code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
ZooKeeper ========= Overview -------- Zuul has a microservices architecture with the goal of no single point of failure in mind. Zuul is an event driven system with several event loops that interact with each other: * Driver event loop: Drivers like GitHub or Gerrit have their own event loops. They perform preprocessing of the received events and add events into the scheduler event loop. * Scheduler event loop: This event loop processes the pipelines and reconfigurations. Each of these event loops persists data in ZooKeeper so that other components can share or resume processing. A key aspect of scalability is maintaining an event queue per pipeline. This makes it easy to process several pipelines in parallel. A new driver event is first processed in the driver event queue. This adds a new event into the scheduler event queue. The scheduler event queue then checks which pipeline may be interested in this event according to the tenant configuration and layout. Based on this the event is dispatched to all matching pipeline queues. In order to make reconfigurations efficient we store the parsed branch config in Zookeeper. This makes it possible to create the current layout without the need to ask the mergers multiple times for the configuration. This is used by zuul-web to keep an up-to-date layout for API requests. We store the pipeline state in Zookeeper. This contains the complete information about queue items, jobs and builds, as well as a separate abbreviated state for quick access by zuul-web for the status page. Driver Event Ingestion ---------------------- There are three types of event receiving mechanisms in Zuul: * Active event gathering: The connection actively listens to events (Gerrit) or generates them itself (git, timer, zuul) * Passive event gathering: The events are sent to Zuul from outside (GitHub webhooks) * Internal event generation: The events are generated within Zuul itself and typically get injected directly into the scheduler event loop. The active event gathering needs to be handled differently from passive event gathering. Active Event Gathering ~~~~~~~~~~~~~~~~~~~~~~ This is mainly done by the Gerrit driver. We actively maintain a connection to the target and receive events. We utilize a leader election to make sure there is exactly one instance receiving the events. Passive Event Gathering ~~~~~~~~~~~~~~~~~~~~~~~ In case of passive event gathering the events are sent to Zuul typically via webhooks. These types of events are received in zuul-web which then stores them in Zookeeper. This type of event gathering is used by GitHub and other drivers. In this case we can have multiple instances but still receive only one event so that we don't need to take special care of event deduplication or leader election. Multiple instances behind a load balancer are safe to use and recommended for such passive event gathering. Configuration Storage --------------------- Zookeeper is not designed as a database with a large amount of data, so we should store as little as possible in zookeeper. Thus we only store the per project-branch unparsed config in zookeeper. From this, every part of Zuul, like the scheduler or zuul-web, can quickly recalculate the layout of each tenant and keep it up to date by watching for changes in the unparsed project-branch-config. We store the actual config sharded in multiple nodes, and those nodes are stored under per project and branch znodes. This is needed because of the 1MB limit per znode in zookeeper. It further makes it less expensive to cache the global config in each component as this cache is updated incrementally. Executor and Merger Queues -------------------------- The executors and mergers each have an execution queue (and in the case of executors, optionally per-zone queues). This makes it easy for executors and mergers to simply pick the next job to run without needing to inspect the entire pipeline state. The scheduler is responsible for submitting job requests as the state changes. Zookeeper Map ------------- This is a reference for object layout in Zookeeper. .. path:: zuul All ephemeral data stored here. Remove the entire tree to "reset" the system. .. path:: zuul/cache/connection/<connection> The connection cache root. Each connection has a dedicated space for its caches. Two types of caches are currently implemented: change and branch. .. path:: zuul/cache/connection/<connection>/branches The connection branch cache root. Contains the cache itself and a lock. .. path:: zuul/cache/connection/<connection>/branches/data :type: BranchCacheZKObject (sharded) The connection branch cache data. This is a single sharded JSON blob. .. path:: zuul/cache/connection/<connection>/branches/lock :type: RWLock The connection branch cache read/write lock. .. path:: zuul/cache/connection/<connection>/cache The connection change cache. Each node under this node is an entry in the change cache. The node ID is a sha256 of the cache key, the contents are the JSON serialization of the cache entry metadata. One of the included items is the `data_uuid` which is used to retrieve the actual change data. When a cache entry is updated, a new data node is created without deleting the old data node. They are eventually garbage collected. .. path:: zuul/cache/connection/<connection>/data Data for the change cache. These nodes are identified by a UUID referenced from the cache entries. These are sharded JSON blobs of the change data. .. path:: zuul/cache/blob/data Data for the blob store. These nodes are identified by a sha256sum of the secret content. These are sharded blobs of data. .. path:: zuul/cache/blob/lock Side-channel lock directory for the blob store. The store locks by key id under this znode when writing. .. path:: zuul/cleanup This node holds locks for the cleanup routines to make sure that only one scheduler runs them at a time. .. path:: build_requests .. path:: connection .. path:: general .. path:: merge_requests .. path:: node_request .. path:: sempahores .. path:: zuul/components The component registry. Each Zuul process registers itself under the appropriate node in this hierarchy so the system has a holistic view of what's running. The name of the node is based on the hostname but is a sequence node in order to handle multiple processes. The nodes are ephemeral so an outage is automatically detected. The contents of each node contain information about the running process and may be updated periodically. .. path:: executor .. path:: fingergw .. path:: merger .. path:: scheduler .. path:: web .. path:: zuul/config/cache The unparsed config cache. This contains the contents of every Zuul config file returned by the mergers for use in configuration. Organized by repo canonical name, branch, and filename. The files themeselves are sharded. .. path:: zuul/config/lock Locks for the unparsed config cache. .. path:: zuul/events/connection/<connection>/events :type: ConnectionEventQueue The connection event queue root. Each connection has an event queue where incoming events are recorded before being moved to the tenant event queue. .. path:: zuul/events/connection/<connection>/events/queue The actual event queue. Entries in the queue reference separate data nodes. These are sequence nodes to maintain the event order. .. path:: zuul/events/connection/<connection>/events/data Event data nodes referenced by queue items. These are sharded. .. path:: zuul/events/connection/<connection>/events/election An election to determine which scheduler processes the event queue and moves events to the tenant event queues. Drivers may have additional elections as well. For example, Gerrit has an election for the watcher and poller. .. path:: zuul/events/tenant/<tenant> Tenant-specific event queues. Each queue described below has a data and queue subnode. .. path:: zuul/events/tenant/<tenant>/management The tenant-specific management event queue. .. path:: zuul/events/tenant/<tenant>/trigger The tenant-specific trigger event queue. .. path:: zuul/events/tenant/<tenant>/pipelines Holds a set of queues for each pipeline. .. path:: zuul/events/tenant/<tenant>/pipelines/<pipeline>/management The pipeline management event queue. .. path:: zuul/events/tenant/<tenant>/pipelines/<pipeline>/result The pipeline result event queue. .. path:: zuul/events/tenant/<tenant>/pipelines/<pipeline>/trigger The pipeline trigger event queue. .. path:: zuul/executor/unzoned :type: JobRequestQueue The unzoned executor build request queue. The generic description of a job request queue follows: .. path:: requests/<request uuid> Requests are added by UUID. Consumers watch the entire tree and order the requests by znode creation time. .. path:: locks/<request uuid> :type: Lock A consumer will create a lock under this node before processing a request. The znode containing the lock and the requent znode have the same UUID. This is a side-channel lock so that the lock can be held while the request itself is deleted. .. path:: params/<request uuid> Parameters can be quite large, so they are kept in a separate znode and only read when needed, and may be removed during request processing to save space in ZooKeeper. The data may be sharded. .. path:: result-data/<request uuid> When a job is complete, the results of the merge are written here. The results may be quite large, so they are sharded. .. path:: results/<request uuid> Since writing sharded data is not atomic, once the results are written to ``result-data``, a small znode is written here to indicate the results are ready to read. The submitter can watch this znode to be notified that it is ready. .. path:: waiters/<request uuid> :ephemeral: A submitter who requires the results of the job creates an ephemeral node here to indicate their interest in the results. This is used by the cleanup routines to ensure that they don't prematurely delete the result data. Used for merge jobs .. path:: zuul/executor/zones/<zone> A zone-specific executor build request queue. The contents are the same as above. .. path:: zuul/layout/<tenant> The layout state for the tenant. Contains the cache and time data needed for a component to determine if its in-memory layout is out of date and update it if so. .. path:: zuul/layout-data/<layout uuid> Additional information about the layout. This is sharded data for each layout UUID. .. path:: zuul/locks Holds various types of locks so that multiple components can coordinate. .. path:: zuul/locks/connection Locks related to connections. .. path:: zuul/locks/connection/<connection> Locks related to a single connection. .. path:: zuul/locks/connection/database/migration :type: Lock Only one component should run a database migration; this lock ensures that. .. path:: zuul/locks/events Locks related to tenant event queues. .. path:: zuul/locks/events/trigger/<tenant> :type: Lock The scheduler locks the trigger event queue for each tenant before processing it. This lock is only needed when processing and removing items from the queue; no lock is required to add items. .. path:: zuul/locks/events/management/<tenant> :type: Lock The scheduler locks the management event queue for each tenant before processing it. This lock is only needed when processing and removing items from the queue; no lock is required to add items. .. path:: zuul/locks/pipeline Locks related to pipelines. .. path:: zuul/locks/pipeline/<tenant>/<pipeline> :type: Lock The scheduler obtains a lock before processing each pipeline. .. path:: zuul/locks/tenant Tenant configuration locks. .. path:: zuul/locks/tenant/<tenant> :type: RWLock A write lock is obtained at this location before creating a new tenant layout and storing its metadata in ZooKeeper. Components which later determine that they need to update their tenant configuration to match the state in ZooKeeper will obtain a read lock at this location to ensure the state isn't mutated again while the components are updating their layout to match. .. path:: zuul/ltime An empty node which serves to coordinate logical timestamps across the cluster. Components may update this znode which will cause the latest ZooKeeper transaction ID to appear in the zstat for this znode. This is known as the `ltime` and can be used to communicate that any subsequent transactions have occurred after this `ltime`. This is frequently used for cache validation. Any cache which was updated after a specified `ltime` may be determined to be sufficiently up-to-date for use without invalidation. .. path:: zuul/merger :type: JobRequestQueue A JobRequestQueue for mergers. See :path:`zuul/executor/unzoned`. .. path:: zuul/nodepool :type: NodepoolEventElection An election to decide which scheduler will monitor nodepool requests and generate node completion events as they are completed. .. path:: zuul/results/management Stores results from management events (such as an enqueue event). .. path:: zuul/scheduler/timer-election :type: SessionAwareElection An election to decide which scheduler will generate events for timer pipeline triggers. .. path:: zuul/scheduler/stats-election :type: SchedulerStatsElection An election to decide which scheduler will report system-wide stats (such as total node requests). .. path:: zuul/global-semaphores/<semaphore> :type: SemaphoreHandler Represents a global semaphore (shared by multiple tenants). Information about which builds hold the semaphore is stored in the znode data. .. path:: zuul/semaphores/<tenant>/<semaphore> :type: SemaphoreHandler Represents a semaphore. Information about which builds hold the semaphore is stored in the znode data. .. path:: zuul/system :type: SystemConfigCache System-wide configuration data. .. path:: conf The serialized version of the unparsed abide configuration as well as system attributes (such as the tenant list). .. path:: conf-lock :type: WriteLock A lock to be acquired before updating :path:`zuul/system/conf` .. path:: zuul/tenant/<tenant> Tenant-specific information here. .. path:: zuul/tenant/<tenant>/pipeline/<pipeline> Pipeline state. .. path:: zuul/tenant/<tenant>/pipeline/<pipeline>/dirty A flag indicating that the pipeline state is "dirty"; i.e., it needs to have the pipeline processor run. .. path:: zuul/tenant/<tenant>/pipeline/<pipeline>/queue Holds queue objects. .. path:: zuul/tenant/<tenant>/pipeline/<pipeline>/item/<item uuid> Items belong to queues, but are held in their own hierarchy since they may shift to differrent queues during reconfiguration. .. path:: zuul/tenant/<tenant>/pipeline/<pipeline>/item/<item uuid>/buildset/<buildset uuid> There will only be one buildset under the buildset/ node. If we reset it, we will get a new uuid and delete the old one. Any external references to it will be automatically invalidated. .. path:: zuul/tenant/<tenant>/pipeline/<pipeline>/item/<item uuid>/buildset/<buildset uuid>/repo_state The global repo state for the buildset is kept in its own node since it can be large, and is also common for all jobs in this buildset. .. path:: zuul/tenant/<tenant>/pipeline/<pipeline>/item/<item uuid>/buildset/<buildset uuid>/job/<job name> The frozen job. .. path:: zuul/tenant/<tenant>/pipeline/<pipeline>/item/<item uuid>/buildset/<buildset uuid>/job/<job name>/build/<build uuid> Information about this build of the job. Similar to buildset, there should only be one entry, and using the UUID automatically invalidates any references. .. path:: zuul/tenant/<tenant>/pipeline/<pipeline>/item/<item uuid>/buildset/<buildset uuid>/job/<job name>/build/<build uuid>/parameters Parameters for the build; these can be large so they're in their own znode and will be read only if needed.
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/zookeeper.rst
zookeeper.rst
Release Notes ============= Zuul uses `reno`_ for release note management. When adding a noteworthy feature, fixing a noteworthy bug or introducing a behavior change that a user or operator should know about, it is a good idea to add a release note to the same patch. Installing reno --------------- reno has a command, ``reno``, that is expected to be run by developers to create a new release note. The simplest thing to do is to install it locally with pip: .. code-block:: bash pip install --user reno Adding a new release note ------------------------- Adding a new release note is easy: .. code-block:: bash reno new releasenote-slug Where ``releasenote-slug`` is a short identifier for the release note. reno will then create a file in ``releasenotes/notes`` that contains an initial template with the available sections. The file it creates is a yaml file. All of the sections except for ``prelude`` contain lists, which will be combined with the lists from similar sections in other note files to create a bulleted list that will then be processed by Sphinx. The ``prelude`` section is a single block of text that will also be combined with any other prelude sections into a single chunk. .. _reno: https://docs.openstack.org/reno/latest/
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/releasenotes.rst
releasenotes.rst
Data Model Changelog ==================== Record changes to the ZooKeeper data model which require API version increases here. When making a model change: * Increment the value of ``MODEL_API`` in ``model_api.py``. * Update code to use the new API by default and add backwards-compatibility handling for older versions. This makes it easier to clean up backwards-compatibility handling in the future. * Make sure code that special cases model versions either references a ``model_api`` variable or has a comment like `MODEL_API: > {version}` so that we can grep for that and clean up compatability code that is no longer needed. * Add a test to ``test_model_upgrade.py``. * Add an entry to this log so we can decide when to remove backwards-compatibility handlers. Version 0 --------- :Prior Zuul version: 4.11.0 :Description: This is an implied version as of Zuul 4.12.0 to initialize the series. Version 1 --------- :Prior Zuul version: 4.11.0 :Description: No change since Version 0. This explicitly records the component versions in ZooKeeper. Version 2 --------- :Prior Zuul version: 5.0.0 :Description: Changes the sempahore handle format from `<item_uuid>-<job_name>` to a dictionary with buildset path and job name. Version 3 --------- :Prior Zuul version: 5.0.0 :Description: Add a new `SupercedeEvent` and use that for dequeuing of superceded items from other pipelines. This only affects the schedulers. Version 4 --------- :Prior Zuul version: 5.1.0 :Description: Adds QueueItem.dequeued_missing_requirements and sets it to True if a change no longer meets merge requirements in dependent pipelines. This only affects schedulers. Version 5 --------- :Prior Zuul version: 5.1.0 :Description: Changes the result data attributes on Build from ResultData to JobData instances and uses the inline/offloading paradigm from FrozenJob. This affects schedulers and executors. Version 6 --------- :Prior Zuul version: 5.2.0 :Description: Stores the complete layout min_ltimes in /zuul/layout-data. This only affects schedulers. Version 7 --------- :Prior Zuul version: 5.2.2 :Description: Adds the blob store and stores large secrets in it. Playbook secret references are now either an integer index into the job secret list, or a dict with a blob store key. This affects schedulers and executors. Version 8 --------- :Prior Zuul version: 6.0.0 :Description: Deduplicates jobs in dependency cycles. Affects schedulers only. Version 9 --------- :Prior Zuul version: 6.3.0 :Description: Adds nodeset_alternatives and nodeset_index to frozen job. Removes nodset from frozen job. Affects schedulers and executors. Version 10 ---------- :Prior Zuul version: 6.4.0 :Description: Renames admin_rules to authz_rules in unparsed abide. Affects schedulers and web. Version 11 ---------- :Prior Zuul version: 8.0.1 :Description: Adds merge_modes to branch cache. Affects schedulers and web. Version 12 ---------- :Prior Zuul version: 8.0.1 :Description: Adds job_versions and build_versions to BuildSet. Affects schedulers. Version 13 ---------- :Prior Zuul version: 8.2.0 :Description: Stores only the necessary event info as part of a queue item instead of the full trigger event. Affects schedulers. Version 14 ---------- :Prior Zuul version: 8.2.0 :Description: Adds the pre_fail attribute to builds. Affects schedulers. Version 15 ---------- :Prior Zuul version: 9.0.0 :Description: Adds ansible_split_streams to FrozenJob. Affects schedulers and executors.
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/model-changelog.rst
model-changelog.rst
Documentation ============= This is a brief style guide for Zuul documentation. ReStructuredText Conventions ---------------------------- Code Blocks ~~~~~~~~~~~ When showing a YAML example, use the ``.. code-block:: yaml`` directive so that the sample appears as a code block with the correct syntax highlighting. Literal Values ~~~~~~~~~~~~~~ Filenames and literal values (such as when we instruct a user to type a specific string into a configuration file) should use the RST ````literal```` syntax. YAML supports boolean values expressed with or without an initial capital letter. In examples and documentation, use ``true`` and ``false`` in lowercase type because the resulting YAML is easier for users to type and read. Terminology ~~~~~~~~~~~ Zuul employs some specialized terminology. To help users become acquainted with it, we employ a glossary. Observe the following: * Specialized terms should have entries in the glossary. * If the term is being defined in the text, don't link to the glossary (that would be redundant), but do emphasize it with ``*italics*`` the first time it appears in that definition. Subsequent uses within the same subsection should be in regular type. * If it's being used (but not defined) in the text, link the first usage within a subsection to the glossary using the ``:term:`` role, but subsequent uses should be in regular type. * Be cognizant of how readers may jump to link targets within the text, so be liberal in considering that once you cross a link target, you may be in a new "subsection" for the above guideline. Zuul Sphinx Directives ---------------------- The following extra Sphinx directives are available in the ``zuul`` domain. The ``zuul`` domain is configured as the default domain, so the ``zuul:`` prefix may be omitted. zuul:attr:: ~~~~~~~~~~~ This should be used when documenting Zuul configuration attributes. Zuul configuration is heavily hierarchical, and this directive facilitates documenting these by emphasising the hierarchy as appropriate. It will annotate each configuration attribute with a nice header with its own unique hyperlink target. It displays the entire hierarchy of the attribute, but emphasises the last portion (i.e., the field being documented). To use the hierarchical features, simply nest with indentation in the normal RST manner. It supports the ``required`` and ``default`` options and will annotate the header appropriately. Example: .. code-block:: rst .. attr:: foo Some text about ``foo``. .. attr:: bar :required: :default: 42 Text about ``foo.bar``. .. attr:: foo :noindex: Some text about ``foo``. .. attr:: bar :noindex: :required: :default: 42 Text about ``foo.bar``. zuul:value:: ~~~~~~~~~~~~ Similar to zuul:attr, but used when documenting a literal value of an attribute. .. code-block:: rst .. attr:: foo Some text about foo. It supports the following values: .. value:: bar One of the supported values for ``foo`` is ``bar``. .. value:: baz Another supported values for ``foo`` is ``baz``. .. attr:: foo :noindex: Some text about foo. It supports the following values: .. value:: bar :noindex: One of the supported values for ``foo`` is ``bar``. .. value:: baz :noindex: Another supported values for ``foo`` is ``baz``. zuul:var:: ~~~~~~~~~~ Also similar to zuul:attr, but used when documenting an Ansible variable which is available to a job's playbook. In these cases, it's often necessary to indicate the variable may be an element of a list or dictionary, so this directive supports a ``type`` option. It also supports the ``hidden`` option so that complex data structure definitions may continue across sections. To use this, set the hidden option on a ``zuul:var::`` directive with the root of the data structure as the name. Example: .. code-block:: rst .. var:: foo Foo is a dictionary with the following keys: .. var:: items :type: list Items is a list of dictionaries with the following keys: .. var:: bar Text about bar Section Boundary .. var:: foo :hidden: .. var:: baz Text about baz .. End of code block; start example .. var:: foo :noindex: Foo is a dictionary with the following keys: .. var:: items :noindex: :type: list Items is a list of dictionaries with the following keys: .. var:: bar :noindex: Text about bar Section Boundary .. var:: foo :noindex: :hidden: .. var:: baz :noindex: Text about baz .. End of example Zuul Sphinx Roles ----------------- The following extra Sphinx roles are available. Use these within the text when referring to attributes, values, and variables defined with the directives above. Use these roles for the first appearance of an object within a subsection, but use the ````literal```` role in subsequent uses. \:zuul:attr: ~~~~~~~~~~~~ This creates a reference to the named attribute. Provide the fully qualified name (e.g., ``:attr:`pipeline.manager```) \:zuul:value: ~~~~~~~~~~~~~ This creates a reference to the named value. Provide the fully qualified name (e.g., ``:attr:`pipeline.manager.dependent```) \:zuul:var: ~~~~~~~~~~~ This creates a reference to the named variable. Provide the fully qualified name (e.g., ``:var:`zuul.executor.name```)
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/docs.rst
docs.rst
:title: Metrics Metrics ======= Event Overview -------------- The following table illustrates the event and pipeline processing sequence as it relates to some of the metrics described in :ref:`statsd`. This is intended as general guidance only and is not an exhaustive list. +----------------------------------------+------+------+------+--------------------------------------+ | Event | Metrics | Attribute | +========================================+======+======+======+======================================+ | Event generated by source | | | | event.timestamp | +----------------------------------------+------+ + +--------------------------------------+ | Enqueued into driver queue | | | | | +----------------------------------------+------+ + +--------------------------------------+ | Enqueued into tenant trigger queue | | | | event.arrived_at_scheduler_timestamp | +----------------------------------------+ + [8] + +--------------------------------------+ | Forwarded to matching pipelines | [1] | | | | +----------------------------------------+ + + +--------------------------------------+ | Changes enqueued ahead | | | | | +----------------------------------------+ + + +--------------------------------------+ | Change enqueued | | | | item.enqueue_time | +----------------------------------------+------+------+ +--------------------------------------+ | Changes enqueued behind | | | | | +----------------------------------------+------+------+ +--------------------------------------+ | Set item configuration | | | | build_set.configured_time | +----------------------------------------+------+------+ +--------------------------------------+ | Request files changed (if needed) | | | | | +----------------------------------------+ +------+ +--------------------------------------+ | Request merge | [2] | | | | +----------------------------------------+ +------+ +--------------------------------------+ | Wait for merge (and files if needed) | | | [9] | | +----------------------------------------+------+------+ +--------------------------------------+ | Generate dynamic layout (if needed) | [3] | | | | +----------------------------------------+------+------+ +--------------------------------------+ | Freeze job graph | [4] | | | | +----------------------------------------+------+------+ +--------------------------------------+ | Request global repo state (if needed) | | | | build_set.repo_state_request_time | +----------------------------------------+ [5] +------+ +--------------------------------------+ | Wait for global repo state (if needed) | | | | | +----------------------------------------+------+------+ +--------------------------------------+ | Deduplicate jobs | | | | | +----------------------------------------+------+------+ +--------------------------------------+ | Acquire semaphore (non-resources-first)| | | | | +----------------------------------------+------+------+ +--------------------------------------+ | Request nodes | | | | request.created_time | +----------------------------------------+ [6] +------+ +--------------------------------------+ | Wait for nodes | | | | | +----------------------------------------+------+------+ +--------------------------------------+ | Acquire semaphore (resources-first) | | | | | +----------------------------------------+------+------+ +--------------------------------------+ | Enqueue build request | | | | build.execute_time | +----------------------------------------+ [7] +------+ +--------------------------------------+ | Executor starts job | | | | build.start_time | +----------------------------------------+------+------+------+--------------------------------------+ ====== ============================= Metric Name ====== ============================= 1 event_enqueue_processing_time 2 merge_request_time 3 layout_generation_time 4 job_freeze_time 5 repo_state_time 6 node_request_time 7 job_wait_time 8 event_enqueue_time 9 event_job_time ====== =============================
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/metrics.rst
metrics.rst
================================================ Enhanced regional distribution of zuul-executors ================================================ .. warning:: This is not authoritative documentation. These features are not currently available in Zuul. They may change significantly before final implementation, or may never be fully completed. Problem description =================== When running large distributed deployments it can be desirable to keep traffic as local as possible. To facilitate this zuul supports zoning of zuul-executors. Using zones executors only process jobs on nodes that are running in the same zone. This works well in many cases. However there is currently a limitation around live log streaming that makes it impossible to use this feature in certain environments. Live log streaming via zuul-web or zuul-fingergw requires that each executor is directly addressable from zuul-web or zuul-fingergw. This is not the case if * zuul-executors are behind a NAT. In this case one would need to create a NAT rule per executor on different ports which can become a maintenance nightmare. * zuul-executors run in a different Kubernetes or OpenShift. In this case one would need a Ingress/Route or NodePort per executor which also makes maintenance really hard. Proposed change --------------- In both use cases it would be desirable to have one service in each zone that can further dispatch log streams within its own zone. Addressing a single service is much more feasable by e.g. a single NAT rule or a Route or NodePort service in Kubernetes. .. graphviz:: :align: center graph { graph [fontsize=10 fontname="Verdana"]; node [fontsize=10 fontname="Verdana"]; user [ label="User" ]; subgraph cluster_1 { node [style=filled]; label = "Zone 1"; web [ label="Web" ]; executor_1 [ label="Executor 1" ]; } subgraph cluster_2 { node [style=filled]; label = "Zone 2"; route [ label="Route/Ingress/NAT" ] fingergw_zone2 [ label="Fingergw Zone 2"]; executor_2 [ label="Executor 2" ]; executor_3 [ label="Executor 3" ]; } user -- web [ constraint=false ]; web -- executor_1 web -- route [ constraint=false ] route -- fingergw_zone2 fingergw_zone2 -- executor_2 fingergw_zone2 -- executor_3 } Current log streaming is essentially the same for zuul-web and zuul-fingergw and works like this: * Fingergw gets stream request by user * Fingergw resolves stream address by calling get_job_log_stream_address and supplying a build uuid * Scheduler responds with the executor hostname and port on which the build is running. * Fingergw connects to the stream address, supplies the build uuid and connects the streams. The proposed process is almost the same: * Fingergw gets stream request by user * Fingergw resolves stream address by calling get_job_log_stream_address and supplying the build uuid *and the zone of the fingergw (optional)* * Scheduler responds: * Address of executor if the zone provided with the request matches the zone of the executor running the build, or the executor is un-zoned. * Address of fingergw in the target zone otherwise. * Fingergw connects to the stream address, supplies the build uuid and connects the streams. In case the build runs in a different zone the fingergw in the target zone will follow the exact same process and get the executor stream process as this will be in the same zone. In order to facilitate this the following changes need to be made: * The fingergw registers itself in the zk component registry and offers its hostname, port and optionally zone. The hostname further needs to be configurable like it is for the executors. * Zuul-web and fingergw need a new optional config parameter containing their zone. While zuul-web and zuul-fingergw will be aware of what zone they are running in, end-users will not need this information; the user-facing instances of those services will continue to serve the entirely of the Zuul system regardless of which zone they reside in, all from a single public URL or address. Gearman ------- The easiest and most standard way of getting non-http traffic into a Kubernetes/Openshift cluster is using Ingres/Routes in combination with TLS and SNI (server name indication). SNI is used in this case for dispatching the connection to the correct service. Gearman currently doesn't support SNI which makes it harder to route it into an Kubernetes/Openshift cluster from outside. Security considerations ----------------------- Live log streams can potentially contain sensitive data. Especially when transferring them between different datacenters encryption would be useful. So we should support optionally encrypting the finger streams using TLS with optional client auth like we do with gearman. The mechanism should also support SNI (Server name indication).
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/specs/enhanced-regional-executors.rst
enhanced-regional-executors.rst
Circular Dependencies ===================== .. warning:: This is not authoritative documentation. These features are not currently available in Zuul. They may change significantly before final implementation, or may never be fully completed. The current assumption in Zuul is that dependencies form a Directed Acyclic Graph (DAG). This is also what should be considered best practice. However, there can be cases where we have circular dependencies and with that no longer a DAG. The current implementation to detect and prevent cycles will visit all vertices of the dependency graph and bail out if an item is encountered twice. This method is no longer feasible when we want to allow circular dependencies between changes. Instead, we need to find the `strongly connected components`_ (changes) of a given dependency graph. The individual changes in those subgraphs need to know about each other. Circular dependency handling needs to be configurable on a per tenant and project basis. .. _strongly connected components: https://en.wikipedia.org/wiki/Strongly_connected_component Proposed change --------------- By default, Zuul will retain the current behavior of preventing dependency cycles. The circular dependency handling must be explicitly enabled in the tenant configuration. .. code-block:: yaml allow-circular-dependencies: true In addition, the tenant default may be overridden on a per-project basis: .. code-block:: yaml [...] untrusted-projects: - org/project: allow-circular-dependencies: true [...] Changes with cross-repo circular dependencies are required to share the same change queue. We would still enqueue one queue item per change but hold back reporting of the cycle until all items have finished. All the items in a cycle would reference a shared bundle item. A different approach would be to allow the enqueuing of changes across change queues. This, however, would be a very substantial change with a lot of edge cases and will therefore not be considered. Dependencies are currently expressed with a ``Depends-On`` in the footer of a commit message or pull-request body. This information is already used for detecting cycles in the dependency graph. A cycle is created by having a mutual ``Depends-On`` for the changes that depend on each other. We might need a way to prevent changes from being enqueued before all changes that are part of a cycle are prepared. For this, we could introduce a special value (e.g. ``null``) for the ``Depends-On`` to indicate that the cycle is not complete yet. This is since we don't know the change URLs ahead of time. From a user's perspective this would look as follows: 1. Set ``Depends-On: null`` on the first change that is uploaded. 2. Reference the change URL of the previous change in the ``Depends-On``. Repeat this for all changes that are part of the cycle. 3. Set the ``Depends-On`` (e.g. pointing to the last uploaded change) to complete the cycle. Implementation -------------- 1. Detect strongly connected changes using e.g. `Tarjan's algorithm`_, when enqueuing a change and its dependencies. .. _Tarjan's algorithm: https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm 2. Introduce a new class (e.g. ``Bundle``) that will hold a list of strongly connected components (changes) in the order in which they need to be merged. In case a circular dependency is detected all instances of ``QueueItem`` that are strongly connected will hold a reference to the same ``Bundle`` instance. In case there is no cycle, this reference will be ``None``. 3. The merger call for a queue item that has an associated bundle item will always include all changes in the bundle. However each ``QueueItem`` will only have and execute the job graph for a particular change. 4. Hold back reporting of a ``QueueItem`` in case it has an associated ``Bundle`` until all related ``QueueItem`` have finished. Report the individual job results for a ``QueueItem`` as usual. The last reported item will also report a summary of the overall bundle result to each related change. Challenges ---------- Ordering of changes Usually, the order of change in a strongly connected component doesn't matter. However for sources that have the concept of a parent-child relationship (e.g. Gerrit changes) we need to keep the order and report a parent change before the child. This information is available in ``Change.git_needs_changes``. To not change the reporting logic too much (currently only the first item in the queue can report), the changes need to be enqueued in the correct order. Due to the recursive implementation of ``PipelineManager.addChange()``, this could mean that we need to allow enqueuing changes ahead of others. Windows size in the dependent pipeline manager Since we need to postpone reporting until all items of a bundle have finished those items will be kept in the queue. This will prevent new changes from entering the active window. It might even lead to a deadlock in case the number of changes within the strongly connected component is larger than the current window size. One solution would be to increase the size of the window by one every time we hold an item that has finished but is still waiting for other items in a bundle. Reporting of bundle items The current logic will try to report an item as soon as all jobs have finished. In case this item is part of a bundle we have to hold back the reporting until all items that are part of the bundle have succeeded or we know that the whole bundle will fail. In case the first item of a bundle did already succeed but a subsequent item fails we must not reset the builds of queue items that are part of this bundle, as it would currently happen when the jobs are canceled. Instead, we need to keep the existing results for all items in a bundle. When reporting a queue item that is part of a bundle, we need to make sure to also report information related to the bundle as a whole. Otherwise, the user might not be able to identify why a failure is reported even though all jobs succeeded. The reporting of the bundle summary needs to be done in the last item of a bundle because only then we know if the complete bundle was submitted successfully or not. Recovering from errors Allowing circular dependencies introduces the risk to end up with a broken state when something goes wrong during the merge of the bundled changes. Currently, there is no way to more or less atomically submit multiple changes at once. Gerrit offers an option to submit a complete topic. This, however, also doesn't offer any guarantees for being atomic across repositories [#atomic]_. When considering changes with a circular dependency, spanning multiple sources (e.g. Gerrit + Github) this seems no longer possible at all. Given those constraints, Zuul can only work on a best effort basis by trying hard to make sure to not start merging the chain of dependent changes unless it is safe to assume that the merges will succeed. Even in those cases, there is a chance that e.g. due to a network issue, Zuul fails to submit all changes of a bundle. In those cases, the best way would be to automatically recover from the situation. However, this might mean pushing a revert or force-pushing to the target branch and reopening changes, which will introduce a new set of problems on its own. In addition, the recovery might be affected by e.g. network issues as well and can potentially fail. All things considered, it's probably best to perform a gate reset as with a normal failing item and require human intervention to bring the repositories back into a consistent state. Zuul can assist in that by logging detailed information about the performed steps and encountered errors to the affected change pages. Execution overhead Without any de-duplication logic, every change that is part of a bundle will have its jobs executed. For circular dependent changes with the same jobs configured this could mean executing the same jobs twice. .. rubric:: Footnotes .. [#atomic] https://groups.google.com/forum/#!topic/repo-discuss/OuCXboAfEZQ
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/specs/circular-dependencies.rst
circular-dependencies.rst
Kubernetes Operator =================== .. warning:: This is not authoritative documentation. These features are not currently available in Zuul. They may change significantly before final implementation, or may never be fully completed. While Zuul can be happily deployed in a Kubernetes environment, it is a complex enough system that a Kubernetes Operator could provide value to deployers. A Zuul Operator would allow a deployer to create, manage and operate "A Zuul" in their Kubernetes and leave the details of how that works to the Operator. To that end, the Zuul Project should create and maintain a Kubernetes Operator for running Zuul. Given the close ties between Zuul and Ansible, we should use `Ansible Operator`_ to implement the Operator. Our existing community is already running Zuul in both Kubernetes and OpenShift, so we should ensure our Operator works in both. When we're happy with it, we should publish it to `OperatorHub`_. That's the easy part. The remainder of the document is for hammering out some of the finer details. .. _Ansible Operator: https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md .. _OperatorHub: https://www.operatorhub.io/ Custom Resource Definitions --------------------------- One of the key parts of making an Operator is to define one or more Custom Resource Definition (CRD). These allow a user to say "hey k8s, please give me a Thing". It is then the Operator's job to take the appropriate actions to make sure the Thing exists. For Zuul, there should definitely be a Zuul CRD. It should be namespaced with ``zuul-ci.org``. There should be a section for each service for managing service config as well as capacity: :: apiVersion: zuul-ci.org/v1alpha1 kind: Zuul spec: merger: count: 5 executor: count: 5 web: count: 1 fingergw: count: 1 scheduler: count: 1 .. note:: Until the distributed scheduler exists in the underlying Zuul implementation, the ``count`` parameter for the scheduler service cannot be set to anything greater than 1. Zuul requires Nodepool to operate. While there are friendly people using Nodepool without Zuul, from the context of the Operator, the Nodepool services should just be considered part of Zuul. :: apiVersion: zuul-ci.org/v1alpha1 kind: Zuul spec: merger: count: 5 executor: count: 5 web: count: 1 fingergw: count: 1 scheduler: count: 1 # Because of nodepool config sharding, count is not valid for launcher. launcher: builder: count: 2 Images ------ The Operator should, by default, use the ``docker.io/zuul`` images that are published. To support locally built or overridden images, the Operator should have optional config settings for each image. :: apiVersion: zuul-ci.org/v1alpha1 kind: Zuul spec: merger: count: 5 image: docker.io/example/zuul-merger executor: count: 5 web: count: 1 fingergw: count: 1 scheduler: count: 1 launcher: builder: count: 2 External Dependencies --------------------- Zuul needs some services, such as a RDBMS and a Zookeeper, that themselves are resources that should or could be managed by an Operator. It is out of scope (and inappropriate) for Zuul to provide these itself. Instead, the Zuul Operator should use CRDs provided by other Operators. On Kubernetes installs that support the Operator Lifecycle Manager, external dependencies can be declared in the Zuul Operator's OLM metadata. However, not all Kubernetes installs can handle this, so it should also be possible for a deployer to manually install a list of documented operators and CRD definitions before installing the Zuul Operator. For each external service dependency where the Zuul Operator would be relying on another Operator to create and manage the given service, there should be a config override setting to allow a deployer to say "I already have one of these that's located at Location, please don't create one." The config setting should be the location and connection information for the externally managed version of the service, and not providing that information should be taken to mean the Zuul Operator should create and manage the resource. :: --- apiVersion: v1 kind: Secret metadata: name: externalDatabase type: Opaque stringData: dburi: mysql+pymysql://zuul:[email protected]/zuul --- apiVersion: zuul-ci.org/v1alpha1 kind: Zuul spec: # If the database section is omitted, the Zuul Operator will create # and manage the database. database: secretName: externalDatabase key: dburi While Zuul supports multiple backends for RDBMS, the Zuul Operator should not attempt to support managing both. If the user chooses to let the Zuul Operator create and manage RDBMS, the `Percona XtraDB Cluster Operator`_ should be used. Deployers who wish to use a different one should use the config override setting pointing to the DB location. .. _Percona XtraDB Cluster Operator: https://operatorhub.io/operator/percona-xtradb-cluster-operator Zuul Config ----------- Zuul config files that do not contain information that the Operator needs to do its job, or that do not contain information into which the Operator might need to add data, should be handled by ConfigMap resources and not as parts of the CRD. The CRD should take references to the ConfigMap objects. Completely external files like ``clouds.yaml`` and ``kube/config`` should be in Secrets referenced in the config. Zuul files like ``nodepool.yaml`` and ``main.yaml`` that contain no information the Operator needs should be in ConfigMaps and referenced. :: apiVersion: zuul-ci.org/v1alpha1 kind: Zuul spec: merger: count: 5 executor: count: 5 web: count: 1 fingergw: count: 1 scheduler: count: 1 config: zuulYamlConfig launcher: config: nodepoolYamlConfig builder: config: nodepoolYamlConfig externalConfig: openstack: secretName: cloudsYaml kubernetes: secretName: kubeConfig amazon: secretName: botoConfig Zuul files like ``/etc/nodepool/secure.conf`` and ``/etc/zuul/zuul.conf`` should be managed by the Operator and their options should be represented in the CRD. The Operator will shard the Nodepool config by provider-region using a utility pod and create a new ConfigMap for each provider-region with only the subset of config needed for that provider-region. It will then create a pod for each provider-region. Because the Operator needs to make decisions based on what's going on with the ``zuul.conf``, or needs to directly manage some of it on behalf of the deployer (such as RDBMS and Zookeeper connection info), the ``zuul.conf`` file should be managed by and expressed in the CRD. Connections should each have a stanza that is mostly a passthrough representation of what would go in the corresponding section of ``zuul.conf``. Due to the nature of secrets in kubernetes, fields that would normally contain either a secret string or a path to a file containing secret information should instead take the name of a kubernetes secret and the key name of the data in that secret that the deployer will have previously defined. The Operator will use this information to mount the appropriate secrets into a utility container, construct appropriate config files for each service, reupload those into kubernetes as additional secrets, and then mount the config secrets and the needed secrets containing file content only in the pods that need them. :: --- apiVersion: v1 kind: Secret metadata: name: gerritSecrets type: Opaque data: sshkey: YWRtaW4= http_password: c2VjcmV0Cg== --- apiVersion: v1 kind: Secret metadata: name: githubSecrets type: Opaque data: app_key: aRnwpen= webhook_token: an5PnoMrlw== --- apiVersion: v1 kind: Secret metadata: name: pagureSecrets type: Opaque data: api_token: Tmf9fic= --- apiVersion: v1 kind: Secret metadata: name: smtpSecrets type: Opaque data: password: orRn3V0Gwm== --- apiVersion: v1 kind: Secret metadata: name: mqttSecrets type: Opaque data: password: YWQ4QTlPO2FpCg== ca_certs: PVdweTgzT3l5Cg== certfile: M21hWF95eTRXCg== keyfile: JnhlMElpNFVsCg== --- apiVersion: zuul-ci.org/v1alpha1 kind: Zuul spec: merger: count: 5 git_user_email: [email protected] git_user_name: Example Zuul executor: count: 5 manage_ansible: false web: count: 1 status_url: https://zuul.example.org fingergw: count: 1 scheduler: count: 1 connections: gerrit: driver: gerrit server: gerrit.example.com sshkey: # If the key name in the secret matches the connection key name, # it can be omitted. secretName: gerritSecrets password: secretName: gerritSecrets # If they do not match, the key must be specified. key: http_password user: zuul baseurl: http://gerrit.example.com:8080 auth_type: basic github: driver: github app_key: secretName: githubSecrets key: app_key webhook_token: secretName: githubSecrets key: webhook_token rate_limit_logging: false app_id: 1234 pagure: driver: pagure api_token: secretName: pagureSecrets key: api_token smtp: driver: smtp server: smtp.example.com port: 25 default_from: [email protected] default_to: [email protected] user: zuul password: secretName: smtpSecrets mqtt: driver: mqtt server: mqtt.example.com user: zuul password: secretName: mqttSecrets ca_certs: secretName: mqttSecrets certfile: secretName: mqttSecrets keyfile: secretName: mqttSecrets Executor job volume ------------------- To manage the executor job volumes, the CR also accepts a list of volumes to be bind mounted in the job bubblewrap contexts: :: name: Text context: <trusted | untrusted> access: <ro | rw> path: /path volume: Kubernetes.Volume For example, to expose a GCP authdaemon token, the Zuul CR can be defined as :: apiVersion: zuul-ci.org/v1alpha1 kind: Zuul spec: ... jobVolumes: - context: trusted access: ro path: /authdaemon/token volume: name: gcp-auth hostPath: path: /var/authdaemon/executor type: DirectoryOrCreate Which would result in a new executor mountpath along with this zuul.conf change: :: trusted_ro_paths=/authdaemon/token Logging ------- By default, the Zuul Operator should perform no logging config which should result in Zuul using its default of logging to ``INFO``. There should be a simple config option to switch that to enable ``DEBUG`` logging. There should also be an option to allow specifying a named ``ConfigMap`` with a logging config. If a logging config ``ConfigMap`` is given, it should override the ``DEBUG`` flag.
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/specs/kubernetes-operator.rst
kubernetes-operator.rst
Specifications ============== This section contains specifications for future Zuul development. As we work on implementing significant changes, these document our plans for those changes and help us work on them collaboratively. Once a specification is implemented, it should be removed. All relevant details for implemented work must be reflected correctly in Zuul's documentation instead. .. warning:: These are not authoritative documentation. These features are not currently available in Zuul. They may change significantly before final implementation, or may never be fully completed. .. toctree:: :maxdepth: 1 circular-dependencies community-matrix enhanced-regional-executors kubernetes-operator nodepool-in-zuul tenant-resource-quota tenant-scoped-admin-web-API tracing zuul-runner
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/specs/index.rst
index.rst
Use Matrix for Chat =================== .. warning:: This is not authoritative documentation. These features are not currently available in Zuul. They may change significantly before final implementation, or may never be fully completed. We just switched IRC networks from Freenode to OFTC. This was done quickly because remaining on Freenode was untenable due to recent changes, and the OpenDev community had an existing plan prepared to move to OFTC should such a situation arise. Now that the immediate issue is addressed, we can take a considered approach to evaluating whether an alternative to IRC such as Matrix would be more suited. Requirements ------------ Here are some concerns that affect us as a community: * Some users like to stay connected all the time so they can read messages from when they are away. * Others are only interested in connecting when they have something to say. * On Freenode, nick registration was required to join #zuul in order to mitigate spam. It is unclear whether the same will be true for OFTC. * Some users prefer simple text-based clients. * Others prefer rich messaging and browser or mobile clients. * We rely heavily on gerritbot. * We use the logs recorded by eavesdrop from time to time. * We benefit from the OpenDev statusbot. * We collaborate with a large number of people in the OpenDev community in various OFTC channels. We also collaborate with folks in Ansible and other communities in libera.chat channels. * Users must be able to access our chat using Free and Open-Source Software. * The software running the chat system itself should be Free and Open-Source as well if possible. Both of these are natural extensions of the Open Infrastructure community's Four Opens, as well as OpenDev's mantra that Free Software needs Free Tools. Benefits Offered by Matrix -------------------------- * The Matrix architecture associates a user with a "homeserver", and that homeserver is responsible for storing messages in all of the rooms the user is present. This means that every Matrix user has the ability to access messages received while their client is disconnected. Users don't need to set up separate "bouncers". * Authentication happens with the Matrix client and homeserver, rather than through a separate nickserv registration system. This process is familiar to all users of web services, so should reduce barriers to access for new users. * Matrix has a wide variety of clients available, including the Element web/desktop/mobile clients, as well as the weechat-matrix plugin. This addresses users of simple text clients and rich media. * Bots are relatively simple to implement with Matrix. * The Matrix community is dedicated to interoperability. That drives their commitment to open standards, open source software, federation using Matrix itself, and bridging to other communities which themselves operate under open standards. That aligns very well with our four-opens philosophy, and leads directly to the next point: * Bridges exist to OFTC, libera.chat, and, at least for the moment, Freenode. That means that any of our users who have invested in establishing a presence in Matrix can relatively easily interact with communities who call those other networks home. * End-to-end encrypted channels for private chats. While clearly the #zuul channel is our main concern, and it will be public and unencrypted, the ability for our community members to have ad-hoc chats about sensitive matters (such as questions which may relate to security) is a benefit. If Matrix becomes more widely used such that employees of companies feel secure having private chats in the same platform as our public community interactions, we all benefit from the increased availability and accessibility of people who no longer need to split their attention between multiple platforms. Reasons to Move --------------- We could continue to call the #zuul channel on OFTC home, and individual users could still use Matrix on their own to obtain most of those benefits by joining the portal room on the OFTC matrix.org bridge. The reasons to move to a native Matrix room are: * Eliminate a potential failure point. If many/most of us are connected via Matrix and the bridge, then either a Matrix or an OFTC outage would affect us. * Eliminate a source of spam. Spammers find IRC networks very easy to attack. Matrix is not immune to this, but it is more difficult. * Isolate ourselves from OFTC-related technology or policy changes. For example, if we find we need to require registration to speak in channel, that would take us back to the state where we have to teach new users about nick registration. * Elevating the baseline level of functionality expected from our chat platform. By saying that our home is Matrix, we communicate to users that the additional functionality offered by the platform is an expected norm. Rather than tailoring our interactions to the lowest-common-denominator of IRC, we indicate that the additional features available in Matrix are welcomed. * Provide a consistent and unconfusing message for new users. Rather than saying "we're on OFTC, use Matrix to talk to us for a better experience", we can say simply "use Matrix". * Lead by example. Because of the recent fragmentation in the Free and Open-Source software communities, Matrix is a natural way to frictionlessly participate in a multitude of communities. Let's show people how that can work. Reasons to Stay --------------- All of the work to move to OFTC has been done, and for the moment at least, the OFTC matrix.org bridge is functioning well. Moving to a native room will require some work. Implementation Plan ------------------- To move to a native Matrix room, we would do the following: * Create a homeserver to host our room and bots. Technically, this is not necessary, but having a homeserver allows us more control over the branding, policy, and technology of our room. It means we are isolated from policy decisions by the admins of matrix.org, and it fully utilizes the federated nature of the technology. We should ask the OpenDev collaboratory to host a homeserver for this purpose. That could either be accomplished by running a synapse server on a VM in OpenDev's infrastructure, or the Foundation could subscribe to a hosted server run by Element. At this stage, we would not necessarily host any user accounts on the homeserver; it would only be used for hosting rooms and bot accounts. The homeserver would likely be for opendev.org; so our room would be #zuul:opendev.org, and we might expect bot accounts like @gerrit:opendev.org. The specifics of this step are out of scope for this document. To accomplish this, we will start an OpenDev spec to come to agreement on the homeserver. * Ensure that the OpenDev service bots upon which we rely (gerrit, and status) support matrix. This is also under the domain of OpenDev; but it is a pre-requisite for us to move. We also rely somewhat on eavesdrop. Matrix does support searching, but that doesn't cause it to be indexed by search engines, and searching a decade worth of history may not work as well, so we should also include eavesdrop in that list. OpenDev also runs a meeting bot, but we haven't used it in years. * Create the #zuul room. * Create instructions to tell users how to join it. We will recommend that if they do not already have a Matrix homeserver, they register with matrix.org. * Announce the move, and retire the OFTC channel. Potential Future Enhancements ----------------------------- Most of this is out of scope for the Zuul community, and instead relates to OpenDev, but we should consider these possibilities when weighing our decision. It would be possible for OpenDev and/or the Foundation to host user accounts on the homeserver. This might be more comfortable for new users who are joining Matrix at the behest of our community. If that happens, user accounts on the homeserver could be tied to a future OpenDev single-sign-on system, meaning that registration could become much simpler and be shared with all OpenDev services. It's also possible for OpenDev and/or the Foundation to run multiple homeservers in multiple locations in order to aid users who may live in jurisdictions with policy or technical requirements that prohibit their accessing the matrix.org homeserver. All of these, if they come to pass, would be very far down the road, but they do illustrate some of the additional flexibility our communities could obtain by using Matrix.
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/specs/community-matrix.rst
community-matrix.rst
Nodepool in Zuul ================ .. warning:: This is not authoritative documentation. These features are not currently available in Zuul. They may change significantly before final implementation, or may never be fully completed. The following specification describes a plan to move Nodepool's functionality into Zuul and end development of Nodepool as a separate application. This will allow for more node and image related features as well as simpler maintenance and deployment. Introduction ------------ Nodepool exists as a distinct application from Zuul largely due to historical circumstances: it was originally a process for launching nodes, attaching them to Jenkins, detaching them from Jenkins and deleting them. Once Zuul grew its own execution engine, Nodepool could have been adopted into Zuul at that point, but the existing loose API meant it was easy to maintain them separately and combining them wasn't particularly advantageous. However, now we find ourselves with a very robust framework in Zuul for dealing with ZooKeeper, multiple components, web services and REST APIs. All of these are lagging behind in Nodepool, and it is time to address that one way or another. We could of course upgrade Nodepool's infrastructure to match Zuul's, or even separate out these frameworks into third-party libraries. However, there are other reasons to consider tighter coupling between Zuul and Nodepool, and these tilt the scales in favor of moving Nodepool functionality into Zuul. Designing Nodepool as part of Zuul would allow for more features related to Zuul's multi-tenancy. Zuul is quite good at fault-tolerance as well as scaling, so designing Nodepool around that could allow for better cooperation between node launchers. Finally, as part of Zuul, Nodepool's image lifecycle can be more easily integrated with Zuul-based workflow. There are two Nodepool components: nodepool-builder and nodepool-launcher. We will address the functionality of each in the following sections on Image Management and Node Management. This spec contemplates a new Zuul component to handle image and node management: zuul-launcher. Much of the Nodepool configuration will become Zuul configuration as well. That is detailed in its own section, but for now, it's enough to know that the Zuul system as a whole will know what images and node labels are present in the configuration. Image Management ---------------- Part of nodepool-builder's functionality is important to have as a long-running daemon, and part of what it does would make more sense as a Zuul job. By moving the actual image build into a Zuul job, we can make the activity more visible to users of the system. It will be easier for users to test changes to image builds (inasmuch as they can propose a change and a check job can run on that change to see if the image builds sucessfully). Build history and logs will be visible in the usual way in the Zuul web interface. A frequently requested feature is the ability to verify images before putting them into service. This is not practical with the current implementation of Nodepool because of the loose coupling with Zuul. However, once we are able to include Zuul jobs in the workflow of image builds, it is easier to incorporate Zuul jobs to validate those images as well. This spec includes a mechanism for that. The parts of nodepool-builder that makes sense as a long-running daemon are the parts dealing with image lifecycles. Uploading builds to cloud providers, keeping track of image builds and uploads, deciding when those images should enter or leave service, and deleting them are all better done with state management and long-running processes (we should know -- early versions of Nodepool attempted to do all of that with Jenkins jobs with limited success). The sections below describe how we will implement image management in Zuul. First, a reminder that using custom images is optional with Zuul. Many Zuul systems will be able to operate using only stock cloud provider images. One of the strengths of nodepool-builder is that it can build an image for Zuul without relying on any particular cloud provider images. A Zuul system whose operator wants to use custom images will need to bootstrap that process, and under the proposed system where images are build in Zuul jobs, that would need to be done using a stock cloud image. In other words, to bootstrap a system such as OpenDev from scratch, the operators would need to use a stock cloud image to run the job to build the custom image. Once a custom image is available, further image builds could be run on either the stock cloud image or the custom image. That decision is left to the operator and involves consideration of fault tolerance and disaster recovery scenarios. To build a custom image, an operator will define a fairly typical Zuul job for each image they would like to produce. For example, a system may have one job to build a debian-stable image, a second job for debian-unstable, a third job for ubuntu-focal, a fourth job for ubuntu-jammy. Zuul's job inheritance system could be very useful here to deal with many variations of a similar process. Currently nodepool-builder will build an image under three circumstances: 1) the image (or the image in a particular format) is missing; 2) a user has directly requested a build; 3) on an automatic interval (typically daily). To map this into Zuul, we will use Zuul's existing pipeline functionality, but we will add a new trigger for case #1. Case #2 can be handled by a manual Zuul enqueue command, and case #3 by a periodic pipeline trigger. Since Zuul knows what images are configured and what their current states are, it will be able to emit trigger events when it detects that a new image (or image format) has been added to its configuration. In these cases, the `zuul` driver in Zuul will enqueue an `image-build` trigger event on startup or reconfiguration for every missing image. The event will include the image name. Pipelines will be configured to trigger on `image-build` events as well as on a timer trigger. Jobs will include an extra attribute to indicate they build a particular image. This serves two purposes; first, in the case of an `image-build` trigger event, it will act as a matcher so that only jobs matching the image that needs building are run. Second, it will allow Zuul to determine which formats are needed for that image (based on which providers are configured to use it) and include that information as job data. The job will be responsible for building the image and uploading the result to some storage system. The URLs for each image format built should be returned to Zuul as artifacts. Finally, the `zuul` driver reporter will accept parameters which will tell it to search the result data for these artifact URLs and update the internal image state accordingly. An example configuration for a simple single-stage image build: .. code-block:: yaml - pipeline: name: image trigger: zuul: events: - image-build timer: time: 0 0 * * * success: zuul: image-built: true image-validated: true - job: name: build-debian-unstable-image image-build-name: debian-unstable This job would run whenever Zuul determines it needs a new debian-unstable image or daily at midnight. Once the job completes, because of the ``image-built: true`` report, it will look for artifact data like this: .. code-block:: yaml artifacts: - name: raw image url: https://storage.example.com/new_image.raw metadata: type: zuul_image image_name: debian-unstable format: raw - name: qcow2 image url: https://storage.example.com/new_image.qcow2 metadata: type: zuul_image image_name: debian-unstable format: qcow2 Zuul will update internal records in ZooKeeper for the image to record the storage URLs. The zuul-launcher process will then start background processes to download the images from the storage system and upload them to the configured providers (much as nodepool-builder does now with files on disk). As a special case, it may detect that the image files are stored in a location that a provider can access directly for import and may be able to import directly from the storage location rather than downloading locally first. To handle image validation, a flag will be stored for each image upload indicating whether it has been validated. The example above specifies ``image-validated: true`` and therefore Zuul will put the image into service as soon as all image uploads are complete. However, if it were false, then Zuul would emit an `image-validate` event after each upload is complete. A second pipeline can be configured to perform image validation. It can run any number of jobs, and since Zuul has complete knowledge of image states, it will supply nodes using the new image upload (which is not yet in service for normal jobs). An example of this might look like: .. code-block:: yaml - pipeline: name: image-validate trigger: zuul: events: - image-validate success: zuul: image-validated: true - job: name: validate-debian-unstable-image image-build-name: debian-unstable nodeset: nodes: - name: node label: debian The label should specify the same image that is being validated. Its node request will be made with extra specifications so that it is fulfilled with a node built from the image under test. This process may repeat for each of the providers using that image (normal pipeline queue deduplication rules may need a special case to allow this). Once the validation jobs pass, the entry in ZooKeeper will be updated and the image will go into regular service. A more specific process definition follows: After a buildset reports with ``image-built: true``, Zuul will scan result data and for each artifact it finds, it will create an entry in ZooKeeper at `/zuul/images/<image_name>/<sequence>`. Zuul will know not to emit any more `image-build` events for that image at this point. For every provider using that image, Zuul will create an entry in ZooKeeper at `/zuul/image-uploads/<image_name>/<image_number>/provider/<provider_name>`. It will set the remote image ID to null and the `image-validated` flag to whatever was specified in the reporter. Whenever zuul-launcher observes a new `image-upload` record without an ID, it will: * Lock the whole image * Lock each upload it can handle * Unlocks the image while retaining the upload locks * Downloads artifact (if needed) and uploads images to provider * If upload requires validation, it enqueues an `image-validate` zuul driver trigger event * Unlocks upload The locking sequence is so that a single launcher can perform multiple uploads from a single artifact download if it has the opportunity. Once more than two builds of an image are in service, the oldest is deleted. The image ZooKeeper record set to the `deleting` state. Zuul-launcher will delete the uploads from the providers. The `zuul` driver emits an `image-delete` event with item data for the image artifact. This will trigger an image-delete job that can delete the artifact from the cloud storage. All of these pipeline definitions should typically be in a single tenant (but need not be), but the images they build are potentially available to each tenant that includes the image definition configuration object (see the Configuration section below). Any repo in a tenant with an image build pipeline will be able to cause images to be built and uploaded to providers. Snapshot Images ~~~~~~~~~~~~~~~ Nodepool does not currently support snapshot images, but the spec for the current version of Nodepool does contemplate the possibility of a snapshot based nodepool-builder process. Likewise, this spec does not require us to support snapshot image builds, but in case we want to add support in the future, we should have a plan for it. The image build job in Zuul could, instead of running diskimage-builder, act on the remote node to prepare it for a snapshot. A special job attribute could indicate that it is a snapshot image job, and instead of having the zuul-launcher component delete the node at the end of the job, it could snapshot the node and record that information in ZooKeeper. Unlike an image-build job, an image-snapshot job would need to run in each provider (similar to how it is proposed that an image-validate job will run in each provider). An image-delete job would not be required. Node Management --------------- The techniques we have developed for cooperative processing in Zuul can be applied to the node lifecycle. This is a good time to make a significant change to the nodepool protocol. We can achieve several long-standing goals: * Scaling and fault-tolerance: rather than having a 1:N relationship of provider:nodepool-launcher, we can have multiple zuul-launcher processes, each of which is capable of handling any number of providers. * More intentional request fulfillment: almost no intelligence goes into selecting which provider will fulfill a given node request; by assigning providers intentionally, we can more efficiently utilize providers. * Fulfilling node requests from multiple providers: by designing zuul-launcher for cooperative work, we can have nodesets that request nodes which are fulfilled by different providers. Generally we should favor the same provider for a set of nodes (since they may need to communicate over a LAN), but if that is not feasible, allowing multiple providers to fulfill a request will permit nodesets with diverse node types (e.g., VM + static, or VM + container). Each zuul-launcher process will execute a number of processing loops in series; first a global request processing loop, and then a processing loop for each provider. Each one will involve obtaining a ZooKeeper lock so that only one zuul-launcher process will perform each function at a time. Zuul-launcher will need to know about every connection in the system so that it may have a fuul copy of the configuration, but operators may wish to localize launchers to specific clouds. To support this, zuul-launcher will take an optional command-line argument to indicate on which connections it should operate. Currently a node request as a whole may be declined by providers. We will make that more granular and store information about each node in the request (in other words, individual nodes may be declined by providers). All drivers for providers should implement the state machine interface. Any state machine information currently storen in memory in nodepool-launcher will need to move to ZooKeeper so that other launchers can resume state machine processing. The individual provider loop will: * Lock a provider in ZooKeeper (`/zuul/provider/<name>`) * Iterate over every node assigned to that provider in a `building` state * Drive the state machine * If success, update request * If failure, determine if it's a temporary or permanent failure and update the request accordingly * If quota available, unpause provider (if paused) The global queue process will: * Lock the global queue * Iterate over every pending node request, and every node within that request * If all providers have failed the request, clear all temp failures * If all providers have permanently failed the request, return error * Identify providers capable of fulfilling the request * Assign nodes to any provider with sufficient quota * If no providers with sufficient quota, assign it to first (highest priority) provider that can fulfill it later and pause that provider Configuration ------------- The configuration currently handled by Nodepool will be refactored and added to Zuul's configuration syntax. It will be loaded directly from git repos like most Zuul configuration, however it will be non-speculative (like pipelines and semaphores -- changes must merge before they take effect). Information about connecting to a cloud will be added to ``zuul.conf`` as a ``connection`` entry. The rate limit setting will be moved to the connection configuration. Providers will then reference these connections by name. Because providers and images reference global (i.e., outside tenant scope) concepts, ZooKeeper paths for data related to those should include the canonical name of the repo where these objects are defined. For example, a `debian-unstable` image in the `opendev/images` repo should be stored at ``/zuul/zuul-images/opendev.org%2fopendev%2fimages/``. This avoids collisions if different tenants contain different image objects with the same name. The actual Zuul config objects will be tenant scoped. Image definitions which should be available to a tenant should be included in that tenant's config. Again using the OpenDev example, the hypothetical `opendev/images` repository should be included in every OpenDev tenant so all of those images are available. Within a tenant, image names must be unique (otherwise it is a tenant configuration error, similar to a job name collision). The diskimage-builder related configuration items will no longer be necessary since they will be encoded in Zuul jobs. This will reduce the complexity of the configuration significantly. The provider configuration will change as we take the opportunity to make it more "Zuul-like". Instead of a top-level dictionary, we will use lists. We will standardize on attributes used across drivers where possible, as well as attributes which may be located at different levels of the configuration. The goals of this reorganization are: * Allow projects to manage their own image lifecycle (if permitted by site administrators). * Manage access control to labels, images and flavors via standard Zuul mechanisms (whether an item appears within a tenant). * Reduce repetition and boilerplate for systems with many clouds, labels, or images. The new configuration objects are: Image This represents any kind of image (A Zuul image built by a job described above, or a cloud image). By using one object to represent both, we open the possibility of having a label in one provider use a cloud image and in another provider use a Zuul image (because the label will reference the image by short-name which may resolve to a different image object in different tenants). A given image object will specify what type it is, and any relevant information about it (such as the username to use, etc). Flavor This is a new abstraction layer to reference instance types across different cloud providers. Much like labels today, these probably won't have much information associated with them other than to reserve a name for other objects to reference. For example, a site could define a `small` and a `large` flavor. These would later be mapped to specific instance types on clouds. Label Unlike the current Nodepool ``label`` definitions, these labels will also specify the image and flavor to use. These reference the two objects above, which means that labels themselves contain the high-level definition of what will be provided (e.g., a `large ubuntu` node) while the specific mapping of what `large` and `ubuntu` mean are left to the more specific configuration levels. Section This looks a lot like the current ``provider`` configuration in Nodepool (but also a little bit like a ``pool``). Several parts of the Nodepool configuration (such as separating out availability zones from providers into pools) were added as an afterthought, and we can take the opportunity to address that here. A ``section`` is part of a cloud. It might be a region (if a cloud has regions). It might be one or more availability zones within a region. A lot of the specifics about images, flavors, subnets, etc., will be specified here. Because a cloud may have many sections, we will implement inheritance among sections. Provider This is mostly a mapping of labels to sections and is similar to a provider pool in the current Nodepool configuration. It exists as a separate object so that site administrators can restrict ``section`` definitions to central repos and allow tenant administrators to control their own image and labels by allowing certain projects to define providers. It mostly consists of a list of labels, but may also include images. When launching a node, relevant attributes may come from several sources (the pool, image, flavor, or provider). Not all attributes make sense in all locations, but where we can support them in multiple locations, the order of application (later items override earlier ones) will be: * ``image`` stanza * ``flavor`` stanza * ``label`` stanza * ``section`` stanza (top level) * ``image`` within ``section`` * ``flavor`` within ``section`` * ``provider`` stanza (top level) * ``label`` within ``provider`` This reflects that the configuration is built upwards from general and simple objects toward more specific objects image, flavor, label, section, provider. Generally speaking, inherited scalar values will override, dicts will merge, lists will concatenate. An example configuration follows. First, some configuration which may appear in a central project and shared among multiple tenants: .. code-block:: yaml # Images, flavors, and labels are the building blocks of the # configuration. - image: name: centos-7 type: zuul # Any other image-related info such as: # username: ... # python-path: ... # shell-type: ... # A default that can be overridden by a provider: # config-drive: true - image: name: ubuntu type: cloud - flavor: name: large - label: name: centos-7 min-ready: 1 flavor: large image: centos-7 - label: name: ubuntu flavor: small image: ubuntu # A section for each cloud+region+az - section: name: rax-base abstract: true connection: rackspace boot-timeout: 120 launch-timeout: 600 key-name: infra-root-keys-2020-05-13 # The launcher will apply the minimum of the quota reported by the # driver (if available) or the values here. quota: instances: 2000 subnet: some-subnet tags: section-info: foo # We attach both kinds of images to providers in order to provide # image-specific info (like config-drive) or username. images: - name: centos-7 config-drive: true # This is a Zuul image - name: ubuntu # This is a cloud image, so the specific cloud image name is required image-name: ibm-ubuntu-20-04-3-minimal-amd64-1 # Other information may be provided # username ... # python-path: ... # shell-type: ... flavors: - name: small cloud-flavor: "Performance 8G" - name: large cloud-flavor: "Performance 16G" - section: name: rax-dfw parent: rax-base region: 'DFW' availability-zones: ["a", "b"] # A provider to indicate what labels are available to a tenant from # a section. - provider: name: rax-dfw-main section: rax-dfw labels: - name: centos-7 - name: ubuntu key-name: infra-root-keys-2020-05-13 tags: provider-info: bar The following configuration might appear in a repo that is only used in a single tenant: .. code-block:: yaml - image: name: devstack type: zuul - label: name: devstack - provider: name: rax-dfw-devstack section: rax-dfw # The images can be attached to the provider just as a section. image: - name: devstack config-drive: true labels: - name: devstack Here is a potential static node configuration: .. code-block:: yaml - label: name: big-static-node - section: name: static-nodes connection: null nodes: - name: static.example.com labels: - big-static-node host-key: ... username: zuul - provider: name: static-provider section: static-nodes labels: - big-static-node Each of the the above stanzas may only appear once in a tenant for a given name (like pipelines or semaphores, they are singleton objects). If they appear in more than one branch of a project, the definitions must be identical; otherwise, or if they appear in more than one repo, the second definition is an error. These are meant to be used in unbranched repos. Whatever tenants they appear in will be permitted to access those respective resources. The purpose of the ``provider`` stanza is to associate labels, images, and sections. Much of the configuration related to launching an instance (including the availability of zuul or cloud images) may be supplied in the ``provider`` stanza and will apply to any labels within. The ``section`` stanza also allows configuration of the same information except for the labels themselves. The ``section`` supplies default values and the ``provider`` can override them or add any missing values. Images are additive -- any images that appear in a ``provider`` will augment those that appear in a ``section``. The result is a modular scheme for configuration, where a single ``section`` instance can be used to set as much information as possible that applies globally to a provider. A simple configuration may then have a single ``provider`` instance to attach labels to that section. A more complex installation may define a "standard" pool that is present in every tenant, and then tenant-specific pools as well. These pools will all attach to the same section. References to sections, images and labels will be internally converted to canonical repo names to avoid ambiguity. Under the current Nodepool system, labels are truly a global object, but under this proposal, a label short name in one tenant may be different than one in another. Therefore the node request will internally specify the canonical label name instead of the short name. Users will never use canonical names, only short names. For static nodes, there is some repitition to labels: first labels must be associated with the individual nodes defined on the section, then the labels must appear again on a provider. This allows an operator to define a collection of static nodes centrally on a section, then include tenant-specific sets of labels in a provider. For the simple case where all static node labels in a section should be available in a provider, we could consider adding a flag to the provider to allow that (e.g., ``include-all-node-labels: true``). Static nodes themselves are configured on a section with a ``null`` connection (since there is no cloud provider associated with static nodes). In this case, the additional ``nodes`` section attribute becomes available. Upgrade Process --------------- Most users of diskimages will need to create new jobs to build these images. This proposal also includes significant changes to the node allocation system which come with operational risks. To make the transition as minimally disruptive as possible, we will support both systems in Zuul, and allow for selection of one system or the other on a per-label and per-tenant basis. By default, if a nodeset specifies a label that is not defined by a ``label`` object in the tenant, Zuul will use the old system and place a ZooKeeper request in ``/nodepool``. If a matching ``label`` is available in the tenant, The request will use the new system and be sent to ``/zuul/node-requests``. Once a tenant has completely converted, a configuration flag may be set in the tenant configuration and that will allow Zuul to treat nodesets that reference unknown labels as configuration errors. A later version of Zuul will remove the backwards compatability and make this the standard behavior. Because each of the systems will have unique metadata, they will not recognize each others nodes, and it will appear to each that another system is using part of their quota. Nodepool is already designed to handle this case (at least, handle it as well as possible). Library Requirements -------------------- The new zuul-launcher component will need most of Nodepool's current dependencies, which will entail adding many third-party cloud provider interfaces. As of writing, this uses another 420M of disk space. Since our primary method of distribution at this point is container images, if the additional space is a concern, we could restrict the installation of these dependencies to only the zuul-launcher image. Diskimage-Builder Testing ------------------------- The diskimage-builder project team has come to rely on Nodepool in its testing process. It uses Nodepool to upload images to a devstack cloud, launch nodes from those instances, and verify that they function. To aid in continuity of testing in the diskimage-builder project, we will extract the OpenStack image upload and node launching code into a simple Python script that can be used in diskimage-builder test jobs in place of Nodepool. Work Items ---------- * In existing Nodepool convert the following drivers to statemachine: gce, kubernetes, openshift, openshift, openstack (openstack is the only one likely to require substantial effort, the others should be trivial) * Replace Nodepool with an image upload script in diskimage-builder test jobs * Add roles to zuul-jobs to build images using diskimage-builder * Implement node-related config items in Zuul config and Layout * Create zuul-launcher executable/component * Add image-name item data * Add image-build-name attribute to jobs * Including job matcher based on item image-name * Include image format information based on global config * Add zuul driver pipeline trigger/reporter * Add image lifecycle manager to zuul-launcher * Emit image-build events * Emit image-validate events * Emit image-delete events * Add Nodepool driver code to Zuul * Update zuul-launcher to perform image uploads and deletion * Implement node launch global request handler * Implement node launch provider handlers * Update Zuul nodepool interface to handle both Nodepool and zuul-launcher node request queues * Add tenant feature flag to switch between them * Release a minor version of Zuul with support for both * Remove Nodepool support from Zuul * Release a major version of Zuul with only zuul-launcher support * Retire Nodepool
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/specs/nodepool-in-zuul.rst
nodepool-in-zuul.rst
========================= Resource Quota per Tenant ========================= .. warning:: This is not authoritative documentation. These features are not currently available in Zuul. They may change significantly before final implementation, or may never be fully completed. Problem Description =================== Zuul is inherently built to be tenant scoped and can be operated as a shared CI system for a large number of more or less independent projects. As such, one of its goals is to provide each tenant a fair amount of resources. If Zuul, and more specifically Nodepool, are pooling build nodes from shared providers (e.g. a limited number of OpenStack clouds) the principle of a fair resource share across tenants can hardly be met by the Nodepool side. In large Zuul installations, it is not uncommon that some tenants request far more resources and at a higher rate from the Nodepool providers than other tenants. While Zuuls "fair scheduling" mechanism makes sure each queue item gets treated justly, there is no mechanism to limit allocated resources on a per-tenant level. This, however, would be useful in different ways. For one, in a shared pool of computing resources, it can be necessary to enforce resource budgets allocated to tenants. That is, a tenant shall only be able to allocate resources within a defined and payed limit. This is not easily possible at the moment as Nodepool is not inherently tenant-aware. While it can limit the number of servers, CPU cores, and RAM allocated on a per-pool level, this does not directly translate to Zuul tenants. Configuring a separate pool per tenant would not only lead to much more complex Nodepool configurations, but also induce performance penalties as each pool runs in its own Python thread. Also, in scenarios where Zuul and auxiliary services (e.g. GitHub or Artifactory) are operated near or at their limits, the system can become unstable. In such a situation, a common measure is to lower Nodepools resource quota to limit the number of concurrent builds and thereby reduce the load on Zuul and other involved services. However, this can currently be done only on a per-provider or per-pool level, most probably affecting all tenants. This would contradict the principle of fair resource pooling as there might be less eager tenants that do not, or rather insignificantly, contribute to the overall high load. It would therefore be more advisable to limit only those tenants' resources that induce the most load. Therefore, it is suggested to implement a mechanism in Nodepool that allows to define and enforce limits of currently allocated resources on a per-tenant level. This specification describes how resource quota can be enforced in Nodepool with minimal additional configuration and execution overhead and with little to no impact on existing Zuul installations. A per-tenant resource limit is then applied additionally to already existing pool-level limits and treated globally across all providers. Proposed Change =============== The proposed change consists of several parts in both, Zuul and Nodepool. As Zuul is the only source of truth for tenants, it must pass the name of the tenant with each NodeRequest to Nodepool. The Nodepool side must consider this information and adhere to any resource limits configured for the corresponding tenant. However, this shall be backwards compatible, i.e., if no tenant name is passed with a NodeRequest, tenant quotas shall be ignored for this request. Vice versa, if no resource limit is configured for a tenant, the tenant on the NodeRequest does not add any additional behaviour. To keep record of currently consumed resources globally, i.e., across all providers, the number of CPU cores and main memory (RAM) of a Node shall be stored with its representation in ZooKeeper by Nodepool. This allows for a cheap and provider agnostic aggregation of the currently consumed resources per tenant from any provider. The OpenStack driver already stores the resources in terms of cores, ram, and instances per ``zk.Node`` in a separate property in ZooKeeper. This is to be expanded to other drivers where applicable (cf. "Implementation Caveats" below). Make Nodepool Tenant Aware -------------------------- 1. Add ``tenant`` attribute to ``zk.NodeRequest`` (applies to Zuul and Nodepool) 2. Add ``tenant`` attribute to ``zk.Node`` (applies to Nodepool) Introduce Tenant Quotas in Nodepool ----------------------------------- 1. introduce new top-level config item ``tenant-resource-limits`` for Nodepool config .. code-block:: yaml tenant-resource-limits: - tenant-name: tenant1 max-servers: 10 max-cores: 200 max-ram: 800 - tenant-name: tenant2 max-servers: 100 max-cores: 1500 max-ram: 6000 2. for each node request that has the tenant attribute set and a corresponding ``tenant-resource-limits`` config exists - get quota information from current active and planned nodes of same tenant - if quota for current tenant would be exceeded - defer node request - do not pause the pool (as opposed to exceeded pool quota) - leave the node request unfulfilled (REQUESTED state) - return from handler for another iteration to fulfill request when tenant quota allows eventually - if quota for current tenant would not be exceeded - proceed with normal process 3. for each node request that does not have the tenant attribute or a tenant for which no ``tenant-resource-limits`` config exists - do not calculate the per-tenant quota and proceed with normal process Implementation Caveats ---------------------- This implementation is ought to be driver agnostic and therefore not to be implemented separately for each Nodepool driver. For the Kubernetes, OpenShift, and Static drivers, however, it is not easily possible to find the current allocated resources. The proposed change therefore does not currently apply to these. The Kubernetes and OpenShift(Pods) drivers would need to enforce resource request attributes on their labels which are optional at the moment (cf. `Kubernetes Driver Doc`_). Another option would be to enforce resource limits on a per Kubernetes namespace level. How such limits can be implemented in this case needs to be addressed separately. Similarly, the AWS, Azure, and GCE drivers do not fully implement quota information for their nodes. E.g. the AWS driver only considers the number of servers, not the number of cores or RAM. Therefore, nodes from these providers also cannot be fully taken into account when calculating a global resource limit besides of number of servers. Implementing full quota support in those drivers is not within the scope of this change. However, following this spec, implementing quota support there to support a per-tenant limit would be straight forward. It just requires them to set the corresponding ``zk.Node.resources`` attributes. As for now, only the OpenStack driver exports resource information about its nodes to ZooKeeper, but as other drivers get enhanced with this feature, they will inherently be considered for such global limits as well. In the `QuotaSupport`_ mixin class, we already query ZooKeeper for the used and planned resources. Ideally, we can extend this method to also return the resources currently allocated by each tenant without additional costs and account for this additional quota information as we already do for provider and pool quotas (cf. `SimpleTaskManagerHandler`_). However, calculation of currently consumed resources by a provider is done only for nodes of the same provider. This does not easily work for global limits as intended for tenant quotas. Therefore, this information (``cores``, ``ram``, ``instances``) will be stored in a generic way on ``zk.Node.resources`` objects for any provider to evaluate these quotas upon an incoming node request. .. _`Kubernetes Driver Doc`: https://zuul-ci.org/docs/nodepool/kubernetes.html#attr-providers.[kubernetes].pools.labels.cpu .. _`QuotaSupport`: https://opendev.org/zuul/nodepool/src/branch/master/nodepool/driver/utils.py#L180 .. _`SimpleTaskManagerHandler`: https://opendev.org/zuul/nodepool/src/branch/master/nodepool/driver/simple.py#L218
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/specs/tenant-resource-quota.rst
tenant-resource-quota.rst
=========================== Tenant-scoped admin web API =========================== https://storyboard.openstack.org/#!/story/2001771 The aim of this spec is to extend the existing web API of Zuul to privileged actions, and to scope these actions to tenants, projects and privileged users. Problem Description =================== Zuul 3 introduced tenant isolation, and most privileged actions, being scoped to a specific tenant, reflect that change. However the only way to trigger these actions is through the Zuul CLI, which assumes either access to the environment of a Zuul component or to Zuul's configuration itself. This is a problem as being allowed to perform privileged actions on a tenant or for a specific project should not entail full access to Zuul's admin capabilities. .. Likewise, Nodepool provides actions that could be scoped to a tenant: * Ability to trigger an image build when the definition of an image used by that tenant has changed * Ability to delete nodesets that have been put on autohold (this is mitigated by the max-hold-age setting in Nodepool, if set) These actions can only be triggered through Nodepool's CLI, with the same problems as Zuul. Another important blocker is that Nodepool has no notion of tenancy as defined by Zuul. Proposed Change =============== Zuul will expose privileged actions through its web API. In order to do so, Zuul needs to support user authentication. A JWT (JSON Web Token) will be used to carry user information; from now on it will be called the **Authentication Token** for the rest of this specification. Zuul needs also to support authorization and access control. Zuul's configuration will be modified to include access control rules. A Zuul operator will also be able to generate an Authentication Token manually for a user, and communicate the Authentication Token to said user. This Authentication Token can optionally include authorization claims that override Zuul's authorization configuration, so that an operator can provide privileges temporarily to a user. By querying Zuul's web API with the Authentication Token set in an "Authorization" header, the user can perform administration tasks. Zuul will need to provide the following minimal new features: * JWT validation * Access control configuration * administration web API The manual generation of Authentication Tokens can also be used for testing purposes or non-production environments. JWT Validation -------------- Expected Format ............... Note that JWTs can be arbitrarily extended with custom claims, giving flexibility in its contents. It also allows to extend the format as needed for future features. In its minimal form, the Authentication Token's contents will have the following format: .. code-block:: javascript { 'iss': 'jwt_provider', 'aud': 'my_zuul_deployment', 'exp': 1234567890, 'iat': 1234556780, 'sub': 'alice' } * **iss** is the issuer of the Authorization Token. This can be logged for auditing purposes, and it can be used to filter Identity Providers. * **aud**, as the intended audience, is the client id for the Zuul deployment in the issuer. * **exp** is the Authorization Token's expiry timestamp. * **iat** is the Authorization Token's date of issuance timestamp. * **sub** is the default, unique identifier of the user. These are standard JWT claims and ensure that Zuul can consume JWTs issued by external authentication systems as Authentication Tokens, assuming the claims are set correctly. Authentication Tokens lacking any of these claims will be rejected. Authentication Tokens with an ``iss`` claim not matching the white list of accepted issuers in Zuul's configuration will be rejected. Authentication Tokens addressing a different audience than the expected one for the specific issuer will be rejected. Unsigned or incorrectly signed Authentication Tokens will be rejected. Authentication Tokens with an expired timestamp will be rejected. Extra Authentication Claims ........................... Some JWT Providers can issue extra claims about a user, like *preferred_username* or *email*. Zuul will allow an operator to set such an extra claim as the default, unique user identifier in place of *sub* if it is more convenient. If the chosen claim is missing from the Authentication Token, it will be rejected. Authorization Claims .................... If the Authentication Token is issued manually by a Zuul Operator, it can include extra claims extending Zuul's authorization rules for the Authentication Token's bearer: .. code-block:: javascript { 'iss': 'zuul_operator', 'aud': 'zuul.openstack.org', 'exp': 1234567890, 'iat': 1234556780, 'sub': 'alice', 'zuul': { 'admin': ['tenantA', 'tenantB'] } } * **zuul** is a claim reserved for zuul-specific information about the user. It is a dictionary, the only currently supported key is **admin**. * **zuul.admin** is a list of tenants on which the user is allowed privileged actions. In the previous example, user **alice** can perform privileged actions on every project of **tenantA** and **tenantB**. This is on top of alice's default authorizations. These are intended to be **whitelists**: if a tenant is unlisted the user is assumed not to be allowed to perform a privileged action (unless the authorization rules in effect for this deployment of Zuul allow it.) Note that **iss** is set to ``zuul_operator``. This can be used to reject Authentication Tokens with a ``zuul`` claim if they come from other issuers. Access Control Configuration ---------------------------- The Zuul main.yaml configuration file will accept new **admin-rule** objects describing access rules for privileged actions. Authorization rules define conditions on the claims in an Authentication Token; if these conditions are met the action is authorized. In order to allow the parsing of claims with complex structures like dictionaries, an XPath-like format will be supported. Here is an example of how rules can be defined: .. code-block:: yaml - admin-rule: name: affiliate_or_admin conditions: - resources_access.account.roles: "affiliate" iss: external_institution - resources_access.account.roles: "admin" - admin-rule: name: alice_or_bob conditions: - zuul_uid: alice - zuul_uid: bob * **name** is how the authorization rule will be refered as in Zuul's tenants configuration. * **conditions** is the list of conditions that define a rule. An Authentication Token must match **at least one** of the conditions for the rule to apply. A condition is a dictionary where keys are claims. **All** the associated values must match the claims in the user's Authentication Token. Zuul's authorization engine will adapt matching tests depending on the nature of the claim in the Authentication Token, eg: * if the claim is a JSON list, check that the condition value is in the claim * if the claim is a string, check that the condition value is equal to the claim's value The special ``zuul_uid`` claim refers to the ``uid_claim`` setting in an authenticator's configuration, as will be explained below. By default it refers to the ``sub`` claim of an Authentication Token. This configuration file is completely optional, if the ``zuul.admin`` claim is set in the Authentication Token to define tenants on which privileged actions are allowed. Under the above example, the following Authentication Token would match rules ``affiliate_or_admin`` and ``alice_or_bob``: .. code-block:: javascript { 'iss': 'external_institution', 'aud': 'my_zuul_deployment', 'exp': 1234567890, 'iat': 1234556780, 'sub': 'alice', 'resources_access': { 'account': { 'roles': ['affiliate', 'other_role'] } }, } And this Authentication Token would only match rule ``affiliate_or_admin``: .. code-block:: javascript { 'iss': 'some_hellish_dimension', 'aud': 'my_zuul_deployment', 'exp': 1234567890, 'sub': 'carol', 'iat': 1234556780, 'resources_access': { 'account': { 'roles': ['admin', 'other_role'] } }, } Privileged actions are tenant-scoped. Therefore the access control will be set in tenants definitions, e.g: .. code-block:: yaml - tenant: name: tenantA admin_rules: - an_authz_rule - another_authz_rule source: gerrit: untrusted-projects: - org/project1: - org/project2 - ... - tenant: name: tenantB admin_rules: - yet_another_authz_rule source: gerrit: untrusted-projects: - org/project1 - org/project3 - ... An action on the ``tenantA`` tenant will be allowed if ``an_authz_rule`` OR ``another_authz_rule`` is matched. An action on the ``tenantB`` tenant will be authorized if ``yet_another_authz_rule`` is matched. Administration Web API ---------------------- Unless specified, all the following endpoints require the presence of the ``Authorization`` header in the HTTP query. Unless specified, all calls to the endpoints return with HTTP status code 201 if successful, 401 if unauthenticated, 403 if the user is not allowed to perform the action, and 400 with a JSON error description otherwise. In case of a 401 code, an additional ``WWW-Authenticate`` header is emitted, for example:: WWW-Authenticate: Bearer realm="zuul.openstack.org" error="invalid_token" error_description="Token expired" Zuul's web API will be extended to provide the following endpoints: POST /api/tenant/{tenant}/project/{project}/enqueue ................................................... This call allows a user to re-enqueue a buildset, like the *enqueue* or *enqueue-ref* subcommands of Zuul's CLI. To trigger the re-enqueue of a change, the following JSON body must be sent in the query: .. code-block:: javascript {"trigger": <Zuul trigger>, "change": <changeID>, "pipeline": <pipeline>} To trigger the re-enqueue of a ref, the following JSON body must be sent in the query: .. code-block:: javascript {"trigger": <Zuul trigger>, "ref": <ref>, "oldrev": <oldrev>, "newrev": <newrev>, "pipeline": <pipeline>} POST /api/tenant/{tenant}/project/{project}/dequeue ................................................... This call allows a user to dequeue a buildset, like the *dequeue* subcommand of Zuul's CLI. To dequeue a change, the following JSON body must be sent in the query: .. code-block:: javascript {"change": <changeID>, "pipeline": <pipeline>} To dequeue a ref, the following JSON body must be sent in the query: .. code-block:: javascript {"ref": <ref>, "pipeline": <pipeline>} POST /api/tenant/{tenant}/project/{project}/autohold .............................................................. This call allows a user to automatically put a node set on hold in case of a build failure on the chosen job, like the *autohold* subcommand of Zuul's CLI. Any of the following JSON bodies must be sent in the query: .. code-block:: javascript {"change": <changeID>, "reason": <reason>, "count": <count>, "node_hold_expiration": <expiry>, "job": <job>} or .. code-block:: javascript {"ref": <ref>, "reason": <reason>, "count": <count>, "node_hold_expiration": <expiry>, "job": <job>} GET /api/user/authorizations ......................................... This call returns the list of tenant the authenticated user can perform privileged actions on. This endpoint can be consumed by web clients in order to know which actions to display according to the user's authorizations, either from Zuul's configuration or from the valid Authentication Token's ``zuul.admin`` claim if present. The return value is similar in form to the `zuul.admin` claim: .. code-block:: javascript { 'zuul': { 'admin': ['tenantA', 'tenantB'] } } The call needs authentication and returns with HTTP code 200, or 401 if no valid Authentication Token is passed in the request's headers. If no rule applies to the user, the return value is .. code-block:: javascript { 'zuul': { 'admin': [] } } Logging ....... Zuul will log an event when a user presents an Authentication Token with a ``zuul.admin`` claim, and if the authorization override is granted or denied: .. code-block:: bash Issuer %{iss}s attempt to override user %{sub}s admin rules granted|denied At DEBUG level the log entry will also contain the ``zuul.admin`` claim. Zuul will log an event when a user presents a valid Authentication Token to perform a privileged action: .. code-block:: bash User %{sub}s authenticated from %{iss}s requesting %{action}s on %{tenant}s/%{project}s At DEBUG level the log entry will also contain the JSON body passed to the query. The events will be logged at zuul.web's level but a new handler focused on auditing could also be created. Zuul Client CLI and Admin Web API ................................. The CLI will be modified to call the REST API instead of using a Gearman server if the CLI's configuration file is lacking a ``[gearman]`` section but has a ``[web]`` section. In that case the CLI will take the --auth-token argument on the ``autohold``, ``enqueue``, ``enqueue-ref`` and ``dequeue`` commands. The Authentication Token will be used to query the web API to execute these commands; allowing non-privileged users to use the CLI remotely. .. code-block:: bash $ zuul --auth-token AaAa.... autohold --tenant openstack --project example_project --job example_job --reason "reason text" --count 1 Connecting to https://zuul.openstack.org... <usual autohold output> JWT Generation by Zuul ----------------------- Client CLI .......... A new command will be added to the Zuul Client CLI to allow an operator to generate an Authorization Token for a third party. It will return the contents of the ``Authorization`` header as it should be set when querying the admin web API. .. code-block:: bash $ zuul create-auth-token --auth-config zuul-operator --user alice --tenant tenantA --expires-in 1800 bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRwOi8vbWFuYWdlc2Yuc2ZyZG90ZXN0aW5zdGFuY2Uub3JnIiwienV1bC50ZW5hbnRzIjp7ImxvY2FsIjoiKiJ9LCJleHAiOjE1Mzc0MTcxOTguMzc3NTQ0fQ.DLbKx1J84wV4Vm7sv3zw9Bw9-WuIka7WkPQxGDAHz7s The ``auth-config`` argument refers to the authenticator configuration to use (see configuration changes below). The configuration must mention the secret to use to sign the Token. This way of generating Authorization Tokens is meant for testing purposes only and should not be used in production, where the use of an external Identity Provider is preferred. Configuration Changes ..................... JWT creation and validation require a secret and an algorithm. While several algorithms are supported by the pyJWT library, using ``RS256`` offers asymmetrical encryption, which allows the public key to be used in untrusted contexts like javascript code living browser side. Therefore this should be the preferred algorithm for issuers. Zuul will also support ``HS256`` as the most widely used algorithm. Some identity providers use key sets (also known as **JWKS**), therefore the key to use when verifying the Authentication Token's signatures cannot be known in advance. Zuul must support the ``RS256`` algorithm with JWKS as well. Here is an example defining the three supported types of authenticators: .. code-block:: ini [web] listen_address=127.0.0.1 port=9000 static_cache_expiry=0 status_url=https://zuul.example.com/status # symmetrical encryption [auth "zuul_operator"] driver=HS256 # symmetrical encryption only needs a shared secret secret=exampleSecret # accept "zuul.actions" claim in Authentication Token allow_authz_override=true # what the "aud" claim must be in Authentication Token client_id=zuul.openstack.org # what the "iss" claim must be in Authentication Token issuer_id=zuul_operator # the claim to use as the unique user identifier, defaults to "sub" uid_claim=sub # Auth realm, used in 401 error messages realm=openstack # (optional) Ensure a Token cannot be valid for longer than this amount of time, in seconds max_validity_time = 1800000 # (optional) Account for skew between clocks, in seconds skew = 3 # asymmetrical encryption [auth "my_oidc_idp"] driver=RS256 public_key=/path/to/key.pub # optional, needed only if Authentication Token must be generated manually as well private_key=/path/to/key # if not explicitly set, allow_authz_override defaults to False # what the "aud" claim must be in Authentication Token client_id=my_zuul_deployment_id # what the "iss" claim must be in Authentication Token issuer_id=my_oidc_idp_id # Auth realm, used in 401 error messages realm=openstack # (optional) Ensure a Token cannot be valid for longer than this amount of time, in seconds max_validity_time = 1800000 # (optional) Account for skew between clocks, in seconds skew = 3 # asymmetrical encryption using JWKS for validation # The signing secret being known to the Identity Provider only, this # authenticator cannot be used to manually issue Tokens with the CLI [auth google_oauth_playground] driver=RS256withJWKS # URL of the JWKS; usually found in the .well-known config of the Identity Provider keys_url=https://www.googleapis.com/oauth2/v3/certs # what the "aud" claim must be in Authentication Token client_id=XXX.apps.googleusercontent.com # what the "iss" claim must be in Authentication Token issuer_id=https://accounts.google.com uid_claim=name # Auth realm, used in 401 error messages realm=openstack # (optional) Account for skew between clocks, in seconds skew = 3 Implementation ============== Assignee(s) ----------- Primary assignee: mhu .. feel free to add yourself as an assignee, the more eyes/help the better Gerrit Topic ------------ Use Gerrit topic "zuul_admin_web" for all patches related to this spec. .. code-block:: bash git-review -t zuul_admin_web Work Items ---------- Due to its complexity the spec should be implemented in smaller "chunks": * https://review.openstack.org/576907 - Add admin endpoints, support for JWT providers declaration in the configuration, JWT validation mechanism * https://review.openstack.org/636197 - Allow Auth Token generation from Zuul's CLI * https://review.openstack.org/636315 - Allow users to use the REST API from the CLI (instead of Gearman), with a bearer token * https://review.openstack.org/#/c/639855 - Authorization configuration objects declaration and validation * https://review.openstack.org/640884 - Authorization engine * https://review.openstack.org/641099 - REST API: add /api/user/authorizations route Documentation ------------- * The changes in the configuration will need to be documented: * configuring authenticators in zuul.conf, supported algorithms and their specific configuration options * creating authorization rules * The additions to the web API need to be documented. * The additions to the Zuul Client CLI need to be documented. * The potential impacts of exposing administration tasks in terms of build results or resources management need to be clearly documented for operators (see below). Security -------- Anybody with a valid Authentication Token can perform administration tasks exposed through the Web API. Revoking JWT is not trivial, and not in the scope of this spec. As a mitigation, Authentication Tokens should be generated with a short time to live, like 30 minutes or less. This is especially important if the Authentication Token overrides predefined authorizations with a ``zuul.admin`` claim. This could be the default value for generating Tokens with the CLI; this will depend on the configuration of other external issuers otherwise. If using the ``zuul.admin`` claims, the Authentication Token should also be generated with as little a scope as possible (one tenant only) to reduce the surface of attack should the Authentication Token be compromised. Exposing administration tasks can impact build results (dequeue-ing buildsets), and pose potential resources problems with Nodepool if the ``autohold`` feature is abused, leading to a significant number of nodes remaining in "hold" state for extended periods of time. Such power should be handed over responsibly. These security considerations concern operators and the way they handle this feature, and do not impact development. They however need to be clearly documented, as operators need to be aware of the potential side effects of delegating privileges to other users. Testing ------- * Unit testing of the new web endpoints will be needed. * Validation of the new configuration parameters will be needed. Follow-up work -------------- The following items fall outside of the scope of this spec but are logical features to implement once the tenant-scoped admin REST API gets finalized: * Web UI: log-in, log-out and token refresh support with an external Identity Provider * Web UI: dequeue button near a job's status on the status page, if the authenticated user has sufficient authorization * autohold button near a job's build result on the builds page, if the authenticated user has sufficient authorization * reenqueue button near a buildset on a buildsets page, if the authenticated user has sufficient authorization Dependencies ============ * This implementation will use an existing dependency to **pyJWT** in Zuul. * A new dependency to **jsonpath-rw** will be added to support XPath-like parsing of complex claims.
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/specs/tenant-scoped-admin-web-API.rst
tenant-scoped-admin-web-API.rst
Tracing ======= .. warning:: This is not authoritative documentation. These features are not currently available in Zuul. They may change significantly before final implementation, or may never be fully completed. It can be difficult for a user to understand what steps were involved between a trigger event (such as a patchset upload or recheck comment) and a buildset report. If it took an unusually long time it can be difficult to determine why. At present, an operator would need to examine logs to determine what steps were involved and the sources of any potential delays. Even experienced operators and developers can take quite some time to first collect and then analyze logs to answer these questions. Sometimes these answers may point to routine system operation (such as a delay caused by many gate resets, or preparing a large number of repositories). Other times they may point to deficiencies in the system (insufficient mergers) or bugs in the code. Being able to visualize the activities of a Zuul system can help operators (and potentially users) triage and diagnose issues more quickly and accurately. Even if examining logs is ultimately required in order to fully diagnose an issue, being able to narrow down the scope using analsys tools can greatly simplify the process. Proposed Solution ----------------- Implementing distributed tracing in Zuul can help improve the observability of the system and aid operators and potentially users in understanding the sequence of events. By exporting information about the processing Zuul performs using the OpenTelemetry API, information about Zuul operations can be collected in any of several tools for analysis. OpenTelemetry is an Open Source protocol for exchanging observability data, an SDK implementing that protocol, as well as an implementation of a collector for distributing information to multiple backends. It supports three kinds of observability data: `traces`, `metrics`, and `logs`. Since Zuul already has support for metrics and logs, this specification proposes that we use only the support in OpenTelemtry for `traces`. Usage Scenarios ~~~~~~~~~~~~~~~ Usage of OpenTelemetry should be entirely optional and supplementary for any Zuul deployment. Log messages alone should continue to be sufficient to analyze any potential problem. Should a deployer wish to use OpenTelemetry tracing data, a very simple deployment for smaller sites may be constructed by running only Jaeger. Jaeger is a service that can receive, store, and display tracing information. The project distributes an all-in-one container image which can store data in local filesystem storage. https://www.jaegertracing.io/ Larger sites may wish to run multiple collectors and feed data to larger, distributed storage backends (such as Cassandra, Elasticsearch, etc). Suitability to Zuul ~~~~~~~~~~~~~~~~~~~ OpenTelemetry tracing, at a high level, is designed to record information about events, their timing, and their relation to other events. At first this seems like a natural fit for Zuul, which reacts to events, processes events, and generates more events. However, OpenTelemetry's bias toward small and simple web applications is evident throughout its documentation and the SDK implementation. Traces give us the big picture of what happens when a request is made by user or an application. Zuul is not driven by user or application requests, and a system designed to record several millisecond-long events which make up the internal response to a user request of a web app is not necessarily the obvious right choice for recording sequences and combinations of events which frequently take hours (and sometimes days) to play out across multiple systems. Fortunately, the concepts and protocol implementation of OpenTelemtry are sufficiently well-designed for the general case to be able to accomodate a system like Zuul, even if the SDK makes incompatible assumptions that make integration difficult. There are some challenges to implementation, but because the concepts appear to be well matched, we should proceed with using the OpenTelemetry protocol and SDK. Spans ~~~~~ The key tracing concepts in OpenTelemety are `traces` and `spans`. From a data model perspective, the unit of data storage is a `span`. A trace itself is really just a unique ID that is common to multiple spans. Spans can relate to other spans as either children or links. A trace is generally considered to have a single 'root' span, and within the time period represented by that span, it may have any number of child spans (which may further have their own child spans). OpenTelemetry anticipates that a span on one system may spawn a child span on another system and includes facilities for transferring enough information about the parent span to a child system that the child system alone can emit traces for its span and any children that it spawns in turn. For a concrete example in Zuul, we might have a Zuul scheduler start a span for a buildset, and then a merger might emit a child span for performing the initial merge, and an executor might emit a child span for executing a build. Spans can relate to other spans (including spans in other traces), so sequences of events can be chained together without necessitating that they all be part of the same span or trace. Because Zuul processes series of events which may stretch for long periods of time, we should specify what events and actions should correspond to spans and traces. Spans can have arbitrary metadat associated with them, so we will be able to search by event or job ids. The following sections describe traces and their child spans. Event Ingestion +++++++++++++++ A trace will begin when Zuul receives an event and end when that event has been enqueued into scheduler queues (or discarded). A driver completing processing of an event is a definitive point in time so it is easy to know when to close the root span for that event's trace (whereas if we kept the trace open to include scheduler processing, we would need to know when the last trigger event spawned by the connection event was complete). This may include processing in internal queues by a given driver, and these processing steps/queues should appear as their own child spans. The spans should include event IDs (and potentially other information about the event such as change or pull request numbers) as metadata. Tenant Event Processing +++++++++++++++++++++++ A trace will begin when a scheduler begins processing a tenant event and ends when it has forwarded the event to all pipelines within a tenant. It will link to the event ingestion trace as a follow-on span. Queue Item ++++++++++ A trace will begin when an item is enqueued and end when it is dequeued. This will be quite a long trace (hours or days). It is expected to be the primary benefit of this telemetry effort as it will show the entire lifetime of a queue item. It will link to the tenant event processing trace as a follow-on span. Within the root span, there will be a span for each buildset (so that if a gate reset happens and a new buildset is created, users will see a series of buildset spans). Within a buildset, there will be spans for all of the major processing steps, such as merge operations, layout calculating, freezing the job graph, and freezing jobs. Each build will also merit a span (retried builds will get their own spans as well), and within a job span, there will be child spans for git repo prep, job setup, individual playbooks, and cleanup. SDK Challenges ~~~~~~~~~~~~~~ As a high-level concept, the idea of spans for each of these operations makes sense. In practice, the SDK makes implementation challenging. The OpenTelemtry SDK makes no provision for beginning a span on one system and ending it on another, so the fact that one Zuul scheduler might start a buildset span while another ends it is problematic. Fortunately, the OpenTelemetry API only reports spans when they end, not when they start. This means that we don't need to coordinate a "start" API call on one scheduler with an "end" API call on another. We can simply emit the trace with its root span at the end. However, any child spans emitted during that time need to know the trace ID they should use, which means that we at least need to store a trace ID and start timestamp on our starting scheduler for use by any child spans as well as the "end span" API call. The SDK does not support creating a span with a specific trace ID or start timestamp (most timestamps are automatic), but it has well-defined interfaces for spans and we can subclass the implementation to allow us to specify trace IDs and timestamps. With this approach, we can "virtually" start a span on one host, store its information in ZooKeeper with whatever long-lived object it is associated with (such as a QueueItem) and then make it concrete on another host when we end it. Alternatives ++++++++++++ This section describes some alternative ideas for dealing with the SDK's mismatch with Zuul concepts as well as why they weren't selected. * Multiple root spans with the same trace ID Jaeger handles this relatively well, and the timeline view appears as expected (multiple events with whitespace between them). The graph view in Jaeger may have some trouble displaying this. It is not clear that OpenTelemetry anticipates having multiple "root" spans, so it may be best to avoid this in order to avoid potential problems with other tools. * Child spans without a parent If we emit spans that specify a parent which does not exist, Jaeger will display these traces but show a warning that the parent is invalid. This may occur naturally while the system is operating (builds complete while a buildset is running), but should be eventually corrected once an item is dequeued. In case of a serious error, we may never close a parent span, which would cause this to persist. We should accept that this may happen, but try to avoid it happening intentionally. Links ~~~~~ Links between spans are fairly primitive in Jaeger. While the OpenTelemetry API includes attributes for links (so that when we link a queue item to an event, we could specify that it was a forwarded event), Jaeger does not store or render them. Instead, we are only left with a reference to a ``< span in another trace >`` with a reference type of ``FOLLOWS_FROM``. Clicking on that link will immediately navigate to the other trace where metadata about the trace will be visible, but before clicking on it, users will have little idea of what awaits on the other side. For this reason, we should use span links sparingly so that when they are encountered, users are likely to intuit what they are for and are not overwhelmed by multiple indistinguishable links. Events and Exceptions ~~~~~~~~~~~~~~~~~~~~~ OpenTelemetry allows events to be added to spans. Events have their own timestamp and attributes. These can be used to add additional context to spans (representing single points in time rather than events with duration that should be child spans). Examples might include receiving a request to cancel a job or dequeue an item. Events should not be used as an alternative to logs, nor should all log messages be copied as events. Events should be used sparingly to avoid overwhelming the tracing storage with data and the user with information. Exceptions may also be included in spans. This happens automatically and by default when using the context managers supplied by the SDK. Because many spans in Zuul will be unable to use the SDK context managers and any exception information would need to be explicitly handled and stored in ZooKeeper, we will disable inclusion of exception information in spans. This will provide a more consistent experience (so that users don't see the absence of an exception in tracing information to indicate the absence of an error in logs) and reduce the cost of supporting traces (extra storage in ZooKeeper and in the telemetry storage). If we decide that exception information is worth including in the future, this decision will be easy to revisit and reverse. Sensitive Information ~~~~~~~~~~~~~~~~~~~~~ No sensitive information (secrets, passwords, job variables, etc) should be included in tracing output. All output should be suitable for an audience of Zuul users (that is, if someone has access to the Zuul dashboard, then tracing data should not have any more sensitive information than they already have access to). For public-facing Zuul systems (such as OpenDev), the information should be suitable for public use. Protobuf and gRPC ~~~~~~~~~~~~~~~~~ The most efficient and straightforward method of transmitting data from Zuul to a collector (including Jaeger) is using OTLP with gRPC (OpenTelemetry Protocol + gRPC Remote Procedure Calls). Because Protobuf applications include automatically generated code, we may encounter the occasional version inconsistency. We may need to navigate package requirements more than normal due to this (especially if we have multiple packages that depend on protobuf). For a contemporary example, the OpenTelemetry project is in the process of pinning to an older version of protobuf: https://github.com/open-telemetry/opentelemetry-python/issues/2717 There is an HTTP+JSON exporter as well, so in the case that something goes very wrong with protobuf+gRPC, that may be available as a fallback. Work Items ---------- * Add OpenTelemetry SDK and support for configuring an exporter to zuul.conf * Implement SDK subclasses to support opening and closing spans on different hosts * Instrument event processing in each driver * Instrument event processing in scheduler * Instrument queue items and related spans * Document a simple Jaeger setup as a quickstart add-on (similar to authz) * Optional: work with OpenDev to run a public Jaeger server for OpenDev The last item is not required for this specification (and not our choice as Zuul developers to make) but it would be nice if there were one available so that all Zuul users and developers have a reference implementation available for community collaboration.
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/specs/tracing.rst
tracing.rst
Zuul Runner =========== .. warning:: This is not authoritative documentation. These features are not currently available in Zuul. They may change significantly before final implementation, or may never be fully completed. While Zuul can be deployed to reproduce a job locally, it is a complex enough system to setup. Zuul jobs being written in Ansible, we shouldn't have to setup a Zookeeper, Nodepool and Zuul service to run a job locally. To that end, the Zuul Project should create a command line utility to run a job locally using direct ansible-playbook commands execution. The scope includes two use cases: * Running a local build of a job that has already ran, for example to recreate a build that failed in the gate, through using either a `zuul-info/inventory.yaml` file, or using the `--change-url` command line argument. * Being able to run any job from any Zuul instance, tenant, project or pipeline regardless if it has run or not. Zuul Job Execution Context -------------------------- One of the key parts of making the Zuul Runner command line utility is to reproduce as close as possible the zuul service environment. A Zuul job requires: - Test resources - Copies of the required projects - Ansible configuration - Decrypted copies of the secrets Test Resources ~~~~~~~~~~~~~~ The Zuul Runner shall require the user to provide test resources as an Ansible inventory, similarly to what Nodepool provides to the Zuul Executor. The Runner would enrich the inventory with the zuul vars. For example, if a job needs two nodes, then the user provides a resource file like this: .. code-block:: yaml all: hosts: controller: ansible_host: ip-node-1 ansible_user: user-node-1 worker: ansible_host: ip-node-2 ansible_user: user-node-2 Required Projects ~~~~~~~~~~~~~~~~~ The Zuul Runner shall query an existing Zuul API to get the list of projects required to run a job. This is implemented as part of the `topic:freeze_job` changes to expose the executor gearman parameters. The CLI would then perform the executor service task to clone and merge the required project locally. Ansible Configuration ~~~~~~~~~~~~~~~~~~~~~ The CLI would also perform the executor service tasks to setup the execution context. Playbooks ~~~~~~~~~ In some case, running all the job playbooks is not desirable, in this situation the CLI provides a way to select and filter unneeded playbook. "zuul-runner --list-playbooks" and it would print out: .. code-block:: console 0: opendev.org/base-jobs/playbooks/pre.yaml ... 10: opendev.org/base-jobs/playbooks/post.yaml To avoid running the playbook 10, the user would use: * "--no-playbook 10" * "--no-playbook -1" * "--playbook 1..9" Alternatively, a matcher may be implemented to express: * "--skip 'opendev.org/base-jobs/playbooks/post.yaml'" Secrets ~~~~~~~ The Zuul Runner shall require the user to provide copies of any secrets required by the job. Implementation -------------- The process of exposing gearman parameter and refactoring the executor code to support local/direct usage already started here: https://review.opendev.org/#/q/topic:freeze_job+(status:open+OR+status:merged) Zuul Runner CLI --------------- Here is the proposed usage for the CLI: .. code-block:: console usage: zuul-runner [-h] [-c CONFIG] [--version] [-v] [-e FILE] [-a API] [-t TENANT] [-j JOB] [-P PIPELINE] [-p PROJECT] [-b BRANCH] [-g GIT_DIR] [-D DEPENDS_ON] {prepare-workspace,execute} ... A helper script for running zuul jobs locally. optional arguments: -h, --help show this help message and exit -c CONFIG specify the config file --version show zuul version -v, --verbose verbose output -e FILE, --extra-vars FILE global extra vars file -a API, --api API the zuul server api to query against -t TENANT, --tenant TENANT the zuul tenant name -j JOB, --job JOB the zuul job name -P PIPELINE, --pipeline PIPELINE the zuul pipeline name -p PROJECT, --project PROJECT the zuul project name -b BRANCH, --branch BRANCH the zuul project's branch name -g GIT_DIR, --git-dir GIT_DIR the git merger dir -C CHANGE_URL, --change-url CHANGE_URL reproduce job with speculative change content commands: valid commands {prepare-workspace,execute} prepare-workspace checks out all of the required playbooks and roles into a given workspace and returns the order of execution execute prepare and execute a zuul jobs And here is an example execution: .. code-block:: console $ pip install --user zuul $ zuul-runner --api https://zuul.openstack.org --project openstack/nova --job tempest-full-py3 execute [...] 2019-05-07 06:08:01,040 DEBUG zuul.Runner - Ansible output: b'PLAY RECAP *********************************************************************' 2019-05-07 06:08:01,040 DEBUG zuul.Runner - Ansible output: b'instance-ip : ok=9 changed=5 unreachable=0 failed=0' 2019-05-07 06:08:01,040 DEBUG zuul.Runner - Ansible output: b'localhost : ok=12 changed=9 unreachable=0 failed=0' 2019-05-07 06:08:01,040 DEBUG zuul.Runner - Ansible output: b'' 2019-05-07 06:08:01,218 DEBUG zuul.Runner - Ansible output terminated 2019-05-07 06:08:01,219 DEBUG zuul.Runner - Ansible cpu times: user=0.00, system=0.00, children_user=0.00, children_system=0.00 2019-05-07 06:08:01,219 DEBUG zuul.Runner - Ansible exit code: 0 2019-05-07 06:08:01,219 DEBUG zuul.Runner - Stopped disk job killer 2019-05-07 06:08:01,220 DEBUG zuul.Runner - Ansible complete, result RESULT_NORMAL code 0 2019-05-07 06:08:01,220 DEBUG zuul.ExecutorServer - Sent SIGTERM to SSH Agent, {'SSH_AUTH_SOCK': '/tmp/ssh-SYKgxg36XMBa/agent.18274', 'SSH_AGENT_PID': '18275'} SUCCESS
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/developer/specs/zuul-runner.rst
zuul-runner.rst
.. _quick-start: Quick-Start Installation and Tutorial ===================================== Zuul is not like other CI or CD systems. It is a project gating system designed to assist developers in taking a change from proposal through deployment. Zuul can support any number of workflow processes and systems, but to help you get started with Zuul, this tutorial will walk through setting up a basic gating configuration which protects projects from merging broken code. This tutorial is entirely self-contained and may safely be run on a workstation. The only requirements are a network connection, the ability to run containers, and at least 2GiB of RAM. This tutorial supplies a working Gerrit for code review, though the concepts you will learn apply equally to GitHub. .. note:: Even if you don't ultimately intend to use Gerrit, you are encouraged to follow this tutorial to learn how to set up and use Zuul. At the end of the tutorial, you will find further information about how to configure your Zuul to interact with GitHub. Start Zuul Containers --------------------- Before you start, ensure that some needed packages are installed. .. code-block:: shell # Red Hat / CentOS: sudo yum install podman git python3 sudo python3 -m pip install git-review podman-compose # Fedora: sudo dnf install podman git python3 sudo python3 -m pip install git-review podman-compose # OpenSuse: sudo zypper install podman git python3 sudo python3 -m pip install git-review podman-compose # Ubuntu / Debian: sudo apt-get update sudo apt-get install podman git python3-pip sudo python3 -m pip install git-review podman-compose Clone the Zuul repository: .. code-block:: shell git clone https://opendev.org/zuul/zuul Then cd into the directory containing this document, and run podman-compose in order to start Zuul, Nodepool and Gerrit. .. code-block:: shell cd zuul/doc/source/examples podman-compose -p zuul-tutorial up For reference, the files in that directory are also `browsable on the web <https://opendev.org/zuul/zuul/src/branch/master/doc/source/examples>`_. All of the services will be started with debug-level logging sent to the standard output of the terminal where podman-compose is running. You will see a considerable amount of information scroll by, including some errors. Zuul will immediately attempt to connect to Gerrit and begin processing, even before Gerrit has fully initialized. The podman composition includes scripts to configure Gerrit and create an account for Zuul. Once this has all completed, the system should automatically connect, stabilize and become idle. When this is complete, you will have the following services running: * Zookeeper * Gerrit * Nodepool Launcher * Zuul Scheduler * Zuul Web Server * Zuul Executor * Apache HTTPD And a long-running static test node used by Nodepool and Zuul upon which to run tests. The Zuul scheduler is configured to connect to Gerrit via a connection named ``gerrit``. Zuul can interact with as many systems as necessary, each such connection is assigned a name for use in the Zuul configuration. Zuul is a multi-tenant application, so that differing needs of independent work-groups can be supported from one system. This example configures a single tenant named ``example-tenant``. Assigned to this tenant are three projects: ``zuul-config``, ``test1`` and ``test2``. These have already been created in Gerrit and are ready for us to begin using. Add Your Gerrit Account ----------------------- Before you can interact with Gerrit, you will need to create an account. The initialization script has already created an account for Zuul, but has left the task of creating your own account to you so that you can provide your own SSH key. You may safely use any existing SSH key on your workstation, or you may create a new one by running ``ssh-keygen``. Gerrit is configured in a development mode where passwords are not required in the web interface and you may become any user in the system at any time. To create your Gerrit account, visit http://localhost:8080 in your browser and click `Sign in` in the top right corner. .. image:: /images/sign-in.png :align: center Then click `New Account` under `Register`. .. image:: /images/register.png :align: center Don't bother to enter anything into the confirmation dialog that pops up, instead, click the `settings` link at the bottom. .. image:: /images/confirm.png :align: center In the `Profile` section at the top, enter the username you use to log into your workstation in the `Username` field and your full name in the `Full name` field, then click `Save Changes`. .. image:: /images/profile.png :align: center Scroll down to the `Email Addresses` section and enter your email address into the `New email address` field, then click `Send Verification`. Since Gerrit is in developer mode, it will not actually send any email, and the address will be automatically confirmed. This step is useful since several parts of the Gerrit user interface expect to be able to display email addresses. .. image:: /images/email.png :align: center Scroll down to the `SSH keys` section and copy and paste the contents of ``~/.ssh/id_rsa.pub`` into the `New SSH key` field and click `Add New SSH Key`. .. image:: /images/sshkey.png :align: center .. We ask them to click reload so that the page refreshes and their avatar appears in the top right. Otherwise it's difficult to see that there's anything there to click. Click the `Reload` button in your browser to reload the page with the new settings in effect. At this point you have created and logged into your personal account in Gerrit and are ready to begin configuring Zuul. Configure Zuul Pipelines ------------------------ Zuul recognizes two types of projects: :term:`config projects<config-project>` and :term:`untrusted projects<untrusted-project>`. An *untrusted project* is a normal project from Zuul's point of view. In a gating system, it contains the software under development and/or most of the job content that Zuul will run. A *config project* is a special project that contains the Zuul's configuration. Because it has access to normally restricted features in Zuul, changes to this repository are not dynamically evaluated by Zuul. The security and functionality of the rest of the system depends on this repository, so it is best to limit what is contained within it to the minimum, and ensure thorough code review practices when changes are made. Zuul has no built-in workflow definitions, so in order for it to do anything, you will need to begin by making changes to a *config project*. The initialization script has already created a project named ``zuul-config`` which you should now clone onto your workstation: .. code-block:: shell git clone http://localhost:8080/zuul-config You will find that this repository is empty. Zuul reads its configuration from either a single file or a directory. In a *Config Project* with substantial Zuul configuration, you may find it easiest to use the ``zuul.d`` directory for Zuul configuration. Later, in *Untrusted Projects* you will use a single file for in-repo configuration. Make the directory: .. code-block:: shell cd zuul-config mkdir zuul.d The first type of configuration items we need to add are the Pipelines we intend to use. In Zuul, a Pipeline represents a workflow action. It is triggered by some action on a connection. Projects are able to attach jobs to run in that pipeline, and when they complete, the results are reported along with actions which may trigger further Pipelines. In a gating system two pipelines are required: :term:`check` and :term:`gate`. In our system, ``check`` will be triggered when a patch is uploaded to Gerrit, so that we are able to immediately run tests and report whether the change works and is therefore able to merge. The ``gate`` pipeline is triggered when a code reviewer approves the change in Gerrit. It will run test jobs again (in case other changes have merged since the change in question was uploaded) and if these final tests pass, will automatically merge the change. To configure these pipelines, copy the following file into ``zuul.d/pipelines.yaml``: .. literalinclude:: /examples/zuul-config/zuul.d/pipelines.yaml :language: yaml Once we have bootstrapped our initial Zuul configuration, we will want to use the gating process on this repository too, so we need to attach the ``zuul-config`` repository to the ``check`` and ``gate`` pipelines we are about to create. There are no jobs defined yet, so we must use the internally defined ``noop`` job, which always returns success. Later on we will be configuring some other projects, and while we will be able to dynamically add jobs to their pipelines, those projects must first be attached to the pipelines in order for that to work. In our system, we want all of the projects in Gerrit to participate in the check and gate pipelines, so we can use a regular expression to apply this to all projects. To configure the ``check`` and ``gate`` pipelines for ``zuul-config`` to run the ``noop`` job, and add all projects to those pipelines (with no jobs), copy the following file into ``zuul.d/projects.yaml``: .. literalinclude:: /examples/zuul-config/zuul.d/projects.yaml :language: yaml Every real job (i.e., all jobs other than ``noop``) must inherit from a :term:`base job`, and base jobs may only be defined in a :term:`config-project`. Let's go ahead and add a simple base job that we can build on later. Copy the following into ``zuul.d/jobs.yaml``: .. literalinclude:: /examples/zuul-config/zuul.d/jobs.yaml :language: yaml Commit the changes and push them up for review: .. code-block:: shell git add zuul.d git commit -m "Add initial Zuul configuration" git review Because Zuul is currently running with no configuration whatsoever, it will ignore this change. For this initial change which bootstraps the entire system, we will need to bypass code review (hopefully for the last time). To do this, you need to switch to the Administrator account in Gerrit. Visit http://localhost:8080 in your browser and then: Click the avatar image in the top right corner then click `Sign out`. .. image:: /images/sign-out-user.png :align: center Then click the `Sign in` link again. .. image:: /images/sign-in.png :align: center Click `admin` to log in as the `admin` user. .. image:: /images/become-select.png :align: center You will then see a list of open changes; click on the change you uploaded. .. image:: /images/open-changes.png :align: center Click `Reply...` at the top center of the change screen. This will open a dialog where you can leave a review message and vote on the change. As the administrator, you have access to vote in all of the review categories, even `Verified` which is normally reserved for Zuul. Vote Code-Review: +2, Verified: +2, Workflow: +1, and then click `Send` to leave your approval votes. .. image:: /images/review-1001.png :align: center Once the required votes have been set, the `Submit` button will appear in the top right; click it. This will cause the change to be merged immediately. This is normally handled by Zuul, but as the administrator you can bypass Zuul to forcibly merge a change. .. image:: /images/submit-1001.png :align: center Now that the initial configuration has been bootstrapped, you should not need to bypass testing and code review again, so switch back to the account you created for yourself. Click on the avatar image in the top right corner then click `Sign out`. .. image:: /images/sign-out-admin.png :align: center Then click the `Sign in` link again. .. image:: /images/sign-in.png :align: center And click your username to log into your account. .. image:: /images/become-select.png :align: center Test Zuul Pipelines ------------------- Zuul is now running with a basic :term:`check` and :term:`gate` configuration. Now is a good time to take a look at Zuul's web interface. Visit http://localhost:9000/t/example-tenant/status to see the current status of the system. It should be idle, but if you leave this page open during the following steps, you will see it update automatically. We can now begin adding Zuul configuration to one of our :term:`untrusted projects<untrusted-project>`. Start by cloning the `test1` project which was created by the setup script. .. code-block:: shell cd .. git clone http://localhost:8080/test1 Every Zuul job that runs needs a playbook, so let's create a sub-directory in the project to hold playbooks: .. code-block:: shell cd test1 mkdir playbooks Start with a simple playbook which just outputs a debug message. Copy the following to ``playbooks/testjob.yaml``: .. literalinclude:: /examples/test1/playbooks/testjob.yaml :language: yaml Now define a Zuul job which runs that playbook. Zuul will read its configuration from any of ``zuul.d/`` or ``.zuul.d/`` directories, or the files ``zuul.yaml`` or ``.zuul.yaml``. Generally in an *untrusted project* which isn't dedicated entirely to Zuul, it's best to put Zuul's configuration in a hidden file. Copy the following to ``.zuul.yaml`` in the root of the project: .. literalinclude:: /examples/test1/zuul.yaml :language: yaml Commit the changes and push them up to Gerrit for review: .. code-block:: shell git add .zuul.yaml playbooks git commit -m "Add test Zuul job" git review Zuul will dynamically evaluate proposed changes to its configuration in *untrusted projects* immediately, so shortly after your change is uploaded, Zuul will run the new job and report back on the change. Visit http://localhost:8080/dashboard/self and open the change you just uploaded. If the build is complete, Zuul should have left a Verified: +1 vote on the change, along with a comment at the bottom. Expand the comments and you should see that the job succeeded, and a link to the build result in Zuul is provided. You can follow that link to see some information about the build, but you won't find any logs since Zuul hasn't been told where to save them yet. .. image:: /images/check1-1002.png :align: center This means everything is working so far, but we need to configure a bit more before we have a useful job. Configure a Base Job -------------------- Every Zuul tenant needs at least one base job. Zuul administrators can use a base job to customize Zuul to the local environment. This may include tasks which run both before jobs, such as setting up package mirrors or networking configuration, or after jobs, such as artifact and log storage. Zuul doesn't take anything for granted, and even tasks such as copying the git repos for the project being tested onto the remote node must be explicitly added to a base job (and can therefore be customized as needed). The Zuul in this tutorial is pre-configured to use the `zuul jobs`_ repository which is the "standard library" of Zuul jobs and roles. We will make use of it to quickly create a base job which performs the necessary set up actions and stores build logs. .. _zuul jobs: https://zuul-ci.org/docs/zuul-jobs/ Return to the ``zuul-config`` repo that you were working in earlier. We're going to add some playbooks to the empty base job we created earlier. Start by creating a directory to store those playbooks: .. code-block:: shell cd .. cd zuul-config mkdir -p playbooks/base Zuul supports running any number of playbooks before a job (called *pre-run* playbooks) or after a job (called *post-run* playbooks). We're going to add a single *pre-run* playbook now. Copy the following to ``playbooks/base/pre.yaml``: .. literalinclude:: /examples/zuul-config/playbooks/base/pre.yaml :language: yaml This playbook does two things; first it creates a new SSH key and adds it to all of the hosts in the inventory, and removes the private key that Zuul normally uses to log into nodes from the running SSH agent. This is just an extra bit of protection which ensures that if Zuul's SSH key has access to any important systems, normal Zuul jobs can't use it. The second thing the playbook does is copy the git repositories that Zuul has prepared (which may have one or more changes being tested) to all of the nodes used in the job. Next, add a *post-run* playbook to remove the per-build SSH key. Copy the following to ``playbooks/base/post-ssh.yaml``: .. literalinclude:: /examples/zuul-config/playbooks/base/post-ssh.yaml :language: yaml This is the complement of the `add-build-sshkey` role in the pre-run playbook -- it simply removes the per-build ssh key from any remote systems. Zuul always tries to run all of the post-run playbooks regardless of whether any previous playbooks have failed. Because we always want log collection to run and we want it to run last, we create a second post-run playbook for it. Copy the following to ``playbooks/base/post-logs.yaml``: .. literalinclude:: /examples/zuul-config/playbooks/base/post-logs.yaml :language: yaml The first role in this playbook generates some metadata about the logs which are about to be uploaded. Zuul uses this metadata in its web interface to nicely render the logs and other information about the build. This tutorial is running an Apache webserver in a container which will serve build logs from a volume that is shared with the Zuul executor. That volume is mounted at `/srv/static/logs`, which is the default location in the `upload-logs`_ role. The role also supports copying files to a remote server via SCP; see the role documentation for how to configure it. For this simple case, the only option we need to provide is the URL where the logs can ultimately be found. .. note:: Zuul-jobs also contains `roles <https://zuul-ci.org/docs/zuul-jobs/log-roles.html>`_ to upload logs to a OpenStack Object Storage (swift) or Google Cloud Storage containers. If you create a role to upload logs to another system, please feel free to contribute it to the zuul-jobs repository for others to use. .. _upload-logs: https://zuul-ci.org/docs/zuul-jobs/roles.html#role-upload-logs Now that the new playbooks are in place, update the ``base`` job definition to include them. Overwrite ``zuul.d/jobs.yaml`` with the following: .. literalinclude:: /examples/zuul-config/zuul.d/jobs2.yaml :language: yaml Then commit the change and upload it to Gerrit for review: .. code-block:: shell git add playbooks zuul.d/jobs.yaml git commit -m "Update Zuul base job" git review Visit http://localhost:8080/dashboard/self and open the ``zuul-config`` change you just uploaded. You should see a Verified +1 vote from Zuul. Click `Reply` then vote Code-Review: +2 and Workflow: +1 then click `Send`. .. image:: /images/review-1003.png :align: center Wait a few moments for Zuul to process the event, and then reload the page. The change should have been merged. Visit http://localhost:8080/dashboard/self and return to the ``test1`` change you uploaded earlier. Click `Reply` then type `recheck` into the text field and click `Send`. .. image:: /images/recheck-1002.png :align: center This will cause Zuul to re-run the test job we created earlier. This time it will run with the updated base job configuration, and when complete, it will report the published log location as a comment on the change: .. image:: /images/check2-1002.png :align: center Follow the link and you will be directed to the build result page. If you click on the `Logs` tab, you'll be able to browse the console log for the job. In the middle of the log, you should see the "Hello, world!" output from the job's playbook. Also try the `Console` tab for a more structured view of the log. Click on the `OK` button in the middle of the page to see the output of just the task we're interested in. Further Steps ------------- You now have a Zuul system up and running, congratulations! The Zuul community would love to hear about how you plan to use Zuul. Please take a few moments to fill out the `Zuul User Survey <https://www.surveymonkey.com/r/K2B2MWL>`_ to provide feedback and information around your deployment. All information is confidential to the OpenStack Foundation unless you designate that it can be public. If you would like to make further changes to Zuul, its configuration files are located in the ``zuul/doc/source/examples`` directory and are bind-mounted into the running containers. You may edit them and restart the Zuul containers to make changes. If you would like to connect your Zuul to GitHub, see :ref:`github_driver`. .. TODO: write an extension to this tutorial to connect to github
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/tutorials/quick-start.rst
quick-start.rst
Jaeger Tracing Tutorial ======================= Zuul includes support for `distributed tracing`_ as described by the OpenTelemetry project. This allows operators (and potentially users) to visualize the progress of events and queue items through the various Zuul components as an aid to debugging. Zuul supports the OpenTelemetry Protocol (OTLP) for exporting traces. Many observability systems support receiving traces via OTLP. One of these is Jaeger. Because it can be run as a standalone service with local storage, this tutorial describes how to set up a Jaeger server and configure Zuul to export data to it. For more information about tracing in Zuul, see :ref:`tracing`. To get started, first run the :ref:`quick-start` and then follow the steps in this tutorial to add a Jaeger server. Restart Zuul Containers ----------------------- After completing the initial tutorial, stop the Zuul containers so that we can update Zuul's configuration to enable tracing. .. code-block:: shell cd zuul/doc/source/examples sudo -E podman-compose -p zuul-tutorial stop Restart the containers with a new Zuul configuration. .. code-block:: shell cd zuul/doc/source/examples ZUUL_TUTORIAL_CONFIG="./tracing/etc_zuul/" sudo -E podman-compose -p zuul-tutorial up -d This tells podman-compose to use these Zuul `config files <https://opendev.org/zuul/zuul/src/branch/master/doc/source/examples/tracing>`_. The only change compared to the quick-start is to add a :attr:`tracing` section to ``zuul.conf``: .. code-block:: ini [tracing] enabled=true endpoint=jaeger:4317 insecure=true This instructs Zuul to send tracing information to the Jaeger server we will start below. Start Jaeger ------------ A separate docker-compose file is provided to run Jaeger. Start it with this command: .. code-block:: shell cd zuul/doc/source/examples/tracing sudo -E podman-compose -p zuul-tutorial-tracing up -d You can visit http://localhost:16686/search to verify it is running. Recheck a change ---------------- Visit Gerrit at http://localhost:8080/dashboard/self and return to the ``test1`` change you uploaded earlier. Click `Reply` then type `recheck` into the text field and click `Send`. This will tell Zuul to run the test job once again. When the job is complete, you should have a trace available in Jaeger. To see the trace, visit http://localhost:16686/search and select the `zuul` service (reload the page if it doesn't show up at first). Press `Find Traces` and you should see the trace for your build appear. _`distributed tracing`: https://opentelemetry.io/docs/concepts/observability-primer/#distributed-traces
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/tutorials/tracing.rst
tracing.rst
Keycloak Tutorial ================= Zuul supports an authenticated API accessible via its web app which can be used to perform some administrative actions. To see this in action, first run the :ref:`quick-start` and then follow the steps in this tutorial to add a Keycloak server. Zuul supports any identity provider that can supply a JWT using OpenID Connect. Keycloak is used here because it is entirely self-contained. Google authentication is one additional option described elsewhere in the documentation. Gerrit can be updated to use the same authentication system as Zuul, but this tutorial does not address that. Update /etc/hosts ----------------- The Zuul containers will use the internal container network to connect to keycloak, but you will use a mapped port to access it in your web browser. There is no way to have Zuul use the internal hostname when it validates the token yet redirect your browser to `localhost` to obtain the token, therefore you will need to add a matching host entry to `/etc/hosts`. Make sure you have a line that looks like this: .. code-block:: 127.0.0.1 localhost keycloak If you are using podman, you need to add the following option in $HOME/.config/containers/containers.conf: .. code-block:: [containers] no_hosts=true This way your /etc/hosts settings will not interfere with podman's networking. Restart Zuul Containers ----------------------- After completing the initial tutorial, stop the Zuul containers so that we can update Zuul's configuration to add authentication. .. code-block:: shell cd zuul/doc/source/examples sudo -E podman-compose -p zuul-tutorial stop Restart the containers with a new Zuul configuration. .. code-block:: shell cd zuul/doc/source/examples ZUUL_TUTORIAL_CONFIG="./keycloak/etc_zuul/" sudo -E podman-compose -p zuul-tutorial up -d This tells podman-compose to use these Zuul `config files <https://opendev.org/zuul/zuul/src/branch/master/doc/source/examples/keycloak>`_. Start Keycloak -------------- A separate docker-compose file is supplied to run Keycloak. Start it with this command: .. code-block:: shell cd zuul/doc/source/examples/keycloak sudo -E podman-compose -p zuul-tutorial-keycloak up -d Once Keycloak is running, you can visit the web interface at http://localhost:8082/ The Keycloak administrative user is `admin` with a password of `kcadmin`. Log Into Zuul ------------- Visit http://localhost:9000/t/example-tenant/autoholds and click the login icon on the top right. You will be directed to Keycloak, where you can log into the Zuul realm with the user `admin` and password `admin`. Once you return to Zuul, you should see the option to create an autohold -- an admin-only option.
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/doc/source/tutorials/keycloak.rst
keycloak.rst
# Copyright 2020 BMW Group # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import argparse import os import subprocess def main(): pos_args = { '--dir': 1, '--tmpfs': 1, '--ro-bind': 2, '--bind': 2, '--chdir': 1, '--uid': 1, '--gid': 1, '--file': 2, '--proc': 1, '--dev': 1, } bool_args = [ '--unshare-all', '--unshare-user', '--unshare-user-try', '--unshare-ipc', '--unshare-pid', '--unshare-net', '--unshare-uts', '--unshare-cgroup', '--unshare-cgroup-try', '--share-net', '--die-with-parent', ] parser = argparse.ArgumentParser() for arg, nargs in pos_args.items(): parser.add_argument(arg, nargs=nargs, action='append') for arg in bool_args: parser.add_argument(arg, action='store_true') parser.add_argument('args', metavar='args', nargs=argparse.REMAINDER, help='Command') args = parser.parse_args() for fd, path in args.file: fd = int(fd) if path.startswith('/etc'): # Ignore write requests to /etc continue print('Writing file from %s to %s' % (fd, path)) count = 0 with open(path, 'wb') as output: data = os.read(fd, 32000) while data: count += len(data) output.write(data) data = os.read(fd, 32000) print('Wrote file (%s bytes)' % count) if args.chdir: os.chdir(args.chdir[0][0]) result = subprocess.run(args.args, shell=False, check=False) exit(result.returncode) if __name__ == '__main__': main()
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/tools/fake_bwrap.py
fake_bwrap.py
# This script updates the Zuul v3 Storyboard. It uses a .boartty.yaml # file to get credential information. import requests import boartty.config import boartty.sync import logging # noqa from pprint import pprint as p # noqa class App(object): pass def get_tasks(sync): task_list = [] for story in sync.get('/v1/stories?tags=zuulv3'): print("Story %s: %s" % (story['id'], story['title'])) for task in sync.get('/v1/stories/%s/tasks' % (story['id'])): print(" %s" % (task['title'],)) task_list.append(task) return task_list def task_in_lane(task, lane): for item in lane['worklist']['items']: if 'task' in item and item['task']['id'] == task['id']: return True return False def add_task(sync, task, lane): print("Add task %s to %s" % (task['id'], lane['worklist']['id'])) r = sync.post('v1/worklists/%s/items/' % lane['worklist']['id'], dict(item_id=task['id'], item_type='task', list_position=0)) print(r) def remove_task(sync, task, lane): print("Remove task %s from %s" % (task['id'], lane['worklist']['id'])) for item in lane['worklist']['items']: if 'task' in item and item['task']['id'] == task['id']: r = sync.delete('v1/worklists/%s/items/' % lane['worklist']['id'], dict(item_id=item['id'])) print(r) MAP = { 'todo': ['New', 'Backlog', 'Todo'], 'inprogress': ['In Progress', 'Blocked'], 'review': ['In Progress', 'Blocked'], 'merged': None, 'invalid': None, } def main(): requests.packages.urllib3.disable_warnings() # logging.basicConfig(level=logging.DEBUG) app = App() app.config = boartty.config.Config('openstack') sync = boartty.sync.Sync(app, False) board = sync.get('v1/boards/41') tasks = get_tasks(sync) lanes = dict() for lane in board['lanes']: lanes[lane['worklist']['title']] = lane for task in tasks: ok_lanes = MAP[task['status']] task_found = False for lane_name, lane in lanes.items(): if task_in_lane(task, lane): if ok_lanes and lane_name in ok_lanes: task_found = True else: remove_task(sync, task, lane) if ok_lanes and not task_found: add_task(sync, task, lanes[ok_lanes[0]]) if __name__ == '__main__': main()
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/tools/update-storyboard.py
update-storyboard.py
# Analyze the contents of the ZK tree (whether in ZK or a dump on the # local filesystem) to identify large objects. import argparse import json import os import sys import zlib import kazoo.client KB = 1024 MB = 1024**2 GB = 1024**3 def convert_human(size): if size >= GB: return f'{int(size/GB)}G' if size >= MB: return f'{int(size/MB)}M' if size >= KB: return f'{int(size/KB)}K' if size > 0: return f'{size}B' return '0' def convert_null(size): return size def unconvert_human(size): suffix = size[-1] val = size[:-1] if suffix in ['G', 'g']: return int(val) * GB if suffix in ['M', 'm']: return int(val) * MB if suffix in ['K', 'k']: return int(val) * KB return int(size) class SummaryLine: def __init__(self, kind, path, size=0, zk_size=0): self.kind = kind self.path = path self.size = size self.zk_size = zk_size self.attrs = {} self.children = [] @property def tree_size(self): return sum([x.tree_size for x in self.children] + [self.size]) @property def zk_tree_size(self): return sum([x.zk_tree_size for x in self.children] + [self.zk_size]) def add(self, child): self.children.append(child) def __str__(self): indent = 0 return self.toStr(indent) def matchesLimit(self, limit, zk): if not limit: return True if zk: size = self.zk_size else: size = self.size if size >= limit: return True for child in self.children: if child.matchesLimit(limit, zk): return True return False def toStr(self, indent, depth=None, conv=convert_null, limit=0, zk=False): """Convert this item and its children to a str representation :param indent int: How many levels to indent :param depth int: How many levels deep to display :param conv func: A function to convert sizes to text :param limit int: Don't display items smaller than this :param zk bool: Whether to use the data size (False) or ZK storage size (True) """ if depth and indent >= depth: return '' if self.matchesLimit(limit, zk): attrs = ' '.join([f'{k}={conv(v)}' for k, v in self.attrs.items()]) if attrs: attrs = ' ' + attrs if zk: size = conv(self.zk_size) tree_size = conv(self.zk_tree_size) else: size = conv(self.size) tree_size = conv(self.tree_size) ret = (' ' * indent + f"{self.kind} {self.path} " f"size={size} tree={tree_size}{attrs}\n") for child in self.children: ret += child.toStr(indent + 1, depth, conv, limit, zk) else: ret = '' return ret class Data: def __init__(self, path, raw, zk_size=None, failed=False): self.path = path self.raw = raw self.failed = failed self.zk_size = zk_size or len(raw) if not failed: self.data = json.loads(raw) else: print(f"!!! {path} failed to load data") self.data = {} @property def size(self): return len(self.raw) class Tree: def getNode(self, path): pass def listChildren(self, path): pass def listConnections(self): return self.listChildren('/zuul/cache/connection') def getBranchCache(self, connection): return self.getShardedNode(f'/zuul/cache/connection/{connection}' '/branches/data') def listCacheKeys(self, connection): return self.listChildren(f'/zuul/cache/connection/{connection}/cache') def getCacheKey(self, connection, key): return self.getNode(f'/zuul/cache/connection/{connection}/cache/{key}') def listCacheData(self, connection): return self.listChildren(f'/zuul/cache/connection/{connection}/data') def getCacheData(self, connection, key): return self.getShardedNode(f'/zuul/cache/connection/{connection}' f'/data/{key}') def listTenants(self): return self.listChildren('/zuul/tenant') def listPipelines(self, tenant): return self.listChildren(f'/zuul/tenant/{tenant}/pipeline') def getPipeline(self, tenant, pipeline): return self.getNode(f'/zuul/tenant/{tenant}/pipeline/{pipeline}') def getItems(self, tenant, pipeline): pdata = self.getPipeline(tenant, pipeline) for queue in pdata.data.get('queues', []): qdata = self.getNode(queue) for item in qdata.data.get('queue', []): idata = self.getNode(item) yield idata def listBuildsets(self, item): return self.listChildren(f'{item}/buildset') def getBuildset(self, item, buildset): return self.getNode(f'{item}/buildset/{buildset}') def listJobs(self, buildset): return self.listChildren(f'{buildset}/job') def getJob(self, buildset, job_name): return self.getNode(f'{buildset}/job/{job_name}') def listBuilds(self, buildset, job_name): return self.listChildren(f'{buildset}/job/{job_name}/build') def getBuild(self, buildset, job_name, build): return self.getNode(f'{buildset}/job/{job_name}/build/{build}') class FilesystemTree(Tree): def __init__(self, root): self.root = root def getNode(self, path): path = path.lstrip('/') fullpath = os.path.join(self.root, path) if not os.path.exists(fullpath): return Data(path, '', failed=True) try: with open(os.path.join(fullpath, 'ZKDATA'), 'rb') as f: zk_data = f.read() data = zk_data try: data = zlib.decompress(zk_data) except Exception: pass return Data(path, data, zk_size=len(zk_data)) except Exception: return Data(path, '', failed=True) def getShardedNode(self, path): path = path.lstrip('/') fullpath = os.path.join(self.root, path) if not os.path.exists(fullpath): return Data(path, '', failed=True) shards = sorted([x for x in os.listdir(fullpath) if x != 'ZKDATA']) data = b'' compressed_data_len = 0 try: for shard in shards: with open(os.path.join(fullpath, shard, 'ZKDATA'), 'rb') as f: compressed_data = f.read() compressed_data_len += len(compressed_data) data += zlib.decompress(compressed_data) return Data(path, data, zk_size=compressed_data_len) except Exception: return Data(path, data, failed=True) def listChildren(self, path): path = path.lstrip('/') fullpath = os.path.join(self.root, path) if not os.path.exists(fullpath): return [] return [x for x in os.listdir(fullpath) if x != 'ZKDATA'] class ZKTree(Tree): def __init__(self, host, cert, key, ca): kwargs = {} if cert: kwargs['use_ssl'] = True kwargs['keyfile'] = key kwargs['certfile'] = cert kwargs['ca'] = ca self.client = kazoo.client.KazooClient(host, **kwargs) self.client.start() def getNode(self, path): path = path.lstrip('/') if not self.client.exists(path): return Data(path, '', failed=True) try: zk_data, _ = self.client.get(path) data = zk_data try: data = zlib.decompress(zk_data) except Exception: pass return Data(path, data, zk_size=len(zk_data)) except Exception: return Data(path, '', failed=True) def getShardedNode(self, path): path = path.lstrip('/') if not self.client.exists(path): return Data(path, '', failed=True) shards = sorted(self.listChildren(path)) data = b'' compressed_data_len = 0 try: for shard in shards: compressed_data, _ = self.client.get(os.path.join(path, shard)) compressed_data_len += len(compressed_data) data += zlib.decompress(compressed_data) return Data(path, data, zk_size=compressed_data_len) except Exception: return Data(path, data, failed=True) def listChildren(self, path): path = path.lstrip('/') try: return self.client.get_children(path) except kazoo.client.NoNodeError: return [] class Analyzer: def __init__(self, args): if args.path: self.tree = FilesystemTree(args.path) else: self.tree = ZKTree(args.host, args.cert, args.key, args.ca) if args.depth is not None: self.depth = int(args.depth) else: self.depth = None if args.human: self.conv = convert_human else: self.conv = convert_null if args.limit: self.limit = unconvert_human(args.limit) else: self.limit = 0 self.use_zk_size = args.zk_size def summarizeItem(self, item): # Start with an item item_summary = SummaryLine('Item', item.path, item.size, item.zk_size) buildsets = self.tree.listBuildsets(item.path) for bs_i, bs_id in enumerate(buildsets): # Add each buildset buildset = self.tree.getBuildset(item.path, bs_id) buildset_summary = SummaryLine( 'Buildset', buildset.path, buildset.size, buildset.zk_size) item_summary.add(buildset_summary) # Some attributes are offloaded, gather them and include # the size. for x in ['merge_repo_state', 'extra_repo_state', 'files', 'config_errors']: if buildset.data.get(x): node = self.tree.getShardedNode(buildset.data.get(x)) buildset_summary.attrs[x] = \ self.use_zk_size and node.zk_size or node.size buildset_summary.size += node.size buildset_summary.zk_size += node.zk_size jobs = self.tree.listJobs(buildset.path) for job_i, job_name in enumerate(jobs): # Add each job job = self.tree.getJob(buildset.path, job_name) job_summary = SummaryLine('Job', job.path, job.size, job.zk_size) buildset_summary.add(job_summary) # Handle offloaded job data for job_attr in ('artifact_data', 'extra_variables', 'group_variables', 'host_variables', 'secret_parent_data', 'variables', 'parent_data', 'secrets'): job_data = job.data.get(job_attr, None) if job_data and job_data['storage'] == 'offload': node = self.tree.getShardedNode(job_data['path']) job_summary.attrs[job_attr] = \ self.use_zk_size and node.zk_size or node.size job_summary.size += node.size job_summary.zk_size += node.zk_size builds = self.tree.listBuilds(buildset.path, job_name) for build_i, build_id in enumerate(builds): # Add each build build = self.tree.getBuild( buildset.path, job_name, build_id) build_summary = SummaryLine( 'Build', build.path, build.size, build.zk_size) job_summary.add(build_summary) # Add the offloaded build attributes result_len = 0 result_zk_len = 0 if build.data.get('_result_data'): result_data = self.tree.getShardedNode( build.data['_result_data']) result_len += result_data.size result_zk_len += result_data.zk_size if build.data.get('_secret_result_data'): secret_result_data = self.tree.getShardedNode( build.data['_secret_result_data']) result_len += secret_result_data.size result_zk_len += secret_result_data.zk_size build_summary.attrs['results'] = \ self.use_zk_size and result_zk_len or result_len build_summary.size += result_len build_summary.zk_size += result_zk_len sys.stdout.write(item_summary.toStr(0, self.depth, self.conv, self.limit, self.use_zk_size)) def summarizePipelines(self): for tenant_name in self.tree.listTenants(): for pipeline_name in self.tree.listPipelines(tenant_name): for item in self.tree.getItems(tenant_name, pipeline_name): self.summarizeItem(item) def summarizeConnectionCache(self, connection_name): connection_summary = SummaryLine('Connection', connection_name, 0, 0) branch_cache = self.tree.getBranchCache(connection_name) branch_summary = SummaryLine( 'Branch Cache', connection_name, branch_cache.size, branch_cache.zk_size) connection_summary.add(branch_summary) cache_key_summary = SummaryLine( 'Change Cache Keys', connection_name, 0, 0) cache_key_summary.attrs['count'] = 0 connection_summary.add(cache_key_summary) for key in self.tree.listCacheKeys(connection_name): cache_key = self.tree.getCacheKey(connection_name, key) cache_key_summary.size += cache_key.size cache_key_summary.zk_size += cache_key.zk_size cache_key_summary.attrs['count'] += 1 cache_data_summary = SummaryLine( 'Change Cache Data', connection_name, 0, 0) cache_data_summary.attrs['count'] = 0 connection_summary.add(cache_data_summary) for key in self.tree.listCacheData(connection_name): cache_data = self.tree.getCacheData(connection_name, key) cache_data_summary.size += cache_data.size cache_data_summary.zk_size += cache_data.zk_size cache_data_summary.attrs['count'] += 1 sys.stdout.write(connection_summary.toStr( 0, self.depth, self.conv, self.limit, self.use_zk_size)) def summarizeConnections(self): for connection_name in self.tree.listConnections(): self.summarizeConnectionCache(connection_name) def summarize(self): self.summarizeConnections() self.summarizePipelines() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--path', help='Filesystem path for previously dumped data') parser.add_argument('--host', help='ZK host string (exclusive with --path)') parser.add_argument('--cert', help='Path to TLS certificate') parser.add_argument('--key', help='Path to TLS key') parser.add_argument('--ca', help='Path to TLS CA cert') parser.add_argument('-d', '--depth', help='Limit depth when printing') parser.add_argument('-H', '--human', dest='human', action='store_true', help='Use human-readable sizes') parser.add_argument('-l', '--limit', dest='limit', help='Only print nodes greater than limit') parser.add_argument('-Z', '--zksize', dest='zk_size', action='store_true', help='Use the possibly compressed ZK storage size ' 'instead of plain data size') args = parser.parse_args() az = Analyzer(args) az.summarize()
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/tools/zk-analyze.py
zk-analyze.py
import gzip import os import re import yaml def get_log_age(path): filename = os.path.basename(path) parts = filename.split('.') if len(parts) < 4: return 0 else: return int(parts[2]) class LogScraper(object): # Example log line # 2018-10-26 16:14:47,527 INFO zuul.nodepool: Nodeset <NodeSet two-centos-7-nodes [<Node 0000058431 ('primary',):centos-7>, <Node 0000058468 ('secondary',):centos-7>]> with 2 nodes was in use for 6241.08082151413 seconds for build <Build 530c4ca7af9e44dcb535e7074258e803 of tripleo-ci-centos-7-scenario008-multinode-oooq-container voting:False on <Worker ze05.openstack.org>> for project openstack/tripleo-quickstart-extras # noqa r = re.compile(r'(?P<timestamp>\d+-\d+-\d+ \d\d:\d\d:\d\d,\d\d\d) INFO zuul.nodepool: Nodeset <.*> with (?P<nodes>\d+) nodes was in use for (?P<secs>\d+(.[\d\-e]+)?) seconds for build <Build \w+ of (?P<job>[^\s]+) voting:\w+ on .* for project (?P<repos>[^\s]+)') # noqa def __init__(self): self.repos = {} self.sorted_repos = [] self.jobs = {} self.sorted_jobs = [] self.total_usage = 0.0 self.projects = {} self.sorted_projects = [] self.start_time = None self.end_time = None def scrape_file(self, fn): if fn.endswith('.gz'): open_f = gzip.open else: open_f = open with open_f(fn, 'rt') as f: for line in f: if 'nodes was in use for' in line: m = self.r.match(line) if not m: continue g = m.groupdict() repo = g['repos'] secs = float(g['secs']) nodes = int(g['nodes']) job = g['job'] if not self.start_time: self.start_time = g['timestamp'] self.end_time = g['timestamp'] if repo not in self.repos: self.repos[repo] = {} self.repos[repo]['total'] = 0.0 node_time = nodes * secs self.total_usage += node_time self.repos[repo]['total'] += node_time if job not in self.jobs: self.jobs[job] = 0.0 if job not in self.repos[repo]: self.repos[repo][job] = 0.0 self.jobs[job] += node_time self.repos[repo][job] += node_time def list_log_files(self, path='/var/log/zuul'): ret = [] entries = os.listdir(path) prefix = os.path.join(path, 'zuul.log') for entry in entries: entry = os.path.join(path, entry) if os.path.isfile(entry) and entry.startswith(prefix): ret.append(entry) ret.sort(key=get_log_age, reverse=True) return ret def sort_repos(self): for repo in self.repos: self.sorted_repos.append((repo, self.repos[repo]['total'])) self.sorted_repos.sort(key=lambda x: x[1], reverse=True) def sort_jobs(self): for job, usage in self.jobs.items(): self.sorted_jobs.append((job, usage)) self.sorted_jobs.sort(key=lambda x: x[1], reverse=True) def calculate_project_usage(self): '''Group usage by logical project/effort It is often the case that a single repo doesn't capture the work of a logical project or effort. If this is the case in your situation you can create a projects.yaml file that groups together repos under logical project names to report usage by that logical grouping. The projects.yaml should be in your current directory and have this format: project_name: deliverables: logical_deliverable_name: repos: - repo1 - repo2 project_name2: deliverables: logical_deliverable_name2: repos: - repo3 - repo4 ''' if not os.path.exists('projects.yaml'): return self.sorted_projects with open('projects.yaml') as f: y = yaml.load(f) for name, v in y.items(): self.projects[name] = 0.0 for deliverable in v['deliverables'].values(): for repo in deliverable['repos']: if repo in self.repos: self.projects[name] += self.repos[repo]['total'] for project, usage in self.projects.items(): self.sorted_projects.append((project, usage)) self.sorted_projects.sort(key=lambda x: x[1], reverse=True) scraper = LogScraper() for fn in scraper.list_log_files(): scraper.scrape_file(fn) print('For period from %s to %s' % (scraper.start_time, scraper.end_time)) print('Total node time used: %.2fs' % scraper.total_usage) print() scraper.calculate_project_usage() if scraper.sorted_projects: print('Top 20 logical projects by resource usage:') for project, total in scraper.sorted_projects[:20]: percentage = (total / scraper.total_usage) * 100 print('%s: %.2fs, %.2f%%' % (project, total, percentage)) print() scraper.sort_repos() print('Top 20 repos by resource usage:') for repo, total in scraper.sorted_repos[:20]: percentage = (total / scraper.total_usage) * 100 print('%s: %.2fs, %.2f%%' % (repo, total, percentage)) print() scraper.sort_jobs() print('Top 20 jobs by resource usage:') for job, total in scraper.sorted_jobs[:20]: percentage = (total / scraper.total_usage) * 100 print('%s: %.2fs, %.2f%%' % (job, total, percentage)) print()
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/tools/node_usage.py
node_usage.py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import argparse import base64 import json import math import os import re import subprocess import sys import tempfile import textwrap import ssl # we to import Request and urlopen differently for python 2 and 3 try: from urllib.request import Request from urllib.request import urlopen from urllib.parse import urlparse except ImportError: from urllib2 import Request from urllib2 import urlopen from urlparse import urlparse DESCRIPTION = """Encrypt a secret for Zuul. This program fetches a project-specific public key from a Zuul server and uses that to encrypt a secret. The only pre-requisite is an installed OpenSSL binary. """ def main(): parser = argparse.ArgumentParser(description=DESCRIPTION) parser.add_argument('url', help="The base URL of the zuul server. " "E.g., https://zuul.example.com/ or path" " to project public key file. E.g.," " file:///path/to/key.pub") parser.add_argument('project', default=None, nargs="?", help="The name of the project. Required when using" " the Zuul API to fetch the public key.") parser.add_argument('--tenant', default=None, help="The name of the Zuul tenant. This may be " "required in a multi-tenant environment.") parser.add_argument('--strip', default=None, help='Unused, kept for backward compatibility.') parser.add_argument('--no-strip', action='store_true', default=False, help="Do not strip whitespace from beginning or " "end of input.") parser.add_argument('--infile', default=None, help="A filename whose contents will be encrypted. " "If not supplied, the value will be read from " "standard input.") parser.add_argument('--outfile', default=None, help="A filename to which the encrypted value will be " "written. If not supplied, the value will be written " "to standard output.") parser.add_argument('--insecure', action='store_true', default=False, help="Do not verify remote certificate") args = parser.parse_args() # We should not use unencrypted connections for retrieving the public key. # Otherwise our secret can be compromised. The schemes file and https are # considered safe. url = urlparse(args.url) if url.scheme not in ('file', 'https'): sys.stderr.write("WARNING: Retrieving encryption key via an " "unencrypted connection. Your secret may get " "compromised.\n") ssl_ctx = None if url.scheme == 'file': req = Request(args.url) else: if args.insecure: ssl_ctx = ssl.create_default_context() ssl_ctx.check_hostname = False ssl_ctx.verify_mode = ssl.CERT_NONE # Check if tenant is white label req = Request("%s/api/info" % (args.url.rstrip('/'),)) info = json.loads(urlopen(req, context=ssl_ctx).read().decode('utf8')) api_tenant = info.get('info', {}).get('tenant') if not api_tenant and not args.tenant: print("Error: the --tenant argument is required") exit(1) if api_tenant: req = Request("%s/api/key/%s.pub" % ( args.url.rstrip('/'), args.project)) else: req = Request("%s/api/tenant/%s/key/%s.pub" % ( args.url.rstrip('/'), args.tenant, args.project)) try: pubkey = urlopen(req, context=ssl_ctx) except Exception: sys.stderr.write( "ERROR: Couldn't retrieve project key via %s\n" % req.full_url) raise if args.infile: with open(args.infile) as f: plaintext = f.read() else: plaintext = sys.stdin.read() plaintext = plaintext.encode("utf-8") if not args.no_strip: plaintext = plaintext.strip() pubkey_file = tempfile.NamedTemporaryFile(delete=False) try: pubkey_file.write(pubkey.read()) pubkey_file.close() p = subprocess.Popen(['openssl', 'rsa', '-text', '-pubin', '-in', pubkey_file.name], stdout=subprocess.PIPE) (stdout, stderr) = p.communicate() if p.returncode != 0: raise Exception("Return code %s from openssl" % p.returncode) output = stdout.decode('utf-8') openssl_version = subprocess.check_output( ['openssl', 'version']).split()[1] if openssl_version.startswith(b'0.'): key_length_re = r'^Modulus \((?P<key_length>\d+) bit\):$' else: key_length_re = r'^(|RSA )Public-Key: \((?P<key_length>\d+) bit\)$' m = re.match(key_length_re, output, re.MULTILINE) nbits = int(m.group('key_length')) nbytes = int(nbits / 8) max_bytes = nbytes - 42 # PKCS1-OAEP overhead chunks = int(math.ceil(float(len(plaintext)) / max_bytes)) ciphertext_chunks = [] print("Public key length: {} bits ({} bytes)".format(nbits, nbytes)) print("Max plaintext length per chunk: {} bytes".format(max_bytes)) print("Input plaintext length: {} bytes".format(len(plaintext))) print("Number of chunks: {}".format(chunks)) for count in range(chunks): chunk = plaintext[int(count * max_bytes): int((count + 1) * max_bytes)] p = subprocess.Popen(['openssl', 'rsautl', '-encrypt', '-oaep', '-pubin', '-inkey', pubkey_file.name], stdin=subprocess.PIPE, stdout=subprocess.PIPE) (stdout, stderr) = p.communicate(chunk) if p.returncode != 0: raise Exception("Return code %s from openssl" % p.returncode) ciphertext_chunks.append(base64.b64encode(stdout).decode('utf-8')) finally: os.unlink(pubkey_file.name) output = textwrap.dedent( ''' - secret: name: <name> data: <fieldname>: !encrypted/pkcs1-oaep ''') twrap = textwrap.TextWrapper(width=79, initial_indent=' ' * 8, subsequent_indent=' ' * 10) for chunk in ciphertext_chunks: chunk = twrap.fill('- ' + chunk) output += chunk + '\n' if args.outfile: with open(args.outfile, "w") as f: f.write(output) else: print(output) if __name__ == '__main__': print( "This script is deprecated. Use `zuul-client encrypt` instead. " "Please refer to https://zuul-ci.org/docs/zuul-client/ " "for more details on how to use zuul-client." ) main()
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/tools/encrypt_secret.py
encrypt_secret.py
# Copyright 2020 Red Hat, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # Manage a CA for Zookeeper CAROOT=$1 SERVER=$2 SUBJECT='/C=US/ST=California/L=Oakland/O=Company Name/OU=Org' TOOLSDIR=$(dirname $0) ABSTOOLSDIR=$(cd $TOOLSDIR ;pwd) CONFIG="-config $ABSTOOLSDIR/openssl.cnf" make_ca() { mkdir $CAROOT/demoCA mkdir $CAROOT/demoCA/reqs mkdir $CAROOT/demoCA/newcerts mkdir $CAROOT/demoCA/crl mkdir $CAROOT/demoCA/private chmod 700 $CAROOT/demoCA/private touch $CAROOT/demoCA/index.txt touch $CAROOT/demoCA/index.txt.attr mkdir $CAROOT/certs mkdir $CAROOT/keys mkdir $CAROOT/keystores chmod 700 $CAROOT/keys chmod 700 $CAROOT/keystores openssl req $CONFIG -new -nodes -subj "$SUBJECT/CN=caroot" \ -keyout $CAROOT/demoCA/private/cakey.pem \ -out $CAROOT/demoCA/reqs/careq.pem openssl ca $CONFIG -create_serial -days 3560 -batch -selfsign -extensions v3_ca \ -out $CAROOT/demoCA/cacert.pem \ -keyfile $CAROOT/demoCA/private/cakey.pem \ -infiles $CAROOT/demoCA/reqs/careq.pem cp $CAROOT/demoCA/cacert.pem $CAROOT/certs } make_client() { openssl req $CONFIG -new -nodes -subj "$SUBJECT/CN=client" \ -keyout $CAROOT/keys/clientkey.pem \ -out $CAROOT/demoCA/reqs/clientreq.pem openssl ca $CONFIG -batch -policy policy_anything -days 3560 \ -out $CAROOT/certs/client.pem \ -infiles $CAROOT/demoCA/reqs/clientreq.pem } make_server() { openssl req $CONFIG -new -nodes -subj "$SUBJECT/CN=$SERVER" \ -keyout $CAROOT/keys/${SERVER}key.pem \ -out $CAROOT/demoCA/reqs/${SERVER}req.pem openssl ca $CONFIG -batch -policy policy_anything -days 3560 \ -out $CAROOT/certs/$SERVER.pem \ -infiles $CAROOT/demoCA/reqs/${SERVER}req.pem cat $CAROOT/certs/$SERVER.pem $CAROOT/keys/${SERVER}key.pem \ > $CAROOT/keystores/$SERVER.pem } help() { echo "$0 CAROOT [SERVER]" echo echo " CAROOT is the path to a directory in which to store the CA" echo " and certificates." echo " SERVER is the FQDN of a server for which a certificate should" echo " be generated" } if [ ! -d "$CAROOT" ]; then echo "CAROOT must be a directory" help exit 1 fi cd $CAROOT CAROOT=`pwd` if [ ! -d "$CAROOT/demoCA" ]; then echo 'Generate CA' make_ca echo 'Generate client certificate' make_client fi if [ -f "$CAROOT/certs/$SERVER.pem" ]; then echo "Certificate for $SERVER already exists" exit 0 fi if [ "$SERVER" != "" ]; then make_server fi
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/tools/zk-ca.sh
zk-ca.sh
# pylint: disable=locally-disabled, invalid-name """ Zuul references cleaner. Clear up references under /refs/zuul/ by inspecting the age of the commit the reference points to. If the commit date is older than a number of days specificed by --until, the reference is deleted from the git repository. Use --dry-run --verbose to finely inspect the script behavior. """ import argparse import git import logging import time import sys NOW = int(time.time()) DEFAULT_DAYS = 360 ZUUL_REF_PREFIX = 'refs/zuul/' parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument('--until', dest='days_ago', default=DEFAULT_DAYS, type=int, help='references older than this number of day will ' 'be deleted. Default: %s' % DEFAULT_DAYS) parser.add_argument('-n', '--dry-run', dest='dryrun', action='store_true', help='do not delete references') parser.add_argument('-v', '--verbose', dest='verbose', action='store_true', help='set log level from info to debug') parser.add_argument('gitrepo', help='path to a Zuul git repository') args = parser.parse_args() logging.basicConfig() log = logging.getLogger('zuul-clear-refs') if args.verbose: log.setLevel(logging.DEBUG) else: log.setLevel(logging.INFO) try: repo = git.Repo(args.gitrepo) except git.exc.InvalidGitRepositoryError: log.error("Invalid git repo: %s" % args.gitrepo) sys.exit(1) for ref in repo.references: if not ref.path.startswith(ZUUL_REF_PREFIX): continue if type(ref) is not git.refs.reference.Reference: # Paranoia: ignore heads/tags/remotes .. continue try: commit_ts = ref.commit.committed_date except LookupError: # GitPython does not properly handle PGP signed tags log.exception("Error in commit: %s, ref: %s. Type: %s", ref.commit, ref.path, type(ref)) continue commit_age = int((NOW - commit_ts) / 86400) # days log.debug( "%s at %s is %3s days old", ref.commit, ref.path, commit_age, ) if commit_age > args.days_ago: if args.dryrun: log.info("Would delete old ref: %s (%s)", ref.path, ref.commit) else: log.info("Deleting old ref: %s (%s)", ref.path, ref.commit) ref.delete(repo, ref.path)
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/tools/zuul-clear-refs.py
zuul-clear-refs.py
# Inspect ZK contents like zk-shell; handles compressed and sharded # data. import argparse import pathlib import cmd import sys import textwrap import zlib import kazoo.client from kazoo.exceptions import NoNodeError def resolve_path(path, rest): newpath = path / rest newparts = [] for part in newpath.parts: if part == '.': continue elif part == '..': newparts.pop() else: newparts.append(part) return pathlib.PurePosixPath(*newparts) class REPL(cmd.Cmd): def __init__(self, args): self.path = pathlib.PurePosixPath('/') super().__init__() kwargs = {} if args.cert: kwargs['use_ssl'] = True kwargs['keyfile'] = args.key kwargs['certfile'] = args.cert kwargs['ca'] = args.ca self.client = kazoo.client.KazooClient(args.host, **kwargs) self.client.start() @property def prompt(self): return f'{self.path}> ' def do_EOF(self, path): sys.exit(0) def do_ls(self, path): 'List znodes: ls [PATH]' if path: mypath = self.path / path else: mypath = self.path try: for child in self.client.get_children(str(mypath)): print(child) except NoNodeError: print(f'No such node: {mypath}') def do_cd(self, path): 'Change the working path: cd PATH' if path: newpath = resolve_path(self.path, path) if self.client.exists(str(newpath)): self.path = newpath else: print(f'No such node: {newpath}') def do_pwd(self): 'Print the working path' print(self.path) def help_get(self): print(textwrap.dedent(self.do_get.__doc__)) def do_get(self, args): """\ Get znode value: get PATH [-v] -v: output metadata about the path """ args = args.split(' ') path = args[0] args = args[1:] path = resolve_path(self.path, path) try: compressed_data, zstat = self.client.get(str(path)) except NoNodeError: print(f'No such node: {path}') return was_compressed = False try: data = zlib.decompress(compressed_data) was_compressed = True except zlib.error: data = compressed_data if '-v' in args: print(f'Compressed: {was_compressed}') print(f'Size: {len(data)}') print(f'Compressed size: {len(compressed_data)}') print(f'Zstat: {zstat}') print(data) def help_unshard(self): print(textwrap.dedent(self.do_unshard.__doc__)) def do_unshard(self, args): """\ Get the unsharded value: get PATH [-v] -v: output metadata about the path """ args = args.split(' ') path = args[0] args = args[1:] path = resolve_path(self.path, path) try: shards = sorted(self.client.get_children(str(path))) except NoNodeError: print(f'No such node: {path}') return compressed_data = b'' data = b'' for shard in shards: d, _ = self.client.get(str(path / shard)) compressed_data += d if compressed_data: data = zlib.decompress(compressed_data) if '-v' in args: print(f'Size: {len(data)}') print(f'Compressed size: {len(compressed_data)}') print(data) def do_rm(self, args): 'Delete znode: rm PATH [-r]' args = args.split(' ') path = args[0] args = args[1:] path = resolve_path(self.path, path) if '-r' in args: recursive = True else: recursive = False try: self.client.delete(str(path), recursive=recursive) except NoNodeError: print(f'No such node: {path}') def main(): parser = argparse.ArgumentParser() parser.add_argument('host', help='ZK host string') parser.add_argument('--cert', help='Path to TLS certificate') parser.add_argument('--key', help='Path to TLS key') parser.add_argument('--ca', help='Path to TLS CA cert') args = parser.parse_args() repl = REPL(args) repl.cmdloop() if __name__ == '__main__': main()
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/tools/zk-shell.py
zk-shell.py
# Copyright (c) 2016 NodeSource LLC # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # The above license is inferred from the # https://github.com/nodesource/distributions source repository. # Discussion, issues and change requests at: # https://github.com/nodesource/distributions # # Script to install the NodeSource Node.js 10.x repo onto an # Enterprise Linux or Fedora Core based system. # # This was downloaded from https://rpm.nodesource.com/setup_10.x # A few modifications have been made. SCRSUFFIX="_10.x" NODENAME="Node.js 10.x" NODEREPO="pub_10.x" NODEPKG="nodejs" print_status() { local outp=$(echo "$1") # | sed -r 's/\\n/\\n## /mg') echo echo -e "## ${outp}" echo } if test -t 1; then # if terminal ncolors=$(which tput > /dev/null && tput colors) # supports color if test -n "$ncolors" && test $ncolors -ge 8; then termcols=$(tput cols) bold="$(tput bold)" underline="$(tput smul)" standout="$(tput smso)" normal="$(tput sgr0)" black="$(tput setaf 0)" red="$(tput setaf 1)" green="$(tput setaf 2)" yellow="$(tput setaf 3)" blue="$(tput setaf 4)" magenta="$(tput setaf 5)" cyan="$(tput setaf 6)" white="$(tput setaf 7)" fi fi print_bold() { title="$1" text="$2" echo echo "${red}================================================================================${normal}" echo "${red}================================================================================${normal}" echo echo -e " ${bold}${yellow}${title}${normal}" echo echo -en " ${text}" echo echo "${red}================================================================================${normal}" echo "${red}================================================================================${normal}" } bail() { echo 'Error executing command, exiting' exit 1 } exec_cmd_nobail() { echo "+ $1" bash -c "$1" } exec_cmd() { exec_cmd_nobail "$1" || bail } node_deprecation_warning() { if [[ "X${NODENAME}" == "Xio.js 1.x" || "X${NODENAME}" == "Xio.js 2.x" || "X${NODENAME}" == "Xio.js 3.x" || "X${NODENAME}" == "XNode.js 0.10" || "X${NODENAME}" == "XNode.js 0.12" || "X${NODENAME}" == "XNode.js 4.x LTS Argon" || "X${NODENAME}" == "XNode.js 5.x" || "X${NODENAME}" == "XNode.js 7.x" ]]; then print_bold \ " DEPRECATION WARNING " "\ ${bold}${NODENAME} is no longer actively supported!${normal} ${bold}You will not receive security or critical stability updates${normal} for this version. You should migrate to a supported version of Node.js as soon as possible. Use the installation script that corresponds to the version of Node.js you wish to install. e.g. * ${green}https://deb.nodesource.com/setup_8.x — Node.js v8 LTS \"Carbon\"${normal} (recommended) * ${green}https://deb.nodesource.com/setup_10.x — Node.js v10 Current${normal} Please see ${bold}https://github.com/nodejs/Release${normal} for details about which version may be appropriate for you. The ${bold}NodeSource${normal} Node.js distributions repository contains information both about supported versions of Node.js and supported Linux distributions. To learn more about usage, see the repository: ${bold}https://github.com/nodesource/distributions${normal} " echo echo "Continuing in 20 seconds ..." echo sleep 20 fi } script_deprecation_warning() { if [ "X${SCRSUFFIX}" == "X" ]; then print_bold \ " SCRIPT DEPRECATION WARNING " "\ This script, located at ${bold}https://rpm.nodesource.com/setup${normal}, used to install Node.js v0.10, is deprecated and will eventually be made inactive. You should use the script that corresponds to the version of Node.js you wish to install. e.g. * ${green}https://deb.nodesource.com/setup_8.x — Node.js v8 LTS \"Carbon\"${normal} (recommended) * ${green}https://deb.nodesource.com/setup_10.x — Node.js v10 Current${normal} Please see ${bold}https://github.com/nodejs/Release${normal} for details about which version may be appropriate for you. The ${bold}NodeSource${normal} Node.js Linux distributions GitHub repository contains information about which versions of Node.js and which Linux distributions are supported and how to use the install scripts. ${bold}https://github.com/nodesource/distributions${normal} " echo echo "Continuing in 20 seconds (press Ctrl-C to abort) ..." echo sleep 20 fi } setup() { script_deprecation_warning node_deprecation_warning print_status "Installing the NodeSource ${NODENAME} repo..." print_status "Inspecting system..." if [ ! -x /bin/rpm ]; then print_status """You don't appear to be running an Enterprise Linux based system, please contact NodeSource at https://github.com/nodesource/distributions/issues if you think this is incorrect or would like your distribution to be considered for support. """ exit 1 fi ## Annotated section for auto extraction in test.sh #-check-distro-# ## Check distro and arch echo "+ rpm -q --whatprovides redhat-release || rpm -q --whatprovides centos-release || rpm -q --whatprovides cloudlinux-release || rpm -q --whatprovides sl-release" DISTRO_PKG=$(rpm -q --whatprovides redhat-release || rpm -q --whatprovides centos-release || rpm -q --whatprovides cloudlinux-release || rpm -q --whatprovides sl-release) echo "+ uname -m" UNAME_ARCH=$(uname -m) if [ "X${UNAME_ARCH}" == "Xi686" ]; then DIST_ARCH=i386 elif [ "X${UNAME_ARCH}" == "Xx86_64" ]; then DIST_ARCH=x86_64 else print_status "\ You don't appear to be running a supported machine architecture: ${UNAME_ARCH}. \ Please contact NodeSource at \ https://github.com/nodesource/distributions/issues if you think this is \ incorrect or would like your architecture to be considered for support. \ " exit 1 fi if [[ $DISTRO_PKG =~ ^(redhat|centos|cloudlinux|sl)- ]]; then DIST_TYPE=el elif [[ $DISTRO_PKG =~ ^(enterprise|system)-release- ]]; then # Oracle Linux & Amazon Linux DIST_TYPE=el elif [[ $DISTRO_PKG =~ ^(fedora|korora)- ]]; then DIST_TYPE=fc else print_status "\ You don't appear to be running a supported version of Enterprise Linux. \ Please contact NodeSource at \ https://github.com/nodesource/distributions/issues if you think this is \ incorrect or would like your architecture to be considered for support. \ Include your 'distribution package' name: ${DISTRO_PKG}. \ " exit 1 fi if [[ $DISTRO_PKG =~ ^system-release ]]; then # Amazon Linux, for 2014.* use el7, older versions are unknown, perhaps el6 DIST_VERSION=7 else ## Using the redhat-release-server-X, centos-release-X, etc. pattern ## extract the major version number of the distro DIST_VERSION=$(echo $DISTRO_PKG | sed -r 's/^[[:alpha:]]+-release(-server|-workstation|-client)?-([0-9]+).*$/\2/') if ! [[ $DIST_VERSION =~ ^[0-9][0-9]?$ ]]; then print_status "\ Could not determine your distribution version, you may not be running a \ supported version of Enterprise Linux. \ Please contact NodeSource at \ https://github.com/nodesource/distributions/issues if you think this is \ incorrect. Include your 'distribution package' name: ${DISTRO_PKG}. \ " exit 1 fi fi ## Given the distro, version and arch, construct the url for ## the appropriate nodesource-release package (it's noarch but ## we include the arch in the directory tree anyway) RELEASE_URL_VERSION_STRING="${DIST_TYPE}${DIST_VERSION}" RELEASE_URL="\ https://rpm.nodesource.com/${NODEREPO}/\ ${DIST_TYPE}/\ ${DIST_VERSION}/\ ${DIST_ARCH}/\ nodesource-release-${RELEASE_URL_VERSION_STRING}-1.noarch.rpm" #-check-distro-# print_status "Confirming \"${DIST_TYPE}${DIST_VERSION}-${DIST_ARCH}\" is supported..." ## Simple fetch & fast-fail to see if the nodesource-release ## file exists for this distro/version/arch exec_cmd_nobail "curl -sLf -o /dev/null '${RELEASE_URL}'" RC=$? if [[ $RC != 0 ]]; then print_status "\ Your distribution, identified as \"${DISTRO_PKG}\", \ is not currently supported, please contact NodeSource at \ https://github.com/nodesource/distributions/issues \ if you think this is incorrect or would like your distribution to be considered for support" exit 1 fi ## EPEL is needed for EL5, we don't install it if it's missing but ## we can give guidance if [ "$DIST_TYPE" == "el" ] && [ "$DIST_VERSION" == "5" ]; then print_status "Checking if EPEL is enabled..." echo "+ yum repolist enabled 2> /dev/null | grep epel" repolist=$(yum repolist enabled 2> /dev/null | grep epel) if [ "X${repolist}" == "X" ]; then print_status "Finding current EPEL release RPM..." ## We can scrape the html to find the latest epel-release (likely 5.4) epel_url="http://dl.fedoraproject.org/pub/epel/5/${DIST_ARCH}/" epel_release_view="${epel_url}repoview/epel-release.html" echo "+ curl -s $epel_release_view | grep -oE 'epel-release-[0-9\-]+\.noarch\.rpm'" epel=$(curl -s $epel_release_view | grep -oE 'epel-release-[0-9\-]+\.noarch\.rpm') if [ "X${epel}" = "X" ]; then print_status "Error: Could not find current EPEL release RPM!" exit 1 fi print_status """The EPEL (Extra Packages for Enterprise Linux) repository is a prerequisite for installing Node.js on your operating system. Please add it and re-run this setup script. The EPEL repository RPM is available at: ${epel_url}${epel} You can try installing with: \`rpm -ivh <url>\` """ exit 1 fi fi print_status "Downloading release setup RPM..." ## Two-step process to install the nodesource-release RPM, ## Download to a tmp file then install it directly with `rpm`. ## We don't rely on RPM's ability to fetch from HTTPS directly echo "+ mktemp" RPM_TMP=$(mktemp || bail) exec_cmd "curl -sL -o '${RPM_TMP}' '${RELEASE_URL}'" print_status "Installing release setup RPM..." ## --nosignature because nodesource-release contains the signature! exec_cmd "rpm -i --nosignature --force '${RPM_TMP}'" print_status "Cleaning up..." exec_cmd "rm -f '${RPM_TMP}'" print_status "Checking for existing installations..." ## Nasty consequences if you have an existing Node or npm package ## installed, need to inform if they are there echo "+ rpm -qa 'node|npm' | grep -v nodesource" EXISTING_NODE=$(rpm -qa 'node|npm|iojs' | grep -v nodesource) if [ "X${EXISTING_NODE}" != "X" ]; then print_status """Your system appears to already have Node.js installed from an alternative source. Run \`${bold}sudo yum remove -y ${NODEPKG} npm${normal}\` to remove these first. """ fi print_status """Run \`${bold}sudo yum install -y ${NODEPKG}${normal}\` to install ${NODENAME} and npm. ## You may also need development tools to build native addons: sudo yum install gcc-c++ make ## To install the Yarn package manager, run: curl -sL https://dl.yarnpkg.com/rpm/yarn.repo | sudo tee /etc/yum.repos.d/yarn.repo sudo yum install yarn """ exit 0 } ## Defer setup until we have the complete script setup
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/tools/install-js-repos-rpm.sh
install-js-repos-rpm.sh
import argparse import json import sys import datetime import requests from pathlib import Path def usage(argv): two_weeks_ago = datetime.datetime.utcnow() - datetime.timedelta(days=14) parser = argparse.ArgumentParser( description="Look for unstrusted command in builds log") parser.add_argument( "--since", default=two_weeks_ago, help="Date in YYYY-MM-DD format") parser.add_argument("zuul_url", help="The url of a zuul-web service") args = parser.parse_args(argv) args.zuul_url = args.zuul_url.rstrip("/") if not args.zuul_url.endswith("/api"): args.zuul_url += "/api" if not isinstance(args.since, datetime.datetime): args.since = datetime.datetime.strptime(args.since, "%Y-%m-%d") return args def get_tenants(zuul_url): """ Fetch list of tenant names """ is_witelabel = requests.get( "%s/info" % zuul_url).json().get('tenant', None) is not None if is_witelabel: raise RuntimeError("Need multitenant api") return [ tenant["name"] for tenant in requests.get("%s/tenants" % zuul_url).json() ] def is_build_in_range(build, since): """ Check if a build is in range """ try: build_date = datetime.datetime.strptime( build["start_time"], "%Y-%m-%dT%H:%M:%S") return build_date > since except TypeError: return False def get_builds(zuul_builds_url, since): """ Fecth list of builds that are in range """ builds = [] pos = 0 step = 50 while not builds or is_build_in_range(builds[-1], since): url = "%s?skip=%d&limit=%d" % (zuul_builds_url, pos, step) print("Querying %s" % url) builds += requests.get(url).json() pos += step return builds def filter_unique_builds(builds): """ Filter the list of build to keep only one per job name """ jobs = dict() for build in builds: if build["job_name"] not in jobs: jobs[build["job_name"]] = build unique_builds = list(jobs.values()) print("Found %d unique job builds" % len(unique_builds)) return unique_builds def download(source_url, local_filename): """ Download a file using streaming request """ with requests.get(source_url, local_filename, stream=True) as r: r.raise_for_status() with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) def download_build_job_output(zuul_build_url, local_path): """ Download the job-output.json of a build """ build = requests.get(zuul_build_url).json() if not build.get("log_url"): return "No log url" try: download(build["log_url"] + "job-output.json", local_path) except Exception as e: return str(e) def examine(path): """ Look for forbidden tasks in a job-output.json file path """ data = json.load(open(path)) to_fix = False for playbook in data: if playbook['trusted']: continue for play in playbook['plays']: for task in play['tasks']: for hostname, host in task['hosts'].items(): if hostname != 'localhost': continue if host['action'] in ['command', 'shell']: print("Found disallowed task:") print(" Playbook: %s" % playbook['playbook']) print(" Role: %s" % task.get('role', {}).get('name')) print(" Task: %s" % task.get('task', {}).get('name')) to_fix = True return to_fix def main(argv): args = usage(argv) cache_dir = Path("/tmp/zuul-logs") if not cache_dir.exists(): cache_dir.mkdir() to_fix = set() failed_to_examine = set() for tenant in get_tenants(args.zuul_url): zuul_tenant_url = args.zuul_url + "/tenant/" + tenant print("Looking for unique build in %s" % zuul_tenant_url) for build in filter_unique_builds( get_builds(zuul_tenant_url + "/builds", args.since)): if not build.get("uuid"): # Probably a SKIPPED build, no need to examine continue local_path = cache_dir / (build["uuid"] + ".json") build_url = zuul_tenant_url + "/build/" + build["uuid"] if not local_path.exists(): err = download_build_job_output(build_url, str(local_path)) if err: failed_to_examine.add((build_url, err)) continue try: if not examine(str(local_path)): print("%s: ok" % build_url) else: to_fix.add(build_url) except Exception as e: failed_to_examine.add((build_url, str(e))) if failed_to_examine: print("The following builds could not be examined:") for build_url, err in failed_to_examine: print("%s: %s" % (build_url, err)) if not to_fix: exit(1) if to_fix: print("The following builds are using localhost command:") for build in to_fix: print(build.replace("/api/", "/t/")) exit(1) if __name__ == "__main__": main(sys.argv[1:])
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/tools/find-untrusted-exec.py
find-untrusted-exec.py
try: from urllib.request import urlopen except ImportError: from urllib2 import urlopen import json import argparse parser = argparse.ArgumentParser() parser.add_argument('url', help='The URL of the running Zuul instance') parser.add_argument('tenant', help='The Zuul tenant', nargs='?') parser.add_argument('pipeline', help='The name of the Zuul pipeline', nargs='?') parser.add_argument('--use-config', metavar='CONFIG', help='The name of the zuul-client config to use') options = parser.parse_args() command = 'zuul-client' if options.use_config: command += f' --use-config {options.use_config}' # Check if tenant is white label info = json.loads(urlopen('%s/api/info' % options.url).read()) api_tenant = info.get('info', {}).get('tenant') tenants = [] if api_tenant: if api_tenant == options.tenant: tenants.append(None) else: print("Error: %s doesn't match tenant %s (!= %s)" % ( options.url, options.tenant, api_tenant)) exit(1) else: tenants_url = '%s/api/tenants' % options.url data = json.loads(urlopen(tenants_url).read()) for tenant in data: tenants.append(tenant['name']) for tenant in tenants: if tenant is None: status_url = '%s/api/status' % options.url else: status_url = '%s/api/tenant/%s/status' % (options.url, tenant) data = json.loads(urlopen(status_url).read()) for pipeline in data['pipelines']: if options.pipeline and pipeline['name'] != options.pipeline: continue for queue in pipeline.get('change_queues', []): for head in queue['heads']: for change in head: if not change['live']: continue if change['id'] and ',' in change['id']: # change triggered cid, cps = change['id'].split(',') print("%s enqueue" " --tenant %s" " --pipeline %s" " --project %s" " --change %s,%s" % (command, tenant, pipeline['name'], change['project_canonical'], cid, cps)) else: # ref triggered cmd = '%s enqueue-ref' \ ' --tenant %s' \ ' --pipeline %s' \ ' --project %s' \ ' --ref %s' % (command, tenant, pipeline['name'], change['project_canonical'], change['ref']) if change['id']: cmd += ' --newrev %s' % change['id'] print(cmd)
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/tools/zuul-changes.py
zuul-changes.py
import logging from collections import UserDict from zuul.driver.github.githubconnection import GithubConnection from zuul.driver.github import GithubDriver from zuul.model import Change from zuul.zk.change_cache import ChangeKey # This is a template with boilerplate code for debugging github issues # TODO: for real use override the following variables server = 'github.com' api_token = 'xxxx' appid = 2 appkey = '/opt/project/appkey' org = 'example' repo = 'sandbox' pull_nr = 8 class DummyChangeCache(UserDict): def updateChangeWithRetry(self, key, change, update_func, retry_count=5): update_func(change) self[key] = change return change def configure_logging(context): stream_handler = logging.StreamHandler() logger = logging.getLogger(context) logger.addHandler(stream_handler) logger.setLevel(logging.DEBUG) # uncomment for more logging # configure_logging('urllib3') # configure_logging('github3') # configure_logging('cachecontrol') # This is all that's needed for getting a usable github connection def create_connection(server, api_token): driver = GithubDriver() connection_config = { 'server': server, 'api_token': api_token, } conn = GithubConnection(driver, 'github', connection_config) conn._github_client_manager.initialize() conn._change_cache = DummyChangeCache() return conn def create_connection_app(server, appid, appkey): driver = GithubDriver() connection_config = { 'server': server, 'app_id': appid, 'app_key': appkey, } conn = GithubConnection(driver, 'github', connection_config) conn._github_client_manager.initialize() conn._change_cache = DummyChangeCache() return conn def get_change(connection: GithubConnection, org: str, repo: str, pull: int) -> Change: project_name = f"{org}/{repo}" github = connection.getGithubClient(project_name) pr = github.pull_request(org, repo, pull) sha = pr.head.sha change_key = ChangeKey('github', project_name, 'PullRequest', pull, sha) return conn._getChange(change_key, refresh=True) # create github connection with api token conn = create_connection(server, api_token) # create github connection with app key # conn = create_connection_app(server, appid, appkey) # Now we can do anything we want with the connection, e.g. check canMerge for # a pull request. change = get_change(conn, org, repo, pull_nr) print(conn.canMerge(change, {'cc/gate2'})) # Or just use the github object. # github = conn.getGithubClient() # # repository = github.repository(org, repo) # print(repository.as_dict())
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/tools/github-debugging.py
github-debugging.py
import Axios from 'axios' let authToken = undefined export function setAuthToken(token) { authToken = token } function getHomepageUrl() { // // Discover serving location from href. // // This is only needed for sub-directory serving. Serving the application // from 'scheme://domain/' may simply default to 'scheme://domain/' // // Note that this is not enough for sub-directory serving, // The static files location also needs to be adapted with the 'homepage' // settings of the package.json file. // // This homepage url is used for the Router and Link resolution logic // let url = new URL(window.location.href) if ('PUBLIC_URL' in process.env) { url.pathname = process.env.PUBLIC_URL } else { url.pathname = '' } if (!url.pathname.endsWith('/')) { url.pathname = url.pathname + '/' } return url.origin + url.pathname } function getZuulUrl() { // Return the zuul root api absolute url const ZUUL_API = process.env.REACT_APP_ZUUL_API let apiUrl if (ZUUL_API) { // Api url set at build time, use it apiUrl = ZUUL_API } else { // Api url is relative to homepage path apiUrl = getHomepageUrl() + 'api/' } if (!apiUrl.endsWith('/')) { apiUrl = apiUrl + '/' } if (!apiUrl.endsWith('/api/')) { apiUrl = apiUrl + 'api/' } // console.log('Api url is ', apiUrl) return apiUrl } const apiUrl = getZuulUrl() function getStreamUrl(apiPrefix) { const streamUrl = (apiUrl + apiPrefix) .replace(/(http)(s)?:\/\//, 'ws$2://') + 'console-stream' // console.log('Stream url is ', streamUrl) return streamUrl } function makeRequest(url, method, data) { if (method === undefined) { method = 'get' } // This performs a simple GET and tries to detect if CORS errors are // due to proxy authentication errors. const instance = Axios.create({ baseURL: apiUrl }) if (authToken) { instance.defaults.headers.common['Authorization'] = 'Bearer ' + authToken } const config = {method, url, data} // First try the request as normal let res = instance.request(config).catch(err => { if (err.response === undefined) { // This is either a Network, DNS, or CORS error, but we can't tell which. // If we're behind an authz proxy, it's possible our creds have timed out // and the CORS error is because we're getting a redirect. // Apache mod_auth_mellon (and possibly other authz proxies) will avoid // issuing a redirect if X-Requested-With is set to 'XMLHttpRequest' and // will instead issue a 403. We can use this to detect that case. instance.defaults.headers.common['X-Requested-With'] = 'XMLHttpRequest' let res2 = instance.request(config).catch(err2 => { if (err2.response && err2.response.status === 403) { // We might be getting a redirect or something else, // so reload the page. console.log('Received 403 after unknown error; reloading') window.location.reload() } // If we're still getting an error, we don't know the cause, // it could be a transient network error, so we won't reload, we'll just // wait for it to clear. throw (err2) }) return res2 } throw (err) }) return res } // Direct APIs function fetchInfo() { return makeRequest('info') } function fetchComponents() { return makeRequest('components') } function fetchTenantInfo(apiPrefix) { return makeRequest(apiPrefix + 'info') } function fetchOpenApi() { return Axios.get(getHomepageUrl() + 'openapi.yaml') } function fetchTenants() { return makeRequest(apiUrl + 'tenants') } function fetchConfigErrors(apiPrefix) { return makeRequest(apiPrefix + 'config-errors') } function fetchStatus(apiPrefix) { return makeRequest(apiPrefix + 'status') } function fetchChangeStatus(apiPrefix, changeId) { return makeRequest(apiPrefix + 'status/change/' + changeId) } function fetchFreezeJob(apiPrefix, pipelineName, projectName, branchName, jobName) { return makeRequest(apiPrefix + 'pipeline/' + pipelineName + '/project/' + projectName + '/branch/' + branchName + '/freeze-job/' + jobName) } function fetchBuild(apiPrefix, buildId) { return makeRequest(apiPrefix + 'build/' + buildId) } function fetchBuilds(apiPrefix, queryString) { let path = 'builds' if (queryString) { path += '?' + queryString.slice(1) } return makeRequest(apiPrefix + path) } function fetchBuildset(apiPrefix, buildsetId) { return makeRequest(apiPrefix + 'buildset/' + buildsetId) } function fetchBuildsets(apiPrefix, queryString) { let path = 'buildsets' if (queryString) { path += '?' + queryString.slice(1) } return makeRequest(apiPrefix + path) } function fetchPipelines(apiPrefix) { return makeRequest(apiPrefix + 'pipelines') } function fetchProject(apiPrefix, projectName) { return makeRequest(apiPrefix + 'project/' + projectName) } function fetchProjects(apiPrefix) { return makeRequest(apiPrefix + 'projects') } function fetchJob(apiPrefix, jobName) { return makeRequest(apiPrefix + 'job/' + jobName) } function fetchJobGraph(apiPrefix, projectName, pipelineName, branchName) { return makeRequest(apiPrefix + 'pipeline/' + pipelineName + '/project/' + projectName + '/branch/' + branchName + '/freeze-jobs') } function fetchJobs(apiPrefix) { return makeRequest(apiPrefix + 'jobs') } function fetchLabels(apiPrefix) { return makeRequest(apiPrefix + 'labels') } function fetchNodes(apiPrefix) { return makeRequest(apiPrefix + 'nodes') } function fetchSemaphores(apiPrefix) { return makeRequest(apiPrefix + 'semaphores') } function fetchAutoholds(apiPrefix) { return makeRequest(apiPrefix + 'autohold') } function fetchAutohold(apiPrefix, requestId) { return makeRequest(apiPrefix + 'autohold/' + requestId) } function fetchUserAuthorizations(apiPrefix) { return makeRequest(apiPrefix + 'authorizations') } function dequeue(apiPrefix, projectName, pipeline, change) { return makeRequest( apiPrefix + 'project/' + projectName + '/dequeue', 'post', { pipeline: pipeline, change: change, } ) } function dequeue_ref(apiPrefix, projectName, pipeline, ref) { return makeRequest( apiPrefix + 'project/' + projectName + '/dequeue', 'post', { pipeline: pipeline, ref: ref, } ) } function enqueue(apiPrefix, projectName, pipeline, change) { return makeRequest( apiPrefix + 'project/' + projectName + '/enqueue', 'post', { pipeline: pipeline, change: change, } ) } function enqueue_ref(apiPrefix, projectName, pipeline, ref, oldrev, newrev) { return makeRequest( apiPrefix + 'project/' + projectName + '/enqueue', 'post', { pipeline: pipeline, ref: ref, oldrev: oldrev, newrev: newrev, } ) } function autohold(apiPrefix, projectName, job, change, ref, reason, count, node_hold_expiration) { return makeRequest( apiPrefix + 'project/' + projectName + '/autohold', 'post', { change: change, job: job, ref: ref, reason: reason, count: count, node_hold_expiration: node_hold_expiration, } ) } function autohold_delete(apiPrefix, requestId) { return makeRequest( apiPrefix + '/autohold/' + requestId, 'delete' ) } function promote(apiPrefix, pipeline, changes) { return makeRequest( apiPrefix + '/promote', 'post', { pipeline: pipeline, changes: changes, } ) } export { apiUrl, getHomepageUrl, getStreamUrl, fetchChangeStatus, fetchConfigErrors, fetchStatus, fetchBuild, fetchBuilds, fetchBuildset, fetchBuildsets, fetchFreezeJob, fetchPipelines, fetchProject, fetchProjects, fetchJob, fetchJobGraph, fetchJobs, fetchLabels, fetchNodes, fetchOpenApi, fetchSemaphores, fetchTenants, fetchInfo, fetchComponents, fetchTenantInfo, fetchUserAuthorizations, fetchAutoholds, fetchAutohold, autohold, autohold_delete, dequeue, dequeue_ref, enqueue, enqueue_ref, promote, }
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/web/src/api.js
api.js
// This lets the app load faster on subsequent visits in production, and gives // it offline capabilities. However, it also means that developers (and users) // will only see deployed updates on the "N+1" visit to a page, since previously // cached resources are updated in the background. // To learn more about the benefits of this model, read // https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#making-a-progressive-web-app // This link also includes instructions on opting out of this behavior. const isLocalhost = Boolean( window.location.hostname === 'localhost' || // [::1] is the IPv6 localhost address. window.location.hostname === '[::1]' || // 127.0.0.1/8 is considered localhost for IPv4. window.location.hostname.match( /^127(?:\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){3}$/ ) ) export default function register () { if (process.env.REACT_APP_ENABLE_SERVICE_WORKER !== 'true') { console.log('Disabled service worker') unregister() return } if (process.env.NODE_ENV === 'production' && 'serviceWorker' in navigator) { // The URL constructor is available in all browsers that support SW. const publicUrl = new URL(process.env.PUBLIC_URL, window.location) if (publicUrl.origin !== window.location.origin) { // Our service worker won't work if PUBLIC_URL is on a different origin // from what our page is served on. This might happen if a CDN is used to // serve assets; see https://github.com/facebookincubator/create-react-app/issues/2374 return } window.addEventListener('load', () => { const swUrl = `${process.env.PUBLIC_URL}/service-worker.js` if (isLocalhost) { // This is running on localhost. Lets check if a service worker still exists or not. checkValidServiceWorker(swUrl) // Add some additional logging to localhost, pointing developers to the // service worker/PWA documentation. navigator.serviceWorker.ready.then(() => { console.log( 'This web app is being served cache-first by a service ' + 'worker. To learn more, visit https://goo.gl/SC7cgQ' ) }) } else { // Is not local host. Just register service worker registerValidSW(swUrl) } }) } } function registerValidSW (swUrl) { navigator.serviceWorker .register(swUrl) .then(registration => { registration.onupdatefound = () => { const installingWorker = registration.installing installingWorker.onstatechange = () => { if (installingWorker.state === 'installed') { if (navigator.serviceWorker.controller) { // At this point, the old content will have been purged and // the fresh content will have been added to the cache. // It's the perfect time to display a "New content is // available; please refresh." message in your web app. console.log('New content is available; please refresh.') } else { // At this point, everything has been precached. // It's the perfect time to display a // "Content is cached for offline use." message. console.log('Content is cached for offline use.') } } } } }) .catch(error => { console.error('Error during service worker registration:', error) }) } function checkValidServiceWorker (swUrl) { // Check if the service worker can be found. If it can't reload the page. fetch(swUrl) .then(response => { // Ensure service worker exists, and that we really are getting a JS file. if ( response.status === 404 || response.headers.get('content-type').indexOf('javascript') === -1 ) { // No service worker found. Probably a different app. Reload the page. navigator.serviceWorker.ready.then(registration => { registration.unregister().then(() => { window.location.reload() }) }) } else { // Service worker found. Proceed as normal. registerValidSW(swUrl) } }) .catch(() => { console.log( 'No internet connection found. App is running in offline mode.' ) }) } export function unregister () { if ('serviceWorker' in navigator) { navigator.serviceWorker.ready.then(registration => { registration.unregister() }) } }
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/web/src/registerServiceWorker.js
registerServiceWorker.js
import ComponentsPage from './pages/Components' import FreezeJobPage from './pages/FreezeJob' import StatusPage from './pages/Status' import ChangeStatusPage from './pages/ChangeStatus' import ProjectPage from './pages/Project' import ProjectsPage from './pages/Projects' import JobPage from './pages/Job' import JobsPage from './pages/Jobs' import LabelsPage from './pages/Labels' import NodesPage from './pages/Nodes' import SemaphorePage from './pages/Semaphore' import SemaphoresPage from './pages/Semaphores' import AutoholdsPage from './pages/Autoholds' import AutoholdPage from './pages/Autohold' import BuildPage from './pages/Build' import BuildsPage from './pages/Builds' import BuildsetPage from './pages/Buildset' import BuildsetsPage from './pages/Buildsets' import ConfigErrorsPage from './pages/ConfigErrors' import TenantsPage from './pages/Tenants' import StreamPage from './pages/Stream' import OpenApiPage from './pages/OpenApi' // The Route object are created in the App component. // Object with a title are created in the menu. // Object with globalRoute are not tenant scoped. // Remember to update the api getHomepageUrl subDir list for route with params const routes = () => [ { title: 'Status', to: '/status', component: StatusPage }, { title: 'Projects', to: '/projects', component: ProjectsPage }, { title: 'Jobs', to: '/jobs', component: JobsPage }, { title: 'Labels', to: '/labels', component: LabelsPage }, { title: 'Nodes', to: '/nodes', component: NodesPage }, { title: 'Autoholds', to: '/autoholds', component: AutoholdsPage }, { title: 'Semaphores', to: '/semaphores', component: SemaphoresPage }, { title: 'Builds', to: '/builds', component: BuildsPage }, { title: 'Buildsets', to: '/buildsets', component: BuildsetsPage }, { to: '/freeze-job', component: FreezeJobPage }, { to: '/status/change/:changeId', component: ChangeStatusPage }, { to: '/stream/:buildId', component: StreamPage }, { to: '/project/:projectName*', component: ProjectPage }, { to: '/job/:jobName', component: JobPage }, { to: '/build/:buildId', component: BuildPage, props: { 'activeTab': 'results' }, }, { to: '/build/:buildId/artifacts', component: BuildPage, props: { 'activeTab': 'artifacts' }, }, { to: '/build/:buildId/logs', component: BuildPage, props: { 'activeTab': 'logs' }, }, { to: '/build/:buildId/console', component: BuildPage, props: { 'activeTab': 'console' }, }, { to: '/build/:buildId/log/:file*', component: BuildPage, props: { 'activeTab': 'logs', 'logfile': true }, }, { to: '/buildset/:buildsetId', component: BuildsetPage }, { to: '/autohold/:requestId', component: AutoholdPage }, { to: '/semaphore/:semaphoreName', component: SemaphorePage }, { to: '/config-errors', component: ConfigErrorsPage, }, { to: '/tenants', component: TenantsPage, globalRoute: true }, { to: '/openapi', component: OpenApiPage, noTenantPrefix: true, }, { to: '/components', component: ComponentsPage, noTenantPrefix: true, }, // auth_callback is handled in App.jsx ] export { routes }
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/web/src/routes.js
routes.js
// The index is the main of the project. The App is wrapped with // a Provider to share the redux store and a Router to manage the location. import React from 'react' import ReactDOM from 'react-dom' import { BrowserRouter as Router } from 'react-router-dom' import { Provider } from 'react-redux' import { BroadcastChannel, createLeaderElection } from 'broadcast-channel' import 'patternfly/dist/css/patternfly.min.css' import 'patternfly/dist/css/patternfly-additions.min.css' // NOTE (felix): The Patternfly 4 CSS file must be imported before the App // component. Otherwise, the CSS rules are imported in the wrong order and some // wildcard expressions could break the layout: // https://forum.patternfly.org/t/wildcard-selector-more-specific-after-upgrade-to-patternfly-4-react-version-3-75-2/261 // Usually it should be imported at the uppermost positon, but as we don't want // PF3 to overrule PF4, we import PF4 styles after PF3. import '@patternfly/react-core/dist/styles/base.css' import '@patternfly/react-styles/css/utilities/Sizing/sizing.css' import '@patternfly/react-styles/css/utilities/Spacing/spacing.css' // To avoid that PF4 breaks existing PF3 components by some wildcard CSS rules, // we include our own migration CSS file that restores relevant parts of those // rules. // TODO (felix): Remove this import after the PF4 migration import './pf4-migration.css' import { getHomepageUrl } from './api' import registerServiceWorker from './registerServiceWorker' import { fetchInfoIfNeeded } from './actions/info' import configureStore from './store' import App from './App' // Importing our custom css file after the App allows us to also overwrite the // style attributes of PF4 component (as their CSS is loaded when the component // is imported within the App). import './index.css' import ZuulAuthProvider from './ZuulAuthProvider' import SilentCallback from './pages/SilentCallback' // Uncomment the next 3 lines to enable debug-level logging from // oidc-client. // import { Log } from 'oidc-client' // Log.logger = console // Log.level = Log.DEBUG // Don't render the entire application to handle a silent // authentication callback. if ((window.location.origin + window.location.pathname) === (getHomepageUrl() + 'silent_callback')) { ReactDOM.render( <SilentCallback/>, document.getElementById('root')) } else { const store = configureStore() // Load info endpoint store.dispatch(fetchInfoIfNeeded()) // Create a broadcast channel for sending auth (or other) // information between tabs. const channel = new BroadcastChannel('zuul') // Create an election so that only one tab will renew auth tokens. We run the // election perpetually and just check whether we are the leader when it's time // to renew tokens. const auth_election = createLeaderElection(channel) const waitForever = new Promise(function () {}) auth_election.awaitLeadership().then(()=> { waitForever.then(function() {}) }) ReactDOM.render( <Provider store={store}> <ZuulAuthProvider channel={channel} election={auth_election}> <Router basename={new URL(getHomepageUrl()).pathname}><App /></Router> </ZuulAuthProvider> </Provider>, document.getElementById('root')) registerServiceWorker() }
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/web/src/index.js
index.js
import { BUILD_FETCH_FAIL, BUILD_FETCH_REQUEST, BUILD_FETCH_SUCCESS, BUILDSET_FETCH_FAIL, BUILDSET_FETCH_REQUEST, BUILDSET_FETCH_SUCCESS, BUILD_OUTPUT_FAIL, BUILD_OUTPUT_REQUEST, BUILD_OUTPUT_SUCCESS, BUILD_OUTPUT_NOT_AVAILABLE, BUILD_MANIFEST_FAIL, BUILD_MANIFEST_REQUEST, BUILD_MANIFEST_SUCCESS, BUILD_MANIFEST_NOT_AVAILABLE, } from '../actions/build' import initialState from './initialState' export default (state = initialState.build, action) => { switch (action.type) { case BUILD_FETCH_REQUEST: case BUILDSET_FETCH_REQUEST: return { ...state, isFetching: true } case BUILD_FETCH_SUCCESS: return { ...state, builds: { ...state.builds, [action.buildId]: action.build }, isFetching: false, } case BUILDSET_FETCH_SUCCESS: return { ...state, buildsets: { ...state.buildsets, [action.buildsetId]: action.buildset }, isFetching: false, } case BUILD_FETCH_FAIL: return { ...state, builds: { ...state.builds, [action.buildId]: null }, isFetching: false, } case BUILDSET_FETCH_FAIL: return { ...state, buildsets: { ...state.buildsets, [action.buildsetId]: null }, isFetching: false, } case BUILD_OUTPUT_REQUEST: return { ...state, isFetchingOutput: true } case BUILD_OUTPUT_SUCCESS: return { ...state, outputs: { ...state.outputs, [action.buildId]: action.output }, errorIds: { ...state.errorIds, [action.buildId]: action.errorIds }, hosts: { ...state.hosts, [action.buildId]: action.hosts }, isFetchingOutput: false, } case BUILD_OUTPUT_FAIL: case BUILD_OUTPUT_NOT_AVAILABLE: return { ...state, outputs: { ...state.outputs, [action.buildId]: null }, errorIds: { ...state.errorIds, [action.buildId]: null }, hosts: { ...state.hosts, [action.buildId]: null }, isFetchingOutput: false, } case BUILD_MANIFEST_REQUEST: return { ...state, isFetchingManifest: true } case BUILD_MANIFEST_SUCCESS: return { ...state, manifests: { ...state.manifests, [action.buildId]: action.manifest }, isFetchingManifest: false, } case BUILD_MANIFEST_FAIL: case BUILD_MANIFEST_NOT_AVAILABLE: return { ...state, manifests: { ...state.manifests, [action.buildId]: null }, isFetchingManifest: false, } default: return state } }
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/web/src/reducers/build.js
build.js
import * as API from '../api' export const PROJECT_FETCH_REQUEST = 'PROJECT_FETCH_REQUEST' export const PROJECT_FETCH_SUCCESS = 'PROJECT_FETCH_SUCCESS' export const PROJECT_FETCH_FAIL = 'PROJECT_FETCH_FAIL' export const requestProject = () => ({ type: PROJECT_FETCH_REQUEST }) export const receiveProject = (tenant, projectName, project) => { // TODO: fix api to return template name or merge them // in the mean-time, merge the jobs in project configs const templateIdx = [] let idx project.configs.forEach((config, idx) => { if (config.is_template === true) { // This must be a template templateIdx.push(idx) config.pipelines.forEach(templatePipeline => { let pipeline = project.configs[idx - 1].pipelines.filter( item => item.name === templatePipeline.name) if (pipeline.length === 0) { // Pipeline doesn't exist in project config project.configs[idx - 1].pipelines.push(templatePipeline) } else { if (pipeline[0].queue_name === null) { pipeline[0].queue_name = templatePipeline.queue_name } templatePipeline.jobs.forEach(job => { pipeline[0].jobs.push(job) }) } }) } }) for (idx = templateIdx.length - 1; idx >= 0; idx -= 1) { project.configs.splice(templateIdx[idx], 1) } return { type: PROJECT_FETCH_SUCCESS, tenant: tenant, projectName: projectName, project: project, receivedAt: Date.now(), } } const failedProject = error => ({ type: PROJECT_FETCH_FAIL, error }) const fetchProject = (tenant, project) => dispatch => { dispatch(requestProject()) return API.fetchProject(tenant.apiPrefix, project) .then(response => dispatch(receiveProject( tenant.name, project, response.data))) .catch(error => dispatch(failedProject(error))) } const shouldFetchProject = (tenant, projectName, state) => { const tenantProjects = state.project.projects[tenant.name] if (tenantProjects) { const project = tenantProjects[projectName] if (!project) { return true } if (project.isFetching) { return false } return false } return true } export const fetchProjectIfNeeded = (tenant, project, force) => ( dispatch, getState) => { if (force || shouldFetchProject(tenant, project, getState())) { return dispatch(fetchProject(tenant, project)) } return Promise.resolve() }
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/web/src/actions/project.js
project.js
import * as API from '../api' export const FREEZE_JOB_FETCH_REQUEST = 'FREEZE_JOB_FETCH_REQUEST' export const FREEZE_JOB_FETCH_SUCCESS = 'FREEZE_JOB_FETCH_SUCCESS' export const FREEZE_JOB_FETCH_FAIL = 'FREEZE_JOB_FETCH_FAIL' export const requestFreezeJob = () => ({ type: FREEZE_JOB_FETCH_REQUEST }) export function makeFreezeJobKey(pipeline, project, branch, job) { return JSON.stringify({ pipeline, project, branch, job }) } export const receiveFreezeJob = (tenant, freezeJobKey, freezeJob) => { return { type: FREEZE_JOB_FETCH_SUCCESS, tenant: tenant, freezeJobKey: freezeJobKey, freezeJob: freezeJob, receivedAt: Date.now(), } } const failedFreezeJob = error => ({ type: FREEZE_JOB_FETCH_FAIL, error }) const fetchFreezeJob = (tenant, pipeline, project, branch, job) => dispatch => { dispatch(requestFreezeJob()) const freezeJobKey = makeFreezeJobKey(pipeline, project, branch, job) return API.fetchFreezeJob(tenant.apiPrefix, pipeline, project, branch, job) .then(response => dispatch(receiveFreezeJob( tenant.name, freezeJobKey, response.data))) .catch(error => dispatch(failedFreezeJob(error))) } const shouldFetchFreezeJob = (tenant, pipeline, project, branch, job, state) => { const freezeJobKey = makeFreezeJobKey(pipeline, project, branch, job) const tenantFreezeJobs = state.freezejob.freezeJobs[tenant.name] if (tenantFreezeJobs) { const freezeJob = tenantFreezeJobs[freezeJobKey] if (!freezeJob) { return true } if (freezeJob.isFetching) { return false } return false } return true } export const fetchFreezeJobIfNeeded = (tenant, pipeline, project, branch, job, force) => ( dispatch, getState) => { if (force || shouldFetchFreezeJob(tenant, pipeline, project, branch, job, getState())) { return dispatch(fetchFreezeJob(tenant, pipeline, project, branch, job)) } return Promise.resolve() }
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/web/src/actions/freezejob.js
freezejob.js
import Axios from 'axios' export const LOGFILE_FETCH_REQUEST = 'LOGFILE_FETCH_REQUEST' export const LOGFILE_FETCH_SUCCESS = 'LOGFILE_FETCH_SUCCESS' export const LOGFILE_FETCH_FAIL = 'LOGFILE_FETCH_FAIL' export const requestLogfile = (url) => ({ type: LOGFILE_FETCH_REQUEST, url: url, }) const SYSLOGDATE = '\\w+\\s+\\d+\\s+\\d{2}:\\d{2}:\\d{2}((\\.|\\,)\\d{3,6})?' const DATEFMT = '\\d{4}-\\d{2}-\\d{2} \\d{2}:\\d{2}:\\d{2}((\\.|\\,)\\d{3,6})?' const STATUSFMT = '(DEBUG|INFO|WARNING|ERROR|TRACE|AUDIT|CRITICAL)' const severityMap = { DEBUG: 1, INFO: 2, WARNING: 3, ERROR: 4, TRACE: 5, AUDIT: 6, CRITICAL: 7, } const OSLO_LOGMATCH = new RegExp(`^(${DATEFMT})(( \\d+)? (${STATUSFMT}).*)`) const SYSTEMD_LOGMATCH = new RegExp(`^(${SYSLOGDATE})( (\\S+) \\S+\\[\\d+\\]\\: (${STATUSFMT}).*)`) const receiveLogfile = (buildId, file, data) => { const out = data.split(/\r?\n/).map((line, idx) => { let m = null let sev = null m = SYSTEMD_LOGMATCH.exec(line) if (m) { sev = severityMap[m[7]] } else { OSLO_LOGMATCH.exec(line) if (m) { sev = severityMap[m[7]] } } return { text: line, index: idx+1, severity: sev } }) return { type: LOGFILE_FETCH_SUCCESS, buildId, fileName: file, fileContent: out, receivedAt: Date.now() } } const failedLogfile = (error, url) => { error.url = url return { type: LOGFILE_FETCH_FAIL, error } } export function fetchLogfile(buildId, file, state) { return async function (dispatch) { // Don't do anything if the logfile is already part of our local state if ( buildId in state.logfile.files && file in state.logfile.files[buildId] ) { return Promise.resolve() } // Since this method is only called after fetchBuild() and fetchManifest(), // we can assume both are there. const build = state.build.builds[buildId] const manifest = state.build.manifests[buildId] const item = manifest.index['/' + file] if (!item) { return dispatch( failedLogfile(Error(`No manifest entry found for logfile "${file}"`)) ) } if (item.mimetype !== 'text/plain') { return dispatch( failedLogfile(Error(`Logfile "${file}" has invalid mimetype`)) ) } const url = build.log_url + file dispatch(requestLogfile()) try { const response = await Axios.get(url, { transformResponse: [] }) dispatch(receiveLogfile(buildId, file, response.data)) } catch(error) { dispatch(failedLogfile(error, url)) } } }
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/web/src/actions/logfile.js
logfile.js
import Axios from 'axios' import * as API from '../api' import { fetchLogfile } from './logfile' export const BUILD_FETCH_REQUEST = 'BUILD_FETCH_REQUEST' export const BUILD_FETCH_SUCCESS = 'BUILD_FETCH_SUCCESS' export const BUILD_FETCH_FAIL = 'BUILD_FETCH_FAIL' export const BUILDSET_FETCH_REQUEST = 'BUILDSET_FETCH_REQUEST' export const BUILDSET_FETCH_SUCCESS = 'BUILDSET_FETCH_SUCCESS' export const BUILDSET_FETCH_FAIL = 'BUILDSET_FETCH_FAIL' export const BUILD_OUTPUT_REQUEST = 'BUILD_OUTPUT_FETCH_REQUEST' export const BUILD_OUTPUT_SUCCESS = 'BUILD_OUTPUT_FETCH_SUCCESS' export const BUILD_OUTPUT_FAIL = 'BUILD_OUTPUT_FETCH_FAIL' export const BUILD_OUTPUT_NOT_AVAILABLE = 'BUILD_OUTPUT_NOT_AVAILABLE' export const BUILD_MANIFEST_REQUEST = 'BUILD_MANIFEST_FETCH_REQUEST' export const BUILD_MANIFEST_SUCCESS = 'BUILD_MANIFEST_FETCH_SUCCESS' export const BUILD_MANIFEST_FAIL = 'BUILD_MANIFEST_FETCH_FAIL' export const BUILD_MANIFEST_NOT_AVAILABLE = 'BUILD_MANIFEST_NOT_AVAILABLE' export const requestBuild = () => ({ type: BUILD_FETCH_REQUEST }) export const receiveBuild = (buildId, build) => ({ type: BUILD_FETCH_SUCCESS, buildId: buildId, build: build, receivedAt: Date.now() }) const failedBuild = (buildId, error, url) => { error.url = url return { type: BUILD_FETCH_FAIL, buildId, error } } export const requestBuildOutput = () => ({ type: BUILD_OUTPUT_REQUEST }) // job-output processing functions export function renderTree(tenant, build, path, obj, textRenderer, defaultRenderer) { const node = {} let name = obj.name if ('children' in obj && obj.children) { node.nodes = obj.children.map( n => renderTree(tenant, build, path+obj.name+'/', n, textRenderer, defaultRenderer)) } if (obj.mimetype === 'application/directory') { name = obj.name + '/' } else { node.icon = 'fa fa-file-o' } let log_url = build.log_url if (log_url.endsWith('/')) { log_url = log_url.slice(0, -1) } if (obj.mimetype === 'text/plain') { node.text = textRenderer(tenant, build, path, name, log_url, obj) } else { node.text = defaultRenderer(log_url, path, name, obj) } return node } export function didTaskFail(task) { if (task.failed) { return true } if (task.results) { for (let result of task.results) { if (didTaskFail(result)) { return true } } } return false } export function hasInterestingKeys (obj, keys) { return Object.entries(obj).filter( ([k, v]) => (keys.includes(k) && v !== '') ).length > 0 } export function findLoopLabel(item) { const label = item._ansible_item_label return typeof(label) === 'string' ? label : '' } export function shouldIncludeKey(key, value, ignore_underscore, included) { if (ignore_underscore && key[0] === '_') { return false } if (included) { if (!included.includes(key)) { return false } if (value === '') { return false } } return true } export function makeTaskPath (path) { return path.join('/') } export function taskPathMatches (ref, test) { if (test.length < ref.length) return false for (let i=0; i < ref.length; i++) { if (ref[i] !== test[i]) return false } return true } export const receiveBuildOutput = (buildId, output) => { const hosts = {} const taskFailed = (taskResult) => { if (taskResult.rc && taskResult.failed_when_result !== false) return true else if (taskResult.failed) return true else return false } // Compute stats output.forEach(phase => { Object.entries(phase.stats).forEach(([host, stats]) => { if (!hosts[host]) { hosts[host] = stats hosts[host].failed = [] } else { hosts[host].changed += stats.changed hosts[host].failures += stats.failures hosts[host].ok += stats.ok } if (stats.failures > 0) { // Look for failed tasks phase.plays.forEach(play => { play.tasks.forEach(task => { if (task.hosts[host]) { if (task.hosts[host].results && task.hosts[host].results.length > 0) { task.hosts[host].results.forEach(result => { if (taskFailed(result)) { result.name = task.task.name hosts[host].failed.push(result) } }) } else if (taskFailed(task.hosts[host])) { let result = task.hosts[host] result.name = task.task.name hosts[host].failed.push(result) } } }) }) } }) }) // Identify all of the hosttasks (and therefore tasks, plays, and // playbooks) which have failed. The errorIds are either task or // play uuids, or the phase+index for the playbook. Since they are // different formats, we can store them in the same set without // collisions. const errorIds = new Set() output.forEach(playbook => { playbook.plays.forEach(play => { play.tasks.forEach(task => { Object.entries(task.hosts).forEach(([, host]) => { if (didTaskFail(host)) { errorIds.add(task.task.id) errorIds.add(play.play.id) errorIds.add(playbook.phase + playbook.index) } }) }) }) }) return { type: BUILD_OUTPUT_SUCCESS, buildId: buildId, hosts: hosts, output: output, errorIds: errorIds, receivedAt: Date.now() } } const failedBuildOutput = (buildId, error, url) => { error.url = url return { type: BUILD_OUTPUT_FAIL, buildId, error } } export const requestBuildManifest = () => ({ type: BUILD_MANIFEST_REQUEST }) export const receiveBuildManifest = (buildId, manifest) => { const index = {} const renderNode = (root, object) => { const path = root + '/' + object.name if ('children' in object && object.children) { object.children.map(n => renderNode(path, n)) } else { index[path] = object } } manifest.tree.map(n => renderNode('', n)) return { type: BUILD_MANIFEST_SUCCESS, buildId: buildId, manifest: {tree: manifest.tree, index: index, index_links: manifest.index_links}, receivedAt: Date.now() } } const failedBuildManifest = (buildId, error, url) => { error.url = url return { type: BUILD_MANIFEST_FAIL, buildId, error } } function buildOutputNotAvailable(buildId) { return { type: BUILD_OUTPUT_NOT_AVAILABLE, buildId: buildId, } } function buildManifestNotAvailable(buildId) { return { type: BUILD_MANIFEST_NOT_AVAILABLE, buildId: buildId, } } export function fetchBuild(tenant, buildId, state) { return async function (dispatch) { // Although it feels a little weird to not do anything in an action creator // based on the redux state, we do this in here because the function is // called from multiple places and it's easier to check for the build in // here than in all the other places before calling this function. if (state.build.builds[buildId]) { return Promise.resolve() } dispatch(requestBuild()) try { const response = await API.fetchBuild(tenant.apiPrefix, buildId) dispatch(receiveBuild(buildId, response.data)) } catch (error) { dispatch(failedBuild(buildId, error, tenant.apiPrefix)) // Raise the error again, so fetchBuildAllInfo() doesn't call the // remaining fetch methods. throw error } } } function fetchBuildOutput(buildId, state) { return async function (dispatch) { // In case the value is already set in our local state, directly resolve the // promise. A null value means that the output could not be found for this // build id. if (state.build.outputs[buildId] !== undefined) { return Promise.resolve() } // As this function is only called after fetchBuild() we can assume that // the build is in the state. Otherwise an error would have been thrown and // this function wouldn't be called. const build = state.build.builds[buildId] if (!build.log_url) { // Don't treat a missing log URL as failure as we don't want to show a // toast for that. The UI already informs about the missing log URL in // multiple places. return dispatch(buildOutputNotAvailable(buildId)) } const url = build.log_url.substr(0, build.log_url.lastIndexOf('/') + 1) dispatch(requestBuildOutput()) try { const response = await Axios.get(url + 'job-output.json.gz') dispatch(receiveBuildOutput(buildId, response.data)) } catch (error) { if (!error.request) { dispatch(failedBuildOutput(buildId, error, url)) // Raise the error again, so fetchBuildAllInfo() doesn't call the // remaining fetch methods. throw error } try { // Try without compression const response = await Axios.get(url + 'job-output.json') dispatch(receiveBuildOutput(buildId, response.data)) } catch (error) { dispatch(failedBuildOutput(buildId, error, url)) // Raise the error again, so fetchBuildAllInfo() doesn't call the // remaining fetch methods. throw error } } } } export function fetchBuildManifest(buildId, state) { return async function(dispatch) { // In case the value is already set in our local state, directly resolve the // promise. A null value means that the manifest could not be found for this // build id. if (state.build.manifests[buildId] !== undefined) { return Promise.resolve() } // As this function is only called after fetchBuild() we can assume that // the build is in the state. Otherwise an error would have been thrown and // this function wouldn't be called. const build = state.build.builds[buildId] dispatch(requestBuildManifest()) for (let artifact of build.artifacts) { if ( 'metadata' in artifact && 'type' in artifact.metadata && artifact.metadata.type === 'zuul_manifest' ) { try { const response = await Axios.get(artifact.url) return dispatch(receiveBuildManifest(buildId, response.data)) } catch(error) { // Show the error since we expected a manifest but did not // receive it. dispatch(failedBuildManifest(buildId, error, artifact.url)) } } } // Don't treat a missing manifest file as failure as we don't want to show a // toast for that. dispatch(buildManifestNotAvailable(buildId)) } } export function fetchBuildAllInfo(tenant, buildId, logfileName) { // This wraps the calls to fetch the build, output and manifest together as // this is the common use case we have when loading the build info. return async function (dispatch, getState) { try { // Wait for the build to be available as fetchBuildOutput and // fetchBuildManifest require information from the build object. await dispatch(fetchBuild(tenant, buildId, getState())) dispatch(fetchBuildOutput(buildId, getState())) // Wait for the manifest info to be available as this is needed in case // we also download a logfile. await dispatch(fetchBuildManifest(buildId, getState())) if (logfileName) { dispatch(fetchLogfile(buildId, logfileName, getState())) } } catch (error) { dispatch(failedBuild(buildId, error, tenant.apiPrefix)) } } } export const requestBuildset = () => ({ type: BUILDSET_FETCH_REQUEST }) export const receiveBuildset = (buildsetId, buildset) => ({ type: BUILDSET_FETCH_SUCCESS, buildsetId: buildsetId, buildset: buildset, receivedAt: Date.now() }) const failedBuildset = (buildsetId, error) => ({ type: BUILDSET_FETCH_FAIL, buildsetId, error }) export function fetchBuildset(tenant, buildsetId) { return async function(dispatch) { dispatch(requestBuildset()) try { const response = await API.fetchBuildset(tenant.apiPrefix, buildsetId) dispatch(receiveBuildset(buildsetId, response.data)) } catch (error) { dispatch(failedBuildset(buildsetId, error)) } } } const shouldFetchBuildset = (buildsetId, state) => { const buildset = state.build.buildsets[buildsetId] if (!buildset) { return true } if (buildset.isFetching) { return false } return false } export const fetchBuildsetIfNeeded = (tenant, buildsetId, force) => ( dispatch, getState) => { if (force || shouldFetchBuildset(buildsetId, getState())) { return dispatch(fetchBuildset(tenant, buildsetId)) } }
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/web/src/actions/build.js
build.js
import * as API from '../api' export const AUTOHOLDS_FETCH_REQUEST = 'AUTOHOLDS_FETCH_REQUEST' export const AUTOHOLDS_FETCH_SUCCESS = 'AUTOHOLDS_FETCH_SUCCESS' export const AUTOHOLDS_FETCH_FAIL = 'AUTOHOLDS_FETCH_FAIL' export const AUTOHOLD_FETCH_REQUEST = 'AUTOHOLD_FETCH_REQUEST' export const AUTOHOLD_FETCH_SUCCESS = 'AUTOHOLD_FETCH_SUCCESS' export const AUTOHOLD_FETCH_FAIL = 'AUTOHOLD_FETCH_FAIL' export const requestAutoholds = () => ({ type: AUTOHOLDS_FETCH_REQUEST }) export const receiveAutoholds = (tenant, json) => ({ type: AUTOHOLDS_FETCH_SUCCESS, autoholds: json, receivedAt: Date.now() }) const failedAutoholds = error => ({ type: AUTOHOLDS_FETCH_FAIL, error }) export const fetchAutoholds = (tenant) => dispatch => { dispatch(requestAutoholds()) return API.fetchAutoholds(tenant.apiPrefix) .then(response => dispatch(receiveAutoholds(tenant.name, response.data))) .catch(error => dispatch(failedAutoholds(error))) } const shouldFetchAutoholds = (tenant, state) => { const autoholds = state.autoholds if (!autoholds || autoholds.autoholds.length === 0) { return true } if (autoholds.isFetching) { return false } if (Date.now() - autoholds.receivedAt > 60000) { // Refetch after 1 minutes return true } return false } export const fetchAutoholdsIfNeeded = (tenant, force) => ( dispatch, getState) => { if (force || shouldFetchAutoholds(tenant, getState())) { return dispatch(fetchAutoholds(tenant)) } } export const requestAutohold = () => ({ type: AUTOHOLD_FETCH_REQUEST }) export const receiveAutohold = (tenant, json) => ({ type: AUTOHOLD_FETCH_SUCCESS, autohold: json, receivedAt: Date.now() }) const failedAutohold = error => ({ type: AUTOHOLD_FETCH_FAIL, error }) export const fetchAutohold = (tenant, requestId) => dispatch => { dispatch(requestAutohold()) return API.fetchAutohold(tenant.apiPrefix, requestId) .then(response => dispatch(receiveAutohold(tenant.name, response.data))) .catch(error => dispatch(failedAutohold(error))) }
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/web/src/actions/autoholds.js
autoholds.js
import * as API from '../api' export const JOB_GRAPH_FETCH_REQUEST = 'JOB_GRAPH_FETCH_REQUEST' export const JOB_GRAPH_FETCH_SUCCESS = 'JOB_GRAPH_FETCH_SUCCESS' export const JOB_GRAPH_FETCH_FAIL = 'JOB_GRAPH_FETCH_FAIL' export const requestJobGraph = () => ({ type: JOB_GRAPH_FETCH_REQUEST }) export function makeJobGraphKey(project, pipeline, branch) { return JSON.stringify({ project: project, pipeline: pipeline, branch: branch }) } export const receiveJobGraph = (tenant, jobGraphKey, jobGraph) => { return { type: JOB_GRAPH_FETCH_SUCCESS, tenant: tenant, jobGraphKey: jobGraphKey, jobGraph: jobGraph, receivedAt: Date.now(), } } const failedJobGraph = error => ({ type: JOB_GRAPH_FETCH_FAIL, error }) const fetchJobGraph = (tenant, project, pipeline, branch) => dispatch => { dispatch(requestJobGraph()) const jobGraphKey = makeJobGraphKey(project, pipeline, branch) return API.fetchJobGraph(tenant.apiPrefix, project, pipeline, branch) .then(response => dispatch(receiveJobGraph( tenant.name, jobGraphKey, response.data))) .catch(error => dispatch(failedJobGraph(error))) } const shouldFetchJobGraph = (tenant, project, pipeline, branch, state) => { const jobGraphKey = makeJobGraphKey(project, pipeline, branch) const tenantJobGraphs = state.jobgraph.jobGraphs[tenant.name] if (tenantJobGraphs) { const jobGraph = tenantJobGraphs[jobGraphKey] if (!jobGraph) { return true } if (jobGraph.isFetching) { return false } return false } return true } export const fetchJobGraphIfNeeded = (tenant, project, pipeline, branch, force) => ( dispatch, getState) => { if (force || shouldFetchJobGraph(tenant, project, pipeline, branch, getState())) { return dispatch(fetchJobGraph(tenant, project, pipeline, branch)) } return Promise.resolve() }
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/web/src/actions/jobgraph.js
jobgraph.js
import * as API from '../api' export const AUTH_CONFIG_REQUEST = 'AUTH_CONFIG_REQUEST' export const AUTH_CONFIG_SUCCESS = 'AUTH_CONFIG_SUCCESS' export const AUTH_CONFIG_FAIL = 'AUTH_CONFIG_FAIL' export const USER_ACL_REQUEST = 'USER_ACL_REQUEST' export const USER_ACL_SUCCESS = 'USER_ACL_SUCCESS' export const USER_ACL_FAIL = 'USER_ACL_FAIL' export const AUTH_START = 'AUTH_START' const authConfigRequest = () => ({ type: AUTH_CONFIG_REQUEST }) function createAuthParamsFromJson(json) { let auth_info = json.info.capabilities.auth let auth_params = { authority: '', client_id: '', scope: '', loadUserInfo: true, } if (!auth_info) { console.log('No auth config') return auth_params } const realm = auth_info.default_realm const client_config = auth_info.realms[realm] if (client_config && client_config.driver === 'OpenIDConnect') { auth_params.client_id = client_config.client_id auth_params.scope = client_config.scope auth_params.authority = client_config.authority auth_params.loadUserInfo = client_config.load_user_info return auth_params } else { console.log('No OpenIDConnect provider found') return auth_params } } const authConfigSuccess = (json, auth_params) => ({ type: AUTH_CONFIG_SUCCESS, info: json.info.capabilities.auth, auth_params: auth_params, }) const authConfigFail = error => ({ type: AUTH_CONFIG_FAIL, error }) export const configureAuthFromTenant = (tenantName) => (dispatch) => { dispatch(authConfigRequest()) return API.fetchTenantInfo('tenant/' + tenantName + '/') .then(response => { dispatch(authConfigSuccess( response.data, createAuthParamsFromJson(response.data))) }) .catch(error => { dispatch(authConfigFail(error)) }) } export const configureAuthFromInfo = (info) => (dispatch) => { try { dispatch(authConfigSuccess( {info: info}, createAuthParamsFromJson({info: info}))) } catch(error) { dispatch(authConfigFail(error)) } }
zuul
/zuul-9.1.0.tar.gz/zuul-9.1.0/web/src/actions/auth.js
auth.js
======== zuul_get ======== The ``zuul_get`` script retrieves status updates from OpenStack's Zuul deployment and returns the status of a particular CI job. The script now supports version 2 and 3 of Zuul. Installation ------------ The easiest method is to use pip: .. code-block:: console pip install zuul_get Running the script ------------------ Provide a six-digit gerrit review number as an argument to retrieve the CI job URLs from Zuul's JSON status file. Here's an example: .. code-block:: console $ zuul_get 510588 +---------------------------------------------------+---------+----------------------+ | Zuulv2 Jobs for 510588 | | | +---------------------------------------------------+---------+----------------------+ | gate-ansible-hardening-docs-ubuntu-xenial | Queued | | | gate-ansible-hardening-linters-ubuntu-xenial | Queued | | | gate-ansible-hardening-ansible-func-centos-7 | Success | https://is.gd/ifQc2I | | gate-ansible-hardening-ansible-func-ubuntu-xenial | Queued | | | gate-ansible-hardening-ansible-func-opensuse-423 | Success | https://is.gd/RiiZFW | | gate-ansible-hardening-ansible-func-debian-jessie | Success | https://is.gd/gQ0izk | | gate-ansible-hardening-ansible-func-fedora-26 | Success | https://is.gd/w9zTCa | +---------------------------------------------------+---------+----------------------+ +-----------------------------------------------------+--------+--+ | Zuulv3 Jobs for 510588 | | | +-----------------------------------------------------+--------+--+ | build-openstack-sphinx-docs | Queued | | | openstack-tox-linters | Queued | | | legacy-ansible-func-centos-7 | Queued | | | legacy-ansible-func | Queued | | | legacy-ansible-func-opensuse-423 | Queued | | | legacy-ansible-hardening-ansible-func-debian-jessie | Queued | | | legacy-ansible-hardening-ansible-func-fedora-26 | Queued | | +-----------------------------------------------------+--------+--+ Currently running jobs will have a link displayed which allows you to view the progress of a particular job. Zuulv2 uses ``telnet://`` links while Zuulv3 has a continuously updating page in your browser. Completed jobs will have a link to the job results. Contributing ------------ Pull requests and GitHub issues are always welcome!
zuul_get
/zuul_get-1.2.tar.gz/zuul_get-1.2/README.rst
README.rst
==== zuup ==== .. image:: https://travis-ci.org/sileht/zuup.png?branch=master :target: https://travis-ci.org/sileht/zuup .. image:: https://img.shields.io/pypi/v/zuup.svg :target: https://pypi.python.org/pypi/zuup/ :alt: Latest Version .. image:: https://img.shields.io/pypi/dm/zuup.svg :target: https://pypi.python.org/pypi/zuup/ :alt: Downloads Command line to consult Openstack zuul status * Free software: Apache license * Documentation: http://zuup.readthedocs.org * Source: http://github.com/sileht/zuup * Bugs: http://github.com/sileht/zuup/issues Installation ------------ At the command line:: $ pip install zuup Or, if you have virtualenvwrapper installed:: $ mkvirtualenv zuup $ pip install zuup Usage ----- To use zuup:: $ zuup --help usage: zuup [-h] [-D] [-d] [-w DELAY] [-e EXPIRATION] [-u USERNAME] [-p PROJECTS] [-c CHANGES] [-l] [-r] [-s] [-j JOB] optional arguments: -h, --help show this help message and exit -D Daemonize and exit if no more reviews -d Daemonize -w DELAY refresh delay -e EXPIRATION review expiration in deamon mode -u USERNAME Username -p PROJECTS Projects -c CHANGES changes -l local changes -r current repo changes -s short output -j JOB show log of a job of a change Example ------- Print jobs of projects:: $ zuup -p openstack/ceilometer -p openstack/gnocchi [openstack/gnocchi] check[0]: https://review.openstack.org/235161 TEST 01:22:14/00:00:00 - SUCCESS --:--:-- gate-gnocchi-pep8 http://logs.openstack.org/61/235161/4/check/gate-gnocchi-pep8/ac6632a - SUCCESS --:--:-- gate-gnocchi-docs http://logs.openstack.org/61/235161/4/check/gate-gnocchi-docs/ff085e7 - SUCCESS --:--:-- gate-gnocchi-python27 http://logs.openstack.org/61/235161/4/check/gate-gnocchi-python27/9e3fd5e - SUCCESS --:--:-- gate-gnocchi-python34 http://logs.openstack.org/61/235161/4/check/gate-gnocchi-python34/afcef87 - SUCCESS --:--:-- gate-gnocchi-bashate http://logs.openstack.org/61/235161/4/check/gate-gnocchi-bashate/f7b10d4 - SUCCESS --:--:-- gate-gnocchi-dsvm-functional-file-mysql http://logs.openstack.org/61/235161/4/check/gate-gnocchi-dsvm-functional-file-mysql/d016760 - ======= 00:00:00 gate-gnocchi-dsvm-functional-swift-postgresql https://jenkins06.openstack.org/job/gate-gnocchi-dsvm-functional-swift-postgresql/263/ - SUCCESS --:--:-- gate-gnocchi-dsvm-functional-ceph-mysql http://logs.openstack.org/61/235161/4/check/gate-gnocchi-dsvm-functional-ceph-mysql/2b54187 - SUCCESS --:--:-- gate-ceilometer-dsvm-integration http://logs.openstack.org/61/235161/4/check/gate-ceilometer-dsvm-integration/a937fd5 [openstack/ceilometer] check[0]: https://review.openstack.org/235202 Merge tag '5.0.0' 01:02:46/00:09:20 - SUCCESS --:--:-- gate-ceilometer-pep8 http://logs.openstack.org/02/235202/1/check/gate-ceilometer-pep8/bac67ce - SUCCESS --:--:-- gate-ceilometer-docs http://logs.openstack.org/02/235202/1/check/gate-ceilometer-docs/1d1eb96 - FAILURE --:--:-- gate-ceilometer-python27 http://logs.openstack.org/02/235202/1/check/gate-ceilometer-python27/d993423 - FAILURE --:--:-- gate-ceilometer-python34 http://logs.openstack.org/02/235202/1/check/gate-ceilometer-python34/5ee29b5 - SUCCESS --:--:-- gate-tempest-dsvm-ceilometer-mongodb-full http://logs.openstack.org/02/235202/1/check/gate-tempest-dsvm-ceilometer-mongodb-full/a55e9e6 - ======. 00:09:20 gate-tempest-dsvm-ceilometer-mysql-neutron-full https://jenkins06.openstack.org/job/gate-tempest-dsvm-ceilometer-mysql-neutron-full/114/ - ======= 00:00:00 gate-tempest-dsvm-ceilometer-mysql-full https://jenkins03.openstack.org/job/gate-tempest-dsvm-ceilometer-mysql-full/36/ - SUCCESS --:--:-- gate-tempest-dsvm-ceilometer-postgresql-full http://logs.openstack.org/02/235202/1/check/gate-tempest-dsvm-ceilometer-postgresql-full/a1eee16 - ======= 00:00:00 gate-ceilometer-dsvm-functional-mongodb https://jenkins03.openstack.org/job/gate-ceilometer-dsvm-functional-mongodb/275/ - ======= 00:00:00 gate-ceilometer-dsvm-functional-postgresql https://jenkins05.openstack.org/job/gate-ceilometer-dsvm-functional-postgresql/146/ - SUCCESS --:--:-- gate-grenade-dsvm-ceilometer http://logs.openstack.org/02/235202/1/check/gate-grenade-dsvm-ceilometer/383ecfb - SUCCESS --:--:-- gate-ceilometer-dsvm-integration http://logs.openstack.org/02/235202/1/check/gate-ceilometer-dsvm-integration/6758820 ... Print jobs of an user:: $ zuup -u sileht $ zuup -u sileht -d # Run it in loop Print jobs of a change-id:: $ zuup -c 235161 or $ zuup -c https://review.openstack.org/235207 Print jobs of change-ids on your local git branch:: $ zuup -l Print jobs resume :: $ zuup -c https://review.openstack.org/235207 -s [openstack/ceilometer] check[0]: https://review.openstack.org/235207 Switch to post-versioning 00:59:40/00:04:08 SSFSSSSPPSS - FAILURE --:--:-- gate-ceilometer-python27 http://logs.openstack.org/07/235207/1/check/gate-ceilometer-python27/546a067 Print running and failed jobs only :: $ zuup -c https://review.openstack.org/235207 -R [openstack/ceilometer] check[0]: https://review.openstack.org/235207 Switch to post-versioning 01:00:18/00:03:30 - FAILURE --:--:-- gate-ceilometer-python27 http://logs.openstack.org/07/235207/1/check/gate-ceilometer-python27/546a067 - ======= 00:00:00 gate-ceilometer-dsvm-functional-mongodb https://jenkins03.openstack.org/job/gate-ceilometer-dsvm-functional-mongodb/276/ - ======. 00:03:30 gate-ceilometer-dsvm-functional-postgresql https://jenkins04.openstack.org/job/gate-ceilometer-dsvm-functional-postgresql/140/
zuup
/zuup-1.0.7.tar.gz/zuup-1.0.7/README.rst
README.rst
======== Usage ======== To use zuup:: zuul --help usage: zuul [-h] [-D] [-d] [-w DELAY] [-e EXPIRATION] [-u USERNAME] [-p PROJECTS] [-c CHANGES] [-l] [-r] [-s] [-j JOB] optional arguments: -h, --help show this help message and exit -D Daemonize and exit if no more reviews -d Daemonize -w DELAY refresh delay -e EXPIRATION review expiration in deamon mode -u USERNAME Username -p PROJECTS Projects -c CHANGES changes -l local changes -r current repo changes -s short output -j JOB show log of a job of a change
zuup
/zuup-1.0.7.tar.gz/zuup-1.0.7/doc/source/usage.rst
usage.rst
import requests import json class Deadline: def __init__(self, date, course, description, opportunity, meta): self.date = date self.course = course self.description = description self.opportunity = opportunity self.meta = meta class Lesson: def __init__(self, start, end, course, location, teacher, meta): self.start = start self.end = end self.course = course self.location = location self.teacher = teacher self.meta = meta class Meta: def __init__(self, last_update, user): self.last_update = last_update self.user = user class APIConnection: def __init__(self, key): self.base_url = 'https://app.zuydbot.cc/api/v2' self.key = key self.deadlines = None self.lessons = None self.test_connection() def test_connection(self): try: r = requests.get(self.base_url, timeout=15) except requests.exceptions.ReadTimeout: raise TimeoutError('Connected timed out.') if r.status_code is not 200: raise ConnectionError('Cannot reach API (HTTP {}).'.format(r.status_code)) def send_request(self, module): try: r = requests.get('{}/{}'.format(self.base_url, module), headers={'key': self.key}, timeout=15) except requests.exceptions.ReadTimeout: raise TimeoutError('Connected timed out.') if r.status_code is not 200: raise ConnectionError('Cannot reach API (HTTP {}).'.format(r.status_code)) response = json.loads(r.content.decode('utf-8')) return response['deadlines'], response['meta'] def get_deadlines(self): deadlines, meta = self.send_request('deadlines') deadline_list = [] metadata = Meta(last_update=meta['last-update'], user=meta['user']) for deadline in deadlines: deadline_list.append(Deadline(date=deadline['date'], course=deadline['course'], meta=metadata, description=deadline['description'], opportunity=deadline['opportunity'])) self.deadlines = deadline_list def get_lessons(self): lessons, meta = self.send_request('lessons') lesson_list = [] metadata = Meta(last_update=meta['last-update'], user=meta['user']) for lesson in lessons: lesson_list.append(Lesson(start=lesson['start-time'], end=lesson['end-time'], course=lesson['course'], location=lesson['location'], teacher=lesson['teacher'], meta=metadata)) self.lessons = lesson_list
zuydbot-api
/zuydbot_api-0.1-py3-none-any.whl/zuydbot_api/APIConnection.py
APIConnection.py
# ZuzuVibhu The module provides the zuzu package for Vibhu Agarwal.\ Zuzu is a unique language defined by Vibhu Agarwal himself.\ The language is in no way related to other standard languages understood in public which is not specifically defined by Vibhu Agarwal. Happy Go Zuzus! ## Installing the package ``` pip install zuzuvibhu ``` ## Using the package ``` >>> import zuzuvibhu >>> zuzuvibhu.get_zuzus() ``` Go to http://localhost:5000/ to get the response in HTML\ or you may visit http://localhost:5000/api to get the text in JSON format.
zuzuvibhu
/zuzuvibhu-1.0.4.tar.gz/zuzuvibhu-1.0.4/README.md
README.md
# import module from __future__ import print_function from math import * import argparse import mechanize import cookielib import sys import bs4 import requests import os import glob import random import time reload(sys) sys.setdefaultencoding('utf-8') __VERSION__ = '0.1.3 (in development)' __BOTNAME__ = 'zvBot' # default botname __LICENSE__ = ''' MIT License Copyright (c) 2018 Noval Wahyu Ramadhan <[email protected]> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' # lambda sprt = lambda: logger('-'*arg.long_separator, sprt=True) # super user ADMIN = [] # blacklist user BLACKLIST = [] # Command options SINGLE_COMMAND = ['@quit', '@help'] NOT_SINGLE_COMMAND = [ '@calc', '@igstalk', '@img', '@tr', '@igd', '@wiki', '@sgb_quote', '@tanpakertas_quote', '@rasa_quote', '@img_quote', '@kbbi', '@lyrics' ] COMMANDS = NOT_SINGLE_COMMAND + SINGLE_COMMAND BLACKLIST_COMMAND = [] # helper HELP_TEXT = [ 'commands:\n', ' - @help : show this help message.', ' - @kbbi <word> : search entries for a word/phrase in KBBI Online.', ' - @lyrics <song title> : look for the lyrics of a song', ' - @img <query> : look for images that are relevant to the query.', ' - @calc <value> : do mathematical calculations.', ' - @igd <url> : download Instagram photos from url.', ' - @sgb_quote <quote> : SGB quote maker.', ' - @rasa_quote <quote> : rasa untukmu quote maker.', ' - @tanpakertas_quote <quote> : tanpa kertas quote maker.', ' - @img_quote <quote> : IMG quote maker.', ' - @wiki <word> : search for word definitions in wikipedia.', ' - @tr <text> : translate any language into English.', ' - @igstalk <username> : View user profiles on Instagram.', '<br>Example:\n', ' - @kbbi makan', ' - @img random', ' - @lyrics eminem venom', ' - @calc 1+2+3+4+5', ' - @sgb_quote write your quote here!', ' - @igd https://instagram.com/p/<code>', ' - @tr halo dunia', ' - @wiki wibu', ' - @wiki kpop' ] def command(mess, name = ''): me = mess[0] if me == '@lyrics': query = '{}'.format(' '.join(mess[1:])) hdr = {'User-Agent': 'Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.1) Gecko/2008071615 Fedora/3.0.1-1.fc9 Firefox/3.0.1', 'Accept-Language': 'en-US,en;q=0.8', 'Connection': 'keep-alive'} r = requests.get('https://search.azlyrics.com/search.php', params = {'q': query, 'w': 'songs'}, headers = hdr) url = bs4.BeautifulSoup(r.text, 'html.parser').find('td', {'class': 'text-left visitedlyr'}) if not url: r = requests.get('https://www.lyricsmode.com/search.php', params = {'search': query}, headers = hdr) soup = bs4.BeautifulSoup(r.text, 'html.parser') url = soup.find('a', {'class': 'lm-link lm-link--primary lm-link--highlight'}) if not url: return 'lyrics can\'t be found' r = requests.get('https://www.lyricsmode.com{}'.format(url.attrs['href'])) soup = bs4.BeautifulSoup(r.text, 'html.parser') return '{0}\n\n{1}'.format( ' - '.join([i.text[1:] for i in soup.find('ul', {'class': 'breadcrumb'}).findAll('li')[-2:]])[:-7], soup.find('p', {'class': 'ui-annotatable js-lyric-text-container'}).text[29:]) r = requests.get(url.a.attrs['href']) soup = bs4.BeautifulSoup(r.text, 'html.parser') return '{0}\n{1}'.format( soup.title.text[:-22], soup.findAll('div')[21].text) elif me == '@kbbi': url = 'https://kbbi.kemdikbud.go.id/entri/{}'.format(' '.join(mess[1:])) raw = requests.get(url).text if "Entri tidak ditemukan." in raw: return 'entry not found: {}'.format(' '.join(mess[1:])) arti = [] arti_contoh = [] isolasi = raw[raw.find('<h2>'):raw.find('<h4>')] soup = bs4.BeautifulSoup(isolasi, 'html.parser') entri = soup.find_all('ol') + soup.find_all('ul') for tiap_entri in entri: for tiap_arti in tiap_entri.find_all('li'): kelas = tiap_arti.find(color="red").get_text().strip() arti_lengkap = tiap_arti.get_text().strip()[len(kelas):] if ':' in arti_lengkap: arti_saja = arti_lengkap[:arti_lengkap.find(':')] else: arti_saja = arti_lengkap if kelas: hasil = '({0}) {1}' else: hasil = '{1}' arti_contoh.append(hasil.format(kelas, arti_lengkap)) arti.append(hasil.format(kelas, arti_saja)) return '\n'.join(arti).replace('(n)', '( n )') elif me == '@tr': params = { 'hl':'id', 'sl':'auto', 'tl':'en', 'ie':'UTF-8', 'prev':'_m', 'q':' '.join(mess[1:]) } url = 'https://translate.google.com/m' r = requests.get(url, params=params) soup = bs4.BeautifulSoup(r.text, 'html.parser') return soup.find(class_='t0').text elif me == '@wiki': m = False url = 'https://id.m.wikipedia.org/wiki/' + '_'.join(mess[1:]) r = requests.get(url) soup = bs4.BeautifulSoup(r.text, 'html.parser') res = '$' temp = '' if soup.find('p'): if 'dapat mengacu kepada beberapa hal berikut:' in soup.find('p').text or 'bisa merujuk kepada' in soup.find('p').text: temp += soup.find('p').text + '\n' for i in soup.find_all('li'): if 'privasi' in i.text.lower(): m = False if m: temp += '- ' + i.text + '\n' if 'baca dalam' in i.text.lower(): m = True else: paragraph = 6 if arg.paragraph >= 6 else arg.paragraph for i in soup.find_all('p')[:paragraph]: if 'akurasi' in i.text.lower(): pass else: temp += i.text + '\n\n' res += temp res += '<br>read more: ' + r.url if '$<br>' in res: res = ' sorry, I can\'t find the definition of "%s"' % ' '.join(mess[1:]) return res[1:] elif me == '@help': res = 'Hello %s, ' % (' '.join([i.capitalize() for i in name.split()])) res += 'you are admin now\n\n' if name in ADMIN else 'have a nice day\n\n' for x in HELP_TEXT: c = x.split() if len(c) > 2: if x.split()[1] in COMMANDS: if name in ADMIN: res += x + '\n' elif x.split()[1] not in BLACKLIST_COMMAND: res += x + '\n' else: res += x + '\n' return res # --------------- unknow ----------------- # def updt(progress, total): indi = '\x1b[32m#\x1b[0m' if arg.color else '#' barLength, status = 25, '%s/%s' % (convertSize(progress), convertSize(total)) progress = float(progress) / float(total) block = int(round(barLength * progress)) text = "\r{:<9}[{}] {} [{:.0f}%]".format( 'PROGRESS', indi * block + "-" * (barLength - block), status, round(progress * 100, 0) ) sys.stdout.write(text) sys.stdout.flush() def convertSize(n, format='%(value).1f %(symbol)s', symbols='customary'): SYMBOLS = { 'customary': ('B', 'K', 'Mb', 'G', 'T', 'P', 'E', 'Z', 'Y'), 'customary_ext': ('byte', 'kilo', 'mega', 'giga', 'tera', 'peta', 'exa', 'zetta', 'iotta'), 'iec': ('Bi', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi', 'Yi'), 'iec_ext': ('byte', 'kibi', 'mebi', 'gibi', 'tebi', 'pebi', 'exbi', 'zebi', 'yobi'), } n = int(n) if n < 0: raise ValueError("n < 0") symbols = SYMBOLS[symbols] prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def parse_url(url): return url[8 if url.startswith('https://') else 7:].split('/')[0] def get_file(url, name = 'zvBot.jpeg'): logger('downloading file from %s' % parse_url(url)) r = requests.get(url, stream=True) file_size = len(r.content) downloaded = 0 with open(name, 'wb') as f: for i in r.iter_content(1024): if buffer: updt(downloaded, file_size) f.write(i) f.flush() downloaded += len(i) print ('') # new line return True # -------------- starting bot ---------------- # class start_bot: def __init__(self, username, password): self.url = 'https://mbasic.facebook.com' self.username = username self.password = password self.image_numbers = self.get_last_images() self.burl = None # user config self.config = { 'blacklist':{}, 'last':{}, 'limit':{}, 'botname':{} } self.br = self.setup() self.login() def run_a_bot(self): self.br.open(self.url + '/messages/read') name = False for i in self.br.links(): if name: self.name = i.text.lower().split(' (')[0] # added new user if self.name not in self.config['last'].keys(): self.config['blacklist'][self.name] = False self.config['limit'][self.name] = 0 self.config['botname'][self.name] = __BOTNAME__ self.config['last'][self.name] = 'unknow' if not self.config['blacklist'][self.name]: logger('choose chat from %s' % i.text) if self.name not in BLACKLIST or self.config['blacklist'][self.name]: self.burl = self.url + i.url break else: logger('blacklist user detected, skipped\n%s' % '-'*arg.long_separator, 'WARNING') self.config['blacklist'][self.name] = True break if 'Cari pesan' == i.text: name = True if self.burl: for _ in range(arg.refresh): shell = True allow = True not_igd_and_set = True text = self.br.open(self.burl).read() for x in self.br.links(): if arg.group_chat: if x.text.lower()[-5:] == 'orang': logger('group chat detected, skipped', 'WARNING') sprt() self.config['blacklist'][self.name] = True break else: break soup = bs4.BeautifulSoup(text, 'html.parser') m = soup.find_all('span') com = [''] for num, i in enumerate(m): if 'dilihat' in i.text.lower(): if m[num-3].text[:3].lower() == '@igd' and 'instagram' in m[num-3].text and len(m[num-3].text.split('/')) > 4: logger('receive command: @igd') not_igd_and_set = False self.config['last'][self.name] = '@igd' logger('make a requests') ig_code = m[num-3].text.split('/')[4][1:] logger('code: %s', ig_code) self.get_file_from_instagram(ig_code) break not_com = m[num-3].text.lower() com = not_com.split() break if self.config['last'][self.name] and _ == 0 and not self.config['blacklist'][self.name]: logger('last command: %s' % self.config['last'][self.name]) if len(com) == 1 and com[0] in NOT_SINGLE_COMMAND: shell = False try: if self.config['limit'][self.name] == arg.limit and self.name not in ADMIN and not self.config['blacklist'][self.name] and com[0] in COMMANDS: logger('user has exceeded the limit') self.send('You have reached the usage limit') self.config['blacklist'][self.name] = True if com[0] in COMMANDS and com[0] != '@help': self.config['limit'][self.name] += 1 if com[0] in BLACKLIST_COMMAND: allow = False if not self.config['blacklist'][self.name] and self.name not in ADMIN: logger('receive command: %s' % com[0]) self.send('sorry, this command has been disabled by admin') if self.name in ADMIN: allow = True # execute if com[0] in COMMANDS and shell and allow: if com[0] != '@igd' and not self.config['blacklist'][self.name]: self.bcom = com[0] self.config['last'][self.name] = com[0] c_m = com[0] logger('receive command: %s' % c_m) if not_igd_and_set and com[0] != '@quit': if com[0] in NOT_SINGLE_COMMAND or '_quote' in com[0]: logger('value:%s' % not_com.replace(com[0],'')) logger('make a requests') if com[0] == '@img': self.send_image(get_file('https://source.unsplash.com/640x640/?' + not_com.replace(com[0],'')[1:])) sprt() elif com[0] == '@calc': try: i = '' for x in not_com: if x.isdigit() or x in ['/', '*', '+', '-', '%']: i += x res = eval(i) self.send('%s\n\n= %s' % (not_com[6:],res)) except (NameError,SyntaxError): self.send('invalid value: %s' % not_com[6:]) elif '_quote' in com[0]: self.send_image(self.quote(' '.join(com[1:]))) sprt() elif com[0] == '@igstalk': self.ig_stalk(com[1]) else: self.send(command(com, self.name)) elif com[0] == '@quit': if self.name in ADMIN: self.send('bot stopped, thank you for chatting with me ^^') exit('stopped bot\n' + '-'*arg.long_separator) else: self.send('You are not an admin, access is denied') except IndexError: pass # ------------- other tool ------------ # def ig_stalk(self,username): text = requests.get('https://insta-stalker.com/profile/%s' % username).text soup = bs4.BeautifulSoup(text, 'html.parser') try: data = {'profile_url':soup.find(class_='profile-img').attrs['src'], 'bio':'', 'data':{'following':0, 'followers':0, 'posts':0}} for num,i in enumerate(soup.find_all('p')[:-2]): if 'http' not in i.text and num == 1: break data['bio'] += i.text + '\n\n' if 'private' not in data['bio']: for num,i in enumerate(soup.find_all('script')[8:][:9]): if 'var' in i.text: break data['data'][data['data'].keys()[num]] = i.text[:-3].split('(')[-1] self.send_image(get_file(data['profile_url'])) self.send('%s\nFollowing: %s\nFollowers: %s\nPosts: %s' % (data['bio'][:-1], data['data']['following'], data['data']['followers'], data['data']['posts'])) except AttributeError: self.send('invalid username: %s' % username) def quote(self, quote = 'hello world!'): link = 'http://shiroyasha.tech/?tools=' if self.bcom == '@sgb_quote': link = 'https://wirayudaaditya.site/quotes/?module=' xs = 'sgbquote' elif self.bcom == '@tanpakertas_quote': xs = 'tanpakertas_' elif self.bcom == '@rasa_quote': xs = 'rasauntukmu' elif self.bcom == '@img_quote': link = 'https://wirayudaaditya.site/quotes/?module=' xs = 'autoquotemaker' self.br.open(link + xs) self.br.select_form(nr=0) self.br.form['quote'] = quote if self.bcom in ('@sgb_quote','@tanpakertas_quote','@img_quote'): self.br.form['copyright'] = self.name res = self.br.submit().read() soup = bs4.BeautifulSoup(res, 'html.parser') if self.bcom in ('@img_quote', '@sgb_quote'): open('zvBot.jpeg', 'wb').write(soup.find_all('a')[-1].img['src'].split(',')[1].decode('base64')) else: open('zvBot.jpeg', 'wb').write(soup.find_all('center')[1].img['src'].split(',')[1].decode('base64')) return True # --------------- other functions ------- # def upload_file(self,name): logger('uploading file') r = requests.post('https://www.datafilehost.com/upload.php', files={'upfile':open(name,'rb')} ) return str(bs4.BeautifulSoup(r.text,'html.parser').find('tr').input['value']) def get_last_commands(self): _ = False self.br.open(self.url + '/messages/read') for i in self.br.links(): if 'Lihat Pesan Sebelumnya' == i.text: break if _: name = i.text.lower().split(' (')[0] self.config['limit'][name] = 0 self.config['blacklist'][name] = False self.config['botname'][name] = __BOTNAME__ self.config['last'][name] = 'unknow' if arg.admin: ADMIN.append(name) if 'Cari pesan' == i.text: _ = True def get_last_images(self): x = 1 for i in glob.glob(arg.dir_cache+'/image_*.jpeg'): num = int(i.split('/')[-1].split('_')[1][:-5]) + 1 if num >= x: x = num return x def get_file_from_instagram(self, code): try: r = requests.get('https://www.instagram.com/p/'+code, params={'__a': 1}).json() media = r['graphql']['shortcode_media'] if media['is_video']: self.send('sorry, i can\'t download other than images') else: if media.get('edge_sidecar_to_children', None): self.send('downloading multiple images of this post') for child_node in media['edge_sidecar_to_children']['edges']: self.send_image(get_file(child_node['node']['display_url']), 'zvBot.jpeg') else: self.send('downloading single image') self.send_image(get_file(media['display_url']), 'zvBot.jpeg') sprt() except (KeyError, ValueError): self.send('invalid code: %s' % code) # ----------- send command ------------- # def send(self, temp): n = True if arg.botname and temp.split()[0] != 'download' or 'wait a minute' not in temp: temp += ('\n\n- via {0} | limit {1}/{2}'.format( self.config['botname'][self.name], self.config['limit'][self.name], arg.limit)) for message in temp.split('<br>'): logger('sending message: %s' % message) self.br.select_form(nr=1) self.br.form['body'] = message.capitalize() self.br.submit() logger('result: success') if 'download' in message.lower() or 'wait a minute' in message.lower(): n = False if 'example' in message.lower(): n = True if n: sprt() def send_image(self, image, x = 'zvBot.jpeg'): if '_quote' in self.bcom: self.br.open(self.burl) logger('send pictures to the recipient') if arg.cache: logger('picture name: image_%s.jpeg' % self.image_numbers) self.br.select_form(nr=1) self.br.open(self.br.click(type = 'submit', nr = 2)) self.br.select_form(nr=0) self.br.form.add_file(open(x), 'text/plain', x, nr=0) self.br.submit() logger('result: success') if image: if arg.cache: os.rename(str(x), 'image_%s.jpeg' % self.image_numbers) if arg.up_file: self.send('hd image: ' + self.upload_file('image_%s.jpeg' % self.image_numbers)) os.system('mv image_%s.jpeg %s' % (self.image_numbers, arg.dir_cache)) else: os.remove(x) self.image_numbers +=1 # ----------- Useless function --------- # def search_(self): data = {} logger('search for the latest chat history\n', 'DEBUG') self.br.open(self.url + '/messages/read') xD = False num = 1 for i in self.br.links(): if 'Lihat Pesan Sebelumnya' == i.text: break if xD: print ('%s) %s' % (num, i.text.lower().split(' (')[0])) data[num] = {'url': i.url, 'name': i.text.lower().split(' (')[0]} num += 1 if 'Cari pesan' == i.text: xD = True return data def select_(self): data = self.search_() final_ = [] n = [] user_ = raw_input('\nenter numbers [1-%s] : ' % len(data)) for x in user_.split(','): if int(x) in range(len(data) + 1) and x not in n: final_.append(data[int(x)]) n.append(x) sprt() logger('total selected : %s' % len(final_), 'DEBUG') sprt() return final_ def delete_(self): res = self.select_() for i in res: logger('delete messages from %s' % i['name']) self.br.open(self.url + i['url']) self.br.select_form(nr=2) self.br.open(self.br.click(type = 'submit', nr = 1)) self.br.open(self.url + self.br.find_link('Hapus').url) logger('finished all') # ----------- Browser Options ---------- # def setup(self): self.__ = False xd = os.uname() logger('build a virtual server (%s %s)' % (xd[0], xd[-1]), 'DEBUG') br = mechanize.Browser() self.cookie = cookielib.LWPCookieJar() if arg.cookie and not arg.own_bot: logger('use external cookies', 'DEBUG') self.cookie.load(arg.cookie) self.__ = True br.set_handle_robots(False) br.set_handle_equiv(True) br.set_handle_referer(True) br.set_handle_redirect(True) br.set_cookiejar(self.cookie) br.set_handle_refresh(mechanize._http.HTTPRefreshProcessor(), max_time = 5) br.addheaders = [('user-agent', arg.ua)] br.open(self.url) return br def login(self): logger('make server configuration', 'DEBUG') if not self.__ and arg.own_bot: self.br.select_form(nr=0) self.br.form['email'] = self.username self.br.form['pass'] = self.password self.br.submit() self.br.select_form(nr = 0) self.br.submit() if 'login' not in self.br.geturl(): for i in self.br.links(): if 'Keluar' in i.text: name = i.text.replace('Keluar (', '')[:-1] logger('server is running (%s)' % name, 'DEBUG') logger('Press Ctrl-C to quit.', 'DEBUG') sprt() if arg.info: logger('settings\n') for num,i in enumerate(arg.__dict__): print ('arg.{0:<20} {1}'.format(i+':', arg.__dict__[i])) print ('') # new line sprt() if arg.save_cookie and not arg.cookie: res = name.replace(' ', '_') + '.cj' self.cookie.save(res) logger('save the cookie in %s' % res, 'DEBUG') sprt() if not os.path.isdir(arg.dir_cache): logger('create new cache directory', 'DEBUG') os.mkdir(arg.dir_cache) sprt() self.get_last_commands() if not arg.delete_chat: while True: self.run_a_bot() logger('refresh', 'DEBUG') sprt() else: self.delete_() sprt() exit() else: logger('failed to build server', 'ERROR') sprt() def logger(mess, level='INFO', ex=False, sprt=False): mess = mess.lower().encode('utf8') code = {'INFO' : '38;5;2', 'DEBUG': '38;5;11', 'ERROR': 31, 'WARNING': 33, 'CRITICAL':41} if arg.underline: mess = mess.replace(arg.underline, '\x1b[%sm%s\x1b[0m' % ('4;32' if arg.color else '4' , arg.underline)) message = '{0:<9}{1}'.format(level + ' ' if not sprt else ('-'*9), mess[:-9] if sprt else mess) print ('\r{1}{0}'.format(message.replace(level, '\x1b[%sm%s\x1b[0m' % (code[level], level)) if arg.color else message, time.strftime('%H:%M:%S ') if arg.time and not sprt else '')) if arg.log: if not os.path.isfile(arg.log): open(arg.log, 'a').write('# create a daily report | %s v%s\n# %s\n' % (__BOTNAME__, __VERSION__, time.strftime('%c'))) with open(arg.log, 'a') as f: if arg.underline: message = message.replace('\x1b[{0}m{1}\x1b[0m'.format( '4;32' if arg.color else '4' , arg.underline ), arg.underline ) f.write('\n{0}{1}{2}'.format( time.strftime('%H:%M:%S ') if not sprt else '', message.replace('-'*arg.long_separator, '-'*30), '' if not ex else '\n') ) if ex: exit() def main(): global __BOTNAME__, __LICENSE__, cookie, arg, user, pwd parse = argparse.ArgumentParser(usage='python2 zvbot [--run] (--cookie PATH | --account USER:PASS) [options]', description='description:\n create a virtual server for Bot Messenger Facebook with a personal account', formatter_class=argparse.RawTextHelpFormatter, epilog='author:\n zevtyardt <[email protected]>\n ') parse.add_argument('-r', '--run', dest='run', action='store_true', help='run the server') value = parse.add_argument_group('value arguments') value.add_argument('--account', metavar='USER:PASS', dest='own_bot', help='create your own bot account') value.add_argument('--botname', metavar='NAME', dest='default_botname', help='rename your own bot, default %s' % __BOTNAME__) value.add_argument('--blacklist', metavar='NAME', dest='add_blacklist_user', action='append', help='add a new blacklist user by name') value.add_argument('--cookie', metavar='PATH', dest='cookie', help='use our own cookie') value.add_argument('--dirname', metavar='DIRNAME', dest='dir_cache', action='append', help='name of directory is used to store images', default='cache_image') value.add_argument('--ignore-cmd', metavar='COMMAND', dest='ignore_command', help='adding a prohibited command', choices=COMMANDS) value.add_argument('--limit', metavar='INT', dest='limit', help='limit of request from the user, default 4', type=int, default=4) value.add_argument('--logfile', metavar='PATH', dest='log', help='save all logs into the file') value.add_argument('--long-sprt',metavar='INT',dest='long_separator', help='long separating each session, min 20 max 30', type=int, default=30, choices=range(20,31)) value.add_argument('--new-admin', metavar='NAME', dest='add_admin', action='append', help='add new admin by name') value.add_argument('--paragraph', metavar='INT', dest='paragraph', help='paragraph number on wikipedia, max 6', type=int, default=2) value.add_argument('--refresh', metavar='INT', dest='refresh', help='how many times the program refreshes the page', type=int, default=8) value.add_argument('--underline', metavar='WORD', dest='underline', help='underline the specific word in all logs') value.add_argument('--user-agent', metavar='UA', dest='ua', help='specify a custom user agent', default='Mozilla/5.0 (Linux; Android 7.0; 5060 Build/NRD90M) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.109 Mobile Safari/537.36') choice = parse.add_argument_group('choice arguments') choice.add_argument('--all-admin', dest='admin', action='store_true', help='everyone can use admin command') choice.add_argument('--clear-screen', dest='clear_screen', action='store_true', help='clean the screen before running the bot') choice.add_argument('--color', dest='color', action='store_true', help='show colors in all logs') choice.add_argument('--delete-chat', dest='delete_chat', action='store_true', help='delete the latest chat history') choice.add_argument('--delete-logfile', dest='delete_logfile', action='store_true', help='delete old logs and create new logs') choice.add_argument('--ignore-botname', dest='botname', action='store_false', help='don\'t add the bot name to the final result') choice.add_argument('--ignore-cache', dest='cache', action='store_false', help='does not store all images from the sender\'s request') choice.add_argument('--ignore-group', dest='group_chat', action='store_true', help='ignore existing chat groups') choice.add_argument('-i', '--info', dest='info', action='store_true', help='showing any information') choice.add_argument('-l', '--license', dest='license', action='store_true', help='print license and exit.') choice.add_argument('-m', '--more', dest='commands', action='store_true', help='print all the available commands and exit') choice.add_argument('--save-cookie', action='store_true', dest='save_cookie', help='save session cookies into the file') choice.add_argument('--show-time', dest='time', action='store_true', help='show time in all logs') choice.add_argument('-v', '--version', dest='version', action='store_true', help='print version information and exit') choice.add_argument('-u', '--upload', dest='up_file', action='store_true', help='enable file upload. program will send hd image links') arg = parse.parse_args() if arg.version: exit ('v%s' % __VERSION__) if arg.license: exit (__LICENSE__) if arg.commands: exit ('\n' + ('\n'.join(HELP_TEXT)).replace('<br>', '\n') + '\n') if arg.default_botname: __BOTNAME__ = arg.default_botname if arg.ignore_command: for i in arg.ignore_command: if i.lower() != 'help': cmd = '@'+ i.lower() if i[0] != '@' else i.lower() BLACKLIST_COMMAND.append(cmd) if arg.add_admin: for i in arg.add_admin: ADMIN.append(i.lower()) if arg.add_blacklist_user: for i in arg.add_blacklist_user: BLACKLIST.append(i.lower()) if arg.run and arg.cookie and not arg.own_bot or arg.run and not arg.cookie and arg.own_bot: if arg.delete_logfile and arg.log: if os.path.isfile(arg.log): os.remove(arg.log) if arg.clear_screen: print('\x1bc') try: logger('Facebook Messenger bot | created by zevtyardt', 'DEBUG') user, pwd = arg.own_bot.split(':') if arg.own_bot else ('', '') start_bot(user, pwd) except KeyboardInterrupt: logger('user interrupt: stopped bot\n'+'-'*arg.long_separator, 'ERROR', ex=True) except Exception as e: logger('%s\n%s' % (e, '-'*arg.long_separator), 'CRITICAL', ex=True) else: print ('\n' + ( __BOTNAME__ + '\x1b[0m v' + __VERSION__ + '\n').center(77) ) parse.print_help() if __name__ == '__main__': main()
zvbot
/zvbot-0.1.3.tar.gz/zvbot-0.1.3/zvbot.py
zvbot.py
[![image](https://img.shields.io/pypi/v/zvdata.svg)](https://pypi.org/project/zvdata/) [![image](https://img.shields.io/pypi/l/zvdata.svg)](https://pypi.org/project/zvdata/) [![image](https://img.shields.io/pypi/pyversions/zvdata.svg)](https://pypi.org/project/zvdata/) [![Build Status](https://api.travis-ci.org/zvtvz/zvdata.svg?branch=master)](https://travis-ci.org/zvtvz/zvdata) [![codecov.io](https://codecov.io/github/zvtvz/zvdata/coverage.svg?branch=master)](https://codecov.io/github/zvtvz/zvdata) [![HitCount](http://hits.dwyl.io/zvtvz/zvdata.svg)](http://hits.dwyl.io/zvtvz/zvdata) **其他语言: [english](README-en.md).** zvdata是一个可扩展的记录数据和分析数据的库. # 如何使用 这是[zvt](https://github.com/zvtvz/zvt)抽象出来的通用库,可以用一种方便的方式来记录,计算和可视化数据. # 联系方式 微信 foolcage
zvdata
/zvdata-1.2.3.tar.gz/zvdata-1.2.3/README.md
README.md
import functools import re import uuid import decimal import zipfile import os def is_valid_uuid(val): """ Return true if the given value is a valid UUID. Args: val (str): a string which might be a UUID. Returns: bool: True if UUID """ try: uuid.UUID(str(val)) return True except ValueError: return False def as_collection(value): """If the given value is not a collection of some type, return the value wrapped in a list. Args: value (:obj:`mixed`): Returns: :obj:`list` of :obj:`mixed`: The value wrapped in alist. """ if value is None: return None if isinstance(value, (set, list, tuple)): return value return [value] class ObjectView: """ Wraps a dictionary and provides an object based view. """ snake = re.compile(r'(?<!^)(?=[A-Z])') def __init__(self, d): d = dict([(self.snake.sub('_', k).lower(), v) for k, v in d.items()]) self.__dict__ = d def as_id(value): """ If 'value' is an object, return the 'id' property, otherwise return the value. This is useful for when you need an entity's unique Id but the user passed in an instance of the entity. Args: value (mixed): A string o an object with an 'id' property. Returns: str: The id property. """ return getattr(value, 'id', value) def as_id_collection(value): """If the given value is not a collection of some type, return the value wrapped in a list. Additionally entity instances are resolved into their unique id. Args: value (:obj:`mixed`): Returns: list: A list of entity unique ids. """ if value is None: return None if isinstance(value, (set, list, tuple, dict)): return [getattr(it, "id", it) for it in value] return [getattr(value, "id", value)] def memoize(func): """ Cache the result of the given function. Args: func (function): A function to wrap. Returns: function: a wrapped function """ cache = func.cache = {} @functools.wraps(func) def memoized_func(*args, **kwargs): key = str(args) + str(kwargs) if key not in cache: cache[key] = func(*args, **kwargs) return cache[key] return memoized_func def truncate(number, places): """ Truncate a float to the given number of places. Args: number (float): The number to truncate. places (int): The number of plaes to preserve. Returns: Decimal: The truncated decimal value. """ if not isinstance(places, int): raise ValueError('Decimal places must be an integer.') if places < 1: raise ValueError('Decimal places must be at least 1.') with decimal.localcontext() as context: context.rounding = decimal.ROUND_DOWN exponent = decimal.Decimal(str(10 ** - places)) return decimal.Decimal(str(number)).quantize(exponent) def round_all(items, precision=3): """ Round all items in the list. Args: items (list): A list of floats. precision: (int): number of decimal places. Returns: list: A rounded list. """ return [round(i, precision) for i in items] def zip_directory(src_dir, dst_file, zip_root_name=""): """ A utility function for ziping a directory of files. Args: src_dir (str): The source directory. dst_file (str): The destination file.s zip_root_name (str): A optional root directory to place files in the zip. Returns: str: The dst file. """ def zipdir(path, ziph, root_name): for root, dirs, files in os.walk(path): for file in files: if file == ".DS_Store": continue zip_entry = os.path.join(root_name, root.replace(path, ""), file) ziph.write(os.path.join(root, file), zip_entry) src_dir = os.path.abspath(src_dir) zipf = zipfile.ZipFile(dst_file, 'w', zipfile.ZIP_DEFLATED) zipdir(src_dir + '/', zipf, zip_root_name) zipf.close() return dst_file
zvi-client
/zvi-client-1.1.3.tar.gz/zvi-client-1.1.3/pylib/zmlp/util.py
util.py
import os import logging import json logger = logging.getLogger(__name__) __all__ = [ 'TrainingSetDownloader' ] class TrainingSetDownloader: """ The TrainingSetDownloader class handles writing out the images labeled for model training to local disk. The Assets are automatically sorted into train and validation sets. Multiple directory layouts are supported based on the Model type. Examples: # Label Detection Layout base_dir/flowers/set_validate/daisy base_dir/flowers/set_validate/rose base_dir/flowers/set_validate/daisy base_dir/flowers/set_validate/rose # Object Detection Layout is a COCO compatible layout base_dir/set_train/images/* base_dir/set_train/annotations.json base_dir/set_test/images/* base_dir/set_test/annotations.json """ SET_TRAIN = "train" """Directory name for training images""" SET_VALIDATION = "validate" """Directory name for test images""" def __init__(self, app, model, style, dst_dir, validation_split=0.2): """ Create a new TrainingImageDownloader. Args: app: (ZmlpApp): A ZmlpApp instance. model: (Model): A Model or unique Model ID. style: (str): The output style: labels_std, objects_keras, objects_coco dst_dir (str): A destination directory to write the files into. validation_split (float): The number of images in the training set for every image in the validation set. """ self.app = app self.model = app.models.get_model(model) self.style = style self.dst_dir = dst_dir self.validation_split = validation_split self.labels = {} self.label_distrib = {} self.query = { 'size': 64, '_source': ['labels', 'files'], 'query': { 'nested': { 'path': 'labels', 'query': { 'bool': { 'must': [ {'term': {'labels.modelId': self.model.id}}, {'term': {'labels.scope': 'TRAIN'}} ] } } } } } os.makedirs(self.dst_dir, exist_ok=True) def build(self, pool=None): """ Downloads the files labeled for training a Model to local disk. Args: labels_std, objects_keras, objects_coco pool (multiprocessing.Pool): An optional Pool instance which can be used to download files in parallel. """ if self.style == 'labels-standard': self._build_labels_std_format(pool) elif self.style == 'objects_coco': self._build_objects_coco_format(pool) elif self.style == 'objects_keras': self._build_objects_keras_format(pool) else: raise ValueError('{} not supported by the TrainingSetDownloader'.format(format)) def _build_labels_std_format(self, pool): self._setup_labels_std_base_dir() for num, asset in enumerate(self.app.assets.scroll_search(self.query, timeout='5m')): prx = asset.get_thumbnail(0) if not prx: logger.warning('{} did not have a suitable thumbnail'.format(asset)) continue ds_labels = self._get_labels(asset) if not ds_labels: logger.warning('{} did not have any labels'.format(asset)) continue label = ds_labels[0].get('label') if not label: logger.warning('{} was not labeled.'.format(asset)) continue dir_name = self._get_image_set_type(label) dst_path = os.path.join(self.dst_dir, dir_name, label, prx.cache_id) os.makedirs(os.path.dirname(dst_path), exist_ok=True) logger.info('Downloading to {}'.format(dst_path)) if pool: pool.apply_async(self.app.assets.download_file, args=(prx, dst_path)) else: self.app.assets.download_file(prx, dst_path) def _build_objects_coco_format(self, pool=None): """ Write a labeled assets in a COCO object detection training structure. Args: pool (multiprocessing.Pool): A multi-processing pool for downloading really fast. Returns: str: A path to an annotation file. """ self._setup_objects_coco_base_dir() coco = CocoAnnotationFileBuilder() for image_id, asset in enumerate(self.app.assets.scroll_search(self.query, timeout='5m')): prx = asset.get_thumbnail(1) if not prx: logger.warning('{} did not have a suitable thumbnail'.format(asset)) continue ds_labels = self._get_labels(asset) if not ds_labels: logger.warning('{} did not have any labels'.format(asset)) continue for label in ds_labels: set_type = self._get_image_set_type(label['label']) dst_path = os.path.join(self.dst_dir, set_type, 'images', prx.cache_id) if not os.path.exists(dst_path): self._download_file(prx, dst_path, pool) image = { 'file_name': dst_path, 'height': prx.attrs['height'], 'width': prx.attrs['width'] } category = { 'supercategory': 'none', 'name': label['label'] } bbox, area = self._zvi_to_cocos_bbox(prx, label['bbox']) annotation = { 'bbox': bbox, 'segmentation': [], 'ignore': 0, 'area': area, 'iscrowd': 0 } if set_type == self.SET_TRAIN: coco.add_to_training_set(image, category, annotation) else: coco.add_to_validation_set(image, category, annotation) # Write out the annotations files. with open(os.path.join(self.dst_dir, self.SET_TRAIN, "annotations.json"), "w") as fp: logger.debug("Writing training set annotations to {}".format(fp.name)) json.dump(coco.get_training_annotations(), fp) with open(os.path.join(self.dst_dir, self.SET_VALIDATION, "annotations.json"), "w") as fp: logger.debug("Writing test set annotations to {}".format(fp.name)) json.dump(coco.get_validation_annotations(), fp) def _build_objects_keras_format(self, pool=None): self._setup_objects_keras_base_dir() fp_train = open(os.path.join(self.dst_dir, self.SET_TRAIN, "annotations.csv"), "w") fp_test = open(os.path.join(self.dst_dir, self.SET_VALIDATION, "annotations.csv"), "w") unique_labels = set() try: search = self.app.assets.scroll_search(self.query, timeout='5m') for image_id, asset in enumerate(search): prx = asset.get_thumbnail(1) if not prx: logger.warning('{} did not have a suitable thumbnail'.format(asset)) continue ds_labels = self._get_labels(asset) if not ds_labels: logger.warning('{} did not have any labels'.format(asset)) continue for label in ds_labels: unique_labels.add(label['label']) set_type = self._get_image_set_type(label['label']) dst_path = os.path.join(self.dst_dir, set_type, 'images', prx.cache_id) if not os.path.exists(dst_path): self._download_file(prx, dst_path, pool) line = [ dst_path ] line.extend([str(point) for point in self._zvi_to_keras_bbox(prx, label['bbox'])]) line.append(label['label']) str_line = "{}\n".format(",".join(line)) if set_type == self.SET_TRAIN: fp_train.write(str_line) else: fp_test.write(str_line) finally: fp_train.close() fp_test.close() with open(os.path.join(self.dst_dir, "classes.csv"), "w") as fp_classes: for idx, cls in enumerate(sorted(unique_labels)): fp_classes.write("{},{}\n".format(cls, idx)) def _zvi_to_keras_bbox(self, prx, bbox): total_width = prx.attrs['width'] total_height = prx.attrs['height'] return [int(total_width * bbox[0]), int(total_height * bbox[1]), int(total_width * bbox[2]), int(total_height * bbox[3])] def _zvi_to_cocos_bbox(self, prx, bbox): """ Converts a ZVI bbox to a COCOs bbox. The format is x, y, width, height. Args: prx (StoredFile): A StoredFile containing a proxy image. bbox (list): A ZVI bbox. Returns: list[float]: A COCOs style bbox. """ total_width = prx.attrs['width'] total_height = prx.attrs['height'] pt = total_width * bbox[0], total_height * bbox[1] new_bbox = [ int(pt[0]), int(pt[1]), int(abs(pt[0] - (total_width * bbox[2]))), int(abs(pt[0] - (total_height * bbox[3]))) ] area = (new_bbox[2] - new_bbox[0]) * (new_bbox[3] - new_bbox[1]) return new_bbox, area def _download_file(self, prx, dst_path, pool=None): if pool: pool.apply_async(self.app.assets.download_file, args=(prx, dst_path)) else: self.app.assets.download_file(prx, dst_path) def _setup_labels_std_base_dir(self): """ Sets up a directory structure for storing files used to train a model.. The structure is basically: train/<label>/<img file> validate/<label>/<img file> """ self.labels = self.app.models.get_label_counts(self.model) # This is layout #1, we need to add darknet layout for object detection. dirs = (self.SET_TRAIN, self.SET_VALIDATION) for set_name in dirs: os.makedirs('{}/{}'.format(self.dst_dir, set_name), exist_ok=True) for label in self.labels.keys(): os.makedirs(os.path.join(self.dst_dir, set_name, label), exist_ok=True) logger.info('TrainingSetDownloader setup, using {} labels'.format(len(self.labels))) def _setup_objects_coco_base_dir(self): dirs = (self.SET_TRAIN, self.SET_VALIDATION) for set_name in dirs: os.makedirs(os.path.join(self.dst_dir, set_name, 'images'), exist_ok=True) def _setup_objects_keras_base_dir(self): dirs = (self.SET_TRAIN, self.SET_VALIDATION) for set_name in dirs: os.makedirs(os.path.join(self.dst_dir, set_name, 'images'), exist_ok=True) def _get_image_set_type(self, label): """ Using the validation_split property, determine if the current label would be in the training set or validation set. Args: label (str): The label name. Returns: str: Either 'validate' or 'train', depending on the validation_split property. """ # Everything is in the training set. if self.validation_split <= 0.0: return self.SET_TRAIN ratio = int(1.0 / self.validation_split) value = self.label_distrib.get(label, 0) + 1 self.label_distrib[label] = value if value % ratio == 0: return self.SET_VALIDATION else: return self.SET_TRAIN def _get_labels(self, asset): """ Get the current model label for the given asset. Args: asset (Asset): The asset to check. Returns: list[dict]: The labels for training a model. """ ds_labels = asset.get_attr('labels') if not ds_labels: return [] result = [] for ds_label in ds_labels: if ds_label.get('modelId') == self.model.id: result.append(ds_label) return result class CocoAnnotationFileBuilder: """ CocoAnnotationFileBuilder manages building a COCO annotations file for both a training set and test set. """ def __init__(self): self.train_set = { "output": { "type": "instances", "images": [], "annotations": [], "categories": [] }, "img_set": {}, "cat_set": {} } self.validation_set = { "output": { "type": "instances", "images": [], "annotations": [], "categories": [] }, "img_set": {}, "cat_set": {} } def add_to_training_set(self, img, cat, annotation): """ Add the image, category and annotation to the training set. Args: img (dict): A COCO image dict. cat (dict): A COCO category dict. annotation: (dict): A COCO annotation dict. """ self._add_to_set(self.train_set, img, cat, annotation) def add_to_validation_set(self, img, cat, annotation): """ Add the image, category and annotation to the test set. Args: img (dict): A COCO image dict. cat (dict): A COCO category dict. annotation: (dict): A COCO annotation dict. """ self._add_to_set(self.validation_set, img, cat, annotation) def _add_to_set(self, dataset, img, cat, annotation): """ Add the image, category and annotation to the given set. Args: dataset (dict): The set we're building. img (dict): A COCO image dict. cat (dict): A COCO category dict. annotation: (dict): A COCO annotation dict. """ img_idmap = dataset['img_set'] cat_idmap = dataset['cat_set'] output = dataset['output'] annots = output['annotations'] img['id'] = img_idmap.get(img['file_name'], len(img_idmap)) cat['id'] = cat_idmap.get(cat['name'], len(cat_idmap)) annotation['id'] = len(annots) annotation['category_id'] = cat['id'] annotation['image_id'] = img['id'] if img['file_name'] not in img_idmap: img_idmap[img['file_name']] = img['id'] output['images'].append(img) if cat['name'] not in cat_idmap: cat_idmap[cat['name']] = cat['id'] output['categories'].append(cat) output['annotations'].append(annotation) def get_training_annotations(self): """ Return a structure suitable for a COCO annotations file. Returns: dict: The training annoations.= """ return self.train_set['output'] def get_validation_annotations(self): """ Return a structure suitable for a COCO annotations file. Returns: dict: The test annoations. """ return self.validation_set['output']
zvi-client
/zvi-client-1.1.3.tar.gz/zvi-client-1.1.3/pylib/zmlp/training.py
training.py
import copy from .entity import VideoClip, Asset, ZmlpException from .util import as_collection __all__ = [ 'AssetSearchScroller', 'VideoClipSearchScroller', 'AssetSearchResult', 'VideoClipSearchResult', 'AssetSearchCsvExporter', 'LabelConfidenceQuery', 'SingleLabelConfidenceQuery', 'SimilarityQuery', 'FaceSimilarityQuery', 'LabelConfidenceTermsAggregation', 'LabelConfidenceMetricsAggregation' ] class SearchScroller: """ The SearchScroller can iterate over large amounts of data without incurring paging overhead by utilizing a server side cursor. The cursor is held open for the specified timeout time unless it is refreshed before the timeout occurs. In this sense, it's important to complete whatever operation you're taking on each asset within the timeout time. For example if your page size is 32 and your timeout is 1m, you have 1 minute to handles 32 assets. If that is not enough time, consider increasing the timeout or lowering your page size. """ def __init__(self, klass, endpoint, app, search, timeout="1m", raw_response=False): """ Create a new AbstractSearchScroller instance. Args: app (ZmlpApp): A ZmlpApp instance. search: (dict): The ES search timeout (str): The maximum amount of time the ES scroll will be active unless it's refreshed. raw_response (bool): Yield the raw ES response rather than assets. The raw response will contain the entire page, not individual assets. """ self.klass = klass self.endpoint = endpoint self.app = app if search and getattr(search, "to_dict", None): search = search.to_dict() self.search = copy.deepcopy(search or {}) self.timeout = timeout self.raw_response = raw_response def batches_of(self, batch_size=50): """ A generator function capable of efficiently scrolling through large numbers of assets, returning them in batches of the given batch size. Args: batch_size (int): The size of the batch. Returns: generator: A generator that yields batches of Assets. """ batch = [] for asset in self.scroll(): batch.append(asset) if len(batch) >= batch_size: yield batch batch = [] if batch: yield batch def scroll(self): """ A generator function capable of efficiently scrolling through large results. Examples: for asset in AssetSearchScroller({"query": {"term": { "source.extension": "jpg"}}}): do_something(asset) Yields: Asset: Assets that matched the search """ result = self.app.client.post( "{}?scroll={}".format(self.endpoint, self.timeout), self.search) scroll_id = result.get("_scroll_id") if not scroll_id: raise ZmlpException("No scroll ID returned with scroll search, has it timed out?") try: while True: hits = result.get("hits") if not hits: return if self.raw_response: yield result else: for hit in hits['hits']: yield self.klass.from_hit(hit) scroll_id = result.get("_scroll_id") if not scroll_id: raise ZmlpException( "No scroll ID returned with scroll search, has it timed out?") result = self.app.client.post("api/v3/assets/_search/scroll", { "scroll": self.timeout, "scroll_id": scroll_id }) if not result["hits"]["hits"]: return finally: self.app.client.delete("api/v3/assets/_search/scroll", { "scroll_id": scroll_id }) def __iter__(self): return self.scroll() class AssetSearchScroller(SearchScroller): """ AssetSearchScroller handles scrolling through Assets. """ def __init__(self, app, search, timeout="1m", raw_response=False): super(AssetSearchScroller, self).__init__( Asset, 'api/v3/assets/_search', app, search, timeout, raw_response ) class VideoClipSearchScroller(SearchScroller): """ VideoClipSearchScroller handles scrolling through video clips. """ def __init__(self, app, search, timeout="1m", raw_response=False): super(VideoClipSearchScroller, self).__init__( VideoClip, 'api/v1/clips/_search', app, search, timeout, raw_response ) class AssetSearchCsvExporter: """ Export a search to a CVS file. """ def __init__(self, app, search): self.app = app self.search = search def export(self, fields, path): """ Export the given fields to a csv file output path. Args: fields (list): An array of field names. path (str): a file path. Returns: int: The number of assets exported. """ count = 0 scroller = AssetSearchScroller(self.app, self.search) fields = as_collection(fields) with open(str(path), "w") as fp: for asset in scroller: count += 1 line = ",".join(["'{}'".format(asset.get_attr(field)) for field in fields]) fp.write(f'{line}\n') return count class SearchResult: """ Stores a search result from ElasticSearch and provides some convenience methods for accessing the data. """ def __init__(self, klass, endpoint, app, search): """ Create a new SearchResult. Args: klass (Class): The Class to wrap the search result. endpoint (str): The endpoint to use for search. app (ZmlpApp): A ZmlpApp instance. search (dict): An ElasticSearch query. """ self.klass = klass self.endpoint = endpoint self.app = app if search and getattr(search, "to_dict", None): search = search.to_dict() self.search = search self.result = None self._execute_search() @property def items(self): """ A list of assets returned by the query. This is not all of the matches, just a single page of results. Returns: list: The list of assets for this page. """ hits = self.result.get("hits") if not hits: return [] return [self.klass.from_hit(hit) for hit in hits['hits']] def batches_of(self, batch_size, max_assets=None): """ A generator function which returns batches of assets in the given batch size. This method will optionally page through N pages, yielding arrays of assets as it goes. This method is preferred to scrolling for Assets when multiple pages of Assets need to be processed. Args: batch_size (int): The size of the batch. max_assets (int): The max number of assets to return, max is 10k Returns: generator: A generator that yields batches of Assets. """ # The maximum we can page through is 10k asset_countdown = max_assets or 10000 batch = [] while True: assets = self.assets if not assets: break for asset in assets: batch.append(asset) asset_countdown -= 1 if asset_countdown <= 0: break if len(batch) >= batch_size: yield batch batch = [] if asset_countdown <= 0: break self.search['from'] = self.search.get('from', 0) + len(assets) self._execute_search() if batch: yield batch def aggregation(self, name): """ Return an aggregation dict with the given name. Args: name (str): The agg name Returns: dict: the agg dict or None if no agg exists. """ aggs = self.result.get("aggregations") if not aggs: return None if "#" in name: key = [name] else: key = [k for k in self.result.get("aggregations", {}) if k.endswith("#{}".format(name))] if len(key) > 1: raise ValueError( "Aggs with the same name must be qualified by type (pick 1): {}".format(key)) elif not key: return None try: return aggs[key[0]] except KeyError: return None def aggregations(self): """ Return a dictionary of all aggregations. Returns: dict: A dict of aggregations keyed on name. """ return self.result.get("aggregations", {}) @property def size(self): """ The number assets in this page. See "total_size" for the total number of assets matched. Returns: int: The number of assets in this page. """ return len(self.result["hits"]["hits"]) @property def total_size(self): """ The total number of assets matched by the query. Returns: long: The total number of assets matched. """ return self.result["hits"]["total"]["value"] @property def raw_response(self): """ The raw ES response. Returns: (dict) The raw SearchResponse returned by ElasticSearch """ return self.result def next_page(self): """ Return an AssetSearchResult containing the next page. Returns: AssetSearchResult: The next page """ search = copy.deepcopy(self.search or {}) search['from'] = search.get('from', 0) + len(self.result.get("hits")) return SearchResult(self.klass, self.endpoint, self.app, search) def _execute_search(self): self.result = self.app.client.post(self.endpoint, self.search) def __iter__(self): return iter(self.items) def __getitem__(self, item): return self.items[item] class AssetSearchResult(SearchResult): """ The AssetSearchResult subclass handles paging throug an Asset search result. """ def __init__(self, app, search): super(AssetSearchResult, self).__init__( Asset, 'api/v3/assets/_search', app, search ) @property def assets(self): return self.items class VideoClipSearchResult(SearchResult): """ The VideoClipSearchResult subclass handles paging through an VideoClip search result. """ def __init__(self, app, search): super(VideoClipSearchResult, self).__init__( VideoClip, 'api/v1/clips/_search', app, search ) @property def clips(self): return self.items class LabelConfidenceTermsAggregation: """ Convenience class for making a simple terms aggregation on an array of predictions """ def __init__(self, namespace): self.field = "analysis.{}.predictions".format(namespace) def for_json(self): return { "nested": { "path": self.field }, "aggs": { "names": { "terms": { "field": self.field + ".label", "size": 1000, "order": {"_count": "desc"} } } } } class LabelConfidenceMetricsAggregation(object): def __init__(self, namespace, agg_type="stats"): """ Create a new LabelConfidenceMetricsAggregation Args: namespace (str): The analysis namespace. (ex: zvi-label-detection) agg_type (str): A type of metrics agg to perform. stats, extended_stats, """ self.field = "analysis.{}.predictions".format(namespace) self.agg_type = agg_type def for_json(self): return { "nested": { "path": self.field }, "aggs": { "labels": { "terms": { "field": self.field + ".label", "size": 1000, "order": {"_count": "desc"} }, "aggs": { "stats": { self.agg_type: { "field": self.field + ".score" } } } } } } class LabelConfidenceQuery(object): """ A helper class for building a label confidence score query. This query must point at label confidence structure: For example: analysis.zvi.label-detection. References: "labels": [ {"label": "dog", "score": 0.97 }, {"label": "fox", "score": 0.63 } ] """ def __init__(self, namespace, labels, min_score=0.1, max_score=1.0): """ Create a new LabelConfidenceScoreQuery. Args: namespace (str): The analysis namespace with predictions. (ex: zvi-label-detection) labels (list): A list of labels to filter. min_score (float): The minimum label score, default to 0.1. Note that 0.0 allows everything. max_score (float): The maximum score, defaults to 1.0 which is highest """ self.namespace = namespace self.field = "analysis.{}.predictions".format(namespace) self.labels = as_collection(labels) self.score = [min_score, max_score] def for_json(self): return { "bool": { "filter": [ { "terms": { self.field + ".label": self.labels } } ], "must": [ { "nested": { "path": self.field, "query": { "function_score": { "boost_mode": "sum", "field_value_factor": { "field": self.field + ".score", "missing": 0 }, "query": { "bool": { "filter": [ { "terms": { self.field + ".label": self.labels } }, { "range": { self.field + ".score": { "gte": self.score[0], "lte": self.score[1] } } } ] } } } } } } ] } } class SingleLabelConfidenceQuery(object): """ A helper class for building a label confidence score query. This query must point at label confidence structure: For example: analysis.zvi.label-detection. References: "labels": [ {"label": "dog", "score": 0.97 }, {"label": "fox", "score": 0.63 } ] """ def __init__(self, namespace, labels, min_score=0.1, max_score=1.0): """ Create a new SingleLabelConfidenceScoreQuery. Args: namespace (str): The analysis namespace with predictions. (ex: zvi-label-detection) labels (list): A list of labels to filter. min_score (float): The minimum label score, default to 0.1. Note that 0.0 allows everything. max_score (float): The maximum score, defaults to 1.0 which is highest """ self.namespace = namespace self.field = "analysis.{}".format(namespace) self.labels = as_collection(labels) self.score = [min_score, max_score] def for_json(self): return { "bool": { "filter": [ { "terms": { self.field + ".label": self.labels } } ], "must": [ { "function_score": { "query": { "bool": { "must": [ { "terms": { self.field + ".label": self.labels } }, { "range": { self.field + ".score": { "gte": self.score[0], "lte": self.score[1] } } } ] } }, "boost": "5", "boost_mode": "sum", "field_value_factor": { "field": self.field + ".score", "missing": 0 } } } ] } } class SimilarityQuery: """ A helper class for building a similarity search. You can embed this class anywhere in a ES query dict, for example: References: { "query": { "bool": { "must": [ SimilarityQuery(hash_string) ] } } } """ def __init__(self, hashes, min_score=0.75, boost=1.0, field="analysis.zvi-image-similarity.simhash"): self.field = field self.hashes = [] self.min_score = min_score self.boost = boost self.add_hash(hashes) def add_hash(self, hashes): """ Add a new hash to the search. Args: hashes (mixed): A similarity hash string or an asset. Returns: SimilarityQuery: this instance of SimilarityQuery """ for simhash in as_collection(hashes) or []: if isinstance(simhash, Asset): self.hashes.append(simhash.get_attr(self.field)) elif isinstance(simhash, VideoClip): if simhash.simhash: self.hashes.append(simhash.simhash) else: self.hashes.append(simhash) return self def add_asset(self, asset): """ See add_hash which handles both hashes and Assets. """ return self.add_hash(asset) def for_json(self): return { "script_score": { "query": { "match_all": {} }, "script": { "source": "similarity", "lang": "zorroa-similarity", "params": { "minScore": self.min_score, "field": self.field, "hashes": self.hashes } }, "boost": self.boost, "min_score": self.min_score } } def __add__(self, simhash): self.add_hash(simhash) return self class VideoClipSimilarityQuery(SimilarityQuery): def __init__(self, hashes, min_score=0.75, boost=1.0): super(VideoClipSimilarityQuery, self).__init__( hashes, min_score, boost, 'clip.simhash') class FaceSimilarityQuery: """ Performs a face similarity search. """ def __init__(self, faces, min_score=0.90, boost=1.0, field="analysis.zvi-face-detection.predictions.simhash"): """ Create a new FaceSimilarityQuery. Args: faces (list): A prediction with a 'simhash' property or a simhash itself. min_score (float): The minimum score. boost (float): A boost value which weights this query higer than others. field (str): An optional field to compare make the comparison with. Defaults to ZVI. """ hashes = [] for face in as_collection(faces): if isinstance(face, str): hashes.append(face) else: hashes.append(face['simhash']) self.simquery = SimilarityQuery( hashes, min_score, boost, field) def for_json(self): return self.simquery.for_json()
zvi-client
/zvi-client-1.1.3.tar.gz/zvi-client-1.1.3/pylib/zmlp/search.py
search.py
import base64 import binascii import datetime import decimal import json import logging import os import random import sys import time from io import IOBase from urllib.parse import urljoin import jwt import requests from .entity.exception import ZmlpException logger = logging.getLogger(__name__) DEFAULT_SERVER = 'https://api.zvi.zorroa.com' class ZmlpClient(object): """ ZmlpClient is used to communicate to a ZMLP API server. """ def __init__(self, apikey, server, **kwargs): """ Create a new ZmlpClient instance. Args: apikey: An API key in any supported form. (dict, base64 string, or open file handle) server: The url of the server to connect to. Defaults to https://api.zmlp.zorroa.com project_id: An optional project UUID for API keys with access to multiple projects. max_retries: Maximum number of retries to make if the API server is down, 0 for unlimited. """ self.apikey = self.__load_apikey(apikey) self.server = server self.project_id = kwargs.get('project_id', os.environ.get("ZMLP_PROJECT")) self.max_retries = kwargs.get('max_retries', 3) self.verify = True def stream(self, url, dst): """ Stream the given URL path to local dst file path. Args: url (str): The URL to stream dst (str): The destination file path """ try: with open(dst, 'wb') as handle: response = requests.get(self.get_url(url), verify=self.verify, headers=self.headers(), stream=True) if not response.ok: raise ZmlpClientException( "Failed to stream asset: %s, %s" % (url, response)) for block in response.iter_content(1024): handle.write(block) return dst except requests.exceptions.ConnectionError as e: raise ZmlpConnectionException(e) def stream_text(self, url): """ Stream the given URL. Args: url (str): The URL to stream Yields: generator (str): A generator of the lines making up the textual URL. """ try: response = requests.get(self.get_url(url), verify=self.verify, headers=self.headers(), stream=True) if not response.ok: raise ZmlpClientException( "Failed to stream text: %s" % response) for line in response.iter_lines(decode_unicode=True): yield line except requests.exceptions.ConnectionError as e: raise ZmlpConnectionException(e) def send_file(self, path, file_path): """ Sends a file via request body Args: path (path): The URI fragment for the request. file_path (str): The path to the file to send. Returns: dict: A dictionary which can be used to fetch the file. """ with open(file_path, 'rb') as f: return self.__handle_rsp(requests.post( self.get_url(path), headers=self.headers(content_type=""), data=f), True) def upload_file(self, path, file, body={}, json_rsp=True): """ Upload a single file and a request to the given endpoint path. Args: path (str): The URL to upload to. file (str): The file path to upload. body (dict): A request body json_rsp (bool): Set to true if the result returned is JSON Returns: dict: The response body of the request. """ try: post_files = [("file", (os.path.basename(file), open(file, 'rb')))] if body is not None: post_files.append( ["body", (None, to_json(body), 'application/json')]) return self.__handle_rsp(requests.post( self.get_url(path), headers=self.headers(content_type=""), files=post_files), json_rsp) except requests.exceptions.ConnectionError as e: raise ZmlpConnectionException(e) def upload_files(self, path, files, body, json_rsp=True): """ Upload an array of files and a reques to the given endpoint path. Args: path (str): The URL to upload to files (list of str): The file paths to upload body (dict): A request body json_rsp (bool): Set to true if the result returned is JSON Returns: dict: The response body of the request. """ try: post_files = [] for f in files: if isinstance(f, IOBase): post_files.append( ("files", (os.path.basename(f.name), f))) else: post_files.append( ("files", (os.path.basename(f), open(f, 'rb')))) if body is not None: post_files.append( ("body", ("", to_json(body), 'application/json'))) return self.__handle_rsp(requests.post( self.get_url(path), headers=self.headers(content_type=""), verify=self.verify, files=post_files), json_rsp) except requests.exceptions.ConnectionError as e: raise ZmlpConnectionException(e) def get(self, path, body=None, is_json=True): """ Performs a get request. Args: path (str): An archivist URI path. body (dict): The request body which will be serialized to json. is_json (bool): Set to true to specify a JSON return value Returns: object: The http response object or an object deserialized from the response json if the ``json`` argument is true. Raises: Exception: An error occurred making the request or parsing the JSON response """ return self._make_request('get', path, body, is_json) def post(self, path, body=None, is_json=True): """ Performs a post request. Args: path (str): An archivist URI path. body (object): The request body which will be serialized to json. is_json (bool): Set to true to specify a JSON return value Returns: object: The http response object or an object deserialized from the response json if the ``json`` argument is true. Raises: Exception: An error occurred making the request or parsing the JSON response """ return self._make_request('post', path, body, is_json) def put(self, path, body=None, is_json=True): """ Performs a put request. Args: path (str): An archivist URI path. body (object): The request body which will be serialized to json. is_json (bool): Set to true to specify a JSON return value Returns: object: The http response object or an object deserialized from the response json if the ``json`` argument is true. Raises: Exception: An error occurred making the request or parsing the JSON response """ return self._make_request('put', path, body, is_json) def delete(self, path, body=None, is_json=True): """ Performs a delete request. Args: path (str): An archivist URI path. body (object): The request body which will be serialized to json. is_json (bool): Set to true to specify a JSON return value Returns: object: The http response object or an object deserialized from the response json if the ``json`` argument is true. Raises: Exception: An error occurred making the request or parsing the JSON response """ return self._make_request('delete', path, body, is_json) def iter_paged_results(self, url, req, limit, cls): """ Handles paging through the results of the standard _search endpoints on the backend. Args: url (str): the URL to POST a search to req (object): the search request body limit (int): the maximum items to return, None for no limit. cls (type): the class to wrap each result in Yields: Generator """ left_to_return = limit or sys.maxsize page = 0 req["page"] = {} while True: if left_to_return < 1: break page += 1 req["page"]["size"] = min(100, left_to_return) req["page"]["from"] = (page - 1) * req["page"]["size"] rsp = self.post(url, req) if not rsp.get("list"): break for f in rsp["list"]: yield cls(f) left_to_return -= 1 # Used to break before pulling new batch if rsp.get("break"): break def _make_request(self, method, path, body=None, is_json=True): request_function = getattr(requests, method) if body is not None: data = to_json(body) else: data = body # Making the request is wrapped in its own try/catch so it's easier # to catch any and all socket and http exceptions that can possibly be # thrown. Once hat happens, handle_rsp is called which may throw # application level exceptions. rsp = None tries = 0 url = self.get_url(path, body) while True: try: rsp = request_function(url, data=data, headers=self.headers(), verify=self.verify) break except Exception as e: # Some form of connection error, wait until archivist comes # back. tries += 1 if 0 < self.max_retries <= tries: raise e wait = random.randint(1, random.randint(1, 60)) # Switched to stderr in case no logger is setup, still want # to see messages. msg = "Communicating to ZMLP (%s) timed out %d times, " \ "waiting ... %d seconds, error=%s\n" sys.stderr.write(msg % (url, tries, wait, e)) time.sleep(wait) return self.__handle_rsp(rsp, is_json) def __handle_rsp(self, rsp, is_json): if rsp.status_code != 200: self.__raise_exception(rsp) if is_json and len(rsp.content): rsp_val = rsp.json() if logger.getEffectiveLevel() == logging.DEBUG: logger.debug( "rsp: status: %d body: '%s'" % (rsp.status_code, rsp_val)) return rsp_val return rsp def __raise_exception(self, rsp): data = {} try: data.update(rsp.json()) except Exception as e: # The result is not json. data["message"] = "Your HTTP request was invalid '%s', response not " \ "JSON formatted. %s" % (rsp.status_code, e) data["status"] = rsp.status_code # If the status code can't be found, then ZmlpRequestException is returned. ex_class = translate_exception(rsp.status_code) raise ex_class(data) def get_url(self, path, body=None): """ Returns the full URL including the configured server part. """ url = urljoin(self.server, path) if logger.getEffectiveLevel() == logging.DEBUG: logger.debug("url: '%s' path: '%s' body: '%s'" % (url, path, body)) return url def headers(self, content_type="application/json"): """ Generate the return some request headers. Args: content_type(str): The content-type for the request. Defaults to 'application/json' Returns: dict: An http header struct. """ header = {'Authorization': "Bearer {}".format(self.__sign_request())} if content_type: header['Content-Type'] = content_type if logger.getEffectiveLevel() == logging.DEBUG: logger.debug("headers: %s" % header) return header def __load_apikey(self, apikey): key_data = None if not apikey: return key_data elif hasattr(apikey, 'read'): key_data = json.load(apikey) elif isinstance(apikey, dict): key_data = apikey elif isinstance(apikey, (str, bytes)): try: key_data = json.loads(base64.b64decode(apikey)) except binascii.Error: raise ValueError("Invalid base64 encoded API key.") return key_data def __sign_request(self): if not self.apikey: raise RuntimeError("Unable to make request, no ApiKey has been specified.") claims = { 'aud': self.server, 'exp': datetime.datetime.utcnow() + datetime.timedelta(seconds=60), 'accessKey': self.apikey["accessKey"], } if os.environ.get("ZMLP_TASK_ID"): claims['taskId'] = os.environ.get("ZMLP_TASK_ID") claims['jobId'] = os.environ.get("ZMLP_JOB_ID") if self.project_id: claims["projectId"] = self.project_id return jwt.encode(claims, self.apikey['secretKey'], algorithm='HS512') class SearchResult(object): """ A utility class for wrapping various search result formats that come back from the ZMLP servers. """ def __init__(self, data, clazz): """ Create a new SearchResult instance. Note that its possible to both iterate and index a SearchResult as a list. For example Args: data (dict): A search response body from the ZMLP servers. clazz (mixed): A class to wrap each item in the response body. """ self.items = [clazz(item) for item in data["list"]] self.offset = data["page"]["from"] self.size = len(data["list"]) self.total = data["page"]["totalCount"] def __iter__(self): return iter(self.items) def __getitem__(self, idx): return self.items[idx] def to_json(obj, indent=None): """ Convert the given object to a JSON string using the ZmlpJsonEncoder. Args: obj (mixed): any json serializable python object. indent (int): The indentation level for the json, or None for compact. Returns: str: The serialized object """ val = json.dumps(obj, cls=ZmlpJsonEncoder, indent=indent) if logger.getEffectiveLevel() == logging.DEBUG: logger.debug("json: %s" % val) return val class ZmlpJsonEncoder(json.JSONEncoder): """ JSON encoder for with ZMLP specific serialization defaults. """ def default(self, obj): if hasattr(obj, 'for_json'): return obj.for_json() elif isinstance(obj, (set, frozenset)): return list(obj) elif isinstance(obj, datetime.datetime): return obj.isoformat() elif isinstance(obj, datetime.date): return obj.isoformat() elif isinstance(obj, datetime.time): return obj.isoformat() elif isinstance(obj, decimal.Decimal): return float(obj) # Let the base class default method raise the TypeError return json.JSONEncoder.default(self, obj) class ZmlpClientException(ZmlpException): """The base exception class for all ZmlpClient related Exceptions.""" pass class ZmlpRequestException(ZmlpClientException): """ The base exception class for all exceptions thrown from zmlp. """ def __init__(self, data): super(ZmlpClientException, self).__init__( data.get("message", "Unknown request exception")) self.__data = data @property def type(self): return self.__data["exception"] @property def cause(self): return self.__data["cause"] @property def endpoint(self): return self.__data["path"] @property def status(self): return self.__data["status"] def __str__(self): return "<ZmlpRequestException msg=%s>" % self.__data["message"] class ZmlpConnectionException(ZmlpClientException): """ This exception is thrown if the client encounters a connectivity issue with the Zmlp API servers.. """ pass class ZmlpWriteException(ZmlpRequestException): """ This exception is thrown the Zmlp fails a write operation. """ def __init__(self, data): super(ZmlpWriteException, self).__init__(data) class ZmlpSecurityException(ZmlpRequestException): """ This exception is thrown if Zmlp fails a security check on the request. """ def __init__(self, data): super(ZmlpSecurityException, self).__init__(data) class ZmlpNotFoundException(ZmlpRequestException): """ This exception is thrown if the Zmlp fails a read operation because a piece of named data cannot be found. """ def __init__(self, data): super(ZmlpNotFoundException, self).__init__(data) class ZmlpDuplicateException(ZmlpWriteException): """ This exception is thrown if the Zmlp fails a write operation because the newly created element would be a duplicate. """ def __init__(self, data): super(ZmlpDuplicateException, self).__init__(data) class ZmlpInvalidRequestException(ZmlpRequestException): """ This exception is thrown if the request sent to Zmlp is invalid in some way, similar to an IllegalArgumentException. """ def __init__(self, data): super(ZmlpInvalidRequestException, self).__init__(data) """ A map of HTTP response codes to local exception types. """ EXCEPTION_MAP = { 404: ZmlpNotFoundException, 409: ZmlpDuplicateException, 500: ZmlpInvalidRequestException, 400: ZmlpInvalidRequestException, 401: ZmlpSecurityException, 403: ZmlpSecurityException } def translate_exception(status_code): """ Translate the HTTP status code into one of the exceptions. Args: status_code (int): the HTTP status code Returns: Exception: the exception to throw for the given status code """ return EXCEPTION_MAP.get(status_code, ZmlpRequestException)
zvi-client
/zvi-client-1.1.3.tar.gz/zvi-client-1.1.3/pylib/zmlp/client.py
client.py
import json import logging import os from ..client import to_json from ..util import as_collection __all__ = [ 'Asset', 'FileImport', 'FileUpload', 'StoredFile', 'FileTypes' ] logger = logging.getLogger(__name__) class DocumentMixin(object): """ A Mixin class which provides easy access to a deeply nested dictionary. """ def __init__(self): self.document = {} def set_attr(self, attr, value): """Set the value of an attribute. Args: attr (str): The attribute name in dot notation format. ex: 'foo.bar' value (:obj:`object`): value: The value for the particular attribute. Can be any json serializable type. """ self.__set_attr(attr, value) def del_attr(self, attr): """ Delete the attribute from the document. If the attribute does not exist or is protected by a manual field edit then return false. Otherwise, delete the attribute and return true. Args: attr (str): The attribute name. Returns: bool: True if the attribute was deleted. """ doc = self.document parts = attr.split(".") for k in parts[0:-1]: if not isinstance(doc, dict) or k not in doc: return False doc = doc.get(k) attr_name = parts[-1] try: del doc[attr_name] return not self.attr_exists(attr) except KeyError: return False def get_attr(self, attr, default=None): """Get the given attribute to the specified value. Args: attr (str): The attribute name in dot notation format. ex: 'foo.bar' default (:obj:`mixed`) The default value if no attr exists. Returns: mixed: The value of the attribute. """ doc = self.document parts = attr.split(".") for k in parts: if not isinstance(doc, dict) or k not in doc: return default doc = doc.get(k) return doc def attr_exists(self, attr): """ Return true if the given attribute exists. Args: attr (str): The name of the attribute to check. Returns: bool: true if the attr exists. """ doc = self.document parts = attr.split(".") for k in parts[0:len(parts) - 1]: if k not in doc: return False doc = doc.get(k) return parts[-1] in doc def add_analysis(self, name, val): """Add an analysis structure to the document. Args: name (str): The name of the analysis val (mixed): the value/result of the analysis. """ if not name: raise ValueError("Analysis requires a unique name") attr = "analysis.%s" % name if val is None: self.set_attr(attr, None) else: self.set_attr(attr, json.loads(to_json(val))) def get_analysis(self, namespace): """ Return the the given analysis data under the the given name. Args: namespace (str): The model namespace / pipeline module name. Returns: dict: An arbitrary dictionary containing predictions, content, etc. """ name = getattr(namespace, "namespace", "analysis.{}".format(namespace)) return self.get_attr(name) def get_predicted_labels(self, namespace, min_score=None): """ Get all predictions made by the given label prediction module. If no label predictions are present, returns None. Args: namespace (str): The analysis namespace, example 'zvi-label-detection'. min_score (float): Filter results by a minimum score. Returns: list: A list of dictionaries containing the predictions """ name = getattr(namespace, "namespace", "analysis.{}".format(namespace)) predictions = self.get_attr(f'{name}.predictions') if not predictions: return None if min_score: return [pred for pred in predictions if pred['score'] >= min_score] else: return predictions def get_predicted_label(self, namespace, label): """ Get a prediction made by the given label prediction module. If no label predictions are present, returns None. Args: namespace (str): The model / module name that created the prediction. label (mixed): A label name or integer index of a prediction. Returns: dict: a prediction dict with a label, score, etc. """ preds = self.get_predicted_labels(namespace) if not preds: return None if isinstance(label, str): preds = [pred for pred in preds if pred['label'] == label] label = 0 try: return preds[label] except IndexError: return None def extend_list_attr(self, attr, items): """ Adds the given items to the given attr. The attr must be a list or set. Args: attr (str): The name of the attribute items (:obj:`list` of :obj:`mixed`): A list of new elements. """ items = as_collection(items) all_items = self.get_attr(attr) if all_items is None: all_items = set() self.set_attr(attr, all_items) try: all_items.update(items) except AttributeError: all_items.extend(items) def __set_attr(self, attr, value): """ Handles setting an attribute value. Args: attr (str): The attribute name in dot notation format. ex: 'foo.bar' value (mixed): The value for the particular attribute. Can be any json serializable type. """ doc = self.document parts = attr.split(".") for k in parts[0:len(parts) - 1]: if k not in doc: doc[k] = {} doc = doc[k] if isinstance(value, dict): doc[parts[-1]] = value else: try: doc[parts[-1]] = value.for_json() except AttributeError: doc[parts[-1]] = value def __setitem__(self, field, value): self.set_attr(field, value) def __getitem__(self, field): return self.get_attr(field) class FileImport(object): """ An FileImport is used to import a new file and metadata into ZMLP. """ def __init__(self, uri, custom=None, page=None, label=None, tmp=None): """ Construct an FileImport instance which can point to a remote URI. Args: uri (str): a URI locator to the file asset. custom (dict): Values for custom metadata fields. page (int): The specific page to import if any. label (Label): An optional Label which will add the file to a Model training set. tmp: (dict): A dict of temp attrs that are removed after procssing. """ super(FileImport, self).__init__() self.uri = uri self.custom = custom or {} self.page = page self.label = label self.tmp = tmp def for_json(self): """Returns a dictionary suitable for JSON encoding. The ZpsJsonEncoder will call this method automatically. Returns: :obj:`dict`: A JSON serializable version of this Document. """ return { "uri": self.uri, "custom": self.custom, "page": self.page, "label": self.label, "tmp": self.tmp } def __setitem__(self, field, value): self.custom[field] = value def __getitem__(self, field): return self.custom[field] class FileUpload(FileImport): """ FileUpload instances point to a local file that will be uploaded for analysis. """ def __init__(self, path, custom=None, page=None, label=None): """ Create a new FileUpload instance. Args: path (str): A path to a file, the file must exist. custom (dict): Values for pre-created custom metadata fields. page (int): The specific page to import if any. label (Label): An optional Label which will add the file to a Model training set. """ super(FileUpload, self).__init__( os.path.normpath(os.path.abspath(path)), custom, page, label) if not os.path.exists(path): raise ValueError('The path "{}" does not exist'.format(path)) def for_json(self): """Returns a dictionary suitable for JSON encoding. The ZpsJsonEncoder will call this method automatically. Returns: :obj:`dict`: A JSON serializable version of this Document. """ return { "uri": self.uri, "page": self.page, "label": self.label, "custom": self.custom } class Asset(DocumentMixin): """ An Asset represents a single processed file. Assets start out in the 'CREATED' state, which indicates they've been created by not processed. Once an asset has been processed and augmented with files created by various analysis modules, the Asset will move into the 'ANALYZED' state. """ def __init__(self, data): super(Asset, self).__init__() if not data: raise ValueError("Error creating Asset instance, Assets must have an id.") self.id = data.get("id") self.document = data.get("document", {}) self.score = data.get("score", 0) self.inner_hits = data.get("inner_hits", []) @staticmethod def from_hit(hit): """ Converts an ElasticSearch hit into an Asset. Args: hit (dict): An raw ES document Returns: Asset: The Asset. """ return Asset({ 'id': hit['_id'], 'score': hit.get('_score', 0), 'document': hit.get('_source', {}), 'inner_hits': hit.get('inner_hits', [])}) @property def uri(self): """ The URI of the asset. Returns: str: The URI of the data. """ return self.get_attr("source.path") @property def extension(self): """ The file extension of the asset, lower cases. Returns: str: The file extension """ return self.get_attr("source.extension").lower() def add_file(self, stored_file): """ Adds the StoredFile record to the asset's list of associated files. Args: stored_file (StoredFile): A file that has been stored in ZMLP Returns: bool: True if the file was added to the list, False if it was a duplicate. """ # Ensure the file doesn't already exist in the metadata if not self.get_files(id=stored_file.id): files = self.get_attr("files") or [] files.append(stored_file._data) self.set_attr("files", files) return True return False def get_files(self, name=None, category=None, mimetype=None, extension=None, id=None, attrs=None, attr_keys=None, sort_func=None): """ Return all stored files associated with this asset. Optionally filter the results. Args: name (str): The associated files name. category (str): The associated files category, eg proxy, backup, etc. mimetype (str): The mimetype must start with this string. extension: (str): The file name must have the given extension. attrs (dict): The file must have all of the given attributes. attr_keys: (list): A list of attribute keys that must be present. sort_func: (func): A lambda function for sorting the result. Returns: list of StoredFile: A list of ZMLP file records. """ result = [] files = self.get_attr("files") or [] for fs in files: match = True if id and not any((item for item in as_collection(id) if fs["id"] == item)): match = False if name and not any((item for item in as_collection(name) if fs["name"] == item)): match = False if category and not any((item for item in as_collection(category) if fs["category"] == item)): match = False if mimetype and not any((item for item in as_collection(mimetype) if fs["mimetype"].startswith(item))): match = False if extension and not any((item for item in as_collection(extension) if fs["name"].endswith("." + item))): match = False file_attrs = fs.get("attrs", {}) if attr_keys: if not any(key in file_attrs for key in as_collection(attr_keys)): match = False if attrs: for k, v in attrs.items(): if file_attrs.get(k) != v: match = False if match: result.append(StoredFile(fs)) if sort_func: result = sorted(result, key=sort_func) return result def get_thumbnail(self, level): """ Return an thumbnail StoredFile record for the Asset. The level corresponds size of the thumbnail, 0 for the smallest, and up to N for the largest. Levels 0,1,and 2 are smaller than the source media, level 3 or above (if they exist) will be full resolution or higher images used for OCR purposes. To download the thumbnail call app.assets.download_file(stored_file) Args: level (int): The size level, 0 for smallest up to N. Returns: StoredFile: A StoredFile instance or None if no image proxies exist. """ files = self.get_files(mimetype="image/", category="proxy", sort_func=lambda f: f.attrs.get('width', 0)) if not files: return None if level >= len(files): level = -1 return files[level] def get_inner_hits(self, name): """ Return any inner hits from a collapse query. Args: name (str): The inner hit name. Returns: list[Asset]: A list of Assets. """ try: return [Asset.from_hit(hit) for hit in self.inner_hits[name]['hits']['hits']] except KeyError: return [] def for_json(self): """Returns a dictionary suitable for JSON encoding. The ZpsJsonEncoder will call this method automatically. Returns: :obj:`dict`: A JSON serializable version of this Document. """ return { "id": self.id, "uri": self.get_attr("source.path"), "document": self.document, "page": self.get_attr("media.pageNumber"), } def __str__(self): return "<Asset id='{}'/>".format(self.id) def __repr__(self): return "<Asset id='{}' at {}/>".format(self.id, hex(id(self))) def __hash__(self): return hash(self.id) def __eq__(self, other): if not getattr(other, "id"): return False return other.id == self.id class StoredFile(object): """ The StoredFile class represents a supporting file that has been stored in ZVI. """ def __init__(self, data): self._data = data @property def id(self): """ The unique ID of the file. """ return self._data['id'] @property def name(self): """ The file name.. """ return self._data['name'] @property def category(self): """ The file category. """ return self._data['category'] @property def attrs(self): """ Arbitrary attributes. """ return self._data['attrs'] @property def mimetype(self): """ The file mimetype. """ return self._data['mimetype'] @property def size(self): """ The size of the file. """ return self._data['size'] @property def cache_id(self): """ A string suitable for on-disk caching/filenames. Replaces all slashes in id with underscores. """ return self.id.replace("/", "_") def __str__(self): return "<StoredFile {}>".format(self.id) def __eq__(self, other): return other.id def __hash__(self): return hash(self.id) def for_json(self): """Return a JSON serialized copy. Returns: :obj:`dict`: A json serializable dict. """ serializable_dict = {} attrs = self._data.keys() for attr in attrs: if getattr(self, attr, None) is not None: serializable_dict[attr] = getattr(self, attr) return serializable_dict class FileTypes: """ A class for storing the supported file types. """ videos = frozenset(['mov', 'mp4', 'mpg', 'mpeg', 'm4v', 'webm', 'ogv', 'ogg', 'mxf', 'avi']) """A set of supported video file formats.""" images = frozenset(["bmp", "cin", "dpx", "gif", "jpg", "jpeg", "exr", "png", "psd", "rla", "tif", "tiff", "dcm", "rla"]) """A set of supported image file formats.""" documents = frozenset(['pdf', 'doc', 'docx', 'ppt', 'pptx', 'xls', 'xlsx', 'vsd', 'vsdx']) """A set of supported document file formats.""" all = frozenset(videos.union(images).union(documents)) """A set of all supported file formats.""" @classmethod def resolve(cls, file_types): """ Resolve a list of file extenions or types (images, documents, videos) to a supported list of extensions. Args: file_types (list): A list of file extensions, dot not included. Returns: list: The valid list of extensions from the given list """ file_types = as_collection(file_types) if not file_types: return cls.all result = set() for file_type in file_types: if file_type in cls.all: result.add(file_type) else: exts = getattr(cls, file_type, None) if exts: result.update(exts) return sorted(list(result))
zvi-client
/zvi-client-1.1.3.tar.gz/zvi-client-1.1.3/pylib/zmlp/entity/asset.py
asset.py
from datetime import datetime from .base import BaseEntity from ..util import ObjectView __all__ = [ 'Job', 'Task', 'TaskError' ] class Job(BaseEntity): """ A Job represents a backend data process. Jobs are made up of Tasks which are scheduled to execute on Analyst data processing nodes. """ def __init__(self, data): super(Job, self).__init__(data) @property def name(self): """The name of the Job""" return self._data['name'] @property def state(self): """The state of the Job""" return self._data['state'] @property def paused(self): """True if the Job is paused.""" return self._data['paused'] @property def priority(self): """The priority of the Job""" return self._data['priority'] @property def time_started(self): """The datetime the job got the first analyst.""" if self._data['timeStarted'] == -1: return None else: return datetime.fromtimestamp(self._data['timeStarted'] / 1000.0) @property def time_stopped(self): """The datetime the job finished.""" if self._data['timeStopped'] == -1: return None else: return datetime.fromtimestamp(self._data['timeStopped'] / 1000.0) @property def asset_counts(self): """Asset counts for the Job""" return ObjectView(self._data['assetCounts']) @property def task_counts(self): """Task counts for the Job""" return ObjectView(self._data['taskCounts']) @property def time_modified(self): """The date/time the Job was modified.""" return datetime.fromtimestamp(self._data['timeUpdated'] / 1000.0) class Task(BaseEntity): """ Jobs contain Tasks and each Task handles the processing for 1 or more files/assets. """ def __init__(self, data): super(Task, self).__init__(data) @property def job_id(self): """The Job Id""" return self._data['jobId'] @property def name(self): """The name of the Task""" return self._data['name'] @property def state(self): """The name of the Task""" return self._data['state'] @property def time_started(self): """The datetime the job got the first analyst.""" if self._data['timeStarted'] == -1: return None else: return datetime.fromtimestamp(self._data['timeStarted'] / 1000.0) @property def time_stopped(self): """The datetime the job finished.""" if self._data['timeStopped'] == -1: return None else: return datetime.fromtimestamp(self._data['timeStopped'] / 1000.0) @property def time_pinged(self): """The datetime the running task sent a watch dog ping.""" if self._data['timePing'] == -1: return None else: return datetime.fromtimestamp(self._data['timePing'] / 1000.0) @property def time_modified(self): """The date/time the Job was modified.""" return self.time_pinged @property def asset_counts(self): return ObjectView(self._data['assetCounts']) class TaskError: """ A TaskError contains information regarding a failed Task or Asset. """ def __init__(self, data): self._data = data @property def id(self): """ID of the TaskError""" return self._data['id'] @property def task_id(self): """UUID of the Task that encountered an error.""" return self._data['taskId'] @property def job_id(self): """UUID of the Job that encountered an error.""" return self._data['jobId'] @property def datasource_id(self): """UUID of the DataSource that encountered an error.""" return self._data['dataSourceId'] @property def asset_id(self): """ID of the Asset that encountered an error.""" return self._data['assetId'] @property def path(self): """File path or URI that was being processed.""" return self._data['path'] @property def message(self): """Error message from the exception that generated the error.""" return self._data['message'] @property def processor(self): """Processor in which the error occurred.""" return self._data['processor'] @property def fatal(self): """True if the error was fatal and the Asset was not processed.""" return self._data['fatal'] @property def phase(self): """Phase at which the error occurred: generate, execute, teardown.""" return self._data['phase'] @property def time_created(self): """The date/time the entity was created.""" return datetime.fromtimestamp(self._data['timeCreated'] / 1000.0) @property def stack_trace(self): """Full stack trace from the error, if any.""" return self._data['stackTrace']
zvi-client
/zvi-client-1.1.3.tar.gz/zvi-client-1.1.3/pylib/zmlp/entity/job.py
job.py
from enum import Enum from .base import BaseEntity from ..util import as_id __all__ = [ 'Model', 'ModelType', 'Label', 'LabelScope', 'ModelTypeInfo' ] class ModelType(Enum): """ Types of models that can be Trained. """ ZVI_KNN_CLASSIFIER = 0 """A KMeans clustering model for quickly clustering assets into general groups.""" ZVI_LABEL_DETECTION = 1 """Retrain the ResNet50 convolutional neural network with your own labels.""" ZVI_FACE_RECOGNITION = 2 """Face Recognition model using a KNN classifier.""" GCP_LABEL_DETECTION = 4 """Train a Google AutoML vision model.""" TF2_IMAGE_CLASSIFIER = 5 """Provide your own custom Tensorflow2/Keras model""" PYTORCH_IMAGE_CLASSIFIER = 5 """Provide your own custom Pytorch model""" class LabelScope(Enum): """ Types of label scopes """ TRAIN = 1 """The label marks the Asset as part of the Training set.""" TEST = 2 """The label marks the Asset as part of the Test set.""" class Model(BaseEntity): def __init__(self, data): super(Model, self).__init__(data) @property def name(self): """The name of the Model""" return self._data['name'] @property def module_name(self): """The name of the Pipeline Module""" return self._data['moduleName'] @property def namespace(self): """The name of the Pipeline Module""" return 'analysis.{}'.format(self._data['moduleName']) @property def type(self): """The type of model""" return ModelType[self._data['type']] @property def file_id(self): """The file ID of the trained model""" return self._data['fileId'] @property def ready(self): """ True if the model is fully trained and ready to use. Adding new labels will set ready to false. """ return self._data['ready'] def make_label(self, label, bbox=None, simhash=None, scope=None): """ Make an instance of a Label which can be used to label assets. Args: label (str): The label name. bbox (list[float]): A open bounding box. simhash (str): An associated simhash, if any. scope (LabelScope): The scope of the image, can be TEST or TRAIN. Defaults to TRAIN. Returns: Label: The new label. """ return Label(self, label, bbox=bbox, simhash=simhash, scope=scope) def make_label_from_prediction(self, label, prediction, scope=None): """ Make a label from a prediction. This will copy the bbox and simhash from the prediction, if any. Args: label (str): A name for the prediction. prediction (dict): A prediction from an analysis namespace.s scope (LabelScope): The scope of the image, can be TEST or TRAIN. Defaults to TRAIN. Returns: Label: A new label """ return Label(self, label, bbox=prediction.get('bbox'), simhash=prediction.get('simhash'), scope=scope) def get_label_search(self, scope=None): """ Return a search that can be used to query all assets with labels. Args: scope (LabelScope): An optional label scope to filter by. Returns: dict: A search to pass to an asset search. """ search = { 'size': 64, 'sort': [ '_doc' ], '_source': ['labels', 'files'], 'query': { 'nested': { 'path': 'labels', 'query': { 'bool': { 'must': [ {'term': {'labels.modelId': self.id}} ] } } } } } if scope: must = search['query']['nested']['query']['bool']['must'] must.append({'term': {'labels.scope': scope.name}}) return search def get_confusion_matrix_search(self, min_score=0.0, max_score=1.0, test_set_only=True): """ Returns a search query with aggregations that can be used to create a confusion matrix. Args: min_score (float): Minimum confidence score to return results for. max_score (float): Maximum confidence score to return results for. test_set_only (bool): If True only assets with TEST labels will be evaluated. Returns: dict: A search to pass to an asset search. """ prediction_term_map = { ModelType.ZVI_KNN_CLASSIFIER: f'{self.namespace}.label', ModelType.ZVI_FACE_RECOGNITION: f'{self.namespace}.predictions.label' } score_map = {ModelType.ZVI_KNN_CLASSIFIER: f'{self.namespace}.score', ModelType.ZVI_LABEL_DETECTION: f'{self.namespace}.score', ModelType.ZVI_FACE_RECOGNITION: f'{self.namespace}.predictions.score'} if self.type not in prediction_term_map: raise TypeError(f'Cannot create a confusion matrix search for {self.type} models.') search_query = { "size": 0, "query": { "bool": { "filter": [ {"range": {score_map[self.type]: {"gte": min_score, "lte": max_score}}} ] } }, "aggs": { "nested_labels": { "nested": { "path": "labels" }, "aggs": { "model_train_labels": { "filter": { "bool": { "must": [ {"term": {"labels.modelId": self.id}} ] } }, "aggs": { "labels": { "terms": {"field": "labels.label"}, "aggs": { "predictions_by_label": { "reverse_nested": {}, "aggs": { "predictions": { "terms": { "field": prediction_term_map[self.type] } } } } } } } } } } } } if test_set_only: (search_query ['aggs'] ['nested_labels'] ['aggs'] ['model_train_labels'] ['filter'] ['bool'] ['must'].append({"term": {"labels.scope": "TEST"}})) return search_query class ModelTypeInfo: """ Additional properties related to each ModelType. """ def __init__(self, data): self._data = data @property def name(self): """The name of the model type.""" return self._data['name'] @property def description(self): """The description of the model type.""" return self._data['description'] @property def objective(self): """The objective of the model, LABEL_DETECTION, FACE_RECOGNITION, etc""" return self._data['objective'] @property def provider(self): """The company that maintains the structure and algorithm for the model.""" return self._data['provider'] @property def min_concepts(self): """The minimum number of unique concepts a model must have before it can be trained.""" return self._data['minConcepts'] @property def min_examples(self): """ The minimum number of examples per concept a model must have before it can be trained. """ return self._data['minExamples'] class Label: """ A Label that can be added to an Asset either at import time or once the Asset has been imported. """ def __init__(self, model, label, bbox=None, simhash=None, scope=None): """ Create a new label. Args: model: (Model): The model the label is for. label (str): The label itself. bbox (list): A optional list of floats for a bounding box. simhash (str): An optional similatity hash. scope (LabelScope): The scope of the image, can be TEST or TRAIN. Defaults to TRAIN. """ self.model_id = as_id(model) self.label = label self.bbox = bbox self.simhash = simhash self.scope = scope or LabelScope.TRAIN def for_json(self): """Returns a dictionary suitable for JSON encoding. The ZpsJsonEncoder will call this method automatically. Returns: :obj:`dict`: A JSON serializable version of this Document. """ return { 'modelId': self.model_id, 'label': self.label, 'bbox': self.bbox, 'simhash': self.simhash, 'scope': self.scope.name }
zvi-client
/zvi-client-1.1.3.tar.gz/zvi-client-1.1.3/pylib/zmlp/entity/model.py
model.py
from ..entity.asset import StoredFile from ..util import as_id, as_collection __all__ = [ 'TimelineBuilder', 'VideoClip' ] class VideoClip: """ Clips represent a prediction for a section of video. """ def __init__(self, data): self._data = data @property def id(self): """The Asset id the clip is associated with.""" return self._data['id'] @property def asset_id(self): """The Asset id the clip is associated with.""" return self._data['assetId'] @property def timeline(self): """The name of the timeline, this is the same as the pipeline module.""" return self._data['timeline'] @property def track(self): """The track name""" return self._data['track'] @property def content(self): """The content of the clip. This is the prediction""" return self._data['content'] @property def length(self): """The length of the clip""" return self._data['length'] @property def start(self): """The start time of the clip""" return self._data['start'] @property def stop(self): """The stop time of the clip""" return self._data['stop'] @property def score(self): """The prediction score""" return self._data['score'] @property def simhash(self): """A similarity hash, if any""" return self._data.get('simhash') @property def files(self): """The array of associated files.""" return [StoredFile(f) for f in self._data.get('files', [])] @staticmethod def from_hit(hit): """ Converts an ElasticSearch hit into an VideoClip. Args: hit (dict): An raw ES document Returns: Asset: The Clip. """ data = { 'id': hit['_id'], } data.update(hit.get('_source', {}).get('clip', {})) return VideoClip(data) def __len__(self): return self.length def __str__(self): return "<VideoClip id='{}'/>".format(self.id) def __repr__(self): return "<VideoClip id='{}' at {}/>".format(self.id, hex(id(self))) def __eq__(self, other): return other.id == self.id def __hash__(self): return hash(self.id) class TimelineBuilder: """ The TimelineBuilder class is used for batch creation of video clips. Clips within a track can be overlapping. Duplicate clips are automatically compacted to the highest score. """ def __init__(self, asset, name): """ Create a new timeline instance. Args: name (str): The name of the Timeline. """ self.asset = as_id(asset) self.name = name self.tracks = {} def add_clip(self, track_name, start, stop, content, score=1, tags=None): """ Add a clip to the timeline. Args: track_name (str): The Track name. start (float): The starting time. stop (float): The end time. content (str): The content. score: (float): The score if any. tags: (list): A list of tags that describes the content. Returns: (dict): A clip entry. """ if stop < start: raise ValueError("The stop time cannot be smaller than the start time.") track = self.tracks.get(track_name) if not track: track = {'name': track_name, 'clips': []} self.tracks[track_name] = track clip = { "start": start, "stop": stop, "content": [c.replace("\n", " ").strip() for c in as_collection(content)], "score": score, "tags": as_collection(tags) } track['clips'].append(clip) return clip def for_json(self): return { 'name': self.name, 'assetId': self.asset, 'tracks': [track for track in self.tracks.values() if track['clips']] }
zvi-client
/zvi-client-1.1.3.tar.gz/zvi-client-1.1.3/pylib/zmlp/entity/clip.py
clip.py
import logging import os import tempfile from ..entity import Model, Job, ModelTypeInfo, AnalysisModule from ..training import TrainingSetDownloader from ..util import as_collection, as_id, zip_directory logger = logging.getLogger(__name__) __all__ = [ 'ModelApp' ] class ModelApp: """ Methods for manipulating models. """ def __init__(self, app): self.app = app def create_model(self, name, type): """ Create and retrn a new model . Args: name (str): The name of the model. type (ModelType): The type of Model, see the ModelType class. Returns: Model: The new model. """ body = { "name": name, "type": type.name } return Model(self.app.client.post("/api/v3/models", body)) def get_model(self, id): """ Get a Model by Id Args: id (str): The model id. Returns: Model: The model. """ return Model(self.app.client.get("/api/v3/models/{}".format(as_id(id)))) def find_one_model(self, id=None, name=None, type=None): """ Find a single Model based on various properties. Args: id (str): The ID or list of Ids. name (str): The model name or list of names. type (str): The model type or list of types. Returns: Model: the matching Model. """ body = { 'names': as_collection(name), 'ids': as_collection(id), 'types': as_collection(type) } return Model(self.app.client.post("/api/v3/models/_find_one", body)) def find_models(self, id=None, name=None, type=None, limit=None, sort=None): """ Find a single Model based on various properties. Args: id (str): The ID or list of Ids. name (str): The model name or list of names. type (str): The model type or list of types. limit (int): Limit results to the given size. sort (list): An arary of properties to sort by. Example: ["name:asc"] Returns: generator: A generator which will return matching Models when iterated. """ body = { 'names': as_collection(name), 'ids': as_collection(id), 'types': as_collection(type), 'sort': sort } return self.app.client.iter_paged_results('/api/v3/models/_search', body, limit, Model) def train_model(self, model, deploy=False, **kwargs): """ Train the given Model by kicking off a model training job. Args: model (Model): The Model instance or a unique Model id. deploy (bool): Deploy the model on your production data immediately after training. **kwargs (kwargs): Model training arguments which differ based on the model.. Returns: Job: A model training job. """ model_id = as_id(model) body = { 'deploy': deploy, 'args': dict(kwargs) } return Job(self.app.client.post('/api/v3/models/{}/_train'.format(model_id), body)) def deploy_model(self, model, search=None, file_types=None): """ Apply the model to the given search. Args: model (Model): A Model instance or a model unique Id. search (dict): An arbitrary asset search, defaults to using the deployment search associated with the model file_types (list): An optional file type filer, can be combination of "images", "documents", and "videos" Returns: Job: The Job that is hosting the reprocess task. """ mid = as_id(model) body = { "search": search, "fileTypes": file_types, "jobId": os.environ.get("ZMLP_JOB_ID") } return Job(self.app.client.post(f'/api/v3/models/{mid}/_deploy', body)) def upload_trained_model(self, model, model_path, labels): """ Uploads a Tensorflow2/Keras model. For the 'model_path' arg you can either pass the path to a Tensorflow saved model or a trained model instance itself. Args: model (Model): The Model or te unique Model ID. model_path (mixed): The path to the model directory or a Tensorflow model instance. labels (list): The list of labels,. Returns: AnalysisModule: The AnalysisModule configured to use the model. """ if not labels: raise ValueError("Uploading a model requires an array of labels") # check to see if its a keras model and save to a temp dir. if getattr(model_path, 'save', None): tmp_path = tempfile.mkdtemp() model_path.save(tmp_path) model_path = tmp_path with open(model_path + '/labels.txt', 'w') as fp: for label in labels: fp.write(f'{label}\n') model_file = tempfile.mkstemp(prefix="model_", suffix=".zip")[1] zip_file_path = zip_directory(model_path, model_file) mid = as_id(model) return AnalysisModule(self.app.client.send_file( f'/api/v3/models/{mid}/_upload', zip_file_path)) def get_label_counts(self, model): """ Get a dictionary of the labels and how many times they occur. Args: model (Model): The Model or its unique Id. Returns: dict: a dictionary of label name to occurrence count. """ return self.app.client.get('/api/v3/models/{}/_label_counts'.format(as_id(model))) def rename_label(self, model, old_label, new_label): """ Rename a the given label to a new label name. The new label can already exist. Args: model (Model): The Model or its unique Id. old_label (str): The old label name. new_label (str): The new label name. Returns: dict: a dictionary containing the number of assets updated. """ body = { "label": old_label, "newLabel": new_label } return self.app.client.put('/api/v3/models/{}/labels'.format(as_id(model)), body) def delete_label(self, model, label): """ Removes the label from all Assets. Args: model (Model): The Model or its unique Id. label (str): The label name to remove. Returns: dict: a dictionary containing the number of assets updated. """ body = { "label": label } return self.app.client.delete('/api/v3/models/{}/labels'.format(as_id(model)), body) def download_labeled_images(self, model, style, dst_dir, validation_split=0.2): """ Get a TrainingSetDownloader instance which can be used to download all the labeled images for a Model to local disk. Args: model (Model): The Model or its unique ID. style (str): The structure style to build: labels_std, objects_keras, objects_coco dst_dir (str): The destination dir to write the Assets into. validation_split (float): The ratio of training images to validation images. Defaults to 0.2. """ return TrainingSetDownloader(self.app, model, style, dst_dir, validation_split) def get_model_type_info(self, model_type): """ Get additional properties concerning a specific model type. Args: model_type (ModelType): The model type Enum or name. Returns: ModelTypeInfo: Additional properties related to a model type. """ type_name = getattr(model_type, 'name', str(model_type)) return ModelTypeInfo(self.app.client.get(f'/api/v3/models/_types/{type_name}')) def get_all_model_type_info(self): """ Get all available ModelTypeInfo options. Returns: list: A list of ModelTypeInfo """ return [ModelTypeInfo(info) for info in self.app.client.get('/api/v3/models/_types')]
zvi-client
/zvi-client-1.1.3.tar.gz/zvi-client-1.1.3/pylib/zmlp/app/model_app.py
model_app.py
from ..entity import DataSource, Job from ..util import is_valid_uuid, as_collection class DataSourceApp(object): def __init__(self, app): self.app = app def create_datasource(self, name, uri, modules=None, file_types=None, credentials=None): """ Create a new DataSource. Args: name (str): The name of the data source. uri (str): The URI where the data can be found. modules (list): A list of AnalysisModules names to apply to the data. file_types (list of str): a list of file extensions or general types like 'images', 'videos', 'documents'. Defaults to all file types. credentials (list of str): A list of pre-created credentials blob names. Returns: DataSource: The created DataSource """ url = '/api/v1/data-sources' body = { 'name': name, 'uri': uri, 'credentials': as_collection(credentials), 'fileTypes': file_types, 'modules': as_collection(modules) } return DataSource(self.app.client.post(url, body=body)) def get_datasource(self, name): """ Finds a DataSource by name or unique Id. Args: name (str): The unique name or unique ID. Returns: DataSource: The DataSource """ url = '/api/v1/data-sources/_findOne' if is_valid_uuid(name): body = {"ids": [name]} else: body = {"names": [name]} return DataSource(self.app.client.post(url, body=body)) def import_files(self, ds, batch_size=25): """ Import all assets found at the given DataSource. If the DataSource has already been imported then only new files will be imported. New modules assigned to the datasource will also be applied to existing assets as well as new assets. Args: ds (DataSource): A DataSource object or the name of a data source. batch_size (int): The number of Assets per batch. Must be at least 20. Returns: Job: Return the Job responsible for processing the files. """ body = { "batchSize": batch_size } url = '/api/v1/data-sources/{}/_import'.format(ds.id) return Job(self.app.client.post(url, body)) def delete_datasource(self, ds, remove_assets=False): """ Delete the given datasource. If remove_assets is true, then all assets that were imported with a datasource are removed as well. This cannot be undone. Args: ds (DataSource): A DataSource object or the name of a data source. remove_assets (bool): Set to true if Assets should be deleted as well. Returns: dict: Status object """ body = { 'deleteAssets': remove_assets } url = '/api/v1/data-sources/{}'.format(ds.id) return self.app.client.delete(url, body)
zvi-client
/zvi-client-1.1.3.tar.gz/zvi-client-1.1.3/pylib/zmlp/app/datasource_app.py
datasource_app.py
import io import os import requests from collections import namedtuple from ..entity import Asset, StoredFile, FileUpload, FileTypes, Job, VideoClip from ..search import AssetSearchResult, AssetSearchScroller, SimilarityQuery, SearchScroller from ..util import as_collection, as_id_collection, as_id class AssetApp(object): def __init__(self, app): self.app = app def batch_import_files(self, files, modules=None): """ Import a list of FileImport instances. Args: files (list of FileImport): The list of files to import as Assets. modules (list): A list of Pipeline Modules to apply to the data. Notes: Example return value: { "bulkResponse" : { "took" : 15, "errors" : false, "items" : [ { "create" : { "_index" : "yvqg1901zmu5bw9q", "_type" : "_doc", "_id" : "dd0KZtqyec48n1q1fniqVMV5yllhRRGx", "_version" : 1, "result" : "created", "forced_refresh" : true, "_shards" : { "total" : 1, "successful" : 1, "failed" : 0 }, "_seq_no" : 0, "_primary_term" : 1, "status" : 201 } } ] }, "failed" : [ ], "created" : [ "dd0KZtqyec48n1q1fniqVMV5yllhRRGx" ], "jobId" : "ba310246-1f87-1ece-b67c-be3f79a80d11" } Returns: dict: A dictionary containing an ES bulk response, failed files, and created asset ids. """ body = { "assets": files, "modules": modules } return self.app.client.post("/api/v3/assets/_batch_create", body) def batch_upload_files(self, files, modules=None): """ Batch upload a list of files and return a structure which contains an ES bulk response object, a list of failed file paths, a list of created asset Ids, and a processing jobId. Args: files (list of FileUpload): modules (list): A list of Pipeline Modules to apply to the data. Notes: Example return value: { "bulkResponse" : { "took" : 15, "errors" : false, "items" : [ { "create" : { "_index" : "yvqg1901zmu5bw9q", "_type" : "_doc", "_id" : "dd0KZtqyec48n1q1fniqVMV5yllhRRGx", "_version" : 1, "result" : "created", "forced_refresh" : true, "_shards" : { "total" : 1, "successful" : 1, "failed" : 0 }, "_seq_no" : 0, "_primary_term" : 1, "status" : 201 } } ] }, "failed" : [ ], "created" : [ "dd0KZtqyec48n1q1fniqVMV5yllhRRGx" ], "jobId" : "ba310246-1f87-1ece-b67c-be3f79a80d11" } Returns: dict: A dictionary containing an ES bulk response, failed files, and created asset ids. """ files = as_collection(files) file_paths = [f.uri for f in files] body = { "assets": files, "modules": modules } return self.app.client.upload_files("/api/v3/assets/_batch_upload", file_paths, body) def batch_upload_directory(self, path, file_types=None, batch_size=50, modules=None, callback=None): """ Recursively upload all files in the given directory path. This method takes an optional callback function which takes two arguments, files and response. This callback is called for each batch of files submitted. Examples: def batch_callback(files, response): print("--processed files--") for path in files: print(path) print("--zvi response--") pprint.pprint(rsp) app.assets.batch_upload_directory("/home", file_types=['images'], callback=batch_callback) Args: path (str): A file path to a directory. file_types (list): a list of file extensions and/or categories(documents, images, videos) batch_size (int) The number of files to upload per batch. modules (list): An array of modules to apply to the files. callback (func): A function to call for every batch Returns: dict: A dictionary containing batch operation counters. """ batch = [] totals = { "file_count": 0, "file_size": 0, "batch_count": 0, } def process_batch(): totals['batch_count'] += 1 totals['file_count'] += len(batch) totals['file_size'] += sum([os.path.getsize(f) for f in batch]) rsp = self.batch_upload_files( [FileUpload(f) for f in batch], modules) if callback: callback(batch.copy(), rsp) batch.clear() file_types = FileTypes.resolve(file_types) for root, dirs, files in os.walk(path): for fname in files: if fname.startswith("."): continue _, ext = os.path.splitext(fname) if not ext: continue if ext[1:].lower() not in file_types: continue batch.append(os.path.abspath(os.path.join(root, fname))) if len(batch) >= batch_size: process_batch() if batch: process_batch() return totals def delete_asset(self, asset): """ Delete the given asset. Args: asset (mixed): unique Id or Asset instance. Returns: bool: True if the asset was deleted. """ asset_id = as_id(asset) return self.app.client.delete("/api/v3/assets/{}".format(asset_id))['success'] def batch_delete_assets(self, assets): """ Batch delete the given list of Assets or asset ids. Args: assets (list): A list of Assets or unique asset ids. Returns: dict: A dictionary containing deleted and errored asset Ids. """ body = { "assetIds": as_id_collection(assets) } return self.app.client.delete("/api/v3/assets/_batch_delete", body) def search(self, search=None, fetch_source=True): """ Perform an asset search using the ElasticSearch query DSL. See Also: For search/query format. https://www.elastic.co/guide/en/elasticsearch/reference/6.4/search-request-body.html Args: search (dict): The ElasticSearch search to execute. fetch_source: (bool): If true, the full JSON document for each asset is returned. Returns: AssetSearchResult - an AssetSearchResult instance. """ if not fetch_source: search['_source'] = False return AssetSearchResult(self.app, search) def scroll_search(self, search=None, timeout="1m"): """ Perform an asset scrolled search using the ElasticSearch query DSL. See Also: For search/query format. https://www.elastic.co/guide/en/elasticsearch/reference/6.4/search-request-body.html Args: search (dict): The ElasticSearch search to execute timeout (str): The scroll timeout. Defaults to 1 minute. Returns: AssetSearchScroll - an AssetSearchScroller instance which is a generator by nature. """ return AssetSearchScroller(self.app, search, timeout) def reprocess_search(self, search, modules): """ Reprocess the given search with the supplied modules. Args: search (dict): An ElasticSearch search. modules (list): A list of module names to apply. Returns: dict: Contains a Job and the number of assets to be processed. """ body = { "search": search, "modules": modules } rsp = self.app.client.post("/api/v3/assets/_search/reprocess", body) return ReprocessSearchResponse(rsp["assetCount"], Job(rsp["job"])) def scroll_search_clips(self, asset, search=None, timeout="1m"): """ Scroll through clips for given asset using the ElasticSearch query DSL. Args: asset (Asset): The asset or unique AssetId. search (dict): The ElasticSearch search to execute timeout (str): The scroll timeout. Defaults to 1 minute. Returns: SearchScroller a clip scroller instance for generating VideoClips. """ asset_id = as_id(asset) return SearchScroller( VideoClip, f'/api/v3/assets/{asset_id}/clips/_search', self.app, search, timeout ) def reprocess_assets(self, assets, modules): """ Reprocess the given array of assets with the given modules. Args: assets (list): A list of Assets or asset unique Ids. modules (list): A list of Pipeline module names or ides. Returns: Job: The job responsible for processing the assets. """ asset_ids = [getattr(asset, "id", asset) for asset in as_collection(assets)] body = { "search": { "query": { "terms": { "_id": asset_ids } } }, "modules": as_collection(modules) } return self.app.client.post("/api/v3/assets/_search/reprocess", body) def get_asset(self, id): """ Return the asset with the given unique Id. Args: id (str): The unique ID of the asset. Returns: Asset: The Asset """ return Asset(self.app.client.get("/api/v3/assets/{}".format(id))) def update_labels(self, assets, add_labels=None, remove_labels=None): """ Update the Labels on the given array of assets. Args: assets (mixed): An Asset, asset ID, or a list of either type. add_labels (list[Label]): A Label or list of Label to add. remove_labels (list[Label]): A Label or list of Label to remove. Returns: dict: An request status dict """ ids = as_id_collection(assets) body = {} if add_labels: body['add'] = dict([(a, as_collection(add_labels)) for a in ids]) if remove_labels: body['remove'] = dict([(a, as_collection(remove_labels)) for a in ids]) if not body: raise ValueError("Must pass at least and add_labels or remove_labels argument") return self.app.client.put("/api/v3/assets/_batch_update_labels", body) def update_custom_fields(self, asset, values): """ Set the values of custom metadata fields. Args: asset (Asset): The asset or unique Asset id. values (dict): A dictionary of values. Returns: dict: A status dictionary with failures or succcess """ body = { "update": { as_id(asset): values } } return self.app.client.put("/api/v3/assets/_batch_update_custom_fields", body) def batch_update_custom_fields(self, update): """ Set the values of custom metadata fields. Examples: { "asset-id1": {"shoe": "nike"}, "asset-id2": {"country": "New Zealand"} } Args: update (dict): A dict o dicts which describe the Returns: dict: A status dictionary with failures or success """ body = { 'update': update } return self.app.client.put('/api/v3/assets/_batch_update_custom_fields', body) def download_file(self, stored_file, dst_file=None): """ Download given file and store results in memory, or optionally a destination file. The stored_file ID can be specified as either a string like "assets/<id>/proxy/image_450x360.jpg" or a StoredFile instance can be used. Args: stored_file (mixed): The StoredFile instance or its ID. dst_file (str): An optional destination file path. Returns: io.BytesIO instance containing the binary data or if a destination path was provided the size of the file is returned. """ if isinstance(stored_file, str): path = stored_file elif isinstance(stored_file, StoredFile): path = stored_file.id else: raise ValueError("stored_file must be a string or StoredFile instance") rsp = self.app.client.get("/api/v3/files/_stream/{}".format(path), is_json=False) if dst_file: with open(dst_file, 'wb') as fp: fp.write(rsp.content) return os.path.getsize(dst_file) else: return io.BytesIO(rsp.content) def stream_file(self, stored_file, chunk_size=1024): """ Streams a file by iteratively returning chunks of the file using a generator. This can be useful when developing web applications and a full download of the file before continuing is not necessary. Args: stored_file (mixed): The StoredFile instance or its ID. chunk_size (int): The byte sizes of each requesting chunk. Defaults to 1024. Yields: generator (File-like Object): Content of the file. """ if isinstance(stored_file, str): path = stored_file elif isinstance(stored_file, StoredFile): path = stored_file.id else: raise ValueError("stored_file must be a string or StoredFile instance") url = self.app.client.get_url('/api/v3/files/_stream/{}'.format(path)) response = requests.get(url, verify=self.app.client.verify, headers=self.app.client.headers(), stream=True) for block in response.iter_content(chunk_size): yield block def get_sim_hashes(self, images): """ Return a similarity hash for the given array of images. Args: images (mixed): Can be an file handle (opened with 'rb'), or path to a file. Returns: list of str: A list of similarity hashes. """ return self.app.client.upload_files("/ml/v1/sim-hash", as_collection(images), body=None) def get_sim_query(self, images, min_score=0.75): """ Analyze the given image files and return a SimilarityQuery which can be used in a search. Args: images (mixed): Can be an file handle (opened with 'rb'), or path to a file. min_score (float): A float between, the higher the value the more similar the results. Defaults to 0.75 Returns: SimilarityQuery: A configured SimilarityQuery """ return SimilarityQuery(self.get_sim_hashes(images), min_score) """ A named tuple to define a ReprocessSearchResponse """ ReprocessSearchResponse = namedtuple('ReprocessSearchResponse', ["asset_count", "job"])
zvi-client
/zvi-client-1.1.3.tar.gz/zvi-client-1.1.3/pylib/zmlp/app/asset_app.py
asset_app.py
from ..util import as_id, as_id_collection from ..search import VideoClipSearchResult, VideoClipSearchScroller from ..entity import VideoClip class VideoClipApp: """ An App instance for managing Jobs. Jobs are containers for async processes such as data import or training. """ def __init__(self, app): self.app = app def create_clip(self, asset, timeline, track, start, stop, content): """ Create a new clip. If a clip with the same metadata already exists it will simply be replaced. Args: asset (Asset): The asset or its unique Id. timeline (str): The timeline name for the clip. track (str): The track name for the clip. start (float): The starting point for the clip in seconds. stop (float): The ending point for the clip in seconds. content (str): The content of the clip. Returns: Clip: The clip that was created. """ body = { "assetId": as_id(asset), "timeline": timeline, "track": track, "start": start, "stop": stop, "content": content } return VideoClip(self.app.client.post('/api/v1/clips', body)) def create_clips(self, timeline): """ Batch create clips using a TimelineBuilder. Args: timeline: (TimelineBuilder): A timeline builder. Returns: dict: A status dictionary """ return self.app.client.post('/api/v1/clips/_timeline', timeline) def get_webvtt(self, asset, dst_file=None, timeline=None, track=None, content=None): """ Get all clip data as a WebVTT file and filter by specified options. Args: asset (Asset): The asset or unique Id. timeline: (str): A timeline name or collection of timeline names. track: (str): A track name or collection of track names. content (str): A content string to match. dst_file (mixed): An optional writable file handle or path to file. Returns: mixed: The text of the webvtt or the size of the written file. """ body = { 'assetId': as_id(asset), 'timelines': as_id_collection(timeline), 'tracks': as_id_collection(track), 'content': as_id_collection(content) } rsp = self.app.client.post('/api/v1/clips/_webvtt', body=body, is_json=False) return self.__handle_webvtt(rsp, dst_file) def scroll_search(self, search=None, timeout="1m"): """ Perform a VideoClip scrolled search using the ElasticSearch query DSL. See Also: For search/query format. https://www.elastic.co/guide/en/elasticsearch/reference/6.4/search-request-body.html Args: search (dict): The ElasticSearch search to execute timeout (str): The scroll timeout. Defaults to 1 minute. Returns: VideoClipSearchScroller - an VideoClipSearchScroller instance which can be used as a generator for paging results. """ return VideoClipSearchScroller(self.app, search, timeout) def search(self, search=None): """ Perform an VideoClip search using the ElasticSearch query DSL. See Also: For search/query format. https://www.elastic.co/guide/en/elasticsearch/reference/6.4/search-request-body.html Args: search (dict): The ElasticSearch search to execute. Returns: VideoClipSearchResult - A VideoClipSearchResult instance. """ return VideoClipSearchResult(self.app, search) def get_clip(self, id): """ Get a VideoClip by unique Id. Args: id (str): The VideoClip or its unique Id. Returns: VideoClip: The clip with the given Id. """ return VideoClip(self.app.client.get(f'api/v1/clips/{id}')) def __handle_webvtt(self, rsp, dst_file): """ Handle a webvtt file response. Args: rsp (Response): A response from requests. dst_file (mixed): An optional file path or file handle. Returns: (mixed): Return the content itself or the content size if written to file. """ if dst_file: if isinstance(dst_file, str): with open(dst_file, 'w') as fp: fp.write(rsp.content.decode()) return len(rsp.content) else: dst_file.write(rsp.content.decode()) return len(rsp.content) else: return rsp.content.decode()
zvi-client
/zvi-client-1.1.3.tar.gz/zvi-client-1.1.3/pylib/zmlp/app/clip_app.py
clip_app.py
import logging from ..entity import AnalysisModule from ..util import as_collection, as_id logger = logging.getLogger(__name__) __all__ = [ 'AnalysisModuleApp' ] class AnalysisModuleApp: """ App class for querying Analysis Modules """ def __init__(self, app): self.app = app def get_analysis_module(self, id): """ Get an AnalysisModule by Id. Args: id (str): The AnalysisModule ID or a AnalysisModule instance. Returns: AnalysisModule: The matching AnalysisModule """ return AnalysisModule(self.app.client.get('/api/v1/pipeline-mods/{}'.format(as_id(id)))) def find_one_analysis_module(self, id=None, name=None, type=None, category=None, provider=None): """ Find a single AnalysisModule based on various properties. Args: id (str): The ID or list of Ids. name (str): The model name or list of names. type: (str): A AnalysisModule typ type or collection of types to filter on. category (str): The category of AnalysisModuleule provider (str): The provider of the AnalysisModuleule Returns: AnalysisModule: The matching AnalysisModule. """ body = { 'names': as_collection(name), 'ids': as_collection(id), 'types': as_collection(type), 'categories': as_collection(category), 'providers': as_collection(provider) } return AnalysisModule(self.app.client.post('/api/v1/pipeline-mods/_find_one', body)) def find_analysis_modules(self, keywords=None, id=None, name=None, type=None, category=None, provider=None, limit=None, sort=None): """ Search for AnalysisModule. Args: keywords(str): Keywords that match various fields on a AnalysisModule id (str): An ID or collection of IDs to filter on. name (str): A name or collection of names to filter on. type: (str): A AnalysisModule type type or collection of types to filter on. category (str): The category or collection of category names. provider (str): The provider or collection provider names. limit: (int) Limit the number of results. sort: (list): A sort array, example: ["time_created:desc"] Returns: generator: A generator which will return matching AnalysisModules when iterated. """ body = { 'keywords': str(keywords), 'names': as_collection(name), 'ids': as_collection(id), 'types': as_collection(type), 'categories': as_collection(category), 'providers': as_collection(provider), 'sort': sort } return self.app.client.iter_paged_results( '/api/v1/pipeline-mods/_search', body, limit, AnalysisModule)
zvi-client
/zvi-client-1.1.3.tar.gz/zvi-client-1.1.3/pylib/zmlp/app/analysis_app.py
analysis_app.py
from ..entity import Job, Task, TaskError from ..util import as_collection, as_id_collection, as_id class JobApp: """ An App instance for managing Jobs. Jobs are containers for async processes such as data import or training. """ def __init__(self, app): self.app = app def get_job(self, id): """ Get a Job by its unique Id. Args: id (str): The Job id or Job object. Returns: Job: The Job """ return Job(self.app.client.get('/api/v1/jobs/{}'.format(as_id(id)))) def refresh_job(self, job): """ Refreshes the internals of the given job. Args: job (Job): The job to refresh. """ job._data = self.app.client.get('/api/v1/jobs/{}'.format(job.id)) def find_jobs(self, id=None, state=None, name=None, limit=None, sort=None): """ Find jobs matching the given criteria. Args: id (mixed): A job ID or IDs to filter on. state (mixed): A Job state or list of states to filter on. name (mixed): A Job name or list of names to filter on. limit (int): The maximum number of jobs to return, None is no limit. sort (list): A list of sort ordering phrases, like ["name:d", "time_created:a"] Returns: generator: A generator which will return matching jobs when iterated. """ body = { 'ids': as_collection(id), 'states': as_collection(state), 'names': as_collection(name), 'sort': sort } return self.app.client.iter_paged_results('/api/v1/jobs/_search', body, limit, Job) def find_one_job(self, id=None, state=None, name=None): """ Find single Job matching the given criteria. Raises exception if more than one result is found. Args: id (mixed): A job ID or IDs to filter on. state (mixed): A Job state or list of states to filter on. name (mixed): A Job name or list of names to filter on. sort (list): A list of sort ordering phrases, like ["name:d", "time_created:a"] Returns: Job: The job. """ body = { 'ids': as_collection(id), 'states': as_collection(state), 'names': as_collection(name) } return Job(self.app.client.post('/api/v1/jobs/_findOne', body)) def find_task_errors(self, query=None, job=None, task=None, asset=None, path=None, processor=None, limit=None, sort=None): """ Find TaskErrors based on the supplied criterion. Args: query (str): keyword query to match various error properties. job (mixed): A single Job, job id or list of either type. task (mixed): A single Task, task id or list of either type. asset (mixed): A single Asset, asset id or list of either type. path (mixed): A file path or list of file path. processor (mixed): A processor name or list of processors. limit (int): Limit the number of results or None for all results. sort (list): A list of sort ordering phrases, like ["name:d", "time_created:a"] Returns: generator: A generator which returns results when iterated. """ body = { 'keywords': query, 'jobIds': as_id_collection(job), 'taskIds': as_id_collection(task), 'assetIds': as_id_collection(asset), 'paths': as_collection(path), 'processor': as_collection(processor), 'sort': sort } return self.app.client.iter_paged_results( '/api/v1/taskerrors/_search', body, limit, TaskError) def pause_job(self, job): """ Pause scheduling for the given Job. Pausing a job simply removes the job from scheduler consideration. All existing tasks will continue to run and Analysts will move to new jobs as tasks complete. Args: job (Job): The Job to pause Returns: bool: True if the job was actually paused. """ # Resolve the job if we need to. if isinstance(job, str): job = self.get_job(job) if self.app.client.put('/api/v1/jobs/{}'.format(job.id), job._data)['success']: job._data['paused'] = True return True return False def resume_job(self, job): """ Resume scheduling for the given Job. Args: job (Job): The Job to resume Returns: bool: True of the job was actually resumed. """ if isinstance(job, str): job = self.get_job(job) if self.app.client.put('/api/v1/jobs/{}'.format(job.id), job._data)['success']: job._data['paused'] = False return True return False def cancel_job(self, job): """ Cancel the given Job. Canceling a job immediately kills all running Tasks and removes the job from scheduler consideration. Args: job (Job): The Job to cancel, or the job's unique Id. Returns: bool: True if the job was actually canceled, False if the job was already cancelled. """ if isinstance(job, str): job = self.get_job(job) if self.app.client.put('/api/v1/jobs/{}/_cancel'.format(job.id)).get('success'): self.refresh_job(job) return True return False def restart_job(self, job): """ Restart a canceled job. Args: job (Job): The Job to restart Returns: bool: True if the job was actually restarted, false if the job was not cancelled. """ if isinstance(job, str): job = self.get_job(job) if self.app.client.put('/api/v1/jobs/{}/_restart'.format(job.id)).get('success'): self.refresh_job(job) return True return False def retry_all_failed_tasks(self, job): """ Retry all failed Tasks in the Job. Args: job (Job): The Job with failed tasks. Returns: bool: True if the some failed tasks were restarted. """ if isinstance(job, str): job = self.get_job(job) if self.app.client.put( '/api/v1/jobs/{}/_retryAllFailures'.format(job.id)).get('success'): self.refresh_job(job) return True return False def find_tasks(self, job=None, id=None, name=None, state=None, limit=None, sort=None): """ Find Tasks matching the given criteria. Args: job: (mixed): A single Job, job id or list of either type. id (mixed): A single Task, task id or list of either type. name (mixed): A task name or list of tasks names. state (mixed): A take state or list of task states. limit (int): Limit the number of results, None for no limit. sort (list): A list of sort ordering phrases, like ["name:d", "time_created:a"] Returns: generator: A Generator that returns matching Tasks when iterated. """ body = { 'ids': as_collection(id), 'states': as_collection(state), 'names': as_collection(name), 'jobIds': as_id_collection(job), 'sort': sort } return self.app.client.iter_paged_results('/api/v1/tasks/_search', body, limit, Task) def find_one_task(self, job=None, id=None, name=None, state=None): """ Find a single task matching the criterion. Args: job: (mixed): A single Job, job id or list of either type. id (mixed): A single Task, task id or list of either type. name (mixed): A task name or list of tasks names. state (mixed): A take state or list of task states. Returns: Task A single matching task. """ body = { 'ids': as_collection(id), 'states': as_collection(state), 'names': as_collection(name), 'jobIds': as_id_collection(job) } res = Task(self.app.client.post('/api/v1/tasks/_findOne', body)) return res def get_task(self, task): """ Get a Task by its unique id. Args: task (str): The Task or task id. Returns: Task: The Task """ return Task(self.app.client.get('/api/v1/tasks/{}'.format(as_id(task)))) def refresh_task(self, task): """ Refreshes the internals of the given job. Args: task (Task): The Task """ task._data = self.app.client.get('/api/v1/tasks/{}'.format(task.id)) def skip_task(self, task): """ Skip the given task. A skipped task wilk not run. Args: task (str): The Task or task id. Returns: bool: True if the Task changed to the Skipped state. """ if isinstance(task, str): task = self.get_task(task) if self.app.client.put('/api/v1/tasks/{}/_skip'.format(task.id))['success']: self.refresh_task(task) return True return False def retry_task(self, task): """ Retry the given task. Retried tasks are set back to the waiting state. Args: task (str): The Task or task id. Returns: bool: True if the Task changed to the Waiting state. """ if isinstance(task, str): task = self.get_task(task) if self.app.client.put('/api/v1/tasks/{}/_retry'.format(task.id))['success']: self.refresh_task(task) return True return False def get_task_script(self, task): """ Return the given task's ZPS script. Args: task: (str): The Task or task id. Returns: dict: The script in dictionary form. """ return self.app.client.get('/api/v1/tasks/{}/_script'.format(as_id(task))) def download_task_log(self, task, dst_path): """ Download the task log file to the given file path. Args: task: (str): The Task or task id. dst_path (str): The path to the destination file. Returns: dict: The script in dictionary form. """ return self.app.client.stream('/api/v1/tasks/{}/_log'.format(as_id(task)), dst_path) def iterate_task_log(self, task): """ Return a generator that can be used to iterate a task log file. Args: task: (str): The Task or task id. Returns: generator: A generator which yields each line of a log file. """ return self.app.client.stream_text('/api/v1/tasks/{}/_log'.format(as_id(task)))
zvi-client
/zvi-client-1.1.3.tar.gz/zvi-client-1.1.3/pylib/zmlp/app/job_app.py
job_app.py
MIT License Copyright (c) 2018-2022 Olexa Bilaniuk Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
zvit
/zvit-0.0.11+8ef0d2e7db5e6bb76f8186088141a78692691e7b.tar.gz/zvit-0.0.11/LICENSE.md
LICENSE.md
import os, re, sys, subprocess, time from . import git # # Public Version. # # This is the master declaration of the version number for this project. # # We will obey PEP 440 (https://www.python.org/dev/peps/pep-0440/) here. PEP440 # recommends the pattern # [N!]N(.N)*[{a|b|rc}N][.postN][.devN] # We shall standardize on the ultracompact form # [N!]N(.N)*[{a|b|rc}N][-N][.devN] # which has a well-defined normalization. # verPublic = "0.0.11" # # Information computed from the public version. # regexMatch = re.match(r"""(?: (?:(?P<epoch>[0-9]+)!)? # epoch (?P<release>[0-9]+(?:\.[0-9]+)*) # release segment (?P<pre> # pre-release (?P<preL>a|b|rc) (?P<preN>[0-9]+) )? (?P<post> # post release (?:-(?P<postN>[0-9]+)) )? (?P<dev> # dev release (?:\.dev(?P<devN>[0-9]+)) )? )""", verPublic, re.X) assert regexMatch verEpoch = regexMatch.group("epoch") or "" verRelease = regexMatch.group("release") verPreRel = regexMatch.group("pre") or "" verPostRel = regexMatch.group("post") or "" verDevRel = regexMatch.group("dev") or "" verNormal = verRelease+verPreRel+verPostRel+verDevRel verIsRel = bool(not verPreRel and not verDevRel) # # Local Version. # # Uses POSIX time (Nominal build time as seconds since the Epoch) as obtained # either from the environment variable SOURCE_DATE_EPOCH or the wallclock time. # Also converts POSIX timestamp to ISO 8601. # verVCS = git.getGitVer() verClean = bool((not verVCS) or (git.isGitClean())) posixTime = int(os.environ.get("SOURCE_DATE_EPOCH", time.time())) iso8601Time= time.strftime("%Y%m%dT%H%M%SZ", time.gmtime(posixTime)) verLocal = verPublic+"+"+iso8601Time if verVCS: verLocal += "."+verVCS if not verClean: verLocal += ".dirty" # # SemVer Version. # # Obeys Semantic Versioning 2.0.0, found at # https://semver.org/spec/v2.0.0.html # verSemVer = ".".join((verRelease+".0.0").split(".")[:3]) identifiers= [] if verPreRel: identifiers.append(verPreRel) if verDevRel: identifiers.append(verDevRel[1:]) if identifiers: verSemVer += "-" + ".".join(identifiers) metadata = [] if regexMatch.group("postN"): metadata.append("post") metadata.append(regexMatch.group("postN")) metadata.append("buildtime") metadata.append(iso8601Time) if verVCS: metadata.append("git") metadata.append(verVCS) if not verClean: metadata.append("dirty") if metadata: verSemVer += "+" + ".".join(metadata) # # Version utilities # def synthesizeVersionPy(): templatePath = os.path.join(git.getSrcRoot(), "scripts", "version.py.in") with open(templatePath, "r") as f: return f.read().format(**globals())
zvit
/zvit-0.0.11+8ef0d2e7db5e6bb76f8186088141a78692691e7b.tar.gz/zvit-0.0.11/scripts/versioning.py
versioning.py
# # Imports # import os, subprocess # Useful constants EMPTYTREE_SHA1 = "4b825dc642cb6eb9a060e54bf8d69288fbee4904" ORIGINAL_ENV = os.environ.copy() C_ENV = os.environ.copy() C_ENV['LANGUAGE'] = C_ENV['LANG'] = C_ENV['LC_ALL'] = "C" SCRIPT_PATH = os.path.abspath(os.path.dirname(__file__)) SRCROOT_PATH = None GIT_VER = None GIT_CLEAN = None # # Utility functions # def invoke(command, cwd = SCRIPT_PATH, env = C_ENV, stdin = subprocess.DEVNULL, stdout = subprocess.PIPE, stderr = subprocess.PIPE, **kwargs): return subprocess.Popen( command, stdin = stdin, stdout = stdout, stderr = stderr, cwd = cwd, env = env, **kwargs ) def getSrcRoot(): # # Return the cached value if we know it. # global SRCROOT_PATH if SRCROOT_PATH is not None: return SRCROOT_PATH # # Our initial guess is `dirname(dirname(__file__))`. # root = os.path.dirname(SCRIPT_PATH) try: inv = invoke(["git", "rev-parse", "--show-toplevel"], universal_newlines = True,) streamOut, streamErr = inv.communicate() if inv.returncode == 0: root = streamOut[:-1] except FileNotFoundError as err: pass finally: SRCROOT_PATH = root return root def getGitVer(): # # Return the cached value if we know it. # global GIT_VER if GIT_VER is not None: return GIT_VER try: gitVer = "" inv = invoke(["git", "rev-parse", "HEAD"], universal_newlines = True,) streamOut, streamErr = inv.communicate() if inv.returncode == 0 or inv.returncode == 128: gitVer = streamOut[:-1] except FileNotFoundError as err: pass finally: if gitVer == "HEAD": GIT_VER = EMPTYTREE_SHA1 else: GIT_VER = gitVer return GIT_VER def isGitClean(): # # Return the cached value if we know it. # global GIT_CLEAN if GIT_CLEAN is not None: return GIT_CLEAN try: gitVer = None inv_nc = invoke(["git", "diff", "--quiet"], stdout = subprocess.DEVNULL, stderr = subprocess.DEVNULL,) inv_c = invoke(["git", "diff", "--quiet", "--cached"], stdout = subprocess.DEVNULL, stderr = subprocess.DEVNULL,) inv_nc = inv_nc.wait() inv_c = inv_c .wait() GIT_CLEAN = (inv_nc == 0) and (inv_c == 0) except FileNotFoundError as err: # # If we don't have access to Git, assume it's a tarball, in which case # it's always clean. # GIT_CLEAN = True return GIT_CLEAN
zvit
/zvit-0.0.11+8ef0d2e7db5e6bb76f8186088141a78692691e7b.tar.gz/zvit-0.0.11/scripts/git.py
git.py
[![github](https://img.shields.io/github/stars/zvtvz/zvt-ccxt.svg)](https://github.com/zvtvz/zvt-ccxt) [![image](https://img.shields.io/pypi/v/zvt-ccxt.svg)](https://pypi.org/project/zvt-ccxt/) [![image](https://img.shields.io/pypi/l/zvt-ccxt.svg)](https://pypi.org/project/zvt-ccxt/) [![image](https://img.shields.io/pypi/pyversions/zvt-ccxt.svg)](https://pypi.org/project/zvt-ccxt/) [![Build Status](https://api.travis-ci.org/zvtvz/zvt-ccxt.svg?branch=master)](https://travis-ci.org/zvtvz/zvt-ccxt) [![HitCount](http://hits.dwyl.io/zvtvz/zvt-ccxt.svg)](http://hits.dwyl.io/zvtvz/zvt-ccxt) ## How to use ### 1.1 install ``` pip install zvt-ccxt pip show zvt-ccxt ``` make sure use the latest version ``` pip install --upgrade zvt-ccxt ``` ### 1.2 use in zvt way ``` In [1]: from zvt_ccxt.domain import * In [2]: Coin Out[2]: zvt_ccxt.domain.coin_meta.Coin In [3]: Coin.record_data() Coin registered recorders:{'ccxt': <class 'zvt_ccxt.recorders.coin_recorder.CoinMetaRecorder'>} 2020-07-17 23:26:38,730 INFO MainThread init_markets for binance success 2020-07-17 23:26:40,941 INFO MainThread init_markets for huobipro success In [4]: Coin.query_data() Out[4]: id entity_id timestamp entity_type exchange code name 0 coin_binance_BTC/USDT coin_binance_BTC/USDT None coin binance BTC/USDT BTC/USDT 1 coin_binance_ETH/USDT coin_binance_ETH/USDT None coin binance ETH/USDT ETH/USDT 2 coin_binance_EOS/USDT coin_binance_EOS/USDT None coin binance EOS/USDT EOS/USDT 3 coin_huobipro_BTC/USDT coin_huobipro_BTC/USDT None coin huobipro BTC/USDT BTC/USDT 4 coin_huobipro_ETH/USDT coin_huobipro_ETH/USDT None coin huobipro ETH/USDT ETH/USDT 5 coin_huobipro_EOS/USDT coin_huobipro_EOS/USDT None coin huobipro EOS/USDT EOS/USDT In [2]: Coin1dKdata.record_data() In [4]: Coin1dKdata.query_data(codes=['BTC/USDT']) Out[4]: id entity_id timestamp provider code name level open close high low volume turnover 0 coin_binance_BTC/USDT_2017-10-22 coin_binance_BTC/USDT 2017-10-22 ccxt BTC/USDT BTC/USDT 1d 6003.27 5950.02 6060.00 5720.03 1362.092216 None 1 coin_binance_BTC/USDT_2017-10-23 coin_binance_BTC/USDT 2017-10-23 ccxt BTC/USDT BTC/USDT 1d 5975.00 5915.93 6080.00 5621.03 1812.557715 None 2 coin_binance_BTC/USDT_2017-10-24 coin_binance_BTC/USDT 2017-10-24 ccxt BTC/USDT BTC/USDT 1d 5909.47 5477.03 5925.00 5450.00 2580.418767 None 3 coin_binance_BTC/USDT_2017-10-25 coin_binance_BTC/USDT 2017-10-25 ccxt BTC/USDT BTC/USDT 1d 5506.92 5689.99 5704.96 5286.98 2282.813205 None 4 coin_binance_BTC/USDT_2017-10-26 coin_binance_BTC/USDT 2017-10-26 ccxt BTC/USDT BTC/USDT 1d 5670.10 5861.77 5939.99 5650.00 1972.965882 None .. ... ... ... ... ... ... ... ... ... ... ... ... ... 995 coin_binance_BTC/USDT_2020-07-13 coin_binance_BTC/USDT 2020-07-13 ccxt BTC/USDT BTC/USDT 1d 9303.31 9242.62 9343.82 9200.89 42740.069115 None 996 coin_binance_BTC/USDT_2020-07-14 coin_binance_BTC/USDT 2020-07-14 ccxt BTC/USDT BTC/USDT 1d 9242.61 9255.85 9279.54 9113.00 45772.552509 None 997 coin_binance_BTC/USDT_2020-07-15 coin_binance_BTC/USDT 2020-07-15 ccxt BTC/USDT BTC/USDT 1d 9255.85 9197.60 9276.49 9160.57 39053.579665 None 998 coin_binance_BTC/USDT_2020-07-16 coin_binance_BTC/USDT 2020-07-16 ccxt BTC/USDT BTC/USDT 1d 9197.60 9133.72 9226.15 9047.25 43375.571191 None 999 coin_binance_BTC/USDT_2020-07-17 coin_binance_BTC/USDT 2020-07-17 ccxt BTC/USDT BTC/USDT 1d 9133.72 9157.72 9186.83 9089.81 21075.560207 None [1000 rows x 13 columns] ``` ## 💌请作者喝杯咖啡 如果你觉得项目对你有帮助,可以请作者喝杯咖啡 <img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/alipay-cn.png" width="25%" alt="Alipay">      <img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/wechat-cn.png" width="25%" alt="Wechat"> ## 🤝联系方式 个人微信:foolcage 添加暗号:zvt-ccxt <img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/wechat.jpeg" width="25%" alt="Wechat"> ------ 微信公众号: <img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/gongzhonghao.jpg" width="25%" alt="Wechat"> 知乎专栏: https://zhuanlan.zhihu.com/automoney ## Thanks <p><a href=https://www.jetbrains.com/?from=zvt><img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/jetbrains.png" width="25%" alt="jetbrains"></a></p>
zvt-ccxt
/zvt-ccxt-0.0.6.tar.gz/zvt-ccxt-0.0.6/README.md
README.md
import pandas as pd from zvt.contract.api import df_to_db from zvt.contract.recorder import Recorder from zvt_ccxt.accounts import CCXTAccount from zvt_ccxt.domain import Coin from zvt_ccxt.settings import COIN_EXCHANGES, COIN_PAIRS class CoinMetaRecorder(Recorder): provider = 'ccxt' data_schema = Coin def __init__(self, batch_size=10, force_update=False, sleeping_time=10, exchanges=COIN_EXCHANGES) -> None: super().__init__(batch_size, force_update, sleeping_time) self.exchanges = exchanges def run(self): for exchange_str in self.exchanges: exchange = CCXTAccount.get_ccxt_exchange(exchange_str) try: markets = exchange.fetch_markets() df = pd.DataFrame() # markets有些为key=symbol的dict,有些为list markets_type = type(markets) if markets_type != dict and markets_type != list: self.logger.exception("unknown return markets type {}".format(markets_type)) return aa = [] for market in markets: if markets_type == dict: name = market code = market if markets_type == list: code = market['symbol'] name = market['symbol'] if name not in COIN_PAIRS: continue aa.append(market) security_item = { 'id': '{}_{}_{}'.format('coin', exchange_str, code), 'entity_id': '{}_{}_{}'.format('coin', exchange_str, code), 'exchange': exchange_str, 'entity_type': 'coin', 'code': code, 'name': name } df = df.append(security_item, ignore_index=True) # 存储该交易所的数字货币列表 if not df.empty: df_to_db(df=df, data_schema=self.data_schema, provider=self.provider, force_update=True) self.logger.info("init_markets for {} success".format(exchange_str)) except Exception as e: self.logger.exception(f"init_markets for {exchange_str} failed", e) __all__ = ["CoinMetaRecorder"] if __name__ == '__main__': CoinMetaRecorder().run()
zvt-ccxt
/zvt-ccxt-0.0.6.tar.gz/zvt-ccxt-0.0.6/zvt_ccxt/recorders/coin_recorder.py
coin_recorder.py
import argparse from zvt import init_log from zvt.api import get_kdata_schema, generate_kdata_id from zvt.contract import IntervalLevel from zvt.contract.recorder import FixedCycleDataRecorder from zvt.utils.time_utils import to_pd_timestamp from zvt_ccxt.accounts import CCXTAccount from zvt_ccxt.domain import Coin, CoinTickCommon from zvt_ccxt.settings import COIN_EXCHANGES, COIN_PAIRS class CoinTickRecorder(FixedCycleDataRecorder): provider = 'ccxt' entity_provider = 'ccxt' entity_schema = Coin # 只是为了把recorder注册到data_schema data_schema = CoinTickCommon def __init__(self, exchanges=['binance'], entity_ids=None, codes=None, batch_size=10, force_update=True, sleeping_time=10, default_size=2000, real_time=True, fix_duplicate_way='ignore', start_timestamp=None, end_timestamp=None, kdata_use_begin_time=False, close_hour=None, close_minute=None, level=IntervalLevel.LEVEL_TICK, one_day_trading_minutes=24 * 60) -> None: self.data_schema = get_kdata_schema(entity_type='coin', level=level) super().__init__('coin', exchanges, entity_ids, codes, batch_size, force_update, sleeping_time, default_size, real_time, fix_duplicate_way, start_timestamp, end_timestamp, close_hour, close_minute, IntervalLevel.LEVEL_TICK, kdata_use_begin_time, one_day_trading_minutes) def generate_domain_id(self, entity, original_data): return generate_kdata_id(entity_id=entity.id, timestamp=original_data['timestamp'], level=self.level) def record(self, entity, start, end, size, timestamps): if size < 20: size = 20 ccxt_exchange = CCXTAccount.get_ccxt_exchange(entity.exchange) if ccxt_exchange.has['fetchTrades']: limit = CCXTAccount.get_tick_limit(entity.exchange) limit = min(size, limit) kdata_list = [] trades = ccxt_exchange.fetch_trades(entity.code, limit=limit) for trade in trades: kdata_json = { 'name': entity.name, 'provider': 'ccxt', # 'id': trade['id'], 'level': 'tick', 'order': trade['order'], 'timestamp': to_pd_timestamp(trade['timestamp']), 'price': trade['price'], 'volume': trade['amount'], 'direction': trade['side'], 'order_type': trade['type'], 'turnover': trade['price'] * trade['amount'] } kdata_list.append(kdata_json) return kdata_list else: self.logger.warning("exchange:{} not support fetchOHLCV".format(entity.exchange)) __all__ = ["CoinTickRecorder"] if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--exchanges', help='exchanges', default='binance', nargs='+', choices=[item for item in COIN_EXCHANGES]) parser.add_argument('--codes', help='codes', default='EOS/USDT', nargs='+', choices=[item for item in COIN_PAIRS]) args = parser.parse_args() init_log('coin_tick_kdata.log') CoinTickRecorder(codes=['EOS/USDT']).run()
zvt-ccxt
/zvt-ccxt-0.0.6.tar.gz/zvt-ccxt-0.0.6/zvt_ccxt/recorders/coin_tick_recorder.py
coin_tick_recorder.py
import argparse from zvt import init_log from zvt.api import generate_kdata_id, get_kdata_schema from zvt.contract import IntervalLevel from zvt.contract.recorder import FixedCycleDataRecorder from zvt.utils.time_utils import to_pd_timestamp from zvt.utils.time_utils import to_time_str from zvt_ccxt.accounts import CCXTAccount from zvt_ccxt.domain import Coin, CoinKdataCommon from zvt_ccxt.recorders import to_ccxt_trading_level from zvt_ccxt.settings import COIN_EXCHANGES, COIN_PAIRS class CoinKdataRecorder(FixedCycleDataRecorder): provider = 'ccxt' entity_provider = 'ccxt' entity_schema = Coin # 只是为了把recorder注册到data_schema data_schema = CoinKdataCommon def __init__(self, exchanges=['binance'], entity_ids=None, codes=None, batch_size=10, force_update=True, sleeping_time=10, default_size=2000, real_time=False, fix_duplicate_way='ignore', start_timestamp=None, end_timestamp=None, level=IntervalLevel.LEVEL_1DAY, kdata_use_begin_time=True, close_hour=None, close_minute=None, one_day_trading_minutes=24 * 60) -> None: self.data_schema = get_kdata_schema(entity_type='coin', level=level) self.ccxt_trading_level = to_ccxt_trading_level(level) super().__init__('coin', exchanges, entity_ids, codes, batch_size, force_update, sleeping_time, default_size, real_time, fix_duplicate_way, start_timestamp, close_hour, close_minute, end_timestamp, level, kdata_use_begin_time, one_day_trading_minutes) def generate_domain_id(self, entity, original_data): return generate_kdata_id(entity_id=entity.id, timestamp=original_data['timestamp'], level=self.level) def record(self, entity, start, end, size, timestamps): start_timestamp = to_time_str(start) ccxt_exchange = CCXTAccount.get_ccxt_exchange(entity.exchange) if ccxt_exchange.has['fetchOHLCV']: limit = CCXTAccount.get_kdata_limit(entity.exchange) limit = min(size, limit) kdata_list = [] if CCXTAccount.exchange_conf[entity.exchange]['support_since']: kdatas = ccxt_exchange.fetch_ohlcv(entity.code, timeframe=self.ccxt_trading_level, since=start_timestamp) else: kdatas = ccxt_exchange.fetch_ohlcv(entity.code, timeframe=self.ccxt_trading_level, limit=limit) for kdata in kdatas: current_timestamp = kdata[0] if self.level == IntervalLevel.LEVEL_1DAY: current_timestamp = to_time_str(current_timestamp) kdata_json = { 'timestamp': to_pd_timestamp(current_timestamp), 'open': kdata[1], 'high': kdata[2], 'low': kdata[3], 'close': kdata[4], 'volume': kdata[5], 'name': entity.name, 'provider': 'ccxt', 'level': self.level.value } kdata_list.append(kdata_json) return kdata_list else: self.logger.warning("exchange:{} not support fetchOHLCV".format(entity.exchange)) __all__ = ["CoinKdataRecorder"] if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--level', help='trading level', default='1m', choices=[item.value for item in IntervalLevel]) parser.add_argument('--exchanges', help='exchanges', default='binance', nargs='+', choices=[item for item in COIN_EXCHANGES]) parser.add_argument('--codes', help='codes', default='EOS/USDT', nargs='+', choices=[item for item in COIN_PAIRS]) args = parser.parse_args() level = IntervalLevel(args.level) exchanges = args.exchanges if type(exchanges) != list: exchanges = [exchanges] codes = args.codes if type(codes) != list: codes = [codes] init_log( 'coin_{}_{}_{}_kdata.log'.format('-'.join(exchanges), '-'.join(codes).replace('/', ''), args.level)) CoinKdataRecorder(exchanges=exchanges, codes=codes, level=level, real_time=True).run()
zvt-ccxt
/zvt-ccxt-0.0.6.tar.gz/zvt-ccxt-0.0.6/zvt_ccxt/recorders/coin_kdata_recorder.py
coin_kdata_recorder.py
[![github](https://img.shields.io/github/stars/zvtvz/zvt.svg)](https://github.com/zvtvz/zvt) [![image](https://img.shields.io/pypi/v/zvt.svg)](https://pypi.org/project/zvt/) [![image](https://img.shields.io/pypi/l/zvt.svg)](https://pypi.org/project/zvt/) [![image](https://img.shields.io/pypi/pyversions/zvt.svg)](https://pypi.org/project/zvt/) [![build](https://github.com/zvtvz/zvt/actions/workflows/build.yaml/badge.svg)](https://github.com/zvtvz/zvt/actions/workflows/build.yml) [![package](https://github.com/zvtvz/zvt/actions/workflows/package.yaml/badge.svg)](https://github.com/zvtvz/zvt/actions/workflows/package.yaml) [![Documentation Status](https://readthedocs.org/projects/zvt/badge/?version=latest)](https://zvt.readthedocs.io/en/latest/?badge=latest) [![codecov.io](https://codecov.io/github/zvtvz/zvt/coverage.svg?branch=master)](https://codecov.io/github/zvtvz/zvt) [![Downloads](https://pepy.tech/badge/zvt/month)](https://pepy.tech/project/zvt) **Read this in other languages: [中文](README-cn.md).** **Read the docs:[https://zvt.readthedocs.io/en/latest/](https://zvt.readthedocs.io/en/latest/)** ### Install ``` python3 -m pip install -U zvt ``` ### Main ui After the installation is complete, enter zvt on the command line ```shell zvt ``` open [http://127.0.0.1:8050/](http://127.0.0.1:8050/) > The example shown here relies on data, factor, trader, please read [docs](https://zvt.readthedocs.io/en/latest/) <p align="center"><img src='https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/zvt-factor.png'/></p> <p align="center"><img src='https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/zvt-trader.png'/></p> > The core concept of the system is visual, and the name of the interface corresponds to it one-to-one, so it is also uniform and extensible. > You can write and run the strategy in your favorite ide, and then view its related targets, factor, signal and performance on the UI. ### Behold, the power of zvt: ``` >>> from zvt.domain import Stock, Stock1dHfqKdata >>> from zvt.ml import MaStockMLMachine >>> Stock.record_data(provider="em") >>> entity_ids = ["stock_sz_000001", "stock_sz_000338", "stock_sh_601318"] >>> Stock1dHfqKdata.record_data(provider="em", entity_ids=entity_ids, sleeping_time=1) >>> machine = MaStockMLMachine(entity_ids=["stock_sz_000001"], data_provider="em") >>> machine.train() >>> machine.predict() >>> machine.draw_result(entity_id="stock_sz_000001") ``` <p align="center"><img src='https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/pred_close.png'/></p> > The few lines of code above has done: data capture, persistence, incremental update, machine learning, prediction, and display results. > Once you are familiar with the core concepts of the system, you can apply it to any target in the market. ### Data #### China stock ``` >>> from zvt.domain import * >>> Stock.record_data(provider="em") >>> df = Stock.query_data(provider="em", index='code') >>> print(df) id entity_id timestamp entity_type exchange code name list_date end_date code 000001 stock_sz_000001 stock_sz_000001 1991-04-03 stock sz 000001 平安银行 1991-04-03 None 000002 stock_sz_000002 stock_sz_000002 1991-01-29 stock sz 000002 万 科A 1991-01-29 None 000004 stock_sz_000004 stock_sz_000004 1990-12-01 stock sz 000004 国华网安 1990-12-01 None 000005 stock_sz_000005 stock_sz_000005 1990-12-10 stock sz 000005 世纪星源 1990-12-10 None 000006 stock_sz_000006 stock_sz_000006 1992-04-27 stock sz 000006 深振业A 1992-04-27 None ... ... ... ... ... ... ... ... ... ... 605507 stock_sh_605507 stock_sh_605507 2021-08-02 stock sh 605507 国邦医药 2021-08-02 None 605577 stock_sh_605577 stock_sh_605577 2021-08-24 stock sh 605577 龙版传媒 2021-08-24 None 605580 stock_sh_605580 stock_sh_605580 2021-08-19 stock sh 605580 恒盛能源 2021-08-19 None 605588 stock_sh_605588 stock_sh_605588 2021-08-12 stock sh 605588 冠石科技 2021-08-12 None 605589 stock_sh_605589 stock_sh_605589 2021-08-10 stock sh 605589 圣泉集团 2021-08-10 None [4136 rows x 9 columns] ``` #### USA stock ``` >>> Stockus.record_data() >>> df = Stockus.query_data(index='code') >>> print(df) id entity_id timestamp entity_type exchange code name list_date end_date code A stockus_nyse_A stockus_nyse_A NaT stockus nyse A 安捷伦 None None AA stockus_nyse_AA stockus_nyse_AA NaT stockus nyse AA 美国铝业 None None AAC stockus_nyse_AAC stockus_nyse_AAC NaT stockus nyse AAC Ares Acquisition Corp-A None None AACG stockus_nasdaq_AACG stockus_nasdaq_AACG NaT stockus nasdaq AACG ATA Creativity Global ADR None None AACG stockus_nyse_AACG stockus_nyse_AACG NaT stockus nyse AACG ATA Creativity Global ADR None None ... ... ... ... ... ... ... ... ... ... ZWRK stockus_nasdaq_ZWRK stockus_nasdaq_ZWRK NaT stockus nasdaq ZWRK Z-Work Acquisition Corp-A None None ZY stockus_nasdaq_ZY stockus_nasdaq_ZY NaT stockus nasdaq ZY Zymergen Inc None None ZYME stockus_nyse_ZYME stockus_nyse_ZYME NaT stockus nyse ZYME Zymeworks Inc None None ZYNE stockus_nasdaq_ZYNE stockus_nasdaq_ZYNE NaT stockus nasdaq ZYNE Zynerba Pharmaceuticals Inc None None ZYXI stockus_nasdaq_ZYXI stockus_nasdaq_ZYXI NaT stockus nasdaq ZYXI Zynex Inc None None [5826 rows x 9 columns] >>> Stockus.query_data(code='AAPL') id entity_id timestamp entity_type exchange code name list_date end_date 0 stockus_nasdaq_AAPL stockus_nasdaq_AAPL None stockus nasdaq AAPL 苹果 None None ``` #### Hong Kong stock ``` >>> Stockhk.record_data() >>> df = Stockhk.query_data(index='code') >>> print(df) id entity_id timestamp entity_type exchange code name list_date end_date code 00001 stockhk_hk_00001 stockhk_hk_00001 NaT stockhk hk 00001 长和 None None 00002 stockhk_hk_00002 stockhk_hk_00002 NaT stockhk hk 00002 中电控股 None None 00003 stockhk_hk_00003 stockhk_hk_00003 NaT stockhk hk 00003 香港中华煤气 None None 00004 stockhk_hk_00004 stockhk_hk_00004 NaT stockhk hk 00004 九龙仓集团 None None 00005 stockhk_hk_00005 stockhk_hk_00005 NaT stockhk hk 00005 汇丰控股 None None ... ... ... ... ... ... ... ... ... ... 09996 stockhk_hk_09996 stockhk_hk_09996 NaT stockhk hk 09996 沛嘉医疗-B None None 09997 stockhk_hk_09997 stockhk_hk_09997 NaT stockhk hk 09997 康基医疗 None None 09998 stockhk_hk_09998 stockhk_hk_09998 NaT stockhk hk 09998 光荣控股 None None 09999 stockhk_hk_09999 stockhk_hk_09999 NaT stockhk hk 09999 网易-S None None 80737 stockhk_hk_80737 stockhk_hk_80737 NaT stockhk hk 80737 湾区发展-R None None [2597 rows x 9 columns] >>> df[df.code=='00700'] id entity_id timestamp entity_type exchange code name list_date end_date 2112 stockhk_hk_00700 stockhk_hk_00700 None stockhk hk 00700 腾讯控股 None None ``` #### And more ``` >>> from zvt.contract import * >>> zvt_context.tradable_schema_map {'stockus': zvt.domain.meta.stockus_meta.Stockus, 'stockhk': zvt.domain.meta.stockhk_meta.Stockhk, 'index': zvt.domain.meta.index_meta.Index, 'etf': zvt.domain.meta.etf_meta.Etf, 'stock': zvt.domain.meta.stock_meta.Stock, 'block': zvt.domain.meta.block_meta.Block, 'fund': zvt.domain.meta.fund_meta.Fund} ``` The key is tradable entity type, and the value is the schema. The system provides unified **record (record_data)** and **query (query_data)** methods for the schema. ``` >>> Index.record_data() >>> df=Index.query_data(filters=[Index.category=='scope',Index.exchange='sh']) >>> print(df) id entity_id timestamp entity_type exchange code name list_date end_date publisher category base_point 0 index_sh_000001 index_sh_000001 1990-12-19 index sh 000001 上证指数 1991-07-15 None csindex scope 100.00 1 index_sh_000002 index_sh_000002 1990-12-19 index sh 000002 A股指数 1992-02-21 None csindex scope 100.00 2 index_sh_000003 index_sh_000003 1992-02-21 index sh 000003 B股指数 1992-08-17 None csindex scope 100.00 3 index_sh_000010 index_sh_000010 2002-06-28 index sh 000010 上证180 2002-07-01 None csindex scope 3299.06 4 index_sh_000016 index_sh_000016 2003-12-31 index sh 000016 上证50 2004-01-02 None csindex scope 1000.00 .. ... ... ... ... ... ... ... ... ... ... ... ... 25 index_sh_000020 index_sh_000020 2007-12-28 index sh 000020 中型综指 2008-05-12 None csindex scope 1000.00 26 index_sh_000090 index_sh_000090 2009-12-31 index sh 000090 上证流通 2010-12-02 None csindex scope 1000.00 27 index_sh_930903 index_sh_930903 2012-12-31 index sh 930903 中证A股 2016-10-18 None csindex scope 1000.00 28 index_sh_000688 index_sh_000688 2019-12-31 index sh 000688 科创50 2020-07-23 None csindex scope 1000.00 29 index_sh_931643 index_sh_931643 2019-12-31 index sh 931643 科创创业50 2021-06-01 None csindex scope 1000.00 [30 rows x 12 columns] ``` ### EntityEvent We have tradable entity and then events about them. #### Market quotes the TradableEntity quote schema follows the following rules: ``` {entity_shema}{level}{adjust_type}Kdata ``` * entity_schema TradableEntity class,e.g., Stock,Stockus. * level ``` >>> for level in IntervalLevel: print(level.value) ``` * adjust type ``` >>> for adjust_type in AdjustType: print(adjust_type.value) ``` > Note: In order to be compatible with historical data, the pre-reset is an exception, {adjust_type} is left empty qfq ``` >>> Stock1dKdata.record_data(code='000338', provider='em') >>> df = Stock1dKdata.query_data(code='000338', provider='em') >>> print(df) id entity_id timestamp provider code name level open close high low volume turnover change_pct turnover_rate 0 stock_sz_000338_2007-04-30 stock_sz_000338 2007-04-30 None 000338 潍柴动力 1d 2.33 2.00 2.40 1.87 207375.0 1.365189e+09 3.2472 0.1182 1 stock_sz_000338_2007-05-08 stock_sz_000338 2007-05-08 None 000338 潍柴动力 1d 2.11 1.94 2.20 1.87 86299.0 5.563198e+08 -0.0300 0.0492 2 stock_sz_000338_2007-05-09 stock_sz_000338 2007-05-09 None 000338 潍柴动力 1d 1.90 1.81 1.94 1.66 93823.0 5.782065e+08 -0.0670 0.0535 3 stock_sz_000338_2007-05-10 stock_sz_000338 2007-05-10 None 000338 潍柴动力 1d 1.78 1.85 1.98 1.75 47720.0 2.999226e+08 0.0221 0.0272 4 stock_sz_000338_2007-05-11 stock_sz_000338 2007-05-11 None 000338 潍柴动力 1d 1.81 1.73 1.81 1.66 39273.0 2.373126e+08 -0.0649 0.0224 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 3426 stock_sz_000338_2021-08-27 stock_sz_000338 2021-08-27 None 000338 潍柴动力 1d 19.39 20.30 20.30 19.25 1688497.0 3.370241e+09 0.0601 0.0398 3427 stock_sz_000338_2021-08-30 stock_sz_000338 2021-08-30 None 000338 潍柴动力 1d 20.30 20.09 20.31 19.78 1187601.0 2.377957e+09 -0.0103 0.0280 3428 stock_sz_000338_2021-08-31 stock_sz_000338 2021-08-31 None 000338 潍柴动力 1d 20.20 20.07 20.63 19.70 1143985.0 2.295195e+09 -0.0010 0.0270 3429 stock_sz_000338_2021-09-01 stock_sz_000338 2021-09-01 None 000338 潍柴动力 1d 19.98 19.68 19.98 19.15 1218697.0 2.383841e+09 -0.0194 0.0287 3430 stock_sz_000338_2021-09-02 stock_sz_000338 2021-09-02 None 000338 潍柴动力 1d 19.71 19.85 19.97 19.24 1023545.0 2.012006e+09 0.0086 0.0241 [3431 rows x 15 columns] >>> Stockus1dKdata.record_data(code='AAPL', provider='em') >>> df = Stockus1dKdata.query_data(code='AAPL', provider='em') >>> print(df) id entity_id timestamp provider code name level open close high low volume turnover change_pct turnover_rate 0 stockus_nasdaq_AAPL_1984-09-07 stockus_nasdaq_AAPL 1984-09-07 None AAPL 苹果 1d -5.59 -5.59 -5.58 -5.59 2981600.0 0.000000e+00 0.0000 0.0002 1 stockus_nasdaq_AAPL_1984-09-10 stockus_nasdaq_AAPL 1984-09-10 None AAPL 苹果 1d -5.59 -5.59 -5.58 -5.59 2346400.0 0.000000e+00 0.0000 0.0001 2 stockus_nasdaq_AAPL_1984-09-11 stockus_nasdaq_AAPL 1984-09-11 None AAPL 苹果 1d -5.58 -5.58 -5.58 -5.58 5444000.0 0.000000e+00 0.0018 0.0003 3 stockus_nasdaq_AAPL_1984-09-12 stockus_nasdaq_AAPL 1984-09-12 None AAPL 苹果 1d -5.58 -5.59 -5.58 -5.59 4773600.0 0.000000e+00 -0.0018 0.0003 4 stockus_nasdaq_AAPL_1984-09-13 stockus_nasdaq_AAPL 1984-09-13 None AAPL 苹果 1d -5.58 -5.58 -5.58 -5.58 7429600.0 0.000000e+00 0.0018 0.0004 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 8765 stockus_nasdaq_AAPL_2021-08-27 stockus_nasdaq_AAPL 2021-08-27 None AAPL 苹果 1d 147.48 148.60 148.75 146.83 55802388.0 8.265452e+09 0.0072 0.0034 8766 stockus_nasdaq_AAPL_2021-08-30 stockus_nasdaq_AAPL 2021-08-30 None AAPL 苹果 1d 149.00 153.12 153.49 148.61 90956723.0 1.383762e+10 0.0304 0.0055 8767 stockus_nasdaq_AAPL_2021-08-31 stockus_nasdaq_AAPL 2021-08-31 None AAPL 苹果 1d 152.66 151.83 152.80 151.29 86453117.0 1.314255e+10 -0.0084 0.0052 8768 stockus_nasdaq_AAPL_2021-09-01 stockus_nasdaq_AAPL 2021-09-01 None AAPL 苹果 1d 152.83 152.51 154.98 152.34 80313711.0 1.235321e+10 0.0045 0.0049 8769 stockus_nasdaq_AAPL_2021-09-02 stockus_nasdaq_AAPL 2021-09-02 None AAPL 苹果 1d 153.87 153.65 154.72 152.40 71171317.0 1.093251e+10 0.0075 0.0043 [8770 rows x 15 columns] ``` hfq ``` >>> Stock1dHfqKdata.record_data(code='000338', provider='em') >>> df = Stock1dHfqKdata.query_data(code='000338', provider='em') >>> print(df) id entity_id timestamp provider code name level open close high low volume turnover change_pct turnover_rate 0 stock_sz_000338_2007-04-30 stock_sz_000338 2007-04-30 None 000338 潍柴动力 1d 70.00 64.93 71.00 62.88 207375.0 1.365189e+09 2.1720 0.1182 1 stock_sz_000338_2007-05-08 stock_sz_000338 2007-05-08 None 000338 潍柴动力 1d 66.60 64.00 68.00 62.88 86299.0 5.563198e+08 -0.0143 0.0492 2 stock_sz_000338_2007-05-09 stock_sz_000338 2007-05-09 None 000338 潍柴动力 1d 63.32 62.00 63.88 59.60 93823.0 5.782065e+08 -0.0313 0.0535 3 stock_sz_000338_2007-05-10 stock_sz_000338 2007-05-10 None 000338 潍柴动力 1d 61.50 62.49 64.48 61.01 47720.0 2.999226e+08 0.0079 0.0272 4 stock_sz_000338_2007-05-11 stock_sz_000338 2007-05-11 None 000338 潍柴动力 1d 61.90 60.65 61.90 59.70 39273.0 2.373126e+08 -0.0294 0.0224 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 3426 stock_sz_000338_2021-08-27 stock_sz_000338 2021-08-27 None 000338 潍柴动力 1d 331.97 345.95 345.95 329.82 1688497.0 3.370241e+09 0.0540 0.0398 3427 stock_sz_000338_2021-08-30 stock_sz_000338 2021-08-30 None 000338 潍柴动力 1d 345.95 342.72 346.10 337.96 1187601.0 2.377957e+09 -0.0093 0.0280 3428 stock_sz_000338_2021-08-31 stock_sz_000338 2021-08-31 None 000338 潍柴动力 1d 344.41 342.41 351.02 336.73 1143985.0 2.295195e+09 -0.0009 0.0270 3429 stock_sz_000338_2021-09-01 stock_sz_000338 2021-09-01 None 000338 潍柴动力 1d 341.03 336.42 341.03 328.28 1218697.0 2.383841e+09 -0.0175 0.0287 3430 stock_sz_000338_2021-09-02 stock_sz_000338 2021-09-02 None 000338 潍柴动力 1d 336.88 339.03 340.88 329.67 1023545.0 2.012006e+09 0.0078 0.0241 [3431 rows x 15 columns] ``` #### Finance factor ``` >>> FinanceFactor.record_data(code='000338') >>> FinanceFactor.query_data(code='000338',columns=FinanceFactor.important_cols(),index='timestamp') basic_eps total_op_income net_profit op_income_growth_yoy net_profit_growth_yoy roe rota gross_profit_margin net_margin timestamp timestamp 2002-12-31 NaN 1.962000e+07 2.471000e+06 NaN NaN NaN NaN 0.2068 0.1259 2002-12-31 2003-12-31 1.27 3.574000e+09 2.739000e+08 181.2022 109.8778 0.7729 0.1783 0.2551 0.0766 2003-12-31 2004-12-31 1.75 6.188000e+09 5.369000e+08 0.7313 0.9598 0.3245 0.1474 0.2489 0.0868 2004-12-31 2005-12-31 0.93 5.283000e+09 3.065000e+08 -0.1463 -0.4291 0.1327 0.0603 0.2252 0.0583 2005-12-31 2006-03-31 0.33 1.859000e+09 1.079000e+08 NaN NaN NaN NaN NaN 0.0598 2006-03-31 ... ... ... ... ... ... ... ... ... ... ... 2020-08-28 0.59 9.449000e+10 4.680000e+09 0.0400 -0.1148 0.0983 0.0229 0.1958 0.0603 2020-08-28 2020-10-31 0.90 1.474000e+11 7.106000e+09 0.1632 0.0067 0.1502 0.0347 0.1949 0.0590 2020-10-31 2021-03-31 1.16 1.975000e+11 9.207000e+09 0.1327 0.0112 0.1919 0.0444 0.1931 0.0571 2021-03-31 2021-04-30 0.42 6.547000e+10 3.344000e+09 0.6788 0.6197 0.0622 0.0158 0.1916 0.0667 2021-04-30 2021-08-31 0.80 1.264000e+11 6.432000e+09 0.3375 0.3742 0.1125 0.0287 0.1884 0.0653 2021-08-31 [66 rows x 10 columns] ``` #### Three financial tables ``` >>> BalanceSheet.record_data(code='000338') >>> IncomeStatement.record_data(code='000338') >>> CashFlowStatement.record_data(code='000338') ``` #### And more ``` >>> zvt_context.schemas [zvt.domain.dividend_financing.DividendFinancing, zvt.domain.dividend_financing.DividendDetail, zvt.domain.dividend_financing.SpoDetail...] ``` All schemas is registered in zvt_context.schemas, **schema** is table, data structure. The fields and meaning could be checked in following ways: * help type the schema. and press tab to show its fields or .help() ``` >>> FinanceFactor.help() ``` * source code Schemas defined in [domain](https://github.com/zvtvz/zvt/tree/master/zvt/domain) From above examples, you should know the unified way of recording data: > Schema.record_data(provider='your provider',codes='the codes') Note the optional parameter provider, which represents the data provider. A schema can have multiple providers, which is the cornerstone of system stability. Check the provider has been implemented: ``` >>> Stock.provider_map_recorder {'joinquant': zvt.recorders.joinquant.meta.jq_stock_meta_recorder.JqChinaStockRecorder, 'exchange': zvt.recorders.exchange.exchange_stock_meta_recorder.ExchangeStockMetaRecorder, 'em': zvt.recorders.em.meta.em_stock_meta_recorder.EMStockRecorder, 'eastmoney': zvt.recorders.eastmoney.meta.eastmoney_stock_meta_recorder.EastmoneyChinaStockListRecorder} ``` You can use any provider to get the data, the first one is used by default. One more example, the stock sector data recording: ``` >>> Block.provider_map_recorder {'eastmoney': zvt.recorders.eastmoney.meta.eastmoney_block_meta_recorder.EastmoneyChinaBlockRecorder, 'sina': zvt.recorders.sina.meta.sina_block_recorder.SinaBlockRecorder} >>> Block.record_data(provider='sina') Block registered recorders:{'eastmoney': <class 'zvt.recorders.eastmoney.meta.china_stock_category_recorder.EastmoneyChinaBlockRecorder'>, 'sina': <class 'zvt.recorders.sina.meta.sina_china_stock_category_recorder.SinaChinaBlockRecorder'>} 2020-03-04 23:56:48,931 INFO MainThread finish record sina blocks:industry 2020-03-04 23:56:49,450 INFO MainThread finish record sina blocks:concept ``` Learn more about record_data * The parameter code[single], codes[multiple] represent the stock codes to be recorded * Recording the whole market if not set code, codes * This method will store the data locally and only do incremental updates Refer to the scheduling recoding way[data runner](https://github.com/zvtvz/zvt/blob/master/examples/data_runner) #### Market-wide stock selection After recording the data of the whole market, you can quickly query the required data locally. An example: the top 20 stocks with roe>8% and revenue growth>8% in the 2018 annual report ``` >>> df=FinanceFactor.query_data(filters=[FinanceFactor.roe>0.08,FinanceFactor.report_period=='year',FinanceFactor.op_income_growth_yoy>0.08],start_timestamp='2019-01-01',order=FinanceFactor.roe.desc(),limit=20,columns=["code"]+FinanceFactor.important_cols(),index='code') code basic_eps total_op_income net_profit op_income_growth_yoy net_profit_growth_yoy roe rota gross_profit_margin net_margin timestamp code 000048 000048 2.7350 4.919000e+09 1.101000e+09 0.4311 1.5168 0.7035 0.1988 0.5243 0.2355 2020-04-30 000912 000912 0.3500 4.405000e+09 3.516000e+08 0.1796 1.2363 4.7847 0.0539 0.2175 0.0795 2019-03-20 002207 002207 0.2200 3.021000e+08 5.189000e+07 0.1600 1.1526 1.1175 0.1182 0.1565 0.1718 2020-04-27 002234 002234 5.3300 3.276000e+09 1.610000e+09 0.8023 3.2295 0.8361 0.5469 0.5968 0.4913 2020-04-21 002458 002458 3.7900 3.584000e+09 2.176000e+09 1.4326 4.9973 0.8318 0.6754 0.6537 0.6080 2020-02-20 ... ... ... ... ... ... ... ... ... ... ... ... 600701 600701 -3.6858 7.830000e+08 -3.814000e+09 1.3579 -0.0325 1.9498 -0.7012 0.4173 -4.9293 2020-04-29 600747 600747 -1.5600 3.467000e+08 -2.290000e+09 2.1489 -0.4633 3.1922 -1.5886 0.0378 -6.6093 2020-06-30 600793 600793 1.6568 1.293000e+09 1.745000e+08 0.1164 0.8868 0.7490 0.0486 0.1622 0.1350 2019-04-30 600870 600870 0.0087 3.096000e+07 4.554000e+06 0.7773 1.3702 0.7458 0.0724 0.2688 0.1675 2019-03-30 688169 688169 15.6600 4.205000e+09 7.829000e+08 0.3781 1.5452 0.7172 0.4832 0.3612 0.1862 2020-04-28 [20 rows x 11 columns] ``` So, you should be able to answer the following three questions now: * What data is there? * How to record data? * How to query data? For more advanced usage and extended data, please refer to the data section in the detailed document. ### Write strategy Now we could write strategy basing on TradableEntity and EntityEvent. The so-called strategy backtesting is nothing but repeating the following process: #### At a certain time, find the targets which matching conditions, buy and sell them, and see the performance. Two modes to write strategy: * solo (free style) At a certain time, calculate conditions according to the events, buy and sell * formal (正式的) The calculation model of the two-dimensional index and multi-entity #### a too simple,sometimes naive person (solo) Well, this strategy is really too simple,sometimes naive, as we do most of the time. > When the report comes out, I look at the report. > If the institution increases its position by more than 5%, I will buy it, and if the institution reduces its position by more than 50%, I will sell it. Show you the code: ``` # -*- coding: utf-8 -*- import pandas as pd from zvt.api import get_recent_report_date from zvt.contract import ActorType, AdjustType from zvt.domain import StockActorSummary, Stock1dKdata from zvt.trader import StockTrader from zvt.utils import pd_is_not_null, is_same_date, to_pd_timestamp class FollowIITrader(StockTrader): finish_date = None def on_time(self, timestamp: pd.Timestamp): recent_report_date = to_pd_timestamp(get_recent_report_date(timestamp)) if self.finish_date and is_same_date(recent_report_date, self.finish_date): return filters = [StockActorSummary.actor_type == ActorType.raised_fund.value, StockActorSummary.report_date == recent_report_date] if self.entity_ids: filters = filters + [StockActorSummary.entity_id.in_(self.entity_ids)] df = StockActorSummary.query_data(filters=filters) if pd_is_not_null(df): self.logger.info(f'{df}') self.finish_date = recent_report_date long_df = df[df['change_ratio'] > 0.05] short_df = df[df['change_ratio'] < -0.5] try: self.trade_the_targets(due_timestamp=timestamp, happen_timestamp=timestamp, long_selected=set(long_df['entity_id'].to_list()), short_selected=set(short_df['entity_id'].to_list())) except Exception as e: self.logger.error(e) if __name__ == '__main__': entity_id = 'stock_sh_600519' Stock1dKdata.record_data(entity_id=entity_id, provider='em') StockActorSummary.record_data(entity_id=entity_id, provider='em') FollowIITrader(start_timestamp='2002-01-01', end_timestamp='2021-01-01', entity_ids=[entity_id], provider='em', adjust_type=AdjustType.qfq, profit_threshold=None).run() ``` So, writing a strategy is not that complicated. Just use your imagination, find the relation of the price and the events. Then refresh [http://127.0.0.1:8050/](http://127.0.0.1:8050/),check the performance of your strategy. More examples is in [Strategy example](https://github.com/zvtvz/zvt/tree/master/examples/trader) #### Be serious (formal) Simple calculation can be done through query_data. Now it's time to introduce the two-dimensional index multi-entity calculation model. Takes technical factors as an example to illustrate the **calculation process**: ``` In [7]: from zvt.factors.technical_factor import * In [8]: factor = BullFactor(codes=['000338','601318'],start_timestamp='2019-01-01',end_timestamp='2019-06-10', transformer=MacdTransformer()) ``` ### data_df **two-dimensional index** DataFrame read from the schema by query_data. ``` In [11]: factor.data_df Out[11]: level high id entity_id open low timestamp close entity_id timestamp stock_sh_601318 2019-01-02 1d 54.91 stock_sh_601318_2019-01-02 stock_sh_601318 54.78 53.70 2019-01-02 53.94 2019-01-03 1d 55.06 stock_sh_601318_2019-01-03 stock_sh_601318 53.91 53.82 2019-01-03 54.42 2019-01-04 1d 55.71 stock_sh_601318_2019-01-04 stock_sh_601318 54.03 53.98 2019-01-04 55.31 2019-01-07 1d 55.88 stock_sh_601318_2019-01-07 stock_sh_601318 55.80 54.64 2019-01-07 55.03 2019-01-08 1d 54.83 stock_sh_601318_2019-01-08 stock_sh_601318 54.79 53.96 2019-01-08 54.54 ... ... ... ... ... ... ... ... ... stock_sz_000338 2019-06-03 1d 11.04 stock_sz_000338_2019-06-03 stock_sz_000338 10.93 10.74 2019-06-03 10.81 2019-06-04 1d 10.85 stock_sz_000338_2019-06-04 stock_sz_000338 10.84 10.57 2019-06-04 10.73 2019-06-05 1d 10.92 stock_sz_000338_2019-06-05 stock_sz_000338 10.87 10.59 2019-06-05 10.59 2019-06-06 1d 10.71 stock_sz_000338_2019-06-06 stock_sz_000338 10.59 10.49 2019-06-06 10.65 2019-06-10 1d 11.05 stock_sz_000338_2019-06-10 stock_sz_000338 10.73 10.71 2019-06-10 11.02 [208 rows x 8 columns] ``` ### factor_df **two-dimensional index** DataFrame which calculating using data_df by [transformer](https://github.com/zvtvz/zvt/blob/master/zvt/factors/factor.py#L18) e.g., MacdTransformer. ``` In [12]: factor.factor_df Out[12]: level high id entity_id open low timestamp close diff dea macd entity_id timestamp stock_sh_601318 2019-01-02 1d 54.91 stock_sh_601318_2019-01-02 stock_sh_601318 54.78 53.70 2019-01-02 53.94 NaN NaN NaN 2019-01-03 1d 55.06 stock_sh_601318_2019-01-03 stock_sh_601318 53.91 53.82 2019-01-03 54.42 NaN NaN NaN 2019-01-04 1d 55.71 stock_sh_601318_2019-01-04 stock_sh_601318 54.03 53.98 2019-01-04 55.31 NaN NaN NaN 2019-01-07 1d 55.88 stock_sh_601318_2019-01-07 stock_sh_601318 55.80 54.64 2019-01-07 55.03 NaN NaN NaN 2019-01-08 1d 54.83 stock_sh_601318_2019-01-08 stock_sh_601318 54.79 53.96 2019-01-08 54.54 NaN NaN NaN ... ... ... ... ... ... ... ... ... ... ... ... stock_sz_000338 2019-06-03 1d 11.04 stock_sz_000338_2019-06-03 stock_sz_000338 10.93 10.74 2019-06-03 10.81 -0.121336 -0.145444 0.048215 2019-06-04 1d 10.85 stock_sz_000338_2019-06-04 stock_sz_000338 10.84 10.57 2019-06-04 10.73 -0.133829 -0.143121 0.018583 2019-06-05 1d 10.92 stock_sz_000338_2019-06-05 stock_sz_000338 10.87 10.59 2019-06-05 10.59 -0.153260 -0.145149 -0.016223 2019-06-06 1d 10.71 stock_sz_000338_2019-06-06 stock_sz_000338 10.59 10.49 2019-06-06 10.65 -0.161951 -0.148509 -0.026884 2019-06-10 1d 11.05 stock_sz_000338_2019-06-10 stock_sz_000338 10.73 10.71 2019-06-10 11.02 -0.137399 -0.146287 0.017776 [208 rows x 11 columns] ``` ### result_df **two-dimensional index** DataFrame which calculating using factor_df or(and) data_df. It's used by TargetSelector. e.g.,[macd](https://github.com/zvtvz/zvt/blob/master/zvt/factors/technical_factor.py#L56) ``` In [14]: factor.result_df Out[14]: filter_result entity_id timestamp stock_sh_601318 2019-01-02 False 2019-01-03 False 2019-01-04 False 2019-01-07 False 2019-01-08 False ... ... stock_sz_000338 2019-06-03 False 2019-06-04 False 2019-06-05 False 2019-06-06 False 2019-06-10 False [208 rows x 1 columns] ``` The format of result_df is as follows: <p align="center"><img src='https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/result_df.png'/></p> filter_result is True or False, score_result is from 0 to 1 Combining the stock picker and backtesting, the whole process is as follows: <p align="center"><img src='https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/flow.png'/></p> ## Env settings(optional) ``` >>> from zvt import * >>> zvt_env {'zvt_home': '/Users/foolcage/zvt-home', 'data_path': '/Users/foolcage/zvt-home/data', 'tmp_path': '/Users/foolcage/zvt-home/tmp', 'ui_path': '/Users/foolcage/zvt-home/ui', 'log_path': '/Users/foolcage/zvt-home/logs'} >>> zvt_config ``` * jq_username 聚宽数据用户名 * jq_password 聚宽数据密码 * smtp_host 邮件服务器host * smtp_port 邮件服务器端口 * email_username smtp邮箱账户 * email_password smtp邮箱密码 * wechat_app_id * wechat_app_secrect ``` >>> init_config(current_config=zvt_config, jq_username='xxx', jq_password='yyy') ``` > config others this way: init_config(current_config=zvt_config, **kv) ### History data(optional) baidu: https://pan.baidu.com/s/1kHAxGSxx8r5IBHe5I7MAmQ code: yb6c google drive: https://drive.google.com/drive/folders/17Bxijq-PHJYrLDpyvFAm5P6QyhKL-ahn?usp=sharing It contains daily/weekly post-restoration data, stock valuations, fund and its holdings data, financial data and other data. Unzip the downloaded data to the data_path of the your environment (all db files are placed in this directory, there is no hierarchical structure) The data could be updated incrementally. Downloading historical data is just to save time. It is also possible to update all by yourself. #### Joinquant(optional) the data could be updated from different provider, this make the system stable. https://www.joinquant.com/default/index/sdk?channelId=953cbf5d1b8683f81f0c40c9d4265c0d > add other providers, [Data extension tutorial](https://zvtvz.github.io/zvt/#/data_extending) ## Development ### Clone ``` git clone https://github.com/zvtvz/zvt.git ``` set up virtual env(python>=3.6),install requirements ``` pip3 install -r requirements.txt pip3 install pytest ``` ### Tests ```shell pytest ./tests ``` <p align="center"><img src='https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/pytest.jpg'/></p> Most of the features can be referenced from the tests ## Contribution [code of conduct](https://github.com/zvtvz/zvt/blob/master/code_of_conduct.md) 1. Pass all unit tests, if it is a new feature, please add a new unit test for it 2. Compliance with development specifications 3. If necessary, please update the corresponding document Developers are also very welcome to provide more examples for zvt, and work together to improve the documentation. ## Buy me a coffee <img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/alipay-cn.png" width="25%" alt="Alipay">      <img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/wechat-cn.png" width="25%" alt="Wechat"> ## Contact wechat:foolcage <img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/wechat.jpeg" width="25%" alt="Wechat"> ------ wechat subscription: <img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/gongzhonghao.jpg" width="25%" alt="Wechat"> zhihu: https://zhuanlan.zhihu.com/automoney ## Thanks <p><a href=https://www.jetbrains.com/?from=zvt><img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/jetbrains.png" width="25%" alt="jetbrains"></a></p>
zvt
/zvt-0.10.4.tar.gz/zvt-0.10.4/README.md
README.md
[![github](https://img.shields.io/github/stars/zvtvz/zvt.svg)](https://github.com/zvtvz/zvt) [![image](https://img.shields.io/pypi/v/zvt.svg)](https://pypi.org/project/zvt/) [![image](https://img.shields.io/pypi/l/zvt.svg)](https://pypi.org/project/zvt/) [![image](https://img.shields.io/pypi/pyversions/zvt.svg)](https://pypi.org/project/zvt/) [![build](https://github.com/zvtvz/zvt/actions/workflows/build.yaml/badge.svg)](https://github.com/zvtvz/zvt/actions/workflows/build.yml) [![package](https://github.com/zvtvz/zvt/actions/workflows/package.yaml/badge.svg)](https://github.com/zvtvz/zvt/actions/workflows/package.yaml) [![Documentation Status](https://readthedocs.org/projects/zvt/badge/?version=latest)](https://zvt.readthedocs.io/en/latest/?badge=latest) [![codecov.io](https://codecov.io/github/zvtvz/zvt/coverage.svg?branch=master)](https://codecov.io/github/zvtvz/zvt) [![Downloads](https://pepy.tech/badge/zvt/month)](https://pepy.tech/project/zvt) **Read this in other languages: [English](README-cn.md).** **详细文档:[https://zvt.readthedocs.io/en/latest/](https://zvt.readthedocs.io/en/latest/)** ## 市场模型 ZVT 将市场抽象为如下的模型: <p align="center"><img src='https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/view.png'/></p> * TradableEntity (交易标的) * ActorEntity (市场参与者) * EntityEvent (交易标的 和 市场参与者 发生的事件) ## 快速开始 ### 安装 ``` python3 -m pip install -U zvt ``` ### 使用展示 #### 主界面 安装完成后,在命令行下输入 zvt ```shell zvt ``` 打开 [http://127.0.0.1:8050/](http://127.0.0.1:8050/) > 这里展示的例子依赖后面的下载历史数据,数据更新请参考后面文档 <p align="center"><img src='https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/zvt-factor.png'/></p> <p align="center"><img src='https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/zvt-trader.png'/></p> > 系统的核心概念是可视化的,界面的名称与其一一对应,因此也是统一可扩展的。 > 你可以在你喜欢的ide里编写和运行策略,然后运行界面查看其相关的标的,因子,信号和净值展示。 #### 见证奇迹的时刻 ``` >>> from zvt.domain import Stock, Stock1dHfqKdata >>> from zvt.ml import MaStockMLMachine >>> Stock.record_data(provider="em") >>> entity_ids = ["stock_sz_000001", "stock_sz_000338", "stock_sh_601318"] >>> Stock1dHfqKdata.record_data(provider="em", entity_ids=entity_ids, sleeping_time=1) >>> machine = MaStockMLMachine(entity_ids=["stock_sz_000001"], data_provider="em") >>> machine.train() >>> machine.predict() >>> machine.draw_result(entity_id="stock_sz_000001") ``` <p align="center"><img src='https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/pred_close.png'/></p> > 以上几行代码实现了:数据的抓取,持久化,增量更新,机器学习,预测,展示结果。 > 熟悉系统的核心概念后,可以应用到市场中的任何标的。 ### 核心概念 ``` >>> from zvt.domain import * ``` ### TradableEntity (交易标的) #### A股交易标的 ``` >>> Stock.record_data() >>> df = Stock.query_data(index='code') >>> print(df) id entity_id timestamp entity_type exchange code name list_date end_date code 000001 stock_sz_000001 stock_sz_000001 1991-04-03 stock sz 000001 平安银行 1991-04-03 None 000002 stock_sz_000002 stock_sz_000002 1991-01-29 stock sz 000002 万 科A 1991-01-29 None 000004 stock_sz_000004 stock_sz_000004 1990-12-01 stock sz 000004 国华网安 1990-12-01 None 000005 stock_sz_000005 stock_sz_000005 1990-12-10 stock sz 000005 世纪星源 1990-12-10 None 000006 stock_sz_000006 stock_sz_000006 1992-04-27 stock sz 000006 深振业A 1992-04-27 None ... ... ... ... ... ... ... ... ... ... 605507 stock_sh_605507 stock_sh_605507 2021-08-02 stock sh 605507 国邦医药 2021-08-02 None 605577 stock_sh_605577 stock_sh_605577 2021-08-24 stock sh 605577 龙版传媒 2021-08-24 None 605580 stock_sh_605580 stock_sh_605580 2021-08-19 stock sh 605580 恒盛能源 2021-08-19 None 605588 stock_sh_605588 stock_sh_605588 2021-08-12 stock sh 605588 冠石科技 2021-08-12 None 605589 stock_sh_605589 stock_sh_605589 2021-08-10 stock sh 605589 圣泉集团 2021-08-10 None [4136 rows x 9 columns] ``` #### 美股交易标的 ``` >>> Stockus.record_data() >>> df = Stockus.query_data(index='code') >>> print(df) id entity_id timestamp entity_type exchange code name list_date end_date code A stockus_nyse_A stockus_nyse_A NaT stockus nyse A 安捷伦 None None AA stockus_nyse_AA stockus_nyse_AA NaT stockus nyse AA 美国铝业 None None AAC stockus_nyse_AAC stockus_nyse_AAC NaT stockus nyse AAC Ares Acquisition Corp-A None None AACG stockus_nasdaq_AACG stockus_nasdaq_AACG NaT stockus nasdaq AACG ATA Creativity Global ADR None None AACG stockus_nyse_AACG stockus_nyse_AACG NaT stockus nyse AACG ATA Creativity Global ADR None None ... ... ... ... ... ... ... ... ... ... ZWRK stockus_nasdaq_ZWRK stockus_nasdaq_ZWRK NaT stockus nasdaq ZWRK Z-Work Acquisition Corp-A None None ZY stockus_nasdaq_ZY stockus_nasdaq_ZY NaT stockus nasdaq ZY Zymergen Inc None None ZYME stockus_nyse_ZYME stockus_nyse_ZYME NaT stockus nyse ZYME Zymeworks Inc None None ZYNE stockus_nasdaq_ZYNE stockus_nasdaq_ZYNE NaT stockus nasdaq ZYNE Zynerba Pharmaceuticals Inc None None ZYXI stockus_nasdaq_ZYXI stockus_nasdaq_ZYXI NaT stockus nasdaq ZYXI Zynex Inc None None [5826 rows x 9 columns] >>> Stockus.query_data(code='AAPL') id entity_id timestamp entity_type exchange code name list_date end_date 0 stockus_nasdaq_AAPL stockus_nasdaq_AAPL None stockus nasdaq AAPL 苹果 None None ``` #### 港股交易标的 ``` >>> Stockhk.record_data() >>> df = Stockhk.query_data(index='code') >>> print(df) id entity_id timestamp entity_type exchange code name list_date end_date code 00001 stockhk_hk_00001 stockhk_hk_00001 NaT stockhk hk 00001 长和 None None 00002 stockhk_hk_00002 stockhk_hk_00002 NaT stockhk hk 00002 中电控股 None None 00003 stockhk_hk_00003 stockhk_hk_00003 NaT stockhk hk 00003 香港中华煤气 None None 00004 stockhk_hk_00004 stockhk_hk_00004 NaT stockhk hk 00004 九龙仓集团 None None 00005 stockhk_hk_00005 stockhk_hk_00005 NaT stockhk hk 00005 汇丰控股 None None ... ... ... ... ... ... ... ... ... ... 09996 stockhk_hk_09996 stockhk_hk_09996 NaT stockhk hk 09996 沛嘉医疗-B None None 09997 stockhk_hk_09997 stockhk_hk_09997 NaT stockhk hk 09997 康基医疗 None None 09998 stockhk_hk_09998 stockhk_hk_09998 NaT stockhk hk 09998 光荣控股 None None 09999 stockhk_hk_09999 stockhk_hk_09999 NaT stockhk hk 09999 网易-S None None 80737 stockhk_hk_80737 stockhk_hk_80737 NaT stockhk hk 80737 湾区发展-R None None [2597 rows x 9 columns] >>> df[df.code=='00700'] id entity_id timestamp entity_type exchange code name list_date end_date 2112 stockhk_hk_00700 stockhk_hk_00700 None stockhk hk 00700 腾讯控股 None None ``` #### 还有更多 ``` >>> from zvt.contract import * >>> zvt_context.tradable_schema_map {'stockus': zvt.domain.meta.stockus_meta.Stockus, 'stockhk': zvt.domain.meta.stockhk_meta.Stockhk, 'index': zvt.domain.meta.index_meta.Index, 'etf': zvt.domain.meta.etf_meta.Etf, 'stock': zvt.domain.meta.stock_meta.Stock, 'block': zvt.domain.meta.block_meta.Block, 'fund': zvt.domain.meta.fund_meta.Fund} ``` 其中key为交易标的的类型,value为其schema,系统为schema提供了统一的 **记录(record_data)** 和 **查询(query_data)** 方法。 ``` >>> Index.record_data() >>> df=Index.query_data(filters=[Index.category=='scope',Index.exchange='sh']) >>> print(df) id entity_id timestamp entity_type exchange code name list_date end_date publisher category base_point 0 index_sh_000001 index_sh_000001 1990-12-19 index sh 000001 上证指数 1991-07-15 None csindex scope 100.00 1 index_sh_000002 index_sh_000002 1990-12-19 index sh 000002 A股指数 1992-02-21 None csindex scope 100.00 2 index_sh_000003 index_sh_000003 1992-02-21 index sh 000003 B股指数 1992-08-17 None csindex scope 100.00 3 index_sh_000010 index_sh_000010 2002-06-28 index sh 000010 上证180 2002-07-01 None csindex scope 3299.06 4 index_sh_000016 index_sh_000016 2003-12-31 index sh 000016 上证50 2004-01-02 None csindex scope 1000.00 .. ... ... ... ... ... ... ... ... ... ... ... ... 25 index_sh_000020 index_sh_000020 2007-12-28 index sh 000020 中型综指 2008-05-12 None csindex scope 1000.00 26 index_sh_000090 index_sh_000090 2009-12-31 index sh 000090 上证流通 2010-12-02 None csindex scope 1000.00 27 index_sh_930903 index_sh_930903 2012-12-31 index sh 930903 中证A股 2016-10-18 None csindex scope 1000.00 28 index_sh_000688 index_sh_000688 2019-12-31 index sh 000688 科创50 2020-07-23 None csindex scope 1000.00 29 index_sh_931643 index_sh_931643 2019-12-31 index sh 931643 科创创业50 2021-06-01 None csindex scope 1000.00 [30 rows x 12 columns] ``` ### EntityEvent (交易标的 发生的事件) 有了交易标的,才有交易标的 发生的事。 #### 行情数据 交易标的 **行情schema** 遵从如下的规则: ``` {entity_shema}{level}{adjust_type}Kdata ``` * entity_schema 就是前面说的TradableEntity,比如Stock,Stockus等。 * level ``` >>> for level in IntervalLevel: print(level.value) ``` * adjust type ``` >>> for adjust_type in AdjustType: print(adjust_type.value) ``` > 注意: 为了兼容历史数据,前复权是个例外,{adjust_type}不填 前复权 ``` >>> Stock1dKdata.record_data(code='000338', provider='em') >>> df = Stock1dKdata.query_data(code='000338', provider='em') >>> print(df) id entity_id timestamp provider code name level open close high low volume turnover change_pct turnover_rate 0 stock_sz_000338_2007-04-30 stock_sz_000338 2007-04-30 None 000338 潍柴动力 1d 2.33 2.00 2.40 1.87 207375.0 1.365189e+09 3.2472 0.1182 1 stock_sz_000338_2007-05-08 stock_sz_000338 2007-05-08 None 000338 潍柴动力 1d 2.11 1.94 2.20 1.87 86299.0 5.563198e+08 -0.0300 0.0492 2 stock_sz_000338_2007-05-09 stock_sz_000338 2007-05-09 None 000338 潍柴动力 1d 1.90 1.81 1.94 1.66 93823.0 5.782065e+08 -0.0670 0.0535 3 stock_sz_000338_2007-05-10 stock_sz_000338 2007-05-10 None 000338 潍柴动力 1d 1.78 1.85 1.98 1.75 47720.0 2.999226e+08 0.0221 0.0272 4 stock_sz_000338_2007-05-11 stock_sz_000338 2007-05-11 None 000338 潍柴动力 1d 1.81 1.73 1.81 1.66 39273.0 2.373126e+08 -0.0649 0.0224 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 3426 stock_sz_000338_2021-08-27 stock_sz_000338 2021-08-27 None 000338 潍柴动力 1d 19.39 20.30 20.30 19.25 1688497.0 3.370241e+09 0.0601 0.0398 3427 stock_sz_000338_2021-08-30 stock_sz_000338 2021-08-30 None 000338 潍柴动力 1d 20.30 20.09 20.31 19.78 1187601.0 2.377957e+09 -0.0103 0.0280 3428 stock_sz_000338_2021-08-31 stock_sz_000338 2021-08-31 None 000338 潍柴动力 1d 20.20 20.07 20.63 19.70 1143985.0 2.295195e+09 -0.0010 0.0270 3429 stock_sz_000338_2021-09-01 stock_sz_000338 2021-09-01 None 000338 潍柴动力 1d 19.98 19.68 19.98 19.15 1218697.0 2.383841e+09 -0.0194 0.0287 3430 stock_sz_000338_2021-09-02 stock_sz_000338 2021-09-02 None 000338 潍柴动力 1d 19.71 19.85 19.97 19.24 1023545.0 2.012006e+09 0.0086 0.0241 [3431 rows x 15 columns] >>> Stockus1dKdata.record_data(code='AAPL', provider='em') >>> df = Stockus1dKdata.query_data(code='AAPL', provider='em') >>> print(df) id entity_id timestamp provider code name level open close high low volume turnover change_pct turnover_rate 0 stockus_nasdaq_AAPL_1984-09-07 stockus_nasdaq_AAPL 1984-09-07 None AAPL 苹果 1d -5.59 -5.59 -5.58 -5.59 2981600.0 0.000000e+00 0.0000 0.0002 1 stockus_nasdaq_AAPL_1984-09-10 stockus_nasdaq_AAPL 1984-09-10 None AAPL 苹果 1d -5.59 -5.59 -5.58 -5.59 2346400.0 0.000000e+00 0.0000 0.0001 2 stockus_nasdaq_AAPL_1984-09-11 stockus_nasdaq_AAPL 1984-09-11 None AAPL 苹果 1d -5.58 -5.58 -5.58 -5.58 5444000.0 0.000000e+00 0.0018 0.0003 3 stockus_nasdaq_AAPL_1984-09-12 stockus_nasdaq_AAPL 1984-09-12 None AAPL 苹果 1d -5.58 -5.59 -5.58 -5.59 4773600.0 0.000000e+00 -0.0018 0.0003 4 stockus_nasdaq_AAPL_1984-09-13 stockus_nasdaq_AAPL 1984-09-13 None AAPL 苹果 1d -5.58 -5.58 -5.58 -5.58 7429600.0 0.000000e+00 0.0018 0.0004 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 8765 stockus_nasdaq_AAPL_2021-08-27 stockus_nasdaq_AAPL 2021-08-27 None AAPL 苹果 1d 147.48 148.60 148.75 146.83 55802388.0 8.265452e+09 0.0072 0.0034 8766 stockus_nasdaq_AAPL_2021-08-30 stockus_nasdaq_AAPL 2021-08-30 None AAPL 苹果 1d 149.00 153.12 153.49 148.61 90956723.0 1.383762e+10 0.0304 0.0055 8767 stockus_nasdaq_AAPL_2021-08-31 stockus_nasdaq_AAPL 2021-08-31 None AAPL 苹果 1d 152.66 151.83 152.80 151.29 86453117.0 1.314255e+10 -0.0084 0.0052 8768 stockus_nasdaq_AAPL_2021-09-01 stockus_nasdaq_AAPL 2021-09-01 None AAPL 苹果 1d 152.83 152.51 154.98 152.34 80313711.0 1.235321e+10 0.0045 0.0049 8769 stockus_nasdaq_AAPL_2021-09-02 stockus_nasdaq_AAPL 2021-09-02 None AAPL 苹果 1d 153.87 153.65 154.72 152.40 71171317.0 1.093251e+10 0.0075 0.0043 [8770 rows x 15 columns] ``` 后复权 ``` >>> Stock1dHfqKdata.record_data(code='000338', provider='em') >>> df = Stock1dHfqKdata.query_data(code='000338', provider='em') >>> print(df) id entity_id timestamp provider code name level open close high low volume turnover change_pct turnover_rate 0 stock_sz_000338_2007-04-30 stock_sz_000338 2007-04-30 None 000338 潍柴动力 1d 70.00 64.93 71.00 62.88 207375.0 1.365189e+09 2.1720 0.1182 1 stock_sz_000338_2007-05-08 stock_sz_000338 2007-05-08 None 000338 潍柴动力 1d 66.60 64.00 68.00 62.88 86299.0 5.563198e+08 -0.0143 0.0492 2 stock_sz_000338_2007-05-09 stock_sz_000338 2007-05-09 None 000338 潍柴动力 1d 63.32 62.00 63.88 59.60 93823.0 5.782065e+08 -0.0313 0.0535 3 stock_sz_000338_2007-05-10 stock_sz_000338 2007-05-10 None 000338 潍柴动力 1d 61.50 62.49 64.48 61.01 47720.0 2.999226e+08 0.0079 0.0272 4 stock_sz_000338_2007-05-11 stock_sz_000338 2007-05-11 None 000338 潍柴动力 1d 61.90 60.65 61.90 59.70 39273.0 2.373126e+08 -0.0294 0.0224 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 3426 stock_sz_000338_2021-08-27 stock_sz_000338 2021-08-27 None 000338 潍柴动力 1d 331.97 345.95 345.95 329.82 1688497.0 3.370241e+09 0.0540 0.0398 3427 stock_sz_000338_2021-08-30 stock_sz_000338 2021-08-30 None 000338 潍柴动力 1d 345.95 342.72 346.10 337.96 1187601.0 2.377957e+09 -0.0093 0.0280 3428 stock_sz_000338_2021-08-31 stock_sz_000338 2021-08-31 None 000338 潍柴动力 1d 344.41 342.41 351.02 336.73 1143985.0 2.295195e+09 -0.0009 0.0270 3429 stock_sz_000338_2021-09-01 stock_sz_000338 2021-09-01 None 000338 潍柴动力 1d 341.03 336.42 341.03 328.28 1218697.0 2.383841e+09 -0.0175 0.0287 3430 stock_sz_000338_2021-09-02 stock_sz_000338 2021-09-02 None 000338 潍柴动力 1d 336.88 339.03 340.88 329.67 1023545.0 2.012006e+09 0.0078 0.0241 [3431 rows x 15 columns] ``` #### 财务因子 ``` >>> FinanceFactor.record_data(code='000338') >>> FinanceFactor.query_data(code='000338',columns=FinanceFactor.important_cols(),index='timestamp') basic_eps total_op_income net_profit op_income_growth_yoy net_profit_growth_yoy roe rota gross_profit_margin net_margin timestamp timestamp 2002-12-31 NaN 1.962000e+07 2.471000e+06 NaN NaN NaN NaN 0.2068 0.1259 2002-12-31 2003-12-31 1.27 3.574000e+09 2.739000e+08 181.2022 109.8778 0.7729 0.1783 0.2551 0.0766 2003-12-31 2004-12-31 1.75 6.188000e+09 5.369000e+08 0.7313 0.9598 0.3245 0.1474 0.2489 0.0868 2004-12-31 2005-12-31 0.93 5.283000e+09 3.065000e+08 -0.1463 -0.4291 0.1327 0.0603 0.2252 0.0583 2005-12-31 2006-03-31 0.33 1.859000e+09 1.079000e+08 NaN NaN NaN NaN NaN 0.0598 2006-03-31 ... ... ... ... ... ... ... ... ... ... ... 2020-08-28 0.59 9.449000e+10 4.680000e+09 0.0400 -0.1148 0.0983 0.0229 0.1958 0.0603 2020-08-28 2020-10-31 0.90 1.474000e+11 7.106000e+09 0.1632 0.0067 0.1502 0.0347 0.1949 0.0590 2020-10-31 2021-03-31 1.16 1.975000e+11 9.207000e+09 0.1327 0.0112 0.1919 0.0444 0.1931 0.0571 2021-03-31 2021-04-30 0.42 6.547000e+10 3.344000e+09 0.6788 0.6197 0.0622 0.0158 0.1916 0.0667 2021-04-30 2021-08-31 0.80 1.264000e+11 6.432000e+09 0.3375 0.3742 0.1125 0.0287 0.1884 0.0653 2021-08-31 [66 rows x 10 columns] ``` #### 财务三张表 ``` #资产负债表 >>> BalanceSheet.record_data(code='000338') #利润表 >>> IncomeStatement.record_data(code='000338') #现金流量表 >>> CashFlowStatement.record_data(code='000338') ``` #### 还有更多 ``` >>> zvt_context.schemas [zvt.domain.dividend_financing.DividendFinancing, zvt.domain.dividend_financing.DividendDetail, zvt.domain.dividend_financing.SpoDetail...] ``` zvt_context.schemas为系统支持的schema,schema即表结构,即数据,其字段含义的查看方式如下: * help 输入schema.按tab提示其包含的字段,或者.help() ``` >>> FinanceFactor.help() ``` * 源码 [domain](https://github.com/zvtvz/zvt/tree/master/zvt/domain)里的文件为schema的定义,查看相应字段的注释即可。 通过以上的例子,你应该掌握了统一的记录数据的方法: > Schema.record_data(provider='your provider',codes='the codes') 注意可选参数provider,其代表数据提供商,一个schema可以有多个provider,这是系统稳定的基石。 查看**已实现**的provider ``` >>> Stock.provider_map_recorder {'joinquant': zvt.recorders.joinquant.meta.jq_stock_meta_recorder.JqChinaStockRecorder, 'exchange': zvt.recorders.exchange.exchange_stock_meta_recorder.ExchangeStockMetaRecorder, 'em': zvt.recorders.em.meta.em_stock_meta_recorder.EMStockRecorder, 'eastmoney': zvt.recorders.eastmoney.meta.eastmoney_stock_meta_recorder.EastmoneyChinaStockListRecorder} ``` 你可以使用任意一个provider来获取数据,默认使用第一个。 再举个例子,股票板块数据获取: ``` >>> Block.provider_map_recorder {'eastmoney': zvt.recorders.eastmoney.meta.eastmoney_block_meta_recorder.EastmoneyChinaBlockRecorder, 'sina': zvt.recorders.sina.meta.sina_block_recorder.SinaBlockRecorder} >>> Block.record_data(provider='sina') Block registered recorders:{'eastmoney': <class 'zvt.recorders.eastmoney.meta.china_stock_category_recorder.EastmoneyChinaBlockRecorder'>, 'sina': <class 'zvt.recorders.sina.meta.sina_china_stock_category_recorder.SinaChinaBlockRecorder'>} 2020-03-04 23:56:48,931 INFO MainThread finish record sina blocks:industry 2020-03-04 23:56:49,450 INFO MainThread finish record sina blocks:concept ``` 再多了解一点record_data: * 参数code[单个],codes[多个]代表需要抓取的股票代码 * 不传入code,codes则是全市场抓取 * 该方法会把数据存储到本地并只做增量更新 定时任务的方式更新可参考[定时更新](https://github.com/zvtvz/zvt/blob/master/examples/data_runner) #### 全市场选股 查询数据使用的是query_data方法,把全市场的数据记录下来后,就可以在本地快速查询需要的数据了。 一个例子:2018年年报 roe>8% 营收增长>8% 的前20个股 ``` >>> df=FinanceFactor.query_data(filters=[FinanceFactor.roe>0.08,FinanceFactor.report_period=='year',FinanceFactor.op_income_growth_yoy>0.08],start_timestamp='2019-01-01',order=FinanceFactor.roe.desc(),limit=20,columns=["code"]+FinanceFactor.important_cols(),index='code') code basic_eps total_op_income net_profit op_income_growth_yoy net_profit_growth_yoy roe rota gross_profit_margin net_margin timestamp code 000048 000048 2.7350 4.919000e+09 1.101000e+09 0.4311 1.5168 0.7035 0.1988 0.5243 0.2355 2020-04-30 000912 000912 0.3500 4.405000e+09 3.516000e+08 0.1796 1.2363 4.7847 0.0539 0.2175 0.0795 2019-03-20 002207 002207 0.2200 3.021000e+08 5.189000e+07 0.1600 1.1526 1.1175 0.1182 0.1565 0.1718 2020-04-27 002234 002234 5.3300 3.276000e+09 1.610000e+09 0.8023 3.2295 0.8361 0.5469 0.5968 0.4913 2020-04-21 002458 002458 3.7900 3.584000e+09 2.176000e+09 1.4326 4.9973 0.8318 0.6754 0.6537 0.6080 2020-02-20 ... ... ... ... ... ... ... ... ... ... ... ... 600701 600701 -3.6858 7.830000e+08 -3.814000e+09 1.3579 -0.0325 1.9498 -0.7012 0.4173 -4.9293 2020-04-29 600747 600747 -1.5600 3.467000e+08 -2.290000e+09 2.1489 -0.4633 3.1922 -1.5886 0.0378 -6.6093 2020-06-30 600793 600793 1.6568 1.293000e+09 1.745000e+08 0.1164 0.8868 0.7490 0.0486 0.1622 0.1350 2019-04-30 600870 600870 0.0087 3.096000e+07 4.554000e+06 0.7773 1.3702 0.7458 0.0724 0.2688 0.1675 2019-03-30 688169 688169 15.6600 4.205000e+09 7.829000e+08 0.3781 1.5452 0.7172 0.4832 0.3612 0.1862 2020-04-28 [20 rows x 11 columns] ``` 以上,你应该会回答如下的三个问题了: * 有什么数据? * 如何记录数据? * 如何查询数据? 更高级的用法以及扩展数据,可以参考详细文档里的数据部分。 ### 写个策略 有了 **交易标的** 和 **交易标的发生的事**,就可以写策略了。 所谓策略回测,无非就是,重复以下过程: #### 在某时间点,找到符合条件的标的,对其进行买卖,看其表现。 系统支持两种模式: * solo (随意的) 在 某个时间 根据发生的事件 计算条件 并买卖 * formal (正式的) 系统设计的二维索引多标的计算模型 #### 一个很随便的人(solo) 嗯,这个策略真的很随便,就像我们大部分时间做的那样。 > 报表出来的时,我看一下报表,机构加仓超过5%我就买入,机构减仓超过50%我就卖出。 代码如下: ``` # -*- coding: utf-8 -*- import pandas as pd from zvt.api import get_recent_report_date from zvt.contract import ActorType, AdjustType from zvt.domain import StockActorSummary, Stock1dKdata from zvt.trader import StockTrader from zvt.utils import pd_is_not_null, is_same_date, to_pd_timestamp class FollowIITrader(StockTrader): finish_date = None def on_time(self, timestamp: pd.Timestamp): recent_report_date = to_pd_timestamp(get_recent_report_date(timestamp)) if self.finish_date and is_same_date(recent_report_date, self.finish_date): return filters = [StockActorSummary.actor_type == ActorType.raised_fund.value, StockActorSummary.report_date == recent_report_date] if self.entity_ids: filters = filters + [StockActorSummary.entity_id.in_(self.entity_ids)] df = StockActorSummary.query_data(filters=filters) if pd_is_not_null(df): self.logger.info(f'{df}') self.finish_date = recent_report_date long_df = df[df['change_ratio'] > 0.05] short_df = df[df['change_ratio'] < -0.5] try: self.trade_the_targets(due_timestamp=timestamp, happen_timestamp=timestamp, long_selected=set(long_df['entity_id'].to_list()), short_selected=set(short_df['entity_id'].to_list())) except Exception as e: self.logger.error(e) if __name__ == '__main__': entity_id = 'stock_sh_600519' Stock1dKdata.record_data(entity_id=entity_id, provider='em') StockActorSummary.record_data(entity_id=entity_id, provider='em') FollowIITrader(start_timestamp='2002-01-01', end_timestamp='2021-01-01', entity_ids=[entity_id], provider='em', adjust_type=AdjustType.qfq, profit_threshold=None).run() ``` 所以,写一个策略其实还是很简单的嘛。 你可以发挥想象力,社保重仓买买买,外资重仓买买买,董事长跟小姨子跑了卖卖卖...... 然后,刷新一下[http://127.0.0.1:8050/](http://127.0.0.1:8050/),看你运行策略的performance 更多可参考[策略例子](https://github.com/zvtvz/zvt/tree/master/examples/trader) #### 严肃一点(formal) 简单的计算可以通过query_data来完成,这里说的是系统设计的二维索引多标的计算模型。 下面以技术因子为例对**计算流程**进行说明: ``` In [7]: from zvt.factors.technical_factor import * In [8]: factor = BullFactor(codes=['000338','601318'],start_timestamp='2019-01-01',end_timestamp='2019-06-10', transformer=MacdTransformer()) ``` ### data_df data_df为factor的原始数据,即通过query_data从数据库读取到的数据,为一个**二维索引**DataFrame ``` In [11]: factor.data_df Out[11]: level high id entity_id open low timestamp close entity_id timestamp stock_sh_601318 2019-01-02 1d 54.91 stock_sh_601318_2019-01-02 stock_sh_601318 54.78 53.70 2019-01-02 53.94 2019-01-03 1d 55.06 stock_sh_601318_2019-01-03 stock_sh_601318 53.91 53.82 2019-01-03 54.42 2019-01-04 1d 55.71 stock_sh_601318_2019-01-04 stock_sh_601318 54.03 53.98 2019-01-04 55.31 2019-01-07 1d 55.88 stock_sh_601318_2019-01-07 stock_sh_601318 55.80 54.64 2019-01-07 55.03 2019-01-08 1d 54.83 stock_sh_601318_2019-01-08 stock_sh_601318 54.79 53.96 2019-01-08 54.54 ... ... ... ... ... ... ... ... ... stock_sz_000338 2019-06-03 1d 11.04 stock_sz_000338_2019-06-03 stock_sz_000338 10.93 10.74 2019-06-03 10.81 2019-06-04 1d 10.85 stock_sz_000338_2019-06-04 stock_sz_000338 10.84 10.57 2019-06-04 10.73 2019-06-05 1d 10.92 stock_sz_000338_2019-06-05 stock_sz_000338 10.87 10.59 2019-06-05 10.59 2019-06-06 1d 10.71 stock_sz_000338_2019-06-06 stock_sz_000338 10.59 10.49 2019-06-06 10.65 2019-06-10 1d 11.05 stock_sz_000338_2019-06-10 stock_sz_000338 10.73 10.71 2019-06-10 11.02 [208 rows x 8 columns] ``` ### factor_df factor_df为transformer对data_df进行计算后得到的数据,设计因子即对[transformer](https://github.com/zvtvz/zvt/blob/master/zvt/factors/factor.py#L18)进行扩展,例子中用的是MacdTransformer()。 ``` In [12]: factor.factor_df Out[12]: level high id entity_id open low timestamp close diff dea macd entity_id timestamp stock_sh_601318 2019-01-02 1d 54.91 stock_sh_601318_2019-01-02 stock_sh_601318 54.78 53.70 2019-01-02 53.94 NaN NaN NaN 2019-01-03 1d 55.06 stock_sh_601318_2019-01-03 stock_sh_601318 53.91 53.82 2019-01-03 54.42 NaN NaN NaN 2019-01-04 1d 55.71 stock_sh_601318_2019-01-04 stock_sh_601318 54.03 53.98 2019-01-04 55.31 NaN NaN NaN 2019-01-07 1d 55.88 stock_sh_601318_2019-01-07 stock_sh_601318 55.80 54.64 2019-01-07 55.03 NaN NaN NaN 2019-01-08 1d 54.83 stock_sh_601318_2019-01-08 stock_sh_601318 54.79 53.96 2019-01-08 54.54 NaN NaN NaN ... ... ... ... ... ... ... ... ... ... ... ... stock_sz_000338 2019-06-03 1d 11.04 stock_sz_000338_2019-06-03 stock_sz_000338 10.93 10.74 2019-06-03 10.81 -0.121336 -0.145444 0.048215 2019-06-04 1d 10.85 stock_sz_000338_2019-06-04 stock_sz_000338 10.84 10.57 2019-06-04 10.73 -0.133829 -0.143121 0.018583 2019-06-05 1d 10.92 stock_sz_000338_2019-06-05 stock_sz_000338 10.87 10.59 2019-06-05 10.59 -0.153260 -0.145149 -0.016223 2019-06-06 1d 10.71 stock_sz_000338_2019-06-06 stock_sz_000338 10.59 10.49 2019-06-06 10.65 -0.161951 -0.148509 -0.026884 2019-06-10 1d 11.05 stock_sz_000338_2019-06-10 stock_sz_000338 10.73 10.71 2019-06-10 11.02 -0.137399 -0.146287 0.017776 [208 rows x 11 columns] ``` ### result_df result_df为可用于选股器的**二维索引**DataFrame,通过对data_df或factor_df计算来实现。 该例子在计算macd之后,利用factor_df,黄白线在0轴上为True,否则为False,[具体代码](https://github.com/zvtvz/zvt/blob/master/zvt/factors/technical_factor.py#L56) ``` In [14]: factor.result_df Out[14]: score entity_id timestamp stock_sh_601318 2019-01-02 False 2019-01-03 False 2019-01-04 False 2019-01-07 False 2019-01-08 False ... ... stock_sz_000338 2019-06-03 False 2019-06-04 False 2019-06-05 False 2019-06-06 False 2019-06-10 False [208 rows x 1 columns] ``` result_df的格式如下: <p align="center"><img src='https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/result_df.png'/></p> filter_result 为 True 或 False, score_result 取值为 0 到 1。 结合选股器和回测,整个流程如下: <p align="center"><img src='https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/flow.png'/></p> ## 环境设置(可选) ``` >>> from zvt import * >>> zvt_env {'zvt_home': '/Users/foolcage/zvt-home', 'data_path': '/Users/foolcage/zvt-home/data', 'tmp_path': '/Users/foolcage/zvt-home/tmp', 'ui_path': '/Users/foolcage/zvt-home/ui', 'log_path': '/Users/foolcage/zvt-home/logs'} >>> zvt_config ``` * jq_username 聚宽数据用户名 * jq_password 聚宽数据密码 * smtp_host 邮件服务器host * smtp_port 邮件服务器端口 * email_username smtp邮箱账户 * email_password smtp邮箱密码 * wechat_app_id * wechat_app_secrect ``` >>> init_config(current_config=zvt_config, jq_username='xxx', jq_password='yyy') ``` > 通用的配置方式为: init_config(current_config=zvt_config, **kv) ### 下载历史数据(可选) 百度网盘: https://pan.baidu.com/s/1kHAxGSxx8r5IBHe5I7MAmQ 提取码: yb6c google drive: https://drive.google.com/drive/folders/17Bxijq-PHJYrLDpyvFAm5P6QyhKL-ahn?usp=sharing 里面包含joinquant的日/周线后复权数据,个股估值,基金及其持仓数据,eastmoney的财务等数据。 把下载的数据解压到正式环境的data_path(所有db文件放到该目录下,没有层级结构) 数据的更新是增量的,下载历史数据只是为了节省时间,全部自己更新也是可以的。 #### 注册聚宽(可选) 项目数据支持多provider,在数据schema一致性的基础上,可根据需要进行选择和扩展,目前支持新浪,东财,交易所等免费数据。 #### 数据的设计上是让provider来适配schema,而不是反过来,这样即使某provider不可用了,换一个即可,不会影响整个系统的使用。 但免费数据的缺点是显而易见的:不稳定,爬取清洗数据耗时耗力,维护代价巨大,且随时可能不可用。 个人建议:如果只是学习研究,可以使用免费数据;如果是真正有意投身量化,还是选一家可靠的数据提供商。 项目支持聚宽的数据,可戳以下链接申请使用(目前可免费使用一年) https://www.joinquant.com/default/index/sdk?channelId=953cbf5d1b8683f81f0c40c9d4265c0d > 项目中大部分的免费数据目前都是比较稳定的,且做过严格测试,特别是东财的数据,可放心使用 > 添加其他数据提供商, 请参考[数据扩展教程](https://zvtvz.github.io/zvt/#/data_extending) ## 开发 ### clone代码 ``` git clone https://github.com/zvtvz/zvt.git ``` 设置项目的virtual env(python>=3.6),安装依赖 ``` pip3 install -r requirements.txt pip3 install pytest ``` ### 测试案例 pycharm导入工程(推荐,你也可以使用其他ide),然后pytest跑测试案例 <p align="center"><img src='https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/pytest.jpg'/></p> 大部分功能使用都可以从tests里面参考 ## 贡献 期待能有更多的开发者参与到 zvt 的开发中来,我会保证尽快 Reivew PR 并且及时回复。但提交 PR 请确保 先看一下[1分钟代码规范](https://github.com/zvtvz/zvt/blob/master/code_of_conduct.md) 1. 通过所有单元测试,如若是新功能,请为其新增单元测试 2. 遵守开发规范 3. 如若需要,请更新相对应的文档 也非常欢迎开发者能为 zvt 提供更多的示例,共同来完善文档。 ## 请作者喝杯咖啡 如果你觉得项目对你有帮助,可以请作者喝杯咖啡 <img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/alipay-cn.png" width="25%" alt="Alipay">      <img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/wechat-cn.png" width="25%" alt="Wechat"> ## 联系方式 加微信进群:foolcage 添加暗号:zvt <img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/wechat.jpeg" width="25%" alt="Wechat"> ------ 微信公众号: <img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/gongzhonghao.jpg" width="25%" alt="Wechat"> 知乎专栏: https://zhuanlan.zhihu.com/automoney ## Thanks <p><a href=https://www.jetbrains.com/?from=zvt><img src="https://raw.githubusercontent.com/zvtvz/zvt/master/docs/imgs/jetbrains.png" width="25%" alt="jetbrains"></a></p>
zvt
/zvt-0.10.4.tar.gz/zvt-0.10.4/README-cn.md
README-cn.md
<div align="left"> <h1>ZvukoGram API <img src="https://zvukogram.com/design/img/dispic/zvuklogo.png" width=30 height=30></h1> <p align="left" > <a href="https://pypi.org/project/zvukogram/"> <img src="https://img.shields.io/pypi/v/zvukogram?style=flat-square" alt="PyPI"> </a> <a href="https://pypi.org/project/zvukogram/"> <img src="https://img.shields.io/pypi/dm/zvukogram?style=flat-square" alt="PyPI"> </a> </p> </div> A simple, yet powerful library for [ZvukoGram API](https://zvukogram.com/node/api/) ## Usage With ``ZvukoGram API`` you can fully access the ZvukoGram API. ## Documentation Official docs can be found on the [API's webpage](https://zvukogram.com/node/api/) ## Installation ```bash pip install zvukogram ``` ## Requirements - ``Python 3.7+`` - ``aiohttp`` - ``pydantic`` ## Features - ``Asynchronous`` - ``Exception handling`` - ``Pydantic return model`` - ``LightWeight`` ## Basic example ```python import asyncio from zvukogram import ZvukoGram, ZvukoGramError api = ZvukoGram('token', 'email') async def main(): try: voices = await api.get_voices() print(voices['Русский'].pop().voice) except ZvukoGramError as exc: print(exc) generation = await api.tts( voice='Бот Максим', text='Привет!', ) print(generation.file) audio = await generation.download() generation = await api.tts_long( voice='Бот Максим', text='Более длинный текст!', ) while not generation.file: await asyncio.sleep(1) generation = await api.check_progress(generation.id) print(generation.file) asyncio.run(main()) ``` Developed by Nikita Minaev (c) 2023
zvukogram
/zvukogram-1.0.1.tar.gz/zvukogram-1.0.1/README.md
README.md
import numpy from sklearn.preprocessing import scale class PAPR: splits = dict() #创建一个新的字典 splits[2] = [0, float('inf')] #float(‘inf’)正无穷 splits[3] = [-0.43, 0.43, float('inf')] splits[4] = [-0.67, 0, 0.67, float('inf')] splits[5] = [-0.84, -0.25, 0.25, 0.84, float('inf')] splits[6] = [-0.97, -0.43, 0, 0.43, 0.97, float('inf')] splits[7] = [-1.07, -0.57, -0.18, 0.18, 0.57, 1.07, float('inf')] splits[8] = [-1.15, -0.67, -0.32, 0, 0.32, 0.67, 1.15, float('inf')] splits[9] = [-1.22, -0.76, -0.43, -0.14, 0.14, 0.43, 0.76, 1.22, float('inf')] splits[10] = [-1.28, -0.84, -0.52, -0.25, 0, 0.25, 0.52, 0.84, 1.28, float('inf')] def __init__(self,m): self.m=m ''' 功能:利用PAPR_RW算法进行异常分数的计算 输入:data,从CSV文件读取的一维数据 输出:data_matrix,二维矩阵,每行为一个子序列 运行示例: from PAPR import * import numpy as np import matplotlib.pyplot as plt m=250 #设置子序列长度,每个数据集不一样 P=PAPR(m) #从CSV文件读取数据,不带标签 data = np.genfromtxt("chfdb_1.csv", delimiter=',') scores,scores_index=P.PAPR(data) #可视化标注异常 t=scores_index[0] #得分最低的序列的下标,该序列被认为是异常 x0=range(0,data.__len__()) plt.plot(x0,data) x1=range(t*m,t*m+m-1) plt.plot(x1,data[t*m:t*m+m-1],color="red") plt.show() ''' def papr(self,data): m=self.m #划分的序列长度 # 将数据划分成多个子序列 data_matrix = self.split_data(data) # 对子序列分别进行归一化处理 data_matrix = scale(data_matrix, axis=1) # 计算子序列的高斯径向基函数的宽度参数 widths = self.find_best_w(data_matrix) matrix = self.cal_matrix(data_matrix, 6) sim_matrix = self.cal_similarity(matrix=matrix, wc=0.3, wd=0.4, wr=0.3, length=widths.__len__(), widths=widths) scores = self.random_walk(sim_matrix, error=0.05) scores_index=numpy.argsort(scores) #异常分数从低到高排序 return scores,scores_index ''' 输入:data,一维数据 功能:将读取到的一维数据按照传入的子序列长度进行划分 输出:data_matrix,二维矩阵,每行为一个子序列 ''' def split_data(self,data): index=self.m length=data.__len__() data_matix=list() sequence=list() i=0 while i<length: sequence=data[i:i+index] # print(sequence) i=i+index data_matix.append(sequence) return data_matix ''' 值空间划分以及PAPR指标的计算 ''' def cal_matrix(self,data, k): points = self.splits[k] new_data = list() for item in data: tmp_points = list() for i in range(k): tmp_points.append(list()) for p in item: for w in range(k): if p < points[w]: tmp_points[w].append(p) break tmp_matrix = numpy.zeros((k, 3)) #生成一个K行3列的全0矩阵,用于记录PAPR方法得出的Mi = [di, ci, ri] for w in range(k): tmp_matrix[w, 0] = len(tmp_points[w]) #记录子值空间的点个数 if tmp_matrix[w, 0] != 0: tmp_matrix[w, 1] = numpy.mean(tmp_points[w]) #记录子值空间的点均值 tmp_matrix[w, 2] = numpy.var(tmp_points[w]) #记录子值空间的方差 new_data.append(tmp_matrix) return numpy.array(new_data) ''' 计算相似度矩阵 #length是子序列的数量,width是计算Scij和Srij使所用到的δ ''' def cal_similarity(self,matrix, length, wd, wc, wr, widths): index = range(length) sim_matrix = numpy.zeros((length, length)) #生成一个length行length列的全0矩阵 for r in index: for c in index: sd = self.cal_d_sim(matrix[r, :, 0], matrix[c, :, 0]) sc = self.cal_rc_sim(matrix[r, :, 1], matrix[c, :, 1], widths[r]) sr = self.cal_rc_sim(matrix[r, :, 2], matrix[c, :, 2], widths[r]) sim_matrix[r, c] = wd*sd + wc*sc + wr*sr return sim_matrix ''' 函数功能:计算记录两点数量的向量di和dj的相似度Sdij ''' def cal_d_sim(self,one, two): #m是子序列one的总长度,m=∑(k=1..q)dik m = numpy.sum(one) #length是记录子序列特征的Mi=[di,ci,ri]的长度,即子值空间的划分数目 length = len(one) s = 0 for l in range(length): s += min(one[l], two[l]) return 1.0 * s / m ''' 函数功能:计算Scij和Srij,两个计算公式相同 w即δ,高斯径向基函数的半径,通过信息熵的方法可以计算出每个数据集的该值 ''' def cal_rc_sim(self,one, two, w=0.005): return numpy.exp(-1.0 * numpy.linalg.norm(one - two, ord=2) / numpy.power(w, 2)) ''' RW模型,最终会得到一个概率分布矩阵,即异常得分 ''' def random_walk(self,sim_matrix, error=0.1): rows, cols = sim_matrix.shape s_matrix = numpy.zeros((rows, cols)) for r in range(rows): totSim = 0.0 for c in range(cols): totSim += sim_matrix[r, c] for c in range(cols): s_matrix[r, c] = 1.0*sim_matrix[r, c] / totSim damping_factor = 0.1 ct = numpy.array([1.0/rows]*rows) recursive_err = error+1 times = 0 while recursive_err > error and times < 100: ct1 = damping_factor/rows + numpy.dot(s_matrix.T, ct) recursive_err = numpy.linalg.norm(ct-ct1, ord=1) times += 1 ct = ct1[:] return ct ''' 函数功能:计算数据集的δ,高斯径向基函数的半径,通过信息熵的方法计算 ''' def find_best_w(self,data_matrix): alist, blist = numpy.zeros(data_matrix.__len__()), numpy.zeros(data_matrix.__len__()) r_index = range(data_matrix.__len__()) gama = (5**0.5-1)/2 coe = (2**0.5)/3 for i in r_index: min_dist, max_dist = float('inf'), -float('inf') for j in r_index: if i == j: continue dist = numpy.linalg.norm(data_matrix[i]-data_matrix[j], ord=2) #求二范数 min_dist = min(dist, min_dist) max_dist = max(dist, max_dist) alist[i], blist[i] = coe*min_dist, coe*max_dist left, right = cal_sig(alist, blist, gama) ent_left = cal_entropy(left) ent_right = cal_entropy(right) epison = 1 times = 0 while numpy.linalg.norm(alist-blist) < 1 and times < 20: if ent_left < ent_right: blist, right = right.copy(), left.copy() ent_right = ent_left left = alist + (1-gama)*(blist-alist) ent_left = cal_entropy(left) else: alist, left = left.copy(), right.copy() ent_left = ent_right right = alist + gama*(blist-alist) ent_right = cal_entropy(right) times += 1 if ent_left < ent_right: return left else: return right def cal_sig(alist, blist, gama): length = len(alist) index = range(length) left, right = numpy.zeros(length), numpy.zeros(length) for i in index: left[i] = alist[i] + (1-gama)*(blist[i]-alist[i]) right[i] = alist[i] + gama*(blist[i]-alist[i]) return left, right ''' 计算信信息熵 ''' def cal_entropy(list): total = sum(list) list /= total log_list = numpy.log(list) return -numpy.dot(list, log_list)
zw-outliersdetec
/zw_outliersdetec-0.0.1.tar.gz/zw_outliersdetec-0.0.1/zw_outliersdetec/PAPR.py
PAPR.py
import numpy as np from sklearn.neighbors import NearestNeighbors from math import * ''' 说明:RDOS算法,根据K近邻集合、逆近邻集合以及共享近邻集合进行对象的核密度估计,从而得出异常分数 传入参数:k-近邻的个数,h-高斯核的宽度参数 ''' class RDOS: #初始化,传入参数并设置默认值 def __init__(self,n_outliers=1,n_neighbors=5,h=2): self.n_outliers=n_outliers self.n_neighbors=n_neighbors self.h=h ''' RDOS 输入:data-数据集,n-返回的异常个数(默认为1),n_neighbors-近邻个数,h-高斯核函数的宽度参数 输出:返回异常的分数以及按异常分数排序好的下标,同时会根据预设的异常个数输出其下标及得分 运行示例: import pandas as pd from RDOS import * #如果是带有Lable的数据集则需要先去除Label列 data=pd.read_csv("hbk.csv",sep=',') #data=data.drop('Label', axis=1) data=np.array(data) print(data.shape) #调用RDOS算法,传入预设的异常个数 rdos=RDOS(n_outliers=10) RDOS_index,RDOS_score=rdos.rdos(data) ''' def rdos(self,data): n_outliers = self.n_outliers n_neighbors=self.n_neighbors h=self.h n=data.shape[0] #n是数据集的样例数量 d=data.shape[1] #d是数据集的维度,即属性个数 #规范输入的参数 if n_neighbors>=n or n_neighbors<1: print('n_neighbors input must be less than number of observations and greater than 0') exit() outliers=list() #存储每个数据对象的近邻下标 Sknn= list() Srnn= list() Ssnn = list() S= list() P= list() #计算Sknn for X in data: Sknn_temp = self.KNN(data, [X], return_distance=False) Sknn_temp = np.squeeze(Sknn_temp) Sknn.append(Sknn_temp[1:]) S.append(list(Sknn_temp[1:])) # X的所有近邻集合 #计算Srnn for i in range(n): Srnn_temp = list() # 记录每个数据对象的rnn for item in Sknn[i]: item_neighbors = Sknn[item] # 如果X的近邻的k近邻集合中也包含X,说明该近邻是X的逆近邻 if i in item_neighbors: Srnn_temp.append(item) Srnn.append(Srnn_temp) S[i].extend(Srnn_temp) # X的所有近邻集合 #计算Ssnn for i in range(n): Ssnn_temp = list() for j in Sknn[i]: kneighbor_rnn = Srnn[j] # k近邻的逆近邻集合 Ssnn_temp.extend(kneighbor_rnn) Ssnn_temp = list(set(Ssnn_temp)) # 去重 if i in Ssnn_temp: Ssnn_temp.remove(i) # 删除X本身下标 Ssnn.append(Ssnn_temp) # X的共享近邻集合 S[i].extend(Ssnn_temp) # X的所有近邻集合 S[i] = list(set(S[i])) # 去重 P.append(self.getKelnelDensity(data, i, S[i]))#计算论文中的P值 ''' #计算每个数据对象的近邻集合 for i in range(n): Sknn_temp=self.KNN(data,[data[i]],return_distance=False) Sknn_temp = np.squeeze(Sknn_temp) print("Sknn:",Sknn_temp[1:]) Sknn.append(Sknn_temp[1:]) #需要除去其本身,例:[[11 29 7 26 24]]→[29 7 26 24] Srnn.append(self.RNN(data,[data[i]],return_distance=False)) #例:[29 24] Ssnn_temp=list() for j in Sknn[i]: kneighbor_rnn = self.RNN(data, [data[j]], return_distance=False) #k近邻的逆近邻集合 Ssnn_temp.extend(kneighbor_rnn) Ssnn_temp = list(set(Ssnn_temp)) # 去重 if i in Ssnn_temp: Ssnn_temp.remove(i) # 删除X本身下标 Ssnn.append(Ssnn_temp) #X的共享近邻集合 S.append(list(set(Ssnn_temp))) #X的所有近邻集合 ''' #print("S:",S[i]) #打印 #计算异常得分RDOS RDOS_score=list() for i in range(n): S_RDOS=0 for j in S[i]: #计算近邻集合的RDOS总分数 S_RDOS=S_RDOS+P[j] RDOS_score.append(S_RDOS/(len(S[i])*P[i])) RDOS_index= np.argsort(RDOS_score) #对异常分数进行排序,从低到高,返回的是数组的索引 return RDOS_score,RDOS_index[::-1] #返回异常的得分及其下标(下标由得分从高到低排序) ''' 找出数据集X中每个对象的的k近邻并返回序号(当k>1时,会包括其本身) X可以是一个点或者一组数据,data是所有数据 return_distance=True时会同时返回距离 ''' def KNN(self,data,X,return_distance=False): neigh = NearestNeighbors(self.n_neighbors) neigh.fit(data) return neigh.kneighbors(X, return_distance=return_distance) ''' 找出X的k逆近邻集合并返回序号 X是一个数据对象,data是所有数据 return_distance=True时会同时返回距离 def RNN(self, data, X, return_distance=False): neigh = NearestNeighbors(self.n_neighbors) neigh.fit(data) X_neighbors=neigh.kneighbors(X, return_distance=return_distance) X_Srnn=list() #存储逆近邻的下标集合 # 遍历X的近邻集合寻找其逆近邻集合,item为近邻的序号 index = X_neighbors[0, 1:] X_index = X_neighbors[0, 0] #X的下标 #近邻的下标 for item in index: item_neighbors = neigh.kneighbors([data[item]], return_distance=False) #寻找近邻的k近邻集合 # 如果X的近邻的k近邻集合中也包含X,说明该近邻是X的逆近邻 if X_index in item_neighbors: X_Srnn.append(item) return np.array(X_Srnn) ''' ''' 计算核密度 输入:data-数据集,X_index-数据对象的下标,S近邻集合 输出:论文中的P ''' def getKelnelDensity(self,data,X_index,S): h=self.h #高斯核函数参数 d=data.shape[1] #数据的属性个数 S_X=list(S) S_X.append(X_index) X_guassian =0 for i in S_X: X_guassian+=(1/((2*pi)**(d/2)))*exp(-(np.linalg.norm(data[i]-data[X_index]))/(2*h**2)) S_len=S.__len__() P=1/(S_len+1)*(1/h**d)*X_guassian return P
zw-outliersdetec
/zw_outliersdetec-0.0.1.tar.gz/zw_outliersdetec-0.0.1/zw_outliersdetec/RDOS.py
RDOS.py
import numpy as np from zw_outliersdetec.__sax_via_window import * ''' 函数功能:计算欧式距离 ''' def euclidean(a, b): """Compute a Euclidean distance value.""" return np.sqrt(np.sum((a-b)**2)) ''' 类功能:实现HOT_SAX算法,找出异常时间序列 ''' class HOTSAX: #初始化,num_discords-预设输出异常的数量 def __init__(self,num_discords=2): self.num_discords=num_discords ''' 功能:利用HOT-SAX算法找出异常时间序列的位置信息 输入:series-数据集,win-size-自行设置的窗口大小(可理解为序列长度,默认为100),其他参数默认 输出:根据设定的异常个数输出异常的开始位置以及对应的分数,表示从该位置开始的长度为win-size的序列被认为是异常 运行示例: import numpy as np from HOTSAX import * #ECG数据,不带标签,只有一列值 data = np.genfromtxt("ECG0606_1.csv", delimiter=',') hs=HOTSAX(2) discords,win_size =hs.find_discords_hotsax(data) print(discords,win_size) ''' def hotsax(self,series, win_size=100, a_size=3, paa_size=3, z_threshold=0.01): """HOT-SAX-driven discords discovery.""" discords = list() globalRegistry = set() while (len(discords) < self.num_discords): bestDiscord =self.find_best_discord_hotsax(series, win_size, a_size, paa_size, z_threshold, globalRegistry) if -1 == bestDiscord[0]: break discords.append(bestDiscord) mark_start = bestDiscord[0] - win_size if 0 > mark_start: mark_start = 0 mark_end = bestDiscord[0] + win_size '''if len(series) < mark_end: mark_end = len(series)''' for i in range(mark_start, mark_end): globalRegistry.add(i) return discords,win_size #返回设定异常个数的异常开始位置和窗口大小 def find_best_discord_hotsax(self,series, win_size, a_size, paa_size, znorm_threshold, globalRegistry): # noqa: C901 """Find the best discord with hotsax.""" """[1.0] get the sax data first""" sax_none = sax_via_window(series, win_size, a_size, paa_size, "none", 0.01) """[2.0] build the 'magic' array""" magic_array = list() for k, v in sax_none.items(): magic_array.append((k, len(v))) """[2.1] sort it desc by the key""" m_arr = sorted(magic_array, key=lambda tup: tup[1]) """[3.0] define the key vars""" bestSoFarPosition = -1 bestSoFarDistance = 0. distanceCalls = 0 visit_array = np.zeros(len(series), dtype=np.int) """[4.0] and we are off iterating over the magic array entries""" for entry in m_arr: """[5.0] some moar of teh vars""" curr_word = entry[0] occurrences = sax_none[curr_word] """[6.0] jumping around by the same word occurrences makes it easier to nail down the possibly small distance value -- so we can be efficient and all that...""" for curr_pos in occurrences: if curr_pos in globalRegistry: continue """[7.0] we don't want an overlapping subsequence""" mark_start = curr_pos - win_size mark_end = curr_pos + win_size visit_set = set(range(mark_start, mark_end)) """[8.0] here is our subsequence in question""" cur_seq = znorm(series[curr_pos:(curr_pos + win_size)], znorm_threshold) """[9.0] let's see what is NN distance""" nn_dist = np.inf do_random_search = 1 """[10.0] ordered by occurrences search first""" for next_pos in occurrences: """[11.0] skip bad pos""" if next_pos in visit_set: continue else: visit_set.add(next_pos) """[12.0] distance we compute""" dist = euclidean(cur_seq, znorm(series[next_pos:( next_pos+win_size)], znorm_threshold)) distanceCalls += 1 """[13.0] keep the books up-to-date""" if dist < nn_dist: nn_dist = dist if dist < bestSoFarDistance: do_random_search = 0 break """[13.0] if not broken above, we shall proceed with random search""" if do_random_search: """[14.0] build that random visit order array""" curr_idx = 0 for i in range(0, (len(series) - win_size)): if not(i in visit_set): visit_array[curr_idx] = i curr_idx += 1 it_order = np.random.permutation(visit_array[0:curr_idx]) curr_idx -= 1 """[15.0] and go random""" while curr_idx >= 0: rand_pos = it_order[curr_idx] curr_idx -= 1 dist = euclidean(cur_seq, znorm(series[rand_pos:( rand_pos + win_size)], znorm_threshold)) distanceCalls += 1 """[16.0] keep the books up-to-date again""" if dist < nn_dist: nn_dist = dist if dist < bestSoFarDistance: nn_dist = dist break """[17.0] and BIGGER books""" if (nn_dist > bestSoFarDistance) and (nn_dist < np.inf): bestSoFarDistance = nn_dist bestSoFarPosition = curr_pos return (bestSoFarPosition, bestSoFarDistance)
zw-outliersdetec
/zw_outliersdetec-0.0.1.tar.gz/zw_outliersdetec-0.0.1/zw_outliersdetec/HOTSAX.py
HOTSAX.py
from __future__ import division import numpy as np from warnings import warn from sklearn.utils.fixes import euler_gamma from scipy.sparse import issparse import numbers from sklearn.externals import six from sklearn.tree import ExtraTreeRegressor from sklearn.utils import check_random_state, check_array from sklearn.utils.validation import check_is_fitted from sklearn.base import OutlierMixin from sklearn.ensemble.bagging import BaseBagging __all__ = ["iForest"] INTEGER_TYPES = (numbers.Integral, np.integer) class iForest(BaseBagging, OutlierMixin): """Isolation Forest Algorithm Return the anomaly score of each sample using the IsolationForest algorithm The IsolationForest 'isolates' observations by randomly selecting a feature and then randomly selecting a split value between the maximum and minimum values of the selected feature. Since recursive partitioning can be represented by a tree structure, the number of splittings required to isolate a sample is equivalent to the path length from the root node to the terminating node. This path length, averaged over a forest of such random trees, is a measure of normality and our decision function. Random partitioning produces noticeably shorter paths for anomalies. Hence, when a forest of random trees collectively produce shorter path lengths for particular samples, they are highly likely to be anomalies. Read more in the :ref:`User Guide <isolation_forest>`. .. versionadded:: 0.18 Parameters ---------- n_estimators : int, optional (default=100) The number of base estimators in the ensemble. max_samples : int or float, optional (default="auto") The number of samples to draw from X to train each base estimator. - If int, then draw `max_samples` samples. - If float, then draw `max_samples * X.shape[0]` samples. - If "auto", then `max_samples=min(256, n_samples)`. If max_samples is larger than the number of samples provided, all samples will be used for all trees (no sampling). contamination : float in (0., 0.5), optional (default=0.1) The amount of contamination of the data set, i.e. the proportion of outliers in the data set. Used when fitting to define the threshold on the decision function. If 'auto', the decision function threshold is determined as in the original paper. .. versionchanged:: 0.20 The default value of ``contamination`` will change from 0.1 in 0.20 to ``'auto'`` in 0.22. max_features : int or float, optional (default=1.0) The number of features to draw from X to train each base estimator. - If int, then draw `max_features` features. - If float, then draw `max_features * X.shape[1]` features. bootstrap : boolean, optional (default=False) If True, individual trees are fit on random subsets of the training data sampled with replacement. If False, sampling without replacement is performed. n_jobs : int or None, optional (default=None) The number of jobs to run in parallel for both `fit` and `predict`. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. behaviour : str, default='old' Behaviour of the ``decision_function`` which can be either 'old' or 'new'. Passing ``behaviour='new'`` makes the ``decision_function`` change to match other anomaly detection algorithm API which will be the default behaviour in the future. As explained in details in the ``offset_`` attribute documentation, the ``decision_function`` becomes dependent on the contamination parameter, in such a way that 0 becomes its natural threshold to detect outliers. .. versionadded:: 0.20 ``behaviour`` is added in 0.20 for back-compatibility purpose. .. deprecated:: 0.20 ``behaviour='old'`` is deprecated in 0.20 and will not be possible in 0.22. .. deprecated:: 0.22 ``behaviour`` parameter will be deprecated in 0.22 and removed in 0.24. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. estimators_samples_ : list of arrays The subset of drawn samples (i.e., the in-bag samples) for each base estimator. max_samples_ : integer The actual number of samples offset_ : float Offset used to define the decision function from the raw scores. We have the relation: ``decision_function = score_samples - offset_``. Assuming behaviour == 'new', ``offset_`` is defined as follows. When the contamination parameter is set to "auto", the offset is equal to -0.5 as the scores of inliers are close to 0 and the scores of outliers are close to -1. When a contamination parameter different than "auto" is provided, the offset is defined in such a way we obtain the expected number of outliers (samples with decision function < 0) in training. Assuming the behaviour parameter is set to 'old', we always have ``offset_ = -0.5``, making the decision function independent from the contamination parameter. References ---------- .. [1] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation forest." Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. .. [2] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation-based anomaly detection." ACM Transactions on Knowledge Discovery from Data (TKDD) 6.1 (2012): 3. """ def __init__(self, n_estimators=100, max_samples="auto", contamination="legacy", max_features=1., bootstrap=False, n_jobs=None, behaviour='old', random_state=None, verbose=0): super(iForest, self).__init__( base_estimator=ExtraTreeRegressor( max_features=1, splitter='random', random_state=random_state), # here above max_features has no links with self.max_features bootstrap=bootstrap, bootstrap_features=False, n_estimators=n_estimators, max_samples=max_samples, max_features=max_features, n_jobs=n_jobs, random_state=random_state, verbose=verbose) self.behaviour = behaviour self.contamination = contamination ''' 功能:利用IForest算法来计算异常分数 输入:data_train-从CSV文件读取的数据,不含标签 输出:返回每个数据对象的预测标签all_pred,-1则被认定为异常,1则是正常数据 运行示例: import pandas as pd from iForest import * data_train = pd.read_csv('hbk.csv', sep=',') # 选取特征,不使用标签,如带有标签需除去 #data_train=data_train.drop('Label', axis=1) #print(data_train.columns) #n_estimators是隔离树的数量 ift = iForest(n_estimators=100, behaviour="new", contamination="auto", n_jobs=1, # 使用全部cpu # verbose=2, ) #调用IForest算法预测数据对象的Label Label,Index=ift.IForest(data_train) print(Label) ''' def iforest(self,data_train): # 训练 self.fit(data_train) shape = data_train.shape[0] batch = 10 ** 6 X_cols = data_train.columns all_pred_lable = [] all_pred_score = [] for i in range(int(shape / batch + 1)): start = i * batch end = (i + 1) * batch test = data_train[X_cols][start:end] # 预测 pred_label, pred_score = self.predict(test) all_pred_lable.extend(pred_label) all_pred_score.extend(pred_score) return all_pred_lable, np.argsort(all_pred_score) # 返回阈值限定后的标签和异常分数从小到大排序的数组下标 #data_train.to_csv('outliers.csv', columns=["pred", ], header=False) def _set_oob_score(self, X, y): raise NotImplementedError("OOB score not supported by iforest") def fit(self, X, y=None, sample_weight=None): """Fit estimator. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) The input samples. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csc_matrix`` for maximum efficiency. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. y : Ignored not used, present for API consistency by convention. Returns ------- self : object """ if self.contamination == "legacy": warn('default contamination parameter 0.1 will change ' 'in version 0.22 to "auto". This will change the ' 'predict method behavior.', FutureWarning) self._contamination = 0.1 else: self._contamination = self.contamination if self.behaviour == 'old': warn('behaviour="old" is deprecated and will be removed ' 'in version 0.22. Please use behaviour="new", which ' 'makes the decision_function change to match ' 'other anomaly detection algorithm API.', FutureWarning) X = check_array(X, accept_sparse=['csc']) if issparse(X): #判断x是否为sparse类型 # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() rnd = check_random_state(self.random_state) y = rnd.uniform(size=X.shape[0]) # ensure that max_sample is in [1, n_samples]: #保证采样集的大小规范 n_samples = X.shape[0] if isinstance(self.max_samples, six.string_types): if self.max_samples == 'auto': max_samples = min(256, n_samples) else: raise ValueError('max_samples (%s) is not supported.' 'Valid choices are: "auto", int or' 'float' % self.max_samples) elif isinstance(self.max_samples, INTEGER_TYPES): if self.max_samples > n_samples: warn("max_samples (%s) is greater than the " "total number of samples (%s). max_samples " "will be set to n_samples for estimation." % (self.max_samples, n_samples)) max_samples = n_samples else: max_samples = self.max_samples else: # float if not (0. < self.max_samples <= 1.): raise ValueError("max_samples must be in (0, 1], got %r" % self.max_samples) max_samples = int(self.max_samples * X.shape[0]) self.max_samples_ = max_samples max_depth = int(np.ceil(np.log2(max(max_samples, 2)))) super(iForest, self)._fit(X, y, max_samples, max_depth=max_depth, sample_weight=None) if self.behaviour == 'old': # in this case, decision_function = 0.5 + self.score_samples(X): if self._contamination == "auto": raise ValueError("contamination parameter cannot be set to " "'auto' when behaviour == 'old'.") self.offset_ = -0.5 self._threshold_ = np.percentile(self.decision_function(X), 100. * self._contamination) return self # else, self.behaviour == 'new': if self._contamination == "auto": # 0.5 plays a special role as described in the original paper. # we take the opposite as we consider the opposite of their score. self.offset_ = -0.5 return self # else, define offset_ wrt contamination parameter, so that the # threshold_ attribute is implicitly 0 and is not needed anymore: #计算一个多维数组的任意百分比分位数 self.offset_ = np.percentile(self.score_samples(X), 100. * self._contamination) return self def predict(self, X): #计算异常分数预测一个样例是否为异常 """Predict if a particular sample is an outlier or not. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- is_inlier : array, shape (n_samples,) For each observation, tells whether or not (+1 or -1) it should be considered as an inlier according to the fitted model. """ check_is_fitted(self, ["offset_"]) X = check_array(X, accept_sparse='csr') is_inlier = np.ones(X.shape[0], dtype=int) #建立一个矩阵元素均为1 threshold = self.threshold_ if self.behaviour == 'old' else 0 is_inlier[self.decision_function(X) < threshold] = -1 #异常分数小于阈值则为异常,并将其标记为-1 return is_inlier, self.decision_function(X) def decision_function(self, X): #返回x的异常分数(减去偏置值),用于在predict中进行判断 """Average anomaly score of X of the base classifiers. The anomaly score of an input sample is computed as the mean anomaly score of the trees in the forest. The measure of normality of an observation given a tree is the depth of the leaf containing this observation, which is equivalent to the number of splittings required to isolate this point. In case of several observations n_left in the leaf, the average path length of a n_left samples isolation tree is added. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) The training input samples. Sparse matrices are accepted only if they are supported by the base estimator. Returns ------- scores : array, shape (n_samples,) The anomaly score of the input samples. The lower, the more abnormal. Negative scores represent outliers, positive scores represent inliers. """ # We subtract self.offset_ to make 0 be the threshold value for being # an outlier: return self.score_samples(X) - self.offset_ def score_samples(self, X): #根据论文中的算法计算异常得分 """Opposite of the anomaly score defined in the original paper. The anomaly score of an input sample is computed as the mean anomaly score of the trees in the forest. The measure of normality of an observation given a tree is the depth of the leaf containing this observation, which is equivalent to the number of splittings required to isolate this point. In case of several observations n_left in the leaf, the average path length of a n_left samples isolation tree is added. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) The training input samples. Sparse matrices are accepted only if they are supported by the base estimator. Returns ------- scores : array, shape (n_samples,) The anomaly score of the input samples. The lower, the more abnormal. """ # code structure from ForestClassifier/predict_proba check_is_fitted(self, ["estimators_"]) # Check data,检查数据是否规范 X = check_array(X, accept_sparse='csr') if self.n_features_ != X.shape[1]: raise ValueError("Number of features of the model must " "match the input. Model n_features is {0} and " "input n_features is {1}." "".format(self.n_features_, X.shape[1])) #输入数据集的大小 n_samples = X.shape[0] n_samples_leaf = np.zeros((n_samples, self.n_estimators), order="f") #生成一个n_samples行,n_estimators列的全0矩阵,order: 可选参数,c代表与c语言类似,行优先;F代表列优先 depths = np.zeros((n_samples, self.n_estimators), order="f") if self._max_features == X.shape[1]: subsample_features = False else: subsample_features = True #使用enumerate( )方法的好处:可以同时拿到index和value。 #zip([seql, …])接受一系列可迭代对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表) for i, (tree, features) in enumerate(zip(self.estimators_, self.estimators_features_)): #对数据集进行采样 if subsample_features: X_subset = X[:, features] else: X_subset = X #tree.apply(X):返回每个样本被预测的叶子结点索引 leaves_index = tree.apply(X_subset) node_indicator = tree.decision_path(X_subset) #decision_path(X):返回决策路径 n_samples_leaf[:, i] = tree.tree_.n_node_samples[leaves_index] #n_samples_leaf矩阵用于存储样本遍历后得到的叶子节点索引 depths[:, i] = np.ravel(node_indicator.sum(axis=1)) #depth存储遍历路径长度 depths[:, i] -= 1 #存储样例在每棵树遍历后得到的路径长度 depths += _average_path_length(n_samples_leaf) #按照论文中的方法来计算异常分数 scores = 2 ** (-depths.mean(axis=1) / _average_path_length( self.max_samples_)) # Take the opposite of the scores as bigger is better (here less abnormal),返回一个负值,分数越小越不正常 return -scores @property def threshold_(self): if self.behaviour != 'old': raise AttributeError("threshold_ attribute does not exist when " "behaviour != 'old'") warn("threshold_ attribute is deprecated in 0.20 and will" " be removed in 0.22.", DeprecationWarning) return self._threshold_ #对应论文中的c(φ)函数 def _average_path_length(n_samples_leaf): """ The average path length in a n_samples iTree, which is equal to the average path length of an unsuccessful BST search since the latter has the same structure as an isolation tree. Parameters ---------- n_samples_leaf : array-like, shape (n_samples, n_estimators), or int. The number of training samples in each test sample leaf, for each estimators. Returns ------- average_path_length : array, same shape as n_samples_leaf """ #isinstance作用:来判断一个对象是否是一个已知的类型,其返回值为布尔型(True or flase)。 if isinstance(n_samples_leaf, INTEGER_TYPES): if n_samples_leaf <= 1: return 1. else: return 2. * (np.log(n_samples_leaf - 1.) + euler_gamma) - 2. * ( n_samples_leaf - 1.) / n_samples_leaf else: n_samples_leaf_shape = n_samples_leaf.shape n_samples_leaf = n_samples_leaf.reshape((1, -1)) average_path_length = np.zeros(n_samples_leaf.shape) mask = (n_samples_leaf <= 1) not_mask = np.logical_not(mask) average_path_length[mask] = 1. average_path_length[not_mask] = 2. * ( np.log(n_samples_leaf[not_mask] - 1.) + euler_gamma) - 2. * ( n_samples_leaf[not_mask] - 1.) / n_samples_leaf[not_mask] return average_path_length.reshape(n_samples_leaf_shape)
zw-outliersdetec
/zw_outliersdetec-0.0.1.tar.gz/zw_outliersdetec-0.0.1/zw_outliersdetec/iForest.py
iForest.py
import numpy as np import math from operator import add from zw_outliersdetec import __dimension_reduction as dim_red class FastVOA: #t是随机超平面投影时的参数 def __init__(self,t): self.t=t #Algorithm 3 FirstMomentEstimator(L; t; n) def __first_moment_estimator(self,projected, t, n): f1 = [0] * n for i in range(0, t): cl = [0] * n cr = [0] * n li = projected[i] for j in range(0, n): idx = li[j][0] cl[idx] = j #原:cl[idx] = j - 1 cr[idx] = n - 1 - cl[idx] for j in range(0, n): f1[j] += cl[j] * cr[j] return list(map(lambda x: x * ((2 * math.pi) / (t * (n - 1) * (n - 2))), f1)) #Algorithm 4 FrobeniusNorm(L; t; n) def __frobenius_norm(self,projected, t, n): f2 = [0] * n sl = np.random.choice([-1, 1], size=(n,), p=None) sr = np.random.choice([-1, 1], size=(n,), p=None) for i in range(0, t): amsl = [0] * n amsr = [0] * n li = projected[i] for j in range(1, n): idx1 = li[j][0] idx2 = li[j - 1][0] amsl[idx1] = amsl[idx2] + sl[idx2] for j in range(n - 2, -1, -1): idx1 = li[j][0] idx2 = li[j + 1][0] amsr[idx1] = amsr[idx2] + sr[idx2] for j in range(0, n): f2[j] += amsl[j] * amsr[j] return f2 #Algorithm 1 FastVOA(S; t; s1; s2) ''' 功能:计算每个数据对象的角度值 输入:train-不带标签的数据,n-数据对象的个数,t-随机超平面投影参数,s1,s2 输出:每个数据对象的角度值分数scores以及按分数排序后的下标scores_index 调用示例: import pandas as pd from FastVOA import * #读取数据,不需要标签 data=pd.read_csv('isolet.csv',sep=',') ytrain = data.iloc[:, -1] train=data.drop('Label',axis=1) #对数据进行随机超平面投影 DIMENSION = 600 t = DIMENSION n = train.shape[0] print(n) #调用FatsVOA进行角度值计算 fv=FastVOA(t) scores,scores_index=fv.fastvoa(train, n, t, 1, 1) ''' def fastvoa(self,train, n, t, s1, s2): projected = dim_red.random_projection(train, t) f1 = self.__first_moment_estimator(projected, t, n) y = [] for i in range(0, s2): s = [0] * n for j in range(0, s1): result = list(map(lambda x: x ** 2, self.__frobenius_norm(projected, t, n))) s = list(map(add, s, result)) s = list(map(lambda x: x / s1, s)) #s的长度为n(由于result的长度为n) y.append(s) #yi的长度为n,y的长度为s2,y有s2行,n列 y = list(map(list, zip(*y))) #拆分y f2 = [] for i in range(0, n): f2.append(np.average(y[i])) #求均值 var = [0] * n for i in range(0, n): f2[i] = (4 * (math.pi ** 2) / (t * (t - 1) * (n - 1) * (n - 2))) * f2[i] - (2 * math.pi * f1[i]) / (t - 1) var[i] = f2[i] - (f1[i] ** 2) # 排序 scores=var scores_index = np.argsort(scores) # 按角度值从低到高排序 return scores,scores_index[::-1] #返回异常得分及下标
zw-outliersdetec
/zw_outliersdetec-0.0.1.tar.gz/zw_outliersdetec-0.0.1/zw_outliersdetec/FastVOA.py
FastVOA.py
import numpy from interval import * from math import * class IntervalSets: #m为子序列长度,可以自行设置,默认为100 def __init__(self,m=100): self.m=m ''' 功能:利用IntervalSets方法计算出每个序列的异常结构分数 输入:data-从CSV文件读取的数据信息,不含标签,一维 输出:每个序列的异常结构分数以及排序后的下标 运行示例: import numpy as np import matplotlib.pyplot as plt from IntervalSets import * m=400 #设置子序列长度,ECG为400,chfdb为250时效果最佳 #创建对象 IS=IntervalSets(m) #从CSV文件读取数据 data= np.genfromtxt('ECG108_2.csv',delimiter=',') #调用IntervalSets方法来查找异常 SAS,SAS_index=IS.intervalsets(data) print(SAS) #输出异常结构分数SAS print("最可能的异常序列标号为:",SAS_index[len(SAS_index)-1]) #可视化标注异常 x0=range(0,data.__len__()) plt.plot(x0,data) t=SAS_index[len(SAS_index)-1] x1=range(t*m,t*m+m-1) plt.plot(x1,data[t*m:t*m+m-1],color="red") plt.text(100, 1,"m=400", size = 15, alpha = 0.8) plt.show() ''' def intervalsets(self,data): data_matrix=self.split_data(data) #对数据进行划分,形成多个子序列 n=len(data_matrix) #子序列的个数 m=self.m #子序列长度 Sp=self.cal_Sp(data_matrix) SA=self.cal_SA(data_matrix) #计算每个子序列的异常结构分数 S=list() #二维 SAS=list() #存储分数,一维 for i in range(n): S_i=0 for j in range(n): S_i=S_i+(0.5*SA[i][j]+0.5*Sp[i][j]) S.append(S_i) for i in range(n): SAS_i =0 for j in range(n): SAS_i=SAS_i+(S[i]-S[j])**2 SAS.append(SAS_i/n) #排序 SAS_index = numpy.argsort(SAS) return SAS,SAS_index ''' 输入:data_matrix,二维数据 功能:类的私有方法,计算子序列之间的概率相似性Sp,boundary为区间边界参数 输出:Sp,二维矩阵,每行为一个子序列与其他子序列的Spij值 ''' def cal_Sp(self,data_matrix,boundary=0.2): Sp=list() Amin = list() # 每一行存储一个子序列的最小值 Amax = list() # 每一行存储一个子序列的最大值 Pmin = list() # 每一行存储一个子序列的概率最小值 Pmax = list() # 每一行存储一个子序列的概率最大值 n = len(data_matrix) # 子序列数量 widths=self.find_best_w(data_matrix) #求子序列的取值区间 for i in range(n): Amin.append(min(data_matrix[i])) # 子序列最小值 Amax.append(max(data_matrix[i])) # 子序列最大值 #求点分布在边界区间的概率 for i in range(n): count_min=0 count_max = 0 for item in data_matrix[i]: if item>=Amin[i] and item<=Amin[i]+boundary*(Amax[i]-Amin[i]): count_min=count_min+1 if item>=Amax[i]-boundary*(Amax[i]-Amin[i]) and item<=Amax[i]: count_max = count_max + 1 Pmin.append(count_min/self.m) Pmax.append(count_max/self.m) #利用边界的点分布概率计算Sp for i in range(n): Sp_i=list() for j in range(n): if i==j: Sp_i.append(1) else: p=exp(-((Pmin[i]-Pmin[j])**2+(Pmax[i]-Pmax[j])**2)/widths[i]**2) #p=numpy.exp(-1.0 * numpy.linalg.norm(one - two, ord=2) / numpy.power(w, 2)) Sp_i.append(p) Sp.append(Sp_i) return Sp ''' 输入:data_matrix,二维数据 功能:类的私有方法,计算子序列之间的概率相似性SA 输出:SA,二维矩阵,每行为一个子序列与其他子序列的SAij值 ''' def cal_SA(self, data_matrix): Amin=list() #每一行存储一个子序列的最小值 Amax = list() # 每一行存储一个子序列的最大值 SA=list() #存储区相似度 n=len(data_matrix) #子序列数量 for i in range(n): Amin.append(min(data_matrix[i])) # 子序列最小值 Amax.append(max(data_matrix[i])) # 子序列最大值 for i in range(n): SA_i=list() A_i=Interval(Amin[i],Amax[i]) #print(A_i) for j in range(n): A_j=Interval(Amin[j],Amax[j]) if A_i.overlaps(A_j)==False: #情况1,没有交集 SA_i.append(0) else: #情况2,有交集 A_ij=A_i.join(A_j) #合并 a=((A_i.upper_bound-A_i.lower_bound)+(A_j.upper_bound-A_j.lower_bound)-(A_ij.upper_bound-A_ij.lower_bound))/(A_ij.upper_bound-A_ij.lower_bound) SA_i.append(a) SA.append(SA_i) return SA ''' 输入:data,一维数据 功能:将读取到的一维数据按照传入的子序列长度进行划分 输出:data_matrix,二维矩阵,每行为一个子序列 ''' def split_data(self, data): index = self.m length = data.__len__() data_matix = list() sequence = list() i = 0 while i < length: sequence = data[i:i + index] # print(sequence) i = i + index data_matix.append(sequence) return data_matix ''' 函数功能:计算数据集的δ,高斯径向基函数的半径,通过信息熵的方法计算 返回一个与子序列长度相等的数组 ''' def find_best_w(self, data_matrix): alist, blist = numpy.zeros(data_matrix.__len__()), numpy.zeros(data_matrix.__len__()) r_index = range(data_matrix.__len__()) gama = (5 ** 0.5 - 1) / 2 coe = (2 ** 0.5) / 3 for i in r_index: min_dist, max_dist = float('inf'), -float('inf') for j in r_index: if i == j: continue dist = numpy.linalg.norm(data_matrix[i] - data_matrix[j], ord=2) # 求二范数 min_dist = min(dist, min_dist) max_dist = max(dist, max_dist) alist[i], blist[i] = coe * min_dist, coe * max_dist left, right = cal_sig(alist, blist, gama) ent_left = cal_entropy(left) ent_right = cal_entropy(right) epison = 1 times = 0 while numpy.linalg.norm(alist - blist) < 1 and times < 20: if ent_left < ent_right: blist, right = right.copy(), left.copy() ent_right = ent_left left = alist + (1 - gama) * (blist - alist) ent_left = cal_entropy(left) else: alist, left = left.copy(), right.copy() ent_left = ent_right right = alist + gama * (blist - alist) ent_right = cal_entropy(right) times += 1 if ent_left < ent_right: return left else: return right def cal_sig(alist, blist, gama): length = len(alist) index = range(length) left, right = numpy.zeros(length), numpy.zeros(length) for i in index: left[i] = alist[i] + (1 - gama) * (blist[i] - alist[i]) right[i] = alist[i] + gama * (blist[i] - alist[i]) return left, right ''' 计算信信息熵 ''' def cal_entropy(list): total = sum(list) list /= total log_list = numpy.log(list) return -numpy.dot(list, log_list)
zw-outliersdetec
/zw_outliersdetec-0.0.1.tar.gz/zw_outliersdetec-0.0.1/zw_outliersdetec/IntervalSets.py
IntervalSets.py
import numpy as np from collections import defaultdict from zw_outliersdetec.__paa import * ''' 函数功能:SAX算法 ''' def sax_via_window(series, win_size, paa_size, alphabet_size=3, nr_strategy='exact', z_threshold=0.01): """Simple via window conversion implementation.""" cuts = cuts_for_asize(alphabet_size) sax = defaultdict(list) prev_word = '' for i in range(0, len(series) - win_size): sub_section = series[i:(i+win_size)] zn = znorm(sub_section, z_threshold) paa_rep = paa(zn, paa_size) curr_word = ts_to_string(paa_rep, cuts) if '' != prev_word: if 'exact' == nr_strategy and prev_word == curr_word: continue elif 'mindist' == nr_strategy and\ is_mindist_zero(prev_word, curr_word): continue prev_word = curr_word sax[curr_word].append(i) return sax ''' 函数功能:z-score标准化 ''' def znorm(series, znorm_threshold=0.01): """Znorm implementation.""" sd = np.std(series) if (sd < znorm_threshold): return series mean = np.mean(series) return (series - mean) / sd def cuts_for_asize(a_size): """Generate a set of alphabet cuts for its size.""" """ Typically, we generate cuts in R as follows: get_cuts_for_num <- function(num) { cuts = c(-Inf) for (i in 1:(num-1)) { cuts = c(cuts, qnorm(i * 1/num)) } cuts } get_cuts_for_num(3) """ options = { 2: np.array([-np.inf, 0.00]), 3: np.array([-np.inf, -0.4307273, 0.4307273]), 4: np.array([-np.inf, -0.6744898, 0, 0.6744898]), 5: np.array([-np.inf, -0.841621233572914, -0.2533471031358, 0.2533471031358, 0.841621233572914]), 6: np.array([-np.inf, -0.967421566101701, -0.430727299295457, 0, 0.430727299295457, 0.967421566101701]), 7: np.array([-np.inf, -1.06757052387814, -0.565948821932863, -0.180012369792705, 0.180012369792705, 0.565948821932863, 1.06757052387814]), 8: np.array([-np.inf, -1.15034938037601, -0.674489750196082, -0.318639363964375, 0, 0.318639363964375, 0.674489750196082, 1.15034938037601]), 9: np.array([-np.inf, -1.22064034884735, -0.764709673786387, -0.430727299295457, -0.139710298881862, 0.139710298881862, 0.430727299295457, 0.764709673786387, 1.22064034884735]), 10: np.array([-np.inf, -1.2815515655446, -0.841621233572914, -0.524400512708041, -0.2533471031358, 0, 0.2533471031358, 0.524400512708041, 0.841621233572914, 1.2815515655446]), 11: np.array([-np.inf, -1.33517773611894, -0.908457868537385, -0.604585346583237, -0.348755695517045, -0.114185294321428, 0.114185294321428, 0.348755695517045, 0.604585346583237, 0.908457868537385, 1.33517773611894]), 12: np.array([-np.inf, -1.38299412710064, -0.967421566101701, -0.674489750196082, -0.430727299295457, -0.210428394247925, 0, 0.210428394247925, 0.430727299295457, 0.674489750196082, 0.967421566101701, 1.38299412710064]), 13: np.array([-np.inf, -1.42607687227285, -1.0200762327862, -0.736315917376129, -0.502402223373355, -0.293381232121193, -0.0965586152896391, 0.0965586152896394, 0.293381232121194, 0.502402223373355, 0.73631591737613, 1.0200762327862, 1.42607687227285]), 14: np.array([-np.inf, -1.46523379268552, -1.06757052387814, -0.791638607743375, -0.565948821932863, -0.36610635680057, -0.180012369792705, 0, 0.180012369792705, 0.36610635680057, 0.565948821932863, 0.791638607743375, 1.06757052387814, 1.46523379268552]), 15: np.array([-np.inf, -1.50108594604402, -1.11077161663679, -0.841621233572914, -0.622925723210088, -0.430727299295457, -0.2533471031358, -0.0836517339071291, 0.0836517339071291, 0.2533471031358, 0.430727299295457, 0.622925723210088, 0.841621233572914, 1.11077161663679, 1.50108594604402]), 16: np.array([-np.inf, -1.53412054435255, -1.15034938037601, -0.887146559018876, -0.674489750196082, -0.488776411114669, -0.318639363964375, -0.157310684610171, 0, 0.157310684610171, 0.318639363964375, 0.488776411114669, 0.674489750196082, 0.887146559018876, 1.15034938037601, 1.53412054435255]), 17: np.array([-np.inf, -1.5647264713618, -1.18683143275582, -0.928899491647271, -0.721522283982343, -0.541395085129088, -0.377391943828554, -0.223007830940367, -0.0737912738082727, 0.0737912738082727, 0.223007830940367, 0.377391943828554, 0.541395085129088, 0.721522283982343, 0.928899491647271, 1.18683143275582, 1.5647264713618]), 18: np.array([-np.inf, -1.59321881802305, -1.22064034884735, -0.967421566101701, -0.764709673786387, -0.589455797849779, -0.430727299295457, -0.282216147062508, -0.139710298881862, 0, 0.139710298881862, 0.282216147062508, 0.430727299295457, 0.589455797849779, 0.764709673786387, 0.967421566101701, 1.22064034884735, 1.59321881802305]), 19: np.array([-np.inf, -1.61985625863827, -1.25211952026522, -1.00314796766253, -0.8045963803603, -0.633640000779701, -0.47950565333095, -0.336038140371823, -0.199201324789267, -0.0660118123758407, 0.0660118123758406, 0.199201324789267, 0.336038140371823, 0.47950565333095, 0.633640000779701, 0.8045963803603, 1.00314796766253, 1.25211952026522, 1.61985625863827]), 20: np.array([-np.inf, -1.64485362695147, -1.2815515655446, -1.03643338949379, -0.841621233572914, -0.674489750196082, -0.524400512708041, -0.385320466407568, -0.2533471031358, -0.125661346855074, 0, 0.125661346855074, 0.2533471031358, 0.385320466407568, 0.524400512708041, 0.674489750196082, 0.841621233572914, 1.03643338949379, 1.2815515655446, 1.64485362695147]), } return options[a_size] def ts_to_string(series, cuts): """A straightforward num-to-string conversion.""" a_size = len(cuts) sax = list() for i in range(0, len(series)): num = series[i] # if teh number below 0, start from the bottom, or else from the top if(num >= 0): j = a_size - 1 while ((j > 0) and (cuts[j] >= num)): j = j - 1 sax.append(idx2letter(j)) else: j = 1 while (j < a_size and cuts[j] <= num): j = j + 1 sax.append(idx2letter(j-1)) return ''.join(sax) def idx2letter(idx): """Convert a numerical index to a char.""" if 0 <= idx < 20: return chr(97 + idx) else: raise ValueError('A wrong idx value supplied.') def is_mindist_zero(a, b): """Check mindist.""" if len(a) != len(b): return 0 else: for i in range(0, len(b)): if abs(ord(a[i]) - ord(b[i])) > 1: return 0 return 1
zw-outliersdetec
/zw_outliersdetec-0.0.1.tar.gz/zw_outliersdetec-0.0.1/zw_outliersdetec/__sax_via_window.py
__sax_via_window.py
__docformat__ = 'reStructuredText' from zope.i18nmessageid import MessageFactory _ = MessageFactory('zw.mail.incoming') from zope import schema from zope.component import adapter, queryUtility from zope.component.interface import provideInterface from zope.component.zcml import handler from zope.configuration.exceptions import ConfigurationError from zope.configuration.fields import Path, Tokens from zope.interface import Interface from zope.app.appsetup.bootstrap import getInformationFromEvent from zope.app.appsetup.interfaces import IDatabaseOpenedWithRootEvent from zw.mail.incoming.interfaces import IInbox from zw.mail.incoming.inbox import MaildirInbox from zw.mail.incoming.processor import IncomingMailProcessor class IIncomingMailProcessorDirective(Interface): """This directive register an event on IDataBaseOpenedWithRoot to launch an incoming mail processor. """ name = schema.TextLine( title = _( u'label-IIncomingMailProcessorDirective.name', u"Name" ), description = _( u'help-IIncomingMailProcessorDirective.name', u"Specifies the name of the mail processor." ), default = u"Incoming Mail", required = False ) pollingInterval = schema.Int( title = _( u"Polling Interval" ), description = _( u"How often the mail sources are checked for " u"new messages (in milliseconds)" ), default = 5000 ) sources = Tokens( title = _( u"Sources" ), description = _( u"Iterable of names of IInbox utilities." ), required = True, value_type = schema.TextLine( title = _( u"Inbox utility name" ) ) ) def incomingMailProcessor(_context, sources, pollingInterval = 5000, name = u"Incoming Mail" ): @adapter(IDatabaseOpenedWithRootEvent) def createIncomingMailProcessor(event): db, conn, root, root_folder = getInformationFromEvent(event) inboxes = [] for name in sources: inbox = queryUtility(IInbox, name) if inbox is None: raise ConfigurationError("Inbox %r is not defined." % name) inboxes.append(inbox) thread = IncomingMailProcessor(root_folder, pollingInterval, inboxes) thread.start() _context.action( discriminator = None, callable = handler, args = ('registerHandler', createIncomingMailProcessor, (IDatabaseOpenedWithRootEvent,), u'', _context.info), ) _context.action( discriminator = None, callable = provideInterface, args = ('', IDatabaseOpenedWithRootEvent) ) class IInboxDirective(Interface): """A generic directive registering an inbox. """ name = schema.TextLine( title = _( u'label-IInboxDirective.name', u"Name" ), description = _( u'help-IInboxDirective.name', u"Specifies the Inbox name of the utility." ), required = True ) class IMaildirInboxDirective(IInboxDirective): """Registers a new maildir inbox. """ path = Path( title = _( u'label-IMaildirInboxDirective.path', u"Maildir Path" ), description = _( u'help-IMaildirInboxDirective.path', u"Defines the path to the inbox maildir directory." ), required = True ) def maildirInbox(_context, name, path): _context.action( discriminator = ('utility', IInbox, name), callable = handler, args = ('registerUtility', MaildirInbox(path), IInbox, name) )
zw.mail.incoming
/zw.mail.incoming-0.1.2.3.tar.gz/zw.mail.incoming-0.1.2.3/src/zw/mail/incoming/zcml.py
zcml.py
__docformat__ = 'reStructuredText' from zope.i18nmessageid import MessageFactory _ = MessageFactory('zw.mail.incoming') from zope import schema from zope.interface import Attribute, Interface from z3c.schema.email import RFC822MailAddress class IInbox(Interface): """An inbox provides a very simple interface for our needs.""" def pop(): """Return an email.message.Message converted message and remove it. """ def __iter__(): """Iterate through all messages. """ def next(): """Return an email.message.Message converted message. """ def delete(msg): """Delete msg from inbox. """ class IMaildirInbox(IInbox): """An inbox that receives its messages by an Maildir folder. """ queuePath = schema.TextLine( title = _( u"Queue Path" ), description = _( u"Pathname of the Maildir directory." ) ) class IIMAPInbox(IInbox): """An inbox that receives its message via an IMAP connection. """ class IIncomingMailProcessor(Interface): """A mail queue processor that raise IIncomingMailEvent on new messages. """ pollingInterval = schema.Int( title = _( u"Polling Interval" ), description = _( u"How often the mail sources are checked for " u"new messages (in milliseconds)" ), default = 5000 ) sources = schema.FrozenSet( title = _( u"Sources" ), description = _( u"Iterable of inbox utilities." ), required = True, value_type = schema.Object( title = _( u"Inbox source" ), schema = IInbox ) ) class IIncomingEmailEvent(Interface): """A new mail arrived. """ message = Attribute(u"""The new email.message message.""") inbox = schema.Object( title = _( u"The inbox" ), description = _( u"The mail folder the message is contained in" ), schema = IInbox ) root = Attribute(u"""The root object""") class IIncomingEmailFailureEvent(IIncomingEmailEvent): """A new mail arrived with a failure. """ failures = schema.List( title = _( u"Failure addresses" ), description = _( u"Extracted list of failure addresses." ), value_type = RFC822MailAddress( title = u"Failure address" ), ) delivery_report = Attribute(u"""The delivery report as email.message.Message.""")
zw.mail.incoming
/zw.mail.incoming-0.1.2.3.tar.gz/zw.mail.incoming-0.1.2.3/src/zw/mail/incoming/interfaces.py
interfaces.py
__docformat__ = 'reStructuredText' from zope.i18nmessageid import MessageFactory _ = MessageFactory('zw.mail.incoming') import atexit from time import sleep from threading import Thread import logging import transaction from zope.component import getUtility from zope.component.interfaces import ComponentLookupError from zope.event import notify from zope.interface import implements from mailman.Bouncers.BouncerAPI import ScanMessages from zw.mail.incoming.events import NewEmailEvent, NewEmailFailureEvent from zw.mail.incoming.interfaces import IIncomingMailProcessor, IInbox class IncomingMailProcessor(Thread): implements(IIncomingMailProcessor) log = logging.getLogger("IncomingMailProcessorThread") __stopped = False def __init__(self, root, interval, inboxes): Thread.__init__(self) self.context = root self.pollingInterval = interval self.sources = tuple(inboxes) def run(self, forever=True): atexit.register(self.stop) while not self.__stopped: for box in self.sources: msg = None try: msg = box.next() failures = ScanMessages(None, msg) if failures: notify( NewEmailFailureEvent( msg, box, failures, self.context ) ) else: notify( NewEmailEvent( msg, box, self.context ) ) except StopIteration: # That's fine. pass except: # Catch up any other exception to let this thread survive. if msg is None: self.log.error( "Cannot access next message from inbox '%r'.", box ) else: self.log.error( "Cannot process message '%s' from inbox '%r'.", msg['Message-Id'], box ) else: self.log.info( "Message '%s' from inbox '%r' processed.", msg['Message-Id'], box ) transaction.commit() else: if forever: sleep(self.pollingInterval/1000.) if not forever: break def stop(self): self.__stopped = True
zw.mail.incoming
/zw.mail.incoming-0.1.2.3.tar.gz/zw.mail.incoming-0.1.2.3/src/zw/mail/incoming/processor.py
processor.py
import re import email.Iterators def _c(pattern): return re.compile(pattern, re.IGNORECASE) # This is a list of tuples of the form # # (start cre, end cre, address cre) # # where `cre' means compiled regular expression, start is the line just before # the bouncing address block, end is the line just after the bouncing address # block, and address cre is the regexp that will recognize the addresses. It # must have a group called `addr' which will contain exactly and only the # address that bounced. PATTERNS = [ # sdm.de (_c('here is your list of failed recipients'), _c('here is your returned mail'), _c(r'<(?P<addr>[^>]*)>')), # sz-sb.de, corridor.com, nfg.nl (_c('the following addresses had'), _c('transcript of session follows'), _c(r'<(?P<fulladdr>[^>]*)>|\(expanded from: <?(?P<addr>[^>)]*)>?\)')), # robanal.demon.co.uk (_c('this message was created automatically by mail delivery software'), _c('original message follows'), _c('rcpt to:\s*<(?P<addr>[^>]*)>')), # s1.com (InterScan E-Mail VirusWall NT ???) (_c('message from interscan e-mail viruswall nt'), _c('end of message'), _c('rcpt to:\s*<(?P<addr>[^>]*)>')), # Smail (_c('failed addresses follow:'), _c('message text follows:'), _c(r'\s*(?P<addr>\S+@\S+)')), # newmail.ru (_c('This is the machine generated message from mail service.'), _c('--- Below the next line is a copy of the message.'), _c('<(?P<addr>[^>]*)>')), # turbosport.com runs something called `MDaemon 3.5.2' ??? (_c('The following addresses did NOT receive a copy of your message:'), _c('--- Session Transcript ---'), _c('[>]\s*(?P<addr>.*)$')), # usa.net (_c('Intended recipient:\s*(?P<addr>.*)$'), _c('--------RETURNED MAIL FOLLOWS--------'), _c('Intended recipient:\s*(?P<addr>.*)$')), # hotpop.com (_c('Undeliverable Address:\s*(?P<addr>.*)$'), _c('Original message attached'), _c('Undeliverable Address:\s*(?P<addr>.*)$')), # Another demon.co.uk format (_c('This message was created automatically by mail delivery'), _c('^---- START OF RETURNED MESSAGE ----'), _c("addressed to '(?P<addr>[^']*)'")), # Prodigy.net full mailbox (_c("User's mailbox is full:"), _c('Unable to deliver mail.'), _c("User's mailbox is full:\s*<(?P<addr>[^>]*)>")), # Microsoft SMTPSVC (_c('The email below could not be delivered to the following user:'), _c('Old message:'), _c('<(?P<addr>[^>]*)>')), # Yahoo on behalf of other domains like sbcglobal.net (_c('Unable to deliver message to the following address\(es\)\.'), _c('--- Original message follows\.'), _c('<(?P<addr>[^>]*)>:')), # googlemail.com (_c('Delivery to the following recipient failed'), _c('----- Original message -----'), _c('^\s*(?P<addr>[^\s@]+@[^\s@]+)\s*$')), # kundenserver.de (_c('A message that you sent could not be delivered'), _c('^---'), _c('<(?P<addr>[^>]*)>')), # another kundenserver.de (_c('A message that you sent could not be delivered'), _c('^---'), _c('^(?P<addr>[^\s@]+@[^\s@:]+):')), # thehartford.com (_c('Delivery to the following recipients failed'), # this one may or may not have the original message, but there's nothing # unique to stop on, so stop on the first line of at least 3 characters # that doesn't start with 'D' (to not stop immediately) and has no '@'. _c('^[^D][^@]{2,}$'), _c('^\s*(?P<addr>[^\s@]+@[^\s@]+)\s*$')), # and another thehartfod.com/hartfordlife.com (_c('^Your message\s*$'), _c('^because:'), _c('^\s*(?P<addr>[^\s@]+@[^\s@]+)\s*$')), # kviv.be (InterScan NT) (_c('^Unable to deliver message to'), _c(r'\*+\s+End of message\s+\*+'), _c('<(?P<addr>[^>]*)>')), # earthlink.net supported domains (_c('^Sorry, unable to deliver your message to'), _c('^A copy of the original message'), _c('\s*(?P<addr>[^\s@]+@[^\s@]+)\s+')), # ademe.fr (_c('^A message could not be delivered to:'), _c('^Subject:'), _c('^\s*(?P<addr>[^\s@]+@[^\s@]+)\s*$')), # andrew.ac.jp (_c('^Invalid final delivery userid:'), _c('^Original message follows.'), _c('\s*(?P<addr>[^\s@]+@[^\s@]+)\s*$')), # [email protected] (_c('------ Failed Recipients ------'), _c('-------- Returned Mail --------'), _c('<(?P<addr>[^>]*)>')), # cynergycom.net (_c('A message that you sent could not be delivered'), _c('^---'), _c('(?P<addr>[^\s@]+@[^\s@)]+)')), # LSMTP for Windows (_c('^--> Error description:\s*$'), _c('^Error-End:'), _c('^Error-for:\s+(?P<addr>[^\s@]+@[^\s@]+)')), # Qmail with a tri-language intro beginning in spanish (_c('Your message could not be delivered'), _c('^-'), _c('<(?P<addr>[^>]*)>:')), # socgen.com (_c('Your message could not be delivered to'), _c('^\s*$'), _c('(?P<addr>[^\s@]+@[^\s@]+)')), # dadoservice.it (_c('Your message has encountered delivery problems'), _c('Your message reads'), _c('addressed to\s*(?P<addr>[^\s@]+@[^\s@)]+)')), # gomaps.com (_c('Did not reach the following recipient'), _c('^\s*$'), _c('\s(?P<addr>[^\s@]+@[^\s@]+)')), # EYOU MTA SYSTEM (_c('This is the deliver program at'), _c('^-'), _c('^(?P<addr>[^\s@]+@[^\s@<>]+)')), # A non-standard qmail at ieo.it (_c('this is the email server at'), _c('^-'), _c('\s(?P<addr>[^\s@]+@[^\s@]+)[\s,]')), # pla.net.py (MDaemon.PRO ?) (_c('- no such user here'), _c('There is no user'), _c('^(?P<addr>[^\s@]+@[^\s@]+)\s')), # Next one goes here... ] def process(msg, patterns=None): if patterns is None: patterns = PATTERNS # simple state machine # 0 = nothing seen yet # 1 = intro seen addrs = {} # MAS: This is a mess. The outer loop used to be over the message # so we only looped through the message once. Looping through the # message for each set of patterns is obviously way more work, but # if we don't do it, problems arise because scre from the wrong # pattern set matches first and then acre doesn't match. The # alternative is to split things into separate modules, but then # we process the message multiple times anyway. for scre, ecre, acre in patterns: state = 0 for line in email.Iterators.body_line_iterator(msg): if state == 0: if scre.search(line): state = 1 if state == 1: mo = acre.search(line) if mo: addr = mo.group('addr') if addr: addrs[mo.group('addr')] = 1 elif ecre.search(line): break if addrs: break return addrs.keys()
zw.mail.incoming
/zw.mail.incoming-0.1.2.3.tar.gz/zw.mail.incoming-0.1.2.3/src/mailman/Bouncers/SimpleMatch.py
SimpleMatch.py
from cStringIO import StringIO from email.Iterators import typed_subpart_iterator from email.Utils import parseaddr from mailman.Bouncers.BouncerAPI import Stop def check(msg): # Iterate over each message/delivery-status subpart addrs = [] for part in typed_subpart_iterator(msg, 'message', 'delivery-status'): if not part.is_multipart(): # Huh? continue # Each message/delivery-status contains a list of Message objects # which are the header blocks. Iterate over those too. for msgblock in part.get_payload(): # We try to dig out the Original-Recipient (which is optional) and # Final-Recipient (which is mandatory, but may not exactly match # an address on our list). Some MTA's also use X-Actual-Recipient # as a synonym for Original-Recipient, but some apparently use # that for other purposes :( # # Also grok out Action so we can do something with that too. action = msgblock.get('action', '').lower() # Some MTAs have been observed that put comments on the action. if action.startswith('delayed'): return Stop if not action.startswith('fail'): # Some non-permanent failure, so ignore this block continue params = [] foundp = False for header in ('original-recipient', 'final-recipient'): for k, v in msgblock.get_params([], header): if k.lower() == 'rfc822': foundp = True else: params.append(k) if foundp: # Note that params should already be unquoted. addrs.extend(params) break else: # MAS: This is a kludge, but SMTP-GATEWAY01.intra.home.dk # has a final-recipient with an angle-addr and no # address-type parameter at all. Non-compliant, but ... for param in params: if param.startswith('<') and param.endswith('>'): addrs.append(param[1:-1]) # Uniquify rtnaddrs = {} for a in addrs: if a is not None: realname, a = parseaddr(a) rtnaddrs[a] = True return rtnaddrs.keys() def process(msg): # A DSN has been seen wrapped with a "legal disclaimer" by an outgoing MTA # in a multipart/mixed outer part. if msg.is_multipart() and msg.get_content_subtype() == 'mixed': msg = msg.get_payload()[0] # The above will suffice if the original message 'parts' were wrapped with # the disclaimer added, but the original DSN can be wrapped as a # message/rfc822 part. We need to test that too. if msg.is_multipart() and msg.get_content_type() == 'message/rfc822': msg = msg.get_payload()[0] # The report-type parameter should be "delivery-status", but it seems that # some DSN generating MTAs don't include this on the Content-Type: header, # so let's relax the test a bit. if not msg.is_multipart() or msg.get_content_subtype() <> 'report': return None return check(msg)
zw.mail.incoming
/zw.mail.incoming-0.1.2.3.tar.gz/zw.mail.incoming-0.1.2.3/src/mailman/Bouncers/DSN.py
DSN.py
__docformat__ = 'reStructuredText' from zw.schema.i18n import MessageFactory as _ import sys import zope.schema import zope.schema.interfaces import zope.component import zope.interface from zope.interface.interfaces import IInterface from zope.dottedname.resolve import resolve from zope.app.intid.interfaces import IIntIds from zw.schema.reference.interfaces import IReference class Reference(zope.schema.Field): """A field to an persistent object referencable by IntId. """ zope.interface.implements(IReference) _schemata = None def __init__(self, *args, **kw): schemata = kw.pop('schemata', None) if type(schemata) not in (tuple, list,): schemata = (schemata,) schema_list = [] for schema in schemata: if IInterface.providedBy(schema): schema_list.append(schema) elif isinstance(schema, str): # have dotted names #module = kw.get('module', sys._getframe(1).f_globals['__name__']) raise NotImplementedError schema_list.append(schema) elif schema is None: continue else: raise zope.schema.interfaces.WrongType if schema_list: self._schemata = tuple(schema_list) super(Reference, self).__init__(*args, **kw) def _validate(self, value): super(Reference, self)._validate(value) if self._schemata is not None: schema_provided = False for iface in self._schemata: if iface.providedBy(value): schema_provided = True if not schema_provided: raise zope.schema.interfaces.SchemaNotProvided intids = zope.component.getUtility(IIntIds, context=value) intids.getId(value) def get(self, object): id = super(Reference, self).get(object) intids = zope.component.getUtility(IIntIds, context=object) return intids.queryObject(id) def set(self, object, value): intids = zope.component.getUtility(IIntIds, context=object) id = intids.getId(value) super(Reference, self).set(object, id)
zw.schema
/zw.schema-0.3.0b2.1.tar.gz/zw.schema-0.3.0b2.1/src/zw/schema/reference/field.py
field.py
=========== ColorWidget =========== The widget can render an input field with color preview:: >>> from zope.interface.verify import verifyClass >>> from z3c.form.interfaces import IWidget >>> from zw.widget.color.widget import ColorWidget The ColorWidget is a widget:: >>> verifyClass(IWidget, ColorWidget) True The widget can render a input field only by adapting a request:: >>> from z3c.form.testing import TestRequest >>> request = TestRequest() >>> widget = ColorWidget(request) Such a field provides IWidget:: >>> IWidget.providedBy(widget) True We also need to register the template for at least the widget and request:: >>> import os.path >>> import zope.interface >>> from zope.publisher.interfaces.browser import IDefaultBrowserLayer >>> from zope.pagetemplate.interfaces import IPageTemplate >>> import zw.widget.color >>> import z3c.form.widget >>> template = os.path.join(os.path.dirname(zw.widget.color.__file__), ... 'color_input.pt') >>> factory = z3c.form.widget.WidgetTemplateFactory(template) >>> zope.component.provideAdapter(factory, ... (zope.interface.Interface, IDefaultBrowserLayer, None, None, None), ... IPageTemplate, name='input') If we render the widget we get the HTML:: >>> print widget.render() <input type="text" class="color-widget" value="" /> Adding some more attributes to the widget will make it display more:: >>> widget.id = 'id' >>> widget.name = 'name' >>> widget.value = u'value' >>> print widget.render() <span id="" class="color-widget color-sample" style="background-color: #value;"> </span> <input type="text" id="id" name="name" class="color-widget" value="value" />
zw.widget
/zw.widget-0.1.6.2.tar.gz/zw.widget-0.1.6.2/src/zw/widget/color/README.txt
README.txt
=========== EmailWidget =========== The widget can render an ordinary input field:: >>> from zope.interface.verify import verifyClass >>> from z3c.form.interfaces import IWidget, INPUT_MODE, DISPLAY_MODE >>> from zw.widget.email.widget import EmailWidget The EmailWidget is a widget:: >>> verifyClass(IWidget, EmailWidget) True The widget can render a input field only by adapting a request:: >>> from z3c.form.testing import TestRequest >>> request = TestRequest() >>> widget = EmailWidget(request) Such a field provides IWidget:: >>> IWidget.providedBy(widget) True We also need to register the template for at least the widget and request:: >>> import os.path >>> import zope.interface >>> from zope.publisher.interfaces.browser import IDefaultBrowserLayer >>> from zope.pagetemplate.interfaces import IPageTemplate >>> import zw.widget.email >>> import z3c.form.widget >>> template = os.path.join(os.path.dirname(zw.widget.email.__file__), ... 'email_input.pt') >>> factory = z3c.form.widget.WidgetTemplateFactory(template) >>> zope.component.provideAdapter(factory, ... (zope.interface.Interface, IDefaultBrowserLayer, None, None, None), ... IPageTemplate, name='input') If we render the widget we get the HTML:: >>> print widget.render() <input type="text" class="email-widget" value="" /> Adding some more attributes to the widget will make it display more:: >>> widget.id = 'id' >>> widget.name = 'name' >>> widget.value = u'[email protected]' >>> print widget.render() <input type="text" id="id" name="name" class="email-widget" value="[email protected]" /> More interesting is to the display view:: >>> widget.mode = DISPLAY_MODE >>> template = os.path.join(os.path.dirname(zw.widget.email.__file__), ... 'email_display.pt') >>> factory = z3c.form.widget.WidgetTemplateFactory(template) >>> zope.component.provideAdapter(factory, ... (zope.interface.Interface, IDefaultBrowserLayer, None, None, None), ... IPageTemplate, name='display') >>> print widget.render() <span id="id" class="email-widget"> <a href="mailto:[email protected]"> [email protected] </a> </span> But if we are not authenticated it should be obscured: >>> widget.obscured = True >>> print widget.render() <span id="id" class="email-widget"> [email protected] </span>
zw.widget
/zw.widget-0.1.6.2.tar.gz/zw.widget-0.1.6.2/src/zw/widget/email/README.txt
README.txt
__docformat__ = 'reStructuredText' from zw.widget.i18n import MessageFactory as _ import zope.schema.interfaces from zope.component import adapter from zope.interface import implementsOnly, implementer from z3c.form.browser.textarea import TextAreaWidget from z3c.form.interfaces import IFormLayer, IFieldWidget from z3c.form.widget import FieldWidget from zw.schema.richtext.interfaces import IRichText from zw.widget.tiny.interfaces import ITinyWidget try: from zc import resourcelibrary haveResourceLibrary = True except ImportError: haveResourceLibrary = False OPT_PREFIX = "mce_" OPT_PREFIX_LEN = len(OPT_PREFIX) MCE_LANGS=[] import glob import os # initialize the language files for langFile in glob.glob( os.path.join(os.path.dirname(__file__), 'tiny_mace', 'langs') + '/??.js'): MCE_LANGS.append(os.path.basename(langFile)[:2]) class TinyWidget(TextAreaWidget): """TinyMCE widget implementation. """ implementsOnly(ITinyWidget) klass = u'tiny-widget' value = u'' tiny_js = u"" rows = 10 cols = 60 mce_theme = "advanced" mce_theme_advanced_buttons1 = "bold,italic,underline,separator,strikethrough,justifyleft,justifycenter,justifyright, justifyfull,bullist,numlist,undo,redo,link,unlink" mce_theme_advanced_buttons2 = "" mce_theme_advanced_buttons3 = "" mce_theme_advanced_toolbar_location = "top" mce_theme_advanced_toolbar_align = "left" mce_theme_advanced_statusbar_location = "bottom" mce_extended_valid_elements = "a[name|href|target|title|onclick],img[class|src|border=0|alt|title|hspace|vspace|width|height|align|onmouseover|onmouseout|name],hr[class|width|size|noshade],font[face|size|color|style],span[class|align|style]" def update(self): super(TinyWidget, self).update() if haveResourceLibrary: resourcelibrary.need('tiny_mce') mceOptions = [] for k in dir(self): if k.startswith(OPT_PREFIX): v = getattr(self, k, None) v = v==True and 'true' or v==False and 'false' or v if v in ['true','false']: mceOptions.append('%s : %s' % (k[OPT_PREFIX_LEN:],v)) elif v is not None: mceOptions.append('%s : "%s"' % (k[OPT_PREFIX_LEN:],v)) mceOptions = ', '.join(mceOptions) if mceOptions: mceOptions += ', ' if self.request.locale.id.language in MCE_LANGS: mceOptions += ('language : "%s", ' % \ self.request.locale.id.language) self.tiny_js = u""" tinyMCE.init({ mode : "exact", %(options)s elements : "%(id)s" } ); """ % { "id": self.id, "options": mceOptions } @adapter(IRichText, IFormLayer) @implementer(IFieldWidget) def TinyFieldWidget(field, request): """IFieldWidget factory for TinyWidget. """ return FieldWidget(field, TinyWidget(request))
zw.widget
/zw.widget-0.1.6.2.tar.gz/zw.widget-0.1.6.2/src/zw/widget/tiny/widget.py
widget.py
========== TinyWidget ========== The widget can render a HTML text input field based on the TinyMCE JavaScript Content Editor from Moxicode Systems ..http://tinymce.moxiecode.com >>> from zope.interface.verify import verifyClass >>> from zope.app.form.interfaces import IInputWidget >>> from z3c.form.interfaces import IWidget >>> from zw.widget.tiny.widget import TinyWidget The TinyWidget is a widget: >>> verifyClass(IWidget, TinyWidget) True The widget can render a textarea field only by adapteing a request: >>> from z3c.form.testing import TestRequest >>> request = TestRequest() >>> widget = TinyWidget(request) Such a field provides IWidget: >>> IWidget.providedBy(widget) True We also need to register the template for at least the widget and request: >>> import os.path >>> import zope.interface >>> from zope.publisher.interfaces.browser import IDefaultBrowserLayer >>> from zope.pagetemplate.interfaces import IPageTemplate >>> import zw.widget.tiny >>> import z3c.form.widget >>> template = os.path.join(os.path.dirname(zw.widget.tiny.__file__), ... 'tiny_input.pt') >>> factory = z3c.form.widget.WidgetTemplateFactory(template) >>> zope.component.provideAdapter(factory, ... (zope.interface.Interface, IDefaultBrowserLayer, None, None, None), ... IPageTemplate, name='input') If we render the widget we get the HTML: >>> print widget.render() <textarea class="tiny-widget" cols="60" rows="10"></textarea> Adding some more attributes to the widget will make it display more: >>> widget.id = 'id' >>> widget.name = 'name' >>> widget.value = u'value' >>> print widget.render() <textarea id="id" name="name" class="tiny-widget" cols="60" rows="10">value</textarea> TODO: Testing for ECMAScript code...
zw.widget
/zw.widget-0.1.6.2.tar.gz/zw.widget-0.1.6.2/src/zw/widget/tiny/README.txt
README.txt
=========== LinesWidget =========== The widget can render a HTML text input field, which collects list items by line. >>> from zope.interface.verify import verifyClass >>> from z3c.form.interfaces import IWidget >>> from zw.widget.lines.widget import LinesWidget The LinesWidget is a widget: >>> verifyClass(IWidget, LinesWidget) True The widget can render a textarea field only by adapteing a request: >>> from z3c.form.testing import TestRequest >>> request = TestRequest() >>> widget = LinesWidget(request) Such a field provides IWidget: >>> IWidget.providedBy(widget) True We also need to register the template for at least the widget and request: >>> import os.path >>> import zope.interface >>> from zope.publisher.interfaces.browser import IDefaultBrowserLayer >>> from zope.pagetemplate.interfaces import IPageTemplate >>> import zw.widget.lines >>> import z3c.form.widget >>> template = os.path.join(os.path.dirname(zw.widget.lines.__file__), ... 'lines_input.pt') >>> factory = z3c.form.widget.WidgetTemplateFactory(template) >>> zope.component.provideAdapter(factory, ... (zope.interface.Interface, IDefaultBrowserLayer, None, None, None), ... IPageTemplate, name='input') If we render the widget we get the HTML: >>> print widget.render() <textarea class="lines-widget"></textarea> Adding some more attributes to the widget will make it display more: >>> widget.id = 'id' >>> widget.name = 'name' >>> widget.value = u'value' >>> print widget.render() <textarea id="id" name="name" class="lines-widget">value</textarea>
zw.widget
/zw.widget-0.1.6.2.tar.gz/zw.widget-0.1.6.2/src/zw/widget/lines/README.txt
README.txt
import urllib3 import zware_api.interfaces as interfaces from .const import DEVICE_DATABASE COMMAND_CLASSES = { "76": interfaces.zwLockLogging, "78": interfaces.zwScheduleEntry, "98": interfaces.zwLock, "99": interfaces.zwUserCode, "113": interfaces.zwAlarm, "128": interfaces.zwBattery, } class zwClient(object): """Representation of a Z-Wave network client.""" CMD_ADD_NODE = 2 CMD_DELETE_NODE = 3 def __init__(self, zware_object, host, user, password): """Initialize a z-wave client.""" urllib3.disable_warnings() self.zware = zware_object self.ipAddress = host self.username = user self.password = password self.nodes = list() def login(self): """Connect to the server""" board_ip = 'https://' + self.ipAddress + '/' r = self.zware.zw_init(board_ip, self.username, self.password) v = r.findall('./version')[0] return v.get('app_major') + '.' + v.get('app_minor') def get_node_list(self, active=False): """Get nodes in the z-wave network.""" if active: nodes_list = list() nodes = self.zware.zw_api('zwnet_get_node_list') nodes = nodes.findall('./zwnet/zwnode') for node in nodes: node_obj = zwNode(self.zware, node.get('id'), node.get('property'), node.get('vid'), node.get('pid'), node.get('type'), node.get('category'), node.get('alive'), node.get('sec')) nodes_list.append(node_obj) self.nodes = nodes_list return self.nodes def add_node(self): """Activate adding mode in a Z-Wave network.""" self.zware.zw_add_remove(self.CMD_ADD_NODE) self.zware.zw_net_comp(self.CMD_ADD_NODE) def remove_node(self): """Activate exclusion mode in a Z-Wave network.""" self.zware.zw_add_remove(self.CMD_DELETE_NODE) self.zware.zw_net_comp(self.CMD_DELETE_NODE) def cancel_command(self): """Cancel the last sent Z-Wave command.""" self.zware.zw_abort() class zwNode: """Representation of a Z-Wave Node.""" def __init__(self, zware, id, property, manufacturer_id, product_id, product_type, device_category, alive_state, is_secure): """Initialize a z-wave node.""" self.zware = zware # Properties of a z-wave node. self.id = id self.property = property self.manufacturer_id = manufacturer_id self.product_id = product_id self.product_type = product_type self.device_category = device_category self.alive_state = alive_state self.is_secure = (int(is_secure) == 1) self.endpoints = list() self.name = None self.location = None def get_name_and_location(self, active=False): """Get the current name and location of a node.""" if active: endpoints = self.zware.zw_api('zwnode_get_ep_list', 'noded=' + self.id) endpoints = endpoints.findall('./zwnode/zwep') self.name = endpoints[0].get('name', '').replace("%20", " ") self.location = endpoints[0].get('loc').replace("%20", " ") return self.name, self.location def set_node_name_and_location(self, name, location): """Set the name and location of a node.""" if len(self.endpoints) == 0: self.get_endpoints(active=True) self.zware.zw_nameloc(self.endpoints[0].id, name, location) self.name = name self.location = location def get_readable_manufacturer_model(self): """Return a tupple with human-readable device manufacturer and model""" return (DEVICE_DATABASE.get(self.manufacturer_id, {}).get("name"), DEVICE_DATABASE.get(self.manufacturer_id, {}).get( "product",{}).get(self.product_id, {}).get(self.product_type)) def send_nif(self): """Send a node information frame to the node.""" self.zware.zw_api('zwnet_send_nif', 'noded=' + self.id) self.zware.zw_net_wait() def update(self): """Update the node status in the zwave network.""" self.zware.zw_api('zwnode_update', 'noded=' + self.id) self.zware.zw_net_wait() def get_endpoints(self, active=False): """Get endpoints in a z-wave node.""" if active: ep_list = list() endpoints = self.zware.zw_api('zwnode_get_ep_list', 'noded=' + self.id) endpoints = endpoints.findall('./zwnode/zwep') for ep in endpoints: ep_obj = zwEndpoint(self.zware, ep.get('desc'), ep.get('generic'), ep.get('specific'), ep.get('name'), ep.get('loc'), ep.get('zwplus_ver'), ep.get('role_type'), ep.get('node_type'), ep.get('instr_icon'), ep.get('usr_icon')) ep_list.append(ep_obj) self.endpoints = ep_list return self.endpoints class zwEndpoint: """Representation of a Z-Wave Endpoint.""" def __init__(self, zware, id, generic, specific, name, location, version, role_type, node_type, instr_icon, user_icon): """Initialize a z-wave endpoint.""" self.zware = zware # Properties of a z-wave endpoint. self.id = id self.generic = generic self.specific = specific self.name = name self.location = location self.zw_plus_version = version self.role_type = role_type self.node_type = node_type self.installer_icon = instr_icon self.user_icon = user_icon self.interfaces = list() def get_interfaces(self, active=False): """Get all the interfaces of an endpoint.""" if active: if_list = list() itfs = self.zware.zw_api('zwep_get_if_list', 'epd=' + self.id) itfs = itfs.findall('./zwep/zwif') for itf in itfs: type_id = itf.get('id') if_obj = COMMAND_CLASSES.get(type_id, interfaces.zwInterface)(self.zware, itf.get('desc'), type_id, itf.get('name'), itf.get('ver'), itf.get('real_ver'), itf.get('sec'), itf.get('unsec')) if_list.append(if_obj) self.interfaces = if_list return self.interfaces
zware-api
/zware_api-0.0.25.tar.gz/zware_api-0.0.25/zware_api/objects.py
objects.py
import requests import xml.etree.ElementTree as ET class ZWareApi: """The ZWare web API.""" zware_session = None zware_url = "" def zw_api(self, uri, parm=''): r = self.zware_session.post(self.zware_url + uri, data=parm, verify=False) assert r.status_code == 200, "Unexpected response from Z-Ware API: {}".format(r.status_code) try: x = ET.fromstring(r.text) except: return r.text e = x.find('./error') assert e is None, e.text return x """Network operations""" def zw_net_wait(self): while int(self.zw_api('zwnet_get_operation').find('./zwnet/operation').get('op')): pass def zw_net_comp(self, op): while op != int(self.zw_api('zwnet_get_operation').find('./zwnet/operation').get('prev_op')): pass def zw_net_op_sts(self, op): while op != int(self.zw_api('zwnet_get_operation').find('./zwnet/operation').get('op_sts')): pass def zw_net_get_grant_keys(self): grant_key = self.zw_api('zwnet_add_s2_get_req_keys').find('./zwnet/security').get('req_key') return grant_key def zw_net_add_s2_get_dsk(self): dsk = self.zw_api('zwnet_add_s2_get_dsk').find('./zwnet/security').get('dsk') return dsk def zw_net_set_grant_keys(self, grant_key): return self.zw_api('zwnet_add_s2_set_grant_keys', 'granted_keys=' + grant_key) def zw_net_provisioning_list_add(self, dsk, boot_mode, grant_keys, interval, device_name, device_location, application_version, sub_version, vendor, product_id, product_type, status, generic_class, specific_class, installer_icon, uuid_format, uuid): provisioning_list_string = 'dsk=' + dsk if device_name != "": provisioning_list_string = provisioning_list_string + '&name=' + device_name if device_location != "": provisioning_list_string = provisioning_list_string + '&loc=' + device_location if generic_class != "": provisioning_list_string = provisioning_list_string + '&ptype_generic=' + generic_class if specific_class != "": provisioning_list_string = provisioning_list_string + '&ptype_specific=' + specific_class if installer_icon != "": provisioning_list_string = provisioning_list_string + '&ptype_icon=' + installer_icon if vendor != "": provisioning_list_string = provisioning_list_string + '&pid_manufacturer_id=' + vendor if product_type != "": provisioning_list_string = provisioning_list_string + '&pid_product_type=' + product_type if product_id != "": provisioning_list_string = provisioning_list_string + '&pid_product_id=' + product_id if application_version != "": provisioning_list_string = provisioning_list_string + '&pid_app_version=' + application_version if sub_version != "": provisioning_list_string = provisioning_list_string + '&pid_app_sub_version=' + sub_version if interval != "": provisioning_list_string = provisioning_list_string + '&interval=' + interval if uuid_format != "": provisioning_list_string = provisioning_list_string + '&uuid_format=' + uuid_format if uuid != "": provisioning_list_string = provisioning_list_string + '&uuid_data=' + uuid if status != "": provisioning_list_string = provisioning_list_string + '&pl_status=' + status if grant_keys != "": provisioning_list_string = provisioning_list_string + '&grant_keys=' + grant_keys if boot_mode != "": provisioning_list_string = provisioning_list_string + '&boot_mode=' + boot_mode return self.zw_api('zwnet_provisioning_list_add', provisioning_list_string) def zw_net_provisioning_list_list_get(self): devices_info = self.zw_api('zwnet_provisioning_list_list_get').findall('./zwnet/pl_list/pl_device_info') return devices_info def zw_net_provisioning_list_remove(self, dsk): result = self.zw_api('zwnet_provisioning_list_remove', 'dsk=' + dsk) return result def zw_net_provisioning_list_remove_all(self): result = self.zw_api('zwnet_provisioning_list_remove_all') return result def zw_net_set_dsk(self, dsk): return self.zw_api('zwnet_add_s2_accept', 'accept=1&value=' + dsk) def zw_init(self, url='https://127.0.0.1/', user='test_user', pswd='test_password', get_version=True): self.zware_session = requests.session() self.zware_url = url self.zware_session.headers.update({'Content-Type': 'application/x-www-form-urlencoded'}) # apache requires this self.zw_api('register/login.php', 'usrname=' + user + '&passwd=' + pswd) self.zware_url += 'cgi/zcgi/networks//' if get_version: return self.zw_api('zw_version') else: return def zw_add_remove(self, cmd): return self.zw_api('zwnet_add', 'cmd=' + str(cmd)) def zw_abort(self): return self.zw_api('zwnet_abort', '') def zw_nameloc(self, epd, name, location): return self.zw_api('zwep_nameloc', 'cmd=1&epd=' + epd + '&name=' + name + '&loc=' + location) """ Interfaces """ def zwif_api(self, dev, ifd, cmd=1, arg=''): return self.zw_api('zwif_' + dev, 'cmd=' + str(cmd) + '&ifd=' + str(ifd) + arg) def zwif_api_ret(self, dev, ifd, cmd=1, arg=''): r = self.zwif_api(dev, ifd, cmd, arg) if cmd == 2 or cmd == 3: return r.find('./zwif/' + dev) return r def zwif_basic_api(self, ifd, cmd=1, arg=''): return self.zwif_api_ret('basic', ifd, cmd, arg) def zwif_switch_api(self, ifd, cmd=1, arg=''): return self.zwif_api_ret('switch', ifd, cmd, arg) def zwif_level_api(self, ifd, cmd=1, arg=''): return self.zwif_api_ret('level', ifd, cmd, arg) def zwif_thermo_list_api(self, dev, ifd, cmd=1, arg=''): r = self.zwif_api_ret('thrmo_' + dev, ifd, cmd, arg) if cmd == 5 or cmd == 6: return r.find('./zwif/thrmo_' + dev + '_sup') return r def zwif_thermo_mode_api(self, ifd, cmd=1, arg=''): return self.zwif_thermo_list_api('md', ifd, cmd, arg) def zwif_thermo_state_api(self, ifd, cmd=1, arg=''): return self.zwif_api_ret('thrmo_op_sta', ifd, cmd, arg) def zwif_thermo_setpoint_api(self, ifd, cmd=1, arg=''): return self.zwif_thermo_list_api('setp', ifd, cmd, arg) def zwif_thermo_fan_mode_api(self, ifd, cmd=1, arg=''): return self.zwif_thermo_list_api('fan_md', ifd, cmd, arg) def zwif_thermo_fan_state_api(self, ifd, cmd=1, arg=''): return self.zwif_api_ret('thrmo_fan_sta', ifd, cmd, arg) def zwif_meter_api(self, ifd, cmd=1, arg=''): return self.zwif_api_ret('meter', ifd, cmd, arg) def zwif_bsensor_api(self, ifd, cmd=1, arg=''): return self.zwif_api_ret('bsensor', ifd, cmd, arg) def zwif_sensor_api(self, ifd, cmd=1, arg=''): return self.zwif_api_ret('sensor', ifd, cmd, arg) def zwif_av_api(self, ifd, cmd=1, arg=''): r = self.zwif_api('av', ifd, cmd, arg) if cmd == 2 or cmd == 3: return r.find('./zwif/av_caps') return r
zware-api
/zware_api-0.0.25.tar.gz/zware_api-0.0.25/zware_api/zware.py
zware.py
from .objects import zwInterface import asyncio EVENTS = { "0": { "9": { "1": "Deadbolt jammed while locking", "2": "Deadbolt jammed while unlocking", }, "18": { "default": "Keypad Lock with user_id {}", }, "19": { "default": "Keypad Unlock with user_id {}", }, "21": { "1": "Manual Lock by Key Cylinder or Thumb-Turn", "2": "Manual Lock by Touch Function", "3": "Manual Lock by Inside Button", }, "22": { "1": "Manual Unlock Operation", }, "24": { "1": "RF Lock Operation", }, "25": { "1": "RF Unlock Operation", }, "27": { "1": "Auto re-lock cycle complete", }, "33": { "default": "Single user code deleted with user_id {}", }, "38": { "default": "Non access code entered with user_id {}", }, "96": { "default": "Daily Schedule has been set/erased for user_id {}" }, "97": { "default": "Daily Schedule has been enabled/disabled for user_id {}" }, "98": { "default": "Yearly Schedule has been set/erased for user_id {}" }, "99": { "default": "Yearly Schedule has been enabled/disabled for user_id {}" }, "100": { "default": "All Schedules have been set/erased for user_id {}" }, "101": { "default": "All Schedules have been enabled/disabled for user_id {}" }, "112": { "default": "New user code added with user_id {}", "0": "Master Code was changed at keypad", "251": "Master Code was changed over RF", }, "113": { "0": "Duplicate Master Code error", "default": "Duplicate Pin-Code error with user_id {}", }, "130": { "0": "Door Lock needs Time Set" }, "131": { "default": "Disabled user_id {} code was entered at the keypad" }, "132": { "default": "Valid user_id {} code was entered outside of schedule" }, "161": { "1": "Keypad attempts exceed limit", "2": "Front Escutcheon removed from main", "3": "Master Code attempts exceed limit", }, "167": { "default": "Low Battery Level {}", }, "168": { "default": "Critical Battery Level {}", } }, "6": { "0": "State idle", "1": "Manual Lock Operation", "2": "Manual Unlock Operation", "3": "RF Lock Operation", "4": "RF Unlock Operation", "5": "Keypad Lock Operation", "6": "Keypad Unlock Operation", "7": "Manual Not Fully Locked Operation", "8": "RF Not Fully Locked Operation", "9": "Auto Lock Locked Operation", "10": "Auto Lock Not Fully Operation", "11": "Lock Jammed", "12": "All user codes deleted", "13": "Single user code deleted", "14": "New user code added", "15": "New user code not added due to duplicate code", "16": "Keypad temporary disabled", "17": "Keypad busy", "18": "New Program code Entered - Unique code for lock configuration", "19": "Manually Enter user Access code exceeds code limit", "20": "Unlock By RF with invalid user code", "21": "Locked by RF with invalid user codes", "22": "Window/Door is open", "23": "Window/Door is closed", "24": "Window/door handle is open", "25": "Window/door handle is closed", "32": "Messaging User Code entered via keypad", "64": "Barrier performing Initialization process", "65": "Barrier operation (Open / Close) force has been exceeded.", "66": "Barrier motor has exceeded manufacturer’s operational time limit", "67": "Barrier operation has exceeded physical mechanical limits.", "68": "Barrier unable to perform requested operation due to UL requirements", "69": "Barrier Unattended operation has been disabled per UL requirements", "70": "Barrier failed to perform Requested operation, device malfunction", "71": "Barrier Vacation Mode", "72": "Barrier Safety Beam Obstacle", "73": "Barrier Sensor Not Detected / Supervisory Error", "74": "Barrier Sensor Low Battery Warning", "75": "Barrier detected short in Wall Station wires", "76": "Barrier associated with non-Z-wave remote control", "254": "Unknown Event" }, "8": { "1": "Door Lock needs Time Set", "10": "Low Battery", "11": "Critical Battery Level" } } class zwLock(zwInterface): """Representation of a Z-Wave Lock Command Class.""" CMD_OPEN_DOOR = 0 CMD_CLOSE_DOOR = 255 CMD_DLOCK_SETUP = 1 CMD_DLOCK_OP_ACTIVE_GET = 2 CMD_DLOCK_OP_PASSIVE_GET = 3 CMD_DLOCK_OP_SET = 4 CMD_DLOCK_CFG_ACTIVE_GET = 5 CMD_DLOCK_CFG_PASSIVE_GET = 6 def send_command(self, cmd, arg='', dev='dlck'): """Send a command to the Doorlock Command Class.""" super(self, zwLock).send_command(cmd, arg=arg, dev=dev) def ret_command(self, cmd, arg='', dev='dlck'): """Send a command to the Doorlock Command Class that returns data.""" r = self.zware.zw_api('zwif_' + dev, 'cmd={}&ifd={}'.format(cmd, self.id) + arg) if cmd == self.CMD_DLOCK_OP_ACTIVE_GET or cmd == self.CMD_DLOCK_OP_PASSIVE_GET: return r.find('./zwif/' + dev + '_op') elif cmd == self.CMD_DLOCK_CFG_ACTIVE_GET or cmd == self.CMD_DLOCK_CFG_PASSIVE_GET: return r.find('./zwif/' + dev + '_cfg') return r def get_status(self, active=False): """Get status from the Doorlock Command Class.""" cmd = self.CMD_DLOCK_OP_ACTIVE_GET if active else self.CMD_DLOCK_OP_PASSIVE_GET sts_lock_door = self.ret_command(cmd) self.status = (int(sts_lock_door.get('mode')) == self.CMD_OPEN_DOOR) return {'is_open': self.status} def lock(self): """Operate the Doorlock Command Class to lock.""" self.send_command(self.CMD_DLOCK_SETUP) # Select this Command Class. self.send_command(self.CMD_DLOCK_OP_SET, '&mode=' + str(self.CMD_CLOSE_DOOR)) def unlock(self, ifd): """Operate the Doorlock Command Class to unlock.""" self.send_command(self.CMD_DLOCK_SETUP) # Select this Command Class. self.send_command(self.CMD_DLOCK_OP_SET, '&mode=' + str(self.CMD_OPEN_DOOR)) class zwBattery(zwInterface): """Representation of a Z-Wave Battery Command Class.""" CMD_BATTERY_ACTIVE_GET = 2 CMD_BATTERY_PASSIVE_GET = 3 def send_command(self, cmd, arg='', dev='battery'): """Send a command to the Battery Command Class.""" super(self, zwBattery).send_command(cmd, arg=arg, dev=dev) def ret_command(self, cmd, arg='', dev='battery'): """Send a command to the Battery Command Class that returns data.""" return super(self, zwBattery).ret_command(cmd, arg=arg, dev=dev) def get_status(self, active=False): """Get the battery level of the lock.""" cmd = self.CMD_BATTERY_ACTIVE_GET if active else self.CMD_BATTERY_PASSIVE_GET status = self.ret_command(cmd) self.status = int(status.get('level')) return {'battery': self.status} class zwUserCode(zwInterface): """Representation of a Z-Wave User Code Command Class.""" CMD_USER_CODE_ACTIVE_GET = 1 CMD_USER_CODE_PASSIVE_GET = 2 CMD_USER_CODE_SET = 3 CMD_USER_CODE_USERS_ACTIVE_GET = 4 CMD_USER_CODE_USERS_PASSIVE_GET = 5 CMD_USER_CODE_MASTER_ACTIVE_GET = 11 CMD_USER_CODE_MASTER_PASSIVE_GET = 12 CMD_USER_CODE_MASTER_SET = 13 STATUS_UNOCCUPIED = 0 STATUS_OCCUPIED_ENABLED = 1 STATUS_OCCUPIED_DISABLED = 3 STATUS_NON_ACCESS_USER = 4 def send_command(self, cmd, arg='', dev='usrcod'): """Send a command to the User Code Command Class.""" super(self, zwUserCode).send_command(cmd, arg=arg, dev=dev) def ret_command(self, cmd, arg='', dev='usrcod'): """Send a command to the User Code Command Class that returns data.""" r = self.zware.zw_api('zwif_' + dev, 'cmd={}&ifd={}'.format(cmd, self.id) + arg) if cmd == self.CMD_USER_CODE_ACTIVE_GET or cmd == self.CMD_USER_CODE_PASSIVE_GET: return r.find('./zwif/' + dev) elif cmd == self.CMD_USER_CODE_USERS_ACTIVE_GET or cmd == self.CMD_USER_CODE_USERS_PASSIVE_GET: return r.find('./zwif/usrcod_sup') return r def get_master_code(self, active=False): """Get the master code. Only if the specific devices' User Code Command Class supports it.""" cmd = self.CMD_USER_CODE_MASTER_ACTIVE_GET if active else self.CMD_USER_CODE_MASTER_PASSIVE_GET status = self.ret_command(cmd) return {'master_code': status.get('master_code')} async def set_master_code(self, code, verify=True): """Set the master code. Only if the specific devices' User Code Command Class supports it.""" try: self.send_command(self.CMD_USER_CODE_MASTER_SET, arg='&master_code={}'.format(code)) except: return False if verify: timeout = 0 while self.ret_command(self.CMD_USER_CODE_MASTER_ACTIVE_GET).get('master_code') != str(code): if timeout >= 20: return False await asyncio.sleep(1) timeout += 1 return True async def set_codes(self, user_ids: list, status: list, codes=None, verify=True): """Set a list of code slots to the given statuses and codes.""" user_ids = ",".join(user_ids) status = ",".join(status) codes = ",".join(codes if codes else []) try: self.send_command(self.CMD_USER_CODE_SET, '&id={}&status={}&code={}' .format(user_ids, status, codes)) except: return False if verify: timeout = 0 first_user = user_ids[0] first_status = status[0] first_code = codes[0] while not self.is_code_set(first_user, first_status, first_code): # Assume that if the first code was set correctly, all codes were. if timeout >= 20: return False await asyncio.sleep(1) timeout += 1 return True async def remove_single_code(self, user_id, verify=True): """Set a single code to unoccupied status.""" return await self.set_codes([user_id], [self.STATUS_UNOCCUPIED], verify=verify) async def disable_single_code(self, user_id, code, verify=True): """Set a single code to occupied/disabled status.""" return await self.set_codes([user_id], [self.STATUS_UNOCCUPIED], codes=[code], verify=verify) async def get_all_users(self, active=False): """Get a dictionary of the status of all users in the lock.""" cmd = self.CMD_USER_CODE_USERS_ACTIVE_GET if active else self.CMD_USER_CODE_USERS_PASSIVE_GET max_users = int(self.ret_command(cmd).get('user_cnt')) users = {} for i in range(1, max_users + 1): cmd = self.CMD_USER_CODE_ACTIVE_GET if active else self.CMD_USER_CODE_PASSIVE_GET code = self.ret_command(cmd, arg='&id={}'.format(i)) users[str(i)] = { "status": code.get('status'), "code": code.get('code'), "update": code.get('utime'), } return users def is_code_set(self, user_id, status, code): """Check if a code and status are set in a given id.""" code_obj = self.ret_command(self.CMD_USER_CODE_ACTIVE_GET, '&id={}'.format(user_id)) if status == self.STATUS_UNOCCUPIED: return code_obj.get('status') == status return code_obj.get('status') == status and code_obj.get('code') == code class zwAlarm(zwInterface): """Representation of a Z-Wave Alarm Command Class.""" CMD_ALARM_ACTIVE_GET = 2 CMD_ALARM_PASSIVE_GET = 3 def send_command(self, cmd, arg='', dev='alrm'): """Send a command to the Alarm Command Class.""" super(self, zwAlarm).send_command(cmd, arg=arg, dev=dev) def ret_command(self, cmd, arg='', dev='alrm'): """Send a command to the Alarm Command Class that returns data.""" return super(self, zwAlarm).ret_command(cmd, arg=arg, dev=dev) def get_alarm_status(self, alarm_vtype): """Get the last alarm status of an specific alarm type.""" status = self.ret_command(self.CMD_ALARM_ACTIVE_GET, '&vtype={}'.format(alarm_vtype)) name = self.get_event_description(status.get('vtype'), status.get('ztype'), status.get('level'), status.get('event')) return {'alarm_vtype': status.get('vtype'), 'event_description': name, 'ocurred_at': status.get('utime')} def get_last_alarm(self): """Get the last alarm registered on the lock.""" status = self.ret_command(self.CMD_ALARM_PASSIVE_GET, '&ztype=255') name = self.get_event_description(status.get('vtype'), status.get('ztype'), status.get('level'), status.get('event')) return {'alarm_vtype': status.get('vtype'), 'event_description': name, 'ocurred_at': status.get('utime')} def get_event_description(self, vtype, level, ztype, event): """Get the event description given the types and levels.""" name = EVENTS.get(ztype, dict()).get(event) if name is None: name = EVENTS["0"][vtype].get(level) if name is None: name = EVENTS[ztype][vtype]["default"].format(level) return name
zware-api
/zware_api-0.0.25.tar.gz/zware_api-0.0.25/zware_api/lock.py
lock.py
from . import zwInterface class zwLock(zwInterface): """Representation of a Z-Wave Lock Command Class.""" CMD_OPEN_DOOR = 0 CMD_CLOSE_DOOR = 255 CMD_DLOCK_SETUP = 1 CMD_DLOCK_OP_ACTIVE_GET = 2 CMD_DLOCK_OP_PASSIVE_GET = 3 CMD_DLOCK_OP_SET = 4 CMD_DLOCK_CFG_ACTIVE_GET = 5 CMD_DLOCK_CFG_PASSIVE_GET = 6 def send_command(self, cmd, arg='', dev='dlck'): """Send a command to the Doorlock Command Class.""" super().send_command(cmd, arg=arg, dev=dev) def ret_command(self, cmd, arg='', dev='dlck'): """Send a command to the Doorlock Command Class that returns data.""" r = self.zware.zw_api('zwif_' + dev, 'cmd={}&ifd={}'.format(cmd, self.id) + arg) if cmd == self.CMD_DLOCK_OP_ACTIVE_GET or cmd == self.CMD_DLOCK_OP_PASSIVE_GET: return r.find('./zwif/' + dev + '_op') elif cmd == self.CMD_DLOCK_CFG_ACTIVE_GET or cmd == self.CMD_DLOCK_CFG_PASSIVE_GET: return r.find('./zwif/' + dev + '_cfg') return r def get_status(self, active=False): """Get status from the Doorlock Command Class.""" cmd = self.CMD_DLOCK_OP_ACTIVE_GET if active else self.CMD_DLOCK_OP_PASSIVE_GET sts_lock_door = self.ret_command(cmd) self.status = (int(sts_lock_door.get('mode')) == self.CMD_CLOSE_DOOR) return {'is_locked': self.status} def lock(self): """Operate the Doorlock Command Class to lock.""" self.send_command(self.CMD_DLOCK_SETUP) # Select this Command Class. self.send_command(self.CMD_DLOCK_OP_SET, '&mode=' + str(self.CMD_CLOSE_DOOR)) def unlock(self): """Operate the Doorlock Command Class to unlock.""" self.send_command(self.CMD_DLOCK_SETUP) # Select this Command Class. self.send_command(self.CMD_DLOCK_OP_SET, '&mode=' + str(self.CMD_OPEN_DOOR)) class zwLockLogging(zwInterface): """Representation of a Z-Wave Lock Logging Command Class.""" CMD_DLOCK_LOG_ACTIVE_GET = 2 CMD_DLOCK_LOG_PASSIVE_GET = 3 CMD_DLOCK_LOG_SUP_ACTIVE_GET = 2 CMD_DLOCK_LOG_SUP_PASSIVE_GET = 3 def send_command(self, cmd, arg='', dev='dlck_log'): """Send a command to the Doorlock Command Class.""" super().send_command(cmd, arg=arg, dev=dev) def ret_command(self, cmd, arg='', dev='dlck_log'): """Send a command to the Doorlock Command Class that returns data.""" r = self.zware.zw_api('zwif_' + dev, 'cmd={}&ifd={}'.format(cmd, self.id) + arg) if cmd == self.CMD_DLOCK_LOG_SUP_ACTIVE_GET or cmd == self.CMD_DLOCK_LOG_SUP_PASSIVE_GET: return r.find('./zwif/' + dev + '_sup') return r class zwScheduleEntry(zwInterface): """ Representation of a Z-Wave Schedule Entry Lock Command Class. Not supported by Z-Ware API yet. """ def send_command(self, cmd, arg='', dev=''): """Send a command to the Schedule Entry Lock Command Class.""" raise NotImplementedError def ret_command(self, cmd, arg='', dev=''): """Send a command to the Schedule Entry Lock Command Class that returns data.""" raise NotImplementedError
zware-api
/zware_api-0.0.25.tar.gz/zware_api-0.0.25/zware_api/interfaces/doorlock.py
doorlock.py
from . import zwInterface EVENTS = { "0": { "9": { "1": "Deadbolt jammed while locking", "2": "Deadbolt jammed while unlocking", }, "18": { "default": "Keypad Lock with user_id {}", }, "19": { "default": "Keypad Unlock with user_id {}", }, "21": { "1": "Manual Lock by Key Cylinder or Thumb-Turn", "2": "Manual Lock by Touch Function", "3": "Manual Lock by Inside Button", }, "22": { "1": "Manual Unlock Operation", }, "24": { "1": "RF Lock Operation", }, "25": { "1": "RF Unlock Operation", }, "27": { "1": "Auto re-lock cycle complete", }, "33": { "default": "Single user code deleted with user_id {}", }, "38": { "default": "Non access code entered with user_id {}", }, "96": { "default": "Daily Schedule has been set/erased for user_id {}" }, "97": { "default": "Daily Schedule has been enabled/disabled for user_id {}" }, "98": { "default": "Yearly Schedule has been set/erased for user_id {}" }, "99": { "default": "Yearly Schedule has been enabled/disabled for user_id {}" }, "100": { "default": "All Schedules have been set/erased for user_id {}" }, "101": { "default": "All Schedules have been enabled/disabled for user_id {}" }, "112": { "default": "New user code added with user_id {}", "0": "Master Code was changed at keypad", "251": "Master Code was changed over RF", }, "113": { "0": "Duplicate Master Code error", "default": "Duplicate Pin-Code error with user_id {}", }, "130": { "0": "Door Lock needs Time Set" }, "131": { "default": "Disabled user_id {} code was entered at the keypad" }, "132": { "default": "Valid user_id {} code was entered outside of schedule" }, "161": { "1": "Keypad attempts exceed limit", "2": "Front Escutcheon removed from main", "3": "Master Code attempts exceed limit", }, "167": { "default": "Low Battery Level {}", }, "168": { "default": "Critical Battery Level {}", } }, "6": { "0": "State idle", "1": "Manual Lock Operation", "2": "Manual Unlock Operation", "3": "RF Lock Operation", "4": "RF Unlock Operation", "5": "Keypad Lock Operation", "6": "Keypad Unlock Operation", "7": "Manual Not Fully Locked Operation", "8": "RF Not Fully Locked Operation", "9": "Auto Lock Locked Operation", "10": "Auto Lock Not Fully Operation", "11": "Lock Jammed", "12": "All user codes deleted", "13": "Single user code deleted", "14": "New user code added", "15": "New user code not added due to duplicate code", "16": "Keypad temporary disabled", "17": "Keypad busy", "18": "New Program code Entered - Unique code for lock configuration", "19": "Manually Enter user Access code exceeds code limit", "20": "Unlock By RF with invalid user code", "21": "Locked by RF with invalid user codes", "22": "Window/Door is open", "23": "Window/Door is closed", "24": "Window/door handle is open", "25": "Window/door handle is closed", "32": "Messaging User Code entered via keypad", "64": "Barrier performing Initialization process", "65": "Barrier operation (Open / Close) force has been exceeded.", "66": "Barrier motor has exceeded manufacturer’s operational time limit", "67": "Barrier operation has exceeded physical mechanical limits.", "68": "Barrier unable to perform requested operation due to UL requirements", "69": "Barrier Unattended operation has been disabled per UL requirements", "70": "Barrier failed to perform Requested operation, device malfunction", "71": "Barrier Vacation Mode", "72": "Barrier Safety Beam Obstacle", "73": "Barrier Sensor Not Detected / Supervisory Error", "74": "Barrier Sensor Low Battery Warning", "75": "Barrier detected short in Wall Station wires", "76": "Barrier associated with non-Z-wave remote control", "254": "Unknown Event" }, "8": { "1": "Door Lock needs Time Set", "10": "Low Battery", "11": "Critical Battery Level" } } def get_event_description(vtype, level, ztype, event): """Get the event description given the types and levels.""" vtype_ev = EVENTS["0"].get(vtype) name = None if vtype_ev: name = vtype_ev.get(level) if name is None: name = vtype_ev.get("default", "{}").format(level) if name is None or name == str(level): name = EVENTS.get(ztype, dict()).get(event) return name class zwAlarm(zwInterface): """Representation of a Z-Wave Alarm Command Class.""" CMD_ALARM_ACTIVE_GET = 2 CMD_ALARM_PASSIVE_GET = 3 def send_command(self, cmd, arg='', dev='alrm'): """Send a command to the Alarm Command Class.""" super().send_command(cmd, arg=arg, dev=dev) def ret_command(self, cmd, arg='', dev='alrm'): """Send a command to the Alarm Command Class that returns data.""" return super().ret_command(cmd, arg=arg, dev=dev) def get_alarm_status(self, alarm_vtype): """Get the last alarm status of an specific alarm type.""" status = self.ret_command(self.CMD_ALARM_ACTIVE_GET, '&vtype={}'.format(alarm_vtype)) name = get_event_description(status.get('vtype'), status.get('ztype'), status.get('level'), status.get('event')) return {'alarm_vtype': status.get('vtype'), 'event_description': name, 'ocurred_at': status.get('utime')} def get_last_alarm(self): """Get the last alarm registered on the lock.""" status = self.ret_command(self.CMD_ALARM_PASSIVE_GET, '&ztype=255') if status is None: return {'event_description': 'Offline'} name = get_event_description(status.get('vtype'), status.get('level'), status.get('ztype'), status.get('event')) return { 'alarm_vtype': status.get('vtype'), 'alarm_level': status.get('level'), 'alarm_ztype': status.get('ztype'), 'alarm_event': status.get('event'), 'event_description': name, 'occurred_at': status.get('utime') }
zware-api
/zware_api-0.0.25.tar.gz/zware_api-0.0.25/zware_api/interfaces/alarm.py
alarm.py
import time from . import zwInterface class zwUserCode(zwInterface): """Representation of a Z-Wave User Code Command Class.""" CMD_USER_CODE_ACTIVE_GET = 1 CMD_USER_CODE_PASSIVE_GET = 2 CMD_USER_CODE_SET = 3 CMD_USER_CODE_USERS_ACTIVE_GET = 4 CMD_USER_CODE_USERS_PASSIVE_GET = 5 CMD_USER_CODE_MASTER_ACTIVE_GET = 11 CMD_USER_CODE_MASTER_PASSIVE_GET = 12 CMD_USER_CODE_MASTER_SET = 13 STATUS_UNOCCUPIED = 0 STATUS_OCCUPIED_ENABLED = 1 STATUS_OCCUPIED_DISABLED = 3 STATUS_NON_ACCESS_USER = 4 def send_command(self, cmd, arg='', dev='usrcod'): """Send a command to the User Code Command Class.""" super().send_command(cmd, arg=arg, dev=dev) def ret_command(self, cmd, arg='', dev='usrcod'): """Send a command to the User Code Command Class that returns data.""" r = self.zware.zw_api('zwif_' + dev, 'cmd={}&ifd={}'.format(cmd, self.id) + arg) if cmd == self.CMD_USER_CODE_ACTIVE_GET or cmd == self.CMD_USER_CODE_PASSIVE_GET: return r.find('./zwif/usrcod') elif cmd == self.CMD_USER_CODE_USERS_ACTIVE_GET or cmd == self.CMD_USER_CODE_USERS_PASSIVE_GET: return r.find('./zwif/usrcod_sup') return r def get_master_code(self, active=False): """Get the master code. Only if the specific devices' User Code Command Class supports it.""" cmd = self.CMD_USER_CODE_MASTER_ACTIVE_GET if active else self.CMD_USER_CODE_MASTER_PASSIVE_GET status = self.ret_command(cmd) return {'master_code': status.get('master_code')} def set_master_code(self, code, verify=True): """Set the master code. Only if the specific devices' User Code Command Class supports it.""" self.send_command(self.CMD_USER_CODE_MASTER_SET, arg='&master_code={}'.format(code)) if verify: timeout = 0 while self.ret_command(self.CMD_USER_CODE_MASTER_ACTIVE_GET).get('master_code') != str(code): if timeout >= 20: return False time.sleep(1) timeout += 1 return True def set_codes(self, user_ids: list, status: list, codes=None, verify=True): """Set a list of code slots to the given statuses and codes.""" first_user = user_ids[0] first_status = status[0] first_code = codes[0] if codes else None user_ids = ",".join(user_ids) status = ",".join(status) codes = ",".join(codes if codes else []) self.send_command(self.CMD_USER_CODE_SET, '&id={}&status={}&code={}' .format(user_ids, status, codes)) if verify: timeout = 0 while not self.is_code_set(first_user, first_status, first_code): # Assume that if the first code was set correctly, all codes were. if timeout >= 20: return False time.sleep(1) timeout += 1 return True def get_code(self, user_id, active=False): """Get the code from a user_id and its status.""" cmd = self.CMD_USER_CODE_ACTIVE_GET if active else self.CMD_USER_CODE_PASSIVE_GET status = self.ret_command(cmd, arg='&id={}'.format(user_id)) if status is None: return {"user_id": user_id, "status": self.STATUS_UNOCCUPIED, "code": None, "error": "Not found"} return {"user_id": status.get("id"), "status": status.get("status"), "code": status.get("code")} def remove_single_code(self, user_id, verify=True): """Set a single code to unoccupied status.""" return self.set_codes([user_id], [str(self.STATUS_UNOCCUPIED)], verify=verify) def disable_single_code(self, user_id, code, verify=True): """Set a single code to occupied/disabled status.""" return self.set_codes([user_id], [str(self.STATUS_UNOCCUPIED)], codes=[code], verify=verify) def get_all_users(self, active=False): """Get a dictionary of the status of all users in the lock.""" cmd = self.CMD_USER_CODE_USERS_ACTIVE_GET if active else self.CMD_USER_CODE_USERS_PASSIVE_GET max_users = int(self.ret_command(cmd).get('user_cnt')) users = {} for i in range(1, max_users + 1): cmd = self.CMD_USER_CODE_ACTIVE_GET if active else self.CMD_USER_CODE_PASSIVE_GET code = self.ret_command(cmd, arg='&id={}'.format(i)) if code is not None: users[str(i)] = { "status": code.get('status'), "code": code.get('code'), "update": code.get('utime'), } return users def is_code_set(self, user_id, status, code): """Check if a code and status are set in a given id.""" code_obj = self.ret_command(self.CMD_USER_CODE_ACTIVE_GET, '&id={}'.format(user_id)) if code_obj is None: return False if status == str(self.STATUS_UNOCCUPIED): return code_obj.get('status') == status return code_obj.get('status') == status and code_obj.get('code') == code
zware-api
/zware_api-0.0.25.tar.gz/zware_api-0.0.25/zware_api/interfaces/usercode.py
usercode.py
# convolutional network metric scripts - Code for fast watersheds. Code is based around code from https://bitbucket.org/poozh/watershed described in http://arxiv.org/abs/1505.00249. For use in https://github.com/naibaf7/PyGreentea. # building ### conda - `conda install -c conda-forge zwatershed` ### pip [<img src="https://img.shields.io/pypi/v/zwatershed.svg?maxAge=2592000">](https://pypi.python.org/pypi/zwatershed/) - `pip install zwatershed` ### from source - clone the repository - run ./make.sh ### requirements - numpy, h5py, cython - if using parallel watershed, also requires multiprocessing or pyspark - in order to build the cython, requires a c++ compiler and boost # function api - `(segs, rand) = zwatershed_and_metrics(segTrue, aff_graph, eval_thresh_list, seg_save_thresh_list)` - *returns segmentations and metrics* - `segs`: list of segmentations - `len(segs) == len(seg_save_thresh_list)` - `rand`: dict - `rand['V_Rand']`: V_Rand score (scalar) - `rand['V_Rand_split']`: list of score values - `len(rand['V_Rand_split']) == len(eval_thresh_list)` - `rand['V_Rand_merge']`: list of score values, - `len(rand['V_Rand_merge']) == len(eval_thresh_list)` - `segs = zwatershed(aff_graph, seg_save_thresh_list)` - *returns segmentations* - `segs`: list of segmentations - `len(segs) == len(seg_save_thresh_list)` ##### These methods have versions which save the segmentations to hdf5 files instead of returning them - `rand = zwatershed_and_metrics_h5(segTrue, aff_graph, eval_thresh_list, seg_save_thresh_list, seg_save_path)` - `zwatershed_h5(aff_graph, eval_thresh_list, seg_save_path)` ##### All 4 methods have versions which take an edgelist representation of the affinity graph - `(segs, rand) = zwatershed_and_metrics_arb(segTrue, node1, node2, edgeWeight, eval_thresh_list, seg_save_thresh_list)` - `segs = zwatershed_arb(seg_shape, node1, node2, edgeWeight, seg_save_thresh_list)` - `rand = zwatershed_and_metrics_h5_arb(segTrue, node1, node2, edgeWeight, eval_thresh_list, seg_save_thresh_list, seg_save_path)` - `zwatershed_h5_arb(seg_shape, node1, node2, edgeWeight, eval_thresh_list, seg_save_path)` # parallel watershed - 4 steps - *a full example is given in par_ex.ipynb* 1. Partition the subvolumes - `partition_data = partition_subvols(pred_file,out_folder,max_len)` - evenly divides the data in *pred_file* with the constraint that no dimension of any subvolume is longer than max_len 2. Zwatershed the subvolumes 1. `eval_with_spark(partition_data[0])` - *with spark* 2. `eval_with_par_map(partition_data[0],NUM_WORKERS)` - *with python multiprocessing map* - after evaluating, subvolumes will be saved into the out\_folder directory named based on their smallest indices in each dimension (ex. path/to/out\_folder/0\_0\_0\_vol) 3. Stitch the subvolumes together - `stitch_and_save(partition_data,outname)` - stitch together the subvolumes in partition_data - save to the hdf5 file outname - outname['starts'] = list of min_indices of each subvolume - outname['ends'] = list of max_indices of each subvolume - outname['seg'] = full stitched segmentation - outname['seg_sizes'] = array of size of each segmentation - outname['rg_i'] = region graph for ith subvolume 4. Threshold individual subvolumes by merging - `seg_merged = merge_by_thresh(seg,seg_sizes,rg,thresh)` - load in these areguments from outname
zwatershed
/zwatershed-0.10.tar.gz/zwatershed-0.10/README.md
README.md
from __future__ import annotations import logging from dataclasses import dataclass, field from typing import Callable, Literal try: from pydantic.v1 import BaseModel except ImportError: from pydantic import BaseModel LOGGER = logging.getLogger(__package__) class BaseEventModel(BaseModel): """Base model for an event.""" source: Literal["controller", "driver", "node"] event: str @dataclass class Event: """Represent an event.""" type: str data: dict = field(default_factory=dict) class EventBase: """Represent a Z-Wave JS base class for event handling models.""" def __init__(self) -> None: """Initialize event base.""" self._listeners: dict[str, list[Callable]] = {} def on( # pylint: disable=invalid-name self, event_name: str, callback: Callable ) -> Callable: """Register an event callback.""" listeners: list = self._listeners.setdefault(event_name, []) listeners.append(callback) def unsubscribe() -> None: """Unsubscribe listeners.""" if callback in listeners: listeners.remove(callback) return unsubscribe def once(self, event_name: str, callback: Callable) -> Callable: """Listen for an event exactly once.""" def event_listener(data: dict) -> None: unsub() callback(data) unsub = self.on(event_name, event_listener) return unsub def emit(self, event_name: str, data: dict) -> None: """Run all callbacks for an event.""" for listener in self._listeners.get(event_name, []).copy(): listener(data) def _handle_event_protocol(self, event: Event) -> None: """Process an event based on event protocol.""" handler = getattr(self, f"handle_{event.type.replace(' ', '_')}", None) if handler is None: LOGGER.debug("Received unknown event: %s", event) return handler(event)
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/event.py
event.py
from __future__ import annotations import argparse import asyncio import logging import sys import aiohttp from .client import Client from .dump import dump_msgs from .version import get_server_version logger = logging.getLogger(__package__) def get_arguments() -> argparse.Namespace: """Get parsed passed in arguments.""" parser = argparse.ArgumentParser(description="Z-Wave JS Server Python") parser.add_argument("--debug", action="store_true", help="Log with debug level") parser.add_argument( "--server-version", action="store_true", help="Print the version of the server" ) parser.add_argument( "--dump-state", action="store_true", help="Dump the driver state" ) parser.add_argument( "--event-timeout", help="How long to listen for events when dumping state", ) parser.add_argument( "url", type=str, help="URL of server, ie ws://localhost:3000", ) arguments = parser.parse_args() return arguments async def start_cli() -> None: """Run main.""" args = get_arguments() level = logging.DEBUG if args.debug else logging.INFO logging.basicConfig(level=level) async with aiohttp.ClientSession() as session: if args.server_version: await print_version(args, session) elif args.dump_state: await handle_dump_state(args, session) else: await connect(args, session) async def print_version( args: argparse.Namespace, session: aiohttp.ClientSession ) -> None: """Print the version of the server.""" logger.setLevel(logging.WARNING) version = await get_server_version(args.url, session) print("Driver:", version.driver_version) print("Server:", version.server_version) print("Home ID:", version.home_id) async def handle_dump_state( args: argparse.Namespace, session: aiohttp.ClientSession ) -> None: """Dump the state of the server.""" timeout = None if args.event_timeout is None else float(args.event_timeout) msgs = await dump_msgs(args.url, session, timeout=timeout) for msg in msgs: print(msg) async def connect(args: argparse.Namespace, session: aiohttp.ClientSession) -> None: """Connect to the server.""" async with Client(args.url, session) as client: driver_ready = asyncio.Event() asyncio.create_task(on_driver_ready(client, driver_ready)) await client.listen(driver_ready) async def on_driver_ready(client: Client, driver_ready: asyncio.Event) -> None: """Act on driver ready.""" await driver_ready.wait() assert client.driver # Set up listeners on new nodes client.driver.controller.on( "node added", lambda event: event["node"].on("value updated", log_value_updated), ) # Set up listeners on existing nodes for node in client.driver.controller.nodes.values(): node.on("value updated", log_value_updated) def log_value_updated(event: dict) -> None: """Log node value changes.""" node = event["node"] value = event["value"] if node.device_config: description = node.device_config.description else: description = f"{node.device_class.generic} (missing device config)" logger.info( "Node %s %s (%s) changed to %s", description, value.property_name or "", value.value_id, value.value, ) def main() -> None: """Run main.""" try: asyncio.run(start_cli()) except KeyboardInterrupt: pass sys.exit(0) if __name__ == "__main__": main()
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/__main__.py
__main__.py