db_settings[k.lower()] = v if k == "NAME": db_settings["db"] = db_settings.pop("name") db_settings["cursor"] = DictCursor if dict_cursor else Cursor return get_dbpool(db_settings).get_connection() @classmethod def mp(cls): return MysqlOperation() @classmethod def sql_func_get_one(cls): return cls.mp().get_one @classmethod def sql_func_get_all(cls): return cls.mp().get_all # --------------- mysql end --------------- # --------------- redis start --------------- @classmethod def redis(cls, redis_alias="default"): return get_redis(settings.REDIS_SERVER[redis_alias]) # --------------- redis end --------------- # --------------- redis cache start --------------- @classmethod def cache( cls, sql="", sql_func=None, redis_key="", ex=None, redis_alias="default", mysql_alias="default", ): """ :param sql: sql语句 :param sql_func: sql方法 execute get_one get_all insert :param redis_key: 缓存key :param ex: 缓存过期时间,None表示不设置过期时间 :param redis_alias: 从redis_config中获取对应redis配置 :param mysql_alias: 从mysql_config中获取对应mysql配置 """ _redis = cls.redis(redis_alias) data = _redis.get_data(redis_key) if not data: data = sql_func(sql, cls.connection(mysql_alias)) if data: _redis.set_data(redis_key, json.dumps(str(data)), ex) if isinstance(data, bytes): data = eval(json.loads(data)) return data @classmethod def cache_sql_one( cls, sql, redis_key, ex=None, redis_alias="default", mysql_alias="default", ): sql_func = cls.mp().get_one return cls.cache(sql, sql_func, redis_key, ex, redis_alias, mysql_alias) @classmethod def cache_sql_all( cls, sql, redis_key, ex=None, redis_alias="default", mysql_alias="default", ): sql_func = cls.mp().get_all return cls.cache(sql, sql_func, redis_key, ex, redis_alias, mysql_alias) # --------------- redis cache end --------------- redis = OPHelper.redis() mp = OPHelper.mp()
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/helpers/op_helper.py
op_helper.py
import redis from yyxx_game_pkg.logger.log import root_log from yyxx_game_pkg.utils.decorator import singleton_unique_obj_args class RedisConfig: """ redis config """ HOST = None PORT = None DB = None PASSWORD = None OVERDUE_SECOND = 86400 def __str__(self): return "host:{}, port:{}, db:{}, OVERDUE_SECOND:{}".format( self.HOST, self.PORT, self.DB, self.OVERDUE_SECOND ) @singleton_unique_obj_args class RedisHelper: def __init__(self, config: RedisConfig): connection_pool = redis.ConnectionPool( host=config.HOST, port=config.PORT, db=config.DB, password=config.PASSWORD ) self.__r = redis.Redis(connection_pool=connection_pool) root_log(f"<RedisHelper> init, info:{config}") @property def redis_cli(self): return self.__r def get_data(self, key): return self.__r.get(key) def set_data(self, key, value, ex=None, _px=None): return self.__r.set(key, value, ex, _px) def list_keys(self, pattern="*"): return self.__r.keys(pattern) def delete(self, key): return self.__r.delete(key) def hset(self, name, key, value): return self.__r.hset(name, key, value) def hget(self, name, key): return self.__r.hget(name, key) def hdel(self, name, *keys): return self.__r.hdel(name, *keys) def hgetall(self, name): return self.__r.hgetall(name) def hlen(self, name): return self.__r.hlen(name) def incr(self, name, amount=1): return self.__r.incr(name, amount) def expire(self, key, ex): """ 设置key的过期时间 :param key: :param ex: :return: """ return self.__r.expire(key, ex) def lpush(self, key, *val): """ 在key对应的list中添加元素,每个新的元素都添加到列表的最左边 :param key: :param val: :return: """ return self.__r.lpush(key, *val) def rpush(self, key, *val): """ 同lpush,但每个新的元素都添加到列表的最右边 :param key: :param val: :return: """ return self.__r.rpush(key, *val) def lrange(self, key, start=0, end=-1): """ 分片获取元素 :param key: :param start: :param end: :return: """ return self.__r.lrange(key, start, end) def get_redis(config: dict) -> RedisHelper: """ 缓存redis :return: """ class Config(RedisConfig): """ redis config """ HOST = config["host"] PORT = config["port"] DB = config["db"] PASSWORD = config["password"] OVERDUE_SECOND = config.get("overdue_second", 86400) return RedisHelper(Config())
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/helpers/redis_helper.py
redis_helper.py
import pymysql from dbutils.pooled_db import PooledDB from pymysql.cursors import Cursor from yyxx_game_pkg.logger.log import root_log from yyxx_game_pkg.utils.decorator import ( except_monitor, log_execute_time_monitor, singleton_unique_obj_args, ) # #################################################### class MysqlConfig: HOST = None PORT = None USER = None PASSWD = None DB = None USE_UNICODE = None CHARSET = None MAX_CACHED = None MAX_CONNECTIONS = None CURSOR = None def __str__(self): # 不能返回无法序列化的数据, 否则单例会失效 return "host:{},port:{},db:{},use_unicode:{},charset:{},max_cache:{},max_connections:{}".format( self.HOST, self.PORT, self.DB, self.USE_UNICODE, self.CHARSET, self.MAX_CACHED, self.MAX_CONNECTIONS ) @singleton_unique_obj_args class MysqlDbPool(object): def __init__(self, config: MysqlConfig): self.DB_POOL = PooledDB( creator=pymysql, maxcached=config.MAX_CACHED, maxconnections=config.MAX_CONNECTIONS, host=config.HOST, port=config.PORT, user=config.USER, passwd=config.PASSWD, db=config.DB, use_unicode=config.USE_UNICODE, charset=config.CHARSET, cursorclass=config.CURSOR, ) root_log(f"<MysqlDbPool> init, info:{config}") @except_monitor @log_execute_time_monitor() def get_connection(self): return self.DB_POOL.connection() def close_connection(self): """ 关闭线程池,线程池最少占用1连接,100个进程跑1000个相同IP库的服时,最多会生成10W连接,所以需要关闭线程池,释放全部连接。 优化点:以后可以相同IP的服务器共用1个线程池(现阶段sql查game库没有指定库名,改动地方多,搁置) :return: """ self.DB_POOL.close() # #################### 模块对外接口 #################### def get_dbpool(config: dict) -> MysqlDbPool: class Config(MysqlConfig): HOST = config["host"] PORT = config["port"] USER = config["user"] PASSWD = config["password"] DB = config["db"] USE_UNICODE = config.get("use_unicode", True) CHARSET = config.get("charset", "utf8") MAX_CACHED = config.get("maxcached", 0) MAX_CONNECTIONS = config.get("maxconnections", 0) CURSOR = config.get("cursor", Cursor) return MysqlDbPool(Config())
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/helpers/mysql_helper.py
mysql_helper.py
from abc import ABC, abstractmethod from dataclasses import dataclass from yyxx_game_pkg.center_api.sdk.map_core import MapCore from yyxx_game_pkg.conf import settings @dataclass class Params: """ @param extra: 拓参 @param cp_order_id: 厂商订单ID, 由厂商生成 @param channel_order_id: 渠道方订单ID @param player_id: 角色ID @param is_check_username: 是否验证帐号与玩家ID @param channel_username: 渠道帐号 @param is_test: 是否测试订单 """ extra: str = "extra" cp_order_id: str = "billno" channel_order_id: str = "order_id" player_id: str = "role_id" channel_username: str = "openid" money: str = "amount" is_check_username: int = 1 is_test: int = 0 class BaseRecharge(MapCore, ABC): """ 注意: 方法 modify_params 用来修改 params 的参数值 需要实现 get_params_handler feedback 方法 get_params_handler 是对 get_params 参数的补充 feedback """ params = Params() def modify_params(self): """ 修改 self.params 属性 """ pass def get_params(self, data) -> dict: self.modify_params() extra = data.get(self.params.extra, "") if not extra: return {} ext_ary = extra.split(",") data_ary = {"extra": extra} self.get_params_core(data, data_ary, ext_ary) self.get_params_helper(data, data_ary) return data_ary def get_params_core(self, data, data_ary, ext_ary): data_ary["cp_order_id"] = data.get(self.params.cp_order_id, "") data_ary["channel_order_id"] = data.get(self.params.channel_order_id, "") data_ary["player_id"] = data.get(self.params.player_id) data_ary["is_check_username"] = self.params.is_check_username data_ary["channel_username"] = data.get(self.params.channel_username, "") if len(ext_ary) > 6: data_ary["recharge_id"] = int(ext_ary[5]) def get_params_helper(self, data, data_ary) -> None: """ 补充数据, 添加额外参数 对 get_params 中 data_ary 数据的补充 无法在 get_params_core 中通过通用方式获得的参数,在此处进行处理 -------------------------------- money 金额 real_money 实付金额 extra_gold 赠送元宝(渠道返利) extra_gold_bind 赠送绑元(渠道返利) pay_dt 充值时间(秒) -------------------------------- """ amount = int(data.get(self.params.money, 0)) data_ary["real_money"] = int(amount / 100) data_ary["money"] = amount / 100 def make_sign_helper(self, values) -> (dict, str): ext_ary = values[self.params.extra].split(",") plat_code = ext_ary[0] game_channel_id = ext_ary[1] sdk_data = self.operator.get_key(plat_code, game_channel_id) pay_key = sdk_data.get("pay_key", "") return values, pay_key def make_sign(self, values) -> str: values, pay_key = self.make_sign_helper(values) return self.channel_make_sign(values, pay_key) @abstractmethod def feedback(self, error_code, data: dict = None, msg="", *args, **kwargs): """ 根据需求 return 相应的数据 """ return error_code
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/center_api/sdk/recharge.py
recharge.py
import time from abc import ABC, abstractmethod from typing import Callable, NewType from urllib.parse import unquote from yyxx_game_pkg.center_api.sdk.map_core import MapCore from yyxx_game_pkg.utils.error_code import ErrorCode from yyxx_game_pkg.utils.xhttp import http_request from yyxx_game_pkg.utils.xstring import parse_json SDK_HELPER = NewType("SDK_HELPER", Callable[[...], None]) RESPONSE_HELPER = NewType("RESPONSE_HELPER", Callable[[...], None]) class BaseCheckToken(MapCore, ABC): """ 注意:需要实现 response_helper 方法 @func response_helper: 处理返回数据 @func sdk_check_token: 验证token方法 @func sdk_helper: sdk 参数处理 @func channel_make_sign: 默认 sorted(params) md5 根据渠道需求填写以下参数 @param is_https: 请求是否为https;默认 True @param method: 请求方式 POST GET;默认 POST @param params: (key)发送和(value)接收 参数的字段名 """ is_https = True # True False method = "POST" # params = {} sdk_exclude = () def run_check_token(self, *args, **kwargs) -> dict: """ run check token """ sdk_helper, response_helper = self.sdk_version_choice(**kwargs) if sdk_helper is None: return self.sdk_rechfeed(ErrorCode.ERROR_INVALID_PARAM) channel_data, post_data = sdk_helper(self.sdk_exclude, **kwargs) response = self.sdk_check_token(channel_data, post_data) return response_helper(response, **kwargs) @abstractmethod def response_helper(self, response: dict | None, **kwargs) -> dict: """ 根据需求 return 相应的数据 :return: {"ret": 1, "user_id": "any_user_id"} """ return self.sdk_rechfeed(ErrorCode.ERROR_INVALID_PARAM, "验证失败") @property def _params(self): """ params = { "appId": "sdk_appId", "accountId": "sdk_accountId", "token": "sdk_token", } """ if self.params is None: raise ValueError("params must be specified as a dict") return self.params def sdk_helper(self, sdk_exclude=(), **kwargs) -> (dict, dict): """ 处理 sdk 数据 :param sdk_exclude: sdk_helper 处理数据,要排除的key 可选值: time(self.Time) sign(self.Flag) """ channel_data = kwargs.get("channel_data", {}) post_data = {} for k, v in self._params.items(): post_data[k] = kwargs.get(v) if self.Time not in sdk_exclude: post_data[self.Time] = int(time.time()) if self.Flag not in sdk_exclude: post_data[self.Flag] = self.channel_make_sign( post_data, channel_data.get("app_key", "") ) return channel_data, post_data def sdk_check_token(self, channel_data, post_data) -> dict | None: """ 处理方法不适用时,重写此方法 默认使用发送请求的方式获取token验证结果 """ url = channel_data.get("api_url", "") if not url: return None result = http_request( url=url, data=post_data, is_https=self.is_https, method=self.method, ) return parse_json(unquote(result)) @property def sdk_version_map(self) -> dict: """ sdk version map 如果存在多个version版本,需要添加对应的版本映射 """ return { "1.0.0": { "sdk_helper": self.sdk_helper, "response_helper": self.response_helper, }, } def sdk_version_choice(self, **kwargs) -> (SDK_HELPER, RESPONSE_HELPER): """ 匹配对应 sdk version 相关方法 sdk_handler response_helper """ sdk_version = kwargs.get("sdk_version", "1.0.0") version_map = self.sdk_version_map.get(sdk_version, None) if version_map is None: return None, None sdk_helper = version_map["sdk_helper"] response_helper = version_map["response_helper"] return sdk_helper, response_helper
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/center_api/sdk/check_token.py
check_token.py
import json import time from abc import abstractmethod from flask import request from yyxx_game_pkg.center_api.model.Operator import Operator from yyxx_game_pkg.center_api.model.OperatorServer import OperatorServer from yyxx_game_pkg.conf import settings from yyxx_game_pkg.crypto.basic import RANDOM_STRING_CHARS_LOWER, get_random_string, md5 from yyxx_game_pkg.crypto.make_sign import make_sign from yyxx_game_pkg.helpers.op_helper import OPHelper class MapCore(OPHelper): Flag = "sign" Time = "time" Gmip = None Imei = None Callback = None OutTime = 0 make_sign_exclude = {"gmip", "cp_platform", "ch_conter", "opts"} API_KEY = settings.API_KEY params = None _plat_code = None _operator = None _game_channel_id = None # 大额充值限制 max_money_limit = 5000 def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs def init_ip_imei(self, values): self.Gmip = values.get("gmip", "") self.Imei = values.get("imei", "") def get_params(self, data): return data def get_params_helper(self, data, data_ary) -> None: pass def check_sign(self, values): sign = values.get(self.Flag, None) if sign is None: return False _sign = self.make_sign(values) if sign != _sign: return False return True def make_sign(self, values) -> str: return make_sign( values, self.api_key, exclude=self.make_sign_exclude, time_key=self.Time ) def channel_make_sign(self, values, sign_key) -> str: return make_sign( values, sign_key, exclude=self.make_sign_exclude, time_key=None ) def check_time_out(self, values): _time = int(values.get(self.Time, 0)) t = time.time() if self.OutTime != 0 and int(t) - _time > self.OutTime: return False return True def check_public(self, values) -> bool: return True def sdk_rechfeed(self, error_code, msg="") -> dict: if not msg: msg = str(error_code.get("msg", "")) code = int(error_code.get("code", 0)) return {"ret": code, "msg": msg} def feedback( self, error_code, msg_data: dict | list = None, msg="", *args, **kwargs ): if type(error_code) == dict: if not msg: msg = str(error_code.get("msg", "")) code = int(error_code.get("code", 0)) else: code = error_code result = { f"{get_random_string(5, RANDOM_STRING_CHARS_LOWER)}_myzd_a": str( int(time.time()) ), f"{get_random_string(5, RANDOM_STRING_CHARS_LOWER)}_myzd_b": str( int(time.time()) ), "server_time": int(time.time()), } if msg_data or msg_data == 0: receive_data = request.values receive_path = request.path receive_oid = receive_data.get("oid", "") receive_gcid = receive_data.get("gcid", "") receive_action = "" if not receive_gcid: receive_gcid = receive_data.get("game_channel_id", "") receive_path_list = receive_path.split("/") if receive_oid and receive_gcid: if len(receive_path_list) > 2: receive_action = receive_path_list[2] else: receive_action = receive_path_list[1] oid_data = OperatorServer.get_oid_data(receive_oid, receive_gcid) if oid_data.get("is_close_check", None): result["close_check"] = "yesyes" data_str = json.dumps(msg_data) data_str = "\\/".join(data_str.split("/")) data_sign = md5(f"{data_str}{receive_action}{self.API_KEY}") result["code"] = code result["msg"] = msg result["data"] = msg_data result["data_sign"] = data_sign result = "\\\n".join(json.dumps(result, ensure_ascii=False).split("\n")) else: result = json.dumps({"code": code, "msg": msg}, ensure_ascii=False) if self.Callback: result = "{}({})".format(self.Callback, result) return result def is_open_ip(self, gmip=""): pass @property def operator(self): return Operator @property def api_key(self): print(self.API_KEY) if self.API_KEY is None: raise ValueError("API_KEY must be specified") return self.API_KEY class MapCoreMinix: def get_params(self, data): data_ary = { "cp_platform": data.get("cp_platform", ""), "page_size": 10000, "page": 1, } self.get_params_helper(data, data_ary) return data_ary def make_sign(self, values): sdk_data = self.operator.get_key(self._plat_code, self._game_channel_id) pay_key = sdk_data.get("pay_key", "") return self.channel_make_sign(values, pay_key) @abstractmethod def get_params_helper(self, data, data_ary) -> None: """ 补充数据 for k, v in self.params.items(): if v: data_ary[k] = data.get(v, "") """ @abstractmethod def feedback_helper(self, data_list, error_code, ex=None): """ if data_list: code = 1 message = "success" else: code = 2 message = error_code.get("msg", "") return {"code": code, "message": message, "data": data_list} """
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/center_api/sdk/map_core.py
map_core.py
import json import time from yyxx_game_pkg.helpers.op_helper import OPHelper from yyxx_game_pkg.utils.xstring import parse_json class TableFieldConf(OPHelper): @classmethod def get_field_config_by_table(cls, table_name): result = {} cache_key = f"sys_table_field_config_{table_name}" sql = """ SELECT * FROM sys_table_field_config WHERE table_name='{}' """.format( table_name ) data = cls.cache(sql, cls.sql_func_get_one(), cache_key) if data: for value in data: result[value["field_name"]] = value return result @classmethod def filter_table_config(cls, table_name, field_name, filter_data): """ 过滤 filter_data 的值,如果有表字段配置,必须 在表字段配置中 :param table_name: :param field_name: :param filter_data: :return: """ if not table_name: return filter_data cache_data = cls.get_field_config_by_table(table_name) if not cache_data: return filter_data if isinstance(cache_data, dict): field_data = cache_data.get(field_name, None) if field_data is None: return filter_data field_config = field_data.get("field_config", "{}") res = parse_json(field_config) if not res: return {} result = {} df_time = int(time.time()) df_json = json.dumps({}) for key, val in res.items(): fdv = filter_data.get(key, None) if fdv is None: val_d = val.get("default", "") val_t = val.get("type", "") if val_t == "int": val_d = int(val_d) elif val_t == "json" or val_t == "jsons": val_d = df_json elif val_t == "time": val_d = df_time elif val_t == "times": val_d = [df_time, df_time] elif val_t == "switch": val_d = 0 else: val_d = 0 fdv = val_d result[key] = fdv return result else: return filter_data
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/center_api/model/TableFieldConf.py
TableFieldConf.py
import json from redis import AuthenticationError from yyxx_game_pkg.helpers.op_helper import OPHelper, mp, redis from yyxx_game_pkg.utils.xstring import parse_json class Operator(OPHelper): """ 注意:需要先设置 connection 和 redis_handle """ @classmethod def get_key(cls, operator, game_channel_id): try: cache_key = "api_operator_channel_%s_%s_key" % ( operator, game_channel_id, ) package = {} subpackage = {} sdk_data = redis.get_data(cache_key) if not sdk_data: sdk_data = {} sql = """ SELECT t1.alias as operator, t2.game_channel_id, t2.group_id, t2.iw_id, t2.sdk_config, t3.alias as iw_alias FROM svr_operator t1, svr_channel t2 left join svr_inter_working_group t3 on t2.iw_id = t3.id WHERE ((t1.alias = '%s' AND t2.game_channel_id = '%s') OR (t1.alias = '%s' AND t2.game_channel_id='0')) AND t1.oid = t2.oid ORDER BY t2.id DESC """ % ( operator, game_channel_id, operator, ) data = mp.get_all(sql, cls.connection()) if data: for item in data: if ( item["game_channel_id"] == "0" or item["game_channel_id"] == 0 ): # 母包配置 package = item else: # 分包配置 subpackage = item if subpackage.get("sdk_config", "") or package.get( "sdk_config", "" ): sdk_data["operator"] = ( subpackage["operator"] if subpackage.get("operator", "") else package.get("operator", "") ) sdk_data["game_channel_id"] = ( subpackage["game_channel_id"] if subpackage.get("game_channel_id", "") else package.get("game_channel_id", "") ) sdk_data["group_id"] = ( subpackage["group_id"] if subpackage.get("group_id", "") else package.get("group_id", "") ) sdk_data["iw_id"] = ( subpackage["iw_id"] if subpackage.get("iw_id", "") else package.get("iw_id", "") ) sdk_data["iw_alias"] = ( subpackage["iw_alias"] if subpackage.get("iw_alias", "") else package.get("iw_alias", "") ) try: if subpackage.get("sdk_config", ""): sdk_subpackage = json.loads( subpackage.get("sdk_config", "{}") ) sdk_package = json.loads( package.get("sdk_config", "{}") ) for index, ist in sdk_subpackage.items(): if sdk_subpackage.get(index, ""): sdk_package[index] = sdk_subpackage.get( index, "" ) subpackage["sdk_config"] = json.dumps(sdk_package) except (TypeError, json.decoder.JSONDecodeError): subpackage["sdk_config"] = {} sdk_config = ( subpackage["sdk_config"] if subpackage.get("sdk_config", "") else package.get("sdk_config", "") ) sdk_config = parse_json(sdk_config) if sdk_config else {} sdk_data.update(sdk_config) redis.set_data(cache_key, json.dumps(sdk_data)) else: sdk_data = {} else: sdk_data = {} else: sdk_data = parse_json(sdk_data) return sdk_data except AuthenticationError: print("redis error") return {} except Exception as e: print(e, type(e)) return {}
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/center_api/model/Operator.py
Operator.py
import json from yyxx_game_pkg.helpers.op_helper import OPHelper from yyxx_game_pkg.utils.xstring import parse_json class RechargeConfig(OPHelper): @classmethod def get_mapping_config(cls, oid="", gcid=""): try: sql = """ SELECT t1.id, IFNULL(t4.json, '{}') json FROM svr_channel t1 LEFT JOIN svr_channel_group t2 ON t1.group_id = t2.id LEFT JOIN svr_operator t3 ON t1.oid = t3.oid LEFT JOIN api_recharge_mapping t4 ON t1.id = t4.channel_auto_id WHERE t3.alias ='%s' AND t1.game_channel_id = '%s' ORDER BY t1.id DESC """ % ( oid, gcid, ) result = cls.mp().get_one(sql, cls.connection()) if result and result.get("json", ""): return parse_json(result["json"]) return {} except: return False @classmethod def get_recharge_config(cls): try: sql = "SELECT * FROM api_recharge_config" res = cls.mp().get_all(sql, cls.connection()) result = {} if res: for v in res: vid = v["id"] result[str(vid)] = v return result except: return {} @classmethod def get_check_recharge_config(cls, param_server_id): try: sql = ( f"SELECT * FROM api_check_recharge_config where sid = {param_server_id}" ) res = cls.mp().get_all(sql, cls.connection()) result = {} if res: for v in res: vid = v["recharge_id"] result[str(vid)] = v return result except: return False @classmethod def recharge_config(cls): redis_key = "api_recharge_platform" recharge_config = cls.redis().get_data(redis_key) if not recharge_config: recharge_config = cls.get_recharge_config() if recharge_config: cls.redis().set_data(redis_key, json.dumps(recharge_config)) if not isinstance(recharge_config, dict): recharge_config = json.loads(recharge_config) return recharge_config
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/center_api/model/RechargeConfig.py
RechargeConfig.py
class LogConfig: """ log config class 不同项目配置调整继承该类 """ DEBUG_LOGGER_NAME = "py_debug" LOCAL_LOGGER_NAME = "py_local" LOCAL_LOG_FILE = "/tmp/local.log" DEBUG_LOG_FILE = "/tmp/debug.log" @classmethod def dict_config(cls): """ LOG_CONFIG DICT """ log_config = { "version": 1, "disable_existing_loggers": False, "formatters": { "def_fmt": { "datefmt": "%Y-%m-%d %H:%M:%S", "class": "yyxx_game_pkg.logger.formatters.TraceFormatter", "format": ( "[%(asctime)s,%(msecs)d: %(levelname)s/%(process)d][%(filename)s:%(funcName)s:%(lineno)d]" "[%(trace_id)s] %(message)s" ), }, }, "handlers": { "rotate_file_handler": { "level": "INFO", "formatter": "def_fmt", "class": "yyxx_game_pkg.logger.handlers.MultiProcessTimedRotatingFileHandler", "filename": cls.LOCAL_LOG_FILE, "when": "MIDNIGHT", "backupCount": 7, }, "debug_file_handler": { "level": "DEBUG", "formatter": "def_fmt", "class": "logging.FileHandler", "filename": cls.DEBUG_LOG_FILE, }, "console_handler": { "level": "INFO", "formatter": "def_fmt", "class": "logging.StreamHandler", }, }, "loggers": { "": { # root logger "handlers": ["rotate_file_handler", "console_handler"], "level": "WARNING", "propagate": False, }, cls.LOCAL_LOGGER_NAME: { "handlers": ["rotate_file_handler", "console_handler"], "level": "INFO", "propagate": False, }, cls.DEBUG_LOGGER_NAME: { "handlers": ["debug_file_handler", "console_handler"], "level": "DEBUG", "propagate": False, }, }, } return log_config
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/logger/config.py
config.py
import logging.config import traceback # from typing import Literal, Type, TypeVar from pathlib import Path from .config import LogConfig # log日志级别 # LogLevelTyping = Literal["critical", "error", "warning", "info", "debug"] # LogConfig类及其子类 # LogConfigTyping = TypeVar("LogConfigTyping", bound=LogConfig) def root_log(msg, level="warning", stacklevel=2, addstacklevel=0): """ root logger :param msg: 消息文本 :param level: 消息级别 :param stacklevel: 堆栈信息向上查找层数(默认2层,即为调用此函数的堆栈) :param addstacklevel: 以调用此函数的堆栈(stacklevel的值)作为基础,继续向上查找的层数,即stacklevel+addstacklevel层 使用此参数无需关心下层函数的层级,只需要关心调用函数上层的层级即可 """ getattr(logging.getLogger(), level.lower())(msg) class Log: """ singleton Log """ _instance = None _init = False config = None def __new__(cls, *args, **kwargs): if cls._instance is None: cls._instance = super().__new__(cls) return cls._instance def __init__(self, log_config=LogConfig): if self._init: return self._init = True # 日志配置初始化 self.init_config(log_config) @classmethod def init_config(cls, log_config=LogConfig): """应用新配置""" self = cls() if log_config == self.config: return try: self.config = log_config self.make_path() logging.config.dictConfig(log_config.dict_config()) root_log("logger init") except ValueError as _e: traceback.print_exc() def make_path(self): """ 检查日志输出文件路径, 不存在则创建 """ handlers_config = self.config.dict_config().get("handlers", {}) if not handlers_config: return file_paths = [] for _, configs in handlers_config.items(): for cfg_key, val in configs.items(): if cfg_key != "filename": continue file_paths.append(val) try: for path in file_paths: path_obj = Path(path) path_obj.parent.mkdir(parents=True, exist_ok=True) path_obj.touch(exist_ok=True) except OSError as _e: traceback.print_exc() def root_logger(self) -> logging.Logger: """ local_logger :return: """ return logging.getLogger() def local_logger(self) -> logging.Logger: """ local_logger :return: """ return logging.getLogger(self.config.LOCAL_LOGGER_NAME) def debug_logger(self) -> logging.Logger: """ debug_logger :return: """ return logging.getLogger(self.config.DEBUG_LOGGER_NAME) def local_log(self, msg: str, level="info", stacklevel=2, addstacklevel=0, **kwargs): """ 正常滚动日志 输出路径见 config.LOG_FILE :param msg: 消息文本 :param level: 消息级别 :param stacklevel: 堆栈信息向上查找层数(默认2层,即为调用此函数的堆栈) :param addstacklevel: 以调用此函数的堆栈(stacklevel的值)作为基础,继续向上查找的层数,即stacklevel+addstacklevel层 使用此参数无需关心下层函数的层级,只需要关心调用函数上层的层级即可 :param kwargs: 额外参数 :return: """ if kwargs: self.root_logger().warning(f"[yyxx-Log] Unexpected parameters => {kwargs}") getattr(self.local_logger(), level.lower())(msg, stacklevel=stacklevel + addstacklevel) def debug_log(self, msg: str, level="info", stacklevel=2, addstacklevel=0, **kwargs): """ 测试日志 不滚动 输出路径见 config.LOG_FILE :param msg: 消息文本 :param level: 消息级别 :param stacklevel: 堆栈信息向上查找层数(默认2层,即为调用此函数的堆栈) :param addstacklevel: 以调用此函数的堆栈(stacklevel的值)作为基础,继续向上查找的层数,即stacklevel+addstacklevel层 使用此参数无需关心下层函数的层级,只需要关心调用函数上层的层级即可 :param kwargs: 额外参数 :return: """ if kwargs: self.root_logger().warning(f"[yyxx-Log] Unexpected parameters => {kwargs}") getattr(self.debug_logger(), level.lower())(msg, stacklevel=stacklevel + addstacklevel) logger = Log() local_logger = logger.local_logger() local_log = logger.local_log debug_logger = logger.debug_logger() debug_log = logger.debug_log
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/logger/log.py
log.py
import os import time import fcntl import traceback import logging.handlers class MultiProcessTimedRotatingFileHandler(logging.handlers.TimedRotatingFileHandler): """ 自定义多进程下TimedRotatingFileHandler """ def rollover_at(self): """ 计算下次滚动时间 """ current_time = int(time.time()) dst_now = time.localtime(current_time)[-1] new_rollover_at = self.computeRollover(current_time) while new_rollover_at <= current_time: new_rollover_at = new_rollover_at + self.interval # If DST changes and midnight or weekly rollover, adjust for this. if (self.when == "MIDNIGHT" or self.when.startswith("W")) and not self.utc: dst_at_rollover = time.localtime(new_rollover_at)[-1] if dst_now != dst_at_rollover: if ( not dst_now ): # DST kicks in before next rollover, so we need to deduct an hour addend = -3600 else: # DST bows out before next rollover, so we need to add an hour addend = 3600 dst_at_rollover += addend self.rolloverAt = new_rollover_at def doRollover(self): """ do a rollover; in this case, a date/time stamp is appended to the filename when the rollover happens. However, you want the file to be named for the start of the interval, not the current time. If there is a backup count, then we have to get a list of matching filenames, sort them and remove the one with the oldest suffix. """ if self.stream: self.stream.close() self.stream = None # get the time that this sequence started at and make it a TimeTuple current_time = int(time.time()) dst_now = time.localtime(current_time)[-1] diff_t = self.rolloverAt - self.interval if self.utc: time_tuple = time.gmtime(diff_t) else: time_tuple = time.localtime(diff_t) dst_then = time_tuple[-1] if dst_now != dst_then: if dst_now: addend = 3600 else: addend = -3600 time_tuple = time.localtime(diff_t + addend) dfn = self.baseFilename + "." + time.strftime(self.suffix, time_tuple) if os.path.exists(dfn): self.rollover_at() return # Issue 18940: A file may not have been created if delay is True. if not os.path.exists(dfn) and os.path.exists(self.baseFilename): # lock rename file try: with open(self.baseFilename, "a", encoding="utf-8") as file: # LOCK_EX 独占 # LOCK_NB 非阻塞式 fcntl.flock(file.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB) # 获取文件锁 os.rename(self.baseFilename, dfn) # 更改文件名 fcntl.flock(file.fileno(), fcntl.LOCK_UN) # 释放文件锁 except IOError: traceback.print_exc() return if self.backupCount > 0: for _d in self.getFilesToDelete(): os.remove(_d) if not self.delay: self.stream = self._open() self.rollover_at()
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/logger/handlers.py
handlers.py
import pandas as pd from yyxx_game_pkg.dbops.base import DatabaseOperation from yyxx_game_pkg.utils import xListStr class MysqlOperation(DatabaseOperation): """ Mysql数据库操作 """ def execute(self, sql, conn, params=None): """ 执行sql返回处理结果 :param sql: :param conn: :param params: :return: """ sql = self.check_sql(sql) with conn: with conn.cursor() as cursor: if params is None: cursor.execute(sql) else: cursor.execute(sql, params) conn.commit() def get_one(self, sql, conn, params=None): """ 查询一条数据, 返回元组结构 :param sql: :param conn: :param params: :return: """ sql = self.check_sql(sql) with conn: with conn.cursor() as cursor: if params is None: cursor.execute(sql) else: cursor.execute(sql, params) return cursor.fetchone() def get_all(self, sql, conn, params=None): """ 查询多条数据,返回list(元组) 结构 :param sql: :param conn: :param params: :return: """ sql = self.check_sql(sql) with conn: with conn.cursor() as cursor: if params is None: cursor.execute(sql) else: cursor.execute(sql, params) return cursor.fetchall() def get_one_df(self, *args, **kwargs): """ 获取单次数据 :param args: :param kwargs: :return: """ def get_all_df(self, sql, connection): """ 获取所有数据 dataframe :param sql: :param connection: :return: """ return pd.read_sql(sql, connection) def insert(self, conn, save_table, results): """ :param conn: :param save_table: :param results: :return: """ def get_field_str(_data): """ 根据数据长度生成{data_value} :param _data: :return: """ _size = len(_data[0]) _list = [] for _ in range(_size): _list.append("%s") _str = ",".join(_list) return _str def get_table_desc(_table_name, _data_list, _cs): """ :param _table_name: :param _data_list: :return: """ sql = f"describe {_table_name}" _cs.execute(sql) _desc = _cs.fetchall() _column = [] for _data in _desc: if _data[0] in ("id", "create_time"): # 自增id和默认插入时间过滤 continue _column.append(_data[0]) _size = len(_data_list[0]) table_column = _column[:_size] return ",".join(table_column) insert_sql_template = ( "INSERT INTO {save_table} ({column_value}) VALUES({data_value})" ) results = xListStr.split_list(results) with conn: with conn.cursor() as cursor: for result in results: if not result: continue field_str = get_field_str(result) column_value = get_table_desc(save_table, result, cursor) insert_sql = insert_sql_template.format( save_table=save_table, column_value=column_value, data_value=field_str ) cursor.executemany(insert_sql, result) conn.commit()
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/dbops/mysql_op.py
mysql_op.py
import re import requests import numpy as np import pandas as pd import ujson as json def trans_unsupported_types(val): """ 转化json.dumps不支持的数据类型 : int64, bytes, ... :param val: :return: """ if isinstance(val, dict): new_dict = {} for k, _v in val.items(): k = trans_unsupported_types(k) _v = trans_unsupported_types(_v) new_dict[k] = _v return new_dict if isinstance(val, list): for idx, _v in enumerate(val): _v = trans_unsupported_types(_v) val[idx] = _v elif isinstance(val, np.int64): val = int(val) elif isinstance(val, bytes): val = val.decode(encoding="utf8") return val class DasApiException(Exception): pass class DasApiChQueryException(DasApiException): pass class DasApiChExecuteException(DasApiException): pass class DasApiMongoQueryException(DasApiException): pass class DasApiEsQueryException(DasApiException): pass class DasApiEsInsertException(DasApiException): pass class DasApi: """ DasApi py """ @staticmethod def _post(das_url, post_type, post_data): url = f"{das_url}/{post_type}" post_data = trans_unsupported_types(post_data) res = requests.post(json=post_data, url=url, timeout=600) return res.ok, res.content @staticmethod def mongo_query(das_url, post_data): """ sql语句 查询 mongo 库 :param das_url: das_http_url :param post_data: { 'sql': sql, # sql语句 支持sql 和 js_sql 'server': mongo_url # mongo链接 } :return: """ b_ok, res = DasApi._post(das_url, "das/mgo/query", post_data=post_data) if not b_ok: raise DasApiMongoQueryException(res) res = re.sub( r'{\\"\$numberLong\\": \\"\d+\\"}', lambda m: re.search(r"\d+", m.group()).group(), res.decode("utf-8"), ) data = json.loads(res) data_list = data["data"] res_list = [] if data_list: for data in data_list: res_list.append(json.loads(data)) res_df = pd.DataFrame(res_list) return res_df @staticmethod def es_query(das_url, post_data): """ sql语句 查询 elasticsearch 库 :param das_url: das_http_url :param post_data: { "sql": sql, # sql语句 "engine": 1, # es引擎版本 1:官方 2: open distro "search_from": search_from, # 分页查询offset 最大5w "fetch_size": fetch_size # 单次查询总行数 } :return: """ b_ok, res = DasApi._post(das_url, "das/es/query", post_data=post_data) if not b_ok: raise DasApiEsQueryException(res) engine = post_data.get("engine", 0) use_search = post_data.get("search_from", -1) >= 0 data = json.loads(res) if engine == 0: # opendistro col_dict_lst = data["schema"] data_rows = data["datarows"] # total = data["total"] # size = data["size"] # status = data["status"] else: # origin if use_search: data_rows = data["map_rows"] return pd.DataFrame(data_rows) col_dict_lst = data["columns"] data_rows = data["rows"] df_cols = [col_dict["name"] for col_dict in col_dict_lst] if not data_rows: return pd.DataFrame(columns=df_cols) res_df = pd.DataFrame(np.array(data_rows), columns=df_cols) return res_df @staticmethod def es_insert(das_url, post_data): """ elasticsearch 数据插入 :param das_url: das_http_url :param post_data = { "kafka_addr": kafka_addr, # kafka地址 "topic": topic, # kafka Topic "data_rows": data_rows # 数据行 } :return: """ b_ok, res = DasApi._post(das_url, "das/es/insert", post_data=post_data) if not b_ok: raise DasApiEsInsertException(res) return res @staticmethod def ch_query(das_url, post_data): """ sql语句 查询 clickhouse 库 :param das_url: das_http_url :param post_data: { "sql": sql, # sql语句 } :return: """ b_ok, res = DasApi._post(das_url, "/das/ch/query", post_data=post_data) if not b_ok: raise DasApiChQueryException(res) data = json.loads(res) res_df = pd.DataFrame(data["datarows"], columns=data["columns"]) return res_df @staticmethod def ch_execute(das_url, post_data): """ clickhouse 执行 sql (数据插入) :param das_url: das_http_url :param post_data: { "sql": sql, # sql语句 } :return: """ b_ok, res = DasApi._post(das_url, "/das/ch/exec", post_data=post_data) if not b_ok: raise DasApiChExecuteException(res) return b_ok # if __name__ == '__main__': # post_type = "das/mgo/query" # post_data_ = dict() # post_data_['js_sql'] = 'db.getSiblingDB("fumo_test").getCollection("player").find({})' # post_data_['server'] = 'test' # # # DasApi.post(post_type=post_type, post_data=post_data) # res_ = DasApi.mongo_query(post_data_) # # post_data_ = dict() # post_data_['sql'] = 'SELECT * FROM log_money LIMIT 1' # post_data_['engine'] = 1 # res_ = DasApi.es_query(post_data_) # post_data = dict() # post_data['sql'] = 'select * from main_test.log_player_op limit 10;' # res_ = DasApi.ch_query(post_data) # # print (res_)
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/dbops/das_api.py
das_api.py
from abc import abstractmethod import pandas as pd from pymongo import MongoClient from yyxx_game_pkg.dbops.base import DatabaseOperation from yyxx_game_pkg.dbops.mongo_op.sql2mongo import sql_to_mongo_spec from yyxx_game_pkg.utils.decorator import ( except_monitor, log_execute_time_monitor, singleton_unique, ) @singleton_unique class SingletonMongoClient(MongoClient): """ SingletonMongo 根据db链接确定单例 """ def __init__(self, mongo_uri): super().__init__(mongo_uri) def query_sql(self, sql, collection=None): """ sql 查询接口 仅支持select语法 暂不支持join 别名仅支持关键字使用[仅能识别 name as player_name 不能识别 name player_name]: as 支持判断关键字: = > < != in like 支持聚合关键字: [group by [cols]] sum, count, avg, min, max 支持排序关键字: order by desc[asc] 支持翻页关键字: limit 0 [,30] :param sql: :param collection: :return: """ assert collection is not None mongo_spec = sql_to_mongo_spec(sql) pipeline = [] for k, val in mongo_spec.items(): if k == "documents": continue if not val: continue pipeline.append({k: val}) docs = mongo_spec.get("documents") cursor = self[collection][docs].aggregate(pipeline) return pd.DataFrame(list(cursor)) class PyMongoClient: """ PyMongoClient """ def __init__(self, mongo_uri, db_name): self.db_name = db_name self.mgo_client = SingletonMongoClient(mongo_uri) def __getattr__(self, item): return self.mgo_client.__getattr__(item) def __getitem__(self, item): return self.mgo_client.__getitem__(item) @property def game_db(self): """ :return: """ return self.mgo_client[self.db_name] def query(self, sql): """ :param sql: :return: """ return self.mgo_client.query_sql(sql, self.db_name) class MongoOperation(DatabaseOperation): """ MongoOperation """ @abstractmethod def get_mongo_info(self, *args, **kwargs) -> {str, str}: """ :param args: :param kwargs: :return: """ @staticmethod def new_client(mongo_url, game_db) -> PyMongoClient: """ :param mongo_url: :param game_db: :return: """ mgo_client = PyMongoClient(mongo_url, game_db) return mgo_client @except_monitor @log_execute_time_monitor() def get_one_df(self, sql, *args, **kwargs): """ :param sql: :param args: :param kwargs: :return: """ mongo_url, game_db = self.get_mongo_info(*args, **kwargs) res_df = self.new_client(mongo_url, game_db).query(sql) return res_df.iloc[0] if not res_df.empty else res_df @except_monitor @log_execute_time_monitor() def get_all_df(self, sql, *args, **kwargs): """ :param sql: :param args: :param kwargs: :return: """ mongo_url, game_db = self.get_mongo_info(*args, **kwargs) res_df = self.new_client(mongo_url, game_db).query(sql) return res_df
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/dbops/mongo_op/mongo_op.py
mongo_op.py
from pyparsing import ( Word, alphas, CaselessKeyword, Group, Optional, ZeroOrMore, Forward, Suppress, alphanums, OneOrMore, quotedString, Combine, Keyword, Literal, replaceWith, oneOf, nums, removeQuotes, QuotedString, Dict, ) # keyword declare LPAREN, RPAREN = map(Suppress, "()") EXPLAIN = CaselessKeyword("EXPLAIN").setParseAction(lambda t: {"explain": True}) SELECT = Suppress(CaselessKeyword("SELECT")) DISTINCT = CaselessKeyword("distinct") COUNT = CaselessKeyword("count") WHERE = Suppress(CaselessKeyword("WHERE")) FROM = Suppress(CaselessKeyword("FROM")) CONDITIONS = oneOf("= != < > <= >= like", caseless=True) AND = CaselessKeyword("and") OR = CaselessKeyword("or") ORDER_BY = Suppress(CaselessKeyword("ORDER BY")) GROUP_BY = Suppress(CaselessKeyword("GROUP BY")) DESC = CaselessKeyword("desc") ASC = CaselessKeyword("asc") LIMIT = Suppress(CaselessKeyword("LIMIT")) SKIP = Suppress(CaselessKeyword("SKIP")) # aggregate func AGG_SUM = CaselessKeyword("sum") AGG_AVG = CaselessKeyword("avg") AGG_MAX = CaselessKeyword("max") AGG_MIN = CaselessKeyword("min") AGG_WORDS = AGG_SUM | AGG_AVG | AGG_MIN | AGG_MAX def sql_to_spec(query_sql): """ Convert a SQL query to a spec dict for parsing. Support Sql Statement [select, from ,where, limit, count(*), order by, group by] param query_sql: string. standard sql return: None or a dictionary """ # morphology word_match = Word(alphanums + "._") | quotedString optional_as = Optional(Suppress(CaselessKeyword("as")) + word_match) word_as_match = Group(word_match + optional_as) number = Word(nums) # select select_word = word_as_match | Group(Keyword("*")) count_ = Group(COUNT + LPAREN + Keyword("*") + RPAREN) count_word = Group(count_ + optional_as) select_agg = Group(AGG_WORDS + Suppress(LPAREN) + word_match + Suppress(RPAREN)) select_agg_word = Group(select_agg + optional_as) select_complex = count_word | select_agg_word | select_word select_clause = ( SELECT + select_complex + ZeroOrMore(Suppress(",") + select_complex) ).setParseAction(lambda matches: {"select": matches.asList()}) # from from_clause = (FROM + word_match).setParseAction( lambda matches: {"from": matches[0]} ) # where in_condition = ( word_match + CaselessKeyword("in") + LPAREN + (word_match + ZeroOrMore(Suppress(",") + word_match)) + RPAREN ) def condition_prefix(matches=None): vals = matches[2:] fix_vals = [] for val in vals: if val.find("'") == -1 and val.isdigit(): val = int(val) else: val = val.strip("'") fix_vals.append(val) return [matches[0:2] + fix_vals] condition = (in_condition | (word_match + CONDITIONS + word_match)).setParseAction( condition_prefix ) def condition_combine(matches=None): if not matches: return {} if len(matches) == 1: return matches res = {f"{matches[1]}": [matches[0], matches[2]]} left_ = matches[3:] for i in range(0, len(left_), 2): key_word, cond = left_[i], left_[i + 1] res = {f"{key_word}": [res, cond]} return res term = ( OneOrMore(condition) + ZeroOrMore((AND + condition) | (OR + condition)) ).setParseAction(condition_combine) where_clause = (WHERE + term).setParseAction( lambda matches: {"where": matches.asList()} ) # group by group_by_clause = ( GROUP_BY + word_match + ZeroOrMore(Suppress(",") + word_match) ).setParseAction(lambda matches: {"group": matches.asList()}) # order by order_by_word = Group(word_match + Optional(DESC | ASC)) order_by_clause = ( ORDER_BY + order_by_word + ZeroOrMore(Suppress(",") + order_by_word) ).setParseAction(lambda matches: {"order": matches.asList()}) # limit def limit_prefix(matches=None): matches = list(map(int, matches)) return {"limit": matches} limit_clause = (LIMIT + number + Optional(Suppress(",") + number)).setParseAction( limit_prefix ) list_term = ( Optional(EXPLAIN) + select_clause + from_clause + Optional(where_clause) + Optional(group_by_clause) + Optional(order_by_clause) + Optional(limit_clause) ) expr = Forward() expr << list_term ret = expr.parseString(query_sql.strip()) spec_dict = {} for d in ret: spec_dict.update(d) return spec_dict COND_KEYWORDS = { "=": "$eq", "!=": "$ne", ">": "$gt", ">=": "$gte", "<": "$lt", "<=": "$lte", "like": "$regex", "or": "$or", "and": "$and", "in": "$in", } def create_mongo_spec(spec_dict): """ param sql: string. standard sql return: dict mongo aggregate pipeline params """ # parsing from from_spec = spec_dict.get("from") if not from_spec: raise ValueError(f"Error 'from' spec {spec_dict}") spec_parse_results = {} # parsing select op_func_map = { "count": "$sum", "sum": "$sum", "avg": "$avg", "max": "$max", "min": "$min", } select_spec = spec_dict.get("select") select_results = { "$project": {}, "$addFields": {}, "$group": {}, "documents": from_spec, } drop_id = True for lst_field in select_spec: if len(lst_field) == 2: real_field, as_field = lst_field else: real_field, as_field = lst_field[0], None if isinstance(real_field, str): if not isinstance(real_field, str): continue if real_field == "*": drop_id = False break if real_field == "_id": drop_id = False if as_field: select_results["$project"].update({f"{as_field}": f"${real_field}"}) else: select_results["$project"].update({real_field: 1}) elif isinstance(real_field, list): # [count, sum ,avg, ...] select_results["$group"].update({"_id": None}) agg_func, agg_key = real_field real_field = f"{agg_func}({agg_key})" op_func = op_func_map[agg_func] op_val = 1 if agg_key == "*" else f"${agg_key}" if as_field: select_results["$group"].update({as_field: {op_func: op_val}}) else: select_results["$group"].update({real_field: {op_func: op_val}}) if drop_id: select_results["$project"].update({"_id": 0}) # where parsing where_spec = spec_dict.get("where") where_results = {} if where_spec: where_spec = where_spec[0] where_results.update({"$match": combine_where(where_spec)}) # limit parsing limit_spec = spec_dict.get("limit") limit_results = {} if limit_spec: if len(limit_spec) == 1: limit_results["$limit"] = limit_spec[0] else: limit_results["$skip"] = limit_spec[0] limit_results["$limit"] = limit_spec[1] # group by parsing group_spec = spec_dict.get("group") group_id = {} if group_spec: for group_key in group_spec: group_id[group_key] = f"${group_key}" select_results["$group"].update({"_id": group_id}) # order by parsing order_spec = spec_dict.get("order") order_results = {} if order_spec: order_results["$sort"] = {} for order_lst in order_spec: if len(order_lst) == 1: order_results["$sort"].update({order_lst[0]: 1}) else: asc = 1 if order_lst[1] == "asc" else -1 order_results["$sort"].update({order_lst[0]: asc}) spec_parse_results.update(select_results) spec_parse_results.update(where_results) spec_parse_results.update(limit_results) spec_parse_results.update(order_results) return spec_parse_results def combine_where(where_spec): if isinstance(where_spec, list): if isinstance(where_spec[0], str): key, op_word = where_spec[:2] vals = where_spec[2:] op_word = COND_KEYWORDS[op_word] if op_word == "$in": val = vals else: val = vals[0] if op_word == "$regex": val = val.strip("'") if val[0] == "%": val = val[1:] else: val = f"^{val}" if val[-1] == "%": val = val[:-1] else: val = f"{val}$" return {key: {op_word: val}} else: res = [] for spec in where_spec: res.append(combine_where(spec)) return res else: for op_word, vals in where_spec.items(): val_res = combine_where(vals) return {COND_KEYWORDS[op_word]: val_res} if __name__ == "__main__": # sql = """ # select gid, name, leader_name, level, nMember, power, create_tm # from test_2999999.guild # where create_tm > 1664431200.0 # AND create_tm <= 1666799999.0 # AND name like '%吃啥%' # OR leader_name like '999' # gid in (1001, '1002', '12223') # order by level, power limit 0,30 # """ # sql = """ # SELECT * FROM player WHERE _id = 2079 and name = 'c是的' and pid='2079' # """ # # sql = """ # select count(*) as a # from player # group by online, _id # """ # sql = """ # select * # from test_999999.player # where _id = 1146 and max_power >= 3000 or pid > 1010 # limit 10, 10 # """ # sql = """ # select gid, name, leader, level, nMember, power, create_tm # from guild # where create_tm > 1684396800 # and create_tm <= 1688486399 # # order by level desc, power # limit 0,30 # """ # todo unit test sql = """ select sum(online) as online_cnt from player """ sql_spec = sql_to_spec(sql) print(sql_spec) mongo_spec = create_mongo_spec(sql_spec) print(mongo_spec)
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/dbops/mongo_op/sql2mongo/sql2mongo.py
sql2mongo.py
import argparse from celery import Celery from yyxx_game_pkg.stat.log import root_log class CeleryInstance: """ celery 接口 """ # region external @staticmethod def get_celery_instance(): """ 加载celery相关配置 获取celery实例 :return: """ celery_name = CeleryInstance._args().name _app = Celery(celery_name) # 初始化celery _app.config_from_envvar("CELERY_CONFIG_MODULE") # 加载配置 conf_jaeger = _app.conf.get("JAEGER") if conf_jaeger: from opentelemetry.instrumentation.celery import CeleryInstrumentor from opentelemetry.instrumentation.requests import RequestsInstrumentor from yyxx_game_pkg.xtrace.helper import register_to_jaeger if celery_name: conf_jaeger["service_name"] += f"-{celery_name}" register_to_jaeger(**conf_jaeger) CeleryInstrumentor().instrument() RequestsInstrumentor().instrument() root_log(f"<CeleryInstance> tracer on, jaeger:{conf_jaeger}") log_str = ( f"<CeleryInstance> get_celery_instance, app_name:{celery_name}, config:{_app.conf}, publish_flag:" f"{_app.conf.get('PUBLISH_FLAG')}" ) root_log(log_str) return _app @staticmethod def get_current_task_id(): """ 当前task id [如果有] :return: """ from celery import current_task try: return current_task.request.id except: return -1 # endregion # region inner @staticmethod def _args(): """ argparse -n 服务名 -c 配置文件 :return: """ parser = argparse.ArgumentParser(allow_abbrev=False) parser.add_argument("-n", "--name") args = parser.parse_known_args() return args[0] # endregion # region celery实例化 """ app.conf.get('worker_max_tasks_per_child', 0) """ # app = CeleryInstance.get_celery_instance() # endregion
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/stat/xcelery/instance.py
instance.py
import traceback from yyxx_game_pkg.stat.dispatch.common.common import fastapi_except_monitor from yyxx_game_pkg.stat.log import local_log from yyxx_game_pkg.stat.dispatch.core.manager import RuleManager from yyxx_game_pkg.stat.dispatch.core.structs import ProtoSchedule from yyxx_game_pkg.stat.dispatch.core.workflows import WorkFlowMethods # region logic入口 from yyxx_game_pkg.xtrace.helper import get_current_trace_id @fastapi_except_monitor def task_logic(msg): # 解析命令,构建任务标签列表 task_sig_list = parse_task(msg) if not task_sig_list: err_msg = f"<task_logic> main_dispatch_logic, parse task failed: {traceback.format_exc()}" local_log(err_msg) return [] # 分发任务 return dispatch_tasks(task_sig_list) # endregion # region 任务解析 def parse_task(schedule): """ 解析命令 :param schedule: :return: """ task_sig_list = [] # 反序列化 schedule = ProtoSchedule().to_schedule(schedule) instance_name = schedule.SCHEDULE_DISPATCH_RULE_INSTANCE_NAME # 校验队列名 if schedule.SCHEDULE_QUEUE_NAME is None: local_log( f"<parse_command_data> SCHEDULE_QUEUE_NAME is None, schedule:{schedule}" ) return task_sig_list # 获取对应计划解析规则 rule = RuleManager().rules.get(instance_name) if not rule: local_log(f"<parse_command_data> rule is None, instance_name:{instance_name}") return task_sig_list # 构建signature列表 schedule_sig = rule.build(schedule) if not schedule_sig: return task_sig_list # link if isinstance(schedule_sig, list): task_sig_list.extend(schedule_sig) else: task_sig_list.append(schedule_sig) return task_sig_list # endregion # region 任务分发 def _dispatch_one_task(task_sig, queue_priority, queue_name=None): common_options = { "priority": queue_priority, # 'serializer': 'pickle' "headers": {"X-Trace-ID": get_current_trace_id()}, } if queue_name is not None: # 强制指定队列名 res = task_sig.apply_async(queue=queue_name, **common_options) else: # 动态队列名 res = task_sig.apply_async(**common_options) # 根据res获取task id task_id_list = [] WorkFlowMethods.fill_res_task_id_list(res, task_id_list) return res.id, task_id_list def dispatch_tasks(task_sig_list): task_id_list = [] # task id列表 task_type_list = [] # task类型列表(日志显示用) task_queue_flag_list = [] # task队列名列表(日志显示用) task_cnt = 0 # task数(日志显示用) max_sig_cnt = 0 # 单次提交任务数峰值(日志显示用) for task_sig in task_sig_list: task_type_list.append(type(task_sig)) queue_flag = WorkFlowMethods.get_task_sig_queue_name(task_sig) task_queue_flag_list.append(queue_flag) # 解析queue_flag,获取队列名和优先级 queue_name, queue_priority = _parse_queue_flag(queue_flag) # 获取任务数 WorkFlowMethods.reset_max_sig_cnt() task_cnt += WorkFlowMethods.calculate_sig_cnt(task_sig) max_sig_cnt = max(WorkFlowMethods.get_max_sig_cnt(), max_sig_cnt) # 提交任务 m_task_id, s_task_id_list = _dispatch_one_task(task_sig, queue_priority) task_id_list.append(m_task_id) local_log( f"<dispatch_tasks> record_task_id, queue:{queue_name}, " f"priority:{queue_priority}, m_task_id:{m_task_id}, " f"s_task_len:{len(s_task_id_list)}, s_task_id_list:{s_task_id_list}" ) local_log( f"<dispatch_tasks> dispatch_tasks, queue_name:{task_queue_flag_list} " f"task_cnt:{task_cnt}, max_sig_cnt:{max_sig_cnt}" ) return task_id_list def _parse_queue_flag(queue_flag): """ 解析队列名标识 :param queue_flag: :return: """ default_priority = 3 # 默认队列优先级 if queue_flag is None: # assert False return [None], default_priority res_list = queue_flag.split("@") queue_name = res_list[0] priority = min(int(res_list[1]), 10) if len(res_list) > 1 else default_priority return queue_name, priority # endregion
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/stat/dispatch/logic/task_logic.py
task_logic.py
from yyxx_game_pkg.stat.log import local_log from yyxx_game_pkg.stat.dispatch.core.manager import rule_register from yyxx_game_pkg.stat.dispatch.core.workflows import WorkFlowMethods from yyxx_game_pkg.stat.dispatch.logic.task_logic import parse_task from yyxx_game_pkg.stat.dispatch.rules.rule_base import RuleBase @rule_register(inst_name_list=["work_flow_instance"]) class DispatchRuleWorkFlow(RuleBase): def __init__(self): super(self.__class__, self).__init__() # region 继承方法 def build(self, schedule): """ 构建分发任务标签 :return: [group, chord, chain, signature] """ return self.__logic_make_sig(schedule) # endregion # region 内部方法 def __logic_make_sig(self, schedule): flow_content_dict = schedule.SCHEDULE_CONTENT assert isinstance(flow_content_dict, dict) sig_list = [] for _, flow_content in flow_content_dict.items(): sig = self.__make_sig_by_content(schedule, flow_content) if not sig: continue sig_list.append(sig) return sig_list def __parse_flow_content(self, flow_content): assert isinstance(flow_content, dict) dict_step_sig_list = dict() min_step = 65535 max_step = -1 for step, content_list in flow_content.items(): step = int(step) min_step = min(step, min_step) max_step = max(step, max_step) for schedule_str in content_list: if schedule_str == self.inst_name: # 工作流的子计划中不能再包含工作流 local_log( "[ERROR] <DispatchRuleWorkFlow> __parse_flow_content, " "workflow can not contain workflow, schedule:{}".format( schedule_str ) ) return None, -1, -1 sub_sig_list = parse_task(schedule_str) if not sub_sig_list: # 不能跳过sig local_log( "[ERROR] <DispatchRuleWorkFlow> __parse_flow_content, " "parse_schedule_str_to_signature, schedule:{}".format( schedule_str ) ) return None, -1, -1 if not dict_step_sig_list.get(step): dict_step_sig_list[step] = [] if isinstance(sub_sig_list, list): dict_step_sig_list[step].extend(sub_sig_list) else: dict_step_sig_list[step].append(sub_sig_list) return dict_step_sig_list, min_step, max_step def __make_sig_by_content(self, schedule, flow_content): dict_step_sig_list, min_step, max_step = self.__parse_flow_content(flow_content) if dict_step_sig_list is None: local_log( "[ERROR] <DispatchRuleWorkFlow>dict_step_sig_list is None, content:{}".format( flow_content ) ) return None queue_name = dict_step_sig_list[min_step][0].options.get("queue") # step合并 step_sig_list = [] for step in range(min_step, max_step + 1): # 按照step先后顺序构建sig列表 sig_list = dict_step_sig_list.get(step) if not sig_list: continue res_sig = WorkFlowMethods.merge_sig_list(sig_list) # 多个相同同step的sig合并 step_sig_list.append(res_sig) # 构建chord ch = WorkFlowMethods.link_signatures(step_sig_list) if ch is None: local_log( "[ERROR] <DispatchRuleWorkFlow>__make_sig_by_content, make chord error, content:{}".format( flow_content ) ) else: local_log( "<DispatchRuleWorkFlow>__make_sig_by_content, queue:{} steps:{}".format( queue_name, max_step ) ) return ch # endregion
yyxx-game-pkg-compat
/yyxx_game_pkg_compat-2023.8.31.2-py3-none-any.whl/yyxx_game_pkg/stat/dispatch/rules/rule_workflow.py
rule_workflow.py