code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
from abc import ABCMeta, abstractmethod from typing import List, Optional, Sequence, cast import gym import numpy as np from ..containers import FIFOQueue from ..dataset import ( Episode, MDPDataset, Transition, TransitionMiniBatch, trace_back_and_clear, ) from ..envs import BatchEnv from .utility import get_action_size_from_env class _Buffer(metaclass=ABCMeta): _transitions: FIFOQueue[Transition] _observation_shape: Sequence[int] _action_size: int _create_mask: bool _mask_size: int def __init__( self, maxlen: int, env: Optional[gym.Env] = None, episodes: Optional[List[Episode]] = None, create_mask: bool = False, mask_size: int = 1, ): def drop_callback(transition: Transition) -> None: # remove links when dropping the last transition if transition.next_transition is None: trace_back_and_clear(transition) self._transitions = FIFOQueue(maxlen, drop_callback) # extract shape information if env: observation_shape = env.observation_space.shape action_size = get_action_size_from_env(env) elif episodes: observation_shape = episodes[0].get_observation_shape() action_size = episodes[0].get_action_size() else: raise ValueError("env or episodes are required to determine shape.") self._observation_shape = observation_shape self._action_size = action_size self._create_mask = create_mask self._mask_size = mask_size # add initial transitions if episodes: for episode in episodes: self.append_episode(episode) def append_episode(self, episode: Episode) -> None: """Append Episode object to buffer. Args: episode: episode. """ assert episode.get_observation_shape() == self._observation_shape assert episode.get_action_size() == self._action_size for transition in episode.transitions: self._transitions.append(transition) # add mask if necessary if self._create_mask and transition.mask is None: transition.mask = np.random.randint(2, size=self._mask_size) @abstractmethod def sample( self, batch_size: int, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, ) -> TransitionMiniBatch: """Returns sampled mini-batch of transitions. If observation is image, you can stack arbitrary frames via ``n_frames``. .. code-block:: python buffer.observation_shape == (3, 84, 84) # stack 4 frames batch = buffer.sample(batch_size=32, n_frames=4) batch.observations.shape == (32, 12, 84, 84) Args: batch_size: mini-batch size. n_frames: the number of frames to stack for image observation. n_steps: the number of steps before the next observation. gamma: discount factor used in N-step return calculation. Returns: mini-batch. """ @abstractmethod def clip_episode(self) -> None: """Clips the current episode.""" def size(self) -> int: """Returns the number of appended elements in buffer. Returns: the number of elements in buffer. """ return len(self._transitions) def to_mdp_dataset(self) -> MDPDataset: """Convert replay data into static dataset. The length of the dataset can be longer than the length of the replay buffer because this conversion is done by tracing ``Transition`` objects. Returns: MDPDataset object. """ # get the last transitions tail_transitions: List[Transition] = [] for transition in self._transitions: if transition.next_transition is None: tail_transitions.append(transition) observations = [] actions = [] rewards = [] terminals = [] episode_terminals = [] for transition in tail_transitions: # trace transition to the beginning episode_transitions: List[Transition] = [] while True: episode_transitions.append(transition) if transition.prev_transition is None: break transition = transition.prev_transition episode_transitions.reverse() # stack data for episode_transition in episode_transitions: observations.append(episode_transition.observation) actions.append(episode_transition.action) rewards.append(episode_transition.reward) terminals.append(0.0) episode_terminals.append(0.0) observations.append(episode_transitions[-1].next_observation) actions.append(episode_transitions[-1].next_action) rewards.append(episode_transitions[-1].next_reward) terminals.append(episode_transitions[-1].terminal) episode_terminals.append(1.0) if len(self._observation_shape) == 3: observations = np.asarray(observations, dtype=np.uint8) else: observations = np.asarray(observations, dtype=np.float32) return MDPDataset( observations=observations, actions=actions, rewards=rewards, terminals=terminals, episode_terminals=episode_terminals, create_mask=self._create_mask, mask_size=self._mask_size, ) def __len__(self) -> int: return self.size() @property def transitions(self) -> FIFOQueue[Transition]: """Returns a FIFO queue of transitions. Returns: d3rlpy.online.buffers.FIFOQueue: FIFO queue of transitions. """ return self._transitions class Buffer(_Buffer): @abstractmethod def append( self, observation: np.ndarray, action: np.ndarray, reward: float, terminal: float, clip_episode: Optional[bool] = None, ) -> None: """Append observation, action, reward and terminal flag to buffer. If the terminal flag is True, Monte-Carlo returns will be computed with an entire episode and the whole transitions will be appended. Args: observation: observation. action: action. reward: reward. terminal: terminal flag. clip_episode: flag to clip the current episode. If ``None``, the episode is clipped based on ``terminal``. """ class BatchBuffer(_Buffer): @abstractmethod def append( self, observations: np.ndarray, actions: np.ndarray, rewards: np.ndarray, terminals: np.ndarray, clip_episodes: Optional[np.ndarray] = None, ) -> None: """Append observation, action, reward and terminal flag to buffer. If the terminal flag is True, Monte-Carlo returns will be computed with an entire episode and the whole transitions will be appended. Args: observations: observation. actions: action. rewards: reward. terminals: terminal flag. clip_episodes: flag to clip the current episode. If ``None``, the episode is clipped based on ``terminal``. """ class BasicSampleMixin: _transitions: FIFOQueue[Transition] def sample( self, batch_size: int, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, ) -> TransitionMiniBatch: indices = np.random.choice(len(self._transitions), batch_size) transitions = [self._transitions[index] for index in indices] batch = TransitionMiniBatch(transitions, n_frames, n_steps, gamma) return batch class ReplayBuffer(BasicSampleMixin, Buffer): """Standard Replay Buffer. Args: maxlen (int): the maximum number of data length. env (gym.Env): gym-like environment to extract shape information. episodes (list(d3rlpy.dataset.Episode)): list of episodes to initialize buffer. create_mask (bool): flag to create bootstrapping mask. mask_size (int): ensemble size for binary mask. """ _prev_observation: Optional[np.ndarray] _prev_action: Optional[np.ndarray] _prev_reward: float _prev_transition: Optional[Transition] def __init__( self, maxlen: int, env: Optional[gym.Env] = None, episodes: Optional[List[Episode]] = None, create_mask: bool = False, mask_size: int = 1, ): super().__init__(maxlen, env, episodes, create_mask, mask_size) self._prev_observation = None self._prev_action = None self._prev_reward = 0.0 self._prev_transition = None def append( self, observation: np.ndarray, action: np.ndarray, reward: float, terminal: float, clip_episode: Optional[bool] = None, ) -> None: # if None, use terminal if clip_episode is None: clip_episode = bool(terminal) # validation assert observation.shape == self._observation_shape if isinstance(action, np.ndarray): assert action.shape[0] == self._action_size else: action = int(action) assert action < self._action_size # not allow terminal=True and clip_episode=False assert not (terminal and not clip_episode) # create Transition object if self._prev_observation is not None: if isinstance(terminal, bool): terminal = 1.0 if terminal else 0.0 # create binary mask if self._create_mask: mask = np.random.randint(2, size=self._mask_size) else: mask = None transition = Transition( observation_shape=self._observation_shape, action_size=self._action_size, observation=self._prev_observation, action=self._prev_action, reward=self._prev_reward, next_observation=observation, next_action=action, next_reward=reward, terminal=terminal, mask=mask, prev_transition=self._prev_transition, ) if self._prev_transition: self._prev_transition.next_transition = transition self._transitions.append(transition) self._prev_transition = transition self._prev_observation = observation self._prev_action = action self._prev_reward = reward if clip_episode: self.clip_episode() def clip_episode(self) -> None: self._prev_observation = None self._prev_action = None self._prev_reward = 0.0 self._prev_transition = None class BatchReplayBuffer(BasicSampleMixin, BatchBuffer): """Standard Replay Buffer for batch training. Args: maxlen (int): the maximum number of data length. n_envs (int): the number of environments. env (gym.Env): gym-like environment to extract shape information. episodes (list(d3rlpy.dataset.Episode)): list of episodes to initialize buffer create_mask (bool): flag to create bootstrapping mask. mask_size (int): ensemble size for binary mask. """ _n_envs: int _prev_observations: List[Optional[np.ndarray]] _prev_actions: List[Optional[np.ndarray]] _prev_rewards: List[Optional[np.ndarray]] _prev_transitions: List[Optional[Transition]] def __init__( self, maxlen: int, env: BatchEnv, episodes: Optional[List[Episode]] = None, create_mask: bool = False, mask_size: int = 1, ): super().__init__(maxlen, env, episodes, create_mask, mask_size) self._n_envs = len(env) self._prev_observations = [None for _ in range(len(env))] self._prev_actions = [None for _ in range(len(env))] self._prev_rewards = [None for _ in range(len(env))] self._prev_transitions = [None for _ in range(len(env))] def append( self, observations: np.ndarray, actions: np.ndarray, rewards: np.ndarray, terminals: np.ndarray, clip_episodes: Optional[np.ndarray] = None, ) -> None: # if None, use terminal if clip_episodes is None: clip_episodes = terminals # validation assert observations.shape == (self._n_envs, *self._observation_shape) if actions.ndim == 2: assert actions.shape == (self._n_envs, self._action_size) else: assert actions.shape == (self._n_envs,) assert rewards.shape == (self._n_envs,) assert terminals.shape == (self._n_envs,) # not allow terminal=True and clip_episode=False assert np.all(terminals - clip_episodes < 1) # create Transition objects for i in range(self._n_envs): if self._prev_observations[i] is not None: prev_observation = self._prev_observations[i] prev_action = self._prev_actions[i] prev_reward = cast(np.ndarray, self._prev_rewards[i]) prev_transition = self._prev_transitions[i] # create binary mask if self._create_mask: mask = np.random.randint(2, size=self._mask_size) else: mask = None transition = Transition( observation_shape=self._observation_shape, action_size=self._action_size, observation=prev_observation, action=prev_action, reward=float(prev_reward), next_observation=observations[i], next_action=actions[i], next_reward=float(rewards[i]), terminal=float(terminals[i]), mask=mask, prev_transition=prev_transition, ) if prev_transition: prev_transition.next_transition = transition self._transitions.append(transition) self._prev_transitions[i] = transition self._prev_observations[i] = observations[i] self._prev_actions[i] = actions[i] self._prev_rewards[i] = rewards[i] if clip_episodes[i]: self._prev_observations[i] = None self._prev_actions[i] = None self._prev_rewards[i] = None self._prev_transitions[i] = None def clip_episode(self) -> None: for i in range(self._n_envs): self._prev_observations[i] = None self._prev_actions[i] = None self._prev_rewards[i] = None self._prev_transitions[i] = None
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/online/buffers.py
buffers.py
from abc import ABCMeta, abstractmethod from typing import Any, List, Optional, Union import numpy as np from typing_extensions import Protocol from ..preprocessing.action_scalers import ActionScaler, MinMaxActionScaler class _ActionProtocol(Protocol): def predict(self, x: Union[np.ndarray, List[Any]]) -> np.ndarray: ... def sample_action(self, x: Union[np.ndarray, List[Any]]) -> np.ndarray: ... @property def action_size(self) -> Optional[int]: ... @property def action_scaler(self) -> Optional[ActionScaler]: ... class Explorer(metaclass=ABCMeta): @abstractmethod def sample( self, algo: _ActionProtocol, x: np.ndarray, step: int ) -> np.ndarray: pass class ConstantEpsilonGreedy(Explorer): """:math:`\\epsilon`-greedy explorer with constant :math:`\\epsilon`. Args: epsilon (float): the constant :math:`\\epsilon`. """ _epsilon: float def __init__(self, epsilon: float): self._epsilon = epsilon def sample( self, algo: _ActionProtocol, x: np.ndarray, step: int ) -> np.ndarray: greedy_actions = algo.predict(x) random_actions = np.random.randint(algo.action_size, size=x.shape[0]) is_random = np.random.random(x.shape[0]) < self._epsilon return np.where(is_random, random_actions, greedy_actions) class LinearDecayEpsilonGreedy(Explorer): """:math:`\\epsilon`-greedy explorer with linear decay schedule. Args: start_epsilon (float): the beginning :math:`\\epsilon`. end_epsilon (float): the end :math:`\\epsilon`. duration (int): the scheduling duration. """ _start_epsilon: float _end_epsilon: float _duration: int def __init__( self, start_epsilon: float = 1.0, end_epsilon: float = 0.1, duration: int = 1000000, ): self._start_epsilon = start_epsilon self._end_epsilon = end_epsilon self._duration = duration def sample( self, algo: _ActionProtocol, x: np.ndarray, step: int ) -> np.ndarray: """Returns :math:`\\epsilon`-greedy action. Args: algo: algorithm. x: observation. step: current environment step. Returns: :math:`\\epsilon`-greedy action. """ greedy_actions = algo.predict(x) random_actions = np.random.randint(algo.action_size, size=x.shape[0]) is_random = np.random.random(x.shape[0]) < self.compute_epsilon(step) return np.where(is_random, random_actions, greedy_actions) def compute_epsilon(self, step: int) -> float: """Returns decayed :math:`\\epsilon`. Returns: :math:`\\epsilon`. """ if step >= self._duration: return self._end_epsilon base = self._start_epsilon - self._end_epsilon return base * (1.0 - step / self._duration) + self._end_epsilon class NormalNoise(Explorer): """Normal noise explorer. Args: mean (float): mean. std (float): standard deviation. """ _mean: float _std: float def __init__(self, mean: float = 0.0, std: float = 0.1): self._mean = mean self._std = std def sample( self, algo: _ActionProtocol, x: np.ndarray, step: int ) -> np.ndarray: """Returns action with noise injection. Args: algo: algorithm. x: observation. Returns: action with noise injection. """ action = algo.predict(x) # FIXME: Scalar noise works better for some reason. # But this is different from paper. noise = np.random.normal(self._mean, self._std) if isinstance(algo.action_scaler, MinMaxActionScaler): # scale noise params = algo.action_scaler.get_params() minimum = params["minimum"] maximum = params["maximum"] else: minimum = -1.0 maximum = 1.0 return np.clip(action + noise, minimum, maximum)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/online/explorers.py
explorers.py
from typing import Any, Callable, Dict, List, Optional, Union import gym import numpy as np from tqdm import trange from typing_extensions import Protocol from ..dataset import TransitionMiniBatch from ..envs import BatchEnv from ..logger import LOG, D3RLPyLogger from ..metrics.scorer import evaluate_on_environment from ..preprocessing import ActionScaler, Scaler from ..preprocessing.stack import BatchStackedObservation, StackedObservation from .buffers import BatchBuffer, Buffer from .explorers import Explorer class AlgoProtocol(Protocol): def update(self, batch: TransitionMiniBatch) -> Dict[str, float]: ... def build_with_env(self, env: gym.Env) -> None: ... def save_params(self, logger: D3RLPyLogger) -> None: ... def predict(self, x: Union[np.ndarray, List[Any]]) -> np.ndarray: ... def sample_action(self, x: Union[np.ndarray, List[Any]]) -> np.ndarray: ... def save_model(self, fname: str) -> None: ... def set_active_logger(self, logger: D3RLPyLogger) -> None: ... @property def action_size(self) -> Optional[int]: ... @property def scaler(self) -> Optional[Scaler]: ... @property def action_scaler(self) -> Optional[ActionScaler]: ... @property def n_frames(self) -> int: ... @property def n_steps(self) -> int: ... @property def gamma(self) -> float: ... @property def batch_size(self) -> int: ... @property def impl(self) -> Optional[Any]: ... @property def grad_step(self) -> int: ... def _setup_algo(algo: AlgoProtocol, env: gym.Env) -> None: # initialize scaler if algo.scaler: LOG.debug("Fitting scaler...", scler=algo.scaler.get_type()) algo.scaler.fit_with_env(env) # initialize action scaler if algo.action_scaler: LOG.debug( "Fitting action scaler...", action_scler=algo.action_scaler.get_type(), ) algo.action_scaler.fit_with_env(env) # setup algorithm if algo.impl is None: LOG.debug("Building model...") algo.build_with_env(env) LOG.debug("Model has been built.") else: LOG.warning("Skip building models since they're already built.") def train_single_env( algo: AlgoProtocol, env: gym.Env, buffer: Buffer, explorer: Optional[Explorer] = None, n_steps: int = 1000000, n_steps_per_epoch: int = 10000, update_interval: int = 1, update_start_step: int = 0, random_steps: int = 0, eval_env: Optional[gym.Env] = None, eval_epsilon: float = 0.0, save_metrics: bool = True, save_interval: int = 1, experiment_name: Optional[str] = None, with_timestamp: bool = True, logdir: str = "d3rlpy_logs", verbose: bool = True, show_progress: bool = True, tensorboard_dir: Optional[str] = None, timelimit_aware: bool = True, callback: Optional[Callable[[AlgoProtocol, int, int], None]] = None, ) -> None: """Start training loop of online deep reinforcement learning. Args: algo: algorithm object. env: gym-like environment. buffer : replay buffer. explorer: action explorer. n_steps: the number of total steps to train. n_steps_per_epoch: the number of steps per epoch. update_interval: the number of steps per update. update_start_step: the steps before starting updates. random_steps: the steps for the initial random explortion. eval_env: gym-like environment. If None, evaluation is skipped. eval_epsilon: :math:`\\epsilon`-greedy factor during evaluation. save_metrics: flag to record metrics. If False, the log directory is not created and the model parameters are not saved. save_interval: the number of epochs before saving models. experiment_name: experiment name for logging. If not passed, the directory name will be ``{class name}_online_{timestamp}``. with_timestamp: flag to add timestamp string to the last of directory name. logdir: root directory name to save logs. verbose: flag to show logged information on stdout. show_progress: flag to show progress bar for iterations. tensorboard_dir: directory to save logged information in tensorboard (additional to the csv data). if ``None``, the directory will not be created. timelimit_aware: flag to turn ``terminal`` flag ``False`` when ``TimeLimit.truncated`` flag is ``True``, which is designed to incorporate with ``gym.wrappers.TimeLimit``. callback: callable function that takes ``(algo, epoch, total_step)`` , which is called at the end of epochs. """ # setup logger if experiment_name is None: experiment_name = algo.__class__.__name__ + "_online" logger = D3RLPyLogger( experiment_name, save_metrics=save_metrics, root_dir=logdir, verbose=verbose, tensorboard_dir=tensorboard_dir, with_timestamp=with_timestamp, ) algo.set_active_logger(logger) # initialize algorithm parameters _setup_algo(algo, env) observation_shape = env.observation_space.shape is_image = len(observation_shape) == 3 # prepare stacked observation if is_image: stacked_frame = StackedObservation(observation_shape, algo.n_frames) # save hyperparameters algo.save_params(logger) # switch based on show_progress flag xrange = trange if show_progress else range # setup evaluation scorer eval_scorer: Optional[Callable[..., float]] if eval_env: eval_scorer = evaluate_on_environment(eval_env, epsilon=eval_epsilon) else: eval_scorer = None # start training loop observation, reward, terminal = env.reset(), 0.0, False rollout_return = 0.0 clip_episode = False for total_step in xrange(1, n_steps + 1): with logger.measure_time("step"): # stack observation if necessary if is_image: stacked_frame.append(observation) fed_observation = stacked_frame.eval() else: observation = observation.astype("f4") fed_observation = observation # sample exploration action with logger.measure_time("inference"): if total_step < random_steps: action = env.action_space.sample() elif explorer: x = fed_observation.reshape((1,) + fed_observation.shape) action = explorer.sample(algo, x, total_step)[0] else: action = algo.sample_action([fed_observation])[0] # store observation buffer.append( observation=observation, action=action, reward=reward, terminal=terminal, clip_episode=clip_episode, ) # get next observation if clip_episode: observation, reward, terminal = env.reset(), 0.0, False clip_episode = False logger.add_metric("rollout_return", rollout_return) rollout_return = 0.0 # for image observation if is_image: stacked_frame.clear() else: with logger.measure_time("environment_step"): observation, reward, terminal, info = env.step(action) rollout_return += reward # special case for TimeLimit wrapper if timelimit_aware and "TimeLimit.truncated" in info: clip_episode = True terminal = False else: clip_episode = terminal # psuedo epoch count epoch = total_step // n_steps_per_epoch if total_step > update_start_step and len(buffer) > algo.batch_size: if total_step % update_interval == 0: # sample mini-batch with logger.measure_time("sample_batch"): batch = buffer.sample( batch_size=algo.batch_size, n_frames=algo.n_frames, n_steps=algo.n_steps, gamma=algo.gamma, ) # update parameters with logger.measure_time("algorithm_update"): loss = algo.update(batch) # record metrics for name, val in loss.items(): logger.add_metric(name, val) # call callback if given if callback: callback(algo, epoch, total_step) if epoch > 0 and total_step % n_steps_per_epoch == 0: # evaluation if eval_scorer: logger.add_metric("evaluation", eval_scorer(algo)) if epoch % save_interval == 0: logger.save_model(total_step, algo) # save metrics logger.commit(epoch, total_step) # clip the last episode buffer.clip_episode() def train_batch_env( algo: AlgoProtocol, env: BatchEnv, buffer: BatchBuffer, explorer: Optional[Explorer] = None, n_epochs: int = 1000, n_steps_per_epoch: int = 1000, n_updates_per_epoch: int = 1000, eval_interval: int = 10, eval_env: Optional[gym.Env] = None, eval_epsilon: float = 0.0, save_metrics: bool = True, save_interval: int = 1, experiment_name: Optional[str] = None, with_timestamp: bool = True, logdir: str = "d3rlpy_logs", verbose: bool = True, show_progress: bool = True, tensorboard_dir: Optional[str] = None, timelimit_aware: bool = True, callback: Optional[Callable[[AlgoProtocol, int, int], None]] = None, ) -> None: """Start training loop of online deep reinforcement learning. Args: algo: algorithm object. env: gym-like environment. buffer : replay buffer. explorer: action explorer. n_epochs: the number of epochs to train. n_steps_per_epoch: the number of steps per epoch. n_updates_per_epoch: the number of updates per epoch. eval_interval: the number of epochs before evaluation. eval_env: gym-like environment. If None, evaluation is skipped. eval_epsilon: :math:`\\epsilon`-greedy factor during evaluation. save_metrics: flag to record metrics. If False, the log directory is not created and the model parameters are not saved. save_interval: the number of epochs before saving models. experiment_name: experiment name for logging. If not passed, the directory name will be ``{class name}_online_{timestamp}``. with_timestamp: flag to add timestamp string to the last of directory name. logdir: root directory name to save logs. verbose: flag to show logged information on stdout. show_progress: flag to show progress bar for iterations. tensorboard_dir: directory to save logged information in tensorboard (additional to the csv data). if ``None``, the directory will not be created. timelimit_aware: flag to turn ``terminal`` flag ``False`` when ``TimeLimit.truncated`` flag is ``True``, which is designed to incorporate with ``gym.wrappers.TimeLimit``. callback: callable function that takes ``(algo, epoch, total_step)`` , which is called at the end of epochs. """ # setup logger if experiment_name is None: experiment_name = algo.__class__.__name__ + "_online" logger = D3RLPyLogger( experiment_name, save_metrics=save_metrics, root_dir=logdir, verbose=verbose, tensorboard_dir=tensorboard_dir, with_timestamp=with_timestamp, ) algo.set_active_logger(logger) # initialize algorithm parameters _setup_algo(algo, env) observation_shape = env.observation_space.shape is_image = len(observation_shape) == 3 # prepare stacked observation if is_image: stacked_frame = BatchStackedObservation( observation_shape, algo.n_frames, len(env) ) # save hyperparameters algo.save_params(logger) # switch based on show_progress flag xrange = trange if show_progress else range # setup evaluation scorer eval_scorer: Optional[Callable[..., float]] if eval_env: eval_scorer = evaluate_on_environment(eval_env, epsilon=eval_epsilon) else: eval_scorer = None # start training loop observation = env.reset() reward, terminal = np.zeros(len(env)), np.zeros(len(env)) clip_episode = np.zeros(len(env)) for epoch in range(1, n_epochs + 1): for step in xrange(n_steps_per_epoch): total_step = len(env) * (epoch * n_steps_per_epoch + step) # stack observation if necessary if is_image: stacked_frame.append(observation) fed_observation = stacked_frame.eval() else: observation = observation.astype("f4") fed_observation = observation # sample exploration action with logger.measure_time("inference"): if explorer: action = explorer.sample(algo, fed_observation, total_step) else: action = algo.sample_action(fed_observation) # store observation buffer.append( observations=observation, actions=action, rewards=reward, terminals=terminal, clip_episodes=clip_episode, ) # get next observation with logger.measure_time("environment_step"): observation, reward, terminal, infos = env.step(action) # special case for TimeLimit wrapper for i, info in enumerate(infos): if timelimit_aware and "TimeLimit.truncated" in info: clip_episode[i] = 1.0 terminal[i] = 0.0 else: clip_episode[i] = terminal[i] if clip_episode[i] and is_image: stacked_frame.clear_by_index(i) # call callback if given if callback: callback(algo, epoch, total_step) for step in range(n_updates_per_epoch): # sample mini-batch with logger.measure_time("sample_batch"): batch = buffer.sample( batch_size=algo.batch_size, n_frames=algo.n_frames, n_steps=algo.n_steps, gamma=algo.gamma, ) # update parameters with logger.measure_time("algorithm_update"): loss = algo.update(batch) # record metrics for name, val in loss.items(): logger.add_metric(name, val) if epoch % eval_interval == 0: # evaluation if eval_scorer: logger.add_metric("evaluation", eval_scorer(algo)) # save metrics logger.commit(epoch, total_step) if epoch % save_interval == 0: logger.save_model(total_step, algo) # finish all process env.close() # clip the last episodes buffer.clip_episode() def collect( algo: AlgoProtocol, env: gym.Env, buffer: Buffer, explorer: Optional[Explorer] = None, deterministic: bool = False, n_steps: int = 1000000, show_progress: bool = True, timelimit_aware: bool = True, ) -> None: """Collects data via interaction with environment. Args: algo: algorithm object. env: gym-like environment. buffer : replay buffer. explorer: action explorer. deterministic: flag to collect data with the greedy policy. n_steps: the number of total steps to train. show_progress: flag to show progress bar for iterations. timelimit_aware: flag to turn ``terminal`` flag ``False`` when ``TimeLimit.truncated`` flag is ``True``, which is designed to incorporate with ``gym.wrappers.TimeLimit``. """ # initialize algorithm parameters _setup_algo(algo, env) observation_shape = env.observation_space.shape is_image = len(observation_shape) == 3 # prepare stacked observation if is_image: stacked_frame = StackedObservation(observation_shape, algo.n_frames) # switch based on show_progress flag xrange = trange if show_progress else range # start training loop observation, reward, terminal = env.reset(), 0.0, False clip_episode = False for total_step in xrange(1, n_steps + 1): # stack observation if necessary if is_image: stacked_frame.append(observation) fed_observation = stacked_frame.eval() else: observation = observation.astype("f4") fed_observation = observation # sample exploration action if deterministic: action = algo.predict([fed_observation])[0] else: if explorer: x = fed_observation.reshape((1,) + fed_observation.shape) action = explorer.sample(algo, x, total_step)[0] else: action = algo.sample_action([fed_observation])[0] # store observation buffer.append( observation=observation, action=action, reward=reward, terminal=terminal, clip_episode=clip_episode, ) # get next observation if clip_episode: observation, reward, terminal = env.reset(), 0.0, False clip_episode = False # for image observation if is_image: stacked_frame.clear() else: observation, reward, terminal, info = env.step(action) # special case for TimeLimit wrapper if timelimit_aware and "TimeLimit.truncated" in info: clip_episode = True terminal = False else: clip_episode = terminal # clip the last episode buffer.clip_episode()
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/online/iterators.py
iterators.py
from typing import Any, Dict, Optional, Sequence from ..argument_utility import ( ActionScalerArg, EncoderArg, QFuncArg, RewardScalerArg, ScalerArg, UseGPUArg, check_encoder, check_q_func, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import TransitionMiniBatch from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import AdamFactory, OptimizerFactory from ..models.q_functions import QFunctionFactory from .base import AlgoBase from .torch.ddpg_impl import DDPGImpl class DDPG(AlgoBase): r"""Deep Deterministic Policy Gradients algorithm. DDPG is an actor-critic algorithm that trains a Q function parametrized with :math:`\theta` and a policy function parametrized with :math:`\phi`. .. math:: L(\theta) = \mathbb{E}_{s_t,\, a_t,\, r_{t+1},\, s_{t+1} \sim D} \Big[(r_{t+1} + \gamma Q_{\theta'}\big(s_{t+1}, \pi_{\phi'}(s_{t+1})) - Q_\theta(s_t, a_t)\big)^2\Big] .. math:: J(\phi) = \mathbb{E}_{s_t \sim D} \Big[Q_\theta\big(s_t, \pi_\phi(s_t)\big)\Big] where :math:`\theta'` and :math:`\phi` are the target network parameters. There target network parameters are updated every iteration. .. math:: \theta' \gets \tau \theta + (1 - \tau) \theta' \phi' \gets \tau \phi + (1 - \tau) \phi' References: * `Silver et al., Deterministic policy gradient algorithms. <http://proceedings.mlr.press/v32/silver14.html>`_ * `Lillicrap et al., Continuous control with deep reinforcement learning. <https://arxiv.org/abs/1509.02971>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q function. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']` action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.ddpg_impl.DDPGImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _tau: float _n_critics: int _target_reduction_type: str _use_gpu: Optional[Device] _impl: Optional[DDPGImpl] def __init__( self, *, actor_learning_rate: float = 3e-4, critic_learning_rate: float = 3e-4, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 100, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, n_critics: int = 1, target_reduction_type: str = "min", use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[DDPGImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._tau = tau self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = DDPGImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR critic_loss = self._impl.update_critic(batch) actor_loss = self._impl.update_actor(batch) self._impl.update_critic_target() self._impl.update_actor_target() return {"critic_loss": critic_loss, "actor_loss": actor_loss} def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/ddpg.py
ddpg.py
from typing import Any, Dict, Optional, Sequence from ..argument_utility import ( ActionScalerArg, EncoderArg, QFuncArg, RewardScalerArg, ScalerArg, UseGPUArg, check_encoder, check_q_func, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import TransitionMiniBatch from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import AdamFactory, OptimizerFactory from ..models.q_functions import QFunctionFactory from .base import AlgoBase from .torch.crr_impl import CRRImpl class CRR(AlgoBase): r"""Critic Reguralized Regression algorithm. CRR is a simple offline RL method similar to AWAC. The policy is trained as a supervised regression. .. math:: J(\phi) = \mathbb{E}_{s_t, a_t \sim D} [\log \pi_\phi(a_t|s_t) f(Q_\theta, \pi_\phi, s_t, a_t)] where :math:`f` is a filter function which has several options. The first option is ``binary`` function. .. math:: f := \mathbb{1} [A_\theta(s, a) > 0] The other is ``exp`` function. .. math:: f := \exp(A(s, a) / \beta) The :math:`A(s, a)` is an average function which also has several options. The first option is ``mean``. .. math:: A(s, a) = Q_\theta (s, a) - \frac{1}{m} \sum^m_j Q(s, a_j) The other one is ``max``. .. math:: A(s, a) = Q_\theta (s, a) - \max^m_j Q(s, a_j) where :math:`a_j \sim \pi_\phi(s)`. In evaluation, the action is determined by Critic Weighted Policy (CWP). In CWP, the several actions are sampled from the policy function, and the final action is re-sampled from the estimated action-value distribution. References: * `Wang et al., Critic Reguralized Regression. <https://arxiv.org/abs/2006.15134>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q functions. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. beta (float): temperature value defined as :math:`\beta` above. n_action_samples (int): the number of sampled actions to calculate :math:`A(s, a)` and for CWP. advantage_type (str): advantage function type. The available options are ``['mean', 'max']``. weight_type (str): filter function type. The available options are ``['binary', 'exp']``. max_weight (float): maximum weight for cross-entropy loss. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. target_update_type (str): target update type. The available options are ``['hard', 'soft']``. tau (float): target network synchronization coefficiency used with ``soft`` target update. update_actor_interval (int): interval to update policy function used with ``hard`` target update. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']` action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.crr_impl.CRRImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _beta: float _n_action_samples: int _advantage_type: str _weight_type: str _max_weight: float _n_critics: int _target_update_type: str _tau: float _target_update_interval: int _target_reduction_type: str _update_actor_interval: int _use_gpu: Optional[Device] _impl: Optional[CRRImpl] def __init__( self, *, actor_learning_rate: float = 3e-4, critic_learning_rate: float = 3e-4, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 100, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, beta: float = 1.0, n_action_samples: int = 4, advantage_type: str = "mean", weight_type: str = "exp", max_weight: float = 20.0, n_critics: int = 1, target_update_type: str = "hard", tau: float = 5e-3, target_update_interval: int = 100, target_reduction_type: str = "min", update_actor_interval: int = 1, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[CRRImpl] = None, **kwargs: Any, ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._beta = beta self._n_action_samples = n_action_samples self._advantage_type = advantage_type self._weight_type = weight_type self._max_weight = max_weight self._n_critics = n_critics self._target_update_type = target_update_type self._tau = tau self._target_update_interval = target_update_interval self._target_reduction_type = target_reduction_type self._update_actor_interval = update_actor_interval self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = CRRImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, beta=self._beta, n_action_samples=self._n_action_samples, advantage_type=self._advantage_type, weight_type=self._weight_type, max_weight=self._max_weight, n_critics=self._n_critics, tau=self._tau, target_reduction_type=self._target_reduction_type, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR critic_loss = self._impl.update_critic(batch) actor_loss = self._impl.update_actor(batch) if self._target_update_type == "hard": if self._grad_step % self._target_update_interval == 0: self._impl.sync_critic_target() self._impl.sync_actor_target() elif self._target_update_type == "soft": self._impl.update_critic_target() self._impl.update_actor_target() else: raise ValueError( f"invalid target_update_type: {self._target_update_type}" ) return {"critic_loss": critic_loss, "actor_loss": actor_loss} def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/crr.py
crr.py
from typing import Any, Dict, List, Optional, Sequence import numpy as np from ..argument_utility import ( ActionScalerArg, EncoderArg, QFuncArg, RewardScalerArg, ScalerArg, UseGPUArg, check_encoder, check_q_func, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import Transition, TransitionMiniBatch from ..dynamics import DynamicsBase from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import AdamFactory, OptimizerFactory from ..models.q_functions import QFunctionFactory from .base import AlgoBase from .torch.combo_impl import COMBOImpl from .utility import ModelBaseMixin class COMBO(ModelBaseMixin, AlgoBase): r"""Conservative Offline Model-Based Optimization. COMBO is a model-based RL approach for offline policy optimization. COMBO is similar to MOPO, but it also leverages conservative loss proposed in CQL. .. math:: L(\theta_i) = \mathbb{E}_{s \sim d_M} \big[\log{\sum_a \exp{Q_{\theta_i}(s_t, a)}}\big] - \mathbb{E}_{s, a \sim D} \big[Q_{\theta_i}(s, a)\big] + L_\mathrm{SAC}(\theta_i) Note: Currently, COMBO only supports vector observations. References: * `Yu et al., COMBO: Conservative Offline Model-Based Policy Optimization. <https://arxiv.org/abs/2102.08363>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q functions. temp_learning_rate (float): learning rate for temperature parameter. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. temp_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the temperature. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. update_actor_interval (int): interval to update policy function. initial_temperature (float): initial temperature value. conservative_weight (float): constant weight to scale conservative loss. n_action_samples (int): the number of sampled actions to compute :math:`\log{\sum_a \exp{Q(s, a)}}`. soft_q_backup (bool): flag to use SAC-style backup. dynamics (d3rlpy.dynamics.DynamicsBase): dynamics object. rollout_interval (int): the number of steps before rollout. rollout_horizon (int): the rollout step length. rollout_batch_size (int): the number of initial transitions for rollout. real_ratio (float): the real of dataset samples in a mini-batch. generated_maxlen (int): the maximum number of generated samples. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']`. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.combo_impl.COMBOImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _temp_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _temp_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _tau: float _n_critics: int _target_reduction_type: str _update_actor_interval: int _initial_temperature: float _conservative_weight: float _n_action_samples: int _soft_q_backup: bool _dynamics: Optional[DynamicsBase] _rollout_interval: int _rollout_horizon: int _rollout_batch_size: int _use_gpu: Optional[Device] _impl: Optional[COMBOImpl] def __init__( self, *, actor_learning_rate: float = 1e-4, critic_learning_rate: float = 3e-4, temp_learning_rate: float = 1e-4, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), temp_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 256, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, n_critics: int = 2, target_reduction_type: str = "min", update_actor_interval: int = 1, initial_temperature: float = 1.0, conservative_weight: float = 1.0, n_action_samples: int = 10, soft_q_backup: bool = False, dynamics: Optional[DynamicsBase] = None, rollout_interval: int = 1000, rollout_horizon: int = 5, rollout_batch_size: int = 50000, real_ratio: float = 0.5, generated_maxlen: int = 50000 * 5 * 5, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[COMBOImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, real_ratio=real_ratio, generated_maxlen=generated_maxlen, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._temp_learning_rate = temp_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._temp_optim_factory = temp_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._tau = tau self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._update_actor_interval = update_actor_interval self._initial_temperature = initial_temperature self._conservative_weight = conservative_weight self._n_action_samples = n_action_samples self._soft_q_backup = soft_q_backup self._dynamics = dynamics self._rollout_interval = rollout_interval self._rollout_horizon = rollout_horizon self._rollout_batch_size = rollout_batch_size self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = COMBOImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, temp_learning_rate=self._temp_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, temp_optim_factory=self._temp_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, initial_temperature=self._initial_temperature, conservative_weight=self._conservative_weight, n_action_samples=self._n_action_samples, real_ratio=self._real_ratio, soft_q_backup=self._soft_q_backup, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} critic_loss = self._impl.update_critic(batch) metrics.update({"critic_loss": critic_loss}) # delayed policy update if self._grad_step % self._update_actor_interval == 0: actor_loss = self._impl.update_actor(batch) metrics.update({"actor_loss": actor_loss}) # lagrangian parameter update for SAC temperature if self._temp_learning_rate > 0: temp_loss, temp = self._impl.update_temp(batch) metrics.update({"temp_loss": temp_loss, "temp": temp}) self._impl.update_critic_target() self._impl.update_actor_target() return metrics def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS def _is_generating_new_data(self) -> bool: return self._grad_step % self._rollout_interval == 0 def _sample_initial_transitions( self, transitions: List[Transition] ) -> List[Transition]: # uniformly sample transitions n_transitions = self._rollout_batch_size indices = np.random.randint(len(transitions), size=n_transitions) return [transitions[i] for i in indices] def _get_rollout_horizon(self) -> int: return self._rollout_horizon
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/combo.py
combo.py
from typing import Any, Dict, Optional, Sequence from ..argument_utility import ( ActionScalerArg, EncoderArg, QFuncArg, RewardScalerArg, ScalerArg, UseGPUArg, check_encoder, check_q_func, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import TransitionMiniBatch from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import AdamFactory, OptimizerFactory from ..models.q_functions import QFunctionFactory from .base import AlgoBase from .torch.bear_impl import BEARImpl class BEAR(AlgoBase): r"""Bootstrapping Error Accumulation Reduction algorithm. BEAR is a SAC-based data-driven deep reinforcement learning algorithm. BEAR constrains the support of the policy function within data distribution by minimizing Maximum Mean Discreptancy (MMD) between the policy function and the approximated beahvior policy function :math:`\pi_\beta(a|s)` which is optimized through L2 loss. .. math:: L(\beta) = \mathbb{E}_{s_t, a_t \sim D, a \sim \pi_\beta(\cdot|s_t)} [(a - a_t)^2] The policy objective is a combination of SAC's objective and MMD penalty. .. math:: J(\phi) = J_{SAC}(\phi) - \mathbb{E}_{s_t \sim D} \alpha ( \text{MMD}(\pi_\beta(\cdot|s_t), \pi_\phi(\cdot|s_t)) - \epsilon) where MMD is computed as follows. .. math:: \text{MMD}(x, y) = \frac{1}{N^2} \sum_{i, i'} k(x_i, x_{i'}) - \frac{2}{NM} \sum_{i, j} k(x_i, y_j) + \frac{1}{M^2} \sum_{j, j'} k(y_j, y_{j'}) where :math:`k(x, y)` is a gaussian kernel :math:`k(x, y) = \exp{((x - y)^2 / (2 \sigma^2))}`. :math:`\alpha` is also adjustable through dual gradient decsent where :math:`\alpha` becomes smaller if MMD is smaller than the threshold :math:`\epsilon`. References: * `Kumar et al., Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. <https://arxiv.org/abs/1906.00949>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q functions. imitator_learning_rate (float): learning rate for behavior policy function. temp_learning_rate (float): learning rate for temperature parameter. alpha_learning_rate (float): learning rate for :math:`\alpha`. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. imitator_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the behavior policy. temp_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the temperature. alpha_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for :math:`\alpha`. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. imitator_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the behavior policy. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. n_critics (int): the number of Q functions for ensemble. initial_temperature (float): initial temperature value. initial_alpha (float): initial :math:`\alpha` value. alpha_threshold (float): threshold value described as :math:`\epsilon`. lam (float): weight for critic ensemble. n_action_samples (int): the number of action samples to compute the best action. n_target_samples (int): the number of action samples to compute BCQ-like target value. n_mmd_action_samples (int): the number of action samples to compute MMD. mmd_kernel (str): MMD kernel function. The available options are ``['gaussian', 'laplacian']``. mmd_sigma (float): :math:`\sigma` for gaussian kernel in MMD calculation. vae_kl_weight (float): constant weight to scale KL term for behavior policy training. warmup_steps (int): the number of steps to warmup the policy function. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device iD or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The avaiable options are `['pixel', 'min_max', 'standard']`. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The avaiable options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.bear_impl.BEARImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _imitator_learning_rate: float _temp_learning_rate: float _alpha_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _imitator_optim_factory: OptimizerFactory _temp_optim_factory: OptimizerFactory _alpha_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _imitator_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _tau: float _n_critics: int _initial_temperature: float _initial_alpha: float _alpha_threshold: float _lam: float _n_action_samples: int _n_target_samples: int _n_mmd_action_samples: int _mmd_kernel: str _mmd_sigma: float _vae_kl_weight: float _warmup_steps: int _use_gpu: Optional[Device] _impl: Optional[BEARImpl] def __init__( self, *, actor_learning_rate: float = 1e-4, critic_learning_rate: float = 3e-4, imitator_learning_rate: float = 3e-4, temp_learning_rate: float = 1e-4, alpha_learning_rate: float = 1e-3, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), imitator_optim_factory: OptimizerFactory = AdamFactory(), temp_optim_factory: OptimizerFactory = AdamFactory(), alpha_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", imitator_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 256, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, n_critics: int = 2, initial_temperature: float = 1.0, initial_alpha: float = 1.0, alpha_threshold: float = 0.05, lam: float = 0.75, n_action_samples: int = 100, n_target_samples: int = 10, n_mmd_action_samples: int = 4, mmd_kernel: str = "laplacian", mmd_sigma: float = 20.0, vae_kl_weight: float = 0.5, warmup_steps: int = 40000, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[BEARImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._imitator_learning_rate = imitator_learning_rate self._temp_learning_rate = temp_learning_rate self._alpha_learning_rate = alpha_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._imitator_optim_factory = imitator_optim_factory self._temp_optim_factory = temp_optim_factory self._alpha_optim_factory = alpha_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._imitator_encoder_factory = check_encoder(imitator_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._tau = tau self._n_critics = n_critics self._initial_temperature = initial_temperature self._initial_alpha = initial_alpha self._alpha_threshold = alpha_threshold self._lam = lam self._n_action_samples = n_action_samples self._n_target_samples = n_target_samples self._n_mmd_action_samples = n_mmd_action_samples self._mmd_kernel = mmd_kernel self._mmd_sigma = mmd_sigma self._vae_kl_weight = vae_kl_weight self._warmup_steps = warmup_steps self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = BEARImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, imitator_learning_rate=self._imitator_learning_rate, temp_learning_rate=self._temp_learning_rate, alpha_learning_rate=self._alpha_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, imitator_optim_factory=self._imitator_optim_factory, temp_optim_factory=self._temp_optim_factory, alpha_optim_factory=self._alpha_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, imitator_encoder_factory=self._imitator_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, n_critics=self._n_critics, initial_temperature=self._initial_temperature, initial_alpha=self._initial_alpha, alpha_threshold=self._alpha_threshold, lam=self._lam, n_action_samples=self._n_action_samples, n_target_samples=self._n_target_samples, n_mmd_action_samples=self._n_mmd_action_samples, mmd_kernel=self._mmd_kernel, mmd_sigma=self._mmd_sigma, vae_kl_weight=self._vae_kl_weight, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} imitator_loss = self._impl.update_imitator(batch) metrics.update({"imitator_loss": imitator_loss}) # lagrangian parameter update for SAC temperature if self._temp_learning_rate > 0: temp_loss, temp = self._impl.update_temp(batch) metrics.update({"temp_loss": temp_loss, "temp": temp}) # lagrangian parameter update for MMD loss weight if self._alpha_learning_rate > 0: alpha_loss, alpha = self._impl.update_alpha(batch) metrics.update({"alpha_loss": alpha_loss, "alpha": alpha}) critic_loss = self._impl.update_critic(batch) metrics.update({"critic_loss": critic_loss}) if self._grad_step < self._warmup_steps: actor_loss = self._impl.warmup_actor(batch) else: actor_loss = self._impl.update_actor(batch) metrics.update({"actor_loss": actor_loss}) self._impl.update_actor_target() self._impl.update_critic_target() return metrics def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/bear.py
bear.py
from abc import abstractmethod from typing import Any, Callable, List, Optional, Tuple, Union import gym import numpy as np from ..base import ImplBase, LearnableBase from ..constants import ( CONTINUOUS_ACTION_SPACE_MISMATCH_ERROR, DISCRETE_ACTION_SPACE_MISMATCH_ERROR, IMPL_NOT_INITIALIZED_ERROR, ActionSpace, ) from ..envs import BatchEnv from ..online.buffers import ( BatchBuffer, BatchReplayBuffer, Buffer, ReplayBuffer, ) from ..online.explorers import Explorer from ..online.iterators import ( AlgoProtocol, collect, train_batch_env, train_single_env, ) def _assert_action_space(algo: LearnableBase, env: gym.Env) -> None: if isinstance(env.action_space, gym.spaces.Box): assert ( algo.get_action_type() == ActionSpace.CONTINUOUS ), CONTINUOUS_ACTION_SPACE_MISMATCH_ERROR elif isinstance(env.action_space, gym.spaces.discrete.Discrete): assert ( algo.get_action_type() == ActionSpace.DISCRETE ), DISCRETE_ACTION_SPACE_MISMATCH_ERROR else: action_space = type(env.action_space) raise ValueError(f"The action-space is not supported: {action_space}") class AlgoImplBase(ImplBase): @abstractmethod def save_policy(self, fname: str) -> None: pass @abstractmethod def predict_best_action( self, x: Union[np.ndarray, List[Any]] ) -> np.ndarray: pass @abstractmethod def predict_value( self, x: Union[np.ndarray, List[Any]], action: Union[np.ndarray, List[Any]], with_std: bool, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: pass @abstractmethod def sample_action(self, x: Union[np.ndarray, List[Any]]) -> np.ndarray: pass def copy_policy_from(self, impl: "AlgoImplBase") -> None: raise NotImplementedError def copy_policy_optim_from(self, impl: "AlgoImplBase") -> None: raise NotImplementedError def copy_q_function_from(self, impl: "AlgoImplBase") -> None: raise NotImplementedError def copy_q_function_optim_from(self, impl: "AlgoImplBase") -> None: raise NotImplementedError def reset_optimizer_states(self) -> None: raise NotImplementedError class AlgoBase(LearnableBase): _impl: Optional[AlgoImplBase] def save_policy(self, fname: str) -> None: """Save the greedy-policy computational graph as TorchScript or ONNX. The format will be automatically detected by the file name. .. code-block:: python # save as TorchScript algo.save_policy('policy.pt') # save as ONNX algo.save_policy('policy.onnx') The artifacts saved with this method will work without d3rlpy. This method is especially useful to deploy the learned policy to production environments or embedding systems. See also * https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html (for Python). * https://pytorch.org/tutorials/advanced/cpp_export.html (for C++). * https://onnx.ai (for ONNX) Args: fname: destination file path. """ assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR self._impl.save_policy(fname) def predict(self, x: Union[np.ndarray, List[Any]]) -> np.ndarray: """Returns greedy actions. .. code-block:: python # 100 observations with shape of (10,) x = np.random.random((100, 10)) actions = algo.predict(x) # actions.shape == (100, action size) for continuous control # actions.shape == (100,) for discrete control Args: x: observations Returns: greedy actions """ assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR return self._impl.predict_best_action(x) def predict_value( self, x: Union[np.ndarray, List[Any]], action: Union[np.ndarray, List[Any]], with_std: bool = False, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: """Returns predicted action-values. .. code-block:: python # 100 observations with shape of (10,) x = np.random.random((100, 10)) # for continuous control # 100 actions with shape of (2,) actions = np.random.random((100, 2)) # for discrete control # 100 actions in integer values actions = np.random.randint(2, size=100) values = algo.predict_value(x, actions) # values.shape == (100,) values, stds = algo.predict_value(x, actions, with_std=True) # stds.shape == (100,) Args: x: observations action: actions with_std: flag to return standard deviation of ensemble estimation. This deviation reflects uncertainty for the given observations. This uncertainty will be more accurate if you enable ``bootstrap`` flag and increase ``n_critics`` value. Returns: predicted action-values """ assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR return self._impl.predict_value(x, action, with_std) def sample_action(self, x: Union[np.ndarray, List[Any]]) -> np.ndarray: """Returns sampled actions. The sampled actions are identical to the output of `predict` method if the policy is deterministic. Args: x: observations. Returns: sampled actions. """ assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR return self._impl.sample_action(x) def fit_online( self, env: gym.Env, buffer: Optional[Buffer] = None, explorer: Optional[Explorer] = None, n_steps: int = 1000000, n_steps_per_epoch: int = 10000, update_interval: int = 1, update_start_step: int = 0, random_steps: int = 0, eval_env: Optional[gym.Env] = None, eval_epsilon: float = 0.0, save_metrics: bool = True, save_interval: int = 1, experiment_name: Optional[str] = None, with_timestamp: bool = True, logdir: str = "d3rlpy_logs", verbose: bool = True, show_progress: bool = True, tensorboard_dir: Optional[str] = None, timelimit_aware: bool = True, callback: Optional[Callable[[AlgoProtocol, int, int], None]] = None, ) -> None: """Start training loop of online deep reinforcement learning. Args: env: gym-like environment. buffer : replay buffer. explorer: action explorer. n_steps: the number of total steps to train. n_steps_per_epoch: the number of steps per epoch. update_interval: the number of steps per update. update_start_step: the steps before starting updates. random_steps: the steps for the initial random explortion. eval_env: gym-like environment. If None, evaluation is skipped. eval_epsilon: :math:`\\epsilon`-greedy factor during evaluation. save_metrics: flag to record metrics. If False, the log directory is not created and the model parameters are not saved. save_interval: the number of epochs before saving models. experiment_name: experiment name for logging. If not passed, the directory name will be ``{class name}_online_{timestamp}``. with_timestamp: flag to add timestamp string to the last of directory name. logdir: root directory name to save logs. verbose: flag to show logged information on stdout. show_progress: flag to show progress bar for iterations. tensorboard_dir: directory to save logged information in tensorboard (additional to the csv data). if ``None``, the directory will not be created. timelimit_aware: flag to turn ``terminal`` flag ``False`` when ``TimeLimit.truncated`` flag is ``True``, which is designed to incorporate with ``gym.wrappers.TimeLimit``. callback: callable function that takes ``(algo, epoch, total_step)`` , which is called at the end of epochs. """ # create default replay buffer if buffer is None: buffer = ReplayBuffer(1000000, env=env) # check action-space _assert_action_space(self, env) train_single_env( algo=self, env=env, buffer=buffer, explorer=explorer, n_steps=n_steps, n_steps_per_epoch=n_steps_per_epoch, update_interval=update_interval, update_start_step=update_start_step, random_steps=random_steps, eval_env=eval_env, eval_epsilon=eval_epsilon, save_metrics=save_metrics, save_interval=save_interval, experiment_name=experiment_name, with_timestamp=with_timestamp, logdir=logdir, verbose=verbose, show_progress=show_progress, tensorboard_dir=tensorboard_dir, timelimit_aware=timelimit_aware, callback=callback, ) def fit_batch_online( self, env: BatchEnv, buffer: Optional[BatchBuffer] = None, explorer: Optional[Explorer] = None, n_epochs: int = 1000, n_steps_per_epoch: int = 1000, n_updates_per_epoch: int = 1000, eval_interval: int = 10, eval_env: Optional[gym.Env] = None, eval_epsilon: float = 0.0, save_metrics: bool = True, save_interval: int = 1, experiment_name: Optional[str] = None, with_timestamp: bool = True, logdir: str = "d3rlpy_logs", verbose: bool = True, show_progress: bool = True, tensorboard_dir: Optional[str] = None, timelimit_aware: bool = True, callback: Optional[Callable[[AlgoProtocol, int, int], None]] = None, ) -> None: """Start training loop of batch online deep reinforcement learning. Args: env: gym-like environment. buffer : replay buffer. explorer: action explorer. n_epochs: the number of epochs to train. n_steps_per_epoch: the number of steps per epoch. update_interval: the number of steps per update. n_updates_per_epoch: the number of updates per epoch. eval_interval: the number of epochs before evaluation. eval_env: gym-like environment. If None, evaluation is skipped. eval_epsilon: :math:`\\epsilon`-greedy factor during evaluation. save_metrics: flag to record metrics. If False, the log directory is not created and the model parameters are not saved. save_interval: the number of epochs before saving models. experiment_name: experiment name for logging. If not passed, the directory name will be ``{class name}_online_{timestamp}``. with_timestamp: flag to add timestamp string to the last of directory name. logdir: root directory name to save logs. verbose: flag to show logged information on stdout. show_progress: flag to show progress bar for iterations. tensorboard_dir: directory to save logged information in tensorboard (additional to the csv data). if ``None``, the directory will not be created. timelimit_aware: flag to turn ``terminal`` flag ``False`` when ``TimeLimit.truncated`` flag is ``True``, which is designed to incorporate with ``gym.wrappers.TimeLimit``. callback: callable function that takes ``(algo, epoch, total_step)`` , which is called at the end of epochs. """ # create default replay buffer if buffer is None: buffer = BatchReplayBuffer(1000000, env=env) # check action-space _assert_action_space(self, env) train_batch_env( algo=self, env=env, buffer=buffer, explorer=explorer, n_epochs=n_epochs, n_steps_per_epoch=n_steps_per_epoch, n_updates_per_epoch=n_updates_per_epoch, eval_interval=eval_interval, eval_env=eval_env, eval_epsilon=eval_epsilon, save_metrics=save_metrics, save_interval=save_interval, experiment_name=experiment_name, with_timestamp=with_timestamp, logdir=logdir, verbose=verbose, show_progress=show_progress, tensorboard_dir=tensorboard_dir, timelimit_aware=timelimit_aware, callback=callback, ) def collect( self, env: gym.Env, buffer: Optional[Buffer] = None, explorer: Optional[Explorer] = None, deterministic: bool = False, n_steps: int = 1000000, show_progress: bool = True, timelimit_aware: bool = True, ) -> Buffer: """Collects data via interaction with environment. If ``buffer`` is not given, ``ReplayBuffer`` will be internally created. Args: env: gym-like environment. buffer : replay buffer. explorer: action explorer. deterministic: flag to collect data with the greedy policy. n_steps: the number of total steps to train. show_progress: flag to show progress bar for iterations. timelimit_aware: flag to turn ``terminal`` flag ``False`` when ``TimeLimit.truncated`` flag is ``True``, which is designed to incorporate with ``gym.wrappers.TimeLimit``. Returns: replay buffer with the collected data. """ # create default replay buffer if buffer is None: buffer = ReplayBuffer(1000000, env=env) # check action-space _assert_action_space(self, env) collect( algo=self, env=env, buffer=buffer, explorer=explorer, deterministic=deterministic, n_steps=n_steps, show_progress=show_progress, timelimit_aware=timelimit_aware, ) return buffer def copy_policy_from(self, algo: "AlgoBase") -> None: """Copies policy parameters from the given algorithm. .. code-block:: python # pretrain with static dataset cql = d3rlpy.algos.CQL() cql.fit(dataset, n_steps=100000) # transfer to online algorithm sac = d3rlpy.algos.SAC() sac.create_impl(cql.observation_shape, cql.action_size) sac.copy_policy_from(cql) Args: algo: algorithm object. """ assert self._impl, IMPL_NOT_INITIALIZED_ERROR assert isinstance(algo.impl, AlgoImplBase) self._impl.copy_policy_from(algo.impl) def copy_policy_optim_from(self, algo: "AlgoBase") -> None: """Copies policy optimizer states from the given algorithm. .. code-block:: python # pretrain with static dataset cql = d3rlpy.algos.CQL() cql.fit(dataset, n_steps=100000) # transfer to online algorithm sac = d3rlpy.algos.SAC() sac.create_impl(cql.observation_shape, cql.action_size) sac.copy_policy_optim_from(cql) Args: algo: algorithm object. """ assert self._impl, IMPL_NOT_INITIALIZED_ERROR assert isinstance(algo.impl, AlgoImplBase) self._impl.copy_policy_optim_from(algo.impl) def copy_q_function_from(self, algo: "AlgoBase") -> None: """Copies Q-function parameters from the given algorithm. .. code-block:: python # pretrain with static dataset cql = d3rlpy.algos.CQL() cql.fit(dataset, n_steps=100000) # transfer to online algorithmn sac = d3rlpy.algos.SAC() sac.create_impl(cql.observation_shape, cql.action_size) sac.copy_q_function_from(cql) Args: algo: algorithm object. """ assert self._impl, IMPL_NOT_INITIALIZED_ERROR assert isinstance(algo.impl, AlgoImplBase) self._impl.copy_q_function_from(algo.impl) def copy_q_function_optim_from(self, algo: "AlgoBase") -> None: """Copies Q-function optimizer states from the given algorithm. .. code-block:: python # pretrain with static dataset cql = d3rlpy.algos.CQL() cql.fit(dataset, n_steps=100000) # transfer to online algorithm sac = d3rlpy.algos.SAC() sac.create_impl(cql.observation_shape, cql.action_size) sac.copy_policy_optim_from(cql) Args: algo: algorithm object. """ assert self._impl, IMPL_NOT_INITIALIZED_ERROR assert isinstance(algo.impl, AlgoImplBase) self._impl.copy_q_function_optim_from(algo.impl) def reset_optimizer_states(self) -> None: """Resets optimizer states. This is especially useful when fine-tuning policies with setting inital optimizer states. """ assert self._impl, IMPL_NOT_INITIALIZED_ERROR self._impl.reset_optimizer_states()
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/base.py
base.py
from typing import Any, Dict, List, Optional, Sequence, Union import numpy as np from ..argument_utility import ( ActionScalerArg, EncoderArg, ScalerArg, UseGPUArg, check_encoder, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import TransitionMiniBatch from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import AdamFactory, OptimizerFactory from .base import AlgoBase from .torch.bc_impl import BCBaseImpl, BCImpl, DiscreteBCImpl class _BCBase(AlgoBase): _learning_rate: float _optim_factory: OptimizerFactory _encoder_factory: EncoderFactory _use_gpu: Optional[Device] _impl: Optional[BCBaseImpl] def __init__( self, *, learning_rate: float = 1e-3, optim_factory: OptimizerFactory = AdamFactory(), encoder_factory: EncoderArg = "default", batch_size: int = 100, n_frames: int = 1, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, impl: Optional[BCBaseImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=1, gamma=1.0, scaler=scaler, action_scaler=action_scaler, kwargs=kwargs, ) self._learning_rate = learning_rate self._optim_factory = optim_factory self._encoder_factory = check_encoder(encoder_factory) self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR loss = self._impl.update_imitator(batch.observations, batch.actions) return {"loss": loss} def predict_value( self, x: Union[np.ndarray, List[Any]], action: Union[np.ndarray, List[Any]], with_std: bool = False, ) -> np.ndarray: """value prediction is not supported by BC algorithms.""" raise NotImplementedError("BC does not support value estimation.") def sample_action(self, x: Union[np.ndarray, List[Any]]) -> None: """sampling action is not supported by BC algorithm.""" raise NotImplementedError("BC does not support sampling action.") class BC(_BCBase): r"""Behavior Cloning algorithm. Behavior Cloning (BC) is to imitate actions in the dataset via a supervised learning approach. Since BC is only imitating action distributions, the performance will be close to the mean of the dataset even though BC mostly works better than online RL algorithms. .. math:: L(\theta) = \mathbb{E}_{a_t, s_t \sim D} [(a_t - \pi_\theta(s_t))^2] Args: learning_rate (float): learing rate. optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory. encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. policy_type (str): the policy type. The available options are ``['deterministic', 'stochastic']``. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']`. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action scaler. The available options are ``['min_max']``. impl (d3rlpy.algos.torch.bc_impl.BCImpl): implemenation of the algorithm. """ _policy_type: str _impl: Optional[BCImpl] def __init__( self, *, learning_rate: float = 1e-3, optim_factory: OptimizerFactory = AdamFactory(), encoder_factory: EncoderArg = "default", batch_size: int = 100, n_frames: int = 1, policy_type: str = "deterministic", use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, impl: Optional[BCBaseImpl] = None, **kwargs: Any ): super().__init__( learning_rate=learning_rate, optim_factory=optim_factory, encoder_factory=encoder_factory, batch_size=batch_size, n_frames=n_frames, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, impl=impl, **kwargs, ) self._policy_type = policy_type def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = BCImpl( observation_shape=observation_shape, action_size=action_size, learning_rate=self._learning_rate, optim_factory=self._optim_factory, encoder_factory=self._encoder_factory, policy_type=self._policy_type, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, ) self._impl.build() def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS class DiscreteBC(_BCBase): r"""Behavior Cloning algorithm for discrete control. Behavior Cloning (BC) is to imitate actions in the dataset via a supervised learning approach. Since BC is only imitating action distributions, the performance will be close to the mean of the dataset even though BC mostly works better than online RL algorithms. .. math:: L(\theta) = \mathbb{E}_{a_t, s_t \sim D} [-\sum_a p(a|s_t) \log \pi_\theta(a|s_t)] where :math:`p(a|s_t)` is implemented as a one-hot vector. Args: learning_rate (float): learing rate. optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory. encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. beta (float): reguralization factor. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']` impl (d3rlpy.algos.torch.bc_impl.DiscreteBCImpl): implemenation of the algorithm. """ _beta: float _impl: Optional[DiscreteBCImpl] def __init__( self, *, learning_rate: float = 1e-3, optim_factory: OptimizerFactory = AdamFactory(), encoder_factory: EncoderArg = "default", batch_size: int = 100, n_frames: int = 1, beta: float = 0.5, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, impl: Optional[DiscreteBCImpl] = None, **kwargs: Any ): super().__init__( learning_rate=learning_rate, optim_factory=optim_factory, encoder_factory=encoder_factory, batch_size=batch_size, n_frames=n_frames, use_gpu=use_gpu, scaler=scaler, impl=impl, **kwargs, ) self._beta = beta def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = DiscreteBCImpl( observation_shape=observation_shape, action_size=action_size, learning_rate=self._learning_rate, optim_factory=self._optim_factory, encoder_factory=self._encoder_factory, beta=self._beta, use_gpu=self._use_gpu, scaler=self._scaler, ) self._impl.build() def get_action_type(self) -> ActionSpace: return ActionSpace.DISCRETE
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/bc.py
bc.py
from typing import Any, Dict, Optional, Sequence from ..argument_utility import ( ActionScalerArg, EncoderArg, QFuncArg, RewardScalerArg, ScalerArg, UseGPUArg, check_encoder, check_q_func, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import TransitionMiniBatch from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import AdamFactory, OptimizerFactory from ..models.q_functions import QFunctionFactory from .base import AlgoBase from .torch.awac_impl import AWACImpl class AWAC(AlgoBase): r"""Advantage Weighted Actor-Critic algorithm. AWAC is a TD3-based actor-critic algorithm that enables efficient fine-tuning where the policy is trained with offline datasets and is deployed to online training. The policy is trained as a supervised regression. .. math:: J(\phi) = \mathbb{E}_{s_t, a_t \sim D} [\log \pi_\phi(a_t|s_t) \exp(\frac{1}{\lambda} A^\pi (s_t, a_t))] where :math:`A^\pi (s_t, a_t) = Q_\theta(s_t, a_t) - Q_\theta(s_t, a'_t)` and :math:`a'_t \sim \pi_\phi(\cdot|s_t)` The key difference from AWR is that AWAC uses Q-function trained via TD learning for the better sample-efficiency. References: * `Nair et al., Accelerating Online Reinforcement Learning with Offline Datasets. <https://arxiv.org/abs/2006.09359>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q functions. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. lam (float): :math:`\lambda` for weight calculation. n_action_samples (int): the number of sampled actions to calculate :math:`A^\pi(s_t, a_t)`. max_weight (float): maximum weight for cross-entropy loss. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. update_actor_interval (int): interval to update policy function. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']` action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.awac_impl.AWACImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _tau: float _lam: float _n_action_samples: int _max_weight: float _n_critics: int _target_reduction_type: str _update_actor_interval: int _use_gpu: Optional[Device] _impl: Optional[AWACImpl] def __init__( self, *, actor_learning_rate: float = 3e-4, critic_learning_rate: float = 3e-4, actor_optim_factory: OptimizerFactory = AdamFactory(weight_decay=1e-4), critic_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 1024, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, lam: float = 1.0, n_action_samples: int = 1, max_weight: float = 20.0, n_critics: int = 2, target_reduction_type: str = "min", update_actor_interval: int = 1, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[AWACImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._tau = tau self._lam = lam self._n_action_samples = n_action_samples self._max_weight = max_weight self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._update_actor_interval = update_actor_interval self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = AWACImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, lam=self._lam, n_action_samples=self._n_action_samples, max_weight=self._max_weight, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} critic_loss = self._impl.update_critic(batch) metrics.update({"critic_loss": critic_loss}) # delayed policy update if self._grad_step % self._update_actor_interval == 0: actor_loss, mean_std = self._impl.update_actor(batch) metrics.update({"actor_loss": actor_loss, "mean_std": mean_std}) self._impl.update_critic_target() self._impl.update_actor_target() return metrics def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/awac.py
awac.py
from typing import Any, Dict, List, Optional, Sequence, Union import numpy as np from ..argument_utility import ( ActionScalerArg, EncoderArg, QFuncArg, RewardScalerArg, ScalerArg, UseGPUArg, check_encoder, check_q_func, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import TransitionMiniBatch from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import AdamFactory, OptimizerFactory from ..models.q_functions import QFunctionFactory from .base import AlgoBase from .torch.bcq_impl import BCQImpl, DiscreteBCQImpl class BCQ(AlgoBase): r"""Batch-Constrained Q-learning algorithm. BCQ is the very first practical data-driven deep reinforcement learning lgorithm. The major difference from DDPG is that the policy function is represented as combination of conditional VAE and perturbation function in order to remedy extrapolation error emerging from target value estimation. The encoder and the decoder of the conditional VAE is represented as :math:`E_\omega` and :math:`D_\omega` respectively. .. math:: L(\omega) = E_{s_t, a_t \sim D} [(a - \tilde{a})^2 + D_{KL}(N(\mu, \sigma)|N(0, 1))] where :math:`\mu, \sigma = E_\omega(s_t, a_t)`, :math:`\tilde{a} = D_\omega(s_t, z)` and :math:`z \sim N(\mu, \sigma)`. The policy function is represented as a residual function with the VAE and the perturbation function represented as :math:`\xi_\phi (s, a)`. .. math:: \pi(s, a) = a + \Phi \xi_\phi (s, a) where :math:`a = D_\omega (s, z)`, :math:`z \sim N(0, 0.5)` and :math:`\Phi` is a perturbation scale designated by `action_flexibility`. Although the policy is learned closely to data distribution, the perturbation function can lead to more rewarded states. BCQ also leverages twin Q functions and computes weighted average over maximum values and minimum values. .. math:: L(\theta_i) = \mathbb{E}_{s_t, a_t, r_{t+1}, s_{t+1} \sim D} [(y - Q_{\theta_i}(s_t, a_t))^2] .. math:: y = r_{t+1} + \gamma \max_{a_i} [ \lambda \min_j Q_{\theta_j'}(s_{t+1}, a_i) + (1 - \lambda) \max_j Q_{\theta_j'}(s_{t+1}, a_i)] where :math:`\{a_i \sim D(s_{t+1}, z), z \sim N(0, 0.5)\}_{i=1}^n`. The number of sampled actions is designated with `n_action_samples`. Finally, the perturbation function is trained just like DDPG's policy function. .. math:: J(\phi) = \mathbb{E}_{s_t \sim D, a_t \sim D_\omega(s_t, z), z \sim N(0, 0.5)} [Q_{\theta_1} (s_t, \pi(s_t, a_t))] At inference time, action candidates are sampled as many as `n_action_samples`, and the action with highest value estimation is taken. .. math:: \pi'(s) = \text{argmax}_{\pi(s, a_i)} Q_{\theta_1} (s, \pi(s, a_i)) Note: The greedy action is not deterministic because the action candidates are always randomly sampled. This might affect `save_policy` method and the performance at production. References: * `Fujimoto et al., Off-Policy Deep Reinforcement Learning without Exploration. <https://arxiv.org/abs/1812.02900>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q functions. imitator_learning_rate (float): learning rate for Conditional VAE. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. imitator_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the conditional VAE. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. imitator_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the conditional VAE. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. n_critics (int): the number of Q functions for ensemble. update_actor_interval (int): interval to update policy function. lam (float): weight factor for critic ensemble. n_action_samples (int): the number of action samples to estimate action-values. action_flexibility (float): output scale of perturbation function represented as :math:`\Phi`. rl_start_step (int): step to start to update policy function and Q functions. If this is large, RL training would be more stabilized. beta (float): KL reguralization term for Conditional VAE. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']`. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.bcq_impl.BCQImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _imitator_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _imitator_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _imitator_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _tau: float _n_critics: int _update_actor_interval: int _lam: float _n_action_samples: int _action_flexibility: float _rl_start_step: int _beta: float _use_gpu: Optional[Device] _impl: Optional[BCQImpl] def __init__( self, *, actor_learning_rate: float = 1e-3, critic_learning_rate: float = 1e-3, imitator_learning_rate: float = 1e-3, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), imitator_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", imitator_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 100, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, n_critics: int = 2, update_actor_interval: int = 1, lam: float = 0.75, n_action_samples: int = 100, action_flexibility: float = 0.05, rl_start_step: int = 0, beta: float = 0.5, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[BCQImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._imitator_learning_rate = imitator_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._imitator_optim_factory = imitator_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._imitator_encoder_factory = check_encoder(imitator_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._tau = tau self._n_critics = n_critics self._update_actor_interval = update_actor_interval self._lam = lam self._n_action_samples = n_action_samples self._action_flexibility = action_flexibility self._rl_start_step = rl_start_step self._beta = beta self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = BCQImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, imitator_learning_rate=self._imitator_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, imitator_optim_factory=self._imitator_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, imitator_encoder_factory=self._imitator_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, n_critics=self._n_critics, lam=self._lam, n_action_samples=self._n_action_samples, action_flexibility=self._action_flexibility, beta=self._beta, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} imitator_loss = self._impl.update_imitator(batch) metrics.update({"imitator_loss": imitator_loss}) if self._grad_step >= self._rl_start_step: critic_loss = self._impl.update_critic(batch) metrics.update({"critic_loss": critic_loss}) if self._grad_step % self._update_actor_interval == 0: actor_loss = self._impl.update_actor(batch) metrics.update({"actor_loss": actor_loss}) self._impl.update_actor_target() self._impl.update_critic_target() return metrics def sample_action(self, x: Union[np.ndarray, List[Any]]) -> np.ndarray: """BCQ does not support sampling action.""" raise NotImplementedError("BCQ does not support sampling action.") def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS class DiscreteBCQ(AlgoBase): r"""Discrete version of Batch-Constrained Q-learning algorithm. Discrete version takes theories from the continuous version, but the algorithm is much simpler than that. The imitation function :math:`G_\omega(a|s)` is trained as supervised learning just like Behavior Cloning. .. math:: L(\omega) = \mathbb{E}_{a_t, s_t \sim D} [-\sum_a p(a|s_t) \log G_\omega(a|s_t)] With this imitation function, the greedy policy is defined as follows. .. math:: \pi(s_t) = \text{argmax}_{a|G_\omega(a|s_t) / \max_{\tilde{a}} G_\omega(\tilde{a}|s_t) > \tau} Q_\theta (s_t, a) which eliminates actions with probabilities :math:`\tau` times smaller than the maximum one. Finally, the loss function is computed in Double DQN style with the above constrained policy. .. math:: L(\theta) = \mathbb{E}_{s_t, a_t, r_{t+1}, s_{t+1} \sim D} [(r_{t+1} + \gamma Q_{\theta'}(s_{t+1}, \pi(s_{t+1})) - Q_\theta(s_t, a_t))^2] References: * `Fujimoto et al., Off-Policy Deep Reinforcement Learning without Exploration. <https://arxiv.org/abs/1812.02900>`_ * `Fujimoto et al., Benchmarking Batch Deep Reinforcement Learning Algorithms. <https://arxiv.org/abs/1910.01708>`_ Args: learning_rate (float): learning rate. optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory. encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. action_flexibility (float): probability threshold represented as :math:`\tau`. beta (float): reguralization term for imitation function. target_update_interval (int): interval to update the target network. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']` reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.bcq_impl.DiscreteBCQImpl): algorithm implementation. """ _learning_rate: float _optim_factory: OptimizerFactory _encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _n_critics: int _target_reduction_type: str _action_flexibility: float _beta: float _target_update_interval: int _use_gpu: Optional[Device] _impl: Optional[DiscreteBCQImpl] def __init__( self, *, learning_rate: float = 6.25e-5, optim_factory: OptimizerFactory = AdamFactory(), encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 32, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, n_critics: int = 1, target_reduction_type: str = "min", action_flexibility: float = 0.3, beta: float = 0.5, target_update_interval: int = 8000, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[DiscreteBCQImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=None, reward_scaler=reward_scaler, kwargs=kwargs, ) self._learning_rate = learning_rate self._optim_factory = optim_factory self._encoder_factory = check_encoder(encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._action_flexibility = action_flexibility self._beta = beta self._target_update_interval = target_update_interval self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = DiscreteBCQImpl( observation_shape=observation_shape, action_size=action_size, learning_rate=self._learning_rate, optim_factory=self._optim_factory, encoder_factory=self._encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, action_flexibility=self._action_flexibility, beta=self._beta, use_gpu=self._use_gpu, scaler=self._scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR loss = self._impl.update(batch) if self._grad_step % self._target_update_interval == 0: self._impl.update_target() return {"loss": loss} def get_action_type(self) -> ActionSpace: return ActionSpace.DISCRETE
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/bcq.py
bcq.py
from typing import Any, Dict, Optional, Sequence from ..argument_utility import ( ActionScalerArg, EncoderArg, QFuncArg, RewardScalerArg, ScalerArg, UseGPUArg, check_encoder, check_q_func, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import TransitionMiniBatch from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import AdamFactory, OptimizerFactory from ..models.q_functions import QFunctionFactory from .base import AlgoBase from .torch.td3_impl import TD3Impl class TD3(AlgoBase): r"""Twin Delayed Deep Deterministic Policy Gradients algorithm. TD3 is an improved DDPG-based algorithm. Major differences from DDPG are as follows. * TD3 has twin Q functions to reduce overestimation bias at TD learning. The number of Q functions can be designated by `n_critics`. * TD3 adds noise to target value estimation to avoid overfitting with the deterministic policy. * TD3 updates the policy function after several Q function updates in order to reduce variance of action-value estimation. The interval of the policy function update can be designated by `update_actor_interval`. .. math:: L(\theta_i) = \mathbb{E}_{s_t, a_t, r_{t+1}, s_{t+1} \sim D} [(r_{t+1} + \gamma \min_j Q_{\theta_j'}(s_{t+1}, \pi_{\phi'}(s_{t+1}) + \epsilon) - Q_{\theta_i}(s_t, a_t))^2] .. math:: J(\phi) = \mathbb{E}_{s_t \sim D} [\min_i Q_{\theta_i}(s_t, \pi_\phi(s_t))] where :math:`\epsilon \sim clip (N(0, \sigma), -c, c)` References: * `Fujimoto et al., Addressing Function Approximation Error in Actor-Critic Methods. <https://arxiv.org/abs/1802.09477>`_ Args: actor_learning_rate (float): learning rate for a policy function. critic_learning_rate (float): learning rate for Q functions. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. target_smoothing_sigma (float): standard deviation for target noise. target_smoothing_clip (float): clipping range for target noise. update_actor_interval (int): interval to update policy function described as `delayed policy update` in the paper. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']`. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.td3_impl.TD3Impl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _tau: float _n_critics: int _target_reduction_type: str _target_smoothing_sigma: float _target_smoothing_clip: float _update_actor_interval: int _use_gpu: Optional[Device] _impl: Optional[TD3Impl] def __init__( self, *, actor_learning_rate: float = 3e-4, critic_learning_rate: float = 3e-4, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 256, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, n_critics: int = 2, target_reduction_type: str = "min", target_smoothing_sigma: float = 0.2, target_smoothing_clip: float = 0.5, update_actor_interval: int = 2, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[TD3Impl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._tau = tau self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._target_smoothing_sigma = target_smoothing_sigma self._target_smoothing_clip = target_smoothing_clip self._update_actor_interval = update_actor_interval self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = TD3Impl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, target_smoothing_sigma=self._target_smoothing_sigma, target_smoothing_clip=self._target_smoothing_clip, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} critic_loss = self._impl.update_critic(batch) metrics.update({"critic_loss": critic_loss}) # delayed policy update if self._grad_step % self._update_actor_interval == 0: actor_loss = self._impl.update_actor(batch) metrics.update({"actor_loss": actor_loss}) self._impl.update_critic_target() self._impl.update_actor_target() return metrics def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/td3.py
td3.py
from typing import Any, Dict, List, Optional, Sequence, Union import numpy as np from ..argument_utility import ( ActionScalerArg, EncoderArg, RewardScalerArg, ScalerArg, UseGPUArg, check_encoder, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import TransitionMiniBatch, compute_lambda_return from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import OptimizerFactory, SGDFactory from .base import AlgoBase from .torch.awr_impl import AWRBaseImpl, AWRImpl, DiscreteAWRImpl class _AWRBase(AlgoBase): _actor_learning_rate: float _critic_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _batch_size_per_update: int _n_actor_updates: int _n_critic_updates: int _lam: float _beta: float _max_weight: float _use_gpu: Optional[Device] _impl: Optional[AWRBaseImpl] def __init__( self, *, actor_learning_rate: float = 5e-5, critic_learning_rate: float = 1e-4, actor_optim_factory: OptimizerFactory = SGDFactory(momentum=0.9), critic_optim_factory: OptimizerFactory = SGDFactory(momentum=0.9), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", batch_size: int = 2048, n_frames: int = 1, gamma: float = 0.99, batch_size_per_update: int = 256, n_actor_updates: int = 1000, n_critic_updates: int = 200, lam: float = 0.95, beta: float = 1.0, max_weight: float = 20.0, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[AWRImpl] = None, **kwargs: Any ): # batch_size in AWR has different semantic from Q learning algorithms. super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=1, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._batch_size_per_update = batch_size_per_update self._n_actor_updates = n_actor_updates self._n_critic_updates = n_critic_updates self._lam = lam self._beta = beta self._max_weight = max_weight self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _compute_lambda_returns(self, batch: TransitionMiniBatch) -> np.ndarray: # compute TD(lambda) lambda_returns = [] for transition in batch.transitions: lambda_return = compute_lambda_return( transition=transition, algo=self, gamma=self._gamma, lam=self._lam, n_frames=self._n_frames, ) lambda_returns.append(lambda_return) return np.array(lambda_returns).reshape((-1, 1)) def _compute_advantages( self, returns: np.ndarray, batch: TransitionMiniBatch ) -> np.ndarray: baselines = self.predict_value(batch.observations).reshape((-1, 1)) advantages = returns - baselines adv_mean = np.mean(advantages) adv_std = np.std(advantages) return (advantages - adv_mean) / (adv_std + 1e-5) def _compute_clipped_weights(self, advantages: np.ndarray) -> np.ndarray: weights = np.exp(advantages / self._beta) return np.minimum(weights, self._max_weight) def predict_value( # pylint: disable=signature-differs self, x: Union[np.ndarray, List[Any]], *args: Any, **kwargs: Any ) -> np.ndarray: """Returns predicted state values. Args: x: observations. Returns: predicted state values. """ assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR return self._impl.predict_value(x) def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} # compute lmabda return lambda_returns = self._compute_lambda_returns(batch) # calcuate advantage advantages = self._compute_advantages(lambda_returns, batch) # compute weights clipped_weights = self._compute_clipped_weights(advantages) metrics.update({"weights": np.mean(clipped_weights)}) n_steps_per_batch = self.batch_size // self._batch_size_per_update # update critic critic_loss_history = [] for _ in range(self._n_critic_updates // n_steps_per_batch): for j in range(n_steps_per_batch): head_index = j * self._batch_size_per_update tail_index = head_index + self._batch_size_per_update observations = batch.observations[head_index:tail_index] returns = lambda_returns[head_index:tail_index] critic_loss = self._impl.update_critic(observations, returns) critic_loss_history.append(critic_loss) critic_loss_mean = np.mean(critic_loss_history) metrics.update({"critic_loss": critic_loss_mean}) # update actor actor_loss_history = [] for _ in range(self._n_actor_updates // n_steps_per_batch): for j in range(n_steps_per_batch): head_index = j * self._batch_size_per_update tail_index = head_index + self._batch_size_per_update observations = batch.observations[head_index:tail_index] actions = batch.actions[head_index:tail_index] weights = clipped_weights[head_index:tail_index] actor_loss = self._impl.update_actor( observations, actions, weights ) actor_loss_history.append(actor_loss) actor_loss_mean = np.mean(actor_loss_history) metrics.update({"actor_loss": actor_loss_mean}) return metrics class AWR(_AWRBase): r"""Advantage-Weighted Regression algorithm. AWR is an actor-critic algorithm that trains via supervised regression way, and has shown strong performance in online and offline settings. The value function is trained as a supervised regression problem. .. math:: L(\theta) = \mathbb{E}_{s_t, R_t \sim D} [(R_t - V(s_t|\theta))^2] where :math:`R_t` is approximated using TD(:math:`\lambda`) to mitigate high variance issue. The policy function is also trained as a supervised regression problem. .. math:: J(\phi) = \mathbb{E}_{s_t, a_t, R_t \sim D} [\log \pi(a_t|s_t, \phi) \exp (\frac{1}{B} (R_t - V(s_t|\theta)))] where :math:`B` is a constant factor. References: * `Peng et al., Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning <https://arxiv.org/abs/1910.00177>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for value function. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. batch_size (int): batch size per iteration. n_frames (int): the number of frames to stack for image observation. gamma (float): discount factor. batch_size_per_update (int): mini-batch size. n_actor_updates (int): actor gradient steps per iteration. n_critic_updates (int): critic gradient steps per iteration. lam (float): :math:`\lambda` for TD(:math:`\lambda`). beta (float): :math:`B` for weight scale. max_weight (float): :math:`w_{\text{max}}` for weight clipping. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']`. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.awr_impl.AWRImpl): algorithm implementation. """ _impl: Optional[AWRImpl] def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = AWRImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS class DiscreteAWR(_AWRBase): r"""Discrete veriosn of Advantage-Weighted Regression algorithm. AWR is an actor-critic algorithm that trains via supervised regression way, and has shown strong performance in online and offline settings. The value function is trained as a supervised regression problem. .. math:: L(\theta) = \mathbb{E}_{s_t, R_t \sim D} [(R_t - V(s_t|\theta))^2] where :math:`R_t` is approximated using TD(:math:`\lambda`) to mitigate high variance issue. The policy function is also trained as a supervised regression problem. .. math:: J(\phi) = \mathbb{E}_{s_t, a_t, R_t \sim D} [\log \pi(a_t|s_t, \phi) \exp (\frac{1}{B} (R_t - V(s_t|\theta)))] where :math:`B` is a constant factor. References: * `Peng et al., Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning <https://arxiv.org/abs/1910.00177>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for value function. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. batch_size (int): batch size per iteration. n_frames (int): the number of frames to stack for image observation. gamma (float): discount factor. batch_size_per_update (int): mini-batch size. n_actor_updates (int): actor gradient steps per iteration. n_critic_updates (int): critic gradient steps per iteration. lam (float): :math:`\lambda` for TD(:math:`\lambda`). beta (float): :math:`B` for weight scale. max_weight (float): :math:`w_{\text{max}}` for weight clipping. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']`. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.awr_impl.DiscreteAWRImpl): algorithm implementation. """ _impl: Optional[DiscreteAWRImpl] def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = DiscreteAWRImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=None, reward_scaler=self._reward_scaler, ) self._impl.build() def get_action_type(self) -> ActionSpace: return ActionSpace.DISCRETE
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/awr.py
awr.py
from typing import Any, Dict, List, Optional, Sequence, Tuple import numpy as np from ..argument_utility import ( ActionScalerArg, EncoderArg, QFuncArg, RewardScalerArg, ScalerArg, UseGPUArg, check_encoder, check_q_func, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import Transition, TransitionMiniBatch from ..dynamics import DynamicsBase from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import AdamFactory, OptimizerFactory from ..models.q_functions import QFunctionFactory from .base import AlgoBase from .torch.sac_impl import SACImpl from .utility import ModelBaseMixin class MOPO(ModelBaseMixin, AlgoBase): r"""Model-based Offline Policy Optimization. MOPO is a model-based RL approach for offline policy optimization. MOPO leverages the probablistic ensemble dynamics model to generate new dynamics data with uncertainty penalties. The ensemble dynamics model consists of :math:`N` probablistic models :math:`\{T_{\theta_i}\}_{i=1}^N`. At each epoch, new transitions are generated via randomly picked dynamics model :math:`T_\theta`. .. math:: s_{t+1}, r_{t+1} \sim T_\theta(s_t, a_t) where :math:`s_t \sim D` for the first step, otherwise :math:`s_t` is the previous generated observation, and :math:`a_t \sim \pi(\cdot|s_t)`. The generated :math:`r_{t+1}` would be far from the ground truth if the actions sampled from the policy function is out-of-distribution. Thus, the uncertainty penalty reguralizes this bias. .. math:: \tilde{r_{t+1}} = r_{t+1} - \lambda \max_{i=1}^N || \Sigma_i (s_t, a_t) || where :math:`\Sigma(s_t, a_t)` is the estimated variance. Finally, the generated transitions :math:`(s_t, a_t, \tilde{r_{t+1}}, s_{t+1})` are appended to dataset :math:`D`. This generation process starts with randomly sampled ``n_initial_transitions`` transitions till ``horizon`` steps. Note: Currently, MOPO only supports vector observations. References: * `Yu et al., MOPO: Model-based Offline Policy Optimization. <https://arxiv.org/abs/2005.13239>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q functions. temp_learning_rate (float): learning rate for temperature parameter. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. temp_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the temperature. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. update_actor_interval (int): interval to update policy function. initial_temperature (float): initial temperature value. dynamics (d3rlpy.dynamics.DynamicsBase): dynamics object. rollout_interval (int): the number of steps before rollout. rollout_horizon (int): the rollout step length. rollout_batch_size (int): the number of initial transitions for rollout. lam (float): :math:`\lambda` for uncertainty penalties. real_ratio (float): the real of dataset samples in a mini-batch. generated_maxlen (int): the maximum number of generated samples. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']`. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.sac_impl.SACImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _temp_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _temp_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _tau: float _n_critics: int _target_reduction_type: str _update_actor_interval: int _initial_temperature: float _dynamics: Optional[DynamicsBase] _rollout_interval: int _rollout_horizon: int _rollout_batch_size: int _lam: float _use_gpu: Optional[Device] _impl: Optional[SACImpl] def __init__( self, *, actor_learning_rate: float = 3e-4, critic_learning_rate: float = 3e-4, temp_learning_rate: float = 3e-4, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), temp_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 100, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, n_critics: int = 2, target_reduction_type: str = "min", update_actor_interval: int = 1, initial_temperature: float = 1.0, dynamics: Optional[DynamicsBase] = None, rollout_interval: int = 1000, rollout_horizon: int = 5, rollout_batch_size: int = 50000, lam: float = 1.0, real_ratio: float = 0.05, generated_maxlen: int = 50000 * 5 * 5, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[SACImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, real_ratio=real_ratio, generated_maxlen=generated_maxlen, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._temp_learning_rate = temp_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._temp_optim_factory = temp_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._tau = tau self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._update_actor_interval = update_actor_interval self._initial_temperature = initial_temperature self._dynamics = dynamics self._rollout_interval = rollout_interval self._rollout_horizon = rollout_horizon self._rollout_batch_size = rollout_batch_size self._lam = lam self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = SACImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, temp_learning_rate=self._temp_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, temp_optim_factory=self._temp_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, initial_temperature=self._initial_temperature, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} critic_loss = self._impl.update_critic(batch) metrics.update({"critic_loss": critic_loss}) # delayed policy update if self._grad_step % self._update_actor_interval == 0: actor_loss = self._impl.update_actor(batch) metrics.update({"actor_loss": actor_loss}) # lagrangian parameter update for SAC temperature if self._temp_learning_rate > 0: temp_loss, temp = self._impl.update_temp(batch) metrics.update({"temp_loss": temp_loss, "temp": temp}) self._impl.update_critic_target() self._impl.update_actor_target() return metrics def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS def _is_generating_new_data(self) -> bool: return self._grad_step % self._rollout_interval == 0 def _sample_initial_transitions( self, transitions: List[Transition] ) -> List[Transition]: # uniformly sample transitions n_transitions = self._rollout_batch_size indices = np.random.randint(len(transitions), size=n_transitions) return [transitions[i] for i in indices] def _get_rollout_horizon(self) -> int: return self._rollout_horizon def _mutate_transition( self, observations: np.ndarray, rewards: np.ndarray, variances: np.ndarray, ) -> Tuple[np.ndarray, np.ndarray]: # regularize by uncertainty rewards -= self._lam * variances return observations, rewards
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/mopo.py
mopo.py
from typing import List, Optional, Tuple, cast import numpy as np from ..constants import DYNAMICS_NOT_GIVEN_ERROR, IMPL_NOT_INITIALIZED_ERROR from ..dataset import Transition, TransitionMiniBatch from ..dynamics import DynamicsBase from .base import AlgoImplBase class ModelBaseMixin: _grad_step: int _impl: Optional[AlgoImplBase] _dynamics: Optional[DynamicsBase] def generate_new_data( self, transitions: List[Transition] ) -> Optional[List[Transition]]: assert self._impl, IMPL_NOT_INITIALIZED_ERROR assert self._dynamics, DYNAMICS_NOT_GIVEN_ERROR if not self._is_generating_new_data(): return None init_transitions = self._sample_initial_transitions(transitions) rets: List[Transition] = [] # rollout batch = TransitionMiniBatch(init_transitions) observations = batch.observations actions = self._sample_rollout_action(observations) rewards = batch.rewards prev_transitions: List[Transition] = [] for _ in range(self._get_rollout_horizon()): # predict next state pred = self._dynamics.predict(observations, actions, True) pred = cast(Tuple[np.ndarray, np.ndarray, np.ndarray], pred) next_observations, next_rewards, variances = pred # regularize by uncertainty next_observations, next_rewards = self._mutate_transition( next_observations, next_rewards, variances ) # sample policy action next_actions = self._sample_rollout_action(next_observations) # append new transitions new_transitions = [] for i in range(len(init_transitions)): transition = Transition( observation_shape=self._impl.observation_shape, action_size=self._impl.action_size, observation=observations[i], action=actions[i], reward=float(rewards[i][0]), next_observation=next_observations[i], next_action=next_actions[i], next_reward=float(next_rewards[i][0]), terminal=0.0, ) if prev_transitions: prev_transitions[i].next_transition = transition transition.prev_transition = prev_transitions[i] new_transitions.append(transition) prev_transitions = new_transitions rets += new_transitions observations = next_observations.copy() actions = next_actions.copy() rewards = next_rewards.copy() return rets def _is_generating_new_data(self) -> bool: raise NotImplementedError def _sample_initial_transitions( self, transitions: List[Transition] ) -> List[Transition]: raise NotImplementedError def _sample_rollout_action(self, observations: np.ndarray) -> np.ndarray: assert self._impl, IMPL_NOT_INITIALIZED_ERROR return self._impl.sample_action(observations) def _get_rollout_horizon(self) -> int: raise NotImplementedError def _mutate_transition( self, observations: np.ndarray, rewards: np.ndarray, variances: np.ndarray, ) -> Tuple[np.ndarray, np.ndarray]: return observations, rewards
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/utility.py
utility.py
from typing import Any, Dict, Optional, Sequence from ..argument_utility import ( ActionScalerArg, EncoderArg, QFuncArg, RewardScalerArg, ScalerArg, UseGPUArg, check_encoder, check_q_func, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import TransitionMiniBatch from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import AdamFactory, OptimizerFactory from ..models.q_functions import QFunctionFactory from .base import AlgoBase from .torch.td3_plus_bc_impl import TD3PlusBCImpl class TD3PlusBC(AlgoBase): r"""TD3+BC algorithm. TD3+BC is an simple offline RL algorithm built on top of TD3. TD3+BC introduces BC-reguralized policy objective function. .. math:: J(\phi) = \mathbb{E}_{s,a \sim D} [\lambda Q(s, \pi(s)) - (a - \pi(s))^2] where .. math:: \lambda = \frac{\alpha}{\frac{1}{N} \sum_(s_i, a_i) |Q(s_i, a_i)|} References: * `Fujimoto et al., A Minimalist Approach to Offline Reinforcement Learning. <https://arxiv.org/abs/2106.06860>`_ Args: actor_learning_rate (float): learning rate for a policy function. critic_learning_rate (float): learning rate for Q functions. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. target_smoothing_sigma (float): standard deviation for target noise. target_smoothing_clip (float): clipping range for target noise. alpha (float): :math:`\alpha` value. update_actor_interval (int): interval to update policy function described as `delayed policy update` in the paper. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']`. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.td3_impl.TD3Impl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _tau: float _n_critics: int _target_reduction_type: str _target_smoothing_sigma: float _target_smoothing_clip: float _alpha: float _update_actor_interval: int _use_gpu: Optional[Device] _impl: Optional[TD3PlusBCImpl] def __init__( self, *, actor_learning_rate: float = 3e-4, critic_learning_rate: float = 3e-4, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 256, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, n_critics: int = 2, target_reduction_type: str = "min", target_smoothing_sigma: float = 0.2, target_smoothing_clip: float = 0.5, alpha: float = 2.5, update_actor_interval: int = 2, use_gpu: UseGPUArg = False, scaler: ScalerArg = "standard", action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[TD3PlusBCImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._tau = tau self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._target_smoothing_sigma = target_smoothing_sigma self._target_smoothing_clip = target_smoothing_clip self._alpha = alpha self._update_actor_interval = update_actor_interval self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = TD3PlusBCImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, target_smoothing_sigma=self._target_smoothing_sigma, target_smoothing_clip=self._target_smoothing_clip, alpha=self._alpha, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} critic_loss = self._impl.update_critic(batch) metrics.update({"critic_loss": critic_loss}) # delayed policy update if self._grad_step % self._update_actor_interval == 0: actor_loss = self._impl.update_actor(batch) metrics.update({"actor_loss": actor_loss}) self._impl.update_critic_target() self._impl.update_actor_target() return metrics def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/td3_plus_bc.py
td3_plus_bc.py
from typing import Any, Dict, Optional, Sequence from ..argument_utility import ( ActionScalerArg, EncoderArg, QFuncArg, RewardScalerArg, ScalerArg, UseGPUArg, check_encoder, check_q_func, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import TransitionMiniBatch from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import AdamFactory, OptimizerFactory from ..models.q_functions import QFunctionFactory from .base import AlgoBase from .torch.sac_impl import DiscreteSACImpl, SACImpl class SAC(AlgoBase): r"""Soft Actor-Critic algorithm. SAC is a DDPG-based maximum entropy RL algorithm, which produces state-of-the-art performance in online RL settings. SAC leverages twin Q functions proposed in TD3. Additionally, `delayed policy update` in TD3 is also implemented, which is not done in the paper. .. math:: L(\theta_i) = \mathbb{E}_{s_t,\, a_t,\, r_{t+1},\, s_{t+1} \sim D,\, a_{t+1} \sim \pi_\phi(\cdot|s_{t+1})} \Big[ \big(y - Q_{\theta_i}(s_t, a_t)\big)^2\Big] .. math:: y = r_{t+1} + \gamma \Big(\min_j Q_{\theta_j}(s_{t+1}, a_{t+1}) - \alpha \log \big(\pi_\phi(a_{t+1}|s_{t+1})\big)\Big) .. math:: J(\phi) = \mathbb{E}_{s_t \sim D,\, a_t \sim \pi_\phi(\cdot|s_t)} \Big[\alpha \log (\pi_\phi (a_t|s_t)) - \min_i Q_{\theta_i}\big(s_t, \pi_\phi(a_t|s_t)\big)\Big] The temperature parameter :math:`\alpha` is also automatically adjustable. .. math:: J(\alpha) = \mathbb{E}_{s_t \sim D,\, a_t \sim \pi_\phi(\cdot|s_t)} \bigg[-\alpha \Big(\log \big(\pi_\phi(a_t|s_t)\big) + H\Big)\bigg] where :math:`H` is a target entropy, which is defined as :math:`\dim a`. References: * `Haarnoja et al., Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. <https://arxiv.org/abs/1801.01290>`_ * `Haarnoja et al., Soft Actor-Critic Algorithms and Applications. <https://arxiv.org/abs/1812.05905>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q functions. temp_learning_rate (float): learning rate for temperature parameter. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. temp_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the temperature. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. initial_temperature (float): initial temperature value. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']`. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.sac_impl.SACImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _temp_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _temp_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _tau: float _n_critics: int _target_reduction_type: str _initial_temperature: float _use_gpu: Optional[Device] _impl: Optional[SACImpl] def __init__( self, *, actor_learning_rate: float = 3e-4, critic_learning_rate: float = 3e-4, temp_learning_rate: float = 3e-4, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), temp_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 256, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, n_critics: int = 2, target_reduction_type: str = "min", initial_temperature: float = 1.0, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[SACImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._temp_learning_rate = temp_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._temp_optim_factory = temp_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._tau = tau self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._initial_temperature = initial_temperature self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = SACImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, temp_learning_rate=self._temp_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, temp_optim_factory=self._temp_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, initial_temperature=self._initial_temperature, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} # lagrangian parameter update for SAC temperature if self._temp_learning_rate > 0: temp_loss, temp = self._impl.update_temp(batch) metrics.update({"temp_loss": temp_loss, "temp": temp}) critic_loss = self._impl.update_critic(batch) metrics.update({"critic_loss": critic_loss}) actor_loss = self._impl.update_actor(batch) metrics.update({"actor_loss": actor_loss}) self._impl.update_critic_target() self._impl.update_actor_target() return metrics def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS class DiscreteSAC(AlgoBase): r"""Soft Actor-Critic algorithm for discrete action-space. This discrete version of SAC is built based on continuous version of SAC with additional modifications. The target state-value is calculated as expectation of all action-values. .. math:: V(s_t) = \pi_\phi (s_t)^T [Q_\theta(s_t) - \alpha \log (\pi_\phi (s_t))] Similarly, the objective function for the temperature parameter is as follows. .. math:: J(\alpha) = \pi_\phi (s_t)^T [-\alpha (\log(\pi_\phi (s_t)) + H)] Finally, the objective function for the policy function is as follows. .. math:: J(\phi) = \mathbb{E}_{s_t \sim D} [\pi_\phi(s_t)^T [\alpha \log(\pi_\phi(s_t)) - Q_\theta(s_t)]] References: * `Christodoulou, Soft Actor-Critic for Discrete Action Settings. <https://arxiv.org/abs/1910.07207>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q functions. temp_learning_rate (float): learning rate for temperature parameter. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. temp_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the temperature. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. n_critics (int): the number of Q functions for ensemble. initial_temperature (float): initial temperature value. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']` reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.sac_impl.DiscreteSACImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _temp_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _temp_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _n_critics: int _initial_temperature: float _target_update_interval: int _use_gpu: Optional[Device] _impl: Optional[DiscreteSACImpl] def __init__( self, *, actor_learning_rate: float = 3e-4, critic_learning_rate: float = 3e-4, temp_learning_rate: float = 3e-4, actor_optim_factory: OptimizerFactory = AdamFactory(eps=1e-4), critic_optim_factory: OptimizerFactory = AdamFactory(eps=1e-4), temp_optim_factory: OptimizerFactory = AdamFactory(eps=1e-4), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 64, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, n_critics: int = 2, initial_temperature: float = 1.0, target_update_interval: int = 8000, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[DiscreteSACImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=None, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._temp_learning_rate = temp_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._temp_optim_factory = temp_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._n_critics = n_critics self._initial_temperature = initial_temperature self._target_update_interval = target_update_interval self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = DiscreteSACImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, temp_learning_rate=self._temp_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, temp_optim_factory=self._temp_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, n_critics=self._n_critics, initial_temperature=self._initial_temperature, use_gpu=self._use_gpu, scaler=self._scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} # lagrangian parameter update for SAC temeprature if self._temp_learning_rate > 0: temp_loss, temp = self._impl.update_temp(batch) metrics.update({"temp_loss": temp_loss, "temp": temp}) critic_loss = self._impl.update_critic(batch) metrics.update({"critic_loss": critic_loss}) actor_loss = self._impl.update_actor(batch) metrics.update({"actor_loss": actor_loss}) if self._grad_step % self._target_update_interval == 0: self._impl.update_target() return metrics def get_action_type(self) -> ActionSpace: return ActionSpace.DISCRETE
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/sac.py
sac.py
from typing import Any, Dict, Type from .awac import AWAC from .awr import AWR, DiscreteAWR from .base import AlgoBase from .bc import BC, DiscreteBC from .bcq import BCQ, DiscreteBCQ from .bear import BEAR from .combo import COMBO from .cql import CQL, DiscreteCQL from .crr import CRR from .ddpg import DDPG from .dqn import DQN, DoubleDQN from .mopo import MOPO from .plas import PLAS, PLASWithPerturbation from .random_policy import DiscreteRandomPolicy, RandomPolicy from .sac import SAC, DiscreteSAC from .td3 import TD3 from .td3_plus_bc import TD3PlusBC __all__ = [ "AlgoBase", "AWAC", "AWR", "DiscreteAWR", "BC", "DiscreteBC", "BCQ", "DiscreteBCQ", "BEAR", "COMBO", "CQL", "DiscreteCQL", "CRR", "DDPG", "DQN", "DoubleDQN", "MOPO", "PLAS", "PLASWithPerturbation", "SAC", "DiscreteSAC", "TD3", "TD3PlusBC", "RandomPolicy", "DiscreteRandomPolicy", "get_algo", "create_algo", ] DISCRETE_ALGORITHMS: Dict[str, Type[AlgoBase]] = { "awr": DiscreteAWR, "bc": DiscreteBC, "bcq": DiscreteBCQ, "cql": DiscreteCQL, "dqn": DQN, "double_dqn": DoubleDQN, "sac": DiscreteSAC, "random": DiscreteRandomPolicy, } CONTINUOUS_ALGORITHMS: Dict[str, Type[AlgoBase]] = { "awac": AWAC, "awr": AWR, "bc": BC, "bcq": BCQ, "bear": BEAR, "combo": COMBO, "cql": CQL, "crr": CRR, "ddpg": DDPG, "mopo": MOPO, "plas": PLASWithPerturbation, "sac": SAC, "td3": TD3, "td3_plus_bc": TD3PlusBC, "random": RandomPolicy, } def get_algo(name: str, discrete: bool) -> Type[AlgoBase]: """Returns algorithm class from its name. Args: name (str): algorithm name in snake_case. discrete (bool): flag to use discrete action-space algorithm. Returns: type: algorithm class. """ if discrete: if name in DISCRETE_ALGORITHMS: return DISCRETE_ALGORITHMS[name] raise ValueError(f"{name} does not support discrete action-space.") if name in CONTINUOUS_ALGORITHMS: return CONTINUOUS_ALGORITHMS[name] raise ValueError(f"{name} does not support continuous action-space.") def create_algo(name: str, discrete: bool, **params: Any) -> AlgoBase: """Returns algorithm object from its name. Args: name (str): algorithm name in snake_case. discrete (bool): flag to use discrete action-space algorithm. params (any): arguments for algorithm. Returns: d3rlpy.algos.base.AlgoBase: algorithm. """ return get_algo(name, discrete)(**params)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/__init__.py
__init__.py
from typing import Any, Dict, Optional, Sequence from ..argument_utility import ( EncoderArg, QFuncArg, RewardScalerArg, ScalerArg, UseGPUArg, check_encoder, check_q_func, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import TransitionMiniBatch from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import AdamFactory, OptimizerFactory from ..models.q_functions import QFunctionFactory from .base import AlgoBase from .torch.dqn_impl import DoubleDQNImpl, DQNImpl class DQN(AlgoBase): r"""Deep Q-Network algorithm. .. math:: L(\theta) = \mathbb{E}_{s_t, a_t, r_{t+1}, s_{t+1} \sim D} [(r_{t+1} + \gamma \max_a Q_{\theta'}(s_{t+1}, a) - Q_\theta(s_t, a_t))^2] where :math:`\theta'` is the target network parameter. The target network parameter is synchronized every `target_update_interval` iterations. References: * `Mnih et al., Human-level control through deep reinforcement learning. <https://www.nature.com/articles/nature14236>`_ Args: learning_rate (float): learning rate. optim_factory (d3rlpy.models.optimizers.OptimizerFactory or str): optimizer factory. encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. target_update_interval (int): interval to update the target network. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']` reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.dqn_impl.DQNImpl): algorithm implementation. """ _learning_rate: float _optim_factory: OptimizerFactory _encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _n_critics: int _target_reduction_type: str _target_update_interval: int _use_gpu: Optional[Device] _impl: Optional[DQNImpl] def __init__( self, *, learning_rate: float = 6.25e-5, optim_factory: OptimizerFactory = AdamFactory(), encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 32, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, n_critics: int = 1, target_reduction_type: str = "min", target_update_interval: int = 8000, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[DQNImpl] = None, **kwargs: Any, ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._learning_rate = learning_rate self._optim_factory = optim_factory self._encoder_factory = check_encoder(encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._target_update_interval = target_update_interval self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = DQNImpl( observation_shape=observation_shape, action_size=action_size, learning_rate=self._learning_rate, optim_factory=self._optim_factory, encoder_factory=self._encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, use_gpu=self._use_gpu, scaler=self._scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR loss = self._impl.update(batch) if self._grad_step % self._target_update_interval == 0: self._impl.update_target() return {"loss": loss} def get_action_type(self) -> ActionSpace: return ActionSpace.DISCRETE class DoubleDQN(DQN): r"""Double Deep Q-Network algorithm. The difference from DQN is that the action is taken from the current Q function instead of the target Q function. This modification significantly decreases overestimation bias of TD learning. .. math:: L(\theta) = \mathbb{E}_{s_t, a_t, r_{t+1}, s_{t+1} \sim D} [(r_{t+1} + \gamma Q_{\theta'}(s_{t+1}, \text{argmax}_a Q_\theta(s_{t+1}, a)) - Q_\theta(s_t, a_t))^2] where :math:`\theta'` is the target network parameter. The target network parameter is synchronized every `target_update_interval` iterations. References: * `Hasselt et al., Deep reinforcement learning with double Q-learning. <https://arxiv.org/abs/1509.06461>`_ Args: learning_rate (float): learning rate. optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory. encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. n_critics (int): the number of Q functions. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. target_update_interval (int): interval to synchronize the target network. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']` impl (d3rlpy.algos.torch.dqn_impl.DoubleDQNImpl): algorithm implementation. """ _impl: Optional[DoubleDQNImpl] def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = DoubleDQNImpl( observation_shape=observation_shape, action_size=action_size, learning_rate=self._learning_rate, optim_factory=self._optim_factory, encoder_factory=self._encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, use_gpu=self._use_gpu, scaler=self._scaler, reward_scaler=self._reward_scaler, ) self._impl.build()
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/dqn.py
dqn.py
from typing import Any, List, Sequence, Tuple, Union import numpy as np from ..argument_utility import ActionScalerArg from ..constants import ActionSpace from .base import AlgoBase class RandomPolicy(AlgoBase): r"""Random Policy for continuous control algorithm. This is designed for data collection and lightweight interaction tests. ``fit`` and ``fit_online`` methods will raise exceptions. Args: distribution (str): random distribution. The available options are ``['uniform', 'normal']``. normal_std (float): standard deviation of the normal distribution. This is only used when ``distribution='normal'``. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. """ _distribution: str _normal_std: float _action_size: int def __init__( self, *, distribution: str = "uniform", normal_std: float = 1.0, action_scaler: ActionScalerArg = None, **kwargs: Any, ): super().__init__( batch_size=1, n_frames=1, n_steps=1, gamma=0.0, scaler=None, action_scaler=action_scaler, kwargs=kwargs, ) self._distribution = distribution self._normal_std = normal_std self._action_size = 1 self._impl = None def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._action_size = action_size def predict(self, x: Union[np.ndarray, List[Any]]) -> np.ndarray: return self.sample_action(x) def sample_action(self, x: Union[np.ndarray, List[Any]]) -> np.ndarray: x = np.asarray(x) action_shape = (x.shape[0], self._action_size) if self._distribution == "uniform": action = np.random.uniform(-1.0, 1.0, size=action_shape) elif self._distribution == "normal": action = np.random.normal(0.0, self._normal_std, size=action_shape) else: raise ValueError(f"invalid distribution type: {self._distribution}") action = np.clip(action, -1.0, 1.0) if self._action_scaler: action = self._action_scaler.reverse_transform_numpy(action) return action def predict_value( self, x: Union[np.ndarray, List[Any]], action: Union[np.ndarray, List[Any]], with_std: bool = False, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: raise NotImplementedError def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS class DiscreteRandomPolicy(AlgoBase): r"""Random Policy for discrete control algorithm. This is designed for data collection and lightweight interaction tests. ``fit`` and ``fit_online`` methods will raise exceptions. """ _action_size: int def __init__(self, **kwargs: Any): super().__init__( batch_size=1, n_frames=1, n_steps=1, gamma=0.0, scaler=None, action_scaler=None, kwargs=kwargs, ) self._action_size = 1 self._impl = None def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._action_size = action_size def predict(self, x: Union[np.ndarray, List[Any]]) -> np.ndarray: return self.sample_action(x) def sample_action(self, x: Union[np.ndarray, List[Any]]) -> np.ndarray: x = np.asarray(x) return np.random.randint(self._action_size, size=x.shape[0]) def predict_value( self, x: Union[np.ndarray, List[Any]], action: Union[np.ndarray, List[Any]], with_std: bool = False, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: raise NotImplementedError def get_action_type(self) -> ActionSpace: return ActionSpace.DISCRETE
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/random_policy.py
random_policy.py
from typing import Any, Dict, Optional, Sequence from ..argument_utility import ( ActionScalerArg, EncoderArg, QFuncArg, RewardScalerArg, ScalerArg, UseGPUArg, check_encoder, check_q_func, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import TransitionMiniBatch from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import AdamFactory, OptimizerFactory from ..models.q_functions import QFunctionFactory from .base import AlgoBase from .torch.plas_impl import PLASImpl, PLASWithPerturbationImpl class PLAS(AlgoBase): r"""Policy in Latent Action Space algorithm. PLAS is an offline deep reinforcement learning algorithm whose policy function is trained in latent space of Conditional VAE. Unlike other algorithms, PLAS can achieve good performance by using its less constrained policy function. .. math:: a \sim p_\beta (a|s, z=\pi_\phi(s)) where :math:`\beta` is a parameter of the decoder in Conditional VAE. References: * `Zhou et al., PLAS: latent action space for offline reinforcement learning. <https://arxiv.org/abs/2011.07213>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q functions. imitator_learning_rate (float): learning rate for Conditional VAE. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. imitator_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the conditional VAE. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. imitator_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the conditional VAE. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. update_actor_interval (int): interval to update policy function. lam (float): weight factor for critic ensemble. warmup_steps (int): the number of steps to warmup the VAE. beta (float): KL reguralization term for Conditional VAE. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']`. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.bcq_impl.BCQImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _imitator_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _imitator_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _imitator_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _tau: float _n_critics: int _target_reduction_type: str _update_actor_interval: int _lam: float _warmup_steps: int _beta: float _use_gpu: Optional[Device] _impl: Optional[PLASImpl] def __init__( self, *, actor_learning_rate: float = 1e-4, critic_learning_rate: float = 1e-3, imitator_learning_rate: float = 1e-4, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), imitator_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", imitator_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 100, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, n_critics: int = 2, target_reduction_type: str = "mix", update_actor_interval: int = 1, lam: float = 0.75, warmup_steps: int = 500000, beta: float = 0.5, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[PLASImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._imitator_learning_rate = imitator_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._imitator_optim_factory = imitator_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._imitator_encoder_factory = check_encoder(imitator_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._tau = tau self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._update_actor_interval = update_actor_interval self._lam = lam self._warmup_steps = warmup_steps self._beta = beta self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = PLASImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, imitator_learning_rate=self._imitator_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, imitator_optim_factory=self._imitator_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, imitator_encoder_factory=self._imitator_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, lam=self._lam, beta=self._beta, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} if self._grad_step < self._warmup_steps: imitator_loss = self._impl.update_imitator(batch) metrics.update({"imitator_loss": imitator_loss}) else: critic_loss = self._impl.update_critic(batch) metrics.update({"critic_loss": critic_loss}) if self._grad_step % self._update_actor_interval == 0: actor_loss = self._impl.update_actor(batch) metrics.update({"actor_loss": actor_loss}) self._impl.update_actor_target() self._impl.update_critic_target() return metrics def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS class PLASWithPerturbation(PLAS): r"""Policy in Latent Action Space algorithm with perturbation layer. PLAS with perturbation layer enables PLAS to output out-of-distribution action. References: * `Zhou et al., PLAS: latent action space for offline reinforcement learning. <https://arxiv.org/abs/2011.07213>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q functions. imitator_learning_rate (float): learning rate for Conditional VAE. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. imitator_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the conditional VAE. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. imitator_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the conditional VAE. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. update_actor_interval (int): interval to update policy function. lam (float): weight factor for critic ensemble. action_flexibility (float): output scale of perturbation layer. warmup_steps (int): the number of steps to warmup the VAE. beta (float): KL reguralization term for Conditional VAE. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']`. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.bcq_impl.BCQImpl): algorithm implementation. """ _action_flexibility: float _impl: Optional[PLASWithPerturbationImpl] def __init__( self, *, actor_learning_rate: float = 1e-4, critic_learning_rate: float = 1e-3, imitator_learning_rate: float = 1e-4, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), imitator_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", imitator_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 100, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, n_critics: int = 2, target_reduction_type: str = "mix", update_actor_interval: int = 1, lam: float = 0.75, action_flexibility: float = 0.05, warmup_steps: int = 500000, beta: float = 0.5, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[PLASWithPerturbationImpl] = None, **kwargs: Any ): super().__init__( actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, imitator_learning_rate=imitator_learning_rate, actor_optim_factory=actor_optim_factory, critic_optim_factory=critic_optim_factory, imitator_optim_factory=imitator_optim_factory, actor_encoder_factory=actor_encoder_factory, critic_encoder_factory=critic_encoder_factory, imitator_encoder_factory=imitator_encoder_factory, q_func_factory=q_func_factory, batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, tau=tau, n_critics=n_critics, target_reduction_type=target_reduction_type, update_actor_interval=update_actor_interval, lam=lam, warmup_steps=warmup_steps, beta=beta, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, impl=impl, **kwargs, ) self._action_flexibility = action_flexibility def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = PLASWithPerturbationImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, imitator_learning_rate=self._imitator_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, imitator_optim_factory=self._imitator_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, imitator_encoder_factory=self._imitator_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, lam=self._lam, beta=self._beta, action_flexibility=self._action_flexibility, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build()
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/plas.py
plas.py
from typing import Any, Dict, Optional, Sequence from ..argument_utility import ( ActionScalerArg, EncoderArg, QFuncArg, RewardScalerArg, ScalerArg, UseGPUArg, check_encoder, check_q_func, check_use_gpu, ) from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from ..dataset import TransitionMiniBatch from ..gpu import Device from ..models.encoders import EncoderFactory from ..models.optimizers import AdamFactory, OptimizerFactory from ..models.q_functions import QFunctionFactory from .base import AlgoBase from .dqn import DoubleDQN from .torch.cql_impl import CQLImpl, DiscreteCQLImpl class CQL(AlgoBase): r"""Conservative Q-Learning algorithm. CQL is a SAC-based data-driven deep reinforcement learning algorithm, which achieves state-of-the-art performance in offline RL problems. CQL mitigates overestimation error by minimizing action-values under the current policy and maximizing values under data distribution for underestimation issue. .. math:: L(\theta_i) = \alpha\, \mathbb{E}_{s_t \sim D} \left[\log{\sum_a \exp{Q_{\theta_i}(s_t, a)}} - \mathbb{E}_{a \sim D} \big[Q_{\theta_i}(s_t, a)\big] - \tau\right] + L_\mathrm{SAC}(\theta_i) where :math:`\alpha` is an automatically adjustable value via Lagrangian dual gradient descent and :math:`\tau` is a threshold value. If the action-value difference is smaller than :math:`\tau`, the :math:`\alpha` will become smaller. Otherwise, the :math:`\alpha` will become larger to aggressively penalize action-values. In continuous control, :math:`\log{\sum_a \exp{Q(s, a)}}` is computed as follows. .. math:: \log{\sum_a \exp{Q(s, a)}} \approx \log{\left( \frac{1}{2N} \sum_{a_i \sim \text{Unif}(a)}^N \left[\frac{\exp{Q(s, a_i)}}{\text{Unif}(a)}\right] + \frac{1}{2N} \sum_{a_i \sim \pi_\phi(a|s)}^N \left[\frac{\exp{Q(s, a_i)}}{\pi_\phi(a_i|s)}\right]\right)} where :math:`N` is the number of sampled actions. The rest of optimization is exactly same as :class:`d3rlpy.algos.SAC`. References: * `Kumar et al., Conservative Q-Learning for Offline Reinforcement Learning. <https://arxiv.org/abs/2006.04779>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q functions. temp_learning_rate (float): learning rate for temperature parameter of SAC. alpha_learning_rate (float): learning rate for :math:`\alpha`. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. temp_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the temperature. alpha_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for :math:`\alpha`. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. initial_temperature (float): initial temperature value. initial_alpha (float): initial :math:`\alpha` value. alpha_threshold (float): threshold value described as :math:`\tau`. conservative_weight (float): constant weight to scale conservative loss. n_action_samples (int): the number of sampled actions to compute :math:`\log{\sum_a \exp{Q(s, a)}}`. soft_q_backup (bool): flag to use SAC-style backup. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']`. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.cql_impl.CQLImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _temp_learning_rate: float _alpha_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _temp_optim_factory: OptimizerFactory _alpha_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _tau: float _n_critics: int _target_reduction_type: str _initial_temperature: float _initial_alpha: float _alpha_threshold: float _conservative_weight: float _n_action_samples: int _soft_q_backup: bool _use_gpu: Optional[Device] _impl: Optional[CQLImpl] def __init__( self, *, actor_learning_rate: float = 1e-4, critic_learning_rate: float = 3e-4, temp_learning_rate: float = 1e-4, alpha_learning_rate: float = 1e-4, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), temp_optim_factory: OptimizerFactory = AdamFactory(), alpha_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 256, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, n_critics: int = 2, target_reduction_type: str = "min", initial_temperature: float = 1.0, initial_alpha: float = 1.0, alpha_threshold: float = 10.0, conservative_weight: float = 5.0, n_action_samples: int = 10, soft_q_backup: bool = False, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[CQLImpl] = None, **kwargs: Any, ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._temp_learning_rate = temp_learning_rate self._alpha_learning_rate = alpha_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._temp_optim_factory = temp_optim_factory self._alpha_optim_factory = alpha_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._tau = tau self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._initial_temperature = initial_temperature self._initial_alpha = initial_alpha self._alpha_threshold = alpha_threshold self._conservative_weight = conservative_weight self._n_action_samples = n_action_samples self._soft_q_backup = soft_q_backup self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = CQLImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, temp_learning_rate=self._temp_learning_rate, alpha_learning_rate=self._alpha_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, temp_optim_factory=self._temp_optim_factory, alpha_optim_factory=self._alpha_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, initial_temperature=self._initial_temperature, initial_alpha=self._initial_alpha, alpha_threshold=self._alpha_threshold, conservative_weight=self._conservative_weight, n_action_samples=self._n_action_samples, soft_q_backup=self._soft_q_backup, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} # lagrangian parameter update for SAC temperature if self._temp_learning_rate > 0: temp_loss, temp = self._impl.update_temp(batch) metrics.update({"temp_loss": temp_loss, "temp": temp}) # lagrangian parameter update for conservative loss weight if self._alpha_learning_rate > 0: alpha_loss, alpha = self._impl.update_alpha(batch) metrics.update({"alpha_loss": alpha_loss, "alpha": alpha}) critic_loss = self._impl.update_critic(batch) metrics.update({"critic_loss": critic_loss}) actor_loss = self._impl.update_actor(batch) metrics.update({"actor_loss": actor_loss}) self._impl.update_critic_target() self._impl.update_actor_target() return metrics def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS class DiscreteCQL(DoubleDQN): r"""Discrete version of Conservative Q-Learning algorithm. Discrete version of CQL is a DoubleDQN-based data-driven deep reinforcement learning algorithm (the original paper uses DQN), which achieves state-of-the-art performance in offline RL problems. CQL mitigates overestimation error by minimizing action-values under the current policy and maximizing values under data distribution for underestimation issue. .. math:: L(\theta) = \alpha \mathbb{E}_{s_t \sim D} [\log{\sum_a \exp{Q_{\theta}(s_t, a)}} - \mathbb{E}_{a \sim D} [Q_{\theta}(s, a)]] + L_{DoubleDQN}(\theta) References: * `Kumar et al., Conservative Q-Learning for Offline Reinforcement Learning. <https://arxiv.org/abs/2006.04779>`_ Args: learning_rate (float): learning rate. optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory. encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. target_update_interval (int): interval to synchronize the target network. alpha (float): the :math:`\alpha` value above. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']` reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.cql_impl.DiscreteCQLImpl): algorithm implementation. """ _alpha: float _impl: Optional[DiscreteCQLImpl] def __init__( self, *, learning_rate: float = 6.25e-5, optim_factory: OptimizerFactory = AdamFactory(), encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 32, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, n_critics: int = 1, target_reduction_type: str = "min", target_update_interval: int = 8000, alpha: float = 1.0, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[DiscreteCQLImpl] = None, **kwargs: Any, ): super().__init__( learning_rate=learning_rate, optim_factory=optim_factory, encoder_factory=encoder_factory, q_func_factory=q_func_factory, batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, n_critics=n_critics, target_reduction_type=target_reduction_type, target_update_interval=target_update_interval, use_gpu=use_gpu, scaler=scaler, reward_scaler=reward_scaler, impl=impl, **kwargs, ) self._alpha = alpha def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = DiscreteCQLImpl( observation_shape=observation_shape, action_size=action_size, learning_rate=self._learning_rate, optim_factory=self._optim_factory, encoder_factory=self._encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, alpha=self._alpha, use_gpu=self._use_gpu, scaler=self._scaler, reward_scaler=self._reward_scaler, ) self._impl.build()
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/cql.py
cql.py
import math from typing import Optional, Sequence, cast import numpy as np import torch from torch.optim import Optimizer from ...gpu import Device from ...models.builders import ( create_conditional_vae, create_deterministic_residual_policy, create_discrete_imitator, ) from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.q_functions import QFunctionFactory from ...models.torch import ( ConditionalVAE, DeterministicResidualPolicy, DiscreteImitator, PixelEncoder, compute_max_with_n_actions, ) from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import TorchMiniBatch, torch_api, train_api from .ddpg_impl import DDPGBaseImpl from .dqn_impl import DoubleDQNImpl class BCQImpl(DDPGBaseImpl): _imitator_learning_rate: float _imitator_optim_factory: OptimizerFactory _imitator_encoder_factory: EncoderFactory _lam: float _n_action_samples: int _action_flexibility: float _beta: float _policy: Optional[DeterministicResidualPolicy] _targ_policy: Optional[DeterministicResidualPolicy] _imitator: Optional[ConditionalVAE] _imitator_optim: Optional[Optimizer] def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, imitator_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, imitator_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, imitator_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, tau: float, n_critics: int, lam: float, n_action_samples: int, action_flexibility: float, beta: float, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, actor_optim_factory=actor_optim_factory, critic_optim_factory=critic_optim_factory, actor_encoder_factory=actor_encoder_factory, critic_encoder_factory=critic_encoder_factory, q_func_factory=q_func_factory, gamma=gamma, tau=tau, n_critics=n_critics, target_reduction_type="mix", use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._imitator_learning_rate = imitator_learning_rate self._imitator_optim_factory = imitator_optim_factory self._imitator_encoder_factory = imitator_encoder_factory self._n_critics = n_critics self._lam = lam self._n_action_samples = n_action_samples self._action_flexibility = action_flexibility self._beta = beta # initialized in build self._imitator = None self._imitator_optim = None def build(self) -> None: self._build_imitator() super().build() # setup optimizer after the parameters move to GPU self._build_imitator_optim() def _build_actor(self) -> None: self._policy = create_deterministic_residual_policy( self._observation_shape, self._action_size, self._action_flexibility, self._actor_encoder_factory, ) def _build_imitator(self) -> None: self._imitator = create_conditional_vae( observation_shape=self._observation_shape, action_size=self._action_size, latent_size=2 * self._action_size, beta=self._beta, min_logstd=-4.0, max_logstd=15.0, encoder_factory=self._imitator_encoder_factory, ) def _build_imitator_optim(self) -> None: assert self._imitator is not None self._imitator_optim = self._imitator_optim_factory.create( self._imitator.parameters(), lr=self._imitator_learning_rate ) def compute_actor_loss(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._imitator is not None assert self._policy is not None assert self._q_func is not None latent = torch.randn( batch.observations.shape[0], 2 * self._action_size, device=self._device, ) clipped_latent = latent.clamp(-0.5, 0.5) sampled_action = self._imitator.decode( batch.observations, clipped_latent ) action = self._policy(batch.observations, sampled_action) return -self._q_func(batch.observations, action, "none")[0].mean() @train_api @torch_api() def update_imitator(self, batch: TorchMiniBatch) -> np.ndarray: assert self._imitator_optim is not None assert self._imitator is not None self._imitator_optim.zero_grad() loss = self._imitator.compute_error(batch.observations, batch.actions) loss.backward() self._imitator_optim.step() return loss.cpu().detach().numpy() def _repeat_observation(self, x: torch.Tensor) -> torch.Tensor: # (batch_size, *obs_shape) -> (batch_size, n, *obs_shape) repeat_shape = (x.shape[0], self._n_action_samples, *x.shape[1:]) repeated_x = x.view(x.shape[0], 1, *x.shape[1:]).expand(repeat_shape) return repeated_x def _sample_repeated_action( self, repeated_x: torch.Tensor, target: bool = False ) -> torch.Tensor: assert self._imitator is not None assert self._policy is not None assert self._targ_policy is not None # TODO: this seems to be slow with image observation flattened_x = repeated_x.reshape(-1, *self.observation_shape) # sample latent variable latent = torch.randn( flattened_x.shape[0], 2 * self._action_size, device=self._device ) clipped_latent = latent.clamp(-0.5, 0.5) # sample action sampled_action = self._imitator.decode(flattened_x, clipped_latent) # add residual action policy = self._targ_policy if target else self._policy action = policy(flattened_x, sampled_action) return action.view(-1, self._n_action_samples, self._action_size) def _predict_value( self, repeated_x: torch.Tensor, action: torch.Tensor, ) -> torch.Tensor: assert self._q_func is not None # TODO: this seems to be slow with image observation # (batch_size, n, *obs_shape) -> (batch_size * n, *obs_shape) flattened_x = repeated_x.reshape(-1, *self.observation_shape) # (batch_size, n, action_size) -> (batch_size * n, action_size) flattend_action = action.view(-1, self.action_size) # estimate values return self._q_func(flattened_x, flattend_action, "none") def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: # TODO: this seems to be slow with image observation repeated_x = self._repeat_observation(x) action = self._sample_repeated_action(repeated_x) values = self._predict_value(repeated_x, action)[0] # pick the best (batch_size * n) -> (batch_size,) index = values.view(-1, self._n_action_samples).argmax(dim=1) return action[torch.arange(action.shape[0]), index] def _sample_action(self, x: torch.Tensor) -> torch.Tensor: raise NotImplementedError("BCQ does not support sampling action") def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._targ_q_func is not None # TODO: this seems to be slow with image observation with torch.no_grad(): repeated_x = self._repeat_observation(batch.next_observations) actions = self._sample_repeated_action(repeated_x, True) values = compute_max_with_n_actions( batch.next_observations, actions, self._targ_q_func, self._lam ) return values class DiscreteBCQImpl(DoubleDQNImpl): _action_flexibility: float _beta: float _imitator: Optional[DiscreteImitator] def __init__( self, observation_shape: Sequence[int], action_size: int, learning_rate: float, optim_factory: OptimizerFactory, encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, n_critics: int, target_reduction_type: str, action_flexibility: float, beta: float, use_gpu: Optional[Device], scaler: Optional[Scaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, learning_rate=learning_rate, optim_factory=optim_factory, encoder_factory=encoder_factory, q_func_factory=q_func_factory, gamma=gamma, n_critics=n_critics, target_reduction_type=target_reduction_type, use_gpu=use_gpu, scaler=scaler, reward_scaler=reward_scaler, ) self._action_flexibility = action_flexibility self._beta = beta # initialized in build self._imitator = None def _build_network(self) -> None: super()._build_network() assert self._q_func is not None # share convolutional layers if observation is pixel if isinstance(self._q_func.q_funcs[0].encoder, PixelEncoder): self._imitator = DiscreteImitator( self._q_func.q_funcs[0].encoder, self._action_size, self._beta ) else: self._imitator = create_discrete_imitator( self._observation_shape, self._action_size, self._beta, self._encoder_factory, ) def _build_optim(self) -> None: assert self._q_func is not None assert self._imitator is not None q_func_params = list(self._q_func.parameters()) imitator_params = list(self._imitator.parameters()) # TODO: replace this with a cleaner way # retrieve unique elements unique_dict = {} for param in q_func_params + imitator_params: unique_dict[param] = param unique_params = list(unique_dict.values()) self._optim = self._optim_factory.create( unique_params, lr=self._learning_rate ) def compute_loss( self, batch: TorchMiniBatch, q_tpn: torch.Tensor ) -> torch.Tensor: assert self._imitator is not None loss = super().compute_loss(batch, q_tpn) imitator_loss = self._imitator.compute_error( batch.observations, batch.actions.long() ) return loss + imitator_loss def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: assert self._imitator is not None assert self._q_func is not None log_probs = self._imitator(x) ratio = log_probs - log_probs.max(dim=1, keepdim=True).values mask = (ratio > math.log(self._action_flexibility)).float() value = self._q_func(x) normalized_value = value - value.min(dim=1, keepdim=True).values action = (normalized_value * cast(torch.Tensor, mask)).argmax(dim=1) return action
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/bcq_impl.py
bcq_impl.py
import copy from typing import Optional, Sequence import numpy as np import torch from torch.optim import Optimizer from ...gpu import Device from ...models.builders import create_discrete_q_function from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.q_functions import QFunctionFactory from ...models.torch import EnsembleDiscreteQFunction, EnsembleQFunction from ...preprocessing import RewardScaler, Scaler from ...torch_utility import TorchMiniBatch, hard_sync, torch_api, train_api from .base import TorchImplBase from .utility import DiscreteQFunctionMixin class DQNImpl(DiscreteQFunctionMixin, TorchImplBase): _learning_rate: float _optim_factory: OptimizerFactory _encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _gamma: float _n_critics: int _target_reduction_type: str _use_gpu: Optional[Device] _q_func: Optional[EnsembleDiscreteQFunction] _targ_q_func: Optional[EnsembleDiscreteQFunction] _optim: Optional[Optimizer] def __init__( self, observation_shape: Sequence[int], action_size: int, learning_rate: float, optim_factory: OptimizerFactory, encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, n_critics: int, target_reduction_type: str, use_gpu: Optional[Device], scaler: Optional[Scaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, scaler=scaler, action_scaler=None, reward_scaler=reward_scaler, ) self._learning_rate = learning_rate self._optim_factory = optim_factory self._encoder_factory = encoder_factory self._q_func_factory = q_func_factory self._gamma = gamma self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._use_gpu = use_gpu # initialized in build self._q_func = None self._targ_q_func = None self._optim = None def build(self) -> None: # setup torch models self._build_network() # setup target network self._targ_q_func = copy.deepcopy(self._q_func) if self._use_gpu: self.to_gpu(self._use_gpu) else: self.to_cpu() # setup optimizer after the parameters move to GPU self._build_optim() def _build_network(self) -> None: self._q_func = create_discrete_q_function( self._observation_shape, self._action_size, self._encoder_factory, self._q_func_factory, n_ensembles=self._n_critics, ) def _build_optim(self) -> None: assert self._q_func is not None self._optim = self._optim_factory.create( self._q_func.parameters(), lr=self._learning_rate ) @train_api @torch_api(scaler_targets=["obs_t", "obs_tpn"]) def update(self, batch: TorchMiniBatch) -> np.ndarray: assert self._optim is not None self._optim.zero_grad() q_tpn = self.compute_target(batch) loss = self.compute_loss(batch, q_tpn) loss.backward() self._optim.step() return loss.cpu().detach().numpy() def compute_loss( self, batch: TorchMiniBatch, q_tpn: torch.Tensor, ) -> torch.Tensor: assert self._q_func is not None return self._q_func.compute_error( obs_t=batch.observations, act_t=batch.actions.long(), rew_tp1=batch.next_rewards, q_tp1=q_tpn, ter_tp1=batch.terminals, gamma=self._gamma ** batch.n_steps, use_independent_target=self._target_reduction_type == "none", masks=batch.masks, ) def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._targ_q_func is not None with torch.no_grad(): next_actions = self._targ_q_func(batch.next_observations) max_action = next_actions.argmax(dim=1) return self._targ_q_func.compute_target( batch.next_observations, max_action, reduction=self._target_reduction_type, ) def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: assert self._q_func is not None return self._q_func(x).argmax(dim=1) def _sample_action(self, x: torch.Tensor) -> torch.Tensor: return self._predict_best_action(x) def update_target(self) -> None: assert self._q_func is not None assert self._targ_q_func is not None hard_sync(self._targ_q_func, self._q_func) @property def q_function(self) -> EnsembleQFunction: assert self._q_func return self._q_func @property def q_function_optim(self) -> Optimizer: assert self._optim return self._optim class DoubleDQNImpl(DQNImpl): def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._targ_q_func is not None with torch.no_grad(): action = self._predict_best_action(batch.next_observations) return self._targ_q_func.compute_target( batch.next_observations, action, reduction=self._target_reduction_type, )
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/dqn_impl.py
dqn_impl.py
import copy from abc import ABCMeta, abstractmethod from typing import Optional, Sequence import numpy as np import torch from torch.optim import Optimizer from ...gpu import Device from ...models.builders import ( create_continuous_q_function, create_deterministic_policy, ) from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.q_functions import QFunctionFactory from ...models.torch import ( DeterministicPolicy, EnsembleContinuousQFunction, EnsembleQFunction, Policy, ) from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import TorchMiniBatch, soft_sync, torch_api, train_api from .base import TorchImplBase from .utility import ContinuousQFunctionMixin class DDPGBaseImpl(ContinuousQFunctionMixin, TorchImplBase, metaclass=ABCMeta): _actor_learning_rate: float _critic_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _gamma: float _tau: float _n_critics: int _target_reduction_type: str _use_gpu: Optional[Device] _q_func: Optional[EnsembleContinuousQFunction] _policy: Optional[Policy] _targ_q_func: Optional[EnsembleContinuousQFunction] _targ_policy: Optional[Policy] _actor_optim: Optional[Optimizer] _critic_optim: Optional[Optimizer] def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, tau: float, n_critics: int, target_reduction_type: str, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._actor_encoder_factory = actor_encoder_factory self._critic_encoder_factory = critic_encoder_factory self._q_func_factory = q_func_factory self._gamma = gamma self._tau = tau self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._use_gpu = use_gpu # initialized in build self._q_func = None self._policy = None self._targ_q_func = None self._targ_policy = None self._actor_optim = None self._critic_optim = None def build(self) -> None: # setup torch models self._build_critic() self._build_actor() # setup target networks self._targ_q_func = copy.deepcopy(self._q_func) self._targ_policy = copy.deepcopy(self._policy) if self._use_gpu: self.to_gpu(self._use_gpu) else: self.to_cpu() # setup optimizer after the parameters move to GPU self._build_critic_optim() self._build_actor_optim() def _build_critic(self) -> None: self._q_func = create_continuous_q_function( self._observation_shape, self._action_size, self._critic_encoder_factory, self._q_func_factory, n_ensembles=self._n_critics, ) def _build_critic_optim(self) -> None: assert self._q_func is not None self._critic_optim = self._critic_optim_factory.create( self._q_func.parameters(), lr=self._critic_learning_rate ) @abstractmethod def _build_actor(self) -> None: pass def _build_actor_optim(self) -> None: assert self._policy is not None self._actor_optim = self._actor_optim_factory.create( self._policy.parameters(), lr=self._actor_learning_rate ) @train_api @torch_api() def update_critic(self, batch: TorchMiniBatch) -> np.ndarray: assert self._critic_optim is not None self._critic_optim.zero_grad() q_tpn = self.compute_target(batch) loss = self.compute_critic_loss(batch, q_tpn) loss.backward() self._critic_optim.step() return loss.cpu().detach().numpy() def compute_critic_loss( self, batch: TorchMiniBatch, q_tpn: torch.Tensor ) -> torch.Tensor: assert self._q_func is not None return self._q_func.compute_error( obs_t=batch.observations, act_t=batch.actions, rew_tp1=batch.next_rewards, q_tp1=q_tpn, ter_tp1=batch.terminals, gamma=self._gamma ** batch.n_steps, use_independent_target=self._target_reduction_type == "none", masks=batch.masks, ) @train_api @torch_api() def update_actor(self, batch: TorchMiniBatch) -> np.ndarray: assert self._q_func is not None assert self._actor_optim is not None # Q function should be inference mode for stability self._q_func.eval() self._actor_optim.zero_grad() loss = self.compute_actor_loss(batch) loss.backward() self._actor_optim.step() return loss.cpu().detach().numpy() @abstractmethod def compute_actor_loss(self, batch: TorchMiniBatch) -> torch.Tensor: pass @abstractmethod def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: pass def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: assert self._policy is not None return self._policy.best_action(x) def _sample_action(self, x: torch.Tensor) -> torch.Tensor: assert self._policy is not None return self._policy.sample(x) def update_critic_target(self) -> None: assert self._q_func is not None assert self._targ_q_func is not None soft_sync(self._targ_q_func, self._q_func, self._tau) def update_actor_target(self) -> None: assert self._policy is not None assert self._targ_policy is not None soft_sync(self._targ_policy, self._policy, self._tau) @property def policy(self) -> Policy: assert self._policy return self._policy @property def policy_optim(self) -> Optimizer: assert self._actor_optim return self._actor_optim @property def q_function(self) -> EnsembleQFunction: assert self._q_func return self._q_func @property def q_function_optim(self) -> Optimizer: assert self._critic_optim return self._critic_optim class DDPGImpl(DDPGBaseImpl): _policy: Optional[DeterministicPolicy] _targ_policy: Optional[DeterministicPolicy] def _build_actor(self) -> None: self._policy = create_deterministic_policy( self._observation_shape, self._action_size, self._actor_encoder_factory, ) def compute_actor_loss(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._policy is not None assert self._q_func is not None action = self._policy(batch.observations) q_t = self._q_func(batch.observations, action, "none")[0] return -q_t.mean() def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._targ_q_func is not None assert self._targ_policy is not None with torch.no_grad(): action = self._targ_policy(batch.next_observations) return self._targ_q_func.compute_target( batch.next_observations, action.clamp(-1.0, 1.0), reduction=self._target_reduction_type, ) def _sample_action(self, x: torch.Tensor) -> torch.Tensor: return self._predict_best_action(x)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/ddpg_impl.py
ddpg_impl.py
from typing import Optional, Sequence, cast import numpy as np import torch from torch.optim import Optimizer from ...gpu import Device from ...models.torch.policies import Policy from ...models.torch.q_functions.ensemble_q_function import EnsembleQFunction from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import ( eval_api, freeze, get_state_dict, hard_sync, map_location, reset_optimizer_states, set_state_dict, sync_optimizer_state, to_cpu, to_cuda, torch_api, unfreeze, ) from ..base import AlgoImplBase class TorchImplBase(AlgoImplBase): _observation_shape: Sequence[int] _action_size: int _scaler: Optional[Scaler] _action_scaler: Optional[ActionScaler] _reward_scaler: Optional[RewardScaler] _device: str def __init__( self, observation_shape: Sequence[int], action_size: int, scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): self._observation_shape = observation_shape self._action_size = action_size self._scaler = scaler self._action_scaler = action_scaler self._reward_scaler = reward_scaler self._device = "cpu:0" @eval_api @torch_api(scaler_targets=["x"]) def predict_best_action(self, x: torch.Tensor) -> np.ndarray: assert x.ndim > 1, "Input must have batch dimension." with torch.no_grad(): action = self._predict_best_action(x) # transform action back to the original range if self._action_scaler: action = self._action_scaler.reverse_transform(action) return action.cpu().detach().numpy() def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: raise NotImplementedError @eval_api @torch_api(scaler_targets=["x"]) def sample_action(self, x: torch.Tensor) -> np.ndarray: assert x.ndim > 1, "Input must have batch dimension." with torch.no_grad(): action = self._sample_action(x) # transform action back to the original range if self._action_scaler: action = self._action_scaler.reverse_transform(action) return action.cpu().detach().numpy() def _sample_action(self, x: torch.Tensor) -> torch.Tensor: raise NotImplementedError @eval_api def save_policy(self, fname: str) -> None: dummy_x = torch.rand(1, *self.observation_shape, device=self._device) # workaround until version 1.6 freeze(self) # dummy function to select best actions def _func(x: torch.Tensor) -> torch.Tensor: if self._scaler: x = self._scaler.transform(x) action = self._predict_best_action(x) if self._action_scaler: action = self._action_scaler.reverse_transform(action) return action traced_script = torch.jit.trace(_func, dummy_x, check_trace=False) if fname.endswith(".onnx"): # currently, PyTorch cannot directly export function as ONNX. torch.onnx.export( traced_script, dummy_x, fname, export_params=True, opset_version=11, input_names=["input_0"], output_names=["output_0"], example_outputs=traced_script(dummy_x), ) elif fname.endswith(".pt"): traced_script.save(fname) else: raise ValueError( f"invalid format type: {fname}." " .pt and .onnx extensions are currently supported." ) # workaround until version 1.6 unfreeze(self) def to_gpu(self, device: Device = Device()) -> None: self._device = f"cuda:{device.get_id()}" to_cuda(self, self._device) def to_cpu(self) -> None: self._device = "cpu:0" to_cpu(self) def save_model(self, fname: str) -> None: torch.save(get_state_dict(self), fname) def load_model(self, fname: str) -> None: chkpt = torch.load(fname, map_location=map_location(self._device)) set_state_dict(self, chkpt) @property def policy(self) -> Policy: raise NotImplementedError def copy_policy_from(self, impl: AlgoImplBase) -> None: impl = cast("TorchImplBase", impl) if not isinstance(impl.policy, type(self.policy)): raise ValueError( f"Invalid policy type: expected={type(self.policy)}," f"actual={type(impl.policy)}" ) hard_sync(self.policy, impl.policy) @property def policy_optim(self) -> Optimizer: raise NotImplementedError def copy_policy_optim_from(self, impl: AlgoImplBase) -> None: impl = cast("TorchImplBase", impl) if not isinstance(impl.policy_optim, type(self.policy_optim)): raise ValueError( "Invalid policy optimizer type: " f"expected={type(self.policy_optim)}," f"actual={type(impl.policy_optim)}" ) sync_optimizer_state(self.policy_optim, impl.policy_optim) @property def q_function(self) -> EnsembleQFunction: raise NotImplementedError def copy_q_function_from(self, impl: AlgoImplBase) -> None: impl = cast("TorchImplBase", impl) q_func = self.q_function.q_funcs[0] if not isinstance(impl.q_function.q_funcs[0], type(q_func)): raise ValueError( f"Invalid Q-function type: expected={type(q_func)}," f"actual={type(impl.q_function.q_funcs[0])}" ) hard_sync(self.q_function, impl.q_function) @property def q_function_optim(self) -> Optimizer: raise NotImplementedError def copy_q_function_optim_from(self, impl: AlgoImplBase) -> None: impl = cast("TorchImplBase", impl) if not isinstance(impl.q_function_optim, type(self.q_function_optim)): raise ValueError( "Invalid Q-function optimizer type: " f"expected={type(self.q_function_optim)}", f"actual={type(impl.q_function_optim)}", ) sync_optimizer_state(self.q_function_optim, impl.q_function_optim) def reset_optimizer_states(self) -> None: reset_optimizer_states(self) @property def observation_shape(self) -> Sequence[int]: return self._observation_shape @property def action_size(self) -> int: return self._action_size @property def device(self) -> str: return self._device @property def scaler(self) -> Optional[Scaler]: return self._scaler @property def action_scaler(self) -> Optional[ActionScaler]: return self._action_scaler @property def reward_scaler(self) -> Optional[RewardScaler]: return self._reward_scaler
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/base.py
base.py
from typing import Optional, Sequence import torch from ...gpu import Device from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.q_functions import QFunctionFactory from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import TorchMiniBatch from .td3_impl import TD3Impl class TD3PlusBCImpl(TD3Impl): _alpha: float def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, tau: float, n_critics: int, target_reduction_type: str, target_smoothing_sigma: float, target_smoothing_clip: float, alpha: float, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, actor_optim_factory=actor_optim_factory, critic_optim_factory=critic_optim_factory, actor_encoder_factory=actor_encoder_factory, critic_encoder_factory=critic_encoder_factory, q_func_factory=q_func_factory, gamma=gamma, tau=tau, n_critics=n_critics, target_reduction_type=target_reduction_type, target_smoothing_sigma=target_smoothing_sigma, target_smoothing_clip=target_smoothing_clip, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._alpha = alpha def compute_actor_loss(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._policy is not None assert self._q_func is not None action = self._policy(batch.observations) q_t = self._q_func(batch.observations, action, "none")[0] lam = self._alpha / (q_t.abs().mean()).detach() return lam * -q_t.mean() + ((batch.actions - action) ** 2).mean()
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/td3_plus_bc_impl.py
td3_plus_bc_impl.py
from abc import ABCMeta, abstractmethod from typing import Optional, Sequence, Union import numpy as np import torch from torch.optim import Optimizer from ...gpu import Device from ...models.builders import ( create_deterministic_policy, create_deterministic_regressor, create_discrete_imitator, create_probablistic_regressor, create_squashed_normal_policy, ) from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.torch import ( DeterministicRegressor, DiscreteImitator, Imitator, Policy, ProbablisticRegressor, ) from ...preprocessing import ActionScaler, Scaler from ...torch_utility import hard_sync, torch_api, train_api from .base import TorchImplBase class BCBaseImpl(TorchImplBase, metaclass=ABCMeta): _learning_rate: float _optim_factory: OptimizerFactory _encoder_factory: EncoderFactory _use_gpu: Optional[Device] _imitator: Optional[Imitator] _optim: Optional[Optimizer] def __init__( self, observation_shape: Sequence[int], action_size: int, learning_rate: float, optim_factory: OptimizerFactory, encoder_factory: EncoderFactory, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, scaler=scaler, action_scaler=action_scaler, reward_scaler=None, ) self._learning_rate = learning_rate self._optim_factory = optim_factory self._encoder_factory = encoder_factory self._use_gpu = use_gpu # initialized in build self._imitator = None self._optim = None def build(self) -> None: self._build_network() if self._use_gpu: self.to_gpu(self._use_gpu) else: self.to_cpu() self._build_optim() @abstractmethod def _build_network(self) -> None: pass def _build_optim(self) -> None: assert self._imitator is not None self._optim = self._optim_factory.create( self._imitator.parameters(), lr=self._learning_rate ) @train_api @torch_api(scaler_targets=["obs_t"], action_scaler_targets=["act_t"]) def update_imitator( self, obs_t: torch.Tensor, act_t: torch.Tensor ) -> np.ndarray: assert self._optim is not None self._optim.zero_grad() loss = self.compute_loss(obs_t, act_t) loss.backward() self._optim.step() return loss.cpu().detach().numpy() def compute_loss( self, obs_t: torch.Tensor, act_t: torch.Tensor ) -> torch.Tensor: assert self._imitator is not None return self._imitator.compute_error(obs_t, act_t) def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: assert self._imitator is not None return self._imitator(x) def predict_value( self, x: np.ndarray, action: np.ndarray, with_std: bool ) -> np.ndarray: raise NotImplementedError("BC does not support value estimation") class BCImpl(BCBaseImpl): _policy_type: str _imitator: Optional[Union[DeterministicRegressor, ProbablisticRegressor]] def __init__( self, observation_shape: Sequence[int], action_size: int, learning_rate: float, optim_factory: OptimizerFactory, encoder_factory: EncoderFactory, policy_type: str, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, learning_rate=learning_rate, optim_factory=optim_factory, encoder_factory=encoder_factory, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, ) self._policy_type = policy_type def _build_network(self) -> None: if self._policy_type == "deterministic": self._imitator = create_deterministic_regressor( self._observation_shape, self._action_size, self._encoder_factory, ) elif self._policy_type == "stochastic": self._imitator = create_probablistic_regressor( self._observation_shape, self._action_size, self._encoder_factory, min_logstd=-4.0, max_logstd=15.0, ) else: raise ValueError("invalid policy_type: {self._policy_type}") @property def policy(self) -> Policy: assert self._imitator policy: Policy if self._policy_type == "deterministic": policy = create_deterministic_policy( self._observation_shape, self._action_size, self._encoder_factory, ) elif self._policy_type == "stochastic": policy = create_squashed_normal_policy( self._observation_shape, self._action_size, self._encoder_factory, min_logstd=-20.0, max_logstd=2.0, ) else: raise ValueError(f"invalid policy_type: {self._policy_type}") # copy parameters hard_sync(policy, self._imitator) return policy @property def policy_optim(self) -> Optimizer: assert self._optim return self._optim class DiscreteBCImpl(BCBaseImpl): _beta: float _imitator: Optional[DiscreteImitator] def __init__( self, observation_shape: Sequence[int], action_size: int, learning_rate: float, optim_factory: OptimizerFactory, encoder_factory: EncoderFactory, beta: float, use_gpu: Optional[Device], scaler: Optional[Scaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, learning_rate=learning_rate, optim_factory=optim_factory, encoder_factory=encoder_factory, use_gpu=use_gpu, scaler=scaler, action_scaler=None, ) self._beta = beta def _build_network(self) -> None: self._imitator = create_discrete_imitator( self._observation_shape, self._action_size, self._beta, self._encoder_factory, ) def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: assert self._imitator is not None return self._imitator(x).argmax(dim=1) def compute_loss( self, obs_t: torch.Tensor, act_t: torch.Tensor ) -> torch.Tensor: assert self._imitator is not None return self._imitator.compute_error(obs_t, act_t.long())
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/bc_impl.py
bc_impl.py
import math from typing import Optional, Sequence import numpy as np import torch import torch.nn.functional as F from torch.optim import Optimizer from ...gpu import Device from ...models.builders import create_parameter from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.q_functions import QFunctionFactory from ...models.torch import Parameter from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import TorchMiniBatch, torch_api, train_api from .dqn_impl import DoubleDQNImpl from .sac_impl import SACImpl class CQLImpl(SACImpl): _alpha_learning_rate: float _alpha_optim_factory: OptimizerFactory _initial_alpha: float _alpha_threshold: float _conservative_weight: float _n_action_samples: int _soft_q_backup: bool _log_alpha: Optional[Parameter] _alpha_optim: Optional[Optimizer] def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, temp_learning_rate: float, alpha_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, temp_optim_factory: OptimizerFactory, alpha_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, tau: float, n_critics: int, target_reduction_type: str, initial_temperature: float, initial_alpha: float, alpha_threshold: float, conservative_weight: float, n_action_samples: int, soft_q_backup: bool, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, temp_learning_rate=temp_learning_rate, actor_optim_factory=actor_optim_factory, critic_optim_factory=critic_optim_factory, temp_optim_factory=temp_optim_factory, actor_encoder_factory=actor_encoder_factory, critic_encoder_factory=critic_encoder_factory, q_func_factory=q_func_factory, gamma=gamma, tau=tau, n_critics=n_critics, target_reduction_type=target_reduction_type, initial_temperature=initial_temperature, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._alpha_learning_rate = alpha_learning_rate self._alpha_optim_factory = alpha_optim_factory self._initial_alpha = initial_alpha self._alpha_threshold = alpha_threshold self._conservative_weight = conservative_weight self._n_action_samples = n_action_samples self._soft_q_backup = soft_q_backup # initialized in build self._log_alpha = None self._alpha_optim = None def build(self) -> None: self._build_alpha() super().build() self._build_alpha_optim() def _build_alpha(self) -> None: initial_val = math.log(self._initial_alpha) self._log_alpha = create_parameter((1, 1), initial_val) def _build_alpha_optim(self) -> None: assert self._log_alpha is not None self._alpha_optim = self._alpha_optim_factory.create( self._log_alpha.parameters(), lr=self._alpha_learning_rate ) def compute_critic_loss( self, batch: TorchMiniBatch, q_tpn: torch.Tensor ) -> torch.Tensor: loss = super().compute_critic_loss(batch, q_tpn) conservative_loss = self._compute_conservative_loss( batch.observations, batch.actions, batch.next_observations ) return loss + conservative_loss @train_api @torch_api() def update_alpha(self, batch: TorchMiniBatch) -> np.ndarray: assert self._alpha_optim is not None assert self._q_func is not None assert self._log_alpha is not None # Q function should be inference mode for stability self._q_func.eval() self._alpha_optim.zero_grad() # the original implementation does scale the loss value loss = -self._compute_conservative_loss( batch.observations, batch.actions, batch.next_observations ) loss.backward() self._alpha_optim.step() cur_alpha = self._log_alpha().exp().cpu().detach().numpy()[0][0] return loss.cpu().detach().numpy(), cur_alpha def _compute_policy_is_values( self, policy_obs: torch.Tensor, value_obs: torch.Tensor ) -> torch.Tensor: assert self._policy is not None assert self._q_func is not None with torch.no_grad(): policy_actions, n_log_probs = self._policy.sample_n_with_log_prob( policy_obs, self._n_action_samples ) obs_shape = value_obs.shape repeated_obs = value_obs.expand(self._n_action_samples, *obs_shape) # (n, batch, observation) -> (batch, n, observation) transposed_obs = repeated_obs.transpose(0, 1) # (batch, n, observation) -> (batch * n, observation) flat_obs = transposed_obs.reshape(-1, *obs_shape[1:]) # (batch, n, action) -> (batch * n, action) flat_policy_acts = policy_actions.reshape(-1, self.action_size) # estimate action-values for policy actions policy_values = self._q_func(flat_obs, flat_policy_acts, "none") policy_values = policy_values.view( self._n_critics, obs_shape[0], self._n_action_samples ) log_probs = n_log_probs.view(1, -1, self._n_action_samples) # importance sampling return policy_values - log_probs def _compute_random_is_values(self, obs: torch.Tensor) -> torch.Tensor: assert self._q_func is not None repeated_obs = obs.expand(self._n_action_samples, *obs.shape) # (n, batch, observation) -> (batch, n, observation) transposed_obs = repeated_obs.transpose(0, 1) # (batch, n, observation) -> (batch * n, observation) flat_obs = transposed_obs.reshape(-1, *obs.shape[1:]) # estimate action-values for actions from uniform distribution # uniform distribution between [-1.0, 1.0] flat_shape = (obs.shape[0] * self._n_action_samples, self._action_size) zero_tensor = torch.zeros(flat_shape, device=self._device) random_actions = zero_tensor.uniform_(-1.0, 1.0) random_values = self._q_func(flat_obs, random_actions, "none") random_values = random_values.view( self._n_critics, obs.shape[0], self._n_action_samples ) random_log_probs = math.log(0.5 ** self._action_size) # importance sampling return random_values - random_log_probs def _compute_conservative_loss( self, obs_t: torch.Tensor, act_t: torch.Tensor, obs_tp1: torch.Tensor ) -> torch.Tensor: assert self._policy is not None assert self._q_func is not None assert self._log_alpha is not None policy_values_t = self._compute_policy_is_values(obs_t, obs_t) policy_values_tp1 = self._compute_policy_is_values(obs_tp1, obs_t) random_values = self._compute_random_is_values(obs_t) # compute logsumexp # (n critics, batch, 3 * n samples) -> (n critics, batch, 1) target_values = torch.cat( [policy_values_t, policy_values_tp1, random_values], dim=2 ) logsumexp = torch.logsumexp(target_values, dim=2, keepdim=True) # estimate action-values for data actions data_values = self._q_func(obs_t, act_t, "none") loss = logsumexp.mean(dim=0).mean() - data_values.mean(dim=0).mean() scaled_loss = self._conservative_weight * loss # clip for stability clipped_alpha = self._log_alpha().exp().clamp(0, 1e6)[0][0] return clipped_alpha * (scaled_loss - self._alpha_threshold) def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: if self._soft_q_backup: target_value = super().compute_target(batch) else: target_value = self._compute_deterministic_target(batch) return target_value def _compute_deterministic_target( self, batch: TorchMiniBatch ) -> torch.Tensor: assert self._policy assert self._targ_q_func with torch.no_grad(): action = self._policy.best_action(batch.next_observations) return self._targ_q_func.compute_target( batch.next_observations, action, reduction=self._target_reduction_type, ) class DiscreteCQLImpl(DoubleDQNImpl): _alpha: float def __init__( self, observation_shape: Sequence[int], action_size: int, learning_rate: float, optim_factory: OptimizerFactory, encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, n_critics: int, target_reduction_type: str, alpha: float, use_gpu: Optional[Device], scaler: Optional[Scaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, learning_rate=learning_rate, optim_factory=optim_factory, encoder_factory=encoder_factory, q_func_factory=q_func_factory, gamma=gamma, n_critics=n_critics, target_reduction_type=target_reduction_type, use_gpu=use_gpu, scaler=scaler, reward_scaler=reward_scaler, ) self._alpha = alpha def compute_loss( self, batch: TorchMiniBatch, q_tpn: torch.Tensor, ) -> torch.Tensor: loss = super().compute_loss(batch, q_tpn) conservative_loss = self._compute_conservative_loss( batch.observations, batch.actions.long() ) return loss + self._alpha * conservative_loss def _compute_conservative_loss( self, obs_t: torch.Tensor, act_t: torch.Tensor ) -> torch.Tensor: assert self._q_func is not None # compute logsumexp policy_values = self._q_func(obs_t) logsumexp = torch.logsumexp(policy_values, dim=1, keepdim=True) # estimate action-values under data distribution one_hot = F.one_hot(act_t.view(-1), num_classes=self.action_size) data_values = (self._q_func(obs_t) * one_hot).sum(dim=1, keepdim=True) return (logsumexp - data_values).mean()
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/cql_impl.py
cql_impl.py
from abc import ABCMeta, abstractmethod from typing import Any, Optional, Sequence import numpy as np import torch from torch.optim import Optimizer from ...gpu import Device from ...models.builders import ( create_categorical_policy, create_squashed_normal_policy, create_value_function, ) from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.torch import ( CategoricalPolicy, Policy, SquashedNormalPolicy, ValueFunction, squash_action, ) from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import eval_api, torch_api, train_api from .base import TorchImplBase class AWRBaseImpl(TorchImplBase, metaclass=ABCMeta): _actor_learning_rate: float _critic_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _use_gpu: Optional[Device] _v_func: Optional[ValueFunction] _policy: Optional[Policy] _critic_optim: Optional[Optimizer] _actor_optim: Optional[Optimizer] def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._actor_encoder_factory = actor_encoder_factory self._critic_encoder_factory = critic_encoder_factory self._use_gpu = use_gpu # initialized in build self._v_func = None self._policy = None self._critic_optim = None self._actor_optim = None def build(self) -> None: # setup torch models self._build_critic() self._build_actor() if self._use_gpu: self.to_gpu(self._use_gpu) else: self.to_cpu() # setup optimizer after the parameters move to GPU self._build_critic_optim() self._build_actor_optim() def _build_critic(self) -> None: self._v_func = create_value_function( self._observation_shape, self._critic_encoder_factory ) def _build_critic_optim(self) -> None: assert self._v_func is not None self._critic_optim = self._critic_optim_factory.create( self._v_func.parameters(), lr=self._critic_learning_rate ) @abstractmethod def _build_actor(self) -> None: pass def _build_actor_optim(self) -> None: assert self._policy is not None self._actor_optim = self._actor_optim_factory.create( self._policy.parameters(), lr=self._actor_learning_rate ) @train_api @torch_api(scaler_targets=["observation"]) def update_critic( self, observation: torch.Tensor, value: torch.Tensor ) -> np.ndarray: assert self._critic_optim is not None self._critic_optim.zero_grad() loss = self.compute_critic_loss(observation, value) loss.backward() self._critic_optim.step() return loss.cpu().detach().numpy() def compute_critic_loss( self, observation: torch.Tensor, value: torch.Tensor ) -> torch.Tensor: assert self._v_func is not None return self._v_func.compute_error(observation, value) @train_api @torch_api(scaler_targets=["observation"], action_scaler_targets=["action"]) def update_actor( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> np.ndarray: assert self._actor_optim is not None self._actor_optim.zero_grad() loss = self.compute_actor_loss(observation, action, weight) loss.backward() self._actor_optim.step() return loss.cpu().detach().numpy() def compute_actor_loss( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> torch.Tensor: return self._compute_actor_loss(observation, action, weight) @abstractmethod def _compute_actor_loss( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> torch.Tensor: pass def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: assert self._policy is not None return self._policy.best_action(x) def _sample_action(self, x: torch.Tensor) -> torch.Tensor: assert self._policy is not None return self._policy.sample(x) @eval_api @torch_api(scaler_targets=["x"]) def predict_value( self, x: torch.Tensor, *args: Any, **kwargs: Any ) -> np.ndarray: assert self._v_func is not None with torch.no_grad(): return self._v_func(x).view(-1).cpu().detach().numpy() class AWRImpl(AWRBaseImpl): _policy: Optional[SquashedNormalPolicy] def _build_actor(self) -> None: self._policy = create_squashed_normal_policy( self._observation_shape, self._action_size, self._actor_encoder_factory, ) def _compute_actor_loss( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> torch.Tensor: assert self._policy is not None dist = self._policy.dist(observation) # unnormalize action via inverse tanh function unnormalized_action = torch.atanh(action.clamp(-0.999999, 0.999999)) # compute log probability _, log_probs = squash_action(dist, unnormalized_action) return -(weight * log_probs).mean() class DiscreteAWRImpl(AWRBaseImpl): _policy: Optional[CategoricalPolicy] def _build_actor(self) -> None: self._policy = create_categorical_policy( self._observation_shape, self._action_size, self._actor_encoder_factory, ) def _compute_actor_loss( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> torch.Tensor: assert self._policy is not None dist = self._policy.dist(observation) log_probs = dist.log_prob(action).view(observation.shape[0], -1) return -(weight * log_probs.sum(dim=1, keepdim=True)).mean()
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/awr_impl.py
awr_impl.py
from typing import Optional, Sequence import torch import torch.nn.functional as F from ...gpu import Device from ...models.builders import create_squashed_normal_policy from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.q_functions import QFunctionFactory from ...models.torch import SquashedNormalPolicy, squash_action from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import TorchMiniBatch, hard_sync from .ddpg_impl import DDPGBaseImpl class CRRImpl(DDPGBaseImpl): _beta: float _n_action_samples: int _advantage_type: str _weight_type: str _max_weight: float _policy: Optional[SquashedNormalPolicy] _targ_policy: Optional[SquashedNormalPolicy] def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, beta: float, n_action_samples: int, advantage_type: str, weight_type: str, max_weight: float, n_critics: int, tau: float, target_reduction_type: str, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, actor_optim_factory=actor_optim_factory, critic_optim_factory=critic_optim_factory, actor_encoder_factory=actor_encoder_factory, critic_encoder_factory=critic_encoder_factory, q_func_factory=q_func_factory, gamma=gamma, tau=tau, n_critics=n_critics, target_reduction_type=target_reduction_type, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._beta = beta self._n_action_samples = n_action_samples self._advantage_type = advantage_type self._weight_type = weight_type self._max_weight = max_weight def _build_actor(self) -> None: self._policy = create_squashed_normal_policy( self._observation_shape, self._action_size, self._actor_encoder_factory, ) def compute_actor_loss(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._policy is not None dist = self._policy.dist(batch.observations) # unnormalize action via inverse tanh function clipped_actions = batch.actions.clamp(-0.999999, 0.999999) unnormalized_act_t = torch.atanh(clipped_actions) # compute log probability _, log_probs = squash_action(dist, unnormalized_act_t) weight = self._compute_weight(batch.observations, batch.actions) return -(log_probs * weight).mean() def _compute_weight( self, obs_t: torch.Tensor, act_t: torch.Tensor ) -> torch.Tensor: advantages = self._compute_advantage(obs_t, act_t) if self._weight_type == "binary": return (advantages > 0.0).float() elif self._weight_type == "exp": return (advantages / self._beta).exp().clamp(0.0, self._max_weight) raise ValueError(f"invalid weight type: {self._weight_type}.") def _compute_advantage( self, obs_t: torch.Tensor, act_t: torch.Tensor ) -> torch.Tensor: assert self._q_func is not None assert self._policy is not None with torch.no_grad(): batch_size = obs_t.shape[0] # (batch_size, N, action) policy_actions = self._policy.sample_n( obs_t, self._n_action_samples ) flat_actions = policy_actions.reshape(-1, self._action_size) # repeat observation # (batch_size, obs_size) -> (batch_size, 1, obs_size) reshaped_obs_t = obs_t.view(batch_size, 1, *obs_t.shape[1:]) # (batch_sie, 1, obs_size) -> (batch_size, N, obs_size) repeated_obs_t = reshaped_obs_t.expand( batch_size, self._n_action_samples, *obs_t.shape[1:] ) # (batch_size, N, obs_size) -> (batch_size * N, obs_size) flat_obs_t = repeated_obs_t.reshape(-1, *obs_t.shape[1:]) flat_values = self._q_func(flat_obs_t, flat_actions) reshaped_values = flat_values.view(obs_t.shape[0], -1, 1) if self._advantage_type == "mean": values = reshaped_values.mean(dim=1) elif self._advantage_type == "max": values = reshaped_values.max(dim=1).values else: raise ValueError( f"invalid advantage type: {self._advantage_type}." ) return self._q_func(obs_t, act_t) - values def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._targ_q_func is not None assert self._targ_policy is not None with torch.no_grad(): action = self._targ_policy.sample(batch.next_observations) return self._targ_q_func.compute_target( batch.next_observations, action.clamp(-1.0, 1.0), reduction=self._target_reduction_type, ) def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: assert self._policy is not None assert self._q_func is not None # compute CWP actions = self._policy.onnx_safe_sample_n(x, self._n_action_samples) # (batch_size, N, action_size) -> (batch_size * N, action_size) flat_actions = actions.reshape(-1, self._action_size) # repeat observation # (batch_size, obs_size) -> (batch_size, 1, obs_size) reshaped_obs_t = x.view(x.shape[0], 1, *x.shape[1:]) # (batch_size, 1, obs_size) -> (batch_size, N, obs_size) repeated_obs_t = reshaped_obs_t.expand( x.shape[0], self._n_action_samples, *x.shape[1:] ) # (batch_size, N, obs_size) -> (batch_size * N, obs_size) flat_obs_t = repeated_obs_t.reshape(-1, *x.shape[1:]) # (batch_size * N, 1) flat_values = self._q_func(flat_obs_t, flat_actions) # (batch_size * N, 1) -> (batch_size, N) reshaped_values = flat_values.view(x.shape[0], -1) # re-sampling probs = F.softmax(reshaped_values, dim=1) indices = torch.multinomial(probs, 1, replacement=True) return actions[torch.arange(x.shape[0]), indices.view(-1)] def sync_critic_target(self) -> None: assert self._targ_q_func is not None assert self._q_func is not None hard_sync(self._targ_q_func, self._q_func) def sync_actor_target(self) -> None: assert self._targ_policy is not None assert self._policy is not None hard_sync(self._targ_policy, self._policy)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/crr_impl.py
crr_impl.py
from typing import Optional, Sequence import torch from ...gpu import Device from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.q_functions import QFunctionFactory from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import TorchMiniBatch from .ddpg_impl import DDPGImpl class TD3Impl(DDPGImpl): _target_smoothing_sigma: float _target_smoothing_clip: float def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, tau: float, n_critics: int, target_reduction_type: str, target_smoothing_sigma: float, target_smoothing_clip: float, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, actor_optim_factory=actor_optim_factory, critic_optim_factory=critic_optim_factory, actor_encoder_factory=actor_encoder_factory, critic_encoder_factory=critic_encoder_factory, q_func_factory=q_func_factory, gamma=gamma, tau=tau, n_critics=n_critics, target_reduction_type=target_reduction_type, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._target_smoothing_sigma = target_smoothing_sigma self._target_smoothing_clip = target_smoothing_clip def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._targ_policy is not None assert self._targ_q_func is not None with torch.no_grad(): action = self._targ_policy(batch.next_observations) # smoothing target noise = torch.randn(action.shape, device=batch.device) scaled_noise = self._target_smoothing_sigma * noise clipped_noise = scaled_noise.clamp( -self._target_smoothing_clip, self._target_smoothing_clip ) smoothed_action = action + clipped_noise clipped_action = smoothed_action.clamp(-1.0, 1.0) return self._targ_q_func.compute_target( batch.next_observations, clipped_action, reduction=self._target_reduction_type, )
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/td3_impl.py
td3_impl.py
from typing import Optional, Tuple, Union import numpy as np import torch from typing_extensions import Protocol from ...models.torch import ( EnsembleContinuousQFunction, EnsembleDiscreteQFunction, ) from ...torch_utility import eval_api, torch_api class _DiscreteQFunctionProtocol(Protocol): _q_func: Optional[EnsembleDiscreteQFunction] class _ContinuousQFunctionProtocol(Protocol): _q_func: Optional[EnsembleContinuousQFunction] class DiscreteQFunctionMixin: @eval_api @torch_api(scaler_targets=["x"]) def predict_value( self: _DiscreteQFunctionProtocol, x: torch.Tensor, action: torch.Tensor, with_std: bool, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: assert x.ndim > 1, "Input must have batch dimension." assert x.shape[0] == action.shape[0] assert self._q_func is not None action = action.view(-1).long().cpu().detach().numpy() with torch.no_grad(): values = self._q_func(x, reduction="none").cpu().detach().numpy() values = np.transpose(values, [1, 0, 2]) mean_values = values.mean(axis=1) stds = np.std(values, axis=1) ret_values = [] ret_stds = [] for v, std, a in zip(mean_values, stds, action): ret_values.append(v[a]) ret_stds.append(std[a]) if with_std: return np.array(ret_values), np.array(ret_stds) return np.array(ret_values) class ContinuousQFunctionMixin: @eval_api @torch_api(scaler_targets=["x"], action_scaler_targets=["action"]) def predict_value( self: _ContinuousQFunctionProtocol, x: torch.Tensor, action: torch.Tensor, with_std: bool, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: assert x.ndim > 1, "Input must have batch dimension." assert x.shape[0] == action.shape[0] assert self._q_func is not None with torch.no_grad(): values = self._q_func(x, action, "none").cpu().detach().numpy() values = np.transpose(values, [1, 0, 2]) mean_values = values.mean(axis=1).reshape(-1) stds = np.std(values, axis=1).reshape(-1) if with_std: return mean_values, stds return mean_values
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/utility.py
utility.py
import copy import math from typing import Optional, Sequence, Tuple import numpy as np import torch from torch.optim import Optimizer from ...gpu import Device from ...models.builders import ( create_categorical_policy, create_discrete_q_function, create_parameter, create_squashed_normal_policy, ) from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.q_functions import QFunctionFactory from ...models.torch import ( CategoricalPolicy, EnsembleDiscreteQFunction, EnsembleQFunction, Parameter, Policy, SquashedNormalPolicy, ) from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import TorchMiniBatch, hard_sync, torch_api, train_api from .base import TorchImplBase from .ddpg_impl import DDPGBaseImpl from .utility import DiscreteQFunctionMixin class SACImpl(DDPGBaseImpl): _policy: Optional[SquashedNormalPolicy] _targ_policy: Optional[SquashedNormalPolicy] _temp_learning_rate: float _temp_optim_factory: OptimizerFactory _initial_temperature: float _log_temp: Optional[Parameter] _temp_optim: Optional[Optimizer] def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, temp_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, temp_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, tau: float, n_critics: int, target_reduction_type: str, initial_temperature: float, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, actor_optim_factory=actor_optim_factory, critic_optim_factory=critic_optim_factory, actor_encoder_factory=actor_encoder_factory, critic_encoder_factory=critic_encoder_factory, q_func_factory=q_func_factory, gamma=gamma, tau=tau, n_critics=n_critics, target_reduction_type=target_reduction_type, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._temp_learning_rate = temp_learning_rate self._temp_optim_factory = temp_optim_factory self._initial_temperature = initial_temperature # initialized in build self._log_temp = None self._temp_optim = None def build(self) -> None: self._build_temperature() super().build() self._build_temperature_optim() def _build_actor(self) -> None: self._policy = create_squashed_normal_policy( self._observation_shape, self._action_size, self._actor_encoder_factory, ) def _build_temperature(self) -> None: initial_val = math.log(self._initial_temperature) self._log_temp = create_parameter((1, 1), initial_val) def _build_temperature_optim(self) -> None: assert self._log_temp is not None self._temp_optim = self._temp_optim_factory.create( self._log_temp.parameters(), lr=self._temp_learning_rate ) def compute_actor_loss(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._policy is not None assert self._log_temp is not None assert self._q_func is not None action, log_prob = self._policy.sample_with_log_prob(batch.observations) entropy = self._log_temp().exp() * log_prob q_t = self._q_func(batch.observations, action, "min") return (entropy - q_t).mean() @train_api @torch_api() def update_temp( self, batch: TorchMiniBatch ) -> Tuple[np.ndarray, np.ndarray]: assert self._temp_optim is not None assert self._policy is not None assert self._log_temp is not None self._temp_optim.zero_grad() with torch.no_grad(): _, log_prob = self._policy.sample_with_log_prob(batch.observations) targ_temp = log_prob - self._action_size loss = -(self._log_temp().exp() * targ_temp).mean() loss.backward() self._temp_optim.step() # current temperature value cur_temp = self._log_temp().exp().cpu().detach().numpy()[0][0] return loss.cpu().detach().numpy(), cur_temp def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._policy is not None assert self._log_temp is not None assert self._targ_q_func is not None with torch.no_grad(): action, log_prob = self._policy.sample_with_log_prob( batch.next_observations ) entropy = self._log_temp().exp() * log_prob target = self._targ_q_func.compute_target( batch.next_observations, action, reduction=self._target_reduction_type, ) if self._target_reduction_type == "none": return target - entropy.view(1, -1, 1) else: return target - entropy class DiscreteSACImpl(DiscreteQFunctionMixin, TorchImplBase): _actor_learning_rate: float _critic_learning_rate: float _temp_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _temp_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _gamma: float _n_critics: int _initial_temperature: float _use_gpu: Optional[Device] _policy: Optional[CategoricalPolicy] _q_func: Optional[EnsembleDiscreteQFunction] _targ_q_func: Optional[EnsembleDiscreteQFunction] _log_temp: Optional[Parameter] _actor_optim: Optional[Optimizer] _critic_optim: Optional[Optimizer] _temp_optim: Optional[Optimizer] def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, temp_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, temp_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, n_critics: int, initial_temperature: float, use_gpu: Optional[Device], scaler: Optional[Scaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, scaler=scaler, action_scaler=None, reward_scaler=reward_scaler, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._temp_learning_rate = temp_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._temp_optim_factory = temp_optim_factory self._actor_encoder_factory = actor_encoder_factory self._critic_encoder_factory = critic_encoder_factory self._q_func_factory = q_func_factory self._gamma = gamma self._n_critics = n_critics self._initial_temperature = initial_temperature self._use_gpu = use_gpu # initialized in build self._q_func = None self._policy = None self._targ_q_func = None self._log_temp = None self._actor_optim = None self._critic_optim = None self._temp_optim = None def build(self) -> None: self._build_critic() self._build_actor() self._build_temperature() # setup target networks self._targ_q_func = copy.deepcopy(self._q_func) if self._use_gpu: self.to_gpu(self._use_gpu) else: self.to_cpu() # setup optimizer after the parameters move to GPU self._build_critic_optim() self._build_actor_optim() self._build_temperature_optim() def _build_critic(self) -> None: self._q_func = create_discrete_q_function( self._observation_shape, self._action_size, self._critic_encoder_factory, self._q_func_factory, n_ensembles=self._n_critics, ) def _build_critic_optim(self) -> None: assert self._q_func is not None self._critic_optim = self._critic_optim_factory.create( self._q_func.parameters(), lr=self._critic_learning_rate ) def _build_actor(self) -> None: self._policy = create_categorical_policy( self._observation_shape, self._action_size, self._actor_encoder_factory, ) def _build_actor_optim(self) -> None: assert self._policy is not None self._actor_optim = self._actor_optim_factory.create( self._policy.parameters(), lr=self._actor_learning_rate ) def _build_temperature(self) -> None: initial_val = math.log(self._initial_temperature) self._log_temp = create_parameter((1, 1), initial_val) def _build_temperature_optim(self) -> None: assert self._log_temp is not None self._temp_optim = self._temp_optim_factory.create( self._log_temp.parameters(), lr=self._temp_learning_rate ) @train_api @torch_api() def update_critic(self, batch: TorchMiniBatch) -> np.ndarray: assert self._critic_optim is not None self._critic_optim.zero_grad() q_tpn = self.compute_target(batch) loss = self.compute_critic_loss(batch, q_tpn) loss.backward() self._critic_optim.step() return loss.cpu().detach().numpy() def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._policy is not None assert self._log_temp is not None assert self._targ_q_func is not None with torch.no_grad(): log_probs = self._policy.log_probs(batch.next_observations) probs = log_probs.exp() entropy = self._log_temp().exp() * log_probs target = self._targ_q_func.compute_target(batch.next_observations) keepdims = True if target.dim() == 3: entropy = entropy.unsqueeze(-1) probs = probs.unsqueeze(-1) keepdims = False return (probs * (target - entropy)).sum(dim=1, keepdim=keepdims) def compute_critic_loss( self, batch: TorchMiniBatch, q_tpn: torch.Tensor, ) -> torch.Tensor: assert self._q_func is not None return self._q_func.compute_error( obs_t=batch.observations, act_t=batch.actions.long(), rew_tp1=batch.next_rewards, q_tp1=q_tpn, ter_tp1=batch.terminals, gamma=self._gamma ** batch.n_steps, masks=batch.masks, ) @train_api @torch_api() def update_actor(self, batch: TorchMiniBatch) -> np.ndarray: assert self._q_func is not None assert self._actor_optim is not None # Q function should be inference mode for stability self._q_func.eval() self._actor_optim.zero_grad() loss = self.compute_actor_loss(batch) loss.backward() self._actor_optim.step() return loss.cpu().detach().numpy() def compute_actor_loss(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._q_func is not None assert self._policy is not None assert self._log_temp is not None with torch.no_grad(): q_t = self._q_func(batch.observations, reduction="min") log_probs = self._policy.log_probs(batch.observations) probs = log_probs.exp() entropy = self._log_temp().exp() * log_probs return (probs * (entropy - q_t)).sum(dim=1).mean() @train_api @torch_api() def update_temp(self, batch: TorchMiniBatch) -> np.ndarray: assert self._temp_optim is not None assert self._policy is not None assert self._log_temp is not None self._temp_optim.zero_grad() with torch.no_grad(): log_probs = self._policy.log_probs(batch.observations) probs = log_probs.exp() expct_log_probs = (probs * log_probs).sum(dim=1, keepdim=True) entropy_target = 0.98 * (-math.log(1 / self.action_size)) targ_temp = expct_log_probs + entropy_target loss = -(self._log_temp().exp() * targ_temp).mean() loss.backward() self._temp_optim.step() # current temperature value cur_temp = self._log_temp().exp().cpu().detach().numpy()[0][0] return loss.cpu().detach().numpy(), cur_temp def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: assert self._policy is not None return self._policy.best_action(x) def _sample_action(self, x: torch.Tensor) -> torch.Tensor: assert self._policy is not None return self._policy.sample(x) def update_target(self) -> None: assert self._q_func is not None assert self._targ_q_func is not None hard_sync(self._targ_q_func, self._q_func) @property def policy(self) -> Policy: assert self._policy return self._policy @property def policy_optim(self) -> Optimizer: assert self._actor_optim return self._actor_optim @property def q_function(self) -> EnsembleQFunction: assert self._q_func return self._q_func @property def q_function_optim(self) -> Optimizer: assert self._critic_optim return self._critic_optim
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/sac_impl.py
sac_impl.py
import math from typing import Optional, Sequence import numpy as np import torch from torch.optim import Optimizer from ...gpu import Device from ...models.builders import create_conditional_vae, create_parameter from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.q_functions import QFunctionFactory from ...models.torch import ( ConditionalVAE, Parameter, compute_max_with_n_actions_and_indices, ) from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import TorchMiniBatch, torch_api, train_api from .sac_impl import SACImpl def _gaussian_kernel( x: torch.Tensor, y: torch.Tensor, sigma: float ) -> torch.Tensor: # x: (batch, n, 1, action), y: (batch, 1, n, action) -> (batch, n, n) return (-((x - y) ** 2).sum(dim=3) / (2 * sigma)).exp() def _laplacian_kernel( x: torch.Tensor, y: torch.Tensor, sigma: float ) -> torch.Tensor: # x: (batch, n, 1, action), y: (batch, 1, n, action) -> (batch, n, n) return (-(x - y).abs().sum(dim=3) / (2 * sigma)).exp() class BEARImpl(SACImpl): _imitator_learning_rate: float _alpha_learning_rate: float _imitator_optim_factory: OptimizerFactory _alpha_optim_factory: OptimizerFactory _imitator_encoder_factory: EncoderFactory _initial_alpha: float _alpha_threshold: float _lam: float _n_action_samples: int _n_target_samples: int _n_mmd_action_samples: int _mmd_kernel: str _mmd_sigma: float _vae_kl_weight: float _imitator: Optional[ConditionalVAE] _imitator_optim: Optional[Optimizer] _log_alpha: Optional[Parameter] _alpha_optim: Optional[Optimizer] def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, imitator_learning_rate: float, temp_learning_rate: float, alpha_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, imitator_optim_factory: OptimizerFactory, temp_optim_factory: OptimizerFactory, alpha_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, imitator_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, tau: float, n_critics: int, initial_temperature: float, initial_alpha: float, alpha_threshold: float, lam: float, n_action_samples: int, n_target_samples: int, n_mmd_action_samples: int, mmd_kernel: str, mmd_sigma: float, vae_kl_weight: float, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, temp_learning_rate=temp_learning_rate, actor_optim_factory=actor_optim_factory, critic_optim_factory=critic_optim_factory, temp_optim_factory=temp_optim_factory, actor_encoder_factory=actor_encoder_factory, critic_encoder_factory=critic_encoder_factory, q_func_factory=q_func_factory, gamma=gamma, tau=tau, n_critics=n_critics, target_reduction_type="mix", initial_temperature=initial_temperature, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._imitator_learning_rate = imitator_learning_rate self._alpha_learning_rate = alpha_learning_rate self._imitator_optim_factory = imitator_optim_factory self._alpha_optim_factory = alpha_optim_factory self._imitator_encoder_factory = imitator_encoder_factory self._initial_alpha = initial_alpha self._alpha_threshold = alpha_threshold self._lam = lam self._n_action_samples = n_action_samples self._n_target_samples = n_target_samples self._n_mmd_action_samples = n_mmd_action_samples self._mmd_kernel = mmd_kernel self._mmd_sigma = mmd_sigma self._vae_kl_weight = vae_kl_weight # initialized in build self._imitator = None self._imitator_optim = None self._log_alpha = None self._alpha_optim = None def build(self) -> None: self._build_imitator() self._build_alpha() super().build() self._build_imitator_optim() self._build_alpha_optim() def _build_imitator(self) -> None: self._imitator = create_conditional_vae( observation_shape=self._observation_shape, action_size=self._action_size, latent_size=2 * self._action_size, beta=self._vae_kl_weight, min_logstd=-4.0, max_logstd=15.0, encoder_factory=self._imitator_encoder_factory, ) def _build_imitator_optim(self) -> None: assert self._imitator is not None self._imitator_optim = self._imitator_optim_factory.create( self._imitator.parameters(), lr=self._imitator_learning_rate ) def _build_alpha(self) -> None: initial_val = math.log(self._initial_alpha) self._log_alpha = create_parameter((1, 1), initial_val) def _build_alpha_optim(self) -> None: assert self._log_alpha is not None self._alpha_optim = self._alpha_optim_factory.create( self._log_alpha.parameters(), lr=self._alpha_learning_rate ) def compute_actor_loss(self, batch: TorchMiniBatch) -> torch.Tensor: loss = super().compute_actor_loss(batch) mmd_loss = self._compute_mmd_loss(batch.observations) return loss + mmd_loss @train_api @torch_api() def warmup_actor(self, batch: TorchMiniBatch) -> np.ndarray: assert self._actor_optim is not None self._actor_optim.zero_grad() loss = self._compute_mmd_loss(batch.observations) loss.backward() self._actor_optim.step() return loss.cpu().detach().numpy() def _compute_mmd_loss(self, obs_t: torch.Tensor) -> torch.Tensor: assert self._log_alpha mmd = self._compute_mmd(obs_t) alpha = self._log_alpha().exp() return (alpha * (mmd - self._alpha_threshold)).mean() @train_api @torch_api() def update_imitator(self, batch: TorchMiniBatch) -> np.ndarray: assert self._imitator_optim is not None self._imitator_optim.zero_grad() loss = self.compute_imitator_loss(batch) loss.backward() self._imitator_optim.step() return loss.cpu().detach().numpy() def compute_imitator_loss(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._imitator is not None return self._imitator.compute_error(batch.observations, batch.actions) @train_api @torch_api() def update_alpha(self, batch: TorchMiniBatch) -> np.ndarray: assert self._alpha_optim is not None assert self._log_alpha is not None loss = -self._compute_mmd_loss(batch.observations) self._alpha_optim.zero_grad() loss.backward() self._alpha_optim.step() # clip for stability self._log_alpha.data.clamp_(-5.0, 10.0) cur_alpha = self._log_alpha().exp().cpu().detach().numpy()[0][0] return loss.cpu().detach().numpy(), cur_alpha def _compute_mmd(self, x: torch.Tensor) -> torch.Tensor: assert self._imitator is not None assert self._policy is not None with torch.no_grad(): behavior_actions = self._imitator.sample_n_without_squash( x, self._n_mmd_action_samples ) policy_actions = self._policy.sample_n_without_squash( x, self._n_mmd_action_samples ) if self._mmd_kernel == "gaussian": kernel = _gaussian_kernel elif self._mmd_kernel == "laplacian": kernel = _laplacian_kernel else: raise ValueError(f"Invalid kernel type: {self._mmd_kernel}") # (batch, n, action) -> (batch, n, 1, action) behavior_actions = behavior_actions.reshape( x.shape[0], -1, 1, self.action_size ) policy_actions = policy_actions.reshape( x.shape[0], -1, 1, self.action_size ) # (batch, n, action) -> (batch, 1, n, action) behavior_actions_T = behavior_actions.reshape( x.shape[0], 1, -1, self.action_size ) policy_actions_T = policy_actions.reshape( x.shape[0], 1, -1, self.action_size ) # 1 / N^2 \sum k(a_\pi, a_\pi) inter_policy = kernel(policy_actions, policy_actions_T, self._mmd_sigma) mmd = inter_policy.mean(dim=[1, 2]) # 1 / N^2 \sum k(a_\beta, a_\beta) inter_data = kernel( behavior_actions, behavior_actions_T, self._mmd_sigma ) mmd += inter_data.mean(dim=[1, 2]) # 2 / N^2 \sum k(a_\pi, a_\beta) distance = kernel(policy_actions, behavior_actions_T, self._mmd_sigma) mmd -= 2 * distance.mean(dim=[1, 2]) return (mmd + 1e-6).sqrt().view(-1, 1) def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._policy is not None assert self._targ_q_func is not None assert self._log_temp is not None with torch.no_grad(): # BCQ-like target computation actions, log_probs = self._policy.sample_n_with_log_prob( batch.next_observations, self._n_target_samples, ) values, indices = compute_max_with_n_actions_and_indices( batch.next_observations, actions, self._targ_q_func, self._lam ) # (batch, n, 1) -> (batch, 1) batch_size = batch.observations.shape[0] max_log_prob = log_probs[torch.arange(batch_size), indices] return values - self._log_temp().exp() * max_log_prob def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: assert self._policy is not None assert self._q_func is not None with torch.no_grad(): # (batch, n, action) actions = self._policy.onnx_safe_sample_n(x, self._n_action_samples) # (batch, n, action) -> (batch * n, action) flat_actions = actions.reshape(-1, self._action_size) # (batch, observation) -> (batch, 1, observation) expanded_x = x.view(x.shape[0], 1, *x.shape[1:]) # (batch, 1, observation) -> (batch, n, observation) repeated_x = expanded_x.expand( x.shape[0], self._n_action_samples, *x.shape[1:] ) # (batch, n, observation) -> (batch * n, observation) flat_x = repeated_x.reshape(-1, *x.shape[1:]) # (batch * n, 1) flat_values = self._q_func(flat_x, flat_actions, "none")[0] # (batch, n) values = flat_values.view(x.shape[0], self._n_action_samples) # (batch, n) -> (batch,) max_indices = torch.argmax(values, dim=1) return actions[torch.arange(x.shape[0]), max_indices]
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/bear_impl.py
bear_impl.py
import copy from typing import Optional, Sequence import numpy as np import torch from torch.optim import Optimizer from ...gpu import Device from ...models.builders import ( create_conditional_vae, create_deterministic_policy, create_deterministic_residual_policy, ) from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.q_functions import QFunctionFactory from ...models.torch import ( ConditionalVAE, DeterministicPolicy, DeterministicResidualPolicy, ) from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import TorchMiniBatch, soft_sync, torch_api, train_api from .ddpg_impl import DDPGBaseImpl class PLASImpl(DDPGBaseImpl): _imitator_learning_rate: float _imitator_optim_factory: OptimizerFactory _imitator_encoder_factory: EncoderFactory _n_critics: int _lam: float _beta: float _policy: Optional[DeterministicPolicy] _targ_policy: Optional[DeterministicPolicy] _imitator: Optional[ConditionalVAE] _imitator_optim: Optional[Optimizer] def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, imitator_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, imitator_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, imitator_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, tau: float, n_critics: int, target_reduction_type: str, lam: float, beta: float, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, actor_optim_factory=actor_optim_factory, critic_optim_factory=critic_optim_factory, actor_encoder_factory=actor_encoder_factory, critic_encoder_factory=critic_encoder_factory, q_func_factory=q_func_factory, gamma=gamma, tau=tau, n_critics=n_critics, target_reduction_type=target_reduction_type, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._imitator_learning_rate = imitator_learning_rate self._imitator_optim_factory = imitator_optim_factory self._imitator_encoder_factory = imitator_encoder_factory self._n_critics = n_critics self._lam = lam self._beta = beta # initialized in build self._imitator = None self._imitator_optim = None def build(self) -> None: self._build_imitator() super().build() # setup optimizer after the parameters move to GPU self._build_imitator_optim() def _build_actor(self) -> None: self._policy = create_deterministic_policy( observation_shape=self._observation_shape, action_size=2 * self._action_size, encoder_factory=self._actor_encoder_factory, ) def _build_imitator(self) -> None: self._imitator = create_conditional_vae( observation_shape=self._observation_shape, action_size=self._action_size, latent_size=2 * self._action_size, beta=self._beta, min_logstd=-4.0, max_logstd=15.0, encoder_factory=self._imitator_encoder_factory, ) def _build_imitator_optim(self) -> None: assert self._imitator is not None self._imitator_optim = self._imitator_optim_factory.create( params=self._imitator.parameters(), lr=self._imitator_learning_rate ) @train_api @torch_api() def update_imitator(self, batch: TorchMiniBatch) -> np.ndarray: assert self._imitator is not None assert self._imitator_optim is not None self._imitator_optim.zero_grad() loss = self._imitator.compute_error(batch.observations, batch.actions) loss.backward() self._imitator_optim.step() return loss.cpu().detach().numpy() def compute_actor_loss(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._imitator is not None assert self._policy is not None assert self._q_func is not None latent_actions = 2.0 * self._policy(batch.observations) actions = self._imitator.decode(batch.observations, latent_actions) return -self._q_func(batch.observations, actions, "none")[0].mean() def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: assert self._imitator is not None assert self._policy is not None return self._imitator.decode(x, 2.0 * self._policy(x)) def _sample_action(self, x: torch.Tensor) -> torch.Tensor: return self._predict_best_action(x) def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._imitator is not None assert self._targ_policy is not None assert self._targ_q_func is not None with torch.no_grad(): latent_actions = 2.0 * self._targ_policy(batch.next_observations) actions = self._imitator.decode( batch.next_observations, latent_actions ) return self._targ_q_func.compute_target( batch.next_observations, actions, self._target_reduction_type, self._lam, ) class PLASWithPerturbationImpl(PLASImpl): _action_flexibility: float _perturbation: Optional[DeterministicResidualPolicy] _targ_perturbation: Optional[DeterministicResidualPolicy] def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, imitator_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, imitator_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, imitator_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, tau: float, n_critics: int, target_reduction_type: str, lam: float, beta: float, action_flexibility: float, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, imitator_learning_rate=imitator_learning_rate, actor_optim_factory=actor_optim_factory, critic_optim_factory=critic_optim_factory, imitator_optim_factory=imitator_optim_factory, actor_encoder_factory=actor_encoder_factory, critic_encoder_factory=critic_encoder_factory, imitator_encoder_factory=imitator_encoder_factory, q_func_factory=q_func_factory, gamma=gamma, tau=tau, n_critics=n_critics, target_reduction_type=target_reduction_type, lam=lam, beta=beta, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._action_flexibility = action_flexibility # initialized in build self._perturbation = None self._targ_perturbation = None def build(self) -> None: super().build() self._targ_perturbation = copy.deepcopy(self._perturbation) def _build_actor(self) -> None: super()._build_actor() self._perturbation = create_deterministic_residual_policy( observation_shape=self._observation_shape, action_size=self._action_size, scale=self._action_flexibility, encoder_factory=self._actor_encoder_factory, ) def _build_actor_optim(self) -> None: assert self._policy is not None assert self._perturbation is not None parameters = list(self._policy.parameters()) parameters += list(self._perturbation.parameters()) self._actor_optim = self._actor_optim_factory.create( params=parameters, lr=self._actor_learning_rate ) def compute_actor_loss(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._imitator is not None assert self._policy is not None assert self._perturbation is not None assert self._q_func is not None latent_actions = 2.0 * self._policy(batch.observations) actions = self._imitator.decode(batch.observations, latent_actions) residual_actions = self._perturbation(batch.observations, actions) q_value = self._q_func(batch.observations, residual_actions, "none") return -q_value[0].mean() def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: assert self._imitator is not None assert self._policy is not None assert self._perturbation is not None action = self._imitator.decode(x, 2.0 * self._policy(x)) return self._perturbation(x, action) def _sample_action(self, x: torch.Tensor) -> torch.Tensor: return self._predict_best_action(x) def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._imitator is not None assert self._targ_policy is not None assert self._targ_perturbation is not None assert self._targ_q_func is not None with torch.no_grad(): latent_actions = 2.0 * self._targ_policy(batch.next_observations) actions = self._imitator.decode( batch.next_observations, latent_actions ) residual_actions = self._targ_perturbation( batch.next_observations, actions ) return self._targ_q_func.compute_target( batch.next_observations, residual_actions, reduction=self._target_reduction_type, lam=self._lam, ) def update_actor_target(self) -> None: assert self._perturbation is not None assert self._targ_perturbation is not None super().update_actor_target() soft_sync(self._targ_perturbation, self._perturbation, self._tau)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/plas_impl.py
plas_impl.py
from typing import Optional, Sequence, Tuple import numpy as np import torch import torch.nn.functional as F from ...gpu import Device from ...models.builders import create_squashed_normal_policy from ...models.encoders import EncoderFactory from ...models.optimizers import AdamFactory, OptimizerFactory from ...models.q_functions import QFunctionFactory from ...models.torch import squash_action from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import TorchMiniBatch, torch_api, train_api from .sac_impl import SACImpl class AWACImpl(SACImpl): _lam: float _n_action_samples: int _max_weight: float def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, tau: float, lam: float, n_action_samples: int, max_weight: float, n_critics: int, target_reduction_type: str, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, temp_learning_rate=0.0, actor_optim_factory=actor_optim_factory, critic_optim_factory=critic_optim_factory, temp_optim_factory=AdamFactory(), actor_encoder_factory=actor_encoder_factory, critic_encoder_factory=critic_encoder_factory, q_func_factory=q_func_factory, gamma=gamma, tau=tau, n_critics=n_critics, target_reduction_type=target_reduction_type, initial_temperature=1e-20, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._lam = lam self._n_action_samples = n_action_samples self._max_weight = max_weight def _build_actor(self) -> None: self._policy = create_squashed_normal_policy( self._observation_shape, self._action_size, self._actor_encoder_factory, min_logstd=-6.0, max_logstd=0.0, use_std_parameter=True, ) @train_api @torch_api() def update_actor( self, batch: TorchMiniBatch ) -> Tuple[np.ndarray, np.ndarray]: assert self._q_func is not None assert self._policy is not None assert self._actor_optim is not None # Q function should be inference mode for stability self._q_func.eval() self._actor_optim.zero_grad() loss = self.compute_actor_loss(batch) loss.backward() self._actor_optim.step() # get current standard deviation for policy function for debug mean_std = self._policy.get_logstd_parameter().exp().mean() return loss.cpu().detach().numpy(), mean_std.cpu().detach().numpy() def compute_actor_loss(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._policy is not None dist = self._policy.dist(batch.observations) # unnormalize action via inverse tanh function clipped_actions = batch.actions.clamp(-0.999999, 0.999999) unnormalized_act_t = torch.atanh(clipped_actions) # compute log probability _, log_probs = squash_action(dist, unnormalized_act_t) # compute exponential weight weights = self._compute_weights(batch.observations, batch.actions) return -(log_probs * weights).sum() def _compute_weights( self, obs_t: torch.Tensor, act_t: torch.Tensor ) -> torch.Tensor: assert self._q_func is not None assert self._policy is not None with torch.no_grad(): batch_size = obs_t.shape[0] # compute action-value q_values = self._q_func(obs_t, act_t, "min") # sample actions # (batch_size * N, action_size) policy_actions = self._policy.sample_n( obs_t, self._n_action_samples ) flat_actions = policy_actions.reshape(-1, self.action_size) # repeat observation # (batch_size, obs_size) -> (batch_size, 1, obs_size) reshaped_obs_t = obs_t.view(batch_size, 1, *obs_t.shape[1:]) # (batch_sie, 1, obs_size) -> (batch_size, N, obs_size) repeated_obs_t = reshaped_obs_t.expand( batch_size, self._n_action_samples, *obs_t.shape[1:] ) # (batch_size, N, obs_size) -> (batch_size * N, obs_size) flat_obs_t = repeated_obs_t.reshape(-1, *obs_t.shape[1:]) # compute state-value flat_v_values = self._q_func(flat_obs_t, flat_actions, "min") reshaped_v_values = flat_v_values.view(obs_t.shape[0], -1, 1) v_values = reshaped_v_values.mean(dim=1) # compute normalized weight adv_values = (q_values - v_values).view(-1) weights = F.softmax(adv_values / self._lam, dim=0).view(-1, 1) # clip like AWR clipped_weights = weights.clamp(0.0, self._max_weight) return clipped_weights
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/awac_impl.py
awac_impl.py
from typing import Optional, Sequence import torch from ...gpu import Device from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.q_functions import QFunctionFactory from ...preprocessing import ActionScaler, RewardScaler, Scaler from .cql_impl import CQLImpl class COMBOImpl(CQLImpl): _real_ratio: float def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, temp_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, temp_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, tau: float, n_critics: int, target_reduction_type: str, initial_temperature: float, conservative_weight: float, n_action_samples: int, real_ratio: float, soft_q_backup: bool, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, temp_learning_rate=temp_learning_rate, alpha_learning_rate=0.0, actor_optim_factory=actor_optim_factory, critic_optim_factory=critic_optim_factory, temp_optim_factory=temp_optim_factory, alpha_optim_factory=temp_optim_factory, actor_encoder_factory=actor_encoder_factory, critic_encoder_factory=critic_encoder_factory, q_func_factory=q_func_factory, gamma=gamma, tau=tau, n_critics=n_critics, target_reduction_type=target_reduction_type, initial_temperature=initial_temperature, initial_alpha=1.0, alpha_threshold=0.0, conservative_weight=conservative_weight, n_action_samples=n_action_samples, soft_q_backup=soft_q_backup, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._real_ratio = real_ratio def _compute_conservative_loss( self, obs_t: torch.Tensor, act_t: torch.Tensor, obs_tp1: torch.Tensor ) -> torch.Tensor: assert self._policy is not None assert self._q_func is not None assert self._log_alpha is not None # split batch fake_obs_t = obs_t[int(obs_t.shape[0] * self._real_ratio) :] fake_obs_tp1 = obs_tp1[int(obs_tp1.shape[0] * self._real_ratio) :] real_obs_t = obs_t[: int(obs_t.shape[0] * self._real_ratio)] real_act_t = act_t[: int(act_t.shape[0] * self._real_ratio)] # compute conservative loss only with generated transitions random_values = self._compute_random_is_values(fake_obs_t) policy_values_t = self._compute_policy_is_values(fake_obs_t, fake_obs_t) policy_values_tp1 = self._compute_policy_is_values( fake_obs_tp1, fake_obs_t ) # compute logsumexp # (n critics, batch, 3 * n samples) -> (n critics, batch, 1) target_values = torch.cat( [policy_values_t, policy_values_tp1, random_values], dim=2 ) logsumexp = torch.logsumexp(target_values, dim=2, keepdim=True) # estimate action-values for real data actions data_values = self._q_func(real_obs_t, real_act_t, "none") loss = logsumexp.sum(dim=0).mean() - data_values.sum(dim=0).mean() return loss
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/algos/torch/combo_impl.py
combo_impl.py
from typing import Any, ClassVar, Dict, Type from ..decorators import pretty_repr from .torch import ( ContinuousFQFQFunction, ContinuousIQNQFunction, ContinuousMeanQFunction, ContinuousQFunction, ContinuousQRQFunction, DiscreteFQFQFunction, DiscreteIQNQFunction, DiscreteMeanQFunction, DiscreteQFunction, DiscreteQRQFunction, Encoder, EncoderWithAction, ) @pretty_repr class QFunctionFactory: TYPE: ClassVar[str] = "none" _bootstrap: bool _share_encoder: bool def __init__(self, bootstrap: bool, share_encoder: bool): self._bootstrap = bootstrap self._share_encoder = share_encoder def create_discrete( self, encoder: Encoder, action_size: int ) -> DiscreteQFunction: """Returns PyTorch's Q function module. Args: encoder: an encoder module that processes the observation to obtain feature representations. action_size: dimension of discrete action-space. Returns: discrete Q function object. """ raise NotImplementedError def create_continuous( self, encoder: EncoderWithAction ) -> ContinuousQFunction: """Returns PyTorch's Q function module. Args: encoder: an encoder module that processes the observation and action to obtain feature representations. Returns: continuous Q function object. """ raise NotImplementedError def get_type(self) -> str: """Returns Q function type. Returns: Q function type. """ return self.TYPE def get_params(self, deep: bool = False) -> Dict[str, Any]: """Returns Q function parameters. Returns: Q function parameters. """ raise NotImplementedError @property def bootstrap(self) -> bool: return self._bootstrap @property def share_encoder(self) -> bool: return self._share_encoder class MeanQFunctionFactory(QFunctionFactory): """Standard Q function factory class. This is the standard Q function factory class. References: * `Mnih et al., Human-level control through deep reinforcement learning. <https://www.nature.com/articles/nature14236>`_ * `Lillicrap et al., Continuous control with deep reinforcement learning. <https://arxiv.org/abs/1509.02971>`_ Args: bootstrap (bool): flag to bootstrap Q functions. share_encoder (bool): flag to share encoder over multiple Q functions. """ TYPE: ClassVar[str] = "mean" def __init__(self, bootstrap: bool = False, share_encoder: bool = False): super().__init__(bootstrap, share_encoder) def create_discrete( self, encoder: Encoder, action_size: int, ) -> DiscreteMeanQFunction: return DiscreteMeanQFunction(encoder, action_size) def create_continuous( self, encoder: EncoderWithAction, ) -> ContinuousMeanQFunction: return ContinuousMeanQFunction(encoder) def get_params(self, deep: bool = False) -> Dict[str, Any]: return { "bootstrap": self._bootstrap, "share_encoder": self._share_encoder, } class QRQFunctionFactory(QFunctionFactory): """Quantile Regression Q function factory class. References: * `Dabney et al., Distributional reinforcement learning with quantile regression. <https://arxiv.org/abs/1710.10044>`_ Args: bootstrap (bool): flag to bootstrap Q functions. share_encoder (bool): flag to share encoder over multiple Q functions. n_quantiles: the number of quantiles. """ TYPE: ClassVar[str] = "qr" _n_quantiles: int def __init__( self, bootstrap: bool = False, share_encoder: bool = False, n_quantiles: int = 32, ): super().__init__(bootstrap, share_encoder) self._n_quantiles = n_quantiles def create_discrete( self, encoder: Encoder, action_size: int ) -> DiscreteQRQFunction: return DiscreteQRQFunction(encoder, action_size, self._n_quantiles) def create_continuous( self, encoder: EncoderWithAction, ) -> ContinuousQRQFunction: return ContinuousQRQFunction(encoder, self._n_quantiles) def get_params(self, deep: bool = False) -> Dict[str, Any]: return { "bootstrap": self._bootstrap, "share_encoder": self._share_encoder, "n_quantiles": self._n_quantiles, } @property def n_quantiles(self) -> int: return self._n_quantiles class IQNQFunctionFactory(QFunctionFactory): """Implicit Quantile Network Q function factory class. References: * `Dabney et al., Implicit quantile networks for distributional reinforcement learning. <https://arxiv.org/abs/1806.06923>`_ Args: bootstrap (bool): flag to bootstrap Q functions. share_encoder (bool): flag to share encoder over multiple Q functions. n_quantiles: the number of quantiles. n_greedy_quantiles: the number of quantiles for inference. embed_size: the embedding size. """ TYPE: ClassVar[str] = "iqn" _n_quantiles: int _n_greedy_quantiles: int _embed_size: int def __init__( self, bootstrap: bool = False, share_encoder: bool = False, n_quantiles: int = 64, n_greedy_quantiles: int = 32, embed_size: int = 64, ): super().__init__(bootstrap, share_encoder) self._n_quantiles = n_quantiles self._n_greedy_quantiles = n_greedy_quantiles self._embed_size = embed_size def create_discrete( self, encoder: Encoder, action_size: int, ) -> DiscreteIQNQFunction: return DiscreteIQNQFunction( encoder=encoder, action_size=action_size, n_quantiles=self._n_quantiles, n_greedy_quantiles=self._n_greedy_quantiles, embed_size=self._embed_size, ) def create_continuous( self, encoder: EncoderWithAction, ) -> ContinuousIQNQFunction: return ContinuousIQNQFunction( encoder=encoder, n_quantiles=self._n_quantiles, n_greedy_quantiles=self._n_greedy_quantiles, embed_size=self._embed_size, ) def get_params(self, deep: bool = False) -> Dict[str, Any]: return { "bootstrap": self._bootstrap, "share_encoder": self._share_encoder, "n_quantiles": self._n_quantiles, "n_greedy_quantiles": self._n_greedy_quantiles, "embed_size": self._embed_size, } @property def n_quantiles(self) -> int: return self._n_quantiles @property def n_greedy_quantiles(self) -> int: return self._n_greedy_quantiles @property def embed_size(self) -> int: return self._embed_size class FQFQFunctionFactory(QFunctionFactory): """Fully parameterized Quantile Function Q function factory. References: * `Yang et al., Fully parameterized quantile function for distributional reinforcement learning. <https://arxiv.org/abs/1911.02140>`_ Args: bootstrap (bool): flag to bootstrap Q functions. share_encoder (bool): flag to share encoder over multiple Q functions. n_quantiles: the number of quantiles. embed_size: the embedding size. entropy_coeff: the coefficiency of entropy penalty term. """ TYPE: ClassVar[str] = "fqf" _n_quantiles: int _embed_size: int _entropy_coeff: float def __init__( self, bootstrap: bool = False, share_encoder: bool = False, n_quantiles: int = 32, embed_size: int = 64, entropy_coeff: float = 0.0, ): super().__init__(bootstrap, share_encoder) self._n_quantiles = n_quantiles self._embed_size = embed_size self._entropy_coeff = entropy_coeff def create_discrete( self, encoder: Encoder, action_size: int, ) -> DiscreteFQFQFunction: return DiscreteFQFQFunction( encoder=encoder, action_size=action_size, n_quantiles=self._n_quantiles, embed_size=self._embed_size, entropy_coeff=self._entropy_coeff, ) def create_continuous( self, encoder: EncoderWithAction, ) -> ContinuousFQFQFunction: return ContinuousFQFQFunction( encoder=encoder, n_quantiles=self._n_quantiles, embed_size=self._embed_size, entropy_coeff=self._entropy_coeff, ) def get_params(self, deep: bool = False) -> Dict[str, Any]: return { "bootstrap": self._bootstrap, "share_encoder": self._share_encoder, "n_quantiles": self._n_quantiles, "embed_size": self._embed_size, "entropy_coeff": self._entropy_coeff, } @property def n_quantiles(self) -> int: return self._n_quantiles @property def embed_size(self) -> int: return self._embed_size @property def entropy_coeff(self) -> float: return self._entropy_coeff Q_FUNC_LIST: Dict[str, Type[QFunctionFactory]] = {} def register_q_func_factory(cls: Type[QFunctionFactory]) -> None: """Registers Q function factory class. Args: cls: Q function factory class inheriting ``QFunctionFactory``. """ is_registered = cls.TYPE in Q_FUNC_LIST assert not is_registered, f"{cls.TYPE} seems to be already registered" Q_FUNC_LIST[cls.TYPE] = cls def create_q_func_factory(name: str, **kwargs: Any) -> QFunctionFactory: """Returns registered Q function factory object. Args: name: registered Q function factory type name. kwargs: Q function arguments. Returns: Q function factory object. """ assert name in Q_FUNC_LIST, f"{name} seems not to be registered." factory = Q_FUNC_LIST[name](**kwargs) assert isinstance(factory, QFunctionFactory) return factory register_q_func_factory(MeanQFunctionFactory) register_q_func_factory(QRQFunctionFactory) register_q_func_factory(IQNQFunctionFactory) register_q_func_factory(FQFQFunctionFactory)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/q_functions.py
q_functions.py
import copy from typing import Any, Dict, Iterable, Tuple, Type, Union, cast from torch import nn, optim from torch.optim import SGD, Adam, Optimizer, RMSprop from ..decorators import pretty_repr @pretty_repr class OptimizerFactory: """A factory class that creates an optimizer object in a lazy way. The optimizers in algorithms can be configured through this factory class. .. code-block:: python from torch.optim Adam from d3rlpy.optimizers import OptimizerFactory from d3rlpy.algos import DQN factory = OptimizerFactory(Adam, eps=0.001) dqn = DQN(optim_factory=factory) Args: optim_cls: An optimizer class. kwargs: arbitrary keyword-arguments. """ _optim_cls: Type[Optimizer] _optim_kwargs: Dict[str, Any] def __init__(self, optim_cls: Union[Type[Optimizer], str], **kwargs: Any): if isinstance(optim_cls, str): self._optim_cls = cast(Type[Optimizer], getattr(optim, optim_cls)) else: self._optim_cls = optim_cls self._optim_kwargs = kwargs def create(self, params: Iterable[nn.Parameter], lr: float) -> Optimizer: """Returns an optimizer object. Args: params (list): a list of PyTorch parameters. lr (float): learning rate. Returns: torch.optim.Optimizer: an optimizer object. """ return self._optim_cls(params, lr=lr, **self._optim_kwargs) def get_params(self, deep: bool = False) -> Dict[str, Any]: """Returns optimizer parameters. Args: deep: flag to deeply copy the parameters. Returns: optimizer parameters. """ if deep: params = copy.deepcopy(self._optim_kwargs) else: params = self._optim_kwargs return {"optim_cls": self._optim_cls.__name__, **params} class SGDFactory(OptimizerFactory): """An alias for SGD optimizer. .. code-block:: python from d3rlpy.optimizers import SGDFactory factory = SGDFactory(weight_decay=1e-4) Args: momentum: momentum factor. dampening: dampening for momentum. weight_decay: weight decay (L2 penalty). nesterov: flag to enable Nesterov momentum. """ def __init__( self, momentum: float = 0, dampening: float = 0, weight_decay: float = 0, nesterov: bool = False, **kwargs: Any ): super().__init__( optim_cls=SGD, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, ) class AdamFactory(OptimizerFactory): """An alias for Adam optimizer. .. code-block:: python from d3rlpy.optimizers import AdamFactory factory = AdamFactory(weight_decay=1e-4) Args: betas: coefficients used for computing running averages of gradient and its square. eps: term added to the denominator to improve numerical stability. weight_decay: weight decay (L2 penalty). amsgrad: flag to use the AMSGrad variant of this algorithm. """ def __init__( self, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0, amsgrad: bool = False, **kwargs: Any ): super().__init__( optim_cls=Adam, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad, ) class RMSpropFactory(OptimizerFactory): """An alias for RMSprop optimizer. .. code-block:: python from d3rlpy.optimizers import RMSpropFactory factory = RMSpropFactory(weight_decay=1e-4) Args: alpha: smoothing constant. eps: term added to the denominator to improve numerical stability. weight_decay: weight decay (L2 penalty). momentum: momentum factor. centered: flag to compute the centered RMSProp, the gradient is normalized by an estimation of its variance. """ def __init__( self, alpha: float = 0.95, eps: float = 1e-2, weight_decay: float = 0, momentum: float = 0, centered: bool = True, **kwargs: Any ): super().__init__( optim_cls=RMSprop, alpha=alpha, eps=eps, weight_decay=weight_decay, momentum=momentum, centered=centered, )
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/optimizers.py
optimizers.py
import copy from typing import Any, ClassVar, Dict, List, Optional, Sequence, Type, Union from torch import nn from ..decorators import pretty_repr from ..torch_utility import Swish from .torch import ( Encoder, EncoderWithAction, PixelEncoder, PixelEncoderWithAction, VectorEncoder, VectorEncoderWithAction, ) def _create_activation(activation_type: str) -> nn.Module: if activation_type == "relu": return nn.ReLU() elif activation_type == "tanh": return nn.Tanh() elif activation_type == "swish": return Swish() raise ValueError("invalid activation_type.") @pretty_repr class EncoderFactory: TYPE: ClassVar[str] = "none" def create(self, observation_shape: Sequence[int]) -> Encoder: """Returns PyTorch's state enocder module. Args: observation_shape: observation shape. Returns: an enocder object. """ raise NotImplementedError def create_with_action( self, observation_shape: Sequence[int], action_size: int, discrete_action: bool = False, ) -> EncoderWithAction: """Returns PyTorch's state-action enocder module. Args: observation_shape: observation shape. action_size: action size. If None, the encoder does not take action as input. discrete_action: flag if action-space is discrete. Returns: an enocder object. """ raise NotImplementedError def get_type(self) -> str: """Returns encoder type. Returns: encoder type. """ return self.TYPE def get_params(self, deep: bool = False) -> Dict[str, Any]: """Returns encoder parameters. Args: deep: flag to deeply copy the parameters. Returns: encoder parameters. """ raise NotImplementedError class PixelEncoderFactory(EncoderFactory): """Pixel encoder factory class. This is the default encoder factory for image observation. Args: filters (list): list of tuples consisting with ``(filter_size, kernel_size, stride)``. If None, ``Nature DQN``-based architecture is used. feature_size (int): the last linear layer size. activation (str): activation function name. use_batch_norm (bool): flag to insert batch normalization layers. dropout_rate (float): dropout probability. """ TYPE: ClassVar[str] = "pixel" _filters: List[Sequence[int]] _feature_size: int _activation: str _use_batch_norm: bool _dropout_rate: Optional[float] def __init__( self, filters: Optional[List[Sequence[int]]] = None, feature_size: int = 512, activation: str = "relu", use_batch_norm: bool = False, dropout_rate: Optional[float] = None, ): if filters is None: self._filters = [(32, 8, 4), (64, 4, 2), (64, 3, 1)] else: self._filters = filters self._feature_size = feature_size self._activation = activation self._use_batch_norm = use_batch_norm self._dropout_rate = dropout_rate def create(self, observation_shape: Sequence[int]) -> PixelEncoder: assert len(observation_shape) == 3 return PixelEncoder( observation_shape=observation_shape, filters=self._filters, feature_size=self._feature_size, use_batch_norm=self._use_batch_norm, dropout_rate=self._dropout_rate, activation=_create_activation(self._activation), ) def create_with_action( self, observation_shape: Sequence[int], action_size: int, discrete_action: bool = False, ) -> PixelEncoderWithAction: assert len(observation_shape) == 3 return PixelEncoderWithAction( observation_shape=observation_shape, action_size=action_size, filters=self._filters, feature_size=self._feature_size, use_batch_norm=self._use_batch_norm, dropout_rate=self._dropout_rate, discrete_action=discrete_action, activation=_create_activation(self._activation), ) def get_params(self, deep: bool = False) -> Dict[str, Any]: if deep: filters = copy.deepcopy(self._filters) else: filters = self._filters params = { "filters": filters, "feature_size": self._feature_size, "activation": self._activation, "use_batch_norm": self._use_batch_norm, "dropout_rate": self._dropout_rate, } return params class VectorEncoderFactory(EncoderFactory): """Vector encoder factory class. This is the default encoder factory for vector observation. Args: hidden_units (list): list of hidden unit sizes. If ``None``, the standard architecture with ``[256, 256]`` is used. activation (str): activation function name. use_batch_norm (bool): flag to insert batch normalization layers. use_dense (bool): flag to use DenseNet architecture. dropout_rate (float): dropout probability. """ TYPE: ClassVar[str] = "vector" _hidden_units: Sequence[int] _activation: str _use_batch_norm: bool _dropout_rate: Optional[float] _use_dense: bool def __init__( self, hidden_units: Optional[Sequence[int]] = None, activation: str = "relu", use_batch_norm: bool = False, dropout_rate: Optional[float] = None, use_dense: bool = False, ): if hidden_units is None: self._hidden_units = [256, 256] else: self._hidden_units = hidden_units self._activation = activation self._use_batch_norm = use_batch_norm self._dropout_rate = dropout_rate self._use_dense = use_dense def create(self, observation_shape: Sequence[int]) -> VectorEncoder: assert len(observation_shape) == 1 return VectorEncoder( observation_shape=observation_shape, hidden_units=self._hidden_units, use_batch_norm=self._use_batch_norm, dropout_rate=self._dropout_rate, use_dense=self._use_dense, activation=_create_activation(self._activation), ) def create_with_action( self, observation_shape: Sequence[int], action_size: int, discrete_action: bool = False, ) -> VectorEncoderWithAction: assert len(observation_shape) == 1 return VectorEncoderWithAction( observation_shape=observation_shape, action_size=action_size, hidden_units=self._hidden_units, use_batch_norm=self._use_batch_norm, dropout_rate=self._dropout_rate, use_dense=self._use_dense, discrete_action=discrete_action, activation=_create_activation(self._activation), ) def get_params(self, deep: bool = False) -> Dict[str, Any]: if deep: hidden_units = copy.deepcopy(self._hidden_units) else: hidden_units = self._hidden_units params = { "hidden_units": hidden_units, "activation": self._activation, "use_batch_norm": self._use_batch_norm, "dropout_rate": self._dropout_rate, "use_dense": self._use_dense, } return params class DefaultEncoderFactory(EncoderFactory): """Default encoder factory class. This encoder factory returns an encoder based on observation shape. Args: activation (str): activation function name. use_batch_norm (bool): flag to insert batch normalization layers. dropout_rate (float): dropout probability. """ TYPE: ClassVar[str] = "default" _activation: str _use_batch_norm: bool _dropout_rate: Optional[float] def __init__( self, activation: str = "relu", use_batch_norm: bool = False, dropout_rate: Optional[float] = None, ): self._activation = activation self._use_batch_norm = use_batch_norm self._dropout_rate = dropout_rate def create(self, observation_shape: Sequence[int]) -> Encoder: factory: Union[PixelEncoderFactory, VectorEncoderFactory] if len(observation_shape) == 3: factory = PixelEncoderFactory( activation=self._activation, use_batch_norm=self._use_batch_norm, dropout_rate=self._dropout_rate, ) else: factory = VectorEncoderFactory( activation=self._activation, use_batch_norm=self._use_batch_norm, dropout_rate=self._dropout_rate, ) return factory.create(observation_shape) def create_with_action( self, observation_shape: Sequence[int], action_size: int, discrete_action: bool = False, ) -> EncoderWithAction: factory: Union[PixelEncoderFactory, VectorEncoderFactory] if len(observation_shape) == 3: factory = PixelEncoderFactory( activation=self._activation, use_batch_norm=self._use_batch_norm, dropout_rate=self._dropout_rate, ) else: factory = VectorEncoderFactory( activation=self._activation, use_batch_norm=self._use_batch_norm, dropout_rate=self._dropout_rate, ) return factory.create_with_action( observation_shape, action_size, discrete_action ) def get_params(self, deep: bool = False) -> Dict[str, Any]: return { "activation": self._activation, "use_batch_norm": self._use_batch_norm, "dropout_rate": self._dropout_rate, } class DenseEncoderFactory(EncoderFactory): """DenseNet encoder factory class. This is an alias for DenseNet architecture proposed in D2RL. This class does exactly same as follows. .. code-block:: python from d3rlpy.encoders import VectorEncoderFactory factory = VectorEncoderFactory(hidden_units=[256, 256, 256, 256], use_dense=True) For now, this only supports vector observations. References: * `Sinha et al., D2RL: Deep Dense Architectures in Reinforcement Learning. <https://arxiv.org/abs/2010.09163>`_ Args: activation (str): activation function name. use_batch_norm (bool): flag to insert batch normalization layers. dropout_rate (float): dropout probability. """ TYPE: ClassVar[str] = "dense" _activation: str _use_batch_norm: bool _dropout_rate: Optional[float] def __init__( self, activation: str = "relu", use_batch_norm: bool = False, dropout_rate: Optional[float] = None, ): self._activation = activation self._use_batch_norm = use_batch_norm self._dropout_rate = dropout_rate def create(self, observation_shape: Sequence[int]) -> VectorEncoder: if len(observation_shape) == 3: raise NotImplementedError("pixel observation is not supported.") factory = VectorEncoderFactory( hidden_units=[256, 256, 256, 256], activation=self._activation, use_dense=True, use_batch_norm=self._use_batch_norm, dropout_rate=self._dropout_rate, ) return factory.create(observation_shape) def create_with_action( self, observation_shape: Sequence[int], action_size: int, discrete_action: bool = False, ) -> VectorEncoderWithAction: if len(observation_shape) == 3: raise NotImplementedError("pixel observation is not supported.") factory = VectorEncoderFactory( hidden_units=[256, 256, 256, 256], activation=self._activation, use_dense=True, use_batch_norm=self._use_batch_norm, dropout_rate=self._dropout_rate, ) return factory.create_with_action( observation_shape, action_size, discrete_action ) def get_params(self, deep: bool = False) -> Dict[str, Any]: return { "activation": self._activation, "use_batch_norm": self._use_batch_norm, "dropout_rate": self._dropout_rate, } ENCODER_LIST: Dict[str, Type[EncoderFactory]] = {} def register_encoder_factory(cls: Type[EncoderFactory]) -> None: """Registers encoder factory class. Args: cls: encoder factory class inheriting ``EncoderFactory``. """ is_registered = cls.TYPE in ENCODER_LIST assert not is_registered, f"{cls.TYPE} seems to be already registered" ENCODER_LIST[cls.TYPE] = cls def create_encoder_factory(name: str, **kwargs: Any) -> EncoderFactory: """Returns registered encoder factory object. Args: name: regsitered encoder factory type name. kwargs: encoder arguments. Returns: encoder factory object. """ assert name in ENCODER_LIST, f"{name} seems not to be registered." factory = ENCODER_LIST[name](**kwargs) # type: ignore assert isinstance(factory, EncoderFactory) return factory register_encoder_factory(VectorEncoderFactory) register_encoder_factory(PixelEncoderFactory) register_encoder_factory(DefaultEncoderFactory) register_encoder_factory(DenseEncoderFactory)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/encoders.py
encoders.py
from typing import Sequence, cast import torch from torch import nn from .encoders import EncoderFactory from .q_functions import QFunctionFactory from .torch import ( CategoricalPolicy, ConditionalVAE, DeterministicPolicy, DeterministicRegressor, DeterministicResidualPolicy, DiscreteImitator, EnsembleContinuousQFunction, EnsembleDiscreteQFunction, Parameter, ProbabilisticDynamicsModel, ProbabilisticEnsembleDynamicsModel, ProbablisticRegressor, SquashedNormalPolicy, ValueFunction, ) def create_discrete_q_function( observation_shape: Sequence[int], action_size: int, encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, n_ensembles: int = 1, ) -> EnsembleDiscreteQFunction: if q_func_factory.share_encoder: encoder = encoder_factory.create(observation_shape) # normalize gradient scale by ensemble size for p in cast(nn.Module, encoder).parameters(): p.register_hook(lambda grad: grad / n_ensembles) q_funcs = [] for _ in range(n_ensembles): if not q_func_factory.share_encoder: encoder = encoder_factory.create(observation_shape) q_funcs.append(q_func_factory.create_discrete(encoder, action_size)) return EnsembleDiscreteQFunction( q_funcs, bootstrap=q_func_factory.bootstrap ) def create_continuous_q_function( observation_shape: Sequence[int], action_size: int, encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, n_ensembles: int = 1, ) -> EnsembleContinuousQFunction: if q_func_factory.share_encoder: encoder = encoder_factory.create_with_action( observation_shape, action_size ) # normalize gradient scale by ensemble size for p in cast(nn.Module, encoder).parameters(): p.register_hook(lambda grad: grad / n_ensembles) q_funcs = [] for _ in range(n_ensembles): if not q_func_factory.share_encoder: encoder = encoder_factory.create_with_action( observation_shape, action_size ) q_funcs.append(q_func_factory.create_continuous(encoder)) return EnsembleContinuousQFunction( q_funcs, bootstrap=q_func_factory.bootstrap ) def create_deterministic_policy( observation_shape: Sequence[int], action_size: int, encoder_factory: EncoderFactory, ) -> DeterministicPolicy: encoder = encoder_factory.create(observation_shape) return DeterministicPolicy(encoder, action_size) def create_deterministic_residual_policy( observation_shape: Sequence[int], action_size: int, scale: float, encoder_factory: EncoderFactory, ) -> DeterministicResidualPolicy: encoder = encoder_factory.create_with_action(observation_shape, action_size) return DeterministicResidualPolicy(encoder, scale) def create_squashed_normal_policy( observation_shape: Sequence[int], action_size: int, encoder_factory: EncoderFactory, min_logstd: float = -20.0, max_logstd: float = 2.0, use_std_parameter: bool = False, ) -> SquashedNormalPolicy: encoder = encoder_factory.create(observation_shape) return SquashedNormalPolicy( encoder, action_size, min_logstd=min_logstd, max_logstd=max_logstd, use_std_parameter=use_std_parameter, ) def create_categorical_policy( observation_shape: Sequence[int], action_size: int, encoder_factory: EncoderFactory, ) -> CategoricalPolicy: encoder = encoder_factory.create(observation_shape) return CategoricalPolicy(encoder, action_size) def create_conditional_vae( observation_shape: Sequence[int], action_size: int, latent_size: int, beta: float, encoder_factory: EncoderFactory, min_logstd: float = -20.0, max_logstd: float = 2.0, ) -> ConditionalVAE: encoder_encoder = encoder_factory.create_with_action( observation_shape, action_size ) decoder_encoder = encoder_factory.create_with_action( observation_shape, latent_size ) return ConditionalVAE( encoder_encoder, decoder_encoder, beta, min_logstd=min_logstd, max_logstd=max_logstd, ) def create_discrete_imitator( observation_shape: Sequence[int], action_size: int, beta: float, encoder_factory: EncoderFactory, ) -> DiscreteImitator: encoder = encoder_factory.create(observation_shape) return DiscreteImitator(encoder, action_size, beta) def create_deterministic_regressor( observation_shape: Sequence[int], action_size: int, encoder_factory: EncoderFactory, ) -> DeterministicRegressor: encoder = encoder_factory.create(observation_shape) return DeterministicRegressor(encoder, action_size) def create_probablistic_regressor( observation_shape: Sequence[int], action_size: int, encoder_factory: EncoderFactory, min_logstd: float = -20.0, max_logstd: float = 2.0, ) -> ProbablisticRegressor: encoder = encoder_factory.create(observation_shape) return ProbablisticRegressor( encoder, action_size, min_logstd=min_logstd, max_logstd=max_logstd ) def create_value_function( observation_shape: Sequence[int], encoder_factory: EncoderFactory ) -> ValueFunction: encoder = encoder_factory.create(observation_shape) return ValueFunction(encoder) def create_probabilistic_ensemble_dynamics_model( observation_shape: Sequence[int], action_size: int, encoder_factory: EncoderFactory, n_ensembles: int = 5, discrete_action: bool = False, ) -> ProbabilisticEnsembleDynamicsModel: models = [] for _ in range(n_ensembles): encoder = encoder_factory.create_with_action( observation_shape=observation_shape, action_size=action_size, discrete_action=discrete_action, ) model = ProbabilisticDynamicsModel(encoder) models.append(model) return ProbabilisticEnsembleDynamicsModel(models) def create_parameter(shape: Sequence[int], initial_value: float) -> Parameter: data = torch.full(shape, initial_value, dtype=torch.float32) return Parameter(data)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/builders.py
builders.py
import math from abc import ABCMeta, abstractmethod from typing import Tuple, Union, cast import torch import torch.nn.functional as F from torch import nn from torch.distributions import Categorical, Normal from .encoders import Encoder, EncoderWithAction def squash_action( dist: torch.distributions.Distribution, raw_action: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: squashed_action = torch.tanh(raw_action) jacob = 2 * (math.log(2) - raw_action - F.softplus(-2 * raw_action)) log_prob = (dist.log_prob(raw_action) - jacob).sum(dim=-1, keepdims=True) return squashed_action, log_prob class Policy(nn.Module, metaclass=ABCMeta): # type: ignore def sample(self, x: torch.Tensor) -> torch.Tensor: return self.sample_with_log_prob(x)[0] @abstractmethod def sample_with_log_prob( self, x: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: pass def sample_n(self, x: torch.Tensor, n: int) -> torch.Tensor: return self.sample_n_with_log_prob(x, n)[0] @abstractmethod def sample_n_with_log_prob( self, x: torch.Tensor, n: int ) -> Tuple[torch.Tensor, torch.Tensor]: pass @abstractmethod def best_action(self, x: torch.Tensor) -> torch.Tensor: pass class DeterministicPolicy(Policy): _encoder: Encoder _fc: nn.Linear def __init__(self, encoder: Encoder, action_size: int): super().__init__() self._encoder = encoder self._fc = nn.Linear(encoder.get_feature_size(), action_size) def forward(self, x: torch.Tensor) -> torch.Tensor: h = self._encoder(x) return torch.tanh(self._fc(h)) def __call__(self, x: torch.Tensor) -> torch.Tensor: return cast(torch.Tensor, super().__call__(x)) def sample_with_log_prob( self, x: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: raise NotImplementedError( "deterministic policy does not support sample" ) def sample_n_with_log_prob( self, x: torch.Tensor, n: int ) -> Tuple[torch.Tensor, torch.Tensor]: raise NotImplementedError( "deterministic policy does not support sample_n" ) def best_action(self, x: torch.Tensor) -> torch.Tensor: return self.forward(x) class DeterministicResidualPolicy(Policy): _encoder: EncoderWithAction _scale: float _fc: nn.Linear def __init__(self, encoder: EncoderWithAction, scale: float): super().__init__() self._scale = scale self._encoder = encoder self._fc = nn.Linear(encoder.get_feature_size(), encoder.action_size) def forward(self, x: torch.Tensor, action: torch.Tensor) -> torch.Tensor: h = self._encoder(x, action) residual_action = self._scale * torch.tanh(self._fc(h)) return (action + cast(torch.Tensor, residual_action)).clamp(-1.0, 1.0) def __call__(self, x: torch.Tensor, action: torch.Tensor) -> torch.Tensor: return cast(torch.Tensor, super().__call__(x, action)) def best_residual_action( self, x: torch.Tensor, action: torch.Tensor ) -> torch.Tensor: return self.forward(x, action) def best_action(self, x: torch.Tensor) -> torch.Tensor: raise NotImplementedError( "residual policy does not support best_action" ) def sample_with_log_prob( self, x: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: raise NotImplementedError( "deterministic policy does not support sample" ) def sample_n_with_log_prob( self, x: torch.Tensor, n: int ) -> Tuple[torch.Tensor, torch.Tensor]: raise NotImplementedError( "deterministic policy does not support sample_n" ) class SquashedNormalPolicy(Policy): _encoder: Encoder _action_size: int _min_logstd: float _max_logstd: float _use_std_parameter: bool _mu: nn.Linear _logstd: Union[nn.Linear, nn.Parameter] def __init__( self, encoder: Encoder, action_size: int, min_logstd: float, max_logstd: float, use_std_parameter: bool, ): super().__init__() self._action_size = action_size self._encoder = encoder self._min_logstd = min_logstd self._max_logstd = max_logstd self._use_std_parameter = use_std_parameter self._mu = nn.Linear(encoder.get_feature_size(), action_size) if use_std_parameter: initial_logstd = torch.zeros(1, action_size, dtype=torch.float32) self._logstd = nn.Parameter(initial_logstd) else: self._logstd = nn.Linear(encoder.get_feature_size(), action_size) def _compute_logstd(self, h: torch.Tensor) -> torch.Tensor: if self._use_std_parameter: clipped_logstd = self.get_logstd_parameter() else: logstd = cast(nn.Linear, self._logstd)(h) clipped_logstd = logstd.clamp(self._min_logstd, self._max_logstd) return clipped_logstd def dist(self, x: torch.Tensor) -> Normal: h = self._encoder(x) mu = self._mu(h) clipped_logstd = self._compute_logstd(h) return Normal(mu, clipped_logstd.exp()) def forward( self, x: torch.Tensor, deterministic: bool = False, with_log_prob: bool = False, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: if deterministic: # to avoid errors at ONNX export because broadcast_tensors in # Normal distribution is not supported by ONNX action = self._mu(self._encoder(x)) else: dist = self.dist(x) action = dist.rsample() if with_log_prob: return squash_action(dist, action) return torch.tanh(action) def sample_with_log_prob( self, x: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: out = self.forward(x, with_log_prob=True) return cast(Tuple[torch.Tensor, torch.Tensor], out) def sample_n_with_log_prob( self, x: torch.Tensor, n: int, ) -> Tuple[torch.Tensor, torch.Tensor]: dist = self.dist(x) action = dist.rsample((n,)) squashed_action_T, log_prob_T = squash_action(dist, action) # (n, batch, action) -> (batch, n, action) squashed_action = squashed_action_T.transpose(0, 1) # (n, batch, 1) -> (batch, n, 1) log_prob = log_prob_T.transpose(0, 1) return squashed_action, log_prob def sample_n_without_squash(self, x: torch.Tensor, n: int) -> torch.Tensor: dist = self.dist(x) action = dist.rsample((n,)) return action.transpose(0, 1) def onnx_safe_sample_n(self, x: torch.Tensor, n: int) -> torch.Tensor: h = self._encoder(x) mean = self._mu(h) std = self._compute_logstd(h).exp() # expand shape # (batch_size, action_size) -> (batch_size, N, action_size) expanded_mean = mean.view(-1, 1, self._action_size).repeat((1, n, 1)) expanded_std = std.view(-1, 1, self._action_size).repeat((1, n, 1)) # sample noise from Gaussian distribution noise = torch.randn(x.shape[0], n, self._action_size, device=x.device) return torch.tanh(expanded_mean + noise * expanded_std) def best_action(self, x: torch.Tensor) -> torch.Tensor: action = self.forward(x, deterministic=True, with_log_prob=False) return cast(torch.Tensor, action) def get_logstd_parameter(self) -> torch.Tensor: assert self._use_std_parameter logstd = torch.sigmoid(cast(nn.Parameter, self._logstd)) base_logstd = self._max_logstd - self._min_logstd return self._min_logstd + logstd * base_logstd class CategoricalPolicy(Policy): _encoder: Encoder _fc: nn.Linear def __init__(self, encoder: Encoder, action_size: int): super().__init__() self._encoder = encoder self._fc = nn.Linear(encoder.get_feature_size(), action_size) def dist(self, x: torch.Tensor) -> Categorical: h = self._encoder(x) h = self._fc(h) return Categorical(torch.softmax(h, dim=1)) def forward( self, x: torch.Tensor, deterministic: bool = False, with_log_prob: bool = False, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: dist = self.dist(x) if deterministic: action = cast(torch.Tensor, dist.probs.argmax(dim=1)) else: action = cast(torch.Tensor, dist.sample()) if with_log_prob: return action, dist.log_prob(action) return action def sample_with_log_prob( self, x: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: out = self.forward(x, with_log_prob=True) return cast(Tuple[torch.Tensor, torch.Tensor], out) def sample_n_with_log_prob( self, x: torch.Tensor, n: int ) -> Tuple[torch.Tensor, torch.Tensor]: dist = self.dist(x) action_T = cast(torch.Tensor, dist.sample((n,))) log_prob_T = dist.log_prob(action_T) # (n, batch) -> (batch, n) action = action_T.transpose(0, 1) # (n, batch) -> (batch, n) log_prob = log_prob_T.transpose(0, 1) return action, log_prob def best_action(self, x: torch.Tensor) -> torch.Tensor: return cast(torch.Tensor, self.forward(x, deterministic=True)) def log_probs(self, x: torch.Tensor) -> torch.Tensor: dist = self.dist(x) return cast(torch.Tensor, dist.logits)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/torch/policies.py
policies.py
from abc import ABCMeta, abstractmethod from typing import Tuple, cast import torch import torch.nn.functional as F from torch import nn from torch.distributions import Normal from torch.distributions.kl import kl_divergence from .encoders import Encoder, EncoderWithAction class ConditionalVAE(nn.Module): # type: ignore _encoder_encoder: EncoderWithAction _decoder_encoder: EncoderWithAction _beta: float _min_logstd: float _max_logstd: float _action_size: int _latent_size: int _mu: nn.Linear _logstd: nn.Linear _fc: nn.Linear def __init__( self, encoder_encoder: EncoderWithAction, decoder_encoder: EncoderWithAction, beta: float, min_logstd: float = -20.0, max_logstd: float = 2.0, ): super().__init__() self._encoder_encoder = encoder_encoder self._decoder_encoder = decoder_encoder self._beta = beta self._min_logstd = min_logstd self._max_logstd = max_logstd self._action_size = encoder_encoder.action_size self._latent_size = decoder_encoder.action_size # encoder self._mu = nn.Linear( encoder_encoder.get_feature_size(), self._latent_size ) self._logstd = nn.Linear( encoder_encoder.get_feature_size(), self._latent_size ) # decoder self._fc = nn.Linear( decoder_encoder.get_feature_size(), self._action_size ) def forward(self, x: torch.Tensor, action: torch.Tensor) -> torch.Tensor: dist = self.encode(x, action) return self.decode(x, dist.rsample()) def __call__(self, x: torch.Tensor, action: torch.Tensor) -> torch.Tensor: return cast(torch.Tensor, super().__call__(x, action)) def encode(self, x: torch.Tensor, action: torch.Tensor) -> Normal: h = self._encoder_encoder(x, action) mu = self._mu(h) logstd = self._logstd(h) clipped_logstd = logstd.clamp(self._min_logstd, self._max_logstd) return Normal(mu, clipped_logstd.exp()) def decode(self, x: torch.Tensor, latent: torch.Tensor) -> torch.Tensor: h = self._decoder_encoder(x, latent) return torch.tanh(self._fc(h)) def decode_without_squash( self, x: torch.Tensor, latent: torch.Tensor ) -> torch.Tensor: h = self._decoder_encoder(x, latent) return self._fc(h) def compute_error( self, x: torch.Tensor, action: torch.Tensor ) -> torch.Tensor: dist = self.encode(x, action) kl_loss = kl_divergence(dist, Normal(0.0, 1.0)).mean() y = self.decode(x, dist.rsample()) return F.mse_loss(y, action) + cast(torch.Tensor, self._beta * kl_loss) def sample(self, x: torch.Tensor) -> torch.Tensor: latent = torch.randn((x.shape[0], self._latent_size), device=x.device) # to prevent extreme numbers return self.decode(x, latent.clamp(-0.5, 0.5)) def sample_n( self, x: torch.Tensor, n: int, with_squash: bool = True ) -> torch.Tensor: flat_latent_shape = (n * x.shape[0], self._latent_size) flat_latent = torch.randn(flat_latent_shape, device=x.device) # to prevent extreme numbers clipped_latent = flat_latent.clamp(-0.5, 0.5) # (batch, obs) -> (n, batch, obs) repeated_x = x.expand((n, *x.shape)) # (n, batch, obs) -> (n * batch, obs) flat_x = repeated_x.reshape(-1, *x.shape[1:]) if with_squash: flat_actions = self.decode(flat_x, clipped_latent) else: flat_actions = self.decode_without_squash(flat_x, clipped_latent) # (n * batch, action) -> (n, batch, action) actions = flat_actions.view(n, x.shape[0], -1) # (n, batch, action) -> (batch, n, action) return actions.transpose(0, 1) def sample_n_without_squash(self, x: torch.Tensor, n: int) -> torch.Tensor: return self.sample_n(x, n, with_squash=False) class Imitator(nn.Module, metaclass=ABCMeta): # type: ignore @abstractmethod def forward(self, x: torch.Tensor) -> torch.Tensor: pass def __call__(self, x: torch.Tensor) -> torch.Tensor: return cast(torch.Tensor, super().__call__(x)) @abstractmethod def compute_error( self, x: torch.Tensor, action: torch.Tensor ) -> torch.Tensor: pass class DiscreteImitator(Imitator): _encoder: Encoder _beta: float _fc: nn.Linear def __init__(self, encoder: Encoder, action_size: int, beta: float): super().__init__() self._encoder = encoder self._beta = beta self._fc = nn.Linear(encoder.get_feature_size(), action_size) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.compute_log_probs_with_logits(x)[0] def compute_log_probs_with_logits( self, x: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: h = self._encoder(x) logits = self._fc(h) log_probs = F.log_softmax(logits, dim=1) return log_probs, logits def compute_error( self, x: torch.Tensor, action: torch.Tensor ) -> torch.Tensor: log_probs, logits = self.compute_log_probs_with_logits(x) penalty = (logits ** 2).mean() return F.nll_loss(log_probs, action.view(-1)) + self._beta * penalty class DeterministicRegressor(Imitator): _encoder: Encoder _fc: nn.Linear def __init__(self, encoder: Encoder, action_size: int): super().__init__() self._encoder = encoder self._fc = nn.Linear(encoder.get_feature_size(), action_size) def forward(self, x: torch.Tensor) -> torch.Tensor: h = self._encoder(x) h = self._fc(h) return torch.tanh(h) def compute_error( self, x: torch.Tensor, action: torch.Tensor ) -> torch.Tensor: return F.mse_loss(self.forward(x), action) class ProbablisticRegressor(Imitator): _min_logstd: float _max_logstd: float _encoder: Encoder _mu: nn.Linear _logstd: nn.Linear def __init__( self, encoder: Encoder, action_size: int, min_logstd: float, max_logstd: float, ): super().__init__() self._min_logstd = min_logstd self._max_logstd = max_logstd self._encoder = encoder self._mu = nn.Linear(encoder.get_feature_size(), action_size) self._logstd = nn.Linear(encoder.get_feature_size(), action_size) def dist(self, x: torch.Tensor) -> Normal: h = self._encoder(x) mu = self._mu(h) logstd = self._logstd(h) clipped_logstd = logstd.clamp(self._min_logstd, self._max_logstd) return Normal(mu, clipped_logstd.exp()) def forward(self, x: torch.Tensor) -> torch.Tensor: h = self._encoder(x) mu = self._mu(h) return torch.tanh(mu) def sample_n(self, x: torch.Tensor, n: int) -> torch.Tensor: dist = self.dist(x) actions = cast(torch.Tensor, dist.rsample((n,))) # (n, batch, action) -> (batch, n, action) return actions.transpose(0, 1) def compute_error( self, x: torch.Tensor, action: torch.Tensor ) -> torch.Tensor: dist = self.dist(x) return F.mse_loss(torch.tanh(dist.rsample()), action)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/torch/imitators.py
imitators.py
from typing import List, Optional, Tuple, cast import torch import torch.nn.functional as F from torch import nn from torch.distributions import Normal from torch.nn.utils import spectral_norm from .encoders import EncoderWithAction def _compute_ensemble_variance( observations: torch.Tensor, rewards: torch.Tensor, variances: torch.Tensor, variance_type: str, ) -> torch.Tensor: if variance_type == "max": return variances.max(dim=1).values elif variance_type == "data": data = torch.cat([observations, rewards], dim=2) return (data.std(dim=1) ** 2).sum(dim=1, keepdim=True) raise ValueError(f"invalid variance_type: {variance_type}") def _apply_spectral_norm_recursively(model: nn.Module) -> None: for _, module in model.named_children(): if isinstance(module, nn.ModuleList): for m in module: _apply_spectral_norm_recursively(m) else: if "weight" in module._parameters: spectral_norm(module) def _gaussian_likelihood( x: torch.Tensor, mu: torch.Tensor, logstd: torch.Tensor ) -> torch.Tensor: inv_std = torch.exp(-logstd) return (((mu - x) ** 2) * inv_std).mean(dim=1, keepdim=True) class ProbabilisticDynamicsModel(nn.Module): # type: ignore """Probabilistic dynamics model. References: * `Janner et al., When to Trust Your Model: Model-Based Policy Optimization. <https://arxiv.org/abs/1906.08253>`_ * `Chua et al., Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models. <https://arxiv.org/abs/1805.12114>`_ """ _encoder: EncoderWithAction _mu: nn.Linear _logstd: nn.Linear _max_logstd: nn.Parameter _min_logstd: nn.Parameter def __init__(self, encoder: EncoderWithAction): super().__init__() # apply spectral normalization except logstd encoder. _apply_spectral_norm_recursively(cast(nn.Module, encoder)) self._encoder = encoder feature_size = encoder.get_feature_size() observation_size = encoder.observation_shape[0] out_size = observation_size + 1 # TODO: handle image observation self._mu = spectral_norm(nn.Linear(feature_size, out_size)) self._logstd = nn.Linear(feature_size, out_size) # logstd bounds init_max = torch.empty(1, out_size, dtype=torch.float32).fill_(2.0) init_min = torch.empty(1, out_size, dtype=torch.float32).fill_(-10.0) self._max_logstd = nn.Parameter(init_max) self._min_logstd = nn.Parameter(init_min) def compute_stats( self, x: torch.Tensor, action: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: h = self._encoder(x, action) mu = self._mu(h) # log standard deviation with bounds logstd = self._logstd(h) logstd = self._max_logstd - F.softplus(self._max_logstd - logstd) logstd = self._min_logstd + F.softplus(logstd - self._min_logstd) return mu, logstd def forward( self, x: torch.Tensor, action: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: return self.predict_with_variance(x, action)[:2] def predict_with_variance( self, x: torch.Tensor, action: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: mu, logstd = self.compute_stats(x, action) dist = Normal(mu, logstd.exp()) pred = dist.rsample() # residual prediction next_x = x + pred[:, :-1] next_reward = pred[:, -1].view(-1, 1) return next_x, next_reward, dist.variance.sum(dim=1, keepdims=True) def compute_error( self, obs_t: torch.Tensor, act_t: torch.Tensor, rew_tp1: torch.Tensor, obs_tp1: torch.Tensor, ) -> torch.Tensor: mu, logstd = self.compute_stats(obs_t, act_t) # residual prediction mu_x = obs_t + mu[:, :-1] mu_reward = mu[:, -1].view(-1, 1) logstd_x = logstd[:, :-1] logstd_reward = logstd[:, -1].view(-1, 1) # gaussian likelihood loss likelihood_loss = _gaussian_likelihood(obs_tp1, mu_x, logstd_x) likelihood_loss += _gaussian_likelihood( rew_tp1, mu_reward, logstd_reward ) # penalty to minimize standard deviation penalty = logstd.sum(dim=1, keepdim=True) # minimize logstd bounds bound_loss = self._max_logstd.sum() - self._min_logstd.sum() loss = likelihood_loss + penalty + 1e-2 * bound_loss return loss.view(-1, 1) class ProbabilisticEnsembleDynamicsModel(nn.Module): # type: ignore _models: nn.ModuleList def __init__(self, models: List[ProbabilisticDynamicsModel]): super().__init__() self._models = nn.ModuleList(models) def forward( self, x: torch.Tensor, action: torch.Tensor, indices: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: return self.predict_with_variance(x, action, indices=indices)[:2] def __call__( self, x: torch.Tensor, action: torch.Tensor, indices: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: return cast( Tuple[torch.Tensor, torch.Tensor], super().__call__(x, action, indices), ) def predict_with_variance( self, x: torch.Tensor, action: torch.Tensor, variance_type: str = "data", indices: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: observations_list: List[torch.Tensor] = [] rewards_list: List[torch.Tensor] = [] variances_list: List[torch.Tensor] = [] # predict next observation and reward for model in self._models: obs, rew, var = model.predict_with_variance(x, action) observations_list.append(obs.view(1, x.shape[0], -1)) rewards_list.append(rew.view(1, x.shape[0], 1)) variances_list.append(var.view(1, x.shape[0], 1)) # (ensemble, batch, -1) -> (batch, ensemble, -1) observations = torch.cat(observations_list, dim=0).transpose(0, 1) rewards = torch.cat(rewards_list, dim=0).transpose(0, 1) variances = torch.cat(variances_list, dim=0).transpose(0, 1) variances = _compute_ensemble_variance( observations=observations, rewards=rewards, variances=variances, variance_type=variance_type, ) if indices is None: return observations, rewards, variances # pick samples based on indices partial_observations = observations[torch.arange(x.shape[0]), indices] partial_rewards = rewards[torch.arange(x.shape[0]), indices] return partial_observations, partial_rewards, variances def compute_error( self, obs_t: torch.Tensor, act_t: torch.Tensor, rew_tp1: torch.Tensor, obs_tp1: torch.Tensor, masks: Optional[torch.Tensor] = None, ) -> torch.Tensor: loss_sum = torch.tensor(0.0, dtype=torch.float32, device=obs_t.device) for i, model in enumerate(self._models): loss = model.compute_error(obs_t, act_t, rew_tp1, obs_tp1) assert loss.shape == (obs_t.shape[0], 1) # create mask if necessary if masks is None: mask = torch.randint(0, 2, size=loss.shape, device=obs_t.device) else: mask = masks[i] loss_sum += (loss * mask).mean() return loss_sum @property def models(self) -> nn.ModuleList: return self._models
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/torch/dynamics.py
dynamics.py
from abc import ABCMeta, abstractmethod from typing import List, Optional, Sequence import torch import torch.nn.functional as F from torch import nn from ...itertools import last_flag from ...torch_utility import View class Encoder(metaclass=ABCMeta): @abstractmethod def forward(self, x: torch.Tensor) -> torch.Tensor: pass @abstractmethod def get_feature_size(self) -> int: pass @property def observation_shape(self) -> Sequence[int]: pass @abstractmethod def __call__(self, x: torch.Tensor) -> torch.Tensor: pass def create_reverse(self) -> Sequence[torch.nn.Module]: raise NotImplementedError @property def last_layer(self) -> nn.Linear: raise NotImplementedError class EncoderWithAction(metaclass=ABCMeta): @abstractmethod def forward(self, x: torch.Tensor, action: torch.Tensor) -> torch.Tensor: pass @abstractmethod def get_feature_size(self) -> int: pass @property def action_size(self) -> int: pass @property def observation_shape(self) -> Sequence[int]: pass @abstractmethod def __call__(self, x: torch.Tensor, action: torch.Tensor) -> torch.Tensor: pass def create_reverse(self) -> Sequence[torch.nn.Module]: raise NotImplementedError @property def last_layer(self) -> nn.Linear: raise NotImplementedError class _PixelEncoder(nn.Module): # type: ignore _observation_shape: Sequence[int] _feature_size: int _use_batch_norm: bool _dropout_rate: Optional[float] _activation: nn.Module _convs: nn.ModuleList _conv_bns: nn.ModuleList _fc: nn.Linear _fc_bn: nn.BatchNorm1d _dropouts: nn.ModuleList def __init__( self, observation_shape: Sequence[int], filters: Optional[List[Sequence[int]]] = None, feature_size: int = 512, use_batch_norm: bool = False, dropout_rate: Optional[float] = False, activation: nn.Module = nn.ReLU(), ): super().__init__() # default architecture is based on Nature DQN paper. if filters is None: filters = [(32, 8, 4), (64, 4, 2), (64, 3, 1)] if feature_size is None: feature_size = 512 self._observation_shape = observation_shape self._use_batch_norm = use_batch_norm self._dropout_rate = dropout_rate self._activation = activation self._feature_size = feature_size # convolutional layers in_channels = [observation_shape[0]] + [f[0] for f in filters[:-1]] self._convs = nn.ModuleList() self._conv_bns = nn.ModuleList() self._dropouts = nn.ModuleList() for in_channel, f in zip(in_channels, filters): out_channel, kernel_size, stride = f conv = nn.Conv2d( in_channel, out_channel, kernel_size=kernel_size, stride=stride ) self._convs.append(conv) # use batch normalization layer if use_batch_norm: self._conv_bns.append(nn.BatchNorm2d(out_channel)) # use dropout layer if dropout_rate is not None: self._dropouts.append(nn.Dropout2d(dropout_rate)) # last dense layer self._fc = nn.Linear(self._get_linear_input_size(), feature_size) if use_batch_norm: self._fc_bn = nn.BatchNorm1d(feature_size) if dropout_rate is not None: self._dropouts.append(nn.Dropout(dropout_rate)) def _get_linear_input_size(self) -> int: x = torch.rand((1,) + tuple(self._observation_shape)) with torch.no_grad(): return self._conv_encode(x).view(1, -1).shape[1] # type: ignore def _get_last_conv_shape(self) -> Sequence[int]: x = torch.rand((1,) + tuple(self._observation_shape)) with torch.no_grad(): return self._conv_encode(x).shape # type: ignore def _conv_encode(self, x: torch.Tensor) -> torch.Tensor: h = x for i, conv in enumerate(self._convs): h = self._activation(conv(h)) if self._use_batch_norm: h = self._conv_bns[i](h) if self._dropout_rate is not None: h = self._dropouts[i](h) return h def get_feature_size(self) -> int: return self._feature_size @property def observation_shape(self) -> Sequence[int]: return self._observation_shape @property def last_layer(self) -> nn.Linear: return self._fc class PixelEncoder(_PixelEncoder, Encoder): def forward(self, x: torch.Tensor) -> torch.Tensor: h = self._conv_encode(x) h = self._activation(self._fc(h.view(h.shape[0], -1))) if self._use_batch_norm: h = self._fc_bn(h) if self._dropout_rate is not None: h = self._dropouts[-1](h) return h def create_reverse(self) -> Sequence[torch.nn.Module]: modules: List[torch.nn.Module] = [] # add linear layer modules.append(nn.Linear(self.get_feature_size(), self._fc.in_features)) modules.append(self._activation) # reshape output modules.append(View((-1, *self._get_last_conv_shape()[1:]))) # add conv layers for is_last, conv in last_flag(reversed(self._convs)): deconv = nn.ConvTranspose2d( conv.out_channels, conv.in_channels, kernel_size=conv.kernel_size, stride=conv.stride, ) modules.append(deconv) if not is_last: modules.append(self._activation) return modules class PixelEncoderWithAction(_PixelEncoder, EncoderWithAction): _action_size: int _discrete_action: bool def __init__( self, observation_shape: Sequence[int], action_size: int, filters: Optional[List[Sequence[int]]] = None, feature_size: int = 512, use_batch_norm: bool = False, dropout_rate: Optional[float] = None, discrete_action: bool = False, activation: nn.Module = nn.ReLU(), ): self._action_size = action_size self._discrete_action = discrete_action super().__init__( observation_shape=observation_shape, filters=filters, feature_size=feature_size, use_batch_norm=use_batch_norm, dropout_rate=dropout_rate, activation=activation, ) def _get_linear_input_size(self) -> int: size = super()._get_linear_input_size() return size + self._action_size def forward(self, x: torch.Tensor, action: torch.Tensor) -> torch.Tensor: h = self._conv_encode(x) if self._discrete_action: action = F.one_hot( action.view(-1).long(), num_classes=self._action_size ).float() # cocat feature and action h = torch.cat([h.view(h.shape[0], -1), action], dim=1) h = self._activation(self._fc(h)) if self._use_batch_norm: h = self._fc_bn(h) if self._dropout_rate is not None: h = self._dropouts[-1](h) return h @property def action_size(self) -> int: return self._action_size def create_reverse(self) -> Sequence[torch.nn.Module]: modules: List[torch.nn.Module] = [] # add linear layer in_features = self._fc.in_features - self._action_size modules.append(nn.Linear(self.get_feature_size(), in_features)) modules.append(self._activation) # reshape output modules.append(View((-1, *self._get_last_conv_shape()[1:]))) # add conv layers for is_last, conv in last_flag(reversed(self._convs)): deconv = nn.ConvTranspose2d( conv.out_channels, conv.in_channels, kernel_size=conv.kernel_size, stride=conv.stride, ) modules.append(deconv) if not is_last: modules.append(self._activation) return modules class _VectorEncoder(nn.Module): # type: ignore _observation_shape: Sequence[int] _use_batch_norm: bool _dropout_rate: Optional[float] _use_dense: bool _activation: nn.Module _feature_size: int _fcs: nn.ModuleList _bns: nn.ModuleList _dropouts: nn.ModuleList def __init__( self, observation_shape: Sequence[int], hidden_units: Optional[Sequence[int]] = None, use_batch_norm: bool = False, dropout_rate: Optional[float] = None, use_dense: bool = False, activation: nn.Module = nn.ReLU(), ): super().__init__() self._observation_shape = observation_shape if hidden_units is None: hidden_units = [256, 256] self._use_batch_norm = use_batch_norm self._dropout_rate = dropout_rate self._feature_size = hidden_units[-1] self._activation = activation self._use_dense = use_dense in_units = [observation_shape[0]] + list(hidden_units[:-1]) self._fcs = nn.ModuleList() self._bns = nn.ModuleList() self._dropouts = nn.ModuleList() for i, (in_unit, out_unit) in enumerate(zip(in_units, hidden_units)): if use_dense and i > 0: in_unit += observation_shape[0] self._fcs.append(nn.Linear(in_unit, out_unit)) if use_batch_norm: self._bns.append(nn.BatchNorm1d(out_unit)) if dropout_rate is not None: self._dropouts.append(nn.Dropout(dropout_rate)) def _fc_encode(self, x: torch.Tensor) -> torch.Tensor: h = x for i, fc in enumerate(self._fcs): if self._use_dense and i > 0: h = torch.cat([h, x], dim=1) h = self._activation(fc(h)) if self._use_batch_norm: h = self._bns[i](h) if self._dropout_rate is not None: h = self._dropouts[i](h) return h def get_feature_size(self) -> int: return self._feature_size @property def observation_shape(self) -> Sequence[int]: return self._observation_shape @property def last_layer(self) -> nn.Linear: return self._fcs[-1] class VectorEncoder(_VectorEncoder, Encoder): def forward(self, x: torch.Tensor) -> torch.Tensor: h = self._fc_encode(x) if self._use_batch_norm: h = self._bns[-1](h) if self._dropout_rate is not None: h = self._dropouts[-1](h) return h def create_reverse(self) -> Sequence[torch.nn.Module]: assert not self._use_dense, "use_dense=True is not supported yet" modules: List[torch.nn.Module] = [] for is_last, fc in last_flag(reversed(self._fcs)): modules.append(nn.Linear(fc.out_features, fc.in_features)) if not is_last: modules.append(self._activation) return modules class VectorEncoderWithAction(_VectorEncoder, EncoderWithAction): _action_size: int _discrete_action: bool def __init__( self, observation_shape: Sequence[int], action_size: int, hidden_units: Optional[Sequence[int]] = None, use_batch_norm: bool = False, dropout_rate: Optional[float] = None, use_dense: bool = False, discrete_action: bool = False, activation: nn.Module = nn.ReLU(), ): self._action_size = action_size self._discrete_action = discrete_action concat_shape = (observation_shape[0] + action_size,) super().__init__( observation_shape=concat_shape, hidden_units=hidden_units, use_batch_norm=use_batch_norm, use_dense=use_dense, dropout_rate=dropout_rate, activation=activation, ) self._observation_shape = observation_shape def forward(self, x: torch.Tensor, action: torch.Tensor) -> torch.Tensor: if self._discrete_action: action = F.one_hot( action.view(-1).long(), num_classes=self.action_size ).float() x = torch.cat([x, action], dim=1) h = self._fc_encode(x) if self._use_batch_norm: h = self._bns[-1](h) if self._dropout_rate is not None: h = self._dropouts[-1](h) return h @property def action_size(self) -> int: return self._action_size def create_reverse(self) -> Sequence[torch.nn.Module]: assert not self._use_dense, "use_dense=True is not supported yet" modules: List[torch.nn.Module] = [] for is_last, fc in last_flag(reversed(self._fcs)): if is_last: in_features = fc.in_features - self._action_size else: in_features = fc.in_features modules.append(nn.Linear(fc.out_features, in_features)) if not is_last: modules.append(self._activation) return modules
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/torch/encoders.py
encoders.py
from .dynamics import ( ProbabilisticDynamicsModel, ProbabilisticEnsembleDynamicsModel, ) from .encoders import ( Encoder, EncoderWithAction, PixelEncoder, PixelEncoderWithAction, VectorEncoder, VectorEncoderWithAction, ) from .imitators import ( ConditionalVAE, DeterministicRegressor, DiscreteImitator, Imitator, ProbablisticRegressor, ) from .parameters import Parameter from .policies import ( CategoricalPolicy, DeterministicPolicy, DeterministicResidualPolicy, Policy, SquashedNormalPolicy, squash_action, ) from .q_functions import ( compute_max_with_n_actions, compute_max_with_n_actions_and_indices, ) from .q_functions.base import ContinuousQFunction, DiscreteQFunction from .q_functions.ensemble_q_function import ( EnsembleContinuousQFunction, EnsembleDiscreteQFunction, EnsembleQFunction, ) from .q_functions.fqf_q_function import ( ContinuousFQFQFunction, DiscreteFQFQFunction, ) from .q_functions.iqn_q_function import ( ContinuousIQNQFunction, DiscreteIQNQFunction, ) from .q_functions.mean_q_function import ( ContinuousMeanQFunction, DiscreteMeanQFunction, ) from .q_functions.qr_q_function import ( ContinuousQRQFunction, DiscreteQRQFunction, ) from .v_functions import ValueFunction __all__ = [ "Encoder", "EncoderWithAction", "PixelEncoder", "PixelEncoderWithAction", "VectorEncoder", "VectorEncoderWithAction", "Policy", "squash_action", "DeterministicPolicy", "DeterministicResidualPolicy", "SquashedNormalPolicy", "CategoricalPolicy", "DiscreteQFunction", "ContinuousQFunction", "EnsembleQFunction", "DiscreteMeanQFunction", "ContinuousMeanQFunction", "DiscreteQRQFunction", "ContinuousQRQFunction", "DiscreteIQNQFunction", "ContinuousIQNQFunction", "DiscreteFQFQFunction", "ContinuousFQFQFunction", "EnsembleDiscreteQFunction", "EnsembleContinuousQFunction", "compute_max_with_n_actions", "compute_max_with_n_actions_and_indices", "ValueFunction", "ConditionalVAE", "Imitator", "DiscreteImitator", "DeterministicRegressor", "ProbablisticRegressor", "ProbabilisticEnsembleDynamicsModel", "ProbabilisticDynamicsModel", "Parameter", ]
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/torch/__init__.py
__init__.py
from typing import List, Optional, Union, cast import torch from torch import nn from .base import ContinuousQFunction, DiscreteQFunction def _reduce_ensemble( y: torch.Tensor, reduction: str = "min", dim: int = 0, lam: float = 0.75 ) -> torch.Tensor: if reduction == "min": return y.min(dim=dim).values elif reduction == "max": return y.max(dim=dim).values elif reduction == "mean": return y.mean(dim=dim) elif reduction == "none": return y elif reduction == "mix": max_values = y.max(dim=dim).values min_values = y.min(dim=dim).values return lam * min_values + (1.0 - lam) * max_values raise ValueError def _gather_quantiles_by_indices( y: torch.Tensor, indices: torch.Tensor ) -> torch.Tensor: # TODO: implement this in general case if y.dim() == 3: # (N, batch, n_quantiles) -> (batch, n_quantiles) return y.transpose(0, 1)[torch.arange(y.shape[1]), indices] elif y.dim() == 4: # (N, batch, action, n_quantiles) -> (batch, action, N, n_quantiles) transposed_y = y.transpose(0, 1).transpose(1, 2) # (batch, action, N, n_quantiles) -> (batch * action, N, n_quantiles) flat_y = transposed_y.reshape(-1, y.shape[0], y.shape[3]) head_indices = torch.arange(y.shape[1] * y.shape[2]) # (batch * action, N, n_quantiles) -> (batch * action, n_quantiles) gathered_y = flat_y[head_indices, indices.view(-1)] # (batch * action, n_quantiles) -> (batch, action, n_quantiles) return gathered_y.view(y.shape[1], y.shape[2], -1) raise ValueError def _reduce_quantile_ensemble( y: torch.Tensor, reduction: str = "min", dim: int = 0, lam: float = 0.75 ) -> torch.Tensor: # reduction beased on expectation mean = y.mean(dim=-1) if reduction == "min": indices = mean.min(dim=dim).indices return _gather_quantiles_by_indices(y, indices) elif reduction == "max": indices = mean.max(dim=dim).indices return _gather_quantiles_by_indices(y, indices) elif reduction == "none": return y elif reduction == "mix": min_indices = mean.min(dim=dim).indices max_indices = mean.max(dim=dim).indices min_values = _gather_quantiles_by_indices(y, min_indices) max_values = _gather_quantiles_by_indices(y, max_indices) return lam * min_values + (1.0 - lam) * max_values raise ValueError class EnsembleQFunction(nn.Module): # type: ignore _action_size: int _q_funcs: nn.ModuleList _bootstrap: bool def __init__( self, q_funcs: Union[List[DiscreteQFunction], List[ContinuousQFunction]], bootstrap: bool = False, ): super().__init__() self._action_size = q_funcs[0].action_size self._q_funcs = nn.ModuleList(q_funcs) self._bootstrap = bootstrap and len(q_funcs) > 1 def compute_error( self, obs_t: torch.Tensor, act_t: torch.Tensor, rew_tp1: torch.Tensor, q_tp1: torch.Tensor, ter_tp1: torch.Tensor, gamma: float = 0.99, use_independent_target: bool = False, masks: Optional[torch.Tensor] = None, ) -> torch.Tensor: if use_independent_target: assert q_tp1.ndim == 3 else: assert q_tp1.ndim == 2 if self._bootstrap and masks is not None: assert masks.shape == (len(self._q_funcs), obs_t.shape[0], 1,), ( "Invalid mask shape is detected. " f"mask_size must be {len(self._q_funcs)}." ) td_sum = torch.tensor(0.0, dtype=torch.float32, device=obs_t.device) for i, q_func in enumerate(self._q_funcs): if use_independent_target: target = q_tp1[i] else: target = q_tp1 loss = q_func.compute_error( obs_t, act_t, rew_tp1, target, ter_tp1, gamma, reduction="none" ) if self._bootstrap: if masks is None: mask = torch.randint(0, 2, loss.shape, device=obs_t.device) else: mask = masks[i] loss *= mask.float() td_sum += loss.sum() / (mask.sum().float() + 1e-10) else: td_sum += loss.mean() return td_sum def _compute_target( self, x: torch.Tensor, action: Optional[torch.Tensor] = None, reduction: str = "min", lam: float = 0.75, ) -> torch.Tensor: values_list: List[torch.Tensor] = [] for q_func in self._q_funcs: target = q_func.compute_target(x, action) values_list.append(target.reshape(1, x.shape[0], -1)) values = torch.cat(values_list, dim=0) if action is None: # mean Q function if values.shape[2] == self._action_size: return _reduce_ensemble(values, reduction) # distributional Q function n_q_funcs = values.shape[0] values = values.view(n_q_funcs, x.shape[0], self._action_size, -1) return _reduce_quantile_ensemble(values, reduction) if values.shape[2] == 1: return _reduce_ensemble(values, reduction, lam=lam) return _reduce_quantile_ensemble(values, reduction, lam=lam) @property def q_funcs(self) -> nn.ModuleList: return self._q_funcs @property def bootstrap(self) -> bool: return self._bootstrap class EnsembleDiscreteQFunction(EnsembleQFunction): def forward(self, x: torch.Tensor, reduction: str = "mean") -> torch.Tensor: values = [] for q_func in self._q_funcs: values.append(q_func(x).view(1, x.shape[0], self._action_size)) return _reduce_ensemble(torch.cat(values, dim=0), reduction) def __call__( self, x: torch.Tensor, reduction: str = "mean" ) -> torch.Tensor: return cast(torch.Tensor, super().__call__(x, reduction)) def compute_target( self, x: torch.Tensor, action: Optional[torch.Tensor] = None, reduction: str = "min", lam: float = 0.75, ) -> torch.Tensor: return self._compute_target(x, action, reduction, lam) class EnsembleContinuousQFunction(EnsembleQFunction): def forward( self, x: torch.Tensor, action: torch.Tensor, reduction: str = "mean" ) -> torch.Tensor: values = [] for q_func in self._q_funcs: values.append(q_func(x, action).view(1, x.shape[0], 1)) return _reduce_ensemble(torch.cat(values, dim=0), reduction) def __call__( self, x: torch.Tensor, action: torch.Tensor, reduction: str = "mean" ) -> torch.Tensor: return cast(torch.Tensor, super().__call__(x, action, reduction)) def compute_target( self, x: torch.Tensor, action: torch.Tensor, reduction: str = "min", lam: float = 0.75, ) -> torch.Tensor: return self._compute_target(x, action, reduction, lam)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/torch/q_functions/ensemble_q_function.py
ensemble_q_function.py
from typing import Optional, cast import torch from torch import nn from ..encoders import Encoder, EncoderWithAction from .base import ContinuousQFunction, DiscreteQFunction from .utility import ( compute_quantile_loss, compute_reduce, pick_quantile_value_by_action, ) def _make_taus(h: torch.Tensor, n_quantiles: int) -> torch.Tensor: steps = torch.arange(n_quantiles, dtype=torch.float32, device=h.device) taus = ((steps + 1).float() / n_quantiles).view(1, -1) taus_dot = (steps.float() / n_quantiles).view(1, -1) return (taus + taus_dot) / 2.0 class DiscreteQRQFunction(DiscreteQFunction, nn.Module): # type: ignore _action_size: int _encoder: Encoder _n_quantiles: int _fc: nn.Linear def __init__(self, encoder: Encoder, action_size: int, n_quantiles: int): super().__init__() self._encoder = encoder self._action_size = action_size self._n_quantiles = n_quantiles self._fc = nn.Linear( encoder.get_feature_size(), action_size * n_quantiles ) def _compute_quantiles( self, h: torch.Tensor, taus: torch.Tensor ) -> torch.Tensor: h = cast(torch.Tensor, self._fc(h)) return h.view(-1, self._action_size, self._n_quantiles) def forward(self, x: torch.Tensor) -> torch.Tensor: h = self._encoder(x) taus = _make_taus(h, self._n_quantiles) quantiles = self._compute_quantiles(h, taus) return quantiles.mean(dim=2) def compute_error( self, obs_t: torch.Tensor, act_t: torch.Tensor, rew_tp1: torch.Tensor, q_tp1: torch.Tensor, ter_tp1: torch.Tensor, gamma: float = 0.99, reduction: str = "mean", ) -> torch.Tensor: assert q_tp1.shape == (obs_t.shape[0], self._n_quantiles) # extraect quantiles corresponding to act_t h = self._encoder(obs_t) taus = _make_taus(h, self._n_quantiles) quantiles = self._compute_quantiles(h, taus) quantiles_t = pick_quantile_value_by_action(quantiles, act_t) loss = compute_quantile_loss( quantiles_t=quantiles_t, rewards_tp1=rew_tp1, quantiles_tp1=q_tp1, terminals_tp1=ter_tp1, taus=taus, gamma=gamma, ) return compute_reduce(loss, reduction) def compute_target( self, x: torch.Tensor, action: Optional[torch.Tensor] = None ) -> torch.Tensor: h = self._encoder(x) taus = _make_taus(h, self._n_quantiles) quantiles = self._compute_quantiles(h, taus) if action is None: return quantiles return pick_quantile_value_by_action(quantiles, action) @property def action_size(self) -> int: return self._action_size @property def encoder(self) -> Encoder: return self._encoder class ContinuousQRQFunction(ContinuousQFunction, nn.Module): # type: ignore _action_size: int _encoder: EncoderWithAction _n_quantiles: int _fc: nn.Linear def __init__(self, encoder: EncoderWithAction, n_quantiles: int): super().__init__() self._encoder = encoder self._action_size = encoder.action_size self._n_quantiles = n_quantiles self._fc = nn.Linear(encoder.get_feature_size(), n_quantiles) def _compute_quantiles( self, h: torch.Tensor, taus: torch.Tensor ) -> torch.Tensor: return cast(torch.Tensor, self._fc(h)) def forward(self, x: torch.Tensor, action: torch.Tensor) -> torch.Tensor: h = self._encoder(x, action) taus = _make_taus(h, self._n_quantiles) quantiles = self._compute_quantiles(h, taus) return quantiles.mean(dim=1, keepdim=True) def compute_error( self, obs_t: torch.Tensor, act_t: torch.Tensor, rew_tp1: torch.Tensor, q_tp1: torch.Tensor, ter_tp1: torch.Tensor, gamma: float = 0.99, reduction: str = "mean", ) -> torch.Tensor: assert q_tp1.shape == (obs_t.shape[0], self._n_quantiles) h = self._encoder(obs_t, act_t) taus = _make_taus(h, self._n_quantiles) quantiles_t = self._compute_quantiles(h, taus) loss = compute_quantile_loss( quantiles_t=quantiles_t, rewards_tp1=rew_tp1, quantiles_tp1=q_tp1, terminals_tp1=ter_tp1, taus=taus, gamma=gamma, ) return compute_reduce(loss, reduction) def compute_target( self, x: torch.Tensor, action: torch.Tensor ) -> torch.Tensor: h = self._encoder(x, action) taus = _make_taus(h, self._n_quantiles) return self._compute_quantiles(h, taus) @property def action_size(self) -> int: return self._action_size @property def encoder(self) -> EncoderWithAction: return self._encoder
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/torch/q_functions/qr_q_function.py
qr_q_function.py
from typing import Optional, cast import torch import torch.nn.functional as F from torch import nn from ..encoders import Encoder, EncoderWithAction from .base import ContinuousQFunction, DiscreteQFunction from .utility import compute_huber_loss, compute_reduce, pick_value_by_action class DiscreteMeanQFunction(DiscreteQFunction, nn.Module): # type: ignore _action_size: int _encoder: Encoder _fc: nn.Linear def __init__(self, encoder: Encoder, action_size: int): super().__init__() self._action_size = action_size self._encoder = encoder self._fc = nn.Linear(encoder.get_feature_size(), action_size) def forward(self, x: torch.Tensor) -> torch.Tensor: return cast(torch.Tensor, self._fc(self._encoder(x))) def compute_error( self, obs_t: torch.Tensor, act_t: torch.Tensor, rew_tp1: torch.Tensor, q_tp1: torch.Tensor, ter_tp1: torch.Tensor, gamma: float = 0.99, reduction: str = "mean", ) -> torch.Tensor: one_hot = F.one_hot(act_t.view(-1), num_classes=self.action_size) q_t = (self.forward(obs_t) * one_hot.float()).sum(dim=1, keepdim=True) y = rew_tp1 + gamma * q_tp1 * (1 - ter_tp1) loss = compute_huber_loss(q_t, y) return compute_reduce(loss, reduction) def compute_target( self, x: torch.Tensor, action: Optional[torch.Tensor] = None ) -> torch.Tensor: if action is None: return self.forward(x) return pick_value_by_action(self.forward(x), action, keepdim=True) @property def action_size(self) -> int: return self._action_size @property def encoder(self) -> Encoder: return self._encoder class ContinuousMeanQFunction(ContinuousQFunction, nn.Module): # type: ignore _encoder: EncoderWithAction _action_size: int _fc: nn.Linear def __init__(self, encoder: EncoderWithAction): super().__init__() self._encoder = encoder self._action_size = encoder.action_size self._fc = nn.Linear(encoder.get_feature_size(), 1) def forward(self, x: torch.Tensor, action: torch.Tensor) -> torch.Tensor: return cast(torch.Tensor, self._fc(self._encoder(x, action))) def compute_error( self, obs_t: torch.Tensor, act_t: torch.Tensor, rew_tp1: torch.Tensor, q_tp1: torch.Tensor, ter_tp1: torch.Tensor, gamma: float = 0.99, reduction: str = "mean", ) -> torch.Tensor: q_t = self.forward(obs_t, act_t) y = rew_tp1 + gamma * q_tp1 * (1 - ter_tp1) loss = F.mse_loss(q_t, y, reduction="none") return compute_reduce(loss, reduction) def compute_target( self, x: torch.Tensor, action: torch.Tensor ) -> torch.Tensor: return self.forward(x, action) @property def action_size(self) -> int: return self._action_size @property def encoder(self) -> EncoderWithAction: return self._encoder
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/torch/q_functions/mean_q_function.py
mean_q_function.py
from typing import Optional, Tuple, cast import torch from torch import nn from ..encoders import Encoder, EncoderWithAction from .base import ContinuousQFunction, DiscreteQFunction from .iqn_q_function import compute_iqn_feature from .utility import ( compute_quantile_loss, compute_reduce, pick_quantile_value_by_action, ) def _make_taus( h: torch.Tensor, proposal: nn.Linear, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: proposals = proposal(h.detach()) # tau_i+1 log_probs = torch.log_softmax(proposals, dim=1) probs = log_probs.exp() taus = torch.cumsum(probs, dim=1) # tau_i pads = torch.zeros(h.shape[0], 1, device=h.device) taus_minus = torch.cat([pads, taus[:, :-1]], dim=1) # tau^ taus_prime = (taus + taus_minus) / 2 # entropy for penalty entropies = -(log_probs * probs).sum(dim=1) return taus, taus_minus, taus_prime, entropies class DiscreteFQFQFunction(DiscreteQFunction, nn.Module): # type: ignore _action_size: int _entropy_coeff: float _encoder: Encoder _fc: nn.Linear _n_quantiles: int _embed_size: int _embed: nn.Linear _proposal: nn.Linear def __init__( self, encoder: Encoder, action_size: int, n_quantiles: int, embed_size: int, entropy_coeff: float = 0.0, ): super().__init__() self._encoder = encoder self._action_size = action_size self._fc = nn.Linear(encoder.get_feature_size(), self._action_size) self._entropy_coeff = entropy_coeff self._n_quantiles = n_quantiles self._embed_size = embed_size self._embed = nn.Linear(embed_size, encoder.get_feature_size()) self._proposal = nn.Linear(encoder.get_feature_size(), n_quantiles) def _compute_quantiles( self, h: torch.Tensor, taus: torch.Tensor ) -> torch.Tensor: # element-wise product on feature and phi (batch, quantile, feature) prod = compute_iqn_feature(h, taus, self._embed, self._embed_size) # (batch, quantile, feature) -> (batch, action, quantile) return cast(torch.Tensor, self._fc(prod)).transpose(1, 2) def forward(self, x: torch.Tensor) -> torch.Tensor: h = self._encoder(x) taus, taus_minus, taus_prime, _ = _make_taus(h, self._proposal) quantiles = self._compute_quantiles(h, taus_prime.detach()) weight = (taus - taus_minus).view(-1, 1, self._n_quantiles).detach() return (weight * quantiles).sum(dim=2) def compute_error( self, obs_t: torch.Tensor, act_t: torch.Tensor, rew_tp1: torch.Tensor, q_tp1: torch.Tensor, ter_tp1: torch.Tensor, gamma: float = 0.99, reduction: str = "mean", ) -> torch.Tensor: assert q_tp1.shape == (obs_t.shape[0], self._n_quantiles) # compute quantiles h = self._encoder(obs_t) taus, _, taus_prime, entropies = _make_taus(h, self._proposal) quantiles = self._compute_quantiles(h, taus_prime.detach()) quantiles_t = pick_quantile_value_by_action(quantiles, act_t) quantile_loss = compute_quantile_loss( quantiles_t=quantiles_t, rewards_tp1=rew_tp1, quantiles_tp1=q_tp1, terminals_tp1=ter_tp1, taus=taus_prime.detach(), gamma=gamma, ) # compute proposal network loss # original paper explicitly separates the optimization process # but, it's combined here proposal_loss = self._compute_proposal_loss(h, act_t, taus, taus_prime) proposal_params = list(self._proposal.parameters()) proposal_grads = torch.autograd.grad( outputs=proposal_loss.mean(), inputs=proposal_params, retain_graph=True, ) # directly apply gradients for param, grad in zip(list(proposal_params), proposal_grads): param.grad = 1e-4 * grad loss = quantile_loss - self._entropy_coeff * entropies return compute_reduce(loss, reduction) def _compute_proposal_loss( self, h: torch.Tensor, action: torch.Tensor, taus: torch.Tensor, taus_prime: torch.Tensor, ) -> torch.Tensor: q_taus = self._compute_quantiles(h.detach(), taus) q_taus_prime = self._compute_quantiles(h.detach(), taus_prime) batch_steps = torch.arange(h.shape[0]) # (batch, n_quantiles - 1) q_taus = q_taus[batch_steps, action.view(-1)][:, :-1] # (batch, n_quantiles) q_taus_prime = q_taus_prime[batch_steps, action.view(-1)] # compute gradients proposal_grad = 2 * q_taus - q_taus_prime[:, :-1] - q_taus_prime[:, 1:] return proposal_grad.sum(dim=1) def compute_target( self, x: torch.Tensor, action: Optional[torch.Tensor] = None ) -> torch.Tensor: h = self._encoder(x) _, _, taus_prime, _ = _make_taus(h, self._proposal) quantiles = self._compute_quantiles(h, taus_prime.detach()) if action is None: return quantiles return pick_quantile_value_by_action(quantiles, action) @property def action_size(self) -> int: return self._action_size @property def encoder(self) -> Encoder: return self._encoder class ContinuousFQFQFunction(ContinuousQFunction, nn.Module): # type: ignore _action_size: int _entropy_coeff: float _encoder: EncoderWithAction _fc: nn.Linear _n_quantiles: int _embed_size: int _embed: nn.Linear _proposal: nn.Linear def __init__( self, encoder: EncoderWithAction, n_quantiles: int, embed_size: int, entropy_coeff: float = 0.0, ): super().__init__() self._encoder = encoder self._action_size = encoder.action_size self._fc = nn.Linear(encoder.get_feature_size(), 1) self._entropy_coeff = entropy_coeff self._n_quantiles = n_quantiles self._embed_size = embed_size self._embed = nn.Linear(embed_size, encoder.get_feature_size()) self._proposal = nn.Linear(encoder.get_feature_size(), n_quantiles) def _compute_quantiles( self, h: torch.Tensor, taus: torch.Tensor ) -> torch.Tensor: # element-wise product on feature and phi (batch, quantile, feature) prod = compute_iqn_feature(h, taus, self._embed, self._embed_size) # (batch, quantile, feature) -> (batch, quantile) return cast(torch.Tensor, self._fc(prod)).view(h.shape[0], -1) def forward(self, x: torch.Tensor, action: torch.Tensor) -> torch.Tensor: h = self._encoder(x, action) taus, taus_minus, taus_prime, _ = _make_taus(h, self._proposal) quantiles = self._compute_quantiles(h, taus_prime.detach()) weight = (taus - taus_minus).detach() return (weight * quantiles).sum(dim=1, keepdim=True) def compute_error( self, obs_t: torch.Tensor, act_t: torch.Tensor, rew_tp1: torch.Tensor, q_tp1: torch.Tensor, ter_tp1: torch.Tensor, gamma: float = 0.99, reduction: str = "mean", ) -> torch.Tensor: assert q_tp1.shape == (obs_t.shape[0], self._n_quantiles) h = self._encoder(obs_t, act_t) taus, _, taus_prime, entropies = _make_taus(h, self._proposal) quantiles_t = self._compute_quantiles(h, taus_prime.detach()) quantile_loss = compute_quantile_loss( quantiles_t=quantiles_t, rewards_tp1=rew_tp1, quantiles_tp1=q_tp1, terminals_tp1=ter_tp1, taus=taus_prime.detach(), gamma=gamma, ) # compute proposal network loss # original paper explicitly separates the optimization process # but, it's combined here proposal_loss = self._compute_proposal_loss(h, taus, taus_prime) proposal_params = list(self._proposal.parameters()) proposal_grads = torch.autograd.grad( outputs=proposal_loss.mean(), inputs=proposal_params, retain_graph=True, ) # directly apply gradients for param, grad in zip(list(proposal_params), proposal_grads): param.grad = 1e-4 * grad loss = quantile_loss - self._entropy_coeff * entropies return compute_reduce(loss, reduction) def _compute_proposal_loss( self, h: torch.Tensor, taus: torch.Tensor, taus_prime: torch.Tensor ) -> torch.Tensor: # (batch, n_quantiles - 1) q_taus = self._compute_quantiles(h.detach(), taus)[:, :-1] # (batch, n_quantiles) q_taus_prime = self._compute_quantiles(h.detach(), taus_prime) # compute gradients proposal_grad = 2 * q_taus - q_taus_prime[:, :-1] - q_taus_prime[:, 1:] return proposal_grad.sum(dim=1) def compute_target( self, x: torch.Tensor, action: torch.Tensor ) -> torch.Tensor: h = self._encoder(x, action) _, _, taus_prime, _ = _make_taus(h, self._proposal) return self._compute_quantiles(h, taus_prime.detach()) @property def action_size(self) -> int: return self._action_size @property def encoder(self) -> EncoderWithAction: return self._encoder
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/torch/q_functions/fqf_q_function.py
fqf_q_function.py
from typing import cast import torch import torch.nn.functional as F def pick_value_by_action( values: torch.Tensor, action: torch.Tensor, keepdim: bool = False ) -> torch.Tensor: assert values.ndim == 2 action_size = values.shape[1] one_hot = F.one_hot(action.view(-1), num_classes=action_size) masked_values = values * cast(torch.Tensor, one_hot.float()) return masked_values.sum(dim=1, keepdim=keepdim) def pick_quantile_value_by_action( values: torch.Tensor, action: torch.Tensor, keepdim: bool = False ) -> torch.Tensor: assert values.ndim == 3 action_size = values.shape[1] one_hot = F.one_hot(action.view(-1), num_classes=action_size) mask = cast(torch.Tensor, one_hot.view(-1, action_size, 1).float()) return (values * mask).sum(dim=1, keepdim=keepdim) def compute_huber_loss( y: torch.Tensor, target: torch.Tensor, beta: float = 1.0 ) -> torch.Tensor: diff = target - y cond = diff.detach().abs() < beta return torch.where(cond, 0.5 * diff ** 2, beta * (diff.abs() - 0.5 * beta)) def compute_quantile_huber_loss( y: torch.Tensor, target: torch.Tensor, taus: torch.Tensor ) -> torch.Tensor: assert y.dim() == 3 and target.dim() == 3 and taus.dim() == 3 # compute huber loss huber_loss = compute_huber_loss(y, target) delta = cast(torch.Tensor, ((target - y).detach() < 0.0).float()) element_wise_loss = (taus - delta).abs() * huber_loss return element_wise_loss.sum(dim=2).mean(dim=1) def compute_quantile_loss( quantiles_t: torch.Tensor, rewards_tp1: torch.Tensor, quantiles_tp1: torch.Tensor, terminals_tp1: torch.Tensor, taus: torch.Tensor, gamma: float, ) -> torch.Tensor: batch_size, n_quantiles = quantiles_t.shape expanded_quantiles_t = quantiles_t.view(batch_size, 1, -1) y = rewards_tp1 + gamma * quantiles_tp1 * (1 - terminals_tp1) expanded_y = y.view(batch_size, -1, 1) expanded_taus = taus.view(-1, 1, n_quantiles) return compute_quantile_huber_loss( expanded_quantiles_t, expanded_y, expanded_taus ) def compute_reduce(value: torch.Tensor, reduction_type: str) -> torch.Tensor: if reduction_type == "mean": return value.mean() elif reduction_type == "sum": return value.sum() elif reduction_type == "none": return value.view(-1, 1) raise ValueError("invalid reduction type.")
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/torch/q_functions/utility.py
utility.py
from typing import Tuple import torch from .ensemble_q_function import EnsembleContinuousQFunction def compute_max_with_n_actions_and_indices( x: torch.Tensor, actions: torch.Tensor, q_func: EnsembleContinuousQFunction, lam: float, ) -> Tuple[torch.Tensor, torch.Tensor]: """Returns weighted target value from sampled actions. This calculation is proposed in BCQ paper for the first time. `x` should be shaped with `(batch, dim_obs)`. `actions` should be shaped with `(batch, N, dim_action)`. """ batch_size = actions.shape[0] n_critics = len(q_func.q_funcs) n_actions = actions.shape[1] # (batch, observation) -> (batch, n, observation) expanded_x = x.expand(n_actions, *x.shape).transpose(0, 1) # (batch * n, observation) flat_x = expanded_x.reshape(-1, *x.shape[1:]) # (batch, n, action) -> (batch * n, action) flat_actions = actions.reshape(batch_size * n_actions, -1) # estimate values while taking care of quantiles flat_values = q_func.compute_target(flat_x, flat_actions, "none") # reshape to (n_ensembles, batch_size, n, -1) transposed_values = flat_values.view(n_critics, batch_size, n_actions, -1) # (n_ensembles, batch_size, n, -1) -> (batch_size, n_ensembles, n, -1) values = transposed_values.transpose(0, 1) # get combination indices # (batch_size, n_ensembles, n, -1) -> (batch_size, n_ensembles, n) mean_values = values.mean(dim=3) # (batch_size, n_ensembles, n) -> (batch_size, n) max_values, max_indices = mean_values.max(dim=1) min_values, min_indices = mean_values.min(dim=1) mix_values = (1.0 - lam) * max_values + lam * min_values # (batch_size, n) -> (batch_size,) action_indices = mix_values.argmax(dim=1) # fuse maximum values and minimum values # (batch_size, n_ensembles, n, -1) -> (batch_size, n, n_ensembles, -1) values_T = values.transpose(1, 2) # (batch, n, n_ensembles, -1) -> (batch * n, n_ensembles, -1) flat_values = values_T.reshape(batch_size * n_actions, n_critics, -1) # (batch * n, n_ensembles, -1) -> (batch * n, -1) bn_indices = torch.arange(batch_size * n_actions) max_values = flat_values[bn_indices, max_indices.view(-1)] min_values = flat_values[bn_indices, min_indices.view(-1)] # (batch * n, -1) -> (batch, n, -1) max_values = max_values.view(batch_size, n_actions, -1) min_values = min_values.view(batch_size, n_actions, -1) mix_values = (1.0 - lam) * max_values + lam * min_values # (batch, n, -1) -> (batch, -1) result_values = mix_values[torch.arange(x.shape[0]), action_indices] return result_values, action_indices def compute_max_with_n_actions( x: torch.Tensor, actions: torch.Tensor, q_func: EnsembleContinuousQFunction, lam: float, ) -> torch.Tensor: return compute_max_with_n_actions_and_indices(x, actions, q_func, lam)[0]
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/torch/q_functions/__init__.py
__init__.py
import math from typing import Optional, cast import torch from torch import nn from ..encoders import Encoder, EncoderWithAction from .base import ContinuousQFunction, DiscreteQFunction from .utility import ( compute_quantile_loss, compute_reduce, pick_quantile_value_by_action, ) def _make_taus( h: torch.Tensor, n_quantiles: int, training: bool ) -> torch.Tensor: if training: taus = torch.rand(h.shape[0], n_quantiles, device=h.device) else: taus = torch.linspace( start=0, end=1, steps=n_quantiles, device=h.device, dtype=torch.float32, ) taus = taus.view(1, -1).repeat(h.shape[0], 1) return taus def compute_iqn_feature( h: torch.Tensor, taus: torch.Tensor, embed: nn.Linear, embed_size: int, ) -> torch.Tensor: # compute embedding steps = torch.arange(embed_size, device=h.device).float() + 1 # (batch, quantile, embedding) expanded_taus = taus.view(h.shape[0], -1, 1) prior = torch.cos(math.pi * steps.view(1, 1, -1) * expanded_taus) # (batch, quantile, embedding) -> (batch, quantile, feature) phi = torch.relu(embed(prior)) # (batch, 1, feature) -> (batch, quantile, feature) return h.view(h.shape[0], 1, -1) * phi class DiscreteIQNQFunction(DiscreteQFunction, nn.Module): # type: ignore _action_size: int _encoder: Encoder _fc: nn.Linear _n_quantiles: int _n_greedy_quantiles: int _embed_size: int _embed: nn.Linear def __init__( self, encoder: Encoder, action_size: int, n_quantiles: int, n_greedy_quantiles: int, embed_size: int, ): super().__init__() self._encoder = encoder self._action_size = action_size self._fc = nn.Linear(encoder.get_feature_size(), self._action_size) self._n_quantiles = n_quantiles self._n_greedy_quantiles = n_greedy_quantiles self._embed_size = embed_size self._embed = nn.Linear(embed_size, encoder.get_feature_size()) def _make_taus(self, h: torch.Tensor) -> torch.Tensor: if self.training: n_quantiles = self._n_quantiles else: n_quantiles = self._n_greedy_quantiles return _make_taus(h, n_quantiles, self.training) def _compute_quantiles( self, h: torch.Tensor, taus: torch.Tensor ) -> torch.Tensor: # element-wise product on feature and phi (batch, quantile, feature) prod = compute_iqn_feature(h, taus, self._embed, self._embed_size) # (batch, quantile, feature) -> (batch, action, quantile) return cast(torch.Tensor, self._fc(prod)).transpose(1, 2) def forward(self, x: torch.Tensor) -> torch.Tensor: h = self._encoder(x) taus = self._make_taus(h) quantiles = self._compute_quantiles(h, taus) return quantiles.mean(dim=2) def compute_error( self, obs_t: torch.Tensor, act_t: torch.Tensor, rew_tp1: torch.Tensor, q_tp1: torch.Tensor, ter_tp1: torch.Tensor, gamma: float = 0.99, reduction: str = "mean", ) -> torch.Tensor: assert q_tp1.shape == (obs_t.shape[0], self._n_quantiles) # extraect quantiles corresponding to act_t h = self._encoder(obs_t) taus = self._make_taus(h) quantiles = self._compute_quantiles(h, taus) quantiles_t = pick_quantile_value_by_action(quantiles, act_t) loss = compute_quantile_loss( quantiles_t=quantiles_t, rewards_tp1=rew_tp1, quantiles_tp1=q_tp1, terminals_tp1=ter_tp1, taus=taus, gamma=gamma, ) return compute_reduce(loss, reduction) def compute_target( self, x: torch.Tensor, action: Optional[torch.Tensor] = None ) -> torch.Tensor: h = self._encoder(x) taus = self._make_taus(h) quantiles = self._compute_quantiles(h, taus) if action is None: return quantiles return pick_quantile_value_by_action(quantiles, action) @property def action_size(self) -> int: return self._action_size @property def encoder(self) -> Encoder: return self._encoder class ContinuousIQNQFunction(ContinuousQFunction, nn.Module): # type: ignore _action_size: int _encoder: EncoderWithAction _fc: nn.Linear _n_quantiles: int _n_greedy_quantiles: int _embed_size: int _embed: nn.Linear def __init__( self, encoder: EncoderWithAction, n_quantiles: int, n_greedy_quantiles: int, embed_size: int, ): super().__init__() self._encoder = encoder self._action_size = encoder.action_size self._fc = nn.Linear(encoder.get_feature_size(), 1) self._n_quantiles = n_quantiles self._n_greedy_quantiles = n_greedy_quantiles self._embed_size = embed_size self._embed = nn.Linear(embed_size, encoder.get_feature_size()) def _make_taus(self, h: torch.Tensor) -> torch.Tensor: if self.training: n_quantiles = self._n_quantiles else: n_quantiles = self._n_greedy_quantiles return _make_taus(h, n_quantiles, self.training) def _compute_quantiles( self, h: torch.Tensor, taus: torch.Tensor ) -> torch.Tensor: # element-wise product on feature and phi (batch, quantile, feature) prod = compute_iqn_feature(h, taus, self._embed, self._embed_size) # (batch, quantile, feature) -> (batch, quantile) return cast(torch.Tensor, self._fc(prod)).view(h.shape[0], -1) def forward(self, x: torch.Tensor, action: torch.Tensor) -> torch.Tensor: h = self._encoder(x, action) taus = self._make_taus(h) quantiles = self._compute_quantiles(h, taus) return quantiles.mean(dim=1, keepdim=True) def compute_error( self, obs_t: torch.Tensor, act_t: torch.Tensor, rew_tp1: torch.Tensor, q_tp1: torch.Tensor, ter_tp1: torch.Tensor, gamma: float = 0.99, reduction: str = "mean", ) -> torch.Tensor: assert q_tp1.shape == (obs_t.shape[0], self._n_quantiles) h = self._encoder(obs_t, act_t) taus = self._make_taus(h) quantiles_t = self._compute_quantiles(h, taus) loss = compute_quantile_loss( quantiles_t=quantiles_t, rewards_tp1=rew_tp1, quantiles_tp1=q_tp1, terminals_tp1=ter_tp1, taus=taus, gamma=gamma, ) return compute_reduce(loss, reduction) def compute_target( self, x: torch.Tensor, action: torch.Tensor ) -> torch.Tensor: h = self._encoder(x, action) taus = self._make_taus(h) return self._compute_quantiles(h, taus) @property def action_size(self) -> int: return self._action_size @property def encoder(self) -> EncoderWithAction: return self._encoder
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/models/torch/q_functions/iqn_q_function.py
iqn_q_function.py
from typing import TYPE_CHECKING, Any, List, Tuple, Union import numpy as np from gym.spaces import Discrete from ..algos import AlgoBase from ..dataset import MDPDataset if TYPE_CHECKING: from stable_baselines3.common.buffers import ReplayBuffer class SB3Wrapper: """A wrapper for d3rlpy algorithms so they can be used with Stable-Baselines3 (SB3). Args: algo (d3rlpy.algos.base.AlgoBase): algorithm. Attributes: algo (d3rlpy.algos.base.AlgoBase): algorithm. """ def __init__(self, algo: AlgoBase): # Avoid infinite recursion due to override of setattr self.__dict__["algo"] = algo def predict( self, observation: Union[np.ndarray, List[Any]], state: Any = None, mask: Any = None, deterministic: bool = True, ) -> Tuple[np.ndarray, None]: """Returns actions. Args: observation: observation. state: this argument is just ignored. mask: this argument is just ignored. deterministic: flag to return greedy actions. Returns: ``(actions, None)``. """ if deterministic: return self.algo.predict(observation), None return self.algo.sample_action(observation), None def __getattr__(self, attr: str) -> Any: if attr in self.__dict__: return getattr(self, attr) return getattr(self.algo, attr) def __setattr__(self, attr_name: str, value: Any) -> None: if attr_name != "algo": self.algo.__setattr__(attr_name, value) else: self.__dict__["algo"] = value def to_mdp_dataset(replay_buffer: "ReplayBuffer") -> MDPDataset: """Returns d3rlpy's MDPDataset from SB3's ReplayBuffer Args: replay_buffer: SB3's replay buffer. Returns: d3rlpy's MDPDataset. """ pos = replay_buffer.size() discrete_action = isinstance(replay_buffer.action_space, Discrete) dataset = MDPDataset( observations=replay_buffer.observations[:pos, 0], actions=replay_buffer.actions[:pos, 0], rewards=replay_buffer.rewards[:pos, 0], terminals=replay_buffer.dones[:pos, 0], discrete_action=discrete_action, ) return dataset
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/wrappers/sb3.py
sb3.py
from typing import Sequence import numpy as np class StackedObservation: """StackedObservation class. This class is used to stack images to handle temporal features. References: * `Mnih et al., Human-level control through deep reinforcement learning. <https://www.nature.com/articles/nature14236>`_ Args: observation_shape (tuple): image observation shape. n_frames (int): the number of frames to stack. dtype (int): numpy data type. """ _image_channels: int _n_frames: int _dtype: np.dtype _stack: np.ndarray def __init__( self, observation_shape: Sequence[int], n_frames: int, dtype: np.dtype = np.uint8, ): self._image_channels = observation_shape[0] image_size = observation_shape[1:] self._n_frames = n_frames self._dtype = dtype stacked_shape = (self._image_channels * n_frames, *image_size) self._stack = np.zeros(stacked_shape, dtype=self._dtype) def append(self, image: np.ndarray) -> np.ndarray: """Stack new image. Args: image (numpy.ndarray): image observation. """ assert image.dtype == self._dtype self._stack = np.roll(self._stack, -self._image_channels, axis=0) head_channel = self._image_channels * (self._n_frames - 1) self._stack[head_channel:] = image.copy() def eval(self) -> np.ndarray: """Returns stacked observation. Returns: numpy.ndarray: stacked observation. """ return self._stack def clear(self) -> None: """Clear stacked observation by filling 0.""" self._stack.fill(0) class BatchStackedObservation: """Batch version of StackedObservation class. This class is used to stack images to handle temporal features. References: * `Mnih et al., Human-level control through deep reinforcement learning. <https://www.nature.com/articles/nature14236>`_ Args: observation_shape (tuple): image observation shape. n_frames (int): the number of frames to stack. dtype (int): numpy data type. """ _image_channels: int _n_frames: int _n_envs: int _dtype: np.dtype _stack: np.ndarray def __init__( self, observation_shape: Sequence[int], n_frames: int, n_envs: int, dtype: np.dtype = np.uint8, ): self._image_channels = observation_shape[0] image_size = observation_shape[1:] self._n_frames = n_frames self._n_envs = n_envs self._dtype = dtype stacked_shape = (n_envs, self._image_channels * n_frames, *image_size) self._stack = np.zeros(stacked_shape, dtype=self._dtype) def append(self, image: np.ndarray) -> np.ndarray: """Stack new image. Args: image (numpy.ndarray): image observation. """ assert image.dtype == self._dtype self._stack = np.roll(self._stack, -self._image_channels, axis=1) head_channel = self._image_channels * (self._n_frames - 1) self._stack[:, head_channel:] = image.copy() def eval(self) -> np.ndarray: """Returns stacked observation. Returns: numpy.ndarray: stacked observation. """ return self._stack def clear(self) -> None: """Clear stacked observation by filling 0.""" self._stack.fill(0) def clear_by_index(self, index: int) -> None: """Clear stacked observation in the specific index by filling 0.""" self._stack[index].fill(0)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/preprocessing/stack.py
stack.py
from typing import Any, ClassVar, Dict, List, Optional, Type import gym import numpy as np import torch from ..dataset import MDPDataset, Transition from ..decorators import pretty_repr @pretty_repr class Scaler: TYPE: ClassVar[str] = "none" def fit(self, transitions: List[Transition]) -> None: """Estimates scaling parameters from dataset. Args: transitions: list of transitions. """ raise NotImplementedError def fit_with_env(self, env: gym.Env) -> None: """Gets scaling parameters from environment. Args: env: gym environment. """ raise NotImplementedError def transform(self, x: torch.Tensor) -> torch.Tensor: """Returns processed observations. Args: x: observation. Returns: processed observation. """ raise NotImplementedError def reverse_transform(self, x: torch.Tensor) -> torch.Tensor: """Returns reversely transformed observations. Args: x: observation. Returns: reversely transformed observation. """ raise NotImplementedError def get_type(self) -> str: """Returns a scaler type. Returns: scaler type. """ return self.TYPE def get_params(self, deep: bool = False) -> Dict[str, Any]: """Returns scaling parameters. Args: deep: flag to deeply copy objects. Returns: scaler parameters. """ raise NotImplementedError class PixelScaler(Scaler): """Pixel normalization preprocessing. .. math:: x' = x / 255 .. code-block:: python from d3rlpy.dataset import MDPDataset from d3rlpy.algos import CQL dataset = MDPDataset(observations, actions, rewards, terminals) # initialize algorithm with PixelScaler cql = CQL(scaler='pixel') cql.fit(dataset.episodes) """ TYPE: ClassVar[str] = "pixel" def fit(self, transitions: List[Transition]) -> None: pass def fit_with_env(self, env: gym.Env) -> None: pass def transform(self, x: torch.Tensor) -> torch.Tensor: return x.float() / 255.0 def reverse_transform(self, x: torch.Tensor) -> torch.Tensor: return (x * 255.0).long() def get_params(self, deep: bool = False) -> Dict[str, Any]: return {} class MinMaxScaler(Scaler): r"""Min-Max normalization preprocessing. .. math:: x' = (x - \min{x}) / (\max{x} - \min{x}) .. code-block:: python from d3rlpy.dataset import MDPDataset from d3rlpy.algos import CQL dataset = MDPDataset(observations, actions, rewards, terminals) # initialize algorithm with MinMaxScaler cql = CQL(scaler='min_max') # scaler is initialized from the given transitions transitions = [] for episode in dataset.episodes: transitions += episode.transitions cql.fit(transitions) You can also initialize with :class:`d3rlpy.dataset.MDPDataset` object or manually. .. code-block:: python from d3rlpy.preprocessing import MinMaxScaler # initialize with dataset scaler = MinMaxScaler(dataset) # initialize manually minimum = observations.min(axis=0) maximum = observations.max(axis=0) scaler = MinMaxScaler(minimum=minimum, maximum=maximum) cql = CQL(scaler=scaler) Args: dataset (d3rlpy.dataset.MDPDataset): dataset object. min (numpy.ndarray): minimum values at each entry. max (numpy.ndarray): maximum values at each entry. """ TYPE: ClassVar[str] = "min_max" _minimum: Optional[np.ndarray] _maximum: Optional[np.ndarray] def __init__( self, dataset: Optional[MDPDataset] = None, maximum: Optional[np.ndarray] = None, minimum: Optional[np.ndarray] = None, ): self._minimum = None self._maximum = None if dataset: transitions = [] for episode in dataset.episodes: transitions += episode.transitions self.fit(transitions) elif maximum is not None and minimum is not None: self._minimum = np.asarray(minimum) self._maximum = np.asarray(maximum) def fit(self, transitions: List[Transition]) -> None: if self._minimum is not None and self._maximum is not None: return for i, transition in enumerate(transitions): observation = np.asarray(transition.observation) if i == 0: minimum = observation maximum = observation else: minimum = np.minimum(minimum, observation) maximum = np.maximum(maximum, observation) if transition.terminal: minimum = np.minimum(minimum, transition.next_observation) maximum = np.maximum(maximum, transition.next_observation) self._minimum = minimum.reshape((1,) + minimum.shape) self._maximum = maximum.reshape((1,) + maximum.shape) def fit_with_env(self, env: gym.Env) -> None: if self._minimum is not None and self._maximum is not None: return assert isinstance(env.observation_space, gym.spaces.Box) shape = env.observation_space.shape low = np.asarray(env.observation_space.low) high = np.asarray(env.observation_space.high) self._minimum = low.reshape((1,) + shape) self._maximum = high.reshape((1,) + shape) def transform(self, x: torch.Tensor) -> torch.Tensor: assert self._minimum is not None and self._maximum is not None minimum = torch.tensor( self._minimum, dtype=torch.float32, device=x.device ) maximum = torch.tensor( self._maximum, dtype=torch.float32, device=x.device ) return (x - minimum) / (maximum - minimum) def reverse_transform(self, x: torch.Tensor) -> torch.Tensor: assert self._minimum is not None and self._maximum is not None minimum = torch.tensor( self._minimum, dtype=torch.float32, device=x.device ) maximum = torch.tensor( self._maximum, dtype=torch.float32, device=x.device ) return ((maximum - minimum) * x) + minimum def get_params(self, deep: bool = False) -> Dict[str, Any]: if self._maximum is not None: maximum = self._maximum.copy() if deep else self._maximum else: maximum = None if self._minimum is not None: minimum = self._minimum.copy() if deep else self._minimum else: minimum = None return {"maximum": maximum, "minimum": minimum} class StandardScaler(Scaler): r"""Standardization preprocessing. .. math:: x' = (x - \mu) / \sigma .. code-block:: python from d3rlpy.dataset import MDPDataset from d3rlpy.algos import CQL dataset = MDPDataset(observations, actions, rewards, terminals) # initialize algorithm with StandardScaler cql = CQL(scaler='standard') # scaler is initialized from the given episodes transitions = [] for episode in dataset.episodes: transitions += episode.transitions cql.fit(transitions) You can initialize with :class:`d3rlpy.dataset.MDPDataset` object or manually. .. code-block:: python from d3rlpy.preprocessing import StandardScaler # initialize with dataset scaler = StandardScaler(dataset) # initialize manually mean = observations.mean(axis=0) std = observations.std(axis=0) scaler = StandardScaler(mean=mean, std=std) cql = CQL(scaler=scaler) Args: dataset (d3rlpy.dataset.MDPDataset): dataset object. mean (numpy.ndarray): mean values at each entry. std (numpy.ndarray): standard deviation at each entry. eps (float): small constant value to avoid zero-division. """ TYPE = "standard" _mean: Optional[np.ndarray] _std: Optional[np.ndarray] _eps: float def __init__( self, dataset: Optional[MDPDataset] = None, mean: Optional[np.ndarray] = None, std: Optional[np.ndarray] = None, eps: float = 1e-3, ): self._mean = None self._std = None self._eps = eps if dataset: transitions = [] for episode in dataset.episodes: transitions += episode.transitions self.fit(transitions) elif mean is not None and std is not None: self._mean = np.asarray(mean) self._std = np.asarray(std) def fit(self, transitions: List[Transition]) -> None: if self._mean is not None and self._std is not None: return # compute mean total_sum = np.zeros(transitions[0].get_observation_shape()) total_count = 0 for transition in transitions: total_sum += np.asarray(transition.observation) total_count += 1 if transition.terminal: total_sum += np.asarray(transition.next_observation) total_count += 1 mean = total_sum / total_count # compute stdandard deviation total_sqsum = np.zeros(transitions[0].get_observation_shape()) expanded_mean = mean.reshape(mean.shape) for transition in transitions: observation = np.asarray(transition.observation) total_sqsum += (observation - expanded_mean) ** 2 if transition.terminal: next_observation = transition.next_observation total_sqsum += (next_observation - expanded_mean) ** 2 std = np.sqrt(total_sqsum / total_count) self._mean = mean.reshape((1,) + mean.shape) self._std = std.reshape((1,) + std.shape) def fit_with_env(self, env: gym.Env) -> None: if self._mean is not None and self._std is not None: return raise NotImplementedError( "standard scaler does not support fit_with_env." ) def transform(self, x: torch.Tensor) -> torch.Tensor: assert self._mean is not None and self._std is not None mean = torch.tensor(self._mean, dtype=torch.float32, device=x.device) std = torch.tensor(self._std, dtype=torch.float32, device=x.device) return (x - mean) / (std + self._eps) def reverse_transform(self, x: torch.Tensor) -> torch.Tensor: assert self._mean is not None and self._std is not None mean = torch.tensor(self._mean, dtype=torch.float32, device=x.device) std = torch.tensor(self._std, dtype=torch.float32, device=x.device) return ((std + self._eps) * x) + mean def get_params(self, deep: bool = False) -> Dict[str, Any]: if self._mean is not None: mean = self._mean.copy() if deep else self._mean else: mean = None if self._std is not None: std = self._std.copy() if deep else self._std else: std = None return {"mean": mean, "std": std, "eps": self._eps} SCALER_LIST: Dict[str, Type[Scaler]] = {} def register_scaler(cls: Type[Scaler]) -> None: """Registers scaler class. Args: cls: scaler class inheriting ``Scaler``. """ is_registered = cls.TYPE in SCALER_LIST assert not is_registered, f"{cls.TYPE} seems to be already registered" SCALER_LIST[cls.TYPE] = cls def create_scaler(name: str, **kwargs: Any) -> Scaler: """Returns registered scaler object. Args: name: regsitered scaler type name. kwargs: scaler arguments. Returns: scaler object. """ assert name in SCALER_LIST, f"{name} seems not to be registered." scaler = SCALER_LIST[name](**kwargs) # type: ignore assert isinstance(scaler, Scaler) return scaler register_scaler(PixelScaler) register_scaler(MinMaxScaler) register_scaler(StandardScaler)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/preprocessing/scalers.py
scalers.py
from typing import Any, ClassVar, Dict, List, Optional, Type import gym import numpy as np import torch from ..dataset import MDPDataset, Transition from ..decorators import pretty_repr from ..logger import LOG @pretty_repr class RewardScaler: TYPE: ClassVar[str] = "none" def fit(self, transitions: List[Transition]) -> None: """Estimates scaling parameters from dataset. Args: transitions: list of transitions. """ raise NotImplementedError def fit_with_env(self, env: gym.Env) -> None: """Gets scaling parameters from environment. Note: ``RewardScaler`` does not support fitting with environment. Args: env: gym environment. """ raise NotImplementedError("Please initialize with dataset.") def transform(self, reward: torch.Tensor) -> torch.Tensor: """Returns processed rewards. Args: reward: reward. Returns: processed reward. """ raise NotImplementedError def reverse_transform(self, reward: torch.Tensor) -> torch.Tensor: """Returns reversely processed rewards. Args: reward: reward. Returns: reversely processed reward. """ raise NotImplementedError def transform_numpy(self, reward: np.ndarray) -> np.ndarray: """Returns transformed rewards in numpy array. Args: reward: reward. Returns: transformed reward. """ raise NotImplementedError def get_type(self) -> str: """Returns a scaler type. Returns: scaler type. """ return self.TYPE def get_params(self, deep: bool = False) -> Dict[str, Any]: """Returns scaling parameters. Args: deep: flag to deeply copy objects. Returns: scaler parameters. """ raise NotImplementedError class MultiplyRewardScaler(RewardScaler): r"""Multiplication reward preprocessing. This preprocessor multiplies rewards by a constant number. .. code-block:: python from d3rlpy.preprocessing import MultiplyRewardScaler # multiply rewards by 10 reward_scaler = MultiplyRewardScaler(10.0) cql = CQL(reward_scaler=reward_scaler) Args: multiplier (float): constant multiplication value. """ TYPE: ClassVar[str] = "multiply" _multiplier: Optional[float] def __init__(self, multiplier: Optional[float] = None): self._multiplier = multiplier def fit(self, transitions: List[Transition]) -> None: if self._multiplier is None: LOG.warning("Please initialize MultiplyRewardScaler manually.") def transform(self, reward: torch.Tensor) -> torch.Tensor: return self._multiplier * reward def reverse_transform(self, reward: torch.Tensor) -> torch.Tensor: return reward / self._multiplier def transform_numpy(self, reward: np.ndarray) -> np.ndarray: return self._multiplier * reward def get_params(self, deep: bool = False) -> Dict[str, Any]: return {"multiplier": self._multiplier} class ClipRewardScaler(RewardScaler): r"""Reward clipping preprocessing. .. code-block:: python from d3rlpy.preprocessing import ClipRewardScaler # clip rewards within [-1.0, 1.0] reward_scaler = ClipRewardScaler(low=-1.0, high=1.0) cql = CQL(reward_scaler=reward_scaler) Args: low (float): minimum value to clip. high (float): maximum value to clip. multiplier (float): constant multiplication value. """ TYPE: ClassVar[str] = "clip" _low: Optional[float] _high: Optional[float] _multiplier: float def __init__( self, low: Optional[float] = None, high: Optional[float] = None, multiplier: float = 1.0, ): self._low = low self._high = high self._multiplier = multiplier def fit(self, transitions: List[Transition]) -> None: if self._low is None and self._high is None: LOG.warning("Please initialize ClipRewardScaler manually.") def transform(self, reward: torch.Tensor) -> torch.Tensor: return self._multiplier * reward.clamp(self._low, self._high) def reverse_transform(self, reward: torch.Tensor) -> torch.Tensor: return reward / self._multiplier def transform_numpy(self, reward: np.ndarray) -> np.ndarray: return self._multiplier * np.clip(reward, self._low, self._high) def get_params(self, deep: bool = False) -> Dict[str, Any]: return { "low": self._low, "high": self._high, "multiplier": self._multiplier, } class MinMaxRewardScaler(RewardScaler): r"""Min-Max reward normalization preprocessing. .. math:: r' = (r - \min(r)) / (\max(r) - \min(r)) .. code-block:: python from d3rlpy.algos import CQL cql = CQL(reward_scaler="min_max") You can also initialize with :class:`d3rlpy.dataset.MDPDataset` object or manually. .. code-block:: python from d3rlpy.preprocessing import MinMaxRewardScaler # initialize with dataset scaler = MinMaxRewardScaler(dataset) # initialize manually scaler = MinMaxRewardScaler(minimum=0.0, maximum=10.0) cql = CQL(scaler=scaler) Args: dataset (d3rlpy.dataset.MDPDataset): dataset object. minimum (float): minimum value. maximum (float): maximum value. multiplier (float): constant multiplication value. """ TYPE: ClassVar[str] = "min_max" _minimum: Optional[float] _maximum: Optional[float] _multiplier: float def __init__( self, dataset: Optional[MDPDataset] = None, minimum: Optional[float] = None, maximum: Optional[float] = None, multiplier: float = 1.0, ): self._minimum = None self._maximum = None self._multiplier = multiplier if dataset: transitions = [] for episode in dataset.episodes: transitions += episode.transitions self.fit(transitions) elif minimum is not None and maximum is not None: self._minimum = minimum self._maximum = maximum def fit(self, transitions: List[Transition]) -> None: if self._minimum is not None and self._maximum is not None: return rewards = [transition.next_reward for transition in transitions] self._minimum = float(np.min(rewards)) self._maximum = float(np.max(rewards)) def transform(self, reward: torch.Tensor) -> torch.Tensor: assert self._minimum is not None and self._maximum is not None base = self._maximum - self._minimum return self._multiplier * (reward - self._minimum) / base def reverse_transform(self, reward: torch.Tensor) -> torch.Tensor: assert self._minimum is not None and self._maximum is not None base = self._maximum - self._minimum return reward * base / self._multiplier + self._minimum def transform_numpy(self, reward: np.ndarray) -> np.ndarray: assert self._minimum is not None and self._maximum is not None base = self._maximum - self._minimum return self._multiplier * (reward - self._minimum) / base def get_params(self, deep: bool = False) -> Dict[str, Any]: return { "minimum": self._minimum, "maximum": self._maximum, "multiplier": self._multiplier, } class StandardRewardScaler(RewardScaler): r"""Reward standardization preprocessing. .. math:: r' = (r - \mu) / \sigma .. code-block:: python from d3rlpy.algos import CQL cql = CQL(reward_scaler="standard") You can also initialize with :class:`d3rlpy.dataset.MDPDataset` object or manually. .. code-block:: python from d3rlpy.preprocessing import StandardRewardScaler # initialize with dataset scaler = StandardRewardScaler(dataset) # initialize manually scaler = StandardRewardScaler(mean=0.0, std=1.0) cql = CQL(scaler=scaler) Args: dataset (d3rlpy.dataset.MDPDataset): dataset object. mean (float): mean value. std (float): standard deviation value. eps (float): constant value to avoid zero-division. multiplier (float): constant multiplication value """ TYPE: ClassVar[str] = "standard" _mean: Optional[float] _std: Optional[float] _eps: float _multiplier: float def __init__( self, dataset: Optional[MDPDataset] = None, mean: Optional[float] = None, std: Optional[float] = None, eps: float = 1e-3, multiplier: float = 1.0, ): self._mean = None self._std = None self._eps = eps self._multiplier = multiplier if dataset: transitions = [] for episode in dataset.episodes: transitions += episode.transitions self.fit(transitions) elif mean is not None and std is not None: self._mean = mean self._std = std def fit(self, transitions: List[Transition]) -> None: if self._mean is not None and self._std is not None: return rewards = [transition.next_reward for transition in transitions] self._mean = float(np.mean(rewards)) self._std = float(np.std(rewards)) def transform(self, reward: torch.Tensor) -> torch.Tensor: assert self._mean is not None and self._std is not None nonzero_std = self._std + self._eps return self._multiplier * (reward - self._mean) / nonzero_std def reverse_transform(self, reward: torch.Tensor) -> torch.Tensor: assert self._mean is not None and self._std is not None return reward * (self._std + self._eps) / self._multiplier + self._mean def transform_numpy(self, reward: np.ndarray) -> np.ndarray: assert self._mean is not None and self._std is not None nonzero_std = self._std + self._eps return self._multiplier * (reward - self._mean) / nonzero_std def get_params(self, deep: bool = False) -> Dict[str, Any]: return { "mean": self._mean, "std": self._std, "eps": self._eps, "multiplier": self._multiplier, } REWARD_SCALER_LIST: Dict[str, Type[RewardScaler]] = {} def register_reward_scaler(cls: Type[RewardScaler]) -> None: """Registers reward scaler class. Args: cls: scaler class inheriting ``RewardScaler``. """ is_registered = cls.TYPE in REWARD_SCALER_LIST assert not is_registered, f"{cls.TYPE} seems to be already registered" REWARD_SCALER_LIST[cls.TYPE] = cls def create_reward_scaler(name: str, **kwargs: Any) -> RewardScaler: assert name in REWARD_SCALER_LIST, f"{name} seems not to be registered." reward_scaler = REWARD_SCALER_LIST[name](**kwargs) # type: ignore assert isinstance(reward_scaler, RewardScaler) return reward_scaler register_reward_scaler(MultiplyRewardScaler) register_reward_scaler(ClipRewardScaler) register_reward_scaler(MinMaxRewardScaler) register_reward_scaler(StandardRewardScaler)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/preprocessing/reward_scalers.py
reward_scalers.py
from typing import Any, ClassVar, Dict, List, Optional, Type import gym import numpy as np import torch from ..dataset import MDPDataset, Transition from ..decorators import pretty_repr @pretty_repr class ActionScaler: TYPE: ClassVar[str] = "none" def fit(self, transitions: List[Transition]) -> None: """Estimates scaling parameters from dataset. Args: transitions: a list of transition objects. """ raise NotImplementedError def fit_with_env(self, env: gym.Env) -> None: """Gets scaling parameters from environment. Args: env: gym environment. """ raise NotImplementedError def transform(self, action: torch.Tensor) -> torch.Tensor: """Returns processed action. Args: action: action vector. Returns: processed action. """ raise NotImplementedError def reverse_transform(self, action: torch.Tensor) -> torch.Tensor: """Returns reversely transformed action. Args: action: action vector. Returns: reversely transformed action. """ raise NotImplementedError def reverse_transform_numpy(self, action: np.ndarray) -> np.ndarray: """Returns reversely transformed action in numpy array. Args: action: action vector. Returns: reversely transformed action. """ raise NotImplementedError def get_type(self) -> str: """Returns action scaler type. Returns: action scaler type. """ return self.TYPE def get_params(self, deep: bool = False) -> Dict[str, Any]: """Returns action scaler params. Args: deep: flag to deepcopy parameters. Returns: action scaler parameters. """ raise NotImplementedError class MinMaxActionScaler(ActionScaler): r"""Min-Max normalization action preprocessing. Actions will be normalized in range ``[-1.0, 1.0]``. .. math:: a' = (a - \min{a}) / (\max{a} - \min{a}) * 2 - 1 .. code-block:: python from d3rlpy.dataset import MDPDataset from d3rlpy.algos import CQL dataset = MDPDataset(observations, actions, rewards, terminals) # initialize algorithm with MinMaxActionScaler cql = CQL(action_scaler='min_max') # scaler is initialized from the given transitions transitions = [] for episode in dataset.episodes: transitions += episode.transitions cql.fit(transitions) You can also initialize with :class:`d3rlpy.dataset.MDPDataset` object or manually. .. code-block:: python from d3rlpy.preprocessing import MinMaxActionScaler # initialize with dataset scaler = MinMaxActionScaler(dataset) # initialize manually minimum = actions.min(axis=0) maximum = actions.max(axis=0) action_scaler = MinMaxActionScaler(minimum=minimum, maximum=maximum) cql = CQL(action_scaler=action_scaler) Args: dataset (d3rlpy.dataset.MDPDataset): dataset object. min (numpy.ndarray): minimum values at each entry. max (numpy.ndarray): maximum values at each entry. """ TYPE: ClassVar[str] = "min_max" _minimum: Optional[np.ndarray] _maximum: Optional[np.ndarray] def __init__( self, dataset: Optional[MDPDataset] = None, maximum: Optional[np.ndarray] = None, minimum: Optional[np.ndarray] = None, ): self._minimum = None self._maximum = None if dataset: transitions = [] for episode in dataset.episodes: transitions += episode.transitions self.fit(transitions) elif maximum is not None and minimum is not None: self._minimum = np.asarray(minimum) self._maximum = np.asarray(maximum) def fit(self, transitions: List[Transition]) -> None: if self._minimum is not None and self._maximum is not None: return for i, transition in enumerate(transitions): action = np.asarray(transition.action) if i == 0: minimum = action maximum = action else: minimum = np.minimum(minimum, action) maximum = np.maximum(maximum, action) if transition.terminal: minimum = np.minimum(minimum, transition.next_action) maximum = np.maximum(maximum, transition.next_action) self._minimum = minimum.reshape((1,) + minimum.shape) self._maximum = maximum.reshape((1,) + maximum.shape) def fit_with_env(self, env: gym.Env) -> None: if self._minimum is not None and self._maximum is not None: return assert isinstance(env.action_space, gym.spaces.Box) shape = env.action_space.shape low = np.asarray(env.action_space.low) high = np.asarray(env.action_space.high) self._minimum = low.reshape((1,) + shape) self._maximum = high.reshape((1,) + shape) def transform(self, action: torch.Tensor) -> torch.Tensor: assert self._minimum is not None and self._maximum is not None minimum = torch.tensor( self._minimum, dtype=torch.float32, device=action.device ) maximum = torch.tensor( self._maximum, dtype=torch.float32, device=action.device ) # transform action into [-1.0, 1.0] return ((action - minimum) / (maximum - minimum)) * 2.0 - 1.0 def reverse_transform(self, action: torch.Tensor) -> torch.Tensor: assert self._minimum is not None and self._maximum is not None minimum = torch.tensor( self._minimum, dtype=torch.float32, device=action.device ) maximum = torch.tensor( self._maximum, dtype=torch.float32, device=action.device ) # transform action from [-1.0, 1.0] return ((maximum - minimum) * ((action + 1.0) / 2.0)) + minimum def reverse_transform_numpy(self, action: np.ndarray) -> np.ndarray: assert self._minimum is not None and self._maximum is not None minimum, maximum = self._minimum, self._maximum # transform action from [-1.0, 1.0] return ((maximum - minimum) * ((action + 1.0) / 2.0)) + minimum def get_params(self, deep: bool = False) -> Dict[str, Any]: if self._minimum is not None: minimum = self._minimum.copy() if deep else self._minimum else: minimum = None if self._maximum is not None: maximum = self._maximum.copy() if deep else self._maximum else: maximum = None return {"minimum": minimum, "maximum": maximum} ACTION_SCALER_LIST: Dict[str, Type[ActionScaler]] = {} def register_action_scaler(cls: Type[ActionScaler]) -> None: """Registers action scaler class. Args: cls: action scaler class inheriting ``ActionScaler``. """ is_registered = cls.TYPE in ACTION_SCALER_LIST assert not is_registered, f"{cls.TYPE} seems to be already registered" ACTION_SCALER_LIST[cls.TYPE] = cls def create_action_scaler(name: str, **kwargs: Any) -> ActionScaler: """Returns registered action scaler object. Args: name: regsitered scaler type name. kwargs: scaler arguments. Returns: scaler object. """ assert name in ACTION_SCALER_LIST, f"{name} seems not to be registered." scaler = ACTION_SCALER_LIST[name](**kwargs) # type: ignore assert isinstance(scaler, ActionScaler) return scaler register_action_scaler(MinMaxActionScaler)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/preprocessing/action_scalers.py
action_scalers.py
from typing import Callable, List import numpy as np from ..dataset import Episode from .scorer import WINDOW_SIZE, AlgoProtocol, _make_batches def compare_continuous_action_diff( base_algo: AlgoProtocol, ) -> Callable[[AlgoProtocol, List[Episode]], float]: r"""Returns scorer function of action difference between algorithms. This metrics suggests how different the two algorithms are in continuous action-space. If the algorithm to compare with is near-optimal, the small action difference would be better. .. math:: \mathbb{E}_{s_t \sim D} [(\pi_{\phi_1}(s_t) - \pi_{\phi_2}(s_t))^2] .. code-block:: python from d3rlpy.algos import CQL from d3rlpy.metrics.comparer import compare_continuous_action_diff cql1 = CQL() cql2 = CQL() scorer = compare_continuous_action_diff(cql1) squared_action_diff = scorer(cql2, ...) Args: base_algo: algorithm to comapre with. Returns: scorer function. """ def scorer(algo: AlgoProtocol, episodes: List[Episode]) -> float: total_diffs = [] for episode in episodes: # TODO: handle different n_frames for batch in _make_batches(episode, WINDOW_SIZE, algo.n_frames): base_actions = base_algo.predict(batch.observations) actions = algo.predict(batch.observations) diff = ((actions - base_actions) ** 2).sum(axis=1).tolist() total_diffs += diff # smaller is better, sometimes? return -float(np.mean(total_diffs)) return scorer def compare_discrete_action_match( base_algo: AlgoProtocol, ) -> Callable[[AlgoProtocol, List[Episode]], float]: r"""Returns scorer function of action matches between algorithms. This metrics suggests how different the two algorithms are in discrete action-space. If the algorithm to compare with is near-optimal, the small action difference would be better. .. math:: \mathbb{E}_{s_t \sim D} [\parallel \{\text{argmax}_a Q_{\theta_1}(s_t, a) = \text{argmax}_a Q_{\theta_2}(s_t, a)\}] .. code-block:: python from d3rlpy.algos import DQN from d3rlpy.metrics.comparer import compare_continuous_action_diff dqn1 = DQN() dqn2 = DQN() scorer = compare_continuous_action_diff(dqn1) percentage_of_identical_actions = scorer(dqn2, ...) Args: base_algo: algorithm to comapre with. Returns: scorer function. """ def scorer(algo: AlgoProtocol, episodes: List[Episode]) -> float: total_matches = [] for episode in episodes: # TODO: handle different n_frames for batch in _make_batches(episode, WINDOW_SIZE, algo.n_frames): base_actions = base_algo.predict(batch.observations) actions = algo.predict(batch.observations) match = (base_actions == actions).tolist() total_matches += match return float(np.mean(total_matches)) return scorer
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/metrics/comparer.py
comparer.py
from typing import Any, Callable, Iterator, List, Optional, Tuple, Union, cast import gym import numpy as np from typing_extensions import Protocol from ..dataset import Episode, TransitionMiniBatch from ..preprocessing.reward_scalers import RewardScaler from ..preprocessing.stack import StackedObservation WINDOW_SIZE = 1024 class AlgoProtocol(Protocol): def predict(self, x: Union[np.ndarray, List[Any]]) -> np.ndarray: ... def predict_value( self, x: Union[np.ndarray, List[Any]], action: Union[np.ndarray, List[Any]], with_std: bool = False, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: ... @property def n_frames(self) -> int: ... @property def gamma(self) -> float: ... @property def reward_scaler(self) -> Optional[RewardScaler]: ... class DynamicsProtocol(Protocol): def predict( self, x: Union[np.ndarray, List[Any]], action: Union[np.ndarray, List[Any]], with_variance: bool = False, ) -> Union[ Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray, np.ndarray] ]: ... @property def n_frames(self) -> int: ... @property def reward_scaler(self) -> Optional[RewardScaler]: ... def _make_batches( episode: Episode, window_size: int, n_frames: int ) -> Iterator[TransitionMiniBatch]: n_batches = len(episode) // window_size if len(episode) % window_size != 0: n_batches += 1 for i in range(n_batches): head_index = i * window_size last_index = min(head_index + window_size, len(episode)) transitions = episode.transitions[head_index:last_index] batch = TransitionMiniBatch(transitions, n_frames) yield batch ######################################################## # Author: Shyamal H Anadkat | AIPI530 | Fall 2021 # ######################################################## # Attempt: Calculate the true total discounted reward by taking initial action a in initial state s def true_q_value_scorer(algo: AlgoProtocol, episodes: List[Episode]) -> float: for episode in episodes: for batch in _make_batches(episode, WINDOW_SIZE, algo.n_frames): # estimate values for next observations next_actions = algo.predict([batch.next_observations[0]]) next_values = algo.predict_value( [batch.next_observations[0]], next_actions ) mask = (1.0 - np.asarray(batch.terminals)).reshape(-1) rewards = np.asarray(batch.next_rewards).reshape(-1) if algo.reward_scaler: rewards = algo.reward_scaler.transform_numpy(rewards) y = rewards + algo.gamma * cast(np.ndarray, next_values) * mask return float(np.mean(y)) def td_error_scorer(algo: AlgoProtocol, episodes: List[Episode]) -> float: r"""Returns average TD error. This metics suggests how Q functions overfit to training sets. If the TD error is large, the Q functions are overfitting. .. math:: \mathbb{E}_{s_t, a_t, r_{t+1}, s_{t+1} \sim D} [(Q_\theta (s_t, a_t) - r_{t+1} - \gamma \max_a Q_\theta (s_{t+1}, a))^2] Args: algo: algorithm. episodes: list of episodes. Returns: average TD error. """ total_errors = [] for episode in episodes: for batch in _make_batches(episode, WINDOW_SIZE, algo.n_frames): # estimate values for current observations values = algo.predict_value(batch.observations, batch.actions) # estimate values for next observations next_actions = algo.predict(batch.next_observations) next_values = algo.predict_value( batch.next_observations, next_actions ) # calculate td errors mask = (1.0 - np.asarray(batch.terminals)).reshape(-1) rewards = np.asarray(batch.next_rewards).reshape(-1) if algo.reward_scaler: rewards = algo.reward_scaler.transform_numpy(rewards) y = rewards + algo.gamma * cast(np.ndarray, next_values) * mask total_errors += ((values - y) ** 2).tolist() return float(np.mean(total_errors)) def discounted_sum_of_advantage_scorer( algo: AlgoProtocol, episodes: List[Episode] ) -> float: r"""Returns average of discounted sum of advantage. This metrics suggests how the greedy-policy selects different actions in action-value space. If the sum of advantage is small, the policy selects actions with larger estimated action-values. .. math:: \mathbb{E}_{s_t, a_t \sim D} [\sum_{t' = t} \gamma^{t' - t} A(s_{t'}, a_{t'})] where :math:`A(s_t, a_t) = Q_\theta (s_t, a_t) - \mathbb{E}_{a \sim \pi} [Q_\theta (s_t, a)]`. References: * `Murphy., A generalization error for Q-Learning. <http://www.jmlr.org/papers/volume6/murphy05a/murphy05a.pdf>`_ Args: algo: algorithm. episodes: list of episodes. Returns: average of discounted sum of advantage. """ total_sums = [] for episode in episodes: for batch in _make_batches(episode, WINDOW_SIZE, algo.n_frames): # estimate values for dataset actions dataset_values = algo.predict_value( batch.observations, batch.actions ) dataset_values = cast(np.ndarray, dataset_values) # estimate values for the current policy actions = algo.predict(batch.observations) on_policy_values = algo.predict_value(batch.observations, actions) # calculate advantages advantages = (dataset_values - on_policy_values).tolist() # calculate discounted sum of advantages A = advantages[-1] sum_advantages = [A] for advantage in reversed(advantages[:-1]): A = advantage + algo.gamma * A sum_advantages.append(A) total_sums += sum_advantages # smaller is better return float(np.mean(total_sums)) def average_value_estimation_scorer( algo: AlgoProtocol, episodes: List[Episode] ) -> float: r"""Returns average value estimation. This metrics suggests the scale for estimation of Q functions. If average value estimation is too large, the Q functions overestimate action-values, which possibly makes training failed. .. math:: \mathbb{E}_{s_t \sim D} [ \max_a Q_\theta (s_t, a)] Args: algo: algorithm. episodes: list of episodes. Returns: average value estimation. """ total_values = [] for episode in episodes: for batch in _make_batches(episode, WINDOW_SIZE, algo.n_frames): actions = algo.predict(batch.observations) values = algo.predict_value(batch.observations, actions) total_values += cast(np.ndarray, values).tolist() return float(np.mean(total_values)) def value_estimation_std_scorer( algo: AlgoProtocol, episodes: List[Episode] ) -> float: r"""Returns standard deviation of value estimation. This metrics suggests how confident Q functions are for the given episodes. This metrics will be more accurate with `boostrap` enabled and the larger `n_critics` at algorithm. If standard deviation of value estimation is large, the Q functions are overfitting to the training set. .. math:: \mathbb{E}_{s_t \sim D, a \sim \text{argmax}_a Q_\theta(s_t, a)} [Q_{\text{std}}(s_t, a)] where :math:`Q_{\text{std}}(s, a)` is a standard deviation of action-value estimation over ensemble functions. Args: algo: algorithm. episodes: list of episodes. Returns: standard deviation. """ total_stds = [] for episode in episodes: for batch in _make_batches(episode, WINDOW_SIZE, algo.n_frames): actions = algo.predict(batch.observations) _, stds = algo.predict_value(batch.observations, actions, True) total_stds += stds.tolist() return float(np.mean(total_stds)) def initial_state_value_estimation_scorer( algo: AlgoProtocol, episodes: List[Episode] ) -> float: r"""Returns mean estimated action-values at the initial states. This metrics suggests how much return the trained policy would get from the initial states by deploying the policy to the states. If the estimated value is large, the trained policy is expected to get higher returns. .. math:: \mathbb{E}_{s_0 \sim D} [Q(s_0, \pi(s_0))] References: * `Paine et al., Hyperparameter Selection for Offline Reinforcement Learning <https://arxiv.org/abs/2007.09055>`_ Args: algo: algorithm. episodes: list of episodes. Returns: mean action-value estimation at the initial states. """ total_values = [] for episode in episodes: for batch in _make_batches(episode, WINDOW_SIZE, algo.n_frames): # estimate action-value in initial states actions = algo.predict([batch.observations[0]]) values = algo.predict_value([batch.observations[0]], actions) total_values.append(values[0]) return float(np.mean(total_values)) def soft_opc_scorer( return_threshold: float, ) -> Callable[[AlgoProtocol, List[Episode]], float]: r"""Returns Soft Off-Policy Classification metrics. This function returns scorer function, which is suitable to the standard scikit-learn scorer function style. The metrics of the scorer funciton is evaluating gaps of action-value estimation between the success episodes and the all episodes. If the learned Q-function is optimal, action-values in success episodes are expected to be higher than the others. The success episode is defined as an episode with a return above the given threshold. .. math:: \mathbb{E}_{s, a \sim D_{success}} [Q(s, a)] - \mathbb{E}_{s, a \sim D} [Q(s, a)] .. code-block:: python from d3rlpy.datasets import get_cartpole from d3rlpy.algos import DQN from d3rlpy.metrics.scorer import soft_opc_scorer from sklearn.model_selection import train_test_split dataset, _ = get_cartpole() train_episodes, test_episodes = train_test_split(dataset, test_size=0.2) scorer = soft_opc_scorer(return_threshold=180) dqn = DQN() dqn.fit(train_episodes, eval_episodes=test_episodes, scorers={'soft_opc': scorer}) References: * `Irpan et al., Off-Policy Evaluation via Off-Policy Classification. <https://arxiv.org/abs/1906.01624>`_ Args: return_threshold: threshold of success episodes. Returns: scorer function. """ def scorer(algo: AlgoProtocol, episodes: List[Episode]) -> float: success_values = [] all_values = [] for episode in episodes: is_success = episode.compute_return() >= return_threshold for batch in _make_batches(episode, WINDOW_SIZE, algo.n_frames): values = algo.predict_value(batch.observations, batch.actions) values = cast(np.ndarray, values) all_values += values.reshape(-1).tolist() if is_success: success_values += values.reshape(-1).tolist() return float(np.mean(success_values) - np.mean(all_values)) return scorer def continuous_action_diff_scorer( algo: AlgoProtocol, episodes: List[Episode] ) -> float: r"""Returns squared difference of actions between algorithm and dataset. This metrics suggests how different the greedy-policy is from the given episodes in continuous action-space. If the given episodes are near-optimal, the small action difference would be better. .. math:: \mathbb{E}_{s_t, a_t \sim D} [(a_t - \pi_\phi (s_t))^2] Args: algo: algorithm. episodes: list of episodes. Returns: squared action difference. """ total_diffs = [] for episode in episodes: for batch in _make_batches(episode, WINDOW_SIZE, algo.n_frames): actions = algo.predict(batch.observations) diff = ((batch.actions - actions) ** 2).sum(axis=1).tolist() total_diffs += diff return float(np.mean(total_diffs)) def discrete_action_match_scorer( algo: AlgoProtocol, episodes: List[Episode] ) -> float: r"""Returns percentage of identical actions between algorithm and dataset. This metrics suggests how different the greedy-policy is from the given episodes in discrete action-space. If the given episdoes are near-optimal, the large percentage would be better. .. math:: \frac{1}{N} \sum^N \parallel \{a_t = \text{argmax}_a Q_\theta (s_t, a)\} Args: algo: algorithm. episodes: list of episodes. Returns: percentage of identical actions. """ total_matches = [] for episode in episodes: for batch in _make_batches(episode, WINDOW_SIZE, algo.n_frames): actions = algo.predict(batch.observations) match = (batch.actions.reshape(-1) == actions).tolist() total_matches += match return float(np.mean(total_matches)) def evaluate_on_environment( env: gym.Env, n_trials: int = 10, epsilon: float = 0.0, render: bool = False ) -> Callable[..., float]: """Returns scorer function of evaluation on environment. This function returns scorer function, which is suitable to the standard scikit-learn scorer function style. The metrics of the scorer function is ideal metrics to evaluate the resulted policies. .. code-block:: python import gym from d3rlpy.algos import DQN from d3rlpy.metrics.scorer import evaluate_on_environment env = gym.make('CartPole-v0') scorer = evaluate_on_environment(env) cql = CQL() mean_episode_return = scorer(cql) Args: env: gym-styled environment. n_trials: the number of trials. epsilon: noise factor for epsilon-greedy policy. render: flag to render environment. Returns: scoerer function. """ # for image observation observation_shape = env.observation_space.shape is_image = len(observation_shape) == 3 def scorer(algo: AlgoProtocol, *args: Any) -> float: if is_image: stacked_observation = StackedObservation( observation_shape, algo.n_frames ) episode_rewards = [] for _ in range(n_trials): observation = env.reset() episode_reward = 0.0 # frame stacking if is_image: stacked_observation.clear() stacked_observation.append(observation) while True: # take action if np.random.random() < epsilon: action = env.action_space.sample() else: if is_image: action = algo.predict([stacked_observation.eval()])[0] else: action = algo.predict([observation])[0] observation, reward, done, _ = env.step(action) episode_reward += reward if is_image: stacked_observation.append(observation) if render: env.render() if done: break episode_rewards.append(episode_reward) return float(np.mean(episode_rewards)) return scorer def dynamics_observation_prediction_error_scorer( dynamics: DynamicsProtocol, episodes: List[Episode] ) -> float: r"""Returns MSE of observation prediction. This metrics suggests how dynamics model is generalized to test sets. If the MSE is large, the dynamics model are overfitting. .. math:: \mathbb{E}_{s_t, a_t, s_{t+1} \sim D} [(s_{t+1} - s')^2] where :math:`s' \sim T(s_t, a_t)`. Args: dynamics: dynamics model. episodes: list of episodes. Returns: mean squared error. """ total_errors = [] for episode in episodes: for batch in _make_batches(episode, WINDOW_SIZE, dynamics.n_frames): pred = dynamics.predict(batch.observations, batch.actions) errors = ((batch.next_observations - pred[0]) ** 2).sum(axis=1) total_errors += errors.tolist() return float(np.mean(total_errors)) def dynamics_reward_prediction_error_scorer( dynamics: DynamicsProtocol, episodes: List[Episode] ) -> float: r"""Returns MSE of reward prediction. This metrics suggests how dynamics model is generalized to test sets. If the MSE is large, the dynamics model are overfitting. .. math:: \mathbb{E}_{s_t, a_t, r_{t+1} \sim D} [(r_{t+1} - r')^2] where :math:`r' \sim T(s_t, a_t)`. Args: dynamics: dynamics model. episodes: list of episodes. Returns: mean squared error. """ total_errors = [] for episode in episodes: for batch in _make_batches(episode, WINDOW_SIZE, dynamics.n_frames): pred = dynamics.predict(batch.observations, batch.actions) rewards = batch.next_rewards if dynamics.reward_scaler: rewards = dynamics.reward_scaler.transform_numpy(rewards) errors = ((rewards - pred[1]) ** 2).reshape(-1) total_errors += errors.tolist() return float(np.mean(total_errors)) def dynamics_prediction_variance_scorer( dynamics: DynamicsProtocol, episodes: List[Episode] ) -> float: """Returns prediction variance of ensemble dynamics. This metrics suggests how dynamics model is confident of test sets. If the variance is large, the dynamics model has large uncertainty. Args: dynamics: dynamics model. episodes: list of episodes. Returns: variance. """ total_variances = [] for episode in episodes: for batch in _make_batches(episode, WINDOW_SIZE, dynamics.n_frames): pred = dynamics.predict(batch.observations, batch.actions, True) pred = cast(Tuple[np.ndarray, np.ndarray, np.ndarray], pred) total_variances += pred[2].tolist() return float(np.mean(total_variances))
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/metrics/scorer.py
scorer.py
import os import tempfile import uuid from multiprocessing import Process, get_context from multiprocessing.connection import Connection from typing import Any, Callable, Dict, List, Sequence, Tuple import cloudpickle import gym import numpy as np from ..online.utility import get_action_size_from_env def _subproc(conn: Connection, remote_conn: Connection, fn_path: str) -> None: remote_conn.close() with open(fn_path, "rb") as f: env = cloudpickle.load(f)() # notify if it's ready conn.send("ready") while True: command = conn.recv() if command[0] == "step": observation, reward, terminal, info = env.step(command[1]) conn.send([observation, reward, terminal, info]) elif command[0] == "reset": conn.send([env.reset()]) elif command[0] == "close": conn.close() break else: raise ValueError(f"invalid {command[0]}.") class SubprocEnv: _conn: Connection _remote_conn: Connection _proc: Process def __init__(self, make_env_fn: Callable[..., gym.Env], dname: str): # pickle function fn_path = os.path.join(dname, str(uuid.uuid1())) with open(fn_path, "wb") as f: cloudpickle.dump(make_env_fn, f) # spawn process otherwise PyTorch raises error ctx = get_context("spawn") self._conn, self._remote_conn = ctx.Pipe(duplex=True) self._proc = ctx.Process( # type: ignore target=_subproc, args=(self._remote_conn, self._conn, fn_path), daemon=True, ) self._proc.start() self._remote_conn.close() def step_send(self, action: np.ndarray) -> None: self._conn.send(["step", action]) def step_get(self) -> Tuple[np.ndarray, float, bool, Dict[str, Any]]: return self._conn.recv() # type: ignore def reset_send(self) -> None: self._conn.send(["reset"]) def reset_get(self) -> np.ndarray: return self._conn.recv()[0] def wait_for_ready(self) -> bool: self._conn.recv() return True def close(self) -> None: self._conn.send(["close"]) self._conn.close() self._proc.join() class BatchEnv(gym.Env): # type: ignore def step( self, action: np.ndarray ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, List[Dict[str, Any]]]: """Returns batch of next observations, actions, rewards and infos. Args: action: batch action. Returns: batch of next data. """ raise NotImplementedError def reset(self) -> np.ndarray: """Initializes environments and returns batch of observations. Returns: batch of observations. """ raise NotImplementedError def render(self, mode: str = "human") -> Any: raise NotImplementedError("BatchEnvWrapper does not support render.") @property def n_envs(self) -> int: raise NotImplementedError def __len__(self) -> int: return self.n_envs def close(self) -> None: for env in self._envs: env.close() class SyncBatchEnv(BatchEnv): """The environment wrapper for batch training with synchronized environments. Multiple environments are serially running. Basically, the computational cost is linearly increased depending on the number of environments. Args: envs (list(gym.Env)): a list of environments. """ _envs: List[gym.Env] _observation_shape: Sequence[int] _action_size: int _prev_terminals: np.ndarray def __init__(self, envs: List[gym.Env]): self._envs = envs self.observation_space = envs[0].observation_space self.action_space = envs[0].action_space self._observation_shape = self.observation_space.shape self._action_size = get_action_size_from_env(envs[0]) self._prev_terminals = np.ones(len(self._envs)) def step( self, action: np.ndarray ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, List[Dict[str, Any]]]: n_envs = len(self._envs) is_image = len(self._observation_shape) == 3 observations = np.empty( (n_envs,) + tuple(self._observation_shape), dtype=np.uint8 if is_image else np.float32, ) rewards = np.empty(n_envs, dtype=np.float32) terminals = np.empty(n_envs, dtype=np.float32) infos = [] info: Dict[str, Any] for i, (env, act) in enumerate(zip(self._envs, action)): if self._prev_terminals[i]: observation = env.reset() reward, terminal, info = 0.0, 0.0, {} else: observation, reward, terminal, info = env.step(act) observations[i] = observation rewards[i] = reward terminals[i] = terminal infos.append(info) self._prev_terminals[i] = terminal return observations, rewards, terminals, infos def reset(self) -> np.ndarray: n_envs = len(self._envs) is_image = len(self._observation_shape) == 3 observations = np.empty( (n_envs,) + tuple(self._observation_shape), dtype=np.uint8 if is_image else np.float32, ) for i, env in enumerate(self._envs): observations[i] = env.reset() self._prev_terminals = np.ones(len(self._envs)) return observations @property def n_envs(self) -> int: return len(self._envs) class AsyncBatchEnv(BatchEnv): """The environment wrapper for batch training with asynchronous environment workers. Multiple environments are running in different processes to maximize the computational efficiency. Ideally, you can scale the training linearly up to the number of CPUs. Args: make_env_fns (list(callable)): a list of callable functions to return an environment. """ _envs: List[SubprocEnv] _observation_shape: Sequence[int] _action_size: int _prev_terminals: np.ndarray def __init__(self, make_env_fns: List[Callable[..., gym.Env]]): # start multiprocesses with tempfile.TemporaryDirectory() as dname: self._envs = [] for make_env in make_env_fns: self._envs.append(SubprocEnv(make_env, dname)) # make sure that all environements are created for env in self._envs: env.wait_for_ready() ref_env = make_env_fns[0]() self.observation_space = ref_env.observation_space self.action_space = ref_env.action_space self._observation_shape = self.observation_space.shape self._action_size = get_action_size_from_env(ref_env) self._prev_terminals = np.ones(len(self._envs)) def step( self, action: np.ndarray ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, List[Dict[str, Any]]]: n_envs = len(self._envs) is_image = len(self._observation_shape) == 3 observations = np.empty( (n_envs,) + tuple(self._observation_shape), dtype=np.uint8 if is_image else np.float32, ) rewards = np.empty(n_envs, dtype=np.float32) terminals = np.empty(n_envs, dtype=np.float32) infos = [] # asynchronous environment step for i, (env, act) in enumerate(zip(self._envs, action)): if self._prev_terminals[i]: env.reset_send() else: env.step_send(act) # get the result through pipes info: Dict[str, Any] for i, env in enumerate(self._envs): if self._prev_terminals[i]: observation = env.reset_get() reward, terminal, info = 0.0, 0.0, {} else: observation, reward, terminal, info = env.step_get() observations[i] = observation rewards[i] = reward terminals[i] = terminal infos.append(info) self._prev_terminals[i] = terminal return observations, rewards, terminals, infos def reset(self) -> np.ndarray: n_envs = len(self._envs) is_image = len(self._observation_shape) == 3 observations = np.empty( (n_envs,) + tuple(self._observation_shape), dtype=np.uint8 if is_image else np.float32, ) # asynchronous step for env in self._envs: env.reset_send() # get the result through pipes for i, env in enumerate(self._envs): observations[i] = env.reset_get() self._prev_terminals = np.ones(len(self._envs)) return observations @property def n_envs(self) -> int: return len(self._envs)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/envs/batch.py
batch.py
import json import os from typing import Any, Callable, Dict, Optional, Tuple, Union import gym import numpy as np try: import cv2 # this is used in AtariPreprocessing except ImportError: cv2 = None from gym.spaces import Box from gym.wrappers import TransformReward class ChannelFirst(gym.Wrapper): # type: ignore """Channel-first wrapper for image observation environments. d3rlpy expects channel-first images since it's built with PyTorch. You can transform the observation shape with ``ChannelFirst`` wrapper. Args: env (gym.Env): gym environment. """ observation_space: Box def __init__(self, env: gym.Env): super().__init__(env) shape = self.observation_space.shape low = self.observation_space.low high = self.observation_space.high dtype = self.observation_space.dtype if len(shape) == 3: self.observation_space = Box( low=np.transpose(low, [2, 0, 1]), high=np.transpose(high, [2, 0, 1]), shape=(shape[2], shape[0], shape[1]), dtype=dtype, ) elif len(shape) == 2: self.observation_space = Box( low=np.reshape(low, (1, *shape)), high=np.reshape(high, (1, *shape)), shape=(1, *shape), dtype=dtype, ) else: raise ValueError("image observation is only allowed.") def step( self, action: Union[int, np.ndarray] ) -> Tuple[np.ndarray, float, bool, Dict[str, Any]]: observation, reward, terminal, info = self.env.step(action) # make channel first observation if observation.ndim == 3: observation_T = np.transpose(observation, [2, 0, 1]) else: observation_T = np.reshape(observation, (1, *observation.shape)) assert observation_T.shape == self.observation_space.shape return observation_T, reward, terminal, info def reset(self, **kwargs: Any) -> np.ndarray: observation = self.env.reset(**kwargs) # make channel first observation if observation.ndim == 3: observation_T = np.transpose(observation, [2, 0, 1]) else: observation_T = np.reshape(observation, (1, *observation.shape)) assert observation_T.shape == self.observation_space.shape return observation_T # https://github.com/openai/gym/blob/0.17.3/gym/wrappers/atari_preprocessing.py class AtariPreprocessing(gym.Wrapper): # type: ignore r"""Atari 2600 preprocessings. This class follows the guidelines in Machado et al. (2018), "Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents". Specifically: * NoopReset: obtain initial state by taking random number of no-ops on reset. * Frame skipping: 4 by default * Max-pooling: most recent two observations * Termination signal when a life is lost: turned off by default. Not recommended by Machado et al. (2018). * Resize to a square image: 84x84 by default * Grayscale observation: optional * Scale observation: optional Args: env (Env): environment noop_max (int): max number of no-ops frame_skip (int): the frequency at which the agent experiences the game. screen_size (int): resize Atari frame terminal_on_life_loss (bool): if True, then step() returns done=True whenever a life is lost. grayscale_obs (bool): if True, then gray scale observation is returned, otherwise, RGB observation is returned. grayscale_newaxis (bool): if True and grayscale_obs=True, then a channel axis is added to grayscale observations to make them 3-dimensional. scale_obs (bool): if True, then observation normalized in range [0,1] is returned. It also limits memory optimization benefits of FrameStack Wrapper. """ def __init__( self, env: gym.Env, noop_max: int = 30, frame_skip: int = 4, screen_size: int = 84, terminal_on_life_loss: bool = False, grayscale_obs: bool = True, grayscale_newaxis: bool = False, scale_obs: bool = False, ): super().__init__(env) assert cv2 is not None, ( "opencv-python package not installed! Try" " running pip install gym[atari] to get dependencies for atari" ) assert frame_skip > 0 assert screen_size > 0 assert noop_max >= 0 if frame_skip > 1: assert "NoFrameskip" in env.spec.id, ( "disable frame-skipping in" " the original env. for more than one frame-skip as it will" " be done by the wrapper" ) self.noop_max = noop_max assert env.unwrapped.get_action_meanings()[0] == "NOOP" self.frame_skip = frame_skip self.screen_size = screen_size self.terminal_on_life_loss = terminal_on_life_loss self.grayscale_obs = grayscale_obs self.grayscale_newaxis = grayscale_newaxis self.scale_obs = scale_obs # buffer of most recent two observations for max pooling if grayscale_obs: self.obs_buffer = [ np.empty(env.observation_space.shape[:2], dtype=np.uint8), np.empty(env.observation_space.shape[:2], dtype=np.uint8), ] else: self.obs_buffer = [ np.empty(env.observation_space.shape, dtype=np.uint8), np.empty(env.observation_space.shape, dtype=np.uint8), ] self.ale = env.unwrapped.ale self.lives = 0 self.game_over = True _low, _high, _obs_dtype = ( (0, 255, np.uint8) if not scale_obs else (0, 1, np.float32) ) _shape = (screen_size, screen_size, 1 if grayscale_obs else 3) if grayscale_obs and not grayscale_newaxis: _shape = _shape[:-1] # type: ignore self.observation_space = Box( low=_low, high=_high, shape=_shape, dtype=_obs_dtype ) def step( self, action: int ) -> Tuple[np.ndarray, float, float, Dict[str, Any]]: R = 0.0 for t in range(self.frame_skip): _, reward, done, info = self.env.step(action) R += reward self.game_over = done if self.terminal_on_life_loss: new_lives = self.ale.lives() done = done or new_lives < self.lives self.lives = new_lives if done: break if t == self.frame_skip - 2: if self.grayscale_obs: self.ale.getScreenGrayscale(self.obs_buffer[1]) else: self.ale.getScreenRGB2(self.obs_buffer[1]) elif t == self.frame_skip - 1: if self.grayscale_obs: self.ale.getScreenGrayscale(self.obs_buffer[0]) else: self.ale.getScreenRGB2(self.obs_buffer[0]) return self._get_obs(), R, done, info def reset(self, **kwargs: Any) -> np.ndarray: # this condition is not included in the original code if self.game_over: self.env.reset(**kwargs) else: # NoopReset self.env.step(0) noops = ( self.env.unwrapped.np_random.randint(1, self.noop_max + 1) if self.noop_max > 0 else 0 ) for _ in range(noops): _, _, done, _ = self.env.step(0) if done: self.env.reset(**kwargs) self.lives = self.ale.lives() if self.grayscale_obs: self.ale.getScreenGrayscale(self.obs_buffer[0]) else: self.ale.getScreenRGB2(self.obs_buffer[0]) self.obs_buffer[1].fill(0) return self._get_obs() def _get_obs(self) -> np.ndarray: if self.frame_skip > 1: # more efficient in-place pooling np.maximum( self.obs_buffer[0], self.obs_buffer[1], out=self.obs_buffer[0] ) obs = cv2.resize( self.obs_buffer[0], (self.screen_size, self.screen_size), interpolation=cv2.INTER_AREA, ) if self.scale_obs: obs = np.asarray(obs, dtype=np.float32) / 255.0 else: obs = np.asarray(obs, dtype=np.uint8) if self.grayscale_obs and self.grayscale_newaxis: obs = np.expand_dims(obs, axis=-1) # Add a channel axis return obs class Atari(gym.Wrapper): # type: ignore """Atari 2600 wrapper for experiments. Args: env (gym.Env): gym environment. is_eval (bool): flag to enter evaluation mode. """ def __init__(self, env: gym.Env, is_eval: bool = False): env = AtariPreprocessing(env, terminal_on_life_loss=not is_eval) if not is_eval: env = TransformReward(env, lambda r: np.clip(r, -1.0, 1.0)) super().__init__(ChannelFirst(env)) class Monitor(gym.Wrapper): # type: ignore """gym.wrappers.Monitor-style Monitor wrapper. Args: env (gym.Env): gym environment. directory (str): directory to save. video_callable (callable): callable function that takes episode counter to control record frequency. force (bool): flag to allow existing directory. frame_rate (float): video frame rate. record_rate (int): images are record every ``record_rate`` frames. """ _directory: str _video_callable: Callable[[int], bool] _frame_rate: float _record_rate: int _episode: int _episode_return: float _episode_step: int _buffer: np.ndarray def __init__( self, env: gym.Env, directory: str, video_callable: Optional[Callable[[int], bool]] = None, force: bool = False, frame_rate: float = 30.0, record_rate: int = 1, ): super().__init__(env) # prepare directory if os.path.exists(directory) and not force: raise ValueError(f"{directory} already exists.") os.makedirs(directory, exist_ok=True) self._directory = directory if video_callable: self._video_callable = video_callable # type: ignore else: self._video_callable = lambda ep: ep % 10 == 0 # type: ignore self._frame_rate = frame_rate self._record_rate = record_rate self._episode = 0 self._episode_return = 0.0 self._episode_step = 0 self._buffer = [] def step( self, action: Union[np.ndarray, int] ) -> Tuple[np.ndarray, float, bool, Dict[str, Any]]: obs, reward, done, info = super().step(action) if self._video_callable(self._episode): # type: ignore # store rendering frame = cv2.cvtColor(super().render("rgb_array"), cv2.COLOR_BGR2RGB) self._buffer.append(frame) self._episode_step += 1 self._episode_return += reward if done: self._save_video() self._save_stats() return obs, reward, done, info def reset(self, **kwargs: Any) -> np.ndarray: self._episode += 1 self._episode_return = 0.0 self._episode_step = 0 self._buffer = [] return super().reset(**kwargs) def _save_video(self) -> None: height, width = self._buffer[0].shape[:2] path = os.path.join(self._directory, f"video{self._episode}.avi") fmt = cv2.VideoWriter_fourcc(*"MJPG") writer = cv2.VideoWriter(path, fmt, self._frame_rate, (width, height)) print(f"Saving a recorded video to {path}...") for i, frame in enumerate(self._buffer): if i % self._record_rate == 0: writer.write(frame) writer.release() def _save_stats(self) -> None: path = os.path.join(self._directory, f"stats{self._episode}.json") stats = { "episode_step": self._episode_step, "return": self._episode_return, } with open(path, "w") as f: json_str = json.dumps(stats, indent=2) f.write(json_str)
zjkdemo2
/zjkdemo2-0.91.tar.gz/zjkdemo2-0.91/d3rlpy/envs/wrappers.py
wrappers.py
from abc import abstractmethod import argparse from dataclasses import dataclass from datetime import datetime import os from pathlib import Path from subprocess import call from typing import Iterable class FileAlreadyExistsException(Exception): pass @dataclass class ZKProject: home: Path timestamp: datetime @property def notes(self) -> Path: return self.home / "notes" @property def bib(self) -> Path: return self.home / "bib" @property def config(self) -> Path: return self.home / "zk.conf" def init(self): self.notes.mkdir() self.bib.mkdir() self.config.touch() def _new_file(self, file_type: type, name: str): file = file_type(self, name) file.touch() return file def new_note(self, name: str): return self._new_file(Note, name) def new_bib(self, name: str): return self._new_file(Bib, name) def _fmt_date(date: datetime): return date.strftime("%Y%m%d%H%M") class File: def __init__(self, project: ZKProject, name: str): self.project = project self.file_name = f"{_fmt_date(project.timestamp)} {name}.md" @abstractmethod def path(self) -> Path: pass def touch(self): if self.path().exists(): raise FileAlreadyExistsException self.path().touch() def edit(self): call(["nvim", self.path().absolute()]) class Note(File): def path(self) -> Path: return self.project.notes / self.file_name class Bib(File): def path(self) -> Path: return self.project.bib / self.file_name def main(): parser = argparse.ArgumentParser( description="A command line utility for Zettelkasten." ) subparsers = parser.add_subparsers(dest="command") init_parser = subparsers.add_parser("init") note_parser = subparsers.add_parser("note") note_parser.add_argument("name", nargs="*") bib_parser = subparsers.add_parser("bib") bib_parser.add_argument("name", nargs="*") args = parser.parse_args() home = os.getenv("ZK_HOME", "~/zk") project = ZKProject(Path(home), datetime.utcnow()) if args.command is None: parser.print_help() elif args.command == "init": project.init() elif args.command in ("note", "bib"): fn = getattr(project, f"new_{args.command}") file = fn(" ".join(args.name)) file.edit()
zk-cli
/zk-cli-0.0.2.tar.gz/zk-cli-0.0.2/zk/zk.py
zk.py
zk-flock [![Build Status](https://travis-ci.org/noxiouz/python-flock.svg?branch=master)](https://travis-ci.org/noxiouz/python-flock) ======== You can use `zk-flock` to run programs in a cluster under a distributed lock to limit overall amount of instances. Configuration ============= You have to write the configuration file **/etc/distributed-flock.json** with the following content: ```js { "host": ["hostname1:2181","hostname2:2181","hostname3:2181"], "timeout": 5, "app_id": "my_application_namespace", "sleep": "ON", //ON or OFF - Default OFF "maxla": 30, // If >=0 -> max loadaverage for work. Default -1 "logger": { "path": "/tmp/zkflock.log", "level": "INFO", "zklevel": "ERROR" }, "auth": { "scheme": "digest", "data": "noxiouz:password" } } ``` * **host** - list of Zookeeper nodes * **timeout** - timeout for zookeper connection (sec) * **app_id** - namespace for your application in Zookeeper. This means that the lock will be stored in Zookeeper with path likes **/app_id/your_lock_name** * **sleep** - Sleep before work. Default: "OFF". Switch "ON" by -s (--sleep). * **maxla** - Maximal load average. Use if >=0. Default: -1. Set by -m (--maxla). Logging ======= * **path** - path to log file (default: /dev/null) * **level** - logging level of zk-flock (default: INFO) * **zklevel** - logging level of Zookeeper Client (default: WARN) Both loglevels are one of values: ERROR, WARN, INFO, DEBUG Usage ===== To run the application under the supervision of the zk-flock use the command: ```bash zk-flock <pidname> <application command> ``` If your application requires command-line arguments enclose it in double quotes: ```bash zk-flock my_test_lock "bash /home/user/test.sh arg1 arg2 arg3" ``` For attempting to lock lasted for a specific time, use the **-w** option (**--wait**) setting the time in seconds. Add key **-d** or **--daemonize** to starts this appliction as daemon. Use **-p** or **--pdeathsig** to specify a signal that will be sent if the master process died. By default the signal is **SIGTERM**. Non Linux usage warning ======================= If you kill zk-flock application with **kill -9**, the lock will be released, but this will not stop your application.
zk-flock
/zk-flock-0.1.4.1.tar.gz/zk-flock-0.1.4.1/README.md
README.md
import logging import socket import uuid from ZKeeperAPI import zkapi class ZKLockServer(object): def __init__(self, **config): try: self.log = logging.getLogger(config.get('logger_name', 'combaine')) self.zkclient = zkapi.ZKeeperClient(**config) self.id = config['app_id'] res = self.zkclient.write('/%s' % self.id, "Rootnode") if (res != zkapi.zookeeper.NODEEXISTS) and (res < 0): if res == zkapi.DEFAULT_ERRNO: self.log.error("Unexpectable error") raise Exception("Unexpectable error. See Zookeeper logs") else: msg = "Zookeeper error: %s" % zkapi.zookeeper.zerror(res) self.log.error(msg) raise Exception(msg) self.lock = config['name'] self.lockpath = '/%s/%s' % (self.id, self.lock) self.locked = False self.lock_content = socket.gethostname() + str(uuid.uuid4()) except Exception as err: self.log.error('Failed to init ZKLockServer: %s', err) raise else: self.log.debug('ZKeeperClient has been created') def getlock(self): if self.locked: return True if self.zkclient.write(self.lockpath, self.lock_content, 1) == 0: self.log.info('Lock: success') self.locked = True return True else: self.log.info('Lock: fail') return False def set_lock_name(self, name): self.lock = name self.lockpath = '/%s/%s' % (self.id, self.lock) def releaselock(self): try: self.zkclient.delete(self.lockpath) self.log.info('Unlocked successfully') self.locked = False return True except Exception as err: self.log.error('Unlocking failed %s', err) return False def check_lock(self): try: content = self.zkclient.read(self.lockpath) return content == self.lock_content except Exception as err: self.log.error("Unable to check lock %s", repr(err)) return False def set_async_check_lock(self, callback): assert callable(callback), "callback must be callable" if not self.locked: return False def callback_wrapper(*args): callback() if self.check_lock(): self.zkclient.aget(self.lockpath, callback_wrapper) return self.zkclient.aget(self.lockpath, callback_wrapper) def set_node_deleting_watcher(self, path, callback): assert callable(callback), "callback must be callable" def callback_wrapper(event, state, path): if event == 2: # zookeeper.DELETE_EVENT callback() def callback_rc_wrapper(rc): if rc == -101: # zookeeper.NONODE callback() return self.zkclient.aget(path, callback_wrapper, callback_rc_wrapper) def destroy(self): try: self.zkclient.disconnect() self.log.info('Disconnected successfully') return True except Exception as err: self.log.error('Disconnection error %s', err) return False
zk-flock
/zk-flock-0.1.4.1.tar.gz/zk-flock-0.1.4.1/distributedflock/Zookeeper.py
Zookeeper.py
from __future__ import with_statement from functools import partial import logging import threading import zookeeper ZK_ACL = {"perms": 0x1f, "scheme": "world", "id": "anyone"} zookeeper.set_log_stream(open('/dev/null', 'w')) DEFAULT_ERRNO = -9999 # JFYI LOG_LEVELS = {"DEBUG": zookeeper.LOG_LEVEL_DEBUG, "INFO": zookeeper.LOG_LEVEL_INFO, "WARN": zookeeper.LOG_LEVEL_WARN, "ERROR": zookeeper.LOG_LEVEL_ERROR} class Null(object): """This class does nothing as logger""" def __init__(self, *args, **kwargs): pass def __call__(self, *args, **kwargs): return self def __getattribute__(self, name): return self def __setattribute__(self, name, value): pass def __delattribute__(self, name): pass def handling_error(zkfunc, logger=Null()): def wrapper(*args, **kwargs): ret = None errno = DEFAULT_ERRNO try: ret = zkfunc(*args, **kwargs) except zookeeper.ConnectionLossException as err: logger.error("ConectionLossException: %s", str(err)) errno = zookeeper.CONNECTIONLOSS except zookeeper.NodeExistsException as err: logger.debug("Node exists: %s", str(err)) errno = zookeeper.NODEEXISTS except zookeeper.OperationTimeoutException as err: logger.error("Operation timeout: %s", str(err)) errno = zookeeper.OPERATIONTIMEOUT except zookeeper.RuntimeInconsistencyException as err: logger.error("RuntimeInconsistency: %s", str(err)) errno = zookeeper.RUNTIMEINCONSISTENCY except zookeeper.MarshallingErrorException as err: logger.error(str(err)) errno = zookeeper.MARSHALLINGERROR except zookeeper.ZooKeeperException as err: logger.error("ZookeperException %s", str(err)) except Exception as err: logger.exception("Unknown exception %s", str(err)) else: errno = 0 finally: return ret, errno return wrapper class ZKeeperClient(object): def __init__(self, **config): logger_name = config.get('logger_name') self.logger = logging.getLogger(logger_name) if logger_name else Null() self.zkhandle = None self.auth = None self.cv = threading.Condition() try: auth_config = config.get("auth") if auth_config is not None: auth_scheme = auth_config["scheme"] auth_data = auth_config["data"] self.auth = (auth_scheme, auth_data) zklogfile_path, zklog_level = config.get("ZookeeperLog", ("/dev/stderr", "WARN")) self.connection_timeout = config['timeout'] self.zkhosts = ','.join(config['host']) except KeyError as err: self.logger.exception("Missing configuration option: %s", err) raise except Exception as err: self.logger.exception("Unknown configuration error: %s", err) raise try: _f = open(zklogfile_path, 'a') except IOError as err: self.logger.error("Unable to open logfile %s %s", zklogfile_path, err) else: zookeeper.set_log_stream(_f) zookeeper.set_debug_level(LOG_LEVELS.get(zklog_level.upper(), zookeeper.LOG_LEVEL_WARN)) self.connect() if zookeeper.state(self.zkhandle) == zookeeper.CONNECTED_STATE: self.logger.info('Connected to Zookeeper successfully') else: raise zookeeper.ZooKeeperException('Unable to connect ' 'to Zookeeper') def on_auth_callback(state, result): with self.cv: if result == zookeeper.AUTHFAILED: self.logger.error(zookeeper.zerror(zookeeper.AUTHFAILED)) self.logger.info("on_auth: state %s, result %s", state, result) self.cv.notify() if self.auth: self.logger.info("Auth using %s", self.auth[0]) with self.cv: res = zookeeper.add_auth(self.zkhandle, self.auth[0], self.auth[1], on_auth_callback) if res != zookeeper.OK: self.logger.error("Invalid status %d", zookeeper.zerror(res)) raise Exception("Invalid status") self.cv.wait(self.connection_timeout) if zookeeper.state(self.zkhandle) == zookeeper.AUTH_FAILED_STATE: raise zookeeper.ZooKeeperException('authentication failed') def connect(self): def connect_watcher(handle, w_type, state, path): """Callback for connect()""" with self.cv: if state == zookeeper.CONNECTED_STATE: self.logger.debug("connect_watcher: CONNECTED_STATE") else: self.logger.debug("connect_watcher: state %d", state) self.cv.notify() with self.cv: try: # zookeeper.init accepts timeout in ms recv_timeout = int(self.connection_timeout * 1e3) self.zkhandle = zookeeper.init(self.zkhosts, connect_watcher, recv_timeout) except Exception as err: self.logger.exception("Unable to init zookeeper: %s", err) raise err else: while True: self.logger.debug("Connecting to Zookeeper... Wait %d", self.connection_timeout) self.cv.wait(self.connection_timeout) if zookeeper.state(self.zkhandle) != zookeeper.CONNECTING_STATE: break @property def connected(self): return self.zkhandle and\ zookeeper.state(self.zkhandle) == zookeeper.CONNECTED_STATE def disconnect(self): return zookeeper.close(self.zkhandle) def write(self, absname, value, typeofnode=0, acl=ZK_ACL): return handling_error(zookeeper.create, self.logger)(self.zkhandle, absname, value, [acl], typeofnode)[1] def read(self, absname): res = zookeeper.get(self.zkhandle, absname) return res[0] def list(self, absname): return zookeeper.get_children(self.zkhandle, absname) def modify(self, absname, value): return zookeeper.set(self.zkhandle, absname, value) def delete(self, absname): return zookeeper.delete(self.zkhandle, absname) # Async API def aget(self, node, callback, rccallback=None): # callback is invoked when the watcher triggers # rccallback is invoked when the result of attaching # becomes available (OK, NONODE and so on) assert callable(callback), "callback must be callable" if rccallback is not None: assert callable(rccallback), "rccallback must be callable" def watcher(self, zh, event, state, path): self.logger.info("Node state has been changed") if event == zookeeper.CHANGED_EVENT: self.logger.debug("Node %s has been modified", path) elif event == zookeeper.CREATED_EVENT: self.logger.debug("Node %s has been created", path) elif event == zookeeper.DELETED_EVENT: self.logger.warning("Node %s has been deleted", path) if state == zookeeper.EXPIRED_SESSION_STATE: self.logger.error("Session has expired") callback(event, state, path) def rc_handler(self, zh, rc, data, stat): if zookeeper.OK == rc: self.logger.debug("Callback has been attached succesfully") elif zookeeper.NONODE == rc: self.logger.warning("Watched node doesn't exists") if rccallback is not None: rccallback(rc) res = zookeeper.aget(self.zkhandle, node, partial(watcher, self), partial(rc_handler, self)) return res == zookeeper.OK
zk-flock
/zk-flock-0.1.4.1.tar.gz/zk-flock-0.1.4.1/distributedflock/ZKeeperAPI/zkapi.py
zkapi.py
# zk_grpc a zookeeper registration center manager for python grpcio Requires: Python 3.5, grpcio, kazoo ### install ```shell pip install zk-grpc ``` ####How to update 0.0.1 to 0.1.0 ```text 1. Update the Client server which use with ZKGrpc or AIOZKGrpc to v0.1.0 zk-grpc first. 2. Then update the server which use with ZKRegister or AIOZKRegister. ``` **Notice: Can not use V0.0.1 ZKGrpc class with v0.1.0 ZKRegister class** ##### [More Eaxmples](https://github.com/laiyongtao/zk_grpc/tree/master/example) ## Service Register ```python import signal from example_pb2 import HelloRequest, HelloResponse from example_pb2_grpc import HelloServiceServicer, add_HelloServiceServicer_to_server from kazoo.client import KazooClient from zk_grpc import ZKRegister class HelloService(HelloServiceServicer): def hello_world(self, request: HelloRequest, context): hello = request.hello return HelloResponse(hello=hello) def run(host, port): from grpc import server from concurrent.futures import ThreadPoolExecutor server = server(ThreadPoolExecutor(50)) add_HelloServiceServicer_to_server(HelloService(), server) server.add_insecure_port("{}:{}".format(host, port)) server.start() kz = KazooClient(hosts="127.0.0.1:2181") kz.start() zk_register = ZKRegister(kz_client=kz) # register all servicers on gprc server obj, do not support aio grpc server zk_register.register_grpc_server(server, host, port) # or register servicer one by one # zk_register.register_server(HelloServiceServicer, host, port) def shutdown(*args, **kwargs): zk_register.stop() # close kazoo client after zk_register stoped kz.stop() kz.close() server.stop(0.5) signal.signal(signal.SIGTERM, shutdown) try: server.wait_for_termination() except KeyboardInterrupt: shutdown() if __name__ == '__main__': host = "127.0.0.1" port = 50052 run(host, port) ``` ## Service Discovery ```python from example_pb2 import HelloRequest from example_pb2_grpc import HelloServiceStub from kazoo.client import KazooClient from zk_grpc import ZKGrpc def run(): # before useing kz = KazooClient(hosts="127.0.0.1:2181") kz.start() zk_g = ZKGrpc(kz_client=kz) # get stub stub = zk_g.wrap_stub(HelloServiceStub) # call grpc api resp = stub.hello_world(HelloRequest(hello="hello")) print(resp.hello) # before exit zk_g.stop() kz.stop() kz.close() if __name__ == '__main__': run() ```
zk-grpc
/zk-grpc-0.1.0.tar.gz/zk-grpc-0.1.0/README.md
README.md
import asyncio from typing import Union, Optional, cast, Iterable from inspect import isclass from concurrent.futures import ThreadPoolExecutor, FIRST_COMPLETED import grpc.experimental.aio from kazoo.client import KazooClient from .definition import (ZK_ROOT_PATH, SNODE_PREFIX, ServerInfo, NoServerAvailable, StubClass, ServicerClass, DEFAILT_WEIGHT, LBS) from .basic import ZKGrpcMixin, ZKRegisterMixin class AIOZKGrpc(ZKGrpcMixin): def __init__(self, kz_client: KazooClient, zk_root_path: str = ZK_ROOT_PATH, node_prefix: str = SNODE_PREFIX, channel_factory: Union[ grpc.experimental.aio.insecure_channel, grpc.experimental.aio.secure_channel ] = grpc.experimental.aio.insecure_channel, channel_factory_kwargs: dict = None, grace: Optional[float] = None, thread_pool: Optional[ThreadPoolExecutor] = None, loop: Optional[asyncio.AbstractEventLoop] = None, lbs: Union["LBS", str, None] = None): super(AIOZKGrpc, self).__init__(kz_client=kz_client, zk_root_path=zk_root_path, node_prefix=node_prefix, channel_factory=channel_factory, channel_factory_kwargs=channel_factory_kwargs, thread_pool=thread_pool, lbs=lbs) self.channel_grace = grace self._loop = loop self._is_aio = True @property def loop(self): return self._loop @loop.setter def loop(self, value: asyncio.AbstractEventLoop): self._loop = value async def wrap_stub(self, stub_class: "StubClass", service_name: str = None, lbs: Union["LBS", str, None] = None): if not service_name: class_name = stub_class.__name__ service_name = "".join(class_name.rsplit("Stub", 1)) channel = await self.get_channel(service_name, lbs=lbs) return cast(stub_class, stub_class(channel)) async def _close_channel(self, server: ServerInfo) -> None: if server and isinstance(server, ServerInfo): await server.channel.close(self.channel_grace) def _close_channels(self, servers: Iterable[ServerInfo]) -> None: for _ser in servers: asyncio.run_coroutine_threadsafe(self._close_channel(_ser), self.loop) async def fetch_servers(self, service_name: str) -> None: service_path = "/".join((self.zk_root_path.rstrip("/"), service_name)) fu = asyncio.wrap_future( self._thread_pool.submit(self._kz_client.ensure_path, service_path) ) await fu fu = asyncio.wrap_future( self._thread_pool.submit(self.get_children, path=service_path) ) childs = await fu if not childs: raise NoServerAvailable("There is no available servers for %s" % service_name) fus = [ asyncio.wrap_future( self._thread_pool.submit(self.set_server, service_path=service_path, child_name=child) ) for child in childs ] # wait for first completed await asyncio.wait(fus, return_when=FIRST_COMPLETED) # Todo: set timeout async def get_channel(self, service_name: str, lbs: Union["LBS", str, None] = None) -> grpc.experimental.aio.Channel: service = self.services.get(service_name) if service is None: with self._locks[service_name]: service = self.services.get(service_name) if service is not None: return self._get_channel(service_name, lbs=lbs) # get server from zk await self.fetch_servers(service_name) return self._get_channel(service_name, lbs=lbs) return self._get_channel(service_name, lbs=lbs) async def stop(self) -> None: servers = list() for _, _sers in self.services.items(): servers.extend((self._close_channel(_ser) for _ser in _sers)) self.services.clear() if servers: await asyncio.wait(servers) class AIOZKRegister(ZKRegisterMixin): async def register_server(self, service: Union["ServicerClass", str], host: str, port: int, weight: int = DEFAILT_WEIGHT) -> None: value_str = "{}:{}||{}".format(host, port, weight) if isclass(service): class_name = service.__name__ service_name = "".join(class_name.rsplit("Servicer", 1)) else: service_name = str(service) await asyncio.wrap_future( self._thread_pool.submit(self._create_server_node, service_name=service_name, value=value_str) ) async def stop(self) -> None: self._stopped = True fus = [asyncio.wrap_future(self._thread_pool.submit(self._kz_client.delete, path)) for _, path, _ in self._creted_nodes] if fus: await asyncio.wait(fus)
zk-grpc
/zk-grpc-0.1.0.tar.gz/zk-grpc-0.1.0/zk_grpc/aio.py
aio.py
import random import typing from typing import Union, Callable import grpc.experimental.aio from .definition import NoServerAvailable, LBS, UnregisteredLBSError try: if typing.TYPE_CHECKING: from .aio import AIOZKGrpc from .basic import ZKGrpc except AttributeError: pass LBSFunc = Callable[[str, Union["ZKGrpc", "AIOZKGrpc"]], Union[grpc.Channel, grpc.experimental.aio.Channel]] class LBSRegistry(object): def __init__(self): self._lbs_funcs = dict() self._default_lbs = LBS.RANDOM def register(self, name: Union["LBS", str], lbs_func: LBSFunc) -> None: self._lbs_funcs[name] = lbs_func def unregister(self, name: Union["LBS", str]) -> None: self._lbs_funcs.pop(name, None) def get_channel(self, service_name: str, zk_grpc_obj: Union["ZKGrpc", "AIOZKGrpc"], lbs: Union["LBS", str, None] = None) -> Union[grpc.Channel, grpc.experimental.aio.Channel]: if not lbs: lbs = self._default_lbs service_map = zk_grpc_obj.services[service_name] if not service_map: raise NoServerAvailable("There is no available servers for %s" % service_name) lbs_func = self._lbs_funcs.get(lbs) if not lbs_func: raise UnregisteredLBSError("Unregistered lbs_func name: {}".format(lbs)) return lbs_func(service_name, zk_grpc_obj) def random_lbs_func(service_name: str, zk_grpc_obj: Union["ZKGrpc", "AIOZKGrpc"]) -> Union[ grpc.Channel, grpc.experimental.aio.Channel]: service_map = zk_grpc_obj.services[service_name] if not service_map: raise NoServerAvailable("There is no available servers for %s" % service_name) servers = service_map.keys() server = random.choice(list(servers)) return service_map[server].channel def weighted_random_lbs_func(service_name: str, zk_grpc_obj: Union["ZKGrpc", "AIOZKGrpc"]) -> Union[ grpc.Channel, grpc.experimental.aio.Channel]: service_map = zk_grpc_obj.services[service_name] if not service_map: raise NoServerAvailable("There is no available servers for %s" % service_name) servers = service_map.keys() server = random.choices(list(servers), [server.weight for server in service_map.values()])[0] return service_map[server].channel lbs_registry = LBSRegistry() lbs_registry.register(LBS.RANDOM, random_lbs_func) lbs_registry.register(LBS.WEIGHTED_RANDOM, weighted_random_lbs_func)
zk-grpc
/zk-grpc-0.1.0.tar.gz/zk-grpc-0.1.0/zk_grpc/lbs.py
lbs.py
import threading import asyncio from typing import Union, Optional, cast, Iterable, Tuple, List from inspect import isclass from concurrent.futures import ThreadPoolExecutor, FIRST_COMPLETED, wait from collections import defaultdict from functools import partial import grpc.experimental.aio from grpc._server import _Server from kazoo.client import KazooClient from kazoo.protocol.states import EventType, WatchedEvent, ZnodeStat, KazooState from .definition import (ZK_ROOT_PATH, SNODE_PREFIX, ServerInfo, NoServerAvailable, StubClass, ServicerClass, InitServiceFlag, W_VALUE_RE, VALUE_RE, DEFAILT_WEIGHT, LBS) from .lbs import lbs_registry class ZKRegisterMixin(object): def __init__(self, kz_client: KazooClient, zk_root_path: str = ZK_ROOT_PATH, node_prefix: str = SNODE_PREFIX, thread_pool: Optional[ThreadPoolExecutor] = None): self._kz_client = kz_client self.zk_root_path = zk_root_path self.node_prefix = node_prefix self._creted_nodes = set() self._lock = threading.RLock() self._stopped = False self._thread_pool = thread_pool or ThreadPoolExecutor() # for running sync func in main thread self._kz_client.add_listener(self._session_watcher) def _create_server_node(self, service_name: str, value: Union[str, bytes]) -> None: if not isinstance(value, bytes): value = value.encode("utf-8") service_path = "/".join((self.zk_root_path.rstrip("/"), service_name)) pre_path = "/".join((service_path, self.node_prefix.strip("/"))) path = self._kz_client.create(pre_path, value, ephemeral=True, sequence=True, makepath=True) self._creted_nodes.add((service_name, path, value)) def _session_watcher(self, state) -> None: if state == KazooState.CONNECTED and not self._stopped: self._kz_client.handler.spawn(self.resume_nodes) def resume_nodes(self) -> None: with self._lock: expired = set() created = self._creted_nodes.copy() for node in created: service_name, path, value = node stat = self._kz_client.exists(path) if stat: continue expired.add(node) self._create_server_node(service_name=service_name, value=value) self._creted_nodes.difference_update(expired) class ZKGrpcMixin(object): def __init__(self, kz_client: KazooClient, zk_root_path: str = ZK_ROOT_PATH, node_prefix: str = SNODE_PREFIX, channel_factory: Union[ grpc.insecure_channel, grpc.secure_channel, grpc.experimental.aio.insecure_channel, grpc.experimental.aio.secure_channel ] = grpc.insecure_channel, channel_factory_kwargs: dict = None, thread_pool: Optional[ThreadPoolExecutor] = None, lbs: Union["LBS", str, None] = None): self._kz_client = kz_client self.zk_root_path = zk_root_path self.node_prefix = node_prefix self.channel_factory = channel_factory self.channel_factory_kwargs = channel_factory_kwargs or {} self.services = defaultdict(dict) self._locks = defaultdict(threading.RLock) self._thread_pool = thread_pool or ThreadPoolExecutor() # for running sync func in main thread self._is_aio = False self.loop = None self.lbs = lbs def _split_service_name(self, service_path: str) -> str: return service_path.rsplit("/", 1)[-1] def _split_server_name(self, server_path: str) -> Tuple[str, str, str]: service_path, server_name = server_path.rsplit("/", 1) service_name = self._split_service_name(service_path) return service_path, service_name, server_name def _get_channel(self, service_name: str, lbs: Union["LBS", str, None] = None) -> Union[ grpc.Channel, grpc.experimental.aio.Channel]: lbs = lbs or self.lbs return lbs_registry.get_channel(service_name=service_name, zk_grpc_obj=self, lbs=lbs) def _close_channels(self, servers: Iterable[ServerInfo]) -> None: # close grpc channels in subthread pass def set_server(self, service_path: str, child_name: str) -> None: child_path = "/".join((service_path, child_name)) watcher = partial(self.data_watcher, path=child_path) self._kz_client.DataWatch(child_path, func=watcher) def data_watcher(self, data: Optional[bytes], stat: Optional[ZnodeStat], event: Optional[WatchedEvent], path: str) -> Optional[bool]: if event is None or event.type == EventType.CHANGED or event.type == EventType.NONE: if stat is None: _, service_name, server_name = self._split_server_name(path) services = self.services.get(service_name) if services is not None: s_info = services.pop(server_name, None) self._close_channels((s_info,)) return False self._set_channel(data, path) elif event.type == EventType.DELETED: return False def _set_channel(self, data: bytes, path: str) -> None: if self._is_aio: asyncio.set_event_loop(self.loop) service_path, service_name, server_name = self._split_server_name(path) data = data.decode("utf-8") weight_re_ret = W_VALUE_RE.match(data) old_re_ret = VALUE_RE.match(data) if weight_re_ret: server_addr, weight = weight_re_ret.groups() elif old_re_ret: server_addr, weight = old_re_ret.group(), DEFAILT_WEIGHT else: return weight = int(weight) servers = self.services.get(service_name) channel = None if servers is not None: ori_ser_info = servers.get(server_name) if ori_ser_info and isinstance(ori_ser_info, ServerInfo): ori_addr, ori_weight = ori_ser_info.addr, ori_ser_info.weight if server_addr == ori_addr and ori_weight == weight: return elif server_addr == ori_addr: channel = ori_ser_info.channel if channel is None: channel = self.channel_factory(server_addr, **self.channel_factory_kwargs) self.services[service_name].update( {server_name: ServerInfo(channel=channel, addr=server_addr, path=path, weight=weight)} ) def get_children(self, path: str) -> List[str]: watcher = partial(self.children_watcher, init_flag=InitServiceFlag(path)) child_watcher = self._kz_client.ChildrenWatch(path, func=watcher, send_event=True) return child_watcher._prior_children def children_watcher(self, childs: list, event: WatchedEvent, init_flag: InitServiceFlag = None) -> Optional[bool]: if not init_flag.is_set(): init_flag.set() return path = init_flag.path service_name = self._split_service_name(path) if event is None or event.type == EventType.CHILD: # update with self._locks[service_name]: fetched_servers = self.services[service_name].keys() new_servers = set(childs) expr_servers = fetched_servers - new_servers # servers to delete for server in new_servers: if server in fetched_servers: continue self.set_server(service_path=path, child_name=server) _sers = [self.services[service_name].pop(server, None) for server in expr_servers] self._close_channels(_sers) elif event.type == EventType.DELETED: # delete with self._locks[service_name]: _sers = self.services.pop(service_name, {}) self._locks.pop(service_name, None) self._close_channels(_sers.values()) return False # to remove watcher class ZKGrpc(ZKGrpcMixin): def __init__(self, kz_client: KazooClient, zk_root_path: str = ZK_ROOT_PATH, node_prefix: str = SNODE_PREFIX, channel_factory: Union[grpc.insecure_channel, grpc.secure_channel] = grpc.insecure_channel, channel_factory_kwargs: dict = None, thread_pool: Optional[ThreadPoolExecutor] = None, lbs: Union["LBS", str, None] = None): super(ZKGrpc, self).__init__(kz_client=kz_client, zk_root_path=zk_root_path, node_prefix=node_prefix, channel_factory=channel_factory, channel_factory_kwargs=channel_factory_kwargs, thread_pool=thread_pool, lbs=lbs) def wrap_stub(self, stub_class: "StubClass", service_name: str = None, lbs: Union["LBS", str, None] = None): if not service_name: class_name = stub_class.__name__ service_name = "".join(class_name.rsplit("Stub", 1)) channel = self.get_channel(service_name, lbs=lbs) return cast(stub_class, stub_class(channel)) def _close_channel(self, server: ServerInfo) -> None: if server and isinstance(server, ServerInfo): server.channel.close() def _close_channels(self, servers: Iterable[ServerInfo]) -> None: for _ser in servers: self._close_channel(_ser) def fetch_servers(self, service_name: str) -> None: service_path = "/".join((self.zk_root_path.rstrip("/"), service_name)) self._kz_client.ensure_path(service_path) childs = self.get_children(path=service_path) if not childs: raise NoServerAvailable("There is no available servers for %s" % service_name) fus = [ self._thread_pool.submit(self.set_server, service_path=service_path, child_name=child) for child in childs ] wait(fus, return_when=FIRST_COMPLETED) # Todo: set timeout def get_channel(self, service_name: str, lbs: Union["LBS", str, None] = None) -> grpc.Channel: service = self.services.get(service_name) if service is None: with self._locks[service_name]: service = self.services.get(service_name) if service is not None: return self._get_channel(service_name, lbs=lbs) # get server from zk self.fetch_servers(service_name) return self._get_channel(service_name, lbs=lbs) return self._get_channel(service_name, lbs=lbs) def stop(self) -> None: for _, _sers in self.services.items(): for _ser in _sers: self._close_channel(_ser) self.services.clear() class ZKRegister(ZKRegisterMixin): def register_grpc_server(self, server: grpc._server._Server, host: str, port: int, weight: int = DEFAILT_WEIGHT) -> None: value_str = "{}:{}||{}".format(host, port, weight) with self._lock: fus = [ self._thread_pool.submit( self._create_server_node, service_name=s.service_name(), value=value_str ) for s in server._state.generic_handlers ] if fus: wait(fus) def register_server(self, service: Union["ServicerClass", str], host: str, port: int, weight: int = DEFAILT_WEIGHT) -> None: value_str = "{}:{}||{}".format(host, port, weight) if isclass(service): class_name = service.__name__ service_name = "".join(class_name.rsplit("Servicer", 1)) else: service_name = str(service) with self._lock: self._create_server_node(service_name=service_name, value=value_str) def stop(self) -> None: self._stopped = True rets = [self._kz_client.delete_async(path) for _, path, _ in self._creted_nodes] for ret in rets: ret.get()
zk-grpc
/zk-grpc-0.1.0.tar.gz/zk-grpc-0.1.0/zk_grpc/basic.py
basic.py
import sys import os from PIL import Image, ImageDraw, ImageFont ANTIALIAS_SIZE = 16 LOGO_SIZE = 1024*ANTIALIAS_SIZE MAIN_POS = 546*ANTIALIAS_SIZE CIRCLE_EDGE_Y = 848*ANTIALIAS_SIZE CIRCLE_RADIUS = 1380*ANTIALIAS_SIZE SUB_POS = 986*ANTIALIAS_SIZE COLOR_MAIN = '#268bf1' COLOR_SECOND = '#ffffff' FONT_MAIN_SUM = 840*ANTIALIAS_SIZE FONT_SIZE_SUB = 104*ANTIALIAS_SIZE SUB_TITLE = u'智课' # https://www.zcool.com.cn/article/ZNDg2Mzg4.html # FONT_FILE_NAME = 'HappyZcool-2016.ttf' # FONT_FILE_NAME = 'zcoolqinkehuangyouti.ttf' # FONT_FILE_NAME = 'lianmengqiyilushuaizhengruiheiti.ttf' FONT_FILE_NAME = 'ZhenyanGB.ttf' def brother_path(file_name): return os.path.join(os.path.abspath( os.path.dirname(__file__)), file_name) def draw_zk_bg(): img = Image.new('RGB', (LOGO_SIZE, LOGO_SIZE), COLOR_MAIN) draw = ImageDraw.Draw(img) ellipseX1 = LOGO_SIZE/2 - CIRCLE_RADIUS ellipseX2 = LOGO_SIZE/2 + CIRCLE_RADIUS draw.ellipse((ellipseX1, CIRCLE_EDGE_Y, ellipseX2, CIRCLE_EDGE_Y+CIRCLE_RADIUS*2), COLOR_SECOND) return img def text_horzontal_center(text, color, font, img, base_y): text_width, text_height = font.getsize(text) draw = ImageDraw.Draw(img) x = (LOGO_SIZE-text_width)/2 y = base_y-text_height draw.text((x, y), text, color, font=font) def print_using(): print("使用方法:zk_logo_maker.py 产品名 filename") def count_length(title): len = 0 for s in title: len += 1 return len def main(): param_len = len(sys.argv) if param_len < 2: print_using() exit() title = sys.argv[1] if param_len == 2: file_path = f"{title}.png" else: file_path = f"{sys.argv[2]}.png" print(f"title:{title}") print(f"file_path:{file_path}") title_len = len(title) main_title_font_size = int(FONT_MAIN_SUM/title_len) font = ImageFont.truetype( brother_path(FONT_FILE_NAME), main_title_font_size ) img = draw_zk_bg() text_horzontal_center( title, COLOR_SECOND, font, img, MAIN_POS) font_sub = ImageFont.truetype( brother_path(FONT_FILE_NAME), FONT_SIZE_SUB ) text_horzontal_center( SUB_TITLE, COLOR_MAIN, font_sub, img, SUB_POS) logo_size = int(LOGO_SIZE/ANTIALIAS_SIZE) img = img.resize((logo_size, logo_size), Image.ANTIALIAS) img.save(file_path, 'PNG') if __name__ == "__main__": main()
zk-logo-maker
/zk_logo_maker-1.0.5-py3-none-any.whl/zk_logo_maker/__main__.py
__main__.py
import game_sprites,pygame,data,time class GameEngine(): def __init__(self): #定义游戏窗口 self.scene = pygame.display.set_mode(data.SCREEN_SIZE) data.scene = self.scene #定义游戏名称 pygame.display.set_caption("飞机大战") #定义时钟 self.clock = pygame.time.Clock() # 间隔一定的时间,触发一次创建敌机的事件 pygame.time.set_timer(data.ENEMY_CREATE, 2000) # 创建一敌机发射子弹的事件 pygame.time.set_timer(data.ENEMY_ATTACK, 1000) def create_scene(self,img_path,img_path2): """创建游戏场景""" #定义游戏背景精灵 self.bg1 = game_sprites.BackgroundSprite(img_path) self.bg2 = game_sprites.BackgroundSprite(img_path,prepare=True) #定义英雄飞机 self.hero = game_sprites.HeroSprite(img_path2) # 定义精灵组对象 self.resources = pygame.sprite.Group(self.bg1, self.bg2, self.hero) #定义一个敌人飞机的精灵组 self.enemys = pygame.sprite.Group() def update_scene(self): """更新游戏场景""" #精灵组渲染 self.resources.update() self.resources.draw(self.scene) data.resources = self.resources #英雄子弹精灵组渲染 self.hero.bullets.update() self.hero.bullets.draw(self.scene) data.bullets = self.hero.bullets #敌机精灵组渲染 self.enemys.update() self.enemys.draw(self.scene) data.enemys = self.enemys #屏幕更新 pygame.display.update() def check_event(self): """监听事件""" event_list = pygame.event.get() if len(event_list) > 0: print(event_list) for event in event_list: # 如果当前事件是quit事件 if event.type == pygame.QUIT: # 退出程序 pygame.quit() exit() elif event.type == data.ENEMY_CREATE: print("创建一个敌机") enemy = game_sprites.EnemySprite() # 添加到敌机精灵组中 self.enemys.add(enemy) # c创建一个子弹对象 bullets = game_sprites.Bullet_Enemy(enemy.rect.x + 15, enemy.rect.y) # 将子弹对象添加到敌机精灵组中 self.enemys.add(bullets) elif event.type == data.ENEMY_ATTACK: print("敌机发射子弹") # 获取当前用户键盘上被操作的按键 key_down = pygame.key.get_pressed() if key_down[pygame.K_LEFT]: print("向左运动<<<<<<") self.hero.rect.x -= 5 elif key_down[pygame.K_RIGHT]: print("向右运动>>>>>>") self.hero.rect.x += 5 elif key_down[pygame.K_UP]: print("向上运动^^^^^^") self.hero.rect.y -= 5 elif key_down[pygame.K_DOWN]: print("向下运动>>>>>>") self.hero.rect.y += 5 elif key_down[pygame.K_SPACE]: self.hero.fire() print("发射子弹", self.hero.bullets) def check_collide(self): # 碰撞检测:子弹和敌机之间的碰撞 bol = pygame.sprite.groupcollide(self.enemys, self.hero.bullets, False, True) for i in bol: i.destroy() # 碰撞检测:英雄飞机和敌方飞机之间的碰撞 e = pygame.sprite.spritecollide(self.hero, self.enemys, True) if len(e) > 0: self.hero.destroy() print("Game Over") pygame.quit() exit() def start(self): """游戏开始""" #开场图片 self.scene = pygame.display.set_mode(data.SCREEN_SIZE) flag = False while True: # 添加一个背景图片 self.background_image = game_sprites.BackgroundSprite("./image/kc.jpg") #将背景图片放到精灵组 self.resp = pygame.sprite.Group(self.background_image) #设置监听 event_list = pygame.event.get() if len(event_list) > 0: print(event_list) for event in event_list: # 如果当前事件是quit事件 if event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: flag = True # 将背景图片渲染到窗口中展示 if flag: break self.resp.update() self.resp.draw(self.scene) pygame.display.update() #初始化游戏数据 pygame.init() # 创建场景 self.create_scene("./image/bg_img_3.jpg","./image/hero_18.png") score = 0 while True: # 定义时钟刷新帧:每秒让循环运行多少次 self.clock.tick(50) #监听事件 self.check_event() #碰撞检测 self.check_collide() if data.score >= 20: break #更新场景 self.update_scene() #清空精灵组 self.resources.empty() self.hero.bullets.empty() self.enemys.empty() #初始化所有模块 super().__init__() pygame.init() #创建游戏场景 self.create_scene("./image/bg_img_4.jpg","./image/hero.png") #游戏循环 while True: self.clock.tick(50) #监听事件 self.check_event() #碰撞检测 self.check_collide() #渲染展示 self.update_scene()
zk-pkg
/zk_pkg-1.0.tar.gz/zk_pkg-1.0/game_engine.py
game_engine.py
import pygame,data,random,time class GameSprite(pygame.sprite.Sprite): """游戏精灵对象""" def __init__(self,img_path,speed=1): #调用父类初始化数据 super().__init__() self.image = pygame.image.load(img_path) self.rect = self.image.get_rect() self.speed = speed def update(self): """默认运动方法""" self.rect.y += self.speed def destroy(self): print("飞机销毁") #音效 data.yx.play() for image_path in ["./image/enemy2_down1.png","./image/enemy2_down2.png", "./image/enemy2_down3.png","./image/enemy2_down4.png",]: self.image = pygame.image.load(image_path) time.sleep(0.03) data.resources.update() data.resources.draw(data.scene) data.bullets.update() data.bullets.draw(data.scene) data.enemys.update() data.enemys.draw(data.scene) pygame.display.update() self.kill() data.score += 1 class BackgroundSprite(GameSprite): def __init__(self,img_path,prepare = False): super().__init__(img_path) if prepare: self.rect.y = -data.SCREEN_SIZE[1] def update(self): #调用父类的方法进行运动 super().update() #子类中判断边界 if self.rect.y > data.SCREEN_SIZE[1]: self.rect.y = -data.SCREEN_SIZE[1] class HeroSprite(GameSprite): """英雄精灵对象""" def __init__(self,img_path): #初始化英雄飞机的图片、速度 super().__init__(img_path,speed=0) #初始化英雄飞机的位置 self.rect.centerx = data.SCREEN_RECT.centerx self.rect.y = data.SCREEN_RECT.centery + 200 #添加子弹对象到精灵组 self.bullets = pygame.sprite.Group() def update(self): #水平边界判断 if self.rect.x <= 0: self.rect.x = 0 elif self.rect.x >= data.SCREEN_RECT.width - self.rect.width: self.rect.x = data.SCREEN_RECT.width - self.rect.width #垂直边界判断 if self.rect.y <= 0: self.rect.y = 0 elif self.rect.y >= data.SCREEN_RECT.height - self.rect.height: self.rect.y = data.SCREEN_RECT.height - self.rect.height def fire(self): """飞机攻击""" # 创建一个子弹对象 bullet = BulletSprite(self.rect.centerx - 60, self.rect.y) # 添加到精灵族对象 self.bullets.add(bullet) class BulletSprite(GameSprite): """子弹精灵""" def __init__(self, x, y): super().__init__("./image/bullet_1.png", speed=-8) self.rect.x = x self.rect.y = y def update(self): # 调用父类的方法进行操作 super().update() # 边界判断 if self.rect.y <= -self.rect.height: # 子弹从精灵组删除 self.kill() def __del__(self): print("子弹对象已经销毁") class EnemySprite(GameSprite): """敌方飞机""" def __init__(self): # 初始化敌方飞机的数据 super().__init__("./image/enemy2.png", speed=random.randint(3, 5)) # 初始化敌方飞机的位置 self.rect.x = random.randint(0, data.SCREEN_RECT.width - self.rect.width) self.rect.y = -self.rect.height # 将子弹对象添加到精灵组 self.bullets = pygame.sprite.Group() def update(self): # 调用父类的方法直接运动 super().update() # 边界判断 if self.rect.y > data.SCREEN_RECT.height: # 飞机一旦超出屏幕,销毁 self.kill() class Bullet_Enemy(GameSprite): def __init__(self, x, y): super().__init__("./image/bullet2.png", speed=8) self.rect.x = x self.rect.y = y def update(self): # 调用父类的方法进行操作 super().update() # 边界判断 if self.rect.y >= data.SCREEN_SIZE[1]: # 子弹从精灵组删除 self.kill()
zk-pkg
/zk_pkg-1.0.tar.gz/zk_pkg-1.0/game_sprites.py
game_sprites.py
import os import sys from PIL import Image, ImageDraw, ImageFont from theme_info import load_theme_infos, safe_get def text_horzontal_center(text, color, font, img, screen_width, base_y): text_width, text_height = font.getsize(text) draw = ImageDraw.Draw(img) x = (screen_width-text_width)/2 y = base_y-text_height draw.text((x, y), text, color, font=font) def draw_title(img, title, title_font): screen_width = img.width title_y = safe_get(title_font, 'yoff') title_font_name = safe_get(title_font, 'font') title_font_size = int(safe_get(title_font, 'size')) font = ImageFont.truetype( brother_path(f"theme/{title_font_name}"), title_font_size ) text_horzontal_center(title, "#fff", font, img, screen_width, title_y) def draw_bg(img, bg_file): bgImg = Image.open(bg_file) box = (0, 0, min(img.width, bgImg.width), min(img.height, bgImg.height)) bgImgCrop = bgImg.crop(box) img.paste(bgImgCrop, box) def draw_fg(img, fg_file): fgImg = Image.open(fg_file) fgImg = fgImg.convert("RGBA") boxSrc = (0, 0, min(img.width, fgImg.width), min(img.height, fgImg.height)) boxDst = (0, max(0, img.height-fgImg.height), min(img.width, fgImg.width), img.height) bgImgCrop = fgImg.crop(boxSrc) img.paste(bgImgCrop, boxDst, bgImgCrop) def draw_screenshot(img, screenshot_file, theme_info): ssImg = Image.open(screenshot_file) factor = 0.72 screenshot_info = safe_get(theme_info, "screenshot_info") w = int(safe_get(screenshot_info, "width")) h = int(safe_get(screenshot_info, "height")) yoff = int(safe_get(screenshot_info, "yoff")) x = int((img.width - w)/2) y = int((img.height - h)/2)+yoff box = (x, y, x+w, y+h) device_type = safe_get(theme_info, "device_type") screenshot_type = safe_get(screenshot_info, "device_type") if device_type == 'iphone65': draw_iphone65(img, box) elif device_type == 'iphone55': draw_iphone55(img, box) else: draw_pad(img, box) draw_screen_edge(img, box) ssImg = ssImg.resize((w, h), Image.ANTIALIAS) img.paste(ssImg, box) def draw_iphone65(img, box_screen_of_iphone65): ''' 屏幕: "width": 1242, "height": 2688, 设备: 宽度:77.4 毫米 (3.05 英寸) 1388 px 高度:157.5 毫米 (6.20 英寸) 2825 px 屏幕对角线 6.5 165.1mm 像素 2961px 17.934585099939431 px/mm ''' x1, y1, x2, y2 = box_screen_of_iphone65 screen_w = x2-x1 screen_h = y2-y1 # device_w = screen_w*1388/1242 # device_h = screen_h*2825/2688 device_w = screen_w+80 device_h = screen_h+80 draw_device_frame(img, box_screen_of_iphone65, (device_w, device_h)) def draw_iphone55(img, box_screen_of_iphone55): ''' 1、长×宽×高:158.1毫米 × 77.8毫米× 7.1毫米;2493x1227 2、5.5英寸Retina HD高清显示屏,1920x1080像素分辨率; 5.5英寸=139.7mm 2203px 15.768841589708649 px/mm ''' x1, y1, x2, y2 = box_screen_of_iphone55 screen_w = x2-x1 screen_h = y2-y1 device_w = screen_w*1227/1080 device_h = screen_h*2493/1920 # device_w = screen_w+80 # device_h = screen_h+160 draw_device_frame(img, box_screen_of_iphone55, (device_w, device_h)) def draw_pad(img, box_screen_of_pad): ''' 一个iPad的屏幕120mm*160mm,外壳135mm*200mm ''' x1, y1, x2, y2 = box_screen_of_pad screen_w = x2-x1 screen_h = y2-y1 device_w = screen_w*135/120 device_h = screen_h*200/160 draw_device_frame(img, box_screen_of_pad, (device_w, device_h)) def draw_device_frame(img, box_screen, device_size): device_w, device_h = device_size screenshot_edg = 2 pad_fill = "#DDBB99" pad_edg1 = "#CCB097" pad_edg2 = "#BEA286" screen_x1, screen_y1, screen_x2, screen_y2 = box_screen screen_w = screen_x2 - screen_x1 screen_h = screen_y2 - screen_y1 off_x = (device_w-screen_w)/2 off_y = (device_h-screen_h)/2 device_x1 = screen_x1-off_x device_y1 = screen_y1-off_y device_x2 = screen_x2+off_x device_y2 = screen_y2+off_y draw = ImageDraw.Draw(img) draw.rectangle((device_x1 - screenshot_edg, device_y1 - screenshot_edg, device_x2, device_y2), pad_edg1) draw.rectangle((device_x1, device_y1, device_x2 + screenshot_edg, device_y2 + screenshot_edg), pad_edg2) draw.rectangle((device_x1, device_y1, device_x2, device_y2), pad_fill) def draw_screen_edge(img, box_screen): width_edg = 2 screen_edg1 = "#CCAA88" screen_edg2 = "#BB9977" screen_x1, screen_y1, screen_x2, screen_y2 = box_screen draw = ImageDraw.Draw(img) draw.rectangle((screen_x1 - width_edg, screen_y1 - width_edg, screen_x2, screen_y2), screen_edg1) draw.rectangle((screen_x1, screen_y1, screen_x2 + width_edg, screen_y2 + width_edg), screen_edg2) def make_screenshot(screenshot_info, theme_info, screenshot_index): width = safe_get(theme_info, "width") height = safe_get(theme_info, "height") device_type = safe_get(theme_info, "device_type") screen_shot_yoff = safe_get(safe_get(theme_info, "screen_shot"), "yoff") bg = safe_get(theme_info, "bg") fg = safe_get(theme_info, "fg") fg_frame = safe_get(fg[0], "frame") title_font = safe_get(theme_info, "title") sub_title_font = safe_get(theme_info, "sub_title") title = safe_get(screenshot_info, "title") sub_title = safe_get(screenshot_info, "sub_title") index = screenshot_index % len(bg) bg_file = brother_path(f"theme/{bg[index]}") fg_file = brother_path(f"theme/{fg_frame}") screenshot_dir = safe_get(screenshot_info, "screenshot_dir") screenshot_file = safe_get(screenshot_info, "screenshot_path") img = Image.new('RGB', (width, height), "#3399ff") draw_bg(img, bg_file) draw_screenshot(img, screenshot_file, theme_info) draw_title(img, title, title_font) draw_title(img, sub_title, sub_title_font) draw_fg(img, fg_file) path, filename = os.path.split(screenshot_file) name, ext = os.path.splitext(filename) file_dir = os.path.join(screenshot_dir, 'output', device_type) file_path = os.path.join(screenshot_dir, 'output', device_type, f'{name}.png') if not os.path.exists(file_dir): os.makedirs(file_dir) img.save(file_path, 'PNG') print( f""" ------------------------------------ GEN: {file_path} WITH: {screenshot_file} theme_type:{device_type} size:({width}x{height}) """) def brother_path(file_name): return os.path.join(os.path.abspath( os.path.dirname(__file__)), file_name)
zk-screenshot-maker
/zk_screenshot_maker-1.0.5-py3-none-any.whl/zk_screenshot_maker/drawer.py
drawer.py
zk-shell ======== .. image:: https://travis-ci.org/rgs1/zk_shell.svg?branch=master :target: https://travis-ci.org/rgs1/zk_shell :alt: Build Status .. image:: https://coveralls.io/repos/rgs1/zk_shell/badge.png?branch=master :target: https://coveralls.io/r/rgs1/zk_shell?branch=master :alt: Coverage Status .. image:: https://badge.fury.io/py/zk_shell.svg :target: http://badge.fury.io/py/zk_shell :alt: PyPI version .. image:: https://requires.io/github/rgs1/zk_shell/requirements.svg?branch=master :target: https://requires.io/github/rgs1/zk_shell/requirements/?branch=master :alt: Requirements Status .. image:: https://img.shields.io/pypi/pyversions/zk_shell.svg :target: https://pypi.python.org/pypi/zk_shell :alt: Python Versions .. image:: https://codeclimate.com/github/rgs1/zk_shell.png :target: https://codeclimate.com/github/rgs1/zk_shell :alt: Code Climate **Table of Contents** - `tl;dr <#tldr>`__ - `Installing <#installing>`__ - `Usage <#usage>`__ - `Dependencies <#dependencies>`__ tl;dr ~~~~~ A powerful & scriptable shell for `Apache ZooKeeper <http://zookeeper.apache.org/>`__ Installing ~~~~~~~~~~ As Dockerfile: :: $ docker build . -f Dockerfile -t zk-shell:1.3.3 From PyPI: :: $ pip install zk-shell Or running from the source: :: # Kazoo is needed $ pip install kazoo $ git clone https://github.com/rgs1/zk_shell.git $ cd zk_shell $ export ZKSHELL_SRC=1; bin/zk-shell Welcome to zk-shell (0.99.04) (DISCONNECTED) /> You can also build a self-contained PEX file: :: $ pip install pex $ pex -v -e zk_shell.cli -o zk-shell.pex . More info about PEX `here <https://pex.readthedocs.org>`__. Usage ~~~~~ Docker Version :: $ docker run -it zk-shell:1.3.3 and use the connect command to connect to your zookeeper instance :: $ zk-shell localhost:2181 (CONNECTED) /> ls zookeeper (CONNECTED) /> create foo 'bar' (CONNECTED) /> get foo bar (CONNECTED) /> cd foo (CONNECTED) /foo> create ish 'barish' (CONNECTED) /foo> cd .. (CONNECTED) /> ls foo ish (CONNECTED) /> create temp- 'temp' true true (CONNECTED) /> ls zookeeper foo temp-0000000001 (CONNECTED) /> rmr foo (CONNECTED) /> (CONNECTED) /> tree . ├── zookeeper │ ├── config │ ├── quota Line editing and command history is supported via readline (if readline is available). There's also autocomplete for most commands and their parameters. Individual files can be copied between the local filesystem and ZooKeeper. Recursively copying from the filesystem to ZooKeeper is supported as well, but not the other way around since znodes can have content and children. :: (CONNECTED) /> cp file:///etc/passwd zk://localhost:2181/passwd (CONNECTED) /> get passwd (...) unbound:x:992:991:Unbound DNS resolver:/etc/unbound:/sbin/nologin haldaemon:x:68:68:HAL daemon:/:/sbin/nologin Copying between one ZooKeeper cluster to another is supported, too: :: (CONNECTED) /> cp zk://localhost:2181/passwd zk://othercluster:2183/mypasswd Copying between a ZooKeeper cluster and JSON files is supported as well: :: (CONNECTED) /> cp zk://localhost:2181/something json://!tmp!backup.json/ true true Mirroring paths to between clusters or JSON files is also supported. Mirroring replaces the destination path with the content and structure of the source path. :: (CONNECTED) /> create /source/znode1/znode11 'Hello' false false true (CONNECTED) /> create /source/znode2 'Hello' false false true (CONNECTED) /> create /target/znode1/znode12 'Hello' false false true (CONNECTED) /> create /target/znode3 'Hello' false false true (CONNECTED) /> tree . ├── target │ ├── znode3 │ ├── znode1 │ │ ├── znode12 ├── source │ ├── znode2 │ ├── znode1 │ │ ├── znode11 ├── zookeeper │ ├── config │ ├── quota (CONNECTED) /> mirror /source /target Are you sure you want to replace /target with /source? [y/n]: y Mirroring took 0.04 secs (CONNECTED) /> tree . ├── target │ ├── znode2 │ ├── znode1 │ │ ├── znode11 ├── source │ ├── znode2 │ ├── znode1 │ │ ├── znode11 ├── zookeeper │ ├── config │ ├── quota (CONNECTED) /> create /target/znode4 'Hello' false false true (CONNECTED) /> mirror /source /target false false true Mirroring took 0.03 secs (CONNECTED) /> Debugging watches can be done with the watch command. It allows monitoring all the child watches that, recursively, fire under : :: (CONNECTED) /> watch start / (CONNECTED) /> create /foo 'test' (CONNECTED) /> create /bar/foo 'test' (CONNECTED) /> rm /bar/foo (CONNECTED) /> watch stats / Watches Stats /foo: 1 /bar: 2 /: 1 (CONNECTED) /> watch stop / Searching for paths or znodes which match a given text can be done via find: :: (CONNECTED) /> find / foo /foo2 /fooish/wayland /fooish/xorg /copy/foo Or a case-insensitive match using ifind: :: (CONNECTED) /> ifind / foo /foo2 /FOOish/wayland /fooish/xorg /copy/Foo Grepping for content in znodes can be done via grep: :: (CONNECTED) /> grep / unbound true /passwd: unbound:x:992:991:Unbound DNS resolver:/etc/unbound:/sbin/nologin /copy/passwd: unbound:x:992:991:Unbound DNS resolver:/etc/unbound:/sbin/nologin Or via igrep for a case-insensitive version. Non-interactive mode can be used passing commands via ``--run-once``: :: $ zk-shell --run-once "create /foo 'bar'" localhost $ zk-shell --run-once "get /foo" localhost bar Or piping commands through stdin: :: $ echo "get /foo" | zk-shell --run-from-stdin localhost bar It's also possible to connect using an SSH tunnel, by specifying a host to use: :: $ zk-shell --tunnel ssh-host zk-host Dependencies ~~~~~~~~~~~~ - Python 2.7, 3.3, 3.4, 3.5 or 3.6 - Kazoo >= 2.2 Testing and Development ~~~~~~~~~~~~~~~~~~~~~~~ Please see `CONTRIBUTING.rst <CONTRIBUTING.rst>`__.
zk-shell
/zk_shell-1.3.4.tar.gz/zk_shell-1.3.4/README.rst
README.rst
from collections import namedtuple try: from itertools import izip except ImportError: # py3k izip = zip import os import re import socket import sys PYTHON3 = sys.version_info > (3, ) def pretty_bytes(num): """ pretty print the given number of bytes """ for unit in ['', 'KB', 'MB', 'GB']: if num < 1024.0: if unit == '': return "%d" % (num) else: return "%3.1f%s" % (num, unit) num /= 1024.0 return "%3.1f%s" % (num, 'TB') def to_bool(boolstr): """ str to bool """ return boolstr.lower() == "true" def to_bytes(value): """ str to bytes (py3k) """ vtype = type(value) if vtype == bytes or vtype == type(None): return value try: return vtype.encode(value) except UnicodeEncodeError: pass return value def to_int(sint, default): """ get an int from an str """ try: return int(sint) except ValueError: return default def decoded(s): if PYTHON3: return str.encode(s).decode('unicode_escape') else: return s.decode('string_escape') def decoded_utf8(s): return s if PYTHON3 else s.decode('utf-8') class Netloc(namedtuple("Netloc", "host scheme credential")): """ network location info: host, scheme and credential """ @classmethod def from_string(cls, netloc_string): host = scheme = credential = "" if not "@" in netloc_string: host = netloc_string else: scheme_credential, host = netloc_string.rsplit("@", 1) if ":" not in scheme_credential: raise ValueError("Malformed scheme/credential (must be scheme:credential)") scheme, credential = scheme_credential.split(":", 1) return cls(host, scheme, credential) _empty = re.compile("\A\s*\Z") _valid_host_part = re.compile("(?!-)[a-z\d-]{1,63}(?<!-)$", re.IGNORECASE) _valid_ipv4 = re.compile("\A(\d+)\.(\d+)\.(\d+)\.(\d+)\Z") def valid_port(port, start=1, end=65535): try: port = int(port) return port >= start and port <= end except ValueError: pass return False def valid_ipv4(ip): """ check if ip is a valid ipv4 """ match = _valid_ipv4.match(ip) if match is None: return False octets = match.groups() if len(octets) != 4: return False first = int(octets[0]) if first < 1 or first > 254: return False for i in range(1, 4): octet = int(octets[i]) if octet < 0 or octet > 255: return False return True def valid_host(host): """ check valid hostname """ for part in host.split("."): if not _valid_host_part.match(part): return False return True def valid_host_with_port(hostport): """ matches hostname or an IP, optionally with a port """ host, port = hostport.rsplit(":", 1) if ":" in hostport else (hostport, None) # first, validate host or IP if not valid_ipv4(host) and not valid_host(host): return False # now, validate port if port is not None and not valid_port(port): return False return True def valid_hosts(hosts): """ matches a comma separated list of hosts (possibly with ports) """ if _empty.match(hosts): return False for host in hosts.split(","): if not valid_host_with_port(host): return False return True def invalid_hosts(hosts): """ the inverse of valid_hosts() """ return not valid_hosts(hosts) def split(path): """ splits path into parent, child """ if path == '/': return ('/', None) parent, child = path.rsplit('/', 1) if parent == '': parent = '/' return (parent, child) def get_ips(host, port): """ lookup all IPs (v4 and v6) """ ips = set() for af_type in (socket.AF_INET, socket.AF_INET6): try: records = socket.getaddrinfo(host, port, af_type, socket.SOCK_STREAM) ips.update(rec[4][0] for rec in records) except socket.gaierror as ex: pass return ips def hosts_to_endpoints(hosts, port=2181): """ return a list of (host, port) tuples from a given host[:port],... str """ endpoints = [] for host in hosts.split(","): endpoints.append(tuple(host.rsplit(":", 1)) if ":" in host else (host, port)) return endpoints def find_outliers(group, delta): """ given a list of values, find those that are apart from the rest by `delta`. the indexes for the outliers is returned, if any. examples: values = [100, 6, 7, 8, 9, 10, 150] find_outliers(values, 5) -> [0, 6] values = [5, 6, 5, 4, 5] find_outliers(values, 3) -> [] """ with_pos = sorted([pair for pair in enumerate(group)], key=lambda p: p[1]) outliers_start = outliers_end = -1 for i in range(0, len(with_pos) - 1): cur = with_pos[i][1] nex = with_pos[i + 1][1] if nex - cur > delta: # depending on where we are, outliers are the remaining # items or the ones that we've already seen. if i < (len(with_pos) - i): # outliers are close to the start outliers_start, outliers_end = 0, i + 1 else: # outliers are close to the end outliers_start, outliers_end = i + 1, len(with_pos) break if outliers_start != -1: return [with_pos[i][0] for i in range(outliers_start, outliers_end)] else: return [] def which(program): """ analagous to /usr/bin/which """ is_exe = lambda fpath: os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, _ = os.path.split(program) if fpath and is_exe(program): return program for path in os.environ["PATH"].split(os.pathsep): path = path.strip('"') exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None def get_matching(content, match): """ filters out lines that don't include match """ if match != "": lines = [line for line in content.split("\n") if match in line] content = "\n".join(lines) return content def grouper(iterable, n): """ Group iterable in chunks of n size """ args = [iter(iterable)] * n return izip(*args)
zk-shell
/zk_shell-1.3.4.tar.gz/zk_shell-1.3.4/zk_shell/util.py
util.py
import copy import json import re def container_for_key(key): """ Determines what type of container is needed for `key` """ try: int(key) return [] except ValueError: return {} def safe_list_set(plist, idx, fill_with, value): """ Sets: ``` plist[idx] = value ``` If len(plist) is smaller than what idx is trying to dereferece, we first grow plist to get the needed capacity and fill the new elements with fill_with (or fill_with(), if it's a callable). """ try: plist[idx] = value return except IndexError: pass # Fill in the missing positions. Handle negative indexes. end = idx + 1 if idx >= 0 else abs(idx) for _ in range(len(plist), end): if callable(fill_with): plist.append(fill_with()) else: plist.append(fill_with) plist[idx] = value class Keys(object): """ this class contains logic to parse the DSL to address keys within JSON objects and extrapolate keys variables in template strings """ # Good keys: # * foo.bar # * foo_bar # * foo-bar ALLOWED_KEY = '\w+(?:[\.-]\w+)*' class Bad(Exception): pass class Missing(Exception): pass @classmethod def extract(cls, keystr): """ for #{key} returns key """ regex = r'#{\s*(%s)\s*}' % cls.ALLOWED_KEY return re.match(regex, keystr).group(1) @classmethod def validate_one(cls, keystr): """ validates one key string """ regex = r'%s$' % cls.ALLOWED_KEY if re.match(regex, keystr) is None: raise cls.Bad("Bad key syntax for: %s. Should be: key1.key2..." % (keystr)) return True @classmethod def from_template(cls, template): """ extracts keys out of template in the form of: "a = #{key1}, b = #{key2.key3} ..." """ regex = r'#{\s*%s\s*}' % cls.ALLOWED_KEY keys = re.findall(regex, template) if len(keys) == 0: raise cls.Bad("Bad keys template: %s. Should be: \"%s\"" % ( template, "a = #{key1}, b = #{key2.key3} ...")) return keys @classmethod def validate(cls, keystr): """ raises cls.Bad if keys has errors """ if "#{" in keystr: # it's a template with keys vars keys = cls.from_template(keystr) for k in keys: cls.validate_one(cls.extract(k)) else: # plain keys str cls.validate_one(keystr) @classmethod def fetch(cls, obj, keys): """ fetches the value corresponding to keys from obj """ current = obj for key in keys.split("."): if type(current) == list: try: key = int(key) except TypeError: raise cls.Missing(key) try: current = current[key] except (IndexError, KeyError, TypeError) as ex: raise cls.Missing(key) return current @classmethod def value(cls, obj, keystr): """ gets the value corresponding to keys from obj. if keys is a template string, it extrapolates the keys in it """ if "#{" in keystr: # it's a template with keys vars keys = cls.from_template(keystr) for k in keys: v = cls.fetch(obj, cls.extract(k)) keystr = keystr.replace(k, str(v)) value = keystr else: # plain keys str value = cls.fetch(obj, keystr) return value @classmethod def set(cls, obj, keys, value, fill_list_value=None): """ sets the value for the given keys on obj. if any of the given keys does not exist, create the intermediate containers. """ current = obj keys_list = keys.split(".") for idx, key in enumerate(keys_list, 1): if type(current) == list: # Validate this key works with a list. try: key = int(key) except ValueError: raise cls.Missing(key) try: # This is the last key, so set the value. if idx == len(keys_list): if type(current) == list: safe_list_set( current, key, lambda: copy.copy(fill_list_value), value ) else: current[key] = value # done. return # More keys left, ensure we have a container for this key. if type(key) == int: try: current[key] except IndexError: # Create a list for this key. cnext = container_for_key(keys_list[idx]) if type(cnext) == list: def fill_with(): return [] else: def fill_with(): return {} safe_list_set( current, key, fill_with, [] if type(cnext) == list else {} ) else: if key not in current: # Create a list for this key. current[key] = container_for_key(keys_list[idx]) # Move on to the next key. current = current[key] except (IndexError, KeyError, TypeError): raise cls.Missing(key) def to_type(value, ptype): """ Convert value to ptype """ if ptype == 'str': return str(value) elif ptype == 'int': return int(value) elif ptype == 'float': return float(value) elif ptype == 'bool': if value.lower() == 'true': return True elif value.lower() == 'false': return False raise ValueError('Bad bool value: %s' % value) elif ptype == 'json': return json.loads(value) return ValueError('Unknown type')
zk-shell
/zk_shell-1.3.4.tar.gz/zk_shell-1.3.4/zk_shell/keys.py
keys.py
from kazoo.security import ( ACL, Id, make_acl, make_digest_acl, Permissions ) class ACLReader(object): """ Helper class to parse/unparse ACLs """ class BadACL(Exception): """ Couldn't parse the ACL """ pass valid_schemes = [ "world", "auth", "digest", "host", "ip", "sasl", "username_password", # internal-only: gen digest from user:password ] @classmethod def extract(cls, acls): """ parse a str that represents a list of ACLs """ return [cls.extract_acl(acl) for acl in acls] @classmethod def extract_acl(cls, acl): """ parse an individual ACL (i.e.: world:anyone:cdrwa) """ try: scheme, rest = acl.split(":", 1) credential = ":".join(rest.split(":")[0:-1]) cdrwa = rest.split(":")[-1] except ValueError: raise cls.BadACL("Bad ACL: %s. Format is scheme:id:perms" % (acl)) if scheme not in cls.valid_schemes: raise cls.BadACL("Invalid scheme: %s" % (acl)) create = True if "c" in cdrwa else False read = True if "r" in cdrwa else False write = True if "w" in cdrwa else False delete = True if "d" in cdrwa else False admin = True if "a" in cdrwa else False if scheme == "username_password": try: username, password = credential.split(":", 1) except ValueError: raise cls.BadACL("Bad ACL: %s. Format is scheme:id:perms" % (acl)) return make_digest_acl(username, password, read, write, create, delete, admin) else: return make_acl(scheme, credential, read, write, create, delete, admin) @classmethod def to_dict(cls, acl): """ transform an ACL to a dict """ return { "perms": acl.perms, "id": { "scheme": acl.id.scheme, "id": acl.id.id } } @classmethod def from_dict(cls, acl_dict): """ ACL from dict """ perms = acl_dict.get("perms", Permissions.ALL) id_dict = acl_dict.get("id", {}) id_scheme = id_dict.get("scheme", "world") id_id = id_dict.get("id", "anyone") return ACL(perms, Id(id_scheme, id_id))
zk-shell
/zk_shell-1.3.4.tar.gz/zk_shell-1.3.4/zk_shell/acl.py
acl.py
import os try: from Queue import Queue except ImportError: # py3k from queue import Queue from kazoo.exceptions import NoAuthError, NoNodeError class Request(object): __slots__ = ('path', 'result') def __init__(self, path, result): self.path, self.result = path, result @property def value(self): return self.result.get() class GetData(Request): pass class GetChildren(Request): pass class PathMap(object): __slots__ = ("zk", "path") def __init__(self, zk, path): self.zk, self.path = zk, path def get(self): reqs = Queue() child_pending = 1 data_pending = 0 path = self.path zk = self.zk child_of = lambda path: zk.get_children_async(path) dispatch_child = lambda path: GetChildren(path, child_of(path)) data_of = lambda path: zk.get_async(path) dispatch_data = lambda path: GetData(path, data_of(path)) stat = zk.exists(path) if stat is None or stat.numChildren == 0: return reqs.put(dispatch_child(path)) while child_pending or data_pending: req = reqs.get() if type(req) == GetChildren: try: children = req.value for child in children: data_pending += 1 reqs.put(dispatch_data(os.path.join(req.path, child))) except (NoNodeError, NoAuthError): pass child_pending -= 1 else: try: data, stat = req.value try: if data is not None: data = data.decode(encoding="utf-8") except UnicodeDecodeError: pass yield (req.path, data) # Does it have children? If so, get them if stat.numChildren > 0: child_pending += 1 reqs.put(dispatch_child(req.path)) except (NoNodeError, NoAuthError): pass data_pending -= 1
zk-shell
/zk_shell-1.3.4.tar.gz/zk_shell-1.3.4/zk_shell/pathmap.py
pathmap.py
from contextlib import contextmanager import os import re import socket import sre_constants import time from kazoo.client import KazooClient, TransactionRequest from kazoo.exceptions import NoAuthError, NoNodeError from kazoo.protocol.states import KazooState from .statmap import StatMap from .tree import Tree from .usage import Usage from .util import get_ips, hosts_to_endpoints, to_bytes @contextmanager def connected_socket(address, timeout=3): """ yields a connected socket """ sock = socket.create_connection(address, timeout) yield sock sock.close() class ClientInfo(object): __slots__ = "id", "ip", "port", "client_hostname", "server_ip", "server_port", "server_hostname" def __init__(self, sid=None, ip=None, port=None, server_ip=None, server_port=None): setattr(self, "id", sid) setattr(self, "ip", ip) setattr(self, "port", port) setattr(self, "server_ip", server_ip) setattr(self, "server_port", server_port) setattr(self, "client_hostname", None) setattr(self, "server_hostname", None) def __call__(self, ip, port, server_ip, server_port): setattr(self, "ip", ip) setattr(self, "port", port) setattr(self, "server_ip", server_ip) setattr(self, "server_port", server_port) def __str__(self): return "%s %s" % (self.id, self.endpoints) @property def endpoints(self): return "%s:%s %s:%s" % (self.ip, self.port, self.server_ip, self.server_port) @property def resolved(self): self._resolve_hostnames() return "%s %s" % (self.id, self.resolved_endpoints) @property def resolved_endpoints(self): self._resolve_hostnames() return "%s:%s %s:%s" % ( self.client_hostname, self.port, self.server_hostname, self.server_port) def _resolve_hostnames(self): if self.client_hostname is None and self.ip: self.resolve_ip("client_hostname", self.ip) if self.server_hostname is None and self.server_ip: self.resolve_ip("server_hostname", self.server_ip) def resolve_ip(self, attr, ip): try: hname = socket.gethostbyaddr(ip)[0] setattr(self, attr, hname) except socket.herror: pass class XTransactionRequest(TransactionRequest): """ wrapper to make PY3K (slightly) painless """ def create(self, path, value=b"", acl=None, ephemeral=False, sequence=False): """ wrapper that handles encoding (yay Py3k) """ super(XTransactionRequest, self).create(path, to_bytes(value), acl, ephemeral, sequence) def set_data(self, path, value, version=-1): """ wrapper that handles encoding (yay Py3k) """ super(XTransactionRequest, self).set_data(path, to_bytes(value), version) class XClient(): """ adds some extra methods to a wrapped KazooClient """ class CmdFailed(Exception): """ 4 letter cmd failed """ pass SESSION_REGEX = re.compile(r"^(0x\w+):") IP_PORT_REGEX = re.compile(r"^\tip:\s/(\d+\.\d+\.\d+\.\d+):(\d+)\ssessionId:\s(0x\w+)\Z") PATH_REGEX = re.compile(r"^\t((?:/.*)+)\Z") def __init__(self, zk_client=None): self._zk = zk_client or KazooClient() @property def xid(self): """ the session's current xid or -1 if not connected """ conn = self._connection return conn._xid if conn else -1 @property def session_timeout(self): """ the negotiated session timeout """ return self._session_timeout @property def server(self): """ the (hostaddr, port) of the connected ZK server (or "") """ conn = self._connection return conn._socket.getpeername() if conn else "" @property def client(self): """ the (hostaddr, port) of the local endpoint (or "") """ conn = self._connection return conn._socket.getsockname() if conn else "" @property def sessionid(self): return "0x%x" % (getattr(self, "_session_id", 0)) @property def protocol_version(self): """ this depends on https://github.com/python-zk/kazoo/pull/182, so play conservatively """ return getattr(self, "_protocol_version", 0) @property def data_watches(self): """ paths for data watches """ return self._data_watchers.keys() @property def child_watches(self): """ paths for child watches """ return self._child_watchers.keys() def get(self, *args, **kwargs): """ wraps the default get() and deals with encoding """ value, stat = self._zk.get(*args, **kwargs) try: if value is not None: value = value.decode(encoding="utf-8") except UnicodeDecodeError: pass return (value, stat) def get_bytes(self, *args, **kwargs): """ no string decoding performed """ return self._zk.get(*args, **kwargs) def set(self, path, value, version=-1): """ wraps the default set() and handles encoding (Py3k) """ value = to_bytes(value) self._zk.set(path, value, version) def create(self, path, value=b"", acl=None, ephemeral=False, sequence=False, makepath=False): """ wraps the default create() and handles encoding (Py3k) """ value = to_bytes(value) return self._zk.create(path, value, acl, ephemeral, sequence, makepath) def create_async(self, path, value=b"", acl=None, ephemeral=False, sequence=False, makepath=False): """ wraps the default create() and handles encoding (Py3k) """ value = to_bytes(value) return self._zk.create_async(path, value, acl, ephemeral, sequence, makepath) def transaction(self): """ use XTransactionRequest which is encoding aware (Py3k) """ return XTransactionRequest(self) def du(self, path): """ returns the bytes used under path """ return Usage(self, path).value def get_acls_recursive(self, path, depth, include_ephemerals): """A recursive generator wrapper for get_acls :param path: path from which to start :param depth: depth of the recursion (-1 no recursion, 0 means no limit) :param include_ephemerals: get ACLs for ephemerals too """ yield path, self.get_acls(path)[0] if depth == -1: return for tpath, _ in self.tree(path, depth, full_path=True): try: acls, stat = self.get_acls(tpath) except NoNodeError: continue if not include_ephemerals and stat.ephemeralOwner != 0: continue yield tpath, acls def find(self, path, match, flags): """ find every matching child path under path """ try: match = re.compile(match, flags) except sre_constants.error as ex: print("Bad regexp: %s" % (ex)) return offset = len(path) for cpath in Tree(self, path).get(): if match.search(cpath[offset:]): yield cpath def grep(self, path, content, flags): """ grep every child path under path for content """ try: match = re.compile(content, flags) except sre_constants.error as ex: print("Bad regexp: %s" % (ex)) return for gpath, matches in self.do_grep(path, match): yield (gpath, matches) def do_grep(self, path, match): """ grep's work horse """ try: children = self.get_children(path) except (NoNodeError, NoAuthError): children = [] for child in children: full_path = os.path.join(path, child) try: value, _ = self.get(full_path) except (NoNodeError, NoAuthError): value = "" if value is not None: if isinstance(value, bytes): value = value.decode(errors='ignore') matches = [line for line in value.split("\n") if match.search(line)] if len(matches) > 0: yield (full_path, matches) for mpath, matches in self.do_grep(full_path, match): yield (mpath, matches) def child_count(self, path): """ returns the child count under path (deals with znodes going away as it's traversing the tree). """ stat = self.stat(path) if not stat: return 0 count = stat.numChildren for _, _, stat in self.tree(path, 0, include_stat=True): if stat: count += stat.numChildren return count def tree(self, path, max_depth, full_path=False, include_stat=False): """DFS generator which starts from a given path and goes up to a max depth. :param path: path from which the DFS will start :param max_depth: max depth of DFS (0 means no limit) :param full_path: should the full path of the child node be returned :param include_stat: return the child Znode's stat along with the name & level """ for child_level_stat in self.do_tree(path, max_depth, 0, full_path, include_stat): yield child_level_stat def do_tree(self, path, max_depth, level, full_path, include_stat): """ tree's work horse """ try: children = self.get_children(path) except (NoNodeError, NoAuthError): children = [] for child in children: cpath = os.path.join(path, child) if full_path else child if include_stat: yield cpath, level, self.stat(os.path.join(path, child)) else: yield cpath, level if max_depth == 0 or level + 1 < max_depth: cpath = os.path.join(path, child) for rchild_rlevel_rstat in self.do_tree(cpath, max_depth, level + 1, full_path, include_stat): yield rchild_rlevel_rstat def fast_tree(self, path, exclude_recurse=None): """ a fast async version of tree() """ for cpath in Tree(self, path).get(exclude_recurse): yield cpath def stat_map(self, path): """ a generator for <child, Stat> """ return StatMap(self, path).get() def diff(self, path_a, path_b): """ Performs a deep comparison of path_a/ and path_b/ For each child, it yields (rv, child) where rv: -1 if doesn't exist in path_b (destination) 0 if they are different 1 if it doesn't exist in path_a (source) """ path_a = path_a.rstrip("/") path_b = path_b.rstrip("/") if not self.exists(path_a) or not self.exists(path_b): return if not self.equal(path_a, path_b): yield 0, "/" seen = set() len_a = len(path_a) len_b = len(path_b) # first, check what's missing & changed in dst for child_a, level in self.tree(path_a, 0, True): child_sub = child_a[len_a + 1:] child_b = os.path.join(path_b, child_sub) if not self.exists(child_b): yield -1, child_sub else: if not self.equal(child_a, child_b): yield 0, child_sub seen.add(child_sub) # now, check what's new in dst for child_b, level in self.tree(path_b, 0, True): child_sub = child_b[len_b + 1:] if child_sub not in seen: yield 1, child_sub def equal(self, path_a, path_b): """ compare if a and b have the same bytes """ content_a, _ = self.get_bytes(path_a) content_b, _ = self.get_bytes(path_b) return content_a == content_b def stat(self, path): """ safely gets the Znode's Stat """ try: stat = self.exists(str(path)) except (NoNodeError, NoAuthError): stat = None return stat def _to_endpoints(self, hosts): return [self.current_endpoint] if hosts is None else hosts_to_endpoints(hosts) def mntr(self, hosts=None): """ send an mntr cmd to either host or the connected server """ return self.cmd(self._to_endpoints(hosts), "mntr") def cons(self, hosts=None): """ send a cons cmd to either host or the connected server """ return self.cmd(self._to_endpoints(hosts), "cons") def dump(self, hosts=None): """ send a dump cmd to either host or the connected server """ return self.cmd(self._to_endpoints(hosts), "dump") def cmd(self, endpoints, cmd): """endpoints is [(host1, port1), (host2, port), ...]""" replies = [] for ep in endpoints: try: replies.append(self._cmd(ep, cmd)) except self.CmdFailed as ex: # if there's only 1 endpoint, give up. # if there's more, keep trying. if len(endpoints) == 1: raise ex return "".join(replies) def _cmd(self, endpoint, cmd): """ endpoint is (host, port) """ cmdbuf = "%s\n" % (cmd) # some cmds have large outputs and ZK closes the connection as soon as it # finishes writing. so read in huge chunks. recvsize = 1 << 20 replies = [] host, port = endpoint ips = get_ips(host, port) if len(ips) == 0: raise self.CmdFailed("Failed to resolve: %s" % (host)) for ip in ips: try: with connected_socket((ip, port)) as sock: sock.send(cmdbuf.encode()) while True: buf = sock.recv(recvsize).decode("utf-8") if buf == "": break replies.append(buf) except socket.error as ex: # if there's only 1 record, give up. # if there's more, keep trying. if len(ips) == 1: raise self.CmdFailed("Error(%s): %s" % (ip, ex)) return "".join(replies) @property def current_endpoint(self): if not self.connected: raise self.CmdFailed("Not connected and no host given.") # If we are using IPv6, getpeername() returns a 4-tuple return self._connection._socket.getpeername()[:2] def zk_url(self): """ returns `zk://host:port` for the connected host:port """ return "zk://%s:%d" % self.current_endpoint def reconnect(self): """ forces a reconnect by shutting down the connected socket return True if the reconnect happened, False otherwise """ state_change_event = self.handler.event_object() def listener(state): if state is KazooState.SUSPENDED: state_change_event.set() self.add_listener(listener) self._connection._socket.shutdown(socket.SHUT_RDWR) state_change_event.wait(1) if not state_change_event.is_set(): return False # wait until we are back while not self.connected: time.sleep(0.1) return True def dump_by_server(self, hosts): """Returns the output of dump for each server. :param hosts: comma separated lists of members of the ZK ensemble. :returns: A dictionary of ((server_ip, port), ClientInfo). """ dump_by_endpoint = {} for endpoint in self._to_endpoints(hosts): try: out = self.cmd([endpoint], "dump") except self.CmdFailed as ex: out = "" dump_by_endpoint[endpoint] = out return dump_by_endpoint def ephemerals_info(self, hosts): """Returns ClientInfo per path. :param hosts: comma separated lists of members of the ZK ensemble. :returns: A dictionary of (path, ClientInfo). """ info_by_path, info_by_id = {}, {} for server_endpoint, dump in self.dump_by_server(hosts).items(): server_ip, server_port = server_endpoint sid = None for line in dump.split("\n"): mat = self.SESSION_REGEX.match(line) if mat: sid = mat.group(1) continue mat = self.PATH_REGEX.match(line) if mat: info = info_by_id.get(sid, None) if info is None: info = info_by_id[sid] = ClientInfo(sid) info_by_path[mat.group(1)] = info continue mat = self.IP_PORT_REGEX.match(line) if mat: ip, port, sid = mat.groups() if sid not in info_by_id: continue info_by_id[sid](ip, int(port), server_ip, server_port) return info_by_path def sessions_info(self, hosts): """Returns ClientInfo per session. :param hosts: comma separated lists of members of the ZK ensemble. :returns: A dictionary of (session_id, ClientInfo). """ info_by_id = {} for server_endpoint, dump in self.dump_by_server(hosts).items(): server_ip, server_port = server_endpoint for line in dump.split("\n"): mat = self.IP_PORT_REGEX.match(line) if mat is None: continue ip, port, sid = mat.groups() info_by_id[sid] = ClientInfo(sid, ip, port, server_ip, server_port) return info_by_id def __getattr__(self, attr): """kazoo.client method and attribute proxy""" return getattr(self._zk, attr)
zk-shell
/zk_shell-1.3.4.tar.gz/zk_shell-1.3.4/zk_shell/xclient.py
xclient.py
from __future__ import print_function from base64 import b64decode, b64encode from collections import defaultdict import json import os import re import time import shutil try: from urlparse import urlparse except ImportError: # Python 3.3? from urllib.parse import urlparse from kazoo.client import KazooClient from kazoo.exceptions import ( NoAuthError, NodeExistsError, NoNodeError, NoChildrenForEphemeralsError, ZookeeperError, ) from .acl import ACLReader from .statmap import StatMap from .util import Netloc, to_bytes DEFAULT_ZK_PORT = 2181 def zk_client(host, scheme, credential): """ returns a connected (and possibly authenticated) ZK client """ if not re.match(r".*:\d+$", host): host = "%s:%d" % (host, DEFAULT_ZK_PORT) client = KazooClient(hosts=host) client.start() if scheme != "": client.add_auth(scheme, credential) return client class CopyError(Exception): """ base exception for Copy errors """ def __init__(self, message, early_error=False): super(CopyError, self).__init__(message) self._early_error = early_error @property def is_early_error(self): return self._early_error class AuthError(CopyError): """ authentication exception for Copy """ def __init__(self, operation, path): super(AuthError, self).__init__( "Permission denied: Could not %s znode %s." % (operation, path)) class PathValue(object): def __init__(self, value, acl=None): self._value = value self._acl = acl if acl else [] @property def value(self): return self._value @property def value_as_bytes(self): return to_bytes(self.value) @property def acl(self): return self._acl @property def acl_as_dict(self): return self._acl class ProxyType(type): TYPES = {} SCHEME = "" def __new__(mcs, clsname, bases, dct): obj = super(ProxyType, mcs).__new__(mcs, clsname, bases, dct) if obj.SCHEME in mcs.TYPES: raise ValueError("Duplicate scheme handler: %s" % obj.SCHEME) if obj.SCHEME != "": mcs.TYPES[obj.SCHEME] = obj return obj class Proxy(ProxyType("ProxyBase", (object,), {})): SCHEME = "" def __init__(self, parse_result, exists, asynchronous, verbose): self.parse_result = parse_result self.netloc = Netloc.from_string(parse_result.netloc) self.exists = exists self.asynchronous = asynchronous self.verbose = verbose @property def scheme(self): return self.parse_result.scheme @property def url(self): return self.parse_result.geturl() @property def path(self): path = self.parse_result.path if path == "": return "/" return "/" if path == "/" else path.rstrip("/") @property def host(self): return self.netloc.host @property def auth_scheme(self): return self.netloc.scheme @property def auth_credential(self): return self.netloc.credential def set_url(self, string): """ useful for recycling a stateful proxy """ self.parse_result = Proxy.parse(string) @classmethod def from_string(cls, string, exists=False, asynchronous=False, verbose=False): """ if exists is bool, then check it either exists or it doesn't. if exists is None, we don't care. """ result = cls.parse(string) if result.scheme not in cls.TYPES: raise CopyError("Invalid scheme: %s" % (result.scheme)) return cls.TYPES[result.scheme](result, exists, asynchronous, verbose) @classmethod def parse(cls, url_string): return urlparse(url_string) def __enter__(self): pass def __exit__(self, etype, value, traceback): pass def check_path(self): raise NotImplementedError("check_path must be implemented") def read_path(self): raise NotImplementedError("read_path must be implemented") def write_path(self, path_value): raise NotImplementedError("write_path must be implemented") def children_of(self): raise NotImplementedError("children_of must be implemented") def delete_path_recursively(self): raise NotImplementedError("delete_path must be implemented") def copy(self, dst, recursive, max_items, mirror): opname = "Copy" if not mirror else "Mirror" # basic sanity check if mirror and self.scheme == "zk" and dst.scheme == "file": raise CopyError("Mirror from zk to fs isn't supported", True) if recursive and self.scheme == "zk" and dst.scheme == "file": raise CopyError("Recursive %s from zk to fs isn't supported" % opname.lower(), True) if mirror and not recursive: raise CopyError("Mirroring must be recursive", True) start = time.time() src_url = self.url dst_url = dst.url with self: with dst: if mirror: dst_children = set(c for c in dst.children_of()) self.do_copy(dst, opname) if recursive: for i, child in enumerate(self.children_of()): if mirror and child in dst_children: dst_children.remove(child) if max_items > 0 and i == max_items: break self.set_url(os.path.join(src_url, child)) dst.set_url(os.path.join(dst_url, child)) self.do_copy(dst, opname) # reset to base urls self.set_url(src_url) dst.set_url(dst_url) if mirror: for child in dst_children: dst.set_url(os.path.join(dst_url, child)) dst.delete_path_recursively() end = time.time() print("%sing took %.2f secs" % (opname, round(end - start, 2))) def do_copy(self, dst, opname): if self.verbose: if self.asynchronous: print("%sing (asynchronously) from %s to %s" % (opname, self.url, dst.url)) else: print("%sing from %s to %s" % (opname, self.url, dst.url)) dst.write_path(self.read_path()) class ZKProxy(Proxy): """ read/write ZooKeeper paths """ SCHEME = "zk" class ZKPathValue(PathValue): """ handle ZK specific meta attribs (i.e.: acls) """ def __init__(self, value, acl=None): PathValue.__init__(self, value) self._acl = acl @property def acl(self): return self._acl @property def acl_as_dict(self): acls = self.acl if self.acl else [] return [ACLReader.to_dict(a) for a in acls] def __init__(self, parse_result, exists, asynchronous, verbose): super(ZKProxy, self).__init__(parse_result, exists, asynchronous, verbose) self.client = None self.need_client = True # whether we build a client or one is provided def connect(self): if self.need_client: self.client = zk_client(self.host, self.auth_scheme, self.auth_credential) def disconnect(self): if self.need_client: if self.client: self.client.stop() def __enter__(self): self.connect() if self.exists is not None: self.check_path() def __exit__(self, etype, value, traceback): self.disconnect() def check_path(self): try: retval = True if self.client.exists(self.path) else False except NoAuthError: raise AuthError("read", self.path) if retval is not self.exists: if self.exists: error = "znode %s in %s doesn't exist" % \ (self.path, self.host) else: error = "znode %s in %s exists" % (self.path, self.host) raise CopyError(error) def read_path(self): try: # TODO: propose a new ZK opcode (GetWithACLs) so we can do this in 1 rt value = self.get_value(self.path) acl, _ = self.client.get_acls(self.path) return self.ZKPathValue(value, acl) except NoAuthError: raise AuthError("read", self.path) def write_path(self, path_value): if isinstance(path_value, self.ZKPathValue): acl = path_value.acl else: acl = [ACLReader.from_dict(a) for a in path_value.acl] if self.client.exists(self.path): try: value = self.get_value(self.path) if path_value.value != value: self.client.set(self.path, path_value.value) except NoAuthError: raise AuthError("write", self.path) else: try: # Kazoo's create() doesn't handle acl=[] correctly # See: https://github.com/python-zk/kazoo/pull/164 acl = acl or None self.client.create(self.path, path_value.value, acl=acl, makepath=True) except NoAuthError: raise AuthError("create", self.path) except NodeExistsError: raise CopyError("Node %s exists" % (self.path)) except NoNodeError: raise CopyError("Parent node for %s is missing" % (self.path)) except NoChildrenForEphemeralsError: raise CopyError("Ephemeral znodes can't have children") except ZookeeperError: raise CopyError("ZooKeeper server error") def get_value(self, path): try: if hasattr(self.client, 'get_bytes'): v, _ = self.client.get_bytes(path) else: v, _ = self.client.get(path) except NoAuthError: raise AuthError("read", path) return v def delete_path_recursively(self): try: self.client.delete(self.path, recursive=True) except NoNodeError: pass except NoAuthError: raise AuthError("delete", self.path) except ZookeeperError: raise CopyError("Zookeeper server error") def children_of(self): if self.asynchronous: offs = 1 if self.path == "/" else len(self.path) + 1 for path, stat in StatMap(self.client, self.path, recursive=True).get(): if stat.ephemeralOwner == 0: yield path[offs:] else: for path in self.zk_walk(self.path, None): yield path def zk_walk(self, root_path, branch_path): """ skip ephemeral znodes since there's no point in copying those """ full_path = os.path.join(root_path, branch_path) if branch_path else root_path try: children = self.client.get_children(full_path) except NoNodeError: children = set() except NoAuthError: raise AuthError("read children", full_path) for child in children: child_path = os.path.join(branch_path, child) if branch_path else child try: stat = self.client.exists(os.path.join(root_path, child_path)) except NoAuthError: raise AuthError("read", child) if stat is None or stat.ephemeralOwner != 0: continue yield child_path for new_path in self.zk_walk(root_path, child_path): yield new_path class FileProxy(Proxy): SCHEME = "file" def __init__(self, parse_result, exists, asynchronous, verbose): super(FileProxy, self).__init__(parse_result, exists, asynchronous, verbose) if exists is not None: self.check_path() def check_path(self): if os.path.exists(self.path) is not self.exists: error = "Path %s " % (self.path) error += "doesn't exist" if self.exists else "exists" raise CopyError(error) def read_path(self): if os.path.isfile(self.path): with open(self.path, "r") as fph: return PathValue("".join(fph.readlines())) elif os.path.isdir(self.path): return PathValue("") raise CopyError("%s is of unknown file type" % (self.path)) def write_path(self, path_value): """ this will overwrite dst path - be careful """ parent_dir = os.path.dirname(self.path) try: os.makedirs(parent_dir) except OSError: pass with open(self.path, "w") as fph: fph.write(path_value.value) def children_of(self): root_path = self.path[0:-1] if self.path.endswith("/") else self.path for path, _, files in os.walk(root_path): path = path.replace(root_path, "") if path.startswith("/"): path = path[1:] if path != "": yield path for filename in files: yield os.path.join(path, filename) if path != "" else filename def delete_path_recursively(self): shutil.rmtree(self.path, True) class JSONProxy(Proxy): """ read/write from JSON files discovered via: json://!some!path!backup.json/some/path the serialized version looks like this: .. code-block:: python { '/some/path': { 'content': 'blob', 'acls': []}, '/some/other/path': { 'content': 'other-blob', 'acls': []}, } For simplicity, a flat dictionary is used as opposed as using a tree like format with children accessible from their parent. """ def __init__(self, *args, **kwargs): super(JSONProxy, self).__init__(*args, **kwargs) self._dirty = None self._tree = None SCHEME = "json" def __enter__(self): self._dirty = False # tracks writes self._tree = defaultdict(dict) if os.path.exists(self.host): with open(self.host, "r") as fph: try: ondisc_tree = json.load(fph) self._tree.update(ondisc_tree) except ValueError: pass if self.exists is not None: self.check_path() def __exit__(self, etype, value, traceback): if not self._dirty: return with open(self.host, "w") as fph: json.dump(self._tree, fph, indent=4) @property def host(self): return super(JSONProxy, self).host.replace("!", "/") def check_path(self): if (self.path in self._tree) != self.exists: error = "Path %s " % (self.path) error += "doesn't exist" if self.exists else "exists" raise CopyError(error) def read_path(self): value = self._tree[self.path]["content"] if value is not None: try: value = b64decode(value) except: print("Failed to b64decode %s" % self.path) acl = self._tree[self.path].get("acls", []) return PathValue(value, acl) def write_path(self, path_value): content = path_value.value_as_bytes if content is not None: try: content = b64encode(content).decode(encoding="utf-8") except: print("Failed to b64encode %s" % self.path) self._tree[self.path]["content"] = content self._tree[self.path]["acls"] = path_value.acl_as_dict self._dirty = True def children_of(self): offs = 1 if self.path == "/" else len(self.path) + 1 good = lambda k: k != self.path and k.startswith(self.path) for child in self._tree.keys(): if good(child): yield child[offs:] def delete_path_recursively(self): if self.path in self._tree: # build a set from the iterable so we don't change the dictionary during iteration for c in set(self.children_of()): self._tree.pop(os.path.join(self.path, c)) self._tree.pop(self.path)
zk-shell
/zk_shell-1.3.4.tar.gz/zk_shell-1.3.4/zk_shell/copy_util.py
copy_util.py
from __future__ import print_function import os from collections import defaultdict from kazoo.protocol.states import EventType, KazooState from kazoo.exceptions import NoNodeError class PathStats(object): """ per path stats """ def __init__(self, debug): self.debug = debug self.paths = defaultdict(int) class WatchManager(object): """ keep track of paths being watched """ def __init__(self, client): self._client = client self._client.add_listener(self._session_watcher) self._reset_paths() def _session_watcher(self, state): """ if the session expires we've lost everything """ if state == KazooState.LOST: self._reset_paths() def _reset_paths(self): self._stats_by_path = {} PARENT_ERR = "%s is a parent of %s which is already watched" CHILD_ERR = "%s is a child of %s which is already watched" def add(self, path, debug, children): """ Set a watch for path and (maybe) its children depending on the value of children: -1: all children 0: no children > 0: up to level depth children If debug is true, print each received events. """ if path in self._stats_by_path: print("%s is already being watched" % (path)) return # we can't watch child paths of what's already being watched, # because that generates a race between firing and resetting # watches for overlapping paths. if "/" in self._stats_by_path: print("/ is already being watched, so everything is watched") return for epath in self._stats_by_path: if epath.startswith(path): print(self.PARENT_ERR % (path, epath)) return if path.startswith(epath): print(self.CHILD_ERR % (path, epath)) return self._stats_by_path[path] = PathStats(debug) self._watch(path, 0, children) def remove(self, path): if path not in self._stats_by_path: print("%s is not being watched" % (path)) else: del self._stats_by_path[path] def stats(self, path): if path not in self._stats_by_path: print("%s is not being watched" % (path)) else: print("\nWatches Stats\n") for path, count in self._stats_by_path[path].paths.items(): print("%s: %d" % (path, count)) def _watch(self, path, current_level, max_level): """ we need to catch ZNONODE because children might be removed whilst we are iterating (specially ephemeral znodes) """ # ephemeral znodes can't have children, so skip them stat = self._client.exists(path) if stat is None or stat.ephemeralOwner != 0: return try: children = self._client.get_children(path, self._watcher) except NoNodeError: children = [] if max_level >= 0 and current_level + 1 > max_level: return for child in children: self._watch(os.path.join(path, child), current_level + 1, max_level) def _watcher(self, watched_event): for path, stats in self._stats_by_path.items(): if not watched_event.path.startswith(path): continue if watched_event.type == EventType.CHILD: stats.paths[watched_event.path] += 1 if stats.debug: print(str(watched_event)) if watched_event.type == EventType.CHILD: try: children = self._client.get_children(watched_event.path, self._watcher) except NoNodeError: pass _wm = None def get_watch_manager(client): global _wm if _wm is None: _wm = WatchManager(client) return _wm
zk-shell
/zk_shell-1.3.4.tar.gz/zk_shell-1.3.4/zk_shell/watch_manager.py
watch_manager.py
from collections import namedtuple from functools import partial import argparse import logging import signal import sys from . import __version__ from .shell import Shell try: raw_input except NameError: raw_input = input class CLIParams( namedtuple("CLIParams", "connect_timeout run_once run_from_stdin sync_connect hosts readonly tunnel version")): """ This defines the running params for a CLI() object. If you'd like to do parameters processing from some other point you'll need to fill up an instance of this class and pass it to CLI()(), i.e.: ``` params = parmas_from_argv() clip = CLIParams(params.connect_timeout, ...) cli = CLI() cli(clip) ``` """ pass def get_params(): """ get the cmdline params """ parser = argparse.ArgumentParser() parser.add_argument("--connect-timeout", type=float, default=10.0, help="ZK connect timeout") parser.add_argument("--run-once", type=str, default="", help="Run a command non-interactively and exit") parser.add_argument("--run-from-stdin", action="store_true", default=False, help="Read cmds from stdin, run them and exit") parser.add_argument("--sync-connect", action="store_true", default=False, help="Connect synchronously.") parser.add_argument("--readonly", action="store_true", default=False, help="Enable readonly.") parser.add_argument("--tunnel", type=str, help="Create a ssh tunnel via this host", default=None) parser.add_argument("--version", action="store_true", default=False, help="Display version and exit.") parser.add_argument("hosts", nargs="*", help="ZK hosts to connect") params = parser.parse_args() return CLIParams( params.connect_timeout, params.run_once, params.run_from_stdin, params.sync_connect, params.hosts, params.readonly, params.tunnel, params.version ) class StateTransition(Exception): """ raised when the connection changed state """ pass def sigusr_handler(shell, *_): """ handler for SIGUSR2 """ if shell.state_transitions_enabled: raise StateTransition() def set_unbuffered_mode(): """ make output unbuffered """ class Unbuffered(object): def __init__(self, stream): self.stream = stream def write(self, data): self.stream.write(data) self.stream.flush() def __getattr__(self, attr): return getattr(self.stream, attr) sys.stdout = Unbuffered(sys.stdout) class CLI(object): """ the REPL """ def __call__(self, params=None): """ parse params & loop forever """ logging.basicConfig(level=logging.ERROR) if params is None: params = get_params() if params.version: sys.stdout.write("%s\n" % __version__) sys.exit(0) interactive = params.run_once == "" and not params.run_from_stdin asynchronous = False if params.sync_connect or not interactive else True if not interactive: set_unbuffered_mode() shell = Shell(params.hosts, params.connect_timeout, setup_readline=interactive, output=sys.stdout, asynchronous=asynchronous, read_only=params.readonly, tunnel=params.tunnel) if not interactive: rc = 0 try: if params.run_once != "": rc = 0 if shell.onecmd(params.run_once) == None else 1 else: for cmd in sys.stdin.readlines(): cur_rc = 0 if shell.onecmd(cmd.rstrip()) == None else 1 if cur_rc != 0: rc = cur_rc except IOError: rc = 1 sys.exit(rc) if not params.sync_connect: signal.signal(signal.SIGUSR2, partial(sigusr_handler, shell)) intro = "Welcome to zk-shell (%s)" % (__version__) first = True while True: wants_exit = False try: shell.run(intro if first else None) except StateTransition: pass except KeyboardInterrupt: wants_exit = True if wants_exit: try: done = raw_input("\nExit? (y|n) ") if done == "y": break except EOFError: pass first = False if __name__ == "__main__": CLI()()
zk-shell
/zk_shell-1.3.4.tar.gz/zk_shell-1.3.4/zk_shell/cli.py
cli.py
from collections import defaultdict from contextlib import contextmanager from functools import partial, wraps from threading import Thread import bisect import copy import difflib import json import os import re import shlex import signal import socket import stat as statlib import sys import tempfile import time import zlib from colors import green, red from kazoo.client import KazooClient from kazoo.exceptions import ( APIError, AuthFailedError, BadArgumentsError, BadVersionError, ConnectionLoss, InvalidACLError, NewConfigNoQuorumError, NoAuthError, NodeExistsError, NoNodeError, NotEmptyError, NotReadOnlyCallError, ReconfigInProcessError, SessionExpiredError, UnimplementedError, ZookeeperError, ) from kazoo.protocol.states import KazooState from kazoo.security import OPEN_ACL_UNSAFE, READ_ACL_UNSAFE from tabulate import tabulate from twitter.common.net.tunnel import TunnelHelper from xcmd.complete import ( complete, complete_boolean, complete_labeled_boolean, complete_values ) from xcmd.conf import Conf, ConfVar from xcmd.xcmd import ( XCmd, FloatRequired, IntegerOptional, IntegerRequired, LabeledBooleanOptional, interruptible, ensure_params, Multi, MultiOptional, Optional, Required, ) from .acl import ACLReader from .copy_util import CopyError, Proxy from .keys import Keys, to_type from .pathmap import PathMap from .watcher import get_child_watcher from .watch_manager import get_watch_manager from .util import ( decoded, find_outliers, get_ips, get_matching, grouper, hosts_to_endpoints, invalid_hosts, Netloc, pretty_bytes, split, to_bool, to_int, which ) from .xclient import XClient def connected(func): """ check connected, fails otherwise """ @wraps(func) def wrapper(*args, **kwargs): self = args[0] if not self.connected: self.show_output("Not connected.") else: try: return func(*args, **kwargs) except APIError: self.show_output("ZooKeeper internal error.") except AuthFailedError: self.show_output("Authentication failed.") except NoAuthError: self.show_output("Not authenticated.") except BadVersionError: self.show_output("Bad version.") except ConnectionLoss: self.show_output("Connection loss.") except NotReadOnlyCallError: self.show_output("Not a read-only operation.") except BadArgumentsError: self.show_output("Bad arguments.") except SessionExpiredError: self.show_output("Session expired.") except UnimplementedError as ex: self.show_output("Not implemented by the server: %s." % str(ex)) except ZookeeperError as ex: self.show_output("Unknown ZooKeeper error: %s" % str(ex)) return wrapper def check_path_exists_foreach(path_params, func): """ check that paths exist (unless we are in a transaction) """ @wraps(func) def wrapper(*args): self = args[0] params = args[1] if not self.in_transaction: for name in path_params: value = getattr(params, name) paths = value if type(value) == list else [value] resolved = [] for path in paths: path = self.resolve_path(path) if not self.client.exists(path): self.show_output("Path %s doesn't exist", path) return False resolved.append(path) if type(value) == list: setattr(params, name, resolved) else: setattr(params, name, resolved[0]) return func(self, params) return wrapper def check_paths_exists(*paths): """ check that each path exists """ return partial(check_path_exists_foreach, paths) def check_path_absent(func): """ check path doesn't exist (unless we are in a txn or it's sequential) note: when creating sequential znodes, a trailing slash means no prefix, i.e.: create(/some/path/, sequence=True) -> /some/path/0000001 for all other cases, it's dropped. """ @wraps(func) def wrapper(*args): self = args[0] params = args[1] orig_path = params.path sequence = getattr(params, 'sequence', False) params.path = self.resolve_path(params.path) if self.in_transaction or sequence or not self.client.exists(params.path): if sequence and orig_path.endswith("/") and params.path != "/": params.path += "/" return func(self, params) self.show_output("Path %s already exists", params.path) return wrapper class BadJSON(Exception): pass def json_deserialize(data): if data is None: raise BadJSON() try: obj = json.loads(data) except ValueError: raise BadJSON() return obj # pylint: disable=R0904 class Shell(XCmd): CONF_PATH = os.path.join(os.environ["HOME"], ".zk_shell") DEFAULT_CONF = Conf( ConfVar( "chkzk_stat_retries", "Retries when running stat command on a server", 10 ), ConfVar( "chkzk_znode_delta", "Difference in znodes to claim inconsistency between servers", 100 ), ConfVar( "chkzk_ephemeral_delta", "Difference in ephemerals to claim inconsistency between servers", 50 ), ConfVar( "chkzk_datasize_delta", "Difference in datasize to claim inconsistency between servers", 1000 ), ConfVar( "chkzk_session_delta", "Difference in sessions to claim inconsistency between servers", 150 ), ConfVar( "chkzk_zxid_delta", "Difference in zxids to claim inconsistency between servers", 200 ) ) """ main class """ def __init__(self, hosts=None, timeout=10.0, output=sys.stdout, setup_readline=True, asynchronous=True, read_only=False, tunnel=None, zk_client=None): XCmd.__init__(self, None, setup_readline, output) self._hosts = hosts if hosts else [] self._connect_timeout = float(timeout) self._read_only = read_only self._asynchronous = asynchronous self._zk = None self._txn = None # holds the current transaction, if any self.connected = False self.state_transitions_enabled = True self._tunnel = tunnel if hosts or zk_client: self._connect(self._hosts, zk_client) if not self.connected: self.update_curdir("/") def _complete_path(self, cmd_param_text, full_cmd, *_): """ completes paths """ if full_cmd.endswith(" "): cmd_param, path = " ", " " else: pieces = shlex.split(full_cmd) if len(pieces) > 1: cmd_param = pieces[-1] else: cmd_param = cmd_param_text path = cmd_param.rstrip("/") if cmd_param != "/" else "/" if re.match(r"^\s*$", path): return self._zk.get_children(self.curdir) rpath = self.resolve_path(path) if self._zk.exists(rpath): opts = [os.path.join(path, znode) for znode in self._zk.get_children(rpath)] else: parent, child = os.path.dirname(rpath), os.path.basename(rpath) relpath = os.path.dirname(path) to_rel = lambda n: os.path.join(relpath, n) if relpath != "" else n opts = [to_rel(n) for n in self._zk.get_children(parent) if n.startswith(child)] offs = len(cmd_param) - len(cmd_param_text) return [opt[offs:] for opt in opts] @property def client(self): """ the connected ZK client, if any """ return self._zk @property def server_endpoint(self): """ the literal endpoint for the currently connected server """ return "%s:%s" % self._zk.server if self.connected else "" @connected @ensure_params(Required("scheme"), Required("credential")) def do_add_auth(self, params): """ \x1b[1mNAME\x1b[0m add_auth - Authenticates the session \x1b[1mSYNOPSIS\x1b[0m add_auth <scheme> <credential> \x1b[1mEXAMPLES\x1b[0m > add_auth digest super:s3cr3t """ self._zk.add_auth(params.scheme, params.credential) def complete_add_auth(self, cmd_param_text, full_cmd, *rest): completers = [partial(complete_values, ["digest"])] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Required("path"), Required("acls"), LabeledBooleanOptional("recursive")) @check_paths_exists("path") def do_set_acls(self, params): """ \x1b[1mNAME\x1b[0m set_acls - Sets ACLs for a given path \x1b[1mSYNOPSIS\x1b[0m set_acls <path> <acls> [recursive] \x1b[1mOPTIONS\x1b[0m * recursive: recursively set the acls on the children \x1b[1mEXAMPLES\x1b[0m > set_acls /some/path 'world:anyone:r digest:user:aRxISyaKnTP2+OZ9OmQLkq04bvo=:cdrwa' > set_acls /some/path 'world:anyone:r username_password:user:p@ass0rd:cdrwa' > set_acls /path 'world:anyone:r' true """ try: acls = ACLReader.extract(shlex.split(params.acls)) except ACLReader.BadACL as ex: self.show_output("Failed to set ACLs: %s.", ex) return def set_acls(path): try: self._zk.set_acls(path, acls) except (NoNodeError, BadVersionError, InvalidACLError, ZookeeperError) as ex: self.show_output("Failed to set ACLs: %s. Error: %s", str(acls), str(ex)) if params.recursive: for cpath, _ in self._zk.tree(params.path, 0, full_path=True): set_acls(cpath) set_acls(params.path) def complete_set_acls(self, cmd_param_text, full_cmd, *rest): """ FIXME: complete inside a quoted param is broken """ possible_acl = [ "digest:", "username_password:", "world:anyone:c", "world:anyone:cd", "world:anyone:cdr", "world:anyone:cdrw", "world:anyone:cdrwa", ] complete_acl = partial(complete_values, possible_acl) completers = [self._complete_path, complete_acl, complete_labeled_boolean("recursive")] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @interruptible @ensure_params(Required("path"), IntegerOptional("depth", -1), LabeledBooleanOptional("ephemerals")) @check_paths_exists("path") def do_get_acls(self, params): """ \x1b[1mNAME\x1b[0m get_acls - Gets ACLs for a given path \x1b[1mSYNOPSIS\x1b[0m get_acls <path> [depth] [ephemerals] \x1b[1mOPTIONS\x1b[0m * depth: -1 is no recursion, 0 is infinite recursion, N > 0 is up to N levels (default: 0) * ephemerals: include ephemerals (default: false) \x1b[1mEXAMPLES\x1b[0m > get_acls /zookeeper [ACL(perms=31, acl_list=['ALL'], id=Id(scheme=u'world', id=u'anyone'))] > get_acls /zookeeper -1 /zookeeper: [ACL(perms=31, acl_list=['ALL'], id=Id(scheme=u'world', id=u'anyone'))] /zookeeper/config: [ACL(perms=31, acl_list=['ALL'], id=Id(scheme=u'world', id=u'anyone'))] /zookeeper/quota: [ACL(perms=31, acl_list=['ALL'], id=Id(scheme=u'world', id=u'anyone'))] """ def replace(plist, oldv, newv): try: plist.remove(oldv) plist.insert(0, newv) except ValueError: pass for path, acls in self._zk.get_acls_recursive(params.path, params.depth, params.ephemerals): replace(acls, READ_ACL_UNSAFE[0], "WORLD_READ") replace(acls, OPEN_ACL_UNSAFE[0], "WORLD_ALL") self.show_output("%s: %s", path, acls) def complete_get_acls(self, cmd_param_text, full_cmd, *rest): complete_depth = partial(complete_values, [str(i) for i in range(-1, 11)]) completers = [self._complete_path, complete_depth, complete_labeled_boolean("ephemerals")] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Optional("path"), LabeledBooleanOptional("watch"), Optional("sep", "\n")) @check_paths_exists("path") def do_ls(self, params): """ \x1b[1mNAME\x1b[0m ls - Lists the znodes for the given <path> \x1b[1mSYNOPSIS\x1b[0m ls <path> [watch] [sep] \x1b[1mOPTIONS\x1b[0m * watch: set a (child) watch on the path (default: false) * sep: separator to be used (default: '\\n') \x1b[1mEXAMPLES\x1b[0m > ls / configs zookeeper Setting a watch: > ls / true configs zookeeper > create /foo 'bar' WatchedEvent(type='CHILD', state='CONNECTED', path=u'/') > ls / false , configs,zookeeper """ watcher = lambda evt: self.show_output(str(evt)) kwargs = {"watch": watcher} if params.watch else {} znodes = self._zk.get_children(params.path, **kwargs) self.show_output(params.sep.join(sorted(znodes))) def complete_ls(self, cmd_param_text, full_cmd, *rest): completers = [self._complete_path, complete_labeled_boolean("watch")] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @interruptible @ensure_params(Required("command"), Required("path"), Optional("debug"), Optional("sleep")) @check_paths_exists("path") def do_watch(self, params): """ \x1b[1mNAME\x1b[0m watch - Recursively watch for all changes under a path. \x1b[1mSYNOPSIS\x1b[0m watch <start|stop|stats> <path> [options] \x1b[1mDESCRIPTION\x1b[0m watch start <path> [debug] [depth] with debug=true, print watches as they fire. depth is the level for recursively setting watches: * -1: recurse all the way * 0: don't recurse, only watch the given path * > 0: recurse up to <level> children watch stats <path> [repeat] [sleep] with repeat=0 this command will loop until interrupted. sleep sets the pause duration in between each iteration. watch stop <path> \x1b[1mEXAMPLES\x1b[0m > watch start /foo/bar > watch stop /foo/bar > watch stats /foo/bar """ wm = get_watch_manager(self._zk) if params.command == "start": debug = to_bool(params.debug) children = to_int(params.sleep, -1) wm.add(params.path, debug, children) elif params.command == "stop": wm.remove(params.path) elif params.command == "stats": repeat = to_int(params.debug, 1) sleep = to_int(params.sleep, 1) if repeat == 0: while True: wm.stats(params.path) time.sleep(sleep) else: for _ in range(0, repeat): wm.stats(params.path) time.sleep(sleep) else: self.show_output("watch <start|stop|stats> <path> [verbose]") def complete_watch(self, cmd_param_text, full_cmd, *rest): complete_cmd = partial(complete_values, ["start", "stats", "stop"]) complete_sleep = partial(complete_values, [str(i) for i in range(-1, 11)]) completers = [complete_cmd, self._complete_path, complete_boolean, complete_sleep] return complete(completers, cmd_param_text, full_cmd, *rest) @ensure_params( Required("src"), Required("dst"), LabeledBooleanOptional("recursive"), LabeledBooleanOptional("overwrite"), LabeledBooleanOptional("asynchronous"), LabeledBooleanOptional("verbose"), IntegerOptional("max_items", 0) ) def do_cp(self, params): """ \x1b[1mNAME\x1b[0m cp - Copy from/to local/remote or remote/remote paths \x1b[1mSYNOPSIS\x1b[0m cp <src> <dst> [recursive] [overwrite] [asynchronous] [verbose] [max_items] \x1b[1mDESCRIPTION\x1b[0m src and dst can be: /some/path (in the connected server) zk://[scheme:user:passwd@]host/<path> json://!some!path!backup.json/some/path file:///some/file with a few restrictions. Given the semantic differences that znodes have with filesystem directories recursive copying from znodes to an fs could lose data, but to a JSON file it would work just fine. \x1b[1mOPTIONS\x1b[0m * recursive: recursively copy src (default: false) * overwrite: overwrite the dst path (default: false) * asynchronous: do asynchronous copies (default: false) * verbose: verbose output of every path (default: false) * max_items: max number of paths to copy (0 is infinite) (default: 0) \x1b[1mEXAMPLES\x1b[0m > cp /some/znode /backup/copy-znode # local > cp /some/znode zk://digest:bernie:[email protected]/backup true true > cp /some/znode json://!home!user!backup.json/ true true > cp file:///tmp/file /some/zone # fs to zk """ try: self.copy(params, params.recursive, params.overwrite, params.max_items, False) except AuthFailedError: self.show_output("Authentication failed.") def complete_cp(self, cmd_param_text, full_cmd, *rest): complete_max = partial(complete_values, [str(i) for i in range(0, 11)]) completers = [ self._complete_path, self._complete_path, complete_labeled_boolean("recursive"), complete_labeled_boolean("overwrite"), complete_labeled_boolean("asynchronous"), complete_labeled_boolean("verbose"), complete_max ] return complete(completers, cmd_param_text, full_cmd, *rest) @ensure_params( Required("src"), Required("dst"), LabeledBooleanOptional("asynchronous"), LabeledBooleanOptional("verbose"), LabeledBooleanOptional("skip_prompt") ) def do_mirror(self, params): """ \x1b[1mNAME\x1b[0m mirror - Mirrors from/to local/remote or remote/remote paths \x1b[1mSYNOPSIS\x1b[0m mirror <src> <dst> [async] [verbose] [skip_prompt] \x1b[1mDESCRIPTION\x1b[0m src and dst can be: /some/path (in the connected server) zk://[user:passwd@]host/<path> json://!some!path!backup.json/some/path with a few restrictions. Given the semantic differences that znodes have with filesystem directories recursive copying from znodes to an fs could lose data, but to a JSON file it would work just fine. The dst subtree will be modified to look the same as the src subtree with the exception of ephemeral nodes. \x1b[1mOPTIONS\x1b[0m * async: do asynchronous copies (default: false) * verbose: verbose output of every path (default: false) * skip_prompt: don't ask for confirmation (default: false) \x1b[1mEXAMPLES\x1b[0m > mirror /some/znode /backup/copy-znode # local > mirror /some/path json://!home!user!backup.json/ true true """ question = "Are you sure you want to replace %s with %s?" % (params.dst, params.src) if params.skip_prompt or self.prompt_yes_no(question): self.copy(params, True, True, 0, True) def complete_mirror(self, cmd_param_text, full_cmd, *rest): completers = [ self._complete_path, self._complete_path, complete_labeled_boolean("asynchronous"), complete_labeled_boolean("verbose"), complete_labeled_boolean("skip_prompt") ] return complete(completers, cmd_param_text, full_cmd, *rest) def copy(self, params, recursive, overwrite, max_items, mirror): # default to zk://connected_host, if connected src_connected_zk = dst_connected_zk = False if self.connected: zk_url = self._zk.zk_url() # if these are local paths, make them absolute paths if not re.match(r"^\w+://", params.src): params.src = "%s%s" % (zk_url, self.resolve_path(params.src)) src_connected_zk = True if not re.match(r"^\w+://", params.dst): params.dst = "%s%s" % (zk_url, self.resolve_path(params.dst)) dst_connected_zk = True try: if mirror and not recursive: raise CopyError("Mirroring must be recursive", True) if mirror and not overwrite: raise CopyError("Mirroring must overwrite", True) if mirror and not max_items == 0: raise CopyError("Mirroring must not have a max items limit", True) src = Proxy.from_string(params.src, True, params.asynchronous, params.verbose) if src_connected_zk: src.need_client = False src.client = self._zk dst = Proxy.from_string(params.dst, exists=None if overwrite else False, asynchronous=params.asynchronous, verbose=params.verbose) if dst_connected_zk: dst.need_client = False dst.client = self._zk src.copy(dst, recursive, max_items, mirror) except CopyError as ex: if ex.is_early_error: msg = str(ex) else: msg = ("%s failed; " "it may have partially completed. To return to a " "stable state, either fix the issue and re-run the " "command or manually revert.\nFailure reason:" "\n%s") % ("Copy" if not mirror else "Mirror", str(ex)) self.show_output(msg) @connected @interruptible @ensure_params(Optional("path"), IntegerOptional("max_depth")) @check_paths_exists("path") def do_tree(self, params): """ \x1b[1mNAME\x1b[0m tree - Print the tree under a given path \x1b[1mSYNOPSIS\x1b[0m tree [path] [max_depth] \x1b[1mOPTIONS\x1b[0m * path: the path (default: cwd) * max_depth: max recursion limit (0 is no limit) (default: 0) \x1b[1mEXAMPLES\x1b[0m > tree . ├── zookeeper │ ├── config │ ├── quota > tree 1 . ├── zookeeper ├── foo ├── bar """ self.show_output(".") for child, level in self._zk.tree(params.path, params.max_depth): self.show_output(u"%s├── %s", u"│ " * level, child) def complete_tree(self, cmd_param_text, full_cmd, *rest): complete_depth = partial(complete_values, [str(i) for i in range(0, 11)]) completers = [self._complete_path, complete_depth] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @interruptible @ensure_params(Optional("path"), IntegerOptional("depth", 1)) @check_paths_exists("path") def do_child_count(self, params): """ \x1b[1mNAME\x1b[0m child_count - Prints the child count for paths \x1b[1mSYNOPSIS\x1b[0m child_count [path] [depth] \x1b[1mOPTIONS\x1b[0m * path: the path (default: cwd) * max_depth: max recursion limit (0 is no limit) (default: 1) \x1b[1mEXAMPLES\x1b[0m > child-count / /zookeeper: 2 /foo: 0 /bar: 3 """ for child, level in self._zk.tree(params.path, params.depth, full_path=True): self.show_output("%s: %d", child, self._zk.child_count(child)) def complete_child_count(self, cmd_param_text, full_cmd, *rest): complete_depth = partial(complete_values, [str(i) for i in range(1, 11)]) completers = [self._complete_path, complete_depth] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Optional("path")) @check_paths_exists("path") def do_du(self, params): """ \x1b[1mNAME\x1b[0m du - Total number of bytes under a path \x1b[1mSYNOPSIS\x1b[0m du [path] \x1b[1mOPTIONS\x1b[0m * path: the path (default: cwd) \x1b[1mEXAMPLES\x1b[0m > du / 90 """ self.show_output(pretty_bytes(self._zk.du(params.path))) complete_du = _complete_path @connected @ensure_params(Optional("path"), Required("match")) @check_paths_exists("path") def do_find(self, params): """ \x1b[1mNAME\x1b[0m find - Find znodes whose path matches a given text \x1b[1mSYNOPSIS\x1b[0m find [path] [match] \x1b[1mOPTIONS\x1b[0m * path: the path (default: cwd) * match: the string to match in the paths (default: '') \x1b[1mEXAMPLES\x1b[0m > find / foo /foo2 /fooish/wayland /fooish/xorg /copy/foo """ for path in self._zk.find(params.path, params.match, 0): self.show_output(path) complete_find = _complete_path @connected @ensure_params( Required("path"), Required("pattern"), LabeledBooleanOptional("inverse", default=False) ) @check_paths_exists("path") def do_child_matches(self, params): """ \x1b[1mNAME\x1b[0m child_matches - Prints paths that have at least 1 child that matches <pattern> \x1b[1mSYNOPSIS\x1b[0m child_matches <path> <pattern> [inverse] \x1b[1mOPTIONS\x1b[0m * inverse: display paths which don't match (default: false) \x1b[1mEXAMPLES\x1b[0m > child_matches /services/registrations member_ /services/registrations/foo /services/registrations/bar ... """ seen = set() # we don't want to recurse once there's a child matching, hence exclude_recurse= for path in self._zk.fast_tree(params.path, exclude_recurse=params.pattern): parent, child = split(path) if parent in seen: continue match = params.pattern in child if params.inverse: if not match: self.show_output(parent) seen.add(parent) else: if match: self.show_output(parent) seen.add(parent) def complete_child_matches(self, cmd_param_text, full_cmd, *rest): complete_pats = partial(complete_values, ["some-pattern"]) completers = [self._complete_path, complete_pats, complete_labeled_boolean("inverse")] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params( Optional("path"), IntegerOptional("top", 0) ) @check_paths_exists("path") def do_summary(self, params): """ \x1b[1mNAME\x1b[0m summary - Prints summarized details of a path's children \x1b[1mSYNOPSIS\x1b[0m summary [path] [top] \x1b[1mDESCRIPTION\x1b[0m The results are sorted by name. \x1b[1mOPTIONS\x1b[0m * path: the path (default: cwd) * top: number of results to be displayed (0 is all) (default: 0) \x1b[1mEXAMPLES\x1b[0m > summary /services/registrations Created Last modified Owner Name Thu Oct 11 09:14:39 2014 Thu Oct 11 09:14:39 2014 - bar Thu Oct 16 18:54:39 2014 Thu Oct 16 18:54:39 2014 - foo Thu Oct 12 10:04:01 2014 Thu Oct 12 10:04:01 2014 0x14911e869aa0dc1 member_0000001 """ self.show_output("%s%s%s%s", "Created".ljust(32), "Last modified".ljust(32), "Owner".ljust(23), "Name") results = sorted(self._zk.stat_map(params.path)) # what slice do we want? if params.top == 0: start, end = 0, len(results) elif params.top > 0: start, end = 0, params.top if params.top < len(results) else len(results) else: start = len(results) + params.top if abs(params.top) < len(results) else 0 end = len(results) offs = 1 if params.path == "/" else len(params.path) + 1 for i in range(start, end): path, stat = results[i] self.show_output( "%s%s%s%s", time.ctime(stat.created).ljust(32), time.ctime(stat.last_modified).ljust(32), ("0x%x" % stat.ephemeralOwner).ljust(23), path[offs:] ) def complete_summary(self, cmd_param_text, full_cmd, *rest): complete_top = partial(complete_values, [str(i) for i in range(1, 11)]) completers = [self._complete_path, complete_top] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Optional("path"), Required("match")) @check_paths_exists("path") def do_ifind(self, params): """ \x1b[1mNAME\x1b[0m ifind - Find znodes whose path (insensitively) matches a given text \x1b[1mSYNOPSIS\x1b[0m ifind [path] [match] \x1b[1mOPTIONS\x1b[0m * path: the path (default: cwd) * match: the string to match in the paths (default: '') \x1b[1mEXAMPLES\x1b[0m > ifind / fOO /foo2 /FOOish/wayland /fooish/xorg /copy/Foo """ for path in self._zk.find(params.path, params.match, re.IGNORECASE): self.show_output(path) def complete_ifind(self, cmd_param_text, full_cmd, *rest): complete_match = partial(complete_values, ["sometext"]) completers = [self._complete_path, complete_match] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Optional("path"), Required("content"), LabeledBooleanOptional("show_matches")) @check_paths_exists("path") def do_grep(self, params): """ \x1b[1mNAME\x1b[0m grep - Prints znodes with a value matching the given text \x1b[1mSYNOPSIS\x1b[0m grep [path] <content> [show_matches] \x1b[1mOPTIONS\x1b[0m * path: the path (default: cwd) * show_matches: show the content that matched (default: false) \x1b[1mEXAMPLES\x1b[0m > grep / unbound true /passwd: unbound:x:992:991:Unbound DNS resolver:/etc/unbound:/sbin/nologin /copy/passwd: unbound:x:992:991:Unbound DNS resolver:/etc/unbound:/sbin/nologin """ self.grep(params.path, params.content, 0, params.show_matches) def complete_grep(self, cmd_param_text, full_cmd, *rest): complete_content = partial(complete_values, ["sometext"]) completers = [self._complete_path, complete_content, complete_labeled_boolean("show_matches")] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Optional("path"), Required("content"), LabeledBooleanOptional("show_matches")) @check_paths_exists("path") def do_igrep(self, params): """ \x1b[1mNAME\x1b[0m igrep - Prints znodes with a value matching the given text (ignoring case) \x1b[1mSYNOPSIS\x1b[0m igrep [path] <content> [show_matches] \x1b[1mOPTIONS\x1b[0m * path: the path (default: cwd) * show_matches: show the content that matched (default: false) \x1b[1mEXAMPLES\x1b[0m > igrep / UNBound true /passwd: unbound:x:992:991:Unbound DNS resolver:/etc/unbound:/sbin/nologin /copy/passwd: unbound:x:992:991:Unbound DNS resolver:/etc/unbound:/sbin/nologin """ self.grep(params.path, params.content, re.IGNORECASE, params.show_matches) complete_igrep = complete_grep def grep(self, path, content, flags, show_matches): for path, matches in self._zk.grep(path, content, flags): if show_matches: self.show_output("%s:", path) for match in matches: self.show_output(match) else: self.show_output(path) @connected @ensure_params(Optional("path", "/")) @check_paths_exists("path") def do_cd(self, params): """ \x1b[1mNAME\x1b[0m cd - Change the working path \x1b[1mSYNOPSIS\x1b[0m cd [path] \x1b[1mOPTIONS\x1b[0m * path: the path, if path is '-', move to the previous path (default: /) \x1b[1mEXAMPLES\x1b[0m > cd /foo/bar > pwd /foo/bar > cd .. > pwd /foo > cd - > pwd /foo/bar > cd > pwd / """ self.update_curdir(params.path) complete_cd = _complete_path @connected @ensure_params(Required("path"), LabeledBooleanOptional("watch")) @check_paths_exists("path") def do_get(self, params): """ \x1b[1mNAME\x1b[0m get - Gets the znode's value \x1b[1mSYNOPSIS\x1b[0m get <path> [watch] \x1b[1mOPTIONS\x1b[0m * watch: set a (data) watch on the path (default: false) \x1b[1mEXAMPLES\x1b[0m > get /foo bar # sets a watch > get /foo true bar # trigger the watch > set /foo 'notbar' WatchedEvent(type='CHANGED', state='CONNECTED', path=u'/foo') """ watcher = lambda evt: self.show_output(str(evt)) kwargs = {"watch": watcher} if params.watch else {} value, _ = self._zk.get(params.path, **kwargs) # maybe it's compressed? if value is not None: try: value = zlib.decompress(value) except: pass self.show_output(value) def complete_get(self, cmd_param_text, full_cmd, *rest): completers = [self._complete_path, complete_labeled_boolean("watch")] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Required("path"), LabeledBooleanOptional("watch"), LabeledBooleanOptional("pretty_date")) def do_exists(self, params): """ \x1b[1mNAME\x1b[0m exists - Gets the znode's stat information \x1b[1mSYNOPSIS\x1b[0m exists <path> [watch] [pretty_date] \x1b[1mOPTIONS\x1b[0m * watch: set a (data) watch on the path (default: false) \x1b[1mEXAMPLES\x1b[0m exists /foo Stat( czxid=101, mzxid=102, ctime=1382820644375, mtime=1382820693801, version=1, cversion=0, aversion=0, ephemeralOwner=0, dataLength=6, numChildren=0, pzxid=101 ) # sets a watch > exists /foo true ... # trigger the watch > rm /foo WatchedEvent(type='DELETED', state='CONNECTED', path=u'/foo') """ watcher = lambda evt: self.show_output(str(evt)) kwargs = {"watch": watcher} if params.watch else {} pretty = params.pretty_date path = self.resolve_path(params.path) stat = self._zk.exists(path, **kwargs) if stat: session = stat.ephemeralOwner if stat.ephemeralOwner else 0 self.show_output("Stat(") self.show_output(" czxid=0x%x", stat.czxid) self.show_output(" mzxid=0x%x", stat.mzxid) self.show_output(" ctime=%s", time.ctime(stat.created) if pretty else stat.ctime) self.show_output(" mtime=%s", time.ctime(stat.last_modified) if pretty else stat.mtime) self.show_output(" version=%s", stat.version) self.show_output(" cversion=%s", stat.cversion) self.show_output(" aversion=%s", stat.aversion) self.show_output(" ephemeralOwner=0x%x", session) self.show_output(" dataLength=%s", stat.dataLength) self.show_output(" numChildren=%s", stat.numChildren) self.show_output(" pzxid=0x%x", stat.pzxid) self.show_output(")") else: self.show_output("Path %s doesn't exist", params.path) def complete_exists(self, cmd_param_text, full_cmd, *rest): completers = [ self._complete_path, complete_labeled_boolean("watch"), complete_labeled_boolean("pretty_date") ] return complete(completers, cmd_param_text, full_cmd, *rest) def do_stat(self, *args, **kwargs): """ An alias for exists. """ self.do_exists(*args, **kwargs) def complete_stat(self, *args, **kwargs): return self.complete_exists(*args, **kwargs) @connected @ensure_params( Required("path"), Required("value"), LabeledBooleanOptional("ephemeral"), LabeledBooleanOptional("sequence"), LabeledBooleanOptional("recursive"), LabeledBooleanOptional("asynchronous"), ) @check_path_absent def do_create(self, params): """ \x1b[1mNAME\x1b[0m create - Creates a znode \x1b[1mSYNOPSIS\x1b[0m create <path> <value> [ephemeral] [sequence] [recursive] [async] \x1b[1mOPTIONS\x1b[0m * ephemeral: make the znode ephemeral (default: false) * sequence: make the znode sequential (default: false) * recursive: recursively create the path (default: false) * async: don't block waiting on the result (default: false) \x1b[1mEXAMPLES\x1b[0m > create /foo 'bar' # create an ephemeral znode > create /foo1 '' true # create an ephemeral|sequential znode > create /foo1 '' true true # recursively create a path > create /very/long/path/here '' false false true # check the new subtree > tree . ├── zookeeper │ ├── config │ ├── quota ├── very │ ├── long │ │ ├── path │ │ │ ├── here """ try: kwargs = {"acl": None, "ephemeral": params.ephemeral, "sequence": params.sequence} if not self.in_transaction: kwargs["makepath"] = params.recursive if params.asynchronous and not self.in_transaction: self.client_context.create_async(params.path, decoded(params.value), **kwargs) else: self.client_context.create(params.path, decoded(params.value), **kwargs) except NodeExistsError: self.show_output("Path %s exists", params.path) except NoNodeError: self.show_output("Missing path in %s (try recursive?)", params.path) def complete_create(self, cmd_param_text, full_cmd, *rest): complete_value = partial(complete_values, ["somevalue"]) completers = [ self._complete_path, complete_value, complete_labeled_boolean("ephemeral"), complete_labeled_boolean("sequence"), complete_labeled_boolean("recursive"), complete_labeled_boolean("asynchronous"), ] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Required("path"), Required("value"), IntegerOptional("version", -1)) @check_paths_exists("path") def do_set(self, params): """ \x1b[1mNAME\x1b[0m set - Updates the znode's value \x1b[1mSYNOPSIS\x1b[0m set <path> <value> [version] \x1b[1mOPTIONS\x1b[0m * version: only update if version matches (default: -1) \x1b[1mEXAMPLES\x1b[0m > set /foo 'bar' > set /foo 'verybar' 3 """ self.set(params.path, decoded(params.value), version=params.version) def complete_set(self, cmd_param_text, full_cmd, *rest): """ TODO: suggest the old value & the current version """ complete_value = partial(complete_values, ["updated-value"]) complete_version = partial(complete_values, [str(i) for i in range(1, 11)]) completers = [self._complete_path, complete_value, complete_version] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Required("path"), IntegerOptional("version", -1)) @check_paths_exists("path") def do_zero(self, params): """ \x1b[1mNAME\x1b[0m zero - Set the znode's to None (no bytes) \x1b[1mSYNOPSIS\x1b[0m zero <path> [version] \x1b[1mOPTIONS\x1b[0m * version: only update if version matches (default: -1) \x1b[1mEXAMPLES\x1b[0m > zero /foo > zero /foo 3 """ self.set(params.path, None, version=params.version) def complete_zero(self, cmd_param_text, full_cmd, *rest): """ TODO: suggest the current version """ complete_version = partial(complete_values, [str(i) for i in range(1, 11)]) completers = [self._complete_path, complete_version] return complete(completers, cmd_param_text, full_cmd, *rest) def set(self, path, value, version): """ sets a znode's data """ if self.in_transaction: self.client_context.set_data(path, value, version=version) else: self.client_context.set(path, value, version=version) @connected @ensure_params(Multi("paths")) @check_paths_exists("paths") def do_rm(self, params): """ \x1b[1mNAME\x1b[0m rm - Remove the znode \x1b[1mSYNOPSIS\x1b[0m rm <path> [path] [path] ... [path] \x1b[1mEXAMPLES\x1b[0m > rm /foo > rm /foo /bar """ for path in params.paths: try: self.client_context.delete(path) except NotEmptyError: self.show_output("%s is not empty.", path) except NoNodeError: self.show_output("%s doesn't exist.", path) def complete_rm(self, cmd_param_text, full_cmd, *rest): completers = [self._complete_path for i in range(0, 10)] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Required("path"), IntegerRequired("version")) def do_check(self, params): """ \x1b[1mNAME\x1b[0m check - Checks that a path is at a given version (only works within a transaction) \x1b[1mSYNOPSIS\x1b[0m check <path> <version> \x1b[1mEXAMPLES\x1b[0m > txn 'create /foo "start"' 'check /foo 0' 'set /foo "end"' 'rm /foo 1' """ if not self.in_transaction: return self.client_context.check(params.path, params.version) @connected @ensure_params(Multi("cmds")) def do_txn(self, params): """ \x1b[1mNAME\x1b[0m txn - Create and execute a transaction \x1b[1mSYNOPSIS\x1b[0m txn <cmd> [cmd] [cmd] ... [cmd] \x1b[1mDESCRIPTION\x1b[0m Allowed cmds are check, create, rm and set. Check parameters are: check <path> <version> For create, rm and set see their help menu for their respective parameters. \x1b[1mEXAMPLES\x1b[0m > txn 'create /foo "start"' 'check /foo 0' 'set /foo "end"' 'rm /foo 1' """ try: with self.transaction(): for cmd in params.cmds: try: self.onecmd(cmd) except AttributeError: # silently swallow unrecognized commands pass except BadVersionError: self.show_output("Bad version.") except NoNodeError: self.show_output("Missing path.") except NodeExistsError: self.show_output("One of the paths exists.") def transaction(self): class TransactionInProgress(Exception): pass class TransactionNotStarted(Exception): pass class Transaction(object): def __init__(self, shell): self._shell = shell def __enter__(self): if self._shell._txn is not None: raise TransactionInProgress() self._shell._txn = self._shell._zk.transaction() def __exit__(self, type, value, traceback): if self._shell._txn is None: raise TransactionNotStarted() try: self._shell._txn.commit() finally: self._shell._txn = None return Transaction(self) @property def client_context(self): """ checks if we are within a transaction or not """ return self._txn if self.in_transaction else self._zk @property def in_transaction(self): """ are we inside a transaction? """ return self._txn is not None def complete_txn(self, cmd_param_text, full_cmd, *rest): completers = [self._complete_path for i in range(0, 10)] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Optional("match")) def do_session_info(self, params): """ \x1b[1mNAME\x1b[0m session_info - Shows information about the current session \x1b[1mSYNOPSIS\x1b[0m session_info [match] \x1b[1mOPTIONS\x1b[0m * match: only include lines that match (default: '') \x1b[1mEXAMPLES\x1b[0m > session_info state=CONNECTED xid=4 last_zxid=0x000000505f8be5b3 timeout=10000 client=('127.0.0.1', 60348) server=('127.0.0.1', 2181) """ fmt_str = """state=%s sessionid=%s auth_info=%s protocol_version=%d xid=%d last_zxid=0x%.16x timeout=%d client=%s server=%s data_watches=%s child_watches=%s""" content = fmt_str % ( self._zk.client_state, self._zk.sessionid, list(self._zk.auth_data), self._zk.protocol_version, self._zk.xid, self._zk.last_zxid, self._zk.session_timeout, self._zk.client, self._zk.server, ",".join(self._zk.data_watches), ",".join(self._zk.child_watches) ) output = get_matching(content, params.match) self.show_output(output) def complete_session_info(self, cmd_param_text, full_cmd, *rest): values = [ "sessionid", "auth_info", "protocol_version", "xid", "last_zxid", "timeout", "client", "server", "data_watches", "child_watches" ] completers = [partial(complete_values, values)] return complete(completers, cmd_param_text, full_cmd, *rest) @ensure_params(Optional("hosts"), Optional("match")) def do_mntr(self, params): """ \x1b[1mNAME\x1b[0m mntr - Executes the mntr four-letter command \x1b[1mSYNOPSIS\x1b[0m mntr [hosts] [match] \x1b[1mOPTIONS\x1b[0m * hosts: the hosts to connect to (default: the current connected host) * match: only output lines that include the given string (default: '') \x1b[1mEXAMPLES\x1b[0m > mntr zk_version 3.5.0--1, built on 11/14/2014 10:45 GMT zk_min_latency 0 zk_max_latency 8 zk_avg_latency 0 """ hosts = params.hosts if params.hosts != "" else None if hosts is not None and invalid_hosts(hosts): self.show_output("List of hosts has the wrong syntax.") return if self._zk is None: self._zk = XClient() try: content = get_matching(self._zk.mntr(hosts), params.match) self.show_output(content) except XClient.CmdFailed as ex: self.show_output(str(ex)) @ensure_params(Optional("hosts"), Optional("match")) def do_cons(self, params): """ \x1b[1mNAME\x1b[0m cons - Executes the cons four-letter command \x1b[1mSYNOPSIS\x1b[0m cons [hosts] [match] \x1b[1mOPTIONS\x1b[0m * hosts: the hosts to connect to (default: the current connected host) * match: only output lines that include the given string (default: '') \x1b[1mEXAMPLES\x1b[0m > cons /127.0.0.1:40535[0](queued=0,recved=1,sent=0) ... """ hosts = params.hosts if params.hosts != "" else None if hosts is not None and invalid_hosts(hosts): self.show_output("List of hosts has the wrong syntax.") return if self._zk is None: self._zk = XClient() try: content = get_matching(self._zk.cons(hosts), params.match) self.show_output(content) except XClient.CmdFailed as ex: self.show_output(str(ex)) @ensure_params(Optional("hosts"), Optional("match")) def do_dump(self, params): """ \x1b[1mNAME\x1b[0m dump - Executes the dump four-letter command \x1b[1mSYNOPSIS\x1b[0m dump [hosts] [match] \x1b[1mOPTIONS\x1b[0m * hosts: the hosts to connect to (default: the current connected host) * match: only output lines that include the given string (default: '') \x1b[1mEXAMPLES\x1b[0m > dump SessionTracker dump: Session Sets (3)/(1): 0 expire at Fri Nov 14 02:49:52 PST 2014: 0 expire at Fri Nov 14 02:49:56 PST 2014: 1 expire at Fri Nov 14 02:50:00 PST 2014: 0x149adea89940107 ephemeral nodes dump: Sessions with Ephemerals (0): """ hosts = params.hosts if params.hosts != "" else None if hosts is not None and invalid_hosts(hosts): self.show_output("List of hosts has the wrong syntax.") return if self._zk is None: self._zk = XClient() try: content = get_matching(self._zk.dump(hosts), params.match) self.show_output(content) except XClient.CmdFailed as ex: self.show_output(str(ex)) @ensure_params( Required("hosts"), LabeledBooleanOptional("verbose", default=False), LabeledBooleanOptional("reverse_lookup") ) def do_chkzk(self, params): """ \x1b[1mNAME\x1b[0m chkzk - Consistency check for a cluster \x1b[1mSYNOPSIS\x1b[0m chkzk <server1,server2,...> [verbose] [reverse_lookup] \x1b[1mOPTIONS\x1b[0m * verbose: expose the values for each accounted stat (default: false) * reverse_lookup: convert IPs back to hostnames (default: false) \x1b[1mEXAMPLES\x1b[0m > chkzk cluster.example.net passed > chkzk cluster.example.net true true +-------------+-------------+-------------+-------------+-------------+-------------+ | | server1 | server2 | server3 | server4 | server5 | +=============+=============+=============+=============+=============+=============+ | state | follower | follower | follower | follower | leader | +-------------+-------------+-------------+-------------+-------------+-------------+ | znode count | 70061 | 70062 | 70161 | 70261 | 70061 | +-------------+-------------+-------------+-------------+-------------+-------------+ | ephemerals | 60061 | 60062 | 60161 | 60261 | 60061 | +-------------+-------------+-------------+-------------+-------------+-------------+ | data size | 1360061 | 1360062 | 1360161 | 1360261 | 1360061 | +-------------+-------------+-------------+-------------+-------------+-------------+ | sessions | 40061 | 40062 | 40161 | 40261 | 40061 | +-------------+-------------+-------------+-------------+-------------+-------------+ | zxid | 0xce1526bb7 | 0xce1526bb7 | 0xce1526bb7 | 0xce1526bb7 | 0xce1526bb7 | +-------------+-------------+-------------+-------------+-------------+-------------+ """ conf = self._conf stat_retries = conf.get_int("chkzk_stat_retries", 10) endpoints = set() for host, port in hosts_to_endpoints(params.hosts): for ip in get_ips(host, port): endpoints.add("%s:%s" % (ip, port)) endpoints = sorted(endpoints) values = [] states = ["state"] + ["-"] * len(endpoints) values.append(states) znodes = ["znode count"] + [-1] * len(endpoints) values.append(znodes) ephemerals = ["ephemerals"] + [-1] * len(endpoints) values.append(ephemerals) datasize = ["data size"] + [-1] * len(endpoints) values.append(datasize) sessions = ["sessions"] + [-1] * len(endpoints) values.append(sessions) zxids = ["zxid"] + [-1] * len(endpoints) values.append(zxids) if self._zk is None: self._zk = XClient() def mntr_values(endpoint): vals = {} try: mntr = self._zk.mntr(endpoint) for line in mntr.split("\n"): k, v = line.split(None, 1) vals[k] = v except Exception as ex: pass return vals def fetch(endpoint, states, znodes, ephemerals, datasize, sessions, zxids, idx): mntr = mntr_values(endpoint) state = mntr.get("zk_server_state", "-") znode_count = mntr.get("zk_znode_count", -1) eph_count = mntr.get("zk_ephemerals_count", -1) dsize = mntr.get("zk_approximate_data_size", -1) session_count = mntr.get("zk_global_sessions", -1) states[idx] = state znodes[idx] = int(znode_count) ephemerals[idx] = int(eph_count) datasize[idx] = int(dsize) sessions[idx] = int(session_count) zxids[idx] = -1 try: srvr = self._zk.cmd(hosts_to_endpoints(endpoint), "srvr") for line in srvr.split("\n"): if "Zxid:" in line: zxids[idx] = int(line.split(None)[1], 0) break except: pass workers = [] for idx, endpoint in enumerate(endpoints, 1): worker = Thread( target=fetch, args=(endpoint, states, znodes, ephemerals, datasize, sessions, zxids, idx) ) worker.start() workers.append(worker) for worker in workers: worker.join() def color_outliers(group, delta, marker=lambda x: red(str(x))): colored = False outliers = find_outliers(group[1:], delta) for outlier in outliers: group[outlier + 1] = marker(group[outlier + 1]) colored = True return colored passed = True passed = passed and not color_outliers(znodes, conf.get_int("chkzk_znode_delta", 100)) passed = passed and not color_outliers(ephemerals, conf.get_int("chkzk_ephemeral_delta", 50)) passed = passed and not color_outliers(datasize, conf.get_int("chkzk_datasize_delta", 1000)) passed = passed and not color_outliers(sessions, conf.get_int("chkzk_session_delta", 150)) passed = passed and not color_outliers(zxids, conf.get_int("chkzk_zxid_delta", 200), lambda x: red(str(hex(x)))) # convert zxids (that aren't outliers) back to hex strs for i, zxid in enumerate(zxids[0:]): zxids[i] = zxid if type(zxid) == str else hex(zxid) if params.verbose: if params.reverse_lookup: def reverse_endpoint(endpoint): ip = endpoint.rsplit(":", 1)[0] try: return socket.gethostbyaddr(ip)[0] except socket.herror: pass return ip endpoints = [reverse_endpoint(endp) for endp in endpoints] headers = [""] + endpoints table = tabulate(values, headers=headers, tablefmt="grid", stralign="right") self.show_output("%s", table) else: self.show_output("%s", green("passed") if passed else red("failed")) return passed def complete_chkzk(self, cmd_param_text, full_cmd, *rest): # TODO: store a list of used clusters complete_cluster = partial(complete_values, ["localhost", "0"]) completers = [ complete_cluster, complete_labeled_boolean("verbose"), complete_labeled_boolean("reverse_lookup") ] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Multi("paths")) @check_paths_exists("paths") def do_rmr(self, params): """ \x1b[1mNAME\x1b[0m rmr - Delete a path and all its children \x1b[1mSYNOPSIS\x1b[0m rmr <path> [path] [path] ... [path] \x1b[1mEXAMPLES\x1b[0m > rmr /foo > rmr /foo /bar """ for path in params.paths: self._zk.delete(path, recursive=True) complete_rmr = complete_rm @connected @ensure_params(Required("path")) @check_paths_exists("path") def do_sync(self, params): """ \x1b[1mNAME\x1b[0m sync - Forces the current server to sync with the rest of the cluster \x1b[1mSYNOPSIS\x1b[0m sync <path> \x1b[1mOPTIONS\x1b[0m * path: the path (ZooKeeper currently ignore this) (default: '') \x1b[1mEXAMPLES\x1b[0m > sync /foo """ self._zk.sync(params.path) complete_sync = _complete_path @connected @ensure_params(Required("path"), LabeledBooleanOptional("verbose")) @check_paths_exists("path") def do_child_watch(self, params): """ \x1b[1mNAME\x1b[0m child_watch - Watch a path for child changes \x1b[1mSYNOPSIS\x1b[0m child_watch <path> [verbose] \x1b[1mOPTIONS\x1b[0m * verbose: prints list of znodes (default: false) \x1b[1mEXAMPLES\x1b[0m # only prints the current number of children > child_watch / # prints num of children along with znodes listing > child_watch / true """ get_child_watcher(self._zk, print_func=self.show_output).update( params.path, params.verbose) def complete_child_watch(self, cmd_param_text, full_cmd, *rest): completers = [self._complete_path, complete_labeled_boolean("verbose")] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Required("path_a"), Required("path_b")) @check_paths_exists("path_a", "path_b") def do_diff(self, params): """ \x1b[1mNAME\x1b[0m diff - Display the differences between two paths \x1b[1mSYNOPSIS\x1b[0m diff <src> <dst> \x1b[1mDESCRIPTION\x1b[0m The output is interpreted as: -- means the znode is missing in /new-configs ++ means the znode is new in /new-configs +- means the znode's content differ between /configs and /new-configs \x1b[1mEXAMPLES\x1b[0m > diff /configs /new-configs -- service-x/hosts ++ service-x/hosts.json +- service-x/params """ count = 0 for count, (diff, path) in enumerate(self._zk.diff(params.path_a, params.path_b), 1): if diff == -1: self.show_output("-- %s", path) elif diff == 0: self.show_output("-+ %s", path) elif diff == 1: self.show_output("++ %s", path) if count == 0: self.show_output("Branches are equal.") def complete_diff(self, cmd_param_text, full_cmd, *rest): completers = [self._complete_path, self._complete_path] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Required("path"), LabeledBooleanOptional("recursive")) @check_paths_exists("path") def do_json_valid(self, params): """ \x1b[1mNAME\x1b[0m json_valid - Checks znodes for valid JSON \x1b[1mSYNOPSIS\x1b[0m json_valid <path> [recursive] \x1b[1mOPTIONS\x1b[0m * recursive: recurse to all children (default: false) \x1b[1mEXAMPLES\x1b[0m > json_valid /some/valid/json_znode yes. > json_valid /some/invalid/json_znode no. > json_valid /configs true /configs/a: yes. /configs/b: no. """ def check_valid(path, print_path): result = "no" value, _ = self._zk.get(path) if value is not None: try: x = json.loads(value) result = "yes" except ValueError: pass if print_path: self.show_output("%s: %s.", os.path.basename(path), result) else: self.show_output("%s.", result) if not params.recursive: check_valid(params.path, False) else: for cpath, _ in self._zk.tree(params.path, 0, full_path=True): check_valid(cpath, True) def complete_json_valid(self, cmd_param_text, full_cmd, *rest): completers = [self._complete_path, complete_labeled_boolean("recursive")] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Required("path"), LabeledBooleanOptional("recursive")) @check_paths_exists("path") def do_json_cat(self, params): """ \x1b[1mNAME\x1b[0m json_cat - Pretty prints a znode's JSON \x1b[1mSYNOPSIS\x1b[0m json_cat <path> [recursive] \x1b[1mOPTIONS\x1b[0m * recursive: recurse to all children (default: false) \x1b[1mEXAMPLES\x1b[0m > json_cat /configs/clusters { "dc0": { "network": "10.2.0.0/16", }, ..... } > json_cat /configs true /configs/clusters: { "dc0": { "network": "10.2.0.0/16", }, ..... } /configs/dns_servers: [ "10.2.0.1", "10.3.0.1" ] """ def json_output(path, print_path): value, _ = self._zk.get(path) if value is not None: try: value = json.dumps(json.loads(value), indent=4) except ValueError: pass if print_path: self.show_output("%s:\n%s", os.path.basename(path), value) else: self.show_output(value) if not params.recursive: json_output(params.path, False) else: for cpath, _ in self._zk.tree(params.path, 0, full_path=True): json_output(cpath, True) def complete_json_cat(self, cmd_param_text, full_cmd, *rest): completers = [self._complete_path, complete_labeled_boolean("recursive")] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Required("path"), Required("keys"), LabeledBooleanOptional("recursive")) @check_paths_exists("path") def do_json_get(self, params): """ \x1b[1mNAME\x1b[0m json_get - Get key (or keys, if nested) from a JSON object serialized in the given path \x1b[1mSYNOPSIS\x1b[0m json_get <path> <keys> [recursive] \x1b[1mOPTIONS\x1b[0m * recursive: recurse to all children (default: false) \x1b[1mEXAMPLES\x1b[0m > json_get /configs/primary_service endpoint.clientPort 32768 > json_get /configs endpoint.clientPort true primary_service: 32768 secondary_service: 32769 # Use template strings to access various keys at once: > json_get /configs/primary_service '#{endpoint.ipAddress}:#{endpoint.clientPort}' 10.2.2.3:32768 """ try: Keys.validate(params.keys) except Keys.Bad as ex: self.show_output(str(ex)) return if params.recursive: paths = self._zk.tree(params.path, 0, full_path=True) print_path = True else: paths = [(params.path, 0)] print_path = False for cpath, _ in paths: try: jstr, _ = self._zk.get(cpath) value = Keys.value(json_deserialize(jstr), params.keys) if print_path: self.show_output("%s: %s", os.path.basename(cpath), value) else: self.show_output(value) except BadJSON as ex: self.show_output("Path %s has bad JSON.", cpath) except Keys.Missing as ex: self.show_output("Path %s is missing key %s.", cpath, ex) def complete_json_get(self, cmd_param_text, full_cmd, *rest): """ TODO: prefetch & parse znodes & suggest keys """ complete_keys = partial(complete_values, ["key1", "key2", "#{key1.key2}"]) completers = [self._complete_path, complete_keys, complete_labeled_boolean("recursive")] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params( Required("path"), Required("keys"), Required("value"), Required("value_type"), LabeledBooleanOptional("confirm") ) @check_paths_exists("path") def do_json_set(self, params): """ \x1b[1mNAME\x1b[0m json_set - Sets the value for the given (possibly nested) key on a JSON object serialized in the given path \x1b[1mSYNOPSIS\x1b[0m json_set <path> <keys> <value> <value_type> [confirm] \x1b[1mDESCRIPTION\x1b[0m If the key exists and the value is different, the znode will be updated with the key set to its new value. If the key does not exist, it'll be created and the znode will be updated with the serialized version of the new object. The value's type will be determined by the value_type parameter. \x1b[1mEXAMPLES\x1b[0m > create /props '{"a": {"b": 4}}' > json_cat /props { "a": { "b": 4 } } > json_set /props a.b 5 int > json_cat /props { "a": { "b": 5 } } > json_set /props a.c.d true bool > json_cat /props { "a": { "c": { "d": true }, "b": 5 } } """ try: Keys.validate(params.keys) except Keys.Bad as ex: self.show_output(str(ex)) return try: jstr, stat = self._zk.get(params.path) obj_src = json_deserialize(jstr) obj_dst = copy.deepcopy(obj_src) # Cast value to its given type. value = to_type(params.value, params.value_type) Keys.set(obj_dst, params.keys, value) if params.confirm: a = json.dumps(obj_src, sort_keys=True, indent=4) b = json.dumps(obj_dst, sort_keys=True, indent=4) diff = difflib.unified_diff(a.split("\n"), b.split("\n")) self.show_output("\n".join(diff)) if not self.prompt_yes_no("Apply update?"): return # Pass along the read version, to ensure we are updating what we read. self.set(params.path, json.dumps(obj_dst), version=stat.version) except BadJSON: self.show_output("Path %s has bad JSON.", params.path) except Keys.Missing as ex: self.show_output("Path %s is missing key %s.", params.path, ex) except ValueError: self.show_output("Bad value_type") complete_json_set = complete_json_get @connected @ensure_params( Required("path"), Multi("keys_values_types") ) @check_paths_exists("path") def do_json_set_many(self, params): """ \x1b[1mNAME\x1b[0m json_set_many - like `json_set`, but for multiple key/value pairs \x1b[1mSYNOPSIS\x1b[0m json_set_many <path> <keys> <value> <value_type> <keys1> <value1> <value_type1> ... \x1b[1mDESCRIPTION\x1b[0m If the key exists and the value is different, the znode will be updated with the key set to its new value. If the key does not exist, it'll be created and the znode will be updated with the serialized version of the new object. The value's type will be determined by the value_type parameter. This is an atomic operation, either all given keys are set in one ZK operation or none are. \x1b[1mEXAMPLES\x1b[0m > create /props '{"a": {"b": 4}}' > json_cat /props { "a": { "b": 4 } } > json_set_many /props a.b 5 int a.c.d true bool > json_cat /props { "a": { "c": { "d": true }, "b": 5 } } """ # Ensure we have a balance set of (key, value, type) tuples. if len(params.keys_values_types) % 3 != 0: self.show_output('Bad list of parameters') return for key, _, _ in grouper(params.keys_values_types, 3): try: Keys.validate(key) except Keys.Bad as ex: self.show_output(str(ex)) return # Fetch & deserialize znode. jstr, stat = self._zk.get(params.path) try: obj_src = json_deserialize(jstr) except BadJSON: self.show_output("Path %s has bad JSON.", params.path) obj_dst = copy.deepcopy(obj_src) # Cast values to their given type. for key, value, ptype in grouper(params.keys_values_types, 3): try: Keys.set(obj_dst, key, to_type(value, ptype)) except Keys.Missing as ex: self.show_output("Path %s is missing key %s.", params.path, ex) return except ValueError: self.show_output("Bad value_type") return # Pass along the read version, to ensure we are updating what we read. self.set(params.path, json.dumps(obj_dst), version=stat.version) complete_json_set_many = complete_json_get @connected @ensure_params( Required("path"), Required("keys"), Required("value"), Required("value_type"), LabeledBooleanOptional("confirm") ) @check_paths_exists("path") def do_json_append(self, params): """ \x1b[1mNAME\x1b[0m json_append - append an element to a list \x1b[1mSYNOPSIS\x1b[0m json_append <path> <keys> <value> <value_type> [confirm] \x1b[1mDESCRIPTION\x1b[0m The key must exist within the serialized JSON object and be of type list, otherwise this command will error out. The given value will be appended to the list and the znode will be updated with the serialized version of the new object. The value's type will be determined by the <value_type> parameter. This is an atomic operation, if the read version of the znode changed before the update completes this command will fail. \x1b[1mEXAMPLES\x1b[0m > create /settings '{"versions": ["v1", "v2"]}' > json_cat /settings { "versions": [ "v1", "v2" ] } > json_append /settings versions v3 str > json_cat /settings { "versions": [ "v1", "v2", "v3" ] } """ try: Keys.validate(params.keys) except Keys.Bad as ex: self.show_output(str(ex)) return try: jstr, stat = self._zk.get(params.path) obj_src = json_deserialize(jstr) obj_dst = copy.deepcopy(obj_src) plist = Keys.fetch(obj_dst, params.keys) if not isinstance(plist, list): self.show_output("%s is not a list.", params.keys) return # Cast value to its given type. value = to_type(params.value, params.value_type) plist.append(value) if params.confirm: a = json.dumps(obj_src, sort_keys=True, indent=4) b = json.dumps(obj_dst, sort_keys=True, indent=4) diff = difflib.unified_diff(a.split("\n"), b.split("\n")) self.show_output("\n".join(diff)) if not self.prompt_yes_no("Apply update?"): return # Pass along the read version, to ensure we are updating what we read. self.set(params.path, json.dumps(obj_dst), version=stat.version) except BadJSON: self.show_output("Path %s has bad JSON.", params.path) except Keys.Missing as ex: self.show_output("Path %s is missing key %s.", params.path, ex) except ValueError: self.show_output("Bad value_type") complete_json_append = complete_json_get @connected @ensure_params( Required("path"), Required("keys"), Required("value"), Required("value_type"), LabeledBooleanOptional("remove_all"), LabeledBooleanOptional("confirm") ) @check_paths_exists("path") def do_json_remove(self, params): """ \x1b[1mNAME\x1b[0m json_remove - remove occurrences of the given value from a list \x1b[1mSYNOPSIS\x1b[0m json_remove <path> <keys> <value> <value_type> [remove_all] [confirm] \x1b[1mDESCRIPTION\x1b[0m The key must exist within the serialized JSON object and be of type list, otherwise this command will error out. The first occurrence of the value will be removed from the list. If the optional parameter <remove_all> is true, then all occurrences will be removed. The value's type will be determined by the <value_type> parameter. The znode will be updated with the serialized version of the updated object. This is an atomic operation, if the read version of the znode changed before the update completes this command will fail. \x1b[1mEXAMPLES\x1b[0m > create /settings '{"versions": ["v1", "v2", "v3"]}' > json_cat /settings { "versions": [ "v1", "v2", "v3" ] } > json_remove /settings versions v2 str > json_cat /settings { "versions": [ "v1", "v3" ] } """ try: Keys.validate(params.keys) except Keys.Bad as ex: self.show_output(str(ex)) return try: jstr, stat = self._zk.get(params.path) obj_src = json_deserialize(jstr) obj_dst = copy.deepcopy(obj_src) plist = Keys.fetch(obj_dst, params.keys) if not isinstance(plist, list): self.show_output("%s is not a list.", params.keys) return # Cast value to its given type. value = to_type(params.value, params.value_type) # Remove one or more occurrences of value. while True: try: plist.remove(value) if not params.remove_all: break except ValueError: # no more remaining values. break if params.confirm: a = json.dumps(obj_src, sort_keys=True, indent=4) b = json.dumps(obj_dst, sort_keys=True, indent=4) diff = difflib.unified_diff(a.split("\n"), b.split("\n")) self.show_output("\n".join(diff)) if not self.prompt_yes_no("Apply update?"): return # Pass along the read version, to ensure we are updating what we read. self.set(params.path, json.dumps(obj_dst), version=stat.version) except BadJSON: self.show_output("Path %s has bad JSON.", params.path) except Keys.Missing as ex: self.show_output("Path %s is missing key %s.", params.path, ex) except ValueError: self.show_output("Bad value_type") complete_json_remove = complete_json_get @connected @ensure_params( Required("path"), Required("keys"), IntegerOptional("top", 0), IntegerOptional("minfreq", 1), LabeledBooleanOptional("reverse", default=True), LabeledBooleanOptional("report_errors", default=False), LabeledBooleanOptional("print_path", default=False), ) @check_paths_exists("path") def do_json_count_values(self, params): """ \x1b[1mNAME\x1b[0m json_count_values - Gets the frequency of the values associated with the given keys \x1b[1mSYNOPSIS\x1b[0m json_count_values <path> <keys> [top] [minfreq] [reverse] [report_errors] [print_path] \x1b[1mOPTIONS\x1b[0m * top: number of results to show (0 is all) (default: 0) * minfreq: minimum frequency to be displayed (default: 1) * reverse: sort in descending order (default: true) * report_errors: report bad znodes (default: false) * print_path: print the path if there are results (default: false) \x1b[1mEXAMPLES\x1b[0m > json_count_values /configs/primary_service endpoint.host 10.20.0.2 3 10.20.0.4 3 10.20.0.5 3 10.20.0.6 1 10.20.0.7 1 ... """ try: Keys.validate(params.keys) except Keys.Bad as ex: self.show_output(str(ex)) return path_map = PathMap(self._zk, params.path) values = defaultdict(int) for path, data in path_map.get(): try: value = Keys.value(json_deserialize(data), params.keys) values[value] += 1 except BadJSON as ex: if params.report_errors: self.show_output("Path %s has bad JSON.", path) except Keys.Missing as ex: if params.report_errors: self.show_output("Path %s is missing key %s.", path, ex) results = sorted(values.items(), key=lambda item: item[1], reverse=params.reverse) results = [r for r in results if r[1] >= params.minfreq] # what slice do we want? if params.top == 0: start, end = 0, len(results) elif params.top > 0: start, end = 0, params.top if params.top < len(results) else len(results) else: start = len(results) + params.top if abs(params.top) < len(results) else 0 end = len(results) if len(results) > 0 and params.print_path: self.show_output(params.path) for i in range(start, end): value, frequency = results[i] self.show_output("%s = %d", value, frequency) # if no results were found we call it a failure (i.e.: exit(1) from --run-once) if len(results) == 0: return False def complete_json_count_values(self, cmd_param_text, full_cmd, *rest): complete_keys = partial(complete_values, ["key1", "key2", "#{key1.key2}"]) complete_top = partial(complete_values, [str(i) for i in range(1, 11)]) complete_freq = partial(complete_values, [str(i) for i in range(1, 11)]) completers = [ self._complete_path, complete_keys, complete_top, complete_freq, complete_labeled_boolean("reverse"), complete_labeled_boolean("report_errors"), complete_labeled_boolean("print_path") ] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params( Required("path"), Required("keys"), Optional("prefix", ""), LabeledBooleanOptional("report_errors", default=False), LabeledBooleanOptional("first", default=False) ) @check_paths_exists("path") def do_json_dupes_for_keys(self, params): """ \x1b[1mNAME\x1b[0m json_duples_for_keys - Gets the duplicate znodes for the given keys \x1b[1mSYNOPSIS\x1b[0m json_dupes_for_keys <path> <keys> [prefix] [report_errors] [first] \x1b[1mDESCRIPTION\x1b[0m Znodes with duplicated keys are sorted and all but the first (original) one are printed. \x1b[1mOPTIONS\x1b[0m * prefix: only include matching znodes * report_errors: turn on error reporting (i.e.: bad JSON in a znode) * first: print the first, non duplicated, znode too. \x1b[1mEXAMPLES\x1b[0m > json_cat /configs/primary_service true member_0000000186 { "status": "ALIVE", "serviceEndpoint": { "http": { "host": "10.0.0.2", "port": 31994 } }, "shard": 0 } member_0000000187 { "status": "ALIVE", "serviceEndpoint": { "http": { "host": "10.0.0.2", "port": 31994 } }, "shard": 0 } > json_dupes_for_keys /configs/primary_service shard member_0000000187 """ try: Keys.validate(params.keys) except Keys.Bad as ex: self.show_output(str(ex)) return path_map = PathMap(self._zk, params.path) dupes_by_path = defaultdict(lambda: defaultdict(list)) for path, data in path_map.get(): parent, child = split(path) if not child.startswith(params.prefix): continue try: value = Keys.value(json_deserialize(data), params.keys) dupes_by_path[parent][value].append(path) except BadJSON as ex: if params.report_errors: self.show_output("Path %s has bad JSON.", path) except Keys.Missing as ex: if params.report_errors: self.show_output("Path %s is missing key %s.", path, ex) dupes = [] for _, paths_by_value in dupes_by_path.items(): for _, paths in paths_by_value.items(): if len(paths) > 1: paths.sort() paths = paths if params.first else paths[1:] for path in paths: idx = bisect.bisect(dupes, path) dupes.insert(idx, path) for dup in dupes: self.show_output(dup) # if no dupes were found we call it a failure (i.e.: exit(1) from --run-once) if len(dupes) == 0: return False def complete_json_dupes_for_keys(self, cmd_param_text, full_cmd, *rest): complete_keys = partial(complete_values, ["key1", "key2", "#{key1.key2}"]) completers = [ self._complete_path, complete_keys, complete_labeled_boolean("report_errors") ] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Required("path")) @check_paths_exists("path") def do_edit(self, params): """ \x1b[1mNAME\x1b[0m edit - Opens up an editor to modify and update a znode. \x1b[1mSYNOPSIS\x1b[0m edit <path> \x1b[1mDESCRIPTION\x1b[0m If the content has not changed, the znode won't be updated. $EDITOR must be set for zk-shell to find your editor. \x1b[1mEXAMPLES\x1b[0m # make sure $EDITOR is set in your shell > edit /configs/webservers/primary # change something and save > get /configs/webservers/primary # updated content """ if os.getuid() == 0: self.show_output("edit cannot be run as root.") return editor = os.getenv("EDITOR", os.getenv("VISUAL", "/usr/bin/vi")) if editor is None: self.show_output("No editor found, please set $EDITOR") return editor = which(editor) if not editor: self.show_output("Cannot find executable editor, please set $EDITOR") return st = os.stat(editor) if (st.st_mode & statlib.S_ISUID) or (st.st_mode & statlib.S_ISUID): self.show_output("edit cannot use setuid/setgid binaries.") return # copy content to tempfile value, stat = self._zk.get(params.path) _, tmppath = tempfile.mkstemp() with open(tmppath, "w") as fh: fh.write(value if value else "") # launch editor rv = os.system("%s %s" % (editor, tmppath)) if rv != 0: self.show_output("%s did not exit successfully" % editor) try: os.unlink(tmppath) except OSError: pass return # did it change? if so, save it with open(tmppath, "r") as fh: newvalue = fh.read() if newvalue != value: self.set(params.path, decoded(newvalue), stat.version) try: os.unlink(tmppath) except OSError: pass def complete_edit(self, cmd_param_text, full_cmd, *rest): return complete([self._complete_path], cmd_param_text, full_cmd, *rest) @ensure_params(IntegerRequired("repeat"), FloatRequired("pause"), Multi("cmds")) def do_loop(self, params): """ \x1b[1mNAME\x1b[0m loop - Runs commands in a loop \x1b[1mSYNOPSIS\x1b[0m loop <repeat> <pause> <cmd1> <cmd2> ... <cmdN> \x1b[1mDESCRIPTION\x1b[0m Runs <cmds> <repeat> times (0 means forever), with a pause of <pause> secs inbetween each <cmd> (0 means no pause). \x1b[1mEXAMPLES\x1b[0m > loop 3 0 "get /foo" ... > loop 3 0 "get /foo" "get /bar" ... """ repeat = params.repeat if repeat < 0: self.show_output("<repeat> must be >= 0.") return pause = params.pause if pause < 0: self.show_output("<pause> must be >= 0.") return cmds = params.cmds i = 0 with self.transitions_disabled(): while True: for cmd in cmds: try: self.onecmd(cmd) except Exception as ex: self.show_output("Command failed: %s.", ex) if pause > 0.0: time.sleep(pause) i += 1 if repeat > 0 and i >= repeat: break def complete_loop(self, cmd_param_text, full_cmd, *rest): complete_repeat = partial(complete_values, [str(i) for i in range(0, 11)]) complete_pause = partial(complete_values, [str(i) for i in range(0, 11)]) cmds = ["\"get ", "\"ls ", "\"create ", "\"set ", "\"rm "] # FIXME: complete_values doesn't work when vals includes quotes complete_cmds = partial(complete_values, cmds) completers = [complete_repeat, complete_pause, complete_cmds] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params( Required("path"), Required("hosts"), LabeledBooleanOptional("recursive"), LabeledBooleanOptional("reverse") ) @check_paths_exists("path") def do_ephemeral_endpoint(self, params): """ \x1b[1mNAME\x1b[0m ephemeral_endpoint - Gets the ephemeral znode owner's session and ip:port \x1b[1mSYNOPSIS\x1b[0m ephemeral_endpoint <path> <hosts> [recursive] [reverse_lookup] \x1b[1mDESCRIPTION\x1b[0m hosts is a list of hosts in the host1[:port1][,host2[:port2]],... form. \x1b[1mOPTIONS\x1b[0m * recursive: recurse through the children (default: false) * reverse_lookup: convert IPs back to hostnames (default: false) \x1b[1mEXAMPLES\x1b[0m > ephemeral_endpoint /servers/member_0000044941 10.0.0.1,10.0.0.2,10.0.0.3 0xa4788b919450e6 10.3.2.12:54250 10.0.0.2:2181 """ if invalid_hosts(params.hosts): self.show_output("List of hosts has the wrong syntax.") return stat = self._zk.exists(params.path) if stat is None: self.show_output("%s is gone.", params.path) return if not params.recursive and stat.ephemeralOwner == 0: self.show_output("%s is not ephemeral.", params.path) return try: info_by_path = self._zk.ephemerals_info(params.hosts) except XClient.CmdFailed as ex: self.show_output(str(ex)) return def check(path, show_path, resolved): info = info_by_path.get(path, None) if info is None: self.show_output("No session info for %s.", path) else: self.show_output("%s%s", "%s: " % (path) if show_path else "", info.resolved if resolved else str(info)) if not params.recursive: check(params.path, False, params.reverse) else: for cpath, _ in self._zk.tree(params.path, 0, full_path=True): check(cpath, True, params.reverse) def complete_ephemeral_endpoint(self, cmd_param_text, full_cmd, *rest): """ TODO: the hosts lists can be retrieved from self.zk.hosts """ complete_hosts = partial(complete_values, ["127.0.0.1:2181"]) completers = [ self._complete_path, complete_hosts, complete_labeled_boolean("recursive"), complete_labeled_boolean("reverse") ] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Required("session"), Required("hosts"), LabeledBooleanOptional("reverse")) def do_session_endpoint(self, params): """ \x1b[1mNAME\x1b[0m session_endpoint - Gets the session's IP endpoints \x1b[1mSYNOPSIS\x1b[0m session_endpoint <session> <hosts> [reverse_lookup] \x1b[1mDESCRIPTION\x1b[0m where hosts is a list of hosts in the host1[:port1][,host2[:port2]],... form \x1b[1mOPTIONS\x1b[0m * reverse_lookup: convert IPs back to hostnames (default: false) \x1b[1mEXAMPLES\x1b[0m > session_endpoint 0xa4788b919450e6 10.0.0.1,10.0.0.2,10.0.0.3 10.3.2.12:54250 10.0.0.2:2181 """ if invalid_hosts(params.hosts): self.show_output("List of hosts has the wrong syntax.") return try: info_by_id = self._zk.sessions_info(params.hosts) except XClient.CmdFailed as ex: self.show_output(str(ex)) return info = info_by_id.get(params.session, None) if info is None: self.show_output("No session info for %s.", params.session) else: self.show_output("%s", info.resolved_endpoints if params.reverse else info.endpoints) def complete_session_endpoint(self, cmd_param_text, full_cmd, *rest): """ TODO: the hosts lists can be retrieved from self.zk.hosts """ complete_hosts = partial(complete_values, ["127.0.0.1:2181"]) completers = [self._complete_path, complete_hosts, complete_labeled_boolean("reverse")] return complete(completers, cmd_param_text, full_cmd, *rest) @connected @ensure_params(Required("path"), Required("val"), IntegerRequired("repeat")) @check_paths_exists("path") def do_fill(self, params): """ \x1b[1mNAME\x1b[0m fill - Fills a znode with the given value \x1b[1mSYNOPSIS\x1b[0m fill <path> <char> <count> \x1b[1mEXAMPLES\x1b[0m > fill /some/znode X 1048576 """ self._zk.set(params.path, decoded(params.val * params.repeat)) def complete_fill(self, cmd_param_text, full_cmd, *rest): complete_value = partial(complete_values, ["X", "Y"]) complete_repeat = partial(complete_values, [str(i) for i in range(0, 11)]) completers = [self._complete_path, complete_value, complete_repeat] return complete(completers, cmd_param_text, full_cmd, *rest) @ensure_params(FloatRequired("seconds")) def do_sleep(self, params): """ \x1b[1mNAME\x1b[0m sleep - Sleeps for the given seconds (may be fractional) \x1b[1mSYNOPSIS\x1b[0m sleep <seconds> \x1b[1mEXAMPLES\x1b[0m > sleep 0.5 """ time.sleep(params.seconds) def complete_sleep(self, cmd_param_text, full_cmd, *rest): complete_vals = partial(complete_values, ["0.5", "1.0", "2.0", "5.0", "10.0"]) return complete([complete_vals], cmd_param_text, full_cmd, *rest) @ensure_params(Multi("cmds")) def do_time(self, params): """ \x1b[1mNAME\x1b[0m time - Measures elapsed seconds after running commands \x1b[1mSYNOPSIS\x1b[0m time <cmd1> <cmd2> ... <cmdN> \x1b[1mEXAMPLES\x1b[0m > time 'loop 10 0 "create /foo_ bar ephemeral=false sequence=true"' Took 0.05585 seconds """ start = time.time() for cmd in params.cmds: try: self.onecmd(cmd) except Exception as ex: self.show_output("Command failed: %s.", ex) elapsed = "{0:.5f}".format(time.time() - start) self.show_output("Took %s seconds" % elapsed) def complete_time(self, cmd_param_text, full_cmd, *rest): cmds = ["get ", "ls ", "create ", "set ", "rm "] complete_cmds = partial(complete_values, cmds) return complete([complete_cmds], cmd_param_text, full_cmd, *rest) @connected @ensure_params(Required("cmd"), Required("args"), IntegerOptional("from_config", -1)) def do_reconfig(self, params): """ \x1b[1mNAME\x1b[0m reconfig - Reconfigures a ZooKeeper cluster (adds/removes members) \x1b[1mSYNOPSIS\x1b[0m reconfig <add|remove> <arg> [from_config] \x1b[1mDESCRIPTION\x1b[0m reconfig add <members> [from_config] adds the given members (i.e.: 'server.100=10.0.0.10:2889:3888:observer;0.0.0.0:2181'). reconfig remove <members_ids> [from_config] removes the members with the given ids (i.e.: '2,3,5'). \x1b[1mEXAMPLES\x1b[0m > reconfig add server.100=0.0.0.0:56954:37866:observer;0.0.0.0:42969 server.1=localhost:20002:20001:participant server.2=localhost:20012:20011:participant server.3=localhost:20022:20021:participant server.100=0.0.0.0:56954:37866:observer;0.0.0.0:42969 version=100000003 > reconfig remove 100 server.1=localhost:20002:20001:participant server.2=localhost:20012:20011:participant server.3=localhost:20022:20021:participant version=100000004 """ if params.cmd not in ["add", "remove"]: raise ValueError("Bad command: %s" % params.cmd) joining, leaving, from_config = None, None, params.from_config if params.cmd == "add": joining = params.args elif params.cmd == "remove": leaving = params.args try: value, _ = self._zk.reconfig( joining=joining, leaving=leaving, new_members=None, from_config=from_config) self.show_output(value) except NewConfigNoQuorumError: self.show_output("No quorum available to perform reconfig.") except ReconfigInProcessError: self.show_output("There's a reconfig in process.") def complete_reconfig(self, cmd_param_text, full_cmd, *rest): complete_cmd = partial(complete_values, ["add", "remove"]) complete_config = partial(complete_values, ["-1"]) complete_arg = partial( complete_values, ["server.100=0.0.0.0:2889:3888:observer;0.0.0.0:2181", "1,2,3"]) completers = [complete_cmd, complete_arg, complete_config] return complete(completers, cmd_param_text, full_cmd, *rest) @ensure_params(Required("fmtstr"), MultiOptional("cmds")) def do_echo(self, params): """ \x1b[1mNAME\x1b[0m echo - displays formatted data \x1b[1mSYNOPSIS\x1b[0m echo <fmtstr> [cmd1] [cmd2] ... [cmdN] \x1b[1mEXAMPLES\x1b[0m > echo hello hello > echo 'The value of /foo is %s' 'get /foo' bar """ values = [] with self.output_context() as context: for cmd in params.cmds: rv = self.onecmd(cmd) val = "" if rv is False else context.value.rstrip("\n") values.append(val) context.reset() try: self.show_output(params.fmtstr, *values) except TypeError: self.show_output("Bad format string or missing arguments.") @ensure_params(Required("hosts")) def do_connect(self, params): """ \x1b[1mNAME\x1b[0m connect - Connects to a host from a list of hosts given \x1b[1mSYNOPSIS\x1b[0m connect <hosts> \x1b[1mEXAMPLES\x1b[0m > connect host1:2181,host2:2181 """ # TODO: we should offer autocomplete based on prev hosts. self._connect(params.hosts.split(",")) @connected def do_disconnect(self, args): """ \x1b[1mNAME\x1b[0m disconnect - Disconnects and closes the current session """ self._disconnect() self._hosts = [] self.update_curdir("/") @connected def do_reconnect(self, args): """ \x1b[1mNAME\x1b[0m reconnect - Forces a reconnect by shutting down the connected socket """ self._zk.reconnect() self.update_curdir("/") @connected def do_pwd(self, args): """ \x1b[1mNAME\x1b[0m pwd - Prints the current path """ self.show_output("%s", self.curdir) def do_EOF(self, *args): """ \x1b[1mNAME\x1b[0m <ctrl-d> - Exits via Ctrl-D """ self._exit(True) def do_quit(self, *args): """ \x1b[1mNAME\x1b[0m quit - Give up on everything and just quit """ self._exit(False) def do_exit(self, *args): """ \x1b[1mNAME\x1b[0m exit - Au revoir """ self._exit(False) @contextmanager def transitions_disabled(self): """ use this when you want to ignore state transitions (i.e.: inside loop) """ self.state_transitions_enabled = False try: yield except KeyboardInterrupt: pass self.state_transitions_enabled = True def _disconnect(self): if self._zk and self.connected: self._zk.stop() self._zk.close() self._zk = None self.connected = False def _init_zk_client(self, hosts_list): """ Initialize the zookeeper client (based on the provided list of hosts. In the basic case, hostsp is a list of hosts like: ``` [10.0.0.2:2181, 10.0.0.3:2181] ``` It might also contain auth info: ``` [digest:foo:[email protected]:2181, 10.0.0.3:2181] ``` """ auth_data = [] hosts = [] for auth_host in hosts_list: nl = Netloc.from_string(auth_host) rhost, rport = hosts_to_endpoints(nl.host)[0] if self._tunnel is not None: lhost, lport = TunnelHelper.create_tunnel(rhost, rport, self._tunnel) hosts.append('{0}:{1}'.format(lhost, lport)) else: hosts.append(nl.host) if nl.scheme != "": auth_data.append((nl.scheme, nl.credential)) return KazooClient(",".join(hosts), read_only=self._read_only, timeout=self._connect_timeout, auth_data=auth_data if len(auth_data) > 0 else None) def _connect(self, hosts_list=None, zk_client=None): """ In the basic case, hostsp is a list of hosts like: ``` [10.0.0.2:2181, 10.0.0.3:2181] ``` It might also contain auth info: ``` [digest:foo:[email protected]:2181, 10.0.0.3:2181] ``` """ self._disconnect() if not zk_client: zk_client = self._init_zk_client(hosts_list) self._zk = XClient(zk_client) hosts = ['{0}:{1}'.format(*host_port) for host_port in zk_client.hosts] if self._asynchronous: self._connect_async(hosts) else: self._connect_sync(hosts) def _connect_async(self, hosts): def listener(state): self.connected = state == KazooState.CONNECTED self._hosts = hosts self.update_curdir("/") # hack to restart sys.stdin.readline() self.show_output("") os.kill(os.getpid(), signal.SIGUSR2) self._zk.add_listener(listener) self._zk.start_async() self.update_curdir("/") def _connect_sync(self, hosts): try: self._zk.start(timeout=self._connect_timeout) self.connected = True except self._zk.handler.timeout_exception as ex: self.show_output("Failed to connect: %s", ex) self._hosts = hosts self.update_curdir("/") @property def state(self): if self._zk and self._zk.client_state != 'CLOSED': return "(%s) " % ('%s [%s]' % (self._zk.client_state, ','.join(self._hosts))) else: return "(DISCONNECTED) " def do_man(self, *args, **kwargs): """ An alias for help. """ self.do_help(*args, **kwargs) def complete_man(self, *args, **kwargs): return self.complete_help(*args, **kwargs)
zk-shell
/zk_shell-1.3.4.tar.gz/zk_shell-1.3.4/zk_shell/shell.py
shell.py
ZKWatcher: Watches and Registers Apps in Zookeeper ================================================== |build_status|_ |doc_status|_ |pypi_download|_ Documentation ------------- Documentation is hosted at `https://zkwatcher.readthedocs.org <https://zkwatcher.readthedocs.org>`_ .. |build_status| image:: https://travis-ci.org/Nextdoor/zkwatcher.svg?branch=master .. _build_status: https://travis-ci.org/Nextdoor/zkwatcher .. |doc_status| image:: https://readthedocs.org/projects/zkwatcher/badge/?version=latest .. _doc_status: https://zkwatcher.readthedocs.org .. |pypi_download| image:: https://badge.fury.io/py/zkwatcher.png .. _pypi_download: https://pypi.python.org/pypi/zkwatcher
zk-watcher
/zk_watcher-0.4.0.tar.gz/zk_watcher-0.4.0/README.rst
README.rst
from future import standard_library standard_library.install_aliases() from builtins import str # noqa: E402 from builtins import object # noqa: E402 import configparser # noqa: E402 import json # noqa: E402 import logging # noqa: E402 import logging.handlers # noqa: E402 import optparse # noqa: E402 import os # noqa: E402 import signal # noqa: E402 import socket # noqa: E402 import subprocess # noqa: E402 import threading # noqa: E402 import time # noqa: E402 # Get our ServiceRegistry class from nd_service_registry import KazooServiceRegistry as ServiceRegistry # noqa: E402 from nd_service_registry import exceptions # noqa: E402 # Our default variables from .version import __version__ as VERSION # noqa: E402 __author__ = '[email protected] (Matt Wise)' # Defaults LOG = '/var/log/zk_watcher.log' ZOOKEEPER_SESSION_TIMEOUT_USEC = 300000 # microseconds ZOOKEEPER_URL = 'localhost:2181' # This global variable is used to trigger the service stopping/starting... RUN_STATE = True # First handle all of the options passed to us usage = 'usage: %prog <options>' parser = optparse.OptionParser(usage=usage, version=VERSION, add_help_option=True) parser.set_defaults(verbose=True) parser.add_option('-c', '--config', dest='config', default='/etc/zk/config.cfg', help='override the default config file (/etc/zk/config.cfg)') parser.add_option('-s', '--server', dest='server', default=ZOOKEEPER_URL, help='server address (default: localhost:2181') parser.add_option('-v', '--verbose', action='store_true', dest='verbose', default=False, help='verbose mode') parser.add_option('-l', '--syslog', action='store_true', dest='syslog', default=False, help='log to syslog') (options, args) = parser.parse_args() class WatcherDaemon(threading.Thread): """The main daemon process. This is the main object that defines all of our major functions and connection information.""" LOGGER = 'WatcherDaemon' def __init__(self, server, config_file=None, verbose=False): """Initilization code for the main WatcherDaemon. Set up our local logger reference, and pid file locations.""" # Initiate our thread super(WatcherDaemon, self).__init__() self.log = logging.getLogger(self.LOGGER) self.log.info('WatcherDaemon %s' % VERSION) self._watchers = [] self._sr = None self._config_file = config_file self._server = server self._verbose = verbose self.done = False # Set up our threading environment self._event = threading.Event() # These threads can die with prejudice. Make sure that any time the # python interpreter exits, we exit immediately self.setDaemon(True) # Watch for any signals signal.signal(signal.SIGHUP, self._signal_handler) signal.signal(signal.SIGTERM, self._signal_handler) # Bring in our configuration options self._parse_config() # Create our ServiceRegistry object self._connect() # Start up self.start() def _signal_handler(self, signum, frame): """Watch for certain signals""" self.log.warning('Received signal: %s' % signum) if signum == signal.SIGHUP: self.log.warning('Reloading config.') self._parse_config() self._connect() self._setup_watchers() if signum == signal.SIGTERM: self.log.warning('Terminating all node registrations.') self.stop() def _parse_config(self): """Read in the supplied config file and update our local settings.""" self.log.debug('Loading config...') self._config = configparser.ConfigParser() self._config.read(self._config_file) # Check if auth data was supplied. If it is, read it in and then remove # it from our configuration object so its not used anywhere else. try: self.user = self._config.get('auth', 'user') self.password = self._config.get('auth', 'password') self._config.remove_section('auth') except (configparser.NoOptionError, configparser.NoSectionError): self.user = None self.password = None def _connect(self): """Connects to the ServiceRegistry. If already connected, updates the current connection settings.""" self.log.debug('Checking for ServiceRegistry object...') if not self._sr: self.log.debug('Creating new ServiceRegistry object...') self._sr = ServiceRegistry(server=self._server, lazy=True, username=self.user, password=self.password) else: self.log.debug('Updating existing object...') self._sr.set_username(self.user) self._sr.set_password(self.password) def _setup_watchers(self): # For each watcher, see if we already have one for a given path or not. for service in self._config.sections(): w = self._get_watcher(service) # Gather up the config data for our section into a few local # variables so that we can shorten the statements below. command = self._config.get(service, 'cmd') service_port = self._config.get(service, 'service_port') zookeeper_path = self._config.get(service, 'zookeeper_path') refresh = self._config.get(service, 'refresh') # Gather our optional parameters. If they don't exist, set # some reasonable default. try: zookeeper_data = self._parse_data( self._config.get(service, 'zookeeper_data')) except: zookeeper_data = {} try: service_hostname = self._config.get( service, 'service_hostname') except: service_hostname = socket.getfqdn() if w: # Certain fields cannot be changed without destroying the # object and its registration with Zookeeper. if w._service_port != service_port or \ w._service_hostname != service_hostname or \ w._path != zookeeper_path: w.stop() w = None if w: # We already have a watcher for this service. Update its # object data, and let it keep running. w.set(command=command, data=zookeeper_data, refresh=refresh) # If there's still no 'w' returned (either _get_watcher failed, or # we noticed that certain un-updatable fields were changed, then # create a new object. if not w: w = ServiceWatcher(registry=self._sr, service=service, service_port=service_port, service_hostname=service_hostname, command=command, path=zookeeper_path, data=zookeeper_data, refresh=refresh) self._watchers.append(w) # Check if any watchers need to be destroyed because they're no longer # in our config. for w in self._watchers: if w._service not in list(self._config.sections()): w.stop() self._watchers.remove(w) def _get_watcher(self, service): """Returns a watcher based on the service name.""" for watcher in self._watchers: if watcher._service == service: return watcher return None def _parse_data(self, data): """Convert a string of data from ConfigParse into our dict. The zookeeper_data field supports one of two types of fields. Either a single key=value string, or a JSON-formatted set of key=value pairs: zookeeper_data: foo=bar zookeeper_data: foo=bar, bar=foo zookeeper_data: { "foo": "bar", "bar": "foo" } Args: data: String representing data above""" try: data_dict = json.loads(data) except: data_dict = {} for pair in data.split(','): if pair.split('=').__len__() == 2: key = pair.split('=')[0] value = pair.split('=')[1] data_dict[key] = value return data_dict def run(self): """Start up all of the worker threads and keep an eye on them""" self._setup_watchers() # Now, loop. Wait for a death signal while True and not self._event.is_set(): self._event.wait(1) # At this point we must be exiting. Kill off our above threads self.log.info('Shutting down') for w in self._watchers: self.log.info('Stopping watcher: %s' % w._path) w.stop() # Finally, mark us as done self.done = True def stop(self): self._event.set() class ServiceWatcher(threading.Thread): """Monitors a particular service definition.""" LOGGER = 'WatcherDaemon.ServiceWatcher' def __init__(self, registry, service, service_port, command, path, data, service_hostname, refresh=15): """Initialize the object and begin monitoring the service.""" # Initiate our thread super(ServiceWatcher, self).__init__() self._sr = registry self._service = service self._service_port = service_port self._service_hostname = service_hostname self._path = path self._fullpath = '%s/%s:%s' % (path, service_hostname, service_port) self.set(command, data, refresh) self.log = logging.getLogger('%s.%s' % (self.LOGGER, self._service)) self.log.debug('Initializing...') self._event = threading.Event() self.setDaemon(True) self.start() def set(self, command, data, refresh): """Public method for re-configuring our service checks. NOTE: You cannot re-configure the port or server-name currently. Args: command: (String) command to execute data: (String/Dict) configuration data to pass with registration refresh: (Int) frequency (in seconds) of check""" self._command = command self._refresh = int(refresh) self._data = data def run(self): """Monitors the supplied service, and keeps it registered. We loop every second, checking whether or not we need to run our check. If we do, we run the check. If we don't, we wait until we need to, or we receive a stop.""" last_checked = 0 self.log.debug('Beginning run() loop') while True and not self._event.is_set(): if time.time() - last_checked > self._refresh: self.log.debug('[%s] running' % self._command) # First, run our service check command and see what the # return code is c = Command(self._command, self._service) ret = c.run(timeout=90) if ret == 0: # If the command was successfull... self.log.debug('[%s] returned successfull' % self._command) self._update(state=True) else: # If the command failed... self.log.warning('[%s] returned a failed exit code [%s]' % (self._command, ret)) self._update(state=False) # Now that our service check is done, update our lastrun{} # array with the current time, so that we can check how # long its been since the last run. last_checked = time.time() # Sleep for one second just so that we dont run in a crazy loop # taking up all kinds of resources. self._event.wait(1) self._update(False) self.log.info('Deregistering %s' % self._fullpath) self._sr.unset(self._fullpath) self._sr = None self.log.info('Watcher %s is exiting the run() loop.' % self._service) def stop(self): """Stop the run() loop.""" self._event.set() self.log.debug("Waiting for run() loop to exit.") while self._sr is not None: self._event.wait(1) def _update(self, state): # Call ServiceRegistry.set() method with our state, data, # path information. The ServiceRegistry module will take care of # updating the data, state, etc. self.log.debug('Attempting to update service [%s] with ' 'data [%s], and state [%s].' % (self._service, self._data, state)) try: self._sr.set_node(self._fullpath, self._data, state) self.log.debug('[%s] sucessfully updated path %s with state %s' % (self._service, self._fullpath, state)) return True except exceptions.NoConnection as e: self.log.warn('[%s] could not update path %s with state %s: %s' % (self._service, self._fullpath, state, e)) return False class Command(object): """Wrapper to run a command with a timeout for safety.""" LOGGER = 'WatcherDaemon.Command' def __init__(self, cmd, service): """Initialize the Command object. This object can be created once, and run many times. Each time it runs we initiate a small thread to run our process, and if that process times out, we kill it.""" self._cmd = cmd self._process = None self.log = logging.getLogger('%s.%s' % (self.LOGGER, service)) def run(self, timeout): def target(): self.log.debug('[%s] started...' % self._cmd) # Deliberately do not capture any output. Using PIPEs can # cause deadlocks according to the Python documentation here # (http://docs.python.org/library/subprocess.html) # # "Warning This will deadlock when using stdout=PIPE and/or # stderr=PIPE and the child process generates enough output to # a pipe such that it blocks waiting for the OS pipe buffer to # accept more # data. Use communicate() to avoid that." # # We only care about the exit code of the command anyways... try: self._process = subprocess.Popen( self._cmd.split(' '), shell=False, stdout=open('/dev/null', 'w'), stderr=None, stdin=None) self._process.communicate() except OSError as e: self.log.warn('Failed to run: %s' % e) return 1 self.log.debug('[%s] finished... returning %s' % (self._cmd, self._process.returncode)) thread = threading.Thread(target=target) thread.start() thread.join(timeout) if thread.is_alive(): self.log.debug('[%s] taking too long to respond, terminating.' % self._cmd) try: self._process.terminate() except: pass thread.join() # If the subprocess.Popen() fails for any reason, it returns 1... but # because its in a thread, we never actually see that error code. if self._process: return self._process.returncode else: return 1 def setup_logger(): """Configure our main logger object""" # Get our logger logger = logging.getLogger() pid = os.getpid() format = 'zk_watcher[' + str(pid) + '] [%(name)s] ' \ '[%(funcName)s]: (%(levelname)s) %(message)s' formatter = logging.Formatter(format) if options.verbose: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.INFO) if options.syslog: handler = logging.handlers.SysLogHandler('/dev/log', 'syslog') else: handler = logging.StreamHandler() handler.setFormatter(formatter) logger.addHandler(handler) return logger def main(): logger = setup_logger() w = WatcherDaemon( config_file=options.config, server=options.server, verbose=options.verbose) while True and not w.done: try: time.sleep(1) except KeyboardInterrupt: break time.sleep(1) logger.info('Exiting') if __name__ == '__main__': main()
zk-watcher
/zk_watcher-0.4.0.tar.gz/zk_watcher-0.4.0/zk_watcher/zk_watcher.py
zk_watcher.py
Changelog ========= 0.8.5 (2021-09-20) ------------------- - Always Send a Trace-Id event if the trace has not be sent to zipkin (slow query logs) 0.8.4 (2021-07-21) ------------------- - Fix django issue on missing trace. 0.8.3 (2021-06-28) ------------------- - Fix issue for django on slow request logs. The reset of the stack must be done on every requests. 0.8.2 (2021-06-28) ------------------- - Ensure we never raise an exception if we cannot collect a trace, avoid side effect to clients. 0.8.1 (2021-06-25) ------------------- - Hotfix Pyramid slow query logger that does not cleanup the trace stack. 0.8.0 (2021-06-25) ------------------- - Rewrite Pyramid binding. - Add settings for pyramid to log slow queries only with a configurable time. - Add a setting to list what library should be traced. - Make socket timout configurable and change default timeout to 1 second. 0.7.2 (2021-06-22) ------------------- - Make the scribe async/sync socket configurable - Add a middleware/setting for Django to track only slow query 0.7.1 (2021-06-22) ------------------- - Add a Trace context manager for more flexibility - Add django support using a django middleware and app. - Add psycopg2 cursor support to trace sql query - Add an http client (synchronous) to push trace, client transport is configurable. 0.6.10 (2020-01-28) ------------------- - update logging level to avoid errors logs for SQL query outside http context - remove deprecated log.warn 0.6.9 (2019-09-26) ------------------ - requests: fixup infinite recursion 0.6.8 (2019-09-23) ------------------ - pyramid: fixup tests if zipkin not configured 0.6.7 (2019-09-23) ------------------ - pyramid: fixup tweenview init 0.6.6 (2019-09-23) ------------------ - pyramid: register trace in a tweenview 0.6.5 (2019-09-17) ------------------ - advertise version in pyramid module 0.6.4 (2019-09-18) ------------------ - do not throw exception when trying to format to thrift 0.6.3 (2019-09-18) ------------------ - ensure zipkin does not raise when trace id is larger than expected 0.6.2 (2019-09-17) ------------------ - do not throw warning on configuration mistakes 0.6.1 (2019-09-17) ------------------ - fixup python2 support 0.6.0 (2019-09-17) ------------------ - refactor pyramid plugin - fix reporter 0.5 (2019-09-10) ---------------- - Use thriftpy2 0.4 (2015-08-21) ---------------- - Flask bindings - xmlrpclib client bindings - Filtered parameters in sqlalchemy binding - Implement exponential backoff on connection 0.3 (2015-02-16) ---------------- - Make the service name configurable for pyramid application 0.2 (2015-02-16) ---------------- - Keep @trace usable when zipkin is not configured 0.1 (2015-02-16) ---------------- - Initial version
zk
/zk-0.8.5.tar.gz/zk-0.8.5/CHANGES.rst
CHANGES.rst
import random import struct import socket from base64 import b64encode from six import text_type from thriftpy2.protocol import TBinaryProtocol from thriftpy2.thrift import TType from thriftpy2.protocol.binary import write_list_begin from thriftpy2.transport import TMemoryBuffer from thriftpy2.thrift import TDecodeException from .zipkin import zipkincore_thrift as ttypes def int_or_none(val): if val is None: return None return int(val, 16) def hex_str(n): return "%0.16x" % (n,) def uniq_id(): """ Create a random 64-bit signed integer appropriate for use as trace and span IDs. @returns C{int} """ return random.randint(0, (2 ** 64) - 1) def base64_thrift(thrift_obj): trans = TMemoryBuffer() tbp = TBinaryProtocol(trans) thrift_obj.write(tbp) return b64encode(bytes(trans.getvalue())).strip() def ipv4_to_int(ipv4): return struct.unpack("!i", socket.inet_aton(ipv4))[0] def binary_annotation_formatter(annotation, host=None): annotation_types = { "string": ttypes.AnnotationType.STRING, "bytes": ttypes.AnnotationType.BYTES, } annotation_type = annotation_types[annotation.annotation_type] value = annotation.value if isinstance(value, text_type): value = value.encode("utf-8") return ttypes.BinaryAnnotation(annotation.name, value, annotation_type, host) def base64_thrift_formatter(trace, annotations): thrift_annotations = [] binary_annotations = [] try: for annotation in annotations: host = None if annotation.endpoint: host = ttypes.Endpoint( ipv4=ipv4_to_int(annotation.endpoint.ip), port=annotation.endpoint.port, service_name=annotation.endpoint.service_name, ) if annotation.annotation_type == "timestamp": thrift_annotations.append( ttypes.Annotation( timestamp=annotation.value, value=annotation.name, host=host ) ) else: binary_annotations.append(binary_annotation_formatter(annotation, host)) thrift_trace = ttypes.Span( name=trace.name, trace_id=u64_as_i64(trace.trace_id), id=u64_as_i64(trace.span_id), parent_id=u64_as_i64(trace.parent_span_id), annotations=thrift_annotations, binary_annotations=binary_annotations, ) return base64_thrift(thrift_trace) except TDecodeException as e: raise ValueError(e) def u64_as_i64(value): if not value: return value try: data = struct.pack(">Q", value) data = struct.unpack(">q", data) return data[0] except struct.error as e: raise ValueError(e) def span_to_bytes(thrift_span): """ Returns a TBinaryProtocol encoded Thrift span. :param thrift_span: thrift object to encode. :returns: thrift object in TBinaryProtocol format bytes. """ transport = TMemoryBuffer() protocol = TBinaryProtocol(transport) thrift_span.write(protocol) return bytes(transport.getvalue()) def base64_thrift_formatter_many(parent_trace): """ Returns a TBinaryProtocol encoded list of Thrift objects. :param binary_thrift_obj_list: list of TBinaryProtocol objects to encode. :returns: bynary object representing the encoded list. """ traces = list(parent_trace.children()) transport = TMemoryBuffer() write_list_begin(transport, TType.STRUCT, len(traces)) for trace in traces: thrift_annotations = [] binary_annotations = [] for annotation in trace.annotations: host = None if annotation.endpoint: host = ttypes.Endpoint( ipv4=ipv4_to_int(annotation.endpoint.ip), port=annotation.endpoint.port, service_name=annotation.endpoint.service_name, ) if annotation.annotation_type == "timestamp": thrift_annotations.append( ttypes.Annotation( timestamp=annotation.value, value=annotation.name, host=host ) ) else: binary_annotations.append(binary_annotation_formatter(annotation, host)) thrift_trace = ttypes.Span( name=trace.name, trace_id=u64_as_i64(trace.trace_id), id=u64_as_i64(trace.span_id), parent_id=u64_as_i64(trace.parent_span_id), annotations=thrift_annotations, binary_annotations=binary_annotations, ) transport.write(span_to_bytes(thrift_trace)) return bytes(transport.getvalue())
zk
/zk-0.8.5.tar.gz/zk-0.8.5/zipkin/util.py
util.py
import math import six import time import socket from threading import Lock from .util import uniq_id from .client import Local from .zipkin import zipkincore_thrift as constants if not six.PY2: long = int class Id(long): def __repr__(self): return "<Id %x>" % self def __str__(self): return "%x" % self class Endpoint(object): """ :param ip: C{str} ip address :param port: C{int} port number :param service_name: C{str} service_name """ def __init__(self, service_name, ip=None, port=0): try: if not ip: if Local.local_ip: ip = Local.local_ip else: ip = socket.gethostbyname_ex(socket.gethostname())[2][0] except socket.gaierror: ip = "127.0.0.1" self.ip = ip self.port = port self.service_name = service_name # TODO # __eq__, __ne__, __repr__ class TraceStack(object): def __init__(self): self.stack = [] self.cur = None # Locking is required, as stack and cur should mutate at the same time self.lock = Lock() def child(self, name, endpoint=None): assert isinstance(name, six.string_types), "name parameter should be a string" assert ( isinstance(endpoint, Endpoint) or endpoint is None ), "endpoint parameter should be an Endpoint" try: trace = self.cur.child(name, endpoint) self.lock.acquire() self.stack.append(trace) self.cur = trace return trace finally: self.lock.release() def reset(self): try: self.lock.acquire() self.stack = [] self.cur = None finally: self.lock.release() def replace(self, trace): assert isinstance(trace, Trace), "trace parameter should be of type Trace" try: self.lock.acquire() self.stack = [trace] self.cur = trace finally: self.lock.release() def append(self, trace): assert isinstance(trace, Trace), "trace parameter should be of type Trace" try: self.lock.acquire() self.stack.append(trace) self.cur = trace finally: self.lock.release() def pop(self): try: self.lock.acquire() if self.cur is None: raise IndexError("pop from an empty stack") # pop is safe here, cur is not none, current stack can't be empty trace = self.stack.pop() try: cur = self.stack.pop() self.stack.append(cur) self.cur = cur except: self.cur = None return trace finally: self.lock.release() @property def current(self): return self.cur class Trace(object): def __init__( self, name, trace_id=None, span_id=None, parent_span_id=None, endpoint=None ): assert isinstance(name, six.string_types), "name parameter should be a string" self.name = name self.trace_id = Id(trace_id or uniq_id()) self.span_id = Id(span_id or uniq_id()) self.parent_span_id = parent_span_id self.annotations = [] self._children = [] self._endpoint = endpoint def record(self, *annotations): for a in annotations: if a.endpoint is None: a.endpoint = self._endpoint self.annotations.extend(annotations) def child_noref(self, name, endpoint=None): if endpoint is not None: e = endpoint else: e = self._endpoint trace = self.__class__( name, trace_id=self.trace_id, parent_span_id=self.span_id, endpoint=e ) return trace def child(self, name, endpoint=None): trace = self.child_noref(name, endpoint) self._children.append(trace) return trace def children(self): return [y for x in self._children for y in x.children()] + [self] def __repr__(self): return "<Trace %s>" % self.trace_id class Annotation(object): """ :param name: C{str} name of this annotation. :param value: A value of the appropriate type based on C{annotation_type}. :param annotation_type: C{str} the expected type of our C{value}. :param endpoint: An optional L{IEndpoint} provider to associate with this annotation or C{None} """ def __init__(self, name, value, annotation_type, endpoint=None): self.name = name self.value = value self.annotation_type = annotation_type self.endpoint = endpoint @classmethod def timestamp(cls, name, timestamp=None): if timestamp is None: timestamp = math.trunc(time.time() * 1000 * 1000) return cls(name, timestamp, "timestamp") @classmethod def server_send(cls, timestamp=None): return cls.timestamp(constants.SERVER_SEND, timestamp) @classmethod def server_recv(cls, timestamp=None): return cls.timestamp(constants.SERVER_RECV, timestamp) @classmethod def client_send(cls, timestamp=None): return cls.timestamp(constants.CLIENT_SEND, timestamp) @classmethod def client_recv(cls, timestamp=None): return cls.timestamp(constants.CLIENT_RECV, timestamp) @classmethod def string(cls, name, value): return cls(name, value, "string") @classmethod def bytes(cls, name, value): return cls(name, value, "bytes")
zk
/zk-0.8.5.tar.gz/zk-0.8.5/zipkin/models.py
models.py
import logging from six.moves.urllib.parse import urlparse from zipkin import local from zipkin.models import Annotation from zipkin.util import hex_str log = logging.getLogger(__name__) def filter_url_path(url): url = urlparse(url)._replace(path="", query=None, fragment="") url = url._replace(netloc=url.netloc.split("@")[-1]) return url.geturl() def pre_request(request): parent_trace = local().current if not parent_trace: return request url = filter_url_path(request.url) request.trace = parent_trace.child("requests:%s %s" % (request.method, url)) forwarded_trace = request.trace.child_noref("subservice") request.headers["X-B3-TraceId"] = hex_str(forwarded_trace.trace_id) request.headers["X-B3-SpanId"] = hex_str(forwarded_trace.span_id) if forwarded_trace.parent_span_id is not None: request.headers["X-B3-ParentSpanId"] = hex_str(forwarded_trace.parent_span_id) request.trace.record(Annotation.string("http.method", request.method)) request.trace.record(Annotation.string("http.url", request.url)) request.trace.record(Annotation.string("span.kind", "client")) request.trace.record(Annotation.server_recv()) return request def pre_response(resp, req=None): if not req: req = resp.request if not hasattr(req, "trace"): return resp req.trace.record( Annotation.string( "http.status_code", "{0}".format(getattr(resp, "status", None)) ) ) req.trace.record(Annotation.server_send()) return resp class Proxy(object): __slots__ = ["_obj", "__weakref__"] def __init__(self, obj): object.__setattr__(self, "_obj", obj) # # proxying (special cases) # def __getattr__(self, name): return getattr(object.__getattribute__(self, "_obj"), name) def __delattr__(self, name): delattr(object.__getattribute__(self, "_obj"), name) def __setattr__(self, name, value): setattr(object.__getattribute__(self, "_obj"), name, value) def __nonzero__(self): return bool(object.__getattribute__(self, "_obj")) def __str__(self): return str(object.__getattribute__(self, "_obj")) def __repr__(self): return repr(object.__getattribute__(self, "_obj")) # # factories # _special_names = [ "__abs__", "__add__", "__and__", "__call__", "__cmp__", "__coerce__", "__contains__", "__delitem__", "__delslice__", "__div__", "__divmod__", "__eq__", "__float__", "__floordiv__", "__ge__", "__getitem__", "__getslice__", "__gt__", "__hash__", "__hex__", "__iadd__", "__iand__", "__idiv__", "__idivmod__", "__ifloordiv__", "__ilshift__", "__imod__", "__imul__", "__int__", "__invert__", "__ior__", "__ipow__", "__irshift__", "__isub__", "__iter__", "__itruediv__", "__ixor__", "__le__", "__len__", "__long__", "__lshift__", "__lt__", "__mod__", "__mul__", "__ne__", "__neg__", "__oct__", "__or__", "__pos__", "__pow__", "__radd__", "__rand__", "__rdiv__", "__rdivmod__", "__reduce__", "__reduce_ex__", "__repr__", "__reversed__", "__rfloorfiv__", "__rlshift__", "__rmod__", "__rmul__", "__ror__", "__rpow__", "__rrshift__", "__rshift__", "__rsub__", "__rtruediv__", "__rxor__", "__setitem__", "__setslice__", "__sub__", "__truediv__", "__xor__", "next", ] @classmethod def _create_class_proxy(cls, theclass): """creates a proxy for the given class""" def make_method(name): def method(self, *args, **kw): return getattr(object.__getattribute__(self, "_obj"), name)(*args, **kw) return method namespace = {} for name in cls._special_names: if hasattr(theclass, name): namespace[name] = make_method(name) return type("%s(%s)" % (cls.__name__, theclass.__name__), (cls,), namespace) def __new__(cls, obj, *args, **kwargs): """ creates an proxy instance referencing `obj`. (obj, *args, **kwargs) are passed to this class' __init__, so deriving classes can define an __init__ method of their own. note: _class_proxy_cache is unique per deriving class (each deriving class must hold its own cache) """ try: cache = cls.__dict__["_class_proxy_cache"] except KeyError: cls._class_proxy_cache = cache = {} try: theclass = cache[obj.__class__] except KeyError: cache[obj.__class__] = theclass = cls._create_class_proxy(obj.__class__) ins = object.__new__(theclass) theclass.__init__(ins, obj, *args, **kwargs) return ins try: from requests.adapters import HTTPAdapter class ZipkinAdapterProxy(Proxy, HTTPAdapter): """This class will proxy all methods or attributes to underlying HTTPAdapter, it also override the send and build_response to hook zipkin headers and tracing. The proxy allows to hook into an existing HTTPAdapter """ def send(self, request, *args, **kwargs): pre_request(request) return super(ZipkinAdapterProxy, self).send(request, *args, **kwargs) def build_response(self, req, resp, *args, **kwargs): pre_response(resp, req) return super(ZipkinAdapterProxy, self).build_response( req, resp, *args, **kwargs ) def request_adapter(adapter): return ZipkinAdapterProxy(adapter) except ImportError: # requests < 1.0.0 def request_adapter(adapter): return adapter def session_init(init): def func(self, *args, **kwargs): init(self, *args, **kwargs) if hasattr(self, "mount"): adapter = ZipkinAdapterProxy(HTTPAdapter()) self.mount("http://", adapter) self.mount("https://", adapter) else: self.hooks["pre_request"] = pre_request self.hooks["response"] = pre_response return func
zk
/zk-0.8.5.tar.gz/zk-0.8.5/zipkin/binding/requests/events.py
events.py
import logging from zipkin import get_current_trace from zipkin.models import Annotation log = logging.getLogger(__name__) endpoints = {} def before_cursor_execute(conn, cursor, statement, parameters, context, executemany): try: endpoint = endpoints.get(conn.engine) parent_trace = get_current_trace() if not parent_trace: log.warning("No parent found while tracing SQL") return try: context.trace = parent_trace.child("SQL", endpoint=endpoint) abstract = context except AttributeError: cursor.trace = parent_trace.child("SQL", endpoint=endpoint) abstract = cursor abstract.trace.record(Annotation.string("db.statement", statement)) if parameters: if isinstance(parameters, dict): parameters = dict( [ (key, getattr(param, "logged_value", param)) for key, param in parameters.items() ] ) else: parameters = [ getattr(param, "logged_value", param) for param in parameters ] abstract.trace.record(Annotation.string("db.parameters", repr(parameters))) abstract.trace.record(Annotation.string("span.kind", "client")) abstract.trace.record(Annotation.server_recv()) except Exception: log.exception("Unexpected exception while tracing SQL") def after_cursor_execute(conn, cursor, statement, parameters, context, executemany): if not hasattr(context, "trace") and not hasattr(cursor, "trace"): return abstract = context if hasattr(context, "trace") else cursor try: abstract.trace.record(Annotation.string("status", "OK")) abstract.trace.record(Annotation.server_send()) except Exception: log.exception("Unexpected exception while tracing SQL") def dbapi_error(conn, cursor, statement, parameters, context, exception): if not hasattr(context, "trace") and not hasattr(cursor, "trace"): return abstract = context if hasattr(context, "trace") else cursor try: abstract.trace.record(Annotation.string("status", "KO")) abstract.trace.record(Annotation.server_send()) except Exception: log.exception("Unexpected exception while tracing SQL")
zk
/zk-0.8.5.tar.gz/zk-0.8.5/zipkin/binding/sqlalchemy/events.py
events.py
import sys from functools import wraps from psycopg2.extensions import connection as _connection from psycopg2.extensions import cursor as _cursor from zipkin.api import get_current_trace from zipkin.models import Annotation class TraceConnection(_connection): """A connection that logs all queries to a zipkin.""" def cursor(self, *args, **kwargs): kwargs.setdefault("cursor_factory", self.cursor_factory or TraceCursor) return super(TraceConnection, self).cursor(*args, **kwargs) def trace_req(trace_name): def wrapper(fn): @wraps(fn) def wrapped(cursor, statement, vars=None): trace = None parent_trace = get_current_trace() if parent_trace: trace = parent_trace.child(trace_name) trace.record(Annotation.string("db.statement", statement)) if vars: if isinstance(vars, dict): params = dict( [ (key, getattr(param, "logged_value", param)) for key, param in vars.items() ] ) else: params = [ getattr(param, "logged_value", param) for param in vars ] trace.record(Annotation.string("db.parameters", repr(params))) trace.record(Annotation.string("span.kind", "client")) trace.record(Annotation.server_send()) try: fn(cursor, statement, vars) finally: if trace: status = "OK" if sys.exc_info()[0] is None else "KO" trace.record(Annotation.string("status", status)) trace.record(Annotation.server_recv()) return wrapped return wrapper class TraceCursor(_cursor): """A cursor that logs queries using its connection logging facilities.""" @trace_req("SQL") def execute(self, query, vars=None): return super(TraceCursor, self).execute(query, vars) @trace_req("STORED PROCEDURE") def callproc(self, procname, vars=None): return super(TraceCursor, self).callproc(procname, vars)
zk
/zk-0.8.5.tar.gz/zk-0.8.5/zipkin/binding/psycopg2/tracer.py
tracer.py
import time import logging from django.conf import settings from zipkin import local from zipkin.api import get_current_trace, stack_trace from zipkin.models import Trace, Annotation, Endpoint from zipkin.util import int_or_none from zipkin.client import log as zipkin_log from .apps import ZipkinConfig log = logging.getLogger(__name__) def init_trace(request): headers = request.headers trace_name = request.method + " " + request.path_info trace = Trace( trace_name, int_or_none(headers.get("X-B3-TraceId", None)), int_or_none(headers.get("X-B3-SpanId", None)), int_or_none(headers.get("X-B3-ParentSpanId", None)), endpoint=Endpoint(ZipkinConfig.service_name), ) trace.record(Annotation.string("http.path", request.path_info)) trace.record(Annotation.string("span.kind", "client")) trace.record(Annotation.server_recv()) stack_trace(trace) return trace def log_response(trace, response): trace.record( Annotation.string("http.responsecode", "{0}".format(response.status_code)) ) trace.record(Annotation.server_send()) try: zipkin_log(trace) except Exception as err: log.error("Error while sending trace: %s", trace) def add_header_response(response): trace = get_current_trace() if trace: response["Trace-Id"] = str(trace.trace_id) def zk_middleware(get_response): """ Zipkin Middleware to add in the django settings. Usage: :: MIDDLEWARE = [ "zipkin.binding.django.middleware.zk_middleware", ... ] """ def middleware(request): # Code to be executed for each request before # the view (and later middleware) are called. trace = init_trace(request) response = get_response(request) add_header_response(response) log_response(trace, response) local().reset() return response return middleware def zk_slow_trace_middleware(get_response): """ Zipkin Middleware to trace slow query only added in the django settings. Usage: :: # Only send trace of query that take more than 1.5 seconds ZIPKIN_SLOW_LOG_DURATION_EXCEED = 1.5 MIDDLEWARE = [ "zipkin.binding.django.middleware.zk_slow_trace_middleware", ... ] """ def middleware(request): # Code to be executed for each request before # the view (and later middleware) are called. start = time.time() trace = init_trace(request) response = get_response(request) duration = time.time() - start add_header_response(response) if duration >= settings.ZIPKIN_SLOW_LOG_DURATION_EXCEED: log_response(trace, response) local().reset() return response return middleware
zk
/zk-0.8.5.tar.gz/zk-0.8.5/zipkin/binding/django/middleware.py
middleware.py
from __future__ import absolute_import import time import logging from pyramid.tweens import INGRESS from pyramid.settings import aslist from zipkin import local from zipkin.api import stack_trace from zipkin.models import Trace, Annotation from zipkin.util import int_or_none from zipkin.client import log as zipkin_log from zipkin.config import configure as configure_zk log = logging.getLogger(__name__) class AllTraceTweenView(object): endpoint = None @classmethod def configure(cls, settings): default_name = "Registry" # Keep compat with `registry.__name__` ? name = settings.get("zipkin.service_name", default_name) bindings = aslist(settings.get("zipkin.bindings", "requests celery xmlrpclib")) cls.endpoint = configure_zk( name, settings, use_requests="requests" in bindings, use_celery="celery" in bindings, use_xmlrpclib="xmlrpclib" in bindings, ) def __init__(self, handler, registry): self.handler = handler self.trace = None def track_start_request(self, request): headers = request.headers trace_name = request.path_qs if request.matched_route: # we only get a matched route if we've gone through the router. trace_name = request.matched_route.pattern trace = Trace( request.method + " " + trace_name, int_or_none(headers.get("X-B3-TraceId", None)), int_or_none(headers.get("X-B3-SpanId", None)), int_or_none(headers.get("X-B3-ParentSpanId", None)), endpoint=self.endpoint, ) if "X-B3-TraceId" not in headers: log.info("no trace info from request: %s", request.path_qs) if request.matchdict: # matchdict maybe none if no route is registered for k, v in request.matchdict.items(): trace.record(Annotation.string("route.param.%s" % k, v)) trace.record(Annotation.string("http.path", request.path_qs)) log.info("new trace %r", trace.trace_id) stack_trace(trace) trace.record(Annotation.server_recv()) self.trace = trace def track_end_request(self, request, response): if self.trace: self.trace.record(Annotation.server_send()) log.info("reporting trace %s", self.trace.name) response.headers["Trace-Id"] = str(self.trace.trace_id) zipkin_log(self.trace) def __call__(self, request): self.track_start_request(request) response = None try: response = self.handler(request) finally: # request.response in case an exception is raised ? self.track_end_request(request, response or request.response) local().reset() self.trace = None return response or request.response class SlowQueryTweenView(AllTraceTweenView): max_duration = None @classmethod def configure(cls, settings): super(SlowQueryTweenView, cls).configure(settings) setting = settings.get("zipkin.slow_log_duration_exceed") if setting is None: log.error( "Missing setting 'zipkin.slow_log_duration_exceed' %r", list(settings.keys()), ) return try: cls.max_duration = float(setting) except ValueError: log.error("Invalid setting 'zipkin.slow_log_duration_exceed'") def __init__(self, handler, registry): super(SlowQueryTweenView, self).__init__(handler, registry) self.start = None def track_start_request(self, request): self.start = time.time() super(SlowQueryTweenView, self).track_start_request(request) def track_end_request(self, request, response): if self.max_duration is None: # unconfigure, we don't care return if self.start: duration = time.time() - self.start if duration > self.max_duration: super(SlowQueryTweenView, self).track_end_request(request, response) else: response.headers["Trace-Id"] = str(self.trace.trace_id) def includeme(config): """Include the zipkin definitions""" # Attach the subscriber a couple of times, this allow to start logging as # early as possible. Later calls on the same request will enhance the more # we proceed through the stack (after authentication, after router, ...) settings = config.registry.settings tween_factory = settings.get("zipkin.tween_factory", "all") assert tween_factory in ["all", "slow_query"] if tween_factory == "all": tween_factory = AllTraceTweenView elif tween_factory == "slow_query": tween_factory = SlowQueryTweenView else: log.error( "Invalid value for settings 'zipkin.tween_factory', should be all or slow_query, not %s", tween_factory, ) return tween_factory.configure(settings) config.add_tween( "{}.{}".format(tween_factory.__module__, tween_factory.__name__), under=INGRESS, )
zk
/zk-0.8.5.tar.gz/zk-0.8.5/zipkin/binding/pyramid/pyramidhook.py
pyramidhook.py
from __future__ import absolute_import import re import six.moves.xmlrpc_client as xmlrpclib import logging from zipkin import local from zipkin.models import Annotation, Endpoint from zipkin.util import hex_str log = logging.getLogger(__name__) _parse_method_name = re.compile(r"<methodName>([^<]*)</methodName>", re.I) class MonkeyTransport(xmlrpclib.Transport): """Monkey patched version of xmlrpclib.Transport to plug zipkin in""" __origin = xmlrpclib.Transport def request(self, host, handler, request_body, verbose=0): try: https = isinstance(self, xmlrpclib.SafeTransport) protocol = "https://" if https else "http://" target = "%s%s%s" % (protocol, host, handler) match = _parse_method_name.search(request_body) method = match.group(1) if match else None parent_trace = local().current self._trace = parent_trace.child("xmlrpclib") self._trace.record(Annotation.string("uri", target)) if method: self._trace.record(Annotation.string("method", method)) self._trace.record(Annotation.server_recv()) except Exception as exc: log.error(repr(exc)) try: return self.__origin.request(self, host, handler, request_body, verbose) finally: try: self._trace.record(Annotation.server_send()) except: pass def send_host(self, connection, host): ret = self.__origin.send_host(self, connection, host) try: forward = self.trace.child_noref("subservice") connection.putheader("X-B3-TraceId", hex_str(forward.trace_id)) connection.putheader("X-B3-SpanId", hex_str(forward.span_id)) if forward.parent_span_id is not None: connection.putheader( "X-B3-ParentSpanId", hex_str(forward.parent_span_id) ) finally: return ret def bind(endpoint=None): log.info("Binding zipkin to xmlrpclib") if not endpoint: endpoint = Endpoint("xmlrpc") xmlrpclib.Transport = MonkeyTransport log.info("zipkin bound to xmlrpclib") def unbind(): xmlrpclib.Transport = MonkeyTransport.__origin
zk
/zk-0.8.5.tar.gz/zk-0.8.5/zipkin/binding/xmlrpclib/impl.py
impl.py
import errno import logging import socket import struct from io import BytesIO from thriftpy2.protocol import TBinaryProtocolFactory from thriftpy2.protocol.binary import write_message_begin, write_val from thriftpy2.thrift import TClient, TMessageType, TType from thriftpy2.transport import TFramedTransportFactory, TSocket, TTransportException from ..client import Local from ..util import base64_thrift_formatter from .scribe import scribe_thrift logger = logging.getLogger(__name__) CONNECTION_RETRIES = [1, 10, 20, 50, 100, 200, 400, 1000] try: MSG_NOSIGNAL = socket.MSG_NOSIGNAL except: MSG_NOSIGNAL = 16384 # python2 class TNonBlockingSocket(TSocket): def _init_sock(self): super(TNonBlockingSocket, self)._init_sock() # 1M sendq buffer self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF, 1024 * 1024) self.sock.setblocking(False) def open(self): self._init_sock() addr = self.unix_socket or (self.host, self.port) status = self.sock.connect_ex(addr) try: Local.local_ip = self.sock.getsockname()[0] except Exception: pass if status not in [errno.EINPROGRESS, errno.EALREADY]: raise IOError( "connection attempt on a non-clean socket", errno.errorcode[status] ) def write(self, buff): # First ensure our incoming end is always empty self.read_all() # Then actually try to write to socket try: # We are a library, we can't just set sighandlers. But we don't # want SIGPIPE if peer has gone away either. We better set # MSG_NOSIGNAL to avoid that. # If peer has disconnected, then a errno.EPIPE will raise, and # will be catched on the uppper layer self.sock.sendall(buff, MSG_NOSIGNAL) except socket.error as e: if e.errno not in [ errno.EINPROGRESS, # Not connected yet errno.EWOULDBLOCK, ]: # write buffer full # In all other cases, raise. raise # If not yet connected or write buffer is full, silently drop. def read_all(self): """ Flush incoming buffer """ try: receiving = " " while len(receiving) > 0: # socket.error.errno.EAGAIN will exit this receiving = self.sock.recv(1024) except socket.error as e: # if EAGAIN or EWOULDBLOCK, then there is nothing to read if e.errno not in [errno.EAGAIN, errno.EWOULDBLOCK]: # Otherwise that's an error. raise return # No more data to read, or connection is not ready def read(self, _): """ Mock response, we don't care about results. We never actually read them. But we don't want client to wait for server to reply. """ buffer = BytesIO() seq_id = 0 # Sequence id is never compared to message. write_message_begin(buffer, "Log_result", TMessageType.REPLY, seq_id) response = scribe_thrift.Scribe.Log_result(success=scribe_thrift.ResultCode.OK) write_val(buffer, TType.STRUCT, response) out = buffer.getvalue() # Framed message, starts with length of message. return struct.pack("!i", len(out)) + out def make_client( service, host, port, proto_factory=TBinaryProtocolFactory(), trans_factory=TFramedTransportFactory(), socket_factory=TNonBlockingSocket, socket_timeout=1000, ): socket = socket_factory(host, port, socket_timeout=socket_timeout) transport = trans_factory.get_transport(socket) protocol = proto_factory.get_protocol(transport) transport.open() return TClient(service, protocol) class Client(object): host = None port = 9410 _client = None _connection_attempts = 0 _socket_factory = TNonBlockingSocket _socket_timeout = 1000 @classmethod def configure(cls, settings, prefix): cls.host = settings.get(prefix + "collector") if prefix + "collector.port" in settings: cls.port = int(settings[prefix + "collector.port"]) if prefix + "transport.async" in settings: if settings[prefix + "transport.async"].lower() == "false": cls._socket_factory = TSocket if prefix + "transport.socket_timeout" in settings: cls._socket_timeout = int(settings[prefix + "transport.socket_timeout"]) @classmethod def get_connection(cls): if not cls._client: cls._connection_attempts += 1 max_retries = CONNECTION_RETRIES[-1] if (cls._connection_attempts > max_retries) and not ( (cls._connection_attempts % max_retries) == 0 ): return if (cls._connection_attempts < max_retries) and ( cls._connection_attempts not in CONNECTION_RETRIES ): return try: cls._client = make_client( scribe_thrift.Scribe, host=cls.host, port=cls.port, socket_factory=cls._socket_factory, socket_timeout=cls._socket_timeout, ) cls._connection_attempts = 0 except TTransportException: cls._client = None logger.error( "Can't connect to zipkin collector %s:%d" % (cls.host, cls.port) ) except Exception: cls._client = None logger.exception( "Can't connect to zipkin collector %s:%d" % (cls.host, cls.port) ) return cls._client @classmethod def log(cls, trace): if not cls.host: logger.debug("Zipkin tracing is disabled") return logger.info("logging trace %s", trace.trace_id) unknown = ( "Unknown Exception while logging a trace on " "zipkin collector %s:%d" % (cls.host, cls.port) ) client = cls.get_connection() if client: try: messages = [ base64_thrift_formatter(t, t.annotations) for t in trace.children() ] log_entries = [ scribe_thrift.LogEntry("zipkin", message) for message in messages ] except ValueError: logger.exception("Error while serializing trace") return try: client.Log(messages=log_entries) except EOFError: cls._client = None logger.error( "EOFError while logging a trace on zipkin " "collector %s:%d" % (cls.host, cls.port) ) except socket.error as err: cls._client = None if err.errno == errno.EPIPE: logger.error( "Broken pipe while logging a trace " "on zipkin collector %s:%d", cls.host, cls.port, ) else: logger.exception(unknown) except Exception: cls._client = None logger.exception(unknown) else: logger.warning("Can't log zipkin trace, not connected") @classmethod def disconnect(cls): if cls._client: cls._client.close()
zk
/zk-0.8.5.tar.gz/zk-0.8.5/zipkin/transport/scribeclient.py
scribeclient.py
import math import matplotlib.pyplot as plt from .Generaldistribution import Distribution class Gaussian(Distribution): """ Gaussian distribution class for calculating and visualizing a Gaussian distribution. Attributes: mean (float) representing the mean value of the distribution stdev (float) representing the standard deviation of the distribution data_list (list of floats) a list of floats extracted from the data file """ def __init__(self, mu=0, sigma=1): Distribution.__init__(self, mu, sigma) def calculate_mean(self): """Function to calculate the mean of the data set. Args: None Returns: float: mean of the data set """ avg = 1.0 * sum(self.data) / len(self.data) self.mean = avg return self.mean def calculate_stdev(self, sample=True): """Function to calculate the standard deviation of the data set. Args: sample (bool): whether the data represents a sample or population Returns: float: standard deviation of the data set """ if sample: n = len(self.data) - 1 else: n = len(self.data) mean = self.calculate_mean() sigma = 0 for d in self.data: sigma += (d - mean) ** 2 sigma = math.sqrt(sigma / n) self.stdev = sigma return self.stdev def plot_histogram(self): """Function to output a histogram of the instance variable data using matplotlib pyplot library. Args: None Returns: None """ plt.hist(self.data) plt.title('Histogram of Data') plt.xlabel('data') plt.ylabel('count') def pdf(self, x): """Probability density function calculator for the gaussian distribution. Args: x (float): point for calculating the probability density function Returns: float: probability density function output """ return (1.0 / (self.stdev * math.sqrt(2*math.pi))) * math.exp(-0.5*((x - self.mean) / self.stdev) ** 2) def plot_histogram_pdf(self, n_spaces = 50): """Function to plot the normalized histogram of the data and a plot of the probability density function along the same range Args: n_spaces (int): number of data points Returns: list: x values for the pdf plot list: y values for the pdf plot """ mu = self.mean sigma = self.stdev min_range = min(self.data) max_range = max(self.data) # calculates the interval between x values interval = 1.0 * (max_range - min_range) / n_spaces x = [] y = [] # calculate the x values to visualize for i in range(n_spaces): tmp = min_range + interval*i x.append(tmp) y.append(self.pdf(tmp)) # make the plots fig, axes = plt.subplots(2,sharex=True) fig.subplots_adjust(hspace=.5) axes[0].hist(self.data, density=True) axes[0].set_title('Normed Histogram of Data') axes[0].set_ylabel('Density') axes[1].plot(x, y) axes[1].set_title('Normal Distribution for \n Sample Mean and Sample Standard Deviation') axes[0].set_ylabel('Density') plt.show() return x, y def __add__(self, other): """Function to add together two Gaussian distributions Args: other (Gaussian): Gaussian instance Returns: Gaussian: Gaussian distribution """ result = Gaussian() result.mean = self.mean + other.mean result.stdev = math.sqrt(self.stdev ** 2 + other.stdev ** 2) return result def __repr__(self): """Function to output the characteristics of the Gaussian instance Args: None Returns: string: characteristics of the Gaussian """ return "mean {}, standard deviation {}".format(self.mean, self.stdev)
zk225-probability
/zk225_probability-0.1.tar.gz/zk225_probability-0.1/zk225_probability/Gaussiandistribution.py
Gaussiandistribution.py
import math import matplotlib.pyplot as plt from .Generaldistribution import Distribution class Binomial(Distribution): """ Binomial distribution class for calculating and visualizing a Binomial distribution. Attributes: mean (float) representing the mean value of the distribution stdev (float) representing the standard deviation of the distribution data_list (list of floats) a list of floats to be extracted from the data file p (float) representing the probability of an event occurring n (int) number of trials TODO: Fill out all functions below """ def __init__(self, prob=.5, size=20): self.n = size self.p = prob Distribution.__init__(self, self.calculate_mean(), self.calculate_stdev()) def calculate_mean(self): """Function to calculate the mean from p and n Args: None Returns: float: mean of the data set """ self.mean = self.p * self.n return self.mean def calculate_stdev(self): """Function to calculate the standard deviation from p and n. Args: None Returns: float: standard deviation of the data set """ self.stdev = math.sqrt(self.n * self.p * (1 - self.p)) return self.stdev def replace_stats_with_data(self): """Function to calculate p and n from the data set Args: None Returns: float: the p value float: the n value """ self.n = len(self.data) self.p = 1.0 * sum(self.data) / len(self.data) self.mean = self.calculate_mean() self.stdev = self.calculate_stdev() def plot_bar(self): """Function to output a histogram of the instance variable data using matplotlib pyplot library. Args: None Returns: None """ plt.bar(x = ['0', '1'], height = [(1 - self.p) * self.n, self.p * self.n]) plt.title('Bar Chart of Data') plt.xlabel('outcome') plt.ylabel('count') def pdf(self, k): """Probability density function calculator for the gaussian distribution. Args: x (float): point for calculating the probability density function Returns: float: probability density function output """ a = math.factorial(self.n) / (math.factorial(k) * (math.factorial(self.n - k))) b = (self.p ** k) * (1 - self.p) ** (self.n - k) return a * b def plot_bar_pdf(self): """Function to plot the pdf of the binomial distribution Args: None Returns: list: x values for the pdf plot list: y values for the pdf plot """ x = [] y = [] # calculate the x values to visualize for i in range(self.n + 1): x.append(i) y.append(self.pdf(i)) # make the plots plt.bar(x, y) plt.title('Distribution of Outcomes') plt.ylabel('Probability') plt.xlabel('Outcome') plt.show() return x, y def __add__(self, other): """Function to add together two Binomial distributions with equal p Args: other (Binomial): Binomial instance Returns: Binomial: Binomial distribution """ try: assert self.p == other.p, 'p values are not equal' except AssertionError as error: raise result = Binomial() result.n = self.n + other.n result.p = self.p result.calculate_mean() result.calculate_stdev() return result def __repr__(self): """Function to output the characteristics of the Binomial instance Args: None Returns: string: characteristics of the Gaussian """ return "mean {}, standard deviation {}, p {}, n {}".\ format(self.mean, self.stdev, self.p, self.n)
zk225-probability
/zk225_probability-0.1.tar.gz/zk225_probability-0.1/zk225_probability/Binomialdistribution.py
Binomialdistribution.py
__version__ = '1.0.0' __token__ = '' __api__ = 'http://www.jianyan360.com/openapi/zkapi' version = 'zk2jy360 version ' + __version__ onReq = False import sys import os import json try: import requests onReq = True except ImportError: import warnings warnings.warn("Python requests package required for zk2jy360.",ImportWarning) def __sendToJy360(data): postdata = { 'token':__token__ } for record in data: for i in data[record]: postdata['%s[%d]'%(record,i)] = data[record][i] try: res = requests.post(url=__api__,data=postdata,timeout=60) status_code = res.status_code if status_code!=200: return {'state':False,'msg':'Server response failed','code':status_code} else: ret = res.content try: ret = json.loads(ret) if ret['state']==1: return {'state':True} else: return {'state':False,'msg':ret['msg']} except Exception, e: return {'state':False,'msg':'Server return code exception'} except Exception, e: return {'state':False,'msg':'Server response failed','code':status_code} def submit(attnd=None): """ Upload attendance record """ if attnd==None or type(attnd)!=list: return {'state':False,'msg':'Abnormal attendance records'} if len(attnd)<0: return {'state':True} __data = { 'realname':{}, 'job_num':{}, 'device_no':{}, 'device_name':{}, 'add_at':{}, 'record_id':{} } i = 0 for record in attnd: if type(record)!=dict: continue """ Verify data validity """ record_keys = record.keys() _verify_keys_ = ['ename','pin','alias','sn','checktime','id'] for _verify_ in _verify_keys_: if _verify_ not in record_keys: return {'state':False,'msg':'Abnormal attendance records, Not find field `%s`'%(_verify_)} """ Processing data """ __data['realname'][i] = record['ename'] __data['job_num'][i] = record['pin'] __data['device_no'][i] = record['sn'] __data['device_name'][i] = record['alias'] __data['add_at'][i] = record['checktime'] __data['record_id'][i] = record['id'] i += 1 return __sendToJy360(__data) if __name__ == "__main__": """ tester = [ { 'ename':'Zhang San', 'pin':'100001', 'alias':'XXXX attendance device', 'sn':'201565894816', 'checktime':'2019-02-13 08:54:53', 'id':1 }, { 'ename':'Li si', 'pin':'100002', 'alias':'XXXX attendance device', 'sn':'201565894816', 'checktime':'2019-02-13 08:55:02', 'id':2 } ] __token__ = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxx' result = submit(tester) print result """ pass
zk2jy360
/zk2jy360-1.0.0.tar.gz/zk2jy360-1.0.0/zk2jy360.py
zk2jy360.py