code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
import os from pathlib import Path from vehicle.utils import LOGGER, RANK, SETTINGS, TESTS_RUNNING, ops from vehicle.utils.torch_utils import model_info_for_loggers try: import comet_ml assert not TESTS_RUNNING # do not log pytest assert hasattr(comet_ml, '__version__') # verify package is not directory assert SETTINGS['comet'] is True # verify integration is enabled except (ImportError, AssertionError): comet_ml = None # Ensures certain logging functions only run for supported tasks COMET_SUPPORTED_TASKS = ['detect'] # Names of plots created by YOLOv8 that are logged to Comet EVALUATION_PLOT_NAMES = 'F1_curve', 'P_curve', 'R_curve', 'PR_curve', 'confusion_matrix' LABEL_PLOT_NAMES = 'labels', 'labels_correlogram' _comet_image_prediction_count = 0 def _get_comet_mode(): return os.getenv('COMET_MODE', 'online') def _get_comet_model_name(): return os.getenv('COMET_MODEL_NAME', 'YOLOv8') def _get_eval_batch_logging_interval(): return int(os.getenv('COMET_EVAL_BATCH_LOGGING_INTERVAL', 1)) def _get_max_image_predictions_to_log(): return int(os.getenv('COMET_MAX_IMAGE_PREDICTIONS', 100)) def _scale_confidence_score(score): scale = float(os.getenv('COMET_MAX_CONFIDENCE_SCORE', 100.0)) return score * scale def _should_log_confusion_matrix(): return os.getenv('COMET_EVAL_LOG_CONFUSION_MATRIX', 'false').lower() == 'true' def _should_log_image_predictions(): return os.getenv('COMET_EVAL_LOG_IMAGE_PREDICTIONS', 'true').lower() == 'true' def _get_experiment_type(mode, project_name): """Return an experiment based on mode and project name.""" if mode == 'offline': return comet_ml.OfflineExperiment(project_name=project_name) return comet_ml.Experiment(project_name=project_name) def _create_experiment(args): """Ensures that the experiment object is only created in a single process during distributed training.""" if RANK not in (-1, 0): return try: comet_mode = _get_comet_mode() _project_name = os.getenv('COMET_PROJECT_NAME', args.project) experiment = _get_experiment_type(comet_mode, _project_name) experiment.log_parameters(vars(args)) experiment.log_others({ 'eval_batch_logging_interval': _get_eval_batch_logging_interval(), 'log_confusion_matrix_on_eval': _should_log_confusion_matrix(), 'log_image_predictions': _should_log_image_predictions(), 'max_image_predictions': _get_max_image_predictions_to_log(), }) experiment.log_other('Created from', 'yolov8') except Exception as e: LOGGER.warning(f'WARNING ⚠️ Comet installed but not initialized correctly, not logging this run. {e}') def _fetch_trainer_metadata(trainer): """Returns metadata for YOLO training including epoch and asset saving status.""" curr_epoch = trainer.epoch + 1 train_num_steps_per_epoch = len(trainer.train_loader.dataset) // trainer.batch_size curr_step = curr_epoch * train_num_steps_per_epoch final_epoch = curr_epoch == trainer.epochs save = trainer.args.save save_period = trainer.args.save_period save_interval = curr_epoch % save_period == 0 save_assets = save and save_period > 0 and save_interval and not final_epoch return dict( curr_epoch=curr_epoch, curr_step=curr_step, save_assets=save_assets, final_epoch=final_epoch, ) def _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad): """YOLOv8 resizes images during training and the label values are normalized based on this resized shape. This function rescales the bounding box labels to the original image shape. """ resized_image_height, resized_image_width = resized_image_shape # Convert normalized xywh format predictions to xyxy in resized scale format box = ops.xywhn2xyxy(box, h=resized_image_height, w=resized_image_width) # Scale box predictions from resized image scale back to original image scale box = ops.scale_boxes(resized_image_shape, box, original_image_shape, ratio_pad) # Convert bounding box format from xyxy to xywh for Comet logging box = ops.xyxy2xywh(box) # Adjust xy center to correspond top-left corner box[:2] -= box[2:] / 2 box = box.tolist() return box def _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, class_name_map=None): """Format ground truth annotations for detection.""" indices = batch['batch_idx'] == img_idx bboxes = batch['bboxes'][indices] if len(bboxes) == 0: LOGGER.debug(f'COMET WARNING: Image: {image_path} has no bounding boxes labels') return None cls_labels = batch['cls'][indices].squeeze(1).tolist() if class_name_map: cls_labels = [str(class_name_map[label]) for label in cls_labels] original_image_shape = batch['ori_shape'][img_idx] resized_image_shape = batch['resized_shape'][img_idx] ratio_pad = batch['ratio_pad'][img_idx] data = [] for box, label in zip(bboxes, cls_labels): box = _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad) data.append({ 'boxes': [box], 'label': f'gt_{label}', 'score': _scale_confidence_score(1.0), }) return {'name': 'ground_truth', 'data': data} def _format_prediction_annotations_for_detection(image_path, metadata, class_label_map=None): """Format YOLO predictions for object detection visualization.""" stem = image_path.stem image_id = int(stem) if stem.isnumeric() else stem predictions = metadata.get(image_id) if not predictions: LOGGER.debug(f'COMET WARNING: Image: {image_path} has no bounding boxes predictions') return None data = [] for prediction in predictions: boxes = prediction['bbox'] score = _scale_confidence_score(prediction['score']) cls_label = prediction['category_id'] if class_label_map: cls_label = str(class_label_map[cls_label]) data.append({'boxes': [boxes], 'label': cls_label, 'score': score}) return {'name': 'prediction', 'data': data} def _fetch_annotations(img_idx, image_path, batch, prediction_metadata_map, class_label_map): """Join the ground truth and prediction annotations if they exist.""" ground_truth_annotations = _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, class_label_map) prediction_annotations = _format_prediction_annotations_for_detection(image_path, prediction_metadata_map, class_label_map) annotations = [ annotation for annotation in [ground_truth_annotations, prediction_annotations] if annotation is not None] return [annotations] if annotations else None def _create_prediction_metadata_map(model_predictions): """Create metadata map for model predictions by groupings them based on image ID.""" pred_metadata_map = {} for prediction in model_predictions: pred_metadata_map.setdefault(prediction['image_id'], []) pred_metadata_map[prediction['image_id']].append(prediction) return pred_metadata_map def _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch): """Log the confusion matrix to Comet experiment.""" conf_mat = trainer.validator.confusion_matrix.matrix names = list(trainer.data['names'].values()) + ['background'] experiment.log_confusion_matrix( matrix=conf_mat, labels=names, max_categories=len(names), epoch=curr_epoch, step=curr_step, ) def _log_images(experiment, image_paths, curr_step, annotations=None): """Logs images to the experiment with optional annotations.""" if annotations: for image_path, annotation in zip(image_paths, annotations): experiment.log_image(image_path, name=image_path.stem, step=curr_step, annotations=annotation) else: for image_path in image_paths: experiment.log_image(image_path, name=image_path.stem, step=curr_step) def _log_image_predictions(experiment, validator, curr_step): """Logs predicted boxes for a single image during training.""" global _comet_image_prediction_count task = validator.args.task if task not in COMET_SUPPORTED_TASKS: return jdict = validator.jdict if not jdict: return predictions_metadata_map = _create_prediction_metadata_map(jdict) dataloader = validator.dataloader class_label_map = validator.names batch_logging_interval = _get_eval_batch_logging_interval() max_image_predictions = _get_max_image_predictions_to_log() for batch_idx, batch in enumerate(dataloader): if (batch_idx + 1) % batch_logging_interval != 0: continue image_paths = batch['im_file'] for img_idx, image_path in enumerate(image_paths): if _comet_image_prediction_count >= max_image_predictions: return image_path = Path(image_path) annotations = _fetch_annotations( img_idx, image_path, batch, predictions_metadata_map, class_label_map, ) _log_images( experiment, [image_path], curr_step, annotations=annotations, ) _comet_image_prediction_count += 1 def _log_plots(experiment, trainer): """Logs evaluation plots and label plots for the experiment.""" plot_filenames = [trainer.save_dir / f'{plots}.png' for plots in EVALUATION_PLOT_NAMES] _log_images(experiment, plot_filenames, None) label_plot_filenames = [trainer.save_dir / f'{labels}.jpg' for labels in LABEL_PLOT_NAMES] _log_images(experiment, label_plot_filenames, None) def _log_model(experiment, trainer): """Log the best-trained model to Comet.ml.""" model_name = _get_comet_model_name() experiment.log_model( model_name, file_or_folder=str(trainer.best), file_name='best.pt', overwrite=True, ) def on_pretrain_routine_start(trainer): """Creates or resumes a CometML experiment at the start of a YOLO pre-training routine.""" experiment = comet_ml.get_global_experiment() is_alive = getattr(experiment, 'alive', False) if not experiment or not is_alive: _create_experiment(trainer.args) def on_train_epoch_end(trainer): """Log metrics and save batch images at the end of training epochs.""" experiment = comet_ml.get_global_experiment() if not experiment: return metadata = _fetch_trainer_metadata(trainer) curr_epoch = metadata['curr_epoch'] curr_step = metadata['curr_step'] experiment.log_metrics( trainer.label_loss_items(trainer.tloss, prefix='train'), step=curr_step, epoch=curr_epoch, ) if curr_epoch == 1: _log_images(experiment, trainer.save_dir.glob('train_batch*.jpg'), curr_step) def on_fit_epoch_end(trainer): """Logs model assets at the end of each epoch.""" experiment = comet_ml.get_global_experiment() if not experiment: return metadata = _fetch_trainer_metadata(trainer) curr_epoch = metadata['curr_epoch'] curr_step = metadata['curr_step'] save_assets = metadata['save_assets'] experiment.log_metrics(trainer.metrics, step=curr_step, epoch=curr_epoch) experiment.log_metrics(trainer.lr, step=curr_step, epoch=curr_epoch) if curr_epoch == 1: experiment.log_metrics(model_info_for_loggers(trainer), step=curr_step, epoch=curr_epoch) if not save_assets: return _log_model(experiment, trainer) if _should_log_confusion_matrix(): _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch) if _should_log_image_predictions(): _log_image_predictions(experiment, trainer.validator, curr_step) def on_train_end(trainer): """Perform operations at the end of training.""" experiment = comet_ml.get_global_experiment() if not experiment: return metadata = _fetch_trainer_metadata(trainer) curr_epoch = metadata['curr_epoch'] curr_step = metadata['curr_step'] plots = trainer.args.plots _log_model(experiment, trainer) if plots: _log_plots(experiment, trainer) _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch) _log_image_predictions(experiment, trainer.validator, curr_step) experiment.end() global _comet_image_prediction_count _comet_image_prediction_count = 0 callbacks = { 'on_pretrain_routine_start': on_pretrain_routine_start, 'on_train_epoch_end': on_train_epoch_end, 'on_fit_epoch_end': on_fit_epoch_end, 'on_train_end': on_train_end} if comet_ml else {}
zipdetr
/zipdetr-2.0.10.tar.gz/zipdetr-2.0.10/vehicle/utils/callbacks/comet.py
comet.py
import re import matplotlib.image as mpimg import matplotlib.pyplot as plt from vehicle.utils import LOGGER, SETTINGS, TESTS_RUNNING from vehicle.utils.torch_utils import model_info_for_loggers try: import clearml from clearml import Task from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO from clearml.binding.matplotlib_bind import PatchedMatplotlib assert hasattr(clearml, '__version__') # verify package is not directory assert not TESTS_RUNNING # do not log pytest assert SETTINGS['clearml'] is True # verify integration is enabled except (ImportError, AssertionError): clearml = None def _log_debug_samples(files, title='Debug Samples') -> None: """ Log files (images) as debug samples in the ClearML task. Args: files (list): A list of file paths in PosixPath format. title (str): A title that groups together images with the same values. """ task = Task.current_task() if task: for f in files: if f.exists(): it = re.search(r'_batch(\d+)', f.name) iteration = int(it.groups()[0]) if it else 0 task.get_logger().report_image(title=title, series=f.name.replace(it.group(), ''), local_path=str(f), iteration=iteration) def _log_plot(title, plot_path) -> None: """ Log an image as a plot in the plot section of ClearML. Args: title (str): The title of the plot. plot_path (str): The path to the saved image file. """ img = mpimg.imread(plot_path) fig = plt.figure() ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks ax.imshow(img) Task.current_task().get_logger().report_matplotlib_figure(title=title, series='', figure=fig, report_interactive=False) def on_pretrain_routine_start(trainer): """Runs at start of pretraining routine; initializes and connects/ logs task to ClearML.""" try: task = Task.current_task() if task: # Make sure the automatic pytorch and matplotlib bindings are disabled! # We are logging these plots and model files manually in the integration PatchPyTorchModelIO.update_current_task(None) PatchedMatplotlib.update_current_task(None) else: task = Task.init(project_name=trainer.args.project or 'YOLOv8', task_name=trainer.args.name, tags=['YOLOv8'], output_uri=True, reuse_last_task_id=False, auto_connect_frameworks={ 'pytorch': False, 'matplotlib': False}) LOGGER.warning('ClearML Initialized a new task. If you want to run remotely, ' 'please add clearml-init and connect your arguments before initializing YOLO.') task.connect(vars(trainer.args), name='General') except Exception as e: LOGGER.warning(f'WARNING ⚠️ ClearML installed but not initialized correctly, not logging this run. {e}') def on_train_epoch_end(trainer): task = Task.current_task() if task: """Logs debug samples for the first epoch of YOLO training.""" if trainer.epoch == 1: _log_debug_samples(sorted(trainer.save_dir.glob('train_batch*.jpg')), 'Mosaic') """Report the current training progress.""" for k, v in trainer.validator.metrics.results_dict.items(): task.get_logger().report_scalar('train', k, v, iteration=trainer.epoch) def on_fit_epoch_end(trainer): """Reports model information to logger at the end of an epoch.""" task = Task.current_task() if task: # You should have access to the validation bboxes under jdict task.get_logger().report_scalar(title='Epoch Time', series='Epoch Time', value=trainer.epoch_time, iteration=trainer.epoch) if trainer.epoch == 0: for k, v in model_info_for_loggers(trainer).items(): task.get_logger().report_single_value(k, v) def on_val_end(validator): """Logs validation results including labels and predictions.""" if Task.current_task(): # Log val_labels and val_pred _log_debug_samples(sorted(validator.save_dir.glob('val*.jpg')), 'Validation') def on_train_end(trainer): """Logs final model and its name on training completion.""" task = Task.current_task() if task: # Log final results, CM matrix + PR plots files = [ 'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter for f in files: _log_plot(title=f.stem, plot_path=f) # Report final metrics for k, v in trainer.validator.metrics.results_dict.items(): task.get_logger().report_single_value(k, v) # Log the final model task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False) callbacks = { 'on_pretrain_routine_start': on_pretrain_routine_start, 'on_train_epoch_end': on_train_epoch_end, 'on_fit_epoch_end': on_fit_epoch_end, 'on_val_end': on_val_end, 'on_train_end': on_train_end} if clearml else {}
zipdetr
/zipdetr-2.0.10.tar.gz/zipdetr-2.0.10/vehicle/utils/callbacks/clearml.py
clearml.py
from __future__ import division, print_function, absolute_import, unicode_literals import sys import os import binascii import struct import datetime if sys.version_info[0] == 2: import scandir os.scandir = scandir.scandir class EntryBase(object): """ base class for PK headers """ def loaditems(self, fh): """ loads any items refered to by the header """ pass ###################################################### # Decoder classes ###################################################### class CentralDirEntry(EntryBase): HeaderSize = 42 MagicNumber = b'\x01\x02' def __init__(self, baseofs, data, ofs): self.pkOffset = baseofs + ofs - 4 self.createVersion, self.neededVersion, self.flags, self.method, self.timestamp, \ self.crc32, self.compressedSize, self.originalSize, self.nameLength, self.extraLength, \ self.commentLength, self.diskNrStart, self.zipAttrs, self.osAttrs, self.dataOfs = \ struct.unpack_from("<4H4L5HLL", data, ofs) ofs += self.HeaderSize self.nameOffset = baseofs + ofs ofs += self.nameLength self.extraOffset = baseofs + ofs ofs += self.extraLength self.commentOffset = baseofs + ofs ofs += self.commentLength self.endOffset = baseofs + ofs self.name = None self.extra = None self.comment = None def loaditems(self, fh): fh.seek(self.nameOffset) self.name = fh.read(self.nameLength).decode("utf-8", "ignore") fh.seek(self.extraOffset) self.extra = fh.read(self.extraLength) fh.seek(self.commentOffset) self.comment = fh.read(self.commentLength).decode("utf-8", "ignore") def summary(self): def flagdesc(fl): if fl&64: return "AES" if fl&1: return "CRYPT" return "" return "%10d (%5.1f%%) %s %08x [%5s] %s" % ( self.originalSize, 100.0*self.compressedSize/self.originalSize if self.originalSize else 0, datetime.datetime.utcfromtimestamp(self.timestamp), self.crc32, flagdesc(self.flags), self.name ) def __repr__(self): r = "PK.0102: %04x %04x %04x %04x %08x %08x %08x %08x %04x %04x %04x %04x %04x %08x %08x | %08x %08x %08x %08x" % ( self.createVersion, self.neededVersion, self.flags, self.method, self.timestamp, self.crc32, self.compressedSize, self.originalSize, self.nameLength, self.extraLength, self.commentLength, self.diskNrStart, self.zipAttrs, self.osAttrs, self.dataOfs, self.nameOffset, self.extraOffset, self.commentOffset, self.endOffset) if self.name: r += " - " + self.name if self.comment: r += "\n" + self.comment return r class LocalFileHeader(EntryBase): HeaderSize = 26 MagicNumber = b'\x03\x04' def __init__(self, baseofs, data, ofs): self.pkOffset = baseofs + ofs - 4 self.neededVersion, self.flags, self.method, self.timestamp, self.crc32, \ self.compressedSize, self.originalSize, self.nameLength, self.extraLength = \ struct.unpack_from("<3H4LHH", data, ofs) ofs += self.HeaderSize self.nameOffset = baseofs + ofs ofs += self.nameLength self.extraOffset = baseofs + ofs ofs += self.extraLength self.dataOffset = baseofs + ofs ofs += self.compressedSize self.endOffset = baseofs + ofs self.name = None self.extra = None self.data = None def loaditems(self, fh): fh.seek(self.nameOffset) self.name = fh.read(self.nameLength).decode("utf-8", "ignore") fh.seek(self.extraOffset) self.extra = fh.read(self.extraLength) # not loading data def __repr__(self): r = "PK.0304: %04x %04x %04x %08x %08x %08x %08x %04x %04x | %08x %08x %08x %08x" % ( self.neededVersion, self.flags, self.method, self.timestamp, self.crc32, self.compressedSize, self.originalSize, self.nameLength, self.extraLength, self.nameOffset, self.extraOffset, self.dataOffset, self.endOffset) if self.name: r += " - " + self.name return r class EndOfCentralDir(EntryBase): HeaderSize = 18 MagicNumber = b'\x05\x06' def __init__(self, baseofs, data, ofs): self.pkOffset = baseofs + ofs - 4 self.thisDiskNr, self.startDiskNr, self.thisEntries, self.totalEntries, self.dirSize, self.dirOffset, self.commentLength = \ struct.unpack_from("<4HLLH", data, ofs) ofs += self.HeaderSize self.commentOffset = baseofs + ofs ofs += self.commentLength self.endOffset = baseofs + ofs self.comment = None def loaditems(self, fh): fh.seek(self.commentOffset) self.comment = fh.read(self.commentLength) if self.comment.startswith(b'signed by SignApk'): self.comment = repr(self.comment[:17]) + str(binascii.b2a_hex(self.comment[18:]), 'ascii') else: self.comment = self.comment.decode('utf-8', 'ignore') def __repr__(self): r = "PK.0506: %04x %04x %04x %04x %08x %08x %04x | %08x %08x" % ( self.thisDiskNr, self.startDiskNr, self.thisEntries, self.totalEntries, self.dirSize, self.dirOffset, self.commentLength, self.commentOffset, self.endOffset) if self.comment: r += "\n" + self.comment return r class DataDescriptor(EntryBase): HeaderSize = 12 MagicNumber = b'\x07\x08' def __init__(self, baseofs, data, ofs): self.pkOffset = baseofs + ofs - 4 self.crc, self.compSize, self.uncompSize = \ struct.unpack_from("<3L", data, ofs) ofs += self.HeaderSize self.endOffset = baseofs + ofs def __repr__(self): return "PK.0708: %08x %08x %08x | %08x" % ( self.crc, self.compSize, self.uncompSize, self.endOffset) # todo class Zip64EndOfDir(EntryBase): HeaderSize = 0 MagicNumber = b'\x06\x06' def __init__(self, baseofs, data, ofs): self.pkOffset = baseofs + ofs - 4 class Zip64EndOfDirLocator(EntryBase): HeaderSize = 0 MagicNumber = b'\x06\x07' def __init__(self, baseofs, data, ofs): self.pkOffset = baseofs + ofs - 4 class ExtraEntry(EntryBase): HeaderSize = 0 MagicNumber = b'\x06\x08' def __init__(self, baseofs, data, ofs): self.pkOffset = baseofs + ofs - 4 class SpannedArchive(EntryBase): HeaderSize = 0 MagicNumber = b'\x03\x03' def __init__(self, baseofs, data, ofs): self.pkOffset = baseofs + ofs - 4 class ArchiveSignature(EntryBase): HeaderSize = 0 MagicNumber = b'\x05\x05' def __init__(self, baseofs, data, ofs): self.pkOffset = baseofs + ofs - 4 def getDecoderClass(typ): """ return Decoder class for the PK type """ for cls in (CentralDirEntry, LocalFileHeader, EndOfCentralDir, DataDescriptor, Zip64EndOfDir, Zip64EndOfDirLocator, ExtraEntry, SpannedArchive, ArchiveSignature): if cls.MagicNumber == typ: return cls def findPKHeaders(args, fh): """ scan entire file for PK headers """ def processchunk(o, chunk): n = -1 while True: n = chunk.find(b'PK', n+1) if n == -1 or n+4 > len(chunk): break cls = getDecoderClass(chunk[n+2:n+4]) if cls: hdrEnd = n+4+cls.HeaderSize if hdrEnd > len(chunk): continue # todo: skip entries entirely within repeated chunk # if n<64 and hdrEnd>64: # continue yield cls(o, chunk, n+4) prev = b'' o = 0 if args.offset: fh.seek(args.offset, os.SEEK_SET if args.offset >= 0 else os.SEEK_END) o = args.offset while args.length is None or o < args.length: want = args.chunksize if args.length is not None and want > args.length - o: want = args.length - o fh.seek(o) chunk = fh.read(want) if len(chunk) == 0: break for ch in processchunk(o-len(prev), prev+chunk): yield ch # 64 so all header types would fit, exclusive their variable size parts prev = chunk[-64:] o += len(chunk) def scanzip(args, fh): """ do a quick scan of the .zip file, starting by locating the EOD marker """ # 100 bytes is the smallest .zip possible fh.seek(-100, 2) eoddata = fh.read() iEND = eoddata.find(b'PK\x05\x06') if iEND==-1: # try with larger chunk ofs = max(fh.tell()-0x10100, 0) fh.seek(ofs, 0) eoddata = fh.read() iEND = eoddata.find(b'PK\x05\x06') if iEND==-1: print("expected PK0506 - probably not a PKZIP file") return else: ofs = fh.tell()-0x100 eod = EndOfCentralDir(ofs, eoddata, iEND+4) dirofs = eod.dirOffset print(repr(eod)) for _ in range(eod.thisEntries): fh.seek(dirofs) dirdata = fh.read(46) if dirdata[:4] != b'PK\x01\x02': print("expected PK0102") return d = CentralDirEntry(dirofs, dirdata, 4) fh.seek(d.nameOffset) d.name = fh.read(d.nameLength).decode("utf-8", "ignore") if args.verbose: print(repr(d)) else: print(d.summary()) dirofs = d.endOffset def processfile(args, fh): """ process one opened file / url """ if args.quick: scanzip(args, fh) else: for entry in findPKHeaders(args, fh): entry.loaditems(fh) print("%08x: %s" % (entry.pkOffset, entry)) def DirEnumerator(args, path): """ Enumerate all files / links in a directory, optionally recursing into subdirectories, or ignoring links. """ for d in os.scandir(path): try: if d.name == '.' or d.name == '..': pass elif d.is_symlink() and args.skiplinks: pass elif d.is_file(): yield d.path elif d.is_dir() and args.recurse: for f in DirEnumerator(args, d.path): yield f except Exception as e: print("EXCEPTION %s accessing %s/%s" % (e, path, d.name)) def EnumeratePaths(args, paths): """ Enumerate all urls, paths, files from the commandline optionally recursing into subdirectories. """ for fn in paths: try: # 3 - for ftp://, 4 for http://, 5 for https:// if fn.find("://") in (3,4,5): yield fn if os.path.islink(fn) and args.skiplinks: pass elif os.path.isdir(fn) and args.recurse: for f in DirEnumerator(args, fn): yield f elif os.path.isfile(fn): yield fn except Exception as e: print("EXCEPTION %s accessing %s" % (e, fn)) def main(): import argparse parser = argparse.ArgumentParser(description='zipdump - scan file contents for PKZIP data', epilog='zipdump can quickly scan a zip from an URL without downloading the complete archive') parser.add_argument('--verbose', '-v', action='count') parser.add_argument('--cat', '-c', type=str, help='decompress file to stdout') parser.add_argument('--print', '-p', type=str, help='print raw file data to stdout') parser.add_argument('--recurse', '-r', action='store_true', help='recurse into directories') parser.add_argument('--skiplinks', '-L', action='store_true', help='skip symbolic links') parser.add_argument('--offset', '-o', type=int, help='start processing at offset') parser.add_argument('--length', '-l', type=int, help='max length of data to process') parser.add_argument('--quick', '-q', action='store_true', help='Quick dir scan. This is quick with URLs as well.') parser.add_argument('--chunksize', type=int, default=1024*1024) parser.add_argument('FILES', type=str, nargs='*', help='Files or URLs') args = parser.parse_args() if args.FILES: for fn in EnumeratePaths(args, args.FILES): print("==> ", fn, " <==") try: if fn.find("://") in (3,4,5): # when argument looks like a url, use urlstream to open import urlstream with urlstream.open(fn) as fh: processfile(args, fh) else: with open(fn, "rb") as fh: processfile(args, fh) except Exception as e: print("ERROR: %s" % e) raise else: processfile(args, sys.stdin.buffer) if __name__ == '__main__': main()
zipdump
/zipdump-0.1.zip/zipdump-0.1/zipdump.py
zipdump.py
# zipdump Analyze zipfile, either local, or from url `zipdump` can either do a full scan, finding all PK-like headers, or it can do a quick scan ( like the usual `zip -v` type output ). `zipdump -q` works equally quick on web based resources as on local files. This makes it quite easy to quickly investigate a large number of large .zip files without actually needing to download them. I wrote this tool because i wanted to look at the contents of lots of apple ios firmware files without downloading 100s of GB of data. For instance: python zipdump.py -q http://appldnld.apple.com/ios10.0/031-64655-20160705-A371AD14-3E3F-11E6-A58B-C84C60941A1E/com_apple_MobileAsset_SoftwareUpdate/d75e3af423ae0308a8b9e0847292375ba02e3b11.zip `zipdump` works with both python2 and pyton3. (c) 2016 Willem Hengeveld <[email protected]>
zipdump
/zipdump-0.1.zip/zipdump-0.1/README.md
README.md
import sys import re from errno import EINVAL, ENOENT if sys.version_info[0] == 3: import urllib.request from urllib.request import Request urllib2 = urllib.request else: import urllib2 from urllib2 import Request # set this to True when debugging this module debuglog = False def open(url, mode=None): """ Use urlstream.open for doing a simple request, without customizing request headers 'mode' is ignored, it is there to be argument compatible with file.open() """ return urlstream(Request(url)) class urlstream(object): """ urlstream requests chunks from a web resource as directed by read + seek requests """ def __init__(self, req): self.req = req self.absolutepos = 0 self.buffer = None self.bufferstart = None # position of start of buffer def clearrange(self): """ remove Range header from request """ if hasattr(self.req, 'remove_header'): # python3 self.req.remove_header('Range') else: # python2 self.req.headers.pop('Range',None) def next(self, size): """ download next chunk """ # Retrieve anywhere between 64k and 1M byte if size is not None: size = min(max(size, 0x10000), 0x100000) if self.absolutepos < 0: # relative to the end of the file self.req.headers['Range'] = "bytes=%d" % self.absolutepos elif size is None: # open ended range self.req.headers['Range'] = "bytes=%d-" % (self.absolutepos) else: # fixed absolute range self.req.headers['Range'] = "bytes=%d-%d" % (self.absolutepos, self.absolutepos+size-1) if debuglog: print("next: ", self.req.headers['Range']) f = self.doreq() # note: Content-Range header has actual resulting range. # the format of the Content-Range header: # # Content-Range: bytes (\d+)-(\d+)/(\d+) # if self.absolutepos < 0: crange = f.headers.get('Content-Range') if crange: m = re.match(r'bytes\s+(\d+)-', crange) if m: self.absolutepos = int(m.group(1)) return f.read() def read(self, size=None): """ read bytes from stream """ if size is None: if self.absolutepos==0: self.clearrange() if debuglog: print("read: entire file") f = self.doreq() return f.read() # read until end of file return self.next(None) # read chunk until size bytes received data = b"" while size > 0: if self.buffer is None: self.buffer = self.next(size) self.bufferstart = self.absolutepos if self.buffer is None: return data slicestart = self.absolutepos - self.bufferstart want = min(size, len(self.buffer)-slicestart) sliceend = slicestart+want data += self.buffer[slicestart:sliceend] if sliceend == len(self.buffer): self.buffer = None self.bufferstart = None self.absolutepos += want size -= want return data def seek(self, size, whence=0): """ seek to a different offset """ if debuglog: print("seek", size, whence) if whence == 0 and size>=0: self.absolutepos = size elif whence == 1: self.absolutepos += size elif whence == 2 and size<0: self.absolutepos = size else: raise IOError(EINVAL, "Invalid seek arguments") if self.buffer and not self.bufferstart <= self.absolutepos < self.bufferstart+len(self.buffer): self.buffer = None self.bufferstart = None def tell(self): """ return current absolute position """ if self.absolutepos>=0: if debuglog: print("tell -> ", self.absolutepos) return self.absolutepos # note: with python3 i could have used the 'method' property saved_method = self.req.get_method self.req.get_method = lambda : 'HEAD' if debuglog: print("tell: HEAD") self.clearrange() try: head_response = self.doreq() result = head_response.getcode() except urllib2.HTTPError as err: self.req.get_method = saved_method raise self.req.get_method = saved_method self.contentLength = int(head_response.headers.get("Content-Length")) self.absolutepos += self.contentLength return self.absolutepos def doreq(self): """ do the actual http request, translating 404 into ENOENT """ try: return urllib2.urlopen(self.req) except urllib2.HTTPError as err: if err.code!=404: raise raise IOError(ENOENT, "Not found") # for supporting 'with' def __enter__(self): return self def __exit__(self, type, value, traceback): pass
zipdump
/zipdump-0.1.zip/zipdump-0.1/urlstream.py
urlstream.py
Look help at each command. zipe only supports cp932 and utf-8 as encoding to. And no support making encrypt zip archive for now. :: usage: zipe [-h] [-F ENCODING] -T ENCODING [-r] [-v] [-x EXCLUDE | -i INCLUDE] ZIP_FILE ENTRY [ENTRY ...] Zipper for not native encoded filename file positional arguments: ZIP_FILE ZIP archive ENTRY file entries optional arguments: -h, --help show this help message and exit -F ENCODING, --from ENCODING filename encoding from(Default sys.getfilesystemencoding()) -T ENCODING, --to ENCODING filename encoding to -r, --recursive archive recursively -v, --verbose verbose mode -x EXCLUDE, --exclude EXCLUDE exclude file pattern in RegExp -i INCLUDE, --include INCLUDE include file pattern in RegExp :: usage: unzipe [-h] [-l] [-P PASSWORD] [--force] -F ENCODING [-T ENCODING] [-x EXCLUDE | -i INCLUDE] ZIP_FILE [ENTRY [ENTRY ...]] Unzipper for not native encoded filename file positional arguments: ZIP_FILE ZIP archive ENTRY can specify file entries optional arguments: -h, --help show this help message and exit -l, --list list entries instead of extracting -P PASSWORD, --password PASSWORD password for encrypted --force extract file even if its absolute path -v, --verbose verbose mode -F ENCODING, --from ENCODING filename encoding from -T ENCODING, --to ENCODING filename encoding to(Default sys.getfilesystemencoding()) -x EXCLUDE, --exclude EXCLUDE exclude filename pattern in RegExp -i INCLUDE, --include INCLUDE include filename pattern in RegExp
zipe
/zipe-0.1.3.tar.gz/zipe-0.1.3/README.rst
README.rst
zipencrypt ========== zipencrypt is a Python module to provide *weak* password-based encryption for zipfiles. It is meant as a drop-in replacement for zipfile from the standard lib and provides the counterpart to the decryption implemented there. It is implemented in pure python and does not rely on any 3rd party libraries. Compatible to python 2.7 and 3.4+ Installation ------------ :: pip install zipencrypt The code -------- .. code:: python from zipencrypt import ZipFile with ZipFile("file.zip", mode="w") as f: f.writestr("file1.txt", "plaintext", pwd=b"password") Do not use this! ---------------- The standard encryption of ZIP is known to be seriously flawed (see `here <https://en.wikipedia.org/wiki/Zip_(file_format)#Encryption>`_). That is probably the reason why it is not implemented in zipfile in the standard lib. There are however legitimate use cases.
zipencrypt
/zipencrypt-0.3.1.tar.gz/zipencrypt-0.3.1/README.rst
README.rst
# zipexec is a pure python alternative to zipgrep zipexec allows you to specify any command line utiliity you would like to run against a group of ```.zip``` files. While zcat, zgrep and other utilities work well on gzip compressed files, I needed similar functionality on pkzip compressed files (with .zip extensions) and was unable to find a tool I liked. Execute command line utilities of your choice against the contents of zip files. ## Help ``` $ zipexec -h usage: zipexec [-h] [-c CMD_TO_RUN] path_to_zips positional arguments: path_to_zips Where are the zips to search optional arguments: -h, --help show this help message and exit -c CMD_TO_RUN, --cmd_to_run CMD_TO_RUN Command line to run on each zip ``` NOTE: Take care when specifying the names of files and commands that your local linux system does not expand the asterisks. ## Example Usage ### If you only pass a path to a folder containing zip files to zip exec it will prompt you for a command ``` $ zipexec /home/uploads/zipfiles/ What command would you like to run?: grep -R -C2 -n "search string" * ``` ### If you do specify a command with -c or --command it will execute that Example 1: grep through the content of all the zip files: ``` $ zipexec -c 'grep -R -n -C2 "import os" *.py' /home/uploads/zipfiles/ ``` Example 2: Do a directory listing of all of the zip files that are named file*.zip ``` $ zipexec -c 'ls -laR' /home/uploads/zipfiles/files\*.zip ```
zipexec
/zipexec-1.0.tar.gz/zipexec-1.0/README.md
README.md
==== ZIPF ==== |travis| |coveralls| |sonar_quality| |sonar_maintainability| |code_climate_maintainability| |pip| -------------------------------------- What does it do? -------------------------------------- The zipf package was realized to simplify creations and operations with zipf distributions, like sum, subtraction, multiplications, divisions, statical operations such as mean, variance and much more. -------------------------------------- How do I get it? -------------------------------------- Just type into your terminal: .. code:: shell pip install zipf -------------------------------------- Calculating distances and divergence -------------------------------------- I wrote another package called `dictances`_ which calculates various distances and divergences between discrete distributions such as zipf. Here's an example: .. code:: python from zipf import Zipf from dictances import * a = zipf.load("my_first_zipf.json") b = zipf.load("my_second_zipf.json") euclidean(a, b) chebyshev(a, b) hamming(a, b) kullback_leibler(a, b) jensen_shannon(a, b) -------------------------------------- Creating a zipf using a zipf_factory -------------------------------------- Here's a couple of examples: Zipf from a list ------------------------- .. code:: python from zipf.factories import ZipfFromList my_factory = ZipfFromList() my_zipf = my_factory.run(["one", "one", "two", "my", "oh", "my", 1, 2, 3]) print(my_zipf) ''' { "one": 0.22222222222222215, "my": 0.22222222222222215, "two": 0.11111111111111108, "oh": 0.11111111111111108, "1": 0.11111111111111108, "2": 0.11111111111111108, "3": 0.11111111111111108 } ''' Zipf from a text ------------------------- .. code:: python from zipf.factories import ZipfFromText my_factory = ZipfFromText() my_factory.set_word_filter(lambda w: len(w) > 3) my_zipf = my_factory.run( """You've got to find what you love. And that is as true for your work as it is for your lovers. Keep looking. Don't settle.""") print(my_zipf) ''' { "your": 0.16666666666666666, "find": 0.08333333333333333, "what": 0.08333333333333333, "love": 0.08333333333333333, "that": 0.08333333333333333, "true": 0.08333333333333333, "work": 0.08333333333333333, "lovers": 0.08333333333333333, "Keep": 0.08333333333333333, "looking": 0.08333333333333333, "settle": 0.08333333333333333 } ''' Zipf from a k-sequence ------------------------- .. code:: python from zipf.factories import ZipfFromKSequence sequence_fraction_len = 5 my_factory = ZipfFromKSequence(sequence_fraction_len) my_zipf = my_factory.run( "ACTGGAAATGATGGDTGATDGATGAGTDGATGGGGGAAAGDTGATDGATDGATGDTGGGGADDDGATAGDTAGTDGAGAGAGDTGATDGAAAGDTG") print(my_zipf) ''' { "TGGGG": 0.1, "ACTGG": 0.05, "AAATG": 0.05, "ATGGD": 0.05, "TGATD": 0.05, "GATGA": 0.05, "GTDGA": 0.05, "GAAAG": 0.05, "DTGAT": 0.05, "DGATD": 0.05, "GATGD": 0.05, "ADDDG": 0.05, "ATAGD": 0.05, "TAGTD": 0.05, "GAGAG": 0.05, "AGDTG": 0.05, "ATDGA": 0.05, "AAGDT": 0.05, "G": 0.05 } ''' Zipf from a text file ------------------------- .. code:: python from zipf.factories import ZipfFromFile my_factory = ZipfFromFile() my_factory.set_word_filter(lambda w: w != "brown") my_zipf = my_factory.run() print(my_zipf) ''' { "The": 0.125, "quick": 0.125, "fox": 0.125, "jumps": 0.125, "over": 0.125, "the": 0.125, "lazy": 0.125, "dog": 0.125 } ''' Zipf from webpage ------------------------- .. code:: python from zipf.factories import ZipfFromUrl import json my_factory = ZipfFromUrl() my_factory.set_word_filter(lambda w: int(w) > 100) my_factory.set_interface(lambda r: json.loads(r.text)["ip"]) my_zipf = my_factory.run("https://api.ipify.org/?format=json") print(my_zipf) ''' { "134": 0.5, "165": 0.5 } ''' Zipf from directory ------------------------- .. code:: python from zipf.factories import ZipfFromDir import json my_factory = ZipfFromDir(use_cli=True) my_factory.set_word_filter(lambda w: len(w) > 4) my_zipf = my_factory.run("path/to/my/directory", ["txt"]) ''' My directory contains 2 files with the following texts: - You must not lose faith in humanity. Humanity is an ocean; if a few drops of the ocean are dirty, the ocean does not become dirty. - Try not to become a man of success, but rather try to become a man of value. ''' print(my_zipf) ''' { "ocean": 0.20000000000000004, "become": 0.20000000000000004, "dirty": 0.13333333333333336, "faith": 0.06666666666666668, "humanity": 0.06666666666666668, "Humanity": 0.06666666666666668, "drops": 0.06666666666666668, "success": 0.06666666666666668, "rather": 0.06666666666666668, "value": 0.06666666666666668 } ''' -------------------------------------- Options in creating a zipf -------------------------------------- Some built in options are available, and you can read the options of any factory object by printing it: .. code:: python from zipf.zipf.factories import ZipfFromList print(ZipfFromList()) ''' { "remove_stop_words": false, # Removes stop words (currently only Italian's) "minimum_count": 0, # Removes words that appear less than 'minimum_count' "chain_min_len": 1, # Chains up words, starting by a min of 'chain_min_len' "chain_max_len": 1, # and ending to a maximum of 'chain_max_len' "chaining_character": " ", # The character to interpose between words "chain_after_filter": false, # The chaining is done after filtering "chain_after_clean": false # The chaining is done after cleaning } ''' -------------------------------------- License -------------------------------------- This library is released under MIT license. .. |travis| image:: https://travis-ci.org/LucaCappelletti94/zipf.png :target: https://travis-ci.org/LucaCappelletti94/zipf .. |coveralls| image:: https://coveralls.io/repos/github/LucaCappelletti94/zipf/badge.svg?branch=master :target: https://coveralls.io/github/LucaCappelletti94/zipf .. |sonar_quality| image:: https://sonarcloud.io/api/project_badges/measure?project=zipf.lucacappelletti&metric=alert_status :target: https://sonarcloud.io/dashboard/index/zipf.lucacappelletti .. |sonar_maintainability| image:: https://sonarcloud.io/api/project_badges/measure?project=zipf.lucacappelletti&metric=sqale_rating :target: https://sonarcloud.io/dashboard/index/zipf.lucacappelletti .. |pip| image:: https://badge.fury.io/py/zipf.svg :target: https://badge.fury.io/py/zipf .. |code_climate_maintainability| image:: https://api.codeclimate.com/v1/badges/c758496736a2c9cecbff/maintainability :target: https://codeclimate.com/github/LucaCappelletti94/zipf/maintainability :alt: Maintainability .. _dictances: https://github.com/LucaCappelletti94/dictances
zipf
/zipf-1.6.0.tar.gz/zipf-1.6.0/README.rst
README.rst
================ Zipf classifier ================ |pip| Introduction ------------- ZipfClassifier is a classifier that, *even though in principle usable on any distribution*, leverages the assumption that some kind of datasets such as as: - texts - `images (paper here)`_ - `spoken language (paper here)`_ follow the `Zipf law`_. Installation ------------ .. code:: shell pip install zipf_classifier Working examples and explanation -------------------------------- A `documentation`_ is available with a full explanation of the classifier workings. License =================== This package is licensed under MIT license. .. |pip| image:: https://badge.fury.io/py/zipf_classifier.svg :target: https://badge.fury.io/py/zipf_classifier .. _dictances: https://github.com/LucaCappelletti94/dictances .. _zipf: https://github.com/LucaCappelletti94/zipf .. _images (paper here): http://www.dcs.warwick.ac.uk/bmvc2007/proceedings/CD-ROM/papers/paper-288.pdf .. _spoken language (paper here): http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033993 .. _Zipf law: https://en.wikipedia.org/wiki/Zipf%27s_law .. _documentation: https://github.com/LucaCappelletti94/zipf_classifier/blob/master/documentation/documentation/Documentazione%20progetto/main.pdf
zipf_classifier
/zipf_classifier-1.6.2.tar.gz/zipf_classifier-1.6.2/README.rst
README.rst
============ zipfanalysis ============ Tools in python for analysing Zipf's law from text samples. This can be installed as a package from the python3 package library using the terminal command: :: >>> pip3 install zipfanalysis ----- Usage ----- The package can be used from within python scripts to estimate Zipf exponents, assuming a simple power law model for word frequencies and ranks. To use the pacakge import it using :: import zipfanalysis ------------- Simple Method ------------- The easiest way to carry out an analysis on a book or text file, using different estimators, is: :: alpha_clauset = zipfanalysis.clauset("path_to_book.txt") alpha_pdf = zipfanalysis.ols_pdf("path_to_book.txt", min_frequency=3) alpha_cdf = zipfanalysis.ols_cdf("path_to_book.txt", min_frequency=3) alpha_abc = zipfanalysis.abc("path_to_book.txt") --------------- In Depth Method --------------- Convert a book or text file to the frequency of words, ranked from highest to lowest: :: word_counts = zipfanalysis.preprocessing.preprocessing.get_rank_frequency_from_text("path_to_book.txt") Carry out different types of analysis to fit a power law to the data: :: # Clauset et al estimator alpha_clauset = zipfanalysis.estimators.clauset.clauset_estimator(word_counts) # Ordinary Least Squares regression on log(rank) ~ log(frequency) # Optional low frequency cut-off alpha_pdf = zipfanalysis.estimators.ols_regression_pdf.ols_regression_pdf_estimator(word_counts, min_frequency=2) # Ordinary least squares regression on the complemantary cumulative distribution function of ranks # OLS on log(P(R>rank)) ~ log(rank) # Optional low frequency cut-off alpha_cdf = zipfanalysis.estimators.ols_regression_cdf.ols_regression_cdf_estimator(word_counts) # Approximate Bayesian computation (regression method) # Assumes model of p(rank) = C prob_rank^(-alpha) # prob_rank is a word's rank in an underlying probability distribution alpha_abc = zipfanalysis.estimators.approximate_bayesian_computation.abc_estimator(word_counts) ------------------------ Development - Next Steps ------------------------ 1. Speed up abc. Current bottleneck is sampling from infinite power law. Could be sped up by considering we only need the frequency vector of ranks, not the whole sample. So for example could sample from unoform distribution then drop values into interger ranked buckets based on inverse CDF. 2. Build in frequency rank analysis. Convert to frequency counts representation, then carry out fit on that. 3. Add significance testing 4. Add ability to calcaulte x_min and truncated power laws. 5. Speed up OLS on the cdf
zipfanalysis
/zipfanalysis-0.5.tar.gz/zipfanalysis-0.5/README.rst
README.rst
# zipfile-dclimplode [![PyPI](https://img.shields.io/pypi/v/zipfile-dclimplode)](https://pypi.org/project/zipfile-dclimplode/) Monkey patch the standard `zipfile` module to enable DCL Implode support. DCL stands for `PKWARE(R) Data Compression Library`. Based on [`zipfile-deflate64`](https://github.com/brianhelba/zipfile-deflate64) and [`zipfile-zstandard`](https://github.com/taisei-project/python-zipfile-zstd), which provides similar functionality but for the `deflate64` algorithm. Unlike `zipfile-deflate64`, this package supports both compression and decompression. Requires [`dclimplode`](https://github.com/cielavenir/dclimplode) for dclimplode bindings. Note: if you need Python2, use [zipfile39](https://github.com/cielavenir/zipfile39) instead (it is also compatible with Python3). ## Installation ```bash pip install zipfile-dclimplode ``` ## Usage Anywhere in a Python codebase: ```python import zipfile_dclimplode # This has the side effect of patching the zipfile module to support DCL Implode ``` Alternatively, `zipfile_dclimplode` re-exports the `zipfile` API, as a convenience: ```python import zipfile_dclimplode as zipfile zipfile.ZipFile(...) ``` Compression example: ```python import zipfile_dclimplode as zipfile zf = zipfile.ZipFile('/tmp/test.zip', 'w', zipfile.ZIP_DCLIMPLODED, compresslevel=3) zf.write('large_file.img') ``` compresslevel: 1,2,3 (binary) 11,12,13 (ascii)
zipfile-dclimplode
/zipfile-dclimplode-0.0.3.1.tar.gz/zipfile-dclimplode-0.0.3.1/README.md
README.md
import zipfile import dclimplode import threading import inspect import struct from ._patcher import patch zipfile.ZIP_DCLIMPLODED = 10 zipfile.ZIP_PKIMPLODED = 10 if zipfile.ZIP_DCLIMPLODED not in zipfile.compressor_names: zipfile.compressor_names[zipfile.ZIP_DCLIMPLODED] = 'dclimplode' zipfile.DCLIMPLODED_VERSION = 25 @patch(zipfile, '_check_compression') def zstd_check_compression(compression): if compression == zipfile.ZIP_DCLIMPLODED: pass else: patch.originals['_check_compression'](compression) @patch(zipfile, '_get_decompressor') def zstd_get_decompressor(compress_type): if compress_type == zipfile.ZIP_DCLIMPLODED: return dclimplode.decompressobj() else: return patch.originals['_get_decompressor'](compress_type) if 'compresslevel' in inspect.signature(zipfile._get_compressor).parameters: @patch(zipfile, '_get_compressor') def zstd_get_compressor(compress_type, compresslevel=None): if compress_type == zipfile.ZIP_DCLIMPLODED: if compresslevel is None: compresslevel = 3 compressmethod = compresslevel//10 compresslevel = compresslevel%10 return dclimplode.compressobj(compressmethod, 1<<(9+compresslevel)) else: return patch.originals['_get_compressor'](compress_type, compresslevel=compresslevel) else: @patch(zipfile, '_get_compressor') def zstd_get_compressor(compress_type, compresslevel=None): if compress_type == zipfile.ZIP_DCLIMPLODED: if compresslevel is None: compresslevel = 3 compressmethod = compresslevel//10 compresslevel = compresslevel%10 return dclimplode.compressobj(compressmethod, 1<<(9+compresslevel)) else: return patch.originals['_get_compressor'](compress_type) @patch(zipfile.ZipInfo, 'FileHeader') def zstd_FileHeader(self, zip64=None): if self.compress_type == zipfile.ZIP_DCLIMPLODED: self.create_version = max(self.create_version, zipfile.DCLIMPLODED_VERSION) self.extract_version = max(self.extract_version, zipfile.DCLIMPLODED_VERSION) return patch.originals['FileHeader'](self, zip64=zip64)
zipfile-dclimplode
/zipfile-dclimplode-0.0.3.1.tar.gz/zipfile-dclimplode-0.0.3.1/zipfile_dclimplode/_zipfile.py
_zipfile.py
# zipfile-isal [![PyPI](https://img.shields.io/pypi/v/zipfile-isal)](https://pypi.org/project/zipfile-isal/) Monkey patch the standard `zipfile` module to enable accelerated deflate support via isal. Based on [`zipfile-deflate64`](https://github.com/brianhelba/zipfile-deflate64) and [`zipfile-zstandard`](https://github.com/taisei-project/python-zipfile-zstd), which provides similar functionality but for the `deflate64` algorithm. Unlike `zipfile-deflate64`, this package supports both compression and decompression. Requires [`isal`](https://github.com/pycompression/python-isal) (and [`slz`](https://github.com/cielavenir/python-slz) optionally). Note: if you need Python2, use [zipfile39](https://github.com/cielavenir/zipfile39) instead (it is also compatible with Python3). ## Installation ```bash pip install zipfile-isal ``` ## Usage Anywhere in a Python codebase: ```python import zipfile_isal # This has the side effect of patching the zipfile module to support isal ``` Alternatively, `zipfile_isal` re-exports the `zipfile` API, as a convenience: ```python import zipfile_isal as zipfile zipfile.ZipFile(...) ``` Compression example: ```python import zipfile_isal as zipfile zf = zipfile.ZipFile('/tmp/test.zip', 'w', zipfile.ZIP_DEFLATED, compresslevel=-12) zf.write('large_file.img') ``` compresslevel: - -10, -11, -12, -13 correspond to isal 0, 1, 2, 3 - -21 corresponds to slz - 11 to 19 correspond to 7-zip 1-9
zipfile-isal
/zipfile-isal-0.0.3.3.tar.gz/zipfile-isal-0.0.3.3/README.md
README.md
import zipfile import zlib import threading import inspect import struct from ._patcher import patch try: from isal import isal_zlib zipfile.crc32 = isal_zlib.crc32 except ImportError: isal_zlib = None try: import slz except ImportError: slz = None try: import codecs7z except ImportError: codecs7z = None #@patch(zipfile, '_check_compression') #def zstd_check_compression(compression): # if compression == zipfile.ZIP_DEFLATED: # pass # else: # patch.originals['_check_compression'](compression) @patch(zipfile, '_get_decompressor') def zstd_get_decompressor(compress_type): if compress_type == zipfile.ZIP_DEFLATED: if isal_zlib is not None: return isal_zlib.decompressobj(-15) return zlib.decompressobj(-15) else: return patch.originals['_get_decompressor'](compress_type) if 'compresslevel' in inspect.signature(zipfile._get_compressor).parameters: @patch(zipfile, '_get_compressor') def zstd_get_compressor(compress_type, compresslevel=None): if compress_type == zipfile.ZIP_DEFLATED: if compresslevel is None: compresslevel = 6 if compresslevel < -20: assert slz is not None return slz.compressobj() if compresslevel <= -10: assert isal_zlib is not None return isal_zlib.compressobj(-(compresslevel+10), isal_zlib.DEFLATED, -15, 9) if compresslevel >= 10: assert codecs7z is not None return codecs7z.deflate_compressobj(compresslevel-10) return zlib.compressobj(compresslevel, zlib.DEFLATED, -15) else: return patch.originals['_get_compressor'](compress_type, compresslevel=compresslevel) else: @patch(zipfile, '_get_compressor') def zstd_get_compressor(compress_type, compresslevel=None): if compress_type == zipfile.ZIP_DEFLATED: if compresslevel is None: compresslevel = 6 if compresslevel < -20: assert slz is not None return slz.compressobj() if compresslevel <= -10: assert isal_zlib is not None return isal_zlib.compressobj(-(compresslevel+10), isal_zlib.DEFLATED, -15, 9) return zlib.compressobj(compresslevel, zlib.DEFLATED, -15) else: return patch.originals['_get_compressor'](compress_type)
zipfile-isal
/zipfile-isal-0.0.3.3.tar.gz/zipfile-isal-0.0.3.3/zipfile_isal/_zipfile.py
_zipfile.py
For zipfile-xz information, see xz branch. # zipfile-ppmd [![PyPI](https://img.shields.io/pypi/v/zipfile-ppmd)](https://pypi.org/project/zipfile-ppmd/) Monkey patch the standard `zipfile` module to enable PPMd support. Based on [`zipfile-deflate64`](https://github.com/brianhelba/zipfile-deflate64) and [`zipfile-zstandard`](https://github.com/taisei-project/python-zipfile-zstd), which provides similar functionality but for the `deflate64` algorithm. Unlike `zipfile-deflate64`, this package supports both compression and decompression. Requires [`pyppmd`](https://github.com/miurahr/pyppmd) for ppmd bindings. Note that 0.16.0+ is required, which is not released yet. Please do `python3 -m pip install git+https://github.com/miurahr/pyppmd`. Note: if you need Python2, use [zipfile39](https://github.com/cielavenir/zipfile39) instead (it is also compatible with Python3). ## Installation ```bash pip install zipfile-ppmd ``` ## Usage Anywhere in a Python codebase: ```python import zipfile_ppmd # This has the side effect of patching the zipfile module to support PPMd ``` Alternatively, `zipfile_ppmd` re-exports the `zipfile` API, as a convenience: ```python import zipfile_ppmd as zipfile zipfile.ZipFile(...) ``` Compression example: ```python import zipfile_ppmd as zipfile zf = zipfile.ZipFile('/tmp/test.zip', 'w', zipfile.ZIP_PPMD, compresslevel=5) zf.write('large_file.img') ```
zipfile-ppmd
/zipfile-ppmd-0.0.3.3.tar.gz/zipfile-ppmd-0.0.3.3/README.md
README.md
import zipfile import pyppmd import threading import inspect import struct from ._patcher import patch zipfile.ZIP_PPMD = 98 zipfile.compressor_names[zipfile.ZIP_PPMD] = 'ppmd' zipfile.PPMD_VERSION = 63 class PPMDCompressor(object): def __init__(self, level=None): self._comp = None self._level = level if self._level is None: self._level = 5 if self._level < 1: self._level = 1 if self._level > 9: self._level = 9 def _init(self): ### level interpretation ### # https://github.com/jinfeihan57/p7zip/blob/v17.04/CPP/7zip/Compress/PpmdZip.cpp#L155 # by the way, using numeric parameter is not covered by LGPL (according to clause 3). order = 3 + self._level sasize = 1 << min(self._level, 8) restore_method = 0 if self._level < 7 else 1 ### level interpretation end ### prop = (order-1) | (sasize-1)<<4 | (restore_method)<<12; self._comp = pyppmd.Ppmd8Encoder(order, sasize<<20, restore_method=restore_method, endmark=False) return struct.pack('<H', prop) def compress(self, data): if self._comp is None: return self._init() + self._comp.encode(data) return self._comp.encode(data) def flush(self): if self._comp is None: return self._init() + self._comp.flush() return self._comp.flush() class PPMDDecompressor(object): def __init__(self): self._decomp = None self._unconsumed = b'' self.eof = False def decompress(self, data): if self._decomp is None: self._unconsumed += data if len(self._unconsumed) <= 2: return b'' prop, = struct.unpack('<H', self._unconsumed[:2]) order = (prop&0x000f)+1 sasize = ((prop&0x0ff0)>>4)+1 restore_method = (prop&0xf000)>>12 self._decomp = pyppmd.Ppmd8Decoder(order, sasize<<20, restore_method=restore_method, endmark=False) data = self._unconsumed[2:] del self._unconsumed result = self._decomp.decode(data) self.eof = self._decomp.eof return result @patch(zipfile, '_check_compression') def zstd_check_compression(compression): if compression == zipfile.ZIP_PPMD: pass else: patch.originals['_check_compression'](compression) @patch(zipfile, '_get_decompressor') def zstd_get_decompressor(compress_type): if compress_type == zipfile.ZIP_PPMD: return PPMDDecompressor() else: return patch.originals['_get_decompressor'](compress_type) if 'compresslevel' in inspect.signature(zipfile._get_compressor).parameters: @patch(zipfile, '_get_compressor') def zstd_get_compressor(compress_type, compresslevel=None): if compress_type == zipfile.ZIP_PPMD: if compresslevel is None: compresslevel = 5 return PPMDCompressor(compresslevel) else: return patch.originals['_get_compressor'](compress_type, compresslevel=compresslevel) else: @patch(zipfile, '_get_compressor') def zstd_get_compressor(compress_type, compresslevel=None): if compress_type == zipfile.ZIP_PPMD: if compresslevel is None: compresslevel = 5 return PPMDCompressor(compresslevel) else: return patch.originals['_get_compressor'](compress_type) @patch(zipfile.ZipInfo, 'FileHeader') def zstd_FileHeader(self, zip64=None): if self.compress_type == zipfile.ZIP_PPMD: self.create_version = max(self.create_version, zipfile.PPMD_VERSION) self.extract_version = max(self.extract_version, zipfile.PPMD_VERSION) return patch.originals['FileHeader'](self, zip64=zip64)
zipfile-ppmd
/zipfile-ppmd-0.0.3.3.tar.gz/zipfile-ppmd-0.0.3.3/zipfile_ppmd/_zipfile.py
_zipfile.py
# zipfile-xz [![PyPI](https://img.shields.io/pypi/v/zipfile-xz)](https://pypi.org/project/zipfile-xz/) Monkey patch the standard `zipfile` module to enable XZ support. Based on [`zipfile-deflate64`](https://github.com/brianhelba/zipfile-deflate64) and [`zipfile-zstandard`](https://github.com/taisei-project/python-zipfile-zstd), which provides similar functionality but for the `deflate64` algorithm. Unlike `zipfile-deflate64`, this package supports both compression and decompression. Note: if you need Python2, use [zipfile39](https://github.com/cielavenir/zipfile39) instead (it is also compatible with Python3). Note: XZ is based on LZMA2, so the compression ratio will be similar to ZIP_LZMA. ## Installation ```bash pip install zipfile-xz ``` ## Usage Anywhere in a Python codebase: ```python import zipfile_xz # This has the side effect of patching the zipfile module to support XZ ``` Alternatively, `zipfile_ppmd` re-exports the `zipfile` API, as a convenience: ```python import zipfile_xz as zipfile zipfile.ZipFile(...) ``` Compression example: ```python import zipfile_xz as zipfile zf = zipfile.ZipFile('/tmp/test.zip', 'w', zipfile.ZIP_XZ, compresslevel=6) zf.write('large_file.img') ```
zipfile-xz
/zipfile-xz-0.0.3.1.tar.gz/zipfile-xz-0.0.3.1/README.md
README.md
import zipfile import zstandard as zstd import threading import inspect from ._patcher import patch zipfile.ZIP_ZSTANDARD = 93 zipfile.compressor_names[zipfile.ZIP_ZSTANDARD] = 'zstandard' zipfile.ZSTANDARD_VERSION = 20 @patch(zipfile, '_check_compression') def zstd_check_compression(compression): if compression == zipfile.ZIP_ZSTANDARD: pass else: patch.originals['_check_compression'](compression) class ZstdDecompressObjWrapper: def __init__(self, o): self.o = o def __getattr__(self, attr): if attr == 'eof': return False return getattr(self.o, attr) @patch(zipfile, '_get_decompressor') def zstd_get_decompressor(compress_type): if compress_type == zipfile.ZIP_ZSTANDARD: return ZstdDecompressObjWrapper(zstd.ZstdDecompressor().decompressobj()) else: return patch.originals['_get_decompressor'](compress_type) if 'compresslevel' in inspect.signature(zipfile._get_compressor).parameters: @patch(zipfile, '_get_compressor') def zstd_get_compressor(compress_type, compresslevel=None): if compress_type == zipfile.ZIP_ZSTANDARD: if compresslevel is None: compresslevel = 3 return zstd.ZstdCompressor(level=compresslevel, threads=12).compressobj() else: return patch.originals['_get_compressor'](compress_type, compresslevel=compresslevel) else: @patch(zipfile, '_get_compressor') def zstd_get_compressor(compress_type, compresslevel=None): if compress_type == zipfile.ZIP_ZSTANDARD: if compresslevel is None: compresslevel = 3 return zstd.ZstdCompressor(level=compresslevel, threads=12).compressobj() else: return patch.originals['_get_compressor'](compress_type) @patch(zipfile.ZipInfo, 'FileHeader') def zstd_FileHeader(self, zip64=None): if self.compress_type == zipfile.ZIP_ZSTANDARD: self.create_version = max(self.create_version, zipfile.ZSTANDARD_VERSION) self.extract_version = max(self.extract_version, zipfile.ZSTANDARD_VERSION) return patch.originals['FileHeader'](self, zip64=zip64)
zipfile-zstd
/zipfile_zstd-0.0.4-py3-none-any.whl/zipfile_zstd/_zipfile.py
_zipfile.py
.. image:: https://travis-ci.org/cournape/zipfile2.png?branch=master :target: https://travis-ci.org/cournape/zipfile2 zipfile2 contains an improved ZipFile class that may be used as a 100 % backward compatible replacement. Improvements compared to upstream zipfile stdlib: * Handling of symlinks (read and write) * Compatible 2.6 onwards (including 3.x), include context manager * Raises an exception by default when duplicate members are detected. * Special class `LeanZipFile` to avoid using too much memory when handling zip files with a large number of members. Contrary to the stdlib ZipFile, it does not create the list of all archives when opening the file. This can save 100s of MB for zipfiles with a large number of members.
zipfile2
/zipfile2-0.0.12.tar.gz/zipfile2-0.0.12/README.rst
README.rst
import io import os import re import importlib.util import sys import time import stat import shutil import struct import binascii try: import threading except ImportError: import dummy_threading as threading try: import zlib # We may need its compression method crc32 = zlib.crc32 except ImportError: zlib = None crc32 = binascii.crc32 try: import bz2 # We may need its compression method except ImportError: bz2 = None try: import lzma # We may need its compression method except ImportError: lzma = None __version__ = "0.1.3" __all__ = ["BadZipFile", "BadZipfile", "error", "ZIP_STORED", "ZIP_DEFLATED", "ZIP_BZIP2", "ZIP_LZMA", "is_zipfile", "ZipInfo", "ZipFile", "PyZipFile", "LargeZipFile"] class BadZipFile(Exception): pass class LargeZipFile(Exception): """ Raised when writing a zipfile, the zipfile requires ZIP64 extensions and those extensions are disabled. """ error = BadZipfile = BadZipFile # Pre-3.2 compatibility names ZIP64_LIMIT = (1 << 31) - 1 ZIP_FILECOUNT_LIMIT = (1 << 16) - 1 ZIP_MAX_COMMENT = (1 << 16) - 1 # constants for Zip file compression methods ZIP_STORED = 0 ZIP_DEFLATED = 8 ZIP_BZIP2 = 12 ZIP_LZMA = 14 # Other ZIP compression methods not supported DEFAULT_VERSION = 20 ZIP64_VERSION = 45 BZIP2_VERSION = 46 LZMA_VERSION = 63 # we recognize (but not necessarily support) all features up to that version MAX_EXTRACT_VERSION = 63 # Below are some formats and associated data for reading/writing headers using # the struct module. The names and structures of headers/records are those used # in the PKWARE description of the ZIP file format: # http://www.pkware.com/documents/casestudies/APPNOTE.TXT # (URL valid as of January 2008) # The "end of central directory" structure, magic number, size, and indices # (section V.I in the format document) structEndArchive = b"<4s4H2LH" stringEndArchive = b"PK\005\006" sizeEndCentDir = struct.calcsize(structEndArchive) _ECD_SIGNATURE = 0 _ECD_DISK_NUMBER = 1 _ECD_DISK_START = 2 _ECD_ENTRIES_THIS_DISK = 3 _ECD_ENTRIES_TOTAL = 4 _ECD_SIZE = 5 _ECD_OFFSET = 6 _ECD_COMMENT_SIZE = 7 # These last two indices are not part of the structure as defined in the # spec, but they are used internally by this module as a convenience _ECD_COMMENT = 8 _ECD_LOCATION = 9 # The "central directory" structure, magic number, size, and indices # of entries in the structure (section V.F in the format document) structCentralDir = "<4s4B4HL2L5H2L" stringCentralDir = b"PK\001\002" sizeCentralDir = struct.calcsize(structCentralDir) # indexes of entries in the central directory structure _CD_SIGNATURE = 0 _CD_CREATE_VERSION = 1 _CD_CREATE_SYSTEM = 2 _CD_EXTRACT_VERSION = 3 _CD_EXTRACT_SYSTEM = 4 _CD_FLAG_BITS = 5 _CD_COMPRESS_TYPE = 6 _CD_TIME = 7 _CD_DATE = 8 _CD_CRC = 9 _CD_COMPRESSED_SIZE = 10 _CD_UNCOMPRESSED_SIZE = 11 _CD_FILENAME_LENGTH = 12 _CD_EXTRA_FIELD_LENGTH = 13 _CD_COMMENT_LENGTH = 14 _CD_DISK_NUMBER_START = 15 _CD_INTERNAL_FILE_ATTRIBUTES = 16 _CD_EXTERNAL_FILE_ATTRIBUTES = 17 _CD_LOCAL_HEADER_OFFSET = 18 # The "local file header" structure, magic number, size, and indices # (section V.A in the format document) structFileHeader = "<4s2B4HL2L2H" stringFileHeader = b"PK\003\004" sizeFileHeader = struct.calcsize(structFileHeader) _FH_SIGNATURE = 0 _FH_EXTRACT_VERSION = 1 _FH_EXTRACT_SYSTEM = 2 _FH_GENERAL_PURPOSE_FLAG_BITS = 3 _FH_COMPRESSION_METHOD = 4 _FH_LAST_MOD_TIME = 5 _FH_LAST_MOD_DATE = 6 _FH_CRC = 7 _FH_COMPRESSED_SIZE = 8 _FH_UNCOMPRESSED_SIZE = 9 _FH_FILENAME_LENGTH = 10 _FH_EXTRA_FIELD_LENGTH = 11 # The "Zip64 end of central directory locator" structure, magic number, and size structEndArchive64Locator = "<4sLQL" stringEndArchive64Locator = b"PK\x06\x07" sizeEndCentDir64Locator = struct.calcsize(structEndArchive64Locator) # The "Zip64 end of central directory" record, magic number, size, and indices # (section V.G in the format document) structEndArchive64 = "<4sQ2H2L4Q" stringEndArchive64 = b"PK\x06\x06" sizeEndCentDir64 = struct.calcsize(structEndArchive64) _CD64_SIGNATURE = 0 _CD64_DIRECTORY_RECSIZE = 1 _CD64_CREATE_VERSION = 2 _CD64_EXTRACT_VERSION = 3 _CD64_DISK_NUMBER = 4 _CD64_DISK_NUMBER_START = 5 _CD64_NUMBER_ENTRIES_THIS_DISK = 6 _CD64_NUMBER_ENTRIES_TOTAL = 7 _CD64_DIRECTORY_SIZE = 8 _CD64_OFFSET_START_CENTDIR = 9 def _check_zipfile(fp): try: if _EndRecData(fp): return True # file has correct magic number except OSError: pass return False def is_zipfile(filename): """Quickly see if a file is a ZIP file by checking the magic number. The filename argument may be a file or file-like object too. """ result = False try: if hasattr(filename, "read"): result = _check_zipfile(fp=filename) else: with open(filename, "rb") as fp: result = _check_zipfile(fp) except OSError: pass return result def _EndRecData64(fpin, offset, endrec): """ Read the ZIP64 end-of-archive records and use that to update endrec """ try: fpin.seek(offset - sizeEndCentDir64Locator, 2) except OSError: # If the seek fails, the file is not large enough to contain a ZIP64 # end-of-archive record, so just return the end record we were given. return endrec data = fpin.read(sizeEndCentDir64Locator) if len(data) != sizeEndCentDir64Locator: return endrec sig, diskno, reloff, disks = struct.unpack(structEndArchive64Locator, data) if sig != stringEndArchive64Locator: return endrec if diskno != 0 or disks != 1: raise BadZipFile("zipfiles that span multiple disks are not supported") # Assume no 'zip64 extensible data' fpin.seek(offset - sizeEndCentDir64Locator - sizeEndCentDir64, 2) data = fpin.read(sizeEndCentDir64) if len(data) != sizeEndCentDir64: return endrec sig, sz, create_version, read_version, disk_num, disk_dir, \ dircount, dircount2, dirsize, diroffset = \ struct.unpack(structEndArchive64, data) if sig != stringEndArchive64: return endrec # Update the original endrec using data from the ZIP64 record endrec[_ECD_SIGNATURE] = sig endrec[_ECD_DISK_NUMBER] = disk_num endrec[_ECD_DISK_START] = disk_dir endrec[_ECD_ENTRIES_THIS_DISK] = dircount endrec[_ECD_ENTRIES_TOTAL] = dircount2 endrec[_ECD_SIZE] = dirsize endrec[_ECD_OFFSET] = diroffset return endrec def _EndRecData(fpin): """Return data from the "End of Central Directory" record, or None. The data is a list of the nine items in the ZIP "End of central dir" record followed by a tenth item, the file seek offset of this record.""" # Determine file size fpin.seek(0, 2) filesize = fpin.tell() # Check to see if this is ZIP file with no archive comment (the # "end of central directory" structure should be the last item in the # file if this is the case). try: fpin.seek(-sizeEndCentDir, 2) except OSError: return None data = fpin.read() if (len(data) == sizeEndCentDir and data[0:4] == stringEndArchive and data[-2:] == b"\000\000"): # the signature is correct and there's no comment, unpack structure endrec = struct.unpack(structEndArchive, data) endrec=list(endrec) # Append a blank comment and record start offset endrec.append(b"") endrec.append(filesize - sizeEndCentDir) # Try to read the "Zip64 end of central directory" structure return _EndRecData64(fpin, -sizeEndCentDir, endrec) # Either this is not a ZIP file, or it is a ZIP file with an archive # comment. Search the end of the file for the "end of central directory" # record signature. The comment is the last item in the ZIP file and may be # up to 64K long. It is assumed that the "end of central directory" magic # number does not appear in the comment. maxCommentStart = max(filesize - (1 << 16) - sizeEndCentDir, 0) fpin.seek(maxCommentStart, 0) data = fpin.read() start = data.rfind(stringEndArchive) if start >= 0: # found the magic number; attempt to unpack and interpret recData = data[start:start+sizeEndCentDir] if len(recData) != sizeEndCentDir: # Zip file is corrupted. return None endrec = list(struct.unpack(structEndArchive, recData)) commentSize = endrec[_ECD_COMMENT_SIZE] #as claimed by the zip file comment = data[start+sizeEndCentDir:start+sizeEndCentDir+commentSize] endrec.append(comment) endrec.append(maxCommentStart + start) # Try to read the "Zip64 end of central directory" structure return _EndRecData64(fpin, maxCommentStart + start - filesize, endrec) # Unable to find a valid end of central directory structure return None class ZipInfo (object): """Class with attributes describing each file in the ZIP archive.""" __slots__ = ( 'orig_filename', 'filename', 'date_time', 'compress_type', 'comment', 'extra', 'create_system', 'create_version', 'extract_version', 'reserved', 'flag_bits', 'volume', 'internal_attr', 'external_attr', 'header_offset', 'CRC', 'compress_size', 'file_size', '_raw_time', ) def __init__(self, filename="NoName", date_time=(1980,1,1,0,0,0)): self.orig_filename = filename # Original file name in archive # Terminate the file name at the first null byte. Null bytes in file # names are used as tricks by viruses in archives. null_byte = filename.find(chr(0)) if null_byte >= 0: filename = filename[0:null_byte] # This is used to ensure paths in generated ZIP files always use # forward slashes as the directory separator, as required by the # ZIP format specification. if os.sep != "/" and os.sep in filename: filename = filename.replace(os.sep, "/") self.filename = filename # Normalized file name self.date_time = date_time # year, month, day, hour, min, sec if date_time[0] < 1980: raise ValueError('ZIP does not support timestamps before 1980') # Standard values: self.compress_type = ZIP_STORED # Type of compression for the file self.comment = b"" # Comment for each file self.extra = b"" # ZIP extra data if sys.platform == 'win32': self.create_system = 0 # System which created ZIP archive else: # Assume everything else is unix-y self.create_system = 3 # System which created ZIP archive self.create_version = DEFAULT_VERSION # Version which created ZIP archive self.extract_version = DEFAULT_VERSION # Version needed to extract archive self.reserved = 0 # Must be zero self.flag_bits = 0 # ZIP flag bits self.volume = 0 # Volume number of file header self.internal_attr = 0 # Internal attributes self.external_attr = 0 # External file attributes # Other attributes are set by class ZipFile: # header_offset Byte offset to the file header # CRC CRC-32 of the uncompressed file # compress_size Size of the compressed file # file_size Size of the uncompressed file def __repr__(self): result = ['<%s filename=%r' % (self.__class__.__name__, self.filename)] if self.compress_type != ZIP_STORED: result.append(' compress_type=%s' % compressor_names.get(self.compress_type, self.compress_type)) hi = self.external_attr >> 16 lo = self.external_attr & 0xFFFF if hi: result.append(' filemode=%r' % stat.filemode(hi)) if lo: result.append(' external_attr=%#x' % lo) isdir = self.is_dir() if not isdir or self.file_size: result.append(' file_size=%r' % self.file_size) if ((not isdir or self.compress_size) and (self.compress_type != ZIP_STORED or self.file_size != self.compress_size)): result.append(' compress_size=%r' % self.compress_size) result.append('>') return ''.join(result) def FileHeader(self, zip64=None): """Return the per-file header as a string.""" dt = self.date_time dosdate = (dt[0] - 1980) << 9 | dt[1] << 5 | dt[2] dostime = dt[3] << 11 | dt[4] << 5 | (dt[5] // 2) if self.flag_bits & 0x08: # Set these to zero because we write them after the file data CRC = compress_size = file_size = 0 else: CRC = self.CRC compress_size = self.compress_size file_size = self.file_size extra = self.extra min_version = 0 if zip64 is None: zip64 = file_size > ZIP64_LIMIT or compress_size > ZIP64_LIMIT if zip64: fmt = '<HHQQ' extra = extra + struct.pack(fmt, 1, struct.calcsize(fmt)-4, file_size, compress_size) if file_size > ZIP64_LIMIT or compress_size > ZIP64_LIMIT: if not zip64: raise LargeZipFile("Filesize would require ZIP64 extensions") # File is larger than what fits into a 4 byte integer, # fall back to the ZIP64 extension file_size = 0xffffffff compress_size = 0xffffffff min_version = ZIP64_VERSION if self.compress_type == ZIP_BZIP2: min_version = max(BZIP2_VERSION, min_version) elif self.compress_type == ZIP_LZMA: min_version = max(LZMA_VERSION, min_version) self.extract_version = max(min_version, self.extract_version) self.create_version = max(min_version, self.create_version) filename, flag_bits = self._encodeFilenameFlags() header = struct.pack(structFileHeader, stringFileHeader, self.extract_version, self.reserved, flag_bits, self.compress_type, dostime, dosdate, CRC, compress_size, file_size, len(filename), len(extra)) return header + filename + extra def _encodeFilenameFlags(self): try: return self.filename.encode('ascii'), self.flag_bits except UnicodeEncodeError: return self.filename.encode('utf-8'), self.flag_bits | 0x800 def _decodeExtra(self): # Try to decode the extra field. extra = self.extra unpack = struct.unpack while len(extra) >= 4: tp, ln = unpack('<HH', extra[:4]) if tp == 1: if ln >= 24: counts = unpack('<QQQ', extra[4:28]) elif ln == 16: counts = unpack('<QQ', extra[4:20]) elif ln == 8: counts = unpack('<Q', extra[4:12]) elif ln == 0: counts = () else: raise BadZipFile("Corrupt extra field %04x (size=%d)" % (tp, ln)) idx = 0 # ZIP64 extension (large files and/or large archives) if self.file_size in (0xffffffffffffffff, 0xffffffff): self.file_size = counts[idx] idx += 1 if self.compress_size == 0xFFFFFFFF: self.compress_size = counts[idx] idx += 1 if self.header_offset == 0xffffffff: old = self.header_offset self.header_offset = counts[idx] idx+=1 extra = extra[ln+4:] @classmethod def from_file(cls, filename, arcname=None): """Construct an appropriate ZipInfo for a file on the filesystem. filename should be the path to a file or directory on the filesystem. arcname is the name which it will have within the archive (by default, this will be the same as filename, but without a drive letter and with leading path separators removed). """ st = os.stat(filename) isdir = stat.S_ISDIR(st.st_mode) mtime = time.localtime(st.st_mtime) date_time = mtime[0:6] # Create ZipInfo instance to store file information if arcname is None: arcname = filename arcname = os.path.normpath(os.path.splitdrive(arcname)[1]) while arcname[0] in (os.sep, os.altsep): arcname = arcname[1:] if isdir: arcname += '/' zinfo = cls(arcname, date_time) zinfo.external_attr = (st.st_mode & 0xFFFF) << 16 # Unix attributes if isdir: zinfo.file_size = 0 zinfo.external_attr |= 0x10 # MS-DOS directory flag else: zinfo.file_size = st.st_size return zinfo def is_dir(self): """Return True if this archive member is a directory.""" return self.filename[-1] == '/' class _ZipDecrypter: """Class to handle decryption of files stored within a ZIP archive. ZIP supports a password-based form of encryption. Even though known plaintext attacks have been found against it, it is still useful to be able to get data out of such a file. Usage: zd = _ZipDecrypter(mypwd) plain_char = zd(cypher_char) plain_text = map(zd, cypher_text) """ def _GenerateCRCTable(): """Generate a CRC-32 table. ZIP encryption uses the CRC32 one-byte primitive for scrambling some internal keys. We noticed that a direct implementation is faster than relying on binascii.crc32(). """ poly = 0xedb88320 table = [0] * 256 for i in range(256): crc = i for j in range(8): if crc & 1: crc = ((crc >> 1) & 0x7FFFFFFF) ^ poly else: crc = ((crc >> 1) & 0x7FFFFFFF) table[i] = crc return table crctable = None def _crc32(self, ch, crc): """Compute the CRC32 primitive on one byte.""" return ((crc >> 8) & 0xffffff) ^ self.crctable[(crc ^ ch) & 0xff] def __init__(self, pwd): if _ZipDecrypter.crctable is None: _ZipDecrypter.crctable = _ZipDecrypter._GenerateCRCTable() self.key0 = 305419896 self.key1 = 591751049 self.key2 = 878082192 for p in pwd: self._UpdateKeys(p) def _UpdateKeys(self, c): self.key0 = self._crc32(c, self.key0) self.key1 = (self.key1 + (self.key0 & 255)) & 4294967295 self.key1 = (self.key1 * 134775813 + 1) & 4294967295 self.key2 = self._crc32((self.key1 >> 24) & 255, self.key2) def __call__(self, c): """Decrypt a single character.""" assert isinstance(c, int) k = self.key2 | 2 c = c ^ (((k * (k^1)) >> 8) & 255) self._UpdateKeys(c) return c class LZMACompressor: def __init__(self): self._comp = None def _init(self): props = lzma._encode_filter_properties({'id': lzma.FILTER_LZMA1}) self._comp = lzma.LZMACompressor(lzma.FORMAT_RAW, filters=[ lzma._decode_filter_properties(lzma.FILTER_LZMA1, props) ]) return struct.pack('<BBH', 9, 4, len(props)) + props def compress(self, data): if self._comp is None: return self._init() + self._comp.compress(data) return self._comp.compress(data) def flush(self): if self._comp is None: return self._init() + self._comp.flush() return self._comp.flush() class LZMADecompressor: def __init__(self): self._decomp = None self._unconsumed = b'' self.eof = False def decompress(self, data): if self._decomp is None: self._unconsumed += data if len(self._unconsumed) <= 4: return b'' psize, = struct.unpack('<H', self._unconsumed[2:4]) if len(self._unconsumed) <= 4 + psize: return b'' self._decomp = lzma.LZMADecompressor(lzma.FORMAT_RAW, filters=[ lzma._decode_filter_properties(lzma.FILTER_LZMA1, self._unconsumed[4:4 + psize]) ]) data = self._unconsumed[4 + psize:] del self._unconsumed result = self._decomp.decompress(data) self.eof = self._decomp.eof return result compressor_names = { 0: 'store', 1: 'shrink', 2: 'reduce', 3: 'reduce', 4: 'reduce', 5: 'reduce', 6: 'implode', 7: 'tokenize', 8: 'deflate', 9: 'deflate64', 10: 'implode', 12: 'bzip2', 14: 'lzma', 18: 'terse', 19: 'lz77', 97: 'wavpack', 98: 'ppmd', } def _check_compression(compression): if compression == ZIP_STORED: pass elif compression == ZIP_DEFLATED: if not zlib: raise RuntimeError( "Compression requires the (missing) zlib module") elif compression == ZIP_BZIP2: if not bz2: raise RuntimeError( "Compression requires the (missing) bz2 module") elif compression == ZIP_LZMA: if not lzma: raise RuntimeError( "Compression requires the (missing) lzma module") else: raise NotImplementedError("That compression method is not supported") def _get_compressor(compress_type): if compress_type == ZIP_DEFLATED: return zlib.compressobj(zlib.Z_DEFAULT_COMPRESSION, zlib.DEFLATED, -15) elif compress_type == ZIP_BZIP2: return bz2.BZ2Compressor() elif compress_type == ZIP_LZMA: return LZMACompressor() else: return None def _get_decompressor(compress_type): if compress_type == ZIP_STORED: return None elif compress_type == ZIP_DEFLATED: return zlib.decompressobj(-15) elif compress_type == ZIP_BZIP2: return bz2.BZ2Decompressor() elif compress_type == ZIP_LZMA: return LZMADecompressor() else: descr = compressor_names.get(compress_type) if descr: raise NotImplementedError("compression type %d (%s)" % (compress_type, descr)) else: raise NotImplementedError("compression type %d" % (compress_type,)) class _SharedFile: def __init__(self, file, pos, close, lock, writing): self._file = file self._pos = pos self._close = close self._lock = lock self._writing = writing def read(self, n=-1): with self._lock: if self._writing(): raise ValueError("Can't read from the ZIP file while there " "is an open writing handle on it. " "Close the writing handle before trying to read.") self._file.seek(self._pos) data = self._file.read(n) self._pos = self._file.tell() return data def close(self): if self._file is not None: fileobj = self._file self._file = None self._close(fileobj) # Provide the tell method for unseekable stream class _Tellable: def __init__(self, fp): self.fp = fp self.offset = 0 def write(self, data): n = self.fp.write(data) self.offset += n return n def tell(self): return self.offset def flush(self): self.fp.flush() def close(self): self.fp.close() class ZipExtFile(io.BufferedIOBase): """File-like object for reading an archive member. Is returned by ZipFile.open(). """ # Max size supported by decompressor. MAX_N = 1 << 31 - 1 # Read from compressed files in 4k blocks. MIN_READ_SIZE = 4096 def __init__(self, fileobj, mode, zipinfo, decrypter=None, close_fileobj=False): self._fileobj = fileobj self._decrypter = decrypter self._close_fileobj = close_fileobj self._compress_type = zipinfo.compress_type self._compress_left = zipinfo.compress_size self._left = zipinfo.file_size self._decompressor = _get_decompressor(self._compress_type) self._eof = False self._readbuffer = b'' self._offset = 0 self.newlines = None # Adjust read size for encrypted files since the first 12 bytes # are for the encryption/password information. if self._decrypter is not None: self._compress_left -= 12 self.mode = mode self.name = zipinfo.filename if hasattr(zipinfo, 'CRC'): self._expected_crc = zipinfo.CRC self._running_crc = crc32(b'') else: self._expected_crc = None def __repr__(self): result = ['<%s.%s' % (self.__class__.__module__, self.__class__.__qualname__)] if not self.closed: result.append(' name=%r mode=%r' % (self.name, self.mode)) if self._compress_type != ZIP_STORED: result.append(' compress_type=%s' % compressor_names.get(self._compress_type, self._compress_type)) else: result.append(' [closed]') result.append('>') return ''.join(result) def readline(self, limit=-1): """Read and return a line from the stream. If limit is specified, at most limit bytes will be read. """ if limit < 0: # Shortcut common case - newline found in buffer. i = self._readbuffer.find(b'\n', self._offset) + 1 if i > 0: line = self._readbuffer[self._offset: i] self._offset = i return line return io.BufferedIOBase.readline(self, limit) def peek(self, n=1): """Returns buffered bytes without advancing the position.""" if n > len(self._readbuffer) - self._offset: chunk = self.read(n) if len(chunk) > self._offset: self._readbuffer = chunk + self._readbuffer[self._offset:] self._offset = 0 else: self._offset -= len(chunk) # Return up to 512 bytes to reduce allocation overhead for tight loops. return self._readbuffer[self._offset: self._offset + 512] def readable(self): return True def read(self, n=-1): """Read and return up to n bytes. If the argument is omitted, None, or negative, data is read and returned until EOF is reached.. """ if n is None or n < 0: buf = self._readbuffer[self._offset:] self._readbuffer = b'' self._offset = 0 while not self._eof: buf += self._read1(self.MAX_N) return buf end = n + self._offset if end < len(self._readbuffer): buf = self._readbuffer[self._offset:end] self._offset = end return buf n = end - len(self._readbuffer) buf = self._readbuffer[self._offset:] self._readbuffer = b'' self._offset = 0 while n > 0 and not self._eof: data = self._read1(n) if n < len(data): self._readbuffer = data self._offset = n buf += data[:n] break buf += data n -= len(data) return buf def _update_crc(self, newdata): # Update the CRC using the given data. if self._expected_crc is None: # No need to compute the CRC if we don't have a reference value return self._running_crc = crc32(newdata, self._running_crc) # Check the CRC if we're at the end of the file if self._eof and self._running_crc != self._expected_crc: raise BadZipFile("Bad CRC-32 for file %r" % self.name) def read1(self, n): """Read up to n bytes with at most one read() system call.""" if n is None or n < 0: buf = self._readbuffer[self._offset:] self._readbuffer = b'' self._offset = 0 while not self._eof: data = self._read1(self.MAX_N) if data: buf += data break return buf end = n + self._offset if end < len(self._readbuffer): buf = self._readbuffer[self._offset:end] self._offset = end return buf n = end - len(self._readbuffer) buf = self._readbuffer[self._offset:] self._readbuffer = b'' self._offset = 0 if n > 0: while not self._eof: data = self._read1(n) if n < len(data): self._readbuffer = data self._offset = n buf += data[:n] break if data: buf += data break return buf def _read1(self, n): # Read up to n compressed bytes with at most one read() system call, # decrypt and decompress them. if self._eof or n <= 0: return b'' # Read from file. if self._compress_type == ZIP_DEFLATED: ## Handle unconsumed data. data = self._decompressor.unconsumed_tail if n > len(data): data += self._read2(n - len(data)) else: data = self._read2(n) if self._compress_type == ZIP_STORED: self._eof = self._compress_left <= 0 elif self._compress_type == ZIP_DEFLATED: n = max(n, self.MIN_READ_SIZE) data = self._decompressor.decompress(data, n) self._eof = (self._decompressor.eof or self._compress_left <= 0 and not self._decompressor.unconsumed_tail) if self._eof: data += self._decompressor.flush() else: data = self._decompressor.decompress(data) self._eof = self._decompressor.eof or self._compress_left <= 0 data = data[:self._left] self._left -= len(data) if self._left <= 0: self._eof = True self._update_crc(data) return data def _read2(self, n): if self._compress_left <= 0: return b'' n = max(n, self.MIN_READ_SIZE) n = min(n, self._compress_left) data = self._fileobj.read(n) self._compress_left -= len(data) if not data: raise EOFError if self._decrypter is not None: data = bytes(map(self._decrypter, data)) return data def close(self): try: if self._close_fileobj: self._fileobj.close() finally: super().close() class _ZipWriteFile(io.BufferedIOBase): def __init__(self, zf, zinfo, zip64): self._zinfo = zinfo self._zip64 = zip64 self._zipfile = zf self._compressor = _get_compressor(zinfo.compress_type) self._file_size = 0 self._compress_size = 0 self._crc = 0 @property def _fileobj(self): return self._zipfile.fp def writable(self): return True def write(self, data): nbytes = len(data) self._file_size += nbytes self._crc = crc32(data, self._crc) if self._compressor: data = self._compressor.compress(data) self._compress_size += len(data) self._fileobj.write(data) return nbytes def close(self): super().close() # Flush any data from the compressor, and update header info if self._compressor: buf = self._compressor.flush() self._compress_size += len(buf) self._fileobj.write(buf) self._zinfo.compress_size = self._compress_size else: self._zinfo.compress_size = self._file_size self._zinfo.CRC = self._crc self._zinfo.file_size = self._file_size # Write updated header info if self._zinfo.flag_bits & 0x08: # Write CRC and file sizes after the file data fmt = '<LQQ' if self._zip64 else '<LLL' self._fileobj.write(struct.pack(fmt, self._zinfo.CRC, self._zinfo.compress_size, self._zinfo.file_size)) self._zipfile.start_dir = self._fileobj.tell() else: if not self._zip64: if self._file_size > ZIP64_LIMIT: raise RuntimeError('File size unexpectedly exceeded ZIP64 ' 'limit') if self._compress_size > ZIP64_LIMIT: raise RuntimeError('Compressed size unexpectedly exceeded ' 'ZIP64 limit') # Seek backwards and write file header (which will now include # correct CRC and file sizes) # Preserve current position in file self._zipfile.start_dir = self._fileobj.tell() self._fileobj.seek(self._zinfo.header_offset) self._fileobj.write(self._zinfo.FileHeader(self._zip64)) self._fileobj.seek(self._zipfile.start_dir) self._zipfile._writing = False # Successfully written: Add file to our caches self._zipfile.filelist.append(self._zinfo) self._zipfile.NameToInfo[self._zinfo.filename] = self._zinfo class ZipFile: """ Class with methods to open, read, write, close, list zip files. z = ZipFile(file, mode="r", compression=ZIP_STORED, allowZip64=True) file: Either the path to the file, or a file-like object. If it is a path, the file will be opened and closed by ZipFile. mode: The mode can be either read 'r', write 'w', exclusive create 'x', or append 'a'. compression: ZIP_STORED (no compression), ZIP_DEFLATED (requires zlib), ZIP_BZIP2 (requires bz2) or ZIP_LZMA (requires lzma). allowZip64: if True ZipFile will create files with ZIP64 extensions when needed, otherwise it will raise an exception when this would be necessary. """ fp = None # Set here since __del__ checks it _windows_illegal_name_trans_table = None def __init__(self, file, mode="r", compression=ZIP_STORED, allowZip64=True): """Open the ZIP file with mode read 'r', write 'w', exclusive create 'x', or append 'a'.""" if mode not in ('r', 'w', 'x', 'a'): raise ValueError("ZipFile requires mode 'r', 'w', 'x', or 'a'") _check_compression(compression) self._allowZip64 = allowZip64 self._didModify = False self.debug = 0 # Level of printing: 0 through 3 self.NameToInfo = {} # Find file info given name self.filelist = [] # List of ZipInfo instances for archive self.compression = compression # Method of compression self.mode = mode self.pwd = None self._comment = b'' # Check if we were passed a file-like object if isinstance(file, str): # No, it's a filename self._filePassed = 0 self.filename = file modeDict = {'r' : 'rb', 'w': 'w+b', 'x': 'x+b', 'a' : 'r+b', 'r+b': 'w+b', 'w+b': 'wb', 'x+b': 'xb'} filemode = modeDict[mode] while True: try: self.fp = io.open(file, filemode) except OSError: if filemode in modeDict: filemode = modeDict[filemode] continue raise break else: self._filePassed = 1 self.fp = file self.filename = getattr(file, 'name', None) self._fileRefCnt = 1 self._lock = threading.RLock() self._seekable = True self._writing = False try: if mode == 'r': self._RealGetContents() elif mode in ('w', 'x'): # set the modified flag so central directory gets written # even if no files are added to the archive self._didModify = True try: self.start_dir = self._start_disk = self.fp.tell() except (AttributeError, OSError): self.fp = _Tellable(self.fp) self.start_dir = self._start_disk = 0 self._seekable = False else: # Some file-like objects can provide tell() but not seek() try: self.fp.seek(self.start_dir) except (AttributeError, OSError): self._seekable = False elif mode == 'a': try: # See if file is a zip file self._RealGetContents() # seek to start of directory and overwrite self.fp.seek(self.start_dir) except BadZipFile: # file is not a zip file, just append self.fp.seek(0, 2) # set the modified flag so central directory gets written # even if no files are added to the archive self._didModify = True self.start_dir = self._start_disk = self.fp.tell() else: raise ValueError("Mode must be 'r', 'w', 'x', or 'a'") except: fp = self.fp self.fp = None self._fpclose(fp) raise def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() def __repr__(self): result = ['<%s.%s' % (self.__class__.__module__, self.__class__.__qualname__)] if self.fp is not None: if self._filePassed: result.append(' file=%r' % self.fp) elif self.filename is not None: result.append(' filename=%r' % self.filename) result.append(' mode=%r' % self.mode) else: result.append(' [closed]') result.append('>') return ''.join(result) def _RealGetContents(self): """Read in the table of contents for the ZIP file.""" fp = self.fp try: endrec = _EndRecData(fp) except OSError: raise BadZipFile("File is not a zip file") if not endrec: raise BadZipFile("File is not a zip file") if self.debug > 1: print(endrec) size_cd = endrec[_ECD_SIZE] # bytes in central directory offset_cd = endrec[_ECD_OFFSET] # offset of central directory self._comment = endrec[_ECD_COMMENT] # archive comment # self._start_disk: Position of the start of ZIP archive # It is zero, unless ZIP was concatenated to another file self._start_disk = endrec[_ECD_LOCATION] - size_cd - offset_cd if endrec[_ECD_SIGNATURE] == stringEndArchive64: # If Zip64 extension structures are present, account for them self._start_disk -= (sizeEndCentDir64 + sizeEndCentDir64Locator) if self.debug > 2: inferred = self._start_disk + offset_cd print("given, inferred, offset", offset_cd, inferred, self._start_disk) # self.start_dir: Position of start of central directory self.start_dir = offset_cd + self._start_disk fp.seek(self.start_dir, 0) data = fp.read(size_cd) fp = io.BytesIO(data) total = 0 while total < size_cd: centdir = fp.read(sizeCentralDir) if len(centdir) != sizeCentralDir: raise BadZipFile("Truncated central directory") centdir = struct.unpack(structCentralDir, centdir) if centdir[_CD_SIGNATURE] != stringCentralDir: raise BadZipFile("Bad magic number for central directory") if self.debug > 2: print(centdir) filename = fp.read(centdir[_CD_FILENAME_LENGTH]) flags = centdir[5] if flags & 0x800: # UTF-8 file names extension filename = filename.decode('utf-8') else: # Historical ZIP filename encoding filename = filename.decode('cp437') # Create ZipInfo instance to store file information x = ZipInfo(filename) x.extra = fp.read(centdir[_CD_EXTRA_FIELD_LENGTH]) x.comment = fp.read(centdir[_CD_COMMENT_LENGTH]) x.header_offset = centdir[_CD_LOCAL_HEADER_OFFSET] (x.create_version, x.create_system, x.extract_version, x.reserved, x.flag_bits, x.compress_type, t, d, x.CRC, x.compress_size, x.file_size) = centdir[1:12] if x.extract_version > MAX_EXTRACT_VERSION: raise NotImplementedError("zip file version %.1f" % (x.extract_version / 10)) x.volume, x.internal_attr, x.external_attr = centdir[15:18] # Convert date/time code to (year, month, day, hour, min, sec) x._raw_time = t x.date_time = ( (d>>9)+1980, (d>>5)&0xF, d&0x1F, t>>11, (t>>5)&0x3F, (t&0x1F) * 2 ) x._decodeExtra() x.header_offset = x.header_offset + self._start_disk self.filelist.append(x) self.NameToInfo[x.filename] = x # update total bytes read from central directory total = (total + sizeCentralDir + centdir[_CD_FILENAME_LENGTH] + centdir[_CD_EXTRA_FIELD_LENGTH] + centdir[_CD_COMMENT_LENGTH]) if self.debug > 2: print("total", total) def namelist(self): """Return a list of file names in the archive.""" return [data.filename for data in self.filelist] def infolist(self): """Return a list of class ZipInfo instances for files in the archive.""" return self.filelist def printdir(self, file=None): """Print a table of contents for the zip file.""" print("%-46s %19s %12s" % ("File Name", "Modified ", "Size"), file=file) for zinfo in self.filelist: date = "%d-%02d-%02d %02d:%02d:%02d" % zinfo.date_time[:6] print("%-46s %s %12d" % (zinfo.filename, date, zinfo.file_size), file=file) def testzip(self): """Read all the files and check the CRC.""" chunk_size = 2 ** 20 for zinfo in self.filelist: try: # Read by chunks, to avoid an OverflowError or a # MemoryError with very large embedded files. with self.open(zinfo.filename, "r") as f: while f.read(chunk_size): # Check CRC-32 pass except BadZipFile: return zinfo.filename def getinfo(self, name): """Return the instance of ZipInfo given 'name'.""" info = self.NameToInfo.get(name) if info is None: raise KeyError( 'There is no item named %r in the archive' % name) return info def setpassword(self, pwd): """Set default password for encrypted files.""" if pwd and not isinstance(pwd, bytes): raise TypeError("pwd: expected bytes, got %s" % type(pwd).__name__) if pwd: self.pwd = pwd else: self.pwd = None @property def comment(self): """The comment text associated with the ZIP file.""" return self._comment @comment.setter def comment(self, comment): if not isinstance(comment, bytes): raise TypeError("comment: expected bytes, got %s" % type(comment).__name__) # check for valid comment length if len(comment) > ZIP_MAX_COMMENT: import warnings warnings.warn('Archive comment is too long; truncating to %d bytes' % ZIP_MAX_COMMENT, stacklevel=2) comment = comment[:ZIP_MAX_COMMENT] self._comment = comment self._didModify = True def read(self, name, pwd=None): """Return file bytes (as a string) for name.""" with self.open(name, "r", pwd) as fp: return fp.read() def open(self, name, mode="r", pwd=None, *, force_zip64=False): """Return file-like object for 'name'. name is a string for the file name within the ZIP file, or a ZipInfo object. mode should be 'r' to read a file already in the ZIP file, or 'w' to write to a file newly added to the archive. pwd is the password to decrypt files (only used for reading). When writing, if the file size is not known in advance but may exceed 2 GiB, pass force_zip64 to use the ZIP64 format, which can handle large files. If the size is known in advance, it is best to pass a ZipInfo instance for name, with zinfo.file_size set. """ if mode not in {"r", "w"}: raise ValueError('open() requires mode "r" or "w"') if pwd and not isinstance(pwd, bytes): raise TypeError("pwd: expected bytes, got %s" % type(pwd).__name__) if pwd and (mode == "w"): raise ValueError("pwd is only supported for reading files") if not self.fp: raise ValueError( "Attempt to use ZIP archive that was already closed") # Make sure we have an info object if isinstance(name, ZipInfo): # 'name' is already an info object zinfo = name elif mode == 'w': zinfo = ZipInfo(name) zinfo.compress_type = self.compression else: # Get info object for name zinfo = self.getinfo(name) if mode == 'w': return self._open_to_write(zinfo, force_zip64=force_zip64) if self._writing: raise ValueError("Can't read from the ZIP file while there " "is an open writing handle on it. " "Close the writing handle before trying to read.") # Open for reading: self._fileRefCnt += 1 zef_file = _SharedFile(self.fp, zinfo.header_offset, self._fpclose, self._lock, lambda: self._writing) try: # Skip the file header: fheader = zef_file.read(sizeFileHeader) if len(fheader) != sizeFileHeader: raise BadZipFile("Truncated file header") fheader = struct.unpack(structFileHeader, fheader) if fheader[_FH_SIGNATURE] != stringFileHeader: raise BadZipFile("Bad magic number for file header") fname = zef_file.read(fheader[_FH_FILENAME_LENGTH]) if fheader[_FH_EXTRA_FIELD_LENGTH]: zef_file.read(fheader[_FH_EXTRA_FIELD_LENGTH]) if zinfo.flag_bits & 0x20: # Zip 2.7: compressed patched data raise NotImplementedError("compressed patched data (flag bit 5)") if zinfo.flag_bits & 0x40: # strong encryption raise NotImplementedError("strong encryption (flag bit 6)") if zinfo.flag_bits & 0x800: # UTF-8 filename fname_str = fname.decode("utf-8") else: fname_str = fname.decode("cp437") if fname_str != zinfo.orig_filename: raise BadZipFile( 'File name in directory %r and header %r differ.' % (zinfo.orig_filename, fname)) # check for encrypted flag & handle password is_encrypted = zinfo.flag_bits & 0x1 zd = None if is_encrypted: if not pwd: pwd = self.pwd if not pwd: raise RuntimeError("File %r is encrypted, password " "required for extraction" % name) zd = _ZipDecrypter(pwd) # The first 12 bytes in the cypher stream is an encryption header # used to strengthen the algorithm. The first 11 bytes are # completely random, while the 12th contains the MSB of the CRC, # or the MSB of the file time depending on the header type # and is used to check the correctness of the password. header = zef_file.read(12) h = list(map(zd, header[0:12])) if zinfo.flag_bits & 0x8: # compare against the file type from extended local headers check_byte = (zinfo._raw_time >> 8) & 0xff else: # compare against the CRC otherwise check_byte = (zinfo.CRC >> 24) & 0xff if h[11] != check_byte: raise RuntimeError("Bad password for file %r" % name) return ZipExtFile(zef_file, mode, zinfo, zd, True) except: zef_file.close() raise def _open_to_write(self, zinfo, force_zip64=False): if force_zip64 and not self._allowZip64: raise ValueError( "force_zip64 is True, but allowZip64 was False when opening " "the ZIP file." ) if self._writing: raise ValueError("Can't write to the ZIP file while there is " "another write handle open on it. " "Close the first handle before opening another.") # Sizes and CRC are overwritten with correct data after processing the file if not hasattr(zinfo, 'file_size'): zinfo.file_size = 0 zinfo.compress_size = 0 zinfo.CRC = 0 zinfo.flag_bits = 0x00 if zinfo.compress_type == ZIP_LZMA: # Compressed data includes an end-of-stream (EOS) marker zinfo.flag_bits |= 0x02 if not self._seekable: zinfo.flag_bits |= 0x08 if not zinfo.external_attr: zinfo.external_attr = 0o600 << 16 # permissions: ?rw------- # Compressed size can be larger than uncompressed size zip64 = self._allowZip64 and \ (force_zip64 or zinfo.file_size * 1.05 > ZIP64_LIMIT) if self._seekable: self.fp.seek(self.start_dir) zinfo.header_offset = self.fp.tell() self._writecheck(zinfo) self._didModify = True self.fp.write(zinfo.FileHeader(zip64)) self._writing = True return _ZipWriteFile(self, zinfo, zip64) def extract(self, member, path=None, pwd=None): """Extract a member from the archive to the current working directory, using its full name. Its file information is extracted as accurately as possible. `member' may be a filename or a ZipInfo object. You can specify a different directory using `path'. """ if not isinstance(member, ZipInfo): member = self.getinfo(member) if path is None: path = os.getcwd() return self._extract_member(member, path, pwd) def extractall(self, path=None, members=None, pwd=None): """Extract all members from the archive to the current working directory. `path' specifies a different directory to extract to. `members' is optional and must be a subset of the list returned by namelist(). """ if members is None: members = self.namelist() for zipinfo in members: self.extract(zipinfo, path, pwd) @classmethod def _sanitize_windows_name(cls, arcname, pathsep): """Replace bad characters and remove trailing dots from parts.""" table = cls._windows_illegal_name_trans_table if not table: illegal = ':<>|"?*' table = str.maketrans(illegal, '_' * len(illegal)) cls._windows_illegal_name_trans_table = table arcname = arcname.translate(table) # remove trailing dots arcname = (x.rstrip('.') for x in arcname.split(pathsep)) # rejoin, removing empty parts. arcname = pathsep.join(x for x in arcname if x) return arcname def _extract_member(self, member, targetpath, pwd): """Extract the ZipInfo object 'member' to a physical file on the path targetpath. """ # build the destination pathname, replacing # forward slashes to platform specific separators. arcname = member.filename.replace('/', os.path.sep) if os.path.altsep: arcname = arcname.replace(os.path.altsep, os.path.sep) # interpret absolute pathname as relative, remove drive letter or # UNC path, redundant separators, "." and ".." components. arcname = os.path.splitdrive(arcname)[1] invalid_path_parts = ('', os.path.curdir, os.path.pardir) arcname = os.path.sep.join(x for x in arcname.split(os.path.sep) if x not in invalid_path_parts) if os.path.sep == '\\': # filter illegal characters on Windows arcname = self._sanitize_windows_name(arcname, os.path.sep) targetpath = os.path.join(targetpath, arcname) targetpath = os.path.normpath(targetpath) # Create all upper directories if necessary. upperdirs = os.path.dirname(targetpath) if upperdirs and not os.path.exists(upperdirs): os.makedirs(upperdirs) if member.is_dir(): if not os.path.isdir(targetpath): os.mkdir(targetpath) return targetpath with self.open(member, pwd=pwd) as source, \ open(targetpath, "wb") as target: shutil.copyfileobj(source, target) return targetpath def _writecheck(self, zinfo): """Check for errors before writing a file to the archive.""" if zinfo.filename in self.NameToInfo: import warnings warnings.warn('Duplicate name: %r' % zinfo.filename, stacklevel=3) if self.mode not in ('w', 'x', 'a'): raise ValueError("write() requires mode 'w', 'x', or 'a'") if not self.fp: raise ValueError( "Attempt to write ZIP archive that was already closed") _check_compression(zinfo.compress_type) if not self._allowZip64: requires_zip64 = None if len(self.filelist) >= ZIP_FILECOUNT_LIMIT: requires_zip64 = "Files count" elif zinfo.file_size > ZIP64_LIMIT: requires_zip64 = "Filesize" elif zinfo.header_offset > ZIP64_LIMIT: requires_zip64 = "Zipfile size" if requires_zip64: raise LargeZipFile(requires_zip64 + " would require ZIP64 extensions") def write(self, filename, arcname=None, compress_type=None): """Put the bytes from filename into the archive under the name arcname.""" if not self.fp: raise ValueError( "Attempt to write to ZIP archive that was already closed") if self._writing: raise ValueError( "Can't write to ZIP archive while an open writing handle exists" ) zinfo = ZipInfo.from_file(filename, arcname) if zinfo.is_dir(): zinfo.compress_size = 0 zinfo.CRC = 0 else: if compress_type is not None: zinfo.compress_type = compress_type else: zinfo.compress_type = self.compression if zinfo.is_dir(): with self._lock: if self._seekable: self.fp.seek(self.start_dir) zinfo.header_offset = self.fp.tell() # Start of header bytes if zinfo.compress_type == ZIP_LZMA: # Compressed data includes an end-of-stream (EOS) marker zinfo.flag_bits |= 0x02 self._writecheck(zinfo) self._didModify = True self.filelist.append(zinfo) self.NameToInfo[zinfo.filename] = zinfo self.fp.write(zinfo.FileHeader(False)) self.start_dir = self.fp.tell() else: with open(filename, "rb") as src, self.open(zinfo, 'w') as dest: shutil.copyfileobj(src, dest, 1024*8) def writestr(self, zinfo_or_arcname, data, compress_type=None): """Write a file into the archive. The contents is 'data', which may be either a 'str' or a 'bytes' instance; if it is a 'str', it is encoded as UTF-8 first. 'zinfo_or_arcname' is either a ZipInfo instance or the name of the file in the archive.""" if isinstance(data, str): data = data.encode("utf-8") if not isinstance(zinfo_or_arcname, ZipInfo): zinfo = ZipInfo(filename=zinfo_or_arcname, date_time=time.localtime(time.time())[:6]) zinfo.compress_type = self.compression if zinfo.filename[-1] == '/': zinfo.external_attr = 0o40775 << 16 # drwxrwxr-x zinfo.external_attr |= 0x10 # MS-DOS directory flag else: zinfo.external_attr = 0o600 << 16 # ?rw------- else: zinfo = zinfo_or_arcname if not self.fp: raise ValueError( "Attempt to write to ZIP archive that was already closed") if self._writing: raise ValueError( "Can't write to ZIP archive while an open writing handle exists." ) if compress_type is not None: zinfo.compress_type = compress_type zinfo.file_size = len(data) # Uncompressed size with self._lock: with self.open(zinfo, mode='w') as dest: dest.write(data) def __del__(self): """Call the "close()" method in case the user forgot.""" self.close() def close(self): """Close the file, and for mode 'w', 'x' and 'a' write the ending records.""" if self.fp is None: return if self._writing: raise ValueError("Can't close the ZIP file while there is " "an open writing handle on it. " "Close the writing handle before closing the zip.") try: if self.mode in ('w', 'x', 'a') and self._didModify: # write ending records with self._lock: if self._seekable: self.fp.seek(self.start_dir) self._write_end_record() finally: fp = self.fp self.fp = None self._fpclose(fp) def _write_end_record(self): for zinfo in self.filelist: # write central directory dt = zinfo.date_time dosdate = (dt[0] - 1980) << 9 | dt[1] << 5 | dt[2] dostime = dt[3] << 11 | dt[4] << 5 | (dt[5] // 2) extra = [] if zinfo.file_size > ZIP64_LIMIT \ or zinfo.compress_size > ZIP64_LIMIT: extra.append(zinfo.file_size) extra.append(zinfo.compress_size) file_size = 0xffffffff compress_size = 0xffffffff else: file_size = zinfo.file_size compress_size = zinfo.compress_size header_offset = zinfo.header_offset - self._start_disk if header_offset > ZIP64_LIMIT: extra.append(header_offset) header_offset = 0xffffffff extra_data = zinfo.extra min_version = 0 if extra: # Append a ZIP64 field to the extra's extra_data = struct.pack( '<HH' + 'Q'*len(extra), 1, 8*len(extra), *extra) + extra_data min_version = ZIP64_VERSION if zinfo.compress_type == ZIP_BZIP2: min_version = max(BZIP2_VERSION, min_version) elif zinfo.compress_type == ZIP_LZMA: min_version = max(LZMA_VERSION, min_version) extract_version = max(min_version, zinfo.extract_version) create_version = max(min_version, zinfo.create_version) try: filename, flag_bits = zinfo._encodeFilenameFlags() centdir = struct.pack(structCentralDir, stringCentralDir, create_version, zinfo.create_system, extract_version, zinfo.reserved, flag_bits, zinfo.compress_type, dostime, dosdate, zinfo.CRC, compress_size, file_size, len(filename), len(extra_data), len(zinfo.comment), 0, zinfo.internal_attr, zinfo.external_attr, header_offset) except DeprecationWarning: print((structCentralDir, stringCentralDir, create_version, zinfo.create_system, extract_version, zinfo.reserved, zinfo.flag_bits, zinfo.compress_type, dostime, dosdate, zinfo.CRC, compress_size, file_size, len(zinfo.filename), len(extra_data), len(zinfo.comment), 0, zinfo.internal_attr, zinfo.external_attr, header_offset), file=sys.stderr) raise self.fp.write(centdir) self.fp.write(filename) self.fp.write(extra_data) self.fp.write(zinfo.comment) pos2 = self.fp.tell() # Write end-of-zip-archive record centDirCount = len(self.filelist) centDirSize = pos2 - self.start_dir centDirOffset = self.start_dir - self._start_disk requires_zip64 = None if centDirCount > ZIP_FILECOUNT_LIMIT: requires_zip64 = "Files count" elif centDirOffset > ZIP64_LIMIT: requires_zip64 = "Central directory offset" elif centDirSize > ZIP64_LIMIT: requires_zip64 = "Central directory size" if requires_zip64: # Need to write the ZIP64 end-of-archive records if not self._allowZip64: raise LargeZipFile(requires_zip64 + " would require ZIP64 extensions") zip64endrec = struct.pack( structEndArchive64, stringEndArchive64, 44, 45, 45, 0, 0, centDirCount, centDirCount, centDirSize, centDirOffset) self.fp.write(zip64endrec) zip64locrec = struct.pack( structEndArchive64Locator, stringEndArchive64Locator, 0, pos2, 1) self.fp.write(zip64locrec) centDirCount = min(centDirCount, 0xFFFF) centDirSize = min(centDirSize, 0xFFFFFFFF) centDirOffset = min(centDirOffset, 0xFFFFFFFF) endrec = struct.pack(structEndArchive, stringEndArchive, 0, 0, centDirCount, centDirCount, centDirSize, centDirOffset, len(self._comment)) self.fp.write(endrec) self.fp.write(self._comment) self.fp.flush() def _fpclose(self, fp): assert self._fileRefCnt > 0 self._fileRefCnt -= 1 if not self._fileRefCnt and not self._filePassed: fp.close() class PyZipFile(ZipFile): """Class to create ZIP archives with Python library files and packages.""" def __init__(self, file, mode="r", compression=ZIP_STORED, allowZip64=True, optimize=-1): ZipFile.__init__(self, file, mode=mode, compression=compression, allowZip64=allowZip64) self._optimize = optimize def writepy(self, pathname, basename="", filterfunc=None): """Add all files from "pathname" to the ZIP archive. If pathname is a package directory, search the directory and all package subdirectories recursively for all *.py and enter the modules into the archive. If pathname is a plain directory, listdir *.py and enter all modules. Else, pathname must be a Python *.py file and the module will be put into the archive. Added modules are always module.pyc. This method will compile the module.py into module.pyc if necessary. If filterfunc(pathname) is given, it is called with every argument. When it is False, the file or directory is skipped. """ if filterfunc and not filterfunc(pathname): if self.debug: label = 'path' if os.path.isdir(pathname) else 'file' print('%s %r skipped by filterfunc' % (label, pathname)) return dir, name = os.path.split(pathname) if os.path.isdir(pathname): initname = os.path.join(pathname, "__init__.py") if os.path.isfile(initname): # This is a package directory, add it if basename: basename = "%s/%s" % (basename, name) else: basename = name if self.debug: print("Adding package in", pathname, "as", basename) fname, arcname = self._get_codename(initname[0:-3], basename) if self.debug: print("Adding", arcname) self.write(fname, arcname) dirlist = os.listdir(pathname) dirlist.remove("__init__.py") # Add all *.py files and package subdirectories for filename in dirlist: path = os.path.join(pathname, filename) root, ext = os.path.splitext(filename) if os.path.isdir(path): if os.path.isfile(os.path.join(path, "__init__.py")): # This is a package directory, add it self.writepy(path, basename, filterfunc=filterfunc) # Recursive call elif ext == ".py": if filterfunc and not filterfunc(path): if self.debug: print('file %r skipped by filterfunc' % path) continue fname, arcname = self._get_codename(path[0:-3], basename) if self.debug: print("Adding", arcname) self.write(fname, arcname) else: # This is NOT a package directory, add its files at top level if self.debug: print("Adding files from directory", pathname) for filename in os.listdir(pathname): path = os.path.join(pathname, filename) root, ext = os.path.splitext(filename) if ext == ".py": if filterfunc and not filterfunc(path): if self.debug: print('file %r skipped by filterfunc' % path) continue fname, arcname = self._get_codename(path[0:-3], basename) if self.debug: print("Adding", arcname) self.write(fname, arcname) else: if pathname[-3:] != ".py": raise RuntimeError( 'Files added with writepy() must end with ".py"') fname, arcname = self._get_codename(pathname[0:-3], basename) if self.debug: print("Adding file", arcname) self.write(fname, arcname) def _get_codename(self, pathname, basename): """Return (filename, archivename) for the path. Given a module name path, return the correct file path and archive name, compiling if necessary. For example, given /python/lib/string, return (/python/lib/string.pyc, string). """ def _compile(file, optimize=-1): import py_compile if self.debug: print("Compiling", file) try: py_compile.compile(file, doraise=True, optimize=optimize) except py_compile.PyCompileError as err: print(err.msg) return False return True file_py = pathname + ".py" file_pyc = pathname + ".pyc" if sys.version_info >= (3, 5): pycache_opt0 = importlib.util.cache_from_source(file_py, optimization='') pycache_opt1 = importlib.util.cache_from_source(file_py, optimization=1) pycache_opt2 = importlib.util.cache_from_source(file_py, optimization=2) else: pycache_opt0 = importlib.util.cache_from_source(file_py, debug_override=True) pycache_opt1 = importlib.util.cache_from_source(file_py, debug_override=False) pycache_opt2 = None if self._optimize == -1: # legacy mode: use whatever file is present if (os.path.isfile(file_pyc) and os.stat(file_pyc).st_mtime >= os.stat(file_py).st_mtime): # Use .pyc file. arcname = fname = file_pyc elif (os.path.isfile(pycache_opt0) and os.stat(pycache_opt0).st_mtime >= os.stat(file_py).st_mtime): # Use the __pycache__/*.pyc file, but write it to the legacy pyc # file name in the archive. fname = pycache_opt0 arcname = file_pyc elif (os.path.isfile(pycache_opt1) and os.stat(pycache_opt1).st_mtime >= os.stat(file_py).st_mtime): # Use the __pycache__/*.pyc file, but write it to the legacy pyc # file name in the archive. fname = pycache_opt1 arcname = file_pyc elif pycache_opt2 and (os.path.isfile(pycache_opt2) and os.stat(pycache_opt2).st_mtime >= os.stat(file_py).st_mtime): # Use the __pycache__/*.pyc file, but write it to the legacy pyc # file name in the archive. fname = pycache_opt2 arcname = file_pyc else: # Compile py into PEP 3147 pyc file. if _compile(file_py): if sys.flags.optimize == 0: fname = pycache_opt0 elif (sys.flags.optimize == 1) or not pycache_opt2: fname = pycache_opt1 else: fname = pycache_opt2 arcname = file_pyc else: fname = arcname = file_py else: # new mode: use given optimization level if self._optimize == 0: fname = pycache_opt0 arcname = file_pyc else: arcname = file_pyc if self._optimize == 1: fname = pycache_opt1 elif self._optimize == 2: fname = pycache_opt2 or pycache_opt1 else: msg = "invalid value for 'optimize': {!r}".format(self._optimize) raise ValueError(msg) if not (os.path.isfile(fname) and os.stat(fname).st_mtime >= os.stat(file_py).st_mtime): if not _compile(file_py, optimize=self._optimize): fname = arcname = file_py archivename = os.path.split(arcname)[1] if basename: archivename = "%s/%s" % (basename, archivename) return (fname, archivename) def main(args = None): import textwrap USAGE=textwrap.dedent("""\ Usage: zipfile.py -l zipfile.zip # Show listing of a zipfile zipfile.py -t zipfile.zip # Test if a zipfile is valid zipfile.py -e zipfile.zip target # Extract zipfile into target dir zipfile.py -c zipfile.zip src ... # Create zipfile from sources """) if args is None: args = sys.argv[1:] if not args or args[0] not in ('-l', '-c', '-e', '-t'): print(USAGE, file=sys.stderr) sys.exit(1) if args[0] == '-l': if len(args) != 2: print(USAGE, file=sys.stderr) sys.exit(1) with ZipFile(args[1], 'r') as zf: zf.printdir() elif args[0] == '-t': if len(args) != 2: print(USAGE, file=sys.stderr) sys.exit(1) with ZipFile(args[1], 'r') as zf: badfile = zf.testzip() if badfile: print("The following enclosed file is corrupted: {!r}".format(badfile)) print("Done testing") elif args[0] == '-e': if len(args) != 3: print(USAGE, file=sys.stderr) sys.exit(1) with ZipFile(args[1], 'r') as zf: zf.extractall(args[2]) elif args[0] == '-c': if len(args) < 3: print(USAGE, file=sys.stderr) sys.exit(1) def addToZip(zf, path, zippath): if os.path.isfile(path): zf.write(path, zippath, ZIP_DEFLATED) elif os.path.isdir(path): if zippath: zf.write(path, zippath) for nm in os.listdir(path): addToZip(zf, os.path.join(path, nm), os.path.join(zippath, nm)) # else: ignore with ZipFile(args[1], 'w') as zf: for path in args[2:]: zippath = os.path.basename(path) if not zippath: zippath = os.path.basename(os.path.dirname(path)) if zippath in ('', os.curdir, os.pardir): zippath = '' addToZip(zf, path, zippath) if __name__ == "__main__": main()
zipfile36
/zipfile36-0.1.3.tar.gz/zipfile36-0.1.3/zipfile36.py
zipfile36.py
import collections import importlib import sys import os import os.path import tempfile import subprocess import py_compile import contextlib import shutil import zipfile from importlib.util import source_from_cache from test.support import make_legacy_pyc, strip_python_stderr # Cached result of the expensive test performed in the function below. __cached_interp_requires_environment = None def interpreter_requires_environment(): """ Returns True if our sys.executable interpreter requires environment variables in order to be able to run at all. This is designed to be used with @unittest.skipIf() to annotate tests that need to use an assert_python*() function to launch an isolated mode (-I) or no environment mode (-E) sub-interpreter process. A normal build & test does not run into this situation but it can happen when trying to run the standard library test suite from an interpreter that doesn't have an obvious home with Python's current home finding logic. Setting PYTHONHOME is one way to get most of the testsuite to run in that situation. PYTHONPATH or PYTHONUSERSITE are other common environment variables that might impact whether or not the interpreter can start. """ global __cached_interp_requires_environment if __cached_interp_requires_environment is None: # Try running an interpreter with -E to see if it works or not. try: subprocess.check_call([sys.executable, '-E', '-c', 'import sys; sys.exit(0)']) except subprocess.CalledProcessError: __cached_interp_requires_environment = True else: __cached_interp_requires_environment = False return __cached_interp_requires_environment _PythonRunResult = collections.namedtuple("_PythonRunResult", ("rc", "out", "err")) # Executing the interpreter in a subprocess def run_python_until_end(*args, **env_vars): env_required = interpreter_requires_environment() if '__isolated' in env_vars: isolated = env_vars.pop('__isolated') else: isolated = not env_vars and not env_required cmd_line = [sys.executable, '-X', 'faulthandler'] if isolated: # isolated mode: ignore Python environment variables, ignore user # site-packages, and don't add the current directory to sys.path cmd_line.append('-I') elif not env_vars and not env_required: # ignore Python environment variables cmd_line.append('-E') # Need to preserve the original environment, for in-place testing of # shared library builds. env = os.environ.copy() # set TERM='' unless the TERM environment variable is passed explicitly # see issues #11390 and #18300 if 'TERM' not in env_vars: env['TERM'] = '' # But a special flag that can be set to override -- in this case, the # caller is responsible to pass the full environment. if env_vars.pop('__cleanenv', None): env = {} env.update(env_vars) cmd_line.extend(args) proc = subprocess.Popen(cmd_line, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) with proc: try: out, err = proc.communicate() finally: proc.kill() subprocess._cleanup() rc = proc.returncode err = strip_python_stderr(err) return _PythonRunResult(rc, out, err), cmd_line def _assert_python(expected_success, *args, **env_vars): res, cmd_line = run_python_until_end(*args, **env_vars) if (res.rc and expected_success) or (not res.rc and not expected_success): # Limit to 80 lines to ASCII characters maxlen = 80 * 100 out, err = res.out, res.err if len(out) > maxlen: out = b'(... truncated stdout ...)' + out[-maxlen:] if len(err) > maxlen: err = b'(... truncated stderr ...)' + err[-maxlen:] out = out.decode('ascii', 'replace').rstrip() err = err.decode('ascii', 'replace').rstrip() raise AssertionError("Process return code is %d\n" "command line: %r\n" "\n" "stdout:\n" "---\n" "%s\n" "---\n" "\n" "stderr:\n" "---\n" "%s\n" "---" % (res.rc, cmd_line, out, err)) return res def assert_python_ok(*args, **env_vars): """ Assert that running the interpreter with `args` and optional environment variables `env_vars` succeeds (rc == 0) and return a (return code, stdout, stderr) tuple. If the __cleanenv keyword is set, env_vars is used as a fresh environment. Python is started in isolated mode (command line option -I), except if the __isolated keyword is set to False. """ return _assert_python(True, *args, **env_vars) def assert_python_failure(*args, **env_vars): """ Assert that running the interpreter with `args` and optional environment variables `env_vars` fails (rc != 0) and return a (return code, stdout, stderr) tuple. See assert_python_ok() for more options. """ return _assert_python(False, *args, **env_vars) def spawn_python(*args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, **kw): """Run a Python subprocess with the given arguments. kw is extra keyword args to pass to subprocess.Popen. Returns a Popen object. """ cmd_line = [sys.executable, '-E'] cmd_line.extend(args) # Under Fedora (?), GNU readline can output junk on stderr when initialized, # depending on the TERM setting. Setting TERM=vt100 is supposed to disable # that. References: # - http://reinout.vanrees.org/weblog/2009/08/14/readline-invisible-character-hack.html # - http://stackoverflow.com/questions/15760712/python-readline-module-prints-escape-character-during-import # - http://lists.gnu.org/archive/html/bug-readline/2007-08/msg00004.html env = kw.setdefault('env', dict(os.environ)) env['TERM'] = 'vt100' return subprocess.Popen(cmd_line, stdin=subprocess.PIPE, stdout=stdout, stderr=stderr, **kw) def kill_python(p): """Run the given Popen process until completion and return stdout.""" p.stdin.close() data = p.stdout.read() p.stdout.close() # try to cleanup the child so we don't appear to leak when running # with regrtest -R. p.wait() subprocess._cleanup() return data def make_script(script_dir, script_basename, source, omit_suffix=False): script_filename = script_basename if not omit_suffix: script_filename += os.extsep + 'py' script_name = os.path.join(script_dir, script_filename) # The script should be encoded to UTF-8, the default string encoding script_file = open(script_name, 'w', encoding='utf-8') script_file.write(source) script_file.close() importlib.invalidate_caches() return script_name def make_zip_script(zip_dir, zip_basename, script_name, name_in_zip=None): zip_filename = zip_basename+os.extsep+'zip' zip_name = os.path.join(zip_dir, zip_filename) zip_file = zipfile.ZipFile(zip_name, 'w') if name_in_zip is None: parts = script_name.split(os.sep) if len(parts) >= 2 and parts[-2] == '__pycache__': legacy_pyc = make_legacy_pyc(source_from_cache(script_name)) name_in_zip = os.path.basename(legacy_pyc) script_name = legacy_pyc else: name_in_zip = os.path.basename(script_name) zip_file.write(script_name, name_in_zip) zip_file.close() #if test.support.verbose: # zip_file = zipfile.ZipFile(zip_name, 'r') # print 'Contents of %r:' % zip_name # zip_file.printdir() # zip_file.close() return zip_name, os.path.join(zip_name, name_in_zip) def make_pkg(pkg_dir, init_source=''): os.mkdir(pkg_dir) make_script(pkg_dir, '__init__', init_source) def make_zip_pkg(zip_dir, zip_basename, pkg_name, script_basename, source, depth=1, compiled=False): unlink = [] init_name = make_script(zip_dir, '__init__', '') unlink.append(init_name) init_basename = os.path.basename(init_name) script_name = make_script(zip_dir, script_basename, source) unlink.append(script_name) if compiled: init_name = py_compile.compile(init_name, doraise=True) script_name = py_compile.compile(script_name, doraise=True) unlink.extend((init_name, script_name)) pkg_names = [os.sep.join([pkg_name]*i) for i in range(1, depth+1)] script_name_in_zip = os.path.join(pkg_names[-1], os.path.basename(script_name)) zip_filename = zip_basename+os.extsep+'zip' zip_name = os.path.join(zip_dir, zip_filename) zip_file = zipfile.ZipFile(zip_name, 'w') for name in pkg_names: init_name_in_zip = os.path.join(name, init_basename) zip_file.write(init_name, init_name_in_zip) zip_file.write(script_name, script_name_in_zip) zip_file.close() for name in unlink: os.unlink(name) #if test.support.verbose: # zip_file = zipfile.ZipFile(zip_name, 'r') # print 'Contents of %r:' % zip_name # zip_file.printdir() # zip_file.close() return zip_name, os.path.join(zip_name, script_name_in_zip)
zipfile36
/zipfile36-0.1.3.tar.gz/zipfile36-0.1.3/test/support/script_helper.py
script_helper.py
import collections.abc import contextlib import errno import faulthandler import fnmatch import functools import gc import importlib import importlib.util import logging.handlers import nntplib import os import platform import re import shutil import socket import stat import struct import subprocess import sys import sysconfig import tempfile import time import types import unittest import urllib.error import warnings try: import _thread, threading except ImportError: _thread = None threading = None try: import multiprocessing.process except ImportError: multiprocessing = None try: import zlib except ImportError: zlib = None try: import gzip except ImportError: gzip = None try: import bz2 except ImportError: bz2 = None try: import lzma except ImportError: lzma = None try: import resource except ImportError: resource = None __all__ = [ # globals "PIPE_MAX_SIZE", "verbose", "max_memuse", "use_resources", "failfast", # exceptions "Error", "TestFailed", "ResourceDenied", # imports "import_module", "import_fresh_module", "CleanImport", # modules "unload", "forget", # io "record_original_stdout", "get_original_stdout", "captured_stdout", "captured_stdin", "captured_stderr", # filesystem "TESTFN", "SAVEDCWD", "unlink", "rmtree", "temp_cwd", "findfile", "create_empty_file", "can_symlink", "fs_is_case_insensitive", # unittest "is_resource_enabled", "requires", "requires_freebsd_version", "requires_linux_version", "requires_mac_ver", "check_syntax_error", "TransientResource", "time_out", "socket_peer_reset", "ioerror_peer_reset", "transient_internet", "BasicTestRunner", "run_unittest", "run_doctest", "skip_unless_symlink", "requires_gzip", "requires_bz2", "requires_lzma", "bigmemtest", "bigaddrspacetest", "cpython_only", "get_attribute", "requires_IEEE_754", "skip_unless_xattr", "requires_zlib", "anticipate_failure", "load_package_tests", "detect_api_mismatch", "check__all__", # sys "is_jython", "is_android", "check_impl_detail", "unix_shell", # network "HOST", "IPV6_ENABLED", "find_unused_port", "bind_port", "open_urlresource", # processes 'temp_umask', "reap_children", # logging "TestHandler", # threads "threading_setup", "threading_cleanup", "reap_threads", "start_threads", # miscellaneous "check_warnings", "check_no_resource_warning", "EnvironmentVarGuard", "run_with_locale", "swap_item", "swap_attr", "Matcher", "set_memlimit", "SuppressCrashReport", "sortdict", "run_with_tz", "PGO", ] class Error(Exception): """Base class for regression test exceptions.""" class TestFailed(Error): """Test failed.""" class ResourceDenied(unittest.SkipTest): """Test skipped because it requested a disallowed resource. This is raised when a test calls requires() for a resource that has not be enabled. It is used to distinguish between expected and unexpected skips. """ @contextlib.contextmanager def _ignore_deprecated_imports(ignore=True): """Context manager to suppress package and module deprecation warnings when importing them. If ignore is False, this context manager has no effect. """ if ignore: with warnings.catch_warnings(): warnings.filterwarnings("ignore", ".+ (module|package)", DeprecationWarning) yield else: yield def import_module(name, deprecated=False, *, required_on=()): """Import and return the module to be tested, raising SkipTest if it is not available. If deprecated is True, any module or package deprecation messages will be suppressed. If a module is required on a platform but optional for others, set required_on to an iterable of platform prefixes which will be compared against sys.platform. """ with _ignore_deprecated_imports(deprecated): try: return importlib.import_module(name) except ImportError as msg: if sys.platform.startswith(tuple(required_on)): raise raise unittest.SkipTest(str(msg)) def _save_and_remove_module(name, orig_modules): """Helper function to save and remove a module from sys.modules Raise ImportError if the module can't be imported. """ # try to import the module and raise an error if it can't be imported if name not in sys.modules: __import__(name) del sys.modules[name] for modname in list(sys.modules): if modname == name or modname.startswith(name + '.'): orig_modules[modname] = sys.modules[modname] del sys.modules[modname] def _save_and_block_module(name, orig_modules): """Helper function to save and block a module in sys.modules Return True if the module was in sys.modules, False otherwise. """ saved = True try: orig_modules[name] = sys.modules[name] except KeyError: saved = False sys.modules[name] = None return saved def anticipate_failure(condition): """Decorator to mark a test that is known to be broken in some cases Any use of this decorator should have a comment identifying the associated tracker issue. """ if condition: return unittest.expectedFailure return lambda f: f def load_package_tests(pkg_dir, loader, standard_tests, pattern): """Generic load_tests implementation for simple test packages. Most packages can implement load_tests using this function as follows: def load_tests(*args): return load_package_tests(os.path.dirname(__file__), *args) """ if pattern is None: pattern = "test*" top_dir = os.path.dirname( # Lib os.path.dirname( # test os.path.dirname(__file__))) # support package_tests = loader.discover(start_dir=pkg_dir, top_level_dir=top_dir, pattern=pattern) standard_tests.addTests(package_tests) return standard_tests def import_fresh_module(name, fresh=(), blocked=(), deprecated=False): """Import and return a module, deliberately bypassing sys.modules. This function imports and returns a fresh copy of the named Python module by removing the named module from sys.modules before doing the import. Note that unlike reload, the original module is not affected by this operation. *fresh* is an iterable of additional module names that are also removed from the sys.modules cache before doing the import. *blocked* is an iterable of module names that are replaced with None in the module cache during the import to ensure that attempts to import them raise ImportError. The named module and any modules named in the *fresh* and *blocked* parameters are saved before starting the import and then reinserted into sys.modules when the fresh import is complete. Module and package deprecation messages are suppressed during this import if *deprecated* is True. This function will raise ImportError if the named module cannot be imported. """ # NOTE: test_heapq, test_json and test_warnings include extra sanity checks # to make sure that this utility function is working as expected with _ignore_deprecated_imports(deprecated): # Keep track of modules saved for later restoration as well # as those which just need a blocking entry removed orig_modules = {} names_to_remove = [] _save_and_remove_module(name, orig_modules) try: for fresh_name in fresh: _save_and_remove_module(fresh_name, orig_modules) for blocked_name in blocked: if not _save_and_block_module(blocked_name, orig_modules): names_to_remove.append(blocked_name) fresh_module = importlib.import_module(name) except ImportError: fresh_module = None finally: for orig_name, module in orig_modules.items(): sys.modules[orig_name] = module for name_to_remove in names_to_remove: del sys.modules[name_to_remove] return fresh_module def get_attribute(obj, name): """Get an attribute, raising SkipTest if AttributeError is raised.""" try: attribute = getattr(obj, name) except AttributeError: raise unittest.SkipTest("object %r has no attribute %r" % (obj, name)) else: return attribute verbose = 1 # Flag set to 0 by regrtest.py use_resources = None # Flag set to [] by regrtest.py max_memuse = 0 # Disable bigmem tests (they will still be run with # small sizes, to make sure they work.) real_max_memuse = 0 failfast = False match_tests = None # _original_stdout is meant to hold stdout at the time regrtest began. # This may be "the real" stdout, or IDLE's emulation of stdout, or whatever. # The point is to have some flavor of stdout the user can actually see. _original_stdout = None def record_original_stdout(stdout): global _original_stdout _original_stdout = stdout def get_original_stdout(): return _original_stdout or sys.stdout def unload(name): try: del sys.modules[name] except KeyError: pass if sys.platform.startswith("win"): def _waitfor(func, pathname, waitall=False): # Perform the operation func(pathname) # Now setup the wait loop if waitall: dirname = pathname else: dirname, name = os.path.split(pathname) dirname = dirname or '.' # Check for `pathname` to be removed from the filesystem. # The exponential backoff of the timeout amounts to a total # of ~1 second after which the deletion is probably an error # anyway. # Testing on an [email protected] shows that usually only 1 iteration is # required when contention occurs. timeout = 0.001 while timeout < 1.0: # Note we are only testing for the existence of the file(s) in # the contents of the directory regardless of any security or # access rights. If we have made it this far, we have sufficient # permissions to do that much using Python's equivalent of the # Windows API FindFirstFile. # Other Windows APIs can fail or give incorrect results when # dealing with files that are pending deletion. L = os.listdir(dirname) if not (L if waitall else name in L): return # Increase the timeout and try again time.sleep(timeout) timeout *= 2 warnings.warn('tests may fail, delete still pending for ' + pathname, RuntimeWarning, stacklevel=4) def _unlink(filename): _waitfor(os.unlink, filename) def _rmdir(dirname): _waitfor(os.rmdir, dirname) def _rmtree(path): def _rmtree_inner(path): for name in os.listdir(path): fullname = os.path.join(path, name) try: mode = os.lstat(fullname).st_mode except OSError as exc: print("support.rmtree(): os.lstat(%r) failed with %s" % (fullname, exc), file=sys.__stderr__) mode = 0 if stat.S_ISDIR(mode): _waitfor(_rmtree_inner, fullname, waitall=True) os.rmdir(fullname) else: os.unlink(fullname) _waitfor(_rmtree_inner, path, waitall=True) _waitfor(os.rmdir, path) else: _unlink = os.unlink _rmdir = os.rmdir _rmtree = shutil.rmtree def unlink(filename): try: _unlink(filename) except (FileNotFoundError, NotADirectoryError): pass def rmdir(dirname): try: _rmdir(dirname) except FileNotFoundError: pass def rmtree(path): try: _rmtree(path) except FileNotFoundError: pass def make_legacy_pyc(source): """Move a PEP 3147/488 pyc file to its legacy pyc location. :param source: The file system path to the source file. The source file does not need to exist, however the PEP 3147/488 pyc file must exist. :return: The file system path to the legacy pyc file. """ pyc_file = importlib.util.cache_from_source(source) up_one = os.path.dirname(os.path.abspath(source)) legacy_pyc = os.path.join(up_one, source + 'c') os.rename(pyc_file, legacy_pyc) return legacy_pyc def forget(modname): """'Forget' a module was ever imported. This removes the module from sys.modules and deletes any PEP 3147/488 or legacy .pyc files. """ unload(modname) for dirname in sys.path: source = os.path.join(dirname, modname + '.py') # It doesn't matter if they exist or not, unlink all possible # combinations of PEP 3147/488 and legacy pyc files. unlink(source + 'c') for opt in ('', 1, 2): unlink(importlib.util.cache_from_source(source, optimization=opt)) # Check whether a gui is actually available def _is_gui_available(): if hasattr(_is_gui_available, 'result'): return _is_gui_available.result reason = None if sys.platform.startswith('win'): # if Python is running as a service (such as the buildbot service), # gui interaction may be disallowed import ctypes import ctypes.wintypes UOI_FLAGS = 1 WSF_VISIBLE = 0x0001 class USEROBJECTFLAGS(ctypes.Structure): _fields_ = [("fInherit", ctypes.wintypes.BOOL), ("fReserved", ctypes.wintypes.BOOL), ("dwFlags", ctypes.wintypes.DWORD)] dll = ctypes.windll.user32 h = dll.GetProcessWindowStation() if not h: raise ctypes.WinError() uof = USEROBJECTFLAGS() needed = ctypes.wintypes.DWORD() res = dll.GetUserObjectInformationW(h, UOI_FLAGS, ctypes.byref(uof), ctypes.sizeof(uof), ctypes.byref(needed)) if not res: raise ctypes.WinError() if not bool(uof.dwFlags & WSF_VISIBLE): reason = "gui not available (WSF_VISIBLE flag not set)" elif sys.platform == 'darwin': # The Aqua Tk implementations on OS X can abort the process if # being called in an environment where a window server connection # cannot be made, for instance when invoked by a buildbot or ssh # process not running under the same user id as the current console # user. To avoid that, raise an exception if the window manager # connection is not available. from ctypes import cdll, c_int, pointer, Structure from ctypes.util import find_library app_services = cdll.LoadLibrary(find_library("ApplicationServices")) if app_services.CGMainDisplayID() == 0: reason = "gui tests cannot run without OS X window manager" else: class ProcessSerialNumber(Structure): _fields_ = [("highLongOfPSN", c_int), ("lowLongOfPSN", c_int)] psn = ProcessSerialNumber() psn_p = pointer(psn) if ( (app_services.GetCurrentProcess(psn_p) < 0) or (app_services.SetFrontProcess(psn_p) < 0) ): reason = "cannot run without OS X gui process" # check on every platform whether tkinter can actually do anything if not reason: try: from tkinter import Tk root = Tk() root.withdraw() root.update() root.destroy() except Exception as e: err_string = str(e) if len(err_string) > 50: err_string = err_string[:50] + ' [...]' reason = 'Tk unavailable due to {}: {}'.format(type(e).__name__, err_string) _is_gui_available.reason = reason _is_gui_available.result = not reason return _is_gui_available.result def is_resource_enabled(resource): """Test whether a resource is enabled. Known resources are set by regrtest.py. If not running under regrtest.py, all resources are assumed enabled unless use_resources has been set. """ return use_resources is None or resource in use_resources def requires(resource, msg=None): """Raise ResourceDenied if the specified resource is not available.""" if not is_resource_enabled(resource): if msg is None: msg = "Use of the %r resource not enabled" % resource raise ResourceDenied(msg) if resource == 'gui' and not _is_gui_available(): raise ResourceDenied(_is_gui_available.reason) def _requires_unix_version(sysname, min_version): """Decorator raising SkipTest if the OS is `sysname` and the version is less than `min_version`. For example, @_requires_unix_version('FreeBSD', (7, 2)) raises SkipTest if the FreeBSD version is less than 7.2. """ def decorator(func): @functools.wraps(func) def wrapper(*args, **kw): if platform.system() == sysname: version_txt = platform.release().split('-', 1)[0] try: version = tuple(map(int, version_txt.split('.'))) except ValueError: pass else: if version < min_version: min_version_txt = '.'.join(map(str, min_version)) raise unittest.SkipTest( "%s version %s or higher required, not %s" % (sysname, min_version_txt, version_txt)) return func(*args, **kw) wrapper.min_version = min_version return wrapper return decorator def requires_freebsd_version(*min_version): """Decorator raising SkipTest if the OS is FreeBSD and the FreeBSD version is less than `min_version`. For example, @requires_freebsd_version(7, 2) raises SkipTest if the FreeBSD version is less than 7.2. """ return _requires_unix_version('FreeBSD', min_version) def requires_linux_version(*min_version): """Decorator raising SkipTest if the OS is Linux and the Linux version is less than `min_version`. For example, @requires_linux_version(2, 6, 32) raises SkipTest if the Linux version is less than 2.6.32. """ return _requires_unix_version('Linux', min_version) def requires_mac_ver(*min_version): """Decorator raising SkipTest if the OS is Mac OS X and the OS X version if less than min_version. For example, @requires_mac_ver(10, 5) raises SkipTest if the OS X version is lesser than 10.5. """ def decorator(func): @functools.wraps(func) def wrapper(*args, **kw): if sys.platform == 'darwin': version_txt = platform.mac_ver()[0] try: version = tuple(map(int, version_txt.split('.'))) except ValueError: pass else: if version < min_version: min_version_txt = '.'.join(map(str, min_version)) raise unittest.SkipTest( "Mac OS X %s or higher required, not %s" % (min_version_txt, version_txt)) return func(*args, **kw) wrapper.min_version = min_version return wrapper return decorator # Don't use "localhost", since resolving it uses the DNS under recent # Windows versions (see issue #18792). HOST = "127.0.0.1" HOSTv6 = "::1" def find_unused_port(family=socket.AF_INET, socktype=socket.SOCK_STREAM): """Returns an unused port that should be suitable for binding. This is achieved by creating a temporary socket with the same family and type as the 'sock' parameter (default is AF_INET, SOCK_STREAM), and binding it to the specified host address (defaults to 0.0.0.0) with the port set to 0, eliciting an unused ephemeral port from the OS. The temporary socket is then closed and deleted, and the ephemeral port is returned. Either this method or bind_port() should be used for any tests where a server socket needs to be bound to a particular port for the duration of the test. Which one to use depends on whether the calling code is creating a python socket, or if an unused port needs to be provided in a constructor or passed to an external program (i.e. the -accept argument to openssl's s_server mode). Always prefer bind_port() over find_unused_port() where possible. Hard coded ports should *NEVER* be used. As soon as a server socket is bound to a hard coded port, the ability to run multiple instances of the test simultaneously on the same host is compromised, which makes the test a ticking time bomb in a buildbot environment. On Unix buildbots, this may simply manifest as a failed test, which can be recovered from without intervention in most cases, but on Windows, the entire python process can completely and utterly wedge, requiring someone to log in to the buildbot and manually kill the affected process. (This is easy to reproduce on Windows, unfortunately, and can be traced to the SO_REUSEADDR socket option having different semantics on Windows versus Unix/Linux. On Unix, you can't have two AF_INET SOCK_STREAM sockets bind, listen and then accept connections on identical host/ports. An EADDRINUSE OSError will be raised at some point (depending on the platform and the order bind and listen were called on each socket). However, on Windows, if SO_REUSEADDR is set on the sockets, no EADDRINUSE will ever be raised when attempting to bind two identical host/ports. When accept() is called on each socket, the second caller's process will steal the port from the first caller, leaving them both in an awkwardly wedged state where they'll no longer respond to any signals or graceful kills, and must be forcibly killed via OpenProcess()/TerminateProcess(). The solution on Windows is to use the SO_EXCLUSIVEADDRUSE socket option instead of SO_REUSEADDR, which effectively affords the same semantics as SO_REUSEADDR on Unix. Given the propensity of Unix developers in the Open Source world compared to Windows ones, this is a common mistake. A quick look over OpenSSL's 0.9.8g source shows that they use SO_REUSEADDR when openssl.exe is called with the 's_server' option, for example. See http://bugs.python.org/issue2550 for more info. The following site also has a very thorough description about the implications of both REUSEADDR and EXCLUSIVEADDRUSE on Windows: http://msdn2.microsoft.com/en-us/library/ms740621(VS.85).aspx) XXX: although this approach is a vast improvement on previous attempts to elicit unused ports, it rests heavily on the assumption that the ephemeral port returned to us by the OS won't immediately be dished back out to some other process when we close and delete our temporary socket but before our calling code has a chance to bind the returned port. We can deal with this issue if/when we come across it. """ tempsock = socket.socket(family, socktype) port = bind_port(tempsock) tempsock.close() del tempsock return port def bind_port(sock, host=HOST): """Bind the socket to a free port and return the port number. Relies on ephemeral ports in order to ensure we are using an unbound port. This is important as many tests may be running simultaneously, especially in a buildbot environment. This method raises an exception if the sock.family is AF_INET and sock.type is SOCK_STREAM, *and* the socket has SO_REUSEADDR or SO_REUSEPORT set on it. Tests should *never* set these socket options for TCP/IP sockets. The only case for setting these options is testing multicasting via multiple UDP sockets. Additionally, if the SO_EXCLUSIVEADDRUSE socket option is available (i.e. on Windows), it will be set on the socket. This will prevent anyone else from bind()'ing to our host/port for the duration of the test. """ if sock.family == socket.AF_INET and sock.type == socket.SOCK_STREAM: if hasattr(socket, 'SO_REUSEADDR'): if sock.getsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR) == 1: raise TestFailed("tests should never set the SO_REUSEADDR " \ "socket option on TCP/IP sockets!") if hasattr(socket, 'SO_REUSEPORT'): try: if sock.getsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT) == 1: raise TestFailed("tests should never set the SO_REUSEPORT " \ "socket option on TCP/IP sockets!") except OSError: # Python's socket module was compiled using modern headers # thus defining SO_REUSEPORT but this process is running # under an older kernel that does not support SO_REUSEPORT. pass if hasattr(socket, 'SO_EXCLUSIVEADDRUSE'): sock.setsockopt(socket.SOL_SOCKET, socket.SO_EXCLUSIVEADDRUSE, 1) sock.bind((host, 0)) port = sock.getsockname()[1] return port def _is_ipv6_enabled(): """Check whether IPv6 is enabled on this host.""" if socket.has_ipv6: sock = None try: sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) sock.bind((HOSTv6, 0)) return True except OSError: pass finally: if sock: sock.close() return False IPV6_ENABLED = _is_ipv6_enabled() def system_must_validate_cert(f): """Skip the test on TLS certificate validation failures.""" @functools.wraps(f) def dec(*args, **kwargs): try: f(*args, **kwargs) except IOError as e: if "CERTIFICATE_VERIFY_FAILED" in str(e): raise unittest.SkipTest("system does not contain " "necessary certificates") raise return dec # A constant likely larger than the underlying OS pipe buffer size, to # make writes blocking. # Windows limit seems to be around 512 B, and many Unix kernels have a # 64 KiB pipe buffer size or 16 * PAGE_SIZE: take a few megs to be sure. # (see issue #17835 for a discussion of this number). PIPE_MAX_SIZE = 4 * 1024 * 1024 + 1 # A constant likely larger than the underlying OS socket buffer size, to make # writes blocking. # The socket buffer sizes can usually be tuned system-wide (e.g. through sysctl # on Linux), or on a per-socket basis (SO_SNDBUF/SO_RCVBUF). See issue #18643 # for a discussion of this number). SOCK_MAX_SIZE = 16 * 1024 * 1024 + 1 # decorator for skipping tests on non-IEEE 754 platforms requires_IEEE_754 = unittest.skipUnless( float.__getformat__("double").startswith("IEEE"), "test requires IEEE 754 doubles") requires_zlib = unittest.skipUnless(zlib, 'requires zlib') requires_gzip = unittest.skipUnless(gzip, 'requires gzip') requires_bz2 = unittest.skipUnless(bz2, 'requires bz2') requires_lzma = unittest.skipUnless(lzma, 'requires lzma') is_jython = sys.platform.startswith('java') is_android = bool(sysconfig.get_config_var('ANDROID_API_LEVEL')) if sys.platform != 'win32': unix_shell = '/system/bin/sh' if is_android else '/bin/sh' else: unix_shell = None # Filename used for testing if os.name == 'java': # Jython disallows @ in module names TESTFN = '$test' else: TESTFN = '@test' # Disambiguate TESTFN for parallel testing, while letting it remain a valid # module name. TESTFN = "{}_{}_tmp".format(TESTFN, os.getpid()) # FS_NONASCII: non-ASCII character encodable by os.fsencode(), # or None if there is no such character. FS_NONASCII = None for character in ( # First try printable and common characters to have a readable filename. # For each character, the encoding list are just example of encodings able # to encode the character (the list is not exhaustive). # U+00E6 (Latin Small Letter Ae): cp1252, iso-8859-1 '\u00E6', # U+0130 (Latin Capital Letter I With Dot Above): cp1254, iso8859_3 '\u0130', # U+0141 (Latin Capital Letter L With Stroke): cp1250, cp1257 '\u0141', # U+03C6 (Greek Small Letter Phi): cp1253 '\u03C6', # U+041A (Cyrillic Capital Letter Ka): cp1251 '\u041A', # U+05D0 (Hebrew Letter Alef): Encodable to cp424 '\u05D0', # U+060C (Arabic Comma): cp864, cp1006, iso8859_6, mac_arabic '\u060C', # U+062A (Arabic Letter Teh): cp720 '\u062A', # U+0E01 (Thai Character Ko Kai): cp874 '\u0E01', # Then try more "special" characters. "special" because they may be # interpreted or displayed differently depending on the exact locale # encoding and the font. # U+00A0 (No-Break Space) '\u00A0', # U+20AC (Euro Sign) '\u20AC', ): try: os.fsdecode(os.fsencode(character)) except UnicodeError: pass else: FS_NONASCII = character break # TESTFN_UNICODE is a non-ascii filename TESTFN_UNICODE = TESTFN + "-\xe0\xf2\u0258\u0141\u011f" if sys.platform == 'darwin': # In Mac OS X's VFS API file names are, by definition, canonically # decomposed Unicode, encoded using UTF-8. See QA1173: # http://developer.apple.com/mac/library/qa/qa2001/qa1173.html import unicodedata TESTFN_UNICODE = unicodedata.normalize('NFD', TESTFN_UNICODE) TESTFN_ENCODING = sys.getfilesystemencoding() # TESTFN_UNENCODABLE is a filename (str type) that should *not* be able to be # encoded by the filesystem encoding (in strict mode). It can be None if we # cannot generate such filename. TESTFN_UNENCODABLE = None if os.name == 'nt': # skip win32s (0) or Windows 9x/ME (1) if sys.getwindowsversion().platform >= 2: # Different kinds of characters from various languages to minimize the # probability that the whole name is encodable to MBCS (issue #9819) TESTFN_UNENCODABLE = TESTFN + "-\u5171\u0141\u2661\u0363\uDC80" try: TESTFN_UNENCODABLE.encode(TESTFN_ENCODING) except UnicodeEncodeError: pass else: print('WARNING: The filename %r CAN be encoded by the filesystem encoding (%s). ' 'Unicode filename tests may not be effective' % (TESTFN_UNENCODABLE, TESTFN_ENCODING)) TESTFN_UNENCODABLE = None # Mac OS X denies unencodable filenames (invalid utf-8) elif sys.platform != 'darwin': try: # ascii and utf-8 cannot encode the byte 0xff b'\xff'.decode(TESTFN_ENCODING) except UnicodeDecodeError: # 0xff will be encoded using the surrogate character u+DCFF TESTFN_UNENCODABLE = TESTFN \ + b'-\xff'.decode(TESTFN_ENCODING, 'surrogateescape') else: # File system encoding (eg. ISO-8859-* encodings) can encode # the byte 0xff. Skip some unicode filename tests. pass # TESTFN_UNDECODABLE is a filename (bytes type) that should *not* be able to be # decoded from the filesystem encoding (in strict mode). It can be None if we # cannot generate such filename (ex: the latin1 encoding can decode any byte # sequence). On UNIX, TESTFN_UNDECODABLE can be decoded by os.fsdecode() thanks # to the surrogateescape error handler (PEP 383), but not from the filesystem # encoding in strict mode. TESTFN_UNDECODABLE = None for name in ( # b'\xff' is not decodable by os.fsdecode() with code page 932. Windows # accepts it to create a file or a directory, or don't accept to enter to # such directory (when the bytes name is used). So test b'\xe7' first: it is # not decodable from cp932. b'\xe7w\xf0', # undecodable from ASCII, UTF-8 b'\xff', # undecodable from iso8859-3, iso8859-6, iso8859-7, cp424, iso8859-8, cp856 # and cp857 b'\xae\xd5' # undecodable from UTF-8 (UNIX and Mac OS X) b'\xed\xb2\x80', b'\xed\xb4\x80', # undecodable from shift_jis, cp869, cp874, cp932, cp1250, cp1251, cp1252, # cp1253, cp1254, cp1255, cp1257, cp1258 b'\x81\x98', ): try: name.decode(TESTFN_ENCODING) except UnicodeDecodeError: TESTFN_UNDECODABLE = os.fsencode(TESTFN) + name break if FS_NONASCII: TESTFN_NONASCII = TESTFN + '-' + FS_NONASCII else: TESTFN_NONASCII = None # Save the initial cwd SAVEDCWD = os.getcwd() # Set by libregrtest/main.py so we can skip tests that are not # useful for PGO PGO = False @contextlib.contextmanager def temp_dir(path=None, quiet=False): """Return a context manager that creates a temporary directory. Arguments: path: the directory to create temporarily. If omitted or None, defaults to creating a temporary directory using tempfile.mkdtemp. quiet: if False (the default), the context manager raises an exception on error. Otherwise, if the path is specified and cannot be created, only a warning is issued. """ dir_created = False if path is None: path = tempfile.mkdtemp() dir_created = True path = os.path.realpath(path) else: try: os.mkdir(path) dir_created = True except OSError: if not quiet: raise warnings.warn('tests may fail, unable to create temp dir: ' + path, RuntimeWarning, stacklevel=3) try: yield path finally: if dir_created: rmtree(path) @contextlib.contextmanager def change_cwd(path, quiet=False): """Return a context manager that changes the current working directory. Arguments: path: the directory to use as the temporary current working directory. quiet: if False (the default), the context manager raises an exception on error. Otherwise, it issues only a warning and keeps the current working directory the same. """ saved_dir = os.getcwd() try: os.chdir(path) except OSError: if not quiet: raise warnings.warn('tests may fail, unable to change CWD to: ' + path, RuntimeWarning, stacklevel=3) try: yield os.getcwd() finally: os.chdir(saved_dir) @contextlib.contextmanager def temp_cwd(name='tempcwd', quiet=False): """ Context manager that temporarily creates and changes the CWD. The function temporarily changes the current working directory after creating a temporary directory in the current directory with name *name*. If *name* is None, the temporary directory is created using tempfile.mkdtemp. If *quiet* is False (default) and it is not possible to create or change the CWD, an error is raised. If *quiet* is True, only a warning is raised and the original CWD is used. """ with temp_dir(path=name, quiet=quiet) as temp_path: with change_cwd(temp_path, quiet=quiet) as cwd_dir: yield cwd_dir if hasattr(os, "umask"): @contextlib.contextmanager def temp_umask(umask): """Context manager that temporarily sets the process umask.""" oldmask = os.umask(umask) try: yield finally: os.umask(oldmask) # TEST_HOME_DIR refers to the top level directory of the "test" package # that contains Python's regression test suite TEST_SUPPORT_DIR = os.path.dirname(os.path.abspath(__file__)) TEST_HOME_DIR = os.path.dirname(TEST_SUPPORT_DIR) # TEST_DATA_DIR is used as a target download location for remote resources TEST_DATA_DIR = os.path.join(TEST_HOME_DIR, "data") def findfile(filename, subdir=None): """Try to find a file on sys.path or in the test directory. If it is not found the argument passed to the function is returned (this does not necessarily signal failure; could still be the legitimate path). Setting *subdir* indicates a relative path to use to find the file rather than looking directly in the path directories. """ if os.path.isabs(filename): return filename if subdir is not None: filename = os.path.join(subdir, filename) path = [TEST_HOME_DIR] + sys.path for dn in path: fn = os.path.join(dn, filename) if os.path.exists(fn): return fn return filename def create_empty_file(filename): """Create an empty file. If the file already exists, truncate it.""" fd = os.open(filename, os.O_WRONLY | os.O_CREAT | os.O_TRUNC) os.close(fd) def sortdict(dict): "Like repr(dict), but in sorted order." items = sorted(dict.items()) reprpairs = ["%r: %r" % pair for pair in items] withcommas = ", ".join(reprpairs) return "{%s}" % withcommas def make_bad_fd(): """ Create an invalid file descriptor by opening and closing a file and return its fd. """ file = open(TESTFN, "wb") try: return file.fileno() finally: file.close() unlink(TESTFN) def check_syntax_error(testcase, statement): testcase.assertRaises(SyntaxError, compile, statement, '<test string>', 'exec') def open_urlresource(url, *args, **kw): import urllib.request, urllib.parse check = kw.pop('check', None) filename = urllib.parse.urlparse(url)[2].split('/')[-1] # '/': it's URL! fn = os.path.join(TEST_DATA_DIR, filename) def check_valid_file(fn): f = open(fn, *args, **kw) if check is None: return f elif check(f): f.seek(0) return f f.close() if os.path.exists(fn): f = check_valid_file(fn) if f is not None: return f unlink(fn) # Verify the requirement before downloading the file requires('urlfetch') if verbose: print('\tfetching %s ...' % url, file=get_original_stdout()) opener = urllib.request.build_opener() if gzip: opener.addheaders.append(('Accept-Encoding', 'gzip')) f = opener.open(url, timeout=15) if gzip and f.headers.get('Content-Encoding') == 'gzip': f = gzip.GzipFile(fileobj=f) try: with open(fn, "wb") as out: s = f.read() while s: out.write(s) s = f.read() finally: f.close() f = check_valid_file(fn) if f is not None: return f raise TestFailed('invalid resource %r' % fn) class WarningsRecorder(object): """Convenience wrapper for the warnings list returned on entry to the warnings.catch_warnings() context manager. """ def __init__(self, warnings_list): self._warnings = warnings_list self._last = 0 def __getattr__(self, attr): if len(self._warnings) > self._last: return getattr(self._warnings[-1], attr) elif attr in warnings.WarningMessage._WARNING_DETAILS: return None raise AttributeError("%r has no attribute %r" % (self, attr)) @property def warnings(self): return self._warnings[self._last:] def reset(self): self._last = len(self._warnings) def _filterwarnings(filters, quiet=False): """Catch the warnings, then check if all the expected warnings have been raised and re-raise unexpected warnings. If 'quiet' is True, only re-raise the unexpected warnings. """ # Clear the warning registry of the calling module # in order to re-raise the warnings. frame = sys._getframe(2) registry = frame.f_globals.get('__warningregistry__') if registry: registry.clear() with warnings.catch_warnings(record=True) as w: # Set filter "always" to record all warnings. Because # test_warnings swap the module, we need to look up in # the sys.modules dictionary. sys.modules['warnings'].simplefilter("always") yield WarningsRecorder(w) # Filter the recorded warnings reraise = list(w) missing = [] for msg, cat in filters: seen = False for w in reraise[:]: warning = w.message # Filter out the matching messages if (re.match(msg, str(warning), re.I) and issubclass(warning.__class__, cat)): seen = True reraise.remove(w) if not seen and not quiet: # This filter caught nothing missing.append((msg, cat.__name__)) if reraise: raise AssertionError("unhandled warning %s" % reraise[0]) if missing: raise AssertionError("filter (%r, %s) did not catch any warning" % missing[0]) @contextlib.contextmanager def check_warnings(*filters, **kwargs): """Context manager to silence warnings. Accept 2-tuples as positional arguments: ("message regexp", WarningCategory) Optional argument: - if 'quiet' is True, it does not fail if a filter catches nothing (default True without argument, default False if some filters are defined) Without argument, it defaults to: check_warnings(("", Warning), quiet=True) """ quiet = kwargs.get('quiet') if not filters: filters = (("", Warning),) # Preserve backward compatibility if quiet is None: quiet = True return _filterwarnings(filters, quiet) @contextlib.contextmanager def check_no_resource_warning(testcase): """Context manager to check that no ResourceWarning is emitted. Usage: with check_no_resource_warning(self): f = open(...) ... del f You must remove the object which may emit ResourceWarning before the end of the context manager. """ with warnings.catch_warnings(record=True) as warns: warnings.filterwarnings('always', category=ResourceWarning) yield gc_collect() testcase.assertEqual(warns, []) class CleanImport(object): """Context manager to force import to return a new module reference. This is useful for testing module-level behaviours, such as the emission of a DeprecationWarning on import. Use like this: with CleanImport("foo"): importlib.import_module("foo") # new reference """ def __init__(self, *module_names): self.original_modules = sys.modules.copy() for module_name in module_names: if module_name in sys.modules: module = sys.modules[module_name] # It is possible that module_name is just an alias for # another module (e.g. stub for modules renamed in 3.x). # In that case, we also need delete the real module to clear # the import cache. if module.__name__ != module_name: del sys.modules[module.__name__] del sys.modules[module_name] def __enter__(self): return self def __exit__(self, *ignore_exc): sys.modules.update(self.original_modules) class EnvironmentVarGuard(collections.abc.MutableMapping): """Class to help protect the environment variable properly. Can be used as a context manager.""" def __init__(self): self._environ = os.environ self._changed = {} def __getitem__(self, envvar): return self._environ[envvar] def __setitem__(self, envvar, value): # Remember the initial value on the first access if envvar not in self._changed: self._changed[envvar] = self._environ.get(envvar) self._environ[envvar] = value def __delitem__(self, envvar): # Remember the initial value on the first access if envvar not in self._changed: self._changed[envvar] = self._environ.get(envvar) if envvar in self._environ: del self._environ[envvar] def keys(self): return self._environ.keys() def __iter__(self): return iter(self._environ) def __len__(self): return len(self._environ) def set(self, envvar, value): self[envvar] = value def unset(self, envvar): del self[envvar] def __enter__(self): return self def __exit__(self, *ignore_exc): for (k, v) in self._changed.items(): if v is None: if k in self._environ: del self._environ[k] else: self._environ[k] = v os.environ = self._environ class DirsOnSysPath(object): """Context manager to temporarily add directories to sys.path. This makes a copy of sys.path, appends any directories given as positional arguments, then reverts sys.path to the copied settings when the context ends. Note that *all* sys.path modifications in the body of the context manager, including replacement of the object, will be reverted at the end of the block. """ def __init__(self, *paths): self.original_value = sys.path[:] self.original_object = sys.path sys.path.extend(paths) def __enter__(self): return self def __exit__(self, *ignore_exc): sys.path = self.original_object sys.path[:] = self.original_value class TransientResource(object): """Raise ResourceDenied if an exception is raised while the context manager is in effect that matches the specified exception and attributes.""" def __init__(self, exc, **kwargs): self.exc = exc self.attrs = kwargs def __enter__(self): return self def __exit__(self, type_=None, value=None, traceback=None): """If type_ is a subclass of self.exc and value has attributes matching self.attrs, raise ResourceDenied. Otherwise let the exception propagate (if any).""" if type_ is not None and issubclass(self.exc, type_): for attr, attr_value in self.attrs.items(): if not hasattr(value, attr): break if getattr(value, attr) != attr_value: break else: raise ResourceDenied("an optional resource is not available") # Context managers that raise ResourceDenied when various issues # with the Internet connection manifest themselves as exceptions. # XXX deprecate these and use transient_internet() instead time_out = TransientResource(OSError, errno=errno.ETIMEDOUT) socket_peer_reset = TransientResource(OSError, errno=errno.ECONNRESET) ioerror_peer_reset = TransientResource(OSError, errno=errno.ECONNRESET) @contextlib.contextmanager def transient_internet(resource_name, *, timeout=30.0, errnos=()): """Return a context manager that raises ResourceDenied when various issues with the Internet connection manifest themselves as exceptions.""" default_errnos = [ ('ECONNREFUSED', 111), ('ECONNRESET', 104), ('EHOSTUNREACH', 113), ('ENETUNREACH', 101), ('ETIMEDOUT', 110), ] default_gai_errnos = [ ('EAI_AGAIN', -3), ('EAI_FAIL', -4), ('EAI_NONAME', -2), ('EAI_NODATA', -5), # Encountered when trying to resolve IPv6-only hostnames ('WSANO_DATA', 11004), ] denied = ResourceDenied("Resource %r is not available" % resource_name) captured_errnos = errnos gai_errnos = [] if not captured_errnos: captured_errnos = [getattr(errno, name, num) for (name, num) in default_errnos] gai_errnos = [getattr(socket, name, num) for (name, num) in default_gai_errnos] def filter_error(err): n = getattr(err, 'errno', None) if (isinstance(err, socket.timeout) or (isinstance(err, socket.gaierror) and n in gai_errnos) or (isinstance(err, urllib.error.HTTPError) and 500 <= err.code <= 599) or (isinstance(err, urllib.error.URLError) and (("ConnectionRefusedError" in err.reason) or ("TimeoutError" in err.reason) or ("EOFError" in err.reason))) or n in captured_errnos): if not verbose: sys.stderr.write(denied.args[0] + "\n") raise denied from err old_timeout = socket.getdefaulttimeout() try: if timeout is not None: socket.setdefaulttimeout(timeout) yield except nntplib.NNTPTemporaryError as err: if verbose: sys.stderr.write(denied.args[0] + "\n") raise denied from err except OSError as err: # urllib can wrap original socket errors multiple times (!), we must # unwrap to get at the original error. while True: a = err.args if len(a) >= 1 and isinstance(a[0], OSError): err = a[0] # The error can also be wrapped as args[1]: # except socket.error as msg: # raise OSError('socket error', msg).with_traceback(sys.exc_info()[2]) elif len(a) >= 2 and isinstance(a[1], OSError): err = a[1] else: break filter_error(err) raise # XXX should we catch generic exceptions and look for their # __cause__ or __context__? finally: socket.setdefaulttimeout(old_timeout) @contextlib.contextmanager def captured_output(stream_name): """Return a context manager used by captured_stdout/stdin/stderr that temporarily replaces the sys stream *stream_name* with a StringIO.""" import io orig_stdout = getattr(sys, stream_name) setattr(sys, stream_name, io.StringIO()) try: yield getattr(sys, stream_name) finally: setattr(sys, stream_name, orig_stdout) def captured_stdout(): """Capture the output of sys.stdout: with captured_stdout() as stdout: print("hello") self.assertEqual(stdout.getvalue(), "hello\\n") """ return captured_output("stdout") def captured_stderr(): """Capture the output of sys.stderr: with captured_stderr() as stderr: print("hello", file=sys.stderr) self.assertEqual(stderr.getvalue(), "hello\\n") """ return captured_output("stderr") def captured_stdin(): """Capture the input to sys.stdin: with captured_stdin() as stdin: stdin.write('hello\\n') stdin.seek(0) # call test code that consumes from sys.stdin captured = input() self.assertEqual(captured, "hello") """ return captured_output("stdin") def gc_collect(): """Force as many objects as possible to be collected. In non-CPython implementations of Python, this is needed because timely deallocation is not guaranteed by the garbage collector. (Even in CPython this can be the case in case of reference cycles.) This means that __del__ methods may be called later than expected and weakrefs may remain alive for longer than expected. This function tries its best to force all garbage objects to disappear. """ gc.collect() if is_jython: time.sleep(0.1) gc.collect() gc.collect() @contextlib.contextmanager def disable_gc(): have_gc = gc.isenabled() gc.disable() try: yield finally: if have_gc: gc.enable() def python_is_optimized(): """Find if Python was built with optimizations.""" cflags = sysconfig.get_config_var('PY_CFLAGS') or '' final_opt = "" for opt in cflags.split(): if opt.startswith('-O'): final_opt = opt return final_opt not in ('', '-O0', '-Og') _header = 'nP' _align = '0n' if hasattr(sys, "gettotalrefcount"): _header = '2P' + _header _align = '0P' _vheader = _header + 'n' def calcobjsize(fmt): return struct.calcsize(_header + fmt + _align) def calcvobjsize(fmt): return struct.calcsize(_vheader + fmt + _align) _TPFLAGS_HAVE_GC = 1<<14 _TPFLAGS_HEAPTYPE = 1<<9 def check_sizeof(test, o, size): import _testcapi result = sys.getsizeof(o) # add GC header size if ((type(o) == type) and (o.__flags__ & _TPFLAGS_HEAPTYPE) or\ ((type(o) != type) and (type(o).__flags__ & _TPFLAGS_HAVE_GC))): size += _testcapi.SIZEOF_PYGC_HEAD msg = 'wrong size for %s: got %d, expected %d' \ % (type(o), result, size) test.assertEqual(result, size, msg) #======================================================================= # Decorator for running a function in a different locale, correctly resetting # it afterwards. def run_with_locale(catstr, *locales): def decorator(func): def inner(*args, **kwds): try: import locale category = getattr(locale, catstr) orig_locale = locale.setlocale(category) except AttributeError: # if the test author gives us an invalid category string raise except: # cannot retrieve original locale, so do nothing locale = orig_locale = None else: for loc in locales: try: locale.setlocale(category, loc) break except: pass # now run the function, resetting the locale on exceptions try: return func(*args, **kwds) finally: if locale and orig_locale: locale.setlocale(category, orig_locale) inner.__name__ = func.__name__ inner.__doc__ = func.__doc__ return inner return decorator #======================================================================= # Decorator for running a function in a specific timezone, correctly # resetting it afterwards. def run_with_tz(tz): def decorator(func): def inner(*args, **kwds): try: tzset = time.tzset except AttributeError: raise unittest.SkipTest("tzset required") if 'TZ' in os.environ: orig_tz = os.environ['TZ'] else: orig_tz = None os.environ['TZ'] = tz tzset() # now run the function, resetting the tz on exceptions try: return func(*args, **kwds) finally: if orig_tz is None: del os.environ['TZ'] else: os.environ['TZ'] = orig_tz time.tzset() inner.__name__ = func.__name__ inner.__doc__ = func.__doc__ return inner return decorator #======================================================================= # Big-memory-test support. Separate from 'resources' because memory use # should be configurable. # Some handy shorthands. Note that these are used for byte-limits as well # as size-limits, in the various bigmem tests _1M = 1024*1024 _1G = 1024 * _1M _2G = 2 * _1G _4G = 4 * _1G MAX_Py_ssize_t = sys.maxsize def set_memlimit(limit): global max_memuse global real_max_memuse sizes = { 'k': 1024, 'm': _1M, 'g': _1G, 't': 1024*_1G, } m = re.match(r'(\d+(\.\d+)?) (K|M|G|T)b?$', limit, re.IGNORECASE | re.VERBOSE) if m is None: raise ValueError('Invalid memory limit %r' % (limit,)) memlimit = int(float(m.group(1)) * sizes[m.group(3).lower()]) real_max_memuse = memlimit if memlimit > MAX_Py_ssize_t: memlimit = MAX_Py_ssize_t if memlimit < _2G - 1: raise ValueError('Memory limit %r too low to be useful' % (limit,)) max_memuse = memlimit class _MemoryWatchdog: """An object which periodically watches the process' memory consumption and prints it out. """ def __init__(self): self.procfile = '/proc/{pid}/statm'.format(pid=os.getpid()) self.started = False def start(self): try: f = open(self.procfile, 'r') except OSError as e: warnings.warn('/proc not available for stats: {}'.format(e), RuntimeWarning) sys.stderr.flush() return watchdog_script = findfile("memory_watchdog.py") self.mem_watchdog = subprocess.Popen([sys.executable, watchdog_script], stdin=f, stderr=subprocess.DEVNULL) f.close() self.started = True def stop(self): if self.started: self.mem_watchdog.terminate() self.mem_watchdog.wait() def bigmemtest(size, memuse, dry_run=True): """Decorator for bigmem tests. 'size' is a requested size for the test (in arbitrary, test-interpreted units.) 'memuse' is the number of bytes per unit for the test, or a good estimate of it. For example, a test that needs two byte buffers, of 4 GiB each, could be decorated with @bigmemtest(size=_4G, memuse=2). The 'size' argument is normally passed to the decorated test method as an extra argument. If 'dry_run' is true, the value passed to the test method may be less than the requested value. If 'dry_run' is false, it means the test doesn't support dummy runs when -M is not specified. """ def decorator(f): def wrapper(self): size = wrapper.size memuse = wrapper.memuse if not real_max_memuse: maxsize = 5147 else: maxsize = size if ((real_max_memuse or not dry_run) and real_max_memuse < maxsize * memuse): raise unittest.SkipTest( "not enough memory: %.1fG minimum needed" % (size * memuse / (1024 ** 3))) if real_max_memuse and verbose: print() print(" ... expected peak memory use: {peak:.1f}G" .format(peak=size * memuse / (1024 ** 3))) watchdog = _MemoryWatchdog() watchdog.start() else: watchdog = None try: return f(self, maxsize) finally: if watchdog: watchdog.stop() wrapper.size = size wrapper.memuse = memuse return wrapper return decorator def bigaddrspacetest(f): """Decorator for tests that fill the address space.""" def wrapper(self): if max_memuse < MAX_Py_ssize_t: if MAX_Py_ssize_t >= 2**63 - 1 and max_memuse >= 2**31: raise unittest.SkipTest( "not enough memory: try a 32-bit build instead") else: raise unittest.SkipTest( "not enough memory: %.1fG minimum needed" % (MAX_Py_ssize_t / (1024 ** 3))) else: return f(self) return wrapper #======================================================================= # unittest integration. class BasicTestRunner: def run(self, test): result = unittest.TestResult() test(result) return result def _id(obj): return obj def requires_resource(resource): if resource == 'gui' and not _is_gui_available(): return unittest.skip(_is_gui_available.reason) if is_resource_enabled(resource): return _id else: return unittest.skip("resource {0!r} is not enabled".format(resource)) def cpython_only(test): """ Decorator for tests only applicable on CPython. """ return impl_detail(cpython=True)(test) def impl_detail(msg=None, **guards): if check_impl_detail(**guards): return _id if msg is None: guardnames, default = _parse_guards(guards) if default: msg = "implementation detail not available on {0}" else: msg = "implementation detail specific to {0}" guardnames = sorted(guardnames.keys()) msg = msg.format(' or '.join(guardnames)) return unittest.skip(msg) def _parse_guards(guards): # Returns a tuple ({platform_name: run_me}, default_value) if not guards: return ({'cpython': True}, False) is_true = list(guards.values())[0] assert list(guards.values()) == [is_true] * len(guards) # all True or all False return (guards, not is_true) # Use the following check to guard CPython's implementation-specific tests -- # or to run them only on the implementation(s) guarded by the arguments. def check_impl_detail(**guards): """This function returns True or False depending on the host platform. Examples: if check_impl_detail(): # only on CPython (default) if check_impl_detail(jython=True): # only on Jython if check_impl_detail(cpython=False): # everywhere except on CPython """ guards, default = _parse_guards(guards) return guards.get(platform.python_implementation().lower(), default) def no_tracing(func): """Decorator to temporarily turn off tracing for the duration of a test.""" if not hasattr(sys, 'gettrace'): return func else: @functools.wraps(func) def wrapper(*args, **kwargs): original_trace = sys.gettrace() try: sys.settrace(None) return func(*args, **kwargs) finally: sys.settrace(original_trace) return wrapper def refcount_test(test): """Decorator for tests which involve reference counting. To start, the decorator does not run the test if is not run by CPython. After that, any trace function is unset during the test to prevent unexpected refcounts caused by the trace function. """ return no_tracing(cpython_only(test)) def _filter_suite(suite, pred): """Recursively filter test cases in a suite based on a predicate.""" newtests = [] for test in suite._tests: if isinstance(test, unittest.TestSuite): _filter_suite(test, pred) newtests.append(test) else: if pred(test): newtests.append(test) suite._tests = newtests def _run_suite(suite): """Run tests from a unittest.TestSuite-derived class.""" if verbose: runner = unittest.TextTestRunner(sys.stdout, verbosity=2, failfast=failfast) else: runner = BasicTestRunner() result = runner.run(suite) if not result.wasSuccessful(): if len(result.errors) == 1 and not result.failures: err = result.errors[0][1] elif len(result.failures) == 1 and not result.errors: err = result.failures[0][1] else: err = "multiple errors occurred" if not verbose: err += "; run in verbose mode for details" raise TestFailed(err) def run_unittest(*classes): """Run tests from unittest.TestCase-derived classes.""" valid_types = (unittest.TestSuite, unittest.TestCase) suite = unittest.TestSuite() for cls in classes: if isinstance(cls, str): if cls in sys.modules: suite.addTest(unittest.findTestCases(sys.modules[cls])) else: raise ValueError("str arguments must be keys in sys.modules") elif isinstance(cls, valid_types): suite.addTest(cls) else: suite.addTest(unittest.makeSuite(cls)) def case_pred(test): if match_tests is None: return True for name in test.id().split("."): if fnmatch.fnmatchcase(name, match_tests): return True return False _filter_suite(suite, case_pred) _run_suite(suite) #======================================================================= # Check for the presence of docstrings. # Rather than trying to enumerate all the cases where docstrings may be # disabled, we just check for that directly def _check_docstrings(): """Just used to check if docstrings are enabled""" MISSING_C_DOCSTRINGS = (check_impl_detail() and sys.platform != 'win32' and not sysconfig.get_config_var('WITH_DOC_STRINGS')) HAVE_DOCSTRINGS = (_check_docstrings.__doc__ is not None and not MISSING_C_DOCSTRINGS) requires_docstrings = unittest.skipUnless(HAVE_DOCSTRINGS, "test requires docstrings") #======================================================================= # doctest driver. def run_doctest(module, verbosity=None, optionflags=0): """Run doctest on the given module. Return (#failures, #tests). If optional argument verbosity is not specified (or is None), pass support's belief about verbosity on to doctest. Else doctest's usual behavior is used (it searches sys.argv for -v). """ import doctest if verbosity is None: verbosity = verbose else: verbosity = None f, t = doctest.testmod(module, verbose=verbosity, optionflags=optionflags) if f: raise TestFailed("%d of %d doctests failed" % (f, t)) if verbose: print('doctest (%s) ... %d tests with zero failures' % (module.__name__, t)) return f, t #======================================================================= # Support for saving and restoring the imported modules. def modules_setup(): return sys.modules.copy(), def modules_cleanup(oldmodules): # Encoders/decoders are registered permanently within the internal # codec cache. If we destroy the corresponding modules their # globals will be set to None which will trip up the cached functions. encodings = [(k, v) for k, v in sys.modules.items() if k.startswith('encodings.')] sys.modules.clear() sys.modules.update(encodings) # XXX: This kind of problem can affect more than just encodings. In particular # extension modules (such as _ssl) don't cope with reloading properly. # Really, test modules should be cleaning out the test specific modules they # know they added (ala test_runpy) rather than relying on this function (as # test_importhooks and test_pkg do currently). # Implicitly imported *real* modules should be left alone (see issue 10556). sys.modules.update(oldmodules) #======================================================================= # Threading support to prevent reporting refleaks when running regrtest.py -R # NOTE: we use thread._count() rather than threading.enumerate() (or the # moral equivalent thereof) because a threading.Thread object is still alive # until its __bootstrap() method has returned, even after it has been # unregistered from the threading module. # thread._count(), on the other hand, only gets decremented *after* the # __bootstrap() method has returned, which gives us reliable reference counts # at the end of a test run. def threading_setup(): if _thread: return _thread._count(), threading._dangling.copy() else: return 1, () def threading_cleanup(*original_values): if not _thread: return _MAX_COUNT = 100 for count in range(_MAX_COUNT): values = _thread._count(), threading._dangling if values == original_values: break time.sleep(0.01) gc_collect() # XXX print a warning in case of failure? def reap_threads(func): """Use this function when threads are being used. This will ensure that the threads are cleaned up even when the test fails. If threading is unavailable this function does nothing. """ if not _thread: return func @functools.wraps(func) def decorator(*args): key = threading_setup() try: return func(*args) finally: threading_cleanup(*key) return decorator def reap_children(): """Use this function at the end of test_main() whenever sub-processes are started. This will help ensure that no extra children (zombies) stick around to hog resources and create problems when looking for refleaks. """ # Reap all our dead child processes so we don't leave zombies around. # These hog resources and might be causing some of the buildbots to die. if hasattr(os, 'waitpid'): any_process = -1 while True: try: # This will raise an exception on Windows. That's ok. pid, status = os.waitpid(any_process, os.WNOHANG) if pid == 0: break except: break @contextlib.contextmanager def start_threads(threads, unlock=None): threads = list(threads) started = [] try: try: for t in threads: t.start() started.append(t) except: if verbose: print("Can't start %d threads, only %d threads started" % (len(threads), len(started))) raise yield finally: try: if unlock: unlock() endtime = starttime = time.time() for timeout in range(1, 16): endtime += 60 for t in started: t.join(max(endtime - time.time(), 0.01)) started = [t for t in started if t.isAlive()] if not started: break if verbose: print('Unable to join %d threads during a period of ' '%d minutes' % (len(started), timeout)) finally: started = [t for t in started if t.isAlive()] if started: faulthandler.dump_traceback(sys.stdout) raise AssertionError('Unable to join %d threads' % len(started)) @contextlib.contextmanager def swap_attr(obj, attr, new_val): """Temporary swap out an attribute with a new object. Usage: with swap_attr(obj, "attr", 5): ... This will set obj.attr to 5 for the duration of the with: block, restoring the old value at the end of the block. If `attr` doesn't exist on `obj`, it will be created and then deleted at the end of the block. """ if hasattr(obj, attr): real_val = getattr(obj, attr) setattr(obj, attr, new_val) try: yield finally: setattr(obj, attr, real_val) else: setattr(obj, attr, new_val) try: yield finally: delattr(obj, attr) @contextlib.contextmanager def swap_item(obj, item, new_val): """Temporary swap out an item with a new object. Usage: with swap_item(obj, "item", 5): ... This will set obj["item"] to 5 for the duration of the with: block, restoring the old value at the end of the block. If `item` doesn't exist on `obj`, it will be created and then deleted at the end of the block. """ if item in obj: real_val = obj[item] obj[item] = new_val try: yield finally: obj[item] = real_val else: obj[item] = new_val try: yield finally: del obj[item] def strip_python_stderr(stderr): """Strip the stderr of a Python process from potential debug output emitted by the interpreter. This will typically be run on the result of the communicate() method of a subprocess.Popen object. """ stderr = re.sub(br"\[\d+ refs, \d+ blocks\]\r?\n?", b"", stderr).strip() return stderr requires_type_collecting = unittest.skipIf(hasattr(sys, 'getcounts'), 'types are immortal if COUNT_ALLOCS is defined') def args_from_interpreter_flags(): """Return a list of command-line arguments reproducing the current settings in sys.flags and sys.warnoptions.""" return subprocess._args_from_interpreter_flags() def optim_args_from_interpreter_flags(): """Return a list of command-line arguments reproducing the current optimization settings in sys.flags.""" return subprocess._optim_args_from_interpreter_flags() #============================================================ # Support for assertions about logging. #============================================================ class TestHandler(logging.handlers.BufferingHandler): def __init__(self, matcher): # BufferingHandler takes a "capacity" argument # so as to know when to flush. As we're overriding # shouldFlush anyway, we can set a capacity of zero. # You can call flush() manually to clear out the # buffer. logging.handlers.BufferingHandler.__init__(self, 0) self.matcher = matcher def shouldFlush(self): return False def emit(self, record): self.format(record) self.buffer.append(record.__dict__) def matches(self, **kwargs): """ Look for a saved dict whose keys/values match the supplied arguments. """ result = False for d in self.buffer: if self.matcher.matches(d, **kwargs): result = True break return result class Matcher(object): _partial_matches = ('msg', 'message') def matches(self, d, **kwargs): """ Try to match a single dict with the supplied arguments. Keys whose values are strings and which are in self._partial_matches will be checked for partial (i.e. substring) matches. You can extend this scheme to (for example) do regular expression matching, etc. """ result = True for k in kwargs: v = kwargs[k] dv = d.get(k) if not self.match_value(k, dv, v): result = False break return result def match_value(self, k, dv, v): """ Try to match a single stored value (dv) with a supplied value (v). """ if type(v) != type(dv): result = False elif type(dv) is not str or k not in self._partial_matches: result = (v == dv) else: result = dv.find(v) >= 0 return result _can_symlink = None def can_symlink(): global _can_symlink if _can_symlink is not None: return _can_symlink symlink_path = TESTFN + "can_symlink" try: os.symlink(TESTFN, symlink_path) can = True except (OSError, NotImplementedError, AttributeError): can = False else: os.remove(symlink_path) _can_symlink = can return can def skip_unless_symlink(test): """Skip decorator for tests that require functional symlink""" ok = can_symlink() msg = "Requires functional symlink implementation" return test if ok else unittest.skip(msg)(test) _can_xattr = None def can_xattr(): global _can_xattr if _can_xattr is not None: return _can_xattr if not hasattr(os, "setxattr"): can = False else: tmp_fp, tmp_name = tempfile.mkstemp() try: with open(TESTFN, "wb") as fp: try: # TESTFN & tempfile may use different file systems with # different capabilities os.setxattr(tmp_fp, b"user.test", b"") os.setxattr(fp.fileno(), b"user.test", b"") # Kernels < 2.6.39 don't respect setxattr flags. kernel_version = platform.release() m = re.match(r"2.6.(\d{1,2})", kernel_version) can = m is None or int(m.group(1)) >= 39 except OSError: can = False finally: unlink(TESTFN) unlink(tmp_name) _can_xattr = can return can def skip_unless_xattr(test): """Skip decorator for tests that require functional extended attributes""" ok = can_xattr() msg = "no non-broken extended attribute support" return test if ok else unittest.skip(msg)(test) def fs_is_case_insensitive(directory): """Detects if the file system for the specified directory is case-insensitive.""" with tempfile.NamedTemporaryFile(dir=directory) as base: base_path = base.name case_path = base_path.upper() if case_path == base_path: case_path = base_path.lower() try: return os.path.samefile(base_path, case_path) except FileNotFoundError: return False def detect_api_mismatch(ref_api, other_api, *, ignore=()): """Returns the set of items in ref_api not in other_api, except for a defined list of items to be ignored in this check. By default this skips private attributes beginning with '_' but includes all magic methods, i.e. those starting and ending in '__'. """ missing_items = set(dir(ref_api)) - set(dir(other_api)) if ignore: missing_items -= set(ignore) missing_items = set(m for m in missing_items if not m.startswith('_') or m.endswith('__')) return missing_items def check__all__(test_case, module, name_of_module=None, extra=(), blacklist=()): """Assert that the __all__ variable of 'module' contains all public names. The module's public names (its API) are detected automatically based on whether they match the public name convention and were defined in 'module'. The 'name_of_module' argument can specify (as a string or tuple thereof) what module(s) an API could be defined in in order to be detected as a public API. One case for this is when 'module' imports part of its public API from other modules, possibly a C backend (like 'csv' and its '_csv'). The 'extra' argument can be a set of names that wouldn't otherwise be automatically detected as "public", like objects without a proper '__module__' attriubute. If provided, it will be added to the automatically detected ones. The 'blacklist' argument can be a set of names that must not be treated as part of the public API even though their names indicate otherwise. Usage: import bar import foo import unittest from test import support class MiscTestCase(unittest.TestCase): def test__all__(self): support.check__all__(self, foo) class OtherTestCase(unittest.TestCase): def test__all__(self): extra = {'BAR_CONST', 'FOO_CONST'} blacklist = {'baz'} # Undocumented name. # bar imports part of its API from _bar. support.check__all__(self, bar, ('bar', '_bar'), extra=extra, blacklist=blacklist) """ if name_of_module is None: name_of_module = (module.__name__, ) elif isinstance(name_of_module, str): name_of_module = (name_of_module, ) expected = set(extra) for name in dir(module): if name.startswith('_') or name in blacklist: continue obj = getattr(module, name) if (getattr(obj, '__module__', None) in name_of_module or (not hasattr(obj, '__module__') and not isinstance(obj, types.ModuleType))): expected.add(name) test_case.assertCountEqual(module.__all__, expected) class SuppressCrashReport: """Try to prevent a crash report from popping up. On Windows, don't display the Windows Error Reporting dialog. On UNIX, disable the creation of coredump file. """ old_value = None old_modes = None def __enter__(self): """On Windows, disable Windows Error Reporting dialogs using SetErrorMode. On UNIX, try to save the previous core file size limit, then set soft limit to 0. """ if sys.platform.startswith('win'): # see http://msdn.microsoft.com/en-us/library/windows/desktop/ms680621.aspx # GetErrorMode is not available on Windows XP and Windows Server 2003, # but SetErrorMode returns the previous value, so we can use that import ctypes self._k32 = ctypes.windll.kernel32 SEM_NOGPFAULTERRORBOX = 0x02 self.old_value = self._k32.SetErrorMode(SEM_NOGPFAULTERRORBOX) self._k32.SetErrorMode(self.old_value | SEM_NOGPFAULTERRORBOX) # Suppress assert dialogs in debug builds # (see http://bugs.python.org/issue23314) try: import msvcrt msvcrt.CrtSetReportMode except (AttributeError, ImportError): # no msvcrt or a release build pass else: self.old_modes = {} for report_type in [msvcrt.CRT_WARN, msvcrt.CRT_ERROR, msvcrt.CRT_ASSERT]: old_mode = msvcrt.CrtSetReportMode(report_type, msvcrt.CRTDBG_MODE_FILE) old_file = msvcrt.CrtSetReportFile(report_type, msvcrt.CRTDBG_FILE_STDERR) self.old_modes[report_type] = old_mode, old_file else: if resource is not None: try: self.old_value = resource.getrlimit(resource.RLIMIT_CORE) resource.setrlimit(resource.RLIMIT_CORE, (0, self.old_value[1])) except (ValueError, OSError): pass if sys.platform == 'darwin': # Check if the 'Crash Reporter' on OSX was configured # in 'Developer' mode and warn that it will get triggered # when it is. # # This assumes that this context manager is used in tests # that might trigger the next manager. value = subprocess.Popen(['/usr/bin/defaults', 'read', 'com.apple.CrashReporter', 'DialogType'], stdout=subprocess.PIPE).communicate()[0] if value.strip() == b'developer': print("this test triggers the Crash Reporter, " "that is intentional", end='', flush=True) return self def __exit__(self, *ignore_exc): """Restore Windows ErrorMode or core file behavior to initial value.""" if self.old_value is None: return if sys.platform.startswith('win'): self._k32.SetErrorMode(self.old_value) if self.old_modes: import msvcrt for report_type, (old_mode, old_file) in self.old_modes.items(): msvcrt.CrtSetReportMode(report_type, old_mode) msvcrt.CrtSetReportFile(report_type, old_file) else: if resource is not None: try: resource.setrlimit(resource.RLIMIT_CORE, self.old_value) except (ValueError, OSError): pass def patch(test_instance, object_to_patch, attr_name, new_value): """Override 'object_to_patch'.'attr_name' with 'new_value'. Also, add a cleanup procedure to 'test_instance' to restore 'object_to_patch' value for 'attr_name'. The 'attr_name' should be a valid attribute for 'object_to_patch'. """ # check that 'attr_name' is a real attribute for 'object_to_patch' # will raise AttributeError if it does not exist getattr(object_to_patch, attr_name) # keep a copy of the old value attr_is_local = False try: old_value = object_to_patch.__dict__[attr_name] except (AttributeError, KeyError): old_value = getattr(object_to_patch, attr_name, None) else: attr_is_local = True # restore the value when the test is done def cleanup(): if attr_is_local: setattr(object_to_patch, attr_name, old_value) else: delattr(object_to_patch, attr_name) test_instance.addCleanup(cleanup) # actually override the attribute setattr(object_to_patch, attr_name, new_value) def run_in_subinterp(code): """ Run code in a subinterpreter. Raise unittest.SkipTest if the tracemalloc module is enabled. """ # Issue #10915, #15751: PyGILState_*() functions don't work with # sub-interpreters, the tracemalloc module uses these functions internally try: import tracemalloc except ImportError: pass else: if tracemalloc.is_tracing(): raise unittest.SkipTest("run_in_subinterp() cannot be used " "if tracemalloc module is tracing " "memory allocations") import _testcapi return _testcapi.run_in_subinterp(code) def check_free_after_iterating(test, iter, cls, args=()): class A(cls): def __del__(self): nonlocal done done = True try: next(it) except StopIteration: pass done = False it = iter(A(*args)) # Issue 26494: Shouldn't crash test.assertRaises(StopIteration, next, it) # The sequence should be deallocated just after the end of iterating gc_collect() test.assertTrue(done)
zipfile36
/zipfile36-0.1.3.tar.gz/zipfile36-0.1.3/test/support/__init__.py
__init__.py
import io import os import importlib.util import sys import time import stat import shutil import struct import binascii import threading try: import zlib # We may need its compression method crc32 = zlib.crc32 except ImportError: zlib = None crc32 = binascii.crc32 try: import bz2 # We may need its compression method except ImportError: bz2 = None try: import lzma # We may need its compression method except ImportError: lzma = None __all__ = ["BadZipFile", "BadZipfile", "error", "ZIP_STORED", "ZIP_DEFLATED", "ZIP_BZIP2", "ZIP_LZMA", "is_zipfile", "ZipInfo", "ZipFile", "PyZipFile", "LargeZipFile"] class BadZipFile(Exception): pass class LargeZipFile(Exception): """ Raised when writing a zipfile, the zipfile requires ZIP64 extensions and those extensions are disabled. """ error = BadZipfile = BadZipFile # Pre-3.2 compatibility names ZIP64_LIMIT = (1 << 31) - 1 ZIP_FILECOUNT_LIMIT = (1 << 16) - 1 ZIP_MAX_COMMENT = (1 << 16) - 1 # constants for Zip file compression methods ZIP_STORED = 0 ZIP_DEFLATED = 8 ZIP_BZIP2 = 12 ZIP_LZMA = 14 # Other ZIP compression methods not supported DEFAULT_VERSION = 20 ZIP64_VERSION = 45 BZIP2_VERSION = 46 LZMA_VERSION = 63 # we recognize (but not necessarily support) all features up to that version MAX_EXTRACT_VERSION = 63 # Below are some formats and associated data for reading/writing headers using # the struct module. The names and structures of headers/records are those used # in the PKWARE description of the ZIP file format: # http://www.pkware.com/documents/casestudies/APPNOTE.TXT # (URL valid as of January 2008) # The "end of central directory" structure, magic number, size, and indices # (section V.I in the format document) structEndArchive = b"<4s4H2LH" stringEndArchive = b"PK\005\006" sizeEndCentDir = struct.calcsize(structEndArchive) _ECD_SIGNATURE = 0 _ECD_DISK_NUMBER = 1 _ECD_DISK_START = 2 _ECD_ENTRIES_THIS_DISK = 3 _ECD_ENTRIES_TOTAL = 4 _ECD_SIZE = 5 _ECD_OFFSET = 6 _ECD_COMMENT_SIZE = 7 # These last two indices are not part of the structure as defined in the # spec, but they are used internally by this module as a convenience _ECD_COMMENT = 8 _ECD_LOCATION = 9 # The "central directory" structure, magic number, size, and indices # of entries in the structure (section V.F in the format document) structCentralDir = "<4s4B4HL2L5H2L" stringCentralDir = b"PK\001\002" sizeCentralDir = struct.calcsize(structCentralDir) # indexes of entries in the central directory structure _CD_SIGNATURE = 0 _CD_CREATE_VERSION = 1 _CD_CREATE_SYSTEM = 2 _CD_EXTRACT_VERSION = 3 _CD_EXTRACT_SYSTEM = 4 _CD_FLAG_BITS = 5 _CD_COMPRESS_TYPE = 6 _CD_TIME = 7 _CD_DATE = 8 _CD_CRC = 9 _CD_COMPRESSED_SIZE = 10 _CD_UNCOMPRESSED_SIZE = 11 _CD_FILENAME_LENGTH = 12 _CD_EXTRA_FIELD_LENGTH = 13 _CD_COMMENT_LENGTH = 14 _CD_DISK_NUMBER_START = 15 _CD_INTERNAL_FILE_ATTRIBUTES = 16 _CD_EXTERNAL_FILE_ATTRIBUTES = 17 _CD_LOCAL_HEADER_OFFSET = 18 # The "local file header" structure, magic number, size, and indices # (section V.A in the format document) structFileHeader = "<4s2B4HL2L2H" stringFileHeader = b"PK\003\004" sizeFileHeader = struct.calcsize(structFileHeader) _FH_SIGNATURE = 0 _FH_EXTRACT_VERSION = 1 _FH_EXTRACT_SYSTEM = 2 _FH_GENERAL_PURPOSE_FLAG_BITS = 3 _FH_COMPRESSION_METHOD = 4 _FH_LAST_MOD_TIME = 5 _FH_LAST_MOD_DATE = 6 _FH_CRC = 7 _FH_COMPRESSED_SIZE = 8 _FH_UNCOMPRESSED_SIZE = 9 _FH_FILENAME_LENGTH = 10 _FH_EXTRA_FIELD_LENGTH = 11 # The "Zip64 end of central directory locator" structure, magic number, and size structEndArchive64Locator = "<4sLQL" stringEndArchive64Locator = b"PK\x06\x07" sizeEndCentDir64Locator = struct.calcsize(structEndArchive64Locator) # The "Zip64 end of central directory" record, magic number, size, and indices # (section V.G in the format document) structEndArchive64 = "<4sQ2H2L4Q" stringEndArchive64 = b"PK\x06\x06" sizeEndCentDir64 = struct.calcsize(structEndArchive64) _CD64_SIGNATURE = 0 _CD64_DIRECTORY_RECSIZE = 1 _CD64_CREATE_VERSION = 2 _CD64_EXTRACT_VERSION = 3 _CD64_DISK_NUMBER = 4 _CD64_DISK_NUMBER_START = 5 _CD64_NUMBER_ENTRIES_THIS_DISK = 6 _CD64_NUMBER_ENTRIES_TOTAL = 7 _CD64_DIRECTORY_SIZE = 8 _CD64_OFFSET_START_CENTDIR = 9 _DD_SIGNATURE = 0x08074b50 _EXTRA_FIELD_STRUCT = struct.Struct('<HH') def _strip_extra(extra, xids): # Remove Extra Fields with specified IDs. unpack = _EXTRA_FIELD_STRUCT.unpack modified = False buffer = [] start = i = 0 while i + 4 <= len(extra): xid, xlen = unpack(extra[i : i + 4]) j = i + 4 + xlen if xid in xids: if i != start: buffer.append(extra[start : i]) start = j modified = True i = j if not modified: return extra return b''.join(buffer) def _check_zipfile(fp): try: if _EndRecData(fp): return True # file has correct magic number except OSError: pass return False def is_zipfile(filename): """Quickly see if a file is a ZIP file by checking the magic number. The filename argument may be a file or file-like object too. """ result = False try: if hasattr(filename, "read"): result = _check_zipfile(fp=filename) else: with open(filename, "rb") as fp: result = _check_zipfile(fp) except OSError: pass return result def _EndRecData64(fpin, offset, endrec): """ Read the ZIP64 end-of-archive records and use that to update endrec """ try: fpin.seek(offset - sizeEndCentDir64Locator, 2) except OSError: # If the seek fails, the file is not large enough to contain a ZIP64 # end-of-archive record, so just return the end record we were given. return endrec data = fpin.read(sizeEndCentDir64Locator) if len(data) != sizeEndCentDir64Locator: return endrec sig, diskno, reloff, disks = struct.unpack(structEndArchive64Locator, data) if sig != stringEndArchive64Locator: return endrec if diskno != 0 or disks > 1: raise BadZipFile("zipfiles that span multiple disks are not supported") # Assume no 'zip64 extensible data' fpin.seek(offset - sizeEndCentDir64Locator - sizeEndCentDir64, 2) data = fpin.read(sizeEndCentDir64) if len(data) != sizeEndCentDir64: return endrec sig, sz, create_version, read_version, disk_num, disk_dir, \ dircount, dircount2, dirsize, diroffset = \ struct.unpack(structEndArchive64, data) if sig != stringEndArchive64: return endrec # Update the original endrec using data from the ZIP64 record endrec[_ECD_SIGNATURE] = sig endrec[_ECD_DISK_NUMBER] = disk_num endrec[_ECD_DISK_START] = disk_dir endrec[_ECD_ENTRIES_THIS_DISK] = dircount endrec[_ECD_ENTRIES_TOTAL] = dircount2 endrec[_ECD_SIZE] = dirsize endrec[_ECD_OFFSET] = diroffset return endrec def _EndRecData(fpin): """Return data from the "End of Central Directory" record, or None. The data is a list of the nine items in the ZIP "End of central dir" record followed by a tenth item, the file seek offset of this record.""" # Determine file size fpin.seek(0, 2) filesize = fpin.tell() # Check to see if this is ZIP file with no archive comment (the # "end of central directory" structure should be the last item in the # file if this is the case). try: fpin.seek(-sizeEndCentDir, 2) except OSError: return None data = fpin.read() if (len(data) == sizeEndCentDir and data[0:4] == stringEndArchive and data[-2:] == b"\000\000"): # the signature is correct and there's no comment, unpack structure endrec = struct.unpack(structEndArchive, data) endrec=list(endrec) # Append a blank comment and record start offset endrec.append(b"") endrec.append(filesize - sizeEndCentDir) # Try to read the "Zip64 end of central directory" structure return _EndRecData64(fpin, -sizeEndCentDir, endrec) # Either this is not a ZIP file, or it is a ZIP file with an archive # comment. Search the end of the file for the "end of central directory" # record signature. The comment is the last item in the ZIP file and may be # up to 64K long. It is assumed that the "end of central directory" magic # number does not appear in the comment. maxCommentStart = max(filesize - (1 << 16) - sizeEndCentDir, 0) fpin.seek(maxCommentStart, 0) data = fpin.read() start = data.rfind(stringEndArchive) if start >= 0: # found the magic number; attempt to unpack and interpret recData = data[start:start+sizeEndCentDir] if len(recData) != sizeEndCentDir: # Zip file is corrupted. return None endrec = list(struct.unpack(structEndArchive, recData)) commentSize = endrec[_ECD_COMMENT_SIZE] #as claimed by the zip file comment = data[start+sizeEndCentDir:start+sizeEndCentDir+commentSize] endrec.append(comment) endrec.append(maxCommentStart + start) # Try to read the "Zip64 end of central directory" structure return _EndRecData64(fpin, maxCommentStart + start - filesize, endrec) # Unable to find a valid end of central directory structure return None class ZipInfo (object): """Class with attributes describing each file in the ZIP archive.""" __slots__ = ( 'orig_filename', 'filename', 'date_time', 'compress_type', '_compresslevel', 'comment', 'extra', 'create_system', 'create_version', 'extract_version', 'reserved', 'flag_bits', 'volume', 'internal_attr', 'external_attr', 'header_offset', 'CRC', 'compress_size', 'file_size', '_raw_time', ) def __init__(self, filename="NoName", date_time=(1980,1,1,0,0,0)): self.orig_filename = filename # Original file name in archive # Terminate the file name at the first null byte. Null bytes in file # names are used as tricks by viruses in archives. null_byte = filename.find(chr(0)) if null_byte >= 0: filename = filename[0:null_byte] # This is used to ensure paths in generated ZIP files always use # forward slashes as the directory separator, as required by the # ZIP format specification. if os.sep != "/" and os.sep in filename: filename = filename.replace(os.sep, "/") self.filename = filename # Normalized file name self.date_time = date_time # year, month, day, hour, min, sec if date_time[0] < 1980: raise ValueError('ZIP does not support timestamps before 1980') # Standard values: self.compress_type = ZIP_STORED # Type of compression for the file self._compresslevel = None # Level for the compressor self.comment = b"" # Comment for each file self.extra = b"" # ZIP extra data if sys.platform == 'win32': self.create_system = 0 # System which created ZIP archive else: # Assume everything else is unix-y self.create_system = 3 # System which created ZIP archive self.create_version = DEFAULT_VERSION # Version which created ZIP archive self.extract_version = DEFAULT_VERSION # Version needed to extract archive self.reserved = 0 # Must be zero self.flag_bits = 0 # ZIP flag bits self.volume = 0 # Volume number of file header self.internal_attr = 0 # Internal attributes self.external_attr = 0 # External file attributes # Other attributes are set by class ZipFile: # header_offset Byte offset to the file header # CRC CRC-32 of the uncompressed file # compress_size Size of the compressed file # file_size Size of the uncompressed file def __repr__(self): result = ['<%s filename=%r' % (self.__class__.__name__, self.filename)] if self.compress_type != ZIP_STORED: result.append(' compress_type=%s' % compressor_names.get(self.compress_type, self.compress_type)) hi = self.external_attr >> 16 lo = self.external_attr & 0xFFFF if hi: result.append(' filemode=%r' % stat.filemode(hi)) if lo: result.append(' external_attr=%#x' % lo) isdir = self.is_dir() if not isdir or self.file_size: result.append(' file_size=%r' % self.file_size) if ((not isdir or self.compress_size) and (self.compress_type != ZIP_STORED or self.file_size != self.compress_size)): result.append(' compress_size=%r' % self.compress_size) result.append('>') return ''.join(result) def FileHeader(self, zip64=None): """Return the per-file header as a bytes object.""" dt = self.date_time dosdate = (dt[0] - 1980) << 9 | dt[1] << 5 | dt[2] dostime = dt[3] << 11 | dt[4] << 5 | (dt[5] // 2) if self.flag_bits & 0x08: # Set these to zero because we write them after the file data CRC = compress_size = file_size = 0 else: CRC = self.CRC compress_size = self.compress_size file_size = self.file_size extra = self.extra min_version = 0 if zip64 is None: zip64 = file_size > ZIP64_LIMIT or compress_size > ZIP64_LIMIT if zip64: fmt = '<HHQQ' extra = extra + struct.pack(fmt, 1, struct.calcsize(fmt)-4, file_size, compress_size) if file_size > ZIP64_LIMIT or compress_size > ZIP64_LIMIT: if not zip64: raise LargeZipFile("Filesize would require ZIP64 extensions") # File is larger than what fits into a 4 byte integer, # fall back to the ZIP64 extension file_size = 0xffffffff compress_size = 0xffffffff min_version = ZIP64_VERSION if self.compress_type == ZIP_BZIP2: min_version = max(BZIP2_VERSION, min_version) elif self.compress_type == ZIP_LZMA: min_version = max(LZMA_VERSION, min_version) self.extract_version = max(min_version, self.extract_version) self.create_version = max(min_version, self.create_version) filename, flag_bits = self._encodeFilenameFlags() header = struct.pack(structFileHeader, stringFileHeader, self.extract_version, self.reserved, flag_bits, self.compress_type, dostime, dosdate, CRC, compress_size, file_size, len(filename), len(extra)) return header + filename + extra def _encodeFilenameFlags(self): try: return self.filename.encode('ascii'), self.flag_bits except UnicodeEncodeError: return self.filename.encode('utf-8'), self.flag_bits | 0x800 def _decodeExtra(self): # Try to decode the extra field. extra = self.extra unpack = struct.unpack while len(extra) >= 4: tp, ln = unpack('<HH', extra[:4]) if ln+4 > len(extra): raise BadZipFile("Corrupt extra field %04x (size=%d)" % (tp, ln)) if tp == 0x0001: if ln >= 24: counts = unpack('<QQQ', extra[4:28]) elif ln == 16: counts = unpack('<QQ', extra[4:20]) elif ln == 8: counts = unpack('<Q', extra[4:12]) elif ln == 0: counts = () else: raise BadZipFile("Corrupt extra field %04x (size=%d)" % (tp, ln)) idx = 0 # ZIP64 extension (large files and/or large archives) if self.file_size in (0xffffffffffffffff, 0xffffffff): self.file_size = counts[idx] idx += 1 if self.compress_size == 0xFFFFFFFF: self.compress_size = counts[idx] idx += 1 if self.header_offset == 0xffffffff: old = self.header_offset self.header_offset = counts[idx] idx+=1 extra = extra[ln+4:] @classmethod def from_file(cls, filename, arcname=None): """Construct an appropriate ZipInfo for a file on the filesystem. filename should be the path to a file or directory on the filesystem. arcname is the name which it will have within the archive (by default, this will be the same as filename, but without a drive letter and with leading path separators removed). """ if isinstance(filename, os.PathLike): filename = os.fspath(filename) st = os.stat(filename) isdir = stat.S_ISDIR(st.st_mode) mtime = time.localtime(st.st_mtime) date_time = mtime[0:6] # Create ZipInfo instance to store file information if arcname is None: arcname = filename arcname = os.path.normpath(os.path.splitdrive(arcname)[1]) while arcname[0] in (os.sep, os.altsep): arcname = arcname[1:] if isdir: arcname += '/' zinfo = cls(arcname, date_time) zinfo.external_attr = (st.st_mode & 0xFFFF) << 16 # Unix attributes if isdir: zinfo.file_size = 0 zinfo.external_attr |= 0x10 # MS-DOS directory flag else: zinfo.file_size = st.st_size return zinfo def is_dir(self): """Return True if this archive member is a directory.""" return self.filename[-1] == '/' # ZIP encryption uses the CRC32 one-byte primitive for scrambling some # internal keys. We noticed that a direct implementation is faster than # relying on binascii.crc32(). _crctable = None def _gen_crc(crc): for j in range(8): if crc & 1: crc = (crc >> 1) ^ 0xEDB88320 else: crc >>= 1 return crc # ZIP supports a password-based form of encryption. Even though known # plaintext attacks have been found against it, it is still useful # to be able to get data out of such a file. # # Usage: # zd = _ZipDecrypter(mypwd) # plain_bytes = zd(cypher_bytes) def _ZipDecrypter(pwd): key0 = 305419896 key1 = 591751049 key2 = 878082192 global _crctable if _crctable is None: _crctable = list(map(_gen_crc, range(256))) crctable = _crctable def crc32(ch, crc): """Compute the CRC32 primitive on one byte.""" return (crc >> 8) ^ crctable[(crc ^ ch) & 0xFF] def update_keys(c): nonlocal key0, key1, key2 key0 = crc32(c, key0) key1 = (key1 + (key0 & 0xFF)) & 0xFFFFFFFF key1 = (key1 * 134775813 + 1) & 0xFFFFFFFF key2 = crc32(key1 >> 24, key2) for p in pwd: update_keys(p) def decrypter(data): """Decrypt a bytes object.""" result = bytearray() append = result.append for c in data: k = key2 | 2 c ^= ((k * (k^1)) >> 8) & 0xFF update_keys(c) append(c) return bytes(result) return decrypter class LZMACompressor: def __init__(self): self._comp = None def _init(self): props = lzma._encode_filter_properties({'id': lzma.FILTER_LZMA1}) self._comp = lzma.LZMACompressor(lzma.FORMAT_RAW, filters=[ lzma._decode_filter_properties(lzma.FILTER_LZMA1, props) ]) return struct.pack('<BBH', 9, 4, len(props)) + props def compress(self, data): if self._comp is None: return self._init() + self._comp.compress(data) return self._comp.compress(data) def flush(self): if self._comp is None: return self._init() + self._comp.flush() return self._comp.flush() class LZMADecompressor: def __init__(self): self._decomp = None self._unconsumed = b'' self.eof = False def decompress(self, data): if self._decomp is None: self._unconsumed += data if len(self._unconsumed) <= 4: return b'' psize, = struct.unpack('<H', self._unconsumed[2:4]) if len(self._unconsumed) <= 4 + psize: return b'' self._decomp = lzma.LZMADecompressor(lzma.FORMAT_RAW, filters=[ lzma._decode_filter_properties(lzma.FILTER_LZMA1, self._unconsumed[4:4 + psize]) ]) data = self._unconsumed[4 + psize:] del self._unconsumed result = self._decomp.decompress(data) self.eof = self._decomp.eof return result compressor_names = { 0: 'store', 1: 'shrink', 2: 'reduce', 3: 'reduce', 4: 'reduce', 5: 'reduce', 6: 'implode', 7: 'tokenize', 8: 'deflate', 9: 'deflate64', 10: 'implode', 12: 'bzip2', 14: 'lzma', 18: 'terse', 19: 'lz77', 97: 'wavpack', 98: 'ppmd', } def _check_compression(compression): if compression == ZIP_STORED: pass elif compression == ZIP_DEFLATED: if not zlib: raise RuntimeError( "Compression requires the (missing) zlib module") elif compression == ZIP_BZIP2: if not bz2: raise RuntimeError( "Compression requires the (missing) bz2 module") elif compression == ZIP_LZMA: if not lzma: raise RuntimeError( "Compression requires the (missing) lzma module") else: raise NotImplementedError("That compression method is not supported") def _get_compressor(compress_type, compresslevel=None): if compress_type == ZIP_DEFLATED: if compresslevel is not None: return zlib.compressobj(compresslevel, zlib.DEFLATED, -15) return zlib.compressobj(zlib.Z_DEFAULT_COMPRESSION, zlib.DEFLATED, -15) elif compress_type == ZIP_BZIP2: if compresslevel is not None: return bz2.BZ2Compressor(compresslevel) return bz2.BZ2Compressor() # compresslevel is ignored for ZIP_LZMA elif compress_type == ZIP_LZMA: return LZMACompressor() else: return None def _get_decompressor(compress_type): if compress_type == ZIP_STORED: return None elif compress_type == ZIP_DEFLATED: return zlib.decompressobj(-15) elif compress_type == ZIP_BZIP2: return bz2.BZ2Decompressor() elif compress_type == ZIP_LZMA: return LZMADecompressor() else: descr = compressor_names.get(compress_type) if descr: raise NotImplementedError("compression type %d (%s)" % (compress_type, descr)) else: raise NotImplementedError("compression type %d" % (compress_type,)) class _SharedFile: def __init__(self, file, pos, close, lock, writing): self._file = file self._pos = pos self._close = close self._lock = lock self._writing = writing self.seekable = file.seekable self.tell = file.tell def seek(self, offset, whence=0): with self._lock: if self._writing(): raise ValueError("Can't reposition in the ZIP file while " "there is an open writing handle on it. " "Close the writing handle before trying to read.") self._file.seek(offset, whence) self._pos = self._file.tell() return self._pos def read(self, n=-1): with self._lock: if self._writing(): raise ValueError("Can't read from the ZIP file while there " "is an open writing handle on it. " "Close the writing handle before trying to read.") self._file.seek(self._pos) data = self._file.read(n) self._pos = self._file.tell() return data def close(self): if self._file is not None: fileobj = self._file self._file = None self._close(fileobj) # Provide the tell method for unseekable stream class _Tellable: def __init__(self, fp): self.fp = fp self.offset = 0 def write(self, data): n = self.fp.write(data) self.offset += n return n def tell(self): return self.offset def flush(self): self.fp.flush() def close(self): self.fp.close() class ZipExtFile(io.BufferedIOBase): """File-like object for reading an archive member. Is returned by ZipFile.open(). """ # Max size supported by decompressor. MAX_N = 1 << 31 - 1 # Read from compressed files in 4k blocks. MIN_READ_SIZE = 4096 # Chunk size to read during seek MAX_SEEK_READ = 1 << 24 def __init__(self, fileobj, mode, zipinfo, decrypter=None, close_fileobj=False): self._fileobj = fileobj self._decrypter = decrypter self._close_fileobj = close_fileobj self._compress_type = zipinfo.compress_type self._compress_left = zipinfo.compress_size self._left = zipinfo.file_size self._decompressor = _get_decompressor(self._compress_type) self._eof = False self._readbuffer = b'' self._offset = 0 self.newlines = None # Adjust read size for encrypted files since the first 12 bytes # are for the encryption/password information. if self._decrypter is not None: self._compress_left -= 12 self.mode = mode self.name = zipinfo.filename if hasattr(zipinfo, 'CRC'): self._expected_crc = zipinfo.CRC self._running_crc = crc32(b'') else: self._expected_crc = None self._seekable = False try: if fileobj.seekable(): self._orig_compress_start = fileobj.tell() self._orig_compress_size = zipinfo.compress_size self._orig_file_size = zipinfo.file_size self._orig_start_crc = self._running_crc self._seekable = True except AttributeError: pass def __repr__(self): result = ['<%s.%s' % (self.__class__.__module__, self.__class__.__qualname__)] if not self.closed: result.append(' name=%r mode=%r' % (self.name, self.mode)) if self._compress_type != ZIP_STORED: result.append(' compress_type=%s' % compressor_names.get(self._compress_type, self._compress_type)) else: result.append(' [closed]') result.append('>') return ''.join(result) def readline(self, limit=-1): """Read and return a line from the stream. If limit is specified, at most limit bytes will be read. """ if limit < 0: # Shortcut common case - newline found in buffer. i = self._readbuffer.find(b'\n', self._offset) + 1 if i > 0: line = self._readbuffer[self._offset: i] self._offset = i return line return io.BufferedIOBase.readline(self, limit) def peek(self, n=1): """Returns buffered bytes without advancing the position.""" if n > len(self._readbuffer) - self._offset: chunk = self.read(n) if len(chunk) > self._offset: self._readbuffer = chunk + self._readbuffer[self._offset:] self._offset = 0 else: self._offset -= len(chunk) # Return up to 512 bytes to reduce allocation overhead for tight loops. return self._readbuffer[self._offset: self._offset + 512] def readable(self): return True def read(self, n=-1): """Read and return up to n bytes. If the argument is omitted, None, or negative, data is read and returned until EOF is reached. """ if n is None or n < 0: buf = self._readbuffer[self._offset:] self._readbuffer = b'' self._offset = 0 while not self._eof: buf += self._read1(self.MAX_N) return buf end = n + self._offset if end < len(self._readbuffer): buf = self._readbuffer[self._offset:end] self._offset = end return buf n = end - len(self._readbuffer) buf = self._readbuffer[self._offset:] self._readbuffer = b'' self._offset = 0 while n > 0 and not self._eof: data = self._read1(n) if n < len(data): self._readbuffer = data self._offset = n buf += data[:n] break buf += data n -= len(data) return buf def _update_crc(self, newdata): # Update the CRC using the given data. if self._expected_crc is None: # No need to compute the CRC if we don't have a reference value return self._running_crc = crc32(newdata, self._running_crc) # Check the CRC if we're at the end of the file if self._eof and self._running_crc != self._expected_crc: raise BadZipFile("Bad CRC-32 for file %r" % self.name) def read1(self, n): """Read up to n bytes with at most one read() system call.""" if n is None or n < 0: buf = self._readbuffer[self._offset:] self._readbuffer = b'' self._offset = 0 while not self._eof: data = self._read1(self.MAX_N) if data: buf += data break return buf end = n + self._offset if end < len(self._readbuffer): buf = self._readbuffer[self._offset:end] self._offset = end return buf n = end - len(self._readbuffer) buf = self._readbuffer[self._offset:] self._readbuffer = b'' self._offset = 0 if n > 0: while not self._eof: data = self._read1(n) if n < len(data): self._readbuffer = data self._offset = n buf += data[:n] break if data: buf += data break return buf def _read1(self, n): # Read up to n compressed bytes with at most one read() system call, # decrypt and decompress them. if self._eof or n <= 0: return b'' # Read from file. if self._compress_type == ZIP_DEFLATED: ## Handle unconsumed data. data = self._decompressor.unconsumed_tail if n > len(data): data += self._read2(n - len(data)) else: data = self._read2(n) if self._compress_type == ZIP_STORED: self._eof = self._compress_left <= 0 elif self._compress_type == ZIP_DEFLATED: n = max(n, self.MIN_READ_SIZE) data = self._decompressor.decompress(data, n) self._eof = (self._decompressor.eof or self._compress_left <= 0 and not self._decompressor.unconsumed_tail) if self._eof: data += self._decompressor.flush() else: data = self._decompressor.decompress(data) self._eof = self._decompressor.eof or self._compress_left <= 0 data = data[:self._left] self._left -= len(data) if self._left <= 0: self._eof = True self._update_crc(data) return data def _read2(self, n): if self._compress_left <= 0: return b'' n = max(n, self.MIN_READ_SIZE) n = min(n, self._compress_left) data = self._fileobj.read(n) self._compress_left -= len(data) if not data: raise EOFError if self._decrypter is not None: data = self._decrypter(data) return data def close(self): try: if self._close_fileobj: self._fileobj.close() finally: super().close() def seekable(self): return self._seekable def seek(self, offset, whence=0): if not self._seekable: raise io.UnsupportedOperation("underlying stream is not seekable") curr_pos = self.tell() if whence == 0: # Seek from start of file new_pos = offset elif whence == 1: # Seek from current position new_pos = curr_pos + offset elif whence == 2: # Seek from EOF new_pos = self._orig_file_size + offset else: raise ValueError("whence must be os.SEEK_SET (0), " "os.SEEK_CUR (1), or os.SEEK_END (2)") if new_pos > self._orig_file_size: new_pos = self._orig_file_size if new_pos < 0: new_pos = 0 read_offset = new_pos - curr_pos buff_offset = read_offset + self._offset if buff_offset >= 0 and buff_offset < len(self._readbuffer): # Just move the _offset index if the new position is in the _readbuffer self._offset = buff_offset read_offset = 0 elif read_offset < 0: # Position is before the current position. Reset the ZipExtFile self._fileobj.seek(self._orig_compress_start) self._running_crc = self._orig_start_crc self._compress_left = self._orig_compress_size self._left = self._orig_file_size self._readbuffer = b'' self._offset = 0 self._decompressor = _get_decompressor(self._compress_type) self._eof = False read_offset = new_pos while read_offset > 0: read_len = min(self.MAX_SEEK_READ, read_offset) self.read(read_len) read_offset -= read_len return self.tell() def tell(self): if not self._seekable: raise io.UnsupportedOperation("underlying stream is not seekable") filepos = self._orig_file_size - self._left - len(self._readbuffer) + self._offset return filepos class _ZipWriteFile(io.BufferedIOBase): def __init__(self, zf, zinfo, zip64): self._zinfo = zinfo self._zip64 = zip64 self._zipfile = zf self._compressor = _get_compressor(zinfo.compress_type, zinfo._compresslevel) self._file_size = 0 self._compress_size = 0 self._crc = 0 @property def _fileobj(self): return self._zipfile.fp def writable(self): return True def write(self, data): if self.closed: raise ValueError('I/O operation on closed file.') nbytes = len(data) self._file_size += nbytes self._crc = crc32(data, self._crc) if self._compressor: data = self._compressor.compress(data) self._compress_size += len(data) self._fileobj.write(data) return nbytes def close(self): if self.closed: return try: super().close() # Flush any data from the compressor, and update header info if self._compressor: buf = self._compressor.flush() self._compress_size += len(buf) self._fileobj.write(buf) self._zinfo.compress_size = self._compress_size else: self._zinfo.compress_size = self._file_size self._zinfo.CRC = self._crc self._zinfo.file_size = self._file_size # Write updated header info if self._zinfo.flag_bits & 0x08: # Write CRC and file sizes after the file data fmt = '<LLQQ' if self._zip64 else '<LLLL' self._fileobj.write(struct.pack(fmt, _DD_SIGNATURE, self._zinfo.CRC, self._zinfo.compress_size, self._zinfo.file_size)) self._zipfile.start_dir = self._fileobj.tell() else: if not self._zip64: if self._file_size > ZIP64_LIMIT: raise RuntimeError( 'File size unexpectedly exceeded ZIP64 limit') if self._compress_size > ZIP64_LIMIT: raise RuntimeError( 'Compressed size unexpectedly exceeded ZIP64 limit') # Seek backwards and write file header (which will now include # correct CRC and file sizes) # Preserve current position in file self._zipfile.start_dir = self._fileobj.tell() self._fileobj.seek(self._zinfo.header_offset) self._fileobj.write(self._zinfo.FileHeader(self._zip64)) self._fileobj.seek(self._zipfile.start_dir) # Successfully written: Add file to our caches self._zipfile.filelist.append(self._zinfo) self._zipfile.NameToInfo[self._zinfo.filename] = self._zinfo finally: self._zipfile._writing = False class ZipFile: """ Class with methods to open, read, write, close, list zip files. z = ZipFile(file, mode="r", compression=ZIP_STORED, allowZip64=True, compresslevel=None) file: Either the path to the file, or a file-like object. If it is a path, the file will be opened and closed by ZipFile. mode: The mode can be either read 'r', write 'w', exclusive create 'x', or append 'a'. compression: ZIP_STORED (no compression), ZIP_DEFLATED (requires zlib), ZIP_BZIP2 (requires bz2) or ZIP_LZMA (requires lzma). allowZip64: if True ZipFile will create files with ZIP64 extensions when needed, otherwise it will raise an exception when this would be necessary. compresslevel: None (default for the given compression type) or an integer specifying the level to pass to the compressor. When using ZIP_STORED or ZIP_LZMA this keyword has no effect. When using ZIP_DEFLATED integers 0 through 9 are accepted. When using ZIP_BZIP2 integers 1 through 9 are accepted. """ fp = None # Set here since __del__ checks it _windows_illegal_name_trans_table = None def __init__(self, file, mode="r", compression=ZIP_STORED, allowZip64=True, compresslevel=None): """Open the ZIP file with mode read 'r', write 'w', exclusive create 'x', or append 'a'.""" if mode not in ('r', 'w', 'x', 'a'): raise ValueError("ZipFile requires mode 'r', 'w', 'x', or 'a'") _check_compression(compression) self._allowZip64 = allowZip64 self._didModify = False self.debug = 0 # Level of printing: 0 through 3 self.NameToInfo = {} # Find file info given name self.filelist = [] # List of ZipInfo instances for archive self.compression = compression # Method of compression self.compresslevel = compresslevel self.mode = mode self.pwd = None self._comment = b'' # Check if we were passed a file-like object if isinstance(file, os.PathLike): file = os.fspath(file) if isinstance(file, str): # No, it's a filename self._filePassed = 0 self.filename = file modeDict = {'r' : 'rb', 'w': 'w+b', 'x': 'x+b', 'a' : 'r+b', 'r+b': 'w+b', 'w+b': 'wb', 'x+b': 'xb'} filemode = modeDict[mode] while True: try: self.fp = io.open(file, filemode) except OSError: if filemode in modeDict: filemode = modeDict[filemode] continue raise break else: self._filePassed = 1 self.fp = file self.filename = getattr(file, 'name', None) self._fileRefCnt = 1 self._lock = threading.RLock() self._seekable = True self._writing = False try: if mode == 'r': self._RealGetContents() elif mode in ('w', 'x'): # set the modified flag so central directory gets written # even if no files are added to the archive self._didModify = True try: self.start_dir = self.fp.tell() except (AttributeError, OSError): self.fp = _Tellable(self.fp) self.start_dir = 0 self._seekable = False else: # Some file-like objects can provide tell() but not seek() try: self.fp.seek(self.start_dir) except (AttributeError, OSError): self._seekable = False elif mode == 'a': try: # See if file is a zip file self._RealGetContents() # seek to start of directory and overwrite self.fp.seek(self.start_dir) except BadZipFile: # file is not a zip file, just append self.fp.seek(0, 2) # set the modified flag so central directory gets written # even if no files are added to the archive self._didModify = True self.start_dir = self.fp.tell() else: raise ValueError("Mode must be 'r', 'w', 'x', or 'a'") except: fp = self.fp self.fp = None self._fpclose(fp) raise def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() def __repr__(self): result = ['<%s.%s' % (self.__class__.__module__, self.__class__.__qualname__)] if self.fp is not None: if self._filePassed: result.append(' file=%r' % self.fp) elif self.filename is not None: result.append(' filename=%r' % self.filename) result.append(' mode=%r' % self.mode) else: result.append(' [closed]') result.append('>') return ''.join(result) def _RealGetContents(self): """Read in the table of contents for the ZIP file.""" fp = self.fp try: endrec = _EndRecData(fp) except OSError: raise BadZipFile("File is not a zip file") if not endrec: raise BadZipFile("File is not a zip file") if self.debug > 1: print(endrec) size_cd = endrec[_ECD_SIZE] # bytes in central directory offset_cd = endrec[_ECD_OFFSET] # offset of central directory self._comment = endrec[_ECD_COMMENT] # archive comment # "concat" is zero, unless zip was concatenated to another file concat = endrec[_ECD_LOCATION] - size_cd - offset_cd if endrec[_ECD_SIGNATURE] == stringEndArchive64: # If Zip64 extension structures are present, account for them concat -= (sizeEndCentDir64 + sizeEndCentDir64Locator) if self.debug > 2: inferred = concat + offset_cd print("given, inferred, offset", offset_cd, inferred, concat) # self.start_dir: Position of start of central directory self.start_dir = offset_cd + concat fp.seek(self.start_dir, 0) data = fp.read(size_cd) fp = io.BytesIO(data) total = 0 while total < size_cd: centdir = fp.read(sizeCentralDir) if len(centdir) != sizeCentralDir: raise BadZipFile("Truncated central directory") centdir = struct.unpack(structCentralDir, centdir) if centdir[_CD_SIGNATURE] != stringCentralDir: raise BadZipFile("Bad magic number for central directory") if self.debug > 2: print(centdir) filename = fp.read(centdir[_CD_FILENAME_LENGTH]) flags = centdir[5] if flags & 0x800: # UTF-8 file names extension filename = filename.decode('utf-8') else: # Historical ZIP filename encoding filename = filename.decode('cp437') # Create ZipInfo instance to store file information x = ZipInfo(filename) x.extra = fp.read(centdir[_CD_EXTRA_FIELD_LENGTH]) x.comment = fp.read(centdir[_CD_COMMENT_LENGTH]) x.header_offset = centdir[_CD_LOCAL_HEADER_OFFSET] (x.create_version, x.create_system, x.extract_version, x.reserved, x.flag_bits, x.compress_type, t, d, x.CRC, x.compress_size, x.file_size) = centdir[1:12] if x.extract_version > MAX_EXTRACT_VERSION: raise NotImplementedError("zip file version %.1f" % (x.extract_version / 10)) x.volume, x.internal_attr, x.external_attr = centdir[15:18] # Convert date/time code to (year, month, day, hour, min, sec) x._raw_time = t x.date_time = ( (d>>9)+1980, (d>>5)&0xF, d&0x1F, t>>11, (t>>5)&0x3F, (t&0x1F) * 2 ) x._decodeExtra() x.header_offset = x.header_offset + concat self.filelist.append(x) self.NameToInfo[x.filename] = x # update total bytes read from central directory total = (total + sizeCentralDir + centdir[_CD_FILENAME_LENGTH] + centdir[_CD_EXTRA_FIELD_LENGTH] + centdir[_CD_COMMENT_LENGTH]) if self.debug > 2: print("total", total) def namelist(self): """Return a list of file names in the archive.""" return [data.filename for data in self.filelist] def infolist(self): """Return a list of class ZipInfo instances for files in the archive.""" return self.filelist def printdir(self, file=None): """Print a table of contents for the zip file.""" print("%-46s %19s %12s" % ("File Name", "Modified ", "Size"), file=file) for zinfo in self.filelist: date = "%d-%02d-%02d %02d:%02d:%02d" % zinfo.date_time[:6] print("%-46s %s %12d" % (zinfo.filename, date, zinfo.file_size), file=file) def testzip(self): """Read all the files and check the CRC.""" chunk_size = 2 ** 20 for zinfo in self.filelist: try: # Read by chunks, to avoid an OverflowError or a # MemoryError with very large embedded files. with self.open(zinfo.filename, "r") as f: while f.read(chunk_size): # Check CRC-32 pass except BadZipFile: return zinfo.filename def getinfo(self, name): """Return the instance of ZipInfo given 'name'.""" info = self.NameToInfo.get(name) if info is None: raise KeyError( 'There is no item named %r in the archive' % name) return info def setpassword(self, pwd): """Set default password for encrypted files.""" if pwd and not isinstance(pwd, bytes): raise TypeError("pwd: expected bytes, got %s" % type(pwd).__name__) if pwd: self.pwd = pwd else: self.pwd = None @property def comment(self): """The comment text associated with the ZIP file.""" return self._comment @comment.setter def comment(self, comment): if not isinstance(comment, bytes): raise TypeError("comment: expected bytes, got %s" % type(comment).__name__) # check for valid comment length if len(comment) > ZIP_MAX_COMMENT: import warnings warnings.warn('Archive comment is too long; truncating to %d bytes' % ZIP_MAX_COMMENT, stacklevel=2) comment = comment[:ZIP_MAX_COMMENT] self._comment = comment self._didModify = True def read(self, name, pwd=None): """Return file bytes for name.""" with self.open(name, "r", pwd) as fp: return fp.read() def open(self, name, mode="r", pwd=None, *, force_zip64=False): """Return file-like object for 'name'. name is a string for the file name within the ZIP file, or a ZipInfo object. mode should be 'r' to read a file already in the ZIP file, or 'w' to write to a file newly added to the archive. pwd is the password to decrypt files (only used for reading). When writing, if the file size is not known in advance but may exceed 2 GiB, pass force_zip64 to use the ZIP64 format, which can handle large files. If the size is known in advance, it is best to pass a ZipInfo instance for name, with zinfo.file_size set. """ if mode not in {"r", "w"}: raise ValueError('open() requires mode "r" or "w"') if pwd and not isinstance(pwd, bytes): raise TypeError("pwd: expected bytes, got %s" % type(pwd).__name__) if pwd and (mode == "w"): raise ValueError("pwd is only supported for reading files") if not self.fp: raise ValueError( "Attempt to use ZIP archive that was already closed") # Make sure we have an info object if isinstance(name, ZipInfo): # 'name' is already an info object zinfo = name elif mode == 'w': zinfo = ZipInfo(name) zinfo.compress_type = self.compression zinfo._compresslevel = self.compresslevel else: # Get info object for name zinfo = self.getinfo(name) if mode == 'w': return self._open_to_write(zinfo, force_zip64=force_zip64) if self._writing: raise ValueError("Can't read from the ZIP file while there " "is an open writing handle on it. " "Close the writing handle before trying to read.") # Open for reading: self._fileRefCnt += 1 zef_file = _SharedFile(self.fp, zinfo.header_offset, self._fpclose, self._lock, lambda: self._writing) try: # Skip the file header: fheader = zef_file.read(sizeFileHeader) if len(fheader) != sizeFileHeader: raise BadZipFile("Truncated file header") fheader = struct.unpack(structFileHeader, fheader) if fheader[_FH_SIGNATURE] != stringFileHeader: raise BadZipFile("Bad magic number for file header") fname = zef_file.read(fheader[_FH_FILENAME_LENGTH]) if fheader[_FH_EXTRA_FIELD_LENGTH]: zef_file.read(fheader[_FH_EXTRA_FIELD_LENGTH]) if zinfo.flag_bits & 0x20: # Zip 2.7: compressed patched data raise NotImplementedError("compressed patched data (flag bit 5)") if zinfo.flag_bits & 0x40: # strong encryption raise NotImplementedError("strong encryption (flag bit 6)") if zinfo.flag_bits & 0x800: # UTF-8 filename fname_str = fname.decode("utf-8") else: fname_str = fname.decode("cp437") if fname_str != zinfo.orig_filename: raise BadZipFile( 'File name in directory %r and header %r differ.' % (zinfo.orig_filename, fname)) # check for encrypted flag & handle password is_encrypted = zinfo.flag_bits & 0x1 zd = None if is_encrypted: if not pwd: pwd = self.pwd if not pwd: raise RuntimeError("File %r is encrypted, password " "required for extraction" % name) zd = _ZipDecrypter(pwd) # The first 12 bytes in the cypher stream is an encryption header # used to strengthen the algorithm. The first 11 bytes are # completely random, while the 12th contains the MSB of the CRC, # or the MSB of the file time depending on the header type # and is used to check the correctness of the password. header = zef_file.read(12) h = zd(header[0:12]) if zinfo.flag_bits & 0x8: # compare against the file type from extended local headers check_byte = (zinfo._raw_time >> 8) & 0xff else: # compare against the CRC otherwise check_byte = (zinfo.CRC >> 24) & 0xff if h[11] != check_byte: raise RuntimeError("Bad password for file %r" % name) return ZipExtFile(zef_file, mode, zinfo, zd, True) except: zef_file.close() raise def _open_to_write(self, zinfo, force_zip64=False): if force_zip64 and not self._allowZip64: raise ValueError( "force_zip64 is True, but allowZip64 was False when opening " "the ZIP file." ) if self._writing: raise ValueError("Can't write to the ZIP file while there is " "another write handle open on it. " "Close the first handle before opening another.") # Sizes and CRC are overwritten with correct data after processing the file if not hasattr(zinfo, 'file_size'): zinfo.file_size = 0 zinfo.compress_size = 0 zinfo.CRC = 0 zinfo.flag_bits = 0x00 if zinfo.compress_type == ZIP_LZMA: # Compressed data includes an end-of-stream (EOS) marker zinfo.flag_bits |= 0x02 if not self._seekable: zinfo.flag_bits |= 0x08 if not zinfo.external_attr: zinfo.external_attr = 0o600 << 16 # permissions: ?rw------- # Compressed size can be larger than uncompressed size zip64 = self._allowZip64 and \ (force_zip64 or zinfo.file_size * 1.05 > ZIP64_LIMIT) if self._seekable: self.fp.seek(self.start_dir) zinfo.header_offset = self.fp.tell() self._writecheck(zinfo) self._didModify = True self.fp.write(zinfo.FileHeader(zip64)) self._writing = True return _ZipWriteFile(self, zinfo, zip64) def extract(self, member, path=None, pwd=None): """Extract a member from the archive to the current working directory, using its full name. Its file information is extracted as accurately as possible. `member' may be a filename or a ZipInfo object. You can specify a different directory using `path'. """ if path is None: path = os.getcwd() else: path = os.fspath(path) return self._extract_member(member, path, pwd) def extractall(self, path=None, members=None, pwd=None): """Extract all members from the archive to the current working directory. `path' specifies a different directory to extract to. `members' is optional and must be a subset of the list returned by namelist(). """ if members is None: members = self.namelist() if path is None: path = os.getcwd() else: path = os.fspath(path) for zipinfo in members: self._extract_member(zipinfo, path, pwd) @classmethod def _sanitize_windows_name(cls, arcname, pathsep): """Replace bad characters and remove trailing dots from parts.""" table = cls._windows_illegal_name_trans_table if not table: illegal = ':<>|"?*' table = str.maketrans(illegal, '_' * len(illegal)) cls._windows_illegal_name_trans_table = table arcname = arcname.translate(table) # remove trailing dots arcname = (x.rstrip('.') for x in arcname.split(pathsep)) # rejoin, removing empty parts. arcname = pathsep.join(x for x in arcname if x) return arcname def _extract_member(self, member, targetpath, pwd): """Extract the ZipInfo object 'member' to a physical file on the path targetpath. """ if not isinstance(member, ZipInfo): member = self.getinfo(member) # build the destination pathname, replacing # forward slashes to platform specific separators. arcname = member.filename.replace('/', os.path.sep) if os.path.altsep: arcname = arcname.replace(os.path.altsep, os.path.sep) # interpret absolute pathname as relative, remove drive letter or # UNC path, redundant separators, "." and ".." components. arcname = os.path.splitdrive(arcname)[1] invalid_path_parts = ('', os.path.curdir, os.path.pardir) arcname = os.path.sep.join(x for x in arcname.split(os.path.sep) if x not in invalid_path_parts) if os.path.sep == '\\': # filter illegal characters on Windows arcname = self._sanitize_windows_name(arcname, os.path.sep) targetpath = os.path.join(targetpath, arcname) targetpath = os.path.normpath(targetpath) # Create all upper directories if necessary. upperdirs = os.path.dirname(targetpath) if upperdirs and not os.path.exists(upperdirs): os.makedirs(upperdirs) if member.is_dir(): if not os.path.isdir(targetpath): os.mkdir(targetpath) return targetpath with self.open(member, pwd=pwd) as source, \ open(targetpath, "wb") as target: shutil.copyfileobj(source, target) return targetpath def _writecheck(self, zinfo): """Check for errors before writing a file to the archive.""" if zinfo.filename in self.NameToInfo: import warnings warnings.warn('Duplicate name: %r' % zinfo.filename, stacklevel=3) if self.mode not in ('w', 'x', 'a'): raise ValueError("write() requires mode 'w', 'x', or 'a'") if not self.fp: raise ValueError( "Attempt to write ZIP archive that was already closed") _check_compression(zinfo.compress_type) if not self._allowZip64: requires_zip64 = None if len(self.filelist) >= ZIP_FILECOUNT_LIMIT: requires_zip64 = "Files count" elif zinfo.file_size > ZIP64_LIMIT: requires_zip64 = "Filesize" elif zinfo.header_offset > ZIP64_LIMIT: requires_zip64 = "Zipfile size" if requires_zip64: raise LargeZipFile(requires_zip64 + " would require ZIP64 extensions") def write(self, filename, arcname=None, compress_type=None, compresslevel=None): """Put the bytes from filename into the archive under the name arcname.""" if not self.fp: raise ValueError( "Attempt to write to ZIP archive that was already closed") if self._writing: raise ValueError( "Can't write to ZIP archive while an open writing handle exists" ) zinfo = ZipInfo.from_file(filename, arcname) if zinfo.is_dir(): zinfo.compress_size = 0 zinfo.CRC = 0 else: if compress_type is not None: zinfo.compress_type = compress_type else: zinfo.compress_type = self.compression if compresslevel is not None: zinfo._compresslevel = compresslevel else: zinfo._compresslevel = self.compresslevel if zinfo.is_dir(): with self._lock: if self._seekable: self.fp.seek(self.start_dir) zinfo.header_offset = self.fp.tell() # Start of header bytes if zinfo.compress_type == ZIP_LZMA: # Compressed data includes an end-of-stream (EOS) marker zinfo.flag_bits |= 0x02 self._writecheck(zinfo) self._didModify = True self.filelist.append(zinfo) self.NameToInfo[zinfo.filename] = zinfo self.fp.write(zinfo.FileHeader(False)) self.start_dir = self.fp.tell() else: with open(filename, "rb") as src, self.open(zinfo, 'w') as dest: shutil.copyfileobj(src, dest, 1024*8) def writestr(self, zinfo_or_arcname, data, compress_type=None, compresslevel=None): """Write a file into the archive. The contents is 'data', which may be either a 'str' or a 'bytes' instance; if it is a 'str', it is encoded as UTF-8 first. 'zinfo_or_arcname' is either a ZipInfo instance or the name of the file in the archive.""" if isinstance(data, str): data = data.encode("utf-8") if not isinstance(zinfo_or_arcname, ZipInfo): zinfo = ZipInfo(filename=zinfo_or_arcname, date_time=time.localtime(time.time())[:6]) zinfo.compress_type = self.compression zinfo._compresslevel = self.compresslevel if zinfo.filename[-1] == '/': zinfo.external_attr = 0o40775 << 16 # drwxrwxr-x zinfo.external_attr |= 0x10 # MS-DOS directory flag else: zinfo.external_attr = 0o600 << 16 # ?rw------- else: zinfo = zinfo_or_arcname if not self.fp: raise ValueError( "Attempt to write to ZIP archive that was already closed") if self._writing: raise ValueError( "Can't write to ZIP archive while an open writing handle exists." ) if compress_type is not None: zinfo.compress_type = compress_type if compresslevel is not None: zinfo._compresslevel = compresslevel zinfo.file_size = len(data) # Uncompressed size with self._lock: with self.open(zinfo, mode='w') as dest: dest.write(data) def __del__(self): """Call the "close()" method in case the user forgot.""" self.close() def close(self): """Close the file, and for mode 'w', 'x' and 'a' write the ending records.""" if self.fp is None: return if self._writing: raise ValueError("Can't close the ZIP file while there is " "an open writing handle on it. " "Close the writing handle before closing the zip.") try: if self.mode in ('w', 'x', 'a') and self._didModify: # write ending records with self._lock: if self._seekable: self.fp.seek(self.start_dir) self._write_end_record() finally: fp = self.fp self.fp = None self._fpclose(fp) def _write_end_record(self): for zinfo in self.filelist: # write central directory dt = zinfo.date_time dosdate = (dt[0] - 1980) << 9 | dt[1] << 5 | dt[2] dostime = dt[3] << 11 | dt[4] << 5 | (dt[5] // 2) extra = [] if zinfo.file_size > ZIP64_LIMIT \ or zinfo.compress_size > ZIP64_LIMIT: extra.append(zinfo.file_size) extra.append(zinfo.compress_size) file_size = 0xffffffff compress_size = 0xffffffff else: file_size = zinfo.file_size compress_size = zinfo.compress_size if zinfo.header_offset > ZIP64_LIMIT: extra.append(zinfo.header_offset) header_offset = 0xffffffff else: header_offset = zinfo.header_offset extra_data = zinfo.extra min_version = 0 if extra: # Append a ZIP64 field to the extra's extra_data = _strip_extra(extra_data, (1,)) extra_data = struct.pack( '<HH' + 'Q'*len(extra), 1, 8*len(extra), *extra) + extra_data min_version = ZIP64_VERSION if zinfo.compress_type == ZIP_BZIP2: min_version = max(BZIP2_VERSION, min_version) elif zinfo.compress_type == ZIP_LZMA: min_version = max(LZMA_VERSION, min_version) extract_version = max(min_version, zinfo.extract_version) create_version = max(min_version, zinfo.create_version) try: filename, flag_bits = zinfo._encodeFilenameFlags() centdir = struct.pack(structCentralDir, stringCentralDir, create_version, zinfo.create_system, extract_version, zinfo.reserved, flag_bits, zinfo.compress_type, dostime, dosdate, zinfo.CRC, compress_size, file_size, len(filename), len(extra_data), len(zinfo.comment), 0, zinfo.internal_attr, zinfo.external_attr, header_offset) except DeprecationWarning: print((structCentralDir, stringCentralDir, create_version, zinfo.create_system, extract_version, zinfo.reserved, zinfo.flag_bits, zinfo.compress_type, dostime, dosdate, zinfo.CRC, compress_size, file_size, len(zinfo.filename), len(extra_data), len(zinfo.comment), 0, zinfo.internal_attr, zinfo.external_attr, header_offset), file=sys.stderr) raise self.fp.write(centdir) self.fp.write(filename) self.fp.write(extra_data) self.fp.write(zinfo.comment) pos2 = self.fp.tell() # Write end-of-zip-archive record centDirCount = len(self.filelist) centDirSize = pos2 - self.start_dir centDirOffset = self.start_dir requires_zip64 = None if centDirCount > ZIP_FILECOUNT_LIMIT: requires_zip64 = "Files count" elif centDirOffset > ZIP64_LIMIT: requires_zip64 = "Central directory offset" elif centDirSize > ZIP64_LIMIT: requires_zip64 = "Central directory size" if requires_zip64: # Need to write the ZIP64 end-of-archive records if not self._allowZip64: raise LargeZipFile(requires_zip64 + " would require ZIP64 extensions") zip64endrec = struct.pack( structEndArchive64, stringEndArchive64, 44, 45, 45, 0, 0, centDirCount, centDirCount, centDirSize, centDirOffset) self.fp.write(zip64endrec) zip64locrec = struct.pack( structEndArchive64Locator, stringEndArchive64Locator, 0, pos2, 1) self.fp.write(zip64locrec) centDirCount = min(centDirCount, 0xFFFF) centDirSize = min(centDirSize, 0xFFFFFFFF) centDirOffset = min(centDirOffset, 0xFFFFFFFF) endrec = struct.pack(structEndArchive, stringEndArchive, 0, 0, centDirCount, centDirCount, centDirSize, centDirOffset, len(self._comment)) self.fp.write(endrec) self.fp.write(self._comment) self.fp.flush() def _fpclose(self, fp): assert self._fileRefCnt > 0 self._fileRefCnt -= 1 if not self._fileRefCnt and not self._filePassed: fp.close() class PyZipFile(ZipFile): """Class to create ZIP archives with Python library files and packages.""" def __init__(self, file, mode="r", compression=ZIP_STORED, allowZip64=True, optimize=-1): ZipFile.__init__(self, file, mode=mode, compression=compression, allowZip64=allowZip64) self._optimize = optimize def writepy(self, pathname, basename="", filterfunc=None): """Add all files from "pathname" to the ZIP archive. If pathname is a package directory, search the directory and all package subdirectories recursively for all *.py and enter the modules into the archive. If pathname is a plain directory, listdir *.py and enter all modules. Else, pathname must be a Python *.py file and the module will be put into the archive. Added modules are always module.pyc. This method will compile the module.py into module.pyc if necessary. If filterfunc(pathname) is given, it is called with every argument. When it is False, the file or directory is skipped. """ pathname = os.fspath(pathname) if filterfunc and not filterfunc(pathname): if self.debug: label = 'path' if os.path.isdir(pathname) else 'file' print('%s %r skipped by filterfunc' % (label, pathname)) return dir, name = os.path.split(pathname) if os.path.isdir(pathname): initname = os.path.join(pathname, "__init__.py") if os.path.isfile(initname): # This is a package directory, add it if basename: basename = "%s/%s" % (basename, name) else: basename = name if self.debug: print("Adding package in", pathname, "as", basename) fname, arcname = self._get_codename(initname[0:-3], basename) if self.debug: print("Adding", arcname) self.write(fname, arcname) dirlist = sorted(os.listdir(pathname)) dirlist.remove("__init__.py") # Add all *.py files and package subdirectories for filename in dirlist: path = os.path.join(pathname, filename) root, ext = os.path.splitext(filename) if os.path.isdir(path): if os.path.isfile(os.path.join(path, "__init__.py")): # This is a package directory, add it self.writepy(path, basename, filterfunc=filterfunc) # Recursive call elif ext == ".py": if filterfunc and not filterfunc(path): if self.debug: print('file %r skipped by filterfunc' % path) continue fname, arcname = self._get_codename(path[0:-3], basename) if self.debug: print("Adding", arcname) self.write(fname, arcname) else: # This is NOT a package directory, add its files at top level if self.debug: print("Adding files from directory", pathname) for filename in sorted(os.listdir(pathname)): path = os.path.join(pathname, filename) root, ext = os.path.splitext(filename) if ext == ".py": if filterfunc and not filterfunc(path): if self.debug: print('file %r skipped by filterfunc' % path) continue fname, arcname = self._get_codename(path[0:-3], basename) if self.debug: print("Adding", arcname) self.write(fname, arcname) else: if pathname[-3:] != ".py": raise RuntimeError( 'Files added with writepy() must end with ".py"') fname, arcname = self._get_codename(pathname[0:-3], basename) if self.debug: print("Adding file", arcname) self.write(fname, arcname) def _get_codename(self, pathname, basename): """Return (filename, archivename) for the path. Given a module name path, return the correct file path and archive name, compiling if necessary. For example, given /python/lib/string, return (/python/lib/string.pyc, string). """ def _compile(file, optimize=-1): import py_compile if self.debug: print("Compiling", file) try: py_compile.compile(file, doraise=True, optimize=optimize) except py_compile.PyCompileError as err: print(err.msg) return False return True file_py = pathname + ".py" file_pyc = pathname + ".pyc" pycache_opt0 = importlib.util.cache_from_source(file_py, optimization='') pycache_opt1 = importlib.util.cache_from_source(file_py, optimization=1) pycache_opt2 = importlib.util.cache_from_source(file_py, optimization=2) if self._optimize == -1: # legacy mode: use whatever file is present if (os.path.isfile(file_pyc) and os.stat(file_pyc).st_mtime >= os.stat(file_py).st_mtime): # Use .pyc file. arcname = fname = file_pyc elif (os.path.isfile(pycache_opt0) and os.stat(pycache_opt0).st_mtime >= os.stat(file_py).st_mtime): # Use the __pycache__/*.pyc file, but write it to the legacy pyc # file name in the archive. fname = pycache_opt0 arcname = file_pyc elif (os.path.isfile(pycache_opt1) and os.stat(pycache_opt1).st_mtime >= os.stat(file_py).st_mtime): # Use the __pycache__/*.pyc file, but write it to the legacy pyc # file name in the archive. fname = pycache_opt1 arcname = file_pyc elif (os.path.isfile(pycache_opt2) and os.stat(pycache_opt2).st_mtime >= os.stat(file_py).st_mtime): # Use the __pycache__/*.pyc file, but write it to the legacy pyc # file name in the archive. fname = pycache_opt2 arcname = file_pyc else: # Compile py into PEP 3147 pyc file. if _compile(file_py): if sys.flags.optimize == 0: fname = pycache_opt0 elif sys.flags.optimize == 1: fname = pycache_opt1 else: fname = pycache_opt2 arcname = file_pyc else: fname = arcname = file_py else: # new mode: use given optimization level if self._optimize == 0: fname = pycache_opt0 arcname = file_pyc else: arcname = file_pyc if self._optimize == 1: fname = pycache_opt1 elif self._optimize == 2: fname = pycache_opt2 else: msg = "invalid value for 'optimize': {!r}".format(self._optimize) raise ValueError(msg) if not (os.path.isfile(fname) and os.stat(fname).st_mtime >= os.stat(file_py).st_mtime): if not _compile(file_py, optimize=self._optimize): fname = arcname = file_py archivename = os.path.split(arcname)[1] if basename: archivename = "%s/%s" % (basename, archivename) return (fname, archivename) def main(args=None): import argparse description = 'A simple command-line interface for zipfile module.' parser = argparse.ArgumentParser(description=description) group = parser.add_mutually_exclusive_group(required=True) group.add_argument('-l', '--list', metavar='<zipfile>', help='Show listing of a zipfile') group.add_argument('-e', '--extract', nargs=2, metavar=('<zipfile>', '<output_dir>'), help='Extract zipfile into target dir') group.add_argument('-c', '--create', nargs='+', metavar=('<name>', '<file>'), help='Create zipfile from sources') group.add_argument('-t', '--test', metavar='<zipfile>', help='Test if a zipfile is valid') args = parser.parse_args(args) if args.test is not None: src = args.test with ZipFile(src, 'r') as zf: badfile = zf.testzip() if badfile: print("The following enclosed file is corrupted: {!r}".format(badfile)) print("Done testing") elif args.list is not None: src = args.list with ZipFile(src, 'r') as zf: zf.printdir() elif args.extract is not None: src, curdir = args.extract with ZipFile(src, 'r') as zf: zf.extractall(curdir) elif args.create is not None: zip_name = args.create.pop(0) files = args.create def addToZip(zf, path, zippath): if os.path.isfile(path): zf.write(path, zippath, ZIP_DEFLATED) elif os.path.isdir(path): if zippath: zf.write(path, zippath) for nm in sorted(os.listdir(path)): addToZip(zf, os.path.join(path, nm), os.path.join(zippath, nm)) # else: ignore with ZipFile(zip_name, 'w') as zf: for path in files: zippath = os.path.basename(path) if not zippath: zippath = os.path.basename(os.path.dirname(path)) if zippath in ('', os.curdir, os.pardir): zippath = '' addToZip(zf, path, zippath) if __name__ == "__main__": main()
zipfile37
/zipfile37-0.1.3.tar.gz/zipfile37-0.1.3/zipfile37.py
zipfile37.py
import binascii import functools import importlib.util import io import itertools import os import posixpath import shutil import stat import struct import sys import threading import time try: import zlib # We may need its compression method crc32 = zlib.crc32 except ImportError: zlib = None crc32 = binascii.crc32 try: import bz2 # We may need its compression method except ImportError: bz2 = None try: import lzma # We may need its compression method except ImportError: lzma = None __all__ = ["BadZipFile", "BadZipfile", "error", "ZIP_STORED", "ZIP_DEFLATED", "ZIP_BZIP2", "ZIP_LZMA", "is_zipfile", "ZipInfo", "ZipFile", "PyZipFile", "LargeZipFile"] class BadZipFile(Exception): pass class LargeZipFile(Exception): """ Raised when writing a zipfile, the zipfile requires ZIP64 extensions and those extensions are disabled. """ error = BadZipfile = BadZipFile # Pre-3.2 compatibility names ZIP64_LIMIT = (1 << 31) - 1 ZIP_FILECOUNT_LIMIT = (1 << 16) - 1 ZIP_MAX_COMMENT = (1 << 16) - 1 # constants for Zip file compression methods ZIP_STORED = 0 ZIP_DEFLATED = 8 ZIP_BZIP2 = 12 ZIP_LZMA = 14 # Other ZIP compression methods not supported DEFAULT_VERSION = 20 ZIP64_VERSION = 45 BZIP2_VERSION = 46 LZMA_VERSION = 63 # we recognize (but not necessarily support) all features up to that version MAX_EXTRACT_VERSION = 63 # Below are some formats and associated data for reading/writing headers using # the struct module. The names and structures of headers/records are those used # in the PKWARE description of the ZIP file format: # http://www.pkware.com/documents/casestudies/APPNOTE.TXT # (URL valid as of January 2008) # The "end of central directory" structure, magic number, size, and indices # (section V.I in the format document) structEndArchive = b"<4s4H2LH" stringEndArchive = b"PK\005\006" sizeEndCentDir = struct.calcsize(structEndArchive) _ECD_SIGNATURE = 0 _ECD_DISK_NUMBER = 1 _ECD_DISK_START = 2 _ECD_ENTRIES_THIS_DISK = 3 _ECD_ENTRIES_TOTAL = 4 _ECD_SIZE = 5 _ECD_OFFSET = 6 _ECD_COMMENT_SIZE = 7 # These last two indices are not part of the structure as defined in the # spec, but they are used internally by this module as a convenience _ECD_COMMENT = 8 _ECD_LOCATION = 9 # The "central directory" structure, magic number, size, and indices # of entries in the structure (section V.F in the format document) structCentralDir = "<4s4B4HL2L5H2L" stringCentralDir = b"PK\001\002" sizeCentralDir = struct.calcsize(structCentralDir) # indexes of entries in the central directory structure _CD_SIGNATURE = 0 _CD_CREATE_VERSION = 1 _CD_CREATE_SYSTEM = 2 _CD_EXTRACT_VERSION = 3 _CD_EXTRACT_SYSTEM = 4 _CD_FLAG_BITS = 5 _CD_COMPRESS_TYPE = 6 _CD_TIME = 7 _CD_DATE = 8 _CD_CRC = 9 _CD_COMPRESSED_SIZE = 10 _CD_UNCOMPRESSED_SIZE = 11 _CD_FILENAME_LENGTH = 12 _CD_EXTRA_FIELD_LENGTH = 13 _CD_COMMENT_LENGTH = 14 _CD_DISK_NUMBER_START = 15 _CD_INTERNAL_FILE_ATTRIBUTES = 16 _CD_EXTERNAL_FILE_ATTRIBUTES = 17 _CD_LOCAL_HEADER_OFFSET = 18 # The "local file header" structure, magic number, size, and indices # (section V.A in the format document) structFileHeader = "<4s2B4HL2L2H" stringFileHeader = b"PK\003\004" sizeFileHeader = struct.calcsize(structFileHeader) _FH_SIGNATURE = 0 _FH_EXTRACT_VERSION = 1 _FH_EXTRACT_SYSTEM = 2 _FH_GENERAL_PURPOSE_FLAG_BITS = 3 _FH_COMPRESSION_METHOD = 4 _FH_LAST_MOD_TIME = 5 _FH_LAST_MOD_DATE = 6 _FH_CRC = 7 _FH_COMPRESSED_SIZE = 8 _FH_UNCOMPRESSED_SIZE = 9 _FH_FILENAME_LENGTH = 10 _FH_EXTRA_FIELD_LENGTH = 11 # The "Zip64 end of central directory locator" structure, magic number, and size structEndArchive64Locator = "<4sLQL" stringEndArchive64Locator = b"PK\x06\x07" sizeEndCentDir64Locator = struct.calcsize(structEndArchive64Locator) # The "Zip64 end of central directory" record, magic number, size, and indices # (section V.G in the format document) structEndArchive64 = "<4sQ2H2L4Q" stringEndArchive64 = b"PK\x06\x06" sizeEndCentDir64 = struct.calcsize(structEndArchive64) _CD64_SIGNATURE = 0 _CD64_DIRECTORY_RECSIZE = 1 _CD64_CREATE_VERSION = 2 _CD64_EXTRACT_VERSION = 3 _CD64_DISK_NUMBER = 4 _CD64_DISK_NUMBER_START = 5 _CD64_NUMBER_ENTRIES_THIS_DISK = 6 _CD64_NUMBER_ENTRIES_TOTAL = 7 _CD64_DIRECTORY_SIZE = 8 _CD64_OFFSET_START_CENTDIR = 9 _DD_SIGNATURE = 0x08074b50 _EXTRA_FIELD_STRUCT = struct.Struct('<HH') def _strip_extra(extra, xids): # Remove Extra Fields with specified IDs. unpack = _EXTRA_FIELD_STRUCT.unpack modified = False buffer = [] start = i = 0 while i + 4 <= len(extra): xid, xlen = unpack(extra[i : i + 4]) j = i + 4 + xlen if xid in xids: if i != start: buffer.append(extra[start : i]) start = j modified = True i = j if not modified: return extra return b''.join(buffer) def _check_zipfile(fp): try: if _EndRecData(fp): return True # file has correct magic number except OSError: pass return False def is_zipfile(filename): """Quickly see if a file is a ZIP file by checking the magic number. The filename argument may be a file or file-like object too. """ result = False try: if hasattr(filename, "read"): result = _check_zipfile(fp=filename) else: with open(filename, "rb") as fp: result = _check_zipfile(fp) except OSError: pass return result def _EndRecData64(fpin, offset, endrec): """ Read the ZIP64 end-of-archive records and use that to update endrec """ try: fpin.seek(offset - sizeEndCentDir64Locator, 2) except OSError: # If the seek fails, the file is not large enough to contain a ZIP64 # end-of-archive record, so just return the end record we were given. return endrec data = fpin.read(sizeEndCentDir64Locator) if len(data) != sizeEndCentDir64Locator: return endrec sig, diskno, reloff, disks = struct.unpack(structEndArchive64Locator, data) if sig != stringEndArchive64Locator: return endrec if diskno != 0 or disks > 1: raise BadZipFile("zipfiles that span multiple disks are not supported") # Assume no 'zip64 extensible data' fpin.seek(offset - sizeEndCentDir64Locator - sizeEndCentDir64, 2) data = fpin.read(sizeEndCentDir64) if len(data) != sizeEndCentDir64: return endrec sig, sz, create_version, read_version, disk_num, disk_dir, \ dircount, dircount2, dirsize, diroffset = \ struct.unpack(structEndArchive64, data) if sig != stringEndArchive64: return endrec # Update the original endrec using data from the ZIP64 record endrec[_ECD_SIGNATURE] = sig endrec[_ECD_DISK_NUMBER] = disk_num endrec[_ECD_DISK_START] = disk_dir endrec[_ECD_ENTRIES_THIS_DISK] = dircount endrec[_ECD_ENTRIES_TOTAL] = dircount2 endrec[_ECD_SIZE] = dirsize endrec[_ECD_OFFSET] = diroffset return endrec def _EndRecData(fpin): """Return data from the "End of Central Directory" record, or None. The data is a list of the nine items in the ZIP "End of central dir" record followed by a tenth item, the file seek offset of this record.""" # Determine file size fpin.seek(0, 2) filesize = fpin.tell() # Check to see if this is ZIP file with no archive comment (the # "end of central directory" structure should be the last item in the # file if this is the case). try: fpin.seek(-sizeEndCentDir, 2) except OSError: return None data = fpin.read() if (len(data) == sizeEndCentDir and data[0:4] == stringEndArchive and data[-2:] == b"\000\000"): # the signature is correct and there's no comment, unpack structure endrec = struct.unpack(structEndArchive, data) endrec=list(endrec) # Append a blank comment and record start offset endrec.append(b"") endrec.append(filesize - sizeEndCentDir) # Try to read the "Zip64 end of central directory" structure return _EndRecData64(fpin, -sizeEndCentDir, endrec) # Either this is not a ZIP file, or it is a ZIP file with an archive # comment. Search the end of the file for the "end of central directory" # record signature. The comment is the last item in the ZIP file and may be # up to 64K long. It is assumed that the "end of central directory" magic # number does not appear in the comment. maxCommentStart = max(filesize - (1 << 16) - sizeEndCentDir, 0) fpin.seek(maxCommentStart, 0) data = fpin.read() start = data.rfind(stringEndArchive) if start >= 0: # found the magic number; attempt to unpack and interpret recData = data[start:start+sizeEndCentDir] if len(recData) != sizeEndCentDir: # Zip file is corrupted. return None endrec = list(struct.unpack(structEndArchive, recData)) commentSize = endrec[_ECD_COMMENT_SIZE] #as claimed by the zip file comment = data[start+sizeEndCentDir:start+sizeEndCentDir+commentSize] endrec.append(comment) endrec.append(maxCommentStart + start) # Try to read the "Zip64 end of central directory" structure return _EndRecData64(fpin, maxCommentStart + start - filesize, endrec) # Unable to find a valid end of central directory structure return None class ZipInfo (object): """Class with attributes describing each file in the ZIP archive.""" __slots__ = ( 'orig_filename', 'filename', 'date_time', 'compress_type', '_compresslevel', 'comment', 'extra', 'create_system', 'create_version', 'extract_version', 'reserved', 'flag_bits', 'volume', 'internal_attr', 'external_attr', 'header_offset', 'CRC', 'compress_size', 'file_size', '_raw_time', ) def __init__(self, filename="NoName", date_time=(1980,1,1,0,0,0)): self.orig_filename = filename # Original file name in archive # Terminate the file name at the first null byte. Null bytes in file # names are used as tricks by viruses in archives. null_byte = filename.find(chr(0)) if null_byte >= 0: filename = filename[0:null_byte] # This is used to ensure paths in generated ZIP files always use # forward slashes as the directory separator, as required by the # ZIP format specification. if os.sep != "/" and os.sep in filename: filename = filename.replace(os.sep, "/") self.filename = filename # Normalized file name self.date_time = date_time # year, month, day, hour, min, sec if date_time[0] < 1980: raise ValueError('ZIP does not support timestamps before 1980') # Standard values: self.compress_type = ZIP_STORED # Type of compression for the file self._compresslevel = None # Level for the compressor self.comment = b"" # Comment for each file self.extra = b"" # ZIP extra data if sys.platform == 'win32': self.create_system = 0 # System which created ZIP archive else: # Assume everything else is unix-y self.create_system = 3 # System which created ZIP archive self.create_version = DEFAULT_VERSION # Version which created ZIP archive self.extract_version = DEFAULT_VERSION # Version needed to extract archive self.reserved = 0 # Must be zero self.flag_bits = 0 # ZIP flag bits self.volume = 0 # Volume number of file header self.internal_attr = 0 # Internal attributes self.external_attr = 0 # External file attributes # Other attributes are set by class ZipFile: # header_offset Byte offset to the file header # CRC CRC-32 of the uncompressed file # compress_size Size of the compressed file # file_size Size of the uncompressed file def __repr__(self): result = ['<%s filename=%r' % (self.__class__.__name__, self.filename)] if self.compress_type != ZIP_STORED: result.append(' compress_type=%s' % compressor_names.get(self.compress_type, self.compress_type)) hi = self.external_attr >> 16 lo = self.external_attr & 0xFFFF if hi: result.append(' filemode=%r' % stat.filemode(hi)) if lo: result.append(' external_attr=%#x' % lo) isdir = self.is_dir() if not isdir or self.file_size: result.append(' file_size=%r' % self.file_size) if ((not isdir or self.compress_size) and (self.compress_type != ZIP_STORED or self.file_size != self.compress_size)): result.append(' compress_size=%r' % self.compress_size) result.append('>') return ''.join(result) def FileHeader(self, zip64=None): """Return the per-file header as a bytes object.""" dt = self.date_time dosdate = (dt[0] - 1980) << 9 | dt[1] << 5 | dt[2] dostime = dt[3] << 11 | dt[4] << 5 | (dt[5] // 2) if self.flag_bits & 0x08: # Set these to zero because we write them after the file data CRC = compress_size = file_size = 0 else: CRC = self.CRC compress_size = self.compress_size file_size = self.file_size extra = self.extra min_version = 0 if zip64 is None: zip64 = file_size > ZIP64_LIMIT or compress_size > ZIP64_LIMIT if zip64: fmt = '<HHQQ' extra = extra + struct.pack(fmt, 1, struct.calcsize(fmt)-4, file_size, compress_size) if file_size > ZIP64_LIMIT or compress_size > ZIP64_LIMIT: if not zip64: raise LargeZipFile("Filesize would require ZIP64 extensions") # File is larger than what fits into a 4 byte integer, # fall back to the ZIP64 extension file_size = 0xffffffff compress_size = 0xffffffff min_version = ZIP64_VERSION if self.compress_type == ZIP_BZIP2: min_version = max(BZIP2_VERSION, min_version) elif self.compress_type == ZIP_LZMA: min_version = max(LZMA_VERSION, min_version) self.extract_version = max(min_version, self.extract_version) self.create_version = max(min_version, self.create_version) filename, flag_bits = self._encodeFilenameFlags() header = struct.pack(structFileHeader, stringFileHeader, self.extract_version, self.reserved, flag_bits, self.compress_type, dostime, dosdate, CRC, compress_size, file_size, len(filename), len(extra)) return header + filename + extra def _encodeFilenameFlags(self): try: return self.filename.encode('ascii'), self.flag_bits except UnicodeEncodeError: return self.filename.encode('utf-8'), self.flag_bits | 0x800 def _decodeExtra(self): # Try to decode the extra field. extra = self.extra unpack = struct.unpack while len(extra) >= 4: tp, ln = unpack('<HH', extra[:4]) if ln+4 > len(extra): raise BadZipFile("Corrupt extra field %04x (size=%d)" % (tp, ln)) if tp == 0x0001: if ln >= 24: counts = unpack('<QQQ', extra[4:28]) elif ln == 16: counts = unpack('<QQ', extra[4:20]) elif ln == 8: counts = unpack('<Q', extra[4:12]) elif ln == 0: counts = () else: raise BadZipFile("Corrupt extra field %04x (size=%d)" % (tp, ln)) idx = 0 # ZIP64 extension (large files and/or large archives) if self.file_size in (0xffffffffffffffff, 0xffffffff): if len(counts) <= idx: raise BadZipFile( "Corrupt zip64 extra field. File size not found." ) self.file_size = counts[idx] idx += 1 if self.compress_size == 0xFFFFFFFF: if len(counts) <= idx: raise BadZipFile( "Corrupt zip64 extra field. Compress size not found." ) self.compress_size = counts[idx] idx += 1 if self.header_offset == 0xffffffff: if len(counts) <= idx: raise BadZipFile( "Corrupt zip64 extra field. Header offset not found." ) old = self.header_offset self.header_offset = counts[idx] idx+=1 extra = extra[ln+4:] @classmethod def from_file(cls, filename, arcname=None, *, strict_timestamps=True): """Construct an appropriate ZipInfo for a file on the filesystem. filename should be the path to a file or directory on the filesystem. arcname is the name which it will have within the archive (by default, this will be the same as filename, but without a drive letter and with leading path separators removed). """ if isinstance(filename, os.PathLike): filename = os.fspath(filename) st = os.stat(filename) isdir = stat.S_ISDIR(st.st_mode) mtime = time.localtime(st.st_mtime) date_time = mtime[0:6] if not strict_timestamps and date_time[0] < 1980: date_time = (1980, 1, 1, 0, 0, 0) elif not strict_timestamps and date_time[0] > 2107: date_time = (2107, 12, 31, 23, 59, 59) # Create ZipInfo instance to store file information if arcname is None: arcname = filename arcname = os.path.normpath(os.path.splitdrive(arcname)[1]) while arcname[0] in (os.sep, os.altsep): arcname = arcname[1:] if isdir: arcname += '/' zinfo = cls(arcname, date_time) zinfo.external_attr = (st.st_mode & 0xFFFF) << 16 # Unix attributes if isdir: zinfo.file_size = 0 zinfo.external_attr |= 0x10 # MS-DOS directory flag else: zinfo.file_size = st.st_size return zinfo def is_dir(self): """Return True if this archive member is a directory.""" return self.filename[-1] == '/' # ZIP encryption uses the CRC32 one-byte primitive for scrambling some # internal keys. We noticed that a direct implementation is faster than # relying on binascii.crc32(). _crctable = None def _gen_crc(crc): for j in range(8): if crc & 1: crc = (crc >> 1) ^ 0xEDB88320 else: crc >>= 1 return crc # ZIP supports a password-based form of encryption. Even though known # plaintext attacks have been found against it, it is still useful # to be able to get data out of such a file. # # Usage: # zd = _ZipDecrypter(mypwd) # plain_bytes = zd(cypher_bytes) def _ZipDecrypter(pwd): key0 = 305419896 key1 = 591751049 key2 = 878082192 global _crctable if _crctable is None: _crctable = list(map(_gen_crc, range(256))) crctable = _crctable def crc32(ch, crc): """Compute the CRC32 primitive on one byte.""" return (crc >> 8) ^ crctable[(crc ^ ch) & 0xFF] def update_keys(c): nonlocal key0, key1, key2 key0 = crc32(c, key0) key1 = (key1 + (key0 & 0xFF)) & 0xFFFFFFFF key1 = (key1 * 134775813 + 1) & 0xFFFFFFFF key2 = crc32(key1 >> 24, key2) for p in pwd: update_keys(p) def decrypter(data): """Decrypt a bytes object.""" result = bytearray() append = result.append for c in data: k = key2 | 2 c ^= ((k * (k^1)) >> 8) & 0xFF update_keys(c) append(c) return bytes(result) return decrypter class LZMACompressor: def __init__(self): self._comp = None def _init(self): props = lzma._encode_filter_properties({'id': lzma.FILTER_LZMA1}) self._comp = lzma.LZMACompressor(lzma.FORMAT_RAW, filters=[ lzma._decode_filter_properties(lzma.FILTER_LZMA1, props) ]) return struct.pack('<BBH', 9, 4, len(props)) + props def compress(self, data): if self._comp is None: return self._init() + self._comp.compress(data) return self._comp.compress(data) def flush(self): if self._comp is None: return self._init() + self._comp.flush() return self._comp.flush() class LZMADecompressor: def __init__(self): self._decomp = None self._unconsumed = b'' self.eof = False def decompress(self, data): if self._decomp is None: self._unconsumed += data if len(self._unconsumed) <= 4: return b'' psize, = struct.unpack('<H', self._unconsumed[2:4]) if len(self._unconsumed) <= 4 + psize: return b'' self._decomp = lzma.LZMADecompressor(lzma.FORMAT_RAW, filters=[ lzma._decode_filter_properties(lzma.FILTER_LZMA1, self._unconsumed[4:4 + psize]) ]) data = self._unconsumed[4 + psize:] del self._unconsumed result = self._decomp.decompress(data) self.eof = self._decomp.eof return result compressor_names = { 0: 'store', 1: 'shrink', 2: 'reduce', 3: 'reduce', 4: 'reduce', 5: 'reduce', 6: 'implode', 7: 'tokenize', 8: 'deflate', 9: 'deflate64', 10: 'implode', 12: 'bzip2', 14: 'lzma', 18: 'terse', 19: 'lz77', 97: 'wavpack', 98: 'ppmd', } def _check_compression(compression): if compression == ZIP_STORED: pass elif compression == ZIP_DEFLATED: if not zlib: raise RuntimeError( "Compression requires the (missing) zlib module") elif compression == ZIP_BZIP2: if not bz2: raise RuntimeError( "Compression requires the (missing) bz2 module") elif compression == ZIP_LZMA: if not lzma: raise RuntimeError( "Compression requires the (missing) lzma module") else: raise NotImplementedError("That compression method is not supported") def _get_compressor(compress_type, compresslevel=None): if compress_type == ZIP_DEFLATED: if compresslevel is not None: return zlib.compressobj(compresslevel, zlib.DEFLATED, -15) return zlib.compressobj(zlib.Z_DEFAULT_COMPRESSION, zlib.DEFLATED, -15) elif compress_type == ZIP_BZIP2: if compresslevel is not None: return bz2.BZ2Compressor(compresslevel) return bz2.BZ2Compressor() # compresslevel is ignored for ZIP_LZMA elif compress_type == ZIP_LZMA: return LZMACompressor() else: return None def _get_decompressor(compress_type): _check_compression(compress_type) if compress_type == ZIP_STORED: return None elif compress_type == ZIP_DEFLATED: return zlib.decompressobj(-15) elif compress_type == ZIP_BZIP2: return bz2.BZ2Decompressor() elif compress_type == ZIP_LZMA: return LZMADecompressor() else: descr = compressor_names.get(compress_type) if descr: raise NotImplementedError("compression type %d (%s)" % (compress_type, descr)) else: raise NotImplementedError("compression type %d" % (compress_type,)) class _SharedFile: def __init__(self, file, pos, close, lock, writing): self._file = file self._pos = pos self._close = close self._lock = lock self._writing = writing self.seekable = file.seekable self.tell = file.tell def seek(self, offset, whence=0): with self._lock: if self._writing(): raise ValueError("Can't reposition in the ZIP file while " "there is an open writing handle on it. " "Close the writing handle before trying to read.") self._file.seek(offset, whence) self._pos = self._file.tell() return self._pos def read(self, n=-1): with self._lock: if self._writing(): raise ValueError("Can't read from the ZIP file while there " "is an open writing handle on it. " "Close the writing handle before trying to read.") self._file.seek(self._pos) data = self._file.read(n) self._pos = self._file.tell() return data def close(self): if self._file is not None: fileobj = self._file self._file = None self._close(fileobj) # Provide the tell method for unseekable stream class _Tellable: def __init__(self, fp): self.fp = fp self.offset = 0 def write(self, data): n = self.fp.write(data) self.offset += n return n def tell(self): return self.offset def flush(self): self.fp.flush() def close(self): self.fp.close() class ZipExtFile(io.BufferedIOBase): """File-like object for reading an archive member. Is returned by ZipFile.open(). """ # Max size supported by decompressor. MAX_N = 1 << 31 - 1 # Read from compressed files in 4k blocks. MIN_READ_SIZE = 4096 # Chunk size to read during seek MAX_SEEK_READ = 1 << 24 def __init__(self, fileobj, mode, zipinfo, pwd=None, close_fileobj=False): self._fileobj = fileobj self._pwd = pwd self._close_fileobj = close_fileobj self._compress_type = zipinfo.compress_type self._compress_left = zipinfo.compress_size self._left = zipinfo.file_size self._decompressor = _get_decompressor(self._compress_type) self._eof = False self._readbuffer = b'' self._offset = 0 self.newlines = None self.mode = mode self.name = zipinfo.filename if hasattr(zipinfo, 'CRC'): self._expected_crc = zipinfo.CRC self._running_crc = crc32(b'') else: self._expected_crc = None self._seekable = False try: if fileobj.seekable(): self._orig_compress_start = fileobj.tell() self._orig_compress_size = zipinfo.compress_size self._orig_file_size = zipinfo.file_size self._orig_start_crc = self._running_crc self._seekable = True except AttributeError: pass self._decrypter = None if pwd: if zipinfo.flag_bits & 0x8: # compare against the file type from extended local headers check_byte = (zipinfo._raw_time >> 8) & 0xff else: # compare against the CRC otherwise check_byte = (zipinfo.CRC >> 24) & 0xff h = self._init_decrypter() if h != check_byte: raise RuntimeError("Bad password for file %r" % zipinfo.orig_filename) def _init_decrypter(self): self._decrypter = _ZipDecrypter(self._pwd) # The first 12 bytes in the cypher stream is an encryption header # used to strengthen the algorithm. The first 11 bytes are # completely random, while the 12th contains the MSB of the CRC, # or the MSB of the file time depending on the header type # and is used to check the correctness of the password. header = self._fileobj.read(12) self._compress_left -= 12 return self._decrypter(header)[11] def __repr__(self): result = ['<%s.%s' % (self.__class__.__module__, self.__class__.__qualname__)] if not self.closed: result.append(' name=%r mode=%r' % (self.name, self.mode)) if self._compress_type != ZIP_STORED: result.append(' compress_type=%s' % compressor_names.get(self._compress_type, self._compress_type)) else: result.append(' [closed]') result.append('>') return ''.join(result) def readline(self, limit=-1): """Read and return a line from the stream. If limit is specified, at most limit bytes will be read. """ if limit < 0: # Shortcut common case - newline found in buffer. i = self._readbuffer.find(b'\n', self._offset) + 1 if i > 0: line = self._readbuffer[self._offset: i] self._offset = i return line return io.BufferedIOBase.readline(self, limit) def peek(self, n=1): """Returns buffered bytes without advancing the position.""" if n > len(self._readbuffer) - self._offset: chunk = self.read(n) if len(chunk) > self._offset: self._readbuffer = chunk + self._readbuffer[self._offset:] self._offset = 0 else: self._offset -= len(chunk) # Return up to 512 bytes to reduce allocation overhead for tight loops. return self._readbuffer[self._offset: self._offset + 512] def readable(self): return True def read(self, n=-1): """Read and return up to n bytes. If the argument is omitted, None, or negative, data is read and returned until EOF is reached. """ if n is None or n < 0: buf = self._readbuffer[self._offset:] self._readbuffer = b'' self._offset = 0 while not self._eof: buf += self._read1(self.MAX_N) return buf end = n + self._offset if end < len(self._readbuffer): buf = self._readbuffer[self._offset:end] self._offset = end return buf n = end - len(self._readbuffer) buf = self._readbuffer[self._offset:] self._readbuffer = b'' self._offset = 0 while n > 0 and not self._eof: data = self._read1(n) if n < len(data): self._readbuffer = data self._offset = n buf += data[:n] break buf += data n -= len(data) return buf def _update_crc(self, newdata): # Update the CRC using the given data. if self._expected_crc is None: # No need to compute the CRC if we don't have a reference value return self._running_crc = crc32(newdata, self._running_crc) # Check the CRC if we're at the end of the file if self._eof and self._running_crc != self._expected_crc: raise BadZipFile("Bad CRC-32 for file %r" % self.name) def read1(self, n): """Read up to n bytes with at most one read() system call.""" if n is None or n < 0: buf = self._readbuffer[self._offset:] self._readbuffer = b'' self._offset = 0 while not self._eof: data = self._read1(self.MAX_N) if data: buf += data break return buf end = n + self._offset if end < len(self._readbuffer): buf = self._readbuffer[self._offset:end] self._offset = end return buf n = end - len(self._readbuffer) buf = self._readbuffer[self._offset:] self._readbuffer = b'' self._offset = 0 if n > 0: while not self._eof: data = self._read1(n) if n < len(data): self._readbuffer = data self._offset = n buf += data[:n] break if data: buf += data break return buf def _read1(self, n): # Read up to n compressed bytes with at most one read() system call, # decrypt and decompress them. if self._eof or n <= 0: return b'' # Read from file. if self._compress_type == ZIP_DEFLATED: ## Handle unconsumed data. data = self._decompressor.unconsumed_tail if n > len(data): data += self._read2(n - len(data)) else: data = self._read2(n) if self._compress_type == ZIP_STORED: self._eof = self._compress_left <= 0 elif self._compress_type == ZIP_DEFLATED: n = max(n, self.MIN_READ_SIZE) data = self._decompressor.decompress(data, n) self._eof = (self._decompressor.eof or self._compress_left <= 0 and not self._decompressor.unconsumed_tail) if self._eof: data += self._decompressor.flush() else: data = self._decompressor.decompress(data) self._eof = self._decompressor.eof or self._compress_left <= 0 data = data[:self._left] self._left -= len(data) if self._left <= 0: self._eof = True self._update_crc(data) return data def _read2(self, n): if self._compress_left <= 0: return b'' n = max(n, self.MIN_READ_SIZE) n = min(n, self._compress_left) data = self._fileobj.read(n) self._compress_left -= len(data) if not data: raise EOFError if self._decrypter is not None: data = self._decrypter(data) return data def close(self): try: if self._close_fileobj: self._fileobj.close() finally: super().close() def seekable(self): return self._seekable def seek(self, offset, whence=0): if not self._seekable: raise io.UnsupportedOperation("underlying stream is not seekable") curr_pos = self.tell() if whence == 0: # Seek from start of file new_pos = offset elif whence == 1: # Seek from current position new_pos = curr_pos + offset elif whence == 2: # Seek from EOF new_pos = self._orig_file_size + offset else: raise ValueError("whence must be os.SEEK_SET (0), " "os.SEEK_CUR (1), or os.SEEK_END (2)") if new_pos > self._orig_file_size: new_pos = self._orig_file_size if new_pos < 0: new_pos = 0 read_offset = new_pos - curr_pos buff_offset = read_offset + self._offset if buff_offset >= 0 and buff_offset < len(self._readbuffer): # Just move the _offset index if the new position is in the _readbuffer self._offset = buff_offset read_offset = 0 elif read_offset < 0: # Position is before the current position. Reset the ZipExtFile self._fileobj.seek(self._orig_compress_start) self._running_crc = self._orig_start_crc self._compress_left = self._orig_compress_size self._left = self._orig_file_size self._readbuffer = b'' self._offset = 0 self._decompressor = _get_decompressor(self._compress_type) self._eof = False read_offset = new_pos if self._decrypter is not None: self._init_decrypter() while read_offset > 0: read_len = min(self.MAX_SEEK_READ, read_offset) self.read(read_len) read_offset -= read_len return self.tell() def tell(self): if not self._seekable: raise io.UnsupportedOperation("underlying stream is not seekable") filepos = self._orig_file_size - self._left - len(self._readbuffer) + self._offset return filepos class _ZipWriteFile(io.BufferedIOBase): def __init__(self, zf, zinfo, zip64): self._zinfo = zinfo self._zip64 = zip64 self._zipfile = zf self._compressor = _get_compressor(zinfo.compress_type, zinfo._compresslevel) self._file_size = 0 self._compress_size = 0 self._crc = 0 @property def _fileobj(self): return self._zipfile.fp def writable(self): return True def write(self, data): if self.closed: raise ValueError('I/O operation on closed file.') nbytes = len(data) self._file_size += nbytes self._crc = crc32(data, self._crc) if self._compressor: data = self._compressor.compress(data) self._compress_size += len(data) self._fileobj.write(data) return nbytes def close(self): if self.closed: return try: super().close() # Flush any data from the compressor, and update header info if self._compressor: buf = self._compressor.flush() self._compress_size += len(buf) self._fileobj.write(buf) self._zinfo.compress_size = self._compress_size else: self._zinfo.compress_size = self._file_size self._zinfo.CRC = self._crc self._zinfo.file_size = self._file_size # Write updated header info if self._zinfo.flag_bits & 0x08: # Write CRC and file sizes after the file data fmt = '<LLQQ' if self._zip64 else '<LLLL' self._fileobj.write(struct.pack(fmt, _DD_SIGNATURE, self._zinfo.CRC, self._zinfo.compress_size, self._zinfo.file_size)) self._zipfile.start_dir = self._fileobj.tell() else: if not self._zip64: if self._file_size > ZIP64_LIMIT: raise RuntimeError( 'File size unexpectedly exceeded ZIP64 limit') if self._compress_size > ZIP64_LIMIT: raise RuntimeError( 'Compressed size unexpectedly exceeded ZIP64 limit') # Seek backwards and write file header (which will now include # correct CRC and file sizes) # Preserve current position in file self._zipfile.start_dir = self._fileobj.tell() self._fileobj.seek(self._zinfo.header_offset) self._fileobj.write(self._zinfo.FileHeader(self._zip64)) self._fileobj.seek(self._zipfile.start_dir) # Successfully written: Add file to our caches self._zipfile.filelist.append(self._zinfo) self._zipfile.NameToInfo[self._zinfo.filename] = self._zinfo finally: self._zipfile._writing = False class ZipFile: """ Class with methods to open, read, write, close, list zip files. z = ZipFile(file, mode="r", compression=ZIP_STORED, allowZip64=True, compresslevel=None) file: Either the path to the file, or a file-like object. If it is a path, the file will be opened and closed by ZipFile. mode: The mode can be either read 'r', write 'w', exclusive create 'x', or append 'a'. compression: ZIP_STORED (no compression), ZIP_DEFLATED (requires zlib), ZIP_BZIP2 (requires bz2) or ZIP_LZMA (requires lzma). allowZip64: if True ZipFile will create files with ZIP64 extensions when needed, otherwise it will raise an exception when this would be necessary. compresslevel: None (default for the given compression type) or an integer specifying the level to pass to the compressor. When using ZIP_STORED or ZIP_LZMA this keyword has no effect. When using ZIP_DEFLATED integers 0 through 9 are accepted. When using ZIP_BZIP2 integers 1 through 9 are accepted. """ fp = None # Set here since __del__ checks it _windows_illegal_name_trans_table = None def __init__(self, file, mode="r", compression=ZIP_STORED, allowZip64=True, compresslevel=None, *, strict_timestamps=True): """Open the ZIP file with mode read 'r', write 'w', exclusive create 'x', or append 'a'.""" if mode not in ('r', 'w', 'x', 'a'): raise ValueError("ZipFile requires mode 'r', 'w', 'x', or 'a'") _check_compression(compression) self._allowZip64 = allowZip64 self._didModify = False self.debug = 0 # Level of printing: 0 through 3 self.NameToInfo = {} # Find file info given name self.filelist = [] # List of ZipInfo instances for archive self.compression = compression # Method of compression self.compresslevel = compresslevel self.mode = mode self.pwd = None self._comment = b'' self._strict_timestamps = strict_timestamps # Check if we were passed a file-like object if isinstance(file, os.PathLike): file = os.fspath(file) if isinstance(file, str): # No, it's a filename self._filePassed = 0 self.filename = file modeDict = {'r' : 'rb', 'w': 'w+b', 'x': 'x+b', 'a' : 'r+b', 'r+b': 'w+b', 'w+b': 'wb', 'x+b': 'xb'} filemode = modeDict[mode] while True: try: self.fp = io.open(file, filemode) except OSError: if filemode in modeDict: filemode = modeDict[filemode] continue raise break else: self._filePassed = 1 self.fp = file self.filename = getattr(file, 'name', None) self._fileRefCnt = 1 self._lock = threading.RLock() self._seekable = True self._writing = False try: if mode == 'r': self._RealGetContents() elif mode in ('w', 'x'): # set the modified flag so central directory gets written # even if no files are added to the archive self._didModify = True try: self.start_dir = self.fp.tell() except (AttributeError, OSError): self.fp = _Tellable(self.fp) self.start_dir = 0 self._seekable = False else: # Some file-like objects can provide tell() but not seek() try: self.fp.seek(self.start_dir) except (AttributeError, OSError): self._seekable = False elif mode == 'a': try: # See if file is a zip file self._RealGetContents() # seek to start of directory and overwrite self.fp.seek(self.start_dir) except BadZipFile: # file is not a zip file, just append self.fp.seek(0, 2) # set the modified flag so central directory gets written # even if no files are added to the archive self._didModify = True self.start_dir = self.fp.tell() else: raise ValueError("Mode must be 'r', 'w', 'x', or 'a'") except: fp = self.fp self.fp = None self._fpclose(fp) raise def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() def __repr__(self): result = ['<%s.%s' % (self.__class__.__module__, self.__class__.__qualname__)] if self.fp is not None: if self._filePassed: result.append(' file=%r' % self.fp) elif self.filename is not None: result.append(' filename=%r' % self.filename) result.append(' mode=%r' % self.mode) else: result.append(' [closed]') result.append('>') return ''.join(result) def _RealGetContents(self): """Read in the table of contents for the ZIP file.""" fp = self.fp try: endrec = _EndRecData(fp) except OSError: raise BadZipFile("File is not a zip file") if not endrec: raise BadZipFile("File is not a zip file") if self.debug > 1: print(endrec) size_cd = endrec[_ECD_SIZE] # bytes in central directory offset_cd = endrec[_ECD_OFFSET] # offset of central directory self._comment = endrec[_ECD_COMMENT] # archive comment # "concat" is zero, unless zip was concatenated to another file concat = endrec[_ECD_LOCATION] - size_cd - offset_cd if endrec[_ECD_SIGNATURE] == stringEndArchive64: # If Zip64 extension structures are present, account for them concat -= (sizeEndCentDir64 + sizeEndCentDir64Locator) if self.debug > 2: inferred = concat + offset_cd print("given, inferred, offset", offset_cd, inferred, concat) # self.start_dir: Position of start of central directory self.start_dir = offset_cd + concat fp.seek(self.start_dir, 0) data = fp.read(size_cd) fp = io.BytesIO(data) total = 0 while total < size_cd: centdir = fp.read(sizeCentralDir) if len(centdir) != sizeCentralDir: raise BadZipFile("Truncated central directory") centdir = struct.unpack(structCentralDir, centdir) if centdir[_CD_SIGNATURE] != stringCentralDir: raise BadZipFile("Bad magic number for central directory") if self.debug > 2: print(centdir) filename = fp.read(centdir[_CD_FILENAME_LENGTH]) flags = centdir[5] if flags & 0x800: # UTF-8 file names extension filename = filename.decode('utf-8') else: # Historical ZIP filename encoding filename = filename.decode('cp437') # Create ZipInfo instance to store file information x = ZipInfo(filename) x.extra = fp.read(centdir[_CD_EXTRA_FIELD_LENGTH]) x.comment = fp.read(centdir[_CD_COMMENT_LENGTH]) x.header_offset = centdir[_CD_LOCAL_HEADER_OFFSET] (x.create_version, x.create_system, x.extract_version, x.reserved, x.flag_bits, x.compress_type, t, d, x.CRC, x.compress_size, x.file_size) = centdir[1:12] if x.extract_version > MAX_EXTRACT_VERSION: raise NotImplementedError("zip file version %.1f" % (x.extract_version / 10)) x.volume, x.internal_attr, x.external_attr = centdir[15:18] # Convert date/time code to (year, month, day, hour, min, sec) x._raw_time = t x.date_time = ( (d>>9)+1980, (d>>5)&0xF, d&0x1F, t>>11, (t>>5)&0x3F, (t&0x1F) * 2 ) x._decodeExtra() x.header_offset = x.header_offset + concat self.filelist.append(x) self.NameToInfo[x.filename] = x # update total bytes read from central directory total = (total + sizeCentralDir + centdir[_CD_FILENAME_LENGTH] + centdir[_CD_EXTRA_FIELD_LENGTH] + centdir[_CD_COMMENT_LENGTH]) if self.debug > 2: print("total", total) def namelist(self): """Return a list of file names in the archive.""" return [data.filename for data in self.filelist] def infolist(self): """Return a list of class ZipInfo instances for files in the archive.""" return self.filelist def printdir(self, file=None): """Print a table of contents for the zip file.""" print("%-46s %19s %12s" % ("File Name", "Modified ", "Size"), file=file) for zinfo in self.filelist: date = "%d-%02d-%02d %02d:%02d:%02d" % zinfo.date_time[:6] print("%-46s %s %12d" % (zinfo.filename, date, zinfo.file_size), file=file) def testzip(self): """Read all the files and check the CRC.""" chunk_size = 2 ** 20 for zinfo in self.filelist: try: # Read by chunks, to avoid an OverflowError or a # MemoryError with very large embedded files. with self.open(zinfo.filename, "r") as f: while f.read(chunk_size): # Check CRC-32 pass except BadZipFile: return zinfo.filename def getinfo(self, name): """Return the instance of ZipInfo given 'name'.""" info = self.NameToInfo.get(name) if info is None: raise KeyError( 'There is no item named %r in the archive' % name) return info def setpassword(self, pwd): """Set default password for encrypted files.""" if pwd and not isinstance(pwd, bytes): raise TypeError("pwd: expected bytes, got %s" % type(pwd).__name__) if pwd: self.pwd = pwd else: self.pwd = None @property def comment(self): """The comment text associated with the ZIP file.""" return self._comment @comment.setter def comment(self, comment): if not isinstance(comment, bytes): raise TypeError("comment: expected bytes, got %s" % type(comment).__name__) # check for valid comment length if len(comment) > ZIP_MAX_COMMENT: import warnings warnings.warn('Archive comment is too long; truncating to %d bytes' % ZIP_MAX_COMMENT, stacklevel=2) comment = comment[:ZIP_MAX_COMMENT] self._comment = comment self._didModify = True def read(self, name, pwd=None): """Return file bytes for name.""" with self.open(name, "r", pwd) as fp: return fp.read() def open(self, name, mode="r", pwd=None, *, force_zip64=False): """Return file-like object for 'name'. name is a string for the file name within the ZIP file, or a ZipInfo object. mode should be 'r' to read a file already in the ZIP file, or 'w' to write to a file newly added to the archive. pwd is the password to decrypt files (only used for reading). When writing, if the file size is not known in advance but may exceed 2 GiB, pass force_zip64 to use the ZIP64 format, which can handle large files. If the size is known in advance, it is best to pass a ZipInfo instance for name, with zinfo.file_size set. """ if mode not in {"r", "w"}: raise ValueError('open() requires mode "r" or "w"') if pwd and not isinstance(pwd, bytes): raise TypeError("pwd: expected bytes, got %s" % type(pwd).__name__) if pwd and (mode == "w"): raise ValueError("pwd is only supported for reading files") if not self.fp: raise ValueError( "Attempt to use ZIP archive that was already closed") # Make sure we have an info object if isinstance(name, ZipInfo): # 'name' is already an info object zinfo = name elif mode == 'w': zinfo = ZipInfo(name) zinfo.compress_type = self.compression zinfo._compresslevel = self.compresslevel else: # Get info object for name zinfo = self.getinfo(name) if mode == 'w': return self._open_to_write(zinfo, force_zip64=force_zip64) if self._writing: raise ValueError("Can't read from the ZIP file while there " "is an open writing handle on it. " "Close the writing handle before trying to read.") # Open for reading: self._fileRefCnt += 1 zef_file = _SharedFile(self.fp, zinfo.header_offset, self._fpclose, self._lock, lambda: self._writing) try: # Skip the file header: fheader = zef_file.read(sizeFileHeader) if len(fheader) != sizeFileHeader: raise BadZipFile("Truncated file header") fheader = struct.unpack(structFileHeader, fheader) if fheader[_FH_SIGNATURE] != stringFileHeader: raise BadZipFile("Bad magic number for file header") fname = zef_file.read(fheader[_FH_FILENAME_LENGTH]) if fheader[_FH_EXTRA_FIELD_LENGTH]: zef_file.read(fheader[_FH_EXTRA_FIELD_LENGTH]) if zinfo.flag_bits & 0x20: # Zip 2.7: compressed patched data raise NotImplementedError("compressed patched data (flag bit 5)") if zinfo.flag_bits & 0x40: # strong encryption raise NotImplementedError("strong encryption (flag bit 6)") if zinfo.flag_bits & 0x800: # UTF-8 filename fname_str = fname.decode("utf-8") else: fname_str = fname.decode("cp437") if fname_str != zinfo.orig_filename: raise BadZipFile( 'File name in directory %r and header %r differ.' % (zinfo.orig_filename, fname)) # check for encrypted flag & handle password is_encrypted = zinfo.flag_bits & 0x1 if is_encrypted: if not pwd: pwd = self.pwd if not pwd: raise RuntimeError("File %r is encrypted, password " "required for extraction" % name) else: pwd = None return ZipExtFile(zef_file, mode, zinfo, pwd, True) except: zef_file.close() raise def _open_to_write(self, zinfo, force_zip64=False): if force_zip64 and not self._allowZip64: raise ValueError( "force_zip64 is True, but allowZip64 was False when opening " "the ZIP file." ) if self._writing: raise ValueError("Can't write to the ZIP file while there is " "another write handle open on it. " "Close the first handle before opening another.") # Sizes and CRC are overwritten with correct data after processing the file if not hasattr(zinfo, 'file_size'): zinfo.file_size = 0 zinfo.compress_size = 0 zinfo.CRC = 0 zinfo.flag_bits = 0x00 if zinfo.compress_type == ZIP_LZMA: # Compressed data includes an end-of-stream (EOS) marker zinfo.flag_bits |= 0x02 if not self._seekable: zinfo.flag_bits |= 0x08 if not zinfo.external_attr: zinfo.external_attr = 0o600 << 16 # permissions: ?rw------- # Compressed size can be larger than uncompressed size zip64 = self._allowZip64 and \ (force_zip64 or zinfo.file_size * 1.05 > ZIP64_LIMIT) if self._seekable: self.fp.seek(self.start_dir) zinfo.header_offset = self.fp.tell() self._writecheck(zinfo) self._didModify = True self.fp.write(zinfo.FileHeader(zip64)) self._writing = True return _ZipWriteFile(self, zinfo, zip64) def extract(self, member, path=None, pwd=None): """Extract a member from the archive to the current working directory, using its full name. Its file information is extracted as accurately as possible. `member' may be a filename or a ZipInfo object. You can specify a different directory using `path'. """ if path is None: path = os.getcwd() else: path = os.fspath(path) return self._extract_member(member, path, pwd) def extractall(self, path=None, members=None, pwd=None): """Extract all members from the archive to the current working directory. `path' specifies a different directory to extract to. `members' is optional and must be a subset of the list returned by namelist(). """ if members is None: members = self.namelist() if path is None: path = os.getcwd() else: path = os.fspath(path) for zipinfo in members: self._extract_member(zipinfo, path, pwd) @classmethod def _sanitize_windows_name(cls, arcname, pathsep): """Replace bad characters and remove trailing dots from parts.""" table = cls._windows_illegal_name_trans_table if not table: illegal = ':<>|"?*' table = str.maketrans(illegal, '_' * len(illegal)) cls._windows_illegal_name_trans_table = table arcname = arcname.translate(table) # remove trailing dots arcname = (x.rstrip('.') for x in arcname.split(pathsep)) # rejoin, removing empty parts. arcname = pathsep.join(x for x in arcname if x) return arcname def _extract_member(self, member, targetpath, pwd): """Extract the ZipInfo object 'member' to a physical file on the path targetpath. """ if not isinstance(member, ZipInfo): member = self.getinfo(member) # build the destination pathname, replacing # forward slashes to platform specific separators. arcname = member.filename.replace('/', os.path.sep) if os.path.altsep: arcname = arcname.replace(os.path.altsep, os.path.sep) # interpret absolute pathname as relative, remove drive letter or # UNC path, redundant separators, "." and ".." components. arcname = os.path.splitdrive(arcname)[1] invalid_path_parts = ('', os.path.curdir, os.path.pardir) arcname = os.path.sep.join(x for x in arcname.split(os.path.sep) if x not in invalid_path_parts) if os.path.sep == '\\': # filter illegal characters on Windows arcname = self._sanitize_windows_name(arcname, os.path.sep) targetpath = os.path.join(targetpath, arcname) targetpath = os.path.normpath(targetpath) # Create all upper directories if necessary. upperdirs = os.path.dirname(targetpath) if upperdirs and not os.path.exists(upperdirs): os.makedirs(upperdirs) if member.is_dir(): if not os.path.isdir(targetpath): os.mkdir(targetpath) return targetpath with self.open(member, pwd=pwd) as source, \ open(targetpath, "wb") as target: shutil.copyfileobj(source, target) return targetpath def _writecheck(self, zinfo): """Check for errors before writing a file to the archive.""" if zinfo.filename in self.NameToInfo: import warnings warnings.warn('Duplicate name: %r' % zinfo.filename, stacklevel=3) if self.mode not in ('w', 'x', 'a'): raise ValueError("write() requires mode 'w', 'x', or 'a'") if not self.fp: raise ValueError( "Attempt to write ZIP archive that was already closed") _check_compression(zinfo.compress_type) if not self._allowZip64: requires_zip64 = None if len(self.filelist) >= ZIP_FILECOUNT_LIMIT: requires_zip64 = "Files count" elif zinfo.file_size > ZIP64_LIMIT: requires_zip64 = "Filesize" elif zinfo.header_offset > ZIP64_LIMIT: requires_zip64 = "Zipfile size" if requires_zip64: raise LargeZipFile(requires_zip64 + " would require ZIP64 extensions") def write(self, filename, arcname=None, compress_type=None, compresslevel=None): """Put the bytes from filename into the archive under the name arcname.""" if not self.fp: raise ValueError( "Attempt to write to ZIP archive that was already closed") if self._writing: raise ValueError( "Can't write to ZIP archive while an open writing handle exists" ) zinfo = ZipInfo.from_file(filename, arcname, strict_timestamps=self._strict_timestamps) if zinfo.is_dir(): zinfo.compress_size = 0 zinfo.CRC = 0 else: if compress_type is not None: zinfo.compress_type = compress_type else: zinfo.compress_type = self.compression if compresslevel is not None: zinfo._compresslevel = compresslevel else: zinfo._compresslevel = self.compresslevel if zinfo.is_dir(): with self._lock: if self._seekable: self.fp.seek(self.start_dir) zinfo.header_offset = self.fp.tell() # Start of header bytes if zinfo.compress_type == ZIP_LZMA: # Compressed data includes an end-of-stream (EOS) marker zinfo.flag_bits |= 0x02 self._writecheck(zinfo) self._didModify = True self.filelist.append(zinfo) self.NameToInfo[zinfo.filename] = zinfo self.fp.write(zinfo.FileHeader(False)) self.start_dir = self.fp.tell() else: with open(filename, "rb") as src, self.open(zinfo, 'w') as dest: shutil.copyfileobj(src, dest, 1024*8) def writestr(self, zinfo_or_arcname, data, compress_type=None, compresslevel=None): """Write a file into the archive. The contents is 'data', which may be either a 'str' or a 'bytes' instance; if it is a 'str', it is encoded as UTF-8 first. 'zinfo_or_arcname' is either a ZipInfo instance or the name of the file in the archive.""" if isinstance(data, str): data = data.encode("utf-8") if not isinstance(zinfo_or_arcname, ZipInfo): zinfo = ZipInfo(filename=zinfo_or_arcname, date_time=time.localtime(time.time())[:6]) zinfo.compress_type = self.compression zinfo._compresslevel = self.compresslevel if zinfo.filename[-1] == '/': zinfo.external_attr = 0o40775 << 16 # drwxrwxr-x zinfo.external_attr |= 0x10 # MS-DOS directory flag else: zinfo.external_attr = 0o600 << 16 # ?rw------- else: zinfo = zinfo_or_arcname if not self.fp: raise ValueError( "Attempt to write to ZIP archive that was already closed") if self._writing: raise ValueError( "Can't write to ZIP archive while an open writing handle exists." ) if compress_type is not None: zinfo.compress_type = compress_type if compresslevel is not None: zinfo._compresslevel = compresslevel zinfo.file_size = len(data) # Uncompressed size with self._lock: with self.open(zinfo, mode='w') as dest: dest.write(data) def __del__(self): """Call the "close()" method in case the user forgot.""" self.close() def close(self): """Close the file, and for mode 'w', 'x' and 'a' write the ending records.""" if self.fp is None: return if self._writing: raise ValueError("Can't close the ZIP file while there is " "an open writing handle on it. " "Close the writing handle before closing the zip.") try: if self.mode in ('w', 'x', 'a') and self._didModify: # write ending records with self._lock: if self._seekable: self.fp.seek(self.start_dir) self._write_end_record() finally: fp = self.fp self.fp = None self._fpclose(fp) def _write_end_record(self): for zinfo in self.filelist: # write central directory dt = zinfo.date_time dosdate = (dt[0] - 1980) << 9 | dt[1] << 5 | dt[2] dostime = dt[3] << 11 | dt[4] << 5 | (dt[5] // 2) extra = [] if zinfo.file_size > ZIP64_LIMIT \ or zinfo.compress_size > ZIP64_LIMIT: extra.append(zinfo.file_size) extra.append(zinfo.compress_size) file_size = 0xffffffff compress_size = 0xffffffff else: file_size = zinfo.file_size compress_size = zinfo.compress_size if zinfo.header_offset > ZIP64_LIMIT: extra.append(zinfo.header_offset) header_offset = 0xffffffff else: header_offset = zinfo.header_offset extra_data = zinfo.extra min_version = 0 if extra: # Append a ZIP64 field to the extra's extra_data = _strip_extra(extra_data, (1,)) extra_data = struct.pack( '<HH' + 'Q'*len(extra), 1, 8*len(extra), *extra) + extra_data min_version = ZIP64_VERSION if zinfo.compress_type == ZIP_BZIP2: min_version = max(BZIP2_VERSION, min_version) elif zinfo.compress_type == ZIP_LZMA: min_version = max(LZMA_VERSION, min_version) extract_version = max(min_version, zinfo.extract_version) create_version = max(min_version, zinfo.create_version) try: filename, flag_bits = zinfo._encodeFilenameFlags() centdir = struct.pack(structCentralDir, stringCentralDir, create_version, zinfo.create_system, extract_version, zinfo.reserved, flag_bits, zinfo.compress_type, dostime, dosdate, zinfo.CRC, compress_size, file_size, len(filename), len(extra_data), len(zinfo.comment), 0, zinfo.internal_attr, zinfo.external_attr, header_offset) except DeprecationWarning: print((structCentralDir, stringCentralDir, create_version, zinfo.create_system, extract_version, zinfo.reserved, zinfo.flag_bits, zinfo.compress_type, dostime, dosdate, zinfo.CRC, compress_size, file_size, len(zinfo.filename), len(extra_data), len(zinfo.comment), 0, zinfo.internal_attr, zinfo.external_attr, header_offset), file=sys.stderr) raise self.fp.write(centdir) self.fp.write(filename) self.fp.write(extra_data) self.fp.write(zinfo.comment) pos2 = self.fp.tell() # Write end-of-zip-archive record centDirCount = len(self.filelist) centDirSize = pos2 - self.start_dir centDirOffset = self.start_dir requires_zip64 = None if centDirCount > ZIP_FILECOUNT_LIMIT: requires_zip64 = "Files count" elif centDirOffset > ZIP64_LIMIT: requires_zip64 = "Central directory offset" elif centDirSize > ZIP64_LIMIT: requires_zip64 = "Central directory size" if requires_zip64: # Need to write the ZIP64 end-of-archive records if not self._allowZip64: raise LargeZipFile(requires_zip64 + " would require ZIP64 extensions") zip64endrec = struct.pack( structEndArchive64, stringEndArchive64, 44, 45, 45, 0, 0, centDirCount, centDirCount, centDirSize, centDirOffset) self.fp.write(zip64endrec) zip64locrec = struct.pack( structEndArchive64Locator, stringEndArchive64Locator, 0, pos2, 1) self.fp.write(zip64locrec) centDirCount = min(centDirCount, 0xFFFF) centDirSize = min(centDirSize, 0xFFFFFFFF) centDirOffset = min(centDirOffset, 0xFFFFFFFF) endrec = struct.pack(structEndArchive, stringEndArchive, 0, 0, centDirCount, centDirCount, centDirSize, centDirOffset, len(self._comment)) self.fp.write(endrec) self.fp.write(self._comment) self.fp.flush() def _fpclose(self, fp): assert self._fileRefCnt > 0 self._fileRefCnt -= 1 if not self._fileRefCnt and not self._filePassed: fp.close() class PyZipFile(ZipFile): """Class to create ZIP archives with Python library files and packages.""" def __init__(self, file, mode="r", compression=ZIP_STORED, allowZip64=True, optimize=-1): ZipFile.__init__(self, file, mode=mode, compression=compression, allowZip64=allowZip64) self._optimize = optimize def writepy(self, pathname, basename="", filterfunc=None): """Add all files from "pathname" to the ZIP archive. If pathname is a package directory, search the directory and all package subdirectories recursively for all *.py and enter the modules into the archive. If pathname is a plain directory, listdir *.py and enter all modules. Else, pathname must be a Python *.py file and the module will be put into the archive. Added modules are always module.pyc. This method will compile the module.py into module.pyc if necessary. If filterfunc(pathname) is given, it is called with every argument. When it is False, the file or directory is skipped. """ pathname = os.fspath(pathname) if filterfunc and not filterfunc(pathname): if self.debug: label = 'path' if os.path.isdir(pathname) else 'file' print('%s %r skipped by filterfunc' % (label, pathname)) return dir, name = os.path.split(pathname) if os.path.isdir(pathname): initname = os.path.join(pathname, "__init__.py") if os.path.isfile(initname): # This is a package directory, add it if basename: basename = "%s/%s" % (basename, name) else: basename = name if self.debug: print("Adding package in", pathname, "as", basename) fname, arcname = self._get_codename(initname[0:-3], basename) if self.debug: print("Adding", arcname) self.write(fname, arcname) dirlist = sorted(os.listdir(pathname)) dirlist.remove("__init__.py") # Add all *.py files and package subdirectories for filename in dirlist: path = os.path.join(pathname, filename) root, ext = os.path.splitext(filename) if os.path.isdir(path): if os.path.isfile(os.path.join(path, "__init__.py")): # This is a package directory, add it self.writepy(path, basename, filterfunc=filterfunc) # Recursive call elif ext == ".py": if filterfunc and not filterfunc(path): if self.debug: print('file %r skipped by filterfunc' % path) continue fname, arcname = self._get_codename(path[0:-3], basename) if self.debug: print("Adding", arcname) self.write(fname, arcname) else: # This is NOT a package directory, add its files at top level if self.debug: print("Adding files from directory", pathname) for filename in sorted(os.listdir(pathname)): path = os.path.join(pathname, filename) root, ext = os.path.splitext(filename) if ext == ".py": if filterfunc and not filterfunc(path): if self.debug: print('file %r skipped by filterfunc' % path) continue fname, arcname = self._get_codename(path[0:-3], basename) if self.debug: print("Adding", arcname) self.write(fname, arcname) else: if pathname[-3:] != ".py": raise RuntimeError( 'Files added with writepy() must end with ".py"') fname, arcname = self._get_codename(pathname[0:-3], basename) if self.debug: print("Adding file", arcname) self.write(fname, arcname) def _get_codename(self, pathname, basename): """Return (filename, archivename) for the path. Given a module name path, return the correct file path and archive name, compiling if necessary. For example, given /python/lib/string, return (/python/lib/string.pyc, string). """ def _compile(file, optimize=-1): import py_compile if self.debug: print("Compiling", file) try: py_compile.compile(file, doraise=True, optimize=optimize) except py_compile.PyCompileError as err: print(err.msg) return False return True file_py = pathname + ".py" file_pyc = pathname + ".pyc" pycache_opt0 = importlib.util.cache_from_source(file_py, optimization='') pycache_opt1 = importlib.util.cache_from_source(file_py, optimization=1) pycache_opt2 = importlib.util.cache_from_source(file_py, optimization=2) if self._optimize == -1: # legacy mode: use whatever file is present if (os.path.isfile(file_pyc) and os.stat(file_pyc).st_mtime >= os.stat(file_py).st_mtime): # Use .pyc file. arcname = fname = file_pyc elif (os.path.isfile(pycache_opt0) and os.stat(pycache_opt0).st_mtime >= os.stat(file_py).st_mtime): # Use the __pycache__/*.pyc file, but write it to the legacy pyc # file name in the archive. fname = pycache_opt0 arcname = file_pyc elif (os.path.isfile(pycache_opt1) and os.stat(pycache_opt1).st_mtime >= os.stat(file_py).st_mtime): # Use the __pycache__/*.pyc file, but write it to the legacy pyc # file name in the archive. fname = pycache_opt1 arcname = file_pyc elif (os.path.isfile(pycache_opt2) and os.stat(pycache_opt2).st_mtime >= os.stat(file_py).st_mtime): # Use the __pycache__/*.pyc file, but write it to the legacy pyc # file name in the archive. fname = pycache_opt2 arcname = file_pyc else: # Compile py into PEP 3147 pyc file. if _compile(file_py): if sys.flags.optimize == 0: fname = pycache_opt0 elif sys.flags.optimize == 1: fname = pycache_opt1 else: fname = pycache_opt2 arcname = file_pyc else: fname = arcname = file_py else: # new mode: use given optimization level if self._optimize == 0: fname = pycache_opt0 arcname = file_pyc else: arcname = file_pyc if self._optimize == 1: fname = pycache_opt1 elif self._optimize == 2: fname = pycache_opt2 else: msg = "invalid value for 'optimize': {!r}".format(self._optimize) raise ValueError(msg) if not (os.path.isfile(fname) and os.stat(fname).st_mtime >= os.stat(file_py).st_mtime): if not _compile(file_py, optimize=self._optimize): fname = arcname = file_py archivename = os.path.split(arcname)[1] if basename: archivename = "%s/%s" % (basename, archivename) return (fname, archivename) def _unique_everseen(iterable, key=None): "List unique elements, preserving order. Remember all elements ever seen." # unique_everseen('AAAABBBCCDAABBB') --> A B C D # unique_everseen('ABBCcAD', str.lower) --> A B C D seen = set() seen_add = seen.add if key is None: for element in itertools.filterfalse(seen.__contains__, iterable): seen_add(element) yield element else: for element in iterable: k = key(element) if k not in seen: seen_add(k) yield element def _parents(path): """ Given a path with elements separated by posixpath.sep, generate all parents of that path. >>> list(_parents('b/d')) ['b'] >>> list(_parents('/b/d/')) ['/b'] >>> list(_parents('b/d/f/')) ['b/d', 'b'] >>> list(_parents('b')) [] >>> list(_parents('')) [] """ return itertools.islice(_ancestry(path), 1, None) def _ancestry(path): """ Given a path with elements separated by posixpath.sep, generate all elements of that path >>> list(_ancestry('b/d')) ['b/d', 'b'] >>> list(_ancestry('/b/d/')) ['/b/d', '/b'] >>> list(_ancestry('b/d/f/')) ['b/d/f', 'b/d', 'b'] >>> list(_ancestry('b')) ['b'] >>> list(_ancestry('')) [] """ path = path.rstrip(posixpath.sep) while path and path != posixpath.sep: yield path path, tail = posixpath.split(path) class Path: """ A pathlib-compatible interface for zip files. Consider a zip file with this structure:: . ├── a.txt └── b ├── c.txt └── d └── e.txt >>> data = io.BytesIO() >>> zf = ZipFile(data, 'w') >>> zf.writestr('a.txt', 'content of a') >>> zf.writestr('b/c.txt', 'content of c') >>> zf.writestr('b/d/e.txt', 'content of e') >>> zf.filename = 'abcde.zip' Path accepts the zipfile object itself or a filename >>> root = Path(zf) From there, several path operations are available. Directory iteration (including the zip file itself): >>> a, b = root.iterdir() >>> a Path('abcde.zip', 'a.txt') >>> b Path('abcde.zip', 'b/') name property: >>> b.name 'b' join with divide operator: >>> c = b / 'c.txt' >>> c Path('abcde.zip', 'b/c.txt') >>> c.name 'c.txt' Read text: >>> c.read_text() 'content of c' existence: >>> c.exists() True >>> (b / 'missing.txt').exists() False Coercion to string: >>> str(c) 'abcde.zip/b/c.txt' """ __repr = "{self.__class__.__name__}({self.root.filename!r}, {self.at!r})" def __init__(self, root, at=""): self.root = root if isinstance(root, ZipFile) else ZipFile(root) self.at = at @property def open(self): return functools.partial(self.root.open, self.at) @property def name(self): return posixpath.basename(self.at.rstrip("/")) def read_text(self, *args, **kwargs): with self.open() as strm: return io.TextIOWrapper(strm, *args, **kwargs).read() def read_bytes(self): with self.open() as strm: return strm.read() def _is_child(self, path): return posixpath.dirname(path.at.rstrip("/")) == self.at.rstrip("/") def _next(self, at): return Path(self.root, at) def is_dir(self): return not self.at or self.at.endswith("/") def is_file(self): return not self.is_dir() def exists(self): return self.at in self._names() def iterdir(self): if not self.is_dir(): raise ValueError("Can't listdir a file") subs = map(self._next, self._names()) return filter(self._is_child, subs) def __str__(self): return posixpath.join(self.root.filename, self.at) def __repr__(self): return self.__repr.format(self=self) def joinpath(self, add): next = posixpath.join(self.at, add) next_dir = posixpath.join(self.at, add, "") names = self._names() return self._next(next_dir if next not in names and next_dir in names else next) __truediv__ = joinpath @staticmethod def _implied_dirs(names): return _unique_everseen( parent + "/" for name in names for parent in _parents(name) if parent + "/" not in names ) @classmethod def _add_implied_dirs(cls, names): return names + list(cls._implied_dirs(names)) @property def parent(self): parent_at = posixpath.dirname(self.at.rstrip('/')) if parent_at: parent_at += '/' return self._next(parent_at) def _names(self): return self._add_implied_dirs(self.root.namelist()) def main(args=None): import argparse description = 'A simple command-line interface for zipfile module.' parser = argparse.ArgumentParser(description=description) group = parser.add_mutually_exclusive_group(required=True) group.add_argument('-l', '--list', metavar='<zipfile>', help='Show listing of a zipfile') group.add_argument('-e', '--extract', nargs=2, metavar=('<zipfile>', '<output_dir>'), help='Extract zipfile into target dir') group.add_argument('-c', '--create', nargs='+', metavar=('<name>', '<file>'), help='Create zipfile from sources') group.add_argument('-t', '--test', metavar='<zipfile>', help='Test if a zipfile is valid') args = parser.parse_args(args) if args.test is not None: src = args.test with ZipFile(src, 'r') as zf: badfile = zf.testzip() if badfile: print("The following enclosed file is corrupted: {!r}".format(badfile)) print("Done testing") elif args.list is not None: src = args.list with ZipFile(src, 'r') as zf: zf.printdir() elif args.extract is not None: src, curdir = args.extract with ZipFile(src, 'r') as zf: zf.extractall(curdir) elif args.create is not None: zip_name = args.create.pop(0) files = args.create def addToZip(zf, path, zippath): if os.path.isfile(path): zf.write(path, zippath, ZIP_DEFLATED) elif os.path.isdir(path): if zippath: zf.write(path, zippath) for nm in sorted(os.listdir(path)): addToZip(zf, os.path.join(path, nm), os.path.join(zippath, nm)) # else: ignore with ZipFile(zip_name, 'w') as zf: for path in files: zippath = os.path.basename(path) if not zippath: zippath = os.path.basename(os.path.dirname(path)) if zippath in ('', os.curdir, os.pardir): zippath = '' addToZip(zf, path, zippath) if __name__ == "__main__": main()
zipfile38
/zipfile38-0.0.3.tar.gz/zipfile38-0.0.3/zipfile38.py
zipfile38.py
|pypi| A backport of the zipfile module from Python 3.8, which contains notable improvements such as the "strict_timestamps" keyword argument (which enables the creation of reproducible zip archives). installation:: pip install zipfile38 usage: .. code:: python if sys.version_info >= (3, 8): import zipfile else: import zipfile38 as zipfile --- shout out to `Thomas Kluyver's backport for 3.6 <https://gitlab.com/takluyver/zipfile36>`_ and `Markus Scheidgen's backport for 3.7 <https://github.com/markus1978/zipfile37>`_. .. |pypi| image:: https://img.shields.io/pypi/v/zipfile38.svg :target: https://pypi.org/project/zipfile38/
zipfile38
/zipfile38-0.0.3.tar.gz/zipfile38-0.0.3/README.rst
README.rst
[![PyPI](https://img.shields.io/pypi/v/zipfile39)](https://pypi.org/project/zipfile39/) ## zipfile39 - Backport of zipfile Python 3.9 (especially caae717) to older Python including **Python 2.7.** - This means Python 2.7 can use `zf.open(name, 'w')`. - Uses backports.lzma for ZIP_LZMA (method 14) Python2 handler. - Introduces ZIP_DEFLATED64 (method 9), ZIP_DCLIMPLODED (method 10), ZIP_ZSTANDARD(method 93), ZIP_XZ (method 95) and ZIP_PPMD (method 98) handlers. - ZIP_ZSTANDARD Python2 uses zstandard 0.14.1 (the last compatible version). - isal / pyppmd / zipfile_deflate64 Python2 use my own backport. - If isal is installed: - crc32 and inflation are accelerated automatically. - ZIP_DEFLATED compresslevel -10, -11, -12 and -13 are available, which correspond to isal compression level 0, 1, 2 and 3. - If slz is installed: - ZIP_DEFLATED compresslevel -21 is available. - If codecs7z is installed: - ZIP_DEFLATED/ZIP_BZIP2 compresslevel 11 - 19 are available. Enjoy 7-zip's ultimate compression on Python. ### Requisites - Installation requisites: - [pathlib2](https://pypi.org/project/pathlib2/) (Python2 only) - [contextlib2](https://pypi.org/project/contextlib2/) (Python2 only) - Optional requisites: - [backports.lzma](https://pypi.org/project/backports.lzma/) (Python2 only) - [dclimplode](https://pypi.org/project/dclimplode/) - [zstandard](https://pypi.org/project/zstandard/) or [pyzstd](https://pypi.org/project/pyzstd/) (Py2 unavailable) - [isal](https://pypi.org/project/isal/) - Python2 need `python -m pip install git+https://github.com/cielavenir/[email protected]` - (now this branch support macOS as well) - Also see https://github.com/cielavenir/python-isal-py2/releases/tag/v0.11.1-py2 - [slz](https://pypi.org/project/slz/) - [codecs7z](https://pypi.org/project/codecs7z/) - [pyppmd](https://pypi.org/project/pyppmd/) - Python2 need `python -m pip install git+https://github.com/cielavenir/pyppmd-py2@py2` - Also see https://github.com/cielavenir/pyppmd-py2/releases/tag/v0.17.0.1 - [zipfile_deflate64](https://pypi.org/project/zipfile_deflate64/) - Need 0.2.0 or later. - Python2 need `python -m pip install git+https://github.com/cielavenir/zipfile-deflate64@py2` - Also see https://github.com/cielavenir/zipfile-deflate64/releases/tag/v0.2.0.4 - or [inflate64](https://pypi.org/project/inflate64/) (Py2 unavailable) - Test requisites: - All optional requisites - [backports.tempfile](https://pypi.org/project/backports.tempfile/) (Python2 only) - [funcsigs](https://pypi.org/project/funcsigs/) (Python2 only) ### Wheels Some dependencies need complex build procedures. For your sake those wheels are published in actions CI. ### Legal - I'm not sure about the license term when pyppmd / codecs7z / inflate64 is loaded (I'm not lawyer though). - For pyppmd, note that PPMd code itself is public domain. See https://github.com/miurahr/pyppmd/issues/5#issuecomment-892280467 for detail.
zipfile39
/zipfile39-0.0.8.0.tar.gz/zipfile39-0.0.8.0/README.md
README.md
## 0.0.8.0 - Fixed zipfile.Path.open encoding ## 0.0.7.0 - Introduced \_\_version\_\_ ## 0.0.6.0 - Support inflate64/pyzstd modules (they are fallbacks, the feature does not change) ## 0.0.5.3 - Fixed pypi desc display ## 0.0.5.2 - Fixed Python 3.4/3.5 compatibility ## 0.0.5.1 - Added bzip2 compress level 11-19 ## 0.0.5.0 - Added deflate64 compression support ## 0.0.4.2 - Fixed pyppmd 0.17.0 compatibility ## 0.0.4.1 - Fixed dclimplode version header ## 0.0.4 - Added dclimplode support ## 0.0.3.1 - Fixed extracting to file was not working on Python2 ## 0.0.3 - add slz support - changed compresslevel scheme ## 0.0.2.1 - fixed a typo in ppmd handler ## 0.0.2 - simplified xz handler ## 0.0.1.3 - finalized ppmd handler ## 0.0.1.2 - related to ppmd ## 0.0.1.1 - integrated isal ## 0.0.1 - add deflate64 decompression support - add ppmd handler - add compression level support for LZMA ## 0.0.0.5 - add threads= to zstandard ## 0.0.0.4 - fixed open('r') on Python2 ## 0.0.0.3 - fixed Python3 compatibility ## 0.0.0.2 - fixed Python2 ## 0.0.0.1 - initial version - add xz handler
zipfile39
/zipfile39-0.0.8.0.tar.gz/zipfile39-0.0.8.0/CHANGELOG.md
CHANGELOG.md
# git zipfix git-zipfix is a tool to make it easier and faster to perform modifications on historical commits within large repositories. The command `git zipfix $1` is, in effect, a more efficient version of the following common snippet: ```bash $ TARGET=$(git rev-parse --validate $1) $ git commit --fixup=$TARGET $ EDITOR=true git rebase -i --autosquash $TARGET^ ``` > **NOTE** This hasn't been tested nor reviewed much yet. Use my personal > scripts at your own risk :-). ## Usage Stage changes, and call git-zipfix to apply them to a commit ```bash $ git add ... $ git zipfix HEAD^ ``` With the `-e` and `-m` flags, `git zipfix` quickly edits commit messages. ```bash $ git zipfix -e HEAD^ # Opens an editor for message $ git zipfix -m "New message" HEAD^ # Takes message from cmdline ``` ### Conflicts When conflicts occur, `git zipfix` will attempt to resolve them automatically. If it fails, it will either prompt the user for a resolution, or start the `kdiff3` tool to resolve the conflict. Other difftools are not currently handled. ### Working Directory Changes `git zipfix` makes no effort to update the index or working directory after applying changes, however it will emit a warning if the final state of the repository after the rebase does not match the initial state. Differences in state should be easy to spot, as the index and working directory will still reflect the initial state. ## Performance With large repositories such as mozilla-central, git-zipfix is often significantly faster incremental targeted changes, due to not needing to update either the index or working directory during rebases. I did a simple test, applying a single-line change to a commit 11 patches up the stack. The following are my extremely non-scientific time measurements: | Command | Real Time | | ---------------------------- | --------- | | `git rebase -i --autosquash` | 16.931s | | `git zipfix` | 0.541s | The following are the commands I ran: ```bash # Apply changes with git rebase -i --autosquash $ git reset 6fceb7da316d && git add . $ time bash -c 'TARGET=14f1c85bf60d; git commit --fixup=$TARGET; EDITOR=true git rebase -i --autosquash $TARGET~' [mybranch 286c7cff7330] fixup! Bug ... 1 file changed, 1 insertion(+) Successfully rebased and updated refs/heads/mybranch. real 0m16.931s user 0m15.289s sys 0m3.579s # Apply changes with git zipfix $ git reset 6fceb7da316d && git add . $ time git zipfix 14f1c85bf60d Applying staged changes to '14f1c85bf60d' Reparenting commit 1/10: 23a741dff61496ba929d979942e0ab590db1fece Reparenting commit 2/10: 8376b15993e506883a54c5d1b75becd083224eb7 <snip> Reparenting commit 10/10: 6fceb7da316dbf4fedb5360ed09bd7b03f28bc6a Updating HEAD (6fceb7da316dbf4fedb5360ed09bd7b03f28bc6a => 996ec1a718bad36edab0e7c1129d698d29cdcdfc) real 0m0.541s user 0m0.354s sys 0m0.150s ``` ### How is it faster? 1. To avoid spawning unnecessary subprocesses and hitting disk too frequently, `git zipfix` uses an in-memory cache of objects in the ODB which it has already seen. 2. Intermediate git trees, blobs, and commits created during processing are helds exclusively in-memory, and only persisted when necessary. 3. A custom implementation of the merge algorithm is used which directly merges trees rather than using the index. This ends up being faster on large repositories, as only the subset of modified files and directories need to be examined when merging. Currently this algorithm is incapable of handling copy and rename operations correctly, instead treating them as file creation and deletion actions. This may be resolveable in the future.
zipfix
/zipfix-0.1.tar.gz/zipfix-0.1/README.md
README.md
[![Build Status](https://img.shields.io/circleci/build/github/sandes/zipfly/master)](https://app.circleci.com/pipelines/github/sandes/zipfly) ![GitHub release (latest by date)](https://img.shields.io/github/v/release/sandes/zipfly) [![Downloads](https://pepy.tech/badge/zipfly)](https://pepy.tech/project/zipfly) # ZipFly ZipFly is a zip archive generator based on zipfile.py. It was created to generate very large ZIP archives for immediate sending out to clients, or for writing large ZIP archives without memory inflation. # Requirements Python 3.6+ Added <a href="https://docs.python.org/3/library/zipfile.html#zipfile-objects" target="blank">support</a> for writing to unseekable streams. # Install pip3 install zipfly # Basic usage, compress on-the-fly during writes Using this library will save you from having to write the Zip to disk. Some data will be buffered by the zipfile deflater, but memory inflation is going to be very constrained. Data will be written to destination by default at regular 32KB intervals. `ZipFly` defaults attributes:<br> - <b>paths:</b> [ ] <br/> - <b>mode:</b> (write) w <br/> - <b>chunksize:</b> (bytes) 32768 <br/> - <b>compression:</b> Stored <br/> - <b>allowZip64:</b> True <br/> - <b>compresslevel:</b> None <br/> - <b>storesize:</b> (bytes) 0 <br/> - <b>encode:</b> utf-8 <br/> <br/> `paths` <b>list of dictionaries:</b> | |. |---------------- |------------------------------- |**fs** |Should be the path to a file on the filesystem |**n** *(Optional)* |Is the name which it will have within the archive <br> (by default, this will be the same as **fs**) <br> ```python import zipfly paths = [ { 'fs': '/path/to/large/file' }, ] zfly = zipfly.ZipFly(paths = paths) generator = zfly.generator() print (generator) # <generator object ZipFly.generator at 0x7f74d52bcc50> with open("large.zip", "wb") as f: for i in generator: f.write(i) ``` # Examples > <b>Streaming multiple files in a zip with <a href="https://github.com/sandes/zipfly/blob/master/examples/streaming_django.py" target="_blank">Django</a> or <a href="https://github.com/sandes/zipfly/blob/master/examples/streaming_flask.py" target="_blank">Flask</a></b> Send forth large files to clients with the most popular frameworks > <b>Create paths</b> Easy way to create the array `paths` from a parent folder. > <b>Predict the size of the zip file before creating it</b> Use the `BufferPredictionSize` to compute the correct size of the resulting archive before creating it. > <b>Streaming a large file</b> Efficient way to read a single very large binary file in python > <b>Set a comment</b> Your own comment in the zip file
zipfly
/zipfly-6.0.5.tar.gz/zipfly-6.0.5/README.md
README.md
=============================== zipfreeinfo =============================== .. image:: https://img.shields.io/pypi/v/zipfreeinfo.svg :target: https://pypi.python.org/pypi/zipfreeinfo .. image:: https://img.shields.io/travis/marcelluseasley/zipfreeinfo.svg :target: https://travis-ci.org/marcelluseasley/zipfreeinfo .. image:: https://readthedocs.org/projects/zipfreeinfo/badge/?version=latest :target: https://zipfreeinfo.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://pyup.io/repos/github/marcelluseasley/zipfreeinfo/shield.svg :target: https://pyup.io/repos/github/marcelluseasley/zipfreeinfo/ :alt: Updates Provided a zip code, you are given information about that location. * Free software: MIT license * Documentation: https://zipfreeinfo.readthedocs.io. Features -------- * Provides city, state, latitude/longitude data for a given zip code Credits --------- This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template. .. _Cookiecutter: https://github.com/audreyr/cookiecutter .. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
zipfreeinfo
/zipfreeinfo-1.0.0.tar.gz/zipfreeinfo-1.0.0/README.rst
README.rst
.. highlight:: shell ============ Contributing ============ Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given. You can contribute in many ways: Types of Contributions ---------------------- Report Bugs ~~~~~~~~~~~ Report bugs at https://github.com/marcelluseasley/zipfreeinfo/issues. If you are reporting a bug, please include: * Your operating system name and version. * Any details about your local setup that might be helpful in troubleshooting. * Detailed steps to reproduce the bug. Fix Bugs ~~~~~~~~ Look through the GitHub issues for bugs. Anything tagged with "bug" and "help wanted" is open to whoever wants to implement it. Implement Features ~~~~~~~~~~~~~~~~~~ Look through the GitHub issues for features. Anything tagged with "enhancement" and "help wanted" is open to whoever wants to implement it. Write Documentation ~~~~~~~~~~~~~~~~~~~ zipfreeinfo could always use more documentation, whether as part of the official zipfreeinfo docs, in docstrings, or even on the web in blog posts, articles, and such. Submit Feedback ~~~~~~~~~~~~~~~ The best way to send feedback is to file an issue at https://github.com/marcelluseasley/zipfreeinfo/issues. If you are proposing a feature: * Explain in detail how it would work. * Keep the scope as narrow as possible, to make it easier to implement. * Remember that this is a volunteer-driven project, and that contributions are welcome :) Get Started! ------------ Ready to contribute? Here's how to set up `zipfreeinfo` for local development. 1. Fork the `zipfreeinfo` repo on GitHub. 2. Clone your fork locally:: $ git clone [email protected]:your_name_here/zipfreeinfo.git 3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:: $ mkvirtualenv zipfreeinfo $ cd zipfreeinfo/ $ python setup.py develop 4. Create a branch for local development:: $ git checkout -b name-of-your-bugfix-or-feature Now you can make your changes locally. 5. When you're done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:: $ flake8 zipfreeinfo tests $ python setup.py test or py.test $ tox To get flake8 and tox, just pip install them into your virtualenv. 6. Commit your changes and push your branch to GitHub:: $ git add . $ git commit -m "Your detailed description of your changes." $ git push origin name-of-your-bugfix-or-feature 7. Submit a pull request through the GitHub website. Pull Request Guidelines ----------------------- Before you submit a pull request, check that it meets these guidelines: 1. The pull request should include tests. 2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring, and add the feature to the list in README.rst. 3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check https://travis-ci.org/marcelluseasley/zipfreeinfo/pull_requests and make sure that the tests pass for all supported Python versions. Tips ---- To run a subset of tests:: $ py.test tests.test_zipfreeinfo
zipfreeinfo
/zipfreeinfo-1.0.0.tar.gz/zipfreeinfo-1.0.0/CONTRIBUTING.rst
CONTRIBUTING.rst
===== Usage ===== To use zipfreeinfo in a project:: from zipfreeinfo import zipfreeinfo zipfreeinfo.set_auth_credentials('your auth id','your auth token') # Returns a dictionary with nested data structures containing zip code data # Also sets internal zipdata structure with zip code data, which can be returned with function calls print(zipfreeinfo.get_zip_info("30141")) print(zipfreeinfo.get_zipcode()) # returns string print(zipfreeinfo.get_city()) # returns string print(zipfreeinfo.get_state()) # returns string print(zipfreeinfo.get_state_abbreviation()) # returns string print(zipfreeinfo.get_county_fips()) # returns string print(zipfreeinfo.get_county_name()) # returns string print(zipfreeinfo.get_latitude()) # returns float print(zipfreeinfo.get_longitude()) # returns float
zipfreeinfo
/zipfreeinfo-1.0.0.tar.gz/zipfreeinfo-1.0.0/docs/usage.rst
usage.rst
.. zipfreeinfo documentation master file, created by sphinx-quickstart on Tue Jul 9 22:26:36 2013. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. Welcome to zipfreeinfo's documentation! ====================================== Contents: .. toctree:: :maxdepth: 2 readme installation usage contributing authorshistory Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`
zipfreeinfo
/zipfreeinfo-1.0.0.tar.gz/zipfreeinfo-1.0.0/docs/index.rst
index.rst
.. highlight:: shell ============ Installation ============ Stable release -------------- To install zipfreeinfo, run this command in your terminal: .. code-block:: console $ pip install zipfreeinfo This is the preferred method to install zipfreeinfo, as it will always install the most recent stable release. If you don't have `pip`_ installed, this `Python installation guide`_ can guide you through the process. .. _pip: https://pip.pypa.io .. _Python installation guide: http://docs.python-guide.org/en/latest/starting/installation/ From sources ------------ The sources for zipfreeinfo can be downloaded from the `Github repo`_. You can either clone the public repository: .. code-block:: console $ git clone git://github.com/marcelluseasley/zipfreeinfo Or download the `tarball`_: .. code-block:: console $ curl -OL https://github.com/marcelluseasley/zipfreeinfo/tarball/master Once you have a copy of the source, you can install it with: .. code-block:: console $ python setup.py install .. _Github repo: https://github.com/marcelluseasley/zipfreeinfo .. _tarball: https://github.com/marcelluseasley/zipfreeinfo/tarball/master
zipfreeinfo
/zipfreeinfo-1.0.0.tar.gz/zipfreeinfo-1.0.0/docs/installation.rst
installation.rst
# zipf CLI tool to directly zip several files/folders or an existing folder Make a zip from list of files/folders with or without specifying the archive name ("%Y_%m_%d-%H_%M_%S.zip" if not specified) or from an existing folder. # Installation ```sh With pip: sudo pip3 install zipfs With yay: yay -a zipf With yaourt: yaourt -a zipf ``` # Compatibility python >= 3 # Usage <pre> <b>zipf / zipper</b> [<b>F_PATH_01 F_PATH_02 ...</b>] [<b>ARCHIVE_NAME</b>] <b>options:</b> <!-- --> <b>-h, --help</b> show this help message and exit </pre> # Examples For **help**:<br/> ```sh zipf -h or rt --help ``` <br/>Make a zip archive from 3 files:<br/> ```sh zipf titi/toto.jpg titi/tutu.jpg tata.txt ``` Giving the **2019_05_15-17_25_44.zip** archive<br/><br/> Make a zip archive from 2 files and one folder with specifying the archive name (work):<br/> ```sh zipf titi/toto.jpg titi/ tata.txt work ``` Giving the **work.zip** archive
zipfs
/zipfs-1.0.5.tar.gz/zipfs-1.0.5/README.md
README.md
import sys import os import subprocess import shutil from subprocess import call from datetime import datetime CBRED = '\033[38;5;196;1m' CBORANGE = '\033[38;5;202;1m' CBGREEN = '\033[38;5;40;1m' CBWHITE = '\033[1;37m' CBBLUE = '\033[1;34m' CBASE = '\033[0m' def _help_requested(args): if len(args) == 1 and (args[0] == "-h" or args[0] == "--help"): readme_path = "/usr/lib/zipf/README.md" f = open(readme_path, 'r') print(CBBLUE + "\n\t####### zipf documentation #######\n" + CBWHITE) for line in f: if line == "```sh\n" or line == "```\n" or line == "<pre>\n" or line == "</pre>\n": continue line = line.replace('```sh', '').replace('```', '').replace('<pre>', '').replace('</b>', ''). \ replace('<b>', '').replace('<!-- -->', '').replace('<br/>', '').replace('```sh', ''). \ replace('***', '').replace('***', '').replace('**', '').replace('*', '') print(" " + line, end='') print(CBASE) exit() def _ok(msg=""): print(CBGREEN + "\n\t[OK] " + CBASE + msg) # def _info(msg=""): # print(CBWHITE + "\n\t[INFO] " + CBASE + msg) def _warning(msg=""): print(CBORANGE + "\n\t[WARNING] " + CBASE + msg) def _error(msg=""): print(CBRED + "\n\t[ERROR] " + CBASE + msg) def _skipped(): print(CBBLUE + "\n\t\t\tskipped\n\n" + CBASE) def _path_exists(path): if not os.path.exists(path): return False return True def _get_abs_path(f_path): return os.path.normpath((os.path.join(os.getcwd(), os.path.expanduser(f_path)))) def _error_man(init_msg, err_msg, folder_path, moved_folder_path): _error(init_msg + " error:\n\t\t" + str(err_msg)) sudo_conf = input(CBWHITE + "\n\t\tuse sudo?\n\t\t\t[Enter] to proceed\t\t[any case] to skip\n") if sudo_conf == "": subprocess.check_call(['sudo', "mv", folder_path, moved_folder_path]) else: _skipped() def _check_f_moved(folder_path, moved_folder_path): if os.path.exists(folder_path) or not os.path.exists(moved_folder_path): if os.path.exists(folder_path): _warning(CBBLUE + "%s" % folder_path + CBASE + " still exists") if not os.path.exists(moved_folder_path): _warning(CBBLUE + "%s" % moved_folder_path + CBASE + " doesn't exist") return False return True def _check_archive_created(archive_name): archive_path = os.getcwd() + "/" + archive_name + ".zip" if os.path.isfile(archive_path): _ok(CBBLUE + "%s" % archive_path + CBASE + " created") return True else: _error(CBBLUE + "%s" % archive_path + CBASE + " not created") return False def _zip_folder(folder_path, archive_name=None): if not archive_name: cdatetime = datetime.now() archive_name = cdatetime.strftime("%Y_%m_%d-%H_%M_%S") shutil.make_archive(archive_name, 'zip', folder_path) _check_archive_created(archive_name) # shutil.rmtree(folder_path) def _zip_files(flist, archive_name=None): cdatetime = datetime.now() ctime = cdatetime.strftime("%Y_%m_%d-%H_%M_%S") if not archive_name: archive_name = ctime cpath = os.getcwd() folder_path = cpath + "/" + archive_name if _path_exists(folder_path): _warning(CBBLUE + "%s" % folder_path + CBASE + " already exists" + CBASE) moved_folder_path = folder_path + "_" + ctime try: shutil.move(folder_path, moved_folder_path) except PermissionError as err_msg: _error_man("permission", err_msg, folder_path, moved_folder_path) except OSError as err_msg: _error_man("os", err_msg, folder_path, moved_folder_path) except Exception as err_msg: _error_man("", err_msg, folder_path, moved_folder_path) if _check_f_moved(folder_path, moved_folder_path): _ok(CBBLUE + "%s" % folder_path + CBASE + " moved" + CBASE) else: _error("an issue occurred when moving file " + CBBLUE + "%s" % folder_path + CBASE) raise ValueError("not able to rename " + CBBLUE + "%s" % folder_path + CBASE) try: os.mkdir(folder_path) except Exception as err_msg: _error("an issue occurred when creating folder " + CBBLUE + "%s" % folder_path + CBASE + "\n%s" % err_msg) raise ValueError("not able to create " + CBBLUE + "%s" % folder_path + CBASE + " folder") for f in flist: f_path = _get_abs_path(f) if os.path.isdir(f_path): call(['cp', '-a', f_path, folder_path]) elif os.path.isfile(f_path): shutil.copy(f_path, folder_path) shutil.make_archive(archive_name, 'zip', folder_path) _check_archive_created(archive_name) shutil.rmtree(folder_path) def main(): inputs = sys.argv[1:] _help_requested(inputs) if len(inputs) == 0: _error("needs at least one argument being a folder name or a list of files/folders") raise ValueError("no input ... no zip ...") elif len(inputs) == 1: f_path = _get_abs_path(inputs[0]) print(f_path) if _path_exists(f_path): if os.path.isdir(f_path): _zip_folder(f_path) else: _zip_files([f_path]) else: _error(CBBLUE + "%s" % f_path + CBASE + " path doesn't exist") raise ValueError( "needs at least one existing path in argument being a folder name or a list of files/folders") elif len(inputs) == 2 and not _path_exists(_get_abs_path(inputs[1])) and os.path.isdir(_get_abs_path(inputs[0])): folder_path = _get_abs_path(inputs[0]) archive_name = inputs[1] _zip_folder(folder_path, archive_name) else: last_arg = inputs[-1] if _path_exists(_get_abs_path(last_arg)): _zip_files(inputs) else: _zip_files(inputs[:-1], last_arg) if __name__ == "__main__": main()
zipfs
/zipfs-1.0.5.tar.gz/zipfs-1.0.5/zipf/zipf.py
zipf.py
=========== mini-ziphmm =========== .. |ci-status| image:: https://img.shields.io/travis/mailund/mini-ziphmm.svg :target: https://travis-ci.org/mailund/mini-ziphmm :alt: Build status .. |coveralls| image:: https://img.shields.io/coveralls/mailund/mini-ziphmm.svg :target: https://coveralls.io/github/mailund/mini-ziphmm :alt: Coverage .. |versions| image:: https://img.shields.io/pypi/v/ziphmm.svg :target: https://pypi.python.org/pypi/ziphmm :alt: Packgage version .. |status| image:: https://img.shields.io/pypi/status/ziphmm.svg :target: https://pypi.python.org/pypi/ziphmm :alt: Package stability This is a minimal reimplementation of zipHMM in python. Also contains cython and weave implementations of standard hidden markov models for comparison. Undocumented and no install procedure - check test.py for usage To run: ```bash make python test.py ```
ziphmm
/ziphmm-0.1.1b2.tar.gz/ziphmm-0.1.1b2/README.rst
README.rst
from collections.abc import Callable from dataclasses import dataclass from typing import Any, Self, TypeAlias from fastapi.encoders import jsonable_encoder from fastapi.exceptions import RequestValidationError from starlette import status from starlette.requests import Request from starlette.responses import JSONResponse from ziphy.fastapi_utils import jsonify # :) def cls_name_to_snake(obj: type[Any] | Any) -> str: name = obj.__name__ if isinstance(obj, type) else type(obj).__name__ parts, upper = [], False for i in range(len(name)): if name[i].isupper(): if not upper and i > 0: parts.append("_") parts.append(name[i].lower()) upper = True else: if upper and len(parts) > 2 and parts[-2] != "_": parts.append("_" + parts.pop()) parts.append(name[i]) upper = False return "".join(parts) @dataclass class ExceptionHandler: status_code: int error_name: str | None = None detail: Any = None def __call__(self, _request: Request, exception: Exception) -> JSONResponse: error_name = self.error_name or cls_name_to_snake(exception) content = {"error": error_name} if self.detail is not False: content["detail"] = jsonify(self.detail) if self.detail else str(exception) return JSONResponse(content=content, status_code=self.status_code) class HTTPError(Exception): status_code: int = 400 error_name: str | None = None detail: Any | None = None def __init__( self, status_code: int | None = None, error_name: str | None = None, detail: Any = None, ) -> None: self.status_code = status_code or self.status_code self.error_name = error_name or self.error_name self.detail = detail or self.detail @classmethod def fastapi_handler(cls, request: Request, exception: Self) -> JSONResponse: handler = ExceptionHandler( exception.status_code, exception.error_name, exception.detail ) return handler(request, exception) def pydantic_validation_exception_handler( _request: Request, exception: RequestValidationError ) -> JSONResponse: errors = jsonable_encoder(exception.errors()) return JSONResponse( content={"error": "validation_error", "detail": errors}, status_code=status.HTTP_422_UNPROCESSABLE_ENTITY, ) ExceptionHandlersAlias: TypeAlias = dict[ int | type[Exception], Callable[[Request, Any], Any] ]
ziphy-fastapi-utils
/ziphy_fastapi_utils-2.0.4.tar.gz/ziphy_fastapi_utils-2.0.4/ziphy/fastapi_utils/exceptions.py
exceptions.py
zipimportx: faster zipfile imports for frozen python apps ========================================================== This package aims to speed up imports from zipfiles for frozen python apps (and other scenarios where the zipfile is assumed not to change) by taking several shortcuts that aren't available to the standard zipimport module. It exports a single useful name, "zipimporter", which is a drop-in replacement for the standard zipimporter class. To replace the builtin zipimport mechanism with zipimportx, do the following:: import zipimportx zipimportx.zipimporter.install() With no additional work you may already find a small speedup when importing from a zipfile. Since zipimportx assumes that the zipfile will not change or go missing, it does fewer stat() calls and integrity checks than the standard zipimport implementation. To further speed up the loading of a zipfile, you can pre-compute the zipimport "directory information" dictionary and store it in a separate index file. This will reduce the time spent parsing information out of the zipfile. Create an index file like this:: from zipimportx import zipimporter zipimporter("mylib.zip").write_index() This will create the file "mylib.zip.idx" containing the pre-parsed zipfile directory information. Specifically, it will contain a marshalled dictionary object with the same structure as those in zipimport._zip_directory_cache. In my tests, use of these indexes speeds up the initial loading of a zipfile by about a factor of 3 on Linux, and a factor of 5 on Windows. To further speed up the loading of a collection of modules, you can "preload" the actual module data by including it directly in the index. This allows the data for several modules to be loaded in a single sequential read rather than requiring a separate read for each module. Preload module data like this:: from zipimportx import zipimporter zipimporter("mylib.zip").write_index(preload=["mymod*","mypkg*"]) Each entry in the "preload" list is a filename pattern. Files from the zipfile that match any of these patterns will be preloaded when the zipfile is first accessed for import. You may want to remove them from the actual zipfile in order to save space. Finally, it's possible to convert a zipfile into inline python code and include that code directly in your frozen application. This can simulate the effect of having that zipfile on sys.path, while avoiding any fie IO during the import process. To get the necessary sourcecode, do the following:: from zipimportx import zipimporter code = zipimporter("mylib.zip").get_inline_code() Finally, it's worth re-iterating the big assumption made by this module: the zipfile must never change or go missing. If the data in the index does not reflect the actual contents of the zipfile, imports will break in unspecified and probably disasterous ways. Note also that this package uses nothing but builtin modules. To bootstrap zipfile imports for a frozen application, you can inline this module's code directly into your application's startup script. Simply do something like this in your build process:: import zipimportx import inspect SCRIPT = ''' %s zipimporter.install() import myapp myapp.main() ''' % (inspect.getsource(zipimportx),) freeze_this_script_somehow(SCRIPT) zipimportx.zipimporter("path/to/frozen/library.zip").write_index()
zipimportx
/zipimportx-0.3.2.tar.gz/zipimportx-0.3.2/README.txt
README.txt
====== zipind ====== .. image:: https://img.shields.io/pypi/v/zipind.svg :target: https://pypi.python.org/pypi/zipind .. image:: https://readthedocs.org/projects/zipind/badge/?version=latest :target: https://zipind.readthedocs.io/en/latest/?version=latest :alt: Documentation Status zipind - From a folder, make a splitted ZIP with INDependent parts * Free software: MIT license * Documentation: https://zipind.readthedocs.io. Features -------- - Compact folder to .zip or .rar, dividing it into independent parts, grouping your files in alphanumeric order. - Preserve the ordering of folders and files. - Preserve the internal structure of folders. - If any file exceeds the defined maximum size, the specific file is splitted in dependent mode. - Set the file types to be ignored in compression (config/ignore_extensions.txt) - Verify that the file path length is less than the specified limit (default 250 characters). - Sanitize the folder and file names characters to ensure compatibility with UTF-8 encoding, by auto-renaming. Requirements ------------ - To compress to Zip format, It is necessary to have 7Zip_ app installed and added in system variables - To compress to Rar format, It is necessary to have Winrar_ app installed and added in system variables Usage ----- Let's zip a folder, with a maximum of 100MB per file, in zip mode and ignoring 'ISO' extension files. **Through python script importation** .. code-block:: python import zipind path_folder = r'c://my_project' zipind.run(path_folder, mode='zip', mb_perfile=100, mode='zip', ignore_extensions=['iso']) **Through terminal in chatbot-like style** .. code-block:: text $ zipind Zipind will start by responding: .. code-block:: text Zipind - From a folder, make a splitted ZIP with INDependent parts >> github.com/apenasrr/zipind << Paste the folder path to be compressed: Now paste the folder path to be compressed: .. code-block:: text Paste the folder path to be compressed: c://my_project Answer the questions to customize the parameters and your project will be processed. **CLI Mode** Soon... We recommend ------------ `mises.org`_ - Educate yourself about economic and political freedom `lbry.tv`_ - Store files and videos on blockchain ensuring free speech `A Cypherpunk's Manifesto`_ - How encryption is essential to Free Speech and Privacy Credits ------- This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template. .. _Cookiecutter: https://github.com/audreyr/cookiecutter .. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage .. _`7Zip`: https://www.7-zip.org/download.html .. _`Winrar`: https://www.win-rar.com/download.html .. _`mises.org`: https://mises.org/ .. _`lbry.tv`: http://lbry.tv/ .. _`A Cypherpunk's Manifesto`: https://www.activism.net/cypherpunk/manifesto.html
zipind
/zipind-1.1.3.tar.gz/zipind-1.1.3/README.rst
README.rst
.. highlight:: shell ============ Contributing ============ Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given. You can contribute in many ways: Types of Contributions ---------------------- Report Bugs ~~~~~~~~~~~ Report bugs at https://github.com/apenasrr/zipind/issues. If you are reporting a bug, please include: * Your operating system name and version. * Any details about your local setup that might be helpful in troubleshooting. * Detailed steps to reproduce the bug. Fix Bugs ~~~~~~~~ Look through the GitHub issues for bugs. Anything tagged with "bug" and "help wanted" is open to whoever wants to implement it. Implement Features ~~~~~~~~~~~~~~~~~~ Look through the GitHub issues for features. Anything tagged with "enhancement" and "help wanted" is open to whoever wants to implement it. Write Documentation ~~~~~~~~~~~~~~~~~~~ zipind could always use more documentation, whether as part of the official zipind docs, in docstrings, or even on the web in blog posts, articles, and such. Submit Feedback ~~~~~~~~~~~~~~~ The best way to send feedback is to file an issue at https://github.com/apenasrr/zipind/issues. If you are proposing a feature: * Explain in detail how it would work. * Keep the scope as narrow as possible, to make it easier to implement. * Remember that this is a volunteer-driven project, and that contributions are welcome :) Get Started! ------------ Ready to contribute? Here's how to set up `zipind` for local development. 1. Fork the `zipind` repo on GitHub. 2. Clone your fork locally:: $ git clone [email protected]:your_name_here/zipind.git 3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:: $ mkvirtualenv zipind $ cd zipind/ $ python setup.py develop 4. Create a branch for local development:: $ git checkout -b name-of-your-bugfix-or-feature Now you can make your changes locally. 5. When you're done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:: $ flake8 zipind tests $ python setup.py test or pytest $ tox To get flake8 and tox, just pip install them into your virtualenv. 6. Commit your changes and push your branch to GitHub:: $ git add . $ git commit -m "Your detailed description of your changes." $ git push origin name-of-your-bugfix-or-feature 7. Submit a pull request through the GitHub website. Pull Request Guidelines ----------------------- Before you submit a pull request, check that it meets these guidelines: 1. The pull request should include tests. 2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring, and add the feature to the list in README.rst. 3. The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Tips ---- To run a subset of tests:: $ python -m unittest tests.test_zipind Deploying --------- A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in HISTORY.rst). Then run:: $ bump2version patch # possible: major / minor / patch $ git push $ git push --tags Travis will then deploy to PyPI if tests pass.
zipind
/zipind-1.1.3.tar.gz/zipind-1.1.3/CONTRIBUTING.rst
CONTRIBUTING.rst
zipind package ============== Submodules ---------- zipind.cli module ----------------- .. automodule:: zipind.cli :members: :undoc-members: :show-inheritance: zipind.zipind module -------------------- .. automodule:: zipind.zipind :members: :undoc-members: :show-inheritance: zipind.zipind\_cli module ------------------------- .. automodule:: zipind.zipind_cli :members: :undoc-members: :show-inheritance: zipind.zipind\_core module -------------------------- .. automodule:: zipind.zipind_core :members: :undoc-members: :show-inheritance: zipind.zipind\_utils module --------------------------- .. automodule:: zipind.zipind_utils :members: :undoc-members: :show-inheritance: Module contents --------------- .. automodule:: zipind :members: :undoc-members: :show-inheritance:
zipind
/zipind-1.1.3.tar.gz/zipind-1.1.3/docs/zipind.rst
zipind.rst
.. highlight:: shell ============ Installation ============ Stable release -------------- To install zipind, run this command in your terminal: .. code-block:: console $ pip install zipind This is the preferred method to install zipind, as it will always install the most recent stable release. If you don't have `pip`_ installed, this `Python installation guide`_ can guide you through the process. .. _pip: https://pip.pypa.io .. _Python installation guide: http://docs.python-guide.org/en/latest/starting/installation/ From sources ------------ The sources for zipind can be downloaded from the `Github repo`_. You can either clone the public repository: .. code-block:: console $ git clone git://github.com/apenasrr/zipind Or download the `tarball`_: .. code-block:: console $ curl -OJL https://github.com/apenasrr/zipind/tarball/master Once you have a copy of the source, you can install it with: .. code-block:: console $ python setup.py install .. _Github repo: https://github.com/apenasrr/zipind .. _tarball: https://github.com/apenasrr/zipind/tarball/master
zipind
/zipind-1.1.3.tar.gz/zipind-1.1.3/docs/installation.rst
installation.rst
# zipjson - a simple tool to create and read compressed JSON files ## Installation ```bash pip install git+https://github.com/vguzov/zipjson.git ``` ## Usage: The following code creates a .zip archive with `data.json` file inside it, containing the serialized data, then reads it ```python import zipjson any_jsonable_data = {"something":42} file_object = open("test.json.zip", "wb") # Mind the additional 'b' flag zipjson.dump(any_jsonable_data, file_object) loaded_data = zipjson.load(open("test.json.zip", "rb")) print(loaded_data) # {'something': 42} ``` In-memory methods `dumps` and `loads` are supported as well
zipjson
/zipjson-0.0.1.tar.gz/zipjson-0.0.1/README.md
README.md
from functools import wraps import inspect from zipkin_agent import Layer, Component from opencensus.trace.execution_context import get_opencensus_tracer def trace( op: str = None, layer: Layer = Layer.Unknown, component: Component = Component.Unknown, tags: dict = None, ): def decorator(func): _op = op or func.__name__ if inspect.iscoroutinefunction(func): @wraps(func) async def wrapper(*args, **kwargs): _tracer = get_opencensus_tracer() span = _tracer.span(name=_op) span.add_attribute('layer', layer.name) span.add_attribute('component', component.name) if tags: for tag_k, tag_v in tags.items(): span.add_attribute(tag_k, tag_v) with span: return await func(*args, **kwargs) return wrapper else: @wraps(func) def wrapper(*args, **kwargs): _tracer = get_opencensus_tracer() span = _tracer.span(name=_op) span.add_attribute('layer', layer.name) span.add_attribute('component', component.name) if tags: for tag_k, tag_v in tags.items(): span.add_attribute(tag_k, tag_v) with span: return func(*args, **kwargs) return wrapper return decorator def runnable( op: str = None, layer: Layer = Layer.Unknown, component: Component = Component.Unknown, tags: dict = None, ): def decorator(func): @wraps(func) def wrapper(*args, **kwargs): _op = op or "Thread/"+func.__name__ _tracer = get_opencensus_tracer() with _tracer.new_local_span(name=_op) as span: span.add_attribute('layer', layer.name) span.add_attribute('component', component.name) if tags: for tag_k, tag_v in tags.items(): span.add_attribute(tag_k, tag_v) func(*args, **kwargs) return wrapper return decorator
zipkin-agent
/zipkin_agent-0.1.1-py3-none-any.whl/zipkin_agent/decorators.py
decorators.py
import os import re from typing import TYPE_CHECKING if TYPE_CHECKING: from typing import List QUEUE_TIMEOUT = 1 # type: int RE_IGNORE_PATH = re.compile('^$') # type: re.Pattern options = None # here to include 'options' in globals options = globals().copy() # THIS MUST PRECEDE DIRECTLY BEFORE LIST OF CONFIG OPTIONS! service_name = os.getenv('AGENT_NAME') or 'Python Service Name' # type: str zipkin_host = os.getenv('ZIPKIN_HOST') or 'localhost' zipkin_port = os.getenv('ZIPKIN_PORT') or 9411 force_tls = os.getenv('AGENT_FORCE_TLS', '').lower() == 'true' # type: bool protocol = (os.getenv('AGENT_PROTOCOL') or 'grpc').lower() # type: str authentication = os.getenv('AGENT_AUTHENTICATION') # type: str logging_level = os.getenv('AGENT_LOGGING_LEVEL') or 'INFO' # type: str disable_plugins = (os.getenv('AGENT_DISABLE_PLUGINS') or '').split(',') # type: List[str] max_buffer_size = int(os.getenv('AGENT_MAX_BUFFER_SIZE', '1000')) # type: int ignore_suffix = os.getenv('IGNORE_SUFFIX') or '.jpg,.jpeg,.js,.css,.png,.bmp,.gif,.ico,.mp3,' \ '.mp4,.html,.svg ' # type: str flask_collect_http_params = True if os.getenv('FLASK_COLLECT_HTTP_PARAMS') and \ os.getenv('FLASK_COLLECT_HTTP_PARAMS') == 'True' else False # type: bool http_params_length_threshold = int(os.getenv('HTTP_PARAMS_LENGTH_THRESHOLD') or '1024') # type: int trace_ignore_path = os.getenv('TRACE_IGNORE_PATH') or '' # type: str profile_active = True if os.getenv('AGENT_PROFILE_ACTIVE') and \ os.getenv('AGENT_PROFILE_ACTIVE') == 'True' else False # type: bool profile_task_query_interval = int(os.getenv('PROFILE_TASK_QUERY_INTERVAL') or '20') options = {key for key in globals() if key not in options} # THIS MUST FOLLOW DIRECTLY AFTER LIST OF CONFIG OPTIONS! def init(**kwargs): glob = globals() for key, val in kwargs.items(): if key not in options: raise KeyError('invalid config option %s' % key) glob[key] = val
zipkin-agent
/zipkin_agent-0.1.1-py3-none-any.whl/zipkin_agent/config.py
config.py
from zipkin_agent import Layer, Component, config from zipkin_agent.agent import init_zk_tracer from zipkin_agent.trace import tags from opencensus.trace.propagation.trace_context_http_header_format import TraceContextPropagator from opencensus.trace.status import Status from opencensus.trace.execution_context import get_opencensus_tracer, get_current_span def install(): from flask import Flask _full_dispatch_request = Flask.full_dispatch_request _handle_user_exception = Flask.handle_user_exception _handle_exception = Flask.handle_exception def params_tostring(params): return "\n".join([k + '=[' + ",".join(params.getlist(k)) + ']' for k, _ in params.items()]) def _zk_full_dispatch_request(this: Flask): import flask req = flask.request if 'traceparent' in req.headers: init_zk_tracer(span_context=TraceContextPropagator().from_headers(req.headers)) resp = _full_dispatch_request(this) return resp else: init_zk_tracer() with get_opencensus_tracer().span(name=req.url.split("?")[0]) as span: span.add_attribute('kind', 'client') span.add_attribute('layer', Layer.Http.name) span.add_attribute('component', Component.Flask.name) span.add_attribute('peer', '%s:%s' % (req.environ["REMOTE_ADDR"], req.environ["REMOTE_PORT"])) span.add_attribute(tags.HttpMethod, req.method) span.add_attribute(tags.HttpUrl, req.url.split("?")[0]) span.add_attribute(tags.HttpParams, params_tostring(req.values)[0:config.http_params_length_threshold]) resp = _full_dispatch_request(this) span.set_status(Status(code=resp.status_code)) span.add_attribute(tags.HttpStatus, resp.status_code) return resp def _zk_handle_user_exception(this: Flask, e): if e is not None: entry_span = get_current_span() if entry_span is not None: entry_span.set_status(Status.from_exception(e)) return _handle_user_exception(this, e) def _zk_handle_exception(this: Flask, e): if e is not None: entry_span = get_current_span() if entry_span is not None: entry_span.set_status(Status.from_exception(e)) return _handle_exception(this, e) Flask.full_dispatch_request = _zk_full_dispatch_request Flask.handle_user_exception = _zk_handle_user_exception Flask.handle_exception = _zk_handle_exception
zipkin-agent
/zipkin_agent-0.1.1-py3-none-any.whl/zipkin_agent/plugins/trace_flask.py
trace_flask.py
import inspect import logging from zipkin_agent.loggings import logger import pkgutil import re import traceback import pkg_resources from packaging import version from zipkin_agent import config import zipkin_agent def install(): disable_patterns = config.disable_plugins if isinstance(disable_patterns, str): disable_patterns = [re.compile(p.strip()) for p in disable_patterns.split(',') if p.strip()] else: disable_patterns = [re.compile(p.strip()) for p in disable_patterns if p.strip()] for importer, modname, ispkg in pkgutil.iter_modules(zipkin_agent.plugins.__path__): if any(pattern.match(modname) for pattern in disable_patterns): logger.info('plugin %s is disabled and thus won\'t be installed', modname) continue logger.debug('installing plugin %s', modname) plugin = importer.find_module(modname).load_module(modname) supported = pkg_version_check(plugin) if not supported: logger.debug('check version for plugin %s\'s corresponding package failed, thus ' 'won\'t be installed', modname) continue if not hasattr(plugin, 'install') or inspect.ismethod(getattr(plugin, 'install')): logger.warning('no `install` method in plugin %s, thus the plugin won\'t be installed', modname) continue # noinspection PyBroadException try: plugin.install() except Exception: logger.warning('failed to install plugin %s', modname) traceback.print_exc() if logger.isEnabledFor(logging.DEBUG) else None _operators = { '<': lambda cv, ev: cv < ev, '<=': lambda cv, ev: cv < ev or cv == ev, '==': lambda cv, ev: cv == ev, '>=': lambda cv, ev: cv > ev or cv == ev, '>': lambda cv, ev: cv > ev, '!=': lambda cv, ev: cv != ev } class VersionRuleException(Exception): def __init__(self, message): self.message = message def pkg_version_check(plugin): supported = True # no version rules was set, no checks if not hasattr(plugin, "version_rule"): return supported pkg_name = plugin.version_rule.get("name") rules = plugin.version_rule.get("rules") try: current_pkg_version = pkg_resources.get_distribution(pkg_name).version except pkg_resources.DistributionNotFound: # when failed to get the version, we consider it as supported. return supported current_version = version.parse(current_pkg_version) # pass one rule in rules (OR) for rule in rules: if rule.find(" ") == -1: if check(rule, current_version): return supported else: # have to pass all rule_uint in this rule (AND) rule_units = rule.split(" ") results = [check(unit, current_version) for unit in rule_units] if False in results: # check failed, try to check next rule continue else: return supported supported = False return supported def check(rule_unit, current_version): idx = 2 if rule_unit[1] == '=' else 1 symbol = rule_unit[0:idx] expect_pkg_version = rule_unit[idx:] expect_version = version.parse(expect_pkg_version) f = _operators.get(symbol) or None if not f: raise VersionRuleException("version rule {} error. only allow >,>=,==,<=,<,!= symbols".format(rule_unit)) return f(current_version, expect_version)
zipkin-agent
/zipkin_agent-0.1.1-py3-none-any.whl/zipkin_agent/plugins/__init__.py
__init__.py
from zipkin_agent import Layer, Component, config from zipkin_agent.agent import init_zk_tracer from zipkin_agent.trace import tags from opencensus.trace.propagation.trace_context_http_header_format import TraceContextPropagator from opencensus.trace.status import Status from opencensus.trace.execution_context import get_opencensus_tracer, get_current_span def install(): from flask import Flask _full_dispatch_request = Flask.full_dispatch_request _handle_user_exception = Flask.handle_user_exception _handle_exception = Flask.handle_exception def params_tostring(params): return "\n".join([k + '=[' + ",".join(params.getlist(k)) + ']' for k, _ in params.items()]) def _zk_full_dispatch_request(this: Flask): import flask req = flask.request if 'traceparent' in req.headers: init_zk_tracer(span_context=TraceContextPropagator().from_headers(req.headers)) resp = _full_dispatch_request(this) return resp else: init_zk_tracer() with get_opencensus_tracer().span(name=req.url.split("?")[0]) as span: span.add_attribute('kind', 'service') span.add_attribute('layer', Layer.Http.name) span.add_attribute('component', Component.Flask.name) span.add_attribute('peer', '%s:%s' % (req.environ["REMOTE_ADDR"], req.environ["REMOTE_PORT"])) span.add_attribute(tags.HttpMethod, req.method) span.add_attribute(tags.HttpUrl, req.url.split("?")[0]) span.add_attribute(tags.HttpParams, params_tostring(req.values)[0:config.http_params_length_threshold]) resp = _full_dispatch_request(this) span.set_status(Status(code=resp.status_code)) span.add_attribute(tags.HttpStatus, resp.status_code) return resp def _zk_handle_user_exception(this: Flask, e): if e is not None: entry_span = get_current_span() if entry_span is not None: entry_span.set_status(Status.from_exception(e)) return _handle_user_exception(this, e) def _zk_handle_exception(this: Flask, e): if e is not None: entry_span = get_current_span() if entry_span is not None: entry_span.set_status(Status.from_exception(e)) return _handle_exception(this, e) Flask.full_dispatch_request = _zk_full_dispatch_request Flask.handle_user_exception = _zk_handle_user_exception Flask.handle_exception = _zk_handle_exception
zipkin-agent
/zipkin_agent-0.1.1-py3-none-any.whl/zipkin_agent/build/lib/plugins/sw_flask.py
sw_flask.py
import inspect import logging from zipkin_agent.loggings import logger import pkgutil import re import traceback import pkg_resources from packaging import version from zipkin_agent import config import zipkin_agent def install(): disable_patterns = config.disable_plugins if isinstance(disable_patterns, str): disable_patterns = [re.compile(p.strip()) for p in disable_patterns.split(',') if p.strip()] else: disable_patterns = [re.compile(p.strip()) for p in disable_patterns if p.strip()] for importer, modname, ispkg in pkgutil.iter_modules(zipkin_agent.plugins.__path__): if any(pattern.match(modname) for pattern in disable_patterns): logger.info('plugin %s is disabled and thus won\'t be installed', modname) continue logger.debug('installing plugin %s', modname) plugin = importer.find_module(modname).load_module(modname) supported = pkg_version_check(plugin) if not supported: logger.debug('check version for plugin %s\'s corresponding package failed, thus ' 'won\'t be installed', modname) continue if not hasattr(plugin, 'install') or inspect.ismethod(getattr(plugin, 'install')): logger.warning('no `install` method in plugin %s, thus the plugin won\'t be installed', modname) continue # noinspection PyBroadException try: plugin.install() except Exception: logger.warning('failed to install plugin %s', modname) traceback.print_exc() if logger.isEnabledFor(logging.DEBUG) else None _operators = { '<': lambda cv, ev: cv < ev, '<=': lambda cv, ev: cv < ev or cv == ev, '==': lambda cv, ev: cv == ev, '>=': lambda cv, ev: cv > ev or cv == ev, '>': lambda cv, ev: cv > ev, '!=': lambda cv, ev: cv != ev } class VersionRuleException(Exception): def __init__(self, message): self.message = message def pkg_version_check(plugin): supported = True # no version rules was set, no checks if not hasattr(plugin, "version_rule"): return supported pkg_name = plugin.version_rule.get("name") rules = plugin.version_rule.get("rules") try: current_pkg_version = pkg_resources.get_distribution(pkg_name).version except pkg_resources.DistributionNotFound: # when failed to get the version, we consider it as supported. return supported current_version = version.parse(current_pkg_version) # pass one rule in rules (OR) for rule in rules: if rule.find(" ") == -1: if check(rule, current_version): return supported else: # have to pass all rule_uint in this rule (AND) rule_units = rule.split(" ") results = [check(unit, current_version) for unit in rule_units] if False in results: # check failed, try to check next rule continue else: return supported supported = False return supported def check(rule_unit, current_version): idx = 2 if rule_unit[1] == '=' else 1 symbol = rule_unit[0:idx] expect_pkg_version = rule_unit[idx:] expect_version = version.parse(expect_pkg_version) f = _operators.get(symbol) or None if not f: raise VersionRuleException("version rule {} error. only allow >,>=,==,<=,<,!= symbols".format(rule_unit)) return f(current_version, expect_version)
zipkin-agent
/zipkin_agent-0.1.1-py3-none-any.whl/zipkin_agent/build/lib/plugins/__init__.py
__init__.py
python-zipkin ============= |Build Status| *python-zipkin* is an api for recording and sending messages to `Zipkin <http://twitter.github.io/zipkin/>`_. Why use it? From the http://twitter.github.io/zipkin/: "Collecting traces helps developers gain deeper knowledge about how certain requests perform in a distributed system. Let's say we're having problems with user requests timing out. We can look up traced requests that timed out and display it in the web UI. We'll be able to quickly find the service responsible for adding the unexpected response time. If the service has been annotated adequately we can also find out where in that service the issue is happening." Supported versions ------------------ **Python**: ``2.6``, ``2.7`` (the current Python Thrift release doesn't support Python 3) Recording annotations ~~~~~~~~~~~~~~~~~~~~~ ``python-zipkin`` creates a single span per served requests. It automatically adds a number of annotations (see below). You can also add your own annotations from anywhere in your code: .. code:: python from zipkin.api import api as zipkin_api zipkin_api.record_event('MySQL: "SELECT * FROM auth_users"', duration=15000) # Note duration is in microseconds, as defined by Zipkin zipkin_api.record_key_value('Cache misses', 15) # You can use string, int, long and bool values Hacking ------- See `CONTRIBUTING.md <https://github.com/prezi/python-zipkin/blob/master/CONTRIBUTING.md>`_ for guidelines. You can start hacking on ``python-zipkin`` with: .. code:: sh git clone https://github.com/prezi/python-zipkin.git cd python-zipkin git remote rename origin upstream virtualenv virtualenv . virtualenv/bin/activate python setup.py test .. |Build Status| image:: https://travis-ci.org/prezi/python-zipkin.svg?branch=master :target: https://travis-ci.org/prezi/python-zipkin
zipkin
/zipkin-0.1.0.tar.gz/zipkin-0.1.0/README.rst
README.rst
import logging import os import click import zipline.repo.extract_objects as eo from zipline.repo import JOIN_FOLDER_NAME, \ GROUP_BY_FOLDER_NAME, STAGING_QUERY_FOLDER_NAME from zipline.repo.validator import ZiplineRepoValidator from zipline.schema.serializer import thrift_simple_json_protected from zipline.schema.thrift.ttypes import GroupBy, LeftOuterJoin, StagingQuery # This is set in the main function - # from command line or from env variable during invocation FOLDER_NAME_TO_CLASS = { GROUP_BY_FOLDER_NAME: GroupBy, JOIN_FOLDER_NAME: LeftOuterJoin, STAGING_QUERY_FOLDER_NAME: StagingQuery, } def get_folder_name_from_class_name(class_name): return {v.__name__: k for k, v in FOLDER_NAME_TO_CLASS.items()}[class_name] @click.command() @click.option( '--zipline_root', envvar='ZIPLINE_ROOT', help='Path to the root zipline folder', default=False) @click.option( '--input_path', help='Relative Path to the root zipline folder, which contains the objects to be serialized', required=True) @click.option( '--output_root', help='Relative Path to the root zipline folder, to where the serialized output should be written', default="production") @click.option( '--debug', help='debug mode', is_flag=True) @click.option( '--force-overwrite', help='Force overwriting existing materialized conf.', is_flag=True) def extract_and_convert(zipline_root, input_path, output_root, debug, force_overwrite): """ CLI tool to convert Python zipline GroupBy's, Joins and Staging queries into their thrift representation. The materialized objects are what will be submitted to spark jobs - driven by airflow, or by manual user testing. """ if debug: log_level = logging.DEBUG else: log_level = logging.INFO if not zipline_root: zipline_root = os.getcwd() _print_highlighted("Using zipline root path", zipline_root) zipline_root_path = os.path.expanduser(zipline_root) obj_folder_name = input_path.split('/', 1)[0] obj_class = FOLDER_NAME_TO_CLASS[obj_folder_name] full_input_path = os.path.join(zipline_root_path, input_path) _print_highlighted(f"Input {obj_folder_name} from", full_input_path) assert os.path.exists(full_input_path), f"Input Path: {full_input_path} doesn't exist" if os.path.isdir(full_input_path): results = eo.from_folder(zipline_root_path, full_input_path, obj_class, log_level=log_level) elif os.path.isfile(full_input_path): assert full_input_path.endswith(".py"), f"Input Path: {input_path} isn't a python file" results = eo.from_file(zipline_root_path, full_input_path, obj_class, log_level=log_level) else: raise Exception(f"Input Path: {full_input_path}, isn't a file or a folder") validator = ZiplineRepoValidator(zipline_root_path, output_root, log_level=log_level) extra_online_group_bys = {} num_written_objs = 0 full_output_root = os.path.join(zipline_root_path, output_root) for name, obj in results.items(): if _write_obj(full_output_root, validator, name, obj, log_level, force_overwrite): num_written_objs += 1 # In case of online join, we need to materialize the underlying online group_bys. if obj_class is LeftOuterJoin and obj.online: online_group_bys = {rt.groupBy.name: rt.groupBy for rt in obj.rightParts} extra_online_group_bys.update(online_group_bys) if extra_online_group_bys: num_written_group_bys = 0 # load materialized joins to validate the additional group_bys against. validator.load_objs() for name, obj in extra_online_group_bys.items(): if _write_obj(full_output_root, validator, name, obj, log_level, force_overwrite): num_written_group_bys += 1 print(f"Successfully wrote {num_written_group_bys} online GroupBy objects to {full_output_root}") print(f"Successfully wrote {num_written_objs} {(obj_class).__name__} objects to {full_output_root}") def _write_obj(full_output_root: str, validator: ZiplineRepoValidator, name: str, obj: object, log_level: int, force_overwrite: bool) -> bool: """ Returns True if the object is successfully written. """ team_name = name.split(".")[0] obj_class = type(obj) class_name = obj_class.__name__ name = name.split('.', 1)[1] _print_highlighted(f"{class_name} Team", team_name) _print_highlighted(f"{class_name} Name", name) obj_folder_name = get_folder_name_from_class_name(class_name) output_path = os.path.join(full_output_root, obj_folder_name, team_name) output_file = os.path.join(output_path, name) skip_reasons = validator.can_skip_materialize(obj) if skip_reasons: reasons = ', '.join(skip_reasons) _print_warning(f"Skipping {class_name} {name}: {reasons}") if os.path.exists(output_file): _print_warning(f"old file exists for skipped config: {output_file}") return False validation_errors = validator.validate_obj(obj) if validation_errors: _print_error(f"Could not write {class_name} {name}", ', '.join(validation_errors)) return False if force_overwrite: _print_warning(f"force overwrite {class_name} {name}") elif not validator.safe_to_overwrite(obj): _print_warning(f"cannot overwrite {class_name} {name} with existing online conf") return False _write_obj_as_json(name, obj, output_file, obj_class) return True def _write_obj_as_json(name: str, obj: object, output_file: str, obj_class: type): class_name = obj_class.__name__ output_folder = os.path.dirname(output_file) if not os.path.exists(output_folder): os.makedirs(output_folder) assert os.path.isdir(output_folder), f"{output_folder} isn't a folder." assert hasattr(obj, "name"), f"Can't serialize objects without the name attribute for object {name}" with open(output_file, "w") as f: _print_highlighted(f"Writing {class_name} to", output_file) f.write(thrift_simple_json_protected(obj, obj_class)) def _print_highlighted(left, right): # print in blue and bold print(f"{left:>25} - \033[34m\033[1m{right}\033[00m") def _print_error(left, right): # print in red. print(f"\033[91m{left:>25} - \033[1m{right}\033[00m") def _print_warning(string): # print in yellow. print(f"\033[93m{string}\033[00m") if __name__ == '__main__': extract_and_convert()
zipline-ai
/zipline_ai-0.0.19-py3-none-any.whl/zipline_ai-0.0.19.data/scripts/materialize.py
materialize.py
import copy import importlib import json import logging import re from typing import List, Dict, Union, Optional, Iterable import zipline.group_by as gb import zipline.schema.thrift.ttypes as ttypes import zipline.utils as utils from zipline.metadata_helper import get_dependencies from zipline.schema.serializer import thrift_simple_json logging.basicConfig(level=logging.INFO) # Regex for matching table name in check_conistency args in LeftOuterJoin. TABLE_NAME_REGEX = re.compile(r"^\w+\.\w+$") def _expand_selectors(group_by: ttypes.GroupBy, selectors: Optional[List[Union[ttypes.AggregationSelector, str]]]): if selectors is None: if group_by.aggregations: for aggregation in group_by.aggregations: if aggregation.windows: yield ttypes.AggregationSelector( name=aggregation.name, windows=aggregation.windows ) else: yield ttypes.AggregationSelector( name=aggregation.name ) else: for column in gb.get_columns(group_by.sources[0]): yield ttypes.AggregationSelector(name=column) else: valid_names: Optional[Iterable[str]] = None aggregation_map: Dict[str, ttypes.Aggregation] if group_by.aggregations: aggregation_map = { aggregation.name: aggregation for aggregation in group_by.aggregations } valid_names = aggregation_map.keys() else: # pre-aggregated valid_names = set([column for column in gb.get_columns(group_by.sources[0])]) for selector in selectors: if isinstance(selector, ttypes.AggregationSelector): utils.check_contains(selector.name, valid_names, "aggregation", group_by.name) if selector.windows: assert group_by.aggregations, f""" group_by:{group_by.name} doesn't have windows, and is pre-aggregated. You requested: {selector} """ utils.check_contains(selector.windows, aggregation_map[selector.name].windows, "window", f"{group_by.name}:{selector.name}", gb.window_to_str_pretty) yield selector else: # selector is a string name utils.check_contains(selector, valid_names, "aggregation", group_by.name) yield ttypes.AggregationSelector( name=selector ) def JoinPart(group_by: ttypes.GroupBy, keyMapping: Dict[str, str] = None, # mapping of key columns from the join selectors: Optional[List[Union[ttypes.AggregationSelector, str]]] = None, prefix: str = None # all aggregations will be prefixed with that name ) -> ttypes.JoinPart: # used for reset for next run import_copy = __builtins__['__import__'] group_by_module_name = utils.get_mod_name_from_gc(group_by, "group_bys") logging.debug("group_by's module info from garbage collector {}".format(group_by_module_name)) group_by_module = importlib.import_module(group_by_module_name) __builtins__['__import__'] = utils.import_module_set_name(group_by_module, ttypes.GroupBy) if keyMapping: utils.check_contains(keyMapping.values(), group_by.keyColumns, "key", group_by.name) join_part = ttypes.JoinPart( groupBy=group_by, keyMapping=keyMapping, selectors=list(_expand_selectors(group_by, selectors)), prefix=prefix ) # reset before next run __builtins__['__import__'] = import_copy return join_part def LeftOuterJoin(left: ttypes.Source, rightParts: List[ttypes.JoinPart], check_consistency: bool = False, check_consistency_table: str = "", check_consistency_source: ttypes.EventSource = None, additional_args: List[str] = None, additional_env: List[str] = None, user_var = None, online: bool = False, production: bool = False, frontfill: bool = True) -> ttypes.LeftOuterJoin: """ defines the primary keys and timestamps for which Zipline is to compute features and a list of Aggregations to combine into a single data source (usually for training data). Note: users can only set one of consistency_check, consistency_check_table, and consistency_check_source option. :param left: The primary keys and timestamps for the driver. :param rightParts: a list of JoinParts(aggregations) to select. :param consistency_check: If True, default Zipline online offline consistency check is used. :param check_conistency_table: If set, table name in the format of <namespace>.<table> will be used in online offline consistency check. :param consistency_check_source: If set as EventSource, its table and query with select keys_json, values_json, timestamp will be used to run consistency_check_source. :param additional_args: Additional args passed to JoinJob. :param additional_env: Additional environment variable passed to Spark submit. :param user_var: users can assign any variables and later be json serialized to the metadata :param online: Set to True if the Join is served online. :param production: Set to True if the Join is used in the production environment. :param frontfill: Set to True if the JoinJob for daily frontfill should be created. """ # create a deep copy for case: multiple LeftOuterJoin use the same left, # validation will fail after the first iteration updated_left = copy.deepcopy(left) if left.events: if left.events.query.select: assert "ts" not in left.events.query.select.keys(), "'ts' is a reserved key word for Zipline," \ " please specify the expression in timeColumn" # mapping ts to query.timeColumn to events only updated_left.events.query.select.update({"ts": updated_left.events.query.timeColumn}) # name is set externally, cannot be set here. root_base_source = updated_left.entities if updated_left.entities else updated_left.events # todo: validation if select is blank if root_base_source.query.select: root_keys = set(root_base_source.query.select.keys()) # JoinJob will compute a 128 bit row hash as the row_id assert "row_id" not in root_keys, "'row_id' is a reserved key word for Zipline" for joinPart in rightParts: mapping = joinPart.keyMapping if joinPart.keyMapping else {} utils.check_contains(mapping.keys(), root_keys, "root key", "") uncovered_keys = set(joinPart.groupBy.keyColumns) - set(mapping.values()) - root_keys assert not uncovered_keys, f""" Not all keys columns needed to join with GroupBy:{joinPart.groupBy.name} are present. Missing keys are: {uncovered_keys}, Missing keys should be either mapped or selected in root. KeyMapping only mapped: {mapping.values()} Root only selected: {root_keys} """ dependencies = get_dependencies(updated_left) right_sources = [joinPart.groupBy.sources for joinPart in rightParts] # flattening right_sources = [source for source_list in right_sources for source in source_list] right_dependencies = [dep for source in right_sources for dep in get_dependencies(source)] dependencies.extend(right_dependencies) metadata_map = { "dependencies": json.dumps(list({frozenset(item.items()): item for item in dependencies}.values())) } if additional_args: metadata_map["additional_args"] = additional_args if additional_env: metadata_map["additional_env"] = additional_env if user_var: metadata_map["user_json"] = json.dumps(user_var) check_consistency_options = [ 'check_consistency', 'check_consistency_table', 'check_consistency_source'] scope = locals() set_options = [option for option in check_consistency_options if eval(option, scope)] assert len(set_options) < 2, "only one of ({}) options must be set: {} are set".format( ", ".format(check_consistency_options), ", ".format(set_options)) if check_consistency is True: metadata_map["check_consistency"] = "default" elif check_consistency_table: assert TABLE_NAME_REGEX.match(check_consistency_table), \ f"check_consistency_table {check_consistency_table} is invalid table name" metadata_map["check_consistency_table"] = check_consistency_table if check_consistency_source: assert isinstance(check_consistency_source, ttypes.EventSource), \ "check_consistency source should be a EventSource object." error_msg = utils.validate_check_consistency_source(check_consistency_source) assert not error_msg, f"check_consistency_source is invalid: {error_msg}" metadata_map["check_consistency_source"] = json.loads( thrift_simple_json(check_consistency_source)) metadata = json.dumps(metadata_map) return ttypes.LeftOuterJoin( left=updated_left, rightParts=rightParts, metadata=metadata, online=online, production=production, frontfill=frontfill )
zipline-ai
/zipline_ai-0.0.19-py3-none-any.whl/zipline/join.py
join.py
import gc import importlib from collections.abc import Iterable from typing import List from zipline.group_by import GroupBy from zipline.schema.thrift.ttypes import Source, EventSource, StagingQuery # Required fields in check consistency select statement. REQUIRED_CHECK_CONSITENCY_FIELDS = frozenset(['keys_json', 'values_json', 'timestamp']) def edit_distance(str1, str2): m = len(str1) + 1 n = len(str2) + 1 dp = [[0 for _ in range(n)] for _ in range(m)] for i in range(m): for j in range(n): if i == 0: dp[i][j] = j elif j == 0: dp[i][j] = i elif str1[i - 1] == str2[j - 1]: dp[i][j] = dp[i - 1][j - 1] else: dp[i][j] = 1 + min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) return dp[m - 1][n - 1] def check_contains_single(candidate, valid_items, type_name, name, print_function=repr): name_suffix = f"for {name}" if name else "" candidate_str = print_function(candidate) if not valid_items: assert f"{candidate_str}, is not a valid {type_name} because no {type_name}s are specified {name_suffix}" elif candidate not in valid_items: sorted_items = sorted(map(print_function, valid_items), key=lambda item: edit_distance(candidate_str, item)) printed_items = '\n '.join(sorted_items) assert candidate in valid_items, f"""{candidate_str}, is not a valid {type_name} {name_suffix} Please pick one from: {printed_items} """ def check_contains(candidates, *args): if isinstance(candidates, Iterable) and not isinstance(candidates, str): for candidate in candidates: check_contains_single(candidate, *args) else: check_contains_single(candidates, *args) def get_streaming_sources(group_by: GroupBy) -> List[Source]: """Checks if the group by has a source with streaming enabled.""" return [source for source in group_by.sources if is_streaming(source)] def is_streaming(source: Source) -> bool: """Checks if the source has streaming enabled.""" return (source.entities and source.entities.mutationTopic is not None) or \ (source.events and source.events.topic is not None) def import_module_set_name(module, cls): """evaluate imported modules to assign object name""" for name, obj in list(module.__dict__.items()): if isinstance(obj, cls): # the name would be `team_name.python_script_name.[group_by_name|join_name|staging_query_name]` # real world case: psx.reservation_status.v1 obj.name = module.__name__.partition(".")[2] + "." + name return module def get_mod_name_from_gc(obj, mod_prefix): """get an object's module information from garbage collector""" mod_name = None # get obj's module info from garbage collector gc.collect() for ref in gc.get_referrers(obj): if '__name__' in ref and ref['__name__'].startswith(mod_prefix): mod_name = ref['__name__'] break return mod_name def get_staging_query_output_table_name(staging_query: StagingQuery): """generate output table name for staging query job""" staging_query_module = importlib.import_module(get_mod_name_from_gc(staging_query, "staging_queries")) import_module_set_name(staging_query_module, StagingQuery) return staging_query.name.replace('.', '_') def validate_check_consistency_source(check_consistency_source: EventSource) -> str: """Validate check_consistency_source object and returns error_msg if there is any errors. """ if not isinstance(check_consistency_source, EventSource): return "check_consistency_source should be a EventSource object." if not check_consistency_source.table: return "check_consistency_source should have table." if not check_consistency_source.query or not check_consistency_source.query.select: return "check_consistency_source must have query with select." keys_not_present = REQUIRED_CHECK_CONSITENCY_FIELDS - check_consistency_source.query.select.keys() if keys_not_present: keys_not_present_str = ", ".join(keys_not_present) return f"required fields {keys_not_present} are not present in Select."
zipline-ai
/zipline_ai-0.0.19-py3-none-any.whl/zipline/utils.py
utils.py
import copy import json from dataclasses import dataclass from typing import Dict, List, Optional, Union import zipline.schema.thrift.ttypes as ttypes from zipline.metadata_helper import get_dependencies, get_underlying_source OperationType = int # type(zthrift.Operation.FIRST) # The GroupBy's default online/production status is None and it will inherit # online/production status from the Joins it is included. # If it is included in multiple joins, it is considered online/production # if any of the joins are online/production. Otherwise it is not online/production # unless it is explicitly marked as online/production on the GroupBy itself. DEFAULT_ONLINE = None DEFAULT_PRODUCTION = None # Fields allowed to be specified separated in streaming_query. STREAMING_QUERY_FIELDS_ALLOWED = frozenset([ 'select', 'where', 'timeColumn', ]) @dataclass class DefaultAggregation: operation: int = ttypes.Operation.LAST windows: Optional[List[ttypes.Window]] = None def window_to_str_pretty(window: ttypes.Window): unit = ttypes.TimeUnit._VALUES_TO_NAMES[window.timeUnit].lower() return f"{window.length} {unit}" def op_to_str(operation: OperationType): return ttypes.Operation._VALUES_TO_NAMES[operation].lower() def _expand_aggregations(columns: List[str], defaultAggregation: DefaultAggregation): """ used to aggregate all the columns in the query using the same operation. """ operation_name = op_to_str(defaultAggregation.operation) for column in columns: yield ttypes.Aggregation( name=f"{column}_{operation_name}", inputColumn=column, operation=defaultAggregation.operation, windows=defaultAggregation.windows, ) def Select(**kwargs): """ Convenience function to convert kwargs into a map. A map from alias to expression is what the underlying thrift object expects """ return kwargs def Aggregations(**kwargs): """ fills in missing arguments of the aggregation object. default operation is LAST default name is {arg_name}_{operation_name} default input column is {arg_name} """ aggs = [] for name, aggregation in kwargs.items(): assert isinstance(aggregation, ttypes.Aggregation), \ f"argument for {name}, {aggregation} is not instance of Aggregation" if not aggregation.name: aggregation.name = name if not aggregation.operation: # Default operation is last aggregation.operation = ttypes.Operation.LAST if not aggregation.inputColumn: # Default input column is the variable name aggregation.inputColumn = name aggs.append(aggregation) return aggs def get_query(source: ttypes.Source): return get_underlying_source(source).query def get_streaming_query(source: ttypes.Source): return get_underlying_source(source).streamingQuery def get_columns(source: ttypes.Source): query = get_query(source) columns = query.select.keys() return columns def contains_windowed_aggregation(aggregations: Optional[Union[List[ttypes.Aggregation], DefaultAggregation]]) -> bool: if not aggregations: return False if isinstance(aggregations, DefaultAggregation): if aggregations.windows: return True else: for agg in aggregations: if agg.windows: return True return False def set_ts_as_time_column(query: ttypes.Query): query.select.update({"ts": query.timeColumn}) def get_topic(source: ttypes.Source) -> str: if source.events: return source.events.topic else: return source.entities.mutationTopic def contains_realtime_source(sources: List[ttypes.Source]) -> bool: return any(get_topic(source) for source in sources) def validate_streaming_query(query: ttypes.Query, streaming_query: ttypes.Query): default_query = ttypes.Query() query_keys = query.select.keys() streaming_query_keys = streaming_query.select.keys() assert len(query_keys - streaming_query_keys) == 0, \ "streaming query select keys ({}) and query select keys ({}) do not match".format( query_keys, streaming_query_keys) # nonempty field that has value different from default values. nonempty_field_keys = set([k for (k, v) in streaming_query.__dict__.items() if v is not None and len(v) > 0 and getattr(default_query, k) != v]) disallowed_keys = nonempty_field_keys - STREAMING_QUERY_FIELDS_ALLOWED assert len(disallowed_keys) == 0, \ "streaming query cannot specify the following fields: {}".format(", ".join(disallowed_keys)) def validate_group_by(sources: List[ttypes.Source], keys: List[str], has_aggregations: bool, is_realtime): # check ts is not included in query.select first_source_columns = set(get_columns(sources[0])) assert "ts" not in first_source_columns, "'ts' is a reserved key word for Zipline," \ " please specify the expression in timeColumn" for src in sources: query = get_query(src) if src.events: assert query.ingestionTimeColumn is None, "ingestionTimeColumn should not be specified for " \ "event source as it should be the same with timeColumn" assert query.reversalColumn is None, "reversalColumn should not be specified for event source " \ "as it won't have mutations" if has_aggregations: assert query.timeColumn, "Please specify timeColumn for source's query with windowed aggregations" streaming_query = get_streaming_query(src) if streaming_query: validate_streaming_query(query, streaming_query) else: streaming_query = query if is_realtime: assert streaming_query.timeColumn, \ "Please specify timeColumn for source's streaming query with realtime streaming enabled" # all sources should select the same columns for i, source in enumerate(sources[1:]): column_set = set(get_columns(source)) column_diff = column_set ^ first_source_columns assert not column_diff, f""" Mismatched columns among sources [1, {i+2}], Difference: {column_diff} """ # all keys should be present in the selected columns unselected_keys = set(keys) - first_source_columns assert not unselected_keys, f""" Keys {unselected_keys}, are unselected in source """ def GroupBy(sources: Union[List[ttypes.Source], ttypes.Source], keys: List[str], aggregations: Optional[Union[List[ttypes.Aggregation], DefaultAggregation]], # env variables - to control params for underlying compute jobs # STREAMING_PARALLELISM, UPLOAD_PARALLELISM etc env: Dict[str, str] = {}, online: bool = DEFAULT_ONLINE, production: bool = DEFAULT_PRODUCTION) -> ttypes.GroupBy: assert sources, "Sources are not specified" if isinstance(sources, ttypes.Source): sources = [sources] has_aggregations = contains_windowed_aggregation(aggregations) is_realtime = online and contains_realtime_source(sources) validate_group_by(sources, keys, has_aggregations, is_realtime) # create a deep copy for case: multiple group_bys use the same sources, # validation_sources will fail after the first group_by updated_sources = copy.deepcopy(sources) # mapping ts with query.timeColumn for src in updated_sources: query = get_query(src) streaming_query = get_streaming_query(src) if src.events: set_ts_as_time_column(query) if is_realtime and streaming_query: set_ts_as_time_column(streaming_query) # entity source elif query.timeColumn: # timeColumn for entity source is optional set_ts_as_time_column(query) if is_realtime and streaming_query: set_ts_as_time_column(streaming_query) query = get_query(updated_sources[0]) columns = get_columns(updated_sources[0]) expanded_aggregations = aggregations # expand default aggregation to actual aggregations if isinstance(aggregations, DefaultAggregation): # TODO: validate that all timeColumns and partitionColumns # are the same in all the sources # column names that need to be excluded from aggregation non_aggregate_columns = keys + [ "ts", query.timeColumn, query.partitionColumn ] aggregate_columns = [ column for column in columns if column not in non_aggregate_columns ] expanded_aggregations = list(_expand_aggregations( aggregate_columns, aggregations )) # flattening dependencies = [dep for source in updated_sources for dep in get_dependencies(source) ] metadata = json.dumps({"dependencies": dependencies, "env": env}) return ttypes.GroupBy( sources=updated_sources, keyColumns=keys, aggregations=expanded_aggregations, metadata=metadata, online=online, production=production )
zipline-ai
/zipline_ai-0.0.19-py3-none-any.whl/zipline/group_by.py
group_by.py
from collections import defaultdict import json import logging import os import shutil import subprocess import tempfile from typing import List, Optional from zipline.repo import JOIN_FOLDER_NAME, \ GROUP_BY_FOLDER_NAME from zipline.logger import get_logger import zipline.repo.extract_objects as eo from zipline.schema.thrift.ttypes import \ GroupBy, LeftOuterJoin from zipline.schema.serializer import \ thrift_simple_json, file2thrift from typing import Dict # Fields that are skipped for diff check. SKIPPED_FIELDS = frozenset(['production', 'metadata', 'frontfill']) def _filter_skipped_fields_from_joinparts(json_obj: Dict, skipped_fields): for join_part in json_obj['rightParts']: group_by = join_part['groupBy'] for field in skipped_fields: group_by.pop(field, None) def is_valid_conf(conf: object): return conf.name is not None def extract_json_confs(obj_class: type, path: str): if os.path.isfile(path): conf = file2thrift(path, obj_class) return [conf] if is_valid_conf(conf) else [] result = [] for sub_root, sub_dirs, sub_files in os.walk(path): for f in sub_files: obj = file2thrift(os.path.join(sub_root, f), obj_class) if is_valid_conf(obj): result.append(obj) return result class ZiplineRepoValidator(object): def __init__(self, zipline_root_path: str, output_root: str, log_level=logging.INFO): self.logger = get_logger(log_level) self.old_objs = defaultdict(dict) # returned key has "group_by." prefix in the name so we remove the prefix. self.zipline_root_path = zipline_root_path self.output_root = output_root self.log_level = log_level self.logger = get_logger(log_level) self.load_objs() def load_objs(self): # we keep the objs in the list not in a set since thrift does not # implement __hash__ for ttypes object. self.old_group_bys = extract_json_confs( GroupBy, os.path.join(self.zipline_root_path, self.output_root, GROUP_BY_FOLDER_NAME)) self.old_joins = extract_json_confs( LeftOuterJoin, os.path.join(self.zipline_root_path, self.output_root, JOIN_FOLDER_NAME)) self.old_objs['GroupBy'] = self.old_group_bys self.old_objs['LeftOuterJoin'] = self.old_joins def _get_old_obj(self, obj_class: type, obj_name: str) -> object: """ returns: materialized version of the obj given the object's name. """ return next( (x for x in self.old_objs[obj_class.__name__] if x.name == obj_name), None ) def _get_old_joins_with_group_by(self, group_by: GroupBy) -> List[LeftOuterJoin]: """ returns: materialized joins including the group_by as dicts. """ return [join for join in self.old_joins if join.rightParts is not None and group_by.name in [rp.groupBy.name for rp in join.rightParts]] def can_skip_materialize(self, obj: object) -> List[str]: """ Check if the object can be skipped to be materialized and return reasons if it can be. """ reasons = [] if isinstance(obj, GroupBy): # GroupBys explicitly marked as offline should not be materialized. if obj.online is False: reasons.append(f"is explicitly marked as offline") # Otherwise group_bys included in online join or are marked explicitly # online itself are materialized. elif not any(join.online for join in self._get_old_joins_with_group_by(obj)) \ and not obj.online: reasons.append(f"is not marked online nor is included in any online join") return reasons def validate_obj(self, obj: object) -> List[str]: """ Validate Zipline API obj against other entities in the repo. returns: list of errors. """ if isinstance(obj, GroupBy): return self._validate_group_by(obj) elif isinstance(obj, LeftOuterJoin): return self._validate_join(obj) return [] def _has_diff( self, obj: object, old_obj: object, skipped_fields=SKIPPED_FIELDS) -> str: new_json = {k: v for k, v in json.loads(thrift_simple_json(obj)).items() if k not in skipped_fields} old_json = {k: v for k, v in json.loads(thrift_simple_json(old_obj)).items() if k not in skipped_fields} if isinstance(obj, LeftOuterJoin): _filter_skipped_fields_from_joinparts(new_json, skipped_fields) _filter_skipped_fields_from_joinparts(old_json, skipped_fields) return new_json != old_json def safe_to_overwrite(self, obj: object) -> bool: """When an object is already materialized as online, it is no more safe to materialize and overwrite the old conf. """ obj_class = type(obj).__name__ old_obj = self._get_old_obj(type(obj), obj.name) return not old_obj or not self._has_diff(obj, old_obj) or not old_obj.online def _validate_join(self, join: LeftOuterJoin) -> List[str]: """ Validate join's status with materialized versions of group_bys included by the join. Returns: list of validation errors. """ included_group_bys = [rp.groupBy for rp in join.rightParts] offline_included_group_bys = [gb.name for gb in included_group_bys if gb.online is False] errors = [] old_group_bys = [group_by for group_by in included_group_bys if self._get_old_obj(GroupBy, group_by.name)] non_prod_old_group_bys = [group_by.name for group_by in old_group_bys if group_by.production is False] if join.production and non_prod_old_group_bys: errors.append("join {} is production but includes " "the following non production group_bys: {}".format( join.name, ', '.join(non_prod_old_group_bys))) if join.online: if offline_included_group_bys: errors.append("join {} is online but includes " "the following offline group_bys: {}".format( join.name, ', '.join(offline_included_group_bys))) # If join is online we materialize the underlying group bys are materialized # So we need to check if they are valid. group_by_errors = [self._validate_group_by(group_by) for group_by in included_group_bys] errors += [f"join {join.name}'s underlying {error}" for errors in group_by_errors for error in errors] return errors def _validate_group_by(self, group_by: GroupBy) -> List[str]: """ Validate group_by's status with materialized versions of joins including the group_by. Return: List of validation errors. """ joins = self._get_old_joins_with_group_by(group_by) online_joins = [join.name for join in joins if join.online is True] prod_joins = [join.name for join in joins if join.production is True] errors = [] # group by that are marked explicitly offline should not be present in # materialized online joins. if group_by.online is False and online_joins: errors.append( "group_by {} is explicitly marked offline but included in " "the following online joins: {}".format( group_by.name, ", ".join(online_joins))) # group by that are marked explicitly non-production should not be # present in materialized production joins. if prod_joins: if group_by.production is False: errors.append("group_by {} is explicitly marked as non-production " "but included in the following production joins: {}".format( group_by.name, ', '.join(prod_joins))) # if the group by is included in any of materialized production join, # set it to production in the materialized output. else: group_by.production = True return errors
zipline-ai
/zipline_ai-0.0.19-py3-none-any.whl/zipline/repo/validator.py
validator.py
import logging import os import click import zipline.repo.extract_objects as eo from zipline.repo import JOIN_FOLDER_NAME, \ GROUP_BY_FOLDER_NAME, STAGING_QUERY_FOLDER_NAME from zipline.repo.validator import ZiplineRepoValidator from zipline.schema.serializer import thrift_simple_json_protected from zipline.schema.thrift.ttypes import GroupBy, LeftOuterJoin, StagingQuery # This is set in the main function - # from command line or from env variable during invocation FOLDER_NAME_TO_CLASS = { GROUP_BY_FOLDER_NAME: GroupBy, JOIN_FOLDER_NAME: LeftOuterJoin, STAGING_QUERY_FOLDER_NAME: StagingQuery, } def get_folder_name_from_class_name(class_name): return {v.__name__: k for k, v in FOLDER_NAME_TO_CLASS.items()}[class_name] @click.command() @click.option( '--zipline_root', envvar='ZIPLINE_ROOT', help='Path to the root zipline folder', default=False) @click.option( '--input_path', help='Relative Path to the root zipline folder, which contains the objects to be serialized', required=True) @click.option( '--output_root', help='Relative Path to the root zipline folder, to where the serialized output should be written', default="production") @click.option( '--debug', help='debug mode', is_flag=True) @click.option( '--force-overwrite', help='Force overwriting existing materialized conf.', is_flag=True) def extract_and_convert(zipline_root, input_path, output_root, debug, force_overwrite): """ CLI tool to convert Python zipline GroupBy's, Joins and Staging queries into their thrift representation. The materialized objects are what will be submitted to spark jobs - driven by airflow, or by manual user testing. """ if debug: log_level = logging.DEBUG else: log_level = logging.INFO if not zipline_root: zipline_root = os.getcwd() _print_highlighted("Using zipline root path", zipline_root) zipline_root_path = os.path.expanduser(zipline_root) obj_folder_name = input_path.split('/', 1)[0] obj_class = FOLDER_NAME_TO_CLASS[obj_folder_name] full_input_path = os.path.join(zipline_root_path, input_path) _print_highlighted(f"Input {obj_folder_name} from", full_input_path) assert os.path.exists(full_input_path), f"Input Path: {full_input_path} doesn't exist" if os.path.isdir(full_input_path): results = eo.from_folder(zipline_root_path, full_input_path, obj_class, log_level=log_level) elif os.path.isfile(full_input_path): assert full_input_path.endswith(".py"), f"Input Path: {input_path} isn't a python file" results = eo.from_file(zipline_root_path, full_input_path, obj_class, log_level=log_level) else: raise Exception(f"Input Path: {full_input_path}, isn't a file or a folder") validator = ZiplineRepoValidator(zipline_root_path, output_root, log_level=log_level) extra_online_group_bys = {} num_written_objs = 0 full_output_root = os.path.join(zipline_root_path, output_root) for name, obj in results.items(): if _write_obj(full_output_root, validator, name, obj, log_level, force_overwrite): num_written_objs += 1 # In case of online join, we need to materialize the underlying online group_bys. if obj_class is LeftOuterJoin and obj.online: online_group_bys = {rt.groupBy.name: rt.groupBy for rt in obj.rightParts} extra_online_group_bys.update(online_group_bys) if extra_online_group_bys: num_written_group_bys = 0 # load materialized joins to validate the additional group_bys against. validator.load_objs() for name, obj in extra_online_group_bys.items(): if _write_obj(full_output_root, validator, name, obj, log_level, force_overwrite): num_written_group_bys += 1 print(f"Successfully wrote {num_written_group_bys} online GroupBy objects to {full_output_root}") print(f"Successfully wrote {num_written_objs} {(obj_class).__name__} objects to {full_output_root}") def _write_obj(full_output_root: str, validator: ZiplineRepoValidator, name: str, obj: object, log_level: int, force_overwrite: bool) -> bool: """ Returns True if the object is successfully written. """ team_name = name.split(".")[0] obj_class = type(obj) class_name = obj_class.__name__ name = name.split('.', 1)[1] _print_highlighted(f"{class_name} Team", team_name) _print_highlighted(f"{class_name} Name", name) obj_folder_name = get_folder_name_from_class_name(class_name) output_path = os.path.join(full_output_root, obj_folder_name, team_name) output_file = os.path.join(output_path, name) skip_reasons = validator.can_skip_materialize(obj) if skip_reasons: reasons = ', '.join(skip_reasons) _print_warning(f"Skipping {class_name} {name}: {reasons}") if os.path.exists(output_file): _print_warning(f"old file exists for skipped config: {output_file}") return False validation_errors = validator.validate_obj(obj) if validation_errors: _print_error(f"Could not write {class_name} {name}", ', '.join(validation_errors)) return False if force_overwrite: _print_warning(f"force overwrite {class_name} {name}") elif not validator.safe_to_overwrite(obj): _print_warning(f"cannot overwrite {class_name} {name} with existing online conf") return False _write_obj_as_json(name, obj, output_file, obj_class) return True def _write_obj_as_json(name: str, obj: object, output_file: str, obj_class: type): class_name = obj_class.__name__ output_folder = os.path.dirname(output_file) if not os.path.exists(output_folder): os.makedirs(output_folder) assert os.path.isdir(output_folder), f"{output_folder} isn't a folder." assert hasattr(obj, "name"), f"Can't serialize objects without the name attribute for object {name}" with open(output_file, "w") as f: _print_highlighted(f"Writing {class_name} to", output_file) f.write(thrift_simple_json_protected(obj, obj_class)) def _print_highlighted(left, right): # print in blue and bold print(f"{left:>25} - \033[34m\033[1m{right}\033[00m") def _print_error(left, right): # print in red. print(f"\033[91m{left:>25} - \033[1m{right}\033[00m") def _print_warning(string): # print in yellow. print(f"\033[93m{string}\033[00m") if __name__ == '__main__': extract_and_convert()
zipline-ai
/zipline_ai-0.0.19-py3-none-any.whl/zipline/repo/materialize.py
materialize.py
import json from thrift.Thrift import TType from thrift.protocol.TJSONProtocol import TSimpleJSONProtocolFactory, TJSONProtocolFactory from thrift import TSerialization class ThriftJSONDecoder(json.JSONDecoder): def __init__(self, *args, **kwargs): self._thrift_class = kwargs.pop('thrift_class') super(ThriftJSONDecoder, self).__init__(*args, **kwargs) def decode(self, json_str): if isinstance(json_str, dict): dct = json_str else: dct = super(ThriftJSONDecoder, self).decode(json_str) return self._convert(dct, TType.STRUCT, (self._thrift_class, self._thrift_class.thrift_spec)) def _convert(self, val, ttype, ttype_info): if ttype == TType.STRUCT: (thrift_class, thrift_spec) = ttype_info ret = thrift_class() for field in thrift_spec: if field is None: continue (_, field_ttype, field_name, field_ttype_info, dummy) = field if field_name not in val: continue converted_val = self._convert(val[field_name], field_ttype, field_ttype_info) setattr(ret, field_name, converted_val) elif ttype == TType.LIST: (element_ttype, element_ttype_info, _) = ttype_info ret = [self._convert(x, element_ttype, element_ttype_info) for x in val] elif ttype == TType.SET: (element_ttype, element_ttype_info) = ttype_info ret = set([self._convert(x, element_ttype, element_ttype_info) for x in val]) elif ttype == TType.MAP: (key_ttype, key_ttype_info, val_ttype, val_ttype_info, _) = ttype_info ret = dict([(self._convert(k, key_ttype, key_ttype_info), self._convert(v, val_ttype, val_ttype_info)) for (k, v) in val.items()]) elif ttype == TType.STRING: ret = str(val) elif ttype == TType.DOUBLE: ret = float(val) elif ttype == TType.I64: ret = int(val) elif ttype == TType.I32 or ttype == TType.I16 or ttype == TType.BYTE: ret = int(val) elif ttype == TType.BOOL: ret = bool(val) else: raise TypeError('Unrecognized thrift field type: %d' % ttype) return ret def json2thrift(json_str, thrift_class): return json.loads(json_str, cls=ThriftJSONDecoder, thrift_class=thrift_class) def file2thrift(path, thrift_class): with open(path, 'r') as file: return json2thrift(file.read(), thrift_class) def thrift_json(obj): return TSerialization.serialize(obj, protocol_factory=TJSONProtocolFactory()) def thrift_simple_json(obj): simple = TSerialization.serialize(obj, protocol_factory=TSimpleJSONProtocolFactory()) parsed = json.loads(simple) return json.dumps(parsed, indent=2) def thrift_simple_json_protected(obj, obj_type): serialized = thrift_simple_json(obj) # ensure that reversal works - we will use this reversal during deployment thrift_obj = json.loads(serialized, cls=ThriftJSONDecoder, thrift_class=obj_type) actual = thrift_simple_json(thrift_obj) assert actual == serialized, f"""Serialization can't be reversed Expected: {serialized} *************** Actual: {actual} """ return serialized
zipline-ai
/zipline_ai-0.0.19-py3-none-any.whl/zipline/schema/serializer.py
serializer.py
from thrift.Thrift import TType, TMessageType, TFrozenDict, TException, TApplicationException from thrift.protocol.TProtocol import TProtocolException from thrift.TRecursive import fix_spec import sys from thrift.transport import TTransport all_structs = [] class PartitionStrategy(object): INCREMENTAL = 0 CUMULATIVE = 1 _VALUES_TO_NAMES = { 0: "INCREMENTAL", 1: "CUMULATIVE", } _NAMES_TO_VALUES = { "INCREMENTAL": 0, "CUMULATIVE": 1, } class Operation(object): MIN = 0 MAX = 1 FIRST = 2 LAST = 3 TOP = 4 BOTTOM = 5 APPROX_UNIQUE_COUNT = 6 COUNT = 7 SUM = 8 MEAN = 9 VARIANCE = 10 SKEW = 11 KURTOSIS = 12 APPROX_PERCENTILE = 13 _VALUES_TO_NAMES = { 0: "MIN", 1: "MAX", 2: "FIRST", 3: "LAST", 4: "TOP", 5: "BOTTOM", 6: "APPROX_UNIQUE_COUNT", 7: "COUNT", 8: "SUM", 9: "MEAN", 10: "VARIANCE", 11: "SKEW", 12: "KURTOSIS", 13: "APPROX_PERCENTILE", } _NAMES_TO_VALUES = { "MIN": 0, "MAX": 1, "FIRST": 2, "LAST": 3, "TOP": 4, "BOTTOM": 5, "APPROX_UNIQUE_COUNT": 6, "COUNT": 7, "SUM": 8, "MEAN": 9, "VARIANCE": 10, "SKEW": 11, "KURTOSIS": 12, "APPROX_PERCENTILE": 13, } class TimeUnit(object): SECONDS = 0 MINUTES = 1 HOURS = 2 DAYS = 3 WEEKS = 4 YEARS = 5 _VALUES_TO_NAMES = { 0: "SECONDS", 1: "MINUTES", 2: "HOURS", 3: "DAYS", 4: "WEEKS", 5: "YEARS", } _NAMES_TO_VALUES = { "SECONDS": 0, "MINUTES": 1, "HOURS": 2, "DAYS": 3, "WEEKS": 4, "YEARS": 5, } class Query(object): """ Attributes: - select - where - startPartition - endPartition - timeColumn - partitionColumn - partitionFormat - setups - ingestionTimeColumn - reversalColumn - dependencies """ def __init__(self, select=None, where=None, startPartition=None, endPartition=None, timeColumn=None, partitionColumn="ds", partitionFormat="yyyy-MM-dd", setups=[ ], ingestionTimeColumn=None, reversalColumn=None, dependencies=[ ],): self.select = select self.where = where self.startPartition = startPartition self.endPartition = endPartition self.timeColumn = timeColumn self.partitionColumn = partitionColumn self.partitionFormat = partitionFormat if setups is self.thrift_spec[8][4]: setups = [ ] self.setups = setups self.ingestionTimeColumn = ingestionTimeColumn self.reversalColumn = reversalColumn if dependencies is self.thrift_spec[11][4]: dependencies = [ ] self.dependencies = dependencies def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.MAP: self.select = {} (_ktype1, _vtype2, _size0) = iprot.readMapBegin() for _i4 in range(_size0): _key5 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() _val6 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() self.select[_key5] = _val6 iprot.readMapEnd() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.where = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.startPartition = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRING: self.endPartition = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRING: self.timeColumn = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.STRING: self.partitionColumn = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 7: if ftype == TType.STRING: self.partitionFormat = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 8: if ftype == TType.LIST: self.setups = [] (_etype10, _size7) = iprot.readListBegin() for _i11 in range(_size7): _elem12 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() self.setups.append(_elem12) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 9: if ftype == TType.STRING: self.ingestionTimeColumn = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 10: if ftype == TType.STRING: self.reversalColumn = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 11: if ftype == TType.LIST: self.dependencies = [] (_etype16, _size13) = iprot.readListBegin() for _i17 in range(_size13): _elem18 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() self.dependencies.append(_elem18) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('Query') if self.select is not None: oprot.writeFieldBegin('select', TType.MAP, 1) oprot.writeMapBegin(TType.STRING, TType.STRING, len(self.select)) for kiter19, viter20 in self.select.items(): oprot.writeString(kiter19.encode('utf-8') if sys.version_info[0] == 2 else kiter19) oprot.writeString(viter20.encode('utf-8') if sys.version_info[0] == 2 else viter20) oprot.writeMapEnd() oprot.writeFieldEnd() if self.where is not None: oprot.writeFieldBegin('where', TType.STRING, 2) oprot.writeString(self.where.encode('utf-8') if sys.version_info[0] == 2 else self.where) oprot.writeFieldEnd() if self.startPartition is not None: oprot.writeFieldBegin('startPartition', TType.STRING, 3) oprot.writeString(self.startPartition.encode('utf-8') if sys.version_info[0] == 2 else self.startPartition) oprot.writeFieldEnd() if self.endPartition is not None: oprot.writeFieldBegin('endPartition', TType.STRING, 4) oprot.writeString(self.endPartition.encode('utf-8') if sys.version_info[0] == 2 else self.endPartition) oprot.writeFieldEnd() if self.timeColumn is not None: oprot.writeFieldBegin('timeColumn', TType.STRING, 5) oprot.writeString(self.timeColumn.encode('utf-8') if sys.version_info[0] == 2 else self.timeColumn) oprot.writeFieldEnd() if self.partitionColumn is not None: oprot.writeFieldBegin('partitionColumn', TType.STRING, 6) oprot.writeString(self.partitionColumn.encode('utf-8') if sys.version_info[0] == 2 else self.partitionColumn) oprot.writeFieldEnd() if self.partitionFormat is not None: oprot.writeFieldBegin('partitionFormat', TType.STRING, 7) oprot.writeString(self.partitionFormat.encode('utf-8') if sys.version_info[0] == 2 else self.partitionFormat) oprot.writeFieldEnd() if self.setups is not None: oprot.writeFieldBegin('setups', TType.LIST, 8) oprot.writeListBegin(TType.STRING, len(self.setups)) for iter21 in self.setups: oprot.writeString(iter21.encode('utf-8') if sys.version_info[0] == 2 else iter21) oprot.writeListEnd() oprot.writeFieldEnd() if self.ingestionTimeColumn is not None: oprot.writeFieldBegin('ingestionTimeColumn', TType.STRING, 9) oprot.writeString(self.ingestionTimeColumn.encode('utf-8') if sys.version_info[0] == 2 else self.ingestionTimeColumn) oprot.writeFieldEnd() if self.reversalColumn is not None: oprot.writeFieldBegin('reversalColumn', TType.STRING, 10) oprot.writeString(self.reversalColumn.encode('utf-8') if sys.version_info[0] == 2 else self.reversalColumn) oprot.writeFieldEnd() if self.dependencies is not None: oprot.writeFieldBegin('dependencies', TType.LIST, 11) oprot.writeListBegin(TType.STRING, len(self.dependencies)) for iter22 in self.dependencies: oprot.writeString(iter22.encode('utf-8') if sys.version_info[0] == 2 else iter22) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class StagingQuery(object): """ StagingQuery can be used to express free form ETL (including joins/group by) within Zipline. Simple column level transformations that don't require joins or aggregations should be expressed as a `Query`. Attributes: - name - query - startDate - dependencies - querySetupCommands """ def __init__(self, name=None, query=None, startDate=None, dependencies=None, querySetupCommands=None,): self.name = name self.query = query self.startDate = startDate self.dependencies = dependencies self.querySetupCommands = querySetupCommands def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.query = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.startDate = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.LIST: self.dependencies = [] (_etype26, _size23) = iprot.readListBegin() for _i27 in range(_size23): _elem28 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() self.dependencies.append(_elem28) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.LIST: self.querySetupCommands = [] (_etype32, _size29) = iprot.readListBegin() for _i33 in range(_size29): _elem34 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() self.querySetupCommands.append(_elem34) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('StagingQuery') if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8') if sys.version_info[0] == 2 else self.name) oprot.writeFieldEnd() if self.query is not None: oprot.writeFieldBegin('query', TType.STRING, 2) oprot.writeString(self.query.encode('utf-8') if sys.version_info[0] == 2 else self.query) oprot.writeFieldEnd() if self.startDate is not None: oprot.writeFieldBegin('startDate', TType.STRING, 3) oprot.writeString(self.startDate.encode('utf-8') if sys.version_info[0] == 2 else self.startDate) oprot.writeFieldEnd() if self.dependencies is not None: oprot.writeFieldBegin('dependencies', TType.LIST, 4) oprot.writeListBegin(TType.STRING, len(self.dependencies)) for iter35 in self.dependencies: oprot.writeString(iter35.encode('utf-8') if sys.version_info[0] == 2 else iter35) oprot.writeListEnd() oprot.writeFieldEnd() if self.querySetupCommands is not None: oprot.writeFieldBegin('querySetupCommands', TType.LIST, 5) oprot.writeListBegin(TType.STRING, len(self.querySetupCommands)) for iter36 in self.querySetupCommands: oprot.writeString(iter36.encode('utf-8') if sys.version_info[0] == 2 else iter36) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class EventSource(object): """ The underlying data that generates your feature is an event with a logical timestamp for when it occurred in the real world, and the event is immutable in the underlying source. Attributes: - table - topic - query - partitionStrategy - streamingQuery """ def __init__(self, table=None, topic=None, query=None, partitionStrategy=0, streamingQuery=None,): self.table = table self.topic = topic self.query = query self.partitionStrategy = partitionStrategy self.streamingQuery = streamingQuery def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.table = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.topic = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRUCT: self.query = Query() self.query.read(iprot) else: iprot.skip(ftype) elif fid == 4: if ftype == TType.I32: self.partitionStrategy = iprot.readI32() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRUCT: self.streamingQuery = Query() self.streamingQuery.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('EventSource') if self.table is not None: oprot.writeFieldBegin('table', TType.STRING, 1) oprot.writeString(self.table.encode('utf-8') if sys.version_info[0] == 2 else self.table) oprot.writeFieldEnd() if self.topic is not None: oprot.writeFieldBegin('topic', TType.STRING, 2) oprot.writeString(self.topic.encode('utf-8') if sys.version_info[0] == 2 else self.topic) oprot.writeFieldEnd() if self.query is not None: oprot.writeFieldBegin('query', TType.STRUCT, 3) self.query.write(oprot) oprot.writeFieldEnd() if self.partitionStrategy is not None: oprot.writeFieldBegin('partitionStrategy', TType.I32, 4) oprot.writeI32(self.partitionStrategy) oprot.writeFieldEnd() if self.streamingQuery is not None: oprot.writeFieldBegin('streamingQuery', TType.STRUCT, 5) self.streamingQuery.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class EntitySource(object): """ The underlying data that generates your feature is an entity that exists across time - as opposed to an event that occurs at a point in time. Each partition of underlying data contains a snapshot of these entities and their values as of that day. "Dim" DB snapshots are the Quintessential use-case for this source. Attributes: - snapshotTable - mutationTable - mutationTopic - query - streamingQuery """ def __init__(self, snapshotTable=None, mutationTable=None, mutationTopic=None, query=None, streamingQuery=None,): self.snapshotTable = snapshotTable self.mutationTable = mutationTable self.mutationTopic = mutationTopic self.query = query self.streamingQuery = streamingQuery def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.snapshotTable = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.mutationTable = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.mutationTopic = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: self.query = Query() self.query.read(iprot) else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRUCT: self.streamingQuery = Query() self.streamingQuery.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('EntitySource') if self.snapshotTable is not None: oprot.writeFieldBegin('snapshotTable', TType.STRING, 1) oprot.writeString(self.snapshotTable.encode('utf-8') if sys.version_info[0] == 2 else self.snapshotTable) oprot.writeFieldEnd() if self.mutationTable is not None: oprot.writeFieldBegin('mutationTable', TType.STRING, 2) oprot.writeString(self.mutationTable.encode('utf-8') if sys.version_info[0] == 2 else self.mutationTable) oprot.writeFieldEnd() if self.mutationTopic is not None: oprot.writeFieldBegin('mutationTopic', TType.STRING, 3) oprot.writeString(self.mutationTopic.encode('utf-8') if sys.version_info[0] == 2 else self.mutationTopic) oprot.writeFieldEnd() if self.query is not None: oprot.writeFieldBegin('query', TType.STRUCT, 4) self.query.write(oprot) oprot.writeFieldEnd() if self.streamingQuery is not None: oprot.writeFieldBegin('streamingQuery', TType.STRUCT, 5) self.streamingQuery.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class Source(object): """ Attributes: - events - entities """ def __init__(self, events=None, entities=None,): self.events = events self.entities = entities def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.events = EventSource() self.events.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.entities = EntitySource() self.entities.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('Source') if self.events is not None: oprot.writeFieldBegin('events', TType.STRUCT, 1) self.events.write(oprot) oprot.writeFieldEnd() if self.entities is not None: oprot.writeFieldBegin('entities', TType.STRUCT, 2) self.entities.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class Window(object): """ Attributes: - length - timeUnit """ def __init__(self, length=None, timeUnit=None,): self.length = length self.timeUnit = timeUnit def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I32: self.length = iprot.readI32() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.timeUnit = iprot.readI32() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('Window') if self.length is not None: oprot.writeFieldBegin('length', TType.I32, 1) oprot.writeI32(self.length) oprot.writeFieldEnd() if self.timeUnit is not None: oprot.writeFieldBegin('timeUnit', TType.I32, 2) oprot.writeI32(self.timeUnit) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class Aggregation(object): """ Attributes: - name - inputColumn - operation - constructorJson - bucketColumns - windows - documentation """ def __init__(self, name=None, inputColumn=None, operation=None, constructorJson=None, bucketColumns=None, windows=None, documentation=None,): self.name = name self.inputColumn = inputColumn self.operation = operation self.constructorJson = constructorJson self.bucketColumns = bucketColumns self.windows = windows self.documentation = documentation def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.inputColumn = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.I32: self.operation = iprot.readI32() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRING: self.constructorJson = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.LIST: self.bucketColumns = [] (_etype40, _size37) = iprot.readListBegin() for _i41 in range(_size37): _elem42 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() self.bucketColumns.append(_elem42) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.LIST: self.windows = [] (_etype46, _size43) = iprot.readListBegin() for _i47 in range(_size43): _elem48 = Window() _elem48.read(iprot) self.windows.append(_elem48) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 7: if ftype == TType.STRING: self.documentation = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('Aggregation') if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8') if sys.version_info[0] == 2 else self.name) oprot.writeFieldEnd() if self.inputColumn is not None: oprot.writeFieldBegin('inputColumn', TType.STRING, 2) oprot.writeString(self.inputColumn.encode('utf-8') if sys.version_info[0] == 2 else self.inputColumn) oprot.writeFieldEnd() if self.operation is not None: oprot.writeFieldBegin('operation', TType.I32, 3) oprot.writeI32(self.operation) oprot.writeFieldEnd() if self.constructorJson is not None: oprot.writeFieldBegin('constructorJson', TType.STRING, 4) oprot.writeString(self.constructorJson.encode('utf-8') if sys.version_info[0] == 2 else self.constructorJson) oprot.writeFieldEnd() if self.bucketColumns is not None: oprot.writeFieldBegin('bucketColumns', TType.LIST, 5) oprot.writeListBegin(TType.STRING, len(self.bucketColumns)) for iter49 in self.bucketColumns: oprot.writeString(iter49.encode('utf-8') if sys.version_info[0] == 2 else iter49) oprot.writeListEnd() oprot.writeFieldEnd() if self.windows is not None: oprot.writeFieldBegin('windows', TType.LIST, 6) oprot.writeListBegin(TType.STRUCT, len(self.windows)) for iter50 in self.windows: iter50.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.documentation is not None: oprot.writeFieldBegin('documentation', TType.STRING, 7) oprot.writeString(self.documentation.encode('utf-8') if sys.version_info[0] == 2 else self.documentation) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GroupBy(object): """ Attributes: - name - sources - keyColumns - aggregations - metadata - online - production """ def __init__(self, name=None, sources=None, keyColumns=None, aggregations=None, metadata=None, online=None, production=None,): self.name = name self.sources = sources self.keyColumns = keyColumns self.aggregations = aggregations self.metadata = metadata self.online = online self.production = production def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.LIST: self.sources = [] (_etype54, _size51) = iprot.readListBegin() for _i55 in range(_size51): _elem56 = Source() _elem56.read(iprot) self.sources.append(_elem56) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.keyColumns = [] (_etype60, _size57) = iprot.readListBegin() for _i61 in range(_size57): _elem62 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() self.keyColumns.append(_elem62) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.LIST: self.aggregations = [] (_etype66, _size63) = iprot.readListBegin() for _i67 in range(_size63): _elem68 = Aggregation() _elem68.read(iprot) self.aggregations.append(_elem68) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRING: self.metadata = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.BOOL: self.online = iprot.readBool() else: iprot.skip(ftype) elif fid == 7: if ftype == TType.BOOL: self.production = iprot.readBool() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('GroupBy') if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8') if sys.version_info[0] == 2 else self.name) oprot.writeFieldEnd() if self.sources is not None: oprot.writeFieldBegin('sources', TType.LIST, 2) oprot.writeListBegin(TType.STRUCT, len(self.sources)) for iter69 in self.sources: iter69.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.keyColumns is not None: oprot.writeFieldBegin('keyColumns', TType.LIST, 3) oprot.writeListBegin(TType.STRING, len(self.keyColumns)) for iter70 in self.keyColumns: oprot.writeString(iter70.encode('utf-8') if sys.version_info[0] == 2 else iter70) oprot.writeListEnd() oprot.writeFieldEnd() if self.aggregations is not None: oprot.writeFieldBegin('aggregations', TType.LIST, 4) oprot.writeListBegin(TType.STRUCT, len(self.aggregations)) for iter71 in self.aggregations: iter71.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.metadata is not None: oprot.writeFieldBegin('metadata', TType.STRING, 5) oprot.writeString(self.metadata.encode('utf-8') if sys.version_info[0] == 2 else self.metadata) oprot.writeFieldEnd() if self.online is not None: oprot.writeFieldBegin('online', TType.BOOL, 6) oprot.writeBool(self.online) oprot.writeFieldEnd() if self.production is not None: oprot.writeFieldBegin('production', TType.BOOL, 7) oprot.writeBool(self.production) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class AggregationSelector(object): """ Attributes: - name - windows """ def __init__(self, name=None, windows=None,): self.name = name self.windows = windows def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.LIST: self.windows = [] (_etype75, _size72) = iprot.readListBegin() for _i76 in range(_size72): _elem77 = Window() _elem77.read(iprot) self.windows.append(_elem77) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('AggregationSelector') if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8') if sys.version_info[0] == 2 else self.name) oprot.writeFieldEnd() if self.windows is not None: oprot.writeFieldBegin('windows', TType.LIST, 2) oprot.writeListBegin(TType.STRUCT, len(self.windows)) for iter78 in self.windows: iter78.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class JoinPart(object): """ Attributes: - groupBy - keyMapping - selectors - prefix """ def __init__(self, groupBy=None, keyMapping=None, selectors=None, prefix=None,): self.groupBy = groupBy self.keyMapping = keyMapping self.selectors = selectors self.prefix = prefix def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.groupBy = GroupBy() self.groupBy.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.MAP: self.keyMapping = {} (_ktype80, _vtype81, _size79) = iprot.readMapBegin() for _i83 in range(_size79): _key84 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() _val85 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() self.keyMapping[_key84] = _val85 iprot.readMapEnd() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.selectors = [] (_etype89, _size86) = iprot.readListBegin() for _i90 in range(_size86): _elem91 = AggregationSelector() _elem91.read(iprot) self.selectors.append(_elem91) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRING: self.prefix = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('JoinPart') if self.groupBy is not None: oprot.writeFieldBegin('groupBy', TType.STRUCT, 1) self.groupBy.write(oprot) oprot.writeFieldEnd() if self.keyMapping is not None: oprot.writeFieldBegin('keyMapping', TType.MAP, 2) oprot.writeMapBegin(TType.STRING, TType.STRING, len(self.keyMapping)) for kiter92, viter93 in self.keyMapping.items(): oprot.writeString(kiter92.encode('utf-8') if sys.version_info[0] == 2 else kiter92) oprot.writeString(viter93.encode('utf-8') if sys.version_info[0] == 2 else viter93) oprot.writeMapEnd() oprot.writeFieldEnd() if self.selectors is not None: oprot.writeFieldBegin('selectors', TType.LIST, 3) oprot.writeListBegin(TType.STRUCT, len(self.selectors)) for iter94 in self.selectors: iter94.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.prefix is not None: oprot.writeFieldBegin('prefix', TType.STRING, 4) oprot.writeString(self.prefix.encode('utf-8') if sys.version_info[0] == 2 else self.prefix) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class LeftOuterJoin(object): """ Attributes: - name - left - rightParts - metadata - online - production - frontfill """ def __init__(self, name=None, left=None, rightParts=None, metadata=None, online=False, production=False, frontfill=True,): self.name = name self.left = left self.rightParts = rightParts self.metadata = metadata self.online = online self.production = production self.frontfill = frontfill def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.left = Source() self.left.read(iprot) else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.rightParts = [] (_etype98, _size95) = iprot.readListBegin() for _i99 in range(_size95): _elem100 = JoinPart() _elem100.read(iprot) self.rightParts.append(_elem100) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRING: self.metadata = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.BOOL: self.online = iprot.readBool() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.BOOL: self.production = iprot.readBool() else: iprot.skip(ftype) elif fid == 7: if ftype == TType.BOOL: self.frontfill = iprot.readBool() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('LeftOuterJoin') if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8') if sys.version_info[0] == 2 else self.name) oprot.writeFieldEnd() if self.left is not None: oprot.writeFieldBegin('left', TType.STRUCT, 2) self.left.write(oprot) oprot.writeFieldEnd() if self.rightParts is not None: oprot.writeFieldBegin('rightParts', TType.LIST, 3) oprot.writeListBegin(TType.STRUCT, len(self.rightParts)) for iter101 in self.rightParts: iter101.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.metadata is not None: oprot.writeFieldBegin('metadata', TType.STRING, 4) oprot.writeString(self.metadata.encode('utf-8') if sys.version_info[0] == 2 else self.metadata) oprot.writeFieldEnd() if self.online is not None: oprot.writeFieldBegin('online', TType.BOOL, 5) oprot.writeBool(self.online) oprot.writeFieldEnd() if self.production is not None: oprot.writeFieldBegin('production', TType.BOOL, 6) oprot.writeBool(self.production) oprot.writeFieldEnd() if self.frontfill is not None: oprot.writeFieldBegin('frontfill', TType.BOOL, 7) oprot.writeBool(self.frontfill) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) all_structs.append(Query) Query.thrift_spec = ( None, # 0 (1, TType.MAP, 'select', (TType.STRING, 'UTF8', TType.STRING, 'UTF8', False), None, ), # 1 (2, TType.STRING, 'where', 'UTF8', None, ), # 2 (3, TType.STRING, 'startPartition', 'UTF8', None, ), # 3 (4, TType.STRING, 'endPartition', 'UTF8', None, ), # 4 (5, TType.STRING, 'timeColumn', 'UTF8', None, ), # 5 (6, TType.STRING, 'partitionColumn', 'UTF8', "ds", ), # 6 (7, TType.STRING, 'partitionFormat', 'UTF8', "yyyy-MM-dd", ), # 7 (8, TType.LIST, 'setups', (TType.STRING, 'UTF8', False), [ ], ), # 8 (9, TType.STRING, 'ingestionTimeColumn', 'UTF8', None, ), # 9 (10, TType.STRING, 'reversalColumn', 'UTF8', None, ), # 10 (11, TType.LIST, 'dependencies', (TType.STRING, 'UTF8', False), [ ], ), # 11 ) all_structs.append(StagingQuery) StagingQuery.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', 'UTF8', None, ), # 1 (2, TType.STRING, 'query', 'UTF8', None, ), # 2 (3, TType.STRING, 'startDate', 'UTF8', None, ), # 3 (4, TType.LIST, 'dependencies', (TType.STRING, 'UTF8', False), None, ), # 4 (5, TType.LIST, 'querySetupCommands', (TType.STRING, 'UTF8', False), None, ), # 5 ) all_structs.append(EventSource) EventSource.thrift_spec = ( None, # 0 (1, TType.STRING, 'table', 'UTF8', None, ), # 1 (2, TType.STRING, 'topic', 'UTF8', None, ), # 2 (3, TType.STRUCT, 'query', [Query, None], None, ), # 3 (4, TType.I32, 'partitionStrategy', None, 0, ), # 4 (5, TType.STRUCT, 'streamingQuery', [Query, None], None, ), # 5 ) all_structs.append(EntitySource) EntitySource.thrift_spec = ( None, # 0 (1, TType.STRING, 'snapshotTable', 'UTF8', None, ), # 1 (2, TType.STRING, 'mutationTable', 'UTF8', None, ), # 2 (3, TType.STRING, 'mutationTopic', 'UTF8', None, ), # 3 (4, TType.STRUCT, 'query', [Query, None], None, ), # 4 (5, TType.STRUCT, 'streamingQuery', [Query, None], None, ), # 5 ) all_structs.append(Source) Source.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'events', [EventSource, None], None, ), # 1 (2, TType.STRUCT, 'entities', [EntitySource, None], None, ), # 2 ) all_structs.append(Window) Window.thrift_spec = ( None, # 0 (1, TType.I32, 'length', None, None, ), # 1 (2, TType.I32, 'timeUnit', None, None, ), # 2 ) all_structs.append(Aggregation) Aggregation.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', 'UTF8', None, ), # 1 (2, TType.STRING, 'inputColumn', 'UTF8', None, ), # 2 (3, TType.I32, 'operation', None, None, ), # 3 (4, TType.STRING, 'constructorJson', 'UTF8', None, ), # 4 (5, TType.LIST, 'bucketColumns', (TType.STRING, 'UTF8', False), None, ), # 5 (6, TType.LIST, 'windows', (TType.STRUCT, [Window, None], False), None, ), # 6 (7, TType.STRING, 'documentation', 'UTF8', None, ), # 7 ) all_structs.append(GroupBy) GroupBy.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', 'UTF8', None, ), # 1 (2, TType.LIST, 'sources', (TType.STRUCT, [Source, None], False), None, ), # 2 (3, TType.LIST, 'keyColumns', (TType.STRING, 'UTF8', False), None, ), # 3 (4, TType.LIST, 'aggregations', (TType.STRUCT, [Aggregation, None], False), None, ), # 4 (5, TType.STRING, 'metadata', 'UTF8', None, ), # 5 (6, TType.BOOL, 'online', None, None, ), # 6 (7, TType.BOOL, 'production', None, None, ), # 7 ) all_structs.append(AggregationSelector) AggregationSelector.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', 'UTF8', None, ), # 1 (2, TType.LIST, 'windows', (TType.STRUCT, [Window, None], False), None, ), # 2 ) all_structs.append(JoinPart) JoinPart.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'groupBy', [GroupBy, None], None, ), # 1 (2, TType.MAP, 'keyMapping', (TType.STRING, 'UTF8', TType.STRING, 'UTF8', False), None, ), # 2 (3, TType.LIST, 'selectors', (TType.STRUCT, [AggregationSelector, None], False), None, ), # 3 (4, TType.STRING, 'prefix', 'UTF8', None, ), # 4 ) all_structs.append(LeftOuterJoin) LeftOuterJoin.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', 'UTF8', None, ), # 1 (2, TType.STRUCT, 'left', [Source, None], None, ), # 2 (3, TType.LIST, 'rightParts', (TType.STRUCT, [JoinPart, None], False), None, ), # 3 (4, TType.STRING, 'metadata', 'UTF8', None, ), # 4 (5, TType.BOOL, 'online', None, False, ), # 5 (6, TType.BOOL, 'production', None, False, ), # 6 (7, TType.BOOL, 'frontfill', None, True, ), # 7 ) fix_spec(all_structs) del all_structs
zipline-ai
/zipline_ai-0.0.19-py3-none-any.whl/zipline/schema/thrift/ttypes.py
ttypes.py
Zipline BitMEX ============== BitMEX bundle for `Zipline <https://github.com/quantopian/zipline>`_ **[WARNING]** There is a bug in this repo. It can ingest the data from the BitMEX API to the Zipline folder, but somehow I can't run an algorithm upon it. Any PRs or advice would be appreciated! Usage ----- 1. Install this package with pip: :: pip install zipline-bitmex . You may want to run this command with ``--user`` parameter. 2. Register this package to Zipline by writing following content to ``$HOME/.zipline/extension.py``: .. code:: python from zipline.data.bundles import register from zipline_bitmex import bitmex_bundle import pandas as pd start = pd.Timestamp('2019-01-01', tz='utc') end = pd.Timestamp('2019-01-07', tz='utc') register( 'bitmex', bitmex_bundle(['XBTUSD']), calendar_name='bitmex', start_session=start, end_session=end, minutes_per_day=24*60, ) 3. Ingest the data bundle with: :: zipline ingest -b bitmex
zipline-bitmex
/zipline-bitmex-0.1.2.tar.gz/zipline-bitmex-0.1.2/README.rst
README.rst
from logging import getLogger from typing import Callable, Dict, Iterator, List, Mapping, NoReturn, Text, Tuple from requests import get from zipline.assets import AssetDBWriter from zipline.data.minute_bars import BcolzMinuteBarWriter from zipline.data.us_equity_pricing import BcolzDailyBarWriter, SQLiteAdjustmentWriter from zipline.utils.cache import dataframe_cache from zipline.utils.calendars import register_calendar, TradingCalendar import numpy as np import pandas as pd from .bitmex_calendar import BitmexCalendar LOGGER = getLogger() def _bitmex_rest(operation: Text, params: Dict) -> List: assert operation[0] == '/' res = get('https://www.bitmex.com/api/v1' + operation, params=params) if not res.ok: raise Exception(res) res = res.json() if not isinstance(res, list): raise Exception(res) return res def _get_metadata(sid_map: List[Tuple[int, Text]]) -> pd.DataFrame: metadata = pd.DataFrame( np.empty( len(sid_map), dtype=[ ('symbol', 'str'), ('root_symbol', 'str'), ('asset_name', 'str'), ('expiration_date', 'datetime64[ns]'), ('auto_close_date', 'datetime64[ns]'), ('tick_size', 'float'), ('multiplier', 'float'), ], ), ) for sid, symbol in sid_map: res = _bitmex_rest('/instrument', {'symbol': symbol}) assert len(res) == 1 res = res[0] metadata.loc[sid, 'symbol'] = symbol metadata.loc[sid, 'root_symbol'] = res['rootSymbol'] metadata.loc[sid, 'asset_name'] = res['underlying'] metadata.loc[sid, 'expiration_date'] = pd.to_datetime(res['expiry']) metadata.loc[sid, 'auto_close_date'] = pd.to_datetime(res['settle']) metadata.loc[sid, 'tick_size'] = res['tickSize'] metadata.loc[sid, 'multiplier'] = res['lotSize'] metadata['exchange'] = 'bitmex' return metadata def _get_bars( sid_map: List[Tuple[int, Text]], start_session: pd.Timestamp, end_session: pd.Timestamp, cache: dataframe_cache, bin_size: Text, ) -> Iterator[Tuple[int, pd.DataFrame]]: for sid, symbol in sid_map: key = symbol + '-' + bin_size if key not in cache: cache[key] = pd.DataFrame() while cache[key].empty or cache[key].index[-1] < end_session: cursor = start_session if cache[key].empty else cache[key].index[-1] _res = _bitmex_rest( '/trade/bucketed', { 'binSize': bin_size, 'count': 500, 'symbol': symbol, 'startTime': cursor.isoformat(), 'endTime': end_session.isoformat(), }, ) if not _res: break res = pd.DataFrame.from_dict(_res) res.drop('symbol', axis=1, inplace=True) res['timestamp'] = res['timestamp'].map(lambda x: pd.to_datetime(x, utc=True)) res.set_index('timestamp', inplace=True) if not cache[key].empty: cache[key] = cache[key].drop(index=cache[key].index[-1]) cache[key] = pd.concat([cache[key], res]) yield sid, cache[key] def _get_minute_bars( sid_map: List[Tuple[int, Text]], start_session: pd.Timestamp, end_session: pd.Timestamp, cache: dataframe_cache, ) -> Iterator[Tuple[int, pd.DataFrame]]: return _get_bars(sid_map, start_session, end_session, cache, '1m') def _get_daily_bars( sid_map: List[Tuple[int, Text]], start_session: pd.Timestamp, end_session: pd.Timestamp, cache: dataframe_cache, ) -> Iterator[Tuple[int, pd.DataFrame]]: return _get_bars(sid_map, start_session, end_session, cache, '1d') def bitmex_bundle(symbols: List[Text]) -> Callable: def ingest( environ: Mapping, asset_db_writer: AssetDBWriter, minute_bar_writer: BcolzMinuteBarWriter, daily_bar_writer: BcolzDailyBarWriter, adjustment_writer: SQLiteAdjustmentWriter, calendar: TradingCalendar, start_session: pd.Timestamp, end_session: pd.Timestamp, cache: dataframe_cache, show_progress: bool, output_dir: Text, ) -> NoReturn: sid_map = list(zip(range(len(symbols)), symbols)) asset_db_writer.write( futures=_get_metadata(sid_map), exchanges=pd.DataFrame(data=[['bitmex', 'UTC']], columns=['exchange', 'timezone']), ) minute_bar_writer.write( _get_minute_bars(sid_map, start_session, end_session, cache), show_progress=show_progress, ) daily_bar_writer.write( _get_daily_bars(sid_map, start_session, end_session, cache), show_progress=show_progress, ) # adjustment_writer.write() return ingest register_calendar('bitmex', BitmexCalendar())
zipline-bitmex
/zipline-bitmex-0.1.2.tar.gz/zipline-bitmex-0.1.2/zipline_bitmex/bitmex_bundle.py
bitmex_bundle.py
import argparse import io import os import random import re import requests import string import sys from decouple import config from dotenv import find_dotenv, load_dotenv from pathlib import Path from typing import Any, Dict, List, Optional, TextIO class ZipURL(object): """ Zipline URL Object :param file_url: str: Zipline File Display URL """ __slots__ = ['url', 'raw'] def __init__(self, file_url: str): self.url: str = file_url self.raw: str = self._get_raw(file_url) def __repr__(self): return f'<url={self.url} raw={self.raw}>' def __str__(self): return self.url @staticmethod def _get_raw(url: str) -> str: try: s = url.split('/', 4) return f"{s[0]}//{s[2]}/r/{s[4]}" except Exception: return '' class Zipline(object): """ Zipline Python API :param base_url: str: Zipline URL :param kwargs: Zipline Headers """ allowed_headers = ['format', 'image_compression_percent', 'expires_at', 'password', 'zws', 'embed', 'max_views', 'uploadtext', 'authorization', 'no_json', 'x_zipline_filename', 'original_name', 'override_domain'] def __init__(self, base_url: str, **kwargs): self.base_url: str = base_url.rstrip('/') self._headers: Dict[str, str] = {} for header, value in kwargs.items(): if header.lower() not in self.allowed_headers: continue if value is None: continue key = header.replace('_', '-').title() self._headers[key] = str(value) def send_file(self, file_name: str, file_object: TextIO, overrides: Optional[dict] = None) -> ZipURL: """ Send File to Zipline :param file_name: str: Name of File for files tuple :param file_object: TextIO: File to Upload :param overrides: dict: Header Overrides :return: str: File URL """ url = self.base_url + '/api/upload' files = {'file': (file_name, file_object)} headers = self._headers | overrides if overrides else self._headers r = requests.post(url, headers=headers, files=files) r.raise_for_status() return ZipURL(r.json()['files'][0]) def format_output(filename: str, url: ZipURL) -> str: """ Format URL Output :param filename: str: Original or File Name :param url: ZipURL: ZipURL to Format :return: str: Formatted Output """ zipline_format = config('ZIPLINE_FORMAT', '{filename}\n{url}\n{raw_url}') return zipline_format.format(filename=filename, url=url, raw_url=url.raw) def gen_rand(length: Optional[int] = 4) -> str: """ Generate Random Streng at Given length :param length: int: Length of Random String :return: str: Random String """ length: int = length if not length < 0 else 4 return ''.join(random.choice(string.ascii_letters) for _ in range(length)) def get_default(values: List[str], default: Optional[Any] = None, cast: Optional[type] = str, pre: Optional[str] = 'ZIPLINE_', suf: Optional[str] = '') -> Optional[str]: """ Get Default Environment Variable from List of values :param values: list: List of Values to Check :param default: any: Default Value if None :param cast: type: Type to Cast Value :param pre: str: Environment Variable Prefix :param suf: str: Environment Variable Suffix :return: str: Environment Variable or None """ for value in values: result = config(f'{pre}{value.upper()}{suf}', '', cast) if result: return result return default def setup(env_file: Path) -> None: print('Setting up Environment File...') url = input('Zipline URL: ').strip() token = input('Zipline Authorization Token: ').strip() if not url or not token: raise ValueError('Missing URL or Token.') output = f'ZIPLINE_URL={url}\nZIPLINE_TOKEN={token}\n' embed = input('Enabled Embed? [Yes]/No: ').strip() if not embed or embed.lower() not in ['n', 'o', 'no', 'noo']: output += 'ZIPLINE_EMBED=true\n' expire = input('Default Expire? [Blank for None]: ').strip().lower() if expire: match = re.search(r'^(\d+)(?:ms|s|m|h|d|w|y)$', expire) if not match: print(f'Warning: invalid expire format: {expire}. See --help') else: output += f'ZIPLINE_EXPIRE={expire}\n' with open(env_file, 'w') as f: f.write(output) print(f'Setup Complete. Variables Saved to: {env_file}') sys.exit(0) def run() -> None: zipline_file = '.zipline' env_file = Path(os.path.expanduser('~')) / zipline_file dotenv_path = env_file if os.path.isfile(env_file) else find_dotenv(filename=zipline_file) env = load_dotenv(dotenv_path=dotenv_path) parser = argparse.ArgumentParser(description='Zipline CLI.') parser.add_argument('files', metavar='Files', type=str, nargs='*', help='Files to Upload.') parser.add_argument('-u', '--url', type=str, default=get_default(['url']), help='Zipline URL.') parser.add_argument('-a', '-t', '--authorization', '--token', type=str, default=get_default(['token', 'authorization']), help='Zipline Access Token for Authorization or ZIPLINE_TOKEN.') parser.add_argument('-e', '-x', '--expires_at', '--expire', type=str, default=get_default(['expire', 'expire_at']), help='Ex: 1d, 2w. See: https://zipline.diced.tech/docs/guides/upload-options#image-expiration') parser.add_argument('--embed', action='store_true', default=get_default(['embed'], False, bool), help='Enable Embeds on Uploads.') parser.add_argument('-s', '--setup', action='store_true', default=False, help='Automatic Setup of Environment Variables.') args = parser.parse_args() if args.setup: setup(env_file) if not env and not args.url and not args.authorization and not os.path.isfile(env_file): env_file.touch() print('First Run Detected, Entering Setup.') setup(env_file) if not args.url: parser.print_help() raise ValueError('Missing URL. Use --setup or specify --url') if not args.authorization: parser.print_help() raise ValueError('Missing Token. Use --setup or specify --token') if args.expires_at: args.expires_at = args.expires_at.strip().lower() match = re.search(r'^(\d+)(?:ms|s|m|h|d|w|y)$', args.expires_at) if not match: parser.print_help() raise ValueError(f'Invalid Expire Format: {args.expires_at}.') zipline = Zipline(args.url, **vars(args)) if not args.files: content: str = sys.stdin.read().rstrip('\n') + '\n' text_f: TextIO = io.StringIO(content) name = f'{gen_rand(8)}.txt' url: ZipURL = zipline.send_file(name, text_f) print(format_output(name, url)) sys.exit(0) exit_code = 1 for name in args.files: if not os.path.isfile(name): print(f'Warning: File Not Found: {name}') continue with open(name) as f: # name, ext = os.path.splitext(os.path.basename(filename)) # ext = f'.{ext}' if ext else '' # name = f'{name}-{gen_rand(8)}{ext}' # url: str = zipline.send_file(name, f) url: ZipURL = zipline.send_file(name, f) print(format_output(name, url)) exit_code = 0 sys.exit(exit_code) def main() -> None: try: run() except KeyboardInterrupt: sys.exit(1) except Exception as error: print('\nError: {}'.format(str(error))) sys.exit(1) if __name__ == '__main__': main()
zipline-cli
/zipline-cli-0.1.5.tar.gz/zipline-cli-0.1.5/zipline.py
zipline.py
[![Discord](https://img.shields.io/discord/899171661457293343?logo=discord&logoColor=white&label=Discord)](https://discord.gg/wXy6m2X8wY) [![PyPI](https://img.shields.io/github/issues-raw/cssnr/zipline-cli?logo=github&logoColor=white&label=Issues)](https://github.com/cssnr/zipline-cli/issues) [![Codacy Badge](https://img.shields.io/codacy/grade/1eee626c47fa4e6fb8b1ed3efdd3e518?logo=codacy&logoColor=white&label=Codacy)](https://app.codacy.com/gh/cssnr/zipline-cli/dashboard) [![PyPI](https://img.shields.io/pypi/v/zipline-cli?logo=python&logoColor=white&label=PyPi)](https://pypi.org/project/zipline-cli/) [![Build Status](https://drone.hosted-domains.com/api/badges/cssnr/zipline-cli/status.svg)](https://drone.hosted-domains.com/cssnr/zipline-cli) [![](https://repository-images.githubusercontent.com/661201286/8dfadbc8-94c0-4eaa-88bd-7ee351859510)](https://github.com/cssnr/zipline-cli) # Zipline CLI Python 3 CLI Uploader for Zipline. Zipline CLI is currently functional and **Under Active Development**. Please open a [Feature Request](https://github.com/cssnr/zipline-cli/discussions/new?category=feature-requests) for new features and submit an [Issue](https://github.com/cssnr/zipline-cli/issues) for any bugs you find. * Zipline Docs: [https://zipline.diced.tech/](https://zipline.diced.tech/) ## Table of Contents * [Quick Start](#quick-start) * [Install](#install) * [CLI Usage](#cli-usage) * [Environment Variables](#environment-variables) * [Python API Reference](#python-api-reference) * [Additional Information](#additional-information) ## Quick Start ```bash python3 -m pip install zipline-cli zipline --setup ``` ## Install From PyPi using pip: ```bash python3 -m pip install zipline-cli ``` From GitHub using pip: ```bash python3 -m pip install git+https://github.com/cssnr/zipline-cli.git ``` From Source using pip: ```bash git clone https://github.com/cssnr/zipline-cli.git python3 -m pip install -e zipline-cli ``` From Source using setuptools: ```bash git clone https://github.com/cssnr/zipline-cli.git cd zipline-cli python3 setup.py install ``` ### Uninstall To completely remove from any above install methods: ```bash python3 -m pip uninstall zipline-cli ``` ## CLI Usage Setup Zipline URL and Token: ```bash zipline --setup ``` Upload a File: ```bash zipline test.txt ``` Upload Multiple Files: ```bash zipline file1.txt file2.txt ``` Create Text File from Input ```bash cat test.txt | zipline ``` Create Text File from Clipboard ```bash zipline # Paste or Type contents, followed by a newline, then Ctrl+D (Ctrl+Z on Windows) ``` ## Environment Variables Environment Variables are stored in the `.zipline` file in your home directory. * Location: `~/.zipline` or `$HOME/.zipline` | Variable | Description | |----------------|------------------------------------------------------------------------------| | ZIPLINE_URL | URL to your Zipline Instance | | ZIPLINE_TOKEN | Authorization Token from Zipline | | ZIPLINE_EMBED | Set this enable Embed on your uploads | | ZIPLINE_FORMAT | Output Format after upload. Variables: `{filename}`, `{url}` and `{raw_url}` | | ZIPLINE_EXPIRE | See: https://zipline.diced.tech/docs/guides/upload-options#image-expiration | See [.zipline.example](.zipline.example) for an example `.zipline` file. You may override them by exporting the variables in your current environment or using the corresponding command line arguments. See `-h` for more info. ## Python API Reference Initialize the class with your Zipline URL. Everything else is a header passed as a kwarg. The API does not yet support environment variables. Zipline Token/Authorization is a header kwarg and can be passed as follows: ```python from zipline import Zipline zipline = Zipline('ZIPLINE_URL', authorization='ZIPLINE_TOKEN') ``` Upload a File ```python from zipline import Zipline zipline = Zipline('ZIPLINE_URL', authorization='ZIPLINE_TOKEN') with open('text.txt') as f: url = zipline.send_file('test.txt', f) print(url) ``` ## Additional Information Still have questions, concerns, or comments? * [Feature Requests](https://github.com/cssnr/zipline-cli/discussions/categories/feature-requests) * [Helpdesk Q&A](https://github.com/cssnr/zipline-cli/discussions/categories/helpdesk-q-a) * [Discord](https://discord.gg/wXy6m2X8wY) > Zipline Guide: Hit That Fresh Nar Nar: [youtube.com/watch?v=bJHYo2aGWgE](https://www.youtube.com/watch?v=bJHYo2aGWgE)
zipline-cli
/zipline-cli-0.1.5.tar.gz/zipline-cli-0.1.5/README.md
README.md
from zipline.data.bundles import register, yahoo_equities import requests import os from pandas_datareader.data import DataReader """ For ingest chinese history day bar from Yahoo From both Shenzhen And Shanghai Stock Exchange """ from .all_stocks import get_all_stocks, get_cache_dir def get_all_yahoo_stock_names(cache=True): if cache==False: print('Get All Stock List.....') all_stocks = get_all_stocks(cache=cache) return [full_code(code) for code in all_stocks.index] def full_code(code): if int(code[0]) >= 6: return "%s.SS" % code else: return '%s.SZ' % code def register_cn_bundle_from_yahoo(name, cache=True): """ register a new bundle of stocks from chinese market from yahoo :param name: the name of bundle :return: register result """ symbol_list = get_filtered_symbols(cache) return register( name, yahoo_equities(dict(list(zip(symbol_list, symbol_list)))), ) def check_code(code): """ XXX: used check_data_reader instead :param code: :return: """ checkurl = r'http://finance.yahoo.com/_finance_doubledown/api/resource/searchassist;gossipConfig=%7B%22url%22%3A%7B%22host%22%3A%22s.yimg.com%22%2C%22path%22%3A%22%2Fxb%2Fv6%2Ffinance%2Fautocomplete%22%2C%22query%22%3A%7B%22appid%22%3A%22yahoo.com%22%2C%22nresults%22%3A10%2C%22output%22%3A%22yjsonp%22%2C%22region%22%3A%22US%22%2C%22lang%22%3A%22en-US%22%7D%2C%22protocol%22%3A%22https%22%7D%2C%22isJSONP%22%3Atrue%2C%22queryKey%22%3A%22query%22%2C%22resultAccessor%22%3A%22ResultSet.Result%22%2C%22suggestionTitleAccessor%22%3A%22symbol%22%2C%22suggestionMeta%22%3A%5B%22symbol%22%2C%22name%22%2C%22exch%22%2C%22type%22%2C%22exchDisp%22%2C%22typeDisp%22%5D%7D;searchTerm={{CODE}}?bkt=3E0%2507canary&dev_info=0&device=desktop&intl=us&lang=en-US&partner=none&region=US&site=finance&tz=America%2FLos_Angeles&ver=0.101.302&returnMeta=true' referer = 'http://finance.yahoo.com/' url = checkurl.replace('{{CODE}}', code) response = requests.get(url, headers={ 'Referer' : 'http://finance.yahoo.com/', 'User-Agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36', }) try: data = response.json() items = data['data']['items'] if len(items) > 0: for item in items: if item['symbol'].upper() == code.upper(): print('.') return True except Exception as e: print(str(e)) return False print('x') return False def check_data_reader(code): try: DataReader(code, 'yahoo') except: print('%s ok!' % code) return False print('%s not ok!' % code) return True def get_filtered_symbols(cache=True): cache_dir = get_cache_dir() file_path = os.path.join(cache_dir, 'symbols.txt') if cache and os.path.isfile(file_path): with open(file_path, 'r') as f: content = f.read() if content: return content.split("\n") symbols = get_all_yahoo_stock_names(cache) if cache==False: print('Check availablity from Yahoo...') filtered_symbols = list(filter(check_data_reader, symbols)) print('cache output to %s' % file_path) with open(file_path, 'w') as f: f.write("\n".join(filtered_symbols)) print('done!') return filtered_symbols def zipline_cn_databundle_update(): print('Start to fetch data and update cache') get_filtered_symbols(cache=False)
zipline-cn-databundle
/zipline-cn-databundle-0.5.tar.gz/zipline-cn-databundle-0.5/zipline_cn_databundle/yahoo.py
yahoo.py
import click import tushare as ts import pandas as pd import os from .squant_source import load_splits_and_dividends, zipline_splits_and_dividends """ 从tushare获取股票信息 其中.... 需要读取通联数据, 请设置 环境变量 ZIPLINE_TL_TOKEN 保存通联数据的token """ """ ZIPLINE_TL_TOKEN = os.environ.get('ZIPLINE_TL_TOKEN') if not ZIPLINE_TL_TOKEN: raise Exception("no datayes token in envirionment ZIPLINE_TL_TOKEN, we need this token to fetch ajustments data") ts.set_token('ZIPLINE_TL_TOKEN') """ def tushare_bundle(environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir): metadata, histories, symbol_map = get_basic_info() # 写入股票基础信息 asset_db_writer.write(metadata) # 准备写入dailybar daily_bar_writer.write(get_hist_data(symbol_map, histories, start_session, end_session), show_progress=show_progress) # 送股,分红数据, 从squant 获取 splits, dividends = zipline_splits_and_dividends(symbol_map) adjustment_writer.write( splits=pd.concat(splits, ignore_index=True), dividends=pd.concat(dividends, ignore_index=True), ) def get_basic_info(show_progress=True): # 先获取列表 if show_progress: click.echo("获取股票基础信息") ts_symbols = ts.get_stock_basics() if show_progress: click.echo("写入股票列表") symbols = [] histories = {} # 获取股票数据 i = 0 total = len(ts_symbols) for index, row in ts_symbols.iterrows(): i = i +1 if i > 10: break srow = {} # 获取历史报价信息 click.echo("正在获取代码%s(%s)的历史行情信息 (%d/%d)" % (index, row['name'], i, total)) histories[index] = ts.get_hist_data(index) srow['start_date'] = histories[index].index[-1] srow['end_date'] = histories[index].index[0] srow['symbol'] = index srow['asset_name'] = row['name'] symbols.append(srow) df_symbols = pd.DataFrame(data=symbols).sort_values('symbol') symbol_map = pd.DataFrame.copy(df_symbols.symbol) # fix the symbol exchange info df = df_symbols.apply(func=convert_symbol_series, axis=1) return df, histories, symbol_map def symbol_to_exchange(symbol): isymbol = int(symbol) if (isymbol>=600000): return symbol + ".SS", "SSE" else: return symbol + ".SZ", "SZSE" def convert_symbol_series(s): symbol, e = symbol_to_exchange(s['symbol']) s['symbol'] = symbol s['exchange'] = e return s def get_hist_data(symbol_map, histories, start_session, end_session): for sid, index in symbol_map.iteritems(): history = histories[index] """ writer needs format with [index], open, close, high, low, volume so we do not need to change the format from tushare but we need resort it """ yield sid, history.sort_index() if __name__ == '__main__': df_symbols, histories, symbol_map = get_basic_info() print(df_symbols) """ for h,df in histories.items(): print(df) """
zipline-cn-databundle
/zipline-cn-databundle-0.5.tar.gz/zipline-cn-databundle-0.5/zipline_cn_databundle/tushare_source.py
tushare_source.py
from squant.data.stock import file_parser from squant.zipline.datasource import get_symbol_list import os import datetime from .tdx.reader import TdxReader, TdxFileNotFoundException import pandas as pd """ Squant is a private library that parse the data from our private source That read data from binary files via RainX<[email protected]> ipython 3 only """ # 需要设定沪深文件目录 CQCX_SH = os.environ.get("CQCX_SH") CQCX_SZ = os.environ.get("CQCX_SZ") TDX_DIR = os.environ.get("TDX_DIR") if not CQCX_SH or not CQCX_SZ: raise Exception("need set cqcx file on CQCX_SH CQCX_SZ") if not os.path.isfile(CQCX_SH) \ or not os.path.isfile(CQCX_SZ): raise Exception("setting CQCX_SH, CQCX_SZ path is not correct") if not TDX_DIR: raise Exception("Please Setting TDX data dir") CQCX_LIST = (CQCX_SH, CQCX_SZ) def load_splits_and_dividends(): """ 获取所有除权出息的信息, 根据zipline平台的特点,忽略配股信息 :return: """ splits = {} dividends = {} for CQCX in CQCX_LIST: cqcx_data = file_parser.get_cqcx(CQCX.encode("utf-8")) for row in cqcx_data: code = str(row['stock']).zfill(6) # sgVal 送股数,每1000股送股数 if row['sgVal'] != 0: if code not in splits.keys(): splits[code] = [] splits[code].append({ 'effective_date' : int_to_date(row['date']), 'ratio' : 1000 / (1000 + row['sgVal']), }) if row['pxVal'] != 0: if code not in dividends.keys(): dividends[code] = [] dividends[code].append({ 'amount' : row['pxVal'] / 1000, 'ex_date' : int_to_date(row['date']), }) return splits, dividends def zipline_splits_and_dividends(symbol_map): raw_splits, raw_dividends = load_splits_and_dividends() splits = [] dividends = [] for sid, code in symbol_map.iteritems(): if code in raw_splits: split = pd.DataFrame(data=raw_splits[code]) split['sid'] = sid split.index = split['effective_date'] = pd.DatetimeIndex(split['effective_date']) splits.append(split) if code in raw_dividends: dividend = pd.DataFrame(data = raw_dividends[code]) dividend['sid'] = sid dividend['record_date'] = dividend['declared_date'] = dividend['pay_date'] = pd.NaT dividend.index = dividend['ex_date'] = pd.DatetimeIndex(dividend['ex_date']) dividends.append(dividend) return splits, dividends def int_to_date(d): d = str(d) return datetime.date(int(d[:4]), int(d[4:6]), int(d[6:])) def squant_bundle(environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir): tdx_reader = TdxReader(TDX_DIR) symbol_df = get_symbol_list() # 只保留未停牌的 symbol_df = symbol_df[symbol_df['status'] == False] # 由于meta,split,dividend 和 行情数据源不同,所以有可能会不同,所以我们这里统一根据 symbol_map = symbol_df.simplesymbol # 更新日期信息 def update_start_and_end_date(s): start_date = start_session.replace(tzinfo=None) end_date = end_session.replace(tzinfo=None) if s.start_date < start_date: s.start_date = start_date if s.end_date == pd.Timestamp('1900-01-01') or s.end_date is pd.NaT: s.end_date = end_date return s symbol_df = symbol_df.apply(func=update_start_and_end_date, axis=1) # 写入基础信息 asset_db_writer.write(symbol_df) # 写入数据文件 daily_bar_writer.write(get_hist_data(symbol_df, symbol_map, tdx_reader, start_session, end_session, calendar), show_progress=show_progress) # split and diviends splits, dividends = zipline_splits_and_dividends(symbol_map) # hack for tdx data , for tdx source for shenzhen market, we can not get data before 1991-12-23 splits_df = pd.concat(splits, ignore_index=True) dividends_df = pd.concat(dividends, ignore_index=True) splits_df= splits_df.loc[splits_df['effective_date'] > start_session] dividends_df = dividends_df.loc[dividends_df['ex_date'] > start_session] adjustment_writer.write( splits=splits_df, dividends=dividends_df, ) def get_hist_data(symbol_df, symbol_map, tdx_reader, start_session, end_session, calendar): for sid, index in symbol_map.iteritems(): exchagne = '' if symbol_df.loc[sid]['exchange'] == 'SZSE': exchagne = 'sz' elif symbol_df.loc[sid]['exchange'] == 'SSE': exchagne = 'sh' try: history = tdx_reader.get_df(index, exchagne) #print('max-min for %s is %s : %s', (index, history.index[0], history.index[-1])) # 去除没有报价信息的内容 if history.index[0] > pd.Timestamp((end_session.date())): continue except TdxFileNotFoundException as e: #print('symbol %s file no found, ignore it ' % index) continue # history.to_pickle('/tmp/debug.pickle') #reindex sessions = calendar.sessions_in_range(start_session, end_session) history = history.reindex( sessions.tz_localize(None), copy=False, ).fillna(0.0) yield sid, history.sort_index() pass if __name__ == '__main__': import tushare as ts import pandas as pd ts_symbols = ts.get_stock_basics() symbols = [] # 获取股票数据 i = 0 total = len(ts_symbols) for index, row in ts_symbols.iterrows(): i = i +1 if i > 10: break srow = {} srow['t'] = 1 srow['symbol'] = index srow['asset_name'] = row['name'] symbols.append(srow) df_symbols = pd.DataFrame(data=symbols).sort_values('symbol') symbol_map = pd.DataFrame.copy(df_symbols.symbol) raw_splits, raw_dividends = load_splits_and_dividends() splits = [] dividends = [] for sid, code in symbol_map.iteritems(): if code in raw_splits: split = pd.DataFrame(data=raw_splits[code]) split['sid'] = sid split.index = split['effective_date'] = pd.DatetimeIndex(split['effective_date']) splits.append(split) if code in raw_dividends: dividend = pd.DataFrame(data = raw_dividends[code]) dividend['sid'] = sid dividend['record_date'] = dividend['declared_date'] = dividend['pay_date'] = pd.NaT dividend.index = dividend['ex_date'] = pd.DatetimeIndex(dividend['ex_date']) dividends.append(dividend) print(pd.concat(splits, ignore_index=True)) print(pd.concat(dividends, ignore_index=True))
zipline-cn-databundle
/zipline-cn-databundle-0.5.tar.gz/zipline-cn-databundle-0.5/zipline_cn_databundle/squant_source.py
squant_source.py
import os import logbook import pandas as pd import pytz from six import iteritems from .index_list import get_list from zipline.utils.paths import ( cache_root, data_root, ) import pandas as pd from cn_stock_holidays.zipline.default_calendar import shsz_calendar from cn_treasury_curve.data import get_zipline_format import requests import shutil logger = logbook.Logger('Loader') ONE_HOUR = pd.Timedelta(hours=1) def last_modified_time(path): """ Get the last modified time of path as a Timestamp. """ return pd.Timestamp(os.path.getmtime(path), unit='s', tz='UTC') def get_data_filepath(name): """ Returns a handle to data file. Creates containing directory, if needed. """ dr = data_root() if not os.path.exists(dr): os.makedirs(dr) return os.path.join(dr, name) def get_cache_filepath(name): cr = cache_root() if not os.path.exists(cr): os.makedirs(cr) return os.path.join(cr, name) def get_benchmark_filename(symbol): return "%s_benchmark.csv" % symbol def has_data_for_dates(series_or_df, first_date, last_date): """ Does `series_or_df` have data on or before first_date and on or after last_date? """ dts = series_or_df.index if not isinstance(dts, pd.DatetimeIndex): raise TypeError("Expected a DatetimeIndex, but got %s." % type(dts)) first, last = dts[[0, -1]] #ignore first date check return last >= last_date def load_market_data(trading_day=None, trading_days=None, bm_symbol='000001.SS', trading_day_before=2): """ Load benchmark returns and treasury yield curves for the given calendar and benchmark symbol. Benchmarks are downloaded as a Series from Yahoo Finance. Treasury curves are US Treasury Bond rates and are downloaded from 'www.federalreserve.gov' by default. For Canadian exchanges, a loader for Canadian bonds from the Bank of Canada is also available. Results downloaded from the internet are cached in ~/.zipline/data. Subsequent loads will attempt to read from the cached files before falling back to redownload. Parameters ---------- trading_day : pandas.CustomBusinessDay, optional A trading_day used to determine the latest day for which we expect to have data. Defaults to an NYSE trading day. trading_days : pd.DatetimeIndex, optional A calendar of trading days. Also used for determining what cached dates we should expect to have cached. Defaults to the NYSE calendar. bm_symbol : str, optional Symbol for the benchmark index to load. Defaults to '^GSPC', the Yahoo ticker for the S&P 500. trading_day_before : int, optional Trading day before is 2 default Returns ------- (benchmark_returns, treasury_curves) : (pd.Series, pd.DataFrame) Notes ----- Both return values are DatetimeIndexed with values dated to midnight in UTC of each stored date. The columns of `treasury_curves` are: '1month', '3month', '6month', '1year','2year','3year','5year','7year','10year','20year','30year' """ if trading_day is None: trading_day = shsz_calendar.trading_day if trading_days is None: trading_days = shsz_calendar.all_sessions first_date = trading_days[0] now = pd.Timestamp.utcnow() # We expect to have benchmark and treasury data that's current up until # **two** full trading days prior to the most recently completed trading # day. # Example: # On Thu Oct 22 2015, the previous completed trading day is Wed Oct 21. # However, data for Oct 21 doesn't become available until the early morning # hours of Oct 22. This means that there are times on the 22nd at which we # cannot reasonably expect to have data for the 21st available. To be # conservative, we instead expect that at any time on the 22nd, we can # download data for Tuesday the 20th, which is two full trading days prior # to the date on which we're running a test. # We'll attempt to download new data if the latest entry in our cache is # before this date. last_date = trading_days[trading_days.get_loc(now, method='ffill') - trading_day_before] br = ensure_benchmark_data( bm_symbol, first_date, last_date, now, # We need the trading_day to figure out the close prior to the first # date so that we can compute returns for the first date. trading_day, ) tc = ensure_treasury_data( bm_symbol, first_date, last_date, now, ) benchmark_returns = br[br.index.slice_indexer(first_date, last_date)] treasury_curves = tc[tc.index.slice_indexer(first_date, last_date)] return benchmark_returns, treasury_curves def ensure_benchmark_data(symbol, first_date, last_date, now, trading_day): """ Ensure we have benchmark data for `symbol` from `first_date` to `last_date` Parameters ---------- symbol : str The symbol for the benchmark to load. first_date : pd.Timestamp First required date for the cache. last_date : pd.Timestamp Last required date for the cache. now : pd.Timestamp The current time. This is used to prevent repeated attempts to re-download data that isn't available due to scheduling quirks or other failures. trading_day : pd.CustomBusinessDay A trading day delta. Used to find the day before first_date so we can get the close of the day prior to first_date. We attempt to download data unless we already have data stored at the data cache for `symbol` whose first entry is before or on `first_date` and whose last entry is on or after `last_date`. If we perform a download and the cache criteria are not satisfied, we wait at least one hour before attempting a redownload. This is determined by comparing the current time to the result of os.path.getmtime on the cache path. """ path = get_data_filepath(get_benchmark_filename(symbol)) # If the path does not exist, it means the first download has not happened # yet, so don't try to read from 'path'. if os.path.exists(path): try: data = pd.Series.from_csv(path).tz_localize('UTC') if has_data_for_dates(data, first_date, last_date): return data # Don't re-download if we've successfully downloaded and written a # file in the last hour. last_download_time = last_modified_time(path) if (now - last_download_time) <= ONE_HOUR: logger.warn( "Refusing to download new benchmark data because a " "download succeeded at %s." % last_download_time ) return data except (OSError, IOError, ValueError) as e: # These can all be raised by various versions of pandas on various # classes of malformed input. Treat them all as cache misses. logger.info( "Loading data for {path} failed with error [{error}].".format( path=path, error=e, ) ) logger.info( "Cache at {path} does not have data from {start} to {end}.\n" "Downloading benchmark data for '{symbol}'.", start=first_date, end=last_date, symbol=symbol, path=path, ) try: symbol_list = get_list().symbol.values if str(symbol).upper() in symbol_list: get_url = 'https://raw.githubusercontent.com/rainx/cn_index_benchmark_for_zipline/master/data/%s_benchmark.csv' % str(symbol).upper() print("fetch data via url : %s " % get_url) response = requests.get(get_url) with open(path, 'wb') as fileobj: fileobj.write(response.content) print("length of response is : %s" % len(response.content)) data = pd.Series.from_csv(path).tz_localize('UTC') else: #logger.exception('your bm_symbol not in existing symbol list') raise Exception('your bm_symbol not in existing symbol list') except (OSError, IOError): logger.exception('failed to cache the new benchmark returns') raise if not has_data_for_dates(data, first_date, last_date): logger.warn("Still don't have expected data after redownload!") return data def ensure_treasury_data(bm_symbol, first_date, last_date, now): """ Ensure we have treasury data from treasury module associated with `bm_symbol`. Parameters ---------- bm_symbol : str Benchmark symbol for which we're loading associated treasury curves. first_date : pd.Timestamp First date required to be in the cache. last_date : pd.Timestamp Last date required to be in the cache. now : pd.Timestamp The current time. This is used to prevent repeated attempts to re-download data that isn't available due to scheduling quirks or other failures. We attempt to download data unless we already have data stored in the cache for `module_name` whose first entry is before or on `first_date` and whose last entry is on or after `last_date`. If we perform a download and the cache criteria are not satisfied, we wait at least one hour before attempting a redownload. This is determined by comparing the current time to the result of os.path.getmtime on the cache path. """ filename = "cn_treasury_curves.csv" path = get_data_filepath(filename) # If the path does not exist, it means the first download has not happened # yet, so don't try to read from 'path'. if os.path.exists(path): try: data = pd.DataFrame.from_csv(path).tz_localize('UTC') if has_data_for_dates(data, first_date, last_date): return data # Don't re-download if we've successfully downloaded and written a # file in the last hour. last_download_time = last_modified_time(path) if (now - last_download_time) <= ONE_HOUR: logger.warn( "Refusing to download new treasury data because a " "download succeeded at %s." % last_download_time ) return data except (OSError, IOError, ValueError) as e: # These can all be raised by various versions of pandas on various # classes of malformed input. Treat them all as cache misses. logger.info( "Loading data for {path} failed with error [{error}].".format( path=path, error=e, ) ) try: data = get_zipline_format() data.to_csv(path) #reload it and convert to UTC tz data = pd.DataFrame.from_csv(path).tz_localize('UTC') except (OSError, IOError): logger.exception('failed to cache treasury data') if not has_data_for_dates(data, first_date, last_date): logger.warn("Still don't have expected data after redownload!") return data
zipline-cn-databundle
/zipline-cn-databundle-0.5.tar.gz/zipline-cn-databundle-0.5/zipline_cn_databundle/loader.py
loader.py
import pandas as pd from io import StringIO import click import os import sys JSON_DATA = """ [ {"name": "上证指数", "symbol": "000001.XSHG"}, {"name": "A股指数", "symbol": "000002.XSHG"}, {"name": "B股指数", "symbol": "000003.XSHG"}, {"name": "工业指数", "symbol": "000004.XSHG"}, {"name": "商业指数", "symbol": "000005.XSHG"}, {"name": "地产指数", "symbol": "000006.XSHG"}, {"name": "公用指数", "symbol": "000007.XSHG"}, {"name": "综合指数", "symbol": "000008.XSHG"}, {"name": "上证380", "symbol": "000009.XSHG"}, {"name": "上证180", "symbol": "000010.XSHG"}, {"name": "基金指数", "symbol": "000011.XSHG"}, {"name": "国债指数", "symbol": "000012.XSHG"}, {"name": "上证企业债指数", "symbol": "000013.XSHG"}, {"name": "红利指数", "symbol": "000015.XSHG"}, {"name": "上证50", "symbol": "000016.XSHG"}, {"name": "新综指", "symbol": "000017.XSHG"}, {"name": "180金融", "symbol": "000018.XSHG"}, {"name": "治理指数", "symbol": "000019.XSHG"}, {"name": "中型综指", "symbol": "000020.XSHG"}, {"name": "180治理", "symbol": "000021.XSHG"}, {"name": "上证公司债指数", "symbol": "000022.XSHG"}, {"name": "180基建", "symbol": "000025.XSHG"}, {"name": "180资源", "symbol": "000026.XSHG"}, {"name": "180运输", "symbol": "000027.XSHG"}, {"name": "180成长", "symbol": "000028.XSHG"}, {"name": "180价值", "symbol": "000029.XSHG"}, {"name": "180R成长", "symbol": "000030.XSHG"}, {"name": "180R价值", "symbol": "000031.XSHG"}, {"name": "上证能源", "symbol": "000032.XSHG"}, {"name": "上证材料", "symbol": "000033.XSHG"}, {"name": "上证工业", "symbol": "000034.XSHG"}, {"name": "上证可选", "symbol": "000035.XSHG"}, {"name": "上证消费", "symbol": "000036.XSHG"}, {"name": "上证医药", "symbol": "000037.XSHG"}, {"name": "上证金融", "symbol": "000038.XSHG"}, {"name": "上证信息", "symbol": "000039.XSHG"}, {"name": "上证电信", "symbol": "000040.XSHG"}, {"name": "上证公用", "symbol": "000041.XSHG"}, {"name": "上证央企", "symbol": "000042.XSHG"}, {"name": "超大盘", "symbol": "000043.XSHG"}, {"name": "上证中盘", "symbol": "000044.XSHG"}, {"name": "上证小盘", "symbol": "000045.XSHG"}, {"name": "上证中小", "symbol": "000046.XSHG"}, {"name": "上证全指", "symbol": "000047.XSHG"}, {"name": "责任指数", "symbol": "000048.XSHG"}, {"name": "上证民企", "symbol": "000049.XSHG"}, {"name": "50等权", "symbol": "000050.XSHG"}, {"name": "180等权", "symbol": "000051.XSHG"}, {"name": "50基本", "symbol": "000052.XSHG"}, {"name": "180基本", "symbol": "000053.XSHG"}, {"name": "上证海外", "symbol": "000054.XSHG"}, {"name": "上证地企", "symbol": "000055.XSHG"}, {"name": "上证国企", "symbol": "000056.XSHG"}, {"name": "全指成长", "symbol": "000057.XSHG"}, {"name": "全指价值", "symbol": "000058.XSHG"}, {"name": "全R成长", "symbol": "000059.XSHG"}, {"name": "全R价值", "symbol": "000060.XSHG"}, {"name": "沪企债30", "symbol": "000061.XSHG"}, {"name": "上证沪企", "symbol": "000062.XSHG"}, {"name": "上证周期", "symbol": "000063.XSHG"}, {"name": "非周期", "symbol": "000064.XSHG"}, {"name": "上证龙头", "symbol": "000065.XSHG"}, {"name": "上证商品", "symbol": "000066.XSHG"}, {"name": "上证新兴", "symbol": "000067.XSHG"}, {"name": "上证资源", "symbol": "000068.XSHG"}, {"name": "消费80", "symbol": "000069.XSHG"}, {"name": "能源等权", "symbol": "000070.XSHG"}, {"name": "材料等权", "symbol": "000071.XSHG"}, {"name": "工业等权", "symbol": "000072.XSHG"}, {"name": "可选等权", "symbol": "000073.XSHG"}, {"name": "消费等权", "symbol": "000074.XSHG"}, {"name": "医药等权", "symbol": "000075.XSHG"}, {"name": "金融等权", "symbol": "000076.XSHG"}, {"name": "信息等权", "symbol": "000077.XSHG"}, {"name": "电信等权", "symbol": "000078.XSHG"}, {"name": "公用等权", "symbol": "000079.XSHG"}, {"name": "上证流通", "symbol": "000090.XSHG"}, {"name": "沪财中小", "symbol": "000091.XSHG"}, {"name": "资源50", "symbol": "000092.XSHG"}, {"name": "180分层", "symbol": "000093.XSHG"}, {"name": "上证上游", "symbol": "000094.XSHG"}, {"name": "上证中游", "symbol": "000095.XSHG"}, {"name": "上证下游", "symbol": "000096.XSHG"}, {"name": "高端装备", "symbol": "000097.XSHG"}, {"name": "上证F200", "symbol": "000098.XSHG"}, {"name": "上证F300", "symbol": "000099.XSHG"}, {"name": "上证F500", "symbol": "000100.XSHG"}, {"name": "5年信用", "symbol": "000101.XSHG"}, {"name": "沪投资品", "symbol": "000102.XSHG"}, {"name": "沪消费品", "symbol": "000103.XSHG"}, {"name": "380能源", "symbol": "000104.XSHG"}, {"name": "380材料", "symbol": "000105.XSHG"}, {"name": "380工业", "symbol": "000106.XSHG"}, {"name": "380可选", "symbol": "000107.XSHG"}, {"name": "380消费", "symbol": "000108.XSHG"}, {"name": "380医药", "symbol": "000109.XSHG"}, {"name": "380金融", "symbol": "000110.XSHG"}, {"name": "380信息", "symbol": "000111.XSHG"}, {"name": "380电信", "symbol": "000112.XSHG"}, {"name": "380公用", "symbol": "000113.XSHG"}, {"name": "持续产业", "symbol": "000114.XSHG"}, {"name": "380等权", "symbol": "000115.XSHG"}, {"name": "信用100", "symbol": "000116.XSHG"}, {"name": "380成长", "symbol": "000117.XSHG"}, {"name": "380价值", "symbol": "000118.XSHG"}, {"name": "380R成长", "symbol": "000119.XSHG"}, {"name": "380R价值", "symbol": "000120.XSHG"}, {"name": "医药主题", "symbol": "000121.XSHG"}, {"name": "农业主题", "symbol": "000122.XSHG"}, {"name": "180动态", "symbol": "000123.XSHG"}, {"name": "180稳定", "symbol": "000125.XSHG"}, {"name": "消费50", "symbol": "000126.XSHG"}, {"name": "380基本", "symbol": "000128.XSHG"}, {"name": "180波动", "symbol": "000129.XSHG"}, {"name": "380波动", "symbol": "000130.XSHG"}, {"name": "上证高新", "symbol": "000131.XSHG"}, {"name": "上证100", "symbol": "000132.XSHG"}, {"name": "上证150", "symbol": "000133.XSHG"}, {"name": "上证银行", "symbol": "000134.XSHG"}, {"name": "180高贝", "symbol": "000135.XSHG"}, {"name": "180低贝", "symbol": "000136.XSHG"}, {"name": "380高贝", "symbol": "000137.XSHG"}, {"name": "380低贝", "symbol": "000138.XSHG"}, {"name": "上证转债", "symbol": "000139.XSHG"}, {"name": "380动态", "symbol": "000141.XSHG"}, {"name": "380稳定", "symbol": "000142.XSHG"}, {"name": "优势资源", "symbol": "000145.XSHG"}, {"name": "优势制造", "symbol": "000146.XSHG"}, {"name": "优势消费", "symbol": "000147.XSHG"}, {"name": "消费领先", "symbol": "000148.XSHG"}, {"name": "180红利", "symbol": "000149.XSHG"}, {"name": "380红利", "symbol": "000150.XSHG"}, {"name": "上国红利", "symbol": "000151.XSHG"}, {"name": "上央红利", "symbol": "000152.XSHG"}, {"name": "上民红利", "symbol": "000153.XSHG"}, {"name": "市值百强", "symbol": "000155.XSHG"}, {"name": "上证环保", "symbol": "000158.XSHG"}, {"name": "上证沪股通指数", "symbol": "000159.XSHG"}, {"name": "上证一带一路主题指数", "symbol": "000160.XSHG"}, {"name": "上证中国制造2025主题指数", "symbol": "000161.XSHG"}, {"name": "上证互联网+主题指数", "symbol": "000162.XSHG"}, {"name": "沪深300", "symbol": "000300.XSHG"}, {"name": "资源80", "symbol": "000801.XSHG"}, {"name": "500沪市", "symbol": "000802.XSHG"}, {"name": "300波动", "symbol": "000803.XSHG"}, {"name": "500波动", "symbol": "000804.XSHG"}, {"name": "A股资源", "symbol": "000805.XSHG"}, {"name": "消费服务", "symbol": "000806.XSHG"}, {"name": "食品饮料", "symbol": "000807.XSHG"}, {"name": "医药生物", "symbol": "000808.XSHG"}, {"name": "细分农业", "symbol": "000809.XSHG"}, {"name": "细分能源", "symbol": "000810.XSHG"}, {"name": "细分有色", "symbol": "000811.XSHG"}, {"name": "细分机械", "symbol": "000812.XSHG"}, {"name": "细分化工", "symbol": "000813.XSHG"}, {"name": "细分医药", "symbol": "000814.XSHG"}, {"name": "细分食品", "symbol": "000815.XSHG"}, {"name": "细分地产", "symbol": "000816.XSHG"}, {"name": "兴证海峡", "symbol": "000817.XSHG"}, {"name": "细分金融", "symbol": "000818.XSHG"}, {"name": "有色金属", "symbol": "000819.XSHG"}, {"name": "煤炭指数", "symbol": "000820.XSHG"}, {"name": "300红利", "symbol": "000821.XSHG"}, {"name": "500红利", "symbol": "000822.XSHG"}, {"name": "中证800有色金属指数", "symbol": "000823.XSHG"}, {"name": "国企红利", "symbol": "000824.XSHG"}, {"name": "央企红利", "symbol": "000825.XSHG"}, {"name": "民企红利", "symbol": "000826.XSHG"}, {"name": "中证环保", "symbol": "000827.XSHG"}, {"name": "300高贝", "symbol": "000828.XSHG"}, {"name": "300低贝", "symbol": "000829.XSHG"}, {"name": "500高贝", "symbol": "000830.XSHG"}, {"name": "500低贝", "symbol": "000831.XSHG"}, {"name": "中证转债", "symbol": "000832.XSHG"}, {"name": "中高企债", "symbol": "000833.XSHG"}, {"name": "创业价值", "symbol": "000838.XSHG"}, {"name": "浙企综指", "symbol": "000839.XSHG"}, {"name": "浙江民企", "symbol": "000840.XSHG"}, {"name": "800医药", "symbol": "000841.XSHG"}, {"name": "800等权", "symbol": "000842.XSHG"}, {"name": "300动态", "symbol": "000843.XSHG"}, {"name": "300稳定", "symbol": "000844.XSHG"}, {"name": "ESG100", "symbol": "000846.XSHG"}, {"name": "中证腾安价值100指数", "symbol": "000847.XSHG"}, {"name": "沪深300非银行金融指数", "symbol": "000849.XSHG"}, {"name": "沪深300有色金属指数", "symbol": "000850.XSHG"}, {"name": "中证百度百发策略100指数", "symbol": "000851.XSHG"}, {"name": "中证1000指数", "symbol": "000852.XSHG"}, {"name": "中证申万一带一路主题投资指数", "symbol": "000853.XSHG"}, {"name": "央视财经500指数", "symbol": "000855.XSHG"}, {"name": "小康指数", "symbol": "000901.XSHG"}, {"name": "中证流通", "symbol": "000902.XSHG"}, {"name": "中证100", "symbol": "000903.XSHG"}, {"name": "中证200", "symbol": "000904.XSHG"}, {"name": "中证500", "symbol": "000905.XSHG"}, {"name": "中证800", "symbol": "000906.XSHG"}, {"name": "中证700", "symbol": "000907.XSHG"}, {"name": "300能源", "symbol": "000908.XSHG"}, {"name": "300材料", "symbol": "000909.XSHG"}, {"name": "300工业", "symbol": "000910.XSHG"}, {"name": "300可选", "symbol": "000911.XSHG"}, {"name": "300消费", "symbol": "000912.XSHG"}, {"name": "300医药", "symbol": "000913.XSHG"}, {"name": "300金融", "symbol": "000914.XSHG"}, {"name": "300信息", "symbol": "000915.XSHG"}, {"name": "300电信", "symbol": "000916.XSHG"}, {"name": "300公用", "symbol": "000917.XSHG"}, {"name": "300成长", "symbol": "000918.XSHG"}, {"name": "300价值", "symbol": "000919.XSHG"}, {"name": "300R成长", "symbol": "000920.XSHG"}, {"name": "300R价值", "symbol": "000921.XSHG"}, {"name": "中证红利", "symbol": "000922.XSHG"}, {"name": "公司债", "symbol": "000923.XSHG"}, {"name": "基本面50", "symbol": "000925.XSHG"}, {"name": "中证央企", "symbol": "000926.XSHG"}, {"name": "央企100", "symbol": "000927.XSHG"}, {"name": "中证能源", "symbol": "000928.XSHG"}, {"name": "中证材料", "symbol": "000929.XSHG"}, {"name": "中证工业", "symbol": "000930.XSHG"}, {"name": "中证可选", "symbol": "000931.XSHG"}, {"name": "中证消费", "symbol": "000932.XSHG"}, {"name": "中证医药", "symbol": "000933.XSHG"}, {"name": "中证金融", "symbol": "000934.XSHG"}, {"name": "中证信息", "symbol": "000935.XSHG"}, {"name": "中证电信", "symbol": "000936.XSHG"}, {"name": "中证公用", "symbol": "000937.XSHG"}, {"name": "中证民企", "symbol": "000938.XSHG"}, {"name": "民企200", "symbol": "000939.XSHG"}, {"name": "财富大盘", "symbol": "000940.XSHG"}, {"name": "新能源", "symbol": "000941.XSHG"}, {"name": "内地消费", "symbol": "000942.XSHG"}, {"name": "内地基建", "symbol": "000943.XSHG"}, {"name": "内地资源", "symbol": "000944.XSHG"}, {"name": "内地运输", "symbol": "000945.XSHG"}, {"name": "内地金融", "symbol": "000946.XSHG"}, {"name": "内地银行", "symbol": "000947.XSHG"}, {"name": "内地地产", "symbol": "000948.XSHG"}, {"name": "内地农业", "symbol": "000949.XSHG"}, {"name": "300基建", "symbol": "000950.XSHG"}, {"name": "300银行", "symbol": "000951.XSHG"}, {"name": "300地产", "symbol": "000952.XSHG"}, {"name": "中证地企", "symbol": "000953.XSHG"}, {"name": "地企100", "symbol": "000954.XSHG"}, {"name": "中证国企", "symbol": "000955.XSHG"}, {"name": "国企200", "symbol": "000956.XSHG"}, {"name": "300运输", "symbol": "000957.XSHG"}, {"name": "创业成长", "symbol": "000958.XSHG"}, {"name": "银河99", "symbol": "000959.XSHG"}, {"name": "中证龙头", "symbol": "000960.XSHG"}, {"name": "中证上游", "symbol": "000961.XSHG"}, {"name": "中证中游", "symbol": "000962.XSHG"}, {"name": "中证下游", "symbol": "000963.XSHG"}, {"name": "中证新兴", "symbol": "000964.XSHG"}, {"name": "基本200", "symbol": "000965.XSHG"}, {"name": "基本400", "symbol": "000966.XSHG"}, {"name": "基本600", "symbol": "000967.XSHG"}, {"name": "300周期", "symbol": "000968.XSHG"}, {"name": "300非周", "symbol": "000969.XSHG"}, {"name": "ESG40", "symbol": "000970.XSHG"}, {"name": "等权90", "symbol": "000971.XSHG"}, {"name": "300沪市", "symbol": "000972.XSHG"}, {"name": "技术领先", "symbol": "000973.XSHG"}, {"name": "中证800金融指数", "symbol": "000974.XSHG"}, {"name": "钱江30", "symbol": "000975.XSHG"}, {"name": "新华金牛", "symbol": "000976.XSHG"}, {"name": "内地低碳", "symbol": "000977.XSHG"}, {"name": "医药100", "symbol": "000978.XSHG"}, {"name": "大宗商品", "symbol": "000979.XSHG"}, {"name": "中证超大", "symbol": "000980.XSHG"}, {"name": "300分层", "symbol": "000981.XSHG"}, {"name": "500等权", "symbol": "000982.XSHG"}, {"name": "智能资产", "symbol": "000983.XSHG"}, {"name": "300等权", "symbol": "000984.XSHG"}, {"name": "中证全指", "symbol": "000985.XSHG"}, {"name": "全指能源", "symbol": "000986.XSHG"}, {"name": "全指材料", "symbol": "000987.XSHG"}, {"name": "全指工业", "symbol": "000988.XSHG"}, {"name": "全指可选", "symbol": "000989.XSHG"}, {"name": "全指消费", "symbol": "000990.XSHG"}, {"name": "全指医药", "symbol": "000991.XSHG"}, {"name": "全指金融", "symbol": "000992.XSHG"}, {"name": "全指信息", "symbol": "000993.XSHG"}, {"name": "全指电信", "symbol": "000994.XSHG"}, {"name": "全指公用", "symbol": "000995.XSHG"}, {"name": "领先行业", "symbol": "000996.XSHG"}, {"name": "大消费", "symbol": "000997.XSHG"}, {"name": "中证TMT", "symbol": "000998.XSHG"}, {"name": "证两岸三地500指数", "symbol": "000999.XSHG"}, {"name": "深证成指", "symbol": "399001.XSHE"}, {"name": "深成指R", "symbol": "399002.XSHE"}, {"name": "成份B指", "symbol": "399003.XSHE"}, {"name": "深证100R", "symbol": "399004.XSHE"}, {"name": "中小板指", "symbol": "399005.XSHE"}, {"name": "创业板指", "symbol": "399006.XSHE"}, {"name": "深证300", "symbol": "399007.XSHE"}, {"name": "中小300", "symbol": "399008.XSHE"}, {"name": "深证200", "symbol": "399009.XSHE"}, {"name": "深证700", "symbol": "399010.XSHE"}, {"name": "深证1000", "symbol": "399011.XSHE"}, {"name": "创业300", "symbol": "399012.XSHE"}, {"name": "深市精选", "symbol": "399013.XSHE"}, {"name": "深证中小创新指数", "symbol": "399015.XSHE"}, {"name": "新指数", "symbol": "399100.XSHE"}, {"name": "中小板综", "symbol": "399101.XSHE"}, {"name": "创业板综合指数", "symbol": "399102.XSHE"}, {"name": "乐富指数", "symbol": "399103.XSHE"}, {"name": "深证综指", "symbol": "399106.XSHE"}, {"name": "深证A指", "symbol": "399107.XSHE"}, {"name": "深证B指", "symbol": "399108.XSHE"}, {"name": "农林指数", "symbol": "399231.XSHE"}, {"name": "采矿指数", "symbol": "399232.XSHE"}, {"name": "制造指数", "symbol": "399233.XSHE"}, {"name": "水电指数", "symbol": "399234.XSHE"}, {"name": "建筑指数", "symbol": "399235.XSHE"}, {"name": "批零指数", "symbol": "399236.XSHE"}, {"name": "运输指数", "symbol": "399237.XSHE"}, {"name": "餐饮指数", "symbol": "399238.XSHE"}, {"name": "IT指数", "symbol": "399239.XSHE"}, {"name": "金融指数", "symbol": "399240.XSHE"}, {"name": "地产指数", "symbol": "399241.XSHE"}, {"name": "商务指数", "symbol": "399242.XSHE"}, {"name": "科研指数", "symbol": "399243.XSHE"}, {"name": "公共指数", "symbol": "399244.XSHE"}, {"name": "文化指数", "symbol": "399248.XSHE"}, {"name": "综企指数", "symbol": "399249.XSHE"}, {"name": "深证中高等级信用债指数", "symbol": "399298.XSHE"}, {"name": "深证中低等级信用债指数", "symbol": "399299.XSHE"}, {"name": "沪深300", "symbol": "399300.XSHE"}, {"name": "深信用债", "symbol": "399301.XSHE"}, {"name": "深公司债", "symbol": "399302.XSHE"}, {"name": "国证2000", "symbol": "399303.XSHE"}, {"name": "基金指数", "symbol": "399305.XSHE"}, {"name": "深证ETF", "symbol": "399306.XSHE"}, {"name": "深证转债", "symbol": "399307.XSHE"}, {"name": "国证50", "symbol": "399310.XSHE"}, {"name": "国证1000", "symbol": "399311.XSHE"}, {"name": "国证300", "symbol": "399312.XSHE"}, {"name": "巨潮100", "symbol": "399313.XSHE"}, {"name": "巨潮大盘", "symbol": "399314.XSHE"}, {"name": "巨潮中盘", "symbol": "399315.XSHE"}, {"name": "巨潮小盘", "symbol": "399316.XSHE"}, {"name": "国证A指", "symbol": "399317.XSHE"}, {"name": "巨潮B股指数", "symbol": "399318.XSHE"}, {"name": "资源优势", "symbol": "399319.XSHE"}, {"name": "国证服务", "symbol": "399320.XSHE"}, {"name": "国证红利", "symbol": "399321.XSHE"}, {"name": "国证治理", "symbol": "399322.XSHE"}, {"name": "深证红利", "symbol": "399324.XSHE"}, {"name": "成长40", "symbol": "399326.XSHE"}, {"name": "深证治理", "symbol": "399328.XSHE"}, {"name": "深证100", "symbol": "399330.XSHE"}, {"name": "深证创新", "symbol": "399332.XSHE"}, {"name": "中小板R", "symbol": "399333.XSHE"}, {"name": "深证央企", "symbol": "399335.XSHE"}, {"name": "深证民营", "symbol": "399337.XSHE"}, {"name": "深证科技", "symbol": "399339.XSHE"}, {"name": "深证责任", "symbol": "399341.XSHE"}, {"name": "深证300R", "symbol": "399344.XSHE"}, {"name": "深证成长", "symbol": "399346.XSHE"}, {"name": "深证价值", "symbol": "399348.XSHE"}, {"name": "皖江30", "symbol": "399350.XSHE"}, {"name": "深报指数", "symbol": "399351.XSHE"}, {"name": "深报综指", "symbol": "399352.XSHE"}, {"name": "国证物流", "symbol": "399353.XSHE"}, {"name": "长三角", "symbol": "399355.XSHE"}, {"name": "珠三角", "symbol": "399356.XSHE"}, {"name": "环渤海", "symbol": "399357.XSHE"}, {"name": "泰达指数", "symbol": "399358.XSHE"}, {"name": "国证基建", "symbol": "399359.XSHE"}, {"name": "国证装备", "symbol": "399360.XSHE"}, {"name": "国证商业", "symbol": "399361.XSHE"}, {"name": "国证民营", "symbol": "399362.XSHE"}, {"name": "计算机指", "symbol": "399363.XSHE"}, {"name": "中金消费", "symbol": "399364.XSHE"}, {"name": "国证农业", "symbol": "399365.XSHE"}, {"name": "国证大宗", "symbol": "399366.XSHE"}, {"name": "巨潮地产", "symbol": "399367.XSHE"}, {"name": "国证军工", "symbol": "399368.XSHE"}, {"name": "CBN-兴全", "symbol": "399369.XSHE"}, {"name": "国证成长", "symbol": "399370.XSHE"}, {"name": "国证价值", "symbol": "399371.XSHE"}, {"name": "大盘成长", "symbol": "399372.XSHE"}, {"name": "大盘价值", "symbol": "399373.XSHE"}, {"name": "中盘成长", "symbol": "399374.XSHE"}, {"name": "中盘价值", "symbol": "399375.XSHE"}, {"name": "小盘成长", "symbol": "399376.XSHE"}, {"name": "小盘价值", "symbol": "399377.XSHE"}, {"name": "南方低碳", "symbol": "399378.XSHE"}, {"name": "国证基金", "symbol": "399379.XSHE"}, {"name": "国证ETF", "symbol": "399380.XSHE"}, {"name": "1000能源", "symbol": "399381.XSHE"}, {"name": "1000材料", "symbol": "399382.XSHE"}, {"name": "1000工业", "symbol": "399383.XSHE"}, {"name": "1000可选", "symbol": "399384.XSHE"}, {"name": "1000消费", "symbol": "399385.XSHE"}, {"name": "1000医药", "symbol": "399386.XSHE"}, {"name": "1000金融", "symbol": "399387.XSHE"}, {"name": "1000信息", "symbol": "399388.XSHE"}, {"name": "国证通信", "symbol": "399389.XSHE"}, {"name": "1000公用", "symbol": "399390.XSHE"}, {"name": "投资时钟", "symbol": "399391.XSHE"}, {"name": "国证新兴", "symbol": "399392.XSHE"}, {"name": "国证地产", "symbol": "399393.XSHE"}, {"name": "国证医药", "symbol": "399394.XSHE"}, {"name": "国证有色", "symbol": "399395.XSHE"}, {"name": "国证食品", "symbol": "399396.XSHE"}, {"name": "OCT文化", "symbol": "399397.XSHE"}, {"name": "绩效指数", "symbol": "399398.XSHE"}, {"name": "中经GDP", "symbol": "399399.XSHE"}, {"name": "大中盘", "symbol": "399400.XSHE"}, {"name": "中小盘", "symbol": "399401.XSHE"}, {"name": "周期100", "symbol": "399402.XSHE"}, {"name": "防御100", "symbol": "399403.XSHE"}, {"name": "大盘低波", "symbol": "399404.XSHE"}, {"name": "大盘高贝", "symbol": "399405.XSHE"}, {"name": "中盘低波", "symbol": "399406.XSHE"}, {"name": "中盘高贝", "symbol": "399407.XSHE"}, {"name": "小盘低波", "symbol": "399408.XSHE"}, {"name": "小盘高贝", "symbol": "399409.XSHE"}, {"name": "苏州率先", "symbol": "399410.XSHE"}, {"name": "红利100", "symbol": "399411.XSHE"}, {"name": "国证新能", "symbol": "399412.XSHE"}, {"name": "国证转债", "symbol": "399413.XSHE"}, {"name": "I100", "symbol": "399415.XSHE"}, {"name": "I300", "symbol": "399416.XSHE"}, {"name": "国证新能源汽车指数", "symbol": "399417.XSHE"}, {"name": "国证国家安全指数", "symbol": "399418.XSHE"}, {"name": "国证高铁指数", "symbol": "399419.XSHE"}, {"name": "国证保险证券指数", "symbol": "399420.XSHE"}, {"name": "中关村50指数", "symbol": "399423.XSHE"}, {"name": "国证德高行专利领先指数", "symbol": "399427.XSHE"}, {"name": "国证定向增发指数", "symbol": "399428.XSHE"}, {"name": "新丝路指数", "symbol": "399429.XSHE"}, {"name": "国证银行行业指数", "symbol": "399431.XSHE"}, {"name": "国证汽车与汽车零配件行业指数", "symbol": "399432.XSHE"}, {"name": "国证交通运输行业指数", "symbol": "399433.XSHE"}, {"name": "国证传媒行业指数", "symbol": "399434.XSHE"}, {"name": "国证农牧渔产品行业指数", "symbol": "399435.XSHE"}, {"name": "国证煤炭行业指数", "symbol": "399436.XSHE"}, {"name": "国证证券行业指数", "symbol": "399437.XSHE"}, {"name": "国证电力公用事业行业指数", "symbol": "399438.XSHE"}, {"name": "国证石油天然气行业指数", "symbol": "399439.XSHE"}, {"name": "国证黑色金属行业指数", "symbol": "399440.XSHE"}, {"name": "国证生物医药指数", "symbol": "399441.XSHE"}, {"name": "企债指数", "symbol": "399481.XSHE"}, {"name": "央视50", "symbol": "399550.XSHE"}, {"name": "央视创新", "symbol": "399551.XSHE"}, {"name": "央视成长", "symbol": "399552.XSHE"}, {"name": "央视回报", "symbol": "399553.XSHE"}, {"name": "央视治理", "symbol": "399554.XSHE"}, {"name": "央视责任", "symbol": "399555.XSHE"}, {"name": "央视生态", "symbol": "399556.XSHE"}, {"name": "央视文化", "symbol": "399557.XSHE"}, {"name": "中小成长", "symbol": "399602.XSHE"}, {"name": "中小价值", "symbol": "399604.XSHE"}, {"name": "创业板R", "symbol": "399606.XSHE"}, {"name": "科技100", "symbol": "399608.XSHE"}, {"name": "TMT50", "symbol": "399610.XSHE"}, {"name": "中创100R", "symbol": "399611.XSHE"}, {"name": "中创100", "symbol": "399612.XSHE"}, {"name": "深证能源", "symbol": "399613.XSHE"}, {"name": "深证材料", "symbol": "399614.XSHE"}, {"name": "深证工业", "symbol": "399615.XSHE"}, {"name": "深证可选", "symbol": "399616.XSHE"}, {"name": "深证消费", "symbol": "399617.XSHE"}, {"name": "深证医药", "symbol": "399618.XSHE"}, {"name": "深证金融", "symbol": "399619.XSHE"}, {"name": "深证信息", "symbol": "399620.XSHE"}, {"name": "深证电信", "symbol": "399621.XSHE"}, {"name": "深证公用", "symbol": "399622.XSHE"}, {"name": "中小基础", "symbol": "399623.XSHE"}, {"name": "中创400", "symbol": "399624.XSHE"}, {"name": "中创500", "symbol": "399625.XSHE"}, {"name": "中创成长", "symbol": "399626.XSHE"}, {"name": "中创价值", "symbol": "399627.XSHE"}, {"name": "700成长", "symbol": "399628.XSHE"}, {"name": "700价值", "symbol": "399629.XSHE"}, {"name": "1000成长", "symbol": "399630.XSHE"}, {"name": "1000价值", "symbol": "399631.XSHE"}, {"name": "深100EW", "symbol": "399632.XSHE"}, {"name": "深300EW", "symbol": "399633.XSHE"}, {"name": "中小板EW", "symbol": "399634.XSHE"}, {"name": "创业板EW", "symbol": "399635.XSHE"}, {"name": "深证装备", "symbol": "399636.XSHE"}, {"name": "深证地产", "symbol": "399637.XSHE"}, {"name": "深证环保", "symbol": "399638.XSHE"}, {"name": "深证大宗", "symbol": "399639.XSHE"}, {"name": "创业基础", "symbol": "399640.XSHE"}, {"name": "深证新兴", "symbol": "399641.XSHE"}, {"name": "中小新兴", "symbol": "399642.XSHE"}, {"name": "创业新兴", "symbol": "399643.XSHE"}, {"name": "深证时钟", "symbol": "399644.XSHE"}, {"name": "100低波", "symbol": "399645.XSHE"}, {"name": "深消费50", "symbol": "399646.XSHE"}, {"name": "深医药50", "symbol": "399647.XSHE"}, {"name": "深证GDP", "symbol": "399648.XSHE"}, {"name": "中小红利", "symbol": "399649.XSHE"}, {"name": "中小治理", "symbol": "399650.XSHE"}, {"name": "中小责任", "symbol": "399651.XSHE"}, {"name": "中创高新", "symbol": "399652.XSHE"}, {"name": "深证龙头", "symbol": "399653.XSHE"}, {"name": "深证文化", "symbol": "399654.XSHE"}, {"name": "深证绩效", "symbol": "399655.XSHE"}, {"name": "100绩效", "symbol": "399656.XSHE"}, {"name": "300绩效", "symbol": "399657.XSHE"}, {"name": "中小绩效", "symbol": "399658.XSHE"}, {"name": "深成指EW", "symbol": "399659.XSHE"}, {"name": "中创EW", "symbol": "399660.XSHE"}, {"name": "深证低波", "symbol": "399661.XSHE"}, {"name": "深证高贝", "symbol": "399662.XSHE"}, {"name": "中小低波", "symbol": "399663.XSHE"}, {"name": "中小高贝", "symbol": "399664.XSHE"}, {"name": "中创低波", "symbol": "399665.XSHE"}, {"name": "中创高贝", "symbol": "399666.XSHE"}, {"name": "创业板G", "symbol": "399667.XSHE"}, {"name": "创业板V", "symbol": "399668.XSHE"}, {"name": "深证农业", "symbol": "399669.XSHE"}, {"name": "深周期50", "symbol": "399670.XSHE"}, {"name": "深防御50", "symbol": "399671.XSHE"}, {"name": "深红利50", "symbol": "399672.XSHE"}, {"name": "创业板50", "symbol": "399673.XSHE"}, {"name": "深A医药卫生指数", "symbol": "399674.XSHE"}, {"name": "深A软件与互联网指数", "symbol": "399675.XSHE"}, {"name": "深A医药卫生等权指数", "symbol": "399676.XSHE"}, {"name": "深A软件与互联网等权指数", "symbol": "399677.XSHE"}, {"name": "深证次新股指数", "symbol": "399678.XSHE"}, {"name": "深证200指数", "symbol": "399679.XSHE"}, {"name": "深成能源行业指数", "symbol": "399680.XSHE"}, {"name": "深成原材料行业指数", "symbol": "399681.XSHE"}, {"name": "深成工业行业指数", "symbol": "399682.XSHE"}, {"name": "深成可选消费行业指数", "symbol": "399683.XSHE"}, {"name": "深成主要消费行业指数", "symbol": "399684.XSHE"}, {"name": "深成医药卫生行业指数", "symbol": "399685.XSHE"}, {"name": "深成金融地产行业指数", "symbol": "399686.XSHE"}, {"name": "深成信息技术行业指数", "symbol": "399687.XSHE"}, {"name": "深成电信业务行业指数", "symbol": "399688.XSHE"}, {"name": "深成公用事业行业指数", "symbol": "399689.XSHE"}, {"name": "深证F60", "symbol": "399701.XSHE"}, {"name": "深证F120", "symbol": "399702.XSHE"}, {"name": "深证F200", "symbol": "399703.XSHE"}, {"name": "深证上游", "symbol": "399704.XSHE"}, {"name": "深证中游", "symbol": "399705.XSHE"}, {"name": "深证下游", "symbol": "399706.XSHE"}, {"name": "中证申万证券行业指数", "symbol": "399707.XSHE"}, {"name": "500深市", "symbol": "399802.XSHE"}, {"name": "中证工业4.0指数", "symbol": "399803.XSHE"}, {"name": "中证体育产业指数", "symbol": "399804.XSHE"}, {"name": "中证互联网金融指数", "symbol": "399805.XSHE"}, {"name": "中证环境治理指数", "symbol": "399806.XSHE"}, {"name": "中证高铁产业指数", "symbol": "399807.XSHE"}, {"name": "中证新能源指数", "symbol": "399808.XSHE"}, {"name": "中证方正富邦保险主题指数", "symbol": "399809.XSHE"}, {"name": "中证申万传媒行业投资指数", "symbol": "399810.XSHE"}, {"name": "中证申万电子行业投资指数", "symbol": "399811.XSHE"}, {"name": "中证养老产业指数", "symbol": "399812.XSHE"}, {"name": "中证国防安全指数", "symbol": "399813.XSHE"}, {"name": "中证大农业指数", "symbol": "399814.XSHE"}, {"name": "中证阿拉善生态主题100指数", "symbol": "399817.XSHE"}, {"name": "中证南方小康产业指数", "symbol": "399901.XSHE"}, {"name": "中证100指数", "symbol": "399903.XSHE"}, {"name": "中证中盘200指数", "symbol": "399904.XSHE"}, {"name": "中证500", "symbol": "399905.XSHE"}, {"name": "中证中小盘700指数", "symbol": "399907.XSHE"}, {"name": "沪深300能源指数", "symbol": "399908.XSHE"}, {"name": "沪深300原材料指数", "symbol": "399909.XSHE"}, {"name": "沪深300工业指数", "symbol": "399910.XSHE"}, {"name": "沪深300可选消费指数", "symbol": "399911.XSHE"}, {"name": "沪深300主要消费指数", "symbol": "399912.XSHE"}, {"name": "沪深300医药卫生指数", "symbol": "399913.XSHE"}, {"name": "沪深300金融地产指数", "symbol": "399914.XSHE"}, {"name": "沪深300信息技术指数", "symbol": "399915.XSHE"}, {"name": "沪深300电信业务指数", "symbol": "399916.XSHE"}, {"name": "沪深300公用事业指数", "symbol": "399917.XSHE"}, {"name": "沪深300成长指数", "symbol": "399918.XSHE"}, {"name": "沪深300价值指数", "symbol": "399919.XSHE"}, {"name": "沪深300相对成长指数", "symbol": "399920.XSHE"}, {"name": "中证红利指数", "symbol": "399922.XSHE"}, {"name": "中证锐联基本面50指数", "symbol": "399925.XSHE"}, {"name": "中证中央企业综合指数", "symbol": "399926.XSHE"}, {"name": "中证中央企业100指数", "symbol": "399927.XSHE"}, {"name": "中证能源指数", "symbol": "399928.XSHE"}, {"name": "中证原材料指数", "symbol": "399929.XSHE"}, {"name": "中证工业指数", "symbol": "399930.XSHE"}, {"name": "中证可选消费指数", "symbol": "399931.XSHE"}, {"name": "中证主要消费指数", "symbol": "399932.XSHE"}, {"name": "中证医药卫生指数", "symbol": "399933.XSHE"}, {"name": "中证金融地产指数", "symbol": "399934.XSHE"}, {"name": "中证信息技术指数", "symbol": "399935.XSHE"}, {"name": "中证电信业务指数", "symbol": "399936.XSHE"}, {"name": "中证公用事业指数", "symbol": "399937.XSHE"}, {"name": "中证民营企业综合指数", "symbol": "399938.XSHE"}, {"name": "中证民营企业200指数", "symbol": "399939.XSHE"}, {"name": "中证内地新能源主题指数", "symbol": "399941.XSHE"}, {"name": "中证内地消费主题指数", "symbol": "399942.XSHE"}, {"name": "中证内地基建主题指数", "symbol": "399943.XSHE"}, {"name": "中证内地资源主题指数", "symbol": "399944.XSHE"}, {"name": "中证内地运输主题指数", "symbol": "399945.XSHE"}, {"name": "中证内地金融主题指数", "symbol": "399946.XSHE"}, {"name": "中证内地银行主题指数", "symbol": "399947.XSHE"}, {"name": "中证内地地产主题指数", "symbol": "399948.XSHE"}, {"name": "中证内地农业主题指数", "symbol": "399949.XSHE"}, {"name": "沪深300基建主题指数", "symbol": "399950.XSHE"}, {"name": "沪深300银行指数", "symbol": "399951.XSHE"}, {"name": "沪深300地产指数", "symbol": "399952.XSHE"}, {"name": "中证地方国有企业综合指数", "symbol": "399953.XSHE"}, {"name": "中证地方国有企业100指数", "symbol": "399954.XSHE"}, {"name": "中证国有企业200指数", "symbol": "399956.XSHE"}, {"name": "沪深300运输指数", "symbol": "399957.XSHE"}, {"name": "中证创业成长指数", "symbol": "399958.XSHE"}, {"name": "军工指数", "symbol": "399959.XSHE"}, {"name": "中证龙头企业指数", "symbol": "399960.XSHE"}, {"name": "中证上游资源产业指数", "symbol": "399961.XSHE"}, {"name": "中证中游制造产业指数", "symbol": "399962.XSHE"}, {"name": "中证下游消费与服务产业指数", "symbol": "399963.XSHE"}, {"name": "中证新兴产业指数", "symbol": "399964.XSHE"}, {"name": "800地产", "symbol": "399965.XSHE"}, {"name": "800非银", "symbol": "399966.XSHE"}, {"name": "中证军工", "symbol": "399967.XSHE"}, {"name": "沪深300周期行业指数", "symbol": "399968.XSHE"}, {"name": "沪深300非周期行业指数", "symbol": "399969.XSHE"}, {"name": "中证移动互联网指数", "symbol": "399970.XSHE"}, {"name": "中证传媒指数", "symbol": "399971.XSHE"}, {"name": "300深市", "symbol": "399972.XSHE"}, {"name": "中证国防指数", "symbol": "399973.XSHE"}, {"name": "中证国有企业改革指数", "symbol": "399974.XSHE"}, {"name": "中证全指证券公司指数(四级行业)", "symbol": "399975.XSHE"}, {"name": "中证新能源汽车指数", "symbol": "399976.XSHE"}, {"name": "中证内地低碳经济主题指数", "symbol": "399977.XSHE"}, {"name": "中证医药100指数", "symbol": "399978.XSHE"}, {"name": "中证大宗商品股票指数", "symbol": "399979.XSHE"}, {"name": "中证超级大盘指数", "symbol": "399980.XSHE"}, {"name": "中证500等权重指数", "symbol": "399982.XSHE"}, {"name": "沪深300地产等权重指数", "symbol": "399983.XSHE"}, {"name": "中证银行指数", "symbol": "399986.XSHE"}, {"name": "中证酒指数", "symbol": "399987.XSHE"}, {"name": "中证医疗指数", "symbol": "399989.XSHE"}, {"name": "中证煤炭等权指数", "symbol": "399990.XSHE"}, {"name": "中证一带一路主题指数", "symbol": "399991.XSHE"}, {"name": "中证万得并购重组指数", "symbol": "399992.XSHE"}, {"name": "中证万得生物科技指数", "symbol": "399993.XSHE"}, {"name": "中证信息安全主题指数", "symbol": "399994.XSHE"}, {"name": "中证基建工程指数", "symbol": "399995.XSHE"}, {"name": "中证智能家居指数", "symbol": "399996.XSHE"}, {"name": "中证白酒指数", "symbol": "399997.XSHE"}, {"name": "中证煤炭指数", "symbol": "399998.XSHE"} ] """ def get_list(style='yahoo'): df = pd.read_json(StringIO(JSON_DATA)) if style == 'yahoo': df.symbol = df.symbol.apply(lambda x: str(x).replace('XSHG', 'SS').replace('XSHE', 'SZ')) return df @click.command() @click.argument("outputdir") def gen_data(outputdir): """ gen all ticker data result to output dir """ if not os.path.isdir(outputdir): raise Exception("Please Provide a valid output dir path") df = get_list('yahoo') for s in df.symbol: outputfile = os.path.join(outputdir, '%s_benchmark.csv' % str(s).upper()) """ zhikuang-squant is a private command of RainX """ click.echo("generate file or %s " % s) cmd = 'zhikuang-squant gen_zipline_benchmark_file -s %s -o %s' % (s, outputfile) # click.echo(cmd) os.system(cmd) click.echo("done! in path : %s" % outputfile) if __name__ == "__main__": gen_data()
zipline-cn-databundle
/zipline-cn-databundle-0.5.tar.gz/zipline-cn-databundle-0.5/zipline_cn_databundle/index_list/__init__.py
__init__.py
import pandas as pd import os import numpy as np import struct """ 读取通达信数据 """ class TdxFileNotFoundException(Exception): pass class TdxReader: def __init__(self, vipdoc_path): self.vipdoc_path = vipdoc_path def get_kline_by_code(self, code, exchange): fname = os.path.join(self.vipdoc_path, exchange) fname = os.path.join(fname, 'lday') fname = os.path.join(fname, '%s%s.day' % (exchange, code)) return self.parse_data_by_file(fname) def parse_data_by_file(self, fname): if not os.path.isfile(fname): raise TdxFileNotFoundException('no tdx kline data, pleaes check path %s', fname) with open(fname, 'rb') as f: content = f.read() return self.unpack_records('<iiiiifii', content) return [] def unpack_records(self, format, data): record_struct = struct.Struct(format) return (record_struct.unpack_from(data, offset) for offset in range(0, len(data), record_struct.size)) def get_df(self, code, exchange): data = [self._df_convert(row) for row in self.get_kline_by_code(code, exchange)] df = pd.DataFrame(data=data, columns=('date', 'open', 'high', 'low', 'close', 'amount', 'volume')) df.index = pd.to_datetime(df.date) return df[['open', 'high', 'low', 'close', 'volume']] def _df_convert(self, row): t_date = str(row[0]) datestr = t_date[:4] + "-" + t_date[4:6] + "-" + t_date[6:] new_row = ( datestr, row[1] * 0.01, # * 0.01 * 1000 , zipline need 1000 times to original price row[2] * 0.01, row[3] * 0.01, row[4] * 0.01, row[5], row[6] ) return new_row if __name__ == '__main__': tdx_reader = TdxReader('/Volumes/more/data/vipdoc/') try: #for row in tdx_reader.parse_data_by_file('/Volumes/more/data/vipdoc/sh/lday/sh600000.day'): # print(row) for row in tdx_reader.get_kline_by_code('600000', 'sh'): print(row) except TdxFileNotFoundException as e: pass print(tdx_reader.get_df('600000', 'sh'))
zipline-cn-databundle
/zipline-cn-databundle-0.5.tar.gz/zipline-cn-databundle-0.5/zipline_cn_databundle/tdx/reader.py
reader.py
import errno import os import click import logbook import pandas as pd import zipline from zipline.data import bundles as bundles_module from zipline.utils.calendar_utils import get_calendar from zipline.utils.compat import wraps from zipline.utils.cli import Date, Timestamp from zipline.utils.run_algo import _run, BenchmarkSpec, load_extensions from zipline.extensions import create_args try: __IPYTHON__ except NameError: __IPYTHON__ = False @click.group() @click.option( "-e", "--extension", multiple=True, help="File or module path to a zipline extension to load.", ) @click.option( "--strict-extensions/--non-strict-extensions", is_flag=True, help="If --strict-extensions is passed then zipline will not " "run if it cannot load all of the specified extensions. " "If this is not passed or --non-strict-extensions is passed " "then the failure will be logged but execution will continue.", ) @click.option( "--default-extension/--no-default-extension", is_flag=True, default=True, help="Don't load the default zipline extension.py file in $ZIPLINE_HOME.", ) @click.option( "-x", multiple=True, help="Any custom command line arguments to define, in key=value form.", ) @click.pass_context def main(ctx, extension, strict_extensions, default_extension, x): """Top level zipline entry point.""" # install a logbook handler before performing any other operations logbook.StderrHandler().push_application() create_args(x, zipline.extension_args) load_extensions( default_extension, extension, strict_extensions, os.environ, ) def extract_option_object(option): """Convert a click.option call into a click.Option object. Parameters ---------- option : decorator A click.option decorator. Returns ------- option_object : click.Option The option object that this decorator will create. """ @option def opt(): pass return opt.__click_params__[0] def ipython_only(option): """Mark that an option should only be exposed in IPython. Parameters ---------- option : decorator A click.option decorator. Returns ------- ipython_only_dec : decorator A decorator that correctly applies the argument even when not using IPython mode. """ if __IPYTHON__: return option argname = extract_option_object(option).name def d(f): @wraps(f) def _(*args, **kwargs): kwargs[argname] = None return f(*args, **kwargs) return _ return d DEFAULT_BUNDLE = "quandl" @main.command() @click.option( "-f", "--algofile", default=None, type=click.File("r"), help="The file that contains the algorithm to run.", ) @click.option( "-t", "--algotext", help="The algorithm script to run.", ) @click.option( "-D", "--define", multiple=True, help="Define a name to be bound in the namespace before executing" " the algotext. For example '-Dname=value'. The value may be any " "python expression. These are evaluated in order so they may refer " "to previously defined names.", ) @click.option( "--data-frequency", type=click.Choice({"daily", "minute"}), default="daily", show_default=True, help="The data frequency of the simulation.", ) @click.option( "--capital-base", type=float, default=10e6, show_default=True, help="The starting capital for the simulation.", ) @click.option( "-b", "--bundle", default=DEFAULT_BUNDLE, metavar="BUNDLE-NAME", show_default=True, help="The data bundle to use for the simulation.", ) @click.option( "--bundle-timestamp", type=Timestamp(), default=pd.Timestamp.utcnow(), show_default=False, help="The date to lookup data on or before.\n" "[default: <current-time>]", ) @click.option( "-bf", "--benchmark-file", default=None, type=click.Path(exists=True, dir_okay=False, readable=True, path_type=str), help="The csv file that contains the benchmark returns", ) @click.option( "--benchmark-symbol", default=None, type=click.STRING, help="The symbol of the instrument to be used as a benchmark " "(should exist in the ingested bundle)", ) @click.option( "--benchmark-sid", default=None, type=int, help="The sid of the instrument to be used as a benchmark " "(should exist in the ingested bundle)", ) @click.option( "--no-benchmark", is_flag=True, default=False, help="If passed, use a benchmark of zero returns.", ) @click.option( "-s", "--start", type=Date(tz="utc", as_timestamp=True), help="The start date of the simulation.", ) @click.option( "-e", "--end", type=Date(tz="utc", as_timestamp=True), help="The end date of the simulation.", ) @click.option( "-o", "--output", default="-", metavar="FILENAME", show_default=True, help="The location to write the perf data. If this is '-' the perf will" " be written to stdout.", ) @click.option( "--trading-calendar", metavar="TRADING-CALENDAR", default="XNYS", help="The calendar you want to use e.g. XLON. XNYS is the default.", ) @click.option( "--print-algo/--no-print-algo", is_flag=True, default=False, help="Print the algorithm to stdout.", ) @click.option( "--metrics-set", default="default", help="The metrics set to use. New metrics sets may be registered in your" " extension.py.", ) @click.option( "--blotter", default="default", help="The blotter to use.", show_default=True, ) @ipython_only( click.option( "--local-namespace/--no-local-namespace", is_flag=True, default=None, help="Should the algorithm methods be " "resolved in the local namespace.", ) ) @click.pass_context def run( ctx, algofile, algotext, define, data_frequency, capital_base, bundle, bundle_timestamp, benchmark_file, benchmark_symbol, benchmark_sid, no_benchmark, start, end, output, trading_calendar, print_algo, metrics_set, local_namespace, blotter, ): """Run a backtest for the given algorithm.""" # check that the start and end dates are passed correctly if start is None and end is None: # check both at the same time to avoid the case where a user # does not pass either of these and then passes the first only # to be told they need to pass the second argument also ctx.fail( "must specify dates with '-s' / '--start' and '-e' / '--end'", ) if start is None: ctx.fail("must specify a start date with '-s' / '--start'") if end is None: ctx.fail("must specify an end date with '-e' / '--end'") if (algotext is not None) == (algofile is not None): ctx.fail( "must specify exactly one of '-f' / " "'--algofile' or" " '-t' / '--algotext'", ) trading_calendar = get_calendar(trading_calendar) benchmark_spec = BenchmarkSpec.from_cli_params( no_benchmark=no_benchmark, benchmark_sid=benchmark_sid, benchmark_symbol=benchmark_symbol, benchmark_file=benchmark_file, ) return _run( initialize=None, handle_data=None, before_trading_start=None, analyze=None, algofile=algofile, algotext=algotext, defines=define, data_frequency=data_frequency, capital_base=capital_base, bundle=bundle, bundle_timestamp=bundle_timestamp, start=start, end=end, output=output, trading_calendar=trading_calendar, print_algo=print_algo, metrics_set=metrics_set, local_namespace=local_namespace, environ=os.environ, blotter=blotter, benchmark_spec=benchmark_spec, custom_loader=None, ) def zipline_magic(line, cell=None): """The zipline IPython cell magic.""" load_extensions( default=True, extensions=[], strict=True, environ=os.environ, ) try: return run.main( # put our overrides at the start of the parameter list so that # users may pass values with higher precedence [ "--algotext", cell, "--output", os.devnull, # don't write the results by default ] + ( [ # these options are set when running in line magic mode # set a non None algo text to use the ipython user_ns "--algotext", "", "--local-namespace", ] if cell is None else [] ) + line.split(), "%s%%zipline" % ((cell or "") and "%"), # don't use system exit and propogate errors to the caller standalone_mode=False, ) except SystemExit as e: # https://github.com/mitsuhiko/click/pull/533 # even in standalone_mode=False `--help` really wants to kill us ;_; if e.code: raise ValueError("main returned non-zero status code: %d" % e.code) @main.command() @click.option( "-b", "--bundle", default=DEFAULT_BUNDLE, metavar="BUNDLE-NAME", show_default=True, help="The data bundle to ingest.", ) @click.option( "--assets-version", type=int, multiple=True, help="Version of the assets db to which to downgrade.", ) @click.option( "--show-progress/--no-show-progress", default=True, help="Print progress information to the terminal.", ) def ingest(bundle, assets_version, show_progress): """Ingest the data for the given bundle.""" bundles_module.ingest( bundle, os.environ, pd.Timestamp.utcnow(), assets_version, show_progress, ) @main.command() @click.option( "-b", "--bundle", default=DEFAULT_BUNDLE, metavar="BUNDLE-NAME", show_default=True, help="The data bundle to clean.", ) @click.option( "-e", "--before", type=Timestamp(), help="Clear all data before TIMESTAMP." " This may not be passed with -k / --keep-last", ) @click.option( "-a", "--after", type=Timestamp(), help="Clear all data after TIMESTAMP" " This may not be passed with -k / --keep-last", ) @click.option( "-k", "--keep-last", type=int, metavar="N", help="Clear all but the last N downloads." " This may not be passed with -e / --before or -a / --after", ) def clean(bundle, before, after, keep_last): """Clean up data downloaded with the ingest command.""" bundles_module.clean( bundle, before, after, keep_last, ) @main.command() def bundles(): """List all of the available data bundles.""" for bundle in sorted(bundles_module.bundles.keys()): if bundle.startswith("."): # hide the test data continue try: ingestions = list(map(str, bundles_module.ingestions_for_bundle(bundle))) except OSError as e: if e.errno != errno.ENOENT: raise ingestions = [] # If we got no ingestions, either because the directory didn't exist or # because there were no entries, print a single message indicating that # no ingestions have yet been made. for timestamp in ingestions or ["<no ingestions>"]: click.echo("%s %s" % (bundle, timestamp)) if __name__ == "__main__": main()
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/__main__.py
__main__.py
import re from toolz import curry def create_args(args, root): """ Encapsulates a set of custom command line arguments in key=value or key.namespace=value form into a chain of Namespace objects, where each next level is an attribute of the Namespace object on the current level Parameters ---------- args : list A list of strings representing arguments in key=value form root : Namespace The top-level element of the argument tree """ extension_args = {} for arg in args: parse_extension_arg(arg, extension_args) for name in sorted(extension_args, key=len): path = name.split(".") update_namespace(root, path, extension_args[name]) def parse_extension_arg(arg, arg_dict): """ Converts argument strings in key=value or key.namespace=value form to dictionary entries Parameters ---------- arg : str The argument string to parse, which must be in key=value or key.namespace=value form. arg_dict : dict The dictionary into which the key/value pair will be added """ match = re.match(r"^(([^\d\W]\w*)(\.[^\d\W]\w*)*)=(.*)$", arg) if match is None: raise ValueError( "invalid extension argument '%s', must be in key=value form" % arg ) name = match.group(1) value = match.group(4) arg_dict[name] = value def update_namespace(namespace, path, name): """ A recursive function that takes a root element, list of namespaces, and the value being stored, and assigns namespaces to the root object via a chain of Namespace objects, connected through attributes Parameters ---------- namespace : Namespace The object onto which an attribute will be added path : list A list of strings representing namespaces name : str The value to be stored at the bottom level """ if len(path) == 1: setattr(namespace, path[0], name) else: if hasattr(namespace, path[0]): if isinstance(getattr(namespace, path[0]), str): raise ValueError( "Conflicting assignments at namespace" " level '%s'" % path[0] ) else: a = Namespace() setattr(namespace, path[0], a) update_namespace(getattr(namespace, path[0]), path[1:], name) class Namespace(object): """ A placeholder object representing a namespace level """ class Registry(object): """ Responsible for managing all instances of custom subclasses of a given abstract base class - only one instance needs to be created per abstract base class, and should be created through the create_registry function/decorator. All management methods for a given base class can be called through the global wrapper functions rather than through the object instance itself. Parameters ---------- interface : type The abstract base class to manage. """ def __init__(self, interface): self.interface = interface self._factories = {} def load(self, name): """Construct an object from a registered factory. Parameters ---------- name : str Name with which the factory was registered. """ try: return self._factories[name]() except KeyError: raise ValueError( "no %s factory registered under name %r, options are: %r" % (self.interface.__name__, name, sorted(self._factories)), ) def is_registered(self, name): """Check whether we have a factory registered under ``name``.""" return name in self._factories @curry def register(self, name, factory): if self.is_registered(name): raise ValueError( "%s factory with name %r is already registered" % (self.interface.__name__, name) ) self._factories[name] = factory return factory def unregister(self, name): try: del self._factories[name] except KeyError: raise ValueError( "%s factory %r was not already registered" % (self.interface.__name__, name) ) def clear(self): self._factories.clear() # Public wrapper methods for Registry: def get_registry(interface): """ Getter method for retrieving the registry instance for a given extendable type Parameters ---------- interface : type extendable type (base class) Returns ------- manager : Registry The corresponding registry """ try: return custom_types[interface] except KeyError: raise ValueError("class specified is not an extendable type") def load(interface, name): """ Retrieves a custom class whose name is given. Parameters ---------- interface : type The base class for which to perform this operation name : str The name of the class to be retrieved. Returns ------- obj : object An instance of the desired class. """ return get_registry(interface).load(name) @curry def register(interface, name, custom_class): """ Registers a class for retrieval by the load method Parameters ---------- interface : type The base class for which to perform this operation name : str The name of the subclass custom_class : type The class to register, which must be a subclass of the abstract base class in self.dtype """ return get_registry(interface).register(name, custom_class) def unregister(interface, name): """ If a class is registered with the given name, it is unregistered. Parameters ---------- interface : type The base class for which to perform this operation name : str The name of the class to be unregistered. """ get_registry(interface).unregister(name) def clear(interface): """ Unregisters all current registered classes Parameters ---------- interface : type The base class for which to perform this operation """ get_registry(interface).clear() def create_registry(interface): """ Create a new registry for an extensible interface. Parameters ---------- interface : type The abstract data type for which to create a registry, which will manage registration of factories for this type. Returns ------- interface : type The data type specified/decorated, unaltered. """ if interface in custom_types: raise ValueError( "there is already a Registry instance " "for the specified type" ) custom_types[interface] = Registry(interface) return interface extensible = create_registry # A global dictionary for storing instances of Registry: custom_types = {}
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/extensions.py
extensions.py
from textwrap import dedent from zipline.utils.memoize import lazyval class ZiplineError(Exception): msg = None def __init__(self, **kwargs): self.kwargs = kwargs @lazyval def message(self): return str(self) def __str__(self): msg = self.msg.format(**self.kwargs) return msg __unicode__ = __str__ __repr__ = __str__ class NoTradeDataAvailable(ZiplineError): pass class NoTradeDataAvailableTooEarly(NoTradeDataAvailable): msg = "{sid} does not exist on {dt}. It started trading on {start_dt}." class NoTradeDataAvailableTooLate(NoTradeDataAvailable): msg = "{sid} does not exist on {dt}. It stopped trading on {end_dt}." class BenchmarkAssetNotAvailableTooEarly(NoTradeDataAvailableTooEarly): pass class BenchmarkAssetNotAvailableTooLate(NoTradeDataAvailableTooLate): pass class InvalidBenchmarkAsset(ZiplineError): msg = """ {sid} cannot be used as the benchmark because it has a stock \ dividend on {dt}. Choose another asset to use as the benchmark. """.strip() class WrongDataForTransform(ZiplineError): """ Raised whenever a rolling transform is called on an event that does not have the necessary properties. """ msg = "{transform} requires {fields}. Event cannot be processed." class UnsupportedSlippageModel(ZiplineError): """ Raised if a user script calls the set_slippage magic with a slipage object that isn't a VolumeShareSlippage or FixedSlipapge """ msg = """ You attempted to set slippage with an unsupported class. \ Please use VolumeShareSlippage or FixedSlippage. """.strip() class IncompatibleSlippageModel(ZiplineError): """ Raised if a user tries to set a futures slippage model for equities or vice versa. """ msg = """ You attempted to set an incompatible slippage model for {asset_type}. \ The slippage model '{given_model}' only supports {supported_asset_types}. """.strip() class SetSlippagePostInit(ZiplineError): # Raised if a users script calls set_slippage magic # after the initialize method has returned. msg = """ You attempted to set slippage outside of `initialize`. \ You may only call 'set_slippage' in your initialize method. """.strip() class SetCancelPolicyPostInit(ZiplineError): # Raised if a users script calls set_cancel_policy # after the initialize method has returned. msg = """ You attempted to set the cancel policy outside of `initialize`. \ You may only call 'set_cancel_policy' in your initialize method. """.strip() class RegisterTradingControlPostInit(ZiplineError): # Raised if a user's script register's a trading control after initialize # has been run. msg = """ You attempted to set a trading control outside of `initialize`. \ Trading controls may only be set in your initialize method. """.strip() class RegisterAccountControlPostInit(ZiplineError): # Raised if a user's script register's a trading control after initialize # has been run. msg = """ You attempted to set an account control outside of `initialize`. \ Account controls may only be set in your initialize method. """.strip() class UnsupportedCommissionModel(ZiplineError): """ Raised if a user script calls the set_commission magic with a commission object that isn't a PerShare, PerTrade or PerDollar commission """ msg = """ You attempted to set commission with an unsupported class. \ Please use PerShare or PerTrade. """.strip() class IncompatibleCommissionModel(ZiplineError): """ Raised if a user tries to set a futures commission model for equities or vice versa. """ msg = """ You attempted to set an incompatible commission model for {asset_type}. \ The commission model '{given_model}' only supports {supported_asset_types}. """.strip() class UnsupportedCancelPolicy(ZiplineError): """ Raised if a user script calls set_cancel_policy with an object that isn't a CancelPolicy. """ msg = """ You attempted to set the cancel policy with an unsupported class. Please use an instance of CancelPolicy. """.strip() class SetCommissionPostInit(ZiplineError): """ Raised if a users script calls set_commission magic after the initialize method has returned. """ msg = """ You attempted to override commission outside of `initialize`. \ You may only call 'set_commission' in your initialize method. """.strip() class TransactionWithNoVolume(ZiplineError): """ Raised if a transact call returns a transaction with zero volume. """ msg = """ Transaction {txn} has a volume of zero. """.strip() class TransactionWithWrongDirection(ZiplineError): """ Raised if a transact call returns a transaction with a direction that does not match the order. """ msg = """ Transaction {txn} not in same direction as corresponding order {order}. """.strip() class TransactionWithNoAmount(ZiplineError): """ Raised if a transact call returns a transaction with zero amount. """ msg = """ Transaction {txn} has an amount of zero. """.strip() class TransactionVolumeExceedsOrder(ZiplineError): """ Raised if a transact call returns a transaction with a volume greater than the corresponding order. """ msg = """ Transaction volume of {txn} exceeds the order volume of {order}. """.strip() class UnsupportedOrderParameters(ZiplineError): """ Raised if a set of mutually exclusive parameters are passed to an order call. """ msg = "{msg}" class CannotOrderDelistedAsset(ZiplineError): """ Raised if an order is for a delisted asset. """ msg = "{msg}" class BadOrderParameters(ZiplineError): """ Raised if any impossible parameters (nan, negative limit/stop) are passed to an order call. """ msg = "{msg}" class OrderDuringInitialize(ZiplineError): """ Raised if order is called during initialize() """ msg = "{msg}" class SetBenchmarkOutsideInitialize(ZiplineError): """ Raised if set_benchmark is called outside initialize() """ msg = "'set_benchmark' can only be called within initialize function." class ZeroCapitalError(ZiplineError): """ Raised if initial capital is set at or below zero """ msg = "initial capital base must be greater than zero" class AccountControlViolation(ZiplineError): """ Raised if the account violates a constraint set by a AccountControl. """ msg = """ Account violates account constraint {constraint}. """.strip() class TradingControlViolation(ZiplineError): """ Raised if an order would violate a constraint set by a TradingControl. """ msg = """ Order for {amount} shares of {asset} at {datetime} violates trading constraint {constraint}. """.strip() class IncompatibleHistoryFrequency(ZiplineError): """ Raised when a frequency is given to history which is not supported. At least, not yet. """ msg = """ Requested history at frequency '{frequency}' cannot be created with data at frequency '{data_frequency}'. """.strip() class OrderInBeforeTradingStart(ZiplineError): """ Raised when an algorithm calls an order method in before_trading_start. """ msg = "Cannot place orders inside before_trading_start." class MultipleSymbolsFound(ZiplineError): """ Raised when a symbol() call contains a symbol that changed over time and is thus not resolvable without additional information provided via as_of_date. """ msg = """ Multiple symbols with the name '{symbol}' found. Use the as_of_date' argument to specify when the date symbol-lookup should be valid. Possible options: {options} """.strip() class MultipleSymbolsFoundForFuzzySymbol(MultipleSymbolsFound): """ Raised when a fuzzy symbol lookup is not resolvable without additional information. """ msg = dedent( """\ Multiple symbols were found fuzzy matching the name '{symbol}'. Use the as_of_date and/or country_code arguments to specify the date and country for the symbol-lookup. Possible options: {options} """ ) class SameSymbolUsedAcrossCountries(MultipleSymbolsFound): """ Raised when a symbol() call contains a symbol that is used in more than one country and is thus not resolvable without a country_code. """ msg = dedent( """\ The symbol '{symbol}' is used in more than one country. Use the country_code argument to specify the country. Possible options by country: {options} """ ) class SymbolNotFound(ZiplineError): """ Raised when a symbol() call contains a non-existant symbol. """ msg = """ Symbol '{symbol}' was not found. """.strip() class RootSymbolNotFound(ZiplineError): """ Raised when a lookup_future_chain() call contains a non-existant symbol. """ msg = """ Root symbol '{root_symbol}' was not found. """.strip() class ValueNotFoundForField(ZiplineError): """ Raised when a lookup_by_supplementary_mapping() call contains a value does not exist for the specified mapping type. """ msg = """ Value '{value}' was not found for field '{field}'. """.strip() class MultipleValuesFoundForField(ZiplineError): """ Raised when a lookup_by_supplementary_mapping() call contains a value that changed over time for the specified field and is thus not resolvable without additional information provided via as_of_date. """ msg = """ Multiple occurrences of the value '{value}' found for field '{field}'. Use the 'as_of_date' or 'country_code' argument to specify when or where the lookup should be valid. Possible options: {options} """.strip() class NoValueForSid(ZiplineError): """ Raised when a get_supplementary_field() call contains a sid that does not have a value for the specified mapping type. """ msg = """ No '{field}' value found for sid '{sid}'. """.strip() class MultipleValuesFoundForSid(ZiplineError): """ Raised when a get_supplementary_field() call contains a value that changed over time for the specified field and is thus not resolvable without additional information provided via as_of_date. """ msg = """ Multiple '{field}' values found for sid '{sid}'. Use the as_of_date' argument to specify when the lookup should be valid. Possible options: {options} """.strip() class SidsNotFound(ZiplineError): """ Raised when a retrieve_asset() or retrieve_all() call contains a non-existent sid. """ @lazyval def plural(self): return len(self.sids) > 1 @lazyval def sids(self): return self.kwargs["sids"] @lazyval def msg(self): if self.plural: return "No assets found for sids: {sids}." return "No asset found for sid: {sids[0]}." class EquitiesNotFound(SidsNotFound): """ Raised when a call to `retrieve_equities` fails to find an asset. """ @lazyval def msg(self): if self.plural: return "No equities found for sids: {sids}." return "No equity found for sid: {sids[0]}." class FutureContractsNotFound(SidsNotFound): """ Raised when a call to `retrieve_futures_contracts` fails to find an asset. """ @lazyval def msg(self): if self.plural: return "No future contracts found for sids: {sids}." return "No future contract found for sid: {sids[0]}." class ConsumeAssetMetaDataError(ZiplineError): """ Raised when AssetFinder.consume() is called on an invalid object. """ msg = """ AssetFinder can not consume metadata of type {obj}. Metadata must be a dict, a DataFrame, or a tables.Table. If the provided metadata is a Table, the rows must contain both or one of 'sid' or 'symbol'. """.strip() class SidAssignmentError(ZiplineError): """ Raised when an AssetFinder tries to build an Asset that does not have a sid and that AssetFinder is not permitted to assign sids. """ msg = """ AssetFinder metadata is missing a SID for identifier '{identifier}'. """.strip() class NoSourceError(ZiplineError): """ Raised when no source is given to the pipeline """ msg = """ No data source given. """.strip() class PipelineDateError(ZiplineError): """ Raised when only one date is passed to the pipeline """ msg = """ Only one simulation date given. Please specify both the 'start' and 'end' for the simulation, or neither. If neither is given, the start and end of the DataSource will be used. Given start = '{start}', end = '{end}' """.strip() class WindowLengthTooLong(ZiplineError): """ Raised when a trailing window is instantiated with a lookback greater than the length of the underlying array. """ msg = ( "Can't construct a rolling window of length " "{window_length} on an array of length {nrows}." ).strip() class WindowLengthNotPositive(ZiplineError): """ Raised when a trailing window would be instantiated with a length less than 1. """ msg = ("Expected a window_length greater than 0, got {window_length}.").strip() class NonWindowSafeInput(ZiplineError): """ Raised when a Pipeline API term that is not deemed window safe is specified as an input to another windowed term. This is an error because it's generally not safe to compose windowed functions on split/dividend adjusted data. """ msg = "Can't compute windowed expression {parent} with " "windowed input {child}." class TermInputsNotSpecified(ZiplineError): """ Raised if a user attempts to construct a term without specifying inputs and that term does not have class-level default inputs. """ msg = "{termname} requires inputs, but no inputs list was passed." class NonPipelineInputs(ZiplineError): """ Raised when a non-pipeline object is passed as input to a ComputableTerm """ def __init__(self, term, inputs): self.term = term self.inputs = inputs def __str__(self): return ( "Unexpected input types in {}. " "Inputs to Pipeline expressions must be Filters, Factors, " "Classifiers, or BoundColumns.\n" "Got the following type(s) instead: {}".format( type(self.term).__name__, sorted(set(map(type, self.inputs)), key=lambda t: t.__name__), ) ) class TermOutputsEmpty(ZiplineError): """ Raised if a user attempts to construct a term with an empty outputs list. """ msg = "{termname} requires at least one output when passed an outputs " "argument." class InvalidOutputName(ZiplineError): """ Raised if a term's output names conflict with any of its attributes. """ msg = ( "{output_name!r} cannot be used as an output name for {termname}. " "Output names cannot start with an underscore or be contained in the " "following list: {disallowed_names}." ) class WindowLengthNotSpecified(ZiplineError): """ Raised if a user attempts to construct a term without specifying window length and that term does not have a class-level default window length. """ msg = "{termname} requires a window_length, but no window_length was passed." class InvalidTermParams(ZiplineError): """ Raised if a user attempts to construct a Term using ParameterizedTermMixin without specifying a `params` list in the class body. """ msg = ( "Expected a list of strings as a class-level attribute for " "{termname}.params, but got {value} instead." ) class DTypeNotSpecified(ZiplineError): """ Raised if a user attempts to construct a term without specifying dtype and that term does not have class-level default dtype. """ msg = "{termname} requires a dtype, but no dtype was passed." class NotDType(ZiplineError): """ Raised when a pipeline Term is constructed with a dtype that isn't a numpy dtype object. """ msg = ( "{termname} expected a numpy dtype " "object for a dtype, but got {dtype} instead." ) class UnsupportedDType(ZiplineError): """ Raised when a pipeline Term is constructed with a dtype that's not supported. """ msg = ( "Failed to construct {termname}.\n" "Pipeline terms of dtype {dtype} are not yet supported." ) class BadPercentileBounds(ZiplineError): """ Raised by API functions accepting percentile bounds when the passed bounds are invalid. """ msg = ( "Percentile bounds must fall between 0.0 and {upper_bound}, and min " "must be less than max." "\nInputs were min={min_percentile}, max={max_percentile}." ) class UnknownRankMethod(ZiplineError): """ Raised during construction of a Rank factor when supplied a bad Rank method. """ msg = "Unknown ranking method: '{method}'. " "`method` must be one of {choices}" class AttachPipelineAfterInitialize(ZiplineError): """ Raised when a user tries to call add_pipeline outside of initialize. """ msg = ( "Attempted to attach a pipeline after initialize(). " "attach_pipeline() can only be called during initialize." ) class PipelineOutputDuringInitialize(ZiplineError): """ Raised when a user tries to call `pipeline_output` during initialize. """ msg = ( "Attempted to call pipeline_output() during initialize. " "pipeline_output() can only be called once initialize has completed." ) class NoSuchPipeline(ZiplineError, KeyError): """ Raised when a user tries to access a non-existent pipeline by name. """ msg = ( "No pipeline named '{name}' exists. Valid pipeline names are {valid}. " "Did you forget to call attach_pipeline()?" ) class DuplicatePipelineName(ZiplineError): """ Raised when a user tries to attach a pipeline with a name that already exists for another attached pipeline. """ msg = ( "Attempted to attach pipeline named {name!r}, but the name already " "exists for another pipeline. Please use a different name for this " "pipeline." ) class UnsupportedDataType(ZiplineError): """ Raised by CustomFactors with unsupported dtypes. """ def __init__(self, hint="", **kwargs): if hint: hint = " " + hint kwargs["hint"] = hint super(UnsupportedDataType, self).__init__(**kwargs) msg = "{typename} instances with dtype {dtype} are not supported.{hint}" class NoFurtherDataError(ZiplineError): """ Raised by calendar operations that would ask for dates beyond the extent of our known data. """ # This accepts an arbitrary message string because it's used in more places # that can be usefully templated. msg = "{msg}" @classmethod def from_lookback_window( cls, initial_message, first_date, lookback_start, lookback_length ): return cls( msg=dedent( """ {initial_message} lookback window started at {lookback_start} earliest known date was {first_date} {lookback_length} extra rows of data were required """ ).format( initial_message=initial_message, first_date=first_date, lookback_start=lookback_start, lookback_length=lookback_length, ) ) class UnsupportedDatetimeFormat(ZiplineError): """ Raised when an unsupported datetime is passed to an API method. """ msg = ( "The input '{input}' passed to '{method}' is not " "coercible to a pandas.Timestamp object." ) class AssetDBVersionError(ZiplineError): """ Raised by an AssetDBWriter or AssetFinder if the version number in the versions table does not match the ASSET_DB_VERSION in asset_writer.py. """ msg = ( "The existing Asset database has an incorrect version: {db_version}. " "Expected version: {expected_version}. Try rebuilding your asset " "database or updating your version of Zipline." ) class AssetDBImpossibleDowngrade(ZiplineError): msg = ( "The existing Asset database is version: {db_version} which is lower " "than the desired downgrade version: {desired_version}." ) class HistoryWindowStartsBeforeData(ZiplineError): msg = ( "History window extends before {first_trading_day}. To use this " "history window, start the backtest on or after {suggested_start_day}." ) class NonExistentAssetInTimeFrame(ZiplineError): msg = ( "The target asset '{asset}' does not exist for the entire timeframe " "between {start_date} and {end_date}." ) class InvalidCalendarName(ZiplineError): """ Raised when a calendar with an invalid name is requested. """ msg = "The requested TradingCalendar, {calendar_name}, does not exist." class CalendarNameCollision(ZiplineError): """ Raised when the static calendar registry already has a calendar with a given name. """ msg = "A calendar with the name {calendar_name} is already registered." class CyclicCalendarAlias(ZiplineError): """ Raised when calendar aliases form a cycle. """ msg = "Cycle in calendar aliases: [{cycle}]" class ScheduleFunctionWithoutCalendar(ZiplineError): """ Raised when schedule_function is called but there is not a calendar to be used in the construction of an event rule. """ # TODO update message when new TradingSchedules are built msg = ( "To use schedule_function, the TradingAlgorithm must be running on an " "ExchangeTradingSchedule, rather than {schedule}." ) class ScheduleFunctionInvalidCalendar(ZiplineError): """ Raised when schedule_function is called with an invalid calendar argument. """ msg = ( "Invalid calendar '{given_calendar}' passed to schedule_function. " "Allowed options are {allowed_calendars}." ) class UnsupportedPipelineOutput(ZiplineError): """ Raised when a 1D term is added as a column to a pipeline. """ msg = ( "Cannot add column {column_name!r} with term {term}. Adding slices or " "single-column-output terms as pipeline columns is not currently " "supported." ) class NonSliceableTerm(ZiplineError): """ Raised when attempting to index into a non-sliceable term, e.g. instances of `zipline.pipeline.term.LoadableTerm`. """ msg = "Taking slices of {term} is not currently supported." class IncompatibleTerms(ZiplineError): """ Raised when trying to compute correlations/regressions between two 2D factors with different masks. """ msg = ( "{term_1} and {term_2} must have the same mask in order to compute " "correlations and regressions asset-wise." )
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/errors.py
errors.py
import pandas as pd from .assets import Asset from enum import IntEnum from ._protocol import BarData, InnerPosition # noqa class MutableView(object): """A mutable view over an "immutable" object. Parameters ---------- ob : any The object to take a view over. """ # add slots so we don't accidentally add attributes to the view instead of # ``ob`` __slots__ = ("_mutable_view_ob",) def __init__(self, ob): object.__setattr__(self, "_mutable_view_ob", ob) def __getattr__(self, attr): return getattr(self._mutable_view_ob, attr) def __setattr__(self, attr, value): vars(self._mutable_view_ob)[attr] = value def __repr__(self): return "%s(%r)" % (type(self).__name__, self._mutable_view_ob) # Datasource type should completely determine the other fields of a # message with its type. DATASOURCE_TYPE = IntEnum( "DATASOURCE_TYPE", [ "AS_TRADED_EQUITY", "MERGER", "SPLIT", "DIVIDEND", "TRADE", "TRANSACTION", "ORDER", "EMPTY", "DONE", "CUSTOM", "BENCHMARK", "COMMISSION", "CLOSE_POSITION", ], start=0, ) # Expected fields/index values for a dividend Series. DIVIDEND_FIELDS = [ "declared_date", "ex_date", "gross_amount", "net_amount", "pay_date", "payment_sid", "ratio", "sid", ] # Expected fields/index values for a dividend payment Series. DIVIDEND_PAYMENT_FIELDS = [ "id", "payment_sid", "cash_amount", "share_count", ] class Event(object): def __init__(self, initial_values=None): if initial_values: self.__dict__.update(initial_values) def keys(self): return self.__dict__.keys() def __eq__(self, other): return hasattr(other, "__dict__") and self.__dict__ == other.__dict__ def __contains__(self, name): return name in self.__dict__ def __repr__(self): return "Event({0})".format(self.__dict__) def to_series(self, index=None): return pd.Series(self.__dict__, index=index) class Order(Event): pass class Portfolio(object): """Object providing read-only access to current portfolio state. Parameters ---------- start_date : pd.Timestamp The start date for the period being recorded. capital_base : float The starting value for the portfolio. This will be used as the starting cash, current cash, and portfolio value. Attributes ---------- positions : zipline.protocol.Positions Dict-like object containing information about currently-held positions. cash : float Amount of cash currently held in portfolio. portfolio_value : float Current liquidation value of the portfolio's holdings. This is equal to ``cash + sum(shares * price)`` starting_cash : float Amount of cash in the portfolio at the start of the backtest. """ def __init__(self, start_date=None, capital_base=0.0): self_ = MutableView(self) self_.cash_flow = 0.0 self_.starting_cash = capital_base self_.portfolio_value = capital_base self_.pnl = 0.0 self_.returns = 0.0 self_.cash = capital_base self_.positions = Positions() self_.start_date = start_date self_.positions_value = 0.0 self_.positions_exposure = 0.0 @property def capital_used(self): return self.cash_flow def __setattr__(self, attr, value): raise AttributeError("cannot mutate Portfolio objects") def __repr__(self): return "Portfolio({0})".format(self.__dict__) @property def current_portfolio_weights(self): """ Compute each asset's weight in the portfolio by calculating its held value divided by the total value of all positions. Each equity's value is its price times the number of shares held. Each futures contract's value is its unit price times number of shares held times the multiplier. """ position_values = pd.Series( { asset: ( position.last_sale_price * position.amount * asset.price_multiplier ) for asset, position in self.positions.items() }, dtype=float, ) return position_values / self.portfolio_value class Account(object): """ The account object tracks information about the trading account. The values are updated as the algorithm runs and its keys remain unchanged. If connected to a broker, one can update these values with the trading account values as reported by the broker. """ def __init__(self): self_ = MutableView(self) self_.settled_cash = 0.0 self_.accrued_interest = 0.0 self_.buying_power = float("inf") self_.equity_with_loan = 0.0 self_.total_positions_value = 0.0 self_.total_positions_exposure = 0.0 self_.regt_equity = 0.0 self_.regt_margin = float("inf") self_.initial_margin_requirement = 0.0 self_.maintenance_margin_requirement = 0.0 self_.available_funds = 0.0 self_.excess_liquidity = 0.0 self_.cushion = 0.0 self_.day_trades_remaining = float("inf") self_.leverage = 0.0 self_.net_leverage = 0.0 self_.net_liquidation = 0.0 def __setattr__(self, attr, value): raise AttributeError("cannot mutate Account objects") def __repr__(self): return "Account({0})".format(self.__dict__) class Position(object): """ A position held by an algorithm. Attributes ---------- asset : zipline.assets.Asset The held asset. amount : int Number of shares held. Short positions are represented with negative values. cost_basis : float Average price at which currently-held shares were acquired. last_sale_price : float Most recent price for the position. last_sale_date : pd.Timestamp Datetime at which ``last_sale_price`` was last updated. """ __slots__ = ("_underlying_position",) def __init__(self, underlying_position): object.__setattr__(self, "_underlying_position", underlying_position) def __getattr__(self, attr): return getattr(self._underlying_position, attr) def __setattr__(self, attr, value): raise AttributeError("cannot mutate Position objects") @property def sid(self): # for backwards compatibility return self.asset def __repr__(self): return "Position(%r)" % { k: getattr(self, k) for k in ( "asset", "amount", "cost_basis", "last_sale_price", "last_sale_date", ) } class Positions(dict): """A dict-like object containing the algorithm's current positions.""" def __missing__(self, key): if isinstance(key, Asset): return Position(InnerPosition(key)) raise ValueError( "Position lookup expected a value of type Asset" f" but got {type(key).__name__} instead" )
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/protocol.py
protocol.py
from packaging.version import Version import os import numpy as np # This is *not* a place to dump arbitrary classes/modules for convenience, # it is a place to expose the public interfaces. from zipline.utils.calendar_utils import get_calendar from . import data from . import finance from . import gens from . import utils from .utils.numpy_utils import numpy_version from .utils.pandas_utils import new_pandas from .utils.run_algo import run_algorithm # These need to happen after the other imports. from .algorithm import TradingAlgorithm from . import api from zipline import extensions as ext from zipline.finance.blotter import Blotter # PERF: Fire a warning if calendars were instantiated during zipline import. # Having calendars doesn't break anything per-se, but it makes zipline imports # noticeably slower, which becomes particularly noticeable in the Zipline CLI. from zipline.utils.calendar_utils import global_calendar_dispatcher if global_calendar_dispatcher._calendars: import warnings warnings.warn( "Found TradingCalendar instances after zipline import.\n" "Zipline startup will be much slower until this is fixed!", ) del warnings del global_calendar_dispatcher from ._version import get_versions # noqa 402 __version__ = get_versions()["version"] del get_versions extension_args = ext.Namespace() def load_ipython_extension(ipython): from .__main__ import zipline_magic ipython.register_magic_function(zipline_magic, "line_cell", "zipline") if os.name == "nt": # we need to be able to write to our temp directoy on windows so we # create a subdir in %TMP% that has write access and use that as %TMP% def _(): import atexit import tempfile tempfile.tempdir = tempdir = tempfile.mkdtemp() @atexit.register def cleanup_tempdir(): import shutil shutil.rmtree(tempdir) _() del _ __all__ = [ "Blotter", "TradingAlgorithm", "api", "data", "finance", "get_calendar", "gens", "run_algorithm", "utils", "extension_args", ] def setup( self, np=np, numpy_version=numpy_version, Version=Version, new_pandas=new_pandas, ): """Lives in zipline.__init__ for doctests.""" if numpy_version >= Version("1.14"): self.old_opts = np.get_printoptions() np.set_printoptions(legacy="1.13") else: self.old_opts = None if new_pandas: self.old_err = np.geterr() # old pandas has numpy compat that sets this np.seterr(all="ignore") else: self.old_err = None def teardown(self, np=np): """Lives in zipline.__init__ for doctests.""" if self.old_err is not None: np.seterr(**self.old_err) if self.old_opts is not None: np.set_printoptions(**self.old_opts) del os del np del numpy_version del Version del new_pandas
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/__init__.py
__init__.py
from collections.abc import Iterable from collections import namedtuple from copy import copy import warnings from datetime import tzinfo, time import logbook import pytz import pandas as pd import numpy as np from itertools import chain, repeat from zipline.utils.calendar_utils import get_calendar, days_at_time from zipline._protocol import handle_non_market_minutes from zipline.errors import ( AttachPipelineAfterInitialize, CannotOrderDelistedAsset, DuplicatePipelineName, IncompatibleCommissionModel, IncompatibleSlippageModel, NoSuchPipeline, OrderDuringInitialize, OrderInBeforeTradingStart, PipelineOutputDuringInitialize, RegisterAccountControlPostInit, RegisterTradingControlPostInit, ScheduleFunctionInvalidCalendar, SetBenchmarkOutsideInitialize, SetCancelPolicyPostInit, SetCommissionPostInit, SetSlippagePostInit, UnsupportedCancelPolicy, UnsupportedDatetimeFormat, UnsupportedOrderParameters, ZeroCapitalError, ) from zipline.finance.blotter import SimulationBlotter from zipline.finance.controls import ( LongOnly, MaxOrderCount, MaxOrderSize, MaxPositionSize, MaxLeverage, MinLeverage, RestrictedListOrder, ) from zipline.finance.execution import ( LimitOrder, MarketOrder, StopLimitOrder, StopOrder, ) from zipline.finance.asset_restrictions import Restrictions from zipline.finance.cancel_policy import NeverCancel, CancelPolicy from zipline.finance.asset_restrictions import ( NoRestrictions, StaticRestrictions, SecurityListRestrictions, ) from zipline.assets import Asset, Equity, Future from zipline.gens.tradesimulation import AlgorithmSimulator from zipline.finance.metrics import MetricsTracker, load as load_metrics_set from zipline.pipeline import Pipeline import zipline.pipeline.domain as domain from zipline.pipeline.engine import ( ExplodingPipelineEngine, SimplePipelineEngine, ) from zipline.utils.api_support import ( api_method, require_initialized, require_not_initialized, ZiplineAPI, disallowed_in_before_trading_start, ) from zipline.utils.compat import ExitStack from zipline.utils.date_utils import make_utc_aware from zipline.utils.input_validation import ( coerce_string, ensure_upper_case, error_keywords, expect_dtypes, expect_types, optional, optionally, ) from zipline.utils.numpy_utils import int64_dtype from zipline.utils.pandas_utils import normalize_date from zipline.utils.cache import ExpiringCache import zipline.utils.events from zipline.utils.events import ( EventManager, make_eventrule, date_rules, time_rules, calendars, AfterOpen, BeforeClose, ) from zipline.utils.math_utils import ( tolerant_equals, round_if_near_integer, ) from zipline.utils.preprocess import preprocess from zipline.utils.security_list import SecurityList import zipline.protocol from zipline.sources.requests_csv import PandasRequestsCSV from zipline.gens.sim_engine import MinuteSimulationClock from zipline.sources.benchmark_source import BenchmarkSource from zipline.zipline_warnings import ZiplineDeprecationWarning log = logbook.Logger("ZiplineLog") # For creating and storing pipeline instances AttachedPipeline = namedtuple("AttachedPipeline", "pipe chunks eager") class NoBenchmark(ValueError): def __init__(self): super(NoBenchmark, self).__init__( "Must specify either benchmark_sid or benchmark_returns.", ) class TradingAlgorithm(object): """A class that represents a trading strategy and parameters to execute the strategy. Parameters ---------- *args, **kwargs Forwarded to ``initialize`` unless listed below. initialize : callable[context -> None], optional Function that is called at the start of the simulation to setup the initial context. handle_data : callable[(context, data) -> None], optional Function called on every bar. This is where most logic should be implemented. before_trading_start : callable[(context, data) -> None], optional Function that is called before any bars have been processed each day. analyze : callable[(context, DataFrame) -> None], optional Function that is called at the end of the backtest. This is passed the context and the performance results for the backtest. script : str, optional Algoscript that contains the definitions for the four algorithm lifecycle functions and any supporting code. namespace : dict, optional The namespace to execute the algoscript in. By default this is an empty namespace that will include only python built ins. algo_filename : str, optional The filename for the algoscript. This will be used in exception tracebacks. default: '<string>'. data_frequency : {'daily', 'minute'}, optional The duration of the bars. equities_metadata : dict or DataFrame or file-like object, optional If dict is provided, it must have the following structure: * keys are the identifiers * values are dicts containing the metadata, with the metadata field name as the key If pandas.DataFrame is provided, it must have the following structure: * column names must be the metadata fields * index must be the different asset identifiers * array contents should be the metadata value If an object with a ``read`` method is provided, ``read`` must return rows containing at least one of 'sid' or 'symbol' along with the other metadata fields. futures_metadata : dict or DataFrame or file-like object, optional The same layout as ``equities_metadata`` except that it is used for futures information. identifiers : list, optional Any asset identifiers that are not provided in the equities_metadata, but will be traded by this TradingAlgorithm. get_pipeline_loader : callable[BoundColumn -> PipelineLoader], optional The function that maps pipeline columns to their loaders. create_event_context : callable[BarData -> context manager], optional A function used to create a context mananger that wraps the execution of all events that are scheduled for a bar. This function will be passed the data for the bar and should return the actual context manager that will be entered. history_container_class : type, optional The type of history container to use. default: HistoryContainer platform : str, optional The platform the simulation is running on. This can be queried for in the simulation with ``get_environment``. This allows algorithms to conditionally execute code based on platform it is running on. default: 'zipline' adjustment_reader : AdjustmentReader The interface to the adjustments. """ def __init__( self, sim_params, data_portal=None, asset_finder=None, # Algorithm API namespace=None, script=None, algo_filename=None, initialize=None, handle_data=None, before_trading_start=None, analyze=None, # trading_calendar=None, metrics_set=None, blotter=None, blotter_class=None, cancel_policy=None, benchmark_sid=None, benchmark_returns=None, platform="zipline", capital_changes=None, get_pipeline_loader=None, create_event_context=None, **initialize_kwargs, ): # List of trading controls to be used to validate orders. self.trading_controls = [] # List of account controls to be checked on each bar. self.account_controls = [] self._recorded_vars = {} self.namespace = namespace or {} self._platform = platform self.logger = None # XXX: This is kind of a mess. # We support passing a data_portal in `run`, but we need an asset # finder earlier than that to look up assets for things like # set_benchmark. self.data_portal = data_portal if self.data_portal is None: if asset_finder is None: raise ValueError( "Must pass either data_portal or asset_finder " "to TradingAlgorithm()" ) self.asset_finder = asset_finder else: # Raise an error if we were passed two different asset finders. # There's no world where that's a good idea. if ( asset_finder is not None and asset_finder is not data_portal.asset_finder ): raise ValueError("Inconsistent asset_finders in TradingAlgorithm()") self.asset_finder = data_portal.asset_finder self.benchmark_returns = benchmark_returns # XXX: This is also a mess. We should remove all of this and only allow # one way to pass a calendar. # # We have a required sim_params argument as well as an optional # trading_calendar argument, but sim_params has a trading_calendar # attribute. If the user passed trading_calendar explicitly, make sure # it matches their sim_params. Otherwise, just use what's in their # sim_params. self.sim_params = sim_params if trading_calendar is None: self.trading_calendar = sim_params.trading_calendar elif trading_calendar.name == sim_params.trading_calendar.name: self.trading_calendar = sim_params.trading_calendar else: raise ValueError( "Conflicting calendars: trading_calendar={}, but " "sim_params.trading_calendar={}".format( trading_calendar.name, self.sim_params.trading_calendar.name, ) ) self.metrics_tracker = None self._last_sync_time = pd.NaT self._metrics_set = metrics_set if self._metrics_set is None: self._metrics_set = load_metrics_set("default") # Initialize Pipeline API data. self.init_engine(get_pipeline_loader) self._pipelines = {} # Create an already-expired cache so that we compute the first time # data is requested. self._pipeline_cache = ExpiringCache() if blotter is not None: self.blotter = blotter else: cancel_policy = cancel_policy or NeverCancel() blotter_class = blotter_class or SimulationBlotter self.blotter = blotter_class(cancel_policy=cancel_policy) # The symbol lookup date specifies the date to use when resolving # symbols to sids, and can be set using set_symbol_lookup_date() self._symbol_lookup_date = None # If string is passed in, execute and get reference to # functions. self.algoscript = script self._initialize = None self._before_trading_start = None self._analyze = None self._in_before_trading_start = False self.event_manager = EventManager(create_event_context) self._handle_data = None def noop(*args, **kwargs): pass if self.algoscript is not None: unexpected_api_methods = set() if initialize is not None: unexpected_api_methods.add("initialize") if handle_data is not None: unexpected_api_methods.add("handle_data") if before_trading_start is not None: unexpected_api_methods.add("before_trading_start") if analyze is not None: unexpected_api_methods.add("analyze") if unexpected_api_methods: raise ValueError( "TradingAlgorithm received a script and the following API" " methods as functions:\n{funcs}".format( funcs=unexpected_api_methods, ) ) if algo_filename is None: algo_filename = "<string>" code = compile(self.algoscript, algo_filename, "exec") exec(code, self.namespace) self._initialize = self.namespace.get("initialize", noop) self._handle_data = self.namespace.get("handle_data", noop) self._before_trading_start = self.namespace.get( "before_trading_start", ) # Optional analyze function, gets called after run self._analyze = self.namespace.get("analyze") else: self._initialize = initialize or (lambda self: None) self._handle_data = handle_data self._before_trading_start = before_trading_start self._analyze = analyze self.event_manager.add_event( zipline.utils.events.Event( zipline.utils.events.Always(), # We pass handle_data.__func__ to get the unbound method. # We will explicitly pass the algorithm to bind it again. self.handle_data.__func__, ), prepend=True, ) if self.sim_params.capital_base <= 0: raise ZeroCapitalError() # Prepare the algo for initialization self.initialized = False self.initialize_kwargs = initialize_kwargs or {} self.benchmark_sid = benchmark_sid # A dictionary of capital changes, keyed by timestamp, indicating the # target/delta of the capital changes, along with values self.capital_changes = capital_changes or {} # A dictionary of the actual capital change deltas, keyed by timestamp self.capital_change_deltas = {} self.restrictions = NoRestrictions() def init_engine(self, get_loader): """ Construct and store a PipelineEngine from loader. If get_loader is None, constructs an ExplodingPipelineEngine """ if get_loader is not None: self.engine = SimplePipelineEngine( get_loader, self.asset_finder, self.default_pipeline_domain(self.trading_calendar), ) else: self.engine = ExplodingPipelineEngine() def initialize(self, *args, **kwargs): """ Call self._initialize with `self` made available to Zipline API functions. """ with ZiplineAPI(self): self._initialize(self, *args, **kwargs) def before_trading_start(self, data): self.compute_eager_pipelines() if self._before_trading_start is None: return self._in_before_trading_start = True with handle_non_market_minutes( data ) if self.data_frequency == "minute" else ExitStack(): self._before_trading_start(self, data) self._in_before_trading_start = False def handle_data(self, data): if self._handle_data: self._handle_data(self, data) def analyze(self, perf): if self._analyze is None: return with ZiplineAPI(self): self._analyze(self, perf) def __repr__(self): """ N.B. this does not yet represent a string that can be used to instantiate an exact copy of an algorithm. However, it is getting close, and provides some value as something that can be inspected interactively. """ return """ {class_name}( capital_base={capital_base} sim_params={sim_params}, initialized={initialized}, slippage_models={slippage_models}, commission_models={commission_models}, blotter={blotter}, recorded_vars={recorded_vars}) """.strip().format( class_name=self.__class__.__name__, capital_base=self.sim_params.capital_base, sim_params=repr(self.sim_params), initialized=self.initialized, slippage_models=repr(self.blotter.slippage_models), commission_models=repr(self.blotter.commission_models), blotter=repr(self.blotter), recorded_vars=repr(self.recorded_vars), ) def _create_clock(self): """ If the clock property is not set, then create one based on frequency. """ trading_o_and_c = self.trading_calendar.schedule.loc[self.sim_params.sessions] market_closes = trading_o_and_c["market_close"] minutely_emission = False if self.sim_params.data_frequency == "minute": market_opens = trading_o_and_c["market_open"] minutely_emission = self.sim_params.emission_rate == "minute" # The calendar's execution times are the minutes over which we # actually want to run the clock. Typically the execution times # simply adhere to the market open and close times. In the case of # the futures calendar, for example, we only want to simulate over # a subset of the full 24 hour calendar, so the execution times # dictate a market open time of 6:31am US/Eastern and a close of # 5:00pm US/Eastern. execution_opens = self.trading_calendar.execution_time_from_open( market_opens ) execution_closes = self.trading_calendar.execution_time_from_close( market_closes ) else: # in daily mode, we want to have one bar per session, timestamped # as the last minute of the session. execution_closes = self.trading_calendar.execution_time_from_close( market_closes ) execution_opens = execution_closes # FIXME generalize these values before_trading_start_minutes = days_at_time( self.sim_params.sessions, time(8, 45), "US/Eastern" ) return MinuteSimulationClock( self.sim_params.sessions, execution_opens, execution_closes, before_trading_start_minutes, minute_emission=minutely_emission, ) def _create_benchmark_source(self): if self.benchmark_sid is not None: benchmark_asset = self.asset_finder.retrieve_asset(self.benchmark_sid) benchmark_returns = None else: benchmark_asset = None benchmark_returns = self.benchmark_returns return BenchmarkSource( benchmark_asset=benchmark_asset, benchmark_returns=benchmark_returns, trading_calendar=self.trading_calendar, sessions=self.sim_params.sessions, data_portal=self.data_portal, emission_rate=self.sim_params.emission_rate, ) def _create_metrics_tracker(self): return MetricsTracker( trading_calendar=self.trading_calendar, first_session=self.sim_params.start_session, last_session=self.sim_params.end_session, capital_base=self.sim_params.capital_base, emission_rate=self.sim_params.emission_rate, data_frequency=self.sim_params.data_frequency, asset_finder=self.asset_finder, metrics=self._metrics_set, ) def _create_generator(self, sim_params): if sim_params is not None: self.sim_params = sim_params self.metrics_tracker = metrics_tracker = self._create_metrics_tracker() # Set the dt initially to the period start by forcing it to change. self.on_dt_changed(self.sim_params.start_session) if not self.initialized: self.initialize(**self.initialize_kwargs) self.initialized = True benchmark_source = self._create_benchmark_source() self.trading_client = AlgorithmSimulator( self, sim_params, self.data_portal, self._create_clock(), benchmark_source, self.restrictions, ) metrics_tracker.handle_start_of_simulation(benchmark_source) return self.trading_client.transform() def compute_eager_pipelines(self): """ Compute any pipelines attached with eager=True. """ for name, pipe in self._pipelines.items(): if pipe.eager: self.pipeline_output(name) def get_generator(self): """ Override this method to add new logic to the construction of the generator. Overrides can use the _create_generator method to get a standard construction generator. """ return self._create_generator(self.sim_params) def run(self, data_portal=None): """Run the algorithm.""" # HACK: I don't think we really want to support passing a data portal # this late in the long term, but this is needed for now for backwards # compat downstream. if data_portal is not None: self.data_portal = data_portal self.asset_finder = data_portal.asset_finder elif self.data_portal is None: raise RuntimeError( "No data portal in TradingAlgorithm.run().\n" "Either pass a DataPortal to TradingAlgorithm() or to run()." ) else: assert ( self.asset_finder is not None ), "Have data portal without asset_finder." # Create zipline and loop through simulated_trading. # Each iteration returns a perf dictionary try: perfs = [] for perf in self.get_generator(): perfs.append(perf) # convert perf dict to pandas dataframe daily_stats = self._create_daily_stats(perfs) self.analyze(daily_stats) finally: self.data_portal = None self.metrics_tracker = None return daily_stats def _create_daily_stats(self, perfs): # create daily and cumulative stats dataframe daily_perfs = [] # TODO: the loop here could overwrite expected properties # of daily_perf. Could potentially raise or log a # warning. for perf in perfs: if "daily_perf" in perf: perf["daily_perf"].update(perf["daily_perf"].pop("recorded_vars")) perf["daily_perf"].update(perf["cumulative_risk_metrics"]) daily_perfs.append(perf["daily_perf"]) else: self.risk_report = perf daily_dts = pd.DatetimeIndex([p["period_close"] for p in daily_perfs]) daily_dts = make_utc_aware(daily_dts) daily_stats = pd.DataFrame(daily_perfs, index=daily_dts) return daily_stats def calculate_capital_changes( self, dt, emission_rate, is_interday, portfolio_value_adjustment=0.0 ): """ If there is a capital change for a given dt, this means the the change occurs before `handle_data` on the given dt. In the case of the change being a target value, the change will be computed on the portfolio value according to prices at the given dt `portfolio_value_adjustment`, if specified, will be removed from the portfolio_value of the cumulative performance when calculating deltas from target capital changes. """ try: capital_change = self.capital_changes[dt] except KeyError: return self._sync_last_sale_prices() if capital_change["type"] == "target": target = capital_change["value"] capital_change_amount = target - ( self.portfolio.portfolio_value - portfolio_value_adjustment ) log.info( "Processing capital change to target %s at %s. Capital " "change delta is %s" % (target, dt, capital_change_amount) ) elif capital_change["type"] == "delta": target = None capital_change_amount = capital_change["value"] log.info( "Processing capital change of delta %s at %s" % (capital_change_amount, dt) ) else: log.error( "Capital change %s does not indicate a valid type " "('target' or 'delta')" % capital_change ) return self.capital_change_deltas.update({dt: capital_change_amount}) self.metrics_tracker.capital_change(capital_change_amount) yield { "capital_change": { "date": dt, "type": "cash", "target": target, "delta": capital_change_amount, } } @api_method def get_environment(self, field="platform"): """Query the execution environment. Parameters ---------- field : {'platform', 'arena', 'data_frequency', 'start', 'end', 'capital_base', 'platform', '*'} The field to query. The options have the following meanings: arena : str The arena from the simulation parameters. This will normally be ``'backtest'`` but some systems may use this distinguish live trading from backtesting. data_frequency : {'daily', 'minute'} data_frequency tells the algorithm if it is running with daily data or minute data. start : datetime The start date for the simulation. end : datetime The end date for the simulation. capital_base : float The starting capital for the simulation. platform : str The platform that the code is running on. By default this will be the string 'zipline'. This can allow algorithms to know if they are running on the Quantopian platform instead. * : dict[str -> any] Returns all of the fields in a dictionary. Returns ------- val : any The value for the field queried. See above for more information. Raises ------ ValueError Raised when ``field`` is not a valid option. """ env = { "arena": self.sim_params.arena, "data_frequency": self.sim_params.data_frequency, "start": self.sim_params.first_open, "end": self.sim_params.last_close, "capital_base": self.sim_params.capital_base, "platform": self._platform, } if field == "*": return env else: try: return env[field] except KeyError: raise ValueError( "%r is not a valid field for get_environment" % field, ) @api_method def fetch_csv( self, url, pre_func=None, post_func=None, date_column="date", date_format=None, timezone=pytz.utc.zone, symbol=None, mask=True, symbol_column=None, special_params_checker=None, country_code=None, **kwargs, ): """Fetch a csv from a remote url and register the data so that it is queryable from the ``data`` object. Parameters ---------- url : str The url of the csv file to load. pre_func : callable[pd.DataFrame -> pd.DataFrame], optional A callback to allow preprocessing the raw data returned from fetch_csv before dates are paresed or symbols are mapped. post_func : callable[pd.DataFrame -> pd.DataFrame], optional A callback to allow postprocessing of the data after dates and symbols have been mapped. date_column : str, optional The name of the column in the preprocessed dataframe containing datetime information to map the data. date_format : str, optional The format of the dates in the ``date_column``. If not provided ``fetch_csv`` will attempt to infer the format. For information about the format of this string, see :func:`pandas.read_csv`. timezone : tzinfo or str, optional The timezone for the datetime in the ``date_column``. symbol : str, optional If the data is about a new asset or index then this string will be the name used to identify the values in ``data``. For example, one may use ``fetch_csv`` to load data for VIX, then this field could be the string ``'VIX'``. mask : bool, optional Drop any rows which cannot be symbol mapped. symbol_column : str If the data is attaching some new attribute to each asset then this argument is the name of the column in the preprocessed dataframe containing the symbols. This will be used along with the date information to map the sids in the asset finder. country_code : str, optional Country code to use to disambiguate symbol lookups. **kwargs Forwarded to :func:`pandas.read_csv`. Returns ------- csv_data_source : zipline.sources.requests_csv.PandasRequestsCSV A requests source that will pull data from the url specified. """ if country_code is None: country_code = self.default_fetch_csv_country_code( self.trading_calendar, ) # Show all the logs every time fetcher is used. csv_data_source = PandasRequestsCSV( url, pre_func, post_func, self.asset_finder, self.trading_calendar.day, self.sim_params.start_session, self.sim_params.end_session, date_column, date_format, timezone, symbol, mask, symbol_column, data_frequency=self.data_frequency, country_code=country_code, special_params_checker=special_params_checker, **kwargs, ) # ingest this into dataportal self.data_portal.handle_extra_source(csv_data_source.df, self.sim_params) return csv_data_source def add_event(self, rule, callback): """Adds an event to the algorithm's EventManager. Parameters ---------- rule : EventRule The rule for when the callback should be triggered. callback : callable[(context, data) -> None] The function to execute when the rule is triggered. """ self.event_manager.add_event( zipline.utils.events.Event(rule, callback), ) @api_method def schedule_function( self, func, date_rule=None, time_rule=None, half_days=True, calendar=None, ): """ Schedule a function to be called repeatedly in the future. Parameters ---------- func : callable The function to execute when the rule is triggered. ``func`` should have the same signature as ``handle_data``. date_rule : zipline.utils.events.EventRule, optional Rule for the dates on which to execute ``func``. If not passed, the function will run every trading day. time_rule : zipline.utils.events.EventRule, optional Rule for the time at which to execute ``func``. If not passed, the function will execute at the end of the first market minute of the day. half_days : bool, optional Should this rule fire on half days? Default is True. calendar : Sentinel, optional Calendar used to compute rules that depend on the trading calendar. See Also -------- :class:`zipline.api.date_rules` :class:`zipline.api.time_rules` """ # When the user calls schedule_function(func, <time_rule>), assume that # the user meant to specify a time rule but no date rule, instead of # a date rule and no time rule as the signature suggests if isinstance(date_rule, (AfterOpen, BeforeClose)) and not time_rule: warnings.warn( "Got a time rule for the second positional argument " "date_rule. You should use keyword argument " "time_rule= when calling schedule_function without " "specifying a date_rule", stacklevel=3, ) date_rule = date_rule or date_rules.every_day() time_rule = ( (time_rule or time_rules.every_minute()) if self.sim_params.data_frequency == "minute" else # If we are in daily mode the time_rule is ignored. time_rules.every_minute() ) # Check the type of the algorithm's schedule before pulling calendar # Note that the ExchangeTradingSchedule is currently the only # TradingSchedule class, so this is unlikely to be hit if calendar is None: cal = self.trading_calendar elif calendar is calendars.US_EQUITIES: cal = get_calendar("XNYS") elif calendar is calendars.US_FUTURES: cal = get_calendar("us_futures") else: raise ScheduleFunctionInvalidCalendar( given_calendar=calendar, allowed_calendars=("[calendars.US_EQUITIES, calendars.US_FUTURES]"), ) self.add_event( make_eventrule(date_rule, time_rule, cal, half_days), func, ) @api_method def record(self, *args, **kwargs): """Track and record values each day. Parameters ---------- **kwargs The names and values to record. Notes ----- These values will appear in the performance packets and the performance dataframe passed to ``analyze`` and returned from :func:`~zipline.run_algorithm`. """ # Make 2 objects both referencing the same iterator args = [iter(args)] * 2 # Zip generates list entries by calling `next` on each iterator it # receives. In this case the two iterators are the same object, so the # call to next on args[0] will also advance args[1], resulting in zip # returning (a,b) (c,d) (e,f) rather than (a,a) (b,b) (c,c) etc. positionals = zip(*args) for name, value in chain(positionals, kwargs.items()): self._recorded_vars[name] = value @api_method def set_benchmark(self, benchmark): """Set the benchmark asset. Parameters ---------- benchmark : zipline.assets.Asset The asset to set as the new benchmark. Notes ----- Any dividends payed out for that new benchmark asset will be automatically reinvested. """ if self.initialized: raise SetBenchmarkOutsideInitialize() self.benchmark_sid = benchmark @api_method @preprocess(root_symbol_str=ensure_upper_case) def continuous_future( self, root_symbol_str, offset=0, roll="volume", adjustment="mul" ): """Create a specifier for a continuous contract. Parameters ---------- root_symbol_str : str The root symbol for the future chain. offset : int, optional The distance from the primary contract. Default is 0. roll_style : str, optional How rolls are determined. Default is 'volume'. adjustment : str, optional Method for adjusting lookback prices between rolls. Options are 'mul', 'add', and None. Default is 'mul'. Returns ------- continuous_future : zipline.assets.ContinuousFuture The continuous future specifier. """ return self.asset_finder.create_continuous_future( root_symbol_str, offset, roll, adjustment, ) @api_method @preprocess( symbol_str=ensure_upper_case, country_code=optionally(ensure_upper_case), ) def symbol(self, symbol_str, country_code=None): """Lookup an Equity by its ticker symbol. Parameters ---------- symbol_str : str The ticker symbol for the equity to lookup. country_code : str or None, optional A country to limit symbol searches to. Returns ------- equity : zipline.assets.Equity The equity that held the ticker symbol on the current symbol lookup date. Raises ------ SymbolNotFound Raised when the symbols was not held on the current lookup date. See Also -------- :func:`zipline.api.set_symbol_lookup_date` """ # If the user has not set the symbol lookup date, # use the end_session as the date for symbol->sid resolution. _lookup_date = ( self._symbol_lookup_date if self._symbol_lookup_date is not None else self.sim_params.end_session ) return self.asset_finder.lookup_symbol( symbol_str, as_of_date=_lookup_date, country_code=country_code, ) @api_method def symbols(self, *args, **kwargs): """Lookup multuple Equities as a list. Parameters ---------- *args : iterable[str] The ticker symbols to lookup. country_code : str or None, optional A country to limit symbol searches to. Returns ------- equities : list[zipline.assets.Equity] The equities that held the given ticker symbols on the current symbol lookup date. Raises ------ SymbolNotFound Raised when one of the symbols was not held on the current lookup date. See Also -------- :func:`zipline.api.set_symbol_lookup_date` """ return [self.symbol(identifier, **kwargs) for identifier in args] @api_method def sid(self, sid): """Lookup an Asset by its unique asset identifier. Parameters ---------- sid : int The unique integer that identifies an asset. Returns ------- asset : zipline.assets.Asset The asset with the given ``sid``. Raises ------ SidsNotFound When a requested ``sid`` does not map to any asset. """ return self.asset_finder.retrieve_asset(sid) @api_method @preprocess(symbol=ensure_upper_case) def future_symbol(self, symbol): """Lookup a futures contract with a given symbol. Parameters ---------- symbol : str The symbol of the desired contract. Returns ------- future : zipline.assets.Future The future that trades with the name ``symbol``. Raises ------ SymbolNotFound Raised when no contract named 'symbol' is found. """ return self.asset_finder.lookup_future_symbol(symbol) def _calculate_order_value_amount(self, asset, value): """ Calculates how many shares/contracts to order based on the type of asset being ordered. """ # Make sure the asset exists, and that there is a last price for it. # FIXME: we should use BarData's can_trade logic here, but I haven't # yet found a good way to do that. normalized_date = normalize_date(self.datetime) if normalized_date < asset.start_date: raise CannotOrderDelistedAsset( msg="Cannot order {0}, as it started trading on" " {1}.".format(asset.symbol, asset.start_date) ) elif normalized_date > asset.end_date: raise CannotOrderDelistedAsset( msg="Cannot order {0}, as it stopped trading on" " {1}.".format(asset.symbol, asset.end_date) ) else: last_price = self.trading_client.current_data.current(asset, "price") if np.isnan(last_price): raise CannotOrderDelistedAsset( msg="Cannot order {0} on {1} as there is no last " "price for the security.".format(asset.symbol, self.datetime) ) if tolerant_equals(last_price, 0): zero_message = "Price of 0 for {psid}; can't infer value".format(psid=asset) if self.logger: self.logger.debug(zero_message) # Don't place any order return 0 value_multiplier = asset.price_multiplier return value / (last_price * value_multiplier) def _can_order_asset(self, asset): if not isinstance(asset, Asset): raise UnsupportedOrderParameters( msg="Passing non-Asset argument to 'order()' is not supported." " Use 'sid()' or 'symbol()' methods to look up an Asset." ) if asset.auto_close_date: day = normalize_date(self.get_datetime()) if day > min(asset.end_date, asset.auto_close_date): # If we are after the asset's end date or auto close date, warn # the user that they can't place an order for this asset, and # return None. log.warn( "Cannot place order for {0}, as it has de-listed. " "Any existing positions for this asset will be " "liquidated on " "{1}.".format(asset.symbol, asset.auto_close_date) ) return False return True @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order(self, asset, amount, limit_price=None, stop_price=None, style=None): """Place an order for a fixed number of shares. Parameters ---------- asset : Asset The asset to be ordered. amount : int The amount of shares to order. If ``amount`` is positive, this is the number of shares to buy or cover. If ``amount`` is negative, this is the number of shares to sell or short. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle, optional The execution style for the order. Returns ------- order_id : str or None The unique identifier for this order, or None if no order was placed. Notes ----- The ``limit_price`` and ``stop_price`` arguments provide shorthands for passing common execution styles. Passing ``limit_price=N`` is equivalent to ``style=LimitOrder(N)``. Similarly, passing ``stop_price=M`` is equivalent to ``style=StopOrder(M)``, and passing ``limit_price=N`` and ``stop_price=M`` is equivalent to ``style=StopLimitOrder(N, M)``. It is an error to pass both a ``style`` and ``limit_price`` or ``stop_price``. See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order_value` :func:`zipline.api.order_percent` """ if not self._can_order_asset(asset): return None amount, style = self._calculate_order( asset, amount, limit_price, stop_price, style ) return self.blotter.order(asset, amount, style) def _calculate_order( self, asset, amount, limit_price=None, stop_price=None, style=None ): amount = self.round_order(amount) # Raises a ZiplineError if invalid parameters are detected. self.validate_order_params(asset, amount, limit_price, stop_price, style) # Convert deprecated limit_price and stop_price parameters to use # ExecutionStyle objects. style = self.__convert_order_params_for_blotter( asset, limit_price, stop_price, style ) return amount, style @staticmethod def round_order(amount): """ Convert number of shares to an integer. By default, truncates to the integer share count that's either within .0001 of amount or closer to zero. E.g. 3.9999 -> 4.0; 5.5 -> 5.0; -5.5 -> -5.0 """ return int(round_if_near_integer(amount)) def validate_order_params(self, asset, amount, limit_price, stop_price, style): """ Helper method for validating parameters to the order API function. Raises an UnsupportedOrderParameters if invalid arguments are found. """ if not self.initialized: raise OrderDuringInitialize( msg="order() can only be called from within handle_data()" ) if style: if limit_price: raise UnsupportedOrderParameters( msg="Passing both limit_price and style is not supported." ) if stop_price: raise UnsupportedOrderParameters( msg="Passing both stop_price and style is not supported." ) for control in self.trading_controls: control.validate( asset, amount, self.portfolio, self.get_datetime(), self.trading_client.current_data, ) @staticmethod def __convert_order_params_for_blotter(asset, limit_price, stop_price, style): """ Helper method for converting deprecated limit_price and stop_price arguments into ExecutionStyle instances. This function assumes that either style == None or (limit_price, stop_price) == (None, None). """ if style: assert (limit_price, stop_price) == (None, None) return style if limit_price and stop_price: return StopLimitOrder(limit_price, stop_price, asset=asset) if limit_price: return LimitOrder(limit_price, asset=asset) if stop_price: return StopOrder(stop_price, asset=asset) else: return MarketOrder() @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_value(self, asset, value, limit_price=None, stop_price=None, style=None): """ Place an order for a fixed amount of money. Equivalent to ``order(asset, value / data.current(asset, 'price'))``. Parameters ---------- asset : Asset The asset to be ordered. value : float Amount of value of ``asset`` to be transacted. The number of shares bought or sold will be equal to ``value / current_price``. limit_price : float, optional Limit price for the order. stop_price : float, optional Stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_percent` """ if not self._can_order_asset(asset): return None amount = self._calculate_order_value_amount(asset, value) return self.order( asset, amount, limit_price=limit_price, stop_price=stop_price, style=style, ) @property def recorded_vars(self): return copy(self._recorded_vars) def _sync_last_sale_prices(self, dt=None): """Sync the last sale prices on the metrics tracker to a given datetime. Parameters ---------- dt : datetime The time to sync the prices to. Notes ----- This call is cached by the datetime. Repeated calls in the same bar are cheap. """ if dt is None: dt = self.datetime if dt != self._last_sync_time: self.metrics_tracker.sync_last_sale_prices( dt, self.data_portal, ) self._last_sync_time = dt @property def portfolio(self): self._sync_last_sale_prices() return self.metrics_tracker.portfolio @property def account(self): self._sync_last_sale_prices() return self.metrics_tracker.account def set_logger(self, logger): self.logger = logger def on_dt_changed(self, dt): """ Callback triggered by the simulation loop whenever the current dt changes. Any logic that should happen exactly once at the start of each datetime group should happen here. """ self.datetime = dt self.blotter.set_date(dt) @api_method @preprocess(tz=coerce_string(pytz.timezone)) @expect_types(tz=optional(tzinfo)) def get_datetime(self, tz=None): """ Returns the current simulation datetime. Parameters ---------- tz : tzinfo or str, optional The timezone to return the datetime in. This defaults to utc. Returns ------- dt : datetime The current simulation datetime converted to ``tz``. """ dt = self.datetime assert dt.tzinfo == pytz.utc, "Algorithm should have a utc datetime" if tz is not None: dt = dt.astimezone(tz) return dt @api_method def set_slippage(self, us_equities=None, us_futures=None): """ Set the slippage models for the simulation. Parameters ---------- us_equities : EquitySlippageModel The slippage model to use for trading US equities. us_futures : FutureSlippageModel The slippage model to use for trading US futures. Notes ----- This function can only be called during :func:`~zipline.api.initialize`. See Also -------- :class:`zipline.finance.slippage.SlippageModel` """ if self.initialized: raise SetSlippagePostInit() if us_equities is not None: if Equity not in us_equities.allowed_asset_types: raise IncompatibleSlippageModel( asset_type="equities", given_model=us_equities, supported_asset_types=us_equities.allowed_asset_types, ) self.blotter.slippage_models[Equity] = us_equities if us_futures is not None: if Future not in us_futures.allowed_asset_types: raise IncompatibleSlippageModel( asset_type="futures", given_model=us_futures, supported_asset_types=us_futures.allowed_asset_types, ) self.blotter.slippage_models[Future] = us_futures @api_method def set_commission(self, us_equities=None, us_futures=None): """Sets the commission models for the simulation. Parameters ---------- us_equities : EquityCommissionModel The commission model to use for trading US equities. us_futures : FutureCommissionModel The commission model to use for trading US futures. Notes ----- This function can only be called during :func:`~zipline.api.initialize`. See Also -------- :class:`zipline.finance.commission.PerShare` :class:`zipline.finance.commission.PerTrade` :class:`zipline.finance.commission.PerDollar` """ if self.initialized: raise SetCommissionPostInit() if us_equities is not None: if Equity not in us_equities.allowed_asset_types: raise IncompatibleCommissionModel( asset_type="equities", given_model=us_equities, supported_asset_types=us_equities.allowed_asset_types, ) self.blotter.commission_models[Equity] = us_equities if us_futures is not None: if Future not in us_futures.allowed_asset_types: raise IncompatibleCommissionModel( asset_type="futures", given_model=us_futures, supported_asset_types=us_futures.allowed_asset_types, ) self.blotter.commission_models[Future] = us_futures @api_method def set_cancel_policy(self, cancel_policy): """Sets the order cancellation policy for the simulation. Parameters ---------- cancel_policy : CancelPolicy The cancellation policy to use. See Also -------- :class:`zipline.api.EODCancel` :class:`zipline.api.NeverCancel` """ if not isinstance(cancel_policy, CancelPolicy): raise UnsupportedCancelPolicy() if self.initialized: raise SetCancelPolicyPostInit() self.blotter.cancel_policy = cancel_policy @api_method def set_symbol_lookup_date(self, dt): """Set the date for which symbols will be resolved to their assets (symbols may map to different firms or underlying assets at different times) Parameters ---------- dt : datetime The new symbol lookup date. """ try: self._symbol_lookup_date = pd.Timestamp(dt).tz_localize("UTC") except TypeError: self._symbol_lookup_date = pd.Timestamp(dt).tz_convert("UTC") except ValueError: raise UnsupportedDatetimeFormat(input=dt, method="set_symbol_lookup_date") @property def data_frequency(self): return self.sim_params.data_frequency @data_frequency.setter def data_frequency(self, value): assert value in ("daily", "minute") self.sim_params.data_frequency = value @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_percent( self, asset, percent, limit_price=None, stop_price=None, style=None ): """Place an order in the specified asset corresponding to the given percent of the current portfolio value. Parameters ---------- asset : Asset The asset that this order is for. percent : float The percentage of the portfolio value to allocate to ``asset``. This is specified as a decimal, for example: 0.50 means 50%. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_value` """ if not self._can_order_asset(asset): return None amount = self._calculate_order_percent_amount(asset, percent) return self.order( asset, amount, limit_price=limit_price, stop_price=stop_price, style=style, ) def _calculate_order_percent_amount(self, asset, percent): value = self.portfolio.portfolio_value * percent return self._calculate_order_value_amount(asset, value) @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_target( self, asset, target, limit_price=None, stop_price=None, style=None ): """Place an order to adjust a position to a target number of shares. If the position doesn't already exist, this is equivalent to placing a new order. If the position does exist, this is equivalent to placing an order for the difference between the target number of shares and the current number of shares. Parameters ---------- asset : Asset The asset that this order is for. target : int The desired number of shares of ``asset``. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- ``order_target`` does not take into account any open orders. For example: .. code-block:: python order_target(sid(0), 10) order_target(sid(0), 10) This code will result in 20 shares of ``sid(0)`` because the first call to ``order_target`` will not have been filled when the second ``order_target`` call is made. See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_target_percent` :func:`zipline.api.order_target_value` """ if not self._can_order_asset(asset): return None amount = self._calculate_order_target_amount(asset, target) return self.order( asset, amount, limit_price=limit_price, stop_price=stop_price, style=style, ) def _calculate_order_target_amount(self, asset, target): if asset in self.portfolio.positions: current_position = self.portfolio.positions[asset].amount target -= current_position return target @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_target_value( self, asset, target, limit_price=None, stop_price=None, style=None ): """Place an order to adjust a position to a target value. If the position doesn't already exist, this is equivalent to placing a new order. If the position does exist, this is equivalent to placing an order for the difference between the target value and the current value. If the Asset being ordered is a Future, the 'target value' calculated is actually the target exposure, as Futures have no 'value'. Parameters ---------- asset : Asset The asset that this order is for. target : float The desired total value of ``asset``. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- ``order_target_value`` does not take into account any open orders. For example: .. code-block:: python order_target_value(sid(0), 10) order_target_value(sid(0), 10) This code will result in 20 dollars of ``sid(0)`` because the first call to ``order_target_value`` will not have been filled when the second ``order_target_value`` call is made. See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_target` :func:`zipline.api.order_target_percent` """ if not self._can_order_asset(asset): return None target_amount = self._calculate_order_value_amount(asset, target) amount = self._calculate_order_target_amount(asset, target_amount) return self.order( asset, amount, limit_price=limit_price, stop_price=stop_price, style=style, ) @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_target_percent( self, asset, target, limit_price=None, stop_price=None, style=None ): """Place an order to adjust a position to a target percent of the current portfolio value. If the position doesn't already exist, this is equivalent to placing a new order. If the position does exist, this is equivalent to placing an order for the difference between the target percent and the current percent. Parameters ---------- asset : Asset The asset that this order is for. target : float The desired percentage of the portfolio value to allocate to ``asset``. This is specified as a decimal, for example: 0.50 means 50%. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- ``order_target_value`` does not take into account any open orders. For example: .. code-block:: python order_target_percent(sid(0), 10) order_target_percent(sid(0), 10) This code will result in 20% of the portfolio being allocated to sid(0) because the first call to ``order_target_percent`` will not have been filled when the second ``order_target_percent`` call is made. See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_target` :func:`zipline.api.order_target_value` """ if not self._can_order_asset(asset): return None amount = self._calculate_order_target_percent_amount(asset, target) return self.order( asset, amount, limit_price=limit_price, stop_price=stop_price, style=style, ) def _calculate_order_target_percent_amount(self, asset, target): target_amount = self._calculate_order_percent_amount(asset, target) return self._calculate_order_target_amount(asset, target_amount) @api_method @expect_types(share_counts=pd.Series) @expect_dtypes(share_counts=int64_dtype) def batch_market_order(self, share_counts): """Place a batch market order for multiple assets. Parameters ---------- share_counts : pd.Series[Asset -> int] Map from asset to number of shares to order for that asset. Returns ------- order_ids : pd.Index[str] Index of ids for newly-created orders. """ style = MarketOrder() order_args = [ (asset, amount, style) for (asset, amount) in share_counts.items() if amount ] return self.blotter.batch_order(order_args) @error_keywords( sid="Keyword argument `sid` is no longer supported for " "get_open_orders. Use `asset` instead." ) @api_method def get_open_orders(self, asset=None): """Retrieve all of the current open orders. Parameters ---------- asset : Asset If passed and not None, return only the open orders for the given asset instead of all open orders. Returns ------- open_orders : dict[list[Order]] or list[Order] If no asset is passed this will return a dict mapping Assets to a list containing all the open orders for the asset. If an asset is passed then this will return a list of the open orders for this asset. """ if asset is None: return { key: [order.to_api_obj() for order in orders] for key, orders in self.blotter.open_orders.items() if orders } if asset in self.blotter.open_orders: orders = self.blotter.open_orders[asset] return [order.to_api_obj() for order in orders] return [] @api_method def get_order(self, order_id): """Lookup an order based on the order id returned from one of the order functions. Parameters ---------- order_id : str The unique identifier for the order. Returns ------- order : Order The order object. """ if order_id in self.blotter.orders: return self.blotter.orders[order_id].to_api_obj() @api_method def cancel_order(self, order_param): """Cancel an open order. Parameters ---------- order_param : str or Order The order_id or order object to cancel. """ order_id = order_param if isinstance(order_param, zipline.protocol.Order): order_id = order_param.id self.blotter.cancel(order_id) #################### # Account Controls # #################### def register_account_control(self, control): """ Register a new AccountControl to be checked on each bar. """ if self.initialized: raise RegisterAccountControlPostInit() self.account_controls.append(control) def validate_account_controls(self): for control in self.account_controls: control.validate( self.portfolio, self.account, self.get_datetime(), self.trading_client.current_data, ) @api_method def set_max_leverage(self, max_leverage): """Set a limit on the maximum leverage of the algorithm. Parameters ---------- max_leverage : float The maximum leverage for the algorithm. If not provided there will be no maximum. """ control = MaxLeverage(max_leverage) self.register_account_control(control) @api_method def set_min_leverage(self, min_leverage, grace_period): """Set a limit on the minimum leverage of the algorithm. Parameters ---------- min_leverage : float The minimum leverage for the algorithm. grace_period : pd.Timedelta The offset from the start date used to enforce a minimum leverage. """ deadline = self.sim_params.start_session + grace_period control = MinLeverage(min_leverage, deadline) self.register_account_control(control) #################### # Trading Controls # #################### def register_trading_control(self, control): """ Register a new TradingControl to be checked prior to order calls. """ if self.initialized: raise RegisterTradingControlPostInit() self.trading_controls.append(control) @api_method def set_max_position_size( self, asset=None, max_shares=None, max_notional=None, on_error="fail" ): """Set a limit on the number of shares and/or dollar value held for the given sid. Limits are treated as absolute values and are enforced at the time that the algo attempts to place an order for sid. This means that it's possible to end up with more than the max number of shares due to splits/dividends, and more than the max notional due to price improvement. If an algorithm attempts to place an order that would result in increasing the absolute value of shares/dollar value exceeding one of these limits, raise a TradingControlException. Parameters ---------- asset : Asset, optional If provided, this sets the guard only on positions in the given asset. max_shares : int, optional The maximum number of shares to hold for an asset. max_notional : float, optional The maximum value to hold for an asset. """ control = MaxPositionSize( asset=asset, max_shares=max_shares, max_notional=max_notional, on_error=on_error, ) self.register_trading_control(control) @api_method def set_max_order_size( self, asset=None, max_shares=None, max_notional=None, on_error="fail" ): """Set a limit on the number of shares and/or dollar value of any single order placed for sid. Limits are treated as absolute values and are enforced at the time that the algo attempts to place an order for sid. If an algorithm attempts to place an order that would result in exceeding one of these limits, raise a TradingControlException. Parameters ---------- asset : Asset, optional If provided, this sets the guard only on positions in the given asset. max_shares : int, optional The maximum number of shares that can be ordered at one time. max_notional : float, optional The maximum value that can be ordered at one time. """ control = MaxOrderSize( asset=asset, max_shares=max_shares, max_notional=max_notional, on_error=on_error, ) self.register_trading_control(control) @api_method def set_max_order_count(self, max_count, on_error="fail"): """Set a limit on the number of orders that can be placed in a single day. Parameters ---------- max_count : int The maximum number of orders that can be placed on any single day. """ control = MaxOrderCount(on_error, max_count) self.register_trading_control(control) @api_method def set_do_not_order_list(self, restricted_list, on_error="fail"): """Set a restriction on which assets can be ordered. Parameters ---------- restricted_list : container[Asset], SecurityList The assets that cannot be ordered. """ if isinstance(restricted_list, SecurityList): warnings.warn( "`set_do_not_order_list(security_lists.leveraged_etf_list)` " "is deprecated. Use `set_asset_restrictions(" "security_lists.restrict_leveraged_etfs)` instead.", category=ZiplineDeprecationWarning, stacklevel=2, ) restrictions = SecurityListRestrictions(restricted_list) else: warnings.warn( "`set_do_not_order_list(container_of_assets)` is deprecated. " "Create a zipline.finance.asset_restrictions." "StaticRestrictions object with a container of assets and use " "`set_asset_restrictions(StaticRestrictions(" "container_of_assets))` instead.", category=ZiplineDeprecationWarning, stacklevel=2, ) restrictions = StaticRestrictions(restricted_list) self.set_asset_restrictions(restrictions, on_error) @api_method @expect_types( restrictions=Restrictions, on_error=str, ) def set_asset_restrictions(self, restrictions, on_error="fail"): """Set a restriction on which assets can be ordered. Parameters ---------- restricted_list : Restrictions An object providing information about restricted assets. See Also -------- zipline.finance.asset_restrictions.Restrictions """ control = RestrictedListOrder(on_error, restrictions) self.register_trading_control(control) self.restrictions |= restrictions @api_method def set_long_only(self, on_error="fail"): """Set a rule specifying that this algorithm cannot take short positions. """ self.register_trading_control(LongOnly(on_error)) ############## # Pipeline API ############## @api_method @require_not_initialized(AttachPipelineAfterInitialize()) @expect_types( pipeline=Pipeline, name=str, chunks=(int, Iterable, type(None)), ) def attach_pipeline(self, pipeline, name, chunks=None, eager=True): """Register a pipeline to be computed at the start of each day. Parameters ---------- pipeline : Pipeline The pipeline to have computed. name : str The name of the pipeline. chunks : int or iterator, optional The number of days to compute pipeline results for. Increasing this number will make it longer to get the first results but may improve the total runtime of the simulation. If an iterator is passed, we will run in chunks based on values of the iterator. Default is True. eager : bool, optional Whether or not to compute this pipeline prior to before_trading_start. Returns ------- pipeline : Pipeline Returns the pipeline that was attached unchanged. See Also -------- :func:`zipline.api.pipeline_output` """ if chunks is None: # Make the first chunk smaller to get more immediate results: # (one week, then every half year) chunks = chain([5], repeat(126)) elif isinstance(chunks, int): chunks = repeat(chunks) if name in self._pipelines: raise DuplicatePipelineName(name=name) self._pipelines[name] = AttachedPipeline(pipeline, iter(chunks), eager) # Return the pipeline to allow expressions like # p = attach_pipeline(Pipeline(), 'name') return pipeline @api_method @require_initialized(PipelineOutputDuringInitialize()) def pipeline_output(self, name): """ Get results of the pipeline attached by with name ``name``. Parameters ---------- name : str Name of the pipeline from which to fetch results. Returns ------- results : pd.DataFrame DataFrame containing the results of the requested pipeline for the current simulation date. Raises ------ NoSuchPipeline Raised when no pipeline with the name `name` has been registered. See Also -------- :func:`zipline.api.attach_pipeline` :meth:`zipline.pipeline.engine.PipelineEngine.run_pipeline` """ try: pipe, chunks, _ = self._pipelines[name] except KeyError: raise NoSuchPipeline( name=name, valid=list(self._pipelines.keys()), ) return self._pipeline_output(pipe, chunks, name) def _pipeline_output(self, pipeline, chunks, name): """ Internal implementation of `pipeline_output`. """ today = normalize_date(self.get_datetime()) try: data = self._pipeline_cache.get(name, today) except KeyError: # Calculate the next block. data, valid_until = self.run_pipeline( pipeline, today, next(chunks), ) self._pipeline_cache.set(name, data, valid_until) # Now that we have a cached result, try to return the data for today. try: return data.loc[today] except KeyError: # This happens if no assets passed the pipeline screen on a given # day. return pd.DataFrame(index=[], columns=data.columns) def run_pipeline(self, pipeline, start_session, chunksize): """ Compute `pipeline`, providing values for at least `start_date`. Produces a DataFrame containing data for days between `start_date` and `end_date`, where `end_date` is defined by: `end_date = min(start_date + chunksize trading days, simulation_end)` Returns ------- (data, valid_until) : tuple (pd.DataFrame, pd.Timestamp) See Also -------- PipelineEngine.run_pipeline """ sessions = self.trading_calendar.all_sessions # Load data starting from the previous trading day... start_date_loc = sessions.get_loc(start_session) # ...continuing until either the day before the simulation end, or # until chunksize days of data have been loaded. sim_end_session = self.sim_params.end_session end_loc = min(start_date_loc + chunksize, sessions.get_loc(sim_end_session)) end_session = sessions[end_loc] return ( self.engine.run_pipeline(pipeline, start_session, end_session), end_session, ) @staticmethod def default_pipeline_domain(calendar): """ Get a default pipeline domain for algorithms running on ``calendar``. This will be used to infer a domain for pipelines that only use generic datasets when running in the context of a TradingAlgorithm. """ return _DEFAULT_DOMAINS.get(calendar.name, domain.GENERIC) @staticmethod def default_fetch_csv_country_code(calendar): """ Get a default country_code to use for fetch_csv symbol lookups. This will be used to disambiguate symbol lookups for fetch_csv calls if our asset db contains entries with the same ticker spread across multiple """ return _DEFAULT_FETCH_CSV_COUNTRY_CODES.get(calendar.name) ################## # End Pipeline API ################## @classmethod def all_api_methods(cls): """ Return a list of all the TradingAlgorithm API methods. """ return [fn for fn in vars(cls).values() if getattr(fn, "is_api_method", False)] # Map from calendar name to default domain for that calendar. _DEFAULT_DOMAINS = {d.calendar_name: d for d in domain.BUILT_IN_DOMAINS} # Map from calendar name to default country code for that calendar. _DEFAULT_FETCH_CSV_COUNTRY_CODES = { d.calendar_name: d.country_code for d in domain.BUILT_IN_DOMAINS } # Include us_futures, which doesn't have a pipeline domain. _DEFAULT_FETCH_CSV_COUNTRY_CODES["us_futures"] = "US"
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/algorithm.py
algorithm.py
from copy import copy from logbook import Logger, Processor from zipline.finance.order import ORDER_STATUS from zipline.protocol import BarData from zipline.utils.api_support import ZiplineAPI from zipline.utils.compat import ExitStack from zipline.gens.sim_engine import ( BAR, SESSION_START, SESSION_END, MINUTE_END, BEFORE_TRADING_START_BAR, ) log = Logger("Trade Simulation") class AlgorithmSimulator(object): EMISSION_TO_PERF_KEY_MAP = {"minute": "minute_perf", "daily": "daily_perf"} def __init__( self, algo, sim_params, data_portal, clock, benchmark_source, restrictions, ): # ============== # Simulation # Param Setup # ============== self.sim_params = sim_params self.data_portal = data_portal self.restrictions = restrictions # ============== # Algo Setup # ============== self.algo = algo # ============== # Snapshot Setup # ============== # This object is the way that user algorithms interact with OHLCV data, # fetcher data, and some API methods like `data.can_trade`. self.current_data = self._create_bar_data() # We don't have a datetime for the current snapshot until we # receive a message. self.simulation_dt = None self.clock = clock self.benchmark_source = benchmark_source # ============= # Logging Setup # ============= # Processor function for injecting the algo_dt into # user prints/logs. def inject_algo_dt(record): if "algo_dt" not in record.extra: record.extra["algo_dt"] = self.simulation_dt self.processor = Processor(inject_algo_dt) def get_simulation_dt(self): return self.simulation_dt def _create_bar_data(self): return BarData( data_portal=self.data_portal, simulation_dt_func=self.get_simulation_dt, data_frequency=self.sim_params.data_frequency, trading_calendar=self.algo.trading_calendar, restrictions=self.restrictions, ) # TODO: simplify # flake8: noqa: C901 def transform(self): """ Main generator work loop. """ algo = self.algo metrics_tracker = algo.metrics_tracker emission_rate = metrics_tracker.emission_rate def every_bar( dt_to_use, current_data=self.current_data, handle_data=algo.event_manager.handle_data, ): for capital_change in calculate_minute_capital_changes(dt_to_use): yield capital_change self.simulation_dt = dt_to_use # called every tick (minute or day). algo.on_dt_changed(dt_to_use) blotter = algo.blotter # handle any transactions and commissions coming out new orders # placed in the last bar ( new_transactions, new_commissions, closed_orders, ) = blotter.get_transactions(current_data) blotter.prune_orders(closed_orders) for transaction in new_transactions: metrics_tracker.process_transaction(transaction) # since this order was modified, record it order = blotter.orders[transaction.order_id] metrics_tracker.process_order(order) for commission in new_commissions: metrics_tracker.process_commission(commission) handle_data(algo, current_data, dt_to_use) # grab any new orders from the blotter, then clear the list. # this includes cancelled orders. new_orders = blotter.new_orders blotter.new_orders = [] # if we have any new orders, record them so that we know # in what perf period they were placed. for new_order in new_orders: metrics_tracker.process_order(new_order) def once_a_day( midnight_dt, current_data=self.current_data, data_portal=self.data_portal, ): # process any capital changes that came overnight for capital_change in algo.calculate_capital_changes( midnight_dt, emission_rate=emission_rate, is_interday=True ): yield capital_change # set all the timestamps self.simulation_dt = midnight_dt algo.on_dt_changed(midnight_dt) metrics_tracker.handle_market_open( midnight_dt, algo.data_portal, ) # handle any splits that impact any positions or any open orders. assets_we_care_about = ( metrics_tracker.positions.keys() | algo.blotter.open_orders.keys() ) if assets_we_care_about: splits = data_portal.get_splits(assets_we_care_about, midnight_dt) if splits: algo.blotter.process_splits(splits) metrics_tracker.handle_splits(splits) def on_exit(): # Remove references to algo, data portal, et al to break cycles # and ensure deterministic cleanup of these objects when the # simulation finishes. self.algo = None self.benchmark_source = self.current_data = self.data_portal = None with ExitStack() as stack: stack.callback(on_exit) stack.enter_context(self.processor) stack.enter_context(ZiplineAPI(self.algo)) if algo.data_frequency == "minute": def execute_order_cancellation_policy(): algo.blotter.execute_cancel_policy(SESSION_END) def calculate_minute_capital_changes(dt): # process any capital changes that came between the last # and current minutes return algo.calculate_capital_changes( dt, emission_rate=emission_rate, is_interday=False ) elif algo.data_frequency == "daily": def execute_order_cancellation_policy(): algo.blotter.execute_daily_cancel_policy(SESSION_END) def calculate_minute_capital_changes(dt): return [] else: def execute_order_cancellation_policy(): pass def calculate_minute_capital_changes(dt): return [] for dt, action in self.clock: if action == BAR: for capital_change_packet in every_bar(dt): yield capital_change_packet elif action == SESSION_START: for capital_change_packet in once_a_day(dt): yield capital_change_packet elif action == SESSION_END: # End of the session. positions = metrics_tracker.positions position_assets = algo.asset_finder.retrieve_all(positions) self._cleanup_expired_assets(dt, position_assets) execute_order_cancellation_policy() algo.validate_account_controls() yield self._get_daily_message(dt, algo, metrics_tracker) elif action == BEFORE_TRADING_START_BAR: self.simulation_dt = dt algo.on_dt_changed(dt) algo.before_trading_start(self.current_data) elif action == MINUTE_END: minute_msg = self._get_minute_message( dt, algo, metrics_tracker, ) yield minute_msg risk_message = metrics_tracker.handle_simulation_end( self.data_portal, ) yield risk_message def _cleanup_expired_assets(self, dt, position_assets): """ Clear out any assets that have expired before starting a new sim day. Performs two functions: 1. Finds all assets for which we have open orders and clears any orders whose assets are on or after their auto_close_date. 2. Finds all assets for which we have positions and generates close_position events for any assets that have reached their auto_close_date. """ algo = self.algo def past_auto_close_date(asset): acd = asset.auto_close_date return acd is not None and acd <= dt # Remove positions in any sids that have reached their auto_close date. assets_to_clear = [ asset for asset in position_assets if past_auto_close_date(asset) ] metrics_tracker = algo.metrics_tracker data_portal = self.data_portal for asset in assets_to_clear: metrics_tracker.process_close_position(asset, dt, data_portal) # Remove open orders for any sids that have reached their auto close # date. These orders get processed immediately because otherwise they # would not be processed until the first bar of the next day. blotter = algo.blotter assets_to_cancel = [ asset for asset in blotter.open_orders if past_auto_close_date(asset) ] for asset in assets_to_cancel: blotter.cancel_all_orders_for_asset(asset) # Make a copy here so that we are not modifying the list that is being # iterated over. for order in copy(blotter.new_orders): if order.status == ORDER_STATUS.CANCELLED: metrics_tracker.process_order(order) blotter.new_orders.remove(order) def _get_daily_message(self, dt, algo, metrics_tracker): """ Get a perf message for the given datetime. """ perf_message = metrics_tracker.handle_market_close( dt, self.data_portal, ) perf_message["daily_perf"]["recorded_vars"] = algo.recorded_vars return perf_message def _get_minute_message(self, dt, algo, metrics_tracker): """ Get a perf message for the given datetime. """ rvars = algo.recorded_vars minute_message = metrics_tracker.handle_minute_close( dt, self.data_portal, ) minute_message["minute_perf"]["recorded_vars"] = rvars return minute_message
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/gens/tradesimulation.py
tradesimulation.py
from abc import abstractmethod from numpy import ( array, full, recarray, searchsorted, vstack, where, ) from pandas import NaT as pd_NaT from zipline.errors import ( WindowLengthNotPositive, UnsupportedDataType, NonExistentAssetInTimeFrame, NoFurtherDataError, ) from zipline.lib.labelarray import LabelArray, labelarray_where from zipline.utils.context_tricks import nop_context from zipline.utils.input_validation import expect_dtypes, expect_types from zipline.utils.numpy_utils import bool_dtype from zipline.utils.pandas_utils import nearest_unequal_elements from .downsample_helpers import ( select_sampling_indices, expect_downsample_frequency, ) from .sentinels import NotSpecified from .term import Term class PositiveWindowLengthMixin(Term): """ Validation mixin enforcing that a Term gets a positive WindowLength """ def _validate(self): super(PositiveWindowLengthMixin, self)._validate() if not self.windowed: raise WindowLengthNotPositive(window_length=self.window_length) class SingleInputMixin(Term): """ Validation mixin enforcing that a Term gets a length-1 inputs list. """ def _validate(self): super(SingleInputMixin, self)._validate() num_inputs = len(self.inputs) if num_inputs != 1: raise ValueError( "{typename} expects only one input, " "but received {num_inputs} instead.".format( typename=type(self).__name__, num_inputs=num_inputs ) ) class StandardOutputs(Term): """ Validation mixin enforcing that a Term cannot produce non-standard outputs. """ def _validate(self): super(StandardOutputs, self)._validate() if self.outputs is not NotSpecified: raise ValueError( "{typename} does not support custom outputs," " but received custom outputs={outputs}.".format( typename=type(self).__name__, outputs=self.outputs, ) ) class RestrictedDTypeMixin(Term): """ Validation mixin enforcing that a term has a specific dtype. """ ALLOWED_DTYPES = NotSpecified def _validate(self): super(RestrictedDTypeMixin, self)._validate() assert self.ALLOWED_DTYPES is not NotSpecified, ( "ALLOWED_DTYPES not supplied on subclass " "of RestrictedDTypeMixin: %s." % type(self).__name__ ) if self.dtype not in self.ALLOWED_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, ) class CustomTermMixin(Term): """ Mixin for user-defined rolling-window Terms. Implements `_compute` in terms of a user-defined `compute` function, which is mapped over the input windows. Used by CustomFactor, CustomFilter, CustomClassifier, etc. """ ctx = nop_context def __new__( cls, inputs=NotSpecified, outputs=NotSpecified, window_length=NotSpecified, mask=NotSpecified, dtype=NotSpecified, missing_value=NotSpecified, ndim=NotSpecified, **kwargs, ): unexpected_keys = set(kwargs) - set(cls.params) if unexpected_keys: raise TypeError( "{termname} received unexpected keyword " "arguments {unexpected}".format( termname=cls.__name__, unexpected={k: kwargs[k] for k in unexpected_keys}, ) ) return super(CustomTermMixin, cls).__new__( cls, inputs=inputs, outputs=outputs, window_length=window_length, mask=mask, dtype=dtype, missing_value=missing_value, ndim=ndim, **kwargs, ) def compute(self, today, assets, out, *arrays): """ Override this method with a function that writes a value into `out`. """ raise NotImplementedError( "{name} must define a compute method".format(name=type(self).__name__) ) def _allocate_output(self, windows, shape): """ Allocate an output array whose rows should be passed to `self.compute`. The resulting array must have a shape of ``shape``. If we have standard outputs (i.e. self.outputs is NotSpecified), the default is an empty ndarray whose dtype is ``self.dtype``. If we have an outputs tuple, the default is an empty recarray with ``self.outputs`` as field names. Each field will have dtype ``self.dtype``. This can be overridden to control the kind of array constructed (e.g. to produce a LabelArray instead of an ndarray). """ missing_value = self.missing_value outputs = self.outputs if outputs is not NotSpecified: out = recarray( shape, formats=[self.dtype.str] * len(outputs), names=outputs, ) out[:] = missing_value else: out = full(shape, missing_value, dtype=self.dtype) return out def _format_inputs(self, windows, column_mask): inputs = [] for input_ in windows: window = next(input_) if window.shape[1] == 1: # Do not mask single-column inputs. inputs.append(window) else: inputs.append(window[:, column_mask]) return inputs def _compute(self, windows, dates, assets, mask): """ Call the user's `compute` function on each window with a pre-built output array. """ format_inputs = self._format_inputs compute = self.compute params = self.params ndim = self.ndim shape = (len(mask), 1) if ndim == 1 else mask.shape out = self._allocate_output(windows, shape) with self.ctx: for idx, date in enumerate(dates): # Never apply a mask to 1D outputs. out_mask = array([True]) if ndim == 1 else mask[idx] # Mask our inputs as usual. inputs_mask = mask[idx] masked_assets = assets[inputs_mask] out_row = out[idx][out_mask] inputs = format_inputs(windows, inputs_mask) compute(date, masked_assets, out_row, *inputs, **params) out[idx][out_mask] = out_row return out def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" # Graphviz interprets `\l` as "divide label into lines, left-justified" return type(self).__name__ + ":\\l window_length: %d\\l" % self.window_length class LatestMixin(SingleInputMixin): """ Common behavior for :attr:`zipline.pipeline.data.BoundColumn.latest`. Given a :class:`~zipline.pipeline.data.DataSet` named ``MyData`` with a column ``col`` of numeric dtype, the following expression: .. code-block:: python factor = MyData.col.latest is equivalent to: .. code-block:: python class Latest(CustomFactor): inputs = [MyData.col] window_length = 1 def compute(self, today, assets, out, data): out[:] = data[-1] factor = Latest() The behavior is the same for columns of boolean or string dtype, except the resulting expression will be a :class:`~zipline.pipeline.CustomFilter` for boolean columns, and the resulting object will be a :class:`~zipline.pipeline.CustomClassifier` for string or integer columns. """ window_length = 1 def compute(self, today, assets, out, data): out[:] = data[-1] def _validate(self): super(LatestMixin, self)._validate() if self.inputs[0].dtype != self.dtype: raise TypeError( "{name} expected an input of dtype {expected}, " "but got {actual} instead.".format( name=type(self).__name__, expected=self.dtype, actual=self.inputs[0].dtype, ) ) def graph_repr(self): return "Latest" class UniversalMixin(Term): """ Base class for "universal" mixins. Universal mixins are used to implement expressions that need separate subclasses for each of the ComputableTerm subclasses (Factor, Filter, and Classifier). Such expressions are usually return types of methods of ComputableTerm, such as `downsample()`, `alias()`, or `fillna()`. A type may only inherit from one UniversalMixin. """ # Memo dict mapping pairs of (mixin_type, principal_type) to subtypes. _UNIVERSAL_MIXIN_SUBTYPES = {} @staticmethod @abstractmethod def _universal_mixin_type(): raise NotImplementedError("_universal_mixin_type") @staticmethod @abstractmethod def _universal_mixin_specialization_name(principal_type): raise NotImplementedError("_universal_mixin_specialization_name") @classmethod def universal_mixin_specialization(cls, principal_type): """ Create a new subtype of `principal_type` that adds this mixin to ``principal_type``. ``principal_type`` will be one of Factor, Filter, or Classifier. """ mixin = cls._universal_mixin_type() memo_key = (mixin, principal_type) try: return cls._UNIVERSAL_MIXIN_SUBTYPES[memo_key] except KeyError: new_type = type( mixin._universal_mixin_specialization_name(principal_type), (mixin, principal_type), {"__module__": principal_type.__module__}, ) cls._UNIVERSAL_MIXIN_SUBTYPES[memo_key] = new_type return new_type class AliasedMixin(SingleInputMixin, UniversalMixin): """ Mixin for aliased terms. """ def __new__(cls, term, name): return super(AliasedMixin, cls).__new__( cls, inputs=(term,), outputs=term.outputs, window_length=0, name=name, dtype=term.dtype, missing_value=term.missing_value, ndim=term.ndim, window_safe=term.window_safe, ) def _init(self, name, *args, **kwargs): self.name = name return super(AliasedMixin, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, name, *args, **kwargs): return ( super(AliasedMixin, cls)._static_identity(*args, **kwargs), name, ) def _compute(self, inputs, dates, assets, mask): return inputs[0] def __repr__(self): return "{type}({inner}, name={name!r})".format( type=type(self).__name__, inner=self.inputs[0].recursive_repr(), name=self.name, ) def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" return self.name @staticmethod def _universal_mixin_type(): return AliasedMixin @staticmethod def _universal_mixin_specialization_name(principal_type): return "Aliased" + principal_type.__name__ class DownsampledMixin(StandardOutputs, UniversalMixin): """Universal mixin for downsampled terms. A downsampled term is a wrapper around the "real" term that performs actual computation. The downsampler is responsible for calling the real term's `compute` method at selected intervals and forward-filling the computed values. Downsampling is not currently supported for terms with multiple outputs. """ # There's no reason to take a window of a downsampled term. The whole # point is that you're re-using the same result multiple times. window_safe = False @expect_types(term=Term) @expect_downsample_frequency def __new__(cls, term, frequency): return super(DownsampledMixin, cls).__new__( cls, inputs=term.inputs, outputs=term.outputs, window_length=term.window_length, mask=term.mask, frequency=frequency, wrapped_term=term, dtype=term.dtype, missing_value=term.missing_value, ndim=term.ndim, ) def _init(self, frequency, wrapped_term, *args, **kwargs): self._frequency = frequency self._wrapped_term = wrapped_term return super(DownsampledMixin, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, frequency, wrapped_term, *args, **kwargs): return ( super(DownsampledMixin, cls)._static_identity(*args, **kwargs), frequency, wrapped_term, ) def compute_extra_rows(self, all_dates, start_date, end_date, min_extra_rows): """ Ensure that min_extra_rows pushes us back to a computation date. Parameters ---------- all_dates : pd.DatetimeIndex The trading sessions against which ``self`` will be computed. start_date : pd.Timestamp The first date for which final output is requested. end_date : pd.Timestamp The last date for which final output is requested. min_extra_rows : int The minimum number of extra rows required of ``self``, as determined by other terms that depend on ``self``. Returns ------- extra_rows : int The number of extra rows to compute. This will be the minimum number of rows required to make our computed start_date fall on a recomputation date. """ try: current_start_pos = all_dates.get_loc(start_date) - min_extra_rows if current_start_pos < 0: raise NoFurtherDataError.from_lookback_window( initial_message="Insufficient data to compute Pipeline:", first_date=all_dates[0], lookback_start=start_date, lookback_length=min_extra_rows, ) except KeyError: before, after = nearest_unequal_elements(all_dates, start_date) raise ValueError( "Pipeline start_date {start_date} is not in calendar.\n" "Latest date before start_date is {before}.\n" "Earliest date after start_date is {after}.".format( start_date=start_date, before=before, after=after, ) ) # Our possible target dates are all the dates on or before the current # starting position. # TODO: Consider bounding this below by self.window_length candidates = all_dates[: current_start_pos + 1] # Choose the latest date in the candidates that is the start of a new # period at our frequency. choices = select_sampling_indices(candidates, self._frequency) # If we have choices, the last choice is the first date if the # period containing current_start_date. Choose it. new_start_date = candidates[choices[-1]] # Add the difference between the new and old start dates to get the # number of rows for the new start_date. new_start_pos = all_dates.get_loc(new_start_date) assert new_start_pos <= current_start_pos, "Computed negative extra rows!" return min_extra_rows + (current_start_pos - new_start_pos) def _compute(self, inputs, dates, assets, mask): """ Compute by delegating to self._wrapped_term._compute on sample dates. On non-sample dates, forward-fill from previously-computed samples. """ to_sample = dates[select_sampling_indices(dates, self._frequency)] assert to_sample[0] == dates[0], ( "Misaligned sampling dates in %s." % type(self).__name__ ) real_compute = self._wrapped_term._compute # Inputs will contain different kinds of values depending on whether or # not we're a windowed computation. # If we're windowed, then `inputs` is a list of iterators of ndarrays. # If we're not windowed, then `inputs` is just a list of ndarrays. # There are two things we care about doing with the input: # 1. Preparing an input to be passed to our wrapped term. # 2. Skipping an input if we're going to use an already-computed row. # We perform these actions differently based on the expected kind of # input, and we encapsulate these actions with closures so that we # don't clutter the code below with lots of branching. if self.windowed: # If we're windowed, inputs are stateful AdjustedArrays. We don't # need to do any preparation before forwarding to real_compute, but # we need to call `next` on them if we want to skip an iteration. def prepare_inputs(): return inputs def skip_this_input(): for w in inputs: next(w) else: # If we're not windowed, inputs are just ndarrays. We need to # slice out a single row when forwarding to real_compute, but we # don't need to do anything to skip an input. def prepare_inputs(): # i is the loop iteration variable below. return [a[[i]] for a in inputs] def skip_this_input(): pass results = [] samples = iter(to_sample) next_sample = next(samples) for i, compute_date in enumerate(dates): if next_sample == compute_date: results.append( real_compute( prepare_inputs(), dates[i : i + 1], assets, mask[i : i + 1], ) ) try: next_sample = next(samples) except StopIteration: # No more samples to take. Set next_sample to Nat, which # compares False with any other datetime. next_sample = pd_NaT else: skip_this_input() # Copy results from previous sample period. results.append(results[-1]) # We should have exhausted our sample dates. try: next_sample = next(samples) except StopIteration: pass else: raise AssertionError("Unconsumed sample date: %s" % next_sample) # Concatenate stored results. return vstack(results) @staticmethod def _universal_mixin_type(): return DownsampledMixin @staticmethod def _universal_mixin_specialization_name(principal_type): return "Downsampled" + principal_type.__name__ class SliceMixin(UniversalMixin): """Universal mixin for taking columnar slices of terms. Parameters ---------- term : zipline.pipeline.Term The term from which to extract a column of data. asset : zipline.assets.Asset The asset corresponding to the column of `term` to be extracted. Notes ----- Users should rarely construct instances of `Slice` directly. Instead, they should construct instances via indexing, e.g. `MyFactor()[Asset(24)]`. """ def __new__(cls, term, asset): return super(SliceMixin, cls).__new__( cls, asset=asset, inputs=[term], window_length=0, mask=term.mask, dtype=term.dtype, missing_value=term.missing_value, window_safe=term.window_safe, ndim=1, ) def __repr__(self): return "{parent_term}[{asset}]".format( parent_term=self.inputs[0].recursive_repr(), asset=self._asset, ) def _init(self, asset, *args, **kwargs): self._asset = asset return super(SliceMixin, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, asset, *args, **kwargs): return ( super(SliceMixin, cls)._static_identity(*args, **kwargs), asset, ) def _compute(self, windows, dates, assets, mask): asset = self._asset asset_column = searchsorted(assets.values, asset.sid) if assets[asset_column] != asset.sid: raise NonExistentAssetInTimeFrame( asset=asset, start_date=dates[0], end_date=dates[-1], ) # Return a 2D array with one column rather than a 1D array of the # column. return windows[0][:, [asset_column]] @property def asset(self): """Get the asset whose data is selected by this slice.""" return self._asset @staticmethod def _universal_mixin_type(): return SliceMixin @staticmethod def _universal_mixin_specialization_name(principal_type): return principal_type.__name__ + "Slice" class IfElseMixin(UniversalMixin): """Universal mixin for types returned by Filter.if_else.""" window_length = 0 @expect_dtypes(condition=bool_dtype) def __new__(cls, condition, if_true, if_false): return super(IfElseMixin, cls).__new__( cls, inputs=[condition, if_true, if_false], dtype=if_true.dtype, ndim=if_true.ndim, missing_value=if_true.missing_value, window_safe=all( ( condition.window_safe, if_true.window_safe, if_false.window_safe, ) ), outputs=if_true.outputs, ) def _compute(self, inputs, assets, dates, mask): if self.dtype == object: return labelarray_where(inputs[0], inputs[1], inputs[2]) return where(inputs[0], inputs[1], inputs[2]) @staticmethod def _universal_mixin_type(): return IfElseMixin @staticmethod def _universal_mixin_specialization_name(principal_type): return "IfElse" + principal_type.__name__ class ConstantMixin(StandardOutputs, UniversalMixin): """Universal mixin for terms that produce a known constant value.""" window_length = 0 inputs = () params = ("const",) def _compute(self, inputs, assets, dates, mask): constant = self.params["const"] out = full(mask.shape, constant, dtype=self.dtype) if self.dtype == object: return LabelArray( out, categories=[constant], missing_value=self.missing_value, ) return out @staticmethod def _universal_mixin_type(): return ConstantMixin @staticmethod def _universal_mixin_specialization_name(principal_type): return "Constant" + principal_type.__name__
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/mixins.py
mixins.py
from contextlib import contextmanager import errno from functools import partial from io import BytesIO from subprocess import Popen, PIPE from networkx import topological_sort from zipline.pipeline.data import BoundColumn from zipline.pipeline import Filter, Factor, Classifier, Term from zipline.pipeline.term import AssetExists class NoIPython(Exception): pass def delimit(delimiters, content): """ Surround `content` with the first and last characters of `delimiters`. >>> delimit('[]', "foo") # doctest: +SKIP '[foo]' >>> delimit('""', "foo") # doctest: +SKIP '"foo"' """ if len(delimiters) != 2: raise ValueError("`delimiters` must be of length 2. Got %r" % delimiters) return "".join([delimiters[0], content, delimiters[1]]) quote = partial(delimit, '""') bracket = partial(delimit, "[]") def begin_graph(f, name, **attrs): writeln(f, "strict digraph %s {" % name) writeln(f, "graph {}".format(format_attrs(attrs))) def begin_cluster(f, name, **attrs): attrs.setdefault("label", quote(name)) writeln(f, "subgraph cluster_%s {" % name) writeln(f, "graph {}".format(format_attrs(attrs))) def end_graph(f): writeln(f, "}") @contextmanager def graph(f, name, **attrs): begin_graph(f, name, **attrs) yield end_graph(f) @contextmanager def cluster(f, name, **attrs): begin_cluster(f, name, **attrs) yield end_graph(f) def roots(g): "Get nodes from graph G with indegree 0" return set(n for n, d in g.in_degree().items() if d == 0) def filter_nodes(include_asset_exists, nodes): if include_asset_exists: return nodes return filter(lambda n: n is not AssetExists(), nodes) def _render(g, out, format_, include_asset_exists=False): """ Draw `g` as a graph to `out`, in format `format`. Parameters ---------- g : zipline.pipeline.graph.TermGraph Graph to render. out : file-like object format_ : str {'png', 'svg'} Output format. include_asset_exists : bool Whether to filter out `AssetExists()` nodes. """ graph_attrs = {"rankdir": "TB", "splines": "ortho"} cluster_attrs = {"style": "filled", "color": "lightgoldenrod1"} in_nodes = g.loadable_terms out_nodes = list(g.outputs.values()) f = BytesIO() with graph(f, "G", **graph_attrs): # Write outputs cluster. with cluster(f, "Output", labelloc="b", **cluster_attrs): for term in filter_nodes(include_asset_exists, out_nodes): add_term_node(f, term) # Write inputs cluster. with cluster(f, "Input", **cluster_attrs): for term in filter_nodes(include_asset_exists, in_nodes): add_term_node(f, term) # Write intermediate results. for term in filter_nodes(include_asset_exists, topological_sort(g.graph)): if term in in_nodes or term in out_nodes: continue add_term_node(f, term) # Write edges for source, dest in g.graph.edges(): if source is AssetExists() and not include_asset_exists: continue add_edge(f, id(source), id(dest)) cmd = ["dot", "-T", format_] try: proc = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) except OSError as e: if e.errno == errno.ENOENT: raise RuntimeError( "Couldn't find `dot` graph layout program. " "Make sure Graphviz is installed and `dot` is on your path." ) else: raise f.seek(0) proc_stdout, proc_stderr = proc.communicate(f.read()) if proc_stderr: raise RuntimeError( "Error(s) while rendering graph: %s" % proc_stderr.decode("utf-8") ) out.write(proc_stdout) def display_graph(g, format="svg", include_asset_exists=False): """ Display a TermGraph interactively from within IPython. """ try: import IPython.display as display except ImportError: raise NoIPython("IPython is not installed. Can't display graph.") if format == "svg": display_cls = display.SVG elif format in ("jpeg", "png"): display_cls = partial(display.Image, format=format, embed=True) out = BytesIO() _render(g, out, format, include_asset_exists=include_asset_exists) return display_cls(data=out.getvalue()) def writeln(f, s): f.write((s + "\n").encode("utf-8")) def fmt(obj): if isinstance(obj, Term): r = obj.graph_repr() else: r = obj return '"%s"' % r def add_term_node(f, term): declare_node(f, id(term), attrs_for_node(term)) def declare_node(f, name, attributes): writeln(f, "{0} {1};".format(name, format_attrs(attributes))) def add_edge(f, source, dest): writeln(f, "{0} -> {1};".format(source, dest)) def attrs_for_node(term, **overrides): attrs = { "shape": "box", "colorscheme": "pastel19", "style": "filled", "label": fmt(term), } if isinstance(term, BoundColumn): attrs["fillcolor"] = "1" if isinstance(term, Factor): attrs["fillcolor"] = "2" elif isinstance(term, Filter): attrs["fillcolor"] = "3" elif isinstance(term, Classifier): attrs["fillcolor"] = "4" attrs.update(**overrides or {}) return attrs def format_attrs(attrs): """ Format key, value pairs from attrs into graphviz attrs format Examples -------- >>> format_attrs({'key1': 'value1', 'key2': 'value2'}) # doctest: +SKIP '[key1=value1, key2=value2]' """ if not attrs: return "" entries = ["=".join((key, value)) for key, value in attrs.items()] return "[" + ", ".join(entries) + "]"
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/visualize.py
visualize.py
import re from itertools import chain from numbers import Number import numexpr from numexpr.necompiler import getExprNames from numpy import ( full, inf, ) from zipline.pipeline.term import Term, ComputableTerm from zipline.utils.numpy_utils import bool_dtype _VARIABLE_NAME_RE = re.compile("^(x_)([0-9]+)$") # Map from op symbol to equivalent Python magic method name. ops_to_methods = { "+": "__add__", "-": "__sub__", "*": "__mul__", "/": "__div__", "%": "__mod__", "**": "__pow__", "&": "__and__", "|": "__or__", "^": "__xor__", "<": "__lt__", "<=": "__le__", "==": "__eq__", "!=": "__ne__", ">=": "__ge__", ">": "__gt__", } # Map from method name to op symbol. methods_to_ops = {v: k for k, v in ops_to_methods.items()} # Map from op symbol to equivalent Python magic method name after flipping # arguments. ops_to_commuted_methods = { "+": "__radd__", "-": "__rsub__", "*": "__rmul__", "/": "__rdiv__", "%": "__rmod__", "**": "__rpow__", "&": "__rand__", "|": "__ror__", "^": "__rxor__", "<": "__gt__", "<=": "__ge__", "==": "__eq__", "!=": "__ne__", ">=": "__le__", ">": "__lt__", } unary_ops_to_methods = { "-": "__neg__", "~": "__invert__", } UNARY_OPS = {"-"} MATH_BINOPS = {"+", "-", "*", "/", "**", "%"} FILTER_BINOPS = {"&", "|"} # NumExpr doesn't support xor. COMPARISONS = {"<", "<=", "!=", ">=", ">", "=="} NUMEXPR_MATH_FUNCS = { "sin", "cos", "tan", "arcsin", "arccos", "arctan", "sinh", "cosh", "tanh", "arcsinh", "arccosh", "arctanh", "log", "log10", "log1p", "exp", "expm1", "sqrt", "abs", } NPY_MAXARGS = 32 def _ensure_element(tup, elem): """ Create a tuple containing all elements of tup, plus elem. Returns the new tuple and the index of elem in the new tuple. """ try: return tup, tup.index(elem) except ValueError: return tuple(chain(tup, (elem,))), len(tup) class BadBinaryOperator(TypeError): """ Called when a bad binary operation is encountered. Parameters ---------- op : str The attempted operation left : zipline.computable.Term The left hand side of the operation. right : zipline.computable.Term The right hand side of the operation. """ def __init__(self, op, left, right): super(BadBinaryOperator, self).__init__( "Can't compute {left} {op} {right}".format( op=op, left=type(left).__name__, right=type(right).__name__, ) ) def method_name_for_op(op, commute=False): """ Get the name of the Python magic method corresponding to `op`. Parameters ---------- op : str {'+','-','*', '/','**','&','|','^','<','<=','==','!=','>=','>'} The requested operation. commute : bool Whether to return the name of an equivalent method after flipping args. Returns ------- method_name : str The name of the Python magic method corresponding to `op`. If `commute` is True, returns the name of a method equivalent to `op` with inputs flipped. Examples -------- >>> method_name_for_op('+') '__add__' >>> method_name_for_op('+', commute=True) '__radd__' >>> method_name_for_op('>') '__gt__' >>> method_name_for_op('>', commute=True) '__lt__' """ if commute: return ops_to_commuted_methods[op] return ops_to_methods[op] def unary_op_name(op): return unary_ops_to_methods[op] def is_comparison(op): return op in COMPARISONS class NumericalExpression(ComputableTerm): """ Term binding to a numexpr expression. Parameters ---------- expr : string A string suitable for passing to numexpr. All variables in 'expr' should be of the form "x_i", where i is the index of the corresponding factor input in 'binds'. binds : tuple A tuple of factors to use as inputs. dtype : np.dtype The dtype for the expression. """ window_length = 0 def __new__(cls, expr, binds, dtype): # We always allow filters to be used in windowed computations. # Otherwise, an expression is window_safe if all its constituents are # window_safe. window_safe = (dtype == bool_dtype) or all(t.window_safe for t in binds) return super(NumericalExpression, cls).__new__( cls, inputs=binds, expr=expr, dtype=dtype, window_safe=window_safe, ) def _init(self, expr, *args, **kwargs): self._expr = expr return super(NumericalExpression, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, expr, *args, **kwargs): return ( super(NumericalExpression, cls)._static_identity(*args, **kwargs), expr, ) def _validate(self): """ Ensure that our expression string has variables of the form x_0, x_1, ... x_(N - 1), where N is the length of our inputs. """ variable_names, _unused = getExprNames(self._expr, {}) expr_indices = [] for name in variable_names: if name == "inf": continue match = _VARIABLE_NAME_RE.match(name) if not match: raise ValueError("%r is not a valid variable name" % name) expr_indices.append(int(match.group(2))) expr_indices.sort() expected_indices = list(range(len(self.inputs))) if expr_indices != expected_indices: raise ValueError( "Expected %s for variable indices, but got %s" % ( expected_indices, expr_indices, ) ) super(NumericalExpression, self)._validate() def _compute(self, arrays, dates, assets, mask): """ Compute our stored expression string with numexpr. """ out = full(mask.shape, self.missing_value, dtype=self.dtype) # This writes directly into our output buffer. numexpr.evaluate( self._expr, local_dict={"x_%d" % idx: array for idx, array in enumerate(arrays)}, global_dict={"inf": inf}, out=out, ) return out def _rebind_variables(self, new_inputs): """ Return self._expr with all variables rebound to the indices implied by new_inputs. """ expr = self._expr # If we have 11+ variables, some of our variable names may be # substrings of other variable names. For example, we might have x_1, # x_10, and x_100. By enumerating in reverse order, we ensure that # every variable name which is a substring of another variable name is # processed after the variable of which it is a substring. This # guarantees that the substitution of any given variable index only # ever affects exactly its own index. For example, if we have variables # with indices going up to 100, we will process all of the x_1xx names # before x_1x, which will be before x_1, so the substitution of x_1 # will not affect x_1x, which will not affect x_1xx. for idx, input_ in reversed(list(enumerate(self.inputs))): old_varname = "x_%d" % idx # Temporarily rebind to x_temp_N so that we don't overwrite the # same value multiple times. temp_new_varname = "x_temp_%d" % new_inputs.index(input_) expr = expr.replace(old_varname, temp_new_varname) # Clear out the temp variables now that we've finished iteration. return expr.replace("_temp_", "_") def _merge_expressions(self, other): """ Merge the inputs of two NumericalExpressions into a single input tuple, rewriting their respective string expressions to make input names resolve correctly. Returns a tuple of (new_self_expr, new_other_expr, new_inputs) """ new_inputs = tuple(set(self.inputs).union(other.inputs)) new_self_expr = self._rebind_variables(new_inputs) new_other_expr = other._rebind_variables(new_inputs) return new_self_expr, new_other_expr, new_inputs def build_binary_op(self, op, other): """ Compute new expression strings and a new inputs tuple for combining self and other with a binary operator. """ if isinstance(other, NumericalExpression): self_expr, other_expr, new_inputs = self._merge_expressions(other) elif isinstance(other, Term): self_expr = self._expr new_inputs, other_idx = _ensure_element(self.inputs, other) other_expr = "x_%d" % other_idx elif isinstance(other, Number): self_expr = self._expr other_expr = str(other) new_inputs = self.inputs else: raise BadBinaryOperator(op, self, other) # If the merged inputs would be too many for numexpr, then don't merge # them: if len(new_inputs) >= NPY_MAXARGS: self_expr = "x_0" other_expr = "x_1" new_inputs = self, other return self_expr, other_expr, new_inputs @property def bindings(self): return {"x_%d" % i: input_ for i, input_ in enumerate(self.inputs)} def __repr__(self): return "{typename}(expr='{expr}', bindings={bindings})".format( typename=type(self).__name__, expr=self._expr, bindings=self.bindings, ) def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" # Replace any floating point numbers in the expression # with their scientific notation final = re.sub( r"[-+]?\d*\.\d+", lambda x: format(float(x.group(0)), ".2E"), self._expr ) # Graphviz interprets `\l` as "divide label into lines, left-justified" return "Expression:\\l {}\\l".format( final, )
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/expression.py
expression.py
from zipline.errors import UnsupportedPipelineOutput from zipline.utils.input_validation import ( expect_element, expect_types, optional, ) from .domain import Domain, GENERIC, infer_domain from .graph import ExecutionPlan, TermGraph, SCREEN_NAME from .filters import Filter from .term import AssetExists, ComputableTerm, Term class Pipeline(object): """ A Pipeline object represents a collection of named expressions to be compiled and executed by a PipelineEngine. A Pipeline has two important attributes: 'columns', a dictionary of named :class:`~zipline.pipeline.Term` instances, and 'screen', a :class:`~zipline.pipeline.Filter` representing criteria for including an asset in the results of a Pipeline. To compute a pipeline in the context of a TradingAlgorithm, users must call ``attach_pipeline`` in their ``initialize`` function to register that the pipeline should be computed each trading day. The most recent outputs of an attached pipeline can be retrieved by calling ``pipeline_output`` from ``handle_data``, ``before_trading_start``, or a scheduled function. Parameters ---------- columns : dict, optional Initial columns. screen : zipline.pipeline.Filter, optional Initial screen. """ __slots__ = ("_columns", "_screen", "_domain", "__weakref__") @expect_types(columns=optional(dict), screen=optional(Filter), domain=Domain) def __init__(self, columns=None, screen=None, domain=GENERIC): if columns is None: columns = {} validate_column = self.validate_column for column_name, term in columns.items(): validate_column(column_name, term) if not isinstance(term, ComputableTerm): raise TypeError( "Column {column_name!r} contains an invalid pipeline term " "({term}). Did you mean to append '.latest'?".format( column_name=column_name, term=term, ) ) self._columns = columns self._screen = screen self._domain = domain @property def columns(self): """The output columns of this pipeline. Returns ------- columns : dict[str, zipline.pipeline.ComputableTerm] Map from column name to expression computing that column's output. """ return self._columns @property def screen(self): """ The screen of this pipeline. Returns ------- screen : zipline.pipeline.Filter or None Term defining the screen for this pipeline. If ``screen`` is a filter, rows that do not pass the filter (i.e., rows for which the filter computed ``False``) will be dropped from the output of this pipeline before returning results. Notes ----- Setting a screen on a Pipeline does not change the values produced for any rows: it only affects whether a given row is returned. Computing a pipeline with a screen is logically equivalent to computing the pipeline without the screen and then, as a post-processing-step, filtering out any rows for which the screen computed ``False``. """ return self._screen @expect_types(term=Term, name=str) def add(self, term, name, overwrite=False): """Add a column. The results of computing ``term`` will show up as a column in the DataFrame produced by running this pipeline. Parameters ---------- column : zipline.pipeline.Term A Filter, Factor, or Classifier to add to the pipeline. name : str Name of the column to add. overwrite : bool Whether to overwrite the existing entry if we already have a column named `name`. """ self.validate_column(name, term) columns = self.columns if name in columns: if overwrite: self.remove(name) else: raise KeyError("Column '{}' already exists.".format(name)) if not isinstance(term, ComputableTerm): raise TypeError( "{term} is not a valid pipeline column. Did you mean to " "append '.latest'?".format(term=term) ) self._columns[name] = term @expect_types(name=str) def remove(self, name): """Remove a column. Parameters ---------- name : str The name of the column to remove. Raises ------ KeyError If `name` is not in self.columns. Returns ------- removed : zipline.pipeline.Term The removed term. """ return self.columns.pop(name) @expect_types(screen=Filter, overwrite=(bool, int)) def set_screen(self, screen, overwrite=False): """Set a screen on this Pipeline. Parameters ---------- filter : zipline.pipeline.Filter The filter to apply as a screen. overwrite : bool Whether to overwrite any existing screen. If overwrite is False and self.screen is not None, we raise an error. """ if self._screen is not None and not overwrite: raise ValueError( "set_screen() called with overwrite=False and screen already " "set.\n" "If you want to apply multiple filters as a screen use " "set_screen(filter1 & filter2 & ...).\n" "If you want to replace the previous screen with a new one, " "use set_screen(new_filter, overwrite=True)." ) self._screen = screen def to_execution_plan(self, domain, default_screen, start_date, end_date): """ Compile into an ExecutionPlan. Parameters ---------- domain : zipline.pipeline.domain.Domain Domain on which the pipeline will be executed. default_screen : zipline.pipeline.Term Term to use as a screen if self.screen is None. all_dates : pd.DatetimeIndex A calendar of dates to use to calculate starts and ends for each term. start_date : pd.Timestamp The first date of requested output. end_date : pd.Timestamp The last date of requested output. Returns ------- graph : zipline.pipeline.graph.ExecutionPlan Graph encoding term dependencies, including metadata about extra row requirements. """ if self._domain is not GENERIC and self._domain is not domain: raise AssertionError( "Attempted to compile Pipeline with domain {} to execution " "plan with different domain {}.".format(self._domain, domain) ) return ExecutionPlan( domain=domain, terms=self._prepare_graph_terms(default_screen), start_date=start_date, end_date=end_date, ) def to_simple_graph(self, default_screen): """ Compile into a simple TermGraph with no extra row metadata. Parameters ---------- default_screen : zipline.pipeline.Term Term to use as a screen if self.screen is None. Returns ------- graph : zipline.pipeline.graph.TermGraph Graph encoding term dependencies. """ return TermGraph(self._prepare_graph_terms(default_screen)) def _prepare_graph_terms(self, default_screen): """Helper for to_graph and to_execution_plan.""" columns = self.columns.copy() screen = self.screen if screen is None: screen = default_screen columns[SCREEN_NAME] = screen return columns @expect_element(format=("svg", "png", "jpeg")) def show_graph(self, format="svg"): """ Render this Pipeline as a DAG. Parameters ---------- format : {'svg', 'png', 'jpeg'} Image format to render with. Default is 'svg'. """ g = self.to_simple_graph(AssetExists()) if format == "svg": return g.svg elif format == "png": return g.png elif format == "jpeg": return g.jpeg else: # We should never get here because of the expect_element decorator # above. raise AssertionError("Unknown graph format %r." % format) @staticmethod @expect_types(term=Term, column_name=str) def validate_column(column_name, term): if term.ndim == 1: raise UnsupportedPipelineOutput(column_name=column_name, term=term) @property def _output_terms(self): """ A list of terms that are outputs of this pipeline. Includes all terms registered as data outputs of the pipeline, plus the screen, if present. """ terms = list(self._columns.values()) screen = self.screen if screen is not None: terms.append(screen) return terms @expect_types(default=Domain) def domain(self, default): """ Get the domain for this pipeline. - If an explicit domain was provided at construction time, use it. - Otherwise, infer a domain from the registered columns. - If no domain can be inferred, return ``default``. Parameters ---------- default : zipline.pipeline.domain.Domain Domain to use if no domain can be inferred from this pipeline by itself. Returns ------- domain : zipline.pipeline.domain.Domain The domain for the pipeline. Raises ------ AmbiguousDomain ValueError If the terms in ``self`` conflict with self._domain. """ # Always compute our inferred domain to ensure that it's compatible # with our explicit domain. inferred = infer_domain(self._output_terms) if inferred is GENERIC and self._domain is GENERIC: # Both generic. Fall back to default. return default elif inferred is GENERIC and self._domain is not GENERIC: # Use the non-generic domain. return self._domain elif inferred is not GENERIC and self._domain is GENERIC: # Use the non-generic domain. return inferred else: # Both non-generic. They have to match. if inferred is not self._domain: raise ValueError( "Conflicting domains in Pipeline. Inferred {}, but {} was " "passed at construction.".format(inferred, self._domain) ) return inferred
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/pipeline.py
pipeline.py
import datetime from textwrap import dedent from interface import default, implements, Interface import numpy as np import pandas as pd import pytz from zipline.utils.calendar_utils import get_calendar from zipline.country import CountryCode from zipline.utils.formatting import bulleted_list from zipline.utils.input_validation import expect_types, optional from zipline.utils.memoize import lazyval from zipline.utils.pandas_utils import days_at_time class IDomain(Interface): """Domain interface.""" def all_sessions(self): """ Get all trading sessions for the calendar of this domain. This determines the row labels of Pipeline outputs for pipelines run on this domain. Returns ------- sessions : pd.DatetimeIndex An array of all session labels for this domain. """ @property def country_code(self): """The country code for this domain. Returns ------- code : str The two-character country iso3166 country code for this domain. """ def data_query_cutoff_for_sessions(self, sessions): """Compute the data query cutoff time for the given sessions. Parameters ---------- sessions : pd.DatetimeIndex The sessions to get the data query cutoff times for. This index will contain all midnight UTC values. Returns ------- data_query_cutoff : pd.DatetimeIndex Timestamp of the last minute for which data should be considered "available" on each session. """ @default def roll_forward(self, dt): """ Given a date, align it to the calendar of the pipeline's domain. Parameters ---------- dt : pd.Timestamp Returns ------- pd.Timestamp """ try: dt = pd.Timestamp(dt).tz_convert("UTC") except TypeError: dt = pd.Timestamp(dt).tz_localize("UTC") trading_days = self.all_sessions() try: return trading_days[trading_days.searchsorted(dt)] except IndexError: raise ValueError( "Date {} was past the last session for domain {}. " "The last session for this domain is {}.".format( dt.date(), self, trading_days[-1].date() ) ) Domain = implements(IDomain) Domain.__doc__ = """ A domain represents a set of labels for the arrays computed by a Pipeline. A domain defines two things: 1. A calendar defining the dates to which the pipeline's inputs and outputs should be aligned. The calendar is represented concretely by a pandas DatetimeIndex. 2. The set of assets that the pipeline should compute over. Right now, the only supported way of representing this set is with a two-character country code describing the country of assets over which the pipeline should compute. In the future, we expect to expand this functionality to include more general concepts. """ Domain.__name__ = "Domain" Domain.__qualname__ = "zipline.pipeline.domain.Domain" class GenericDomain(Domain): """Special singleton class used to represent generic DataSets and Columns.""" def all_sessions(self): raise NotImplementedError("Can't get sessions for generic domain.") @property def country_code(self): raise NotImplementedError("Can't get country code for generic domain.") def data_query_cutoff_for_sessions(self, sessions): raise NotImplementedError( "Can't compute data query cutoff times for generic domain.", ) def __repr__(self): return "GENERIC" GENERIC = GenericDomain() class EquityCalendarDomain(Domain): """ An equity domain whose sessions are defined by a named TradingCalendar. Parameters ---------- country_code : str ISO-3166 two-letter country code of the domain calendar_name : str Name of the calendar, to be looked by by trading_calendar.get_calendar. data_query_offset : np.timedelta64 The offset from market open when data should no longer be considered available for a session. For example, a ``data_query_offset`` of ``-np.timedelta64(45, 'm')`` means that the data must have been available at least 45 minutes prior to market open for it to appear in the pipeline input for the given session. """ @expect_types( country_code=str, calendar_name=str, __funcname="EquityCountryDomain", ) def __init__( self, country_code, calendar_name, data_query_offset=-np.timedelta64(45, "m") ): self._country_code = country_code self.calendar_name = calendar_name self._data_query_offset = ( # add one minute because `open_time` is actually the open minute # label which is one minute _after_ market open... data_query_offset - np.timedelta64(1, "m") ) if data_query_offset >= datetime.timedelta(0): raise ValueError( "data must be ready before market open (offset must be < 0)", ) @property def country_code(self): return self._country_code @lazyval def calendar(self): return get_calendar(self.calendar_name) def all_sessions(self): return self.calendar.all_sessions def data_query_cutoff_for_sessions(self, sessions): opens = self.calendar.opens.reindex(sessions).values missing_mask = pd.isnull(opens) if missing_mask.any(): missing_days = sessions[missing_mask] raise ValueError( "cannot resolve data query time for sessions that are not on" " the %s calendar:\n%s" % ( self.calendar.name, missing_days, ), ) return pd.DatetimeIndex(opens + self._data_query_offset, tz="UTC") def __repr__(self): return "EquityCalendarDomain({!r}, {!r})".format( self.country_code, self.calendar_name, ) AR_EQUITIES = EquityCalendarDomain(CountryCode.ARGENTINA, "XBUE") AT_EQUITIES = EquityCalendarDomain(CountryCode.AUSTRIA, "XWBO") AU_EQUITIES = EquityCalendarDomain(CountryCode.AUSTRALIA, "XASX") BE_EQUITIES = EquityCalendarDomain(CountryCode.BELGIUM, "XBRU") BR_EQUITIES = EquityCalendarDomain(CountryCode.BRAZIL, "BVMF") CA_EQUITIES = EquityCalendarDomain(CountryCode.CANADA, "XTSE") CH_EQUITIES = EquityCalendarDomain(CountryCode.SWITZERLAND, "XSWX") CL_EQUITIES = EquityCalendarDomain(CountryCode.CHILE, "XSGO") CN_EQUITIES = EquityCalendarDomain(CountryCode.CHINA, "XSHG") CO_EQUITIES = EquityCalendarDomain(CountryCode.COLOMBIA, "XBOG") CZ_EQUITIES = EquityCalendarDomain(CountryCode.CZECH_REPUBLIC, "XPRA") DE_EQUITIES = EquityCalendarDomain(CountryCode.GERMANY, "XFRA") DK_EQUITIES = EquityCalendarDomain(CountryCode.DENMARK, "XCSE") ES_EQUITIES = EquityCalendarDomain(CountryCode.SPAIN, "XMAD") FI_EQUITIES = EquityCalendarDomain(CountryCode.FINLAND, "XHEL") FR_EQUITIES = EquityCalendarDomain(CountryCode.FRANCE, "XPAR") GB_EQUITIES = EquityCalendarDomain(CountryCode.UNITED_KINGDOM, "XLON") GR_EQUITIES = EquityCalendarDomain(CountryCode.GREECE, "ASEX") HK_EQUITIES = EquityCalendarDomain(CountryCode.HONG_KONG, "XHKG") HU_EQUITIES = EquityCalendarDomain(CountryCode.HUNGARY, "XBUD") ID_EQUITIES = EquityCalendarDomain(CountryCode.INDONESIA, "XIDX") IE_EQUITIES = EquityCalendarDomain(CountryCode.IRELAND, "XDUB") IN_EQUITIES = EquityCalendarDomain(CountryCode.INDIA, "XBOM") IT_EQUITIES = EquityCalendarDomain(CountryCode.ITALY, "XMIL") JP_EQUITIES = EquityCalendarDomain(CountryCode.JAPAN, "XTKS") KR_EQUITIES = EquityCalendarDomain(CountryCode.SOUTH_KOREA, "XKRX") MX_EQUITIES = EquityCalendarDomain(CountryCode.MEXICO, "XMEX") MY_EQUITIES = EquityCalendarDomain(CountryCode.MALAYSIA, "XKLS") NL_EQUITIES = EquityCalendarDomain(CountryCode.NETHERLANDS, "XAMS") NO_EQUITIES = EquityCalendarDomain(CountryCode.NORWAY, "XOSL") NZ_EQUITIES = EquityCalendarDomain(CountryCode.NEW_ZEALAND, "XNZE") PE_EQUITIES = EquityCalendarDomain(CountryCode.PERU, "XLIM") PH_EQUITIES = EquityCalendarDomain(CountryCode.PHILIPPINES, "XPHS") PK_EQUITIES = EquityCalendarDomain(CountryCode.PAKISTAN, "XKAR") PL_EQUITIES = EquityCalendarDomain(CountryCode.POLAND, "XWAR") PT_EQUITIES = EquityCalendarDomain(CountryCode.PORTUGAL, "XLIS") RU_EQUITIES = EquityCalendarDomain(CountryCode.RUSSIA, "XMOS") SE_EQUITIES = EquityCalendarDomain(CountryCode.SWEDEN, "XSTO") SG_EQUITIES = EquityCalendarDomain(CountryCode.SINGAPORE, "XSES") TH_EQUITIES = EquityCalendarDomain(CountryCode.THAILAND, "XBKK") TR_EQUITIES = EquityCalendarDomain(CountryCode.TURKEY, "XIST") TW_EQUITIES = EquityCalendarDomain(CountryCode.TAIWAN, "XTAI") US_EQUITIES = EquityCalendarDomain(CountryCode.UNITED_STATES, "XNYS") ZA_EQUITIES = EquityCalendarDomain(CountryCode.SOUTH_AFRICA, "XJSE") BUILT_IN_DOMAINS = [ AR_EQUITIES, AT_EQUITIES, AU_EQUITIES, BE_EQUITIES, BR_EQUITIES, CA_EQUITIES, CH_EQUITIES, CL_EQUITIES, CN_EQUITIES, CO_EQUITIES, CZ_EQUITIES, DE_EQUITIES, DK_EQUITIES, ES_EQUITIES, FI_EQUITIES, FR_EQUITIES, GB_EQUITIES, GR_EQUITIES, HK_EQUITIES, HU_EQUITIES, ID_EQUITIES, IE_EQUITIES, IN_EQUITIES, IT_EQUITIES, JP_EQUITIES, KR_EQUITIES, MX_EQUITIES, MY_EQUITIES, NL_EQUITIES, NO_EQUITIES, NZ_EQUITIES, PE_EQUITIES, PH_EQUITIES, PK_EQUITIES, PL_EQUITIES, PT_EQUITIES, RU_EQUITIES, SE_EQUITIES, SG_EQUITIES, TH_EQUITIES, TR_EQUITIES, TW_EQUITIES, US_EQUITIES, ZA_EQUITIES, ] def infer_domain(terms): """ Infer the domain from a collection of terms. The algorithm for inferring domains is as follows: - If all input terms have a domain of GENERIC, the result is GENERIC. - If there is exactly one non-generic domain in the input terms, the result is that domain. - Otherwise, an AmbiguousDomain error is raised. Parameters ---------- terms : iterable[zipline.pipeline.Term] Returns ------- inferred : Domain or NotSpecified Raises ------ AmbiguousDomain Raised if more than one concrete domain is present in the input terms. """ domains = {t.domain for t in terms} num_domains = len(domains) if num_domains == 0: return GENERIC elif num_domains == 1: return domains.pop() elif num_domains == 2 and GENERIC in domains: domains.remove(GENERIC) return domains.pop() else: # Remove GENERIC if it's present before raising. Showing it to the user # is confusing because it doesn't contribute to the error. domains.discard(GENERIC) raise AmbiguousDomain(sorted(domains, key=repr)) # This would be better if we provided more context for which domains came from # which terms. class AmbiguousDomain(Exception): """ Raised when we attempt to infer a domain from a collection of mixed terms. """ _TEMPLATE = dedent( """\ Found terms with conflicting domains: {domains}""" ) def __init__(self, domains): self.domains = domains def __str__(self): return self._TEMPLATE.format( domains=bulleted_list(self.domains, indent=2), ) class EquitySessionDomain(Domain): """A domain built directly from an index of sessions. Mostly useful for testing. Parameters ---------- sessions : pd.DatetimeIndex Sessions to use as output labels for pipelines run on this domain. country_code : str ISO 3166 country code of equities to be used with this domain. data_query_time : datetime.time, optional The time of day when data should no longer be considered available for a session. data_query_date_offset : int, optional The number of days to add to the session label before applying the ``data_query_time``. This can be used to express that the cutoff time for a session falls on a different calendar day from the session label. """ @expect_types( sessions=pd.DatetimeIndex, country_code=str, data_query_time=optional(datetime.time), data_query_date_offset=int, __funcname="EquitySessionDomain", ) def __init__( self, sessions, country_code, data_query_time=None, data_query_date_offset=0 ): self._country_code = country_code self._sessions = sessions if data_query_time is None: data_query_time = datetime.time(0, 0, tzinfo=pytz.timezone("UTC")) if data_query_time.tzinfo is None: raise ValueError("data_query_time cannot be tz-naive") self._data_query_time = data_query_time self._data_query_date_offset = data_query_date_offset @property def country_code(self): return self._country_code def all_sessions(self): return self._sessions def data_query_cutoff_for_sessions(self, sessions): return days_at_time( sessions, self._data_query_time, self._data_query_time.tzinfo, self._data_query_date_offset, )
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/domain.py
domain.py
from abc import ABCMeta, abstractmethod from functools import partial from numpy import array, arange from pandas import DataFrame, MultiIndex from toolz import groupby from zipline.errors import NoFurtherDataError from zipline.lib.adjusted_array import ensure_adjusted_array, ensure_ndarray from zipline.utils.date_utils import compute_date_range_chunks from zipline.utils.input_validation import expect_types from zipline.utils.numpy_utils import ( as_column, repeat_first_axis, repeat_last_axis, ) from zipline.utils.pandas_utils import categorical_df_concat from zipline.utils.pandas_utils import explode from zipline.utils.string_formatting import bulleted_list from .domain import Domain, GENERIC from .graph import maybe_specialize from .hooks import DelegatingHooks from .term import AssetExists, InputDates, LoadableTerm class PipelineEngine(metaclass=ABCMeta): @abstractmethod def run_pipeline(self, pipeline, start_date, end_date, hooks=None): """ Compute values for ``pipeline`` from ``start_date`` to ``end_date``. Parameters ---------- pipeline : zipline.pipeline.Pipeline The pipeline to run. start_date : pd.Timestamp Start date of the computed matrix. end_date : pd.Timestamp End date of the computed matrix. hooks : list[implements(PipelineHooks)], optional Hooks for instrumenting Pipeline execution. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`zipline.pipeline.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. """ raise NotImplementedError("run_pipeline") @abstractmethod def run_chunked_pipeline( self, pipeline, start_date, end_date, chunksize, hooks=None ): """ Compute values for ``pipeline`` from ``start_date`` to ``end_date``, in date chunks of size ``chunksize``. Chunked execution reduces memory consumption, and may reduce computation time depending on the contents of your pipeline. Parameters ---------- pipeline : Pipeline The pipeline to run. start_date : pd.Timestamp The start date to run the pipeline for. end_date : pd.Timestamp The end date to run the pipeline for. chunksize : int The number of days to execute at a time. hooks : list[implements(PipelineHooks)], optional Hooks for instrumenting Pipeline execution. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`zipline.pipeline.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. See Also -------- :meth:`zipline.pipeline.engine.PipelineEngine.run_pipeline` """ raise NotImplementedError("run_chunked_pipeline") class NoEngineRegistered(Exception): """ Raised if a user tries to call pipeline_output in an algorithm that hasn't set up a pipeline engine. """ class ExplodingPipelineEngine(PipelineEngine): """ A PipelineEngine that doesn't do anything. """ def run_pipeline(self, pipeline, start_date, end_date, hooks=None): raise NoEngineRegistered( "Attempted to run a pipeline but no pipeline " "resources were registered." ) def run_chunked_pipeline( self, pipeline, start_date, end_date, chunksize, hooks=None ): raise NoEngineRegistered( "Attempted to run a chunked pipeline but no pipeline " "resources were registered." ) def default_populate_initial_workspace( initial_workspace, root_mask_term, execution_plan, dates, assets ): """The default implementation for ``populate_initial_workspace``. This function returns the ``initial_workspace`` argument without making any modifications. Parameters ---------- initial_workspace : dict[array-like] The initial workspace before we have populated it with any cached terms. root_mask_term : Term The root mask term, normally ``AssetExists()``. This is needed to compute the dates for individual terms. execution_plan : ExecutionPlan The execution plan for the pipeline being run. dates : pd.DatetimeIndex All of the dates being requested in this pipeline run including the extra dates for look back windows. assets : pd.Int64Index All of the assets that exist for the window being computed. Returns ------- populated_initial_workspace : dict[term, array-like] The workspace to begin computations with. """ return initial_workspace class SimplePipelineEngine(PipelineEngine): """ PipelineEngine class that computes each term independently. Parameters ---------- get_loader : callable A function that is given a loadable term and returns a PipelineLoader to use to retrieve raw data for that term. asset_finder : zipline.assets.AssetFinder An AssetFinder instance. We depend on the AssetFinder to determine which assets are in the top-level universe at any point in time. populate_initial_workspace : callable, optional A function which will be used to populate the initial workspace when computing a pipeline. See :func:`zipline.pipeline.engine.default_populate_initial_workspace` for more info. default_hooks : list, optional List of hooks that should be used to instrument all pipelines executed by this engine. See Also -------- :func:`zipline.pipeline.engine.default_populate_initial_workspace` """ __slots__ = ( "_get_loader", "_finder", "_root_mask_term", "_root_mask_dates_term", "_populate_initial_workspace", ) @expect_types( default_domain=Domain, __funcname="SimplePipelineEngine", ) def __init__( self, get_loader, asset_finder, default_domain=GENERIC, populate_initial_workspace=None, default_hooks=None, ): self._get_loader = get_loader self._finder = asset_finder self._root_mask_term = AssetExists() self._root_mask_dates_term = InputDates() self._populate_initial_workspace = ( populate_initial_workspace or default_populate_initial_workspace ) self._default_domain = default_domain if default_hooks is None: self._default_hooks = [] else: self._default_hooks = list(default_hooks) def run_chunked_pipeline( self, pipeline, start_date, end_date, chunksize, hooks=None ): """ Compute values for ``pipeline`` from ``start_date`` to ``end_date``, in date chunks of size ``chunksize``. Chunked execution reduces memory consumption, and may reduce computation time depending on the contents of your pipeline. Parameters ---------- pipeline : Pipeline The pipeline to run. start_date : pd.Timestamp The start date to run the pipeline for. end_date : pd.Timestamp The end date to run the pipeline for. chunksize : int The number of days to execute at a time. hooks : list[implements(PipelineHooks)], optional Hooks for instrumenting Pipeline execution. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`zipline.pipeline.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. See Also -------- :meth:`zipline.pipeline.engine.PipelineEngine.run_pipeline` """ domain = self.resolve_domain(pipeline) ranges = compute_date_range_chunks( domain.all_sessions(), start_date, end_date, chunksize, ) hooks = self._resolve_hooks(hooks) run_pipeline = partial(self._run_pipeline_impl, pipeline, hooks=hooks) with hooks.running_pipeline(pipeline, start_date, end_date): chunks = [run_pipeline(s, e) for s, e in ranges] if len(chunks) == 1: # OPTIMIZATION: Don't make an extra copy in `categorical_df_concat` # if we don't have to. return chunks[0] # Filter out empty chunks. Empty dataframes lose dtype information, # which makes concatenation fail. nonempty_chunks = [c for c in chunks if len(c)] return categorical_df_concat(nonempty_chunks, inplace=True) def run_pipeline(self, pipeline, start_date, end_date, hooks=None): """ Compute values for ``pipeline`` from ``start_date`` to ``end_date``. Parameters ---------- pipeline : zipline.pipeline.Pipeline The pipeline to run. start_date : pd.Timestamp Start date of the computed matrix. end_date : pd.Timestamp End date of the computed matrix. hooks : list[implements(PipelineHooks)], optional Hooks for instrumenting Pipeline execution. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`zipline.pipeline.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. """ hooks = self._resolve_hooks(hooks) with hooks.running_pipeline(pipeline, start_date, end_date): return self._run_pipeline_impl( pipeline, start_date, end_date, hooks, ) def _run_pipeline_impl(self, pipeline, start_date, end_date, hooks): """Shared core for ``run_pipeline`` and ``run_chunked_pipeline``.""" # See notes at the top of this module for a description of the # algorithm implemented here. if end_date < start_date: raise ValueError( "start_date must be before or equal to end_date \n" "start_date=%s, end_date=%s" % (start_date, end_date) ) domain = self.resolve_domain(pipeline) plan = pipeline.to_execution_plan( domain, self._root_mask_term, start_date, end_date, ) extra_rows = plan.extra_rows[self._root_mask_term] root_mask = self._compute_root_mask( domain, start_date, end_date, extra_rows, ) dates, sids, root_mask_values = explode(root_mask) workspace = self._populate_initial_workspace( { self._root_mask_term: root_mask_values, self._root_mask_dates_term: as_column(dates.values), }, self._root_mask_term, plan, dates, sids, ) refcounts = plan.initial_refcounts(workspace) execution_order = plan.execution_order(workspace, refcounts) with hooks.computing_chunk(execution_order, start_date, end_date): results = self.compute_chunk( graph=plan, dates=dates, sids=sids, workspace=workspace, refcounts=refcounts, execution_order=execution_order, hooks=hooks, ) return self._to_narrow( plan.outputs, results, results.pop(plan.screen_name), dates[extra_rows:], sids, ) def _compute_root_mask(self, domain, start_date, end_date, extra_rows): """ Compute a lifetimes matrix from our AssetFinder, then drop columns that didn't exist at all during the query dates. Parameters ---------- domain : zipline.pipeline.domain.Domain Domain for which we're computing a pipeline. start_date : pd.Timestamp Base start date for the matrix. end_date : pd.Timestamp End date for the matrix. extra_rows : int Number of extra rows to compute before `start_date`. Extra rows are needed by terms like moving averages that require a trailing window of data. Returns ------- lifetimes : pd.DataFrame Frame of dtype `bool` containing dates from `extra_rows` days before `start_date`, continuing through to `end_date`. The returned frame contains as columns all assets in our AssetFinder that existed for at least one day between `start_date` and `end_date`. """ sessions = domain.all_sessions() if start_date not in sessions: raise ValueError( "Pipeline start date ({}) is not a trading session for " "domain {}.".format(start_date, domain) ) elif end_date not in sessions: raise ValueError( "Pipeline end date {} is not a trading session for " "domain {}.".format(end_date, domain) ) start_idx, end_idx = sessions.slice_locs(start_date, end_date) if start_idx < extra_rows: raise NoFurtherDataError.from_lookback_window( initial_message="Insufficient data to compute Pipeline:", first_date=sessions[0], lookback_start=start_date, lookback_length=extra_rows, ) # NOTE: This logic should probably be delegated to the domain once we # start adding more complex domains. # # Build lifetimes matrix reaching back to `extra_rows` days before # `start_date.` finder = self._finder lifetimes = finder.lifetimes( sessions[start_idx - extra_rows : end_idx], include_start_date=False, country_codes=(domain.country_code,), ) if not lifetimes.columns.unique: columns = lifetimes.columns duplicated = columns[columns.duplicated()].unique() raise AssertionError("Duplicated sids: %d" % duplicated) # Filter out columns that didn't exist from the farthest look back # window through the end of the requested dates. existed = lifetimes.any() ret = lifetimes.loc[:, existed] num_assets = ret.shape[1] if num_assets == 0: raise ValueError( "Failed to find any assets with country_code {!r} that traded " "between {} and {}.\n" "This probably means that your asset db is old or that it has " "incorrect country/exchange metadata.".format( domain.country_code, start_date, end_date, ) ) return ret @staticmethod def _inputs_for_term(term, workspace, graph, domain, refcounts): """ Compute inputs for the given term. This is mostly complicated by the fact that for each input we store as many rows as will be necessary to serve **any** computation requiring that input. """ offsets = graph.offset out = [] # We need to specialize here because we don't change ComputableTerm # after resolving domains, so they can still contain generic terms as # inputs. specialized = [maybe_specialize(t, domain) for t in term.inputs] if term.windowed: # If term is windowed, then all input data should be instances of # AdjustedArray. for input_ in specialized: adjusted_array = ensure_adjusted_array( workspace[input_], input_.missing_value, ) out.append( adjusted_array.traverse( window_length=term.window_length, offset=offsets[term, input_], # If the refcount for the input is > 1, we will need # to traverse this array again so we must copy. # If the refcount for the input == 0, this is the last # traversal that will happen so we can invalidate # the AdjustedArray and mutate the data in place. copy=refcounts[input_] > 1, ) ) else: # If term is not windowed, input_data may be an AdjustedArray or # np.ndarray. Coerce the former to the latter. for input_ in specialized: input_data = ensure_ndarray(workspace[input_]) offset = offsets[term, input_] input_data = input_data[offset:] if refcounts[input_] > 1: input_data = input_data.copy() out.append(input_data) return out def compute_chunk( self, graph, dates, sids, workspace, refcounts, execution_order, hooks ): """ Compute the Pipeline terms in the graph for the requested start and end dates. This is where we do the actual work of running a pipeline. Parameters ---------- graph : zipline.pipeline.graph.ExecutionPlan Dependency graph of the terms to be executed. dates : pd.DatetimeIndex Row labels for our root mask. sids : pd.Int64Index Column labels for our root mask. workspace : dict Map from term -> output. Must contain at least entry for `self._root_mask_term` whose shape is `(len(dates), len(assets))`, but may contain additional pre-computed terms for testing or optimization purposes. refcounts : dict[Term, int] Dictionary mapping terms to number of dependent terms. When a term's refcount hits 0, it can be safely discarded from ``workspace``. See TermGraph.decref_dependencies for more info. execution_order : list[Term] Order in which to execute terms. hooks : implements(PipelineHooks) Hooks to instrument pipeline execution. Returns ------- results : dict Dictionary mapping requested results to outputs. """ self._validate_compute_chunk_params(graph, dates, sids, workspace) get_loader = self._get_loader # Copy the supplied initial workspace so we don't mutate it in place. workspace = workspace.copy() domain = graph.domain # Many loaders can fetch data more efficiently if we ask them to # retrieve all their inputs at once. For example, a loader backed by a # SQL database can fetch multiple columns from the database in a single # query. # # To enable these loaders to fetch their data efficiently, we group # together requests for LoadableTerms if they are provided by the same # loader and they require the same number of extra rows. # # The extra rows condition is a simplification: we don't currently have # a mechanism for asking a loader to fetch different windows of data # for different terms, so we only batch requests together when they're # going to produce data for the same set of dates. def loader_group_key(term): loader = get_loader(term) extra_rows = graph.extra_rows[term] return loader, extra_rows # Only produce loader groups for the terms we expect to load. This # ensures that we can run pipelines for graphs where we don't have a # loader registered for an atomic term if all the dependencies of that # term were supplied in the initial workspace. will_be_loaded = graph.loadable_terms - workspace.keys() loader_groups = groupby( loader_group_key, (t for t in execution_order if t in will_be_loaded), ) for term in execution_order: # `term` may have been supplied in `initial_workspace`, or we may # have loaded `term` as part of a batch with another term coming # from the same loader (see note on loader_group_key above). In # either case, we already have the term computed, so don't # recompute. if term in workspace: continue # Asset labels are always the same, but date labels vary by how # many extra rows are needed. mask, mask_dates = graph.mask_and_dates_for_term( term, self._root_mask_term, workspace, dates, ) if isinstance(term, LoadableTerm): loader = get_loader(term) to_load = sorted( loader_groups[loader_group_key(term)], key=lambda t: t.dataset ) self._ensure_can_load(loader, to_load) with hooks.loading_terms(to_load): loaded = loader.load_adjusted_array( domain, to_load, mask_dates, sids, mask, ) assert set(loaded) == set(to_load), ( "loader did not return an AdjustedArray for each column\n" "expected: %r\n" "got: %r" % ( sorted(to_load, key=repr), sorted(loaded, key=repr), ) ) workspace.update(loaded) else: with hooks.computing_term(term): workspace[term] = term._compute( self._inputs_for_term( term, workspace, graph, domain, refcounts, ), mask_dates, sids, mask, ) if term.ndim == 2: assert workspace[term].shape == mask.shape else: assert workspace[term].shape == (mask.shape[0], 1) # Decref dependencies of ``term``, and clear any terms # whose refcounts hit 0. for garbage in graph.decref_dependencies(term, refcounts): del workspace[garbage] # At this point, all the output terms are in the workspace. out = {} graph_extra_rows = graph.extra_rows for name, term in graph.outputs.items(): # Truncate off extra rows from outputs. out[name] = workspace[term][graph_extra_rows[term] :] return out def _to_narrow(self, terms, data, mask, dates, assets): """ Convert raw computed pipeline results into a DataFrame for public APIs. Parameters ---------- terms : dict[str -> Term] Dict mapping column names to terms. data : dict[str -> ndarray[ndim=2]] Dict mapping column names to computed results for those names. mask : ndarray[bool, ndim=2] Mask array of values to keep. dates : ndarray[datetime64, ndim=1] Row index for arrays `data` and `mask` assets : ndarray[int64, ndim=2] Column index for arrays `data` and `mask` Returns ------- results : pd.DataFrame The indices of `results` are as follows: index : two-tiered MultiIndex of (date, asset). Contains an entry for each (date, asset) pair corresponding to a `True` value in `mask`. columns : Index of str One column per entry in `data`. If mask[date, asset] is True, then result.loc[(date, asset), colname] will contain the value of data[colname][date, asset]. """ if not mask.any(): # Manually handle the empty DataFrame case. This is a workaround # to pandas failing to tz_localize an empty dataframe with a # MultiIndex. It also saves us the work of applying a known-empty # mask to each array. # # Slicing `dates` here to preserve pandas metadata. empty_dates = dates[:0] empty_assets = array([], dtype=object) return DataFrame( data={name: array([], dtype=arr.dtype) for name, arr in data.items()}, index=MultiIndex.from_arrays([empty_dates, empty_assets]), ) final_columns = {} for name in data: # Each term that computed an output has its postprocess method # called on the filtered result. # # Using this to convert np.records to tuples final_columns[name] = terms[name].postprocess(data[name][mask]) resolved_assets = array(self._finder.retrieve_all(assets)) index = _pipeline_output_index(dates, resolved_assets, mask) return DataFrame(data=final_columns, index=index) def _validate_compute_chunk_params(self, graph, dates, sids, initial_workspace): """ Verify that the values passed to compute_chunk are well-formed. """ root = self._root_mask_term clsname = type(self).__name__ # Writing this out explicitly so this errors in testing if we change # the name without updating this line. compute_chunk_name = self.compute_chunk.__name__ if root not in initial_workspace: raise AssertionError( "root_mask values not supplied to {cls}.{method}".format( cls=clsname, method=compute_chunk_name, ) ) shape = initial_workspace[root].shape implied_shape = len(dates), len(sids) if shape != implied_shape: raise AssertionError( "root_mask shape is {shape}, but received dates/assets " "imply that shape should be {implied}".format( shape=shape, implied=implied_shape, ) ) for term in initial_workspace: if self._is_special_root_term(term): continue if term.domain is GENERIC: # XXX: We really shouldn't allow **any** generic terms to be # populated in the initial workspace. A generic term, by # definition, can't correspond to concrete data until it's # paired with a domain, and populate_initial_workspace isn't # given the domain of execution, so it can't possibly know what # data to use when populating a generic term. # # In our current implementation, however, we don't have a good # way to represent specializations of ComputableTerms that take # only generic inputs, so there's no good way for the initial # workspace to provide data for such terms except by populating # the generic ComputableTerm. # # The right fix for the above is to implement "full # specialization", i.e., implementing ``specialize`` uniformly # across all terms, not just LoadableTerms. Having full # specialization will also remove the need for all of the # remaining ``maybe_specialize`` calls floating around in this # file. # # In the meantime, disallowing ComputableTerms in the initial # workspace would break almost every test in # `test_filter`/`test_factor`/`test_classifier`, and fixing # them would require updating all those tests to compute with # more specialized terms. Once we have full specialization, we # can fix all the tests without a large volume of edits by # simply specializing their workspaces, so for now I'm leaving # this in place as a somewhat sharp edge. if isinstance(term, LoadableTerm): raise ValueError( "Loadable workspace terms must be specialized to a " "domain, but got generic term {}".format(term) ) elif term.domain != graph.domain: raise ValueError( "Initial workspace term {} has domain {}. " "Does not match pipeline domain {}".format( term, term.domain, graph.domain, ) ) def resolve_domain(self, pipeline): """Resolve a concrete domain for ``pipeline``.""" domain = pipeline.domain(default=self._default_domain) if domain is GENERIC: raise ValueError( "Unable to determine domain for Pipeline.\n" "Pass domain=<desired domain> to your Pipeline to set a " "domain." ) return domain def _is_special_root_term(self, term): return term is self._root_mask_term or term is self._root_mask_dates_term def _resolve_hooks(self, hooks): if hooks is None: hooks = [] return DelegatingHooks(self._default_hooks + hooks) def _ensure_can_load(self, loader, terms): """Ensure that ``loader`` can load ``terms``.""" if not loader.currency_aware: bad = [t for t in terms if t.currency_conversion is not None] if bad: raise ValueError( "Requested currency conversion is not supported for the " "following terms:\n{}".format(bulleted_list(bad)) ) def _pipeline_output_index(dates, assets, mask): """ Create a MultiIndex for a pipeline output. Parameters ---------- dates : pd.DatetimeIndex Row labels for ``mask``. assets : pd.Index Column labels for ``mask``. mask : np.ndarray[bool] Mask array indicating date/asset pairs that should be included in output index. Returns ------- index : pd.MultiIndex MultiIndex containing (date, asset) pairs corresponding to ``True`` values in ``mask``. """ date_labels = repeat_last_axis(arange(len(dates)), len(assets))[mask] asset_labels = repeat_first_axis(arange(len(assets)), len(dates))[mask] return MultiIndex( [dates, assets], [date_labels, asset_labels], # TODO: We should probably add names for these. names=[None, None], verify_integrity=False, )
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/engine.py
engine.py
from abc import ABCMeta, abstractproperty, abstractmethod from bisect import insort from collections.abc import Mapping from weakref import WeakValueDictionary from numpy import ( array, record, dtype as dtype_class, ndarray, ) from zipline.assets import Asset from zipline.errors import ( DTypeNotSpecified, InvalidOutputName, NonSliceableTerm, NonWindowSafeInput, NotDType, NonPipelineInputs, TermInputsNotSpecified, TermOutputsEmpty, UnsupportedDType, WindowLengthNotSpecified, ) from zipline.lib.adjusted_array import can_represent_dtype from zipline.lib.labelarray import LabelArray from zipline.utils.input_validation import expect_types from zipline.utils.memoize import classlazyval, lazyval from zipline.utils.numpy_utils import ( bool_dtype, categorical_dtype, datetime64ns_dtype, default_missing_value_for_dtype, float64_dtype, ) from zipline.utils.sharedoc import ( templated_docstring, PIPELINE_ALIAS_NAME_DOC, PIPELINE_DOWNSAMPLING_FREQUENCY_DOC, ) from .domain import Domain, GENERIC, infer_domain from .downsample_helpers import expect_downsample_frequency from .sentinels import NotSpecified class Term(object, metaclass=ABCMeta): """ Base class for objects that can appear in the compute graph of a :class:`zipline.pipeline.Pipeline`. Notes ----- Most Pipeline API users only interact with :class:`Term` via subclasses: - :class:`~zipline.pipeline.data.BoundColumn` - :class:`~zipline.pipeline.Factor` - :class:`~zipline.pipeline.Filter` - :class:`~zipline.pipeline.Classifier` Instances of :class:`Term` are **memoized**. If you call a Term's constructor with the same arguments twice, the same object will be returned from both calls: **Example:** >>> from zipline.pipeline.data import EquityPricing >>> from zipline.pipeline.factors import SimpleMovingAverage >>> x = SimpleMovingAverage(inputs=[EquityPricing.close], window_length=5) >>> y = SimpleMovingAverage(inputs=[EquityPricing.close], window_length=5) >>> x is y True .. warning:: Memoization of terms means that it's generally unsafe to modify attributes of a term after construction. """ # These are NotSpecified because a subclass is required to provide them. dtype = NotSpecified missing_value = NotSpecified # Subclasses aren't required to provide `params`. The default behavior is # no params. params = () # All terms are generic by default. domain = GENERIC # Determines if a term is safe to be used as a windowed input. window_safe = False # The dimensions of the term's output (1D or 2D). ndim = 2 _term_cache = WeakValueDictionary() def __new__( cls, domain=NotSpecified, dtype=NotSpecified, missing_value=NotSpecified, window_safe=NotSpecified, ndim=NotSpecified, # params is explicitly not allowed to be passed to an instance. *args, **kwargs, ): """ Memoized constructor for Terms. Caching previously-constructed Terms is useful because it allows us to only compute equivalent sub-expressions once when traversing a Pipeline dependency graph. Caching previously-constructed Terms is **sane** because terms and their inputs are both conceptually immutable. """ # Subclasses can override these class-level attributes to provide # different default values for instances. if domain is NotSpecified: domain = cls.domain if dtype is NotSpecified: dtype = cls.dtype if missing_value is NotSpecified: missing_value = cls.missing_value if ndim is NotSpecified: ndim = cls.ndim if window_safe is NotSpecified: window_safe = cls.window_safe dtype, missing_value = validate_dtype( cls.__name__, dtype, missing_value, ) params = cls._pop_params(kwargs) identity = cls._static_identity( domain=domain, dtype=dtype, missing_value=missing_value, window_safe=window_safe, ndim=ndim, params=params, *args, **kwargs, ) try: return cls._term_cache[identity] except KeyError: new_instance = cls._term_cache[identity] = ( super(Term, cls) .__new__(cls) ._init( domain=domain, dtype=dtype, missing_value=missing_value, window_safe=window_safe, ndim=ndim, params=params, *args, **kwargs, ) ) return new_instance @classmethod def _pop_params(cls, kwargs): """ Pop entries from the `kwargs` passed to cls.__new__ based on the values in `cls.params`. Parameters ---------- kwargs : dict The kwargs passed to cls.__new__. Returns ------- params : list[(str, object)] A list of string, value pairs containing the entries in cls.params. Raises ------ TypeError Raised if any parameter values are not passed or not hashable. """ params = cls.params if not isinstance(params, Mapping): params = {k: NotSpecified for k in params} param_values = [] for key, default_value in params.items(): try: value = kwargs.pop(key, default_value) if value is NotSpecified: raise KeyError(key) # Check here that the value is hashable so that we fail here # instead of trying to hash the param values tuple later. hash(value) except KeyError: raise TypeError( "{typename} expected a keyword parameter {name!r}.".format( typename=cls.__name__, name=key ) ) except TypeError: # Value wasn't hashable. raise TypeError( "{typename} expected a hashable value for parameter " "{name!r}, but got {value!r} instead.".format( typename=cls.__name__, name=key, value=value, ) ) param_values.append((key, value)) return tuple(param_values) def __init__(self, *args, **kwargs): """ Noop constructor to play nicely with our caching __new__. Subclasses should implement _init instead of this method. When a class' __new__ returns an instance of that class, Python will automatically call __init__ on the object, even if a new object wasn't actually constructed. Because we memoize instances, we often return an object that was already initialized from __new__, in which case we don't want to call __init__ again. Subclasses that need to initialize new instances should override _init, which is guaranteed to be called only once. """ pass @expect_types(key=Asset) def __getitem__(self, key): if isinstance(self, LoadableTerm): raise NonSliceableTerm(term=self) from .mixins import SliceMixin slice_type = type(self)._with_mixin(SliceMixin) return slice_type(self, key) @classmethod def _static_identity(cls, domain, dtype, missing_value, window_safe, ndim, params): """ Return the identity of the Term that would be constructed from the given arguments. Identities that compare equal will cause us to return a cached instance rather than constructing a new one. We do this primarily because it makes dependency resolution easier. This is a classmethod so that it can be called from Term.__new__ to determine whether to produce a new instance. """ return (cls, domain, dtype, missing_value, window_safe, ndim, params) def _init(self, domain, dtype, missing_value, window_safe, ndim, params): """ Parameters ---------- domain : zipline.pipeline.domain.Domain The domain of this term. dtype : np.dtype Dtype of this term's output. missing_value : object Missing value for this term. ndim : 1 or 2 The dimensionality of this term. params : tuple[(str, hashable)] Tuple of key/value pairs of additional parameters. """ self.domain = domain self.dtype = dtype self.missing_value = missing_value self.window_safe = window_safe self.ndim = ndim for name, value in params: if hasattr(self, name): raise TypeError( "Parameter {name!r} conflicts with already-present" " attribute with value {value!r}.".format( name=name, value=getattr(self, name), ) ) # TODO: Consider setting these values as attributes and replacing # the boilerplate in NumericalExpression, Rank, and # PercentileFilter. self.params = dict(params) # Make sure that subclasses call super() in their _validate() methods # by setting this flag. The base class implementation of _validate # should set this flag to True. self._subclass_called_super_validate = False self._validate() assert self._subclass_called_super_validate, ( "Term._validate() was not called.\n" "This probably means that you overrode _validate" " without calling super()." ) del self._subclass_called_super_validate return self def _validate(self): """ Assert that this term is well-formed. This should be called exactly once, at the end of Term._init(). """ # mark that we got here to enforce that subclasses overriding _validate # call super(). self._subclass_called_super_validate = True def compute_extra_rows(self, all_dates, start_date, end_date, min_extra_rows): """ Calculate the number of extra rows needed to compute ``self``. Must return at least ``min_extra_rows``, and the default implementation is to just return ``min_extra_rows``. This is overridden by downsampled terms to ensure that the first date computed is a recomputation date. Parameters ---------- all_dates : pd.DatetimeIndex The trading sessions against which ``self`` will be computed. start_date : pd.Timestamp The first date for which final output is requested. end_date : pd.Timestamp The last date for which final output is requested. min_extra_rows : int The minimum number of extra rows required of ``self``, as determined by other terms that depend on ``self``. Returns ------- extra_rows : int The number of extra rows to compute. Must be at least ``min_extra_rows``. """ return min_extra_rows @abstractproperty def inputs(self): """ A tuple of other Terms needed as inputs for ``self``. """ raise NotImplementedError("inputs") @abstractproperty def windowed(self): """ Boolean indicating whether this term is a trailing-window computation. """ raise NotImplementedError("windowed") @abstractproperty def mask(self): """ A :class:`~zipline.pipeline.Filter` representing asset/date pairs to while computing this Term. True means include; False means exclude. """ raise NotImplementedError("mask") @abstractproperty def dependencies(self): """ A dictionary mapping terms that must be computed before `self` to the number of extra rows needed for those terms. """ raise NotImplementedError("dependencies") def graph_repr(self): """A short repr to use when rendering GraphViz graphs.""" # Default graph_repr is just the name of the type. return type(self).__name__ def recursive_repr(self): """A short repr to use when recursively rendering terms with inputs.""" # Default recursive_repr is just the name of the type. return type(self).__name__ class AssetExists(Term): """ Pseudo-filter describing whether or not an asset existed on a given day. This is the default mask for all terms that haven't been passed a mask explicitly. This is morally a Filter, in the sense that it produces a boolean value for every asset on every date. We don't subclass Filter, however, because `AssetExists` is computed directly by the PipelineEngine. This term is guaranteed to be available as an input for any term computed by SimplePipelineEngine.run_pipeline(). See Also -------- zipline.assets.AssetFinder.lifetimes """ dtype = bool_dtype dataset = None inputs = () dependencies = {} mask = None windowed = False def __repr__(self): return "AssetExists()" graph_repr = __repr__ def _compute(self, today, assets, out): raise NotImplementedError( "AssetExists cannot be computed directly." " Check your PipelineEngine configuration." ) class InputDates(Term): """ 1-Dimensional term providing date labels for other term inputs. This term is guaranteed to be available as an input for any term computed by SimplePipelineEngine.run_pipeline(). """ ndim = 1 dataset = None dtype = datetime64ns_dtype inputs = () dependencies = {} mask = None windowed = False window_safe = True def __repr__(self): return "InputDates()" graph_repr = __repr__ def _compute(self, today, assets, out): raise NotImplementedError( "InputDates cannot be computed directly." " Check your PipelineEngine configuration." ) class LoadableTerm(Term): """ A Term that should be loaded from an external resource by a PipelineLoader. This is the base class for :class:`zipline.pipeline.data.BoundColumn`. """ windowed = False inputs = () @lazyval def dependencies(self): return {self.mask: 0} class ComputableTerm(Term): """ A Term that should be computed from a tuple of inputs. This is the base class for :class:`zipline.pipeline.Factor`, :class:`zipline.pipeline.Filter`, and :class:`zipline.pipeline.Classifier`. """ inputs = NotSpecified outputs = NotSpecified window_length = NotSpecified mask = NotSpecified domain = NotSpecified def __new__( cls, inputs=inputs, outputs=outputs, window_length=window_length, mask=mask, domain=domain, *args, **kwargs, ): if inputs is NotSpecified: inputs = cls.inputs # Having inputs = NotSpecified is an error, but we handle it later # in self._validate rather than here. if inputs is not NotSpecified: # Allow users to specify lists as class-level defaults, but # normalize to a tuple so that inputs is hashable. inputs = tuple(inputs) # Make sure all our inputs are valid pipeline objects before trying # to infer a domain. non_terms = [t for t in inputs if not isinstance(t, Term)] if non_terms: raise NonPipelineInputs(cls.__name__, non_terms) if domain is NotSpecified: domain = infer_domain(inputs) if outputs is NotSpecified: outputs = cls.outputs if outputs is not NotSpecified: outputs = tuple(outputs) if mask is NotSpecified: mask = cls.mask if mask is NotSpecified: mask = AssetExists() if window_length is NotSpecified: window_length = cls.window_length return super(ComputableTerm, cls).__new__( cls, inputs=inputs, outputs=outputs, mask=mask, window_length=window_length, domain=domain, *args, **kwargs, ) def _init(self, inputs, outputs, window_length, mask, *args, **kwargs): self.inputs = inputs self.outputs = outputs self.window_length = window_length self.mask = mask return super(ComputableTerm, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, inputs, outputs, window_length, mask, *args, **kwargs): return ( super(ComputableTerm, cls)._static_identity(*args, **kwargs), inputs, outputs, window_length, mask, ) def _validate(self): super(ComputableTerm, self)._validate() # Check inputs. if self.inputs is NotSpecified: raise TermInputsNotSpecified(termname=type(self).__name__) if not isinstance(self.domain, Domain): raise TypeError( "Expected {}.domain to be an instance of Domain, " "but got {}.".format(type(self).__name__, type(self.domain)) ) # Check outputs. if self.outputs is NotSpecified: pass elif not self.outputs: raise TermOutputsEmpty(termname=type(self).__name__) else: # Raise an exception if there are any naming conflicts between the # term's output names and certain attributes. disallowed_names = [ attr for attr in dir(ComputableTerm) if not attr.startswith("_") ] # The name 'compute' is an added special case that is disallowed. # Use insort to add it to the list in alphabetical order. insort(disallowed_names, "compute") for output in self.outputs: if output.startswith("_") or output in disallowed_names: raise InvalidOutputName( output_name=output, termname=type(self).__name__, disallowed_names=disallowed_names, ) if self.window_length is NotSpecified: raise WindowLengthNotSpecified(termname=type(self).__name__) if self.mask is NotSpecified: # This isn't user error, this is a bug in our code. raise AssertionError("{term} has no mask".format(term=self)) if self.window_length > 1: for child in self.inputs: if not child.window_safe: raise NonWindowSafeInput(parent=self, child=child) def _compute(self, inputs, dates, assets, mask): """ Subclasses should implement this to perform actual computation. This is named ``_compute`` rather than just ``compute`` because ``compute`` is reserved for user-supplied functions in CustomFilter/CustomFactor/CustomClassifier. """ raise NotImplementedError("_compute") # NOTE: This is a method rather than a property because ABCMeta tries to # access all abstract attributes of its child classes to see if # they've been implemented. These accesses happen during subclass # creation, before the new subclass has been bound to a name in its # defining scope. Filter, Factor, and Classifier each implement this # method to return themselves, but if the method is invoked before # class definition is finished (which happens if this is a property), # they fail with a NameError. @classmethod @abstractmethod def _principal_computable_term_type(cls): """ Return the "principal" type for a ComputableTerm. This returns either Filter, Factor, or Classifier, depending on the type of ``cls``. It is used to implement behaviors like ``downsample`` and ``if_then_else`` that are implemented on all ComputableTerms, but that need to produce different output types depending on the type of the receiver. """ raise NotImplementedError("_principal_computable_term_type") @lazyval def windowed(self): """ Whether or not this term represents a trailing window computation. If term.windowed is truthy, its compute_from_windows method will be called with instances of AdjustedArray as inputs. If term.windowed is falsey, its compute_from_baseline will be called with instances of np.ndarray as inputs. """ return self.window_length is not NotSpecified and self.window_length > 0 @lazyval def dependencies(self): """ The number of extra rows needed for each of our inputs to compute this term. """ extra_input_rows = max(0, self.window_length - 1) out = {} for term in self.inputs: out[term] = extra_input_rows out[self.mask] = 0 return out @expect_types(data=ndarray) def postprocess(self, data): """ Called with an result of ``self``, unravelled (i.e. 1-dimensional) after any user-defined screens have been applied. This is mostly useful for transforming the dtype of an output, e.g., to convert a LabelArray into a pandas Categorical. The default implementation is to just return data unchanged. """ # starting with pandas 1.4, record arrays are no longer supported as DataFrame columns if isinstance(data[0], record): return [tuple(r) for r in data] return data def to_workspace_value(self, result, assets): """ Called with a column of the result of a pipeline. This needs to put the data into a format that can be used in a workspace to continue doing computations. Parameters ---------- result : pd.Series A multiindexed series with (dates, assets) whose values are the results of running this pipeline term over the dates. assets : pd.Index All of the assets being requested. This allows us to correctly shape the workspace value. Returns ------- workspace_value : array-like An array like value that the engine can consume. """ return ( result.unstack() .fillna(self.missing_value) .reindex(columns=assets, fill_value=self.missing_value) .values ) @expect_downsample_frequency @templated_docstring(frequency=PIPELINE_DOWNSAMPLING_FREQUENCY_DOC) def downsample(self, frequency): """ Make a term that computes from ``self`` at lower-than-daily frequency. Parameters ---------- {frequency} """ from .mixins import DownsampledMixin downsampled_type = type(self)._with_mixin(DownsampledMixin) return downsampled_type(term=self, frequency=frequency) @templated_docstring(name=PIPELINE_ALIAS_NAME_DOC) def alias(self, name): """ Make a term from ``self`` that names the expression. Parameters ---------- {name} Returns ------- aliased : Aliased ``self`` with a name. Notes ----- This is useful for giving a name to a numerical or boolean expression. """ from .mixins import AliasedMixin aliased_type = type(self)._with_mixin(AliasedMixin) return aliased_type(term=self, name=name) def isnull(self): """ A Filter producing True for values where this Factor has missing data. Equivalent to self.isnan() when ``self.dtype`` is float64. Otherwise equivalent to ``self.eq(self.missing_value)``. Returns ------- filter : zipline.pipeline.Filter """ if self.dtype == bool_dtype: raise TypeError("isnull() is not supported for Filters") from .filters import NullFilter if self.dtype == float64_dtype: # Using isnan is more efficient when possible because we can fold # the isnan computation with other NumExpr expressions. return self.isnan() else: return NullFilter(self) def notnull(self): """ A Filter producing True for values where this Factor has complete data. Equivalent to ``~self.isnan()` when ``self.dtype`` is float64. Otherwise equivalent to ``(self != self.missing_value)``. Returns ------- filter : zipline.pipeline.Filter """ if self.dtype == bool_dtype: raise TypeError("notnull() is not supported for Filters") from .filters import NotNullFilter return NotNullFilter(self) def fillna(self, fill_value): """ Create a new term that fills missing values of this term's output with ``fill_value``. Parameters ---------- fill_value : zipline.pipeline.ComputableTerm, or object. Object to use as replacement for missing values. If a ComputableTerm (e.g. a Factor) is passed, that term's results will be used as fill values. If a scalar (e.g. a number) is passed, the scalar will be used as a fill value. Examples -------- **Filling with a Scalar:** Let ``f`` be a Factor which would produce the following output:: AAPL MSFT MCD BK 2017-03-13 1.0 NaN 3.0 4.0 2017-03-14 1.5 2.5 NaN NaN Then ``f.fillna(0)`` produces the following output:: AAPL MSFT MCD BK 2017-03-13 1.0 0.0 3.0 4.0 2017-03-14 1.5 2.5 0.0 0.0 **Filling with a Term:** Let ``f`` be as above, and let ``g`` be another Factor which would produce the following output:: AAPL MSFT MCD BK 2017-03-13 10.0 20.0 30.0 40.0 2017-03-14 15.0 25.0 35.0 45.0 Then, ``f.fillna(g)`` produces the following output:: AAPL MSFT MCD BK 2017-03-13 1.0 20.0 3.0 4.0 2017-03-14 1.5 2.5 35.0 45.0 Returns ------- filled : zipline.pipeline.ComputableTerm A term computing the same results as ``self``, but with missing values filled in using values from ``fill_value``. """ if self.dtype == bool_dtype: raise TypeError("fillna() is not supported for Filters") if isinstance(fill_value, LoadableTerm): raise TypeError( "Can't use expression {} as a fill value. Did you mean to " "append '.latest?'".format(fill_value) ) elif isinstance(fill_value, ComputableTerm): if_false = fill_value else: # Assume we got a scalar value. Make sure it's compatible with our # dtype. try: fill_value = _coerce_to_dtype(fill_value, self.dtype) except TypeError as e: raise TypeError( "Fill value {value!r} is not a valid choice " "for term {termname} with dtype {dtype}.\n\n" "Coercion attempt failed with: {error}".format( termname=type(self).__name__, value=fill_value, dtype=self.dtype, error=e, ) ) if_false = self._constant_type( const=fill_value, dtype=self.dtype, missing_value=self.missing_value, ) return self.notnull().if_else(if_true=self, if_false=if_false) @classlazyval def _constant_type(cls): from .mixins import ConstantMixin return cls._with_mixin(ConstantMixin) @classlazyval def _if_else_type(cls): from .mixins import IfElseMixin return cls._with_mixin(IfElseMixin) def __repr__(self): return ("{type}([{inputs}], {window_length})").format( type=type(self).__name__, inputs=", ".join(i.recursive_repr() for i in self.inputs), window_length=self.window_length, ) def recursive_repr(self): return type(self).__name__ + "(...)" @classmethod def _with_mixin(cls, mixin_type): return mixin_type.universal_mixin_specialization( cls._principal_computable_term_type(), ) def validate_dtype(termname, dtype, missing_value): """ Validate a `dtype` and `missing_value` passed to Term.__new__. Ensures that we know how to represent ``dtype``, and that missing_value is specified for types without default missing values. Returns ------- validated_dtype, validated_missing_value : np.dtype, any The dtype and missing_value to use for the new term. Raises ------ DTypeNotSpecified When no dtype was passed to the instance, and the class doesn't provide a default. NotDType When either the class or the instance provides a value not coercible to a numpy dtype. NoDefaultMissingValue When dtype requires an explicit missing_value, but ``missing_value`` is NotSpecified. """ if dtype is NotSpecified: raise DTypeNotSpecified(termname=termname) try: dtype = dtype_class(dtype) except TypeError: raise NotDType(dtype=dtype, termname=termname) if not can_represent_dtype(dtype): raise UnsupportedDType(dtype=dtype, termname=termname) if missing_value is NotSpecified: missing_value = default_missing_value_for_dtype(dtype) try: _coerce_to_dtype(missing_value, dtype) except TypeError as e: raise TypeError( "Missing value {value!r} is not a valid choice " "for term {termname} with dtype {dtype}.\n\n" "Coercion attempt failed with: {error}".format( termname=termname, value=missing_value, dtype=dtype, error=e, ) ) return dtype, missing_value def _assert_valid_categorical_missing_value(value): """ Check that value is a valid categorical missing_value. Raises a TypeError if the value is cannot be used as the missing_value for a categorical_dtype Term. """ label_types = LabelArray.SUPPORTED_SCALAR_TYPES if not isinstance(value, label_types): raise TypeError( "String-dtype classifiers can only produce {types}.".format( types=" or ".join([t.__name__ for t in label_types]) ) ) def _coerce_to_dtype(value, dtype): if dtype == categorical_dtype: # This check is necessary because we use object dtype for # categoricals, and numpy will allow us to promote numerical # values to object even though we don't support them. _assert_valid_categorical_missing_value(value) return value else: # For any other type, cast using the same rules as numpy's astype # function with casting='same_kind'. # # 'same_kind' allows casting between things like float32 and float64, # but not between str and int. Note that the name is somewhat # misleading, since it does allow conversion between different dtype # kinds in some cases. In particular, conversion from int to float is # allowed. return array([value]).astype(dtype=dtype, casting="same_kind")[0]
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/term.py
term.py
from interface import implements from zipline.utils.compat import ExitStack, contextmanager, wraps from .iface import PipelineHooks, PIPELINE_HOOKS_CONTEXT_MANAGERS from .no import NoHooks def delegating_hooks_method(method_name): """Factory function for making DelegatingHooks methods.""" if method_name in PIPELINE_HOOKS_CONTEXT_MANAGERS: # Generate a contextmanager that enters the context of all child hooks. @wraps(getattr(PipelineHooks, method_name)) @contextmanager def ctx(self, *args, **kwargs): with ExitStack() as stack: for hook in self._hooks: sub_ctx = getattr(hook, method_name)(*args, **kwargs) stack.enter_context(sub_ctx) yield stack return ctx else: # Generate a method that calls methods of all child hooks. @wraps(getattr(PipelineHooks, method_name)) def method(self, *args, **kwargs): for hook in self._hooks: sub_method = getattr(hook, method_name) sub_method(*args, **kwargs) return method class DelegatingHooks(implements(PipelineHooks)): """A PipelineHooks that delegates to one or more other hooks. Parameters ---------- hooks : list[implements(PipelineHooks)] Sequence of hooks to delegate to. """ def __new__(cls, hooks): if len(hooks) == 0: # OPTIMIZATION: Short-circuit to a NoHooks if we don't have any # sub-hooks. return NoHooks() elif len(hooks) == 1: # OPTIMIZATION: Unwrap delegation layer if we only have one # sub-hook. return hooks[0] else: self = super(DelegatingHooks, cls).__new__(cls) self._hooks = hooks return self # Implement all interface methods by delegating to corresponding methods on # input hooks. locals().update( { name: delegating_hooks_method(name) # TODO: Expose this publicly on interface. for name in PipelineHooks._signatures } ) del delegating_hooks_method
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/hooks/delegate.py
delegate.py
from collections import namedtuple import time from interface import implements from zipline.utils.compat import contextmanager, escape_html from zipline.utils.string_formatting import bulleted_list from .iface import PipelineHooks class ProgressHooks(implements(PipelineHooks)): """ Hooks implementation for displaying progress. Parameters ---------- publisher_factory : callable Function producing a new object with a ``publish()`` method that takes a ``ProgressModel`` and publishes progress to a consumer. """ def __init__(self, publisher_factory): self._publisher_factory = publisher_factory self._reset_transient_state() def _reset_transient_state(self): self._start_date = None self._end_date = None self._model = None self._publisher = None @classmethod def with_widget_publisher(cls): """ Construct a ProgressHooks that publishes to Jupyter via ``IPython.display``. """ return cls(publisher_factory=IPythonWidgetProgressPublisher) @classmethod def with_static_publisher(cls, publisher): """Construct a ProgressHooks that uses an already-constructed publisher.""" return cls(publisher_factory=lambda: publisher) def _publish(self): self._publisher.publish(self._model) @contextmanager def running_pipeline(self, pipeline, start_date, end_date): self._start_date = start_date self._end_date = end_date try: yield except Exception: if self._model is None: # This will only happen if an error happens in the Pipeline # Engine beteween entering `running_pipeline` and the first # `computing_chunk` call. If that happens, just propagate the # exception. raise self._model.finish(success=False) self._publish() raise else: self._model.finish(success=True) self._publish() finally: self._reset_transient_state() @contextmanager def computing_chunk(self, terms, start_date, end_date): # Set up model on first compute_chunk call. if self._model is None: self._publisher = self._publisher_factory() self._model = ProgressModel( start_date=self._start_date, end_date=self._end_date, ) try: self._model.start_chunk(terms, start_date, end_date) self._publish() yield finally: self._model.finish_chunk(terms, start_date, end_date) self._publish() @contextmanager def loading_terms(self, terms): try: self._model.start_load_terms(terms) self._publish() yield finally: self._model.finish_load_terms(terms) self._publish() @contextmanager def computing_term(self, term): try: self._model.start_compute_term(term) self._publish() yield finally: self._model.finish_compute_term(term) self._publish() class ProgressModel(object): """ Model object for tracking progress of a Pipeline execution. Parameters ---------- nterms : int Number of terms in the execution plan of the Pipeline being run. start_date : pd.Timestamp Start date of the range over which ``plan`` will be computed. end_date : pd.Timestamp End date of the range over which ``plan`` will be computed. Methods ------- start_chunk(start_date, end_date) finish_chunk(start_date, end_date) load_precomputed_terms(terms) start_load_terms(terms) finish_load_terms(terms) start_compute_term(term) finish_compute_term(term) finish(success) Attributes ---------- state : {'init', 'loading', 'computing', 'error', 'success'} Current state of the execution. percent_complete : float Percent of execution that has been completed, on a scale from 0 to 100. execution_time : float Number of seconds that the execution required. Only available if state is 'error' or 'success'. execution_bounds : (pd.Timestamp, pd.Timestamp) Pair of (start_date, end_date) for the entire execution. current_chunk_bounds : (pd.Timestamp, pd.Timestamp) Pair of (start_date, end_date) for the currently executing chunk. current_work : [zipline.pipeline.Term] List of terms currently being loaded or computed. """ def __init__(self, start_date, end_date): self._start_date = start_date self._end_date = end_date # +1 to be inclusive of end_date. self._total_days = (end_date - start_date).days + 1 self._progress = 0.0 self._days_completed = 0 self._state = "init" # Number of days in current chunk. self._current_chunk_size = None # (start_date, end_date) of current chunk. self._current_chunk_bounds = None # How much should we increment progress by after completing a term? self._completed_term_increment = None # How much should we increment progress by after completing a chunk? # This is zero unless we compute a pipeline with no terms, in which # case it will be the full chunk percentage. self._completed_chunk_increment = None # Terms currently being computed. self._current_work = None # Tracking state for total elapsed time. self._start_time = time.time() self._end_time = None # These properties form the interface for Publishers. @property def state(self): return self._state @property def percent_complete(self): return round(self._progress * 100.0, 3) @property def execution_time(self): if self._end_time is None: raise ValueError("Can't get execution_time until execution is complete.") return self._end_time - self._start_time @property def execution_bounds(self): return (self._start_date, self._end_date) @property def current_chunk_bounds(self): return self._current_chunk_bounds @property def current_work(self): return self._current_work # These methods form the interface for ProgressHooks. def start_chunk(self, terms, start_date, end_date): days_since_start = (end_date - self._start_date).days + 1 self._current_chunk_size = days_since_start - self._days_completed self._current_chunk_bounds = (start_date, end_date) # What percent of our overall progress will happen in this chunk? chunk_percent = float(self._current_chunk_size) / self._total_days # How much of that is associated with each completed term? nterms = len(terms) if nterms: self._completed_term_increment = chunk_percent / len(terms) self._completed_chunk_increment = 0.0 else: # Special case. If we don't have any terms, increment the entire # chunk's worth of progress when we finish the chunk. self._completed_term_increment = 0.0 self._completed_chunk_increment = chunk_percent def finish_chunk(self, terms, start_date, end_date): self._days_completed += self._current_chunk_size self._progress += self._completed_chunk_increment def start_load_terms(self, terms): self._state = "loading" self._current_work = terms def finish_load_terms(self, terms): self._finish_terms(nterms=len(terms)) def start_compute_term(self, term): self._state = "computing" self._current_work = [term] def finish_compute_term(self, term): self._finish_terms(nterms=1) def finish(self, success): self._end_time = time.time() if success: self._state = "success" else: self._state = "error" def _finish_terms(self, nterms): self._progress += nterms * self._completed_term_increment try: import ipywidgets HAVE_WIDGETS = True # This VBox subclass exists to work around a strange display issue but # where the repr of the progress bar sometimes gets re-displayed upon # re-opening the notebook, even after the bar has closed. The repr of VBox # is somewhat noisy, so we replace it here with a version that just returns # an empty string. class ProgressBarContainer(ipywidgets.VBox): def __repr__(self): return "" except ImportError: HAVE_WIDGETS = False try: from IPython.display import display, HTML as IPython_HTML HAVE_IPYTHON = True except ImportError: HAVE_IPYTHON = False # XXX: This class is currently untested, because we don't require ipywidgets as # a test dependency. Be careful if you make changes to this. class IPythonWidgetProgressPublisher(object): """A progress publisher that publishes to an IPython/Jupyter widget.""" def __init__(self): missing = [] if not HAVE_WIDGETS: missing.append("ipywidgets") elif not HAVE_IPYTHON: missing.append("IPython") if missing: raise ValueError( "IPythonWidgetProgressPublisher needs ipywidgets and IPython:" "\nMissing:\n{}".format(bulleted_list(missing)) ) # Heading for progress display. self._heading = ipywidgets.HTML() # Percent Complete Indicator to the left of the bar. indicator_width = "120px" self._percent_indicator = ipywidgets.HTML( layout={"width": indicator_width}, ) # The progress bar itself. self._bar = ipywidgets.FloatProgress( value=0.0, min=0.0, max=100.0, bar_style="info", # Leave enough space for the percent indicator. layout={"width": "calc(100% - {})".format(indicator_width)}, ) bar_and_percent = ipywidgets.HBox([self._percent_indicator, self._bar]) # Collapsable details tab underneath the progress bar. self._details_body = ipywidgets.HTML() self._details_tab = ipywidgets.Accordion( children=[self._details_body], selected_index=None, # Start in collapsed state. layout={ # Override default border settings to make details tab less # heavy. "border": "1px", }, ) # There's no public interface for setting title in the constructor :/. self._details_tab.set_title(0, "Details") # Container for the combined widget. self._layout = ProgressBarContainer( [ self._heading, bar_and_percent, self._details_tab, ], # Overall layout consumes 75% of the page. layout={"width": "75%"}, ) self._displayed = False def publish(self, model): if model.state == "init": self._heading.value = "<b>Analyzing Pipeline...</b>" self._set_progress(0.0) self._ensure_displayed() elif model.state in ("loading", "computing"): term_list = self._render_term_list(model.current_work) if model.state == "loading": details_heading = "<b>Loading Inputs:</b>" else: details_heading = "<b>Computing Expression:</b>" self._details_body.value = details_heading + term_list chunk_start, chunk_end = model.current_chunk_bounds self._heading.value = ( "<b>Running Pipeline</b>: Chunk Start={}, Chunk End={}".format( chunk_start.date(), chunk_end.date() ) ) self._set_progress(model.percent_complete) self._ensure_displayed() elif model.state == "success": # Replace widget layout with html that can be persisted. self._stop_displaying() display( IPython_HTML( "<b>Pipeline Execution Time:</b> {}".format( self._format_execution_time(model.execution_time) ) ), ) elif model.state == "error": self._bar.bar_style = "danger" self._stop_displaying() else: self._layout.close() raise ValueError("Unknown display state: {!r}".format(model.state)) def _ensure_displayed(self): if not self._displayed: display(self._layout) self._displayed = True def _stop_displaying(self): self._layout.close() @staticmethod def _render_term_list(terms): list_elements = "".join( ["<li><pre>{}</pre></li>".format(repr_htmlsafe(t)) for t in terms] ) return "<ul>{}</ul>".format(list_elements) def _set_progress(self, percent_complete): self._bar.value = percent_complete self._percent_indicator.value = "<b>{:.2f}% Complete</b>".format( percent_complete ) @staticmethod def _format_execution_time(total_seconds): """Helper method for displaying total execution time of a Pipeline. Parameters ---------- total_seconds : float Number of seconds elapsed. Returns ------- formatted : str User-facing text representation of elapsed time. """ def maybe_s(n): if n == 1: return "" return "s" minutes, seconds = divmod(total_seconds, 60) minutes = int(minutes) if minutes >= 60: hours, minutes = divmod(minutes, 60) t = "{hours} Hour{hs}, {minutes} Minute{ms}, {seconds:.2f} Seconds" return t.format( hours=hours, hs=maybe_s(hours), minutes=minutes, ms=maybe_s(minutes), seconds=seconds, ) elif minutes >= 1: t = "{minutes} Minute{ms}, {seconds:.2f} Seconds" return t.format( minutes=minutes, ms=maybe_s(minutes), seconds=seconds, ) else: return "{seconds:.2f} Seconds".format(seconds=seconds) class TestingProgressPublisher(object): """A progress publisher that records a trace of model states for testing.""" TraceState = namedtuple( "TraceState", [ "state", "percent_complete", "execution_bounds", "current_chunk_bounds", "current_work", ], ) def __init__(self): self.trace = [] def publish(self, model): self.trace.append( self.TraceState( state=model.state, percent_complete=model.percent_complete, execution_bounds=model.execution_bounds, current_chunk_bounds=model.current_chunk_bounds, current_work=model.current_work, ), ) def repr_htmlsafe(t): """Repr a value and html-escape the result. If an error is thrown by the repr, show a placeholder. """ try: r = repr(t) except Exception: r = "(Error Displaying {})".format(type(t).__name__) return escape_html(str(r), quote=True)
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/hooks/progress.py
progress.py
from zipline.utils.compat import contextmanager as _contextmanager from interface import Interface # Keep track of which methods of PipelineHooks are contextmanagers. Used by # DelegatingHooks to properly delegate to sub-hooks. PIPELINE_HOOKS_CONTEXT_MANAGERS = set() def contextmanager(f): """ Wrapper for contextlib.contextmanager that tracks which methods of PipelineHooks are contextmanagers in CONTEXT_MANAGER_METHODS. """ PIPELINE_HOOKS_CONTEXT_MANAGERS.add(f.__name__) return _contextmanager(f) class PipelineHooks(Interface): """ Interface for instrumenting SimplePipelineEngine executions. Methods with names like 'on_event()' should be normal methods. They will be called by the engine after the corresponding event. Methods with names like 'doing_thing()' should be context managers. They will be entered by the engine around the corresponding event. Methods ------- running_pipeline(self, pipeline, start_date, end_date, chunked) computing_chunk(self, terms, start_date, end_date) loading_terms(self, terms) computing_term(self, term): """ @contextmanager def running_pipeline(self, pipeline, start_date, end_date): """ Contextmanager entered during execution of run_pipeline or run_chunked_pipeline. Parameters ---------- pipeline : zipline.pipeline.Pipeline The pipeline being executed. start_date : pd.Timestamp First date of the execution. end_date : pd.Timestamp Last date of the execution. """ @contextmanager def computing_chunk(self, terms, start_date, end_date): """ Contextmanager entered during execution of compute_chunk. Parameters ---------- terms : list[zipline.pipeline.Term] List of terms, in execution order, that will be computed. This value may change between chunks if ``populate_initial_workspace`` prepopulates different terms at different times. start_date : pd.Timestamp First date of the chunk. end_date : pd.Timestamp Last date of the chunk. """ @contextmanager def loading_terms(self, terms): """Contextmanager entered when loading a batch of LoadableTerms. Parameters ---------- terms : list[zipline.pipeline.LoadableTerm] Terms being loaded. """ @contextmanager def computing_term(self, term): """Contextmanager entered when computing a ComputableTerm. Parameters ---------- terms : zipline.pipeline.ComputableTerm Terms being computed. """
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/hooks/iface.py
iface.py
from numpy import ( abs, average, clip, diff, dstack, inf, ) from numexpr import evaluate from zipline.pipeline.data import EquityPricing from zipline.pipeline.factors import CustomFactor from zipline.pipeline.mixins import SingleInputMixin from zipline.utils.input_validation import expect_bounded from zipline.utils.math_utils import ( nanargmax, nanargmin, nanmax, nanmean, nanstd, nanmin, ) from zipline.utils.numpy_utils import rolling_window from .basic import exponential_weights from .basic import ( # noqa reexport # These are re-exported here for backwards compatibility with the old # definition site. LinearWeightedMovingAverage, MaxDrawdown, SimpleMovingAverage, VWAP, WeightedAverageValue, ) class RSI(SingleInputMixin, CustomFactor): """ Relative Strength Index **Default Inputs**: :data:`zipline.pipeline.data.EquityPricing.close` **Default Window Length**: 15 """ window_length = 15 inputs = (EquityPricing.close,) window_safe = True def compute(self, today, assets, out, closes): diffs = diff(closes, axis=0) ups = nanmean(clip(diffs, 0, inf), axis=0) downs = abs(nanmean(clip(diffs, -inf, 0), axis=0)) return evaluate( "100 - (100 / (1 + (ups / downs)))", local_dict={"ups": ups, "downs": downs}, global_dict={}, out=out, ) class BollingerBands(CustomFactor): """ Bollinger Bands technical indicator. https://en.wikipedia.org/wiki/Bollinger_Bands **Default Inputs:** :data:`zipline.pipeline.data.EquityPricing.close` Parameters ---------- inputs : length-1 iterable[BoundColumn] The expression over which to compute bollinger bands. window_length : int > 0 Length of the lookback window over which to compute the bollinger bands. k : float The number of standard deviations to add or subtract to create the upper and lower bands. """ params = ("k",) inputs = (EquityPricing.close,) outputs = "lower", "middle", "upper" def compute(self, today, assets, out, close, k): difference = k * nanstd(close, axis=0) out.middle = middle = nanmean(close, axis=0) out.upper = middle + difference out.lower = middle - difference class Aroon(CustomFactor): """ Aroon technical indicator. https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-indicator-guide/aroon-indicator **Defaults Inputs:** :data:`zipline.pipeline.data.EquityPricing.low`, \ :data:`zipline.pipeline.data.EquityPricing.high` Parameters ---------- window_length : int > 0 Length of the lookback window over which to compute the Aroon indicator. """ # noqa inputs = (EquityPricing.low, EquityPricing.high) outputs = ("down", "up") def compute(self, today, assets, out, lows, highs): wl = self.window_length high_date_index = nanargmax(highs, axis=0) low_date_index = nanargmin(lows, axis=0) evaluate( "(100 * high_date_index) / (wl - 1)", local_dict={ "high_date_index": high_date_index, "wl": wl, }, out=out.up, ) evaluate( "(100 * low_date_index) / (wl - 1)", local_dict={ "low_date_index": low_date_index, "wl": wl, }, out=out.down, ) class FastStochasticOscillator(CustomFactor): """ Fast Stochastic Oscillator Indicator [%K, Momentum Indicator] https://wiki.timetotrade.eu/Stochastic This stochastic is considered volatile, and varies a lot when used in market analysis. It is recommended to use the slow stochastic oscillator or a moving average of the %K [%D]. **Default Inputs:** :data:`zipline.pipeline.data.EquityPricing.close`, \ :data:`zipline.pipeline.data.EquityPricing.low`, \ :data:`zipline.pipeline.data.EquityPricing.high` **Default Window Length:** 14 Returns ------- out: %K oscillator """ inputs = (EquityPricing.close, EquityPricing.low, EquityPricing.high) window_safe = True window_length = 14 def compute(self, today, assets, out, closes, lows, highs): highest_highs = nanmax(highs, axis=0) lowest_lows = nanmin(lows, axis=0) today_closes = closes[-1] evaluate( "((tc - ll) / (hh - ll)) * 100", local_dict={ "tc": today_closes, "ll": lowest_lows, "hh": highest_highs, }, global_dict={}, out=out, ) class IchimokuKinkoHyo(CustomFactor): """Compute the various metrics for the Ichimoku Kinko Hyo (Ichimoku Cloud). http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ichimoku_cloud **Default Inputs:** :data:`zipline.pipeline.data.EquityPricing.high`, \ :data:`zipline.pipeline.data.EquityPricing.low`, \ :data:`zipline.pipeline.data.EquityPricing.close` **Default Window Length:** 52 Parameters ---------- window_length : int > 0 The length the the window for the senkou span b. tenkan_sen_length : int >= 0, <= window_length The length of the window for the tenkan-sen. kijun_sen_length : int >= 0, <= window_length The length of the window for the kijou-sen. chikou_span_length : int >= 0, <= window_length The lag for the chikou span. """ # noqa params = { "tenkan_sen_length": 9, "kijun_sen_length": 26, "chikou_span_length": 26, } inputs = (EquityPricing.high, EquityPricing.low, EquityPricing.close) outputs = ( "tenkan_sen", "kijun_sen", "senkou_span_a", "senkou_span_b", "chikou_span", ) window_length = 52 def _validate(self): super(IchimokuKinkoHyo, self)._validate() for k, v in self.params.items(): if v > self.window_length: raise ValueError( "%s must be <= the window_length: %s > %s" % ( k, v, self.window_length, ), ) def compute( self, today, assets, out, high, low, close, tenkan_sen_length, kijun_sen_length, chikou_span_length, ): out.tenkan_sen = tenkan_sen = ( high[-tenkan_sen_length:].max(axis=0) + low[-tenkan_sen_length:].min(axis=0) ) / 2 out.kijun_sen = kijun_sen = ( high[-kijun_sen_length:].max(axis=0) + low[-kijun_sen_length:].min(axis=0) ) / 2 out.senkou_span_a = (tenkan_sen + kijun_sen) / 2 out.senkou_span_b = (high.max(axis=0) + low.min(axis=0)) / 2 out.chikou_span = close[chikou_span_length] class RateOfChangePercentage(CustomFactor): """ Rate of change Percentage ROC measures the percentage change in price from one period to the next. The ROC calculation compares the current price with the price `n` periods ago. Formula for calculation: ((price - prevPrice) / prevPrice) * 100 price - the current price prevPrice - the price n days ago, equals window length """ def compute(self, today, assets, out, close): today_close = close[-1] prev_close = close[0] evaluate( "((tc - pc) / pc) * 100", local_dict={"tc": today_close, "pc": prev_close}, global_dict={}, out=out, ) class TrueRange(CustomFactor): """ True Range A technical indicator originally developed by J. Welles Wilder, Jr. Indicates the true degree of daily price change in an underlying. **Default Inputs:** :data:`zipline.pipeline.data.EquityPricing.high`, \ :data:`zipline.pipeline.data.EquityPricing.low`, \ :data:`zipline.pipeline.data.EquityPricing.close` **Default Window Length:** 2 """ inputs = ( EquityPricing.high, EquityPricing.low, EquityPricing.close, ) window_length = 2 def compute(self, today, assets, out, highs, lows, closes): high_to_low = highs[1:] - lows[1:] high_to_prev_close = abs(highs[1:] - closes[:-1]) low_to_prev_close = abs(lows[1:] - closes[:-1]) out[:] = nanmax( dstack( ( high_to_low, high_to_prev_close, low_to_prev_close, ) ), 2, ) class MovingAverageConvergenceDivergenceSignal(CustomFactor): """ Moving Average Convergence/Divergence (MACD) Signal line https://en.wikipedia.org/wiki/MACD A technical indicator originally developed by Gerald Appel in the late 1970's. MACD shows the relationship between two moving averages and reveals changes in the strength, direction, momentum, and duration of a trend in a stock's price. **Default Inputs:** :data:`zipline.pipeline.data.EquityPricing.close` Parameters ---------- fast_period : int > 0, optional The window length for the "fast" EWMA. Default is 12. slow_period : int > 0, > fast_period, optional The window length for the "slow" EWMA. Default is 26. signal_period : int > 0, < fast_period, optional The window length for the signal line. Default is 9. Notes ----- Unlike most pipeline expressions, this factor does not accept a ``window_length`` parameter. ``window_length`` is inferred from ``slow_period`` and ``signal_period``. """ inputs = (EquityPricing.close,) # We don't use the default form of `params` here because we want to # dynamically calculate `window_length` from the period lengths in our # __new__. params = ("fast_period", "slow_period", "signal_period") @expect_bounded( __funcname="MACDSignal", fast_period=(1, None), # These must all be >= 1. slow_period=(1, None), signal_period=(1, None), ) def __new__(cls, fast_period=12, slow_period=26, signal_period=9, *args, **kwargs): if slow_period <= fast_period: raise ValueError( "'slow_period' must be greater than 'fast_period', but got\n" "slow_period={slow}, fast_period={fast}".format( slow=slow_period, fast=fast_period, ) ) return super(MovingAverageConvergenceDivergenceSignal, cls).__new__( cls, fast_period=fast_period, slow_period=slow_period, signal_period=signal_period, window_length=slow_period + signal_period - 1, *args, **kwargs, ) def _ewma(self, data, length): decay_rate = 1.0 - (2.0 / (1.0 + length)) return average(data, axis=1, weights=exponential_weights(length, decay_rate)) def compute( self, today, assets, out, close, fast_period, slow_period, signal_period ): slow_EWMA = self._ewma(rolling_window(close, slow_period), slow_period) fast_EWMA = self._ewma( rolling_window(close, fast_period)[-signal_period:], fast_period ) macd = fast_EWMA - slow_EWMA out[:] = self._ewma(macd.T, signal_period) # Convenience aliases. MACDSignal = MovingAverageConvergenceDivergenceSignal
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/factors/technical.py
technical.py
from numexpr import evaluate import numpy as np from numpy import broadcast_arrays from scipy.stats import ( linregress, spearmanr, ) from zipline.assets import Asset from zipline.errors import IncompatibleTerms from zipline.pipeline.factors import CustomFactor from zipline.pipeline.filters import SingleAsset from zipline.pipeline.mixins import StandardOutputs from zipline.pipeline.sentinels import NotSpecified from zipline.pipeline.term import AssetExists from zipline.utils.input_validation import ( expect_bounded, expect_dtypes, expect_types, ) from zipline.utils.math_utils import nanmean from zipline.utils.numpy_utils import ( float64_dtype, int64_dtype, ) from .basic import Returns ALLOWED_DTYPES = (float64_dtype, int64_dtype) class _RollingCorrelation(CustomFactor): @expect_dtypes(base_factor=ALLOWED_DTYPES, target=ALLOWED_DTYPES) @expect_bounded(correlation_length=(2, None)) def __new__(cls, base_factor, target, correlation_length, mask=NotSpecified): if target.ndim == 2 and base_factor.mask is not target.mask: raise IncompatibleTerms(term_1=base_factor, term_2=target) return super(_RollingCorrelation, cls).__new__( cls, inputs=[base_factor, target], window_length=correlation_length, mask=mask, ) class RollingPearson(_RollingCorrelation): """ A Factor that computes pearson correlation coefficients between the columns of a given Factor and either the columns of another Factor/BoundColumn or a slice/single column of data. Parameters ---------- base_factor : zipline.pipeline.Factor The factor for which to compute correlations of each of its columns with `target`. target : zipline.pipeline.Term with a numeric dtype The term with which to compute correlations against each column of data produced by `base_factor`. This term may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, correlations are computed asset-wise. correlation_length : int Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets (columns) of `base_factor` should have their correlation with `target` computed each day. See Also -------- :func:`scipy.stats.pearsonr` :meth:`Factor.pearsonr` :class:`zipline.pipeline.factors.RollingPearsonOfReturns` Notes ----- Most users should call Factor.pearsonr rather than directly construct an instance of this class. """ window_safe = True def compute(self, today, assets, out, base_data, target_data): vectorized_pearson_r( base_data, target_data, allowed_missing=0, out=out, ) class RollingSpearman(_RollingCorrelation): """ A Factor that computes spearman rank correlation coefficients between the columns of a given Factor and either the columns of another Factor/BoundColumn or a slice/single column of data. Parameters ---------- base_factor : zipline.pipeline.Factor The factor for which to compute correlations of each of its columns with `target`. target : zipline.pipeline.Term with a numeric dtype The term with which to compute correlations against each column of data produced by `base_factor`. This term may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, correlations are computed asset-wise. correlation_length : int Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets (columns) of `base_factor` should have their correlation with `target` computed each day. See Also -------- :func:`scipy.stats.spearmanr` :meth:`Factor.spearmanr` :class:`zipline.pipeline.factors.RollingSpearmanOfReturns` Notes ----- Most users should call Factor.spearmanr rather than directly construct an instance of this class. """ window_safe = True def compute(self, today, assets, out, base_data, target_data): # If `target_data` is a Slice or single column of data, broadcast it # out to the same shape as `base_data`, then compute column-wise. This # is efficient because each column of the broadcasted array only refers # to a single memory location. target_data = broadcast_arrays(target_data, base_data)[0] for i in range(len(out)): out[i] = spearmanr(base_data[:, i], target_data[:, i])[0] class RollingLinearRegression(CustomFactor): """ A Factor that performs an ordinary least-squares regression predicting the columns of a given Factor from either the columns of another Factor/BoundColumn or a slice/single column of data. Parameters ---------- dependent : zipline.pipeline.Factor The factor whose columns are the predicted/dependent variable of each regression with `independent`. independent : zipline.pipeline.slice.Slice or zipline.pipeline.Factor The factor/slice whose columns are the predictor/independent variable of each regression with `dependent`. If `independent` is a Factor, regressions are computed asset-wise. regression_length : int Length of the lookback window over which to compute each regression. mask : zipline.pipeline.Filter, optional A Filter describing which assets (columns) of `dependent` should be regressed against `independent` each day. See Also -------- :func:`scipy.stats.linregress` :meth:`Factor.linear_regression` :class:`zipline.pipeline.factors.RollingLinearRegressionOfReturns` Notes ----- Most users should call Factor.linear_regression rather than directly construct an instance of this class. """ outputs = ["alpha", "beta", "r_value", "p_value", "stderr"] @expect_dtypes(dependent=ALLOWED_DTYPES, independent=ALLOWED_DTYPES) @expect_bounded(regression_length=(2, None)) def __new__(cls, dependent, independent, regression_length, mask=NotSpecified): if independent.ndim == 2 and dependent.mask is not independent.mask: raise IncompatibleTerms(term_1=dependent, term_2=independent) return super(RollingLinearRegression, cls).__new__( cls, inputs=[dependent, independent], window_length=regression_length, mask=mask, ) def compute(self, today, assets, out, dependent, independent): alpha = out.alpha beta = out.beta r_value = out.r_value p_value = out.p_value stderr = out.stderr def regress(y, x): regr_results = linregress(y=y, x=x) # `linregress` returns its results in the following order: # slope, intercept, r-value, p-value, stderr alpha[i] = regr_results[1] beta[i] = regr_results[0] r_value[i] = regr_results[2] p_value[i] = regr_results[3] stderr[i] = regr_results[4] # If `independent` is a Slice or single column of data, broadcast it # out to the same shape as `dependent`, then compute column-wise. This # is efficient because each column of the broadcasted array only refers # to a single memory location. independent = broadcast_arrays(independent, dependent)[0] for i in range(len(out)): regress(y=dependent[:, i], x=independent[:, i]) class RollingPearsonOfReturns(RollingPearson): """ Calculates the Pearson product-moment correlation coefficient of the returns of the given asset with the returns of all other assets. Pearson correlation is what most people mean when they say "correlation coefficient" or "R-value". Parameters ---------- target : zipline.assets.Asset The asset to correlate with all other assets. returns_length : int >= 2 Length of the lookback window over which to compute returns. Daily returns require a window length of 2. correlation_length : int >= 1 Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets should have their correlation with the target asset computed each day. Notes ----- Computing this factor over many assets can be time consuming. It is recommended that a mask be used in order to limit the number of assets over which correlations are computed. Examples -------- Let the following be example 10-day returns for three different assets:: SPY MSFT FB 2017-03-13 -.03 .03 .04 2017-03-14 -.02 -.03 .02 2017-03-15 -.01 .02 .01 2017-03-16 0 -.02 .01 2017-03-17 .01 .04 -.01 2017-03-20 .02 -.03 -.02 2017-03-21 .03 .01 -.02 2017-03-22 .04 -.02 -.02 Suppose we are interested in SPY's rolling returns correlation with each stock from 2017-03-17 to 2017-03-22, using a 5-day look back window (that is, we calculate each correlation coefficient over 5 days of data). We can achieve this by doing:: rolling_correlations = RollingPearsonOfReturns( target=sid(8554), returns_length=10, correlation_length=5, ) The result of computing ``rolling_correlations`` from 2017-03-17 to 2017-03-22 gives:: SPY MSFT FB 2017-03-17 1 .15 -.96 2017-03-20 1 .10 -.96 2017-03-21 1 -.16 -.94 2017-03-22 1 -.16 -.85 Note that the column for SPY is all 1's, as the correlation of any data series with itself is always 1. To understand how each of the other values were calculated, take for example the .15 in MSFT's column. This is the correlation coefficient between SPY's returns looking back from 2017-03-17 (-.03, -.02, -.01, 0, .01) and MSFT's returns (.03, -.03, .02, -.02, .04). See Also -------- :class:`zipline.pipeline.factors.RollingSpearmanOfReturns` :class:`zipline.pipeline.factors.RollingLinearRegressionOfReturns` """ def __new__(cls, target, returns_length, correlation_length, mask=NotSpecified): # Use the `SingleAsset` filter here because it protects against # inputting a non-existent target asset. returns = Returns( window_length=returns_length, mask=(AssetExists() | SingleAsset(asset=target)), ) return super(RollingPearsonOfReturns, cls).__new__( cls, base_factor=returns, target=returns[target], correlation_length=correlation_length, mask=mask, ) class RollingSpearmanOfReturns(RollingSpearman): """ Calculates the Spearman rank correlation coefficient of the returns of the given asset with the returns of all other assets. Parameters ---------- target : zipline.assets.Asset The asset to correlate with all other assets. returns_length : int >= 2 Length of the lookback window over which to compute returns. Daily returns require a window length of 2. correlation_length : int >= 1 Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets should have their correlation with the target asset computed each day. Notes ----- Computing this factor over many assets can be time consuming. It is recommended that a mask be used in order to limit the number of assets over which correlations are computed. See Also -------- :class:`zipline.pipeline.factors.RollingPearsonOfReturns` :class:`zipline.pipeline.factors.RollingLinearRegressionOfReturns` """ def __new__(cls, target, returns_length, correlation_length, mask=NotSpecified): # Use the `SingleAsset` filter here because it protects against # inputting a non-existent target asset. returns = Returns( window_length=returns_length, mask=(AssetExists() | SingleAsset(asset=target)), ) return super(RollingSpearmanOfReturns, cls).__new__( cls, base_factor=returns, target=returns[target], correlation_length=correlation_length, mask=mask, ) class RollingLinearRegressionOfReturns(RollingLinearRegression): """ Perform an ordinary least-squares regression predicting the returns of all other assets on the given asset. Parameters ---------- target : zipline.assets.Asset The asset to regress against all other assets. returns_length : int >= 2 Length of the lookback window over which to compute returns. Daily returns require a window length of 2. regression_length : int >= 1 Length of the lookback window over which to compute each regression. mask : zipline.pipeline.Filter, optional A Filter describing which assets should be regressed against the target asset each day. Notes ----- Computing this factor over many assets can be time consuming. It is recommended that a mask be used in order to limit the number of assets over which regressions are computed. This factor is designed to return five outputs: - alpha, a factor that computes the intercepts of each regression. - beta, a factor that computes the slopes of each regression. - r_value, a factor that computes the correlation coefficient of each regression. - p_value, a factor that computes, for each regression, the two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero. - stderr, a factor that computes the standard error of the estimate of each regression. For more help on factors with multiple outputs, see :class:`zipline.pipeline.CustomFactor`. Examples -------- Let the following be example 10-day returns for three different assets:: SPY MSFT FB 2017-03-13 -.03 .03 .04 2017-03-14 -.02 -.03 .02 2017-03-15 -.01 .02 .01 2017-03-16 0 -.02 .01 2017-03-17 .01 .04 -.01 2017-03-20 .02 -.03 -.02 2017-03-21 .03 .01 -.02 2017-03-22 .04 -.02 -.02 Suppose we are interested in predicting each stock's returns from SPY's over rolling 5-day look back windows. We can compute rolling regression coefficients (alpha and beta) from 2017-03-17 to 2017-03-22 by doing:: regression_factor = RollingRegressionOfReturns( target=sid(8554), returns_length=10, regression_length=5, ) alpha = regression_factor.alpha beta = regression_factor.beta The result of computing ``alpha`` from 2017-03-17 to 2017-03-22 gives:: SPY MSFT FB 2017-03-17 0 .011 .003 2017-03-20 0 -.004 .004 2017-03-21 0 .007 .006 2017-03-22 0 .002 .008 And the result of computing ``beta`` from 2017-03-17 to 2017-03-22 gives:: SPY MSFT FB 2017-03-17 1 .3 -1.1 2017-03-20 1 .2 -1 2017-03-21 1 -.3 -1 2017-03-22 1 -.3 -.9 Note that SPY's column for alpha is all 0's and for beta is all 1's, as the regression line of SPY with itself is simply the function y = x. To understand how each of the other values were calculated, take for example MSFT's ``alpha`` and ``beta`` values on 2017-03-17 (.011 and .3, respectively). These values are the result of running a linear regression predicting MSFT's returns from SPY's returns, using values starting at 2017-03-17 and looking back 5 days. That is, the regression was run with x = [-.03, -.02, -.01, 0, .01] and y = [.03, -.03, .02, -.02, .04], and it produced a slope of .3 and an intercept of .011. See Also -------- :class:`zipline.pipeline.factors.RollingPearsonOfReturns` :class:`zipline.pipeline.factors.RollingSpearmanOfReturns` """ window_safe = True def __new__(cls, target, returns_length, regression_length, mask=NotSpecified): # Use the `SingleAsset` filter here because it protects against # inputting a non-existent target asset. returns = Returns( window_length=returns_length, mask=(AssetExists() | SingleAsset(asset=target)), ) return super(RollingLinearRegressionOfReturns, cls).__new__( cls, dependent=returns, independent=returns[target], regression_length=regression_length, mask=mask, ) class SimpleBeta(CustomFactor, StandardOutputs): """ Factor producing the slope of a regression line between each asset's daily returns to the daily returns of a single "target" asset. Parameters ---------- target : zipline.Asset Asset against which other assets should be regressed. regression_length : int Number of days of daily returns to use for the regression. allowed_missing_percentage : float, optional Percentage of returns observations (between 0 and 1) that are allowed to be missing when calculating betas. Assets with more than this percentage of returns observations missing will produce values of NaN. Default behavior is that 25% of inputs can be missing. """ window_safe = True dtype = float64_dtype params = ("allowed_missing_count",) @expect_types( target=Asset, regression_length=int, allowed_missing_percentage=(int, float), __funcname="SimpleBeta", ) @expect_bounded( regression_length=(3, None), allowed_missing_percentage=(0.0, 1.0), __funcname="SimpleBeta", ) def __new__(cls, target, regression_length, allowed_missing_percentage=0.25): daily_returns = Returns( window_length=2, mask=(AssetExists() | SingleAsset(asset=target)), ) allowed_missing_count = int(allowed_missing_percentage * regression_length) return super(SimpleBeta, cls).__new__( cls, inputs=[daily_returns, daily_returns[target]], window_length=regression_length, allowed_missing_count=allowed_missing_count, ) def compute( self, today, assets, out, all_returns, target_returns, allowed_missing_count ): vectorized_beta( dependents=all_returns, independent=target_returns, allowed_missing=allowed_missing_count, out=out, ) def graph_repr(self): return "{}({!r}, {}, {})".format( type(self).__name__, str(self.target.symbol), # coerce from unicode to str in py2. self.window_length, self.params["allowed_missing_count"], ) @property def target(self): """Get the target of the beta calculation.""" return self.inputs[1].asset def __repr__(self): return "{}({}, length={}, allowed_missing={})".format( type(self).__name__, self.target, self.window_length, self.params["allowed_missing_count"], ) def vectorized_beta(dependents, independent, allowed_missing, out=None): """ Compute slopes of linear regressions between columns of ``dependents`` and ``independent``. Parameters ---------- dependents : np.array[N, M] Array with columns of data to be regressed against ``independent``. independent : np.array[N, 1] Independent variable of the regression allowed_missing : int Number of allowed missing (NaN) observations per column. Columns with more than this many non-nan observations in either ``dependents`` or ``independents`` will output NaN as the regression coefficient. out : np.array[M] or None, optional Output array into which to write results. If None, a new array is created and returned. Returns ------- slopes : np.array[M] Linear regression coefficients for each column of ``dependents``. """ # Cache these as locals since we're going to call them multiple times. nan = np.nan isnan = np.isnan N, M = dependents.shape if out is None: out = np.full(M, nan) # Copy N times as a column vector and fill with nans to have the same # missing value pattern as the dependent variable. # # PERF_TODO: We could probably avoid the space blowup by doing this in # Cython. # shape: (N, M) independent = np.where( isnan(dependents), nan, independent, ) # Calculate beta as Cov(X, Y) / Cov(X, X). # https://en.wikipedia.org/wiki/Simple_linear_regression#Fitting_the_regression_line # noqa # # NOTE: The usual formula for covariance is:: # # mean((X - mean(X)) * (Y - mean(Y))) # # However, we don't actually need to take the mean of both sides of the # product, because of the folllowing equivalence:: # # Let X_res = (X - mean(X)). # We have: # # mean(X_res * (Y - mean(Y))) = mean(X_res * (Y - mean(Y))) # (1) = mean((X_res * Y) - (X_res * mean(Y))) # (2) = mean(X_res * Y) - mean(X_res * mean(Y)) # (3) = mean(X_res * Y) - mean(X_res) * mean(Y) # (4) = mean(X_res * Y) - 0 * mean(Y) # (5) = mean(X_res * Y) # # # The tricky step in the above derivation is step (4). We know that # mean(X_res) is zero because, for any X: # # mean(X - mean(X)) = mean(X) - mean(X) = 0. # # The upshot of this is that we only have to center one of `independent` # and `dependent` when calculating covariances. Since we need the centered # `independent` to calculate its variance in the next step, we choose to # center `independent`. # shape: (N, M) ind_residual = independent - nanmean(independent, axis=0) # shape: (M,) covariances = nanmean(ind_residual * dependents, axis=0) # We end up with different variances in each column here because each # column may have a different subset of the data dropped due to missing # data in the corresponding dependent column. # shape: (M,) independent_variances = nanmean(ind_residual ** 2, axis=0) # shape: (M,) np.divide(covariances, independent_variances, out=out) # Write nans back to locations where we have more then allowed number of # missing entries. nanlocs = isnan(independent).sum(axis=0) > allowed_missing out[nanlocs] = nan return out def vectorized_pearson_r(dependents, independents, allowed_missing, out=None): """ Compute Pearson's r between columns of ``dependents`` and ``independents``. Parameters ---------- dependents : np.array[N, M] Array with columns of data to be regressed against ``independent``. independents : np.array[N, M] or np.array[N, 1] Independent variable(s) of the regression. If a single column is passed, it is broadcast to the shape of ``dependents``. allowed_missing : int Number of allowed missing (NaN) observations per column. Columns with more than this many non-nan observations in either ``dependents`` or ``independents`` will output NaN as the correlation coefficient. out : np.array[M] or None, optional Output array into which to write results. If None, a new array is created and returned. Returns ------- correlations : np.array[M] Pearson correlation coefficients for each column of ``dependents``. See Also -------- :class:`zipline.pipeline.factors.RollingPearson` :class:`zipline.pipeline.factors.RollingPearsonOfReturns` """ nan = np.nan isnan = np.isnan N, M = dependents.shape if out is None: out = np.full(M, nan) if allowed_missing > 0: # If we're handling nans robustly, we need to mask both arrays to # locations where either was nan. either_nan = isnan(dependents) | isnan(independents) independents = np.where(either_nan, nan, independents) dependents = np.where(either_nan, nan, dependents) mean = nanmean else: # Otherwise, we can just use mean, which will give us a nan for any # column where there's ever a nan. mean = np.mean # Pearson R is Cov(X, Y) / StdDev(X) * StdDev(Y) # c.f. https://en.wikipedia.org/wiki/Pearson_correlation_coefficient ind_residual = independents - mean(independents, axis=0) dep_residual = dependents - mean(dependents, axis=0) ind_variance = mean(ind_residual ** 2, axis=0) dep_variance = mean(dep_residual ** 2, axis=0) covariances = mean(ind_residual * dep_residual, axis=0) evaluate( "where(mask, nan, cov / sqrt(ind_variance * dep_variance))", local_dict={ "cov": covariances, "mask": isnan(independents).sum(axis=0) > allowed_missing, "nan": np.nan, "ind_variance": ind_variance, "dep_variance": dep_variance, }, global_dict={}, out=out, ) return out
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/factors/statistical.py
statistical.py
import numpy as np from operator import attrgetter from numbers import Number from math import ceil from textwrap import dedent from numpy import empty_like, inf, isnan, nan, where from scipy.stats import rankdata from zipline.utils.compat import wraps from zipline.errors import ( BadPercentileBounds, UnknownRankMethod, UnsupportedDataType, ) from zipline.lib.normalize import naive_grouped_rowwise_apply from zipline.lib.rank import masked_rankdata_2d, rankdata_1d_descending from zipline.pipeline.api_utils import restrict_to_dtype from zipline.pipeline.classifiers import Classifier, Everything, Quantiles from zipline.pipeline.dtypes import ( CLASSIFIER_DTYPES, FACTOR_DTYPES, FILTER_DTYPES, ) from zipline.pipeline.expression import ( BadBinaryOperator, COMPARISONS, is_comparison, MATH_BINOPS, method_name_for_op, NumericalExpression, NUMEXPR_MATH_FUNCS, UNARY_OPS, unary_op_name, ) from zipline.pipeline.filters import ( Filter, NumExprFilter, PercentileFilter, MaximumFilter, ) from zipline.pipeline.mixins import ( CustomTermMixin, LatestMixin, PositiveWindowLengthMixin, RestrictedDTypeMixin, SingleInputMixin, ) from zipline.pipeline.sentinels import NotSpecified, NotSpecifiedType from zipline.pipeline.term import AssetExists, ComputableTerm, Term from zipline.utils.functional import with_doc, with_name from zipline.utils.input_validation import expect_types from zipline.utils.math_utils import ( nanmax, nanmean, nanmedian, nanmin, nanstd, nansum, ) from zipline.utils.numpy_utils import ( as_column, bool_dtype, coerce_to_dtype, float64_dtype, is_missing, ) from zipline.utils.sharedoc import templated_docstring _RANK_METHODS = frozenset(["average", "min", "max", "dense", "ordinal"]) def coerce_numbers_to_my_dtype(f): """ A decorator for methods whose signature is f(self, other) that coerces ``other`` to ``self.dtype``. This is used to make comparison operations between numbers and `Factor` instances work independently of whether the user supplies a float or integer literal. For example, if I write:: my_filter = my_factor > 3 my_factor probably has dtype float64, but 3 is an int, so we want to coerce to float64 before doing the comparison. """ @wraps(f) def method(self, other): if isinstance(other, Number): other = coerce_to_dtype(self.dtype, other) return f(self, other) return method def binop_return_dtype(op, left, right): """ Compute the expected return dtype for the given binary operator. Parameters ---------- op : str Operator symbol, (e.g. '+', '-', ...). left : numpy.dtype Dtype of left hand side. right : numpy.dtype Dtype of right hand side. Returns ------- outdtype : numpy.dtype The dtype of the result of `left <op> right`. """ if is_comparison(op): if left != right: raise TypeError( "Don't know how to compute {left} {op} {right}.\n" "Comparisons are only supported between Factors of equal " "dtypes.".format(left=left, op=op, right=right) ) return bool_dtype elif left != float64_dtype or right != float64_dtype: raise TypeError( "Don't know how to compute {left} {op} {right}.\n" "Arithmetic operators are only supported between Factors of " "dtype 'float64'.".format( left=left.name, op=op, right=right.name, ) ) return float64_dtype BINOP_DOCSTRING_TEMPLATE = """ Construct a :class:`~zipline.pipeline.{rtype}` computing ``self {op} other``. Parameters ---------- other : zipline.pipeline.Factor, float Right-hand side of the expression. Returns ------- {ret} """ BINOP_RETURN_FILTER = """\ filter : zipline.pipeline.Filter Filter computing ``self {op} other`` with the outputs of ``self`` and ``other``. """ BINOP_RETURN_FACTOR = """\ factor : zipline.pipeline.Factor Factor computing ``self {op} other`` with outputs of ``self`` and ``other``. """ def binary_operator(op): """ Factory function for making binary operator methods on a Factor subclass. Returns a function, "binary_operator" suitable for implementing functions like __add__. """ # When combining a Factor with a NumericalExpression, we use this # attrgetter instance to defer to the commuted implementation of the # NumericalExpression operator. commuted_method_getter = attrgetter(method_name_for_op(op, commute=True)) is_compare = is_comparison(op) if is_compare: ret_doc = BINOP_RETURN_FILTER.format(op=op) rtype = "Filter" else: ret_doc = BINOP_RETURN_FACTOR.format(op=op) rtype = "Factor" docstring = BINOP_DOCSTRING_TEMPLATE.format( op=op, ret=ret_doc, rtype=rtype, ) @with_doc(docstring) @with_name(method_name_for_op(op)) @coerce_numbers_to_my_dtype def binary_operator(self, other): # This can't be hoisted up a scope because the types returned by # binop_return_type aren't defined when the top-level function is # invoked in the class body of Factor. return_type = NumExprFilter if is_compare else NumExprFactor if isinstance(self, NumExprFactor): self_expr, other_expr, new_inputs = self.build_binary_op( op, other, ) return return_type( "({left}) {op} ({right})".format( left=self_expr, op=op, right=other_expr, ), new_inputs, dtype=binop_return_dtype(op, self.dtype, other.dtype), ) elif isinstance(other, NumExprFactor): # NumericalExpression overrides ops to correctly handle merging of # inputs. Look up and call the appropriate reflected operator with # ourself as the input. return commuted_method_getter(other)(self) elif isinstance(other, Term): if self is other: return return_type( "x_0 {op} x_0".format(op=op), (self,), dtype=binop_return_dtype(op, self.dtype, other.dtype), ) return return_type( "x_0 {op} x_1".format(op=op), (self, other), dtype=binop_return_dtype(op, self.dtype, other.dtype), ) elif isinstance(other, Number): return return_type( "x_0 {op} ({constant})".format(op=op, constant=other), binds=(self,), # .dtype access is safe here because coerce_numbers_to_my_dtype # will convert any input numbers to numpy equivalents. dtype=binop_return_dtype(op, self.dtype, other.dtype), ) raise BadBinaryOperator(op, self, other) return binary_operator def reflected_binary_operator(op): """ Factory function for making binary operator methods on a Factor. Returns a function, "reflected_binary_operator" suitable for implementing functions like __radd__. """ assert not is_comparison(op) @with_name(method_name_for_op(op, commute=True)) @coerce_numbers_to_my_dtype def reflected_binary_operator(self, other): if isinstance(self, NumericalExpression): self_expr, other_expr, new_inputs = self.build_binary_op(op, other) return NumExprFactor( "({left}) {op} ({right})".format( left=other_expr, right=self_expr, op=op, ), new_inputs, dtype=binop_return_dtype(op, other.dtype, self.dtype), ) # Only have to handle the numeric case because in all other valid cases # the corresponding left-binding method will be called. elif isinstance(other, Number): return NumExprFactor( "{constant} {op} x_0".format(op=op, constant=other), binds=(self,), dtype=binop_return_dtype(op, other.dtype, self.dtype), ) raise BadBinaryOperator(op, other, self) return reflected_binary_operator def unary_operator(op): """ Factory function for making unary operator methods for Factors. """ # Only negate is currently supported. valid_ops = {"-"} if op not in valid_ops: raise ValueError("Invalid unary operator %s." % op) @with_doc("Unary Operator: '%s'" % op) @with_name(unary_op_name(op)) def unary_operator(self): if self.dtype != float64_dtype: raise TypeError( "Can't apply unary operator {op!r} to instance of " "{typename!r} with dtype {dtypename!r}.\n" "{op!r} is only supported for Factors of dtype " "'float64'.".format( op=op, typename=type(self).__name__, dtypename=self.dtype.name, ) ) # This can't be hoisted up a scope because the types returned by # unary_op_return_type aren't defined when the top-level function is # invoked. if isinstance(self, NumericalExpression): return NumExprFactor( "{op}({expr})".format(op=op, expr=self._expr), self.inputs, dtype=float64_dtype, ) else: return NumExprFactor( "{op}x_0".format(op=op), (self,), dtype=float64_dtype, ) return unary_operator def function_application(func): """ Factory function for producing function application methods for Factor subclasses. """ if func not in NUMEXPR_MATH_FUNCS: raise ValueError("Unsupported mathematical function '%s'" % func) docstring = dedent( """\ Construct a Factor that computes ``{}()`` on each output of ``self``. Returns ------- factor : zipline.pipeline.Factor """.format( func ) ) @with_doc(docstring) @with_name(func) def mathfunc(self): if isinstance(self, NumericalExpression): return NumExprFactor( "{func}({expr})".format(func=func, expr=self._expr), self.inputs, dtype=float64_dtype, ) else: return NumExprFactor( "{func}(x_0)".format(func=func), (self,), dtype=float64_dtype, ) return mathfunc # Decorators for Factor methods. if_not_float64_tell_caller_to_use_isnull = restrict_to_dtype( dtype=float64_dtype, message_template=( "{method_name}() was called on a factor of dtype {received_dtype}.\n" "{method_name}() is only defined for dtype {expected_dtype}." "To filter missing data, use isnull() or notnull()." ), ) float64_only = restrict_to_dtype( dtype=float64_dtype, message_template=( "{method_name}() is only defined on Factors of dtype {expected_dtype}," " but it was called on a Factor of dtype {received_dtype}." ), ) CORRELATION_METHOD_NOTE = dedent( """\ This method can only be called on expressions which are deemed safe for use as inputs to windowed :class:`~zipline.pipeline.Factor` objects. Examples of such expressions include This includes :class:`~zipline.pipeline.data.BoundColumn` :class:`~zipline.pipeline.factors.Returns` and any factors created from :meth:`~zipline.pipeline.Factor.rank` or :meth:`~zipline.pipeline.Factor.zscore`. """ ) class summary_funcs(object): """Namespace of functions meant to be used with DailySummary.""" @staticmethod def mean(a, missing_value): return nanmean(a, axis=1) @staticmethod def stddev(a, missing_value): return nanstd(a, axis=1) @staticmethod def max(a, missing_value): return nanmax(a, axis=1) @staticmethod def min(a, missing_value): return nanmin(a, axis=1) @staticmethod def median(a, missing_value): return nanmedian(a, axis=1) @staticmethod def sum(a, missing_value): return nansum(a, axis=1) @staticmethod def notnull_count(a, missing_value): return (~is_missing(a, missing_value)).sum(axis=1) names = {k for k in locals() if not k.startswith("_")} def summary_method(name): func = getattr(summary_funcs, name) @expect_types(mask=(Filter, NotSpecifiedType)) @float64_only def f(self, mask=NotSpecified): """Create a 1-dimensional factor computing the {} of self, each day. Parameters ---------- mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when computing results. If supplied, we ignore asset/date pairs where ``mask`` produces ``False``. Returns ------- result : zipline.pipeline.Factor """ return DailySummary( func, self, mask=mask, dtype=self.dtype, ) f.__name__ = func.__name__ f.__doc__ = f.__doc__.format(f.__name__) return f class Factor(RestrictedDTypeMixin, ComputableTerm): """ Pipeline API expression producing a numerical or date-valued output. Factors are the most commonly-used Pipeline term, representing the result of any computation producing a numerical result. Factors can be combined, both with other Factors and with scalar values, via any of the builtin mathematical operators (``+``, ``-``, ``*``, etc). This makes it easy to write complex expressions that combine multiple Factors. For example, constructing a Factor that computes the average of two other Factors is simply:: >>> f1 = SomeFactor(...) # doctest: +SKIP >>> f2 = SomeOtherFactor(...) # doctest: +SKIP >>> average = (f1 + f2) / 2.0 # doctest: +SKIP Factors can also be converted into :class:`zipline.pipeline.Filter` objects via comparison operators: (``<``, ``<=``, ``!=``, ``eq``, ``>``, ``>=``). There are many natural operators defined on Factors besides the basic numerical operators. These include methods for identifying missing or extreme-valued outputs (:meth:`isnull`, :meth:`notnull`, :meth:`isnan`, :meth:`notnan`), methods for normalizing outputs (:meth:`rank`, :meth:`demean`, :meth:`zscore`), and methods for constructing Filters based on rank-order properties of results (:meth:`top`, :meth:`bottom`, :meth:`percentile_between`). """ ALLOWED_DTYPES = FACTOR_DTYPES # Used by RestrictedDTypeMixin # Dynamically add functions for creating NumExprFactor/NumExprFilter # instances. clsdict = locals() clsdict.update( { method_name_for_op(op): binary_operator(op) # Don't override __eq__ because it breaks comparisons on tuples of # Factors. for op in MATH_BINOPS.union(COMPARISONS - {"=="}) } ) clsdict.update( { method_name_for_op(op, commute=True): reflected_binary_operator(op) for op in MATH_BINOPS } ) clsdict.update({unary_op_name(op): unary_operator(op) for op in UNARY_OPS}) clsdict.update( {funcname: function_application(funcname) for funcname in NUMEXPR_MATH_FUNCS} ) __truediv__ = clsdict["__div__"] __rtruediv__ = clsdict["__rdiv__"] # Add summary functions. clsdict.update( {name: summary_method(name) for name in summary_funcs.names}, ) del clsdict # don't pollute the class namespace with this. eq = binary_operator("==") @expect_types( mask=(Filter, NotSpecifiedType), groupby=(Classifier, NotSpecifiedType), ) @float64_only def demean(self, mask=NotSpecified, groupby=NotSpecified): """ Construct a Factor that computes ``self`` and subtracts the mean from row of the result. If ``mask`` is supplied, ignore values where ``mask`` returns False when computing row means, and output NaN anywhere the mask is False. If ``groupby`` is supplied, compute by partitioning each row based on the values produced by ``groupby``, de-meaning the partitioned arrays, and stitching the sub-results back together. Parameters ---------- mask : zipline.pipeline.Filter, optional A Filter defining values to ignore when computing means. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to compute means. Examples -------- Let ``f`` be a Factor which would produce the following output:: AAPL MSFT MCD BK 2017-03-13 1.0 2.0 3.0 4.0 2017-03-14 1.5 2.5 3.5 1.0 2017-03-15 2.0 3.0 4.0 1.5 2017-03-16 2.5 3.5 1.0 2.0 Let ``c`` be a Classifier producing the following output:: AAPL MSFT MCD BK 2017-03-13 1 1 2 2 2017-03-14 1 1 2 2 2017-03-15 1 1 2 2 2017-03-16 1 1 2 2 Let ``m`` be a Filter producing the following output:: AAPL MSFT MCD BK 2017-03-13 False True True True 2017-03-14 True False True True 2017-03-15 True True False True 2017-03-16 True True True False Then ``f.demean()`` will subtract the mean from each row produced by ``f``. :: AAPL MSFT MCD BK 2017-03-13 -1.500 -0.500 0.500 1.500 2017-03-14 -0.625 0.375 1.375 -1.125 2017-03-15 -0.625 0.375 1.375 -1.125 2017-03-16 0.250 1.250 -1.250 -0.250 ``f.demean(mask=m)`` will subtract the mean from each row, but means will be calculated ignoring values on the diagonal, and NaNs will written to the diagonal in the output. Diagonal values are ignored because they are the locations where the mask ``m`` produced False. :: AAPL MSFT MCD BK 2017-03-13 NaN -1.000 0.000 1.000 2017-03-14 -0.500 NaN 1.500 -1.000 2017-03-15 -0.166 0.833 NaN -0.666 2017-03-16 0.166 1.166 -1.333 NaN ``f.demean(groupby=c)`` will subtract the group-mean of AAPL/MSFT and MCD/BK from their respective entries. The AAPL/MSFT are grouped together because both assets always produce 1 in the output of the classifier ``c``. Similarly, MCD/BK are grouped together because they always produce 2. :: AAPL MSFT MCD BK 2017-03-13 -0.500 0.500 -0.500 0.500 2017-03-14 -0.500 0.500 1.250 -1.250 2017-03-15 -0.500 0.500 1.250 -1.250 2017-03-16 -0.500 0.500 -0.500 0.500 ``f.demean(mask=m, groupby=c)`` will also subtract the group-mean of AAPL/MSFT and MCD/BK, but means will be calculated ignoring values on the diagonal , and NaNs will be written to the diagonal in the output. :: AAPL MSFT MCD BK 2017-03-13 NaN 0.000 -0.500 0.500 2017-03-14 0.000 NaN 1.250 -1.250 2017-03-15 -0.500 0.500 NaN 0.000 2017-03-16 -0.500 0.500 0.000 NaN Notes ----- Mean is sensitive to the magnitudes of outliers. When working with factor that can potentially produce large outliers, it is often useful to use the ``mask`` parameter to discard values at the extremes of the distribution:: >>> base = MyFactor(...) # doctest: +SKIP >>> normalized = base.demean( ... mask=base.percentile_between(1, 99), ... ) # doctest: +SKIP ``demean()`` is only supported on Factors of dtype float64. See Also -------- :meth:`pandas.DataFrame.groupby` """ return GroupedRowTransform( transform=demean, transform_args=(), factor=self, groupby=groupby, dtype=self.dtype, missing_value=self.missing_value, window_safe=self.window_safe, mask=mask, ) @expect_types( mask=(Filter, NotSpecifiedType), groupby=(Classifier, NotSpecifiedType), ) @float64_only def zscore(self, mask=NotSpecified, groupby=NotSpecified): """ Construct a Factor that Z-Scores each day's results. The Z-Score of a row is defined as:: (row - row.mean()) / row.stddev() If ``mask`` is supplied, ignore values where ``mask`` returns False when computing row means and standard deviations, and output NaN anywhere the mask is False. If ``groupby`` is supplied, compute by partitioning each row based on the values produced by ``groupby``, z-scoring the partitioned arrays, and stitching the sub-results back together. Parameters ---------- mask : zipline.pipeline.Filter, optional A Filter defining values to ignore when Z-Scoring. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to compute Z-Scores. Returns ------- zscored : zipline.pipeline.Factor A Factor producing that z-scores the output of self. Notes ----- Mean and standard deviation are sensitive to the magnitudes of outliers. When working with factor that can potentially produce large outliers, it is often useful to use the ``mask`` parameter to discard values at the extremes of the distribution:: >>> base = MyFactor(...) # doctest: +SKIP >>> normalized = base.zscore( ... mask=base.percentile_between(1, 99), ... ) # doctest: +SKIP ``zscore()`` is only supported on Factors of dtype float64. Examples -------- See :meth:`~zipline.pipeline.Factor.demean` for an in-depth example of the semantics for ``mask`` and ``groupby``. See Also -------- :meth:`pandas.DataFrame.groupby` """ return GroupedRowTransform( transform=zscore, transform_args=(), factor=self, groupby=groupby, dtype=self.dtype, missing_value=self.missing_value, mask=mask, window_safe=True, ) def rank( self, method="ordinal", ascending=True, mask=NotSpecified, groupby=NotSpecified ): """ Construct a new Factor representing the sorted rank of each column within each row. Parameters ---------- method : str, {'ordinal', 'min', 'max', 'dense', 'average'} The method used to assign ranks to tied elements. See `scipy.stats.rankdata` for a full description of the semantics for each ranking method. Default is 'ordinal'. ascending : bool, optional Whether to return sorted rank in ascending or descending order. Default is True. mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when computing ranks. If mask is supplied, ranks are computed ignoring any asset/date pairs for which `mask` produces a value of False. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to perform ranking. Returns ------- ranks : zipline.pipeline.Factor A new factor that will compute the ranking of the data produced by `self`. Notes ----- The default value for `method` is different from the default for `scipy.stats.rankdata`. See that function's documentation for a full description of the valid inputs to `method`. Missing or non-existent data on a given day will cause an asset to be given a rank of NaN for that day. See Also -------- :func:`scipy.stats.rankdata` """ if groupby is NotSpecified: return Rank(self, method=method, ascending=ascending, mask=mask) return GroupedRowTransform( transform=rankdata if ascending else rankdata_1d_descending, transform_args=(method,), factor=self, groupby=groupby, dtype=float64_dtype, missing_value=nan, mask=mask, window_safe=True, ) @expect_types( target=Term, correlation_length=int, mask=(Filter, NotSpecifiedType), ) @templated_docstring(CORRELATION_METHOD_NOTE=CORRELATION_METHOD_NOTE) def pearsonr(self, target, correlation_length, mask=NotSpecified): """ Construct a new Factor that computes rolling pearson correlation coefficients between ``target`` and the columns of ``self``. Parameters ---------- target : zipline.pipeline.Term The term used to compute correlations against each column of data produced by `self`. This may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, correlations are computed asset-wise. correlation_length : int Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets should have their correlation with the target slice computed each day. Returns ------- correlations : zipline.pipeline.Factor A new Factor that will compute correlations between ``target`` and the columns of ``self``. Notes ----- {CORRELATION_METHOD_NOTE} Examples -------- Suppose we want to create a factor that computes the correlation between AAPL's 10-day returns and the 10-day returns of all other assets, computing each correlation over 30 days. This can be achieved by doing the following:: returns = Returns(window_length=10) returns_slice = returns[sid(24)] aapl_correlations = returns.pearsonr( target=returns_slice, correlation_length=30, ) This is equivalent to doing:: aapl_correlations = RollingPearsonOfReturns( target=sid(24), returns_length=10, correlation_length=30, ) See Also -------- :func:`scipy.stats.pearsonr` :class:`zipline.pipeline.factors.RollingPearsonOfReturns` :meth:`Factor.spearmanr` """ from .statistical import RollingPearson return RollingPearson( base_factor=self, target=target, correlation_length=correlation_length, mask=mask, ) @expect_types( target=Term, correlation_length=int, mask=(Filter, NotSpecifiedType), ) @templated_docstring(CORRELATION_METHOD_NOTE=CORRELATION_METHOD_NOTE) def spearmanr(self, target, correlation_length, mask=NotSpecified): """ Construct a new Factor that computes rolling spearman rank correlation coefficients between ``target`` and the columns of ``self``. Parameters ---------- target : zipline.pipeline.Term The term used to compute correlations against each column of data produced by `self`. This may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, correlations are computed asset-wise. correlation_length : int Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets should have their correlation with the target slice computed each day. Returns ------- correlations : zipline.pipeline.Factor A new Factor that will compute correlations between ``target`` and the columns of ``self``. Notes ----- {CORRELATION_METHOD_NOTE} Examples -------- Suppose we want to create a factor that computes the correlation between AAPL's 10-day returns and the 10-day returns of all other assets, computing each correlation over 30 days. This can be achieved by doing the following:: returns = Returns(window_length=10) returns_slice = returns[sid(24)] aapl_correlations = returns.spearmanr( target=returns_slice, correlation_length=30, ) This is equivalent to doing:: aapl_correlations = RollingSpearmanOfReturns( target=sid(24), returns_length=10, correlation_length=30, ) See Also -------- :func:`scipy.stats.spearmanr` :meth:`Factor.pearsonr` """ from .statistical import RollingSpearman return RollingSpearman( base_factor=self, target=target, correlation_length=correlation_length, mask=mask, ) @expect_types( target=Term, regression_length=int, mask=(Filter, NotSpecifiedType), ) @templated_docstring(CORRELATION_METHOD_NOTE=CORRELATION_METHOD_NOTE) def linear_regression(self, target, regression_length, mask=NotSpecified): """ Construct a new Factor that performs an ordinary least-squares regression predicting the columns of `self` from `target`. Parameters ---------- target : zipline.pipeline.Term The term to use as the predictor/independent variable in each regression. This may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, regressions are computed asset-wise. regression_length : int Length of the lookback window over which to compute each regression. mask : zipline.pipeline.Filter, optional A Filter describing which assets should be regressed with the target slice each day. Returns ------- regressions : zipline.pipeline.Factor A new Factor that will compute linear regressions of `target` against the columns of `self`. Notes ----- {CORRELATION_METHOD_NOTE} Examples -------- Suppose we want to create a factor that regresses AAPL's 10-day returns against the 10-day returns of all other assets, computing each regression over 30 days. This can be achieved by doing the following:: returns = Returns(window_length=10) returns_slice = returns[sid(24)] aapl_regressions = returns.linear_regression( target=returns_slice, regression_length=30, ) This is equivalent to doing:: aapl_regressions = RollingLinearRegressionOfReturns( target=sid(24), returns_length=10, regression_length=30, ) See Also -------- :func:`scipy.stats.linregress` """ from .statistical import RollingLinearRegression return RollingLinearRegression( dependent=self, independent=target, regression_length=regression_length, mask=mask, ) @expect_types( min_percentile=(int, float), max_percentile=(int, float), mask=(Filter, NotSpecifiedType), groupby=(Classifier, NotSpecifiedType), ) @float64_only def winsorize( self, min_percentile, max_percentile, mask=NotSpecified, groupby=NotSpecified ): """ Construct a new factor that winsorizes the result of this factor. Winsorizing changes values ranked less than the minimum percentile to the value at the minimum percentile. Similarly, values ranking above the maximum percentile are changed to the value at the maximum percentile. Winsorizing is useful for limiting the impact of extreme data points without completely removing those points. If ``mask`` is supplied, ignore values where ``mask`` returns False when computing percentile cutoffs, and output NaN anywhere the mask is False. If ``groupby`` is supplied, winsorization is applied separately separately to each group defined by ``groupby``. Parameters ---------- min_percentile: float, int Entries with values at or below this percentile will be replaced with the (len(input) * min_percentile)th lowest value. If low values should not be clipped, use 0. max_percentile: float, int Entries with values at or above this percentile will be replaced with the (len(input) * max_percentile)th lowest value. If high values should not be clipped, use 1. mask : zipline.pipeline.Filter, optional A Filter defining values to ignore when winsorizing. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to winsorize. Returns ------- winsorized : zipline.pipeline.Factor A Factor producing a winsorized version of self. Examples -------- .. code-block:: python price = USEquityPricing.close.latest columns={ 'PRICE': price, 'WINSOR_1: price.winsorize( min_percentile=0.25, max_percentile=0.75 ), 'WINSOR_2': price.winsorize( min_percentile=0.50, max_percentile=1.0 ), 'WINSOR_3': price.winsorize( min_percentile=0.0, max_percentile=0.5 ), } Given a pipeline with columns, defined above, the result for a given day could look like: :: 'PRICE' 'WINSOR_1' 'WINSOR_2' 'WINSOR_3' Asset_1 1 2 4 3 Asset_2 2 2 4 3 Asset_3 3 3 4 3 Asset_4 4 4 4 4 Asset_5 5 5 5 4 Asset_6 6 5 5 4 See Also -------- :func:`scipy.stats.mstats.winsorize` :meth:`pandas.DataFrame.groupby` """ if not 0.0 <= min_percentile < max_percentile <= 1.0: raise BadPercentileBounds( min_percentile=min_percentile, max_percentile=max_percentile, upper_bound=1.0, ) return GroupedRowTransform( transform=winsorize, transform_args=(min_percentile, max_percentile), factor=self, groupby=groupby, dtype=self.dtype, missing_value=self.missing_value, mask=mask, window_safe=self.window_safe, ) @expect_types(bins=int, mask=(Filter, NotSpecifiedType)) def quantiles(self, bins, mask=NotSpecified): """ Construct a Classifier computing quantiles of the output of ``self``. Every non-NaN data point the output is labelled with an integer value from 0 to (bins - 1). NaNs are labelled with -1. If ``mask`` is supplied, ignore data points in locations for which ``mask`` produces False, and emit a label of -1 at those locations. Parameters ---------- bins : int Number of bins labels to compute. mask : zipline.pipeline.Filter, optional Mask of values to ignore when computing quantiles. Returns ------- quantiles : zipline.pipeline.Classifier A classifier producing integer labels ranging from 0 to (bins - 1). """ if mask is NotSpecified: mask = self.mask return Quantiles(inputs=(self,), bins=bins, mask=mask) @expect_types(mask=(Filter, NotSpecifiedType)) def quartiles(self, mask=NotSpecified): """ Construct a Classifier computing quartiles over the output of ``self``. Every non-NaN data point the output is labelled with a value of either 0, 1, 2, or 3, corresponding to the first, second, third, or fourth quartile over each row. NaN data points are labelled with -1. If ``mask`` is supplied, ignore data points in locations for which ``mask`` produces False, and emit a label of -1 at those locations. Parameters ---------- mask : zipline.pipeline.Filter, optional Mask of values to ignore when computing quartiles. Returns ------- quartiles : zipline.pipeline.Classifier A classifier producing integer labels ranging from 0 to 3. """ return self.quantiles(bins=4, mask=mask) @expect_types(mask=(Filter, NotSpecifiedType)) def quintiles(self, mask=NotSpecified): """ Construct a Classifier computing quintile labels on ``self``. Every non-NaN data point the output is labelled with a value of either 0, 1, 2, or 3, 4, corresonding to quintiles over each row. NaN data points are labelled with -1. If ``mask`` is supplied, ignore data points in locations for which ``mask`` produces False, and emit a label of -1 at those locations. Parameters ---------- mask : zipline.pipeline.Filter, optional Mask of values to ignore when computing quintiles. Returns ------- quintiles : zipline.pipeline.Classifier A classifier producing integer labels ranging from 0 to 4. """ return self.quantiles(bins=5, mask=mask) @expect_types(mask=(Filter, NotSpecifiedType)) def deciles(self, mask=NotSpecified): """ Construct a Classifier computing decile labels on ``self``. Every non-NaN data point the output is labelled with a value from 0 to 9 corresonding to deciles over each row. NaN data points are labelled with -1. If ``mask`` is supplied, ignore data points in locations for which ``mask`` produces False, and emit a label of -1 at those locations. Parameters ---------- mask : zipline.pipeline.Filter, optional Mask of values to ignore when computing deciles. Returns ------- deciles : zipline.pipeline.Classifier A classifier producing integer labels ranging from 0 to 9. """ return self.quantiles(bins=10, mask=mask) def top(self, N, mask=NotSpecified, groupby=NotSpecified): """ Construct a Filter matching the top N asset values of self each day. If ``groupby`` is supplied, returns a Filter matching the top N asset values for each group. Parameters ---------- N : int Number of assets passing the returned filter each day. mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when computing ranks. If mask is supplied, top values are computed ignoring any asset/date pairs for which `mask` produces a value of False. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to perform ranking. Returns ------- filter : zipline.pipeline.Filter """ if N == 1: # Special case: if N == 1, we can avoid doing a full sort on every # group, which is a big win. return self._maximum(mask=mask, groupby=groupby) return self.rank(ascending=False, mask=mask, groupby=groupby) <= N def bottom(self, N, mask=NotSpecified, groupby=NotSpecified): """ Construct a Filter matching the bottom N asset values of self each day. If ``groupby`` is supplied, returns a Filter matching the bottom N asset values **for each group** defined by ``groupby``. Parameters ---------- N : int Number of assets passing the returned filter each day. mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when computing ranks. If mask is supplied, bottom values are computed ignoring any asset/date pairs for which `mask` produces a value of False. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to perform ranking. Returns ------- filter : zipline.pipeline.Filter """ return self.rank(ascending=True, mask=mask, groupby=groupby) <= N def _maximum(self, mask=NotSpecified, groupby=NotSpecified): return MaximumFilter(self, groupby=groupby, mask=mask) def percentile_between(self, min_percentile, max_percentile, mask=NotSpecified): """ Construct a Filter matching values of self that fall within the range defined by ``min_percentile`` and ``max_percentile``. Parameters ---------- min_percentile : float [0.0, 100.0] Return True for assets falling above this percentile in the data. max_percentile : float [0.0, 100.0] Return True for assets falling below this percentile in the data. mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when percentile calculating thresholds. If mask is supplied, percentile cutoffs are computed each day using only assets for which ``mask`` returns True. Assets for which ``mask`` produces False will produce False in the output of this Factor as well. Returns ------- out : zipline.pipeline.Filter A new filter that will compute the specified percentile-range mask. """ return PercentileFilter( self, min_percentile=min_percentile, max_percentile=max_percentile, mask=mask, ) @if_not_float64_tell_caller_to_use_isnull def isnan(self): """ A Filter producing True for all values where this Factor is NaN. Returns ------- nanfilter : zipline.pipeline.Filter """ return self != self @if_not_float64_tell_caller_to_use_isnull def notnan(self): """ A Filter producing True for values where this Factor is not NaN. Returns ------- nanfilter : zipline.pipeline.Filter """ return ~self.isnan() @if_not_float64_tell_caller_to_use_isnull def isfinite(self): """ A Filter producing True for values where this Factor is anything but NaN, inf, or -inf. """ return (-inf < self) & (self < inf) def clip(self, min_bound, max_bound, mask=NotSpecified): """ Clip (limit) the values in a factor. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of ``[0, 1]`` is specified, values smaller than 0 become 0, and values larger than 1 become 1. Parameters ---------- min_bound : float The minimum value to use. max_bound : float The maximum value to use. mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when clipping. Notes ----- To only clip values on one side, ``-np.inf` and ``np.inf`` may be passed. For example, to only clip the maximum value but not clip a minimum value: .. code-block:: python factor.clip(min_bound=-np.inf, max_bound=user_provided_max) See Also -------- numpy.clip """ from .basic import Clip return Clip( inputs=[self], min_bound=min_bound, max_bound=max_bound, ) @classmethod def _principal_computable_term_type(cls): return Factor class NumExprFactor(NumericalExpression, Factor): """ Factor computed from a numexpr expression. Parameters ---------- expr : string A string suitable for passing to numexpr. All variables in 'expr' should be of the form "x_i", where i is the index of the corresponding factor input in 'binds'. binds : tuple A tuple of factors to use as inputs. Notes ----- NumExprFactors are constructed by numerical operators like `+` and `-`. Users should rarely need to construct a NumExprFactor directly. """ pass class GroupedRowTransform(Factor): """ A Factor that transforms an input factor by applying a row-wise shape-preserving transformation on classifier-defined groups of that Factor. This is most often useful for normalization operators like ``zscore`` or ``demean`` or for performing ranking using ``rank``. Parameters ---------- transform : function[ndarray[ndim=1] -> ndarray[ndim=1]] Function to apply over each row group. factor : zipline.pipeline.Factor The factor providing baseline data to transform. mask : zipline.pipeline.Filter Mask of entries to ignore when calculating transforms. groupby : zipline.pipeline.Classifier Classifier partitioning ``factor`` into groups to use when calculating means. transform_args : tuple[hashable] Additional positional arguments to forward to ``transform``. Notes ----- Users should rarely construct instances of this factor directly. Instead, they should construct instances via factor normalization methods like ``zscore`` and ``demean`` or using ``rank`` with ``groupby``. See Also -------- zipline.pipeline.Factor.zscore zipline.pipeline.Factor.demean zipline.pipeline.Factor.rank """ window_length = 0 def __new__( cls, transform, transform_args, factor, groupby, dtype, missing_value, mask, **kwargs, ): if mask is NotSpecified: mask = factor.mask else: mask = mask & factor.mask if groupby is NotSpecified: groupby = Everything(mask=mask) return super(GroupedRowTransform, cls).__new__( GroupedRowTransform, transform=transform, transform_args=transform_args, inputs=(factor, groupby), missing_value=missing_value, mask=mask, dtype=dtype, **kwargs, ) def _init(self, transform, transform_args, *args, **kwargs): self._transform = transform self._transform_args = transform_args return super(GroupedRowTransform, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, transform, transform_args, *args, **kwargs): return ( super(GroupedRowTransform, cls)._static_identity(*args, **kwargs), transform, transform_args, ) def _compute(self, arrays, dates, assets, mask): data = arrays[0] group_labels, null_label = self.inputs[1]._to_integral(arrays[1]) # Make a copy with the null code written to masked locations. group_labels = where(mask, group_labels, null_label) return where( group_labels != null_label, naive_grouped_rowwise_apply( data=data, group_labels=group_labels, func=self._transform, func_args=self._transform_args, out=empty_like(data, dtype=self.dtype), ), self.missing_value, ) @property def transform_name(self): return self._transform.__name__ def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" return type(self).__name__ + "(%r)" % self.transform_name class Rank(SingleInputMixin, Factor): """ A Factor representing the row-wise rank data of another Factor. Parameters ---------- factor : zipline.pipeline.Factor The factor on which to compute ranks. method : str, {'average', 'min', 'max', 'dense', 'ordinal'} The method used to assign ranks to tied elements. See `scipy.stats.rankdata` for a full description of the semantics for each ranking method. See Also -------- :func:`scipy.stats.rankdata` :class:`Factor.rank` Notes ----- Most users should call Factor.rank rather than directly construct an instance of this class. """ window_length = 0 dtype = float64_dtype window_safe = True def __new__(cls, factor, method, ascending, mask): return super(Rank, cls).__new__( cls, inputs=(factor,), method=method, ascending=ascending, mask=mask, ) def _init(self, method, ascending, *args, **kwargs): self._method = method self._ascending = ascending return super(Rank, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, method, ascending, *args, **kwargs): return ( super(Rank, cls)._static_identity(*args, **kwargs), method, ascending, ) def _validate(self): """ Verify that the stored rank method is valid. """ if self._method not in _RANK_METHODS: raise UnknownRankMethod( method=self._method, choices=set(_RANK_METHODS), ) return super(Rank, self)._validate() def _compute(self, arrays, dates, assets, mask): """ For each row in the input, compute a like-shaped array of per-row ranks. """ return masked_rankdata_2d( arrays[0], mask, self.inputs[0].missing_value, self._method, self._ascending, ) def __repr__(self): if self.mask is AssetExists(): # Don't include mask in repr if it's the default. mask_info = "" else: mask_info = ", mask={}".format(self.mask.recursive_repr()) return "{type}({input_}, method='{method}'{mask_info})".format( type=type(self).__name__, input_=self.inputs[0].recursive_repr(), method=self._method, mask_info=mask_info, ) def graph_repr(self): # Graphviz interprets `\l` as "divide label into lines, left-justified" return "Rank:\\l method: {!r}\\l mask: {}\\l".format( self._method, type(self.mask).__name__, ) class CustomFactor(PositiveWindowLengthMixin, CustomTermMixin, Factor): ''' Base class for user-defined Factors. Parameters ---------- inputs : iterable, optional An iterable of `BoundColumn` instances (e.g. USEquityPricing.close), describing the data to load and pass to `self.compute`. If this argument is not passed to the CustomFactor constructor, we look for a class-level attribute named `inputs`. outputs : iterable[str], optional An iterable of strings which represent the names of each output this factor should compute and return. If this argument is not passed to the CustomFactor constructor, we look for a class-level attribute named `outputs`. window_length : int, optional Number of rows to pass for each input. If this argument is not passed to the CustomFactor constructor, we look for a class-level attribute named `window_length`. mask : zipline.pipeline.Filter, optional A Filter describing the assets on which we should compute each day. Each call to ``CustomFactor.compute`` will only receive assets for which ``mask`` produced True on the day for which compute is being called. Notes ----- Users implementing their own Factors should subclass CustomFactor and implement a method named `compute` with the following signature: .. code-block:: python def compute(self, today, assets, out, *inputs): ... On each simulation date, ``compute`` will be called with the current date, an array of sids, an output array, and an input array for each expression passed as inputs to the CustomFactor constructor. The specific types of the values passed to `compute` are as follows:: today : np.datetime64[ns] Row label for the last row of all arrays passed as `inputs`. assets : np.array[int64, ndim=1] Column labels for `out` and`inputs`. out : np.array[self.dtype, ndim=1] Output array of the same shape as `assets`. `compute` should write its desired return values into `out`. If multiple outputs are specified, `compute` should write its desired return values into `out.<output_name>` for each output name in `self.outputs`. *inputs : tuple of np.array Raw data arrays corresponding to the values of `self.inputs`. ``compute`` functions should expect to be passed NaN values for dates on which no data was available for an asset. This may include dates on which an asset did not yet exist. For example, if a CustomFactor requires 10 rows of close price data, and asset A started trading on Monday June 2nd, 2014, then on Tuesday, June 3rd, 2014, the column of input data for asset A will have 9 leading NaNs for the preceding days on which data was not yet available. Examples -------- A CustomFactor with pre-declared defaults: .. code-block:: python class TenDayRange(CustomFactor): """ Computes the difference between the highest high in the last 10 days and the lowest low. Pre-declares high and low as default inputs and `window_length` as 10. """ inputs = [USEquityPricing.high, USEquityPricing.low] window_length = 10 def compute(self, today, assets, out, highs, lows): from numpy import nanmin, nanmax highest_highs = nanmax(highs, axis=0) lowest_lows = nanmin(lows, axis=0) out[:] = highest_highs - lowest_lows # Doesn't require passing inputs or window_length because they're # pre-declared as defaults for the TenDayRange class. ten_day_range = TenDayRange() A CustomFactor without defaults: .. code-block:: python class MedianValue(CustomFactor): """ Computes the median value of an arbitrary single input over an arbitrary window.. Does not declare any defaults, so values for `window_length` and `inputs` must be passed explicitly on every construction. """ def compute(self, today, assets, out, data): from numpy import nanmedian out[:] = data.nanmedian(data, axis=0) # Values for `inputs` and `window_length` must be passed explicitly to # MedianValue. median_close10 = MedianValue([USEquityPricing.close], window_length=10) median_low15 = MedianValue([USEquityPricing.low], window_length=15) A CustomFactor with multiple outputs: .. code-block:: python class MultipleOutputs(CustomFactor): inputs = [USEquityPricing.close] outputs = ['alpha', 'beta'] window_length = N def compute(self, today, assets, out, close): computed_alpha, computed_beta = some_function(close) out.alpha[:] = computed_alpha out.beta[:] = computed_beta # Each output is returned as its own Factor upon instantiation. alpha, beta = MultipleOutputs() # Equivalently, we can create a single factor instance and access each # output as an attribute of that instance. multiple_outputs = MultipleOutputs() alpha = multiple_outputs.alpha beta = multiple_outputs.beta Note: If a CustomFactor has multiple outputs, all outputs must have the same dtype. For instance, in the example above, if alpha is a float then beta must also be a float. ''' dtype = float64_dtype def _validate(self): try: super(CustomFactor, self)._validate() except UnsupportedDataType: if self.dtype in CLASSIFIER_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint="Did you mean to create a CustomClassifier?", ) elif self.dtype in FILTER_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint="Did you mean to create a CustomFilter?", ) raise def __getattribute__(self, name): outputs = object.__getattribute__(self, "outputs") if outputs is NotSpecified: return super(CustomFactor, self).__getattribute__(name) elif name in outputs: return RecarrayField(factor=self, attribute=name) else: try: return super(CustomFactor, self).__getattribute__(name) except AttributeError: raise AttributeError( "Instance of {factor} has no output named {attr!r}. " "Possible choices are: {choices}.".format( factor=type(self).__name__, attr=name, choices=self.outputs, ) ) def __iter__(self): if self.outputs is NotSpecified: raise ValueError( "{factor} does not have multiple outputs.".format( factor=type(self).__name__, ) ) return (RecarrayField(self, attr) for attr in self.outputs) class RecarrayField(SingleInputMixin, Factor): """ A single field from a multi-output factor. """ def __new__(cls, factor, attribute): return super(RecarrayField, cls).__new__( cls, attribute=attribute, inputs=[factor], window_length=0, mask=factor.mask, dtype=factor.dtype, missing_value=factor.missing_value, window_safe=factor.window_safe, ) def _init(self, attribute, *args, **kwargs): self._attribute = attribute return super(RecarrayField, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, attribute, *args, **kwargs): return ( super(RecarrayField, cls)._static_identity(*args, **kwargs), attribute, ) def _compute(self, windows, dates, assets, mask): return windows[0][self._attribute] def graph_repr(self): return "{}.{}".format(self.inputs[0].recursive_repr(), self._attribute) class Latest(LatestMixin, CustomFactor): """ Factor producing the most recently-known value of `inputs[0]` on each day. The `.latest` attribute of DataSet columns returns an instance of this Factor. """ window_length = 1 def compute(self, today, assets, out, data): out[:] = data[-1] class DailySummary(SingleInputMixin, Factor): """1D Factor that computes a summary statistic across all assets.""" ndim = 1 window_length = 0 params = ("func",) def __new__(cls, func, input_, mask, dtype): # TODO: We should be able to support datetime64 as well, but that # requires extra care for handling NaT. if dtype != float64_dtype: raise AssertionError( "DailySummary only supports float64 dtype, got {}".format(dtype), ) return super(DailySummary, cls).__new__( cls, inputs=[input_], dtype=dtype, missing_value=nan, window_safe=input_.window_safe, func=func, mask=mask, ) def _compute(self, arrays, dates, assets, mask): func = self.params["func"] data = arrays[0] data[~mask] = nan if not isnan(self.inputs[0].missing_value): data[data == self.inputs[0].missing_value] = nan return as_column(func(data, self.inputs[0].missing_value)) def __repr__(self): return "{}.{}()".format( self.inputs[0].recursive_repr(), self.params["func"].__name__, ) graph_repr = recursive_repr = __repr__ # Functions to be passed to GroupedRowTransform. These aren't defined inline # because the transformation function is part of the instance hash key. def demean(row): return row - nanmean(row) def zscore(row): with np.errstate(divide="ignore", invalid="ignore"): return (row - nanmean(row)) / nanstd(row) def winsorize(row, min_percentile, max_percentile): """ This implementation is based on scipy.stats.mstats.winsorize """ a = row.copy() nan_count = isnan(row).sum() nonnan_count = a.size - nan_count # NOTE: argsort() sorts nans to the end of the array. idx = a.argsort() # Set values at indices below the min percentile to the value of the entry # at the cutoff. if min_percentile > 0: lower_cutoff = int(min_percentile * nonnan_count) a[idx[:lower_cutoff]] = a[idx[lower_cutoff]] # Set values at indices above the max percentile to the value of the entry # at the cutoff. if max_percentile < 1: upper_cutoff = int(ceil(nonnan_count * max_percentile)) # if max_percentile is close to 1, then upper_cutoff might not # remove any values. if upper_cutoff < nonnan_count: start_of_nans = (-nan_count) if nan_count else None a[idx[upper_cutoff:start_of_nans]] = a[idx[upper_cutoff - 1]] return a
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/factors/factor.py
factor.py
from numbers import Number from numpy import ( arange, average, clip, copyto, exp, fmax, full, isnan, log, NINF, sqrt, sum as np_sum, unique, errstate as np_errstate, ) from zipline.pipeline.data import EquityPricing from zipline.utils.input_validation import expect_types from zipline.utils.math_utils import ( nanargmax, nanmax, nanmean, nanstd, nansum, ) from zipline.utils.numpy_utils import ( float64_dtype, ignore_nanwarnings, ) from .factor import CustomFactor from ..mixins import SingleInputMixin class Returns(CustomFactor): """ Calculates the percent change in close price over the given window_length. **Default Inputs**: [EquityPricing.close] """ inputs = [EquityPricing.close] window_safe = True def _validate(self): super(Returns, self)._validate() if self.window_length < 2: raise ValueError( "'Returns' expected a window length of at least 2, but was " "given {window_length}. For daily returns, use a window " "length of 2.".format(window_length=self.window_length) ) def compute(self, today, assets, out, close): out[:] = (close[-1] - close[0]) / close[0] class PercentChange(SingleInputMixin, CustomFactor): """ Calculates the percent change over the given window_length. **Default Inputs:** None **Default Window Length:** None Notes ----- Percent change is calculated as ``(new - old) / abs(old)``. """ window_safe = True def _validate(self): super(PercentChange, self)._validate() if self.window_length < 2: raise ValueError( "'PercentChange' expected a window length" "of at least 2, but was given {window_length}. " "For daily percent change, use a window " "length of 2.".format(window_length=self.window_length) ) def compute(self, today, assets, out, values): with np_errstate(divide="ignore", invalid="ignore"): out[:] = (values[-1] - values[0]) / abs(values[0]) class DailyReturns(Returns): """ Calculates daily percent change in close price. **Default Inputs**: [EquityPricing.close] """ inputs = [EquityPricing.close] window_safe = True window_length = 2 class SimpleMovingAverage(SingleInputMixin, CustomFactor): """ Average Value of an arbitrary column **Default Inputs**: None **Default Window Length**: None """ # numpy's nan functions throw warnings when passed an array containing only # nans, but they still returns the desired value (nan), so we ignore the # warning. ctx = ignore_nanwarnings() def compute(self, today, assets, out, data): out[:] = nanmean(data, axis=0) class WeightedAverageValue(CustomFactor): """ Helper for VWAP-like computations. **Default Inputs:** None **Default Window Length:** None """ def compute(self, today, assets, out, base, weight): out[:] = nansum(base * weight, axis=0) / nansum(weight, axis=0) class VWAP(WeightedAverageValue): """ Volume Weighted Average Price **Default Inputs:** [EquityPricing.close, EquityPricing.volume] **Default Window Length:** None """ inputs = (EquityPricing.close, EquityPricing.volume) class MaxDrawdown(SingleInputMixin, CustomFactor): """ Max Drawdown **Default Inputs:** None **Default Window Length:** None """ ctx = ignore_nanwarnings() def compute(self, today, assets, out, data): drawdowns = fmax.accumulate(data, axis=0) - data drawdowns[isnan(drawdowns)] = NINF drawdown_ends = nanargmax(drawdowns, axis=0) # TODO: Accelerate this loop in Cython or Numba. for i, end in enumerate(drawdown_ends): peak = nanmax(data[: end + 1, i]) out[i] = (peak - data[end, i]) / data[end, i] class AverageDollarVolume(CustomFactor): """ Average Daily Dollar Volume **Default Inputs:** [EquityPricing.close, EquityPricing.volume] **Default Window Length:** None """ inputs = [EquityPricing.close, EquityPricing.volume] def compute(self, today, assets, out, close, volume): out[:] = nansum(close * volume, axis=0) / len(close) def exponential_weights(length, decay_rate): """ Build a weight vector for an exponentially-weighted statistic. The resulting ndarray is of the form:: [decay_rate ** length, ..., decay_rate ** 2, decay_rate] Parameters ---------- length : int The length of the desired weight vector. decay_rate : float The rate at which entries in the weight vector increase or decrease. Returns ------- weights : ndarray[float64] """ return full(length, decay_rate, float64_dtype) ** arange(length + 1, 1, -1) class _ExponentialWeightedFactor(SingleInputMixin, CustomFactor): """ Base class for factors implementing exponential-weighted operations. **Default Inputs:** None **Default Window Length:** None Parameters ---------- inputs : length-1 list or tuple of BoundColumn The expression over which to compute the average. window_length : int > 0 Length of the lookback window over which to compute the average. decay_rate : float, 0 < decay_rate <= 1 Weighting factor by which to discount past observations. When calculating historical averages, rows are multiplied by the sequence:: decay_rate, decay_rate ** 2, decay_rate ** 3, ... Methods ------- weights from_span from_halflife from_center_of_mass """ params = ("decay_rate",) @classmethod @expect_types(span=Number) def from_span(cls, inputs, window_length, span, **kwargs): """ Convenience constructor for passing `decay_rate` in terms of `span`. Forwards `decay_rate` as `1 - (2.0 / (1 + span))`. This provides the behavior equivalent to passing `span` to pandas.ewma. Examples -------- .. code-block:: python # Equivalent to: # my_ewma = EWMA( # inputs=[EquityPricing.close], # window_length=30, # decay_rate=(1 - (2.0 / (1 + 15.0))), # ) my_ewma = EWMA.from_span( inputs=[EquityPricing.close], window_length=30, span=15, ) Notes ----- This classmethod is provided by both :class:`ExponentialWeightedMovingAverage` and :class:`ExponentialWeightedMovingStdDev`. """ if span <= 1: raise ValueError("`span` must be a positive number. %s was passed." % span) decay_rate = 1.0 - (2.0 / (1.0 + span)) assert 0.0 < decay_rate <= 1.0 return cls( inputs=inputs, window_length=window_length, decay_rate=decay_rate, **kwargs ) @classmethod @expect_types(halflife=Number) def from_halflife(cls, inputs, window_length, halflife, **kwargs): """ Convenience constructor for passing ``decay_rate`` in terms of half life. Forwards ``decay_rate`` as ``exp(log(.5) / halflife)``. This provides the behavior equivalent to passing `halflife` to pandas.ewma. Examples -------- .. code-block:: python # Equivalent to: # my_ewma = EWMA( # inputs=[EquityPricing.close], # window_length=30, # decay_rate=np.exp(np.log(0.5) / 15), # ) my_ewma = EWMA.from_halflife( inputs=[EquityPricing.close], window_length=30, halflife=15, ) Notes ----- This classmethod is provided by both :class:`ExponentialWeightedMovingAverage` and :class:`ExponentialWeightedMovingStdDev`. """ if halflife <= 0: raise ValueError( "`span` must be a positive number. %s was passed." % halflife ) decay_rate = exp(log(0.5) / halflife) assert 0.0 < decay_rate <= 1.0 return cls( inputs=inputs, window_length=window_length, decay_rate=decay_rate, **kwargs ) @classmethod def from_center_of_mass(cls, inputs, window_length, center_of_mass, **kwargs): """ Convenience constructor for passing `decay_rate` in terms of center of mass. Forwards `decay_rate` as `1 - (1 / 1 + center_of_mass)`. This provides behavior equivalent to passing `center_of_mass` to pandas.ewma. Examples -------- .. code-block:: python # Equivalent to: # my_ewma = EWMA( # inputs=[EquityPricing.close], # window_length=30, # decay_rate=(1 - (1 / 15.0)), # ) my_ewma = EWMA.from_center_of_mass( inputs=[EquityPricing.close], window_length=30, center_of_mass=15, ) Notes ----- This classmethod is provided by both :class:`ExponentialWeightedMovingAverage` and :class:`ExponentialWeightedMovingStdDev`. """ return cls( inputs=inputs, window_length=window_length, decay_rate=(1.0 - (1.0 / (1.0 + center_of_mass))), **kwargs, ) class ExponentialWeightedMovingAverage(_ExponentialWeightedFactor): """ Exponentially Weighted Moving Average **Default Inputs:** None **Default Window Length:** None Parameters ---------- inputs : length-1 list/tuple of BoundColumn The expression over which to compute the average. window_length : int > 0 Length of the lookback window over which to compute the average. decay_rate : float, 0 < decay_rate <= 1 Weighting factor by which to discount past observations. When calculating historical averages, rows are multiplied by the sequence:: decay_rate, decay_rate ** 2, decay_rate ** 3, ... Notes ----- - This class can also be imported under the name ``EWMA``. See Also -------- :meth:`pandas.DataFrame.ewm` """ def compute(self, today, assets, out, data, decay_rate): out[:] = average( data, axis=0, weights=exponential_weights(len(data), decay_rate), ) class ExponentialWeightedMovingStdDev(_ExponentialWeightedFactor): """ Exponentially Weighted Moving Standard Deviation **Default Inputs:** None **Default Window Length:** None Parameters ---------- inputs : length-1 list/tuple of BoundColumn The expression over which to compute the average. window_length : int > 0 Length of the lookback window over which to compute the average. decay_rate : float, 0 < decay_rate <= 1 Weighting factor by which to discount past observations. When calculating historical averages, rows are multiplied by the sequence:: decay_rate, decay_rate ** 2, decay_rate ** 3, ... Notes ----- - This class can also be imported under the name ``EWMSTD``. See Also -------- :func:`pandas.DataFrame.ewm` """ def compute(self, today, assets, out, data, decay_rate): weights = exponential_weights(len(data), decay_rate) mean = average(data, axis=0, weights=weights) variance = average((data - mean) ** 2, axis=0, weights=weights) squared_weight_sum = np_sum(weights) ** 2 bias_correction = squared_weight_sum / (squared_weight_sum - np_sum(weights**2)) out[:] = sqrt(variance * bias_correction) class LinearWeightedMovingAverage(SingleInputMixin, CustomFactor): """ Weighted Average Value of an arbitrary column **Default Inputs**: None **Default Window Length**: None """ # numpy's nan functions throw warnings when passed an array containing only # nans, but they still returns the desired value (nan), so we ignore the # warning. ctx = ignore_nanwarnings() def compute(self, today, assets, out, data): ndays = data.shape[0] # Initialize weights array weights = arange(1, ndays + 1, dtype=float64_dtype).reshape(ndays, 1) # Compute normalizer normalizer = (ndays * (ndays + 1)) / 2 # Weight the data weighted_data = data * weights # Compute weighted averages out[:] = nansum(weighted_data, axis=0) / normalizer class AnnualizedVolatility(CustomFactor): """ Volatility. The degree of variation of a series over time as measured by the standard deviation of daily returns. https://en.wikipedia.org/wiki/Volatility_(finance) **Default Inputs:** [Returns(window_length=2)] Parameters ---------- annualization_factor : float, optional The number of time units per year. Defaults is 252, the number of NYSE trading days in a normal year. """ inputs = [Returns(window_length=2)] params = {"annualization_factor": 252.0} window_length = 252 def compute(self, today, assets, out, returns, annualization_factor): out[:] = nanstd(returns, axis=0) * (annualization_factor**0.5) class PeerCount(SingleInputMixin, CustomFactor): """ Peer Count of distinct categories in a given classifier. This factor is returned by the classifier instance method peer_count() **Default Inputs:** None **Default Window Length:** 1 """ window_length = 1 def _validate(self): super(PeerCount, self)._validate() if self.window_length != 1: raise ValueError( "'PeerCount' expected a window length of 1, but was given" "{window_length}.".format(window_length=self.window_length) ) def compute(self, today, assets, out, classifier_values): # Convert classifier array to group label int array group_labels, null_label = self.inputs[0]._to_integral(classifier_values[0]) _, inverse, counts = unique( # Get counts, idx of unique groups group_labels, return_counts=True, return_inverse=True, ) copyto(out, counts[inverse], where=(group_labels != null_label)) # Convenience aliases EWMA = ExponentialWeightedMovingAverage EWMSTD = ExponentialWeightedMovingStdDev class Clip(CustomFactor): """ Clip (limit) the values in a factor. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of ``[0, 1]`` is specified, values smaller than 0 become 0, and values larger than 1 become 1. **Default Window Length:** 1 Parameters ---------- min_bound : float The minimum value to use. max_bound : float The maximum value to use. Notes ----- To only clip values on one side, ``-np.inf` and ``np.inf`` may be passed. For example, to only clip the maximum value but not clip a minimum value: .. code-block:: python Clip(inputs=[factor], min_bound=-np.inf, max_bound=user_provided_max) See Also -------- numpy.clip """ window_length = 1 params = ("min_bound", "max_bound") def compute(self, today, assets, out, values, min_bound, max_bound): clip(values[-1], min_bound, max_bound, out=out)
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/factors/basic.py
basic.py
from numpy import newaxis from zipline.utils.numpy_utils import ( NaTD, busday_count_mask_NaT, datetime64D_dtype, float64_dtype, ) from .factor import Factor class BusinessDaysSincePreviousEvent(Factor): """ Abstract class for business days since a previous event. Returns the number of **business days** (not trading days!) since the most recent event date for each asset. This doesn't use trading days for symmetry with BusinessDaysUntilNextEarnings. Assets which announced or will announce the event today will produce a value of 0.0. Assets that announced the event on the previous business day will produce a value of 1.0. Assets for which the event date is `NaT` will produce a value of `NaN`. Example ------- ``BusinessDaysSincePreviousEvent`` can be used to create an event-driven factor. For instance, you may want to only trade assets that have a data point with an asof_date in the last 5 business days. To do this, you can create a ``BusinessDaysSincePreviousEvent`` factor, supplying the relevant asof_date column from your dataset as input, like this:: # Factor computing number of days since most recent asof_date # per asset. days_since_event = BusinessDaysSincePreviousEvent( inputs=[MyDataset.asof_date] ) # Filter returning True for each asset whose most recent asof_date # was in the last 5 business days. recency_filter = (days_since_event <= 5) """ window_length = 0 dtype = float64_dtype def _compute(self, arrays, dates, assets, mask): # Coerce from [ns] to [D] for numpy busday_count. announce_dates = arrays[0].astype(datetime64D_dtype) # Set masked values to NaT. announce_dates[~mask] = NaTD # Convert row labels into a column vector for broadcasted comparison. reference_dates = dates.values.astype(datetime64D_dtype)[:, newaxis] return busday_count_mask_NaT(announce_dates, reference_dates) class BusinessDaysUntilNextEvent(Factor): """ Abstract class for business days since a next event. Returns the number of **business days** (not trading days!) until the next known event date for each asset. This doesn't use trading days because the trading calendar includes information that may not have been available to the algorithm at the time when `compute` is called. For example, the NYSE closings September 11th 2001, would not have been known to the algorithm on September 10th. Assets that announced or will announce the event today will produce a value of 0.0. Assets that will announce the event on the next upcoming business day will produce a value of 1.0. Assets for which the event date is `NaT` will produce a value of `NaN`. """ window_length = 0 dtype = float64_dtype def _compute(self, arrays, dates, assets, mask): # Coerce from [ns] to [D] for numpy busday_count. announce_dates = arrays[0].astype(datetime64D_dtype) # Set masked values to NaT. announce_dates[~mask] = NaTD # Convert row labels into a column vector for broadcasted comparison. reference_dates = dates.values.astype(datetime64D_dtype)[:, newaxis] return busday_count_mask_NaT(reference_dates, announce_dates)
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/factors/events.py
events.py
from functools import partial from numbers import Number import operator import re from numpy import where, isnan, nan, zeros import pandas as pd from zipline.errors import UnsupportedDataType from zipline.lib.labelarray import LabelArray from zipline.lib.quantiles import quantiles from zipline.pipeline.api_utils import restrict_to_dtype from zipline.pipeline.dtypes import ( CLASSIFIER_DTYPES, FACTOR_DTYPES, FILTER_DTYPES, ) from zipline.pipeline.sentinels import NotSpecified from zipline.pipeline.term import ComputableTerm from zipline.utils.compat import unicode from zipline.utils.input_validation import expect_types, expect_dtypes from zipline.utils.numpy_utils import ( categorical_dtype, int64_dtype, vectorized_is_element, ) from ..filters import ArrayPredicate, NumExprFilter from ..mixins import ( CustomTermMixin, LatestMixin, PositiveWindowLengthMixin, RestrictedDTypeMixin, SingleInputMixin, StandardOutputs, ) string_classifiers_only = restrict_to_dtype( dtype=categorical_dtype, message_template=( "{method_name}() is only defined on Classifiers producing strings" " but it was called on a Classifier of dtype {received_dtype}." ), ) class Classifier(RestrictedDTypeMixin, ComputableTerm): """ A Pipeline expression computing a categorical output. Classifiers are most commonly useful for describing grouping keys for complex transformations on Factor outputs. For example, Factor.demean() and Factor.zscore() can be passed a Classifier in their ``groupby`` argument, indicating that means/standard deviations should be computed on assets for which the classifier produced the same label. """ # Used by RestrictedDTypeMixin ALLOWED_DTYPES = CLASSIFIER_DTYPES categories = NotSpecified # We explicitly don't support classifier to classifier comparisons, since # the stored values likely don't mean the same thing. This may be relaxed # in the future, but for now we're starting conservatively. def eq(self, other): """ Construct a Filter returning True for asset/date pairs where the output of ``self`` matches ``other``. """ # We treat this as an error because missing_values have NaN semantics, # which means this would return an array of all False, which is almost # certainly not what the user wants. if other == self.missing_value: raise ValueError( "Comparison against self.missing_value ({value!r}) in" " {typename}.eq().\n" "Missing values have NaN semantics, so the " "requested comparison would always produce False.\n" "Use the isnull() method to check for missing values.".format( value=other, typename=(type(self).__name__), ) ) if isinstance(other, Number) != (self.dtype == int64_dtype): raise InvalidClassifierComparison(self, other) if isinstance(other, Number): return NumExprFilter.create( "x_0 == {other}".format(other=int(other)), binds=(self,), ) else: return ArrayPredicate( term=self, op=operator.eq, opargs=(other,), ) def __ne__(self, other): """ Construct a Filter returning True for asset/date pairs where the output of ``self`` matches ``other. """ if isinstance(other, Number) != (self.dtype == int64_dtype): raise InvalidClassifierComparison(self, other) if isinstance(other, Number): return NumExprFilter.create( "((x_0 != {other}) & (x_0 != {missing}))".format( other=int(other), missing=self.missing_value, ), binds=(self,), ) else: # Numexpr doesn't know how to use LabelArrays. return ArrayPredicate(term=self, op=operator.ne, opargs=(other,)) def bad_compare(opname, other): raise TypeError("cannot compare classifiers with %s" % opname) __gt__ = partial(bad_compare, ">") __ge__ = partial(bad_compare, ">=") __le__ = partial(bad_compare, "<=") __lt__ = partial(bad_compare, "<") del bad_compare @string_classifiers_only @expect_types(prefix=(bytes, unicode)) def startswith(self, prefix): """ Construct a Filter matching values starting with ``prefix``. Parameters ---------- prefix : str String prefix against which to compare values produced by ``self``. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces a string starting with ``prefix``. """ return ArrayPredicate( term=self, op=LabelArray.startswith, opargs=(prefix,), ) @string_classifiers_only @expect_types(suffix=(bytes, unicode)) def endswith(self, suffix): """ Construct a Filter matching values ending with ``suffix``. Parameters ---------- suffix : str String suffix against which to compare values produced by ``self``. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces a string ending with ``prefix``. """ return ArrayPredicate( term=self, op=LabelArray.endswith, opargs=(suffix,), ) @string_classifiers_only @expect_types(substring=(bytes, unicode)) def has_substring(self, substring): """ Construct a Filter matching values containing ``substring``. Parameters ---------- substring : str Sub-string against which to compare values produced by ``self``. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces a string containing ``substring``. """ return ArrayPredicate( term=self, op=LabelArray.has_substring, opargs=(substring,), ) @string_classifiers_only @expect_types(pattern=(bytes, unicode, type(re.compile("")))) def matches(self, pattern): """ Construct a Filter that checks regex matches against ``pattern``. Parameters ---------- pattern : str Regex pattern against which to compare values produced by ``self``. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces a string matched by ``pattern``. See Also -------- :mod:`Python Regular Expressions <re>` """ return ArrayPredicate( term=self, op=LabelArray.matches, opargs=(pattern,), ) # TODO: Support relabeling for integer dtypes. @string_classifiers_only def relabel(self, relabeler): """ Convert ``self`` into a new classifier by mapping a function over each element produced by ``self``. Parameters ---------- relabeler : function[str -> str or None] A function to apply to each unique value produced by ``self``. Returns ------- relabeled : Classifier A classifier produced by applying ``relabeler`` to each unique value produced by ``self``. """ return Relabel(term=self, relabeler=relabeler) def element_of(self, choices): """ Construct a Filter indicating whether values are in ``choices``. Parameters ---------- choices : iterable[str or int] An iterable of choices. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces an entry in ``choices``. """ try: choices = frozenset(choices) except Exception as e: raise TypeError( "Expected `choices` to be an iterable of hashable values," " but got {} instead.\n" "This caused the following error: {!r}.".format(choices, e) ) if self.missing_value in choices: raise ValueError( "Found self.missing_value ({mv!r}) in choices supplied to" " {typename}.{meth_name}().\n" "Missing values have NaN semantics, so the" " requested comparison would always produce False.\n" "Use the isnull() method to check for missing values.\n" "Received choices were {choices}.".format( mv=self.missing_value, typename=(type(self).__name__), choices=sorted(choices), meth_name=self.element_of.__name__, ) ) def only_contains(type_, values): return all(isinstance(v, type_) for v in values) if self.dtype == int64_dtype: if only_contains(int, choices): return ArrayPredicate( term=self, op=vectorized_is_element, opargs=(choices,), ) else: raise TypeError( "Found non-int in choices for {typename}.element_of.\n" "Supplied choices were {choices}.".format( typename=type(self).__name__, choices=choices, ) ) elif self.dtype == categorical_dtype: if only_contains((bytes, unicode), choices): return ArrayPredicate( term=self, op=LabelArray.element_of, opargs=(choices,), ) else: raise TypeError( "Found non-string in choices for {typename}.element_of.\n" "Supplied choices were {choices}.".format( typename=type(self).__name__, choices=choices, ) ) assert False, "Unknown dtype in Classifier.element_of %s." % self.dtype def postprocess(self, data): if self.dtype == int64_dtype: return data if not isinstance(data, LabelArray): raise AssertionError("Expected a LabelArray, got %s." % type(data)) return data.as_categorical() def to_workspace_value(self, result, assets): """ Called with the result of a pipeline. This needs to return an object which can be put into the workspace to continue doing computations. This is the inverse of :func:`~zipline.pipeline.term.Term.postprocess`. """ if self.dtype == int64_dtype: return super(Classifier, self).to_workspace_value(result, assets) assert isinstance( result.values, pd.Categorical ), "Expected a Categorical, got %r." % type(result.values) with_missing = pd.Series( data=pd.Categorical( result.values, result.values.categories.union([self.missing_value]), ), index=result.index, ) return LabelArray( super(Classifier, self).to_workspace_value( with_missing, assets, ), self.missing_value, ) @classmethod def _principal_computable_term_type(cls): return Classifier def _to_integral(self, output_array): """ Convert an array produced by this classifier into an array of integer labels and a missing value label. """ if self.dtype == int64_dtype: group_labels = output_array null_label = self.missing_value elif self.dtype == categorical_dtype: # Coerce LabelArray into an isomorphic array of ints. This is # necessary because np.where doesn't know about LabelArrays or the # void dtype. group_labels = output_array.as_int_array() null_label = output_array.missing_value_code else: raise AssertionError("Unexpected Classifier dtype: %s." % self.dtype) return group_labels, null_label def peer_count(self, mask=NotSpecified): """ Construct a factor that gives the number of occurrences of each distinct category in a classifier. Parameters ---------- mask : zipline.pipeline.Filter, optional If passed, only count assets passing the filter. Default behavior is to count all assets. Examples -------- Let ``c`` be a Classifier which would produce the following output:: AAPL MSFT MCD BK AMZN FB 2015-05-05 'a' 'a' None 'b' 'a' None 2015-05-06 'b' 'a' 'c' 'b' 'b' 'b' 2015-05-07 None 'a' 'aa' 'aa' 'aa' None 2015-05-08 'c' 'c' 'c' 'c' 'c' 'c' Then ``c.peer_count()`` will count, for each row, the total number of assets in each classifier category produced by ``c``. Missing data will be evaluated to NaN. :: AAPL MSFT MCD BK AMZN FB 2015-05-05 3.0 3.0 NaN 1.0 3.0 NaN 2015-05-06 4.0 1.0 1.0 4.0 4.0 4.0 2015-05-07 NaN 1.0 3.0 3.0 3.0 NaN 2015-05-08 6.0 6.0 6.0 6.0 6.0 6.0 Returns ------- factor : CustomFactor A CustomFactor that counts, for each asset, the total number of assets with the same classifier category label. """ # Lazy import due to cyclic dependencies in factor.py, classifier.py from ..factors import PeerCount return PeerCount(inputs=[self], mask=mask) class Everything(Classifier): """ A trivial classifier that classifies everything the same. """ dtype = int64_dtype window_length = 0 inputs = () missing_value = -1 def _compute(self, arrays, dates, assets, mask): return where( mask, zeros(shape=mask.shape, dtype=int64_dtype), self.missing_value, ) class Quantiles(SingleInputMixin, Classifier): """ A classifier computing quantiles over an input. """ params = ("bins",) dtype = int64_dtype window_length = 0 missing_value = -1 def _compute(self, arrays, dates, assets, mask): data = arrays[0] bins = self.params["bins"] to_bin = where(mask, data, nan) result = quantiles(to_bin, bins) # Write self.missing_value into nan locations, whether they were # generated by our input mask or not. result[isnan(result)] = self.missing_value return result.astype(int64_dtype) def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" return type(self).__name__ + "(%d)" % self.params["bins"] class Relabel(SingleInputMixin, Classifier): """ A classifier applying a relabeling function on the result of another classifier. Parameters ---------- arg : zipline.pipeline.Classifier Term produceing the input to be relabeled. relabel_func : function(LabelArray) -> LabelArray Function to apply to the result of `term`. """ window_length = 0 params = ("relabeler",) # TODO: Support relabeling for integer dtypes. @expect_dtypes(term=categorical_dtype) @expect_types(term=Classifier) def __new__(cls, term, relabeler): return super(Relabel, cls).__new__( cls, inputs=(term,), dtype=term.dtype, mask=term.mask, relabeler=relabeler, ) def _compute(self, arrays, dates, assets, mask): relabeler = self.params["relabeler"] data = arrays[0] if isinstance(data, LabelArray): result = data.map(relabeler) result[~mask] = data.missing_value else: raise NotImplementedError( "Relabeling is not currently supported for " "int-dtype classifiers." ) return result class CustomClassifier( PositiveWindowLengthMixin, StandardOutputs, CustomTermMixin, Classifier ): """ Base class for user-defined Classifiers. Does not suppport multiple outputs. See Also -------- zipline.pipeline.CustomFactor zipline.pipeline.CustomFilter """ def _validate(self): try: super(CustomClassifier, self)._validate() except UnsupportedDataType: if self.dtype in FACTOR_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint="Did you mean to create a CustomFactor?", ) elif self.dtype in FILTER_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint="Did you mean to create a CustomFilter?", ) raise def _allocate_output(self, windows, shape): """ Override the default array allocation to produce a LabelArray when we have a string-like dtype. """ if self.dtype == int64_dtype: return super(CustomClassifier, self)._allocate_output( windows, shape, ) # This is a little bit of a hack. We might not know what the # categories for a LabelArray are until it's actually been loaded, so # we need to look at the underlying data. return windows[0].data.empty_like(shape) class Latest(LatestMixin, CustomClassifier): """ A classifier producing the latest value of an input. See Also -------- zipline.pipeline.data.dataset.BoundColumn.latest """ pass class InvalidClassifierComparison(TypeError): def __init__(self, classifier, compval): super(InvalidClassifierComparison, self).__init__( "Can't compare classifier of dtype" " {dtype} to value {value} of type {type}.".format( dtype=classifier.dtype, value=compval, type=type(compval).__name__, ) )
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/classifiers/classifier.py
classifier.py
import abc from collections import namedtuple, OrderedDict from itertools import repeat from textwrap import dedent from weakref import WeakKeyDictionary from toolz import first from zipline.currency import Currency from zipline.data.fx import DEFAULT_FX_RATE from zipline.pipeline.classifiers import Classifier, Latest as LatestClassifier from zipline.pipeline.domain import Domain, GENERIC from zipline.pipeline.factors import Factor, Latest as LatestFactor from zipline.pipeline.filters import Filter, Latest as LatestFilter from zipline.pipeline.sentinels import NotSpecified, sentinel from zipline.pipeline.term import ( AssetExists, LoadableTerm, validate_dtype, ) from zipline.utils.formatting import s, plural from zipline.utils.input_validation import ( coerce_types, ensure_dtype, expect_types, ) from zipline.utils.numpy_utils import float64_dtype, NoDefaultMissingValue from zipline.utils.preprocess import preprocess from zipline.utils.string_formatting import bulleted_list IsSpecialization = sentinel("IsSpecialization") class Column(object): """ An abstract column of data, not yet associated with a dataset. """ @preprocess(dtype=ensure_dtype) def __init__( self, dtype, missing_value=NotSpecified, doc=None, metadata=None, currency_aware=False, ): if currency_aware and dtype != float64_dtype: raise ValueError( "Columns cannot be constructed with currency_aware={}, " "dtype={}. Currency aware columns must have a float64 dtype.".format( currency_aware, dtype ) ) self.dtype = dtype self.missing_value = missing_value self.doc = doc self.metadata = metadata.copy() if metadata is not None else {} self.currency_aware = currency_aware def bind(self, name): """ Bind a `Column` object to its name. """ return _BoundColumnDescr( dtype=self.dtype, missing_value=self.missing_value, name=name, doc=self.doc, metadata=self.metadata, currency_aware=self.currency_aware, ) class _BoundColumnDescr(object): """ Intermediate class that sits on `DataSet` objects and returns memoized `BoundColumn` objects when requested. This exists so that subclasses of DataSets don't share columns with their parent classes. """ def __init__( self, dtype, missing_value, name, doc, metadata, currency_aware ): # Validating and calculating default missing values here guarantees # that we fail quickly if the user passes an unsupporte dtype or fails # to provide a missing value for a dtype that requires one # (e.g. int64), but still enables us to provide an error message that # points to the name of the failing column. try: self.dtype, self.missing_value = validate_dtype( termname="Column(name={name!r})".format(name=name), dtype=dtype, missing_value=missing_value, ) except NoDefaultMissingValue: # Re-raise with a more specific message. raise NoDefaultMissingValue( "Failed to create Column with name {name!r} and" " dtype {dtype} because no missing_value was provided\n\n" "Columns with dtype {dtype} require a missing_value.\n" "Please pass missing_value to Column() or use a different" " dtype.".format(dtype=dtype, name=name) ) self.name = name self.doc = doc self.metadata = metadata self.currency_aware = currency_aware def __get__(self, instance, owner): """ Produce a concrete BoundColumn object when accessed. We don't bind to datasets at class creation time so that subclasses of DataSets produce different BoundColumns. """ return BoundColumn( dtype=self.dtype, missing_value=self.missing_value, dataset=owner, name=self.name, doc=self.doc, metadata=self.metadata, currency_conversion=None, currency_aware=self.currency_aware, ) class BoundColumn(LoadableTerm): """ A column of data that's been concretely bound to a particular dataset. Attributes ---------- dtype : numpy.dtype The dtype of data produced when this column is loaded. latest : zipline.pipeline.LoadableTerm A :class:`~zipline.pipeline.Filter`, :class:`~zipline.pipeline.Factor`, or :class:`~zipline.pipeline.Classifier` computing the most recently known value of this column on each date. See :class:`zipline.pipeline.mixins.LatestMixin` for more details. dataset : zipline.pipeline.data.DataSet The dataset to which this column is bound. name : str The name of this column. metadata : dict Extra metadata associated with this column. currency_aware : bool Whether or not this column produces currency-denominated data. Notes ----- Instances of this class are dynamically created upon access to attributes of :class:`~zipline.pipeline.data.DataSet`. For example, :attr:`~zipline.pipeline.data.EquityPricing.close` is an instance of this class. Pipeline API users should never construct instances of this directly. """ mask = AssetExists() window_safe = True def __new__( cls, dtype, missing_value, dataset, name, doc, metadata, currency_conversion, currency_aware, ): if currency_aware and dtype != float64_dtype: raise AssertionError( "The {} column on dataset {} cannot be constructed with " "currency_aware={}, dtype={}. Currency aware columns must " "have a float64 dtype.".format( name, dataset, currency_aware, dtype, ) ) return super(BoundColumn, cls).__new__( cls, domain=dataset.domain, dtype=dtype, missing_value=missing_value, dataset=dataset, name=name, ndim=dataset.ndim, doc=doc, metadata=metadata, currency_conversion=currency_conversion, currency_aware=currency_aware, ) def _init( self, dataset, name, doc, metadata, currency_conversion, currency_aware, *args, **kwargs, ): self._dataset = dataset self._name = name self.__doc__ = doc self._metadata = metadata self._currency_conversion = currency_conversion self._currency_aware = currency_aware return super(BoundColumn, self)._init(*args, **kwargs) @classmethod def _static_identity( cls, dataset, name, doc, metadata, currency_conversion, currency_aware, *args, **kwargs, ): return ( super(BoundColumn, cls)._static_identity(*args, **kwargs), dataset, name, doc, frozenset(sorted(metadata.items(), key=first)), currency_conversion, currency_aware, ) def __lt__(self, other): msg = "Can't compare '{}' with '{}'. (Did you mean to use '.latest'?)" raise TypeError(msg.format(self.qualname, other.__class__.__name__)) __gt__ = __le__ = __ge__ = __lt__ def _replace(self, **kwargs): kw = dict( dtype=self.dtype, missing_value=self.missing_value, dataset=self._dataset, name=self._name, doc=self.__doc__, metadata=self._metadata, currency_conversion=self._currency_conversion, currency_aware=self._currency_aware, ) kw.update(kwargs) return type(self)(**kw) def specialize(self, domain): """Specialize ``self`` to a concrete domain.""" if domain == self.domain: return self return self._replace(dataset=self._dataset.specialize(domain)) def unspecialize(self): """ Unspecialize a column to its generic form. This is equivalent to ``column.specialize(GENERIC)``. """ return self.specialize(GENERIC) @coerce_types(currency=(str, Currency)) def fx(self, currency): """ Construct a currency-converted version of this column. Parameters ---------- currency : str or zipline.currency.Currency Currency into which to convert this column's data. Returns ------- column : BoundColumn Column producing the same data as ``self``, but currency-converted into ``currency``. """ conversion = self._currency_conversion if not self._currency_aware: raise TypeError( "The .fx() method cannot be called on {} because it does not " "produce currency-denominated data.".format(self.qualname) ) elif conversion is not None and conversion.currency == currency: return self return self._replace( currency_conversion=CurrencyConversion( currency=currency, field=DEFAULT_FX_RATE, ) ) @property def currency_conversion(self): """Specification for currency conversions applied for this term.""" return self._currency_conversion @property def currency_aware(self): """ Whether or not this column produces currency-denominated data. """ return self._currency_aware @property def dataset(self): """ The dataset to which this column is bound. """ return self._dataset @property def name(self): """ The name of this column. """ return self._name @property def metadata(self): """ A copy of the metadata for this column. """ return self._metadata.copy() @property def qualname(self): """The fully-qualified name of this column.""" out = ".".join([self.dataset.qualname, self.name]) conversion = self._currency_conversion if conversion is not None: out += ".fx({!r})".format(conversion.currency.code) return out @property def latest(self): dtype = self.dtype if dtype in Filter.ALLOWED_DTYPES: Latest = LatestFilter elif dtype in Classifier.ALLOWED_DTYPES: Latest = LatestClassifier else: assert dtype in Factor.ALLOWED_DTYPES, "Unknown dtype %s." % dtype Latest = LatestFactor return Latest( inputs=(self,), dtype=dtype, missing_value=self.missing_value, ndim=self.ndim, ) def __repr__(self): return "{qualname}::{dtype}".format( qualname=self.qualname, dtype=self.dtype.name, ) def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" # Graphviz interprets `\l` as "divide label into lines, left-justified" return "BoundColumn:\\l Dataset: {}\\l Column: {}\\l".format( self.dataset.__name__, self.name ) def recursive_repr(self): """Short repr used to render in recursive contexts.""" return self.qualname class DataSetMeta(type): """ Metaclass for DataSets Supplies name and dataset information to Column attributes, and manages families of specialized dataset. """ def __new__(mcls, name, bases, dict_): if len(bases) != 1: # Disallowing multiple inheritance makes it easier for us to # determine whether a given dataset is the root for its family of # specializations. raise TypeError("Multiple dataset inheritance is not supported.") # This marker is set in the class dictionary by `specialize` below. is_specialization = dict_.pop(IsSpecialization, False) newtype = super(DataSetMeta, mcls).__new__(mcls, name, bases, dict_) if not isinstance(newtype.domain, Domain): raise TypeError( "Expected a Domain for {}.domain, but got {} instead.".format( newtype.__name__, type(newtype.domain), ) ) # Collect all of the column names that we inherit from our parents. column_names = set().union( *(getattr(base, "_column_names", ()) for base in bases) ) # Collect any new columns from this dataset. for maybe_colname, maybe_column in dict_.items(): if isinstance(maybe_column, Column): # add column names defined on our class bound_column_descr = maybe_column.bind(maybe_colname) setattr(newtype, maybe_colname, bound_column_descr) column_names.add(maybe_colname) newtype._column_names = frozenset(column_names) if not is_specialization: # This is the new root of a family of specializations. Store the # memoized dictionary for family on this type. newtype._domain_specializations = WeakKeyDictionary( { newtype.domain: newtype, } ) return newtype @expect_types(domain=Domain) def specialize(self, domain): """ Specialize a generic DataSet to a concrete domain. Parameters ---------- domain : zipline.pipeline.domain.Domain Domain to which we should generate a specialization. Returns ------- specialized : type A new :class:`~zipline.pipeline.data.DataSet` subclass with the same columns as ``self``, but specialized to ``domain``. """ # We're already the specialization to this domain, so just return self. if domain == self.domain: return self try: return self._domain_specializations[domain] except KeyError: if not self._can_create_new_specialization(domain): # This either means we're already a specialization and trying # to create a new specialization, or we're the generic version # of a root-specialized dataset, which we don't want to create # new specializations of. raise ValueError( "Can't specialize {dataset} from {current} to new domain {new}.".format( dataset=self.__name__, current=self.domain, new=domain, ) ) new_type = self._create_specialization(domain) self._domain_specializations[domain] = new_type return new_type def unspecialize(self): """ Unspecialize a dataset to its generic form. This is equivalent to ``dataset.specialize(GENERIC)``. """ return self.specialize(GENERIC) def _can_create_new_specialization(self, domain): # Always allow specializing to a generic domain. if domain is GENERIC: return True elif "_domain_specializations" in vars(self): # This branch is True if we're the root of a family. # Allow specialization if we're generic. return self.domain is GENERIC else: # If we're not the root of a family, we can't create any new # specializations. return False def _create_specialization(self, domain): # These are all assertions because we should have handled these cases # already in specialize(). assert isinstance(domain, Domain) assert ( domain not in self._domain_specializations ), "Domain specializations should be memoized!" if domain is not GENERIC: assert ( self.domain is GENERIC ), "Can't specialize dataset with domain {} to domain {}.".format( self.domain, domain, ) # Create a new subclass of ``self`` with the given domain. # Mark that it's a specialization so that we know not to create a new # family for it. name = self.__name__ bases = (self,) dict_ = {"domain": domain, IsSpecialization: True} out = type(name, bases, dict_) out.__module__ = self.__module__ return out @property def columns(self): return frozenset( getattr(self, colname) for colname in self._column_names ) @property def qualname(self): if self.domain is GENERIC: specialization_key = "" else: specialization_key = "<" + self.domain.country_code + ">" return self.__name__ + specialization_key # NOTE: We used to use `functools.total_ordering` to account for all of the # other rich comparison methods, but it has issues in python 3 and # this method is only used for test purposes, so for now we will just # keep this in isolation. If we ever need any of the other comparison # methods we will have to implement them individually. def __lt__(self, other): return id(self) < id(other) def __repr__(self): return "<DataSet: %r, domain=%s>" % (self.__name__, self.domain) class DataSet(object, metaclass=DataSetMeta): """ Base class for Pipeline datasets. A :class:`DataSet` is defined by two parts: 1. A collection of :class:`~zipline.pipeline.data.Column` objects that describe the queryable attributes of the dataset. 2. A :class:`~zipline.pipeline.domain.Domain` describing the assets and calendar of the data represented by the :class:`DataSet`. To create a new Pipeline dataset, define a subclass of :class:`DataSet` and set one or more :class:`Column` objects as class-level attributes. Each column requires a ``np.dtype`` that describes the type of data that should be produced by a loader for the dataset. Integer columns must also provide a "missing value" to be used when no value is available for a given asset/date combination. By default, the domain of a dataset is the special singleton value, :data:`~zipline.pipeline.domain.GENERIC`, which means that they can be used in a Pipeline running on **any** domain. In some cases, it may be preferable to restrict a dataset to only allow support a single domain. For example, a DataSet may describe data from a vendor that only covers the US. To restrict a dataset to a specific domain, define a `domain` attribute at class scope. You can also define a domain-specific version of a generic DataSet by calling its ``specialize`` method with the domain of interest. Examples -------- The built-in EquityPricing dataset is defined as follows:: class EquityPricing(DataSet): open = Column(float) high = Column(float) low = Column(float) close = Column(float) volume = Column(float) The built-in USEquityPricing dataset is a specialization of EquityPricing. It is defined as:: from zipline.pipeline.domain import US_EQUITIES USEquityPricing = EquityPricing.specialize(US_EQUITIES) Columns can have types other than float. A dataset containing assorted company metadata might be defined like this:: class CompanyMetadata(DataSet): # Use float for semantically-numeric data, even if it's always # integral valued (see Notes section below). The default missing # value for floats is NaN. shares_outstanding = Column(float) # Use object for string columns. The default missing value for # object-dtype columns is None. ticker = Column(object) # Use integers for integer-valued categorical data like sector or # industry codes. Integer-dtype columns require an explicit missing # value. sector_code = Column(int, missing_value=-1) # Use bool for boolean-valued flags. Note that the default missing # value for bool-dtype columns is False. is_primary_share = Column(bool) Notes ----- Because numpy has no native support for integers with missing values, users are strongly encouraged to use floats for any data that's semantically numeric. Doing so enables the use of `NaN` as a natural missing value, which has useful propagation semantics. """ domain = GENERIC ndim = 2 @classmethod def get_column(cls, name): """Look up a column by name. Parameters ---------- name : str Name of the column to look up. Returns ------- column : zipline.pipeline.data.BoundColumn Column with the given name. Raises ------ AttributeError If no column with the given name exists. """ clsdict = vars(cls) try: maybe_column = clsdict[name] if not isinstance(maybe_column, _BoundColumnDescr): raise KeyError(name) except KeyError: raise AttributeError( "{dset} has no column {colname!r}:\n\n" "Possible choices are:\n" "{choices}".format( dset=cls.qualname, colname=name, choices=bulleted_list( sorted(cls._column_names), max_count=10, ), ) ) # Resolve column descriptor into a BoundColumn. return maybe_column.__get__(None, cls) # This attribute is set by DataSetMeta to mark that a class is the root of a # family of datasets with diffent domains. We don't want that behavior for the # base DataSet class, and we also don't want to accidentally use a shared # version of this attribute if we fail to set this in a subclass somewhere. del DataSet._domain_specializations class DataSetFamilyLookupError(AttributeError): """Exception thrown when a column is accessed on a DataSetFamily instead of on the result of a slice. Parameters ---------- family_name : str The name of the DataSetFamily on which the access occurred. column_name : str The name of the column accessed. """ def __init__(self, family_name, column_name): self.family_name = family_name self.column_name = column_name def __str__(self): # NOTE: when ``aggregate`` is added, remember to update this message return dedent( """\ Attempted to access column {c} from DataSetFamily {d}: To work with dataset families, you must first select a slice using the ``slice`` method: {d}.slice(...).{c} """.format( c=self.column_name, d=self.family_name ) ) class _DataSetFamilyColumn(object): """Descriptor used to raise a helpful error when a column is accessed on a DataSetFamily instead of on the result of a slice. Parameters ---------- column_names : str The name of the column. """ def __init__(self, column_name): self.column_name = column_name def __get__(self, instance, owner): raise DataSetFamilyLookupError( owner.__name__, self.column_name, ) class DataSetFamilyMeta(abc.ABCMeta): def __new__(cls, name, bases, dict_): columns = {} for k, v in dict_.items(): if isinstance(v, Column): # capture all the columns off the DataSetFamily class # and replace them with a descriptor that will raise a helpful # error message. The columns will get added to the BaseSlice # for this type. columns[k] = v dict_[k] = _DataSetFamilyColumn(k) is_abstract = dict_.pop("_abstract", False) self = super(DataSetFamilyMeta, cls).__new__( cls, name, bases, dict_, ) if not is_abstract: self.extra_dims = extra_dims = OrderedDict( [ (k, frozenset(v)) for k, v in OrderedDict(self.extra_dims).items() ] ) if not extra_dims: raise ValueError( "DataSetFamily must be defined with non-empty" " extra_dims, or with `_abstract = True`", ) class BaseSlice(self._SliceType): dataset_family = self ndim = self.slice_ndim domain = self.domain locals().update(columns) BaseSlice.__name__ = "%sBaseSlice" % self.__name__ self._SliceType = BaseSlice # each type gets a unique cache self._slice_cache = {} return self def __repr__(self): return "<DataSetFamily: %r, extra_dims=%r>" % ( self.__name__, list(self.extra_dims), ) class DataSetFamilySlice(DataSet): """Marker type for slices of a :class:`zipline.pipeline.data.dataset.DataSetFamily` objects """ # XXX: This docstring was mostly written when the abstraction here was # "MultiDimensionalDataSet". It probably needs some rewriting. class DataSetFamily(metaclass=DataSetFamilyMeta): """ Base class for Pipeline dataset families. Dataset families are used to represent data where the unique identifier for a row requires more than just asset and date coordinates. A :class:`DataSetFamily` can also be thought of as a collection of :class:`~zipline.pipeline.data.DataSet` objects, each of which has the same columns, domain, and ndim. :class:`DataSetFamily` objects are defined with one or more :class:`~zipline.pipeline.data.Column` objects, plus one additional field: ``extra_dims``. The ``extra_dims`` field defines coordinates other than asset and date that must be fixed to produce a logical timeseries. The column objects determine columns that will be shared by slices of the family. ``extra_dims`` are represented as an ordered dictionary where the keys are the dimension name, and the values are a set of unique values along that dimension. To work with a :class:`DataSetFamily` in a pipeline expression, one must choose a specific value for each of the extra dimensions using the :meth:`~zipline.pipeline.data.DataSetFamily.slice` method. For example, given a :class:`DataSetFamily`: .. code-block:: python class SomeDataSet(DataSetFamily): extra_dims = [ ('dimension_0', {'a', 'b', 'c'}), ('dimension_1', {'d', 'e', 'f'}), ] column_0 = Column(float) column_1 = Column(bool) This dataset might represent a table with the following columns: :: sid :: int64 asof_date :: datetime64[ns] timestamp :: datetime64[ns] dimension_0 :: str dimension_1 :: str column_0 :: float64 column_1 :: bool Here we see the implicit ``sid``, ``asof_date`` and ``timestamp`` columns as well as the extra dimensions columns. This :class:`DataSetFamily` can be converted to a regular :class:`DataSet` with: .. code-block:: python DataSetSlice = SomeDataSet.slice(dimension_0='a', dimension_1='e') This sliced dataset represents the rows from the higher dimensional dataset where ``(dimension_0 == 'a') & (dimension_1 == 'e')``. """ _abstract = True # Removed by metaclass domain = GENERIC slice_ndim = 2 _SliceType = DataSetFamilySlice @type.__call__ class extra_dims(object): """OrderedDict[str, frozenset] of dimension name -> unique values May be defined on subclasses as an iterable of pairs: the metaclass converts this attribute to an OrderedDict. """ __isabstractmethod__ = True def __get__(self, instance, owner): return [] @classmethod def _canonical_key(cls, args, kwargs): extra_dims = cls.extra_dims dimensions_set = set(extra_dims) if not set(kwargs) <= dimensions_set: extra = sorted(set(kwargs) - dimensions_set) raise TypeError( "%s does not have the following %s: %s\n" "Valid dimensions are: %s" % ( cls.__name__, s("dimension", extra), ", ".join(extra), ", ".join(extra_dims), ), ) if len(args) > len(extra_dims): raise TypeError( "%s has %d extra %s but %d %s given" % ( cls.__name__, len(extra_dims), s("dimension", extra_dims), len(args), plural("was", "were", args), ), ) missing = object() coords = OrderedDict(zip(extra_dims, repeat(missing))) to_add = dict(zip(extra_dims, args)) coords.update(to_add) added = set(to_add) for key, value in kwargs.items(): if key in added: raise TypeError( "%s got multiple values for dimension %r" % ( cls.__name__, coords, ), ) coords[key] = value added.add(key) missing = {k for k, v in coords.items() if v is missing} if missing: missing = sorted(missing) raise TypeError( "no coordinate provided to %s for the following %s: %s" % ( cls.__name__, s("dimension", missing), ", ".join(missing), ), ) # validate that all of the provided values exist along their given # dimensions for key, value in coords.items(): if value not in cls.extra_dims[key]: raise ValueError( "%r is not a value along the %s dimension of %s" % ( value, key, cls.__name__, ), ) return coords, tuple(coords.items()) @classmethod def _make_dataset(cls, coords): """Construct a new dataset given the coordinates.""" class Slice(cls._SliceType): extra_coords = coords Slice.__name__ = "%s.slice(%s)" % ( cls.__name__, ", ".join("%s=%r" % item for item in coords.items()), ) return Slice @classmethod def slice(cls, *args, **kwargs): """Take a slice of a DataSetFamily to produce a dataset indexed by asset and date. Parameters ---------- *args **kwargs The coordinates to fix along each extra dimension. Returns ------- dataset : DataSet A regular pipeline dataset indexed by asset and date. Notes ----- The extra dimensions coords used to produce the result are available under the ``extra_coords`` attribute. """ coords, hash_key = cls._canonical_key(args, kwargs) try: return cls._slice_cache[hash_key] except KeyError: pass Slice = cls._make_dataset(coords) cls._slice_cache[hash_key] = Slice return Slice CurrencyConversion = namedtuple( "CurrencyConversion", ["currency", "field"], )
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/data/dataset.py
dataset.py
from itertools import chain from operator import attrgetter from numpy import ( any as np_any, float64, nan, nanpercentile, uint8, ) from zipline.errors import ( BadPercentileBounds, NonExistentAssetInTimeFrame, UnsupportedDataType, ) from zipline.lib.labelarray import LabelArray from zipline.lib.rank import is_missing, grouped_masked_is_maximal from zipline.pipeline.dtypes import ( CLASSIFIER_DTYPES, FACTOR_DTYPES, FILTER_DTYPES, ) from zipline.pipeline.expression import ( BadBinaryOperator, FILTER_BINOPS, method_name_for_op, NumericalExpression, ) from zipline.pipeline.mixins import ( CustomTermMixin, IfElseMixin, LatestMixin, PositiveWindowLengthMixin, RestrictedDTypeMixin, SingleInputMixin, StandardOutputs, ) from zipline.pipeline.term import ComputableTerm, Term from zipline.utils.input_validation import expect_types from zipline.utils.numpy_utils import ( same, bool_dtype, int64_dtype, repeat_first_axis, ) from ..sentinels import NotSpecified def concat_tuples(*tuples): """ Concatenate a sequence of tuples into one tuple. """ return tuple(chain(*tuples)) def binary_operator(op): """ Factory function for making binary operator methods on a Filter subclass. Returns a function "binary_operator" suitable for implementing functions like __and__ or __or__. """ # When combining a Filter with a NumericalExpression, we use this # attrgetter instance to defer to the commuted interpretation of the # NumericalExpression operator. commuted_method_getter = attrgetter(method_name_for_op(op, commute=True)) def binary_operator(self, other): if isinstance(self, NumericalExpression): self_expr, other_expr, new_inputs = self.build_binary_op( op, other, ) return NumExprFilter.create( "({left}) {op} ({right})".format( left=self_expr, op=op, right=other_expr, ), new_inputs, ) elif isinstance(other, NumericalExpression): # NumericalExpression overrides numerical ops to correctly handle # merging of inputs. Look up and call the appropriate # right-binding operator with ourself as the input. return commuted_method_getter(other)(self) elif isinstance(other, Term): if other.dtype != bool_dtype: raise BadBinaryOperator(op, self, other) if self is other: return NumExprFilter.create( "x_0 {op} x_0".format(op=op), (self,), ) return NumExprFilter.create( "x_0 {op} x_1".format(op=op), (self, other), ) elif isinstance(other, int): # Note that this is true for bool as well return NumExprFilter.create( "x_0 {op} {constant}".format(op=op, constant=int(other)), binds=(self,), ) raise BadBinaryOperator(op, self, other) binary_operator.__doc__ = "Binary Operator: '%s'" % op return binary_operator def unary_operator(op): """ Factory function for making unary operator methods for Filters. """ valid_ops = {"~"} if op not in valid_ops: raise ValueError("Invalid unary operator %s." % op) def unary_operator(self): # This can't be hoisted up a scope because the types returned by # unary_op_return_type aren't defined when the top-level function is # invoked. if isinstance(self, NumericalExpression): return NumExprFilter.create( "{op}({expr})".format(op=op, expr=self._expr), self.inputs, ) else: return NumExprFilter.create("{op}x_0".format(op=op), (self,)) unary_operator.__doc__ = "Unary Operator: '%s'" % op return unary_operator class Filter(RestrictedDTypeMixin, ComputableTerm): """ Pipeline expression computing a boolean output. Filters are most commonly useful for describing sets of assets to include or exclude for some particular purpose. Many Pipeline API functions accept a ``mask`` argument, which can be supplied a Filter indicating that only values passing the Filter should be considered when performing the requested computation. For example, :meth:`zipline.pipeline.Factor.top` accepts a mask indicating that ranks should be computed only on assets that passed the specified Filter. The most common way to construct a Filter is via one of the comparison operators (``<``, ``<=``, ``!=``, ``eq``, ``>``, ``>=``) of :class:`~zipline.pipeline.Factor`. For example, a natural way to construct a Filter for stocks with a 10-day VWAP less than $20.0 is to first construct a Factor computing 10-day VWAP and compare it to the scalar value 20.0:: >>> from zipline.pipeline.factors import VWAP >>> vwap_10 = VWAP(window_length=10) >>> vwaps_under_20 = (vwap_10 <= 20) Filters can also be constructed via comparisons between two Factors. For example, to construct a Filter producing True for asset/date pairs where the asset's 10-day VWAP was greater than it's 30-day VWAP:: >>> short_vwap = VWAP(window_length=10) >>> long_vwap = VWAP(window_length=30) >>> higher_short_vwap = (short_vwap > long_vwap) Filters can be combined via the ``&`` (and) and ``|`` (or) operators. ``&``-ing together two filters produces a new Filter that produces True if **both** of the inputs produced True. ``|``-ing together two filters produces a new Filter that produces True if **either** of its inputs produced True. The ``~`` operator can be used to invert a Filter, swapping all True values with Falses and vice-versa. Filters may be set as the ``screen`` attribute of a Pipeline, indicating asset/date pairs for which the filter produces False should be excluded from the Pipeline's output. This is useful both for reducing noise in the output of a Pipeline and for reducing memory consumption of Pipeline results. """ # Filters are window-safe by default, since a yes/no decision means the # same thing from all temporal perspectives. window_safe = True # Used by RestrictedDTypeMixin ALLOWED_DTYPES = FILTER_DTYPES dtype = bool_dtype clsdict = locals() clsdict.update( {method_name_for_op(op): binary_operator(op) for op in FILTER_BINOPS} ) clsdict.update( { method_name_for_op(op, commute=True): binary_operator(op) for op in FILTER_BINOPS } ) __invert__ = unary_operator("~") def _validate(self): # Run superclass validation first so that we handle `dtype not passed` # before this. retval = super(Filter, self)._validate() if self.dtype != bool_dtype: raise UnsupportedDataType(typename=type(self).__name__, dtype=self.dtype) return retval @classmethod def _principal_computable_term_type(cls): return Filter @expect_types(if_true=ComputableTerm, if_false=ComputableTerm) def if_else(self, if_true, if_false): """ Create a term that selects values from one of two choices. Parameters ---------- if_true : zipline.pipeline.term.ComputableTerm Expression whose values should be used at locations where this filter outputs True. if_false : zipline.pipeline.term.ComputableTerm Expression whose values should be used at locations where this filter outputs False. Returns ------- merged : zipline.pipeline.term.ComputableTerm A term that computes by taking values from either ``if_true`` or ``if_false``, depending on the values produced by ``self``. The returned term draws from``if_true`` at locations where ``self`` produces True, and it draws from ``if_false`` at locations where ``self`` produces False. Example ------- Let ``f`` be a Factor that produces the following output:: AAPL MSFT MCD BK 2017-03-13 1.0 2.0 3.0 4.0 2017-03-14 5.0 6.0 7.0 8.0 Let ``g`` be another Factor that produces the following output:: AAPL MSFT MCD BK 2017-03-13 10.0 20.0 30.0 40.0 2017-03-14 50.0 60.0 70.0 80.0 Finally, let ``condition`` be a Filter that produces the following output:: AAPL MSFT MCD BK 2017-03-13 True False True False 2017-03-14 True True False False Then, the expression ``condition.if_else(f, g)`` produces the following output:: AAPL MSFT MCD BK 2017-03-13 1.0 20.0 3.0 40.0 2017-03-14 5.0 6.0 70.0 80.0 See Also -------- numpy.where Factor.fillna """ true_type = if_true._principal_computable_term_type() false_type = if_false._principal_computable_term_type() if true_type is not false_type: raise TypeError( "Mismatched types in if_else(): if_true={}, but if_false={}".format( true_type.__name__, false_type.__name__ ) ) if if_true.dtype != if_false.dtype: raise TypeError( "Mismatched dtypes in if_else(): " "if_true.dtype = {}, if_false.dtype = {}".format( if_true.dtype, if_false.dtype ) ) if if_true.outputs != if_false.outputs: raise ValueError( "Mismatched outputs in if_else(): " "if_true.outputs = {}, if_false.outputs = {}".format( if_true.outputs, if_false.outputs ), ) if not same(if_true.missing_value, if_false.missing_value): raise ValueError( "Mismatched missing values in if_else(): " "if_true.missing_value = {!r}, if_false.missing_value = {!r}".format( if_true.missing_value, if_false.missing_value ) ) return_type = type(if_true)._with_mixin(IfElseMixin) return return_type( condition=self, if_true=if_true, if_false=if_false, ) class NumExprFilter(NumericalExpression, Filter): """ A Filter computed from a numexpr expression. """ @classmethod def create(cls, expr, binds): """ Helper for creating new NumExprFactors. This is just a wrapper around NumericalExpression.__new__ that always forwards `bool` as the dtype, since Filters can only be of boolean dtype. """ return cls(expr=expr, binds=binds, dtype=bool_dtype) def _compute(self, arrays, dates, assets, mask): """ Compute our result with numexpr, then re-apply `mask`. """ return ( super(NumExprFilter, self)._compute( arrays, dates, assets, mask, ) & mask ) class NullFilter(SingleInputMixin, Filter): """ A Filter indicating whether input values are missing from an input. Parameters ---------- factor : zipline.pipeline.Term The factor to compare against its missing_value. """ window_length = 0 def __new__(cls, term): return super(NullFilter, cls).__new__( cls, inputs=(term,), ) def _compute(self, arrays, dates, assets, mask): data = arrays[0] if isinstance(data, LabelArray): return data.is_missing() return is_missing(arrays[0], self.inputs[0].missing_value) class NotNullFilter(SingleInputMixin, Filter): """ A Filter indicating whether input values are **not** missing from an input. Parameters ---------- factor : zipline.pipeline.Term The factor to compare against its missing_value. """ window_length = 0 def __new__(cls, term): return super(NotNullFilter, cls).__new__( cls, inputs=(term,), ) def _compute(self, arrays, dates, assets, mask): data = arrays[0] if isinstance(data, LabelArray): return ~data.is_missing() return ~is_missing(arrays[0], self.inputs[0].missing_value) class PercentileFilter(SingleInputMixin, Filter): """ A Filter representing assets falling between percentile bounds of a Factor. Parameters ---------- factor : zipline.pipeline.factor.Factor The factor over which to compute percentile bounds. min_percentile : float [0.0, 1.0] The minimum percentile rank of an asset that will pass the filter. max_percentile : float [0.0, 1.0] The maxiumum percentile rank of an asset that will pass the filter. """ window_length = 0 def __new__(cls, factor, min_percentile, max_percentile, mask): return super(PercentileFilter, cls).__new__( cls, inputs=(factor,), mask=mask, min_percentile=min_percentile, max_percentile=max_percentile, ) def _init(self, min_percentile, max_percentile, *args, **kwargs): self._min_percentile = min_percentile self._max_percentile = max_percentile return super(PercentileFilter, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, min_percentile, max_percentile, *args, **kwargs): return ( super(PercentileFilter, cls)._static_identity(*args, **kwargs), min_percentile, max_percentile, ) def _validate(self): """ Ensure that our percentile bounds are well-formed. """ if not 0.0 <= self._min_percentile < self._max_percentile <= 100.0: raise BadPercentileBounds( min_percentile=self._min_percentile, max_percentile=self._max_percentile, upper_bound=100.0, ) return super(PercentileFilter, self)._validate() def _compute(self, arrays, dates, assets, mask): """ For each row in the input, compute a mask of all values falling between the given percentiles. """ # TODO: Review whether there's a better way of handling small numbers # of columns. data = arrays[0].copy().astype(float64) data[~mask] = nan # FIXME: np.nanpercentile **should** support computing multiple bounds # at once, but there's a bug in the logic for multiple bounds in numpy # 1.9.2. It will be fixed in 1.10. # c.f. https://github.com/numpy/numpy/pull/5981 lower_bounds = nanpercentile( data, self._min_percentile, axis=1, keepdims=True, ) upper_bounds = nanpercentile( data, self._max_percentile, axis=1, keepdims=True, ) return (lower_bounds <= data) & (data <= upper_bounds) def graph_repr(self): # Graphviz interprets `\l` as "divide label into lines, left-justified" return "{}:\\l min: {}, max: {}\\l".format( type(self).__name__, self._min_percentile, self._max_percentile, ) class CustomFilter(PositiveWindowLengthMixin, CustomTermMixin, Filter): """ Base class for user-defined Filters. Parameters ---------- inputs : iterable, optional An iterable of `BoundColumn` instances (e.g. USEquityPricing.close), describing the data to load and pass to ``self.compute``. If this argument is passed to the CustomFilter constructor, we look for a class-level attribute named ``inputs``. window_length : int, optional Number of rows to pass for each input. If this argument is not passed to the CustomFilter constructor, we look for a class-level attribute named `window_length`. Notes ----- Users implementing their own Filters should subclass CustomFilter and implement a method named ``compute`` with the following signature: .. code-block:: python def compute(self, today, assets, out, *inputs): ... On each simulation date, ``compute`` will be called with the current date, an array of sids, an output array, and an input array for each expression passed as inputs to the CustomFilter constructor. The specific types of the values passed to ``compute`` are as follows:: today : np.datetime64[ns] Row label for the last row of all arrays passed as `inputs`. assets : np.array[int64, ndim=1] Column labels for `out` and`inputs`. out : np.array[bool, ndim=1] Output array of the same shape as `assets`. `compute` should write its desired return values into `out`. *inputs : tuple of np.array Raw data arrays corresponding to the values of `self.inputs`. See the documentation for :class:`~zipline.pipeline.CustomFactor` for more details on implementing a custom ``compute`` method. See Also -------- zipline.pipeline.CustomFactor """ def _validate(self): try: super(CustomFilter, self)._validate() except UnsupportedDataType: if self.dtype in CLASSIFIER_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint="Did you mean to create a CustomClassifier?", ) elif self.dtype in FACTOR_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint="Did you mean to create a CustomFactor?", ) raise class ArrayPredicate(SingleInputMixin, Filter): """ A filter applying a function from (ndarray, *args) -> ndarray[bool]. Parameters ---------- term : zipline.pipeline.Term Term producing the array over which the predicate will be computed. op : function(ndarray, *args) -> ndarray[bool] Function to apply to the result of `term`. opargs : tuple[hashable] Additional argument to apply to ``op``. """ params = ("op", "opargs") window_length = 0 @expect_types(term=Term, opargs=tuple) def __new__(cls, term, op, opargs): hash(opargs) # fail fast if opargs isn't hashable. return super(ArrayPredicate, cls).__new__( ArrayPredicate, op=op, opargs=opargs, inputs=(term,), mask=term.mask, ) def _compute(self, arrays, dates, assets, mask): params = self.params data = arrays[0] return params["op"](data, *params["opargs"]) & mask def graph_repr(self): # Graphviz interprets `\l` as "divide label into lines, left-justified" return "{}:\\l op: {}.{}()".format( type(self).__name__, self.params["op"].__module__, self.params["op"].__name__, ) class Latest(LatestMixin, CustomFilter): """ Filter producing the most recently-known value of `inputs[0]` on each day. """ pass class SingleAsset(Filter): """ A Filter that computes to True only for the given asset. """ inputs = [] window_length = 1 def __new__(cls, asset): return super(SingleAsset, cls).__new__(cls, asset=asset) def _init(self, asset, *args, **kwargs): self._asset = asset return super(SingleAsset, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, asset, *args, **kwargs): return ( super(SingleAsset, cls)._static_identity(*args, **kwargs), asset, ) def _compute(self, arrays, dates, assets, mask): is_my_asset = assets == self._asset.sid out = repeat_first_axis(is_my_asset, len(mask)) # Raise an exception if `self._asset` does not exist for the entirety # of the timeframe over which we are computing. if (is_my_asset.sum() != 1) or ((out & mask).sum() != len(mask)): raise NonExistentAssetInTimeFrame( asset=self._asset, start_date=dates[0], end_date=dates[-1], ) return out def graph_repr(self): # Graphviz interprets `\l` as "divide label into lines, left-justified" return "SingleAsset:\\l asset: {!r}\\l".format(self._asset) class StaticSids(Filter): """ A Filter that computes True for a specific set of predetermined sids. ``StaticSids`` is mostly useful for debugging or for interactively computing pipeline terms for a fixed set of sids that are known ahead of time. Parameters ---------- sids : iterable[int] An iterable of sids for which to filter. """ inputs = () window_length = 0 params = ("sids",) def __new__(cls, sids): sids = frozenset(sids) return super(StaticSids, cls).__new__(cls, sids=sids) def _compute(self, arrays, dates, sids, mask): my_columns = sids.isin(self.params["sids"]) return repeat_first_axis(my_columns, len(mask)) & mask class StaticAssets(StaticSids): """ A Filter that computes True for a specific set of predetermined assets. ``StaticAssets`` is mostly useful for debugging or for interactively computing pipeline terms for a fixed set of assets that are known ahead of time. Parameters ---------- assets : iterable[Asset] An iterable of assets for which to filter. """ def __new__(cls, assets): sids = frozenset(asset.sid for asset in assets) return super(StaticAssets, cls).__new__(cls, sids) class AllPresent(CustomFilter, SingleInputMixin, StandardOutputs): """Pipeline filter indicating input term has data for a given window.""" def _validate(self): if isinstance(self.inputs[0], Filter): raise TypeError("Input to filter `AllPresent` cannot be a Filter.") return super(AllPresent, self)._validate() def compute(self, today, assets, out, value): if isinstance(value, LabelArray): out[:] = ~np_any(value.is_missing(), axis=0) else: out[:] = ~np_any( is_missing(value, self.inputs[0].missing_value), axis=0, ) class MaximumFilter(Filter, StandardOutputs): """Pipeline filter that selects the top asset, possibly grouped and masked.""" window_length = 0 def __new__(cls, factor, groupby, mask): if groupby is NotSpecified: from zipline.pipeline.classifiers import Everything groupby = Everything() return super(MaximumFilter, cls).__new__( cls, inputs=(factor, groupby), mask=mask, ) def _compute(self, arrays, dates, assets, mask): # XXX: We're doing a lot of unncessary work here if `groupby` isn't # specified. data = arrays[0] group_labels, null_label = self.inputs[1]._to_integral(arrays[1]) effective_mask = ( mask & (group_labels != null_label) & ~is_missing(data, self.inputs[0].missing_value) ).view(uint8) return grouped_masked_is_maximal( # Unconditionally view the data as int64. # This is safe because casting from float64 to int64 is an # order-preserving operation. data.view(int64_dtype), # PERF: Consider supporting different sizes of group labels. group_labels.astype(int64_dtype), effective_mask, ) def __repr__(self): return "Maximum({}, groupby={}, mask={})".format( self.inputs[0].recursive_repr(), self.inputs[1].recursive_repr(), self.mask.recursive_repr(), ) def graph_repr(self): # Graphviz interprets `\l` as "divide label into lines, left-justified" return "Maximum:\\l groupby: {}\\l mask: {}\\l".format( self.inputs[1].recursive_repr(), self.mask.recursive_repr(), )
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/filters/filter.py
filter.py
from collections import defaultdict from interface import implements from numpy import iinfo, uint32, multiply from zipline.data.fx import ExplodingFXRateReader from zipline.lib.adjusted_array import AdjustedArray from zipline.utils.numpy_utils import repeat_first_axis from .base import PipelineLoader from .utils import shift_dates from ..data.equity_pricing import EquityPricing UINT32_MAX = iinfo(uint32).max class EquityPricingLoader(implements(PipelineLoader)): """A PipelineLoader for loading daily OHLCV data. Parameters ---------- raw_price_reader : zipline.data.session_bars.SessionBarReader Reader providing raw prices. adjustments_reader : zipline.data.adjustments.SQLiteAdjustmentReader Reader providing price/volume adjustments. fx_reader : zipline.data.fx.FXRateReader Reader providing currency conversions. """ def __init__(self, raw_price_reader, adjustments_reader, fx_reader): self.raw_price_reader = raw_price_reader self.adjustments_reader = adjustments_reader self.fx_reader = fx_reader @classmethod def without_fx(cls, raw_price_reader, adjustments_reader): """ Construct an EquityPricingLoader without support for fx rates. The returned loader will raise an error if requested to load currency-converted columns. Parameters ---------- raw_price_reader : zipline.data.session_bars.SessionBarReader Reader providing raw prices. adjustments_reader : zipline.data.adjustments.SQLiteAdjustmentReader Reader providing price/volume adjustments. Returns ------- loader : EquityPricingLoader A loader that can only provide currency-naive data. """ return cls( raw_price_reader=raw_price_reader, adjustments_reader=adjustments_reader, fx_reader=ExplodingFXRateReader(), ) def load_adjusted_array(self, domain, columns, dates, sids, mask): # load_adjusted_array is called with dates on which the user's algo # will be shown data, which means we need to return the data that would # be known at the **start** of each date. We assume that the latest # data known on day N is the data from day (N - 1), so we shift all # query dates back by a trading session. sessions = domain.all_sessions() shifted_dates = shift_dates(sessions, dates[0], dates[-1], shift=1) ohlcv_cols, currency_cols = self._split_column_types(columns) del columns # From here on we should use ohlcv_cols or currency_cols. ohlcv_colnames = [c.name for c in ohlcv_cols] raw_ohlcv_arrays = self.raw_price_reader.load_raw_arrays( ohlcv_colnames, shifted_dates[0], shifted_dates[-1], sids, ) # Currency convert raw_arrays in place if necessary. We use shifted # dates to load currency conversion rates to make them line up with # dates used to fetch prices. self._inplace_currency_convert( ohlcv_cols, raw_ohlcv_arrays, shifted_dates, sids, ) adjustments = self.adjustments_reader.load_pricing_adjustments( ohlcv_colnames, dates, sids, ) out = {} for c, c_raw, c_adjs in zip(ohlcv_cols, raw_ohlcv_arrays, adjustments): out[c] = AdjustedArray( c_raw.astype(c.dtype), c_adjs, c.missing_value, ) for c in currency_cols: codes_1d = self.raw_price_reader.currency_codes(sids) codes = repeat_first_axis(codes_1d, len(dates)) out[c] = AdjustedArray( codes, adjustments={}, missing_value=None, ) return out @property def currency_aware(self): # Tell the pipeline engine that this loader supports currency # conversion if we have a non-dummy fx rates reader. return not isinstance(self.fx_reader, ExplodingFXRateReader) def _inplace_currency_convert(self, columns, arrays, dates, sids): """ Currency convert raw data loaded for ``column``. Parameters ---------- columns : list[zipline.pipeline.data.BoundColumn] List of columns whose raw data has been loaded. arrays : list[np.array] List of arrays, parallel to ``columns`` containing data for the column. dates : pd.DatetimeIndex Labels for rows of ``arrays``. These are the dates that should be used to fetch fx rates for conversion. sids : np.array[int64] Labels for columns of ``arrays``. Returns ------- None Side Effects ------------ Modifies ``arrays`` in place by applying currency conversions. """ # Group columns by currency conversion spec. by_spec = defaultdict(list) for column, array in zip(columns, arrays): by_spec[column.currency_conversion].append(array) # Nothing to do for terms with no currency conversion. by_spec.pop(None, None) if not by_spec: return fx_reader = self.fx_reader base_currencies = self.raw_price_reader.currency_codes(sids) # Columns with the same conversion spec will use the same multipliers. for spec, arrays in by_spec.items(): rates = fx_reader.get_rates( rate=spec.field, quote=spec.currency.code, bases=base_currencies, dts=dates, ) for arr in arrays: multiply(arr, rates, out=arr) def _split_column_types(self, columns): """Split out currency columns from OHLCV columns. Parameters ---------- columns : list[zipline.pipeline.data.BoundColumn] Columns to be loaded by ``load_adjusted_array``. Returns ------- ohlcv_columns : list[zipline.pipeline.data.BoundColumn] Price and volume columns from ``columns``. currency_columns : list[zipline.pipeline.data.BoundColumn] Currency code column from ``columns``, if present. """ currency_name = EquityPricing.currency.name ohlcv = [] currency = [] for c in columns: if c.name == currency_name: currency.append(c) else: ohlcv.append(c) return ohlcv, currency # Backwards compat alias. USEquityPricingLoader = EquityPricingLoader
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/loaders/equity_pricing_loader.py
equity_pricing_loader.py
from interface import implements from numpy import ( arange, array, eye, float64, full, iinfo, nan, uint32, ) from numpy.random import RandomState from pandas import DataFrame, Timestamp from sqlite3 import connect as sqlite3_connect from .base import PipelineLoader from .frame import DataFrameLoader from zipline.data.adjustments import ( SQLiteAdjustmentReader, SQLiteAdjustmentWriter, ) from zipline.data.bcolz_daily_bars import US_EQUITY_PRICING_BCOLZ_COLUMNS from zipline.utils.numpy_utils import ( bool_dtype, datetime64ns_dtype, float64_dtype, int64_dtype, object_dtype, ) UINT_32_MAX = iinfo(uint32).max def nanos_to_seconds(nanos): return nanos / (1000 * 1000 * 1000) class PrecomputedLoader(implements(PipelineLoader)): """ Synthetic PipelineLoader that uses a pre-computed array for each column. Parameters ---------- values : dict Map from column to values to use for that column. Values can be anything that can be passed as the first positional argument to a DataFrame whose indices are ``dates`` and ``sids`` dates : iterable[datetime-like] Row labels for input data. Can be anything that pd.DataFrame will coerce to a DatetimeIndex. sids : iterable[int-like] Column labels for input data. Can be anything that pd.DataFrame will coerce to an Int64Index. Notes ----- Adjustments are unsupported by this loader. """ def __init__(self, constants, dates, sids): loaders = {} for column, const in constants.items(): frame = DataFrame( const, index=dates, columns=sids, dtype=column.dtype, ) loaders[column] = DataFrameLoader( column=column, baseline=frame, adjustments=None, ) self._loaders = loaders def load_adjusted_array(self, domain, columns, dates, sids, mask): """ Load by delegating to sub-loaders. """ out = {} for col in columns: try: loader = self._loaders.get(col) if loader is None: loader = self._loaders[col.unspecialize()] except KeyError: raise ValueError("Couldn't find loader for %s" % col) out.update(loader.load_adjusted_array(domain, [col], dates, sids, mask)) return out class EyeLoader(PrecomputedLoader): """ A PrecomputedLoader that emits arrays containing 1s on the diagonal and 0s elsewhere. Parameters ---------- columns : list[BoundColumn] Columns that this loader should know about. dates : iterable[datetime-like] Same as PrecomputedLoader. sids : iterable[int-like] Same as PrecomputedLoader """ def __init__(self, columns, dates, sids): shape = (len(dates), len(sids)) super(EyeLoader, self).__init__( {column: eye(shape, dtype=column.dtype) for column in columns}, dates, sids, ) class SeededRandomLoader(PrecomputedLoader): """ A PrecomputedLoader that emits arrays randomly-generated with a given seed. Parameters ---------- seed : int Seed for numpy.random.RandomState. columns : list[BoundColumn] Columns that this loader should know about. dates : iterable[datetime-like] Same as PrecomputedLoader. sids : iterable[int-like] Same as PrecomputedLoader """ def __init__(self, seed, columns, dates, sids): self._seed = seed super(SeededRandomLoader, self).__init__( {c: self.values(c.dtype, dates, sids) for c in columns}, dates, sids, ) def values(self, dtype, dates, sids): """ Make a random array of shape (len(dates), len(sids)) with ``dtype``. """ shape = (len(dates), len(sids)) return { datetime64ns_dtype: self._datetime_values, float64_dtype: self._float_values, int64_dtype: self._int_values, bool_dtype: self._bool_values, object_dtype: self._object_values, }[dtype](shape) @property def state(self): """ Make a new RandomState from our seed. This ensures that every call to _*_values produces the same output every time for a given SeededRandomLoader instance. """ return RandomState(self._seed) def _float_values(self, shape): """ Return uniformly-distributed floats between -0.0 and 100.0. """ return self.state.uniform(low=0.0, high=100.0, size=shape) def _int_values(self, shape): """ Return uniformly-distributed integers between 0 and 100. """ return self.state.randint(low=0, high=100, size=shape).astype( "int64" ) # default is system int def _datetime_values(self, shape): """ Return uniformly-distributed dates in 2014. """ start = Timestamp("2014", tz="UTC").asm8 offsets = self.state.randint( low=0, high=364, size=shape, ).astype("timedelta64[D]") return start + offsets def _bool_values(self, shape): """ Return uniformly-distributed True/False values. """ return self.state.randn(*shape) < 0 def _object_values(self, shape): res = self._int_values(shape).astype(str).astype(object) return res OHLCV = ("open", "high", "low", "close", "volume") OHLC = ("open", "high", "low", "close") PSEUDO_EPOCH = Timestamp("2000-01-01", tz="UTC") def asset_start(asset_info, asset): ret = asset_info.loc[asset]["start_date"] if ret.tz is None: ret = ret.tz_localize("UTC") assert ret.tzname() == "UTC", "Unexpected non-UTC timestamp" return ret def asset_end(asset_info, asset): ret = asset_info.loc[asset]["end_date"] if ret.tz is None: ret = ret.tz_localize("UTC") assert ret.tzname() == "UTC", "Unexpected non-UTC timestamp" return ret def make_bar_data(asset_info, calendar, holes=None): """ For a given asset/date/column combination, we generate a corresponding raw value using the following formula for OHLCV columns: data(asset, date, column) = (100,000 * asset_id) + (10,000 * column_num) + (date - Jan 1 2000).days # ~6000 for 2015 where: column_num('open') = 0 column_num('high') = 1 column_num('low') = 2 column_num('close') = 3 column_num('volume') = 4 We use days since Jan 1, 2000 to guarantee that there are no collisions while also the produced values smaller than UINT32_MAX / 1000. For 'day' and 'id', we use the standard format expected by the base class. Parameters ---------- asset_info : DataFrame DataFrame with asset_id as index and 'start_date'/'end_date' columns. calendar : pd.DatetimeIndex The trading calendar to use. holes : dict[int -> tuple[pd.Timestamps]], optional A dict mapping asset ids to the tuple of dates that should have no data for that asset in the output. Default is no holes. Yields ------ p : (int, pd.DataFrame) A sid, data pair to be passed to BcolzDailyDailyBarWriter.write """ assert ( # Using .value here to avoid having to care about UTC-aware dates. PSEUDO_EPOCH.value < calendar.normalize().min().value <= asset_info["start_date"].min().value ), "calendar.min(): %s\nasset_info['start_date'].min(): %s" % ( calendar.min(), asset_info["start_date"].min(), ) assert (asset_info["start_date"] < asset_info["end_date"]).all() def _raw_data_for_asset(asset_id): """ Generate 'raw' data that encodes information about the asset. See docstring for a description of the data format. """ # Get the dates for which this asset existed according to our asset # info. datetimes = calendar[ calendar.slice_indexer( asset_start(asset_info, asset_id), asset_end(asset_info, asset_id), ) ] data = full( (len(datetimes), len(US_EQUITY_PRICING_BCOLZ_COLUMNS)), asset_id * 100 * 1000, dtype=uint32, ) # Add 10,000 * column-index to OHLCV columns data[:, :5] += arange(5, dtype=uint32) * 1000 # Add days since Jan 1 2001 for OHLCV columns. data[:, :5] += array((datetimes - PSEUDO_EPOCH).days)[:, None].astype(uint32) frame = DataFrame( data, index=datetimes, columns=US_EQUITY_PRICING_BCOLZ_COLUMNS, ) if holes is not None and asset_id in holes: for dt in holes[asset_id]: frame.loc[dt, OHLC] = nan frame.loc[dt, ["volume"]] = 0 frame["day"] = nanos_to_seconds(datetimes.asi8) frame["id"] = asset_id return frame for asset in asset_info.index: yield asset, _raw_data_for_asset(asset) def expected_bar_value(asset_id, date, colname): """ Check that the raw value for an asset/date/column triple is as expected. Used by tests to verify data written by a writer. """ from_asset = asset_id * 100000 from_colname = OHLCV.index(colname) * 1000 from_date = (date - PSEUDO_EPOCH).days return from_asset + from_colname + from_date def expected_bar_value_with_holes(asset_id, date, colname, holes, missing_value): # Explicit holes are filled with the missing value. if asset_id in holes and date in holes[asset_id]: return missing_value return expected_bar_value(asset_id, date, colname) def expected_bar_values_2d(dates, assets, asset_info, colname, holes=None): """ Return an 2D array containing cls.expected_value(asset_id, date, colname) for each date/asset pair in the inputs. Missing locs are filled with 0 for volume and NaN for price columns: - Values before/after an asset's lifetime. - Values for asset_ids not contained in asset_info. - Locs defined in `holes`. """ if colname == "volume": dtype = uint32 missing = 0 else: dtype = float64 missing = float("nan") data = full((len(dates), len(assets)), missing, dtype=dtype) for j, asset in enumerate(assets): # Use missing values when asset_id is not contained in asset_info. if asset not in asset_info.index: continue start = asset_start(asset_info, asset) end = asset_end(asset_info, asset) for i, date in enumerate(dates): # No value expected for dates outside the asset's start/end # date. if not (start <= date <= end): continue if holes is not None: expected = expected_bar_value_with_holes( asset, date, colname, holes, missing, ) else: expected = expected_bar_value(asset, date, colname) data[i, j] = expected return data class NullAdjustmentReader(SQLiteAdjustmentReader): """ A SQLiteAdjustmentReader that stores no adjustments and uses in-memory SQLite. """ def __init__(self): conn = sqlite3_connect(":memory:") writer = SQLiteAdjustmentWriter(conn, None, None) empty = DataFrame( { "sid": array([], dtype=uint32), "effective_date": array([], dtype=uint32), "ratio": array([], dtype=float), } ) empty_dividends = DataFrame( { "sid": array([], dtype=uint32), "amount": array([], dtype=float64), "record_date": array([], dtype="datetime64[ns]"), "ex_date": array([], dtype="datetime64[ns]"), "declared_date": array([], dtype="datetime64[ns]"), "pay_date": array([], dtype="datetime64[ns]"), } ) writer.write(splits=empty, mergers=empty, dividends=empty_dividends) super(NullAdjustmentReader, self).__init__(conn)
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/loaders/synthetic.py
synthetic.py
from functools import partial from interface import implements from numpy import ( ix_, zeros, ) from pandas import ( DataFrame, DatetimeIndex, Index, Int64Index, ) from zipline.lib.adjusted_array import AdjustedArray from zipline.lib.adjustment import make_adjustment_from_labels from zipline.utils.numpy_utils import as_column from .base import PipelineLoader ADJUSTMENT_COLUMNS = Index( [ "sid", "value", "kind", "start_date", "end_date", "apply_date", ] ) class DataFrameLoader(implements(PipelineLoader)): """ A PipelineLoader that reads its input from DataFrames. Mostly useful for testing, but can also be used for real work if your data fits in memory. Parameters ---------- column : zipline.pipeline.data.BoundColumn The column whose data is loadable by this loader. baseline : pandas.DataFrame A DataFrame with index of type DatetimeIndex and columns of type Int64Index. Dates should be labelled with the first date on which a value would be **available** to an algorithm. This means that OHLCV data should generally be shifted back by a trading day before being supplied to this class. adjustments : pandas.DataFrame, default=None A DataFrame with the following columns: sid : int value : any kind : int (zipline.pipeline.loaders.frame.ADJUSTMENT_TYPES) start_date : datetime64 (can be NaT) end_date : datetime64 (must be set) apply_date : datetime64 (must be set) The default of None is interpreted as "no adjustments to the baseline". """ def __init__(self, column, baseline, adjustments=None): self.column = column self.baseline = baseline.values.astype(self.column.dtype) self.dates = baseline.index self.assets = baseline.columns if adjustments is None: adjustments = DataFrame( index=DatetimeIndex([]), columns=ADJUSTMENT_COLUMNS, ) else: # Ensure that columns are in the correct order. adjustments = adjustments.reindex(ADJUSTMENT_COLUMNS, axis=1) adjustments.sort_values(["apply_date", "sid"], inplace=True) self.adjustments = adjustments self.adjustment_apply_dates = DatetimeIndex(adjustments.apply_date) self.adjustment_end_dates = DatetimeIndex(adjustments.end_date) self.adjustment_sids = Int64Index(adjustments.sid) def format_adjustments(self, dates, assets): """ Build a dict of Adjustment objects in the format expected by AdjustedArray. Returns a dict of the form: { # Integer index into `dates` for the date on which we should # apply the list of adjustments. 1 : [ Float64Multiply(first_row=2, last_row=4, col=3, value=0.5), Float64Overwrite(first_row=3, last_row=5, col=1, value=2.0), ... ], ... } """ make_adjustment = partial(make_adjustment_from_labels, dates, assets) min_date, max_date = dates[[0, -1]] # TODO: Consider porting this to Cython. if len(self.adjustments) == 0: return {} # Mask for adjustments whose apply_dates are in the requested window of # dates. date_bounds = self.adjustment_apply_dates.slice_indexer( min_date, max_date, ) dates_filter = zeros(len(self.adjustments), dtype="bool") dates_filter[date_bounds] = True # Ignore adjustments whose apply_date is in range, but whose end_date # is out of range. dates_filter &= self.adjustment_end_dates >= min_date # Mask for adjustments whose sids are in the requested assets. sids_filter = self.adjustment_sids.isin(assets.values) adjustments_to_use = self.adjustments.loc[dates_filter & sids_filter].set_index( "apply_date" ) # For each apply_date on which we have an adjustment, compute # the integer index of that adjustment's apply_date in `dates`. # Then build a list of Adjustment objects for that apply_date. # This logic relies on the sorting applied on the previous line. out = {} previous_apply_date = object() for row in adjustments_to_use.itertuples(): # This expansion depends on the ordering of the DataFrame columns, # defined above. apply_date, sid, value, kind, start_date, end_date = row if apply_date != previous_apply_date: # Get the next apply date if no exact match. row_loc = dates.get_loc(apply_date, method="bfill") current_date_adjustments = out[row_loc] = [] previous_apply_date = apply_date # Look up the approprate Adjustment constructor based on the value # of `kind`. current_date_adjustments.append( make_adjustment(start_date, end_date, sid, kind, value) ) return out def load_adjusted_array(self, domain, columns, dates, sids, mask): """ Load data from our stored baseline. """ if len(columns) != 1: raise ValueError("Can't load multiple columns with DataFrameLoader") column = columns[0] self._validate_input_column(column) date_indexer = self.dates.get_indexer(dates) assets_indexer = self.assets.get_indexer(sids) # Boolean arrays with True on matched entries good_dates = date_indexer != -1 good_assets = assets_indexer != -1 data = self.baseline[ix_(date_indexer, assets_indexer)] mask = (good_assets & as_column(good_dates)) & mask # Mask out requested columns/rows that didn't match. data[~mask] = column.missing_value return { column: AdjustedArray( # Pull out requested columns/rows from our baseline data. data=data, adjustments=self.format_adjustments(dates, sids), missing_value=column.missing_value, ), } def _validate_input_column(self, column): """Make sure a passed column is our column.""" if column != self.column and column.unspecialize() != self.column: raise ValueError("Can't load unknown column %s" % column)
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/loaders/frame.py
frame.py
import numpy as np import pandas as pd from zipline.errors import NoFurtherDataError from zipline.pipeline.common import TS_FIELD_NAME, SID_FIELD_NAME from zipline.utils.date_utils import make_utc_aware from zipline.utils.numpy_utils import categorical_dtype def is_sorted_ascending(a): """Check if a numpy array is sorted.""" return (np.fmax.accumulate(a) <= a).all() def validate_event_metadata(event_dates, event_timestamps, event_sids): assert is_sorted_ascending(event_dates), "event dates must be sorted" assert ( len(event_sids) == len(event_dates) == len(event_timestamps) ), "mismatched arrays: %d != %d != %d" % ( len(event_sids), len(event_dates), len(event_timestamps), ) def next_event_indexer( all_dates, data_query_cutoff, all_sids, event_dates, event_timestamps, event_sids ): """ Construct an index array that, when applied to an array of values, produces a 2D array containing the values associated with the next event for each sid at each moment in time. Locations where no next event was known will be filled with -1. Parameters ---------- all_dates : ndarray[datetime64[ns], ndim=1] Row labels for the target output. data_query_cutoff : pd.DatetimeIndex The boundaries for the given trading sessions in ``all_dates``. all_sids : ndarray[int, ndim=1] Column labels for the target output. event_dates : ndarray[datetime64[ns], ndim=1] Dates on which each input events occurred/will occur. ``event_dates`` must be in sorted order, and may not contain any NaT values. event_timestamps : ndarray[datetime64[ns], ndim=1] Dates on which we learned about each input event. event_sids : ndarray[int, ndim=1] Sids assocated with each input event. Returns ------- indexer : ndarray[int, ndim=2] An array of shape (len(all_dates), len(all_sids)) of indices into ``event_{dates,timestamps,sids}``. """ validate_event_metadata(event_dates, event_timestamps, event_sids) out = np.full((len(all_dates), len(all_sids)), -1, dtype=np.int64) sid_ixs = all_sids.searchsorted(event_sids) # side='right' here ensures that we include the event date itself # if it's in all_dates. dt_ixs = all_dates.searchsorted( # pd.to_datetime(event_dates, utc=True), side="right") make_utc_aware(pd.DatetimeIndex(event_dates)), side="right", ) ts_ixs = data_query_cutoff.searchsorted( # pd.to_datetime(event_timestamps, utc=True), side="right" make_utc_aware(pd.DatetimeIndex(event_timestamps)), side="right", ) # Walk backward through the events, writing the index of the event into # slots ranging from the event's timestamp to its asof. This depends for # correctness on the fact that event_dates is sorted in ascending order, # because we need to overwrite later events with earlier ones if their # eligible windows overlap. for i in range(len(event_sids) - 1, -1, -1): start_ix = ts_ixs[i] end_ix = dt_ixs[i] out[start_ix:end_ix, sid_ixs[i]] = i return out def previous_event_indexer( data_query_cutoff_times, all_sids, event_dates, event_timestamps, event_sids ): """ Construct an index array that, when applied to an array of values, produces a 2D array containing the values associated with the previous event for each sid at each moment in time. Locations where no previous event was known will be filled with -1. Parameters ---------- data_query_cutoff : pd.DatetimeIndex The boundaries for the given trading sessions. all_dates : ndarray[datetime64[ns], ndim=1] Row labels for the target output. all_sids : ndarray[int, ndim=1] Column labels for the target output. event_dates : ndarray[datetime64[ns], ndim=1] Dates on which each input events occurred/will occur. ``event_dates`` must be in sorted order, and may not contain any NaT values. event_timestamps : ndarray[datetime64[ns], ndim=1] Dates on which we learned about each input event. event_sids : ndarray[int, ndim=1] Sids assocated with each input event. Returns ------- indexer : ndarray[int, ndim=2] An array of shape (len(all_dates), len(all_sids)) of indices into ``event_{dates,timestamps,sids}``. """ validate_event_metadata(event_dates, event_timestamps, event_sids) out = np.full( (len(data_query_cutoff_times), len(all_sids)), -1, dtype=np.int64, ) eff_dts = np.maximum(event_dates, event_timestamps) sid_ixs = all_sids.searchsorted(event_sids) dt_ixs = data_query_cutoff_times.searchsorted( # pd.to_datetime(eff_dts, utc=True), side="right" make_utc_aware(pd.DatetimeIndex(eff_dts)), side="right", ) # Walk backwards through the events, writing the index of the event into # slots ranging from max(event_date, event_timestamp) to the start of the # previously-written event. This depends for correctness on the fact that # event_dates is sorted in ascending order, because we need to have written # later events so we know where to stop forward-filling earlier events. last_written = {} for i in range(len(event_dates) - 1, -1, -1): sid_ix = sid_ixs[i] dt_ix = dt_ixs[i] out[dt_ix : last_written.get(sid_ix, None), sid_ix] = i last_written[sid_ix] = dt_ix return out def last_in_date_group( df, data_query_cutoff_times, assets, reindex=True, have_sids=True, extra_groupers=None, ): """ Determine the last piece of information known on each date in the date index for each group. Input df MUST be sorted such that the correct last item is chosen from each group. Parameters ---------- df : pd.DataFrame The DataFrame containing the data to be grouped. Must be sorted so that the correct last item is chosen from each group. data_query_cutoff_times : pd.DatetimeIndex The dates to use for grouping and reindexing. assets : pd.Int64Index The assets that should be included in the column multiindex. reindex : bool Whether or not the DataFrame should be reindexed against the date index. This will add back any dates to the index that were grouped away. have_sids : bool Whether or not the DataFrame has sids. If it does, they will be used in the groupby. extra_groupers : list of str Any extra field names that should be included in the groupby. Returns ------- last_in_group : pd.DataFrame A DataFrame with dates as the index and fields used in the groupby as levels of a multiindex of columns. """ # get positions in `data_query_cutoff_times` just before `TS_FIELD_NAME` in `df` idx_before_ts = data_query_cutoff_times.searchsorted( make_utc_aware(pd.DatetimeIndex(df[TS_FIELD_NAME])) ) idx = [data_query_cutoff_times[idx_before_ts]] if have_sids: idx += [SID_FIELD_NAME] if extra_groupers is None: extra_groupers = [] idx += extra_groupers to_unstack = idx[-1 : -len(idx) : -1] last_in_group = ( df.drop(TS_FIELD_NAME, axis=1) .groupby(idx, sort=False) .last() .unstack(level=to_unstack) ) # For the number of things that we're grouping by (except TS), unstack # the df. Done this way because of an unresolved pandas bug whereby # passing a list of levels with mixed dtypes to unstack causes the # resulting DataFrame to have all object-type columns. # for _ in range(len(idx) - 1): # last_in_group = last_in_group.unstack(-1) if reindex: if have_sids: cols = last_in_group.columns columns = pd.MultiIndex.from_product( tuple(cols.levels[0 : len(extra_groupers) + 1]) + (assets,), names=cols.names, ) last_in_group = last_in_group.reindex( index=data_query_cutoff_times, columns=columns ) else: last_in_group = last_in_group.reindex(data_query_cutoff_times) return last_in_group def ffill_across_cols(df, columns, name_map): """ Forward fill values in a DataFrame with special logic to handle cases that pd.DataFrame.ffill cannot and cast columns to appropriate types. Parameters ---------- df : pd.DataFrame The DataFrame to do forward-filling on. columns : list of BoundColumn The BoundColumns that correspond to columns in the DataFrame to which special filling and/or casting logic should be applied. name_map: map of string -> string Mapping from the name of each BoundColumn to the associated column name in `df`. """ df.ffill(inplace=True) # Fill in missing values specified by each column. This is made # significantly more complex by the fact that we need to work around # two pandas issues: # 1) When we have sids, if there are no records for a given sid for any # dates, pandas will generate a column full of NaNs for that sid. # This means that some of the columns in `dense_output` are now # float instead of the intended dtype, so we have to coerce back to # our expected type and convert NaNs into the desired missing value. # 2) DataFrame.ffill assumes that receiving None as a fill-value means # that no value was passed. Consequently, there's no way to tell # pandas to replace NaNs in an object column with None using fillna, # so we have to roll our own instead using df.where. for column in columns: column_name = name_map[column.name] # Special logic for strings since `fillna` doesn't work if the # missing value is `None`. if column.dtype == categorical_dtype: df[column_name] = df[column.name].where( pd.notnull(df[column_name]), column.missing_value ) else: # We need to execute `fillna` before `astype` in case the # column contains NaNs and needs to be cast to bool or int. # This is so that the NaNs are replaced first, since pandas # can't convert NaNs for those types. df[column_name] = ( df[column_name].fillna(column.missing_value).astype(column.dtype) ) def shift_dates(dates, start_date, end_date, shift): """ Shift dates of a pipeline query back by ``shift`` days. Parameters ---------- dates : DatetimeIndex All known dates. start_date : pd.Timestamp Start date of the pipeline query. end_date : pd.Timestamp End date of the pipeline query. shift : int The number of days to shift back the query dates. Returns ------- shifted : pd.DatetimeIndex The range [start_date, end_date] from ``dates``, shifted backwards by ``shift`` days. Raises ------ ValueError If ``start_date`` or ``end_date`` is not in ``dates``. NoFurtherDataError If shifting ``start_date`` back by ``shift`` days would push it off the end of ``dates``. """ try: start = dates.get_loc(start_date) except KeyError: if start_date < dates[0]: raise NoFurtherDataError( msg=( "Pipeline Query requested data starting on {query_start}, " "but first known date is {calendar_start}" ).format( query_start=str(start_date), calendar_start=str(dates[0]), ) ) else: raise ValueError("Query start %s not in calendar" % start_date) # Make sure that shifting doesn't push us out of the calendar. if start < shift: raise NoFurtherDataError( msg=( "Pipeline Query requested data from {shift}" " days before {query_start}, but first known date is only " "{start} days earlier." ).format(shift=shift, query_start=start_date, start=start), ) try: end = dates.get_loc(end_date) except KeyError: if end_date > dates[-1]: raise NoFurtherDataError( msg=( "Pipeline Query requesting data up to {query_end}, " "but last known date is {calendar_end}" ).format( query_end=end_date, calendar_end=dates[-1], ) ) else: raise ValueError("Query end %s not in calendar" % end_date) return dates[start - shift : end - shift + 1] # +1 to be inclusive
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/loaders/utils.py
utils.py
from abc import abstractmethod, abstractproperty from interface import implements import numpy as np import pandas as pd from toolz import groupby from zipline.lib.adjusted_array import AdjustedArray from zipline.lib.adjustment import ( Datetime641DArrayOverwrite, Datetime64Overwrite, Float641DArrayOverwrite, Float64Multiply, Float64Overwrite, ) from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.loaders.base import PipelineLoader from zipline.utils.date_utils import make_utc_aware from zipline.utils.numpy_utils import datetime64ns_dtype, float64_dtype from zipline.pipeline.loaders.utils import ( ffill_across_cols, last_in_date_group, ) INVALID_NUM_QTRS_MESSAGE = ( "Passed invalid number of quarters %s; " "must pass a number of quarters >= 0" ) NEXT_FISCAL_QUARTER = "next_fiscal_quarter" NEXT_FISCAL_YEAR = "next_fiscal_year" NORMALIZED_QUARTERS = "normalized_quarters" PREVIOUS_FISCAL_QUARTER = "previous_fiscal_quarter" PREVIOUS_FISCAL_YEAR = "previous_fiscal_year" SHIFTED_NORMALIZED_QTRS = "shifted_normalized_quarters" SIMULATION_DATES = "dates" def normalize_quarters(years, quarters): return years * 4 + quarters - 1 def split_normalized_quarters(normalized_quarters): years = normalized_quarters // 4 quarters = normalized_quarters % 4 return years, quarters + 1 # These metadata columns are used to align event indexers. metadata_columns = frozenset( { TS_FIELD_NAME, SID_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, } ) def required_estimates_fields(columns): """ Compute the set of resource columns required to serve `columns`. """ # We also expect any of the field names that our loadable columns # are mapped to. return metadata_columns.union(columns.values()) def validate_column_specs(events, columns): """ Verify that the columns of ``events`` can be used by a EarningsEstimatesLoader to serve the BoundColumns described by `columns`. """ required = required_estimates_fields(columns) received = set(events.columns) missing = required - received if missing: raise ValueError( "EarningsEstimatesLoader missing required columns {missing}.\n" "Got Columns: {received}\n" "Expected Columns: {required}".format( missing=sorted(missing), received=sorted(received), required=sorted(required), ) ) def add_new_adjustments(adjustments_dict, adjustments, column_name, ts): try: adjustments_dict[column_name][ts].extend(adjustments) except KeyError: adjustments_dict[column_name][ts] = adjustments class EarningsEstimatesLoader(implements(PipelineLoader)): """ An abstract pipeline loader for estimates data that can load data a variable number of quarters forwards/backwards from calendar dates depending on the `num_announcements` attribute of the columns' dataset. If split adjustments are to be applied, a loader, split-adjusted columns, and the split-adjusted asof-date must be supplied. Parameters ---------- estimates : pd.DataFrame The raw estimates data. ``estimates`` must contain at least 5 columns: sid : int64 The asset id associated with each estimate. event_date : datetime64[ns] The date on which the event that the estimate is for will/has occurred.. timestamp : datetime64[ns] The datetime where we learned about the estimate. fiscal_quarter : int64 The quarter during which the event has/will occur. fiscal_year : int64 The year during which the event has/will occur. name_map : dict[str -> str] A map of names of BoundColumns that this loader will load to the names of the corresponding columns in `events`. """ def __init__(self, estimates, name_map): validate_column_specs(estimates, name_map) self.estimates = estimates[ estimates[EVENT_DATE_FIELD_NAME].notnull() & estimates[FISCAL_QUARTER_FIELD_NAME].notnull() & estimates[FISCAL_YEAR_FIELD_NAME].notnull() ] self.estimates[NORMALIZED_QUARTERS] = normalize_quarters( self.estimates[FISCAL_YEAR_FIELD_NAME], self.estimates[FISCAL_QUARTER_FIELD_NAME], ) self.array_overwrites_dict = { datetime64ns_dtype: Datetime641DArrayOverwrite, float64_dtype: Float641DArrayOverwrite, } self.scalar_overwrites_dict = { datetime64ns_dtype: Datetime64Overwrite, float64_dtype: Float64Overwrite, } self.name_map = name_map @abstractmethod def get_zeroth_quarter_idx(self, stacked_last_per_qtr): raise NotImplementedError("get_zeroth_quarter_idx") @abstractmethod def get_shifted_qtrs(self, zero_qtrs, num_announcements): raise NotImplementedError("get_shifted_qtrs") @abstractmethod def create_overwrite_for_estimate( self, column, column_name, last_per_qtr, next_qtr_start_idx, requested_quarter, sid, sid_idx, col_to_split_adjustments, split_adjusted_asof_idx, ): raise NotImplementedError("create_overwrite_for_estimate") @abstractproperty def searchsorted_side(self): return NotImplementedError("searchsorted_side") def get_requested_quarter_data( self, zero_qtr_data, zeroth_quarter_idx, stacked_last_per_qtr, num_announcements, dates, ): """ Selects the requested data for each date. Parameters ---------- zero_qtr_data : pd.DataFrame The 'time zero' data for each calendar date per sid. zeroth_quarter_idx : pd.Index An index of calendar dates, sid, and normalized quarters, for only the rows that have a next or previous earnings estimate. stacked_last_per_qtr : pd.DataFrame The latest estimate known with the dates, normalized quarter, and sid as the index. num_announcements : int The number of annoucements out the user requested relative to each date in the calendar dates. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. Returns -------- requested_qtr_data : pd.DataFrame The DataFrame with the latest values for the requested quarter for all columns; `dates` are the index and columns are a MultiIndex with sids at the top level and the dataset columns on the bottom. """ zero_qtr_data_idx = zero_qtr_data.index requested_qtr_idx = pd.MultiIndex.from_arrays( [ zero_qtr_data_idx.get_level_values(0), zero_qtr_data_idx.get_level_values(1), self.get_shifted_qtrs( zeroth_quarter_idx.get_level_values( NORMALIZED_QUARTERS, ), num_announcements, ), ], names=[ zero_qtr_data_idx.names[0], zero_qtr_data_idx.names[1], SHIFTED_NORMALIZED_QTRS, ], ) requested_qtr_data = stacked_last_per_qtr.reindex(index=requested_qtr_idx) requested_qtr_data = requested_qtr_data.reset_index( SHIFTED_NORMALIZED_QTRS, ) # Calculate the actual year/quarter being requested and add those in # as columns. ( requested_qtr_data[FISCAL_YEAR_FIELD_NAME], requested_qtr_data[FISCAL_QUARTER_FIELD_NAME], ) = split_normalized_quarters(requested_qtr_data[SHIFTED_NORMALIZED_QTRS]) # Once we're left with just dates as the index, we can reindex by all # dates so that we have a value for each calendar date. return requested_qtr_data.unstack(SID_FIELD_NAME).reindex(dates) def get_split_adjusted_asof_idx(self, dates): """ Compute the index in `dates` where the split-adjusted-asof-date falls. This is the date up to which, and including which, we will need to unapply all adjustments for and then re-apply them as they come in. After this date, adjustments are applied as normal. Parameters ---------- dates : pd.DatetimeIndex The calendar dates over which the Pipeline is being computed. Returns ------- split_adjusted_asof_idx : int The index in `dates` at which the data should be split. """ split_adjusted_asof_idx = dates.searchsorted( pd.to_datetime(self._split_adjusted_asof, utc=True) # make_utc_aware(pd.DatetimeIndex(self._split_adjusted_asof)) ) # The split-asof date is after the date index. if split_adjusted_asof_idx == len(dates): split_adjusted_asof_idx = len(dates) - 1 if self._split_adjusted_asof.tzinfo is not None: if self._split_adjusted_asof < dates[0]: split_adjusted_asof_idx = -1 else: if self._split_adjusted_asof < dates[0].tz_localize(None): split_adjusted_asof_idx = -1 return split_adjusted_asof_idx def collect_overwrites_for_sid( self, group, dates, requested_qtr_data, last_per_qtr, sid_idx, columns, all_adjustments_for_sid, sid, ): """ Given a sid, collect all overwrites that should be applied for this sid at each quarter boundary. Parameters ---------- group : pd.DataFrame The data for `sid`. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. requested_qtr_data : pd.DataFrame The DataFrame with the latest values for the requested quarter for all columns. last_per_qtr : pd.DataFrame A DataFrame with a column MultiIndex of [self.estimates.columns, normalized_quarters, sid] that allows easily getting the timeline of estimates for a particular sid for a particular quarter. sid_idx : int The sid's index in the asset index. columns : list of BoundColumn The columns for which the overwrites should be computed. all_adjustments_for_sid : dict[int -> AdjustedArray] A dictionary of the integer index of each timestamp into the date index, mapped to adjustments that should be applied at that index for the given sid (`sid`). This dictionary is modified as adjustments are collected. sid : int The sid for which overwrites should be computed. """ # If data was requested for only 1 date, there can never be any # overwrites, so skip the extra work. if len(dates) == 1: return next_qtr_start_indices = dates.searchsorted( # pd.to_datetime(group[EVENT_DATE_FIELD_NAME], utc=True), make_utc_aware(pd.DatetimeIndex(group[EVENT_DATE_FIELD_NAME])), side=self.searchsorted_side, ) qtrs_with_estimates = group.index.get_level_values(NORMALIZED_QUARTERS).values for idx in next_qtr_start_indices: if 0 < idx < len(dates): # Find the quarter being requested in the quarter we're # crossing into. requested_quarter = requested_qtr_data[ SHIFTED_NORMALIZED_QTRS, sid, ].iloc[idx] # Only add adjustments if the next quarter starts somewhere # in our date index for this sid. Our 'next' quarter can # never start at index 0; a starting index of 0 means that # the next quarter's event date was NaT. self.create_overwrites_for_quarter( all_adjustments_for_sid, idx, last_per_qtr, qtrs_with_estimates, requested_quarter, sid, sid_idx, columns, ) def get_adjustments_for_sid( self, group, dates, requested_qtr_data, last_per_qtr, sid_to_idx, columns, col_to_all_adjustments, **kwargs, ): """ Parameters ---------- group : pd.DataFrame The data for the given sid. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. requested_qtr_data : pd.DataFrame The DataFrame with the latest values for the requested quarter for all columns. last_per_qtr : pd.DataFrame A DataFrame with a column MultiIndex of [self.estimates.columns, normalized_quarters, sid] that allows easily getting the timeline of estimates for a particular sid for a particular quarter. sid_to_idx : dict[int -> int] A dictionary mapping sid to he sid's index in the asset index. columns : list of BoundColumn The columns for which the overwrites should be computed. col_to_all_adjustments : dict[int -> AdjustedArray] A dictionary of the integer index of each timestamp into the date index, mapped to adjustments that should be applied at that index. This dictionary is for adjustments for ALL sids. It is modified as adjustments are collected. kwargs : Additional arguments used in collecting adjustments; unused here. """ # Collect all adjustments for a given sid. all_adjustments_for_sid = {} sid = int(group.name) self.collect_overwrites_for_sid( group, dates, requested_qtr_data, last_per_qtr, sid_to_idx[sid], columns, all_adjustments_for_sid, sid, ) self.merge_into_adjustments_for_all_sids( all_adjustments_for_sid, col_to_all_adjustments ) def merge_into_adjustments_for_all_sids( self, all_adjustments_for_sid, col_to_all_adjustments ): """ Merge adjustments for a particular sid into a dictionary containing adjustments for all sids. Parameters ---------- all_adjustments_for_sid : dict[int -> AdjustedArray] All adjustments for a particular sid. col_to_all_adjustments : dict[int -> AdjustedArray] All adjustments for all sids. """ for col_name in all_adjustments_for_sid: if col_name not in col_to_all_adjustments: col_to_all_adjustments[col_name] = {} for ts in all_adjustments_for_sid[col_name]: adjs = all_adjustments_for_sid[col_name][ts] add_new_adjustments(col_to_all_adjustments, adjs, col_name, ts) def get_adjustments( self, zero_qtr_data, requested_qtr_data, last_per_qtr, dates, assets, columns, **kwargs, ): """ Creates an AdjustedArray from the given estimates data for the given dates. Parameters ---------- zero_qtr_data : pd.DataFrame The 'time zero' data for each calendar date per sid. requested_qtr_data : pd.DataFrame The requested quarter data for each calendar date per sid. last_per_qtr : pd.DataFrame A DataFrame with a column MultiIndex of [self.estimates.columns, normalized_quarters, sid] that allows easily getting the timeline of estimates for a particular sid for a particular quarter. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. assets : pd.Int64Index An index of all the assets from the raw data. columns : list of BoundColumn The columns for which adjustments need to be calculated. kwargs : Additional keyword arguments that should be forwarded to `get_adjustments_for_sid` and to be used in computing adjustments for each sid. Returns ------- col_to_all_adjustments : dict[int -> AdjustedArray] A dictionary of all adjustments that should be applied. """ zero_qtr_data.sort_index(inplace=True) # Here we want to get the LAST record from each group of records # corresponding to a single quarter. This is to ensure that we select # the most up-to-date event date in case the event date changes. quarter_shifts = zero_qtr_data.groupby( level=[SID_FIELD_NAME, NORMALIZED_QUARTERS] ).nth(-1) col_to_all_adjustments = {} sid_to_idx = dict(zip(assets, range(len(assets)))) quarter_shifts.groupby(level=SID_FIELD_NAME).apply( self.get_adjustments_for_sid, dates, requested_qtr_data, last_per_qtr, sid_to_idx, columns, col_to_all_adjustments, **kwargs, ) return col_to_all_adjustments def create_overwrites_for_quarter( self, col_to_overwrites, next_qtr_start_idx, last_per_qtr, quarters_with_estimates_for_sid, requested_quarter, sid, sid_idx, columns, ): """ Add entries to the dictionary of columns to adjustments for the given sid and the given quarter. Parameters ---------- col_to_overwrites : dict [column_name -> list of ArrayAdjustment] A dictionary mapping column names to all overwrites for those columns. next_qtr_start_idx : int The index of the first day of the next quarter in the calendar dates. last_per_qtr : pd.DataFrame A DataFrame with a column MultiIndex of [self.estimates.columns, normalized_quarters, sid] that allows easily getting the timeline of estimates for a particular sid for a particular quarter; this is particularly useful for getting adjustments for 'next' estimates. quarters_with_estimates_for_sid : np.array An array of all quarters for which there are estimates for the given sid. requested_quarter : float The quarter for which the overwrite should be created. sid : int The sid for which to create overwrites. sid_idx : int The index of the sid in `assets`. columns : list of BoundColumn The columns for which to create overwrites. """ for col in columns: column_name = self.name_map[col.name] if column_name not in col_to_overwrites: col_to_overwrites[column_name] = {} # If there are estimates for the requested quarter, # overwrite all values going up to the starting index of # that quarter with estimates for that quarter. if requested_quarter in quarters_with_estimates_for_sid: adjs = self.create_overwrite_for_estimate( col, column_name, last_per_qtr, next_qtr_start_idx, requested_quarter, sid, sid_idx, ) add_new_adjustments( col_to_overwrites, adjs, column_name, next_qtr_start_idx ) # There are no estimates for the quarter. Overwrite all # values going up to the starting index of that quarter # with the missing value for this column. else: adjs = [self.overwrite_with_null(col, next_qtr_start_idx, sid_idx)] add_new_adjustments( col_to_overwrites, adjs, column_name, next_qtr_start_idx ) def overwrite_with_null(self, column, next_qtr_start_idx, sid_idx): return self.scalar_overwrites_dict[column.dtype]( 0, next_qtr_start_idx - 1, sid_idx, sid_idx, column.missing_value ) def load_adjusted_array(self, domain, columns, dates, sids, mask): # Separate out getting the columns' datasets and the datasets' # num_announcements attributes to ensure that we're catching the right # AttributeError. col_to_datasets = {col: col.dataset for col in columns} try: groups = groupby( lambda col: col_to_datasets[col].num_announcements, col_to_datasets ) except AttributeError: raise AttributeError( "Datasets loaded via the " "EarningsEstimatesLoader must define a " "`num_announcements` attribute that defines " "how many quarters out the loader should load" " the data relative to `dates`." ) if any(num_qtr < 0 for num_qtr in groups): raise ValueError( INVALID_NUM_QTRS_MESSAGE % ",".join(str(qtr) for qtr in groups if qtr < 0) ) out = {} # To optimize performance, only work below on assets that are # actually in the raw data. data_query_cutoff_times = domain.data_query_cutoff_for_sessions(dates) assets_with_data = set(sids) & set(self.estimates[SID_FIELD_NAME]) last_per_qtr, stacked_last_per_qtr = self.get_last_data_per_qtr( assets_with_data, columns, dates, data_query_cutoff_times, ) # Determine which quarter is immediately next/previous for each # date. zeroth_quarter_idx = self.get_zeroth_quarter_idx(stacked_last_per_qtr) zero_qtr_data = stacked_last_per_qtr.loc[zeroth_quarter_idx] for num_announcements, columns in groups.items(): requested_qtr_data = self.get_requested_quarter_data( zero_qtr_data, zeroth_quarter_idx, stacked_last_per_qtr, num_announcements, dates, ) # Calculate all adjustments for the given quarter and accumulate # them for each column. col_to_adjustments = self.get_adjustments( zero_qtr_data, requested_qtr_data, last_per_qtr, dates, sids, columns ) # Lookup the asset indexer once, this is so we can reindex # the assets returned into the assets requested for each column. # This depends on the fact that our column pd.MultiIndex has the same # sids for each field. This allows us to do the lookup once on # level 1 instead of doing the lookup each time per value in # level 0. # asset_indexer = sids.get_indexer_for( # requested_qtr_data.columns.levels[1], # ) for col in columns: column_name = self.name_map[col.name] # allocate the empty output with the correct missing value # shape = len(dates), len(sids) # output_array = np.full(shape=shape, # fill_value=col.missing_value, # dtype=col.dtype) # overwrite the missing value with values from the computed data try: output_array = ( requested_qtr_data[column_name] .reindex(sids, axis=1) .to_numpy() .astype(col.dtype) ) except Exception: output_array = ( requested_qtr_data[column_name] .reindex(sids, axis=1) .to_numpy(na_value=col.missing_value) .astype(col.dtype) ) # except ValueError: # np.copyto(output_array[:, asset_indexer], # requested_qtr_data[column_name].to_numpy(na_value=output_array.dtype), # casting='unsafe') out[col] = AdjustedArray( output_array, # There may not be any adjustments at all (e.g. if # len(date) == 1), so provide a default. dict(col_to_adjustments.get(column_name, {})), col.missing_value, ) return out def get_last_data_per_qtr( self, assets_with_data, columns, dates, data_query_cutoff_times ): """ Determine the last piece of information we know for each column on each date in the index for each sid and quarter. Parameters ---------- assets_with_data : pd.Index Index of all assets that appear in the raw data given to the loader. columns : iterable of BoundColumn The columns that need to be loaded from the raw data. data_query_cutoff_times : pd.DatetimeIndex The calendar of dates for which data should be loaded. Returns ------- stacked_last_per_qtr : pd.DataFrame A DataFrame indexed by [dates, sid, normalized_quarters] that has the latest information for each row of the index, sorted by event date. last_per_qtr : pd.DataFrame A DataFrame with columns that are a MultiIndex of [ self.estimates.columns, normalized_quarters, sid]. """ # Get a DataFrame indexed by date with a MultiIndex of columns of # [self.estimates.columns, normalized_quarters, sid], where each cell # contains the latest data for that day. last_per_qtr = last_in_date_group( self.estimates, data_query_cutoff_times, assets_with_data, reindex=True, extra_groupers=[NORMALIZED_QUARTERS], ) last_per_qtr.index = dates # Forward fill values for each quarter/sid/dataset column. ffill_across_cols(last_per_qtr, columns, self.name_map) # Stack quarter and sid into the index. stacked_last_per_qtr = last_per_qtr.stack( [SID_FIELD_NAME, NORMALIZED_QUARTERS], ) # Set date index name for ease of reference stacked_last_per_qtr.index.set_names( SIMULATION_DATES, level=0, inplace=True, ) stacked_last_per_qtr[EVENT_DATE_FIELD_NAME] = pd.to_datetime( stacked_last_per_qtr[EVENT_DATE_FIELD_NAME], utc=True ) stacked_last_per_qtr = stacked_last_per_qtr.sort_values(EVENT_DATE_FIELD_NAME) return last_per_qtr, stacked_last_per_qtr class NextEarningsEstimatesLoader(EarningsEstimatesLoader): searchsorted_side = "right" def create_overwrite_for_estimate( self, column, column_name, last_per_qtr, next_qtr_start_idx, requested_quarter, sid, sid_idx, col_to_split_adjustments=None, split_adjusted_asof_idx=None, ): return [ self.array_overwrites_dict[column.dtype]( 0, next_qtr_start_idx - 1, sid_idx, sid_idx, last_per_qtr[ column_name, requested_quarter, sid, ].values[:next_qtr_start_idx], ) ] def get_shifted_qtrs(self, zero_qtrs, num_announcements): return zero_qtrs + (num_announcements - 1) def get_zeroth_quarter_idx(self, stacked_last_per_qtr): """ Filters for releases that are on or after each simulation date and determines the next quarter by picking out the upcoming release for each date in the index. Parameters ---------- stacked_last_per_qtr : pd.DataFrame A DataFrame with index of calendar dates, sid, and normalized quarters with each row being the latest estimate for the row's index values, sorted by event date. Returns ------- next_releases_per_date_index : pd.MultiIndex An index of calendar dates, sid, and normalized quarters, for only the rows that have a next event. """ next_releases_per_date = ( stacked_last_per_qtr.loc[ stacked_last_per_qtr[EVENT_DATE_FIELD_NAME] >= stacked_last_per_qtr.index.get_level_values(SIMULATION_DATES) ] .groupby( level=[SIMULATION_DATES, SID_FIELD_NAME], as_index=False, # Here we take advantage of the fact that `stacked_last_per_qtr` is # sorted by event date. ) .nth(0) ) return next_releases_per_date.index class PreviousEarningsEstimatesLoader(EarningsEstimatesLoader): searchsorted_side = "left" def create_overwrite_for_estimate( self, column, column_name, dates, next_qtr_start_idx, requested_quarter, sid, sid_idx, col_to_split_adjustments=None, split_adjusted_asof_idx=None, split_dict=None, ): return [ self.overwrite_with_null( column, next_qtr_start_idx, sid_idx, ) ] def get_shifted_qtrs(self, zero_qtrs, num_announcements): return zero_qtrs - (num_announcements - 1) def get_zeroth_quarter_idx(self, stacked_last_per_qtr): """ Filters for releases that are on or after each simulation date and determines the previous quarter by picking out the most recent release relative to each date in the index. Parameters ---------- stacked_last_per_qtr : pd.DataFrame A DataFrame with index of calendar dates, sid, and normalized quarters with each row being the latest estimate for the row's index values, sorted by event date. Returns ------- previous_releases_per_date_index : pd.MultiIndex An index of calendar dates, sid, and normalized quarters, for only the rows that have a previous event. """ previous_releases_per_date = ( stacked_last_per_qtr.loc[ stacked_last_per_qtr[EVENT_DATE_FIELD_NAME] <= stacked_last_per_qtr.index.get_level_values(SIMULATION_DATES) ] .groupby( level=[SIMULATION_DATES, SID_FIELD_NAME], as_index=False, # Here we take advantage of the fact that `stacked_last_per_qtr` is # sorted by event date. ) .nth(-1) ) return previous_releases_per_date.index def validate_split_adjusted_column_specs(name_map, columns): to_be_split = set(columns) available = set(name_map.keys()) extra = to_be_split - available if extra: raise ValueError( "EarningsEstimatesLoader got the following extra columns to be " "split-adjusted: {extra}.\n" "Got Columns: {to_be_split}\n" "Available Columns: {available}".format( extra=sorted(extra), to_be_split=sorted(to_be_split), available=sorted(available), ) ) class SplitAdjustedEstimatesLoader(EarningsEstimatesLoader): """ Estimates loader that loads data that needs to be split-adjusted. Parameters ---------- split_adjustments_loader : SQLiteAdjustmentReader The loader to use for reading split adjustments. split_adjusted_column_names : iterable of str The column names that should be split-adjusted. split_adjusted_asof : pd.Timestamp The date that separates data into 2 halves: the first half is the set of dates up to and including the split_adjusted_asof date. All adjustments occurring during this first half are applied to all dates in this first half. The second half is the set of dates after the split_adjusted_asof date. All adjustments occurring during this second half are applied sequentially as they appear in the timeline. """ def __init__( self, estimates, name_map, split_adjustments_loader, split_adjusted_column_names, split_adjusted_asof, ): validate_split_adjusted_column_specs(name_map, split_adjusted_column_names) self._split_adjustments = split_adjustments_loader self._split_adjusted_column_names = split_adjusted_column_names self._split_adjusted_asof = split_adjusted_asof self._split_adjustment_dict = {} super(SplitAdjustedEstimatesLoader, self).__init__(estimates, name_map) @abstractmethod def collect_split_adjustments( self, adjustments_for_sid, requested_qtr_data, dates, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns, ): raise NotImplementedError("collect_split_adjustments") def get_adjustments_for_sid( self, group, dates, requested_qtr_data, last_per_qtr, sid_to_idx, columns, col_to_all_adjustments, split_adjusted_asof_idx=None, split_adjusted_cols_for_group=None, ): """ Collects both overwrites and adjustments for a particular sid. Parameters ---------- split_adjusted_asof_idx : int The integer index of the date on which the data was split-adjusted. split_adjusted_cols_for_group : list of str The names of requested columns that should also be split-adjusted. """ all_adjustments_for_sid = {} sid = int(group.name) self.collect_overwrites_for_sid( group, dates, requested_qtr_data, last_per_qtr, sid_to_idx[sid], columns, all_adjustments_for_sid, sid, ) ( pre_adjustments, post_adjustments, ) = self.retrieve_split_adjustment_data_for_sid( dates, sid, split_adjusted_asof_idx ) sid_estimates = self.estimates[self.estimates[SID_FIELD_NAME] == sid] # We might not have any overwrites but still have # adjustments, and we will need to manually add columns if # that is the case. for col_name in split_adjusted_cols_for_group: if col_name not in all_adjustments_for_sid: all_adjustments_for_sid[col_name] = {} self.collect_split_adjustments( all_adjustments_for_sid, requested_qtr_data, dates, sid, sid_to_idx[sid], sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, split_adjusted_cols_for_group, ) self.merge_into_adjustments_for_all_sids( all_adjustments_for_sid, col_to_all_adjustments ) def get_adjustments( self, zero_qtr_data, requested_qtr_data, last_per_qtr, dates, assets, columns, **kwargs, ): """ Calculates both split adjustments and overwrites for all sids. """ split_adjusted_cols_for_group = [ self.name_map[col.name] for col in columns if self.name_map[col.name] in self._split_adjusted_column_names ] # Add all splits to the adjustment dict for this sid. split_adjusted_asof_idx = self.get_split_adjusted_asof_idx(dates) return super(SplitAdjustedEstimatesLoader, self).get_adjustments( zero_qtr_data, requested_qtr_data, last_per_qtr, dates, assets, columns, split_adjusted_cols_for_group=split_adjusted_cols_for_group, split_adjusted_asof_idx=split_adjusted_asof_idx, ) def determine_end_idx_for_adjustment( self, adjustment_ts, dates, upper_bound, requested_quarter, sid_estimates ): """ Determines the date until which the adjustment at the given date index should be applied for the given quarter. Parameters ---------- adjustment_ts : pd.Timestamp The timestamp at which the adjustment occurs. dates : pd.DatetimeIndex The calendar dates over which the Pipeline is being computed. upper_bound : int The index of the upper bound in the calendar dates. This is the index until which the adjusment will be applied unless there is information for the requested quarter that comes in on or before that date. requested_quarter : float The quarter for which we are determining how the adjustment should be applied. sid_estimates : pd.DataFrame The DataFrame of estimates data for the sid for which we're applying the given adjustment. Returns ------- end_idx : int The last index to which the adjustment should be applied for the given quarter/sid. """ end_idx = upper_bound # Find the next newest kd that happens on or after # the date of this adjustment newest_kd_for_qtr = sid_estimates[ (sid_estimates[NORMALIZED_QUARTERS] == requested_quarter) & (pd.to_datetime(sid_estimates[TS_FIELD_NAME], utc=True) >= adjustment_ts) ][TS_FIELD_NAME].min() if pd.notnull(newest_kd_for_qtr): newest_kd_idx = dates.searchsorted( pd.to_datetime(newest_kd_for_qtr, utc=True) # make_utc_aware(pd.DatetimeIndex(newest_kd_for_qtr)) ) # We have fresh information that comes in # before the end of the overwrite and # presumably is already split-adjusted to the # current split. We should stop applying the # adjustment the day before this new # information comes in. if newest_kd_idx <= upper_bound: end_idx = newest_kd_idx - 1 return end_idx def collect_pre_split_asof_date_adjustments( self, split_adjusted_asof_date_idx, sid_idx, pre_adjustments, requested_split_adjusted_columns, ): """ Collect split adjustments that occur before the split-adjusted-asof-date. All those adjustments must first be UN-applied at the first date index and then re-applied on the appropriate dates in order to match point in time share pricing data. Parameters ---------- split_adjusted_asof_date_idx : int The index in the calendar dates as-of which all data was split-adjusted. sid_idx : int The index of the sid for which adjustments should be collected in the adjusted array. pre_adjustments : tuple(list(float), list(int)) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. requested_split_adjusted_columns : list of str The requested split adjusted columns. Returns ------- col_to_split_adjustments : dict[str -> dict[int -> list of Adjustment]] The adjustments for this sid that occurred on or before the split-asof-date. """ col_to_split_adjustments = {} if len(pre_adjustments[0]): adjustment_values, date_indexes = pre_adjustments for column_name in requested_split_adjusted_columns: col_to_split_adjustments[column_name] = {} # We need to undo all adjustments that happen before the # split_asof_date here by reversing the split ratio. col_to_split_adjustments[column_name][0] = [ Float64Multiply( 0, split_adjusted_asof_date_idx, sid_idx, sid_idx, 1 / future_adjustment, ) for future_adjustment in adjustment_values ] for adjustment, date_index in zip(adjustment_values, date_indexes): adj = Float64Multiply( 0, split_adjusted_asof_date_idx, sid_idx, sid_idx, adjustment ) add_new_adjustments( col_to_split_adjustments, [adj], column_name, date_index ) return col_to_split_adjustments def collect_post_asof_split_adjustments( self, post_adjustments, requested_qtr_data, sid, sid_idx, sid_estimates, requested_split_adjusted_columns, ): """ Collect split adjustments that occur after the split-adjusted-asof-date. Each adjustment needs to be applied to all dates on which knowledge for the requested quarter was older than the date of the adjustment. Parameters ---------- post_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. requested_qtr_data : pd.DataFrame The requested quarter data for each calendar date per sid. sid : int The sid for which adjustments need to be collected. sid_idx : int The index of `sid` in the adjusted array. sid_estimates : pd.DataFrame The raw estimates data for this sid. requested_split_adjusted_columns : list of str The requested split adjusted columns. Returns ------- col_to_split_adjustments : dict[str -> dict[int -> list of Adjustment]] The adjustments for this sid that occurred after the split-asof-date. """ col_to_split_adjustments = {} if post_adjustments: # Get an integer index requested_qtr_timeline = requested_qtr_data[SHIFTED_NORMALIZED_QTRS][ sid ].reset_index() requested_qtr_timeline = requested_qtr_timeline[ requested_qtr_timeline[sid].notnull() ] # Split the data into range by quarter and determine which quarter # was being requested in each range. # Split integer indexes up by quarter range qtr_ranges_idxs = np.split( requested_qtr_timeline.index, np.where(np.diff(requested_qtr_timeline[sid]) != 0)[0] + 1, ) requested_quarters_per_range = [ requested_qtr_timeline[sid][r[0]] for r in qtr_ranges_idxs ] # Try to apply each adjustment to each quarter range. for i, qtr_range in enumerate(qtr_ranges_idxs): for adjustment, date_index, timestamp in zip(*post_adjustments): # In the default case, apply through the end of the quarter upper_bound = qtr_range[-1] # Find the smallest KD in estimates that is on or after the # date of the given adjustment. Apply the given adjustment # until that KD. end_idx = self.determine_end_idx_for_adjustment( timestamp, requested_qtr_data.index, upper_bound, requested_quarters_per_range[i], sid_estimates, ) # In the default case, apply adjustment on the first day of # the quarter. start_idx = qtr_range[0] # If the adjustment happens during this quarter, apply the # adjustment on the day it happens. if date_index > start_idx: start_idx = date_index # We only want to apply the adjustment if we have any stale # data to apply it to. if qtr_range[0] <= end_idx: for column_name in requested_split_adjusted_columns: if column_name not in col_to_split_adjustments: col_to_split_adjustments[column_name] = {} adj = Float64Multiply( # Always apply from first day of qtr qtr_range[0], end_idx, sid_idx, sid_idx, adjustment, ) add_new_adjustments( col_to_split_adjustments, [adj], column_name, start_idx ) return col_to_split_adjustments def retrieve_split_adjustment_data_for_sid( self, dates, sid, split_adjusted_asof_idx ): """ dates : pd.DatetimeIndex The calendar dates. sid : int The sid for which we want to retrieve adjustments. split_adjusted_asof_idx : int The index in `dates` as-of which the data is split adjusted. Returns ------- pre_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values and indexes in `dates` for adjustments that happened before the split-asof-date. post_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. """ adjustments = self._split_adjustments.get_adjustments_for_sid("splits", sid) sorted(adjustments, key=lambda adj: adj[0]) # Get rid of any adjustments that happen outside of our date index. adjustments = list(filter(lambda x: dates[0] <= x[0] <= dates[-1], adjustments)) adjustment_values = np.array([adj[1] for adj in adjustments]) timestamps = pd.DatetimeIndex([adj[0] for adj in adjustments]) # We need the first date on which we would have known about each # adjustment. date_indexes = dates.searchsorted(timestamps) pre_adjustment_idxs = np.where(date_indexes <= split_adjusted_asof_idx)[0] last_adjustment_split_asof_idx = -1 if len(pre_adjustment_idxs): last_adjustment_split_asof_idx = pre_adjustment_idxs.max() pre_adjustments = ( adjustment_values[: last_adjustment_split_asof_idx + 1], date_indexes[: last_adjustment_split_asof_idx + 1], ) post_adjustments = ( adjustment_values[last_adjustment_split_asof_idx + 1 :], date_indexes[last_adjustment_split_asof_idx + 1 :], timestamps[last_adjustment_split_asof_idx + 1 :], ) return pre_adjustments, post_adjustments def _collect_adjustments( self, requested_qtr_data, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns, ): pre_adjustments_dict = self.collect_pre_split_asof_date_adjustments( split_adjusted_asof_idx, sid_idx, pre_adjustments, requested_split_adjusted_columns, ) post_adjustments_dict = self.collect_post_asof_split_adjustments( post_adjustments, requested_qtr_data, sid, sid_idx, sid_estimates, requested_split_adjusted_columns, ) return pre_adjustments_dict, post_adjustments_dict def merge_split_adjustments_with_overwrites( self, pre, post, overwrites, requested_split_adjusted_columns ): """ Merge split adjustments with the dict containing overwrites. Parameters ---------- pre : dict[str -> dict[int -> list]] The adjustments that occur before the split-adjusted-asof-date. post : dict[str -> dict[int -> list]] The adjustments that occur after the split-adjusted-asof-date. overwrites : dict[str -> dict[int -> list]] The overwrites across all time. Adjustments will be merged into this dictionary. requested_split_adjusted_columns : list of str List of names of split adjusted columns that are being requested. """ for column_name in requested_split_adjusted_columns: # We can do a merge here because the timestamps in 'pre' and # 'post' are guaranteed to not overlap. if pre: # Either empty or contains all columns. for ts in pre[column_name]: add_new_adjustments( overwrites, pre[column_name][ts], column_name, ts ) if post: # Either empty or contains all columns. for ts in post[column_name]: add_new_adjustments( overwrites, post[column_name][ts], column_name, ts ) class PreviousSplitAdjustedEarningsEstimatesLoader( SplitAdjustedEstimatesLoader, PreviousEarningsEstimatesLoader ): def collect_split_adjustments( self, adjustments_for_sid, requested_qtr_data, dates, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns, ): """ Collect split adjustments for previous quarters and apply them to the given dictionary of splits for the given sid. Since overwrites just replace all estimates before the new quarter with NaN, we don't need to worry about re-applying split adjustments. Parameters ---------- adjustments_for_sid : dict[str -> dict[int -> list]] The dictionary of adjustments to which splits need to be added. Initially it contains only overwrites. requested_qtr_data : pd.DataFrame The requested quarter data for each calendar date per sid. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. sid : int The sid for which adjustments need to be collected. sid_idx : int The index of `sid` in the adjusted array. sid_estimates : pd.DataFrame The raw estimates data for the given sid. split_adjusted_asof_idx : int The index in `dates` as-of which the data is split adjusted. pre_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values and indexes in `dates` for adjustments that happened before the split-asof-date. post_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. requested_split_adjusted_columns : list of str List of requested split adjusted column names. """ (pre_adjustments_dict, post_adjustments_dict) = self._collect_adjustments( requested_qtr_data, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns, ) self.merge_split_adjustments_with_overwrites( pre_adjustments_dict, post_adjustments_dict, adjustments_for_sid, requested_split_adjusted_columns, ) class NextSplitAdjustedEarningsEstimatesLoader( SplitAdjustedEstimatesLoader, NextEarningsEstimatesLoader ): def collect_split_adjustments( self, adjustments_for_sid, requested_qtr_data, dates, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns, ): """ Collect split adjustments for future quarters. Re-apply adjustments that would be overwritten by overwrites. Merge split adjustments with overwrites into the given dictionary of splits for the given sid. Parameters ---------- adjustments_for_sid : dict[str -> dict[int -> list]] The dictionary of adjustments to which splits need to be added. Initially it contains only overwrites. requested_qtr_data : pd.DataFrame The requested quarter data for each calendar date per sid. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. sid : int The sid for which adjustments need to be collected. sid_idx : int The index of `sid` in the adjusted array. sid_estimates : pd.DataFrame The raw estimates data for the given sid. split_adjusted_asof_idx : int The index in `dates` as-of which the data is split adjusted. pre_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values and indexes in `dates` for adjustments that happened before the split-asof-date. post_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. requested_split_adjusted_columns : list of str List of requested split adjusted column names. """ (pre_adjustments_dict, post_adjustments_dict) = self._collect_adjustments( requested_qtr_data, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns, ) for column_name in requested_split_adjusted_columns: for overwrite_ts in adjustments_for_sid[column_name]: # We need to cumulatively re-apply all adjustments up to the # split-adjusted-asof-date. We might not have any # pre-adjustments, so we should check for that. if overwrite_ts <= split_adjusted_asof_idx and pre_adjustments_dict: for split_ts in pre_adjustments_dict[column_name]: # The split has to have occurred during the span of # the overwrite. if split_ts < overwrite_ts: # Create new adjustments here so that we can # re-apply all applicable adjustments to ONLY # the dates being overwritten. adjustments_for_sid[column_name][overwrite_ts].extend( [ Float64Multiply( 0, overwrite_ts - 1, sid_idx, sid_idx, adjustment.value, ) for adjustment in pre_adjustments_dict[column_name][ split_ts ] ] ) # After the split-adjusted-asof-date, we need to re-apply all # adjustments that occur after that date and within the # bounds of the overwrite. They need to be applied starting # from the first date and until an end date. The end date is # the date of the newest information we get about # `requested_quarter` that is >= `split_ts`, or if there is no # new knowledge before `overwrite_ts`, then it is the date # before `overwrite_ts`. else: # Overwrites happen at the first index of a new quarter, # so determine here which quarter that is. requested_quarter = requested_qtr_data[ SHIFTED_NORMALIZED_QTRS, sid ].iloc[overwrite_ts] for adjustment_value, date_index, timestamp in zip( *post_adjustments ): if split_adjusted_asof_idx < date_index < overwrite_ts: # Assume the entire overwrite contains stale data upper_bound = overwrite_ts - 1 end_idx = self.determine_end_idx_for_adjustment( timestamp, dates, upper_bound, requested_quarter, sid_estimates, ) adjustments_for_sid[column_name][overwrite_ts].append( Float64Multiply( 0, end_idx, sid_idx, sid_idx, adjustment_value ) ) self.merge_split_adjustments_with_overwrites( pre_adjustments_dict, post_adjustments_dict, adjustments_for_sid, requested_split_adjusted_columns, )
zipline-crypto
/zipline_crypto-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/zipline/pipeline/loaders/earnings_estimates.py
earnings_estimates.py